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Preface

This book deals with the architecture of the network subsystem in the Linux kernel. The idea for this book was born at the
Institute of Telematics at the University of Karlsruhe, Germany, where the Linux kernel has been used in many research projects
and its network functionality is modified or enhanced, respectively, in a targeted way. For instance, new services and protocols
were developed for the next-generation Internet, and their behavior was studied. In addition, existing protocols, such as the TCP
transport protocol, were modified to improve their behavior and adapt them to the new situation in the Internet.

In the course of these research projects, it has been found that the Linux kernel is very suitable for studying new network
functionalities, because it features a stable and extensive implementation of the TCP/IP protocol family. The freely available
source code allows us to modify and enhance the functionality of protocol instances easily. In addition, the enhancement of the
kernel functionality is very elegantly supported by the principle of the kernel modules. However, many studies and theses in this
field showed that familiarization with the Linux network architecture, which is required before you can modify the behavior of a
protocol instance, demands considerable work and time. Unfortunately, this is mainly due to the facts that the network
subsystem of the Linux kernel is poorly documented and that there is no material that would explain and summarize the basic
concepts.

Although there are a few books that deal with the Linux kernel architecture and introduce its basic concepts, none of these
books includes a full discussion of the network implementation. This situation may be due to the following two reasons:

e The network subsystem in the Linux kernel is very complex. As mentioned above, it implements a large number of
protocols, which is probably one good reason for the enormous success of Linux. Both [BoCe00] and [BBDK+01] mention
that the description of all these protocols and their concepts would actually fill an entire book. Well, you are reading such
a book now, and, as you can see, it has eventually turned out to be quite a large volume, although it describes only part
of the network functionality, in addition to the basic concepts of the Linux network architecture.

o Operating-system developers normally deal with the classical topics of system architecture—for example, the
management of memories, processes, and devices, or the synchronization of parallel activities in a system—rather than
with the handling of network packets. As you go along in this book, you will surely notice that it has been written not by
system developers, but by computer-science specialists and communication engineers.

While considering the facts that there was little documentation covering the Linux network architecture and that students had to
familiarize themselves with it over and over again, we had the idea of creating a simple documentation of the Linux network
architecture ourselves. Another wish that eventually led to the more extensive concept of this book was a stronger discussion of
important communication issues: design and implementation of network protocols in real-world systems. Networking courses
teach students the most important concepts and standards in the field of telecommunication, but the design and implementation
of network functionality (mainly of network protocols) by use of computer-science concepts has enjoyed little attention in
teaching efforts, despite the fact that this knowledge could have been used often within the scope of studies and theses. The
authors consider the description of the implementation of the Linux network architecture and its structure, interfaces, and
applied concepts a step towards strengthening the informatics component in networking classes.

The authors hope that this book will help to make the processes and structures of the Linux network architecture easier to
understand, and, above all, that our readers will have fun dealing with it and perhaps learn a few things about the networking
concept and its practical implementation.

The content of this book corresponds to our knowledge of the Linux network architecture. This knowledge is neither
comprehensive nor exhaustive. Nevertheless, we have tried to represent the processes and structures of the Linux network
architecture in a fashion as easily understandable and detailed as possible. We are thankful for all hints, suggestions for
improvement, ideas, and comments, and we will try to consider them in later editions. Updated information about the Linux
network architecture and this book is available online at http://www.Linux-netzwerkarchitektur.de.
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Organization of this Book

Chapter 1 will deal intensively with the motivation behind Linux in general and the Linux network architecture in particular;
Chapter 2 is an introduction into the basic mechanisms and components of the Linux kernel. To keep the volume of this book
manageable, we will discuss only those components that are important for understanding the Linux network architecture. With
regard to the other components of the Linux kernel, we refer our readers to other books (e.g., [BBDK+01]).

Chapter 3 is an introduction to the general architecture of communication systems and the functionality of protocols and protocol
instances. It includes an introduction to the popular TCP/IP and ISO/OSI layering models.

Chapters 4 and 5 discuss fundamental concepts of the Linux network architecture, including the representation and management
of network packets in the Linux kernel (see Socket Buffers?A class="docLink" HREF="0131777203_ch04.html#ch04">Chapter 4)
and the concept of network devices (Chapter 5). Network devices form the links between the protocol instances on the higher
layers and hide the particularities of the respective network adapters behind a uniform interface.

Chapter 6 gives an overview of the activity forms in the Linux network architecture and the flow of transmit and receive
processes. In addition, this chapter introduces the interface to the higher-layer protocol instances.

Chapters 7 through 12 discuss protocols and mechanisms of the data link layer. More specifically, it describes the SLIP, PPP, and
PPP-over-Ethernet protocols and how the ATM and Bluetooth network technologies are supported in Linux. Finally, we will
describe how a Linux computer can be used as a transparent bridge.

Our discussion of the TCP/IP protocols starts with an overview of the TCP/IP protocol family in Chapter 13. We will begin with a
brief history of the Internet, then give an overview of the different protocols within the TCP/IP protocol family. Chapter 14 will
deal with the Internet Protocol and its mechanisms in detail. In addition, it introduces the IP options and the ICMP protocol.
Chapters 15 through 23 discuss the following protocols and mechanisms on the network layer: ARP, routing, multicasting, traffic
control, firewalls, connection tracking, NAT, KIDS, and IPvé6.

Chapters 24 and 25 describe the TCP and UDP transport protocols, respectively. We will close our discussion of the kernel with
an explanation of the socket interface, in Chapter 26, then end with a short overview of the programming of network
functionality on the application level.

The appendix includes additional information and introduces tools facilitating your work with the Linux network architecture. The
issues dealt with include the LXR source code browser, debugging work in the Linux kernel, and tools you can use to manage
and monitor the Linux network architecture.

4 Previous Mext b
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Additional Sources of Information

This section lists a few useful sources of information where you can find additional information about the Linux network
architecture.

Magazines

e The Linux Magazine (http://www.Linux-mag.com) is probably the best-known Linux magazine. It features articles about
all issues that are of interest when you deal with Linux. Of special interest is the Kernel Corner column, which regularly
publishes articles about the architecture and implementation of components of the Linux kernel—most of them by
developers themselves.

e Linux Focus (http://www.linuxfocus.org) is an online magazine publishing articles in many different languages. It also
includes a Kernel Corner.

e The Linux Gazette (http://www.linuxgazette.com) is another online magazine dedicated to Linux.
Useful Links in the World Wide Web

o Linux Headquarters: http://www.linuxhg.com

o Linux Documentation Project: http://www.linuxdoc.org

o Linux Weekly News: http://www.lwn.net
Other Information

e Howtos include a lot of information about different Linux issues. Most deal with the configuration and installation of
various Linux functionalities. Especially for the Linux kernel, there are also a few howto documents—for example, how to
use locks in the kernel [Russ00b], and general information on hacking in the Linux kernel [Russ00c]. Of course, we
should not forget to mention the networking howto, which includes a wealth of tips and information about configuring the
network functionality in Linux [Drak00].

o The source code of the current kernels is found at ftp . kernel.org- There are also mirrors of this FTP server, a list of
which can be found at http://www.kernel.org/mirrors/ .

o Information about components and drivers of the Linux kernel are also included directly in the source code of a kernel
version, in the Documentation subdirectory. In addition, the file Documentation/kernel-docs.txt includes a list of current
information about the Linux kernel—for example, documentation, links, and books. (It's worth taking a look at this file!)
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Conventions Used in this Book

This book uses the following typographical conventions to emphasize various elements of the Linux kernel, source texts, and
other things.

Functions

A gray bar denotes important functions. A bar describes the function name on the left and the file name (within the kernel's
source-code tree) on the right.

When giving a function name in such a place and throughout the body of this book, we normally leave out the parameters,
because they would take up much space and impair the readability and text flow.

In general, when introducing a function, we describe the entire parameter set and give a brief description. The variable type is

normally left out. For example, the description of the function int ip rcv(struct sk buff *skb, struct
net device *dev, struct packet type *pt) from the file net/ipv4/ip input.c is denoted as follows:

ip rev() net/ipv4/ip_input.c

Throughout the body of this book, we would then refer to this function as ip rcv () Of ip rcv(skb, dev, pt)-

Variables, Function Names, Source Text Excerpts, and so on

A sans-serif fontis used for excerpts from the source code, variable and function names, and other keywords referred to in
the text.

Commands, Program Names, and so on

A sans-serif fontis used for the names of programs and command-line tools. Parameters that should be passed unchanged
are also printed in sans-serif; those parameters that have to be replaced by values are printed in sans-serif italic-

Direct input in the command line is often denoted by a leading shell prompt—for example,
Files, Directories, Web Links, and so on

A sans-serif fontis used for files and directories. We generally give the relative path in the kernel source code for files of
the Linux kernel (e.g., net/ivp4/ip_input.c ). Web links are also printed in sans-serirt font (e.g., http://www.Linux-
netzwerkarchitektur.de).

Other Conventions

Italic text denotes emphasis, or an introduction to a key term or concept.
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Chapter 1. Motivation

Digital data transmission and processing form the basis of our today's information society. Within a short time, the Internet has
penetrated all areas of our daily lives, and most of us can surely not imagine everyday life without it. With its new services, it
offers us ways to communicate, fascinating all social strata, but corporations and organizations also use the possibilities of the
Internet as a basis for internal exchange of information and for communication and handling business with customers and
partners.

The technique of the Internet has been developed during the past twenty years; the actual boom began with the introduction of
the World Wide Web at the beginning of the nineties. Development has progressed since then; new protocols and standards
have been integrated, improving now both the functionality and the security in the "global net."

As developments in the Internet progressed, so did the technologies of the underlying network: The first e-mails were sent over
telephone lines at 1200 bits/s in the eighties, but we can how communicate over gigabit or terabit lines. In addition, new
technologies for mobile communication are emerging, such as UMTS and Bluetooth.

All these technologies have one thing in common: They are integral parts of digital communication systems, allowing spatial
communication and interaction of distributed applications and their users. Modern communication systems decompose these
extremely complex tasks into several layers, and the instances of these layers interact via predefined protocols to supply the
desired service.

Telematics!!] is a field that handles both the development and research of telecommunication systems (and their basic
mechanisms) and the implementation and realization of these systems by using means of computer science. This means that, in
addition to the design of communication systems and protocols, the implementation of these mechanisms is an important task
within the telematics discipline. Unfortunately, many universities and academic institutions neglect this point. For example,
during coverage of the basics and the current standards with regard to communication protocols in detail, only very little
knowledge is conveyed as to how these principles can be used (e.g., which basic principles of computer science can be used
when implementing communication protocols).

[1] Telematics is the subdiscipline of informatics that deals with the design and implementation of
telecommunication systems by use of information technologies.

With this book, the authors—who themselves teach computer-science students—attempt to contribute to promoting the
computer-science component in telematics. Using the Linux operating system as an example, which the authors employ mainly
for research purposes, in addition to the usual office applications (e-mail, World Wide Web, word processing, etc.), we will
introduce the practical realization of communication systems and communication protocols. Essentially, the structuring of the
network subsystem in the Linux kernel, the structuring of interfaces between network components, and the applied software
methods will be used to show the reader various ways to implement protocols and network functionality.

In addition to its teaching use, of course, this book is also intended to address all those interested in the architecture of the
network subsystem in the Linux kernel, taking a look behind the scenes at this poorly documented part of the Linux kernel. The
following section discusses the Linux operating system and the reasons for its use in offices, companies, networks, and
research.
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1.1 The Linux Operating System

Linux is a freely available multiuser, multitasking, multiprocessor, and multiplatform UNIX operating system. Its popularity and
the number of users increase continually, making Linux an increasingly serious factor in the operating-systems market. Thanks
to the freely available source code that everybody can obtain over the Internet and to the fact that everybody can participate in
and contribute to the further development of the Linux system, many developers, all over the world, are constantly busy further
developing this system, removing existing errors, and optimizing the system's performance.

The fact that most developers do this very time-consuming work for free in their spare time is a sign of the great fun working
with Linux and mainly with the Linux kernel can be. As we progress in this book, we will try to pass some of this enthusiasm on
to our readers. The large number of research projects at the University of Karlsruhe that have used, enhanced, or modified the
Linux network architecture experienced a high motivation of all participating students. The reason was mainly that this offered
them a way to participate in the "Linux movement."

The development of Linux was initiated by a student by the name of Linus B. Torvalds, in 1991. At that time, he worked five
months on his idea of a new PC-based UNIX-like operating system, which he eventually made available for free on the Internet.
It was intended to offer more functions than the Minix system designed by Andrew S. Tanenbaum, which was developed for
teaching purposes only [Tane95]. With his message in the Minix newsgroup (see page 1), he set a movement in motion, the
current result of which is one of the most stable and widely developed UNIX operating systems. Back then, Linus Torvalds
planned only the development of a purely experimental system, but his idea further developed during the following years, so
that Linux is now used successfully by many private people, corporations, and scientists alike. Mainly, the interoperability with
other systems (Apple, MS-Windows) and the ability to run on many different platforms (Intel x86, MIPS, PA-RISC, IA64, Alpha,
ARM, Sparc, PowerPC, M68, S390) make Linux one of the most popular operating systems.

Not only the extensive functionality of Linux, but also the freely accessible source code of this operating system, have convinced
many private people and companies to use Linux. In addition, the German government, with its program for the support of
open-source software, promotes the use of freely available programs with freely available source code. The main reason for
this is seen not in the low procurement cost, but in the transparency of the software used. In fact, anyone can view the source
code and investigate its functionality. Above all, anyone can check what—perhaps security-relevant—functionalities or errors are
contained in an application or operating system. Especially with commercial systems and applications, there are often
speculations that they could convey information about the user or the installed applications to the manufacturer.

You do not have such fears with freely developed software, where such a behavior would be noticed and published quickly.
Normally, several developers work concurrently on an open-source project in a distributed way over the Internet, monitoring
themselves implicitly. After all, free software is not aimed at maximizing the profit of a company or its shareholders. Its goal is
to develop high-quality software for everybody. Linux is a very good example showing that freely developed software is not just
the hobby of a handful of freaks, but leads to serious and extremely stable applications.

The authors of this book use Linux mainly for research work in the network area. The freely available source texts allow us to
implement and evaluate new theories and protocols in real-world networks. For example, Linux was used to study various
modifications of the TCP transport protocol [WeRWO01, Ritt01], to develop a framework for the KIDS QoS support [Wehr01b],
and to develop the high-resolution UKA-APIC timer [WeRi00].

4 Previous Mext b
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1.2 What is Linux?

Originally, the term Linux described only the operating-system kernel that abstracts from the hardware of a system, offering
applications a uniform interface. Over time, the term Linux has often come to mean the kernel (the actual Linux) together with
the entire system environment, including the following components:

o the operating-system kernel (currently version 2.0, 2.2, or 2.4);
o the system programs (compiler, libraries, tools, etc.);

o the graphical user interface (e.g., XFree) and a window manager or an application environment (KDE, Gnome, FVWM,
etc.);

o a large number of applications from all areas (editors, browsers, office applications, games, etc.).

Different components not forming part of the kernel originate largely from the GNU project of Free Software Foundation, which
explains why the complete system environment is often called "GNU/Linux system." A characteristic common to the Linux kernel
and GNU programs is that they may all be freely distributed under the GNU Public License (GPL), provided that the source text is
made publicly available. To the extent that enhancements or modifications have been effected to the programs, then these are
automatically governed by the GNU license (i.e., their source text must also be made freely available). Since the advent of Linux,
this has had the effect that the system has been further developed free from corporate policy interests and that it has been
more strongly oriented to word its users' needs than are other, commercial operating systems. Anyone can participate in the
development and implement new capabilities, ones based on the freely available source texts. This means that Linux is always
involved in the support of international standards, and no attempt is made to enforce corporate or proprietary standards to
secure a market position.

Errors made during the development of a piece of software are normally removed quickly. In addition, there is a continual effort
to keep the system performing as well as possible. This has become very clear in the example of the network implementation in
the last kernel version: After it had become known that the performance of Linux in the area of protocol handling on
multiprocessor systems suffers from a few flaws, the network part was extensively rewritten to remove these faults. This
means that Linux is an example that clearly shows the benefits of open-source projects:

o stability,
e performance, and

e Security.
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1.3 Reasons for Using Linux

The previous section introduced the important properties and objectives of Linux as a free software project. This section will
discuss a number of general properties of the Linux kernel, offering more reasons for its use:

o Linux supports preemptive multitasking: All processes run independently in different protected memory spaces, so that
the failure of one process does not in any way impair the other processes. When a process claims too much computing
time, its processor can be taken and allocated to another waiting application. Preemptive multitasking is a fundamental
requirement for stable systems.

o Multiprocessor: Linux is one of the few operating systems supporting several processors in SMP (Symmetric
MultiProcessing) operation. This means that several processes can be handled concurrently by different CPUs. Since
kernel version 2.0, multiprocessor systems with Intel and Sparc processors are supported. Version 2.2 and the current
Version 2.4 additionally improved the performance and parallelism in the Linux kernel.

e Multiuser: Several users can work concurrently in one system, when they are logged in over different consoles. In
addition, users can work easily on several graphical user interfaces.

o Multiplatform: properties of: Linux was originally developed only for the personal computer (Intel 80386), but it runs on
more than ten processor architectures today. The bandwidth of supported platforms extends from small digital personal
assistants over the standard personal computer to mainframe architectures: Intel x86, MIPS, PA-RISC, IA64, Alpha, ARM,
Sparc, PowerPC, M68, and so on.

o Linux is a UNIX system: It is compatible with the POSIX-1300.1 standard[?] and includes large parts of the functionality of
UNIX System V and BSD. This means that you can use UNIX standard software under Linux.

(2] portable Operating System Interface based on UniX—POSIX 1300.1 defines a minimum interface that
each UNIX-like operating system must offer.

o Rich network functionality: The Linux network architecture makes available an extensive choice of network protocols and
functionalities in the networking area. The development of the Internet and its services is inseparably linked to UNIX
systems. This is why the properties of the TCP/IP protocol family and its behavior can best be studied and controlled in a
UNIX system. Other PC operating systems would be unsuitable for this, especially those with source code not publicly
available.

e Open source: The source code of the entire Linux kernel is freely available and can be used according to the GNU Public
License. A large number of programmers work on the further development of the Linux kernel all over the world,
continually enhancing and improving it. Linux is distributed over the Internet so that each user can test the kernel and
make improvements or enhancements. The development of Linux in this dimension would not have been possible without
the Internet.

Formerly, users had to put up with defects in software they purchased; Linux now allows everyone to remove such
defects. And it really works. An often heard criticism has been that the driver support for Linux is one of its major
problems. This situation has changed dramatically during the past years. For instance, all actually available network
cards are supported by Linux. In fact, we can rely to the Linux community to such an extent that there will soon be a
matching driver for each new device.

o Efficient network implementation: Meanwhile, the Linux kernel makes available a well-structured implementation of the
network functionality, which will be our main focus of discussion in the next 27 chapters of this book. The functions can
be adapted to the special requirements of the desired system and meet the specifications of the Internet Engineering
Task Force (IETF), IEE, and ISO better than many other systems.

In the creation of a new kernel, its desired functionality can be individually configured. For instance, you can enable a
large number of optimization options or add specific functionalities (e.g., multicast support and various protocols). While
the system is running, you can also use the Proc file system (see Section 2.8) to change parameters—For example,
various timeout values for the TCP transport protocol or configuration parameters of other protocol instances. There is
even a way to use the Proc file system to enable and disable certain functions at runtime, such as packet forwarding.

o IP Next Generation: Since Version 2.1.38, the Linux kernel provides a stable and relatively complete implementation of
the new Internet Protocol IPv6. (See Chapter 23.)

e And, finally, the best argument: Linux is free of charge. Everyone can download it from the Internet or buy it on CD for a
few dollars, usually with a few gigabyte applications (some of them being more useful, some less) and with extensive
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extremely stable, and easily adaptable operating system that turns a Pentium PC into a high-performing workstation, a
highly reliable server, or an individually configurable Internet router.

This chapter has been a brief introduction to Linux; the next chapter will introduce the internal structure of the Linux kernel. We
will then discuss the basic structure of communication systems in general and the structure of the Linux network architecture in
particular.
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Chapter 2. The Kernel Structure

This chapter deals with the basic architecture of the Linux kernel and its components. It provides an overview of the most
important areas of the kernel, such as the different forms of activity in the kernel, memory management, device drivers, timers,
and modules. Each of these issues will be discussed briefly in this book, to give you an insight into the tasks and processes of
each component. Detailed information about each of these issues is found in other books and references. A choice of
corresponding sources is given in the bibliography, where we particularly recommend [RuCo01], [BBDK+01], and [BoCe00].

The goal of this chapter is to describe the framework in which the Linux network architecture operates. All areas described
below offer basic functions required to offer network services in the first place. This is the reason why knowing them is an
essential prerequisite for an understanding of the implementation of the Linux networking architecture.

Figure 2-1 shows the structure of the Linux kernel. The kernel can be divided into six different sections, each possessing a
clearly defined functionality and offering this functionality to the other kernel components. This organization is reflected also in
the kernel's source code, where each of these sections is structured in its own subtree.

Figure 2-1. Structure of the Linux kernel according to [RuCo01].
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Here we briefly describe these components.

e Process management: This area is responsible for creating and terminating processes and other activities of the kernel
(software interrupts, tasklets, etc.). In addition, this is the area where interprocess communication (signals, pipes, etc.)
takes place. The scheduler is the main component of process management. It handles all active, waiting, and blocked
processes and takes care that all application processes obtain their fair share of the processor's computing time.

e Memory management: The memory of a computer is one of the most important resources. A computer's performance
strongly depends on the main memory it is equipped with. In addition, memory management is responsible for allowing
each process its own memory section, which has to be protected against access by other processes.

o File systems: In UNIX, the file system assumes a central role. In contrast to other operating systems (e.g., Windows NT),
almost everything is handled over the file-system interface. For example, device drivers can be addressed as files, and
the Proc file system (see Section 2.8) allows you to access data and parameters within the kernel. These two
functionalities can be used very effectively and elegantly, so that they are often used for debugging purposes. (See
Appendix B.)

o Device drivers: Device drivers abstract from the underlying hardware in every operating system, and they allow you to
access this hardware. The modular concept of Linux we will introduce in Section 2.4 offers a way to add or remove
device drivers during a running operation, despite its monolithic kernel.

o Network: All network operations have to be managed by the operating system, because certain network operations
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events. They have to be collected, identified, and forwarded before a process can handle them. This is the reason why
the kernel is responsible for the handling of packets across program and network interfaces.

Within the kernel, defined interfaces are used to facilitate the design of new functionalities. For instance, there is an interface to
the virtual file system, which can be used to add new file systems. The availability of more than a dozen supported file systems
shows clearly that this interface was a good design decision by the Linux developers, because no other operating system

provides such a large supply of supported file systems. The Linux network architecture also includes many interfaces supporting

the dynamic enhancement of the wealth of protocols and network drivers.
The components shown on dark background in Figure 2-1 provide interfaces for the dynamic registration of new functionalities,
so that such functionalities can be easily implemented in modules.
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2.1 Monolithic Architectures and Microkernels

In contrast to current operating-system developments tending toward a microkernel architecture, the Linux operating system is
based on a monolithic kernel. In microkernel architectures, such as the Mach kernel [Tane95] or the Windows NT kernel, the
operating system kernel represents merely the absolute necessary minimum of functionality. Good examples are interprocess
communication (IPC) and memory management (MM). Building on the microkernel, the remaining functionality of the operating
system is moved to independent processes or threads, running outside the operating system kernel. They use a defined
interface to communicate with the microkernel, generally via system calls.

In monolithic kernels, to which the Linux kernel belongs, the entire functionality is concentrated in one (large) kernel. In addition
to the basic mechanisms known from microkernels, the Linux operating system kernel also includes device drivers, file system
drivers, most instances of the network protocols, and much more. (See Figure 2-1.) Compared to microkernel architectures, the
use of a monolithic kernel has both benefits and drawbacks, as we will see below.

The benefits include the fact that the entire functionality of the operating system is concentrated in the kernel, allowing the
system to work more efficiently. You can access resources directly from within the kernel, so costly system calls and context
changes are needed less frequently. One major drawback is that the source code for the operating system kernel can quickly
become rather complex, even messy, because no defined interfaces are required within the kernel. In addition, the development
of new drivers can be made more difficult by the lack of an interface definition. For example, if you install a new device, you
have to retranslate the entire kernel to ensure that this device driver can be compiled with the kernel, a need avoided by
microkernel architectures.

That Linux is based on a monolithic operating-system kernel is due to historical reasons. A system that had not been planned to
become such a big project, at the beginning, has continually been developed further, so that it became impossible, at some
point in time, to migrate to a microkernel architecture. However, since Version 2.0, Linux has made a step towards microkernel
architectures. More specifically, the possibility was created of moving certain functionalities into modules, which are loaded into
the kernel at runtime, from which they can be removed again.

This removed an important drawback of monolithic kernels and opened the way to loading drivers or other functionalities at
runtime. In addition, modularization offers another benefit: Uniform interfaces are defined. This feature had previously been
characteristic only of microkernel architectures. Linux has a number of such interfaces, allowing the kernel to be dynamically
enhanced by a number of functionalities. This very flexibility and openness of its interfaces is one of the most important benefits
of Linux.

Table 2-1 shows a selection of the most important interfaces, including the pertinent methods used to register and unregister
functionalities.

Table 2-1. Interfaces in the Linux kernel to embed new functionalities.

Functionality Functions for Dynamic
Registration
Character devices (un) register chrdev( )
Block devices (un) register blkdev( )
Binary formats (un) register binfmt( )
File systems (un) register filesystem( )
Serial interfaces (un) register serial( )
Network adapters (un) register netdev( )
Layer-3 protocols dev_add pack( ),
dev_remove pack( )
Layer-4 protocols (TCP/IP) inet add protocol( ),
inet del protocol( )
Console drivers tty (un)register driver( )
Symbol tables (un) register symtab( )

Modules init module( ), cleanup module
()



This document is created with trial version of CHM2PDF Pilot 2.15.72.
Despite its modularization, Linux has preserved a major benefit of monolithic kernels: All functions implemented in modules run

in protected kernel mode, which means that they do not require any context change when called from within the kernel. This
can be seen as a clever combination of the benefits from both main operating-system architectures.

The following sections briefly introduce the kernel components, to better explain the Linux network architecture. You should
know the structure and properties of these components to understand how the Linux network architecture works. We refer
again to [RuCo01, BBDK+01, BoCe00] for an in-depth study of the Linux kernel components described below.
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2.2 Activities in the Linux Kernel

Linux is a multitasking system. This means that several application processes can be active, and several applications can be
used, simultaneously. In multiprocessor systems, which have been supported since kernel Version 2.0, even several applications
or their processes can be processed in parallel. However, a process is not the only form of activity you can execute in the Linux
kernel.

2.2.1 Processes and System Calls

Processes are normally activities that are started to run a specific application, and they are terminated once the application is
through. Creating, controlling, and destroying of processes are tasks handled by the kernel of an operating system. Processes
operate exclusively in the user address space (i.e., in unprotected mode) of a processor, where they can access only the
memory section allocated to them. An attempt to access memory sections of other processes or the kernel address space leads
to an exception, which has to be dealt with by the kernel.

However, when a process wants to access devices or use a functionality of the operating-system kernel, it has to use a system
call to do this. A system call causes the processor to change to the protected mode, and access to the kernel address space is a
function of the system call. All devices and memory sections can be accessed in protected mode, but only with methods of the
kernel.

The work of processes and system calls can be interrupted by other activities. In such a case, their current state (contents of
CPU registers, MMU registers, etc.) is saved; then it is restored when the interrupted process or system call resumes its work.
Processes and system calls can be stopped voluntarily or involuntarily. In the first case, they cede processing voluntarily—for
example, when they wait for a system resource (external device, semaphore, etc.) and go to sleep until that resource becomes
available. Involuntary cession of processing is caused by interrupts, which tell the kernel that an important action has taken
place, one that the kernel should be dealing with. This could be a notification about availability of a previously busy resource.

In addition to normal processes and to processes within a system call, we distinguish between further forms of activity in the
Linux kernel. These forms of activity are of decisive importance for the Linux network architecture, because the network
functionality is handled in the kernel. We will explain the following forms of activity in more detail in the next sections, when we
will be discussing mainly their tasks within the Linux network architecture:

e Kernel threads;

o interrupts (hardware IRQs);

o Ssoftware interrupts (soft IRQs);
o tasklets; and

e bottom halves.

When thinking of the different forms of activity in the kernel (except processes in the system call and kernel threads), an
important point will be the parallel execution of the respective form of activity. On the one hand, this concerns the question of
whether the instance of a form of activity can be executed concurrently on several processors; on the other hand, of whether
two different instances of one form of activity can be executed concurrently on several processors. Table 2-2 shows an overview
of these possibilities.

Table 2-2. Concurrent execution of same activities on
several processors.

Same Activity Different

Activities
HW IRQ ?/P> .
Soft IRQ . .
Tasklet ?/P> .

Bottom half ?/P> ?/P>
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Table 2-3 gives an overview. This information is important mainly for protection from undesired side effects caused by
concurrent or overlapping operations of two activities on a jointly used data structure. This problem and possible solutions are
discussed in detail in Section 2.3. That section will introduce locking mechanisms that, though offering protection against
undesired side effects, can reduce a system's performance when used too cautiously. For this reason, it is important to know
when which locking mechanisms are required. Note that the possible parallelism and interruptability of different forms of activity
play an important role.

Table 2-3. Interruption of activities by other forms of kernel activities.

HW-IRQ Soft-IRQ Tasklet | Bottom
Half
HW IRQ +/?sup ?/P> ?/P> ?/P>

class="docFootnote">

[1]

Soft IRQ + ?/P> ?/P> ?/P>
Tasklet + ?/P> ?/P> ?/P>
Bottom half + ?/P> ?/P> ?/P>
System call + + + +
Process + + + T

(11 Only slow interrupts can be interrupted by other interrupts, as we will see in Section 2.2.2.
2.2.2 Hardware Interrupts

Peripherals use hardware interrupts (often abbreviated as HW IRQs) to inform an operating system about important events
(e.g., that the mouse has been moved, a key has been pressed, or a packet has arrived in the network adapter). Hardware
interrupts interrupt the current activity in one of the processors and execute the pertinent interrupt-handling routine.

The handling routine for a specific interrupt can be registered at runtime by using the function request irq() . Details about
the registration and management of interrupts are described in [RuCo01]. free irq() is used to release the handling routine
of an interrupt, so that it is no longer executed.

We distinguish between two types of interrupts in the Linux kernel:

o Fast interrupts are characterized by the fact that they have a very short interrupt-handling routine and so interrupt the
current activity only very briefly. One characteristic of fast interrupts is that all other interrupts in the local CPU are locked
while it is executed, so that the interrupt-handling routine cannot be interrupted. Fast interrupts are designated by the
flag sa INTERRUPT When they are registered with request irg() -

o Slow interrupts can be interrupted by other interrupts during their execution. They normally have a much longer-interrupt
handling routing than fast interrupts and so would claim the processor for too long. This is the reason why only the
repeated execution of that interrupt is stopped when a slow interrupt is executed.

Interrupts can generally stop all other activities when they are executed. (See Table 2-3.) At the same time, various interrupts
in several CPUs can be handled concurrently, but the interrupt-handling routine of a specific interrupt can be executed only in
one CPU at a time.

You can call the function in irqg() (include/asm/hardirg.h) tO check whether the current activity is an interrupt-
handling routine (see details in [Russ00b]).

Top Halfs and Bottom Halfs

Interrupt-handling routines should be executed as soon as possible after the interrupt was triggered and interrupt the current
activity only briefly. But not every task can be executed by few instructions. For example, handling of a packet arrived in a
network adapter requires several thousand ticks, until the packet can be passed on to the relevant process in the user address
space. Though it is triggered by an interrupt, this task cannot be done in an interrupt-handling routine.

To keep interrupt handling as short as possible, such time-consuming tasks are divided into two parts:

e The so-called top half runs only the most important tasks after a triggered interrupt. The top half corresponds to the
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might just copy the arrived packet to the kernel, where it will be buffered in a queue pending detailed handling by the
corresponding protocol instances.

e The bottom half runs all operations that are not time-critical and which could not be executed within the interrupt-
handling routine for time reasons. The bottom half is scheduled for execution while the top half is running, and, as soon
as the scheduler is called again upon completion of the interrupt, it will most likely run the bottom half (depending on the
bottom half's type).

For example, if a packet arrives, then the tasks of the bottom half are run by the software interrupt N1 Rx SoFTIRQ - (See
Chapter 6.)

The following sections introduce three possible activities that can be used as the bottom half in the interrupt-handling process.

2.2.3 Software Interrupts

Software interrupts (or soft IRQs for short) are actually a form of activity that can be scheduled for later execution rather than
real interrupts. Software and hardware interrupts differ mainly in that a hardware interrupt actively interrupts another form of
activity: Triggering the interrupt causes the (immediate) interruption of the running activity (but, of course, only if the triggering
of interrupts is currently allowed).

In contrast, a software interrupt is scheduled for execution by an activity of the kernel and has to wait until it is called by the
scheduler. Software interrupts scheduled for execution are started by the function 4o softirqg() (kernel/softirg.c)-
This means that the running activity is not interrupted when a soft IRQ is activated by cpu raise softirg() - The
corresponding handling routine is triggered when do softirg() is called. This occurs currently only when a system call (in
schedule () ) or a hardware interrupt (in do TRQ (7) terminates.

A maximum of 32 software interrupts can be defined in the Linux kernel. Note that only four were defined in the Versions 2.4.x.
This includes the soft IRQs NET Rx SOFTIRQ and NET TX SOFTIRQ, Which have ensured efficient protocol handling since
kernel Version 2.4, and the soft IRQ TaASKLET SOFTIRQ, Which is used to implement the concept of tasklets, further described
later in this chapter. B

Software interrupts differ clearly from the tasklet and bottom half forms of activity, as we have seen in Tables 2-2 and 2-3. The
most important properties of software interrupts are the following:

o A software interrupt can run concurrently in several processors. This means that the handling routine has to be
implemented reentrantly (e.g., With net rx_action ). If critical sections exist in a software interrupt (e.g., any global
variable it accesses), then these have to be protected by locks.

e A software interrupt cannot interrupt itself while running on a processor.

o A software interrupt can be interrupted during its handling on a processor only by a hardware interrupt.

Calling in softirg() (include/asm/softirg.h) causes a function to check immediately on whether it is currently in a
software interrupt; see details in [Russ00b].

2.2.4 Tasklets

Tasklets are a combination of parallel executable (but lock-intensive) software interrupts and the old pottom halfs,t! where
we can talk neither of parallelism nor of performance. Tasklets were introduced to replace the old pottom halfs-

(1] In this connection, we have to differentiate between the general concept of a bottom half that can be
implemented by a tasklet (a soft IRQ) and a pottom half in the Linux kernel. In contrast, the form of activity of
a pottom half is Linux-specific and denoted by sans-serit fontin this text.

Tasklets have the following properties:

e The function tasklet schedule (stasklet struct) C€an be used to schedule a tasklet for execution. A tasklet is
run only once, even if it was scheduled for execution several times.

e A tasklet can run on one processor only at any given time.
o Different tasklets can run on several processors concurrently.

The macro pECLARE TASKLET (name, func, data) can be used to define a new tasklet, where name denotes a name for
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pointer data, pointing to private data, if applicable, are passed to the function func () -

Tasklet schedule () IS used to schedule a tasklet for execution; tasklet disable() €an be used to stop a tasklet from
running, even when it is scheduled for execution. It remains scheduled for execution or can be rescheduled. Tasklet enable
() is used to reactivate a deactivated tasklet. However, if that tasklet was not scheduled for execution, it will not run when you
activate it.

The following example shows how easy it is to define and activate a new tasklet:

#include <linux/interrupt.h>
/* Handling routine of new tasklet */
void test func(unsigned long);
/* Data of new tasklet */
char test data[] = "Hello, I am a test tasklet";
/* Definition of tasklet struct structure of tasklet */
DECLARE TASKLET (test tasklet, test func, (unsigned long) &test data);
void test func(unsigned long data)
{
/*Do here what you think you have to do, e.g.:*/
printk (KERN_DEBUG "%s\n", (char *) data);
}

/* Use an activity to activate the tasklet */
tasklet schedule(&test tasklet);

2.2.5 Bottom Halfs

Bottom halfs (BHs) had been the main form of activity in the kernel in early kernels. For example, NET BH Was
responsible for handling of network protocols and sending of packets. There can be a maximum of 32 BHs, which are scheduled
for execution by the mark bn () function.

BHs are the form of activity with the smallest parallelism in the kernel, as mentioned in previous sections. The following property
shows the major drawback of BHs:

e Only one pottom half €an run concurrently on all processors of a system at one time.

Because BHs are inflexible and because they are to be replaced by tasklets or software interrupts in future Linux kernel versions,
we will not discuss them further here. Information on BHs is found in the literature (e.g., [RuCo01], [BBDK+01] or [BoCe00]).

4 Previous Mext b



This document is created with trial version of CHM2PDF Pilot 2.15.72.

4 Previous Mext b

2.3 Locking—Atomic Operations

Several different forms of activity can operate and interrupt each other in the Linux kernel. (See Section 2.2.) In multiprocessor
systems, different activities even operate in parallel. This is the reason why it is very important for the stability of the system
that these operations run in parallel without undesired side effects.

As long as the activities in the Linux kernel operate independently, there will not be any problem. But as soon as several
activities access the same data structures, there can be undesired effects, even in single-processor systems.

Figure 2-2 shows an example with two activities, A and B, trying to add the structures sxp a and skp b to the list queue. At
some point, activity A is interrupted by activity B. After some processing of B, A continues with its operations. Figure 2-3 shows
the result of this procedure of the two activities. Structure sxp 1 was added to the list correctly.

Figure 2-2. Activity B interrupts activity A in the critical section.

[View full size image]
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Figure 2-3. (Undesired) result of the unprotected operations of activities A and B.
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Undesired results can also occur in multiprocessor systems when the two activities A and B run quasi-in-parallel on different
processors, as in the example shown in Figure 2-4.

Figure 2-4. Parallel operations of the activities A and B in the critical section.
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To avoid these problems when several activities operate on a common data structure (the so-called critical section), then these
operations have to be atomic. Atomic means that an operation composed of several steps is executed as an undividable
operation. No other instance can operate on the data structure concurrently with the atomic operation (i.e., no other activity can
access a critical section that's already busy [Tan95]).

The next four sections introduce mechanisms for atomic execution of operations. These mechanisms differ mainly in the way
they wait for entry into a potentially occupied critical section, which implicitly depends on the size of the critical section and the
expected waiting time.

2.3.1 Bit Operations

Atomic bit operations form the basis for the locking concepts spinlocks and semaphores, described in the following subsections.
Locks are used to protect critical sections, and they are normally implemented by variables, which manage the status of locks
(i.e., they remember how many activities there currently are in a critical section.

This means that, first of all, the status of locking variables has to be checked and then set, before entry into a critical section. In
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that a situation like the one described above can occur exactly between these two machine commands (i.e., the activity is
interrupted and another activity of the kernel changes the state of variables). For this reason, atomic test and set machine
commands are required to support critical sections. Modern processors support these commands and many more. (It would go
beyond the scope of this book to describe each one in detail.)

Some of these atomic machine operations, as well as useful operations to manipulate single bits or integer variables, which are
often useful to handle protocol headers, are listed in the following examples. Another benefit of these atomic operations is that
no additional locks are required for their operations. They run in one single (very fast) machine command.

e test and set bit(nr, void *addr) Setsthe bit with number nr in the unsigned long variables of the pointer
addr. The previous value of the bit is returned as return value.

e test and clear bit(nr, void *addr) deletes the specified bit and also returns that bit's previous value.
e test and change bit(nr, void *addr) invertsbit nr and resets it to its original value.
e set bit(nr, void *addr) Sets the bit with number n+ at address z44r.
e clear bit(nr, void *addr) deletes the specified bit.
e change bit(nr, void *addr) inverts bit number .
e test bit(nr, void *addr) returns the current values of the bits.
Integer Operations

Operations can also be run atomically on integers. To do this, however, you have to use the atomic t data type, which
corresponds to the int+ data type in all supported architectures.

e atomic set (atomic_t *var, int i) Setsthe variables to value ;.

e atomic read(atomic t *var) reads the variables.

e atomic add/atomic sub(int i, atomic t *var) adds or subtracts

e atomic inc/atomic dec(atomic t *var) adds or subtracts in increments of 1.
e atomic ... and test(...) :see Bit Operations.

All of these atomic operations are implemented by one single machine command. However, critical sections often cannot be
reduced to one single command, but consist of several operations. Using the atomic bit or integer operations introduced in this
section, you can implement locks to protect larger ranges for exclusive access. These spinlocks and semaphores are introduced
in the following subsections.

2.3.2 Spinlocks

Spinlocks are also called busy wait locks because of the way they work. When a critical section begins and the lock—in this case
the spinlock—has already been set, then the processor waits actively until the lock is removed. This means that the processor
continues testing the locking variable in a continuous loop until that locking variable is released by the locking activity.

Though this wastes computing time because the processor seems to continually test the locking variable "meaninglessly," it can
prove more effective to continually test the lock for a brief moment and then be able to enter the critical section upon its release
rather than call the scheduler and grant the computing time to another activity. A lot of time can elapse until the waiting activity
will get its turn after the lock's release. In addition, a change of activity caused by calling the scheduler could eventually take
more computing time than a brief wait in the busy wait loop. For this reason, we observe the principle that spinlocks represent
the best locking method for small critical program points (i.e., points with short locking times).

In the Linux kernel, spinlocks are implemented by the variable spiniock t, Which consists of one single integer locking
variable. To use a spinlock, you have to create and initialize a spin1ock t structure, as in the following example:

finclude <linux/spinlock.h>

spinlock t my spinlock = SPIN LOCK UNLOCKED;

/* You can also use spin lock init (&my spinlock) instead of
an assignment in the definition. */
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You can now use a set of different functions to request, set, or release spinlocks. Each of these functions is especially suited for
certain application cases. First, let's look at how we can set a spinlock:

e spin lock(spinlock t *my spinlock) tries to set the spinlock my spiniock. If it is not free, then we have to
wait or test until it is released. The free spinlock is then set immediately.

e spin lock irgsave (spinlock t *my spinlock, unsigned long flags) works similarly to spin lock
(), but it additionally prevents interrupts and stores the current value of the CPU status register in the variable flags.

e spin lock irg(spinlock t *my spinlock) works similarly to spin_lock irgsave () s but does not store
the value of the CPU status register. It assumes that interrupts are already being prevented.

e Similar to spin_lock(), spin_lock bh(spinlock t *my spinlock) tries to set the lock, but it prevents
bottom halfs (see Section 2.2.5) from running at the same time.

The following functions can be used to mark the end of the critical section, depending on the application. Each of them releases
an occupied spinlock.

e spin unlock(spinlock t *my spinlock) releases an occupied spinlock.

e spin unlock irgrestore(spinlock t *my spinlock, unsigned long flags) releases the specified
spinlock and allows interrupts, if there were any activated interrupts when the CPU status register was saved to the
variable flags; otherwise it doesn't allow interrupts.

e spin unlock irg(spinlock t *my spinlock) releases the specified spinlock and allows interrupts.

e spin unlock bh(spinlock t *my spinlock) also releases the lock and allows immediate processing of bottom
halfs. B B a

The functions introduced above can be used to protect critical sections to avoid undesired side effects from parallel operations
on the critical sections from occurring. The example shown in Figures 2-2 and 2-4 can be used as follows, where the use of a
spinlock prevents undesired side effects:

#include <linux/spinlock.h>

spinlock t my spinlock = SPIN LOCK UNLOCKED;
// Activity A

spin_lock (&my spinlock);

skb a?gt;next = queue?gt;next;
queue?gt;next = skb_a;

spin_unlock (&my spinlock);

// Activity B
spin_lock (&my spinlock);

skb b?gt;next = queue?gt;next;
queue?gt;next = skb b;
spin_unlock (&my spinlock) ;

The following useful functions are available to handle spinlocks, in addition to the methods used to set and release spinlocks:

e spin is locked(spinlock t *my lock) Pollsthe current status of the lock, without changing it. For a set lock, a
value unequal to zero is return; for a free lock, zero is returned.

e spin trylock(spinlock t *my lock) Sets the spinlock, if it is currently unoccupied; otherwise, the functions
immediately returns a value unequal to zero.

e spin unlock wait (spinlock t *my lock) Waits for the lock to be released, if the lock is occupied, but the lock
is not set.

2.3.3 Read—Write Spinlocks

Spinlocks represent a simple and useful element to protect parallel operations on common data structures from undesired side
effects. However, they slow down the progress of activities, because these activities have to wait actively for locks to be
released. Active waiting is not always necessary in certain situations. For example, there are data structures with frequent read,
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registered network devices, dev base. Itis rarely changed during a system's runtime (in fact, only by registering a network
device), but it is subject to many read accesses.

During accessing of such a jointly used data structure, it is absolutely necessary to use a spinlock, but reading activities do not
have to be stopped when no write activity currently operates on that data structure. This is the reason why so-called read—write
spinlocks are used. They allow several read activities to enter a critical section while there is no write activity operating on it. As
soon as an activity with write intention occupies the lock, then no read activities must be in or enter the critical section until the
write lock is released.

When we are adding a new net device Structure in our above example of the gev base list, the undesired effect
demonstrated in Figures 2-2 and 2-4 could occur. For this reason, we use the read—write spinlock dev_base lock to protect
OUr dev base list. The data structure rwlock t IS used to implement read—write spinlocks.

The following functions are available to set and release read—write spinlocks. Note that we distinguish them according to
whether the lock should be entered for read or for write purposes. Again, RW spinlock functions come in different variants with
regard to how they handle interrupts and bottom halfs (... irq(), ... bh() etc.). We will not repeat a description of
their differences here, because their behavior corresponds to the spin lock () functions.

e read lock... () triesto access a critical section for reading purposes. If it contains no activities or only reading
activities, then the section is accessed immediately. If there is a write activity in the critical section, then we have to wait
until that activity releases the lock.

e read unlock... () leaves the critical section, which it entered for reading purposes only. If a write activity is waiting
and there is no other read activity in that section, then it can access the section.

e write lock... () triesto occupy the critical section for writing purposes. If there is already a (write or read) activity
in the critical section, then the activity waits for all activities to leave that section. Subsequently, it puts an exclusive lock

on the critical section.

e write unlock... () releases the (write) lock and thus the critical section.

2.3.4 Semaphores

In addition to active locks, there is a way to avoid waiting until a critical section can be accessed when a lock is set. Instead of
waiting, the activity releases the CPU by calling the scheduler. This means that the computing time can be used by other
activities. This concept is known by the term semaphore or mutex in computer science.

The Linux kernel offers semaphores. However, they are not frequently used in the Linux network architecture. Therefore,
instead of describing here in detail, we refer our readers to [BBDK +01].

4 Previous Mext b
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2.4 Kernel Modules

We explained in Section 2.1 that monolithic operating-system kernels, including the Linux kernel, have the drawback that all
functionality of the operating system is accommodated in a large kernel, making this kernel big and inflexible. To add a new
functionality to the operating-system kernel, you first have to create and install a new kernel. This is a rather cumbersome task
and can also be expensive, because running applications have to be interrupted and the system has to be restarted. Moreover,
using an operating-system kernel that includes all possible kinds of functions, drivers, and protocols is not recommended either,
because the kernel would then become huge and consume an unnecessary amount of memory. In addition, there are always
new functionalities we would like to integrate into the kernel, or newer versions of existing functionalities, where errors have
been removed. In fact, we can assume that the set of functions of an operating-system kernel will change over time. For this
reason, monolithic kernels have to be continually updated—with the problems described above.

Linux is based on the monolithic approach, but it has used a different method to solve the problems noted, since kernel Version
2.0. Note that it does not opt for the microkernel-based approach, which also has drawbacks. The solution are kernel modules.
These modules can be easily added to the kernel at runtime and they behave as if they had belonged to the monolithic kernel
since the system started. When the functionality of a module is no longer needed, then it can simply be removed and the
memory space it used is freed.

We saw in Figure 2-1 in which components of the kernel we can use modules: device drivers, file systems, network protocols,
and network drivers. The use of modules is actually not limited to these components. Modules can normally be used on an
individual basis. However, adding some functionality means that you need a corresponding kernel interface to inform the rest of
the kernel about the new components. The interfaces of the Linux network architecture and the possibilities to expand it by new
functionalities are one of the central issues of this book.

When compiled as kernel modules, new functionalities can be added as needed and removed once you don't need them
anymore. (See Section 2.4.1.) This means that the principle of modularization is very similar to the flexibility of microkernels,
the only difference being that Linux modules run in the kernel address space, components of microkernel systems in the user
address space. More specifically, the Linux module concept combines the benefits of both operating-system variants. On the one
hand, it avoids the expensive change of address spaces known from the microkernel-based approach; on the other, it lets you
expand the kernel functionality individually at runtime at the same time.

The following sections take a closer look at the structure and management of kernel modules, because modules are the best
and most flexible option to enhance the Linux network architecture. Unfortunately, a detailed description of kernel modules
would go beyond the scope of this book; we refer mainly to [RuCo01] and [BBDK+01] instead.

2.4.1 Managing Kernel Modules

A kernel module consists of object code, which is loaded into the kernel address space at runtime, where it can be executed.
When the system starts, it is not known which modules with what functionalities should be loaded, so the module has to make
itself known to the respective components of the kernel. A module should also remove all references to itself when it is removed
from the kernel address space. There are two methods available for these tasks, which each kernel module should implement—
namely, init module () a@nd cleanup module () - We will have a closer look at these methods in Section 2.4.2; first,
however we need some general information about the management of kernel modules outside the kernel.

The following tools are used to manually load a module into the kernel, or remove it from the system:

e insmod Modulename.o [arguments]—Thiscommand tries to load a kernel module into the kernel address apace.
In a successful case, the object code of the module is linked to the kernel; the module can now access the symbols
(functions and data structures) of the kernel. Calling i hsmod causes the following system calls to run implicitly:

0 sys create module () allocates memory space to accommodate the module in the kernel address space.

0 sys_get kernel syms () returnsthe kernel's symbol table to resolve the missing references within the
module to kernel symbols. (See Section 2.4.4.)

0 sys_init module () copies the module's object code into the kernel address space and calls the module's
initialization function (init module () )-

When loading a module, we can also pass parameters (e.g., values for device names, name, interrupt lines, i rq, and I/O ports,
io addr)- In the module itself, these parameters should be designated by the macro mopure PaRM(arg, type). When the
module is loaded, then these parameters are simply passed by module name—for example:

root@tux # insmod wvlan cs eth=1 network name="myWavelan"
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e rmmod Modulename removes the specified module from the kernel address space. For this purpose, we use the
System Ca” SysS delete module () « Which, in turn, Ca||S the mOdule'S method Cleanup module () -

The module can now be removed, if the module's reference counter is zero, which means that the module is currently
not used in any point within the kernel. (See details in [RuCo01].)

1smod lists all currently loaded modules and their dependencies and reference counters.

modinfo shows information about a module (e.g., its functionality, parameters, and author). This information cannot be
generated automatically; it has to be set by the macros MopULE DESCRIPTION, MODULE AUTHOR, and so onin the
module's source text.

Loading Modules Automatically

In addition to via the command-line tools described above, kernel modules can also be loaded into the kernel automatically
when needed. To enable the automatic loading of modules, the corresponding support has to be activated when creating the

kernel (conF1G_KMOD).

Using the tools described in the previous section to add and remove modules always requires a user's intervention—more
specifically, the intervention of +oot . For security reasons, only the system administrator is authorized to load and remove
kernel modules. Though this approach is secure, it is somewhat inflexible—for example, when a user requires the functionality
of a module that is currently not loaded in the kernel. For this reason, a means was created for reloading modules automatically
into the kernel upon demand.

Normally, the kernel generates an error message when a resource or a specific driver is not registered. You can ask for this
component in advance by use of the kernel function request module () . To use this function, you have to first activate the
option Kernel Module Loader When configuring the kernel. Request module () Will then try to use the modprobe
command to automatically reload the desired module (and any additionally required modules). You can select such options in
the file /etc/modules.conf -

Figure 2-5 shows an example of the configuration file /etc/modules.conf - This file specifies that the network device eth0 is
currently represented by the module wvi1an cs and that, for loading of this module, the specified parameters should be passed
to this module. If nodprobe cannot find the module, then printk () generates an error message. (See Appendix B.1.1.)

Figure 2-5. Configuration file of the module loader: /... /moduies. cons:

# Aliases - specify your hardware
alias eth0O wvlan cs
options wvlan cs eth=1 network name="MyNet" station name="neo"

alias char-major-4 serial
alias char-major-5 serial
alias char-major-6 1p
alias char-major-9 st
alias tty-ldisc-1 slip
alias tty-1ldisc-3 jeje)e)

Though this mechanism runs automatically, it can load only those modules the administrator has specified in the configuration
files, to ensure that no user can load system-critical modules. Modules loaded automatically can also be removed automatically
after some time. More configuration options of the kernel Module Loader and the modprobe tool are described on the
man pages and in [RuCo01].

2.4.2 Registering and Unregistering Module Functionality

In contrast to an application that runs its tasks after its start, a module normally provides functions used by other parts of the
kernel in the course of the system operation. The kernel is enhanced by a new functionality, which may be removed after its
use. It is not known upon system start which functionalities will be added to the kernel by modules, so we need interfaces for a
module to register its functionality. The different set, of kernel components (see Figure 2-1) have such interfaces (e.g., to
register and unregister network drivers, file systems, protocols, etc.). (See Table 2-1.)

These interfaces can most easily be identified by function names. They generally begin with reqgi ster ... and
unregister ..., respectively. Table 2-1 showed a few examples.
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is called directly after successful integration of the module in the kernel. Tnit module () should run all initialization tasks,
such as reserving memory, creating entries in the /proc directory, initializing data structures, registering and unregistering the
functionality, and so on.

Upon successful execution of init module () , the functionality of the module should be known in the kernel, and all
initialization steps required for it should have run. However, if something goes wrong during the initialization, all actions done up
to this point should be undone in any event. The reason is that, when init module () returns with an error code, the object
code of the module is removed from the kernel address space, and all attempts to access methods of the module lead to a
memory access error. [RuCo01] includes several tips to solve this problem.

Appendix D shows a kernel module that adds a fictitious functionality to the kernel. In the further course of this book, we will
introduce many elements of the Linux network architecture that can be implemented in the form of kernel modules (e.g.,
network drivers and protocols). You can use the module from Appendix D as a framework for modules you design yourself to
enhance the Linux network architecture.

One of the module's own methods, - leanup module () IS used to remove that module from the kernel address space. It
should be used to clean up the work environment of the module (i.e., to unregister the module's functionality, free the memory
it used, and remove dependencies between the module and other parts of the kernel).

Once you have called and run cleanup module () , there should be no more references by the kernel or other modules to the
module concerned. Otherwise, this would lead to a memory access error, causing the computer to crash.

The method c1eanup module () is called only if the reference counter (use counter) of the module is equal to zero.
Otherwise, it is assumed that the module's functionality is currently needed, so that it cannot be removed. The macro
MOD IN USE €an be used to check the use counters.

A good example for the use of the reference counter is a module-based network driver. As soon as the relevant network device
is opened, it is possible to access the driver's methods (and thus the module's methods) asynchronously. For this reason, the
reference counter (for module-based drivers) is always incremented by the macro mop 1nC USE countT in the method gev?
gt;open () - When the network device is closed, so that driver methods can no longer be accessed, then

MOD DEC USE couNT decrements the reference counter by one.

2.4.3 Passing Parameters When Loading a Module

We mentioned in Section 2.4.1 that parameters can be passed during loading of a kernel module. These parameters are
specified either directly by insmod when loading or by modprobe in the configuration file. To be able to pass parameters to a
module, you have to have previously declared these parameters in the module's source text. The following macros are available
for this purpose:

e MODULE PARM(var, type) designates the variable v5r as a parameter of the module, and a value can be assigned

to this parameter during loading. It needs to be previously declared, of course. The second parameter of the macro
(type) specifies the data type of the module parameter. The following types can be specified:

O b: byte

o0 h: short (two bytes)

O i: integer

O 1l: long

0 s: string (Or a pointer to a string)
If the parameter is an array, then this can be specified as such by stating the array size before the type. For example, 1 -
i means that the parameter is an array with integer values, and between one and three values can be assigned to this
array. More information about this topic are included in the header file <1 inux/module.n> -

e MODULE PARM DESC (var, desc) allows you to add a description (gesc) for the parameter 5. For example, this
description is displayed when the tool nodinfo is called. The description of a parameter should be short, but descriptive
enough to make clear the task of that parameter.

In addition, the following macros can be used to output additional information, which can be called by use of the command-line

tool nodinfo. It is recommended that one use this informative option, because there could often be situations where the user
of a module does not provide the source text:
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address, in addition to names, for easy contact in the event that the module contains errors (and, of course, to be able to
accept the large number of thank-you messages for your generous contribution to the open-source movement :-)).

e MODULE DESCRIPTION ( desc) should contain a description of the module's functionality. Ideally, you describe the
basic functionality and include reference to further information (e.g., a URL).

e MODULE SUPPORTED DEVICE ( dev) IS currently not used. However, it might be used in future kernel versions to load
the module automatically when the device gev is required.

The sample module in Appendix D shows how to use the macros described above.

2.4.4 Symbol Tables of the Kernel and Modules

Kernel modules are object code, which is added to the kernel at runtime. Once it has been embedded, the module is in the
kernel address space. Before the embedding of a module, however, several aspects have to be observed. As the module will
probably have to call functions of the actual kernel and want to use its data structures, we first have to resolve the addresses of
these functions and data structures. The Linux kernel includes a table, the xsym symbol table,[?] for this purpose. This table
includes all required information. Each row of the table contains the name and memory address of a function or variable.
Information about the data type or parameters is not saved to the table. Note that the programmer has to ensure correct

mapping.
[2] You can use the command-line call xsyms -a to view the contents of the current symbol table.

You can see in Figure 2-6 that a module can access only functions and data structures saved in the kernel's symbol table. Other
parts of the kernel are not accessible to a module. This has the benefit that modules cooperate with the kernel exclusively over
defined interfaces, as is true for the microkernel architectures described in Section 2.1.

Figure 2-6. Symbol table of the Linux kernel (excerpt).

c01e2640 register netdevice

c01e2888 unregister netdevice

c0leOefs netdev_state change

c01ddfo4 skb clone

c01lde20c skb_copy

c0leld7c netif rx

c01e0b40 dev_add pack

c0leOb8c dev_remove_ pack

c01e0d78 dev_get

c01le0e94 dev_alloc

d0al03ec4 ppp_register channel [ppp_generic]
d0a03£98 ppp_unregister channel [ppp_generic]
d0a08660 ppp_crclé6 table [ppp_async]

The instruction EXPORT SYMBOL (xxx) from the file xernel/ksyms.c adds a function or variable of the kernel to the
symbol table. From then on, each module can access these variables or call functions. In addition, modules can export
references to functions and variables from the module into the symbol table. The macro gxporT symMBOL can be used to allow
modules to export selected function and data pointers into the symbol table of the kernel. A module that does not want to export
methods or variables can simply use the macro exporT NO SYMBOLS to express its wish.

A module can normally access only those symbols that are listed in the symbol table when the module loads. For this reason, a
situation where two modules loaded consecutively into the kernel want to access each other's symbols may cause problems.
The module loaded first cannot access the symbols of the second module, because they are not yet known. Since Linux kernel
Version 2.4, however, there is a solution to this problem. This solution is called intermodule communication and is introduced in

[RuCo01] and [BBDK+01].
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2.5 Device Drivers

UNIX has its own way of handling physical devices. They are hidden from the user and accessible only over the file system,
without limiting their functionality. For example, an application programmer can use the simple file operations read () and
write () to access the driver's hardware, while the i oct1 () command can be used to configure properties of a device.

Device drivers in the form of modules can be added or removed in Linux at any time. This offers you a comfortable tool to
develop and test new functionalities. Figure 2-7 shows an excerpt from the ,/4ev directory, where all devices are listed. In
Linux, network adapters are not treated as normal devices and so they are not listed in the /qev directory. Linux has a separate
interface for them. The reasons are described in [RuCo01]. Chapter 5 will discuss network devices in detail.

Figure 2-7. Excerpt from the ,,., directory.

brw-rw---- 1 root disk 3, 0 May 12 19:23 hda
brw-rw---- 1 root disk 3, 1 May 12 19:23 hdal
brw-rw---- 1 root disk 3, 2 May 12 19:23 hdaZ2
brw-rw---- 1 root disk 3, 64 May 12 19:23 hdb
brw-rw---- 1 root disk 3, 65 May 12 19:23 hdbl
Crw-rw—-—-—- 1 root uucp 4, 64 May 12 19:23 ttySO
Crw-rw—-—-—-— 1 root uucp 4, 65 May 12 19:23 ttySl
Crw-rw—r-—- 1 root root 10, 1 Sep 13 08:45 psaux

We can see in Figure 2-7 that the entries for device drivers differ from regular directory entries. Each entry includes two
numbers used to identify the device and its driver.

e The major number identifies the driver of a device. For example, Figure 2-7 shows that the PS/2 driver has major
number 10 and the hard disk driver (hqxx) has major number 3.

The major number can be specified when you register a device driver, but it has to be unique. For drivers you think you
will use less often, it is recommended that you let the kernel assign a major number. This ensures that the numbers are
all unique. See details in [RuCo01].

e The minor number is used to distinguish different devices used by the same driver. In Linux, a device driver can control
more than one device, if the driver is designed as a reentrant driver. The minor number is then used as an additional
number to distinguish the devices that driver controls. For example, the hard disk driver with major number 3 in Figure
2-7 controls three hard disks, distinguished by the minor numbers 1, 2, and 65.

Figure 2-7 also shows that the type of each driver is specified at the beginning of each row. Linux differs between two types of
physical devices:

o Block-oriented devices allow you optional access (i.e., an arbitrary set of blocks can be read or written consecutively
without paying attention to the order in which you access them). To increase performance, Linux uses a cache memory
to access block devices. File system can be accommodated only in block devices (hard disks, CD-ROMs, etc.), because
they are required for optional or random access. Block devices are marked with a , in the /dev directory.

A block-oriented driver can be registered with the kernel function registe r blkdev () - If the function was completed
successfully, then the driver can be addressed by the returned major number. re1ease blkdev () is used to release
the device. B

o Character-oriented devices are normally accessed in sequential order. They can be accessed only outside of a cache.
Most devices in a computer are character-oriented (e.g., printer and sound card). Character-oriented devices are marked
with a ¢ in the /dev directory. You can use register chrdev () toregisterand release chrdev () to release
character-oriented devices. B B

The virtual file /proc/devices lists all devices currently known to the kernel. This file is used to find the major number of a
driver in the user address space, in case none has been specified during the registration.

To be able to use a device that has not been registered yet, you need to first select a driver and generate an entry in the /gev
directory. To create this entry, you use the command mknod /dev/name typ major minor, Which is passed the name,
the type (p or <), the major number of the driver, and the selected minor number for that device. If the command is successful,
then you can now use the usual file operations (read (), write(), ioctl(), ...)‘toaccess that device.
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virtual file in UNIX, so these are all regular file operations. We will briefly describe here only the most important functions, to
give you an overview:

e owner refers to the module implemented by the driver (for a module-based driver);
Figure 2-8. File operations on a device driver.

struct file operations

{

struct module *owner;

int (*1ssek) (file, offset, origin);

int (*read) (file, buffer, count, pos);

int (*write) (file, buffer, count, pos);

int (*readdir) (file, dir);

int (*poll) (file, poll table);

int (*ioctl) (inode, file, cmd, unsigned arg);
int (*open) (inode, file);

int (*release) (inode, file);

e lseek () Sets the position pointer in a file. This function can be used for other purposes for non-file-oriented devices;

e read () transfers data from the driver to the user address space. The driver has to have previously confirmed that the
desired buffer is available in the user address space and whether this memory page is currently outsourced.
Subsequently, the function copy to user() €an be used to copy data to the user address space.

e Aswithto read (), write () is used to transfer data, but, in this case, from the user address space to the kernel
address space (With copy from user () )- Here again, before you can copy, you have to check the validity of the data
range in the user address space. The memory range in the kernel does not have to be verified, because the kernel
segment is never outsourced.

e ioctl () offers the most extensive functionality. It is used to set certain parameters of a driver or device. A constant
that represents the desired command(3! and a pointer to the data to be passed with this command are passed to the
ioctl () command. This can be arbitrary data. The power of this function is such that the i oct1 () command could
actually replace all other file operations of a driver.

(3] The commands and their constants are specified arbitrarily by the programmer, but they should be
unique within the kernel. For this reason, it is recommended to use a hierarchical coding. (See [RuCo01].)

e open() and close () are used to prepare (or postedit) a driver for subsequent (or completed) commands. This
function must not be confused with similar functions used to configure a driver. Such tasks are normally executed by the
ioctl () command. open () is called by a process to inform the driver that it wants to use the device. If a process can
be made available only exclusively, then this is policed by the open () function. For this purpose, open () checks on
whether another process has already opened that device and, if so, denies access to it.

close () releases the device. Whether exclusive use is desired depends on the type of device.

When a device driver is accessed, certain things can happen at the interface of the device driver. For example, if you use the C
library function fopen () to open a device file from the /de+ directory, then the open () function of the driver is called in the
kernel. If you use rprintf () to write data to the device file, then the write () function of the driver will run in the kernel.
Not all operations of a driver have to be supported; only those that the driver really needs.

4 Previous Mext b
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2.6 Memory Management in the Kernel

Memory management is one of the main components in the kernel of any operating system. It supplies a virtual memory space
to processes, often one much larger than the physical memory. This can be achieved by partitioning memory pages and
outsourcing memory pages that are temporarily not needed to the swap memory on the hard disk. Access to an outsourced
page by an application is intercepted and handled by the kernel. The page is reloaded into the physical memory and the
application can access the memory without even noticing anything about insourcing and outsourcing of things.

The memory residing in the kernel cannot be outsourced because, if the memory management were to move the code to the
swap memory, it would not be available later on, and the system would be blocked. For this and, of course, performance
reasons, the memory of the kernel cannot be outsourced. Therefore, we will always distinguish between the kernel address
space and the user address space in the rest of this book.

Virtual memory management is one of the most important and most complex components of an operating system. [Tan95]
offers an overview of the theory of virtual memory management, and detailed information about its implementation in the Linux
kernel is described in [BBDK+01] and [BoCe00]. Within the Linux network architecture, the structure of the virtual memory
management is less interesting; it is of interest only in regard to whether memory can be reserved and released in an efficient
way, as we will see in the following section. We will also introduce methods to exchange data between the kernel address
space and the user address space. Section 2.6.2 ends with a brief introduction of the slab cache, representing an efficient
management of equalsized memory spaces (for example, similar to those use for socket buffers).

2.6.1 Selected Memory Management Functions

This section introduces the basic functions of memory management a programmer writing kernel components or kernel modules
needs. First, we will discuss how memory spaces can be reserved and released in the kernel. Then we will introduce functions
used to copy data between the kernel address space and the user address space.

Reserving and Releasing Memory in the Kernel

kmalloc () mm/slab.c

kmalloc (size, priority) attempts to reserve consecutive memory space with a size of size bytes in the kernel's
memory. This may mean that some more bytes will be reserved, because the memory is managed in the kernel in so-called
slabs. Slabs are caches, each managing memory spaces with a specific size. (See /proc/slabinfo .) Letting a slab cache
reserve memory space is clearly better performing than many other methods [Tan95].
The parameter priority can be used to specify options. We will briefly describe the most important options below and refer
our readers to [RuCo01] for a detailed explanation of the large number of options offered by xma11oc () . The abbreviation
Grp Mmeans that the function get free pages() May be used to reserve memory.
e GFP KERNEL is normally used when the requesting activity can be interrupted during the reservation. It can also be
used for processes that want to reserve memory within a system call. For activities that must not be interrupted (e.qg.,
interrupt routines), grp xErNEL Should not be used.

e GFP_ATOMIC IS the counterpart of GFP_KERNEL and shows that the memory request should be atomic (i.e., without
interrupting the activity).

e Grp_DMA Shows that memory in the DMA-enabled area should be reserved.
e GFP_DMA Can be combined with one of the two previous flags.
e [RuCo01] introduces additional options, but we will not repeat them here, as they are of lesser interest.

The return value of xmal1oc () is a pointer to the successfully reserved memory space, or NULL, if nO more memory is
available.

kfree () mm)/slab.c

kfree (objp) released the memory space reserved at address ob4p. This memory space should previously have been
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Copying Between Kernel and User Address Space

The following functions can be used to exchange data between the user address space and the kernel address space. They are
defined in the file 1nci1ude/asm/uaccess.h -

e copy from user(to, from, count) COPieS count bytes from the address from in the user address space to the
address + in the kernel address space.

e copy to user(to, from, count) COpies count bytes from the address £rom in the kernel address space to the
address +to in the user address space.

o [RuCo01] and [BBDK+01] introduce more functions, but most of them can be implemented by copy from/to_user() -

Before the user address space is accessed, the above functions use the method access ok () to confirm that the
corresponding virtual memory page is actually residing in the physical memory. This control had to be done manually in earlier
versions of the Linux kernel.

2.6.2 Memory Caches

Reserving memory spaces by calling kxma11oc () can take a while, but it is the only way to reserve a memory space. However,
when memory spaces of the same size are required over and over again, it is not useful to release them with kfree () after
each use. Instead, they should be briefly buffered in a list and used from there when needed.

The Linux kernel allows this approach by providing slab caches. This means that you can create a cache with memory spaces of
specific sizes, where the memory spaces no longer needed are managed until they are requested again.

Information about the current slab caches, including their use and sizes, can be polled from the proc file /proc/slabinfo -
We will now introduce the methods required to build and tear down slab caches as well as functions to reserve and release
memory spaces from a slab cache.

kmem cache create () mm/slab.c

The function kmem cache create (name, size, offset,flags, ctor, dtor) is used to create a slab cache for
memory spaces with sizes in size bytes. An arbitrary number of memory spaces (of equal size) can be managed in this slab
cache. The parameter name should point to a string containing the name of the slab cache, which is specified in outputs in the
proc directory.

Offset €an be used to specify the offset of the first memory space of a memory page. Note, however, that this is normally not
necessary, so it is initialized to null. The parameter r1ags can be used to specify additional options when reserving memory
spaces:

e SLAB HWCACHE ALIGN : Aligns to the size of the first-level cache in the CPU.

e SLAB NO REAP: Prevents the slab cache from being reduced when the kernel needs memory.

e SLAB CACHE DMA': Specifies that the reserved memory spaces have to be within DMA-enabled areas.

The «tor and dtor parameters allow you to specify a constructor and a destructor for your memory spaces. They are then
used to initialize or clean up, respectively, the reserved memory spaces.

The return value of the function kxmem cache create () isa pointer to the management structure of the slab cache, which is
of data type xmem cache t . In the Linux network architecture, slab caches can be used—for instance, for socket buffers (as in
Chapter 4). The cache for socket buffers is created as follows:

skbuff head cache = kmem cache create("skbuff head cache", sizeof (struct

sk buff), 0, SLAB HWCACHE ALIGN, skb headerinit, NULL);

kmem cache destroy () mm/slab.c
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provided that all memory spaces granted by the cache have been returned to the cache; otherwise, kmem cache destroy ()
will be unsuccessful.

kmem cache shrink() mm)/slab.c

kmem_cache shrink (cachep) IS called by the kernel when the kernel itself requires memory space and might may have to
reduce the cache.

kmem cache alloc() mm)/slab.c

kmem cache alloc(cachep, flags) €an be used to request a memory space from the slab cache, cachep. If memory
space is available, then this call immediately returns a pointer to it for the caller. If the slab cache is empty, then xma11oc ()
can be used to reserve new memory space. For this call of kma11oc () , You can use flags to specify the options introduced in
Section 2.6.1.

kmem cache free () mm/slab.c

kmem cache free (cachep, ptr) frees the memory space that begins at address p+r and gives it back to the cache,
cachep- Of course, this should be a memory space that had been previously reserved with xmem cache alloc() -
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2.7 Timing in the Linux Kernel

In the Linux kernel, clocks "tick" slightly different by than they do in the real world. The time does not progress continually, but in
increments of 10 ms (milliseconds) each, which is called a tick. This means that the time virtually stands still between any two
ticks. The number of ticks since the system started is recorded in a variable called 51 ffies in the kernel. The timer interrupt
increments the §i ffries variable at each interrupt. The terms ticks and jiffies are often used interchangeably.

The resolution frequency of the timer interrupt is initialized to the value of the variable HZ (inc1ude/asm/param.h ), and it

1
increments the §irries variable every 77z 5.1 This length of time is absolutely sufficient for normal applications, because a
higher interrupt frequency would only mean a higher load on the system due to too many unnecessary interruptions [RuCo01].
However, there are certain situations where a high timer resolution is required, especially to measure smaller time increments
or for running actions at specific points in time [WeRi00]. In networks, you often find such requirements for protocol instances,
for example protocol instances that have to calculate packet run times or traffic shapers that have to measure minimum time
intervals in the microsecond range.

(41 HZ depends on the architecture: In Alpha processors, HZ = 1024; HZ = 100 in most other architectures.

Most of these tasks require clocks with a resolution that is at least in the microsecond range. For example, to implement a
traffic shaper [Tane97], you have to calculate the number of bytes that could be sent within a specific interval. For example, the

L.
jiffies time measurement with a resolution of 100 Hz is not suitable. With a rate of 2 Mbits/s, an interval of 1005 already
corresponds to a packet with a length of 2500 bytes.

To avoid this problem, most modern processors (Pentium, Alpha, etc.) have appropriate registers. They have been added to
those processors mainly to allow system performance measurements and less for traffic shaping in networks. But, while they
are present, their use is quite popular. In the Pentium processor and its successors (and most of its clones), this is a 64-bit-wide
TSC (Time Stamp Counter) register; its content is incremented by a value of one in each processor clock. The content of this
register shows the number of elapsed clock cycles since system start.

The TSC register is actually nothing more than a hardware variant of 41 £fies, except that its resolutions is higher by a factor

of between 106 and 108, This means, for example, that you can measure intervals with an accuracy of 0.001 ps in a Pentium
processor with a clock rate of 1 GHz.

Nevertheless, there is a certain inaccuracy when measuring with the TSC register, because it takes a few clocks (approx. ten) to
read the register. The reason is the main memory access that occurs after the register value has been read. It can be done only
in the bus frequency, which corresponds to a fraction of the CPU frequency. In addition, there could be effects in the first-level
and second-level cache accesses that can easily lead to false measurements. However, the error caused by the TSC register is
meaningless for normal measurements, because most of them measure only relatively big time cycles (in the 1-ys range). The
command get cycles () (definedin <asm/timex.h>) can be used to read the content of the TSC register.

2.7.1 Standard Timers

In addition to measuring intervals in the microsecond range, we also need a way to run a function at a specific point in time to
implement a traffic shaper [WeRi00], which sends packets at specific points in time. The resolution of such a timer should be at
least in the 100-s range. However, due to the fact that a PC has only one timer component, you can use only this one. As
described above, the interrupt is triggered pz times per second. In addition to updating 51 ffies, Linux uses the timer interrupt
to run functions at specific points in time (i.e., the timer handler).

A timer queue can be used when a function of the kernel should run at a specific point in time (e.g., switching off the floppy
motor). At each occurrence of a timer interrupt, the timer interrupt routine updates the §i ffies variable and also checks the
timer queue for timer handling routines, as may be present. Each +imer 1ist Structure within the timer queue stands for one
function (timer handling routine), which is to run at a specific point in time (expires) - The exact process of the timer
resolution and of subsequent checking of the timer queue is described in [RuCo01].

The following functions are available to manage the timer queue:

e add timer() addsa timer 1ist structure to the timer queue according to the time specified by expires. A
timer list structure represents a timer handling routine (i.e., a function to be executed). The kernel runs this
function at the specified time.

Note, however, that the timer interrupt is triggered only gz times per second. This means that the method can run only
when expires reaches the value of i rries. Therefore, there is a small difference between time t when the function
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should theoretically run and the next possible value of jiffies. This difference can take up to H.? qu . But 10

ms is too long to allow reasonable traffic shaping.[®]

(51 10 ms corresponds to the transmission time for approximately eighty packets of maximum length over a
100Mbps network.

e del timer() deletesa timer 1ist Structure from the timer queue. The corresponding function will then no longer
run.

e init timer () initializesa timer 1ist Structure. This function should always be called when a timer 1ist
structure was created.

2.7.2 Using the APIC for High-resolution Timers

The current Linux kernel does not support any freely programmable timers with an accuracy in the microsecond range. As
explained above, such high-resolution timers are required to support various functionalities (e.g., for traffic shaping in high-
speed networks and to synchronize multimedia contents playback), but additional usages are conceivable. On the other hand,
there is the problem that modern processors become increasingly faster, while the accuracy of timers remains at the state of
the eighties for downward compatibility with vintage PCs.

There are two basic usages for high-resolution timers:

e Periodic shot: A timer with a specific interval is initialized and then periodically triggers an interrupt when this interval
expires. This corresponds to the behavior of the timer interrupt in the Linux kernel, which always triggers an interrupt
after 10 ms.

This type of timer is suitable for all scenarios where actions have to run frequently and normally after fixed intervals. If
the accuracy of these intervals is within the range of milliseconds, then the standard timers described in the previous
sections can be used.

o One shot: Exactly one action needs to run at a specific time, regardless of other events. Such an action is, for example,
when you send a packet at a pre-calculated time or represent an image from a video.

Until recently, one-shot and periodic-shot timers had been available only on the basis of timer interrupts, offering an accuracy of
not more than 1/HZ seconds. The timer functionality introduced next is based on the APIC component (in short APIC timer) to
avoid the problems outlined above. The UKA-APIC timer was developed at the Institute for Telematics at the University of
Karlsruhe, Germany, and can be downloaded from [ObWe01].

Technical Basis of the APIC Timer

Intel's x86 processor family originally used the PIC 8259A Programmable Interrupt Controller to manage triggered interrupts. It
was used since the first personal computer at the beginning of the eighties and met its tasks without problem. However,
multiprocessor capability needs to distribute triggered interrupts among several processors of an SMP computer. For this
reason, Intel introduced the so-called APIC (Advanced Programmable Interrupt Controller). More specifically, there are the
following two different chips, as shown in Figure 2-9:

e The local APIC has been integrated in all Pentium processors (since Pentium P54C), and cooperates with the I/O APIC
described below in multiprocessor systems. In addition to communicating with the I/O APIC and handling of incoming
interrupts, a local APIC offers interesting possibilities, so it will be described here in more detail. Each local APIC has
several 32-bit registers, an internal clock, an internal timer, 240 interrupt vectors, and two additional interrupt lines that
can be used for interrupts generated locally.

e The I/O APIC is a separate component, collecting external interrupts and distributing them to the set of processors of a
system. An I/O APIC is generally present only in multiprocessor systems, where such systems may indeed use more than
one I/0 APIC, which is supported in Linux since Version 2.4 [BoCe00]. The I/O APIC connects to the local APIC
components of each installed processor over an interrupt Controller Communication Bus (ICC).

Figure 2-9. Use of an Advanced Programmable Interrupt Controller (APIC) in multiprocessor systems.

9 cry, 9 cry,

G a

G Local a Local Local

Q APIC ® APIC interrupts
O O




This document is created wit i i CHM2PDF Pil

>

External interrupts

The internal timer of a local APIC is the most interesting part for the tasks discussed in this section. The internal timer works in
bus-clock accuracy and can be initialized to a specific value. Subsequently, the value of the timer is decremented at each bus
clock, and an interrupt is triggered when zero is reached. This means that the internal timer of the APIC component can be used
to implement a high-resolution timer with almost bus-clock accuracy.

In contrast, single-processor systems do not integrate I/O components, and their local APICs are not activated when the system
starts in most operating systems. In older P5 processors, you could activate the local APIC component only when the system
started, and hardware manipulation was the only way to initialize it again. Since the P6 processor generation (Pentium Pro and
successors), you can activate the integrated local APIC also during operation by use of software commands. This means that it
can be used to implement a high-resolution timer.

Functionality of the UKA-APIC Timer

We emphasize here once more that the local APIC can be used for a freely programmable timer only in single-processor
computers, because the timer of the local APIC in multiprocessor systems is used for interprocessor synchronization.

Some versions of the Linux kernel 2.3 allowed you to reactivate the local APIC component over a module. Unfortunately, this
module is no longer present in the 2.4 versions. However, there is a patch [Pett01] you can use to activate the local APIC in
single-processor systems at runtime. Based on an activated local APIC and its integrated timer, a high-resolution timer support
was developed, featuring a programming interface similar to that of the standard timer of the Linux kernel [ObWe01, WeRi00].

The APIC timer also consists of a patch, integrating the interfaces required in the kernel and from a kernel module that
manages the timers. One of the goals set when developing the APIC timer was to pack as much functionality and tasks as
possible into one module to keep the understanding and maintenance simple. Unfortunately, there is no way around changes to
the kernel for two reasons: First, you first have to activate the APIC component; second, there is no interface to register an
interrupt handling routing for the APIC timer interrupt; request irg() does not help either. For this reason, the APIC timer
handling routing, smp apic timer interrupt () , hormally used in an SMP configuration, is overwritten by another one,
which allows entry into the use as a freely programmable timer (set apic timer up handler () ). This method can be
used only to set a new handling routine for the APIC timer interrupt. B -

The UKA APIC Timer Module

The UKA APIC Timer module offers the interface required to register individual handling routines. The module consists mainly of
management functions for the timer and methods to achieve as high a timer accuracy as possible.

Registered handling routines are managed in a linked list, similar to the management of the standard timer of the Linux kernel.
The individual elements are structured as follows:

struct apic timer list
{
struct apic timer list *next, *prev;
unsigned long long expires;
unsigned long data;
void (*function) (unsigned long long, unsigned long)

® next and prev are used to link the apic timer list entries.

e The variable expires contains a value for the timestamp counter register, which specifies the time when the handling
routine should run. Note that the TSC register operates with the processor clock and not with the bus clock (like the local
APIC). The linked list is ordered by trigger points (expires) for performance reasons.

e data is a pointer that can be used to point to private data contained in the handling routine. This can be useful for
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e function is the function pointer pointing to the handling routine to be executed. Function () is called as soon as the
time specified by expires is reached. The parameter gata is also passed at this point in time.

The UKA-APIC timer module offers the following interface to the outside. The header file uka apic timer.nh should be
embedded to use this interface. To make things simpler for the programmer, the structure of the UKA-APIC timer interface is
almost identical to the interface of the standard kernel timer:

e init apic timer(struct apic timer list *timer) initializes the passed structure of type
apic timer list . Currently, only pointers for the linking are set to NULL.

e add apic_timer (struct apic timer list *timer) registers a structure of type apic timer 1ist and
adds it to the linked list of the registered timers. The handling method t imer2gt; function () runs when the timer

reaches timer?gt;expires -

e del apic_timer(struct apic_ timer list *timer) FEMOVES AN gpic timer list structure from the list
of registered timers. This means that the handling routine will no longer run when the timer reaches expires-

e mod apic timer(struct apic timer list *timer, unsigned long long expires) modifies the time
when a registered timer should run. This change can mean that the apic timer 1ist Structure may have to be putin
another place within the list.

The following code fragment is a simple example to show how you can use the UKA-APIC timer. The following steps are
required to register the handling routine test timer handler() SO that it will run within two microseconds:

#include <asm/timex.h>
#include "uka apic timer.h"
#define SYS CLOCK 500000000 // (500 MHz)
static struct apic_timer list test timer;
unsigned long long timestamp;
static struct egal daten datal;
voild test timer handler (unsigned long long exp, unsigned long data)
{
/* Do here what you think you have to do :? */
* e.g., use hard start xmit to send a packet */
}
/* ... This is a routine, in which the timer is activated ... */
/* Initialize the apic timer list structure */
init apic_timer(&test timer);
/* Read the current time (status of the TSC register) */

timestamp = get cycles();

/* Set the values... */

timer.function = (void*) &test timer handler;
timer.expires = timestamp + (SYS CLOCK * (2 / 1000000));
timer.data = (unsigned long) &datal;

/* Register the timer */
add_apic_timer (&timer);
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2.8 The Proc File System

Al files in the /proc directory are virtual files. They do not exist on any memory medium, but are generated directly by the
kernel upon each read access. A proc file is normally a text file showing information about specific parts of the kernel. For
example, the commands 1spci OF apm Show you information from the proc files /proc/pci Und /proc/apm, respectively,
and information about the current devices on the PCI bus or the state of the notebook battery.

The possibilities of the proc file system to display information on the kernel easily in the user mode are used by many system
developers. Files and directories in the /proc directory can be easily implemented. In addition, you can register and unregister
dynamically, so that the proc directory is often used by modules.

The files and directories in the /proc directory are essentially based on the proc_dir entry structure, shown in Figure 2-10.
Such a structure represents either a directory or a file. The directory proc is represented by the variable proc root . The
attributes and methods of the proc dir entry structure have the following meaning:

Figure 2-10. Structure of ;.oc qir entry:

struct proc_dir entry

{

unsigned short low_ino;

unsigned short namelen;

const char *name;

mode t mode;

nlink t nlink;

uid t uid;

gid t gid;

unsigned long size;

struct proc dir entry *next, *parent, *subdir;

void *data;

int (*get _info) (buffer, start, off, count);
int (*read proc) (buffer, start, off, count, eof, data);
int (*write proc) (file, buffer, count, data);
int (*readlink proc) (proc_dir entry, page);
unsigned int count; /* use count */

int deleted; /* delete flag */

e low ino Iisthe file's Inode number. This value is filled automatically by proc register when the file is initialized.
e namelen Specifies the length of the file or directory name, name.

e name IS a pointer to the name of the file (or directory).

¢ mode specifies the file's mode; this value is set to s prr for directories.

e nlink specifies the number of links to this file (default = 1).

e uid Or gig specifies the user or group ID of the file.

e size specifies the length of the file as shown when the directory is displayed.

e data is a pointer that can point to private data.

e next, parent,and subdir are pointers to link the proc directory structure.

e read proc() funs when you read-access a proc file. The only task of this function is to fill the pyrfer with the file's
output and return the number of written characters as result.

e write proc () is called when you write-access the proc file.
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In earlier kernel versions, a proc di r entry Structure had to be created and initialized for each entry to be added to the

proc directory. As we have seen above, many of the variables in the structure are needed only after registration.

The following functions were defined to simplify handling of proc entries.

create proc_entry () fs/prof/generic.c

create proc entry(name, mode, parent) Creates a file with nane in the proc directory. The relative path to /proc/
can be specified in a name, or a pointer to the proc dir entry Structure of the directory, in which the file should appear,
can be set in the parameter parent. References to the /pr_oc and /proc/net directories can be obtained from the pointers
proc root and proc net. The parameter mode lets you pass flags for file properties of the proc file you want to create.
Normally, this is filled with value 0.

As a result of this function, you obtain a pointer to the proc_dir entry structure created. Now you can enter handling
routines for read and write operations on the proc file. You can also set the pointer 35t 4 to private data of a proc entry. This is
necessary especially when a read or write function is used for several proc files.

The following source text is a good example to show you how a proc file, /proc/net/test , is created and initialized:

test _entry = create proc_entry("test", 0600, proc net);

test entry->nlink = 1;

test entry->data = (void *) &test data;

test entry->read proc = test read proc;

test entry->write proc = test write proc;
remove proc_entry () fs/proc/generic.c

remove proc_entry(name, parent) removes the proc file SpeCiﬁed in name. As with create proc_entry() s You can
either state the relative path to /proc or the proc_dir entry Structure of the directory where the file name is located.

proc_mkdir () fs/proc/generic.c

Though create proc entry() C€an be used to create directories in the proc directory, the kernel offers a simpler way with
proc mkdir (name, parent). The parameters name and parent can be used as in the functions described above. The
result of this function is a pointer to the proc dir entry Structure of the directory you created. The example in Appendix D
shows how you can create the directory /proc/test by using this function.

create proc read entry() include/Linux/proc_fs.h

We often want to create files in the proc directory merely to display certain information. This means that it is sufficient to
register a function to handle a read access to the proc file. Though you can use create proc _entry() and then register
the read function, as in our example above, the kernel offers another function to achieve this in one step.

The function create_proc_read_entry (name, mode, base, get_info) creates the proc file name and uses the
function get info () to initialize read accesses. The parameters name, mode, @and base are used as in

create proc_entry() -

When there is no write access to the proc file proc/net/test and no private data has to be passed in the above example,
then this function can be simplified as follows, where get info() IS the method used to handle read access to the proc file:

test _entry = create proc read entry("test", 0600, proc net, test get info);

create proc info entry( ) include/linux/proc_fs.h
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create proc read entry() $S8S but it add|t|0na"y sets the parameter data in the proc dir entry structure. This
variant is used when the read function read proc () is needed more than once. Note that it has to be reentrant, and the
pointer data to the private data passed corresponds to the proc file called.

This means that the above example can be replaced by the following function call:

test entry = create proc read entry("test", 0600, proc net, test read proc,
&test data);
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2.9 Versioning

The Linux kernel is subject to constant improvement and development, and new versions (releases) are published regularly. To
prevent users from getting confused and to identify stable versions, we distinguish between so-called hacker and user kernels.
The version of a Linux kernel is denoted by a tuple composed of three letters, x, v, z:

o A hacker kernel is not a kernel version used by malicious people to break into highly classified computers. The very
opposite is the case; in fact, a hacker kernel is the prototype of a Linux kernel under further development. Normally, new
concepts and functions have been added to such a prototype and some errors of the previous version have been
(hopefully) removed. Hacker kernels are in the testing phase, and faulty behavior or system failure has to be expected at
any time. They mainly serve to integrate and test new drivers and functionalities.

Once a sufficient number of new drivers and technologies have been added to a hacker kernel, Linus Torvalds will
proclaim a so-called feature freeze. This means that no new functionality can be integrated, and the only change allowed
to that prototype is to remove errors. The objective is a stable user kernel. You can identify a hacker kernel by its odd y
version number (e.g.,2.3.z, where z denotes the consecutive number of the kernel version). The next version (e.g.,
2.3.51), will then have removed some errors of 2.3.50.

o User kernels are stable kernel versions, where you can assume that they are normally free from errors. A user kernel is
denoted by an even version number, e.g., 2.2.z. Such versions are recommended to normal users, because you don't
have to fear that the system might crash. For example, when version 2.3.51 is very stable and the feature freeze has
already been proclaimed, then the kernel will be declared user kernel 2.4.1. New drivers and properties will then be
added to hacker kernel 2.5.1.
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Part II: Architecture of Network
Implementation

Chapter 3. The Architecture of Communication Systems
Chapter 4. Managing Network Packets in the Kernel

Chapter 5. Network Devices
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Chapter 3. The Architecture of Communication Systems

This chapter discusses basic models used to structure communication systems and architectures. The ISO/OSI reference model
introduced in Section 3.1.1 failed in practice because of its complexity, especially that of its application-oriented layers.
Nevertheless, it still has some fundamental significance for the logical classification of the functionality of telecommunication
systems. Though it was less successful in proliferating than expected, this model offers the proposed structure of
telecommunication systems in similar form in the field of telematics.

Currently, the technologies and protocols of the Internet (TCP/IP reference model; see Chapter 13) have made inroads and are
considered the de facto standards. The architecture of the Internet can easily be paralleled to the ISO/OSI reference model, as
far as the four lower layers are concerned. The other layers are application-specific and cannot be compared to the ISO/OSI
model.

However, the architecture and protocols of the Internet also represent a platform for open systems (i.e., no proprietary
solutions supported by specific manufacturers are used in the network). In addition, the development process for new protocols
in the Internet by the Internet Engineering Task Force (IETF) is open for everyone and is designed so that the best and most
appropriate technical proposals are accepted.
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3.1 Layer-Based Communication Models

Telecommunication systems bridge the spatial distance between distributed computers. The implementation of this task is
extremely complex for a number of reasons, so it is not recommended to use a monolithic architecture, which could prove very
inflexible and difficult to maintain. This is the reason why communication systems are normally developed as layered
architectures, where each layer assumes a specific task, offering it in the form of services. The ISO/OSI reference model is
probably the best known example of such a layered architecture.

To solve its task, a layer, N, must use only the services provided by the next lower layer (N ?1). More specifically, layer N
expands the properties of layer N ?1 and abstracts from its weaknesses. For this purpose, the instance of layer N communicates
with the instances of the same layer on other computers. This means that the entire functionality of the communication system
is available in the top layer. In contrast to a monolithic structure, layering a communication system means a more expensive
implementation, but it offers invaluable benefits, such as the independent development of single partial components, easy
exchange of single instances, better maintainability, and higher flexibility. Figure 3-1 shows the principles of communication in a
layered system.

Figure 3-1. Communication in layered systems.
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We can deduce two central terms for layer-oriented communication models from the current section, which will be discussed in
more detail in Section 3.2:

o Communication between two instances of the same layer on different computers is governed by predefined rules. These
rules are called protocols.

e The set of functions offered by a layer, N, to its higher-order layer (N + 1), is called its service. The interface through
which this service is offered is called service interface.

This means that an instance is the implementation of a communication protocol and the service provided within one layer on a
computer. The theoretical basis of services and protocols are discussed in Section 3.2.

3.1.1 The ISO/0SI Reference Model

At the end of the seventies, experts observed increasingly that the interconnection of several computer networks was difficult
(because of vendor-specific properties of these networks), if not impossible, so it was found hard to ensure interoperability
between the large number of networks in place. This situation led to the proposal to create a uniform and standardized platform
for computer-based communication networks.

Open vendor-independent communication required the definition and observance of general standards. The ISO/OSI reference
model (in short, ISO/OSI model) proposed by the International Organization for Standardization (ISO) for open systems
communication (OSI) [ITU-94] describes a general abstract model for communication between computer-assisted systems
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communication systems. This reference model has the character of a functional standard for other standards, i.e., it does not
represent a specification for implementation, but refers merely to the mutual use of standardized methods for the exchange of
data.

The ISO/0SI model consists of seven layers (see Figure 3-2), where one layer offers specific services to its higher-order layer.
The ISO/0SI model does not describe a real implementation of a specific system, but merely defines the tasks of each layer.
For this reason, it has become the basic model for telecommunication systems during the past decade. That's why the ISO/OSI
model is often referred to as the basic reference model. In fact, knowledge of the ISO/OSI is normally the basis for the design
and structuring of modern computer networks, although it is not a perfect model. It has certain strengths and weaknesses, as
we will see later when comparing it to the more streamlined TCP/IP model.

Figure 3-2. The ISO/OSI basic reference model.
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The seven layers of the ISO/OSI reference model and their purposes are as follows:

o Physical layer: The physical layer handles the transmission of single bits over a physical medium. More specifically,
(unstructured) bit sequences are converted to physical signals and transmitted over a physical medium (copper cables,
fiber glass, wireless, etc.). The physical layer defines special coding methods, hardware connections, and media types.

o Data link layer: This layer specifies how data should be transmitted between two stations directly connected over a
medium. The sending system organizes the data in frames and transmits them back to back. If errors occur, then the
data link layer is responsible for detecting such errors and retransmitting the data frames. Moreover, the data flow
between the two systems should be regulated so that the receiver does not get overloaded (flow control). Examples of
data-link-layer protocols are HDLC (High-level Data Link Control), SLIP (Serial Line IP), and PPP (Point-to-Point Protocol);
the latter two offer the described functions to only a limited extent.

In local networks, the data link layer often assumes the task to regulate access to a shared medium. In such cases, the
data link layer is divided into the Medium Access Control (MAC) layer and the Logical Link Control (LLC) layer.

o Network layer: The network layer is responsible for establishing connectivity between all systems of a telecommunication
network. For this reason, the network layer deals mainly with switching and forwarding of data (e.g., routing, adapting
data units to the admissible size of the respective data link layer (fragmenting), or ensuring various service qualities).
Within the scope of this book, we will mainly discuss the Internet protocols Versions 4 and 6.

e Transport layer: The transport layer regulates the transport of data between applications (i.e., between the sender and
the receiver application). Among other things, it is responsible for addressing applications, for controlling the data flow
between the end systems, and for securing both the correctness and the order of data.

e Session layer: The session layer handles the structured exchange of messages over transport links. For example, it can
control within a session whether the transfer of data should be concurrently in both directions or only one of the
communicating partners should have the right to transmit. In the latter case, the session layer manages the right to
transmit.

e Presentation layer: The presentation layer regulates the presentation of transmitted data in a form independent of the
communicating computer systems. Many operating systems use different forms of representation for characters (e.g.,
ASCII, Unicode), numbers (big-endian, little-endian), and so on. To ensure that this data can be exchanged between the
systems involved, the representation layer transmits it in a standardized form (e.g., by using Abstract Syntax Notation
(ASN.1) or Basic Encoding Rules (BER)).

o Application layer: This layer uses specific protocols for different applications, using the lower-level layers to fulfill their
tasks—for example, the application layer includes protocols for electronic mail, file transferred, and remote procedure
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3.1.2 The TCP/IP Reference Model

The naming convention for the Internet reference model is based on the two most important Internet protocols—the
Transmission Control Protocol (TCP) and the Internet Protocol (IP). The 7-layer ISO/OSI reference model described earlier was
devised before internetworking was invented. Furthermore, the 7-layer reference model devotes an entire layer to session
protocols, which have become much less important as computer systems have changed from large mainframe systems to
private workstations. As a result, researchers who developed TCP/IP invented a new layering model. This section describes the
new layering model briefly.

The TCP/IP layering model, which is also called Internet Reference Model, contains the following layers (shown in Figure 3-3):

o Application layer: The application layer combines all application-specific tasks (i.e., the properties of layers 5 to 7 of the
ISO/0SI model). The protocols of the application layer include Telnet (for virtual terminals), FTP (file transfer), and
SMTP (to transmit e-mail). More recent protocols include DNS (Domain Name System) and HTTP (Hypertext Transfer
Protocol).

e Transport layer: As in the ISO/OSI model, the transport layer of the TCP/IP reference model allows end-system
applications to communicate. The TCP/IP reference model defines two basic protocols for this purpose: the Transmission
Control Protocol (TCP) and the User Datagram Protocol (UDP). TCP is a reliable connection-oriented protocol and can
transmit a byte stream without errors over the Internet to another computer. UDP is unreliable and connectionless, but is
preferred over the more complex TCP in many situations (e.g., to transmit multimedia data).

o Internet layer: The Internet layer of the TCP/IP reference model defines the Internet Protocol (IP), including two auxiliary
protocols, the Internet Control Message Protocol (ICMP) and the Internet Group Management Protocol (IGMP). The main
purpose of the Internet layer is to forward IP packets from the sender to the receiver over the network, where routing of
the packets plays an important role. The Internet Control Message Protocol (ICMP) is an integral part of each IP
implementation; it serves to transmit diagnostics and error information for the Internet Protocol. The Internet Group
Management Protocol (IGMP) is used to manage communication groups.

o Interface layer: This layer combines the two lower layers of the ISO/OSI reference model. It handles network adapters
and their drivers, which are used to exchange data packets in a specific maximum length over a local area network
(Ethernet, Token Ring, etc.) or over a wide area network (ISDN, ATM).

Figure 3-3. Comparing the ISO/OSI reference model and the TCP/IP reference model.
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3.2 Services and Protocols

Services and protocols were briefly discussed in Section 3.1; they are basic elements of layered communication systems. This
section describes the meaning of these two terms and the functionality of services and protocols. These two terms serve as a
theoretical basis for further explanations in this book, where we will focus on services and protocols used in real-world systems.

We know from the models described in the previous sections that modern telecommunication systems consist of several layers.
Each layer has different purposes (depending on the reference model) and offers services to the next higher layer. For example,
the IP layer in the TCP/IP reference model offers the following services: forwarding data units (without guarantees) from a local
computer to another computer, specified by its IP address. This service is used by the transport layer (e.g., by TCP) and
expanded so that a byte stream can be transmitted free from errors and in the correct order.

We can say that a service describes the set of functions offered to the next higher layer. In addition, a service defines single
service elements, used to access the entire range of services. In other words, the service definition defines the extent and type
of service and the interface used to call that service. The definition of a service refers only to the interaction between two
neighboring layers and the interfaces concerned. The literature describes this often as vertical communication. Exactly how a
layer provides its service is not part of the service definition; it only deals with what an implementation has to offer the service
user at the interface.

To be able to use the services of a layer, the participating systems have to overcome the spatial separation and coordinate their
communication. This is achieved by use of communication protocols, which run by instances of a layer in the communicating
systems. A protocol regulates the behavior of the distributed instances and defines rules for their coordination. For example, it
defines messages to be exchanged between the instances to regulate distributed handling between these instances. More
specifically, a layer, N, provides its service by distributed algorithms in the respective instances of layer N and by exchanging
protocol messages about their coordination. (See Figure 3-1.) Coordination between the instances by protocol messages is also
called horizontal communication. The service of the lower layer (N ?1) is used to exchange protocol messages.

The specification of a service describes the behavior of a layer versus the next higher layer (vertical communication), but says
nothing about how a service is implemented. It merely defines the format and dynamics at the interfaces to the layer that uses
the service. A service is rendered by instances of a layer, which use protocols to coordinate themselves (horizontal
communication). The protocol specification describes the syntactic and dynamic aspects of a protocol. The protocol syntax
describes the format of the protocol data units (PDUs) to be exchanged and the protocol dynamics describe the behavior of the
protocol. The goal of this book is to explain how all of these elements can be designed and implemented in a communication
system. Using Linux as our example operating system, we will see what the interfaces between the different layers can look like
and what design decisions play a role, mainly from the perspective of efficiency and correctness of the protocols. In addition, we
will see how different protocols use their instances, to show the technologies used to implement network protocols.

3.2.1 Interplay of Layers, Instances, and Protocols

After our brief introduction to services and protocols in the previous sections, this section describes the horizontal and vertical
processes involved when protocol instances provide a service. The description of these processes forms the basis for
understanding how network protocols work, mainly the principles of horizontal and vertical communication. The terms
introduced earlier will help us better classify and distinguish structures and parameters involved in the interaction of different
layers at the interfaces.

Instances are the components offering services within a layer. To offer a service, the instances of a layer communicate
(horizontally). This communication is realized by exchanging protocol data units (PDUs) of layer N. However, data is not
exchanged directly between the two instances, but indirectly, over the next lower layer. This means that the instance of layer N
uses the service of layer (N ?1) to exchange a PDU with its partner instance. Figure 3-4 shows the interplay of layers and the
elements involved.

Figure 3-4. Data units for vertical and horizontal communication.
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o Protocol Data Unit (PDU): A PDU is a message exchanged between two instances of a layer to coordinate their behavior.
It represents the basic element of horizontal communication. A PDU consists of the following two elements:

o The Protocol Control Information (PCI) contains control information used to coordinate the two protocol instances
and is also called the packet header. A PCI carries protocol-specific data and is created by the sending instance,
depending on its state. The information is then evaluated and removed from the PDU in the receiver instance.

o The Service Data Unit (SDU) contains the payload to be transmitted at the order of the higher-level layer. The SDU
of layer N normally consists of the PCI of layer (N + 1) and an SDU of layer (N + 1) (i.e., of the (N + 1) PDU).

In certain states of a protocol, it can happen that the PDU does not contain any SDU at all (e.g., to establish a connection
or in pure acknowledgment packets). In such cases, merely information needed to coordinate the protocols, but no
payload, is exchanged.

o Interface Control Information (ICI) is created by an instance and forwarded to the next lower layer together with a PDU
(vertical communication). This information is needed by the service-rendering layer (N ?1) to offer that service. For
example, an ICI can contain the address of the partner instance that should receive the (N) PDU. The (N) PDU are pure
payload data for layer (N ?1), so that it cannot evaluate the elements of the (N) PCI included in the (N) PDU, but has to
rely on the ICI contents.

e The Interface Data Unit (IDU) of layer (N ?1) is composed of the PDU and the ICI of layer N. The IDU is delivered to layer
(N ?1) at the service access point and forms the basis for horizontal communication.

Note that, in the case of a vertical communication between two layers, this communication can take place only in defined service
access points (SAPs), serving to distinguish different service users. SAPs are identified by service-access-point addresses, based
on the rule that a service access point addresses exactly one service user. The principle of a service access point will come up
often in the following chapters in connection with different environments (e.g., IP address for IP, ports for TCP, etc.).

The further course of this book will show how the dynamic aspects of a network protocol can be implemented (i.e., which
programming elements there are and how they can be used in Linux. In addition, we will introduce interfaces and data
structures of different instances and explain which parameters play a role as interface control information for different
protocols. In this connection, we will explain that the theoretical model of a communication instance described above and the
strict separation of the individual layers have to be given up if we want to achieve better performance of the entire protocol
stack. When compared with a standard telecommunication work (e.g., [Tane97]), this book deals not only with the specification
of protocols and their horizontal communication, but also with vertical communication and implementation aspects of different
network protocols.
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Chapter 4. Managing Network Packets in the Kernel

One of the most important tasks of the network subsystem of an operating system is to process data packets according to the
protocols used. In the designing of such a system, the multitude and flexibility of available methods play an important role, in
addition to the performance and correctness of these protocols. Many network protocols differ a lot externally, but, when you
implement them within an operating system, you can see quickly that the algorithms and operations on data packets are similar,
and most of them can be reused. This chapter uses a Linux system as an example to show how data packets can be realized
and what general methods are available to manipulate them.

One main reason for the flexibility and efficiency of the Linux network implementation is the architecture of the buffers that
manage network packets—the so-called socket buffers, or skb for short. This central structure of the network implementation
represents a packet during its entire processing lifetime in the kernel, representing one of the two basic elements of this
network implementation, in addition to network devices. This means that a socket buffer corresponds to a sending or received
packet.

This chapter introduces buffer management (i.e., the structure of socket buffers) and the operations used to manage or
manipulate them. Beginning with an introduction to the sx puff structure, we will use an example to show how an IP packet is
represented in this structure and how it changes along its way across different protocols and layers. In addition, this chapter
introduces functions used to manage and change the structure.
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4.1 Socket Buffers

The network implementation of Linux is designed to be independent of a specific protocol. This applies both to the network and
transport layer protocols (TCIP/IP, IPX/SPX, etc.) and to network adapter protocols (Ethernet, token ring, etc.). Other protocols
can be added to any network layer without a need for major changes. As mentioned before, socket buffers are data structures
used to represent and manage packets in the Linux kernel.

A socket buffer consists of two parts (shown in Figure 4-1):

o Packet data: This storage location stores data actually transmitted over a network. In the terminology introduced in
Section 3.2.1, this storage location corresponds to the protocol data unit.

e Management data (struct sk buff): While a packet is being processed in the Linux kernel, the kernel requires
additional data that are not necessarily stored in the actual packet. These mainly implementation-specific data (pointers,
timers, etc.). They form part of the interface control information (ICI) exchanged between protocol instances, in addition
to the parameters passed in function calls.

Figure 4-1. Structure of socket buffers (s uct sk_bure) With packet storage locations.
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The socket buffer is the structure used to address and manage a packet over the entire time this packet is being processed in
the kernel. When an application passes data to a socket, then the socket creates an appropriate socket buffer structure and
stores the payload data address in the variables of this structure. During its travel across the layers (see Figure 4-2), packet
headers of each layer are inserted in front of the payload. Sufficient space is reserved for packet headers that multiple copying
of the payload behind the packet headers is avoided (in contrast to other operating systems). The payload is copied only twice:
once when it transits from the user address space to the kernel address space, and a second time when the packet data is
passed to the network adapter. The free storage space in front of the currently valid packet data is called headroom, and the
storage space behind the current packet data is called tailroom in Linux.

Figure 4-2. Changes to the packet buffers across the protocol hierarchy.
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When a packet is received over a network adapter, the method dev_alloc skb () is used to request an sk puff structure
during the interrupt handling. This structure is then used to store the data from the received packet. Until it is sent, the packet is
always addressed over the socket buffer created.

We now explain briefly the parameters of the sx puff structure (Figure 4-3):

e next, prev areused to concatenate socket buffers in queues (struct Skb_queue_head). They should always be
provided by special functions available to process socket buffers (skb queue head(), skb dequeue tail (),
etc.) and should not be changed directly by programmers. These operations will be introduced in Section 4.1.1.

e 1list points to the queue where the socket buffer is currently located. For this reason, queues should always be of the
type struct sk buff head, SO that they can be managed by socket buffer operations. This pointer should point to
null for a packet not assigned to any queue.

e sk points to the socket that created the packet. For a software router, the driver of the network adapters creates the
socket buffer structure. This means that the packet is not assigned to a valid socket, and so the pointer points to ny11.

e stamp Specifies the time when the packet arrived in the Linux system (in jiffies).

e dev and rx dev are references to network devices, where gev states the current network device on which the socket
buffer currently operates. Once the routing decision has been taken, gev points to the network adapter over which the
packet should leave the computer. Until the output adapter for the packet is known, gev points to the input adapter.
rx_dev always points to the network device that received the packet.

Figure 4-3. The ; ,u¢¢ structure, including management data for a packet.

struct sk buff
{

struct sk _buff *next, *prev;
struct sk buff head *list;

struct sock *sk;

struct timeval stamp;

struct net device *dev, *rx dev;

union /* Transport layer header */
{
struct tcphdr *th;
struct udphdr *uh;
struct icmphdr *icmph;
struct igmphdr *igmph;

struct iphdr *ipiph;
struct spxhdr *spxh;
unsigned char *raw;

union /* Network layer header */

struct iphdr *iph;
struct ipvé6hdr *ipv6h;
struct arphdr *arph;
struct ipxhdr *ipxh;
unsigned char *raw;

} nh;

union /* Link layer header */

struct ethhdr *ethernet;

unsigned char *raw;
} mac;
struct dst_entry *dst;
char cb[48];

unsigned int len, csum;
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unsigned char is_clone, cloned, pkt type, ip_ summed;
_u32 priority;

atomic t users;

unsigned short protocol, security;

unsigned int truesize;

unsigned char *head, *data, *tail, *end;

void (*destructor) (struct sk buff *);

h, nh, and mac are pointers to packet headers of the transport layer (1,), the network layer (n1), and the MAC layer
(mac)- These pointers are set for a packet as it travels across the kernel. (See Figure 4-2.) For example, the 1, pointer of
an IP packet is set in the function ip rcv () to the IP protocol header (type ipndr).
dst refers to an entry in the routing cache, which means that it contains either information about the packet's further
trip (e.g., the adapter over which the packet is to leave the computer) or a reference to a MAC header stored in the hard
header cache. (See Chapters 15 and 16a.)
cloned indicates that a packet was cloned. Clones will be explained in detail later in this chapter. For now, it is sufficient
to understand that clones are several copies of a packet and that, though several sx buff structures exist for a packet,
they all use one single packet data location jointly.
pkt type Specifies the type of a packet, which can be one of the following:

O PACKET HOST specifies packet a sent to the local host.

O PACKET BROADCAST specifies a broadcast packet.

O PACKET MULTICAST Specifies a multicast packet.

o PACKET OTHERHOST Specifies packets not destined for the local host, but received by special modes (e.qg., the
promiscuous mode).

o0 PACKET OUTGOING Specifies packets leaving the computer.
o PACKET LOOPBACK Specifies packets sent from the local computer to itself.

0 PACKET FASTROUTE Specifies packets fast-forwarded between special network cards (fastroute is not
covered in this book).

e len designates the length of a packet represented by the socket buffer. This considers only data accessible to the kernel.

This means that only the two MAC addresses and the type/length field are considered in an Ethernet packet. The other
fields (preamble, padding, and checksum) are added later in the network adapter, which is the reason why they are not
handled by the kernel.

data, head, tail, end: The data and tai1 pointers point to currently valid packet data. Depending on the layer
that currently handles the packet, these parameters specify the currently valid protocol data unit.

head and end point to the total location that can be used for packet data. The latter storage location is slightly bigger to
allow a protocol to add protocol data before or after the packet, without the need to copy the packet data. This avoids
expensive copying of the packet data location. If it has to be copied in rare cases, then appropriate methods can be used
to create more space for packet data.

The space between head and data is called headroom; the space between +51i1 and eng is called tailroom.

The other parameters are not discussed here, because they are of minor importance. Some of them are discussed in
other chapters (e.g., netfilter in Section 19.3).

The pointer gatarefp is actually not part of the sk _buff structure, because it is located at the end of the packet data space
and not defined as a variable of a structure. (See Figure 4-1.) datarefp IS a reference counter; it can be easily addressed and
manipulated by use of the macro skb_datarefp (skb) -

The reference counter was arranged in this way because, during cloning of socket buffers, several sx pufre structures will still
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also release the packet data space. Otherwise, this would quickly lead to a huge storage hole. The only location where the
number of references to packet data can be managed is the packet data space itself, because there is no list managing all
clones of a packet. For this reason, and to avoid having to create another data type, we simply reserve a few more bytes than
specified by the user when allocating the packet data space. Using the macro skb datarefp; it is easy to access and test the
reference counter to see whether there are other references to the packet data space, in addition to the own reference.

4.1.1 Operations on Socket Buffers

The Linux kernel offers you a number of functions to manipulate socket buffers. In general, these functions can be grouped into
three categories:

o Create, release, and duplicate socket buffers: These functions assume the entire storage management for socket buffers
and their optimization by use of socket-buffer caches.

e Manipulate parameters and pointers within the sx buff structure: These mainly are operations to change the packet
data space.

e Manage socket buffer queues.

Creating and Releasing Socket Buffers

alloc skb() net/core/skbuff.c

alloc_skb(size, gpf mask) allocates memory for a socket buffer structure and the corresponding packet memory. In
this case, size specifies the size of the packet data space, where this space will be increased (aligned) to the next 16-bit
address.

In the creation of a new socket buffer, no immediate attempt is made to allocate the memory with xma110c () for the

sk buff structure; rather, an attempt is made to reuse previously consumed sk puff Structures. Note that requesting
memory in the kernel's storage management is very expensive and that, because structures of the same type always require the
same size, an attempt is first made to reuse an sk purs structure no longer required. (This approach can be thought of as
simple recycling; see Section 2.6.2.) B

There are two different structures that manage consumed socket buffer structures:

e First, each CPU manages a so-called skb head cache that stores packets no longer needed. This is a simple socket
buffer queue, from which 51 loc skb() takes socket buffers.

e Second, there is a central stack for consumed sk purr structures (skbuff head cache )-

If there are no more sk purf structures available for the current CPU, then xmem cache alloc () is used to try obtaining a
packet from the central socket-buffer cache (s kbuff head cache )- If this attempt fails, then kma11oc () is eventually used.
gfp mask contains flags required to reserve memory.

Using these two caches can be justified by the fact that many packets are created and released in a system (i.e., the memory of
sk buff structures is frequently released), only to be required again shortly afterwards. The two socket buffer caches were
introduced to avoid this expensive releasing and reallocating of memory space by the storage management (similarly to first-
level and second-level caches for CPU memory access). This means that the time required to release and reserve sx puff
structures can be shortened. When kmem cache alloc () isused toreserve an sk puff Structure, the function B

skb header init () is called to initialize the structure. It will be described further below.

Naturally, for the sx puff structure, a socket buffer requires memory for the packet data. Because the size of a packet is
usually different from and clearly bigger than that of an sx buff structure, a method like the socket-buffer cache does not
provide any benefit. The packet data space is reserved in the usual way (i.e., by use of kma11ioc () ).

The pointers head, data, tail,and end are set once memory has been reserved for the packet data. The counters yser
and gatarefp (number of references to these socket buffer structure) are set to one. The data space for packets begins to
grow from the top (data) (i-e., at that point, the socket buffer has no headroom and has tailroom of size bytes).

dev_alloc skb() include/linux.skbuff.h

uses the function to create a socket buffer. The length of this socket buffer's
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packet data space is 1ength + 16 bytes. Subsequently, skb_reserve (skb, 16) IS used to move the currently valid packet
data space 16 bytes backwards. This means that the packet has now a headroom of 16 bytes and a tailroom of 1ength bytes.

skb_copy () net/core/skbuff.c

skb copy (skb, gfp mask) Creates a copy of the socket buffer sxy, copying both the sk purf structure and the packet
data. (See Figure 4-4.) First the function uses a110c skb () to obtain a new sk pbufrs structure; then it sets the attributes.
Note that only protocol-specific parameters (priorit_y, protocol, ...) the relevant network device (gevice), and an
entry in the route cache are accepted. All pointers dealing with the concatenation of socket buffers (next, prev, sk,
list)aresetto nuiil.

Figure 4-4. Copying socket buffers.
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Memory needed for the payload of the new socket buffers is allocated by kmal1oc () and copied by memcopy () -
Subsequently, pointers to the new data space are set in the new sx purf structure. The result of skl copy () iSanew
socket buffer (with its own packet data space), which exists independently of the original and can be processed independently.
This means that the reference counter of the created copy also shows a value of one, in contrast to a using skb clone () to
replicate a packet. B

skb copy expand () net/core/skbuff.c

skb_copy expand(skb, newheadroom, newtailroom, gfp mask) also creates a new and independent copy of the
socket buffer and packet data; however, a larger space before and after the packet data can be reserved. newheadroom and
newtailroom Specify the size of this space before and behind the packet data space, respectively.

skb_clone () net/core/skbuff.c

skb clone () also creates a new socket buffer; however, it allocates only one new sk puff structure, and no second
memory space for packet data. The pointers of the original sk buff Structure and of the new structure point to the same
packet data space. There is no backward reference from the packet memory to the references sx puff Structures, so the
packet memory should be read-only. Figure 4-5 shows the situation before and after sk clone (_) is called. Among other
things, this function is required in multicast implementation. (See Chapter 17.) This allows us to prevent the time-intensive
copying of a complete packet data space when a packet is to be sent to several network devices. The memory containing packet
data is not released before the variable gatarefp contains a value of one (i.e., when there is only one reference to the packet

data space left).
Figure 4-5. Cloning socket buffers.

[View full size image]

sk_buff ekb_copy sk_buff

T I

sk_buff

k I


images/0131777203/graphics/04fig04_alt.gif
images/0131777203/graphics/04fig05_alt.gif

This document is created with trial yersieqpof]CHM2PBF Pilot .15.72 next
prev prev prev
head = head head
data —1— data data
tail tail o tail —
end end s end =
Packet data storage Packet data storage Packet data storage

-~

]
datarefp: 1

datarefp: 1

datarefp: 1 I

kfree skb () include/linux/skbuff.h

kfree skb () doesthe same thing as xfree skbmem() andiscalled by xfree skb (), but it additionally tests whether the
socket buffer is still in a queue (if so, an error message is output). In addition, it removes the reference from the route cache
and, if present, calls a gestructor () for the socket buffer. xkfree skb () should be preferred over other options because of
these additional security checks. B

dev_kfree skb () include/linux/skbuff.h

dev_kfree-skb (skb) Is identical to the method xfree skb () andis mapped to kfree skb() by a preprocessor macro.

kfree skbmem /() include/linux/skbuff.h

kfree skbmem () frees a socket buffer, provided that it was not cloned and that no instance in the kernel refers to it
(datrgfp - 1). The variable skb cloned is tested for null, and gatarefp is tested for one. If everything is okay, xfree
() first releases the packet memory. Then skb head to pool () isused toinsertthe sx purr structure into the socket-
buffer cache of the current processor for further use. This means that the memory of the socket-buffer structure is not released
for general use (kfree ()), butinstead is buffered for recycling.

skb_header init() include/linux/skbuff.h

skb header init () initializes some fields of the sx puff structure with standard values. Most fields are set to null or
NULL, and packeT HOST IS registered as the packet type.

Manipulating the Packet Data Space

The following functions are declared in the include file <1,i nux/skbuff.nh> . Most of them are defined as in1ine and have
only little functionality; nevertheless, they are important and are used often.

skb_get () include/linux/skbuff.h

This increments the number of yser references to the sk purr structure by one.

skb_unshare () include/linux/skbuff.h

skb unshared (skb) USeS skb cloned to check for whether the socket buffer is available for exclusive use. If it isn't, then
a copy of skp is created and returned, so that an exclusive socket buffer is available. In the original packet, the reference
counter is decremented by a value of one.
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skb put (skb, len) iSan inline function that appends data to the end of the current data range of a packet. Though this
occurs seldom, because most protocols write their PCI (Protocol Control Information) before the current protocol data unit,
there are a few protocol, that require this. More specifically, sk put () increments the pointer + 511 and the parameter
skb?gt; by len. Note that sk put () merely sets the pointers again; the caller is responsible for copying the correct data to
the packet data space. The return value is the old value of sx?gt;tail, SO as to be able to add new packet data to the
correct place. Before calling skb put () » we should confirm that the tailroom is sufficient; otherwise, the kernel will output an
error message and call skp over panic () -

skb_push () include/linux/skbuff.h

skb push (skb, len) Workslike skb put (), but increases the current packet data space at the beginning of the packet by
1en bytes. This means that the gata pointer is decremented by 1en, and skp 2gt; len IS incremented by this amount. The
return value of sxb push () points to the new data space (skb?gt;data, in this case). Again, we should first check the
headroom size.

skb_pull() include/linux/skbuff.h

skb pull (skb, len) Servesto truncate 1en bytes at the beginning of a packet. The pointer sxp2gt;data is adjusted,
and the length of the packet (skb?gt;1en) is reduced accordingly—but, first, we check on whether there are still 1en bytes
in the free part of the packet data space.

skb_tailroom() include/linux/skbuff.h

skb_tailroom(skb) returns the bytes still free at the end of the data space. If skb_put () requests more data in this space
than skb tailroom States, then this will lead to a kernel panic.

skb_headroom() include/linux/skbuff.h

skb_headroom (skb) returns (data ?head). This corresponds to the amount of free bytes in the front space of the packet
data memory. Exactly sxb headroom bytes can still be inserted into the packet by skp push () -

skb_realloc headroom/() include/linux/skbuff.h

skb realloc headroom(skb, newheadroom) IS required when the memory space between sxb?gt;data and skb?
gt;head is getting too small. This function can be used to create a new socket buffer with a headroom corresponding to the
size newheadroom (and not one single byte more). The data part of the old socket buffer is copied into the new one, and most
parameters of the sk purff Structure are taken from the old one. Only sx and 1ist are set to NnuLL.

skb_realloc_headroom () is implemented by Ca”ing the function Skb_copy_expand () -

skb_reserve () include/linux/skbuff.h

skb_reserve (skb, len) shifts the entire current data space backwards by 1en bytes. This means that the total length of
this space remains the same. Of course, this function is meaningful only when there are no data in the current space yet, and
only if the initial occupancy of this space has to be corrected.

skb_trim() include/linux/skbuff.h

skb_trim(skb, len) Sets the current packet data space to 1en bytes, which means that this space now extends from the
initial occupancy of datato ta3i1 - data + len- This function is normally used to truncate data at the end (i.e., we call
skb_trim() Witha length value smaller than the current packet size).
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skb cow(skb, headroom) checks on whether the passed socket buffer has still at least headroom bytes free in the front
packet data space and whether the packet is a clone. If either of the two situations is true, then sk alloc headroom (skb
headroom) Creates and returns a new independent packet. If none of the two tests is true, then the socket buffer sxp is
returned. skb cow () is used when a protocol requires an independent socket buffer with sufficient headroom.

I4

4.1.2 Other Functions

skb_cloned() include/linux/skbuff.h

skb_cloned (skb) Specifies whether this socket buffer was cloned and whether the corresponding packet data space is
exclusive. The reference counter gatarefp is used to check this.

skb_shared() include/linux/skbuff.h

skb_shared (skb) checks whether sxp2gt;users Specifies one single user or several users for the socket buffer.

skb_over panic(), include/linux/skbuff.h
skb_under panic()

These functions are used as error-handling routines during an attempt to increase too small a headroom or tailroom of a socket
buffer. A debug message is output after each function, and the function gug () is called.

skb_head to pool () net/core/skbuff.c

skb head to pool (skb) IS used to register a socket buffer structure with the socket-buffer pool of the local processor. It is
organized as a simple socket-buffer queue, so this product is simply added to the front of the queue by sk queue head() -
This means that the memory of the socket buffer is not released, but buffered for use by other network packets. This method is
much more efficient than to repeatedly allocate and release the memory of a socket buffer by the more complex memory
management of the kernel.

The queue skb head pool [smp processor id()].list Cannotgrow toan arbitrary length; it can contain a maximum
of sysctl hot list len . Assoon as this size is reached, additional socket buffers are added to the central pool for
reusable socket buffers (skbuff head cache) -

skb_head from pool () net/core/skbuff.c

This function is used to remove and return a socket buffer from the pool of used socket buffers of the current processor.

4 Previous Mext b
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4.2 Socket-Buffer Queues

When a packet is currently not handled by a protocol instance, it is normally managed in queues. Linux supports the
management of packets in a queue structure (struct sk _buff head) and in a number of operations on this structure. The

programmer can use these functions to abstract from the actual implementation of a socket buffer and queues to easily change
the underlying implementation of the queue management.

Figure 4-6 shows that the socket buffers stored in a queue are dual-concatenated in a ring structure. This dual concatenation

allows quick navigation in either of the two directions. The ring structure facilitates concatenation and prevents the occurrence
of NUL1 pointers.

Figure 4-6. Packet queues in the Linux kernel.
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A queue header consists of the following skb_queue head Structure:

struct sk buff head

{
struct sk buff *next;
struct sk buff *prev;
__u32 glen;
spinlock t lock;

e next and prev are used to concatenate socket buffers; next points to the rirst and prev to the last packet in the
queue.

e glen Specifies the current length of the queue in packets.

e lock is a spinlock (see Section 2.3.2) and can be used for atomic execution of operations on the queue. When a critical
access occurs, if the spinlock is not free, the access will have to wait until it is released.

4.2.1 Operations on Socket-Buffer Queues

Socket-buffer queues are a powerful tool to arrange packets in Linux. The power of this functionality is complemented by a
large number of methods to manage socket buffers in queues.

Most operations on socket buffers are executed during critical phases, or they can be interrupted by higher-priority operations
(interrupt handling, soft-IRQ, tasklet, etc.). For this reason, packet data and pointer structures should be processed in an atomic
way. Though this introduces some additional cost, because certain mechanisms (e.g., spinlocks and semaphores) have to be
used to achieve save states, it is the only way to prevent inconsistent states, which could endanger the stability of the network
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For example, a fault concatenation could be produced by consecutive nested operations on a queue. The consequence would be
a memory access error and eventually a system crash (kernel panic). For this reason, (mainly) the multiprocessor capability of
Linux requires atomic handling of such critical processes.

Most queue operations are defined as inline procedures in the include file <1inux/skbuff.h> . This inline definition means
that there are no real procedures; instead, procedures are built into the body of the calling function, similarly to macros. This
reduces overhead of a function call and tolerates a slightly larger kernel. During each function call, we would otherwise have to
pack the registers onto the stack and initialize the variable environment of the new function. For the smaller socket-buffer
functions, this is far too costly; that's why they are declared in11ine. The role of each function is still maintained to keep the
source code easy to understand and maintain.

Managing Queue Structures

skb_queue head init() include/linux/skbuff.h

skb_queue head-init (1ist) initializes an skpb queue head structure so that it can be used as a queue. Essentially,
pointers are set to the structure, and the length is set to null (i.e., next and prev in an empty queue point to the queue list
and not to NuLL)-

skb_queue empty () include/linux/skbuff.h

skb queue empty (1ist) checks on whether the queue (1ist) is empty or still contains buffers. The queue length 1ist?
gt;glen is returned for the sake of simplicity. If it is null, then it is considered to be £41se; otherwise, it is t rue.

skb_queue len() include/linux/skbuff.h

skb _queue len(list) returns the actual length of the specified queue, in packets.
Managing Socket Buffers in Queues

The following functions are available to manage packets in queues. These are mainly different strategies for arranging or
removing socket buffers in a socket-buffer queue. When a packet is inserted into a queue, then the parameter sxp2gt;1ist
of the socket-buffer structure points to this queue. Of course, a packet can always be in one queue only.

Each of the following functions exists in two different versions one with and a second without locked interrupts. This means that,
when a function already disabled interrupts, we don't have to do this in queue functions. Functions without locked interrupts are
marked by two leading underlines, e.g., skb dequeue() -

skb_queue head() include/linux/skbuff.h

skb_queue head(list, skb) ordersa packet at the header of the specified queue and increments the length of the
queue, (1ist?gt;qglen) , by one.

skb queue tail() include/linux/skbuff.h

skb_queue tail (list, skb) appends the socket buffer sxp to the end of the queue and increments its length, (1ist?
gt; qlen) ’ by one.

skb_dequeue () include/linux/skbuff.h

skb_dequeue (1ist) removes the top packet from the queue and returns a pointer to it. The length of the queue is
decremented by one. If there is no packet in the queue, then the yu1.1, pointer is returned.
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skb dequeue tail (list) removes the last packet from a queue and returns a pointer to it. If there is no packet in the list,
then yut1, is returned.

skb_queue purge () include/linux/skbuff.h

skb_queue purge empties the queue list: All packets are removed from the list and released by kfree skb () -

skb_insert () include/linux/skbuff.h

skb_insert (oldskb, newskb) orders the socket buffer newsxkp in front of the buffer o14skp in the queue. In addition, it
sets the 11 st pointer of the new socket buffer to the list of the next buffer and increments the queue length.

skb_append () include/linux/skbuff.h

skb append (oldskb, newskb) places the socket buffer newsko behind o1dskb in the queue of o1dskp . Additionally, the
1ist pointer is set to the queue of the previous buffer and the queue length is incremented by one.

skb_unlink() include/linux/skbuff.h

skb_unlink (skb) removes the specified socket buffer from its queue (it is not explicitly passed as parameter) and
decrements the queue length. sk unlink () checks explicitly for whether the list exists; the function  skb unlink (skb,
1ist) does not run this test, which means that we have to ensure that the buffer is actually in a list.

skb_peek () include/linux/skbuff.h

skb peek (list) returns a pointer to the first element of a list, if this list is not empty; otherwise, it returns yurL. If a socket
buffer is in the queue, then only a pointer to this socket buffer is returned; the socket buffer is not removed from the queue.
This is to ensure that no other activities in the kernel can remove that buffer from the queue while operations run on the socket
buffer, which can lead to inconsistencies. There is no interrupt-save version of sxb peek () -

skb_peek tail() include/linux/skbuff.h

skb peek tail (list) returns a pointer to the last element of a queue. If this queue is empty, then nur1 is returned.
Again, the buffer remains in the queue and should be protected. (See skb peek () -)

A Previous Mext »
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Chapter 5. Network Devices

Each (tele)communication over a network normally requires a physical medium, which is accessed over a network adapter
(network interface). Together, the network adapter and the medium eventually allow bridging of the spatial distance, so that
data can be exchanged between two or more communication systems. If we use the ISO/OSI reference model introduced in
Section 3.1.1, then the tasks of a network adapter extend over layers 1 and 2a: They include all tasks dealing with data—signal—
data conversion (and media access in the case of shared media). All higher-order protocol functions are handled by the protocol

instances of the respective operating system.[!] This interface is characterized by the following properties:

(1] This view is limited to software-based communication systems on PC basis. More instances are normally
implemented in hardware for dedicated systems.

o interfacing between specialized hardware in the network adapters and software-based protocols;
e asynchronous input and output point of the protocol stack in the operating system kernel.

In the network architecture of the Linux operating systems, this interface between software-based protocols and network
adapters is implemented by the concept of network devices. A network-device interface primarily should meet the following
requirements:

o Abstract from the technical properties of a network adapter: Network adapters might implement different layer-1 and
layer-2 protocols and are manufactured by different vendors. This means that their configurations are individual and
specific to each network adapter. For this reason, we need a piece of software for each adapter to communicate with the
hardware: the driver of a network adapter (which is, by the way, also a protocol).

o Provide a uniform interface for access by protocol instances: In a system like Linux, there are several protocol instances
using the services of network adapters. To be consistent with the principle of layered communication systems (see
Section 3.1), these instances should be implemented independently of a specific type of adapter. This means that
network adapters should have a uniform interface to the higher layers.

In the Linux kernel, these two tasks are handled by the concept of network devices and are often seen as one single unit.
However, it makes sense to distinguish between the two views of network devices and discuss them separately. For this reason,
the following section introduces the network-device interface visible from the "top," which offers a uniform interface to the
higher protocol instances for physical transmission of data. Later on, Section 5.3 will discuss the "lower" half: the adapter-
specific functions that are the actual network driver. Subsequently, Chapter 6 will introduce an example describing how a packet
is sent and received on the level of network devices interfacing to the higher protocols.

Not every network device in the Linux kernel represents a physical network adapter. There are network devices, such as the
loopback hetwork device, that offer a logical network functionality. The interface of network devices is also often used to bind
protocols, such as the point-to-point protocol (PPP).

Figure 5-1. The structure of a network device interface.
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5.1 The net_device Interface

In addition to character and block devices, network devices represent the third category of adapters in the Linux kernel
[RuCo01]. This section describes the concept of network devices from the perspective of higher-layer protocols and their data
structures and management.

Network adapters differ significantly from the character and block devices introduced in Section 2.5. One of their main
characteristics is that they have no representation in the device file system /g4ev/, which means that they cannot be addressed
by simple read-write Operations. In addition, this is not possible because network devices work on a packet basis; a behavior
comparable to character-oriented devices can be achieved only by use of complex protocols (e.g., TCP). For example, there are
no such network devices as /dev/eth0 Of /dev/atml - Network devices are configured separately by the i fconfig tool on
the application level. More recently, another tool available is i p, which can be used for extensive configuration of most network
functions.

One of the reasons why network devices are so special is that the actions of a network adapter cannot be bound to a unique
process; instead, they run in the kernel and independently of user processes [RuCo01]. For example, a hard disk is requested to
pass a block to the kernel: The action is triggered by the adapter (in the case of network adapters), and the adapter has to
explicitly request the kernel to pass the packet.

5.1.1 The net_device Structure

struct net device include/linux/netdevice.h

struct net device

{

char name [ IFNAMSIZ] ;

unsigned long rmem_end, rmem start, mem end, mem start, base addr;
unsigned int irqg;

unsigned char if port, dma;

unsigned long state;

struct net_device *next, *next sched;

int ifindex, iflink;

unsigned long trans start, last rx;

unsigned short flags, gflags, mtu, type, hard header len;

void *priv;

struct net device *master;

unsigned char broadcast [MAX ADDR LEN], pad;

unsigned char dev_addr [MAX ADDR LEN], addr len;

struct dev_mc_ list *mc_ list;

int mc_count, promiscuity, allmulti;

int watchdog timeo;

struct timer list watchdog timer;

void *atalk ptr, *ip ptr, *dn ptr, *ip6 ptr, *ec ptr;
struct Qdisc *gqdisc, *qgdisc sleeping, *qgdisc list, *qgdisc_ingress;
unsigned long tx queue len;

spinlock t xmit lock;

int xmit lock owner;

spinlock t queue_ lock;

atomic_t refent;

int features;

int (*init) (struct net device *dev);

void (*uninit) (struct net device *dev);

void (*destructor) (struct net device *dev);

int (*open) (struct net device *dev);

int (*stop) (struct net device *dev);

int (*hard start xmit) (struct sk buff *skb, \

struct net device *dev);
int (*hard header) (struct sk buff *skb,struct net device \
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unsigned len);

int (*rebuild header) (struct sk buff *skb);

void (*set multicast list) (struct net device *dev);

int (*set _mac_address) (struct net device *dev, void *addr);

int (*do_ioctl) (struct net device *dev, struct ifreq *ifr, \
int cmd);

int (*set _config) (struct net device *dev, struct ifmap \
*map) ;

int (*hard header cache) (struct neighbour *neigh, struct \
hh cache *hh);

void (*header cache update) (struct hh cache *hh, struct \
net device *dev, unsigned char *haddr);

int (*change mtu) (struct net device *dev, int new mtu);

void (*tx timeout) (struct net device *dev);

int (*hard header parse) (struct sk buff *skb, unsigned \
char *haddr);

int (*neigh setup) (struct net device *dev, struct \
neigh parms *);

struct net device stats* (*get stats) (struct net device *dev);

struct iw_statistics* (*get wireless stats) (struct net device *dev);

struct module *owner;

struct net bridge port *br port;
}i

interface:The net device structure forms the basis of each network device in the Linux kernel. It contains not only
information about the network adapter hardware (interrupt, ports, driver functions, etc.), but also the configuration data of the
network device with regard to the higher network protocols (IP address, subnet mask, etc.).

As was mentioned at the beginning of this chapter, the net device Structure represents a general interface between higher
protocol instances and the hardware used. It allows you to abstract from the network components used. For an efficient
implementation of this abstraction, we once again use the concept of function pointers. For this reason, the net device
structure contains a number of function pointers, which are called by higher protocols by using their global names, and then the
hardware-specific methods of the driver are called from each network device.

For example, e13 start xmit () is used to actually call the function hard start xmit () fora network adapter of type
3Com/3c509.

In general, the parameters of the net device Structure can be divided into different areas, as described below.
General Fields of a Network Device

The following parameters of the net device structure (see previous subsection) are used to manage network devices. They
have no significance with regard to special layers or protocol instances.

e name IS the name of the network device. In general, device types are numbered from 0 to n (e.g., eth0-eth4). Some
network devices, such as the loopback device (1), occur only once, which means that they have fixed names.

When registering a network device, you can suggest a name, which should be unique. However, you can also let the
system assign the «thnn name automatically. (See in it etherdev .) The naming convention for network devices will
be described in detail in Section 5.2.3.

e next is used to concatenate several net device Structures. We will see in Section 5.2 that all network devices are
managed in a singly linked linear list that starts with the pointer dev_base-

e owner IS a pointer to the module structure of the module created by the net device structure of this network device.

e ifindex is a second identifier for a network device, in addition to the name. When a new network device is created,
dev_get index () assignsa new unused index to this device. This index allows you to quickly find a network device
from the list of all devices, which is much faster, compared to search by name.

e iflink Specifies the index of the network device used to send a packet. This is normally the index i £index, but, for
tunneling network devices, such as ipip, i £1ink includes the index of the network device that is eventually used to
send the enveloped packet.
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added to the kernel for the first time in version 2.3.43 and replaces the previous fields start (network adapter is open),
interrupt (driver handles an adapter interrupt), and tpusy (all packet buffers are busy). These functions are now
replaced by the following flags in the field state:

o LINK STATE START Shows whether the network adapter was opened with gev?gt;open () (i.e., whether it
was activated and can be used). However, a ,TNK STATE START State set does not automatically mean that
packets can be sent. In fact, all buffers on the adapter could be busy. (See next flag.) The flag
LINK STATE START should have read access only, because it should be modified only by the methods used to
manage network devices. The method neti £ running (dev) IS available to test this flag.

o LINK STATE xOrFF shows whether the network adapter can accept socket buffers for transmission or its
transmit buffers (which are normally organized as ring buffers) are already busy. The method
netif queue stopped (dev) C€an be used to test for this state. Again, only read access to this flag should be
allowed. B

LINK STATE XOFF replaces the previous field dev2gt ; tbusy - Older drivers could take either of three
different situations, which accessed the tpyusy flag. The latter was replaced by the following functions, which
make the programming style much easier to read:

o Stopping a transmission: When the packet buffers of a network adapter are busy, gevogt;tbusy = 1 was
previously used to stop sending packets to the adapter. Now, there is the (inline) function netif stop queue
(dev) , which sets the 11Nk STATE xOFF flagin dev?gt; state. This means that no packets are removed
from the queue and passed to this adapter. Normally, netif stop queue () is called by the driver of an
adapter, and then the driver is responsible for restarting the transmission. (See Section 5.3.)

o Resuming a transmission: Once a network adapter has sent a packet from the (ring) packet buffer, it can resume
accepting packets from the kernel. The method netif start queue (dev) , which deletes the
LINK STATE XOFF flag, is used for this purpose. In general, netif start queue (dev) IS used by the
driver methods. (See Section 5.3.) This corresponds to dev2gt; tbusy = 0 in older kernel versions.

o Starting a transmission: The method net if start_gqueue (dev) IS used to resume passing socket buffers to
the network adapter.

o In addition, the method netif wake queue (dev) IS used to resume passing packets and, at the same time, to
trigger the neT_Tx software interrupt, which handles the passing of packets to the network adapter.

o Thefield interrupt has no counterpart in the new kernel versions. It was previously used to prevent concurrent
handling of interrupt methods. The new and SMP-improved kernels have special methods to control parallel
processes. (See Section 2.3.) A driver should use these methods and manage their lock variables in its private
data structures as needed.

e trans start stores the time (in jiffies) when the transmission of a packet started. If, after some time, the driver still
hasn't received an acknowledgment to send the packet (ack interrupt), then it can introduce appropriate actions. For
these purposes, kernel versions 2.4 and higher use a timer called watchdog timer -

e last_ rx should include the time (in jiffies) when the last packet arrived.
e priv isa pointer to the private data of a network device or to the private data of its driver. Private data contains those
variables and structures that are required to manage a network adapter. They are not stored in the net device

structure, but they are normally specific to an adapter.

e gdisc refers to a structure of the type gqisc, which mirrors the serving strategy of the current network device.
Chapter 18 will discuss this issue in detail.

e refcnt Stores the number of references to this network device.

e xmit lock, xmit lock owner,@nd queue lock are used to protect against parallel handling of a transmit
process or parallel access to the transmit queue. For example, xmit lock owner includes the number of the
processor, which is currently in the transmit function hard start xmit () - When no processor is currently
transmitting, then xmit lock owner takes the value ?.

Hardware-Specific Fields

e rmem end, rmem start, mem end, mem start: These fields specify the beginning and end of the common
memory space that the network adapter and the kernel share. The location ( ) designates the
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buffers for packets to be sent, and (rmem start 2rmem end) designates the location for received packets. The size
of the buffers indicates the amount of storage available on the card. When using ifconfig to initialize a network
adapter, you can specify the addresses of memory locations.

e base addr: The I/O basic address is also set in the driver's probing routine during a search for a device. i fconfig
can be used to display and set the value. In addition, the I/O basic address can be specified when loading most of the
modules and as a kernel boot parameter.

e irg: The number of the interrupt of a network adapter is also set during the so-called probing phase of the driver or by
explicitly specifying it when loading the module or starting the kernel. In addition, i fconfig can be used to modify the
interrupt number during operation.

e dma contains the number of the DMA (Direct Memory Access) channel, if the device supports the DMA transfer mode.

e if port storesthe media type of the network adapter currently used. For Ethernet, we distinguish between BNC,
Twisted Pair (TP), and AUI. There are no unique constants; instead, each driver can use its own values.

Data on the Physical Layer

The values of the following fields are set by the ethersetup () function for Ethernet cards. They are generally identical for all
Ethernet-based cards, except for the £1a4 field, which has to be set to match the card's capability.

There are similar functions to set standard values for token-ring and FDDI adapters (fddi setup(), tr setup())- These
fields have to be set manually for other network types.

e hard header length Specifies the length of the layer-2 packet header. This value is 14 for Ethernet adapters. This
does not correspond to the length of the actual packet header on the physical medium, but only to the part passed to the
network adapter. In general, the network adapter adds additional fields (e.g., the preamble and checksum for Ethernet).

e mtu IS the maximum transfer unit, which specifies the maximum length of the payload of a layer-2 frame. Layer-3
protocols have to consider this value; they must not pass more octets to the network device. Ethernet has an MTU of
1500 bytes.

e tx queue len specifies the maximum length of the output queue of the network device. ether setup() Sets this
valueto 100. tx queue len Should not be confused with the buffers of the network adapter. A network adapter
normally has an additional ring buffer for 16 or 32 packets.

e type Specifies the hardware type of the network adapter. The values are specified in RFC 1700 for the ARP protocol,
which has to state the hardware type for address-resolution purposes. Linux defines additional constants not defined in
FRC 1700. (See Figure 5-2.)

Figure 5-2. Hardware types defined in RFC 1700 and Linux-specific constants.

ARPHRD NETROM 0 /* NET/ROM pseudo */
ARPHRD ETHER 1 /* Ethernet 10Mbps */
ARPHRD EETHER 2 /* Experimental Ethernet */
ARPHRD AX25 3 /* BAX.25 Level 2 */
ARPHRD PRONET 4 /* PROnet token ring */
ARPHRD CHAOS 5 /* Chaosnet */
ARPHRD IEEE802 6 /* IEEE 802.2 Ethernet/TR/TB */
ARPHRD ARCNET 7 /* ARCnet */
ARPHRD APPLETLK 8 /* APPLEtalk */
ARPHRD DLCI 15 /* Frame Relay DLCI */
ARPHRD ATM 19 /* ATM */

/* Dummy types for non-ARP hardware */

ARPHRD SLIP 256
ARPHRD CSLIP6 259
ARPHRD PPP 512
ARPHRD LOOPBACK 772 /* Loopback device x/
ARPHRD IRDA 783 /* Linux-IrDA */

e addr len, dev addr[MAX ADDR LEN], broadcast[MAX ADDR_LEN]: These fields contain the data of the
layer-2 address. addr_len specifies the length of the layer-2 address, which is stored in the dev_addr field. The third
field contains the broadcast address, which can be used to reach all computers in the local network.
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e dev mc list points to a linear list with multicast layer-2 addresses. When the network adapter receives a packet with

a destination address included in gev mc 1ist, then the network adapter has to pass this packet to the upper layers.
The driver method set multicast list iSused to pass the addresses of this list to the network adapter. The
hardware filter of this network adapter (if present) is responsible for passing to the kernel only those packets of interest
to this computer.

e mc count contains the number of addresses in gev mc 1ist-

e watchdog timeo @nd watchdog timer are used to detect problems an adapter may incur when sending packets.
For this reason, the watchdog timer IS initialized when a network device starts and always called after
watchdog timeo time units (jiffies). The handling routine gev watchdog () checks whether or not
watchdog_timeo time units have passed since the last transmission of a packet (stored in trans start ). If this is
the case, then there were problems in the transmission of the last packet, and the network adapter has to be checked.
To check the network adapter, the driver function +x timeout () is called. If not much time has passed since the last
start of a transmission, then nothing is done, except the watchdog timer is started.

Data on the Network Layer

e ip ptr, ip6 ptr, atalk ptr, dn ptr,andec ptr Ppoint to information of layer-3 protocols that use this
network device. If the network device was configured for the Internet protocol, among others, then 1 ptr points to a
structure of the type in device, Which manages information and configuration parameters of the relevant IP instance.
For example, the in device Structure manages a list with IP addresses of the network device, a list with active IP
multicast groups, and the parameters for the ARP protocol.

e family designates the address family of the network device. In the case of the Internet protocol (IP), this field takes the
constant AF INET.

e pa alen Specifies the length of the addresses of the protocol used. IP addresses of the class or 1nET have the length
four bytes. B

e pa addr, pa braddr, and pa mask describe the addressing of a network device on the network layer.pa addr
contains the address of the computer or network device. pa baddr specifies the broadcast address, and pa mask
includes the network mask. All three values are set by i fconfig when a network device is activated.

e pa dstaddr specifies the address of the other partner in a point-to-point connection (e.g., PPP or SLIP).

e flags includes different switches. Some of them describe properties of the network device (1 FF ARP,
IFF_MULTICAST, ... ); others output the current state (1rr_up). Table 5-1 lists the meaning of these switches, which
can be set by use of the i fconfig command.

Table 5-1. IFF flags of a network device.

Flag Meaning

IFF_UP The network device is activated and can
send and receive packets.

IFF_BROADCAST The device is broadcast-enabled, and the
broadcast address pa_braddr IS valid.

IFF_DEBUG This flag switches the debug mode on
(currently not used by any driver).

IFF_LOOPBACK This flag shows that this is a loopback
network device.

IFF _POINTOPOINT This is a point-to-point connection. If this
switch is set, then pa dstaddr should
contain the partner's address.

IFF NOARP This device does not support the Address
Resolution Protocol (ARP) (e.g., in point-to-
point connections).

IFF PROMISC This flag switches the promiscuous mode
on. This means that all packets currently
received in the network adapter are
forwarded to the upper layers, including
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IFF MULTICAST This flag activates the receipt of multicast
B packets. ether setup () activates this
switch. A card that does not support
multicast should delete this flag.

IFF ALLMULTI All multicast packets should be received.
This is required when the computer is to
work as multicast router.

IFF MULTICAST has to be setin addition.

IFF PORTSEL Setting of the output port is supported by
the hardware.

IFF AUTOMEDIA Automatic selection of the output medium
(autosensing) is enabled.

IFF DYNAMIC Dynamic change of the network device's
address is enabled (e.g., for dialup
connections).

Device-Driver Methods

As mentioned earlier, one of the tasks of the network device interface is to abstract a network device from the underlying
hardware. The set of methods available for network driver functions have to be mapped to a uniform interface so that higher
protocols can be accessed. This functionality is implemented exactly by the function pointers of the het device Structure (see
above) described in this section. These pointers let you use individual functions for different instances of the net device
structure, which are eventually addressed over a common name. -

Some of these functions depend on the hardware of the network adapter and have to be set in the initialization function of the
network driver. The other functions are specific to the MAC protocol used by the network adapter and can be initialized by
special methods (e.g., eth_setup () ). A function pointer not required can be initialized to yULL.

We will next discuss the tasks of the methods of a network device. More specifically, we will describe their basic tasks from the
view of the higher protocols. These methods are implemented by the network driver used. The exact implementation in general
will be discussed in Section 5.3, using the ske1leton network driver as an example.

e init () isused to search and initialize network devices. This method is responsible for finding and initializing a network
adapter of the present type. Primarily, @ net device Structure has to be created and filled with the driver-specific data
of the network device or network driver. Subsequently, the network device is registered by register netdevice() -
(See Section 5.3.1.) N

e uninit () iscalled when a network device is unregistered (unregister netdevice () ). This method can be used
to execute driver-specific functions, which may be necessary when a network device is removed. The yninit () has
been introduced to the net device structure since version 2.4 and is currently not used by any driver.

e destructor () isalsonew inthe net device structure. This function is called when the last reference to a network
device was removed (dev->refcnt ) (i.e., when no protocol instances or other components in the Linux kernel point to
the net device structure). This means that you can use the gestructor () function to do cleanup work (e.g., free
memory or similar things). The destructor () function is currently not used by any driver.

e open () opens (activates) a named network device. During the activation, the required system resources are requested
and assigned. Note that this method can open only network devices that were previously registered. Normally, dev-
>open () is used inthe gev open () method which, in turn, is called by the i fconfig command. Upon successful
execution of open () , the network device can be used.

e stop () terminates the activity of a network adapter and frees the system resources it has used. The network device is
then no longer active, but it remains in the list of registered network devices (netidevs ).

e hard start xmit() Usesa packet (in the form of a socket buffer) over the network device. If successful (i.e., the
packet was delivered to the adapter), then hard start xmit () returns with the return value o; otherwise, 1.

e get stats() gets statistics and information about the network device and its activities. This information is returned in
the form of a net device stats Structure. The elements of this structure will be introduced in the course of this
chapter.
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in a structure of the type iw statistics. Thetool iwconfig can be used to display this specific information.

e set multicast list () passed the list with multicast MAC addresses to the network adapter, so that the adapter
can receive packets with these addresses. This list is called either when the multicast receipt for the network device is
activated (1rr mMurnTICAST flag) or when the list of group MAC addresses to be received has changed. (See also
Section 17.4.1.)

e watchdog timeo () deals with problems during the transmission of a packet across the network adapter (not when
the socket buffer is passed to the network adapter). If no acknowledgment for the packet is received after gev -
>tx_timeout, then the kernel calls the method watchdog timeo () to solve the problem.

e do ioctl () : This method is generally not used by higher protocols, because they have no generic functions. It is
normally used to pass adapter-specific i oct1 () commands to the network driver.

e set config() Isused to change the configuration of a network adapter at runtime. The method lets you change
system parameters, such as the interrupt or the memory location of the network adapter.

The methods for a network device described above depend on the network adapter used, which means that they have to be
provided by the driver, if their functionality is required. The methods described below depend less on the hardware of a network
adapter, but rather on the layer-2 protocol used. For this reason, they don't necessarily have to be implemented by driver-
specific methods, but can run on top of existing methods (e.g., those for Ethernet and FDDI).

e hard header () Createsa layer-2 packet header from layer-2 addresses for source and destination.

e rebuild header () is responsible for rebuilding the layer-2 packet header before a packet is transmitted. This
function was the entry point to the ARP protocol in earlier versions of the Linux kernel. The conversion to the neighbour
cache (see Section 15.3.1) should create a stored layer-2 packet header, so that rebuild header () Iis called only
when the hard header cache contains wrong information. B

e hard header cache () fillsa layer-2 packet header in the hard header cache with passed data. This means that
subsequent transmission processes can access a prepared layer-2 packet header.

e header cache update () changes the layer-2 destination address in a stored layer-2 packet header in the hard
header cache.

e hard header parse() reads the layer-2 sender address from the layer-2 packet header in the packet data space of
a socket buffer and copies it to the passed address, haddr-

e set mac address () can be used to change the layer-2 address of a network adapter, if it supports alternative MAC
addresses.

e change mtu() changes the MTU (Maximum Transfer Unit) of a network device and implements all necessary changes.

4 Previous Mext b
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5.2 Managing Network Devices

Now that we know how a network device can be represented by the net device structure in the Linux kernel, this section
discusses the management of network devices. First, we will describe how network devices can be linked, then we will
introduce methods that can be used to manage and manipulate network devices. As was mentioned earlier, this section will look
at network devices only from the "top"—their uniform interface for protocol instances of the higher-order layers.

All network devices in the Linux kernel are connected in a linear list (Figure 5-3). The kernel variable dev_base represents the

entry point to the list of registered network devices, pointing to the first element in the list, which, in turn, uses next to point to
the next element. Each net device Structure represents one network device.

Figure 5-3. Linking net_device structures.
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The proc directory (/proc/net/dev ) Or the (easier to read) command i fconfig -a Can be used to call the list of currently
registered devices. (See Appendix C.1.)

5.2.1 Registering and Unregistering Network Devices

We know from the previous section that network devices are managed in the list gev pase. This list stores all registered
network devices, regardless of whether they are activated. When registe r netdevice() IS used to add a new device to
this list, then we first have to create and initialize a net device Structure for it. This process can be done in two different
ways:

o If we specified in the kernel configuration that the driver of a network device should be integrated permanently into the
kernel, then there is already a net device Structure. A clever mechanism with preprocessor definitions creates
different instances of the net device Structure during the translation, depending on the kernel configuration, and these
instances are used for the existing network adapters when booting.

For example, to integrate the driver of an Ethernet card into the kernel, eight net device structures are created for
Ethernet network devices, and these structures are initially not allocated to any card.

o If the driver was translated as a kernel module, then the driver itself has to create a net device structure for each
existing network adapter. This can be done by the module itself or, for Ethernet drivers, by use of the function

init etherdev () -

The list of network devices is used to store entries for those network adapters actually existing. For this reason, before an entry
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an init () OF probe () function. It is very specific to each adapter and will be described in more detail in Section 5.3. Among
the exception, are logical network devices, such as loopback (1) and PPP (ppp0), which don't have to rely on underlying
hardware.

The following discussion assumes that we want to register a network device based on an Ethernet adapter. During booting of
the system or loading of the driver module, the appropriate adapter was found. However, before the network device can be
added to the list of known network devices (dev base), the net device Structure should have been initialized so that the
network device can actually be activated and used. The kernel has certain functions (mainly for Ethernet adapters) that facilitate
the driver programmer's work.

init netdev () drivers/net/net_init.c

init netdev(dev, sizeof priv, mask, setup) initializes the most important elements from the general range of the
net device Sstructure. (See Section 5.1.1.) First, however, we have to check on whether there is @ net device Structure at
all. If the value ny11 was entered for gev in the call, then init alloc dev() IS used to create a new pet device
structure, which is also added to the list of network devices by register netdevice () atthe end of the initializing process.
Ifthe net device Structure existed already before the call, then the caller has to register it.

Subsequently, the name of the network device is verified. If the array gev->name consists of an empty string or begins with a
blank, then the kernel uses the method dev alloc name () to allocate a name. In this case, there is an option to use the
mask parameter to specify a prefix, which is extended to a valid name for a network device by the known scheme. For example,
the prefix +estsd produces the name test0, test1,and so on, depending on the network devices already existing with this
prefix. If the prefix does not contain a formatting character (s4), then the name should be unique; otherwise, consecutive
numbering is not possible, and the function will return an error. Consequently, the network device cannot be initialized.

Once a network device has a unique name, we verify that parameters for its hardware configuration have been stated when the
system boots. For this purpose, the list dev boot setup in the method netdev boot setup check () IS searched for an
entry with the name of the new network device. If there is such an entry, then the parameters 1 rg, mem start, mem end
and pase addr are taken and added to the net device Structure of the network device. -

Now the general part of the initialization of the net device Structure is completed. In the calling of init netdev, @ pointer
in the setup parameter has to be passed to a function, which can be used for individual configuration. In general, the setup
function handles layer-2 initialization tasks. When one is using init etherdev () , reference is made to the ether setup ()
method, which initializes the Ethernet-specific function pointers in the net device structure. Finally, init netde{()
returns with a pointer to the network device. B B

init etherdev () drivers/net/net_init.c

init etherdev(dev, priv size) €an be used by Ethernet-based network devices. The function does nothing but call
init netdev () with the correct parameters. Similar functions are also available for other MAC protocols (FDDI, HIPPI, etc.).

struct net device *init etherdev(struct net device *dev, int sizeof priv)

{

return init netdev(dev, sizeof priv, "eth%d", ether setup);

}

ether setup() drivers/net/net_init.c

ether setup(dev) iscalledin init netdev () to initialize the Ethernet-specific parameters and methods of a network
device. It adds the pointers of the MAC protocol-specific functions for Ethernet adapters to the net device Structure
(hard header, mtu, ...)-Inaddition, it sets the flags (dev2gt; f1ags) of the network device to

IFF BROADCAST|IFF|MULTICAST -

dev?gt;change mtu = eth change mtu;
dev?gt;hard header = eth header;
dev?gt;rebuild header = eth rebuild header;
dev?gt;set mac address = eth mac addr;
dev?gt;hard header cache = eth header cache;
dev?gt;header cache update = eth header cache update;

dev?gt;hard header parse = eth header parse;
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dev?gt;hard header len = ETH HLEN;
dev?gt;mtu = 1500; /* eth mtu */
dev?gt;addr len = ETH ALEN;
dev?gt;tx queue len = 100; /* Ethernet wants good queues */
memset (dev?gt;broadcast, OxFF, ETH ALEN) ;
dev?gt;flags = IFF BROADCAST|IFF MULTICAST;
register netdevice () net/core/dev.c

register netdevice (dev) IS responsible for registering the network device represented by the passed net device
structure with the kernel. If the function dev?gt;init () exists, then the network adapter is first searched and initialized by
the driver function init () . Subsequently, there is a check on whether a network device with the requested name is already
available. If so, then register netdevice () returnsan error message; otherwise, the network device is simply appended
to the end of the linked list ey base, SO that it is available for general use.

In addition, the state gev->state IS Sett0 1,INK STATE PRESENT iN register netdevice () ,and

dev init scheduler () sets the scheduling process for the new network device to the standard FIFO mechanism. This
method is also used to cause the function dev watchdog init () to initialize the timer to detect transmission problems
(dev->watchdog timer ; See Section 5.3.4). However, this timer is not started before the network adapter is activated
(dev open () ; See Section 5.2.2).

Finally, the network device obtains a new number (dgev->ifindex), @d notifier call chain(&netdev chain,
NETDEV REGISTER, dev) calls all registered methods in the notification chain netdev chain-

unregister netdevice () net/core/dev.c

unregister netdevice (dev) removesthe net device Structure passed as parameter from the list of registered
network devices (dev base ). If the network device is still in active state (1rr up), it is now closed by the driver function
dev->close () - Subsequently, it is searched in the list gev base and removed. If it is not found, then the function returns an
error message. B

Once the structure has been removed, unregister netdevice () Synchronizes itself to the ngT-rx software interrupt by
the big reader lock BR NETPROTO LOCK . Subsequently, the queuing discipline is released by gev shutdown () , and all
registered functions in the notification chain netdev chain are informed about the NETDEV UNREGISTER event.
Subsequently, the destructor of the network driver is called, if it exists. Only the more recent network drivers have destructors,
so we have to check periodically on whether existing references to the network device (gev->refcnt ) disappeared for older
drivers to be able to actually remove the network device.

5.2.2 Opening and Closing Network Devices

The previous section described how a network device is registered; the current section explains how one can be activated and
deactivated. As with other device types in the Linux system, activating and deactivating is also referred to as opening and
closing. To open and close a network device, the administrator can use the command i fconfig. It is used not only to activate
and deactivate network devices, but also to configure them. More specifically, this command is used to set protocol-specific
parameters, such as addresses and subnet masks, and to modify interface parameters for the network adapter (hardware
parameters).

In addition, i fconfig can be used to change the flags of a network device. The syntax of i fconfig and its options are listed
in Appendix C.1. Naturally, before a network device can be activated, it has to be registered.

Activating a Network Device

When we use i fconfig name address Up to activate a network device, i fconfig uses the ioct1 () command
sTocsIFADDR (Socket I/0O Control Set InterFace ADDRess) to allocate the specified address to the network device name. The
handling routine for the 1T address family is devinet ioctl-

Subsequently, the 1 oct1 () command stocstrrLacs (Socket I/O Control Set InterFace FLAGS) is used to set the IFF UP
flag for the network device in the handling method dev ifsioc() .10 manipulate the flag, we use the method

dev_change flags(dev, flags), Which also causes the method dev open (dev) to be called when the 1rr up flag is
set.



Thigdocyent is created with trial versigiplote/dd¢.RDF Pilot 2.15.72.

The function dev_open (dev) Opens a network device (i.e., the network device is activated and can be used). If the network
device is already active (IFF_UP), or if it has not been registered ( Inetif device present (dev)) then the function
returns an error message.

The actual initialization (i.e., the device-specific functions) is executed by the cpen () function of the network driver, if it exists.
If this initialization is successful (i.e., no error occurred), then the net device specific states are set as follows:

e dev->flags assumes the state rrr up.

e dev->state ISSett0 ,INK START START .
e The multicast state is activated by dev_mc_upload() -
e The queue and the scheduler of the network device are activated (dgev activate (dev) ). At the same time, the

method dev watchdog up (dev) starts the timer to detect transmission problems. (See Section 5.3.4.) The timer
calls the method dev_watchdog () every dev—>watchdog_tj_meo ticks to check that the network adapter works

properly.
e The notification chain netdev chain IS informed about the event NETDEV_UP-
Deactivating a Network Device
When we use the command i fconfig name down in dev_ifsioc to deactivate a network device, the method

dev change flags(dev, flags) inthe variable gev->filags deletesthe 1rr up flag. The general part of transferring
the network device into the inactive state is done by dev close () - The adapter-specific actions are executed in the driver

method gev->stop () -

dev_close() net/core/dev.c

If the network device gev is in the IFF UP State, then it is deactivated by dev close (dev) in the following steps:

o All methods in the notification chain netdev chain are informed about the upcoming deactivation of the network
device (NETDEV_GOTNG_DOwN ) @nd can act accordingly.

o Next, dev deactivate (dev) removes the packet scheduler gev->gdisc, and the LINK STATE START bitin gev-
>state is deleted. In addition, dev watchdog down () Stops the timer used to detect transmission problems.

e The driver function dev->stop () deactivates the network adapter.

o Next, all protocols concerned are notified that the network device was stopped (notifier call chain(
NETDEV_DOWN, ..))-

.« ey

o Finally, the reference counter that points to the net device Structure is decremented by one.

5.2.3 Creating and Finding Network Devices

dev_alloc name () net/core/dev.c

Each network device in Linux has a unique name. As mentioned earlier, network devices are not represented in the file system,
in contrast to character and block devices, which means that they are not addressed by najor and minor numbers. In
general, network devices are named by the network type. Table 5-2 shows a few of the names currently used. In addition,
devices of the same type are shown and numbered in ascending order, starting from zero (e.g., 1sdn0, isdn1, €tc.).

Table 5-2. Naming convention for Linux network
devices.

Name Network Device Type
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100 Mbit/s
tr Token Ring (802.5)
atm Asynchronous Transfer Mode
sl SLIP (Serial Line Interface Protocol)
ppp PPP (Point-to-Point Protocol)
plip PLIP (Parallel Line Interface Protocol)
tunl IPIP Tunnel
isdn ISDN (Integrated Services Digital Network)
dummy Dummy-Device
lo Loopback-Device

Notice, however, that there are exceptions in allocating network adapters to a category. Linux is strongly oriented to Ethernet,
and some functions in the kernel facilitate handling of Ethernet-like adapters, so some (non-Ethernet) adapters also use the
category ethn, including some ISDN cards.

The convention used in Linux to name network devices has several benefits:

e When one is designing applications and creating configuration scripts, it is simpler to address network devices without
knowing their manufacturers and their hardware parameters (interrupt number, port humber).

o When replacing equal-type hardware, for example to upgrade an Ethernet adapter from 10 Mbit/s to 100 Mbit/s, we
don't have to change the network setting; simply accessing et nhn is sufficient.

dev_alloc () net/core/dev.c

dev alloc (name, err) reserves memory for a net device Structure. Subsequently, a name is assigned to the network
device. As described in connection with init netdev () , We can use name to specify a prefix. In both cases, the method
dev alloc name () isused to construct the name.

The parameter «rr is a pointer to an integer variable, which is contained in the return value of gev alloc name () Wherever
an error occurs. If an error occurs, then dev alloc () always returns a yur1, pointer. Naturally, if the if is successful, it
returns a pointer to the new net device Structure.

dev_get... () net/core/dev.c

Various kernel components need to access a specific network device from time to time. We can search for the right

net device Structure in different ways. net/core/dev.c has several functions that facilitate this search. These functions
step through the linear list of network devices, starting with gev pase, and, when they find it, they return a pointer to the
net device structure we looked for: B

e dev get by name (name) Searches for the network device specified by name.
e dev get (name) also searches for the device specified by name.
e dev get by index (ifindex) uses the index of the network device as search criterion.

e dev getbyhwaddr (type, ha) Searches for the network device by the MAC address h4 and the type.

dev_load() net/core/dev.c

When a network device is unavailable (i.e., not present in the list of registered devices), then we can use dev 1oad (name) to
request the corresponding driver module. To request a driver module, the kernel has to support the automatic loading of
modules. Also, the process in which the request for the network device originates has to have privileges to load the module
(cAP_sys MODULE ):
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if (!dev_get (name) && capable(CAP_SYS MODULE))
request module (name) ;

5.2.4 Notification Chains for State Changes

As mentioned above, network devices can be registered and removed dynamically. Also, their state can change in the course of
time. For example, a network device can change its hardware address or name.

On the network-device level, a state change did not cause problems, but protocol instances in the higher layers use the services
of network devices. For efficiency and simplicity reasons, these protocol instances often store references to the network devices
they use. When the state of a network device changes, then these stored states become invalid. The protocol instances
concerned should be notified about this fact. Unfortunately, a network device does not normally know the protocols that use its
services, or what references they store.

For this reason, protocols can register themselves to be notified of state changes in network devices. This concept is called
notifier chains; it consists of a list (netdev chain) Of notifier block Structures. Figure 5-4 shows an example of how
they are structured. Each of these notifier block elements includes a request for notification when the state of a network
device changes: B

e notifier call() isapointertoa handling routine, which handles the notification about a network device's state
change. Each protocol instance that stores states of network devices should have such a function. For example, the
method bridge device event () IS used for the instance of a transparent bridge described in Chapter 12.

Figure 5-4. Notification chain for network devices.

[View full size image]

br device event () ipmr device event ()
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If a state change occurs in a network device, then all handling routines stored in the list netdev chain are called,
where the following arguments are passed:

o apointer to the notifier block Structure, the handling routine of which is actually called;
o a pointer to the network device (net device) that changed its state;
o the state representing the cause for this notification.

e priority Specifies a priority for processing of notifications.

e next points to the next notifier block element in the list and is used for concatenation.

The concept of notifier chains is used not only for network devices, but also for other states that can change. For this reason,
the implementation of these notifier chains is generic and can easily be used for other purposes. For example, there is a
reboot notifier list chaininforming that the system is about to reboot.

In the networking area, the concept of notifier chains is used for state changes in network devices. The following list shows
possible causes for notifications. Subsequently, we introduce three important functions of this concept.

e NETDEV UP activates a network device (by dev open)-

e NETDEV DOwN deactivates a network device. As a consequence of this message, all references to this network device
should be removed.

e NETDEV CHANGE informs that a network device changed its state.
e NETDEV REGISTER Means that a network device was registered but no instance of it has yet been opened.

e NETDEV UNREGISTER informs that a network driver was removed.
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e NETDEV CHANGEADDR Means that the hardware address of a network device changed.
e NETDEV CHANGENAME Means that the name of a network device changed.

When a registered handling routine is called, it can use the appropriate functions based on the type passed. For example, when
a network device is deactivated (veTpEv pown) in KIDS (see Chapter 22), the corresponding hook is deleted. The method
notifier call chain(&netdev chain, EVENT, dev ), Which will be described below, is used to call the notifier chain.

notifier call chain() net/core/dev.c

notifier call chain(&netdev chain, EVENT, dev) informs all handling methods registered in the list

netdev chain about the gyenT, where the events described above can occur. notifier call chain() IS very simple.
The linking in the list is used to call all registered functions, one after the other. If one of the functions called returns the
constant NoTIFY sTop Mask, then the notification is stopped. This is useful to prevent there being several reactions to one
event. Otherwise, all registered handling routines are always informed about the event each time this function is called. The
registered handling method alone decides whether the message is meaningful for it.

register netdevice notifier () net/core/dev.c

register netdevice notifier (nb) IS merely another representation of the method notifier chain register
(¢netdev chain, nb),Whichinsertsthe notifier block structure passed to the list netdev chain. The position
within the list is determined by the priority.

unregister netdevice notifier() net/core/dev.c

unregister netdevice notifier (nb) removes the specified notifier block structure from the list
netdev_chain- The function notifier chain unregister() is used for this purpose.

5.2.5 Transmitting Over Network Devices

dev_queue xmit () net/core/dev.c

dev_queue xmit (skb) IS used by protocol instances of the higher protocols to send a packet in the form of the socket buffer
skb over a network device, which is specified by the parameter sk ->dev in the socket buffer structure. Section 6.2.2 explains
how a packet is transmitted in detail.

A Previous Mext »
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5.3 Network Drivers

The large number of different protocols in the Linux network architecture leads to considerable differences in the
implementations of drivers for different physical network adapters. As was mentioned in the section that described the
net device Structure, the properties of different network adapters are hidden at the interface of network devices, which
means that they offer a uniform view upwards.

Hiding specific functions (i.e., abstracting from the driver used) is achieved by using function pointers in the net device
structure. For example, a higher-layer protocol instance uses the method hard start xmit () tosendan IP packet over a
network device. Notice, however, that this is merely a function pointer, hiding the method e13 start xmit () inthe case of a
3c509 network adapter. This method takes the steps required to pass a socket buffer to the 3c509 adapter. The upper layers of
the Linux network architecture don't know which driver or network adapter is actually used. The function pointer can be used to
abstract from the hardware actually used and its particularities.

The following sections provide an overview of the typical structuring and implementation characteristics of the functions of a
network driver, without discussing adapter-specific properties, such as manipulating the hardware registers or describing the
transmit buffers. In general, these tasks depend on the hardware, so we will skip them here. Readers interested in these details
can use the large number of network drivers included in the grivers/net directory as examples. We use the skeleton
driver to explain how driver methods work. This is a sample driver used to show usual processes in driver methods rather than
a real driver for a network adapter. For this reason, it is particularly useful for explaining the implementation characteristics of

network drivers.[2]

[2] At this point, we would like to thank Donald Becker, who implemented most of the network drivers for Linux,
greatly contributing to the success of Linux. Donald Becker is also the author of the skxe1eton driver used here.

Some of the methods listed below are not implemented by some drivers (e.g., example set config() tochange system
resources at runtime); others are essential, such as example hard start xmit () to starta transmission process.

5.3.1 Initializing Network Adapters

Before a network device can be activated, we first have to find the appropriate network adapter; otherwise, it won't be added to
the list of registered network devices. The init () function of the network driver is responsible for searching for an adapter
and initializing its net device Structure with patching driver information. Because we search for a network adapter, this
function is often called search function.

The argument of the ini+t () method is a pointer to the initializing device gev. The return value of init () isusually o, but a
negative error code (e.g., —-Enoprv) When no adapter was found.

net _init()/net probe () net/core/dev.c

The tasks of the method dgev->init (dev) are explained in the source text of our example driver, isa_skeleton- There is
an example driver in 4rivers /net/pci_ skeleton.c for PCI network adapters, but we will not describe it here.

As was mentioned earlier, the main task of the ini+t () method is to search for a matching network adapter (i.e., it has to
discover the 1/0 port, especially of the basic address stored in dev->base addr)-

We distinguish between two different cases of searching for a network adapter:

e Specifying the basic address: In this case, the previously created net device Structure of the network device is passed
as parameter to the init () method. The caller can use this structure to specify a basic address for I/O ports in
advance. When no matching adapter is found in this address, then the ini+ () method returns the error message -
ENODEV- The basic address can be specified in either of the two following ways:

o For modularized drivers, parameters can be passed when loading the module, including the I/O basic address
(e.9., i0=0x280)- In this case, it should be transferred to the net device structure of the network device in
the init module () method of the driver module, so that it will be considered during the search for the network
adapter.

o For drivers permanently integrated in the kernel, we can also pass parameters when the system boots; these
parameters are maintained in the list gev poot setup - They are transferred to the net device structure of
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is initialized.

e Searching in known basic addresses: A network adapter generally supports a set of defined port addresses. If no basic
address is specified when calling the init () method, then the addresses in this list can be probed one after the other.
If no adapter can be found in any of these basic addresses in the list, then -gnopEV is returned.

The following source code of the init () method for the skeleton driver handles only the selection of basic addresses where
we want to search (by the methods described above). The actual verification of a specific basic address and the initialization of

the net device structure takes place in the method netcard probel (dev,
() method and was implemented separately to keep the code simple and easy to understand.

/* The name of the card.

* io regions, irgs and dma channels */

static const char* cardname = "netcard"
/* A zero-terminated list of I/0 addresses to be probed. */
static unsigned int netcard portlist[] _ initdata =
{ 0x200, 0x240, 0x280, 0x2C0, 0x300, 0x320, 0x340, 0};
/* The number of low I/0O ports used by the ethercard. */
#define IO NUM 32
/* Information that needs to be kept for each board. */
struct net local {
struct net device stats stats;
long open time; /* Useless example local info. */

/* Tx control lock. This protects the transmit buffer ring
* state along with the "tx full" state of the driver. This
* means all netif queue flow control actions are protected
* by this lock as well. */
spinlock t lock;
}i

/* The station (ethernet)
#define SA ADDRO 0x00
#define SA ADDR1 0x42
#define SA ADDR2 0x65

address prefix, used for IDing the board.

int init netcard probe (struct net device *dev) {
int 1i;
int base addr = dev->base addr;

SET_MODULE_OWNER (dev) ;

if (base_addr > 0xl1lff) /* Check a single specified location. */
return netcard probel (dev, base addr);
else if (base addr != 0) /* Don't probe at all. */
return -ENXIO;
for (i = 0; netcard portlist[i]; i++) |
int ioaddr = netcard portlist[i];
if (check region(ioaddr, IO NUM))
continue;
if (netcard probel (dev, iocaddr) == 0)

return 0;

}
return -ENODEV;

ioaddr), Which is actually part of the init

Is used for messages and in the requests for

*/

Once we have selected a basic address for the network adapter in the above method, the method netcard probel (dev,
ioaddr) tests whether the adapter we searched for is really at this basic address. For this purpose, the method has to check
specific properties of the card, where access should be limited to read access on the I/O ports to ensure that no other adapters
will be involved. At this point, it is still unknown whether the adapter we're searching for is really present in the basic address

ioaddr-
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adapter has a unique MAC address, where the first three bytes identify the manufacturer. This identification must correspond
with the manufacturer code of the searched card. In any event, additional checks should be done, but they are adapter-specific
and are not described in detail here.

Once we are sure that the network adapter we searched for is present in the basic address i caddr, this address is stored in
the net device structure (dev->base addr ), and the network device is initialized. The I/O ports, starting from the basic
address, are reserved by request regi_on (ioaddr, IO NUM, cardname) atthe end of the initialization function to
ensure that no other initialization method can get write access to it.

The initialization process can be divided into the following three phases:

o If the network adapter does not support dynamic interrupt allocation, then the interrupt set by jumpers on the network
adapter should be determined and reserved at this point. The kernel supports the search for the interrupt number.
Calling the method autoirg setup() Makes the kernel remember interrupt lines not currently registered in a
variable. Subsequently, the network adapter should be caused to trigger an interrupt. We can then use the method
autoirqg report () to discover, from the previously stored and the actual interrupt vectors, which interrupt was
actually active. Next, the interrupt found is reserved for the network adapter by the method request irqg() -In
addition, the DMA channel is determined and reserved by request dma () - B

For modern adapters that do not necessarily require specific interrupt or DMA lines, the two system resources are
allocated not at this point, but rather when the device is opened. This is necessary to avoid conflicts with other devices.

o Once system resources have been allocated (for older adapters only), memory is reserved for the private data structure
of the network device gev->priv and is initialized. This data structure stores the private data of the network driver and
statistic information collected during the operation of the network device (net device stats structure).

o Finally, the references to driver-specific methods are set in the net device structure, so that they can be used by the
higher layers and protocols. The adapter-specific methods (see also Section 5.1.1) have to be set explicitly. Methods
specific to the MAC protocol used (e.g., Ethernet) can be set by special methods (€.9., ether setup () )-

If the network adapter was found and all data structures were initialized correctly, then gqev->init () returns 0.

/* This is the real probe routine. Linux has a history of friendly device
* probes on the ISA bus. A good device probe avoids doing writes, and
* verifies that the correct device exists and functions.*/

static int _ init netcard probel (struct net device *dev, int ioaddr) {
struct net local *np;
static unsigned version printed = 0;
int 1i;
/*

* For Ethernet adaptors the first three octets of the station address
* contains the manufacturer's unique code. That might be a good probe
* method. Ideally you would add additional checks.

*/
if (inb(ioaddr + 0) != SA ADDRO
[ inb(iocaddr + 1) != SA ADDRI1
[ inb(iocaddr + 2) != SA ADDR2) {

return -ENODEV;

if (net debug && version printed++ == 0)
printk (KERN DEBUG "%s", version);

printk (KERN _INFO "%s: %s found at $%$#3x, ", dev->name, cardname, ioaddr);

/* Fill in the 'dev' fields. */
dev->base addr = ioaddr;

/* Retrieve and print the Ethernet address. */
for (1 = 0; i < 6; 1i++)
printk (" %2.2x", dev->dev_addr[i] = inb(icaddr + 1i));

#ifdef Jjumpered interrupts
/* If this board has jumpered interrupts, allocate the interrupt
* vector now. There is no point in waiting since no other device
* can use the interrupt, and this marks the irg as busy. Jumpered
* interrupts are typically not reported by the boards, and we must
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/* ... REMOVED for this book, details see in drivers/net/isa-skeleton.c */
#fendif /* jumpered interrupt */
#ifdef Jjumpered dma
/* If we use a jumpered DMA channel, that should be probed for and
* allocated here as well. See lance.c for an example.*/

/* ... REMOVED for this book, details see in drivers/net/isa-skeleton.c */
#endif /* jumpered DMA */

/* Initialize the device structure. */

if (dev->priv == NULL) {
dev->priv = kmalloc(sizeof (struct net local), GFP_KERNEL);
if (dev->priv == NULL)

return -ENOMEM;
memset (dev->priv, 0, sizeof(struct net local));

np = (struct net local *)dev->priv;
spin_lock init (&np->lock);

/* Grab the region so that no one else tries to probe our ioports. */
request region(ioaddr, IO _NUM, cardname);

dev->open = net open;

dev->stop = net close;

dev->hard start xmit = net send packet;
dev->get stats = net get stats;

dev->set multicast list = &set multicast list;
dev->tx timeout = &net tx timeout;
dev->watchdog timeo = MY TX TIMEOUT;

/* Fill in the fields of the device structure with Ethernet values. */
ether setup (dev);

return 0;

Helper Functions to Allocate System Resources

request region(), kernel/resource.c
release region(), check region

0

request region (port, range, name) feserves a region of I/O ports, starting with the address port, and marks them as
allocated. The kernel manages these reserved port ranges in a linear list. This list can be output from the proc
file /proc/ioports, where name is the output name of the reserved instance.

We reserve ports to prevent a driver that searches for an adapter from accessing the ports of another device, causing that
device to take an undefined or unintended state. For this reason, before port ranges are assigned, we should always use
check region () tocheck on whether that range is already taken. The address of the first I/O port of an adapter is stored in

theVaﬂabm<dev—>base_addr-

release region(start, n) €anbe used to release allocated port ranges.

request _irqg(), free irqg() kernel/irg.c
request irg(irg, handler, flags, device, dev_id)lesavesandimﬁmhesthehﬁewuptﬁneva1numberirq.
At the same time, the handling routine handier () is registered for this interrupt.

Similarly to what it does with I/O ports, the kernel manages a list of reserved interrupts and can output this list in the proc
directory (/proc/interrupts )- Again, the string gevice tells you who reserved this interrupt. The parameter £1ags can
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A reserved interrupt can be released by free irg(irg, dev id)-

request dma(), free dma() kernel/dma.c

request dma (dmarr, device 1id) tries to reserve the DMA Channel dmarr. free dma (dmarr) can be Used to release
a reserved DMA channel.

5.3.2 Opening and Closing a Network Adapter

We know from Section 5.2 that network devices are activated and deactivated by the command i fconfig. More specifically,
ioctl () callsinvoke the methods dev open() OF dev close () , Where the general steps to activate and deactivate a
network device are executed. The adapter-specific actions are handled in the driver methods dev->open () and dev->stop
(), respectively, of the present network adapter. We use the ske1eton Sample driver to explain these steps.

net open|() drivers/net/isa_skeleton.c

The open () Method is responsible for initializing and activating the network adapter. At the beginning, the system resources
required (interrupt, DMA channel, etc.) are requested. To make available these system resources, the kernel offers various
methods you can use as helpers. These methods were introduced briefly in the previous section. System resources are reserved
in the open () Method for modern adapters, which do not have fixed values for IRQ and DMA lines. For older cards, the
resources are searched for and reserved in the init () method. (See init ().)

Once a network adapter has been initialized successfully, the use counter of the module should be incremented for modularized
drivers, to prevent inadvertent loading of the driver module from the kernel. We can use the macro mop INC USE count for
this purpose. -

The network adapter is initialized when all system resources have been allocated successfully. Each adapter is initialized in an
individual manner. Normally, a specific value is written to a hardware register (I/O port) of the adapter, which causes the
adapter to initialize itself.

The transmission of packets over the network device is started by netif start queue (dev) - Finally, the value 0 is

returned if the transmission was successful; otherwise, a negative error code is returned.

Open/initialize the board. This is called (in the current kernel)
sometime after booting when the 'ifconfig' program is run.

* o % X

*

This routine should set everything up anew at each open, even
* registers that "should" only need to be set once at boot, so that
* there is non-reboot way to recover if something goes wrong.

*/
static int net open(struct net device *dev) {
struct net local *np = (struct net local *)dev->priv;
int ioaddr = dev->base addr;
/*

* This is used if the interrupt line can turned off (shared).
* See 3cb503.c for an example of selecting the IRQ at config-time.
*/
if (request irg(dev->irqg, &net interrupt, 0, cardname, dev))
return -EAGAIN;
}

/%
* Always allocate the DMA channel after the IRQ, and clean up on failure.
*/

if (request dma (dev->dma, cardname)) {

free irqg(dev->irqg, dev);
return -EAGAIN;
MOD INC_USE_COUNT;

/* Reset the hardware here. Don't forget to set the station address. */
chipset init(dev, 1);
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np->open_time = jiffies;

/* We are now ready to accept transmit requests from
* the queuing layer of the networking.
*/
netif start queue (dev);
return 0;

Deactivating a Network Adapter

example stop () drivers/net/isa_skeleton.c

During deactivation of a network adapter, all operations done when the adapter was opened should be undone. This concerns
mainly allocated system resources (interrupts, DMA channels, etc.), which should now be freed.

For modularized drivers, the use counter has to be decremented with MOD DEC_USE_COUNT , and the network device must not
accept any more packets from higher layers (netif stop queue ). Adain, the return value is either 0, if successful, or a
negative error code.

/* The inverse routine to net open(). */

static int net close(struct net device *dev) {
struct net local *1lp = (struct net local *)dev->priv;
int ioaddr = dev->base_addr;
lp->open _time = 0;

netif stop queue (dev);

/* Flush the Tx and disable Rx here. */

disable-dma (dev->dma) ;

/* If not IRQ or DMA jumpered, free up the line. */

outw (0x00, ioaddr+0); /* Release the physical interrupt line. */
free irqg(dev->irqg, dev);

free_dma (dev->dma) ;

/* Update the statistics here. */

MOD DEC_USE_COUNT;

return 0;

5.3.3 Transmitting Data

Each data transmission in the Linux network architecture occurs over a network device, more specifically by use of the method
hard start xmit () (start hardware transmission). Of course, this is a function pointer, pointing to a driver-specific
transmission function, . .. start xmit () - This method is responsible for forwarding the packet in the form of a socket
buffer and starting the transmission. Before we discuss the usual steps involved in the driver method gev -

>hard start xmit () in this section, we will briefly describe the common architecture of network adapters.

A network adapter is an interface adapter that automatically transmits and receives network packets according to a defined MAC
protocol (Ethernet, token ring, etc.). This means that a network adapter has an independent logic that works in parallel to the
regular central processor(s). The network adapter and a system processor interact over I/O ports (hardware registers) and
interrupts. When a processor wants to pass data to the network adapter, then the processor writes its data to the appropriate
I/0 ports and starts the desired action. When the adapter wants to pass data to the processor (e.g., a packet it received), then
the adapter triggers an interrupt, and the processor uses the interrupt-handling routine of the network adapter to serve the
network adapter. This shows clearly that system processors have a leading role versus interface adapters (master—slave
relationship).

Transmitting Data Packets

net start xmit () drivers/net/isa_skeleton.c

dev->hard start xmit (skb, dev) isresponsible for forwarding a data packet to the network adapter so that the latter
can transmit it. The packet data of the socket buffer is copied to an internal buffer location in the network adapter, and the time
stamp dev->trans start = jiffies is attached, marking the beginning of that transmission. If this copying action was
successful, it is also assumed that the transmission will be successful. In this case, hard start xmit () has to return a value
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When forwarding network packets between the operating system and the network adapter, we can distinguish between two

different techniques:

o Older network adapters (e.g., 3Com 3c509) have an internal buffer memory on the adapter for packets to be sent. This
means that the kernel can always forward only one single packet to the adapter at a time. If a buffer is free, a packet is

copied to the adapter right away and the kernel can delete the corresponding socket buffer.

o More recent network adapters work differently. The driver manages a ring buffer consisting of 16 to 64 pointers to socket
buffers. When a packet is ready to be sent, then the corresponding socket buffer is arranged within this ring, and a
pointer to the packet data is passed to the network adapter. Subsequently, the socket buffer remains in the ring buffer
until the network adapter, using an interrupt, has notified that the packet was transmitted. Finally, the socket buffer is

removed from the ring buffer and freed.

If the transmission was successful, then the socket buffer is no longer required, and it can be freed by dev kfree skb() -
(See Section 4.1.1.) If an error occurred during the transmission, then the socket buffer should not be touched, because the

kernel will most likely try to retransmit the packet.

When the method hard start xmit () is called, we can assume that there is currently at least one free place in the ring
buffer. Whether this is true is checked by net it queue stopped (dev) before the call. Once the socket buffers have been
arranged within the ring buffer, which 244 to tx rin; indicates as an example, we should check for whether there are
more free buffer places. If this is not the case, i.e., if the ring buffer is fully occupied, then we have to use

netif stop queue () to prevent more packets from being forwarded to the network adapter. The network device is stopped
until there will be free places in the ring buffer. The kernel is notified about this situation by an interrupt, as explained in the

following section.

/* This will only be invoked if your driver is not in XOFF state.
* What this means is that you need not check it, and that this
* invariant will hold if you make sure that the netif * queue()
* calls are done at the proper times.
*/
static int net send packet (struct sk buff *skb, struct net device *dev)
struct net local *np = (struct net local *)dev->priv;
int ioaddr = dev->base addr;
short length = ETH ZLEN < skb->len ? skb->len : ETH ZLEN;
unsigned char *buf = skb->data;
/* If some error occurs while trying to transmit this
* packet, you should return 'l' from this function.
In such a case you may not do anything to the
SKB, it is still owned by the network queuing
layer when an error is returned. This means you
may not modify any SKB fields, you may not free
the SKB, etc.

L S

#if TX RING
/* This is the most common case for modern hardware.
* The spinlock protects this code from the TX complete
* hardware interrupt handler. Queue flow control is
* thus managed under this lock as well.

*/
spin_lock irg(&np->lock);

add to tx ring(np, skb, length);
dev->trans_start = Jjiffies;

/* If we Jjust used up the very last entry in the
* TX ring on this device, tell the queuing
* layer to send no more.
*/
if (tx full(dev))
netif stop queue (dev);

/* When the TX completion hw interrupt arrives, this
* is when the transmit statistics are updated.

*/

{
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#else

/* This 1s the case for older hardware which takes
a single transmit buffer at a time, and it is
just written to the device via PIO.

No spin locking is needed since there is no TX complete
event. If by chance your card does have a TX complete
hardware IRQ then you may need to utilize np->lock here.

/

hardware send packet (ioaddr, buf, length);

np->stats.tx bytes += skb->len;

L T

dev->trans start = jiffies;
/* You might need to clean up and record Tx statistics here. */
if (inw(ioaddr) == /*RU*/81)
np->stats.tx aborted errors++;
dev_kfree skb (skb);
#endif

return 0;

Receiving Packets and Messages from a Network Adapter

net interrupt () drivers/net/isa_skeleton.c

A network adapter uses interrupts and its driver-specific interrupt-handling routine to communicate with the operating system.
More specifically, the network adapter triggers an interrupt to stop the current processor operation and notify it about an event.
When a network adapter uses an interrupt, we generally distinguish between three different events:

o Receive a data packet: The network adapter has accepted and buffered a data packet and now wants to forward this
packet to the operating system.

o Acknowledge a packet transmission: The network adapter uses this interrupt to acknowledge that a packet previously
forwarded by the operating system was sent and that there is now space available in the ring buffer. However, this
acknowledgment does not mean that the receiver received the packet successfully; it merely means that the network
adapter has put the packet successfully to the medium.

o Notify an error situation: Depending on the network adapter used, an interrupt can be used to notify the driver of error
situations.

Figure 5-5 shows how the interrupt handling routine of a network driver works.

Figure 5-5. A network adapter uses an interrupt to send messages.

dev.e

driverc
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First, we should set an IRQ lock to prevent the function from being executed more than once at the same time. In older versions
of the Linux kernel, the flag gev->interrupt Was used to this end. From version 2.4 and higher, the driver should have its
own lock variable.

Next, we want to know the cause of the interrupt. For this purpose, we normally read a state value from a state register, which
shows whether a new packet has been received, whether a transmission was completed, and whether an error situation
occurred. If a packet was received, then the driver-specific receive function net rx () is called. If a packet transmission was
fully completed, then the statistics are updated first; then netif wake queue(_dev) (or dev->busy = 0; mark bh
(NET BH) in earlier versions) announces the end of transmission and marks the ygT Rrx software interrupt for execution.

The nET Rrx Soft IRQ handles all incoming packets. Because it interrupts the normal work of a processor, an interrupt should
complete its job quickly. Unfortunately, handling an incoming packet can be very complex, mainly because many protocols (e.g.,
PPP, IP, TCP, and FTP) normally participate in the process. To ensure that a processor's work is not interrupted for an excessive
duration, the interrupt-handling routine carries out only those steps absolutely required to receive a packet. The more intensive
part of protocol handling is done in the NgT RrRx software interrupt, which has a lower priority than interrupt handling.

static void net interrupt(int irg, void *dev_id, struct pt regs * regs) {
struct net device *dev = dev_id;
struct net local *np;
int ioaddr, status;

ioaddr = dev->base addr;
np = (struct net local *)dev->priv;
status = inw(iocaddr + 0);

if (status & RX INTR) {
/* Got a packet(s). */
net rx(dev);
}
#if TX RING
if (status & TX INTR) {
/* Transmit complete. */
net tx(dev);
np->stats.tx packets++;
netif wake queue (dev);
}
fendif
if (status & COUNTERS_ INTR) {
/* Increment the appropriate 'localstats' field. */
np->stats.tx window _errors++;

Acknowledging a Transmission Process

net tx() drivers/net/isa_skeleton.c

With more recent network adapters, the network driver manages a ring buffer of socket buffers, which should be used to
transmit over the network adapter. These socket buffers remain in the ring buffer until the network adapter uses an interrupt to
acknowledge their transmission. The method net tx () shows the tasks to be executed when a network adapter
acknowledges a transmission. The method net tx () is actually part of the interrupt-handling routine and normally is
implemented as a separate function only for clarity.

First, we should set a lock (normally a spinlock) to ensure that parallel access attempts cannot cause inconsistent states in data
structures. Subsequently, the adapter is repeatedly asked which packets have been sent, until all sent packets have been
recorded. Next, the packets are removed from the ring buffer and freed by dev_kfree skb irg(skb) -

Finally, we should check on whether the network device has been briefly halted by a full ring buffer. At least one buffer place
has now been released, so the network can be freed by neti f wake queue (dev) - 10 free the network device, the flag
LINK_STATE XxOFF IS deleted, as described in Section 5.1.1.
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void net tx(struct net device *dev) {
struct net local *np = (struct net local *)dev->priv;
int entry;

/* This protects us from concurrent execution of
* our dev->hard start xmit function above.

*/

spin_lock (&np->lock);

entry = np->tx old;
while (tx entry is sent(np, entry)) {
struct sk buff *skb = np->skbs[entry];

np->stats.tx bytes += skb->len;
dev_kfree skb irqg (skb);

entry = next tx entry(np, entry);
}
np->tx old = entry;

/* If we had stopped the queue due to a "tx full"
* condition, and space has now been made available,
* wake up the queue.
*/
if (netif queue stopped(dev) && ! tx full(dev))
netif wake queue (dev);

spin_unlock (&np->lock) ;

Receiving a Data Packet

In contrast to sending a data packet, receiving a data packet from the network is an unforeseeable event for the operating
system. The network adapter receives a packet in parallel to processor operations and wants to forward this packet to the
kernel. In general, there are two methods to inform the kernel that a packet has arrived.

First, the system could periodically ask the network adapter whether data has been received; this is the so-called polling
principle. One major problem of this method is the size of the time interval in which the network adapter should be asked. It this
interval is too short, then unnecessary computing time is wasted, but, if it is too long, then the data exchange is unnecessarily
delayed and the network adapter might be unable to buffer all incoming packets.

The second and better method uses an interrupt and an appropriate interrupt-handling routine to inform the operation system
about an incoming packet. A processor of the system is briefly interrupted in its current work, accepts the packet received, and
stores it in a queue. Next, the packet is further handled as soon as the processor has time. This interrupt principle clearly
performs better than the polling principle, and it adapts itself better to the current system load. For this reason, each modern
network adapter works by this principle (i.e., the receive function of the network driver is called by its interrupt-handling
routine).

net rx() drivers/net/isa_skeleton.c

The driver method used to handle incoming packets is responsible for requesting a socket buffer and for filling the packet data
space with the packet received. The method dev alloc skb() €an be used to request a new socket buffer. This method
attempts to get a used socket buffer from the socket-buffer cache to avoid slow memory management. Section 4.1.1 introduced
the way how dev_alloc skb() works.

Occasionally, more than one packet arrives. In the example discussed in this section, we use up to ten packets that are accepted
by the network adapter and introduced as socket buffers to the Linux network architecture. The status of a received packet can
generally be verified from specific hardware registers (i.e., whether the packet was received correctly and, if not, which error
occurred). If errors occur, then these are generally collected in @ net device stats Structure, which is not part of the

net device structure; it has to be managed in the private data space (dev—;pr iv) of the network device.

Once a packet has been received correctly and the packet data has been transferred to the packet data range of the socket
buffer, the receiving network device 4ev is registered in the sk purr structure, and the protocol type present in the packet is
learned. Notice that this information cannot be carried out from the payload of the MAC packet, so it has to be learned here,
before the packet is forwarded to the higher layers. For Ethernet packets, the method eth type trans() handles this task
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Subsequently, netif rx(skb) €an place the socket buffers in the input queue. Finally, the statistics for the network device
are updated, and the interrupt-handling routine either continues handling the next packet received or terminates the interrupt
handling.

/* We have a good packet(s), get it/them out of the buffers. */
static void net rx(struct net device *dev) {
struct net local *1lp = (struct net local *)dev->priv;

int iocaddr = dev->base addr;
int boguscount = 10;

do {
int status = inw(ioaddr);
int pkt len = inw(ioaddr);

if (pkt_len == 0) /* Read all the frames? */
break; /* Done for now */

if (status & 0x40) {/* There was an error. */
lp->stats.rx errors++;
if (status & 0x20) lp->stats.rx frame errors++;
if (status & 0x10)
if (status & 0x08) lp->stats.rx crc errors++;
if (status & 0x04) lp->stats.rx fifo errors++;
} else {
/* Malloc up new buffer. */
struct sk buff *skb;

lp->stats.rx over errors++;

lp->stats.rx bytes+=pkt len;

skb = dev _alloc skb(pkt len);
if (skb == NULL) {
printk (KERN _NOTICE "$s: Memory squeeze, dropping packet.\n",
dev->name) ;
lp->stats.rx dropped++;
break;

/* 'skb->data' points to the start of sk buff data area. */
memcpy (skb_put (skb,pkt len), (void*)dev->rmem start,
pkt len);
/* or */
insw(ioaddr, skb->data, (pkt_len + 1) >> 1);

skb->dev = dev;
skb->protocol = eth type trans(skb, dev);

netif rx(skb);
dev->last rx = jiffies;
lp->stats.rx packets++;
lp->stats.rx bytes += pkt len;
}
} while (-boguscount);
return;

5.3.4 Problems In Transmitting Packets

Even when a packet was passed to the network adapter, it is not yet certain whether the packet can be transmitted. The
network adapter could be faulty, or the interrupt with the acknowledgment of the transmission process could have been lost. For
this reason, a watchdog timer is used to detect errors.

During the registration of a network device (register netdevice () ?see Section 5.2.1), the watchdog timer gev -
>watchdog timer IS initialized in the function dev watchdog init () - The handling routine of the timer is set not to the
function dev_—>tx timeout () but to dev watchaog () - AISO,_the net device structure of the network device is entered
as the timer's private data.
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started by the method dev_activate() OF dev_watchdog up() - The time when the timer should be triggered is set to
jiffies + dev->watchdog timeo - If no valid value was stated for the interval when the network device was registered,
then dev watchdog up () takes5 " Hz.

This means that the handling routine of the watchdog timer has completed all gev->watchdog timeo ticks. At the same
time, dev watchdog () Iis tested to check on whether the network device is active and usable at all. And, if the transmit
buffers of the network adapter are still full (netif queue stopped (dev) )and the condition (5iffies 2dev-
>trans_start > dev->watchdog timeo ) iS met, then there is a problem. The driver method gev->tx timeout () IS
called to solve this problem, as is described later in this chapter.

If no problem occurred, or if the network device is not active, then the timer is registered again to be executed in gev -
>watchdog timeo ticks.

In earlier kernel versions, the drivers of network devices were responsible themselves for implementing and managing a
watchdog timer. This mechanism assumes that task now in the newer versions. This means that only the adapter-specific reset
method dev->tx_timeout () has to be implemented.

net timeout () drivers/net/isa_skeleton.c

When a problem situation occurs during the transmission of data packets, then the above described watchdog timer of the
network device (dev—>watchdog_tj_mer) detects the problem. As soon as more than dev->watchdog_timeo ticks have
passed since the last packet start (trans_start ), then the handling routine dev->tx_time-out () should take care of this
problem.

This handling routine is responsible for analyzing the problem and for handling it. Often, the only way to solve the problem is to
reset and reinitialize the complete hardware of the network adapter. In any event, an attempt should be made to send the
packets waiting in the queue.

static void net tx timeout (struct net device *dev) ({
struct net local *np = (struct net local *)dev->priv;

printk (KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
tx done(dev) ? "IRQ conflict" : "network cable problem");

/* Try to restart the adaptor. */
chipset init(dev, 1);
np->stats.tx errors++;

/* If we have space available to accept new transmit
requests, wake up the queuing layer. This would

be the case if the chipset init() call above just
flushes out the tx queue and empties it.

If instead, the tx queue is retained then the
netif wake queue() call should be placed in the

* TX completion interrupt handler of the driver instead
* of here.

*/
if (!tx _full(dev))
netif wake queue (dev);

P T

5.3.5 Runtime Configuration

example set config() drivers/net/isa_skeleton.c

In certain situations, it can be necessary to change the configuration of the system resources used by a network adapter at
runtime—for example, when the interrupt cannot be identified automatically, or when there are conflicts with other devices. The
driver method set config() €an be used to manipulate the configuration of system resources (i.e., interrupt, DMA, etc.) at
runtime.
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mem end parameters can be read directly from the net device Structure. However, when one of these parameters has to be
changed, then we need a driver-specific method to effect the changes in the adapter. We will use the method
net set config () , Which allows us to change only the interrupt line, as an example to show how system resources can be
changed in general.

The driver method set config() is called when an application process invokes the ioct1 () command SIOCSIFMAP (Socket
I/0 Control Set InterFace MAP). Beforehand, however, the process should have read the current configuration by use of the
ioctl () command SIOCGIFMAP (Socket I/O Control Get InterFace MAP). The reason is that, when it wants to change a value,
the other parameters should have the current values.

For both ioct1 () commands, the system parameters are passed in a structure of the type i fmap. The i fmap Structure has
the following fields, corresponding to the fields with the same names in the net device structure.

struct ifmap

{
unsigned long mem start;
unsigned long mem end;
unsigned short base addr;
unsigned char irgqg;
unsigned char dma;
unsigned char port;

The method's return value is also used as return value for the i oct1 () call. Drivers that don't implement set config ()
return ~-EoPNOTSUPP -

static int net set config(struct net device *dev, struct ifmap *map) {

if (dev->flags & IFF UP) /* no changes on running devices */
return -EBUSY

/* we don't allow to change the port address */
if (map->base addr != dev->base addr) {

return -EOPNOTSUPP;
}

/* changing the irg is o.k. */
if (map->irqg != dev->irq) {
dev->irq = map->irqg;

}

VA

return 0;

5.3.6 Adapter-Specific ioctl() Commands

ioctl () commands are extremely useful tools to start certain actions from within the user address space. Normally, executing
the system call 1 oct1 () in asocket causes an ioct1 () command of a network protocol to be invoked. The corresponding
symbols are defined in the file 1 nhclude/1inux/sockios.h and normally relate to a specific protocol instance. However,
when an ioct1 () command of higher protocol instances cannot be processed, then the kernel forwards it to the network
devices, which can then define their own commands in the driver method qo ioctl () -

net do_ioctl() drivers/net/isa_skeleton.c

The ioct1 () implementation for sockets knows 16 additional i oct1 () commands, which can be used by drivers. More
specifically, these are the commands sT1ocDEVPRIVATE 0 STOCDEVPRIVATE + 15. When one of these commands is used,
then the method dev->do_ioctl () of the relevant network device is invoked.

When called, do_ioctl(dev, ifr, cmd) getsa pointer to a structure of the type i freq. This pointer (i £r) points to an
address in the kernel address space, which contains a copy of the ; freq structure passed by the user. After the loopback from
the 4o _iotc1 () method, this structure is copied back to the user address space. This means that a network driver can then
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reading or writing special registers, such as the MII register of some modern network adapters (eepro100, epic100,
etc.)

We use the following basic example to demonstrate a driver-specific 1 oct1 () implementation:

static int net ioctl(struct net device *dev, struct ifreq *ifr, int cmd)

{

struct net local *1lp = (struct net local *)dev->priv;
long iocaddr = dev->base->addr;

ul6 *data = (ulée *)&ifr ->ifr data;

int phy = lp->phy[0] & Ox1f;

switch (cmd) {
case SIOCDEVPRIVATE: /* Get the address of the PHY in use */
data[0] = phy;
case SIOCDECPRIVATE+1l: /* Special ioctl command 1 */
special ioctl 1();
case SIOCDEVPRIVATE+2: /* Special ioctl command 2 */
special ioctl 2();

/* .. x/
default:
return -EOPNOTSUPP;

5.3.7 Statistical Information About a Network Device

In most cases, we could want to obtain statistical information about the operation of a network device or its network adapters.
Detailed logging of the events can help us find and troubleshoot errors and faulty configurations easily. For this purpose, we
always use the data structure net device stats in the Linux kernel.

struct net device stats include/linux/netdevice.h

e rx packets and tx packets contain the total number of packets successfully received and transmitted, respectively,
over this network device.

e rx errors and tx errors Store the number of faulty packets received and unsuccessful transmissions, respectively.
Typical receive errors are wrong checksums or wrong packet sizes. Transmit errors are mainly due to physical problems
or faulty configurations.

e rx dropped @and tx dropped give the number of incoming and outgoing packets that were dropped for various
reasons (e.g., memory unavailable for packet data).

e multicasts Shows the number of multicast packets received.

The net device stats Structure has a number of additional fields you can use to specify occurring errors in more detail,
such as the number of ring buffer overflows, CRC errors, and synchronization errors. The exact structure and content of the
net device stats Structure can be found in <1inux/netdevice.h> - In addition, there is a separate structure

(iw statistics) for wireless network adapters, containing radio connection data. (See the file

include/linux/wireless.h. )

net get stats() drivers/net/isa_skeleton.c

Interestingly, there is no pointer to the net device stats Structure for statistical data in the net device Structure. The
structure for statistical data has to be accommodated in the private data space of a network driver and is invoked by the driver

method get stats() -

network adapters: get stats(dev) () returnsa pointer to the statistical data of a network device (dev) . A sample
implementation might look like this:

/*
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* This may be called with the card open or closed.

*/
static struct net device stats *net get stats(struct net device *dev) {
struct net local *1lp = (struct net local *)dev->prive;
short ioaddr = dev->base addr;

/* Update the statistics from the device registers. */
lp->stats.rx missed errors = inw(ioaddr+l);
return &lp->stats;

5.3.8 Multicast Support on Adapter Level

net set multicast list() drivers/net/isa_skeleton.c

A network adapter uses the MAC destination address of a data packet to decide whether it will accept or ignore it. This process
runs on the network adapter, so it doesn't interfere with the central processor's work. The central processor will be interrupted
in its work only if the network adapter triggers an interrupt because it wants to forward the packet to higher protocol instances.
In general, a network adapter accepts only packets intended for it, to ensure that the processor is not unnecessarily interrupted.
Of course, an exception to this rule is the promiscuous mode, where all packets are accepted for analytical purposes.

For unicast packets, it is relatively easy to see whether the computer is interested in a packet. The network adapter merely has
to detect its own MAC address as the destination address contained in the layer-2 packet header. Broadcast packets are also
accepted without exception. However, the situation is different when detecting the correct multicast packets. How can the card
know whether the computer is interested in the data of that group? In case of doubt, the card accepts the packet and passes it
on to higher protocols, which should be able to know the groups subscribed. Though this method is very expensive, because the
central processor has to check each multicast packet, it is the only way for some (older) network adapters to receive the correct
multicast packets.

A better support for multicast on the MAC level is offered by modern network adapters. Such adapters manage a list of MAC
addresses from which they want to receive packets. If only the packets of a specific multicast group should be received, then the
corresponding MAC group address is passed to the network adapter, which will then receive the multicast packets. Section
17.4.1 describes the connection between groups and group addresses on the MAC and IP levels.

A network device stores the list of active MAC group addresses in a list (gev- >mc_list) - Whenever a new address is added
or the state of the network device changes, then the driver method dev-> set multicast list transfers this list to the
adapter. The accompanying example illustrates how this method works.

When the network device is in promiscuous mode, then this mode is activated on the card. If all multicast packets should be
received or if the list of MAC multicast addresses is bigger than the filter memory on the adapter, then all multicast packets are
received; otherwise, the desired MAC addresses are transferred to the adapter—for example, as expressed by

hardware set filter.

/*
* Set or clear the multicast filter for this adaptor.
* num_addrs == -1 Promiscuous mode, receive all packets
* num_addrs == 0 Normal mode, clear multicast list
*

num_addrs > 0 Multicast mode, receive normal and MC packets,
* and do best-effort filtering.
*/
static void set multicast list(struct net device *dev) {
short ioaddr = dev->base addr;
if (dev—>flagS&IFF_PROMISC)
{
/* Enable promiscuous mode */
outw (MULTICAST|PROMISC, ioaddr);
}
else if((dev->flags&IFF ALLMULTI) | | dev->mc_count > HW MAX ADDRS)
{
/* Disable promiscuous mode, use normal mode. */
hardware set filter (NULL);

outw (MULTICAST, ioaddr);
}

else if (dev->mc_ count)
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/* Walk the address list, and load the filter */
hardware set filter(dev->mc_list);

outw (MULTICAST, ioaddr):;
}

else
outw (0, ioaddr);

4 Previous Mext b
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Chapter 6. Introduction to the Data-Link Layer

In the following chapters, we will leave the hardware area and move on to the world of network protocols. Chapters 7 through
24 discuss the structure and implementation of network protocols in the Linux kernel.

The previous chapters introduced the most important basics of the Linux network architecture, including the general structure of
communication systems and protocol instances (Chapter 3), representation of network packets in the Linux kernel (socket
buffers, Chapter 4), and the abstraction of physical and logical network adapters (network devices, Chapter 5). Before we
continue discussing the structure and implementation of network protocols in detail, this chapter gives a brief introduction to the
structuring of the data-link layer, which represents the connecting layer between network devices and higher network protocols.
Of primary interest is the background where network protocols run. Another important topic of this chapter is the interplay of
different activities (hardware and software interrupts, tasklets) of the Linux network architecture.

The transition between the different activities in the data-link layer (layers 1 and 2 of the OSI model) occurs when packets are
sent and received; these processes are described in detail in Sections 6.2.1 and 6.2.2. First, we will describe the path a packet
takes from its arrival in a network adapter until it is handled by a protocol instance in the network layer; then we will describe

how a packet is sent from the network layer until it is forwarded to the network adapter.

4 Previous Mext b
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6.1 Structure of the Data-Link Layer

Chapter 3 introduced two reference models where the lower layers up to the network layer were structured in a different way.
In the Internet reference model (TCP/IP model) there is only the data-link layer with the network adapter, and no other instance
underneath the Internet protocol (network layer). In the ISO/OSI basic reference model, there are two different layers (physical
layer and data-link layer), where the data-link layer is expanded by the media-access layer (Layer 2a) when using local area
networks.

This book deals mainly with the protocols of the Internet world, and one assumes that the Internet reference model would best
describe the structure of the Linux network architecture. Interestingly, the classification of the ISO/OSI reference model matches
the structure of communication systems in local area networks much better. When taking a closer look at the IEEE 802
standards for local area networks, which are actually always used in the Internet, and their implementation in the Linux kernel,
we can clearly recognize the structuring of the ISO/OSI model.

For this reason, the following discussion assumes a structuring as shown in Figure 6-1:

e The OSI layers 1 (physical layer) and 2a (media-access control layer ?MAC) are implemented in network adapters.

e The logical-link control (LLC) layer is implemented in the operating system kernel; network adapters are connected to the
operating system kernel by the network devices described in Chapter 5.

Figure 6-1. Standardization of layers 1 and 2 in IEEE 802 and their implementation in the Linux network
architecture.
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6.1.1 IEEE Standard for Local Area Networks (LANSs)

With its IEEE 802.x standards, the IEEE (Institute of Electrical and Electronics Engineers) found a very extensive proliferation for
local area networks (LANs). The best known LAN technologies are 802.3 (CSMA/CD), 802.5 (Token Ring), and 802.11 (wireless
LANSs). Figure 6-1 gives a rough overview of the 802.x standards and classifies them within the ISO/OSI layer model. As
mentioned above, the data-link layer is divided into a logical-link control (LLC) and a media-access control (MAC) layer for
networks with jointly used media. The LLC layer hides all media-specific differences and should provide a uniform interface for
protocols to the higher layers; the MAC layer reflects the differences between different transmission technologies.

To hide the characteristics of the underlying transmission technology, the LLC layer should offer three services, regardless of
this technology:

o Unreliable datagram service (LLC type 1): This very simple service offers no flow control or error control, so it doesn't
even guarantee that data is transmitted. The removal of errors is left to the protocols of the higher layers.

o Connection-oriented service (LLC type 2): This service establishes a logical connection between the sender and the
receiver, and it supports flow control and error control.

o Reliable datagram service (LLC type 3): This service combines LLC types 1 and 2—it is connectionless, but it supports
both flow control and error control.

The very simple service (LLC type 1) is used mainly in local area networks, probably for its simplicity. No connection has to be
established, and the higher-layer protocols offer an integrated error-handling feature (e.g., TCP in the transport layer). The
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o DSAP and SSAP specify the service access points in the sender and receiver. It is unclear why a protocol identification is
stated for both the sender and the receiver, especially because no example is known where the two values would be
different. Both fields have a width of only eight bits, so very few protocols can be defined. For this reason, the SNAP
extension described below was defined.

e The Control field always takes the value ¢x (3 for LLC type 1. This corresponds to an Unnumbered Information Frame in
the HDLC protocol, on which the LLC protocols are based.

For these reasons, the LLC layer and the relevant protocol-control information (LLC packet header) can no longer be recognized
in some variants of local network protocols, because they were integrated into the packet headers of MAC PDUs. The best-
known example is probably 802.3, which has the protocol control information (PCI) of the LLC layer in its protocol field.

One major drawback of this integrated solution is that many organizations and companies try to integrate their proprietary
standards into a MAC PDU. To ensure that duplicate assignments of some identifications by different organizations are
prevented, the IEEE invented a packet format for the LLC PDU, which allows each organization to define its own packet types.
This packet format is called the SNAP extension of the LLC protocol.

In the SNAP extension, the SSAP and DSAP fields take the constant gxan, indicating that they expand the LLC packet header by
five bytes (SNAP extension). These five bytes can be used to identify a large number of new protocols. In addition, the extension
field is divided into a part for the assigning organization and another part for the actual protocol identification, to prevent
conflicts in the assigning of protocol identifiers.
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6.2 Processes on the Data-Link Layer

As was mentioned in the beginning of this chapter, the data-link layer forms the connecting layer between drivers or network
devices and the higher world of protocol instances. This section gives an overview of the processes on the data-link layer. We
will explain what activity forms play an important role on this layer and how the transition between them occurs. Section 6.2.1
describes the process involved when a packet arrives, and Section 6.2.2 discusses how a packet is sent. First, however, we
introduce the activity forms and their tasks in the Linux network architecture.

Figure 6-2 gives an overview of the activity forms in the Linux network architecture. As compared with earlier kernel versions,
Version 2.4 and up introduced significant performance improvements. Mainly, the use of software interrupts, as compared with
the low-performing bottom halves, means a clear performance increase in multiprocessor systems. As shown in Figure 6-2, we
can distinguish between the following activities:

o Hardware interrupts accept incoming data packets from the network adapters and introduce them to the Linux network
architecture (per Chapter 5). To ensure that the interrupt can terminate as quickly as possible (see Section 2.2.2),
incoming data packets are put immediately into the incoming queue of the processing CPU, and the hardware interrupt is
terminated. The software interrupt NeT Rx sorFTIRQ IS marked for execution to handle these packets further.

e The software interrupt NeT rRx sorTIrRQ (fOr short, NET RX soft-IRQ) assumes subsequent (not time-critical)
handling of incoming data packets. This includes mainly the entire handling of protocol instances on layers 2 through 4
(for packets to be delivered locally) or on layers 2 and 3 (for packets to be forwarded). This means that most of the
protocol instances introduced in Chapters 7 through 25 run in the context of nNeT rRx SOft-IRQ.

Packets incoming for an application are handled by neT rx soft-IRQ upto the kernel boundary and then forwarded to the
waiting process. At this point, the packet leaves the kernel domain.

Packets to be forwarded are put into the outgoing queue of a network device over the layer-3 protocol used (or by the
bridge implementation). If the ngT rx SOft-IRQ has not yet used more than one tick (1/H,) to handle network protocols,

then it tries immediately to send the next packet. If the soft-IRQ was able to send a packet successfully, it will handle it to
the point where it is passed to the network adapter. (See Chapter 5 and Section 6.2.2.)

e The software interrupt NeT Tx sorTIrQ (for short, NeT Tx SOft-IRQ) also sends data packets, but only provided that
it was marked explicitly for this task. This case, among others, occurs when a packet cannot be sent immediately after it
was put in the output queue—for example, because it has to be delayed for traffic shaping. In such a case, a timer is
responsible for marking the neT rx Soft-IRQ for execution at the target transmission time (see Section 6.2.2) and
transmitting the packet. B

This means that the neT Tx SOft-IRQ can transmit packets in parallel with other activities in the kernel. It primarily
assumes the transmission of packets that had to be delayed.

o Data packets to be sent by application processes are handled by system calls in the kernel. In the context of a system
call, a packet is handled by the corresponding protocol instances until it is put into one of the output queues of the
sending network device. As with NgT rx SOft-IRQ, this activity tries to pass the next packet to the network adapter
immediately after the previous one.

e Other activities of the kernel (tasklets, timer handling routines, etc.) do various tasks in the Linux network architecture.
However, unlike the tasks of the activities described so far, they cannot be clearly classified, because they are activated
by other activities upon demand. In general, these activity forms run tasks at a specific time (timer handling routines) or
at a less specified, later time (tasklets).

e Application processes are not activities in the operating-system kernel. Nevertheless, we mentioned them here within the
interplay of activities of the kernel, because some are started by system calls and because incoming packets are
forwarded to some.

Figure 6-2. Activity forms in the Linux network architecture.
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As compared with earlier kernel versions, where no software interrupts were yet available, their task was executed by the net
bottom half (veT BH). Unfortunately, the yeT BH did not run on two processors in parallel, which means that it was much less
performing than software interrupts, which can run in parallel on several CPUs.

The next two sections describe how packets are received and sent in the data-link layer, but details with regard to network
adapters, which were introduced in Chapter 5, will be discussed only superficially.

6.2.1 Receiving a Packet

The path of each packet not generated locally in the computer begins in a network adapter or a comparable interface (e.g., the
parallel port in PLIP). This port receives a packet and informs the kernel about its arrival by triggering an interrupt. The

following process in the network driver was described in Chapter 5, but we will repeat it here briefly for the sake of
completeness.

If the transmission was correct, then the path of a packet through the kernel begins at this point (as in Figure 6-3). Up to when
the interrupt was triggered, the Linux kernel had nothing to do with the packet. This means that the interrupt-handling routine is
the first activity of the kernel that handles an incoming packet.

Figure 6-3. The path of a packet in the data-link layer of the Linux kernel.
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o When it has received a packet correctly, the network adapter triggers an interrupt, which is handled by the interrupt-
handling routine of the network driver. For the example driver described in Section 5.3
(drivers/net/isa skeleton.c) , this is the method net interrupt () - AS SOON as the interruption was
identified as an incoming packet, net rx () is responsible for further handling. If the interrupt was caused not by an
incoming packet, but by a message that a data transmission was completed, then net tx () continues.
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the network adapter to its packet-data space. (See Chapter 4 and Section 5.3.) Subsequently, the pointer skp->dev is
set to the receiving network device, and the type of the data contained in the layer-2 data frame is recognized. For this
purpose, Ethernet drivers can use the method eth type trans() . There are similar methods for other MAC
technologies (FDDI, token ring). B B

The demultiplexing process takes place in the LLC layer at this point. The exact process will be explained in Section 6.3.1.

e netif rx() completes the interrupt handling. First, the current time is set in skb->time, and the socket buffer is
placed in the input queue. As compared with earlier versions of the Linux kernel, there is now not only one single queue
having the name "backlog"; instead, each CPU stores "its" incoming packets in the structure softnet data
[cpu] .input pkt queue - This means that the processor that handles the interrupt always stores the packet in its
queue. This mechanism was introduced to avoid kernel-wide locks of a single input queue.

Once the packet was placed in the queue, the interrupt handling is complete. As was explained in Section 2.2.2, the
handling routine of a hardware interrupt should run only the operations absolutely required to ensure that other activities
of the computer (software interrupts, tasklets, processes) won't be unnecessarily interrupted.

Incoming packets are further handled by the software interrupt (NeT rRx sorFTIRQ ), Which replaces the net bottom half
(NeT BH) used in earlier versions of the Linux kernel. g rx SoFTTRQ is marked for execution by

cpu raise softirg(cpu, NET RX SOFTTRQ). This mechanism is similar to bottom halfs, but the use of
software interrupts allows much more parallelism and so makes possible improved performance on multiprocessor
systems. (See Section 2.2.3.)

The path of a packet initially ends in the queue for incoming packets. The interrupt handling was terminated, and the kernel
continued handling the interrupted activity (process, software interrupt, tasklet, etc.). When the process scheduler (schedule
() iN kernel/sched.c ) is invoked once more after a certain interval, then it first checks for whether a software interrupt is
marked for execution. This is the case here, and it uses do softirqg() to start the marked soft-IRQ. The following section
assumes that this concerns the nNgT RrRx SOft-IRQ: B

net rx action() net/core/dev.c

net rx action () isthe handling routine of NET rRx SOFTIRQ. IN a continuousloop (for (;;){...}) , packets are
fetched one after the other from the input queue of the processing CPU and passed to the protocol-handling routine, until the
input queue is empty. The continuous loop is also exited when the packet-handling duration exceeds one tick (10 ms) or when
budget =net dev max backlog (1] packets have been removed and processed from the queue. This prevents the protocol-
handling routine from blocking the remaining activities of the computer and thereby inhibits denial-of-service attacks.

(1] net dev max backlog Specified the maximum length of the (only) input queue, backlog, in earlier versions
of the Linux kernel, and was initialized with the value 300 (packets). In the new kernel versions, this is the
maximum length of the input queues of the processors.

The first action in the continuous loop is to request a packet from the input queue of the CPU by the method __skb_dequeue
() - If a socket buffer is found, then the reference counter of the socket buffer is first incremented in sxb bond () -
Subsequently, the socket buffer is transferred to instances of the handling protocols.

First, the socket buffer is passed to all protocols registered in the list ptype a11. (See Section 6.3.) In general, no protocols
are registered in this list. However, this interface is excellently suitable for inserting analytical tools.

If the computer was configured as a bridge (conr1G_BRIDGE) and the pointer pr handle frame hook () Was set, then
the packet is passed to the method handie bridge () - It will then be processed in the bridge instance. (See Chapter 12.)

The last action (which is generally the most common case) passed the socket buffer to all protocols registered with the protocol
identifier (dev->protocol) - They are managed in the hash table (ptype base) - Section 6.3 will explain the details of how
layer-3 protocols are managed.

For example, the method eth type trans() recognizes the protocol identifier x0g00 and stores it in gev->protocol
for an IP packet. In net rx action () , this identifier is now mapped by the hash function to the entry of the Internet Protocol
(IP) instance. Handling of the protocol is started by a call of the corresponding protocol handling routine (func ()) - In the case
of the Internet Protocol, this is the known method ip rcv () - If other protocol instances are registered with the identifier
0x0800, then a pointer to the socket buffer is passed to all of these protocols one after the other.

This means that the actual work with protocol instances of the Linux kernel begins at this point. In general, the protocols that
start at this point are layer-3 protocols. However, this interface is also used by several other protocols that instead fit in the first
two layers of the ISO/OSI basic reference model. The following section describes the inverse process (i.e., how a data packet is
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6.2.2 Transmitting a Packet

As is shown in Figure 6-3, the process of transmitting a packet can be handled in several activity forms of the kernel. We
distinguish two main transmission processes:

o Normal transmission process, where an activity tries to send off ready packets and send them over the network device
immediately after the placing of a packet in the output queue of that network adapter. This means that the transmission

process is executed either by neT rx Soft-IRQ or as a consequence of a system call. This form of transmitting packets is
discussed in the following section.

e The second type of transmission is handled by NET TX soft-IRQ. It is marked for execution by some activity of the kernel
and invoked by the scheduler at the next possible time. The NeT Tx soft-IRQ is normally used when packets are to be

sent outside the regular transmission process or at a specific time for certain reasons. This transmission process is
introduced after the section describing the normal transmission process.

The Normal Transmission Process

dev_queue xmit () net/core/dev.c

dev_queue xmit (skb) IS used by the protocol instances of higher protocols to send a packet in the form of a socket buffer,

skb, over a network device. The network device is specified by the parameter sxp->dev Of the socket buffer structure. (See
Figure 6-4.)

Figure 6-4. The process involved when sending a packet by ey queue xmit()-
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First, the socket buffer is placed in the output queue of the network device. This is done by use of the method gev->qdisc-
>enqueue () - In general, packets are handled by the FIFO (First In ?First Out) principle. However, it is also possible to define
several queues and introduce various mechanisms for differentiated handling of packets. (See Chapters 18 and 22.)

Once the packet has been placed in the queue by the desired method (gdisc), further handling of packets ready to be sent is
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There is one special case: that a network device has not defined methods for queue management (dev->enqueue ==
NULL) - In this case, a packet is simply sent by dev->hard start xmit () right away. In general, this case concerns logical
network devices, such as loopback, or tunnel network devices.

gdisc_run() include/net/pkt_sched.h

gdisc run (dev) has rather little functionality. All it actually does is call gdisc restart () untilit returns a value greater-
equal null (no more packet in the queue), or until the network device does not accept any more packets
(netif queue stopped(dev)) -

gdisc_restart() net/sched/sch_generic.c

gdisc restart (dev) IS responsible for getting the next packet from the queue of the network device and sending it. In
general, the network device has only a single queue and works by the FIFO principle. However, it is possible to define several
queues and serve them by a special strategy (qdisc).

This means that gev->qdisc->dequeue () iS used to request the next packet. If this request is successful, then this packet is
sent by the driver method dev- >hard start xmit (). (See Chapter 5.) Of course, the method also checks on whether the
network device is currently able to send packets (i.e., whether netif queue stopped (dev) == 0is true).

Another problem that can potentially occur in qdisc restart () iSthat dev->xmit 1lock Sets a lock. This spinlock is
normally set when the transmission of a packet is to be started in gdisc_restart () - At the same time, the number of the
locking CPU is registered in gev->xmit lock owner -

If this lock is set, then there are two options:

e The locking CPU is not identical with the one discussed here, which is currently trying to set the lock dev->xmit lock-
This means that another CPU sends another packet concurrently over this network device. This is actually not a major
problem; it merely means that the other CPU was simply a little faster. The socket buffer is placed back into the queue
(dev->adisc >requeue ()) - Finally, NET Tx sorTIRQ IS activated in netif schedule () to trigger the
transmission process again.

o If the locking CPU is identical with the CPU discussed here, then this means that a so-called dead loop is present:
Forwarding of a packet to the network adapter was somehow interrupted in this processor, and an attempt was made to
retransmit a packet. The response to this process is that the packet is dropped and everything returns immediately from
gdisc restart () tocomplete the first transmission process.

The return value of qdisc restart () can take either of the following values:
e = 0: The queue is empty.

e > 0: The queue is not empty, but the queue discipline (gev->gdisc) Pprevents any packet from being sent (e.g.,
because it has not yet reached its target transmission time in active traffic shaping).

e < 0: The queue is not empty, but the network device currently cannot accept more packets, because all transmit buffers
are full.

If the packet can be forwarded successfully to a network adapter, then the kernel assumes that this transmission process is
completed, and the kernel turns to the next packet (gqdisc run()) -

Transmitting over NET_TX Soft-IRQ

The NET TX SOFTIRQ is an alternative for sending packets. It is marked for execution ( cpu raise softirqg()) by
the method netif schedule() .netif schedule() IS invoked whenever a socket buffer cannot be sent over the normal
transmission process, described in the previous section. This problem can have several causes:

e Problems occurred when a packet was forwarded to the network adapter (e.g., no free buffer spaces).

e The socket buffer has to be sent later, to honor special handling of packets. In the case of traffic shaping, packets might
have to be delayed artificially, to maintain a specific data rate. For this purpose, a timer is used, which starts the
transmission of the packet when the transmission time is reached. (See Figure 6-4.)
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Now, if NET TX SOFTIRQ IS marked for execution by netif schedule () , itis started at the next call of the CPU scheduler.

net tx action() net/core/dev.c

net tx action () Isthe handling routine of the NET Tx sorTIRQ Software interrupt. The main task of this method is to
call the method gdisc_restart () to start the transmission of the packets of a network device.
The benefit of using the NET Tx sorTIrRQ SOftware interrupt is that processes can be handled in parallel in the Linux network

architecture. In addition to NET_RX_SOFTIRQ , which is responsible for the main protocol handling, the NeT Tx soft-IRQ can
also be used to increase the throughput considerably in multiprocessor computers.

4 Previous Mext b
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6.3 Managing Layer-3 Protocols

The previous section of this chapter described the path of a packet between a network adapter and the interface to higher
protocol instances. This section discusses this interface in more detail. First, we will explain how new protocols can be added.
Because only protocols of the network layer (IP, ARP, IPv6, IPX) are added to the Linux network architecture over this interface,
it is also referred to as the interface to the network layer or layer-3 protocols in the following discussion.

In the Linux kernel, we distinguish between two types of layer-3 protocols, where the first type is used mostly for analysis
purposes:

o A protocol receives all packets arriving at the interface to the layer-3 protocols.

e A protocol receives only packets with the correct protocol identifier (e.g., 0x0800 for the Internet Protocol).
Figure 6-5 shows that these two types of protocols are managed in two different data structures. We can see in this figure that
the two types of layer-3 protocols do not differ much. Both types are managed in a structure of the type packet type and

linked in different lists, depending on the above-mentioned type. The simple linked list, ptype a11, stores the protocols that
should receive all incoming socket buffers. The hash table, ptype base, Manages all normal layer-3 protocols.

Figure 6-5. Managing protocols above network devices.
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A packet type Structure is created and placed into the corresponding data structure for each protocol. The following
parameters are required in the packet type Structure to define a protocol:

e type: This field specifies the protocol identifier (i.e., the constants listed in Figure 6-6). If ETH P_ALL IS stated in this
field, then the protocol is added to the list ptype all when it is registered, and it receives all packets. Otherwise, it
receives only packets with protocol identifier type.

The identifier of a protocol has to be extracted from the packet data in the receive routine of the network driver (e.g., by
the method eth type trans () , which will be introduced at the end of this chapter).

e dev Can take a pointer to a network device. In that case, only the packets received on that network device are passed to
the protocol. If several, but not all, network adapters should have this preference, then the protocol for each network
device has to be registered separately. If gev contains a NULL pointer, which corresponds to the normal case, then the
input network device does not play any role in selecting a protocol.
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e func () is the handling routine for the protocol. This means that this is the point where the protocol's work begins. For

example, the handling routine ip rev() IS registered in the packet type Structure of the Internet Protocol. (See
Chapter 14.)

e data €an be used to point to private data of the protocol, but it is generally not used.

e next is used to link several packet type structures.

Figure 6-6. Identifiers for layer-3 protocols on the LLC layer (;,ciude/Linux/if _ether.h):

/* These are the defined Ethernet Protocol ID's. */

ETH P_LOOP 0x0060 /* Ethernet Loopback packet */
ETH P IP 0x0800 /* Internet Protocol packet */
ETH P X25 0x0805 /* CCITT X.25 */
ETH P_ARP 0x0806 /* Address Resolution packet */
ETH P IPX 0x8137 /* IPX over DIX */
ETH P IPV6 0x86DD /* IPv6 */

/* Non DIX types. Won't clash for 1500 types. */

ETH P 802 3 0x0001 /* Dummy type for 802.3 frames */
ETH P AX25 0x0002 /* Dummy protocol id for AX.25 */
ETH P_ALL 0x0003 /* Every packet (be careful ! ! ) */
ETH P 802 2 0x0004 /* 802.2 frames */
ETH P_SNAP 0x0005 /* Internal only */

The following two methods are available to manage the protocols or their packet type Structures:

dev_add pack() net/core/dev.c

dev_add pack (pt) registers with the Linux network architecture the layer-3 protocol represented by the pac ket type
structure p . If the field type has the value ETa P A11, then the protocol is added to the list ptype a11. Otherwise, it is
inserted in the appropriate row of the hash table ptype base. From now on, all received packets with protocol identifier + ype

are delivered to this protocol instance.?]

(2] —provided that the protocol type is not ETH P ALL and the protocol was not registered for one single special
network device.

dev_remove pack () net/core/dev.c

dev_remove pack(pt) removes the protocol with the packet type Structure pt. Depending on the identifier in the type
field, it is removed from the corresponding data structure.

6.3.1 Logical Link Control—Determining the Layer-3 Protocol Identifier

eth type trans() net/ethernet/eth.c

eth type trans(skb, dev) IS the second important part of the Logical Link Control (LLC) implementation in the Linux
kernel, in addition to managing the networklayer protocols described in Section 6.3. Two important tasks are executed for this
purpose:

e Recognize the LLC protocol type used and the protocol identifier of the layer-3 protocol from the protocol control
information contained in the layer-2 data frame.

o Identify the packet type (unicast, multicast, broadcast) and check on whether the packet is addressed to the local
computer.

The method eth type trans() s which can be used for all Ethernet-compatible network adapters, is called by the network
driver in the packet-receive method. (See Section 5.3.) It is responsible for extracting protocol-control information of the LLC



ThigyeloshdaRAIitgGE epErPehMEdl Lial Ry FasoRS iR BRRF&IIGEs & BoMAE-protocol type use the same type trans ()

method. There are similar methods for token ring and FDDI devices (tr_type trans(), fddi type trans()):

In general, Ethernet networks do not use any of the LLC standards, but transmit the layer-3 protocol identifier directly in the
MAC frame. The only protocol mechanism is thus demultiplexing of different layer-3 protocols. This is the reason why
eth type trans () IS relatively simple and easy to understand. However, you can use an LLC protocol based on IEEE 802.2.

First, skb_pull (skb, dev->hard header length) takes the layer-2 packet header from eth type trans() . Next,
the type of the packet is identified and registered in skb->pkt_type- The following mutually exclusive types are possible:

e PACKET BROADCAST : The packet was sent to the broadcast address of the local network and is intended for all
connected computers.

e PACKET MULTICAST : The packet was sent to a layer-2 group address, which means that it is intended for a group of
computers.

e PACKET HOST: The packet is intended for the local computer (i.e., it was sent to the layer-2 address of the receiving
network adapter).

e PACKET OTHERHOST : The packet is not intended for the local computer and was received only because the computer is
in promiscuous mode.

Subsequently, the protocol identifier of the incoming packet is recognized. In local networks based on the IEEE 802 standard,
there are several options, but this book considers only Ethernet-compatible networks:

o If a value in the length or protocol field of the Ethernet packet header is bigger than the maximum frame length (1536
bytes), then it is assumed that it is an 802.3-compatible Ethernet adapter. As mentioned earlier, the 802.3 protocol
integrates the protocol-control information of the LLC layer in the protocol field of the 802.3 frame, thus sparing any need
for a separate LLC packet header. This means that the field value contains the protocol identifier of the layer-3 protocol
and is registered in skb->type-

o Older Ethernet adapters store the length of the frame rather than the protocol identifier of the layer-3 protocol in the
length or protocol field. For this reason, the protocol-control information of the LLC layer has to be contained in the
payload of the Ethernet frame (i.e., an explicit LLC packet header based on the 802.2 standard, SSAP and DSAP—see
Figure 6-7).

Figure 6-7. Variants for LLC protocol control information in Ethernet networks.
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eth type trans() does not verify the LLC-PDU any further, but returns gty p g02 2 as the layer-3 protocol identifier.
The 802.2 LLC protocol instance is treated as a layer-3 protocol instance. (See Section 6.3.) It is also registered as a layer-3
protocol instance in the hash table ot ype base. Though this conflicts with the layer model, it allows a simpler implementation
in this case, because most Ethernet adapters use the integrated LLC variant mentioned previously, and 802.2 is rather an
exceptional case. Finally, the demultiplexing process to the layer-3 protocol takes place in the handling routine of the 802.2
protocol (p8022 rcv(), net/802/p8022.c)-

Layer-3 protocols can register themselves with the 802.2 protocol instance by use of the method register 8022 client() -
For example, the SNAP protocol extension (net/802/psnap.c) C€an register itself with register 8022 client (0xAR,
snap rcv) . From then on, the method snap rcv () , Which links to the corresponding layer-3 protocol, is invoked for all

SNAP frames. B

Figure 6-7 shows a summary of the frame formats used for different LLC variants in Ethernet:

e 802.3: LLC-PCI, integrated in the MAC-PCI.
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e 802.2: LLC-PDU in the MAC payload.

o 802.2/SNAP: SNAP extension in the LLC-PDU.
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7.1 Introduction

The packet-oriented IP protocol is used to communicate over the Internet. However, a modem can transmit only a continuous
byte stream. For this reason, to establish a connection from your local PC over an analog telephone line to the worldwide
Internet, we need a protocol that encapsulates network packets so that they can be transmitted over a modem connection
between a local computer and a point of presence (PoP). The two endpoints of the modem connection can then communicate
over IP. The point of presence itself is directly connected to the Internet and routs IP packets between the local PC and the
Internet. (See Figure 7-1.)

Figure 7-1. Scenario for the use of SLIP.
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Another possible use of such a protocol is for the IP communication of two computers over the serial V.24 interface, which is
available in most PCs. This use lets you build an IP network at little cost (and very low speed) without the need to install
additional interfaces, such as Ethernet cards.

RFC 1055 [Romk88] specifies the SLIP (Serial Line IP) for the V.24 task. SLIP represents an intermediate layer within the
network architecture: At its upward face, packets are taken from or forwarded to the IP layer; at its downward face, data are
sent to or received from a serial interface driver.

As compared with the more recent PPP protocol (see Chapter 8), SLIP is very simple, but offers a rather limited functionality:

o SLIP includes no mechanisms for establishment of a controlled connection: As soon as SLIP has been started on both
ends, the connection is implicitly established. For this reason, no parameters, such as IP address, DNS information, or
the SLIP operating mode used, can be negotiated. These parameters have to be set manually or by use of a script before
SLIP is started.

o SLIP serves exclusively for the transmission of Version-4 IP packets. Other network protocols (e.g., IP version 6 or X.25)
are not supported.

o SLIP has no mechanisms to detect or correct errors; these functions have to be handled by higher network layers.

e In contrast to PPP, the payload in transmitted IP packets cannot be compressed. The CSLIP operating mode (described in
the next bullet) allows you to compress the IP packet headers only.

In addition to the standard operating mode, SLIP supports the following modes:

e In CSLIP (Compressed SLIP), the packet headers in transmitted IP packets are compressed by the Van—Jacobson
algorithm to utilize slow modem connections better.

e SLIP6 uses only printable ASCII characters for data transmission. This is necessary when the underlying modem
connection cannot transmit all control characters of the ASCII alphabet—for example, because the XON and XOFF control
characters are used for flow control. However, a maximum payload of 6 bits per character can be transmitted in this
way, and so the transmission rate drops by one-quarter.
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7.1.1 Packet Detection and Character Stuffing

A serial interface or a modem connection is designed for the transmission of continuous byte sequences. To be able to send
data packets of the IP protocol over such a connection, the sender has to insert special markings, which are then used by the
receiver to detect the end of each packet. In SLIP, this is implemented so that the gnp control character (byte code 192) is
inserted before and after each packet.

e To ensure unique detection of packet boundaries, the gnp character must never occur inside a packet. Of course, this
constraint is undesirable, because we want to be able to transmit arbitrary data packets transparently. To maintain this
code transparency, three additional control characters (sc, rsc enp, and esc esc) are used to implement a so-
called character stuffing (shown in Figure 7-2): B B

e Each occurrence of gnp in packet data is replaced by the esc Esc_enp string.
e Each occurrence of rsc in packet data is replaced by the Esc Esc_Esc string.

Figure 7-2. SLIP marks packet boundaries and uses character stuffing at the sender side.
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The receiver can reverse character stuffing as follows to reconstruct the original IP packet:

e If the rsc character occurs, then the next character is ESC_ESC OF ESC_END- In this case, the first g5c is deleted, and
the second character is replaced by gsc or EnD.

o If the gnp character occurs, then this is the end of that packet, and so the packet can be forwarded to the IP layer.

Table 7-1 lists the four control characters used by SLIP and their byte codes.

Table 7-1. SLIP control characters.

Character Byte Code
END 192
ESC 219
ESC_END 220

ESC_ESC 221
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7.2 Slip Implementation in the Linux Kernel

Before we describe the SLIP implementation in the Linux kernel, we will first discuss the concept of TTY devices and TTY line
disciplines, the better to illustrate how SLIP is implemented in Linux. Subsequently, this section will give an overview of the most
important functions of the SLIP implementation before we describe the steps involved in implementing SLIP in detail.

7.2.1 TTY Devices and Line Disciplines

In Linux, all devices that can act as terminals are grouped under the collective term TTY (Teletype or Terminal Type). Table 7-2
shows several examples. A TTY device is a character device offering special functions to control a terminal. This includes, for
example, the flag for whether the terminal should produce an echo and commands to position the cursor and change color.

Table 7-2. Examples of TTY devices.

/dev Entry Meaning
tty0-tty7 virtual consoles
pty# pseudo-terminals—

e.g., xterm window

ttyS# serial interfaces

A TTY device can generally switch between different TTY line disciplines. This means that, in the Linux kernel, each system call
toread (read()),write (write()),0rcontrol (ioct1 ()) invokes a routine specific to this line discipline. More specifically,
the implementation of a TTY line discipline is inserted between the TTY device driver (low-level driver), which is in charge for
the actual input and output, and the user process that wants to access the TTY device. (See Figure 7-3.)

Figure 7-3. Interplay between TTY line disciplines and TTY device drivers.
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One possible use for a TTY line discipline is the automatic conversion of all line ends between UNIX and Windows computers (LF
versus CR/LF). In addition, TTY line disciplines offer an elegant means whereas serial interfaces can intercept and change all
data transmitted over a serial interface without the need for the TTY line discipline driver to open and close the serial interface
or to establish a modem dialup connection.

To register a new TTY line discipline with the Linux kernel, the driver has to first create a t+y 1disc structure (declared in

<include/linux/tty ldisc.h> ) and set the function pointers contained in it. Subsequently, this data structure is
registered by tty register ldisc() with the kernel to make the new TTY line discipline available for user programs.

struct tty ldisc include/linux/tty_ldisc.h

The tty ldisc Structure includes a number of function pointers, which have to be set by the driver of the TTY line discipline.
The following code briefly explains the most important function pointers.

struct tty ldisc {
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char *name;
int num;
int flags;
/*
* The following routines are called from above.
*/
int (*open) (struct tty struct *);
void (*close) (struct tty struct *);
void (*flush buffer) (struct tty struct *tty);

ssize t (*chars in buffer) (struct tty struct *tty);
ssize t (*read) (struct tty struct * tty, struct file * file,
unsigned char *buf, size t nr);
ssize t (*write) (struct tty struct * tty, struct file * file,
const unsigned char * buf, size t nr);

int (*ioctl) (struct tty struct * tty, struct file * file,
unsigned int cmd, unsigned long arg);
void (*set _termios) (struct tty struct *tty, struct termios * old);

unsigned int (*poll) (struct tty struct *, struct file *,
struct poll table struct *);

/*
* The following routines are called from below.
*/
void (*receive buf) (struct tty struct *, const unsigned char *cp,
char *fp, int count);
int (*receive room) (struct tty struct *);
void (*write wakeup) (struct tty struct *);

The following functions are called from "above" (i.e., by the program or module accessing the TTY device):

The function open () is called as soon as the TTY device switches to this line discipline.

The function c10se () is called when the current TTY line discipline is deactivated. This happens when a TTY device
switches from this line discipline into another one (where the device is first reset to the standard line discipline n_TTx by
the Linux kernel) and when the TTY device itself is closed.

The function read () is called when a program wants to read data from the TTY device.
The function write () is called when a program wants to send data to the TTY device.

The function ioct1 () is called when a program uses the system call 1 oct1 () to change the configuration of the TTY
line discipline or of the actual TTY device, but only provided that the higher-layer generic driver for TTY devices was
unable to process the ioct1 () call (as is the case, for example, when the device switches to another TTY line
discipline).

The following functions are called from "below" (i.e., from the actual device driver of the TTY device):

e The function rece ive buf() IS called when the device driver has received data and wants to forward this data to the
higher-layer program (i.e., to the driver of the TTY line discipline in this case). The parameters passed include the
address and length of data.

e The function receive room() is called by the device driver to request the maximum number of bytes that the TTY line
discipline can accept with receive buf () -

e The function write wakeup () optionally can be called by the device driver as soon as it has finished sending a data
block and is ready to accept more data. However, this happens only provided that it has been explicitly requested by the
flag TTY DO WRITE WAKEUP <linux/tty.h>-

7.2.2 General Procedure

The lifetime of a SLIP connection under Linux consists of the following phases: the sections below will explain how they are

implemented in the Linux kernel:

Initialize the SLIP driver: the driver is initialized either when the system boots or when the driver module s1ip.o is
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Establish the connection: A user program (e.g., dip OF slattach) Uses a modem connected to a serial interface
(e.9.,/dev/ttyso) to dial to an Internet provider, and then switches the TTY line discipline of this serial interface to
sLIP. At the same time, the SLIP operating mode (e.g., cs.Ip Or s1.1p6) has to be set correctly.

Activate and configure the network device: Once the TTY line discipline has been switched to SLIP, a new network device
is available, and the name of this device begins with "sI" (e.g., s10). i fconfig €an then be used to activat and
configure this network device (e.g., by assigning valid IP addresses to both ends of the SLIP connection).

Exchange data: As soon as the network device has been configured correctly, the SLIP connection is available for sending
IP packets.

Deactivate the network device: Before the SLIP connection is torn down, the network device has to be deactivated by

ifconfig:-

Tear down the connection: The user program (gip OfF slattach) Separates the underlying modem connection, which
causes the network device to be deregistered.

Deinitialize the SLIP driver: As soon as the driver module s1ip.o has been removed from the Linux kernel, it frees its
memory and undoes the registration of the SLIP TTY line discipline.

7.2.3 Functions and Data Structures

The files grivers/net/slip.c and drivers/net/slip.h contain the source code for the SLIP implementation in the
Linux kernel. Compression of the IP packet headers by the Van-Jacobson method (CSLIP) is implemented in
drivers/net/slhc.c . However, this implementation will not be discussed in detail in what follows.

struct slip drivers/net/slip.h

o The SLIP driver represents each SLIP connection by a s11p structure. This structure includes pointers to the

net device structure of the relevant SLIP network device and to the tty struct structure of the underlying TTY
device. (See Figure 7-4.) The s1ip structure includes buffer pointers and counters to send and receive data. In addition,
it stores the SLIP mode (e.g., CSLIP or SLIP6). In total, the s11ip structure consists of the following fields:

Figure 7-4. Important data structures of the SLIP implementation.
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e tty points to a structure of the type tty struct, which represents the TTY device allocated to this SLIP channel. This

structure also includes a tty ldisc structure with the TTY line discipline currently active (in this case, naturally, SLIP).

o dev points to the net device structure with the data of the network device allocated to the SLIP connection.
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structure.
e mode specifies the active SLIP operating mode (e.g., s, MODE SLIP, SL MODE CSLIP, Of S, MODE SLIP6 ).
e rpuff points to the receive buffer, which is used to buffer data incoming over the TTY device.
e rcount iS the number of data bytes currently present in the receive buffer.
e xpbuff points to the transmit buffer, which buffers data ready to be output over the TTY device.
e xhead points to the first character in the transmit buffer that has yet to be sent.
e xlerft specifies the number of bytes still waiting in the transmit buffer (from xhead)-

The SLIP functions can be divided into three categories: general management functions, functions to implement the SLIP TTY
line discipline, and functions to implement SLIP network devices. The functions used to implement network devices can be
recognized by the prefix 51 »; the other functions have the prefix ns1ip ». Figure 7-5 gives an overview of the functions
discussed below. The following section also explains their interplay with other parts of the Linux kernel.

Figure 7-5. Functions of the SLIP implementation and their integration in the Linux kernel.
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slip_init_ctrl dev() drivers/net/slip.c

This function is called by init_module () when the SLIP module is loaded, and it uses the function tty register ldisc
() to register the SLIP TTY line discipline with the Linux kernel.

slip open () drivers/net/slip.c

This function is invoked by the function pointer open () inthe tty 1disc structure as soon as a user program wants to switch
a TTY device to the SLIP line discipline. It reserves memory for the transmit and receive buffers and registers the new network
device for the SLIP connection with the Linux kernel.

sl init() drivers/net/slip.c

This function is invoked by the Linux kernel whenever a new network device is registered, and it does a complete initialization of
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sl open () drivers/net/slip.c

This function is invoked by the function pointer open () of the net device Structure as soon as the SLIP network device is
activated (e.g., by the command i fconfig up)-

sl close() drivers/net/slip.c

This function is invoked by the function pointer stop () Of the net device Structure as soon as the SLIP network device is
deactivated (e.g., by the command i fconfig down)

slip close() drivers/net/slip.c

This function is invoked by the function pointer c10se () of the tty ldisc Structure whenever the underlying TTY device is
switched from the SLIP line discipline to another line discipline.

cleanup module () drivers/net/slip.c

This function is invoked whenever the SLIP module is removed. Among other things, it ensures that all buffers are freed and all
SLIP network devices are deregistered. Finally, the registration of the SLIP TTY line discipline with the Linux kernel is removed

by calling tty register ldisc(N SLIP, NULL)-

sl xmit () drivers/net/slip.c

This function is invoked by the IP layer, which uses the function pointer hard_start_xmit () of the net device Structure
to output an IP packet over the SLIP network device. The actual work is delegated to the function g 1 _encaps () -

sl encaps() drivers/net/slip.c

This function is invoked by s1 xmit () - As explained in section 7.1.1, it converts the IP packet into a byte sequence. Depending
on the SLIP operating mode (CSLIP, etc.), other functions may be called in addition (e.g., the function 51 ip esc() )
Subsequently, s1 encaps () invokes the function yrite () of the underlying TTY device driver, which eventually sends the
byte sequence previously created over the TTY device.

slip esc() drivers/net/slip.c

This function is invoked by s1_encaps () and does the character stuffing described in Section 7.1.1. A similar function called
slip esc6 () eXists for the SLIP operating mode SLIP6, which additionally divides the data into 6-bit blocks and converts it into
printable characters.

slip write wakeup () drivers/net/slip.c

This function is invoked by the underlying TTY device driver over the function pointer write wakeup () of the tty ldisc
structure (see Section 7.2.1) as soon as the TTY device is ready to accept more data. (See also Section 7.2.7.)

slip receive room() drivers/net/slip.c

This function is invoked by the underlying TTY device driver over the function pointer receive room() Ofthe tty 1disc
structure and simply returns the value 65536, because the SLIP implementation can process a maximum of 65536 bytes per call
of slip receive buf () -
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slip receive buf ()

This function is invoked by the underlying TTY device driver over the function pointer receive buf () of the tty 1disc
structure to transfer data from the TTY device to the SLIP driver. The function slip unesc() (slipiunesc6 (), for the
SLIP6 operating mode) is invoked to convert the incoming byte stream back into IP packets.

slip unesc/() drivers/net/slip.c

This function is invoked by s1 ip receive buf () ; it converts the incoming byte stream into IP packets, using the method
described in Section 7.1.1. The function s1 pump () is invoked as soon as the gnp control character specifies that a complete
IP packet was received. There is a corresponding function (s1 ip unescé () ) for the SLIP6 operating mode.

sl bump () drivers/net/slip.c

This function is invoked by slip unesc () (or slip unescé () ) as soon as a complete IP packet was reconstructed from the
byte stream received. It generates a corresponding sk buff structure and invokes the function netif rx () to forward the
packet to the IP layer.

7.2.4 Initializing the Driver and Establishing a Connection

The initialization function of the SLIP driver (s1ip init ctrl dev () ) isinvoked when the SLIP driver is loaded into the
Linux kernel (by the command insmod s1ip, by the kernel daemon, or, if the SLIP driver is permanently integrated into the
Linux kernel, during booting). This initialization function registers the SLIP TTY line discipline with the Linux kernel. For this
purpose, a tty ldisc Structure, s1 1disc, is created, which contains pointers to the functions of the SLIP driver, and
tty register ldisc (N_SLIP, &sl ldisc) registers the new line discipline.

A modem connection is established by a user program (e.g., dip) regardless of the SLIP driver. To establish a modem
connection, the gip program can call a script, which registers with the system at the other end of the line (i.e., with the PoP of
the Internet provider) and also starts a SLIP implementation at that end. Subsequently, it uses the system call 10ct1  (tty,
TCIOCSETD, N sSLIp) toswitch the corresponding TTY device (e.g., /dev/ttys0) to SLIP. Alternatively, the user program
slattach can be used to switch an existing modem connection to SLIP line discipline.

The above ioct1 () call causes the function t+y set 1disc() to beinvoked in the generic TTY driver; that function, in
turn, invokes the routine s1ip open Of the SLIP driver. The latter reserves memory for a s 1ip structure and for the transmit
and receive buffers and uses the system call register netdevice () to register a new network device, by the name of
s1#, with the system kernel. A net device Structure is passed to this system call (see Section 5.1.1), and the function
pointer 1nit () in this structure points to the function s1 init () -

To initialize the new network device, the Linux kernel invokes the function sl _init() immediately after the above actions. The
function sl _init() initializes the net device structure—for example, by setting the function pointers remaining in the
net_device structure (including pointers to the functions s1_open (), s1 close(),and s1_xmit () )-

7.2.5 Activating and Deactivating a Network Device

A user can now use the command i fconfig up to activate the new network device. This activation invokes the function

sl open () inthe Linux kernel. The user program passes parameters (e.g., the IP address or the MTU) during that action.
Subsequently, packets can be sent over the SLIP network device or received from that device. However, to be able to actually
transmit packets, we have to set an appropriate route (either automatically, by i fconfig, or by another user program).

The above steps are done in reverse order to tear down a SLIP connection. More specifically, i fconfig iS used to deactivate
the network device. Any route registered for this device is now deleted automatically by the Linux kernel, so that no more data
can be sent over this network device. The user can then use the command i frconfig down to cause the routine s1 close
() to be invoked in the Linux kernel. This routine informs the driver that the network device was deactivated, but it doesn't free
the relevant data structures just yet. Subsequently, no more data can be sent or received over this SLIP device.

7.2.6 Tearing Down a Connection and Deinitializing the Driver

The SLIP TTY line discipline might need to be terminated for several reasons: First, it is possible that a user program calls the
system call c10se () or the Linux kernel calls the function tty hangup () to0 close a serial connection. In the latter case, the
Linux kernel resets the line discipline of the relevant TTY device automatically to the standard value v t7v. Second, it can
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invokes the routine 51 ip close() In the SLIP driver. This routine does some cleanup work (e.g., it decrements the usage
counter of the SLIP module).

When the SLIP module is removed (by the command rmmod s1ip, OF automatically), then the function c1eanup module ()
is invoked. First of all, this function ensures that all open SLIP connections are closed by the function tty hangup () and that
all SLIP network devices are removed. Subsequently, it deregisters the SLIP TTY line discipline by calling

tty register ldisc (N SLIP, NULL).After that, the SLIP TTY line discipline is no longer known in the system, and
user programs can no longer use it.

7.2.7 Transmitting IP Packets

To transmit an IP packet, the IP layer invokes the function s1 xmit () and passes an sk buff Structure to this function. This
causes s1 encaps () to beinvoked, which uses the functionfslip esc() todo character stuffing and marks packet
boundaries. (See Section 7.1.1.) Subsequently, the converted packet is in the transmit buffer, and the pointer xpu £ in the slip
structure points to this buffer.

To output data to the TTY device, s1 encaps () invokes the write () routine of the relevant device driver. This routine
returns the number of bytes that can actually be transmitted in one shot. Subsequently, the x1e £+ variable is set to the number
of bytes still missing, and the xneag pointer is set to the first of these bytes.

Because the function s1 encaps () hassetthe flag Ty po wriTE wakeup , the TTY device driver invokes the function
slip write wakeup () assoon as it has transmitted the announced number of bytes. Next, the function

slip write wakeup () tries to transmit the remaining x1eft bytes, starting from the position xhead. The write ()
routine of the device driver, once more, returns the number of bytes to be actually transmitted, which causes xhead and
xleft to be adapted accordingly. This process is repeated until the complete IP packet has been transmitted successfully, so
that x1e £t equals null.

7.2.8 Receiving IP Packets

As soon as data have arrived over the TTY device, the device driver invokes the function 51 ip receive buf () of the SLIP
driver. The maximum number of bytes passed to s1ip receive buf Were previously polled (65536 for the SLIP driver) by
the function s1ip receive room() -

The function s1ip receive buf () invokes the function s1ip unesc () for each single buffer character, to undo the
character stuffing described in Section 7.1.1 and detect the boundaries of IP packets. More specifically, for a normal character,
slip unesc () Writes the character passed to the receive buffer, rpy £, and increments the counter rcount . If the special
character gsc is detected, then it is understood that the next character (esc Esc or esc enp) has to be treated
appropriately. B B

If the gD character is found, then s1ip unesc () forwards the ready packet to s1 pump () and deletes the rpurf receive
buffer by resetting rcount to null. The function 51 bump () reserves memory for an sk puff Structure, copies the readily
reconstructed IP packet into this structure, and calls the function netif rx () to pass the sk buff structure to the IP layer
for further processing. B B
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8.1 Introduction

The Point-to-Point protocol (PPP) can be used by two computers connected directly (i.e., not over a local area network) to
communicate. PPP is defined in RFC 1661 [Simp94a]. A typical application for PPP is dialing into the Internet over a modem; see
Figure 8-1. In this case, it increasingly replaces the older SLIP protocol (see Chapter 7), which has proven to be not as flexible
as modern applications demand.

Figure 8-1. Scenario for the use of PPP.
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In contrast to SLIP, PPP is multiprotocol enabled. In addition to IPv4, IPv6, and a large number of other network protocols, PPP
also supports several subprotocols, which handle authentication and configuration tasks (e.g., negotiating important connection
parameters and allocating dynamic IP addresses).

The architecture of PPP is basically designed for peer-to-peer communication. Nevertheless, in the case of a dialup connection
to the Internet, the point of presence is often called server and the dialing computer is called client. Though the protocol allows
both ends of a connection to expect that the peer authenticate itself and allocates it a dynamic IP address, this would naturally
not make much sense when dialing into the Internet.

Linux distinguishes between synchronous and asynchronous PPP, depending on whether the underlying TTY device supports
packet-oriented data transmission (synchronous—for example, in ISDN with HDLC as the layer-2 protocol) or it works with a
continuous byte stream (asynchronous—e.g., in a modem connection).

We will discuss the asynchronous transmission over a serial interface in more detail later, because it requires more protocol
functionality than synchronous PPP. The ISDN subsystem of Linux has its own, independent PPP implementation, which is not
discussed here.

8.1.1 Subprotocols

Figure 8-2 shows the structure of a (synchronous) PPP packet. Synchronous PPP always processes entire frames of the lower-
layer protocol, which is the reason why it is not necessary to specify the length. Asynchronous PPP additionally requires a frame
detection, similar to SLIP. (See Section 7.1.1.) Section 8.3.5 describes how this frame detection is implemented in PPP.

Figure 8-2. Structure of a PPP packet.
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The first 16 bits of a PPP packet specify the content encapsulated in the payload field. Table 8-1 gives an overview of the
protocol numbers used. These numbers are built by the address-extension scheme of the HDLC protocol [IS093], so that the
protocols most frequently used can be encoded in one single byte. This means that all protocols have numbers where the first
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truncating the protocol field to 8 bits means that both communicating peers have to support this mode. Linux doesn't know this
short version, and such configuration attempts of the peer are blocked off.

Table 8-1. Protocol nhumbers for PPP packets.

Number Protocol
0x0001-0x3FFF network-layer protocols (e.g., IPv4, IPv6, IPX)
0x4001-0x7FFF transmission of small payload amounts without network-

layer protocol (low-volume traffic)

0x8001-0xBFFF subprotocols to configure the network layer (network-control
protocols—e.g., IPCP)

0xCO001-0xFFFF subprotocols to establish a PPP connection (link-layer control
protocols—e.g., LCP, PAP, CHAP)

The current PPP implementation in Linux can transport four layer-3 protocols: IP, IPv6, IPX, and AppleTalk—which are exactly
the protocols that the network layer can handle. The higher-layer network protocol of PPP is handled transparently, so it is easy
to add new protocols.

In addition, PPP has so-called subprotocols, which are handled directly by the PPP instance, rather than by forwarding them to
the network layer. The most important subprotocols are the following:

e LCP (Link Control Protocol): Subprotocol to configure PPP instances.

e PAP (Password Authentication Protocol): Authenticates the user by clear-text password (often used by Internet service
providers).

e CHAP (Challenge Handshake Authentication Protocol): Secure user authentication over a challenge-response mechanism,
where the user's password is not transmitted in clear text.

e IPCP (IP Configuration Protocol): Subprotocol to configure the IP layer (e.g., to allocate IP addresses once a PPP
connection has been established).

8.1.2 Components of the Linux Implementation

The Linux PPP implementation is composed of four parts: a generic PPP driver, one TTY line discipline (see Section 7.2.1) each
for asynchronous and synchronous TTY devices, and a user-space daemon, pppd.

Figure 8-3 gives a rough overview of how these components interact. Some of the communication channels represented in this
figure are used, if at all, only during the establishment and teardown of connections; they are shown by dashed lines in the
figure.

Figure 8-3. Interaction of the PPP components.
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While the generic PPP driver is communicating with the network layer and one of the drivers (for asynchronous or synchronous
PPP) is serving the underlying TTY device, pppq is responsible for the correct interaction of all components. 1t is also
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Each instance of pppd corresponds to exactly one PPP network device ppp0, ppp1, €tc.). This allows several independent PPP
interfaces, each having its own settings. To let the PPP daemon communicate with the generic PPP driver, a special character-
oriented device with major number ppp maJor (108) is set up; normally, it is embedded under /dev /ppp in the file system.

The close interaction of all of these components makes it absolutely necessary to always use the pppd matching the Linux
kernel. Otherwise, pppa Will report a version conflict when the system starts.
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8.2 PPP Configuration in Linux

PPP drivers in the Linux kernel have comparatively few configuration options. The reason is that most settings were moved to
pppd, Which means that they can be changed at runtime or even set separately for different devices.

It is important to note that PPP over ISDN requires different settings, which have nothing to do with the settings discussed in this
section, because the ISDN subsystem includes its full PPP implementation. This applies particularly to the kernel options, but also
to the pppa configuration. To be able to use PPP over ISDN, for example, it is not necessary to activate the "normal” PPP in the
configuration of the Linux kernel.

8.2.1 Kernel Options

The Linux kernel version 2.2 included only one option that could be used to enable or disable the full PPP support. Version 2.3
introduced three additional setting options (shown in Table 8-2).

Table 8-2. PPP driver options in the Linux kernel.

Option Meaning

CONFIG PPP Activates the generic PPP.

CONFIG PPP ASYNC Activates the asynchronous PPP.

CONFIG PPP DEFLATE Supports payload compression.

CONFIG_PPP BSDCOMP Supports alternative payload
compression.

The payload compression by the deflate option is preferred over the BSD compression algorithm, because it is free from patents
and more effective. By the way, the deflate algorithm is also used in gz ip.

8.2.2 pppd—the PPP Daemon

As was mentioned before, most settings are effected by pppd. The configuration files required for these settings are normally
stored in the directory /etc/ppp/ . See also the manpage of pppd, Files section, for details.

Upon startup, pppd reads first the general configuration file options and then a device-specific configuration file (e.g.,
options.ppp0 ). In addition, there is a possibility of adding user-specific settings in sHoME/ . ppprc - These files include
information about the serial interface to be used, about whether configuration requests of the peer should be accepted, and
about which user name will be used to log into the peer. The following represent some important entries in the configuration
file; however, they do not represent a full configuration:

# Options for pppd over a serial line
# /etc/ppp/options

modem # use the modem control lines

crtscts # use hardware flow control

lock # create lockfile to ensure exclusive access
defaultroute # set default route to this interface

debug # enable connection debugging facilities

user egon

The user name in the last line serves as key for the entry in the pap-secrets and chap-secrets files, which include the passport
of each user in a PAP or CHAP authentication. Both files have the same structure and include clear-text passwords, so the user
root should have exclusive read access to these files:

# Secrets for authentication using PAP

# /etc/ppp/pap-secrets

# client server secret IP addresses
"egon" * "mypassword"

"hugo" * "myotherpassword"
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The structure of the underlying physical connection is left to an external program. For modem connections, this program has to
deal particularly with the modem initialization, dialing of the correct phone number (perhaps from a choice of several numbers),
and appropriate handling of error messages output by the modem. ~nhat is a program especially suitable for this task; it
processes a special script (the so-called chatscript) and is included in the pppd package. Of course, you don't need a chatscript
to connect two neighboring computers over a null-modem cable.

pppd Offers a way to run shell scripts after successful establishment of a connection or before a connection is torn down. The
most popular scripts are i p-up and ip-down-. The ip-up Script is invoked as soon as an IP address was allocated to the end
system. It can be used, for example, to send all waiting mails automatically. It is less well known that a number of different
scripts can be invoked, in addition to i p-up and ip-down. For example, quth-up is invoked as soon as the user
authentication over PPP or CHAP was successful, but before the network protocol used (e.g., IP) is initialized, and ipv6-up and
ipx-up are the counterparts to 1 p-up for IP Version 6 and IPX, respectively. Of course, there is a corresponding "down" script
to each of these "up" scripts.

8.2.3 Dial on Demand
Since Version 2.3, pppd supports the dial-on-demand mode directly (i.e., no additional program, such as diald, is required).

The dial-on-demand mode means that a PPP connection is established automatically when needed (i.e., when IP packets are
ready to be output from the corresponding network device). If the connection remains idle for a specific (configurable) period,
then pppd tears it down automatically. This means that the expensive telephone line is used only upon demand, and the user
does not have to dial. The only drawback of this mode is that it introduces a certain delay until the connection is up.

This functionality is implemented by the state puase porManT . (See Section 8.4.2.) pppd assumes this state before a peer
dialed, if the option gemand is stated in its configuration file. In this case, the generic PPP driver in the Linux kernel sends
outgoing IP packets for the respective PPP device directly to pppd, which dials into the provider, rather than to the
asynchronous driver.

To better control the cost, the option sctive-filter €an be used to specify a filter to decide which network traffic is
important enough to establish a connection. Detailed information about this functionality is found in the manpage of pppg in the
Options section.

8.2.4 Automatic Callback

The automatic callback function means that the client first dials normally to a remote server. During the configuration phase,
however, the client uses the PPP subprotocol CBCP (Call Back Configuration Protocol) to request a callback. Subsequently, the
connection is torn down, and pppd terminates with return value 14. If the server is configured appropriately, then it calls back
the client, so that the client and the server, in effect, switch their roles. This functionality is suitable, for example, when a
company wants to assume the cost for its teleworkers dialing into company computers.
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8.3 PPP Implementation in the Linux Kernel

As mentioned before, the PPP implementation in Linux is divided into four different tasks: three kernel modules and the pppd
user space daemon. During design of this division, care was taken to move as little functionality as possible into the Linux kernel.
For this reason, the kernel modules are rather simple. pppd includes 13,000 lines of code (2,100 lines alone in main. c), which
means that it is four times the size of the three kernel modules (ppp generic.c, ppp synctty.c,and ppp async.c)
together. In the following sections, we will first discuss the generic PPP driver and then the driver for the asynchronous PPP TTY
line discipline. The driver for the synchronous PPP line discipline is relatively simple, so we will not discuss it here.

8.3.1 Functions and Data Structures of the Generic PPP Driver

Figure 8-4 shows the most important data structures of the generic PPP driver. There is a separate ppp structure with general
management information for each PPP device. Some important entries, particularly the transmit and receive queues, xq and rq,
are in a substructure of the type ppp £i1le. This substructure is also found in the channel structure, which is used to manage
single channels in multilink PPP, which will not be discussed here, for the sake of simplicity.

Figure 8-4. Important data structures of the generic PPP driver.

[View full size image]

file Sile_operations
(fdevippp) (ppp_ file_operations)

f_op —I_> read b= ppp_read()
. wrile = ppp_write()
private_data ioctl = ppp_ioctl()
apen = ppp_open()
release = ppp_release()
ppp_file
rep )
- file xg
. re
dev
nel_device
= pame: ,ppp..©
init e ppponel_init( )
priv
hard_starl_xmil s ppp_start_xmit()

There is a PPP device for each network device, the net device Structure of which refers to the related ppp structure in the
field priv. In addition, the PPP daemon can send and receive control packets of subprotocols (see Section 8.1.1) over the
device /dev/ppp- For this purpose, it must first bind the device /qev/ppp to a specific PPP device by use of an ioct1 () call.
This binding means that a pointer to the ppp structure is entered into the field private data Of the relevant file structure.

ppp_init () drivers/net/ppp_generic.c

This function is invoked by in it module () Whenever the PPP module is loaded: It uses the function
devs register chrdev () to register the character-oriented device /dev/ppp (See Section 8.1.2) with the Linux kernel.

ppp_cleanup () drivers/net/ppp_generic.c
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This function is invoked whenever the PPP module is removed. It frees all data structures used and deregisters the
device /dev/ppp .

ppp_open () drivers/net/ppp_generic.c

This function is invoked by the function pointer open() in the £i le operations Structure as soon as the PPP daemon opens
the device /dev/ppp-

ppp_release () drivers/net/ppp_generic.c

This function is invoked by the function pointer re1ease () iNthe file operations Structure as soon as the
device /dev/ppp IS closed again.

ppp_write () drivers/net/ppp_generic.c

This function is invoked by the function pointer write () inthe file operations structure when the PPP daemon sends a
PPP control packet over the device /dev/ppp- For this, a matching ppp fi1e structure is determined and passed to the
function ppp file write() asthe pf parameter. First, an sk burf structure with the data to be sent is created in this
function and appended to the transmit queue pf->xq by skb qu_eue tail () ; then it is output to the underlying network

device by ppp_xmit process() -

ppp_read () drivers/net/ppp_generic.c

This function is invoked by the function pointer read () inthe file operations Structure when the PPP daemon wants to
receive PPP control packets over the device /dev/ppp- AS With ppp write () , @ Matching ppp £ile structure first is located
and passed to the function ppp file read() asthepf parameter. In this function, add wait queue () first waits for
packets to arrive in the receive queue pr->rq; then the incoming packets are read by skb dequeue () -

ppp_ioctl () drivers/net/ppp_generic.c

This function is invoked by the function pointer ioct1 () in the file operations Structure when the PPP daemon uses an
ioctl () call for the device /dev/ppp to change various parameters of the PPP drivers in the Linux kernel.

ppp_unattached ioctl () drivers/net/ppp_generic.c

This function is invoked by ppp ioctl () When the device /dev/ppp has not yet been bound to a PPP device and so (the
private data field of the related file structure has the value 0). Its tasks include the ioct1 () call pppTOCNEWUNTT, Which
creates a new PPP device and writes a pointer to the relevant ppp structure in the field £3 le->private data-

ppp_net init () drivers/net/ppp_generic.c

This function is invoked by the Linux kernel whenever a new PPP network device is registered. It initializes the net device
structure; in particular, the function pointers described below are set.

ppp_start xmit () drivers/net/ppp_generic.c

This function is invoked by the function pointer hard start xmit () inthe net device structure of the IP layer to output
an IP packet over the PPP network device. First, the required PPP header is added, then sxp queue tail() addsthe
complete packet to the transmit queue (similarly to the function ppp write () ), and finally ppp xmit process() outputs
the packet to the underlying network device. B B B
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This function is responsible for outputting all packets waiting in the transmit queue ppp->file.xq to the underlying device.
The auxiliary function ppp send frame () , Which can optionally compress the PPP packets, is used for the actual output.

ppp_input () drivers/net/ppp_generic.c

This function is invoked by the driver of the underlying TTY line discipline (asynchronous or synchronous) as soon as a PPP
packet has been received. After a defragmenting of the packets, if necessary, the function ppp do recwv () is invoked for
further processing; then this function forwards the packet to ppp receive frame () -

ppp_receive frame () drivers/net/ppp_generic.c

This function checks for whether multilink PPP is activated and forwards an incoming PPP packet to either the function
ppp_receive mp frame () (with multilink PPP) or ppp_receive nonmp frame () (without multilink PPP).

ppp_receive nonmp frame () drivers/net/ppp_generic.c

When a PPP packet arrives, this function first undoes the compression, if applicable, and then checks for whether it is a data
packet or a control packet of a subprotocol. (See Section 8.1.1.) If it is a control packet, then sxb queue tail () adds the
packet to the receive queue, where it can be read by the PPP daemon over the device /dev/ppp . If it is a data packet, then the
payload is packed in an sx puff Structure with the correct protocol identifier and passed to the network layer by calling

netif rx() -

8.3.2 Functions and Data Structures of the Asynchronous PPP Driver

The asynchronous PPP module essentially supplies a new TTY line discipline (see Section 7.2.1), by the name of v ppp, and
representing an intermediate layer between the generic PPP driver and the driver of the underlying TTY device.

Figure 8-5 gives an overview of the most important data structures. The driver's state information is maintained in an

asynctty Structure. As in the SLIP implementation (see Section 7.2.3), there is a reference to the tty struct structure of
the underlying TTY device, which contains a tty 1disc structure for the PPP TTY line discipline.

Figure 8-5. Important data structures of the asynchronous PPP driver.
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A ppp channel structure (which will not be discussed in detail here) is used to reach both the ppp structure of the relevant
generic PPP driver and a structure of the type ppp channel ops, Which includes function pointers to, among others, the
function ppp async send() described further below. Inversely, the ppp structure of the generic PPP driver can be used to
reach the relevant ppp channel Structure (and thus the function pointers in ppp channel ops ) Over several detours
(which will not be described here, to keep things simple). This is important for being able to pass outgoing packets to the
function ppp async send () in case of asynchronous PPP.
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ppp_async_init () drivers/net/ppp_async.c

This function is invoked whenever the ppp_async.o module loads. It uses tty register ldisc() to register the PPP TTY
line discipline with the Linux kernel.

ppp_async_cleanup () drivers/net/ppp_async.c

This function is invoked whenever the PPP async.o module is removed. It calls tty register ldisc(N PPP, NULL) to
deregister the PPP TTY line discipline.

ppp_async_send () drivers/net/ppp_async.c

This function is invoked by the function ppp_push () of the generic PPP driver over the function pointer start _xmit () in the
ppp_channel ops structure (see Figure 8-5) as soon as a PPP packet is ready to be sent. It forwards the packet to the
function ppp_async_push () »

ppp_async_push () drivers/net/ppp_async.c

This function is invoked by the function ppp async send () to transmita PPP packet. The function uses the auxiliary function
ppp_async_encode () to prepare the packet for asynchronous transmission and then sends it to the driver of the underlying
TTY device by repeatedly calling tty->driver.write() -

ppp_async_encode () drivers/net/ppp_async.c

This function uses the character stuffing described in Section 7.1.1 to transmit a PPP packet over an asynchronous device.

ppp_async_input () drivers/net/ppp_async.c

This function is invoked by ppp asynctty receive () assoon asnew data was supplied by the underlying TTY device. As
with the SLIP functionality (see Section 7.1.1), it undoes character stuffing and detects the beginning and end of PPP packets. As
soon as a packet has been read completely, it is forwarded to the function proce ss_input packet () -

process_input packet () drivers/net/ppp_async.c

This function is invoked by ppp async_input () as soon as a PPP packet has been read completely. First, the packet
checksum (Frame Check Sequence—FCS) is checked. After a number of additional checks, ppp input () is called eventually,
to forward the packet to the generic PPP driver.

ppp_asynctty open(), drivers/net/ppp_async.c
ppp_asynctty close()

These functions are invoked by the function pointers open () and c1ose () of the tty ldisc Structure as soon as a user
program switches a TTY device to the PPP line discipline or resets it to another line discipline. Essentially, an asynctty
structure is created in tty asynctty open () for the state data of the TTY line discipling, then initialized, and finally
released in tty asynctty close() -

ppp_asynctty read(), drivers/net/ppp_async.c
ppp_asynctty write ()

These functions are invoked by the function pointers read () and write () of the tty ldisc Structure whenever a program
attempts to send data to a TTY device in PPP line discipline or read from it. Its only functionality is that it returns an error
message, because all inputs and outputs of the asynchronous PPP driver run over the device /dev/ppp-
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ppp_asynctty room(), drivers/net/ppp_async.c
ppp_asynctty receive() s

ppp_asynctty wakeup ()

These functions correspond largely to the functions slip receive room(), slip receive buf (), and
slip write wakeup () of the SLIP implementation. (See Section 7.2.3). When data arrives, then
ppp_asynctty receive () invokes the function ppp_async_input () (as described earlier).

8.3.3 Initialization

When the PPP module ppp generic.o isloaded, then ppp init () first registers a character-oriented device with the major
number 108, which is normally embedded under /dev/ppp into the system. In the next step, the module uses

ppp async init () to register a new TTY line discipline (see Section 7.2.1) by the name "ppp" for the asynchronous PPP
driver (ppp _async .o) - This TTY line discipline is an intermediate layer between the device driver of the underlying device
and the ppp async.o module, which facilitates access to all incoming data packets. Once the /gev,/tty device and the PPP
TTY line discipline have been registered, the first initialization phase is completed.

The second phase is initiated by the calling of pppq. After a brief test of whether its version number matches the kernel driver
version, it opens the device /dev/ppp- It then obtains a file descriptor, which is required later to communicate with the generic
PPP driver; at first, however, only the reference pointer ysage count of the PPP device is incremented.

Next, a user process has to establish a physical connection (e.g., the chat program could dial the number of a dialup server). If
this action was successful, then pppd uses the system call 15ct1 (tty fd, TIOCSETD, N ppp) to change the TTY line
discipline to ;v ppp. It then uses ioctl (ppp dev fd, pppIQCNEWUNfT) to request the generic PPP driver to create a new
network device and then uses i oct1 (fd, PPPTOCATTACH) to bind the new network device to the underlying TTY device.

These steps complete the establishment of the actual PPP connection; now the PPP subprotocols, such as LCP, can start
authenticating the user and configure higher layers. (See Section 8.4.)

8.3.4 Transmitting IP Packets

The generic PPP driver accepts packets ready for transmission over two different routes: The network layer sends payload
packets over the matching network device (pppx), and the PPP daemon sends control packets over the character-oriented

device /dev/ppp .

Each data packet to be sent is passed to the function ppp_start xmit () by the network layer in an sk _buff structure.
(See Section 4.1.) This function appends a 2-byte PPP header (see Figure 8-2) to the beginning of the packet and stores the
packet in the transmit queue ppp->xq. Virtually the same thing happens in ppp write () , the function that accepts packets
from pppd.

Finally, the function ppp xmit process () IS invoked in each case. It takes packets from the transmit queue and forwards
them to the function ppp send frame () for further processing. Depending on the setting, the packet headers might be
compressed by the Van-Jacobson method and the deflate or BSD-Compress method might be used for payload compression.
After a forwarding to the function ppp async send() of the asynchronous PPP driver (or to the corresponding function of
the synchronous PPP driver), the generic PPP driver has completed its processing.

8.3.5 Detecting Frame Boundaries

Frame synchronization (framing) is implemented as a TTY line discipline in the asynchronous PPP driver
(drivers/net/ppp_async.c ) and follows the standard specified in [Simp94b]. Basically, this is an easily modified and
streamlined HDLC (High Level Data Link Control; see [ISO93]).

Section 7.1.1 briefly explained why framing is necessary: An asynchronous TTY device (e.g., @ modem connection) can process
only unstructured byte streams and not full packets, so it is necessary to mark the beginning and end of a packet specially. In
PPP, this is done by use of the special control character ppp rr.ac With the binary representation 91111110.

Of course, the remaining data stream should not inadvertently contain such special characters. To prevent special characters
from occurring, we use character stuffing. This means that all payload bytes corresponding to a control character, such as
PPP_FILAG, are prefixed by the character ppp Escape (binary 01111101). There are more control characters; see

include/linux/ppp.defs.h fora complete list.

Framing and character stuffing are largely implemented in the function ppp async encode () - A bit vector in the field xaccm
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8 bits in this vector corresponds to one of the 256 available 8-bit characters.
The following program dump from drivers/net/ppp async.c Shows how you can convert payload into a data stream:

#define PUT BYTE (ap, buf, c, islcp) do {
if ((islcp && c < 0x20) || (ap->xaccm[c >> 5] & (1 <
*buf++ = PPP _ESCAPE;
*buf++ = C ~ 0x20;

(c & 0x1£)))) {\

} else

-~ N

*buf++ = c;
} while (0)

In this code, is1cp is a flag set only for special LCP commands, which have to work even when the bit vector ap->xaccm has
not yet been initialized or has been wrongly initialized.

To protect against transmission errors, a 2-byte CRC checksum (Frame Check Sequence—FCS) is appended to the PPP packet
before the closing end character (ppp rFLAG) . If the packet was fully converted into a data stream, then the driver of the

underlying TTY device, which is called by tty->driver.write () , @ssumes the remaining work.

8.3.6 Receiving IP Packets

Receiving PPP packets over the asynchronous PPP driver works much as does sending packets, just in opposite direction:
Incoming data is first sent to the function ppp asynctty receive () Of the asynchronous PPP driver by the driver of the
underlying TTY device. Then the function ppp async input () searches for frame boundaries and undoes character
stuffing. The function process input packet () tests for whether the checksum (FCS; see Section 8.3.5) is correct. Finally,
the fully restored packet is passed to the function ppp input () Of the generic PPP driver.

Next, if the packet was compressed, it is now unpacked in the function ppp receive nonmp frame () (or, inthe case of
multilink PPP, ppp receive mp frame () )- On the basis of the protocol identifier in the first two bytes of the packet (see
Figure 8-2), a decision is made about whether the packet should be passed to the network layer in an sx puff Structure or
added to the receive queue ppp->rg, from which it can be read by pppa over the device /dev/ppp.

4 Frevious MNext b



This document is created with trial version of CHM2PDF Pilot 2.15.72.

4 Previous Mext b

8.4 Implementing the PPP Daemon

As was mentioned repeatedly in previous sections, the largest part of the implementation effort takes place in the PPP daemon,
pppd- One of the reasons is that it processes all subprotocols to control the PPP connection. To maintain expandability, utmost
care was taken to keep the implementation highly modular, and it has a clearly defined interface for subprotocol
implementations.

8.4.1 Managing Subprotocols

struct protent pppd/pppd.h

The core of the pppg interface for subprotocols is the protent Structure, which is defined in the file pppd/pppd.h- It
includes mainly entries for callback functions, which are always called whenever pppqg receives a packet that it allocates to this
subprotocol, given the protocol ID:

struct protent {

u_short protocol; /* PPP protocol number */

/* Initialization procedure */

void (*init) _ P((int unit));

/* Process a received packet */

void (*input) _ P((int unit, u char *pkt, int len));

/* Process a received protocol-reject */

void (*protrej)  P((int unit));

/* Lower layer has come up */

void (*lowerup) _ P((int unit));

/* Lower layer has gone down */

void (*lowerdown) _ P((int unit));

/* Open the protocol */

void (*open) _ P((int unit));

/* Close the protocol */

void (*close) _ P((int unit, char *reason));

/* Print a packet in readable form */

int (*printpkt)  P((u_char *pkt, int len,
void (*printer)  P((void *, char *, ...)),
void *arqg));

/* Process a received data packet */

void (*datainput) _ P((int unit, u char *pkt, int len));
bool enabled flag; /* 0 iff protocol is disabled */
char *name; /* Text name of protocol */

char *data name; /* Text name of corresponding data protocol */
option t *options; /* List of command-line options */
/* Check requested options, assign defaults */

void (*check options) P ((void));

/* Configure interface for demand-dial */

int (*demand conf) _ P((int unit));

/* Say whether to bring up link for this pkt */

int (*active pkt)  P((u_char *pkt, int len));

Each of the protocols known to pppd has exactly one entry in the global list st ruct protent protocols([]-
Figure 8-6 shows a flow diagram representing a simplified procedure of how a connection is established. The function init ()
is executed immediately after pppq has started. Shortly after that, the function check options () iSrunto handle settings, if

applicable, using command-line arguments or options in /etc/ppp/options -

Figure 8-6. Procedure involved when ., establishes a connection.
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The function 1owerup () is invoked for each subprotocol as soon as the lower layers are active. For LCP, the lower layer is the
TTY device concerned; all other sub-protocols wait for LCP in turn.

Authentication per PAP or CHAP is now triggered in the function 1ink established() INpppd/auth.c. Ifthe
authentication can be completed successfully, then the subprotocols are informed by the function pointer open () inthe
protent Structure, and they all can now start working. As soon as the PPP connection is closed again, all subprotocols are
notified accordingly by the function pointer c10se () . For the authentication protocols PAP and CHAP, the value NULL each is
entered for open () and close () as callback function.

8.4.2 States

The protocol logic of most subprotocols can be represented elegantly in the form of a finite state machine (FSM). To save cost
and avoid errors, the PPP daemon implements a generic FSM, which handles things like state transitions and timers. It is
implemented in pppd/fsm.c and primarily takes care that the correct callback functions are invoked at the right time.
Examples for subprotocols with an implementation that accesses this generic finite state machine include LCP and IPCP.

PPP itself, and thus the PPP daemon, also know different states; however, these states have little to do with the states of
subprotocols. These so-called phases are listed in Table 8-3. The PPP daemon behaves differently, depending on the state. For
example, it would be fatal to admit configuration protocols for the network layer, such as IPCP, before a successful
authentication.

Table 8-3. States (phases) of the PPP daemon.

State Meaning

PHASE INITIALIZE Initial state: pppq initialization.

PHASE DORMANT Waiting for activity (for dial-on-demand).

PHASE SERIALCONN Establish physical connection.

PHASE ESTABLISH Physical connection is up and running.

PHASE AUTHENTICATE Authentication in progress.

PHASE CALLBACK CBCP (see Section 8.2.4) is running.

PHASE NETWORK Network protocols are being configured.

PHASE RUNNING Higher layers can start working.

PHASE TERMINATE LCP requested connection to be torn down.

PHASE DISCONNECT Program to tear down connection has
started.

PHASE HOLDOFF Wait a little before the next connection is
established.

PHASE DEAD Connection was interrupted.

A callback function can be invoked upon request in each of these state transitions. To this end, the callback function need only
be added to the otherwise unused global variable new phase hook -
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9.1 Introduction

Chapter 8 introduced the Point-to-Point protocol (PPP). Today, it is most frequently used in access networks that use ADSL as
the access technology.

The ADSL (Asymmetric Digital Subscriber Line) access technology offers high-speed Internet access for private or commercial
customers. From the technical viewpoint, this is a dedicated line (i.e., a permanent connection). Dedicated lines are normally
billed on the basis of transmission volumes. In contrast, private Internet links are billed on a time basis. To enable ADSL to
support time-specific billing as well, a new protocol, PPPoE, was developed. PPPOE is based on two accepted standards—PPP
and Ethernet.

More specifically, an ADSL modem (NTBBA—Network Termination Point Broad-Band Access), installed behind a so-called

splitter, is connected to the computer over Ethernet. This means that the computer has to be equipped with an Ethernet network
card. This dedicated Ethernet line between the PC of the home user and the dialup computer of the access network operator is
used to establish a PPP connection, which allows the access network operator to identify the user and bill for the usage time
between the PPP dialup and the termination of that PPP session. This PPP connection can be used to exchange IP packets.

Figure 9-1 shows the resulting protocol stack. This chapter first introduces the PPPoE (PPP over Ethernet) protocol described in
[MLEC+99]. Then, it introduces the implementation in the user space, which is used in kernel Versions 2.2 and 2.3. Finally, this
chapter discusses the implementation in the kernel from kernel version 2.4 and up.

Figure 9-1. Protocol stack for the use of PPP over Ethernet.
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9.2 PPPOE Specification in RFC 2516

To be able to transport PPP protocol units over Ethernet, they are inserted as payload in Ethernet frames. For this purpose, two
new ethertype values were defined, which show the receiver that the Ethernet frame contains PPP payload.

The two different types serve to distinguish between two phases within PPoE: the discovery stage, and the session stage. A
typical discovery stage consists of four steps, which appear as follows (in Figure 9-2): The host sends a PADI (PPPoE Active
Discovery Initiation) packet to the Ethernet broadcast address to find out which access concentrators are available in the
Ethernet. One (or several) of these access concentrators replies by sending a PADO (PPPoE Active Discovery Offer) packet,
informing the host about the Ethernet address where an access concentrator is available, which may specify additional services.
The host selects one from the available access concentrators and requests that this concentrator establish a connection by
sending a PADR (PPPoE Active Discovery Request) packet. The access concentrator replies by sending a PADS (PPPoE Active
Discovery Session Confirmation) packet.

Figure 9-2. Typical sequence for PPPOE Active Discovery.
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Subsequently, the discovery stage is left behind and the session stage begins, where PPP payload is packed transparently in
Ethernet frames having ethertype value gxgge4 (in contrast to packets in the discovery stage, which have ethertype value
0x8863). Figure 9-3 shows what a PPPoE packet looks like in the session stage. The underlying Ethernet already forms frames,
so PPPoE does not require character stuffing, in contrast to the asynchronous case described in Chapter 8.

Figure 9-3. Protocol data unit of the PPPoE session stage.
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The PPP protocol should generally initiate a PPPoE connection to be torn down, but there is also a PADT (PPPoE Active Discovery
Terminate) packet, which can be used to terminate a PPPoE connection. Once a PADT packet has been sent or received, not
even a normal PPP connection termination packet may be sent.
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9.3 Implementation in the User Space

The kernels of Versions 2.2 and 2.3 do not support PPPOE. Instead, another daemon is started in the user space, in addition to
pppd- This daemon is called pppoed; it processes PPP packets of the Ethernet card and forwards them to pppd . pppd, and
pppoed communicate over a pseudo-terminal, as shown in Figure 9-4.

Figure 9-4. ,,,; and ..« communicate in the user space.

pppn I: pppd I._: ttypn

There are various implementations in the user space, including the Roaring Penguin implementation [Roar01], which appears to
be the most elaborate. The major drawback of this approach and similar approaches is that the intermediate pseudo-terminal
requires an additional transition between the kernel and the user space, which reduces the performance considerably. For this
reason, we will consider only the kernel implementation available from kernel Version 2.4 in the following discussion.
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9.4 Implementation in the Linux Kernel

Together with kernel Version 2.4, PPPoE support was integrated in the pppd daemon, and the kernel was expanded by a
connection between the generic PPP driver and the Ethernet network card.

Figure 9-5 shows the interaction between these components. The PPPoE driver assumes several functions within the kernel. To
the lower layer (i.e., the Ethernet card and the driver software), the PPPoE driver plays the role of a layer-3 protocol. As we will
see later in more detail, incoming Ethernet packets are allocated to a protocol matching the type identifier in the Ethernet frame
(e.g., the IP protocol or the PPPoE protocol for the ethertype values gxg83863 and gxsse4 mentioned earlier). Towards the
higher-layer generic PPP driver, which was described in the previous chapter, the PPPoE driver behaves much as does the
asynchronous PPP driver. In contrast to that driver, however, the PPPoE driver does not implement a tty operating mode.

Figure 9-5. Communication between .4 and the PPP and PPPOE drivers.
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To initiate the PPPOE discovery stage of pppd in the user space, it is additionally necessary to have the PPPOE driver and pppd
communicate directly. Section 9.4.2 discusses this communication in detail.

9.4.1 Changes to the Kernel

The PPPoE driver, which is included in kernel Version 2.4 and higher in experimental form, consists of the file
drivers/net/pppoe.c - In addition, there is a file called qrivers/net/pppox.c , Which is intended to harmonize present
and future PPP implementations in the kernel. General functions that previously were used only by the PPPoE implementation
were moved to the file pppox . ¢, and other PPP implementations over other networks should be available in the future.

Functions and Data Structures of the PPPoE Driver

In the first step, the PPPoE driver registers the PPPoE protocol with the kernel. This can be seen in the following piece of source
text:

pppoe_init () drivers/net/pppoe.c

{
Use a function from drivers/net/pppox.c to register the PPPoE protocol:
int err = register pppox proto (PX PROTO OE, &pppoe proto);
if (err==0) {
dev_add pack (&pppoes ptype) ;
/*Add a packet handler
for incoming packets of type ETH P PPP SES
(PPPOE session packets), which points to pppoe rcv */
dev_add pack (&pppoed ptype) ;
/*Add a packet handler for incoming packets of type
ETH P PPP DISC (PPPoE connection setup packets), which
points to pppoe disc rcv */
register netdevice notifier (&pppoe notifier);
/*Add to netdevice notification chain */
proc_net create("pppoe", 0, pppoe proc info);
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}

return (err);

}

Subsequently, the PPoE driver provides functions that can be used by pppd to access the PPPoE protocol functionality over a
PPPOE socket. The structure struct proto ops pppoe ops N driver/net/pppoe.c is used to bind the functionality of
the PPPOE socket to general socket functions (e.g., connect (), sendmsg(), rcvmsg(),andbind () ). Chapter 26
includes a more detailed description of how sockets are implemented in the Linux kernel.

pppoe create () drivers/net/pppoe.c

This function is invoked whenever a new PPPoE socket is opened. The function is exported and announced over the structure
pppoe_proto and the function register pppox proto() -

pppoe_connect () drivers/net/pppoe.c

This function calls connect () at the PPPOE socket interface. If the call is successful, then PPPOE packets that have previously
been sent or received over the specified Ethernet card can be accessed over the PPPoE socket in the application layer.

pppoe_sendmsg () drivers/net/pppoe.c

The function pppoe sendmsg () IS used to pack data sent by pppq to the PPPOE socket into PPPOE packets and send them
over the Ethernet.

pppoe_rcvmsg () drivers/net/pppoe.c

This function serves to receive PPPoOE packets over the PPPoE socket. However, only packets belonging to the discovery stage of
the PPPoE protocol are processed; all other packets are instead forwarded to the generic PPP driver. Information about whether
the PPPoE protocol is in the discovery stage or in the session stage is saved in sk->state-

Finally, once the PPPoE discovery stage is completed, incoming packets are forwarded to the generic PPP driver. (The case of
PPPOE relay is not discussed here.) Various functions can be used to receive packets:

pppoe_rcv () drivers/net/pppoe.c

This function is executed within the neT rx tasklet. It handles error cases and passes packets to the function
pppoe_rcv_core () for further processing.

pppoe_rcv_core () drivers/net/pppoe.c

This function determines the dependency on the phase of the PPPoE protocol stored in sk->state, Which means that an
incoming packet is either forwarded to the generic PPP driver (by the function ppp input () ) or appended to the queue of the
PPPOE socket by the function sock queue rcv_skb() where it will be further processed by the above mentioned function

pppoe_rcvmsg () -

pppoe_disc rcv () drivers/net/pppoe.c

This function is invoked whenever a packet of the PPPOE discovery stage was received (ethertype 0x8863 or

ETH P PPP DISC,asdefinedin 1inux/if ether.h ). However, the function pppoe disc rcv() serves only to receive
PADT packets; all other packets are rejected. If an incoming packet is a PADT packet, then the PPPOE connection is disconnected
and the socket is released.

pppoe xmit () driver/net/pppoe.c
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This function is invoked by the generic PPP driver. It serves as wrapper for the function  pppoe xmit () -

_pppoe_xmit () driver/net/pppoe.c

This function is used to pack transmit data of the generic PPP driver into a PPPoE frame and send it over the specified Ethernet
network card.

9.4.2 Tasks of the ppp Daemon

A data connection is established in several phases. The phase of the PPPoE discovery stage is fully handled by the ,pp daemon,
avoiding the pppoe driver. Special packet sockets are included in kernel Version 2.4 (see Chapter 26) and can be used to
send or receive packets specified in RFC 2516 directly to or from the network card. If the discovery stage is successful, then the
ppp daemon sets up a ppyp interface in the kernel. The ppp daemon achieves this by opening a PPPoE socket and binding this
socket to the PPPoE driver. Finally, the ppp daemon uses an joct1 () call with the parameter ppprocceran (implemented in

driver/net/pppox.c ) tosetthe field sx->state t0 PPPOX BOUND.

As was described in the previous section, this causes the PPPoE driver to forward all incoming packets to the generic PPP driver,
except for the PPPOE relay case, which is not considered here, and for PADT packets, which are handled by the function

pppoe disc rcv () (as already described). The ppp daemon can use different 1 oct1 () calls over the PPPOE socket to
change other parameters. However, the data path always leads over the generic PPP driver, from which the PPPoE driver now
accepts PPP packets (data and control packets); it packs them and, eventually, passes them to the network card.

9.4.3 Configuration

To be able to use PPPoE in Linux from kernel Version 2.4 and higher, the option pppoverEthernet and the option packet
Socket have to be activated in the kernel configuration upon compilation (via activation of the support for experimental
drivers). If the PPPOE support is compiled as a module, then we additionally have to add the line "31ias net-pf-24 pppoe"
to the file /etc/modules.conf . This line is used to allocate the protocol with identifier 24 to the pppoe Module. A package
that integrates PPPOE extensions is available for pppqg. All we have to do is to complete the file /etc/ppp/options by adding
the line plugin pppoe; pppd €an then be started with pppd etho. [Ostr01] includes more installation instructions.
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10.1 Introduction

Initially, the Asynchronous Transfer Mode (ATM) was introduced to provide a uniform protocol for the transmission of voice and
data, offering guarantees for the required QoS (Quality of Service) parameters (such as data rate and delay) [McSp95]).

In contrast to initial expectations and forecasts, the ATM network technology has not established itself in end systems, but it is
widely used in core networks. First of all, ATM offers a uniform concept to support QoS (Quality of Service) in networks; QoS
was attempted much later in IP-based networks.

The ATM network technology is connection-oriented, which means that a connection has to be established before data can be
transmitted. There are two types of connections: In a Permanent Virtual Connection (PVC), the connection throughout the
network is established by the network management; a network management station extends the forwarding tables within the
forwarding nodes between two endpoints of an ATM connection so that the ATM cells created by the endpoints are forwarded to
the other endpoint. The second type of ATM connection is a Signaled Virtual Connection (SVC); in this connection type, the
connection is established by the communicating end systems, which send connection requests and respond to such requests.

In ATM jargon, packets are called cells. In contrast to IP protocol data units, an ATM cell has a fixed size, 53 bytes: 5 bytes for
the packet header, 48 bytes for the payload. The 5-byte packet header includes forwarding information, as for IP frames, which
allocates a cell to a connection. The ATM network technology uses a hierarchical connection concept, which distinguishes
between paths and channels. Each cell is allocated to exactly one virtual path, and to exactly one virtual channel within that
path, as shown in Figure 10-1. This allocation to a path and a channel is specified in two bit fields in the cell header: an 8-bit
field for the Virtual Path Identifier (VPI), and a 16-bit field for the Virtual Channel Identifier (VCI).

Figure 10-1. Virtual paths and channels in the ATM network technology.
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10.2 Implementing ATM in Linux

Figure 10-2 shows how the ATM support is structured in the Linux kernel. This implementation comprises two major parts:

o Extension of the socket interface to support the ATM protocol. We will not further discuss this part in this chapter,
because the socket interface will be described in detail in Chapters 26 and 27.

e General ATM support within the operating system kernel. Various additional functions are available, depending on
whether a connection is a permanent or a signaled virtual connection. This part will be described in detail below.

e Support of various ATM network cards. Again, this is divided into a general part, which is independent of the type of
hardware used, and a part that includes the driver for the respective network card and some support functions.

Figure 10-2. Structure of the ATM support in the Linux kernel.
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The following sections begin with a description of the data transmission over a permanent virtual channel (PVC). Subsequently,
we describe how the signaled virtual channel (SVC) is supported in the Linux kernel.

10.2.1 Permanent Virtual Channels

An application accesses a permanent virtual channel (PVC) over a socket. A PVC socket can take any of four states; c10sed,
created, connected, @d connecting (as shown in Figure 10-3).

Figure 10-3. State transition diagram when opening a socket for a permanent virtual channel.
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First, an application creates a socket. When an application creates a socket, the following functions in the kernel are addressed:
pvc create () net/atm/pvc.c
In this function, the operations that belong to the protocol family pr aTmpvc and should be available over the socket are

announced. This is done by the allocation sock->ops = spvc proto ops;. Subsequently, atm create
(sock,protocol, PF ATMPVC) iS used to create a new socket.

atm create () net/atm/common.c

This function handles a number of memory reservations and initializations required for an ATM socket. In particular, it initializes
the structure atm_vcc specified in include/1inux/atmdev.h . The following code fragment was taken from this structure:

struct atm vcc {

atm vcc flags t flags; /* VCC flags (ATM VF_*) */
unsigned char family; /* address family; 0 if unused */
short vpi; /* VPI and VCI (types must be */
int veis /* equal with sockaddr) */
unsigned long aal options; /* AAL layer options */

unsigned long atm options; /* ATM layer options */

struct atm dev *dev; /* device back pointer */

struct atm gos gos; /* QO0S */

atomic_t tx _inuse,rx inuse; /* buffer space in use */

void (*push) (struct atm vcc *vcc,struct sk buff *skb);

void (*pop) (struct atm vcc *vcc, struct sk buff *skb); /* optional */

struct sk buff *(*alloc tx) (struct atm vcc *vcc,unsigned int size);
/* TX allocation routine can be */
/* modified by protocol or by
/* driver. NOTE: */
/* this interface will change */
int (*send) (struct atm vcc *vcc,struct sk buff *skb);

void *dev_data; /* per-device data */

void *proto_data; /* per-protocol data */

struct timeval timestamp; /* AAL timestamps */

struct sk buff head recvqg; /* receive queue */

struct k_atm aal stats *stats; /* pointer to AAL stats group */
wait queue head t sleep; /* if socket is busy */

struct sock *sk; /* socket backpointer */

struct atm vcc *prev, *next;

};
Most entries in this structure are set to null when they are created (e.g., the values for VPI and VCI, the atm options, and
the aa1 options)

In the next step, the application can specify QoS parameters for the socket previously created. To this end, an application calls
setsockopt () and uses the options sor, aTm and so aTMQOS -
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atm_do_setsockopt () net/atm/common.c

In the function atm do setsockopt () , the values specified by the application are entered in the structure struct atm gos
(from include/linux/atm.h ) contained in the structure atm vcc. The structure atm qos includes two additional
structures and one value:

struct atm gos {
struct atm trafprm txtp; /* parameters in TX direction */
struct atm trafprm rxtp; /* parameters in RX direction */
unsigned char aal;

The structure atm trafprm (also from incilude/1linux/atm.h ) is used to specify traffic parameters for the ATM
connection. This structure includes the following entries:

struct atm trafprm

unsigned char traffic class; /* traffic class (ATM UBR, ...) */
int max_pcr; /* maximum PCR in cells per second */
int pcr; /* desired PCR in cells per second */
int min pcr; /* minimum PCR in cells per second */
int max_cdv; /* maximum CDV in microseconds */

int max_sdu; /* maximum SDU in bytes */

/* A number of parameters for the ABR service class follows here. */

The parameter traffic class can take the following values, which are defined in include/linux/atm.h: ATM NONE
(no traffic class specified), atTv usr (UBR—Unspecified Bit Rate), aTv cer (CBR—Constant Bit Rate), atm vBr (VBR—
Variable Bit Rate), At aBr (ABR—Available Bit Rate), and atm anvcrass (any traffic class).

The function atm _do setsockopt () IS used to run a few checks on the socket status. Subsequently, the function
check gos () Isinvoked.

check gos () net/atm/common.c

This function merely checks on whether the parameters of the transmit and receive directions are identical or are specified for
one direction only (different parameters are currently not supported); subsequently, the function check tp () is invoked.

check tp() net/atm/common.c

This function is used to check a few combinations of QoS parameters with regard to their admissibility. If these checks run
successfully, then the function 3tm do setsockopt () invokes the function atm change gos () , Which uses the function
adjust tp() torun further checks. For a PVC, vcc->dev->ops->change qos () is used to invoke the function supplied
by the driver to change QoS parameters. For an SVC, the function svc chang; qos () definedin net/atm/svc.c is called
to change QoS parameters. B B

pvc_bind() net/atm/pvc.c

Next, the function pvc bind () is invoked when the application wants to open the socket to send or receive data. The
implementation does not distinguish between the socket calls bind () and connect () - The function pve bind () is used to
initialize the address structure struct sockaddr atmpvc, Which is used for PVC only. The other functions are located in the
file net /atm/common . c , because they are used both for PVC and for SVC.

atm connect (), atm connect vcc  het/atm/common.c
(),

atm do_ connect (),
atm do connect dev ()
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These functions are used in the order shown here. First, 2tm connect () checks the socket status. Next, the function

atm do connect () Orthefunction atm do connect dev () s invoked, depending on whether a network interface was
specified. If no network interface was specified, then atm do connect () is invoked, and the function atm find dev ()
available in net /atm/resources.h is used to search the list of ATM network cards for an interface with the matching
identifier. If this search is successful, then the open () function supplied by the driver (over gev->ops->open () ) is invoked,
much as for the function 3tm do connect dev () -

atm_ sendmsg () net/atm/common.c

The transmission of data is identical over PVC and SVC, so this functionality is maintained in the file net /atm/common.c -
First, the function atm sendmsg () Waits for a transmission possibility; next, the transmit data are sent by the driver-specific
transmit routine, which is addressed over vcc->dev->ops->send () -

atm recvmsg () net/atm/common.c

Like the function atm_sendmsg () s the function atm_recvmsg () IS used for both PVC and SVC connections. The function
waits in a loop for incoming data, which is then copied from the socket buffer into the user space by the function
copy to user() -

atm release(), net/atm/common.c
atm release vcc sk()

We mention the function for orderly release of an ATM socket for the sake of completeness. This is done by the two functions,
atm release() and atm release vcc sk () , Which eventually use the c1o0se () function supplied by the driver to
release all pertinent resources in the driver.

10.2.2 Signaled Virtual Channels

As with PPPoE, a large part of the connection management for the support of signaled virtual channels was moved into a
daemon in the user space, as shown in Figure 10-4.

Figure 10-4. SVC support in Linux.
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Requests to establish or tear down connections and other tasks pertaining to connection management are handled by the
signaling daemon, atmsigd. More specifically, all corresponding requests, which can originate both from applications and from
the network, are forwarded to the signaling daemon. Requests are put asynchronously into a message queue, from which the
signaling daemon fetches messages. In most cases, the kernel performs a synchronous (i.e., blocking) wait for the daemon's
response.

Many of the functions available in the file net /atm/sve.c correspond to the previously introduced functions in
net/atm/pvc.c, S0 We will not describe them here in detail. For example, as with the function pvc _create () s the function
svc_create () isinitially used to announce operations that belong to the protocol family pr aTmMsvc and should be made
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svc_bind () net/atm/svc.c

The function sve_bind() which is normally invoked at this point of the procedure, serves as an example for the
communication between the kernel and the signaling daemon. The following code fragment was taken from the source code:

sigd eng(vcc,as_bind,NULL,NULL, &vcc ->local);
add wait queue (&vcc ->sleep, &wait);
while (vcc->reply == WAITING && sigd) {
set current state (TASK UNINTERRUPTIBLE);
schedule() ;
}
remove wait queue (&vcc ->sleep, &wait);
return vcc->reply;
First, the function sigd eng() for the input queue of the signaling daemon, defined in net/atm/signaling.c , iS passed
the message type 2s bind, together with a pointer to the structure stm vcc, which belongs to the connection. Subsequently,
the relevant process remains in the Task UNINTERRUPTIRLE State until the signaling daemon has fetched the message from

the input queue and changed the field vcc->reply from WAITING to another value (say, 0 when the action was successful).
This value is returned to the function svc_bind() -

The full set of messages that can be exchanged between the kernel and the signaling daemon is specified in the
atmsvc_msg_ type structure, stored in the file include/linux/atmsve.h :

enum atmsvc msg type {
as _catch null,as bind,as connect,as accept,as reject,

as_listen,as_okay,as_error,as_indicate,as close,as_itf notify,
as modify,as identify,as terminate };

The following message types are used for connection control:
® as okay
The signaling daemon acknowledges a previous message.
L as_error
The signaling daemon reports an error.
® as close
The kernel informs the daemon that a connection is to be closed.
e as bind
The kernel sends this message to obtain a local address.
® as connect
The kernel sends a request to establish a connection to the signaling daemon.
® as listen

The kernel uses this message to notify that an endpoint was opened, where it will wait for a connection-establishment
request.

® as indicate

The kernel informs the signaling daemon that a connection-establishment request has arrived.
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® as accept
The kernel notifies the signaling daemon that it wants to accept a connection.
® as reject
The kernel informs the signaling daemon that an incoming connection-establishment request was rejected.

The parameters for these message types are specified in the structure atmsve msg in thefile incilude/1inux/atmsve.h -
They include addresses and QoS parameters for SVC connections.

10.2.3 ATM Device Drivers

In contrast to Ethernet network cards, ATM network cards handle a large part of the protocol-processing work themselves.
Normally, an ATM network card is responsible not only for forming ATM cells, but also for composing these cells into protocol
data units for the higher ATM adaptation layer (AAL). This means that the operating system is relieved from these tasks. On the
other hand, it means that ATM network cards are more expensive, because the hardware is more costly.

For ATM device drivers, we distinguish between one part that manages the physical layer (PHY driver) and another part that
reserves resources and coordinates the protocol and hardware.

The structure 3tm dev (iN include/linux/atmdev.h ) groups device-independent parameters:

struct atm dev {
const struct atmdev _ops *ops; /* device operations; NULL if unused */
const struct atmphy ops *phy; /* PHY operations, may be undefined */
/* (NULL) */

const char *type; /* device type name */

int number; /* device index */

struct atm vcc *vcces; /* VCC table (or NULL) */
struct atm vcc *last; /* last VCC (or undefined) */
void *dev_data; /* per-device data */

void *phy data; /* private PHY date */

atm _dev _flags t flags; /* device flags (ATM DF_*) */
struct atm dev_addr *local; /* local ATM addresses */
unsigned char esi[ESI LEN]; /* ESI ("MAC" addr) */

struct atm cirange ci range; /* VPI/VCI range */

struct k_atm dev stats stats; /* statistics */

char signal; /* signal status (ATM PHY SIG *) */
int link rate; /* link rate (default: 0OC3) */

#ifdef CONFIG PROC_FS
struct proc dir entry *proc entry; /* proc entry */
char *proc_name; /* proc entry name */
fendif
struct atm dev *prev,*next; /* linkage */

}i

These structures are linked in a list by the pointers prev and next. The structure serves as an interface between the kernel
and the driver; this is where all parameters required by the driver for further protocol handling are made available, plus those
that the driver must make available to the kernel (e.g., the MAC address of the ATM card). The entries vccs and 1545t are
used to manage a list of descriptors for virtual connections, which are known to the ATM network card. The first two elements
of the structure atm dev point to the driver operations supplied by the driver over the structure atmdev ops and to the PHY
driver operations, which are available from the structure atmphy ops . (Both structures are also defined in

include/linux/atmdev.h .)
The most important operations available from the structure stmdev ops are the following:

e open () reserves resources on the hardware for a new virtual connection; the VPI and the VCI for the connection are
passed to the driver.

e The function i oct1 () is used to pass icct1 () commands to the driver. If the driver does not know these commands,
then it forwards them to the PHY driver.

e The function send () passes data units for transmission.
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register of the network card.

10.2.4 Further ATM Support

The support of "pure" ATM described above (i.e., the support of applications that access ATM sockets directly) was extended by
the support of protocols, which convert IP packets to ATM, in a very early stage.

This support includes the following protocols:

o Classical IP: Classical IP [Laub94] is the simplest from for transporting IP data traffic over ATM networks. The functions
included in net/atm/clip.c are used to support Classical IP.

o LAN Emulation: The LAN Emulation [Foru95] represents a second approach to IP over ATM, which, in contrast to
Classical IP, uses signaled virtual connections rather than permanent virtual connections. The Linux kernel includes
functions for this emulation in the file net /atm/lec.c-

o MPOA: The abbreviation "MPOA" [Hein93] stands for "Multiple Protocols over ATM" and represents a more recent

approach for the support of IP over ATM. The Linux kernel includes functions for MPOA in the files net /atm/mpc.c,
mpoa caches.c,and net/atm/mpoa proc.c for corresponding entries in the proc directory.

The functions used by all of these approaches are grouped in net/atm/ ipcommon.c-
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10.3 Configuration

ATM support has been part of the Linux kernel since kernel Version 2.4 and requires no additional patches; however,
configuring of the kernel requires the entry "prompt for development and/or incomplete driver" to be activated
to provide selection of the desired ATM support.

The signaling daemon described above is not part of the Linux kernel; it has to be installed additionally in the user space. It can

be downloaded from [BIAIO1], where you will also find other utilities that complete the ATM support in Linux. The current
development of the ATM support for Linux can be followed up from the mailing list available at [BIAIO1].
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Chapter 11. Bluetooth in Linux

In connection with the enormous proliferation of portable devices such as laptops, PDAs (Personal Digital Assistants), and mobile
phones, it becomes increasingly important to find ways to network these devices. Wireless technologies appear to be an ideal
solution to this problem, because they don't need a permanently installed infrastructure and facilitate fast establishment and
tear-down of networks (so-called ad-hoc networks). In 1998, a number of manufacturers, including Ericsson, Nokia, IBM,
Toshiba, and Intel, cooperated in the development of a standard for wireless communication over short distances for consumer
electronics. The result of this joint effort is the Bluetooth technology, which operates in the 2.4 GHz frequency range. The
Bluetooth consortium specified the radio interface and the higher protocol layers (Bluetooth core), plus so-called profiles
(Bluetooth profiles), each of which defines procedures and parameters of the protocol stack for a specific application field (e.g.,
telephones, headsets, and file transfer). This standardization effort was intended to ensure interoperability of all Bluetooth
devices. The Bluetooth specifications are available at [Group01].

The core specifications include the elements shown in Figure 11-1. The three bottom layers are implemented in the Bluetooth
hardware (firmware). The radio interface deals with frequency bands, signal outputs, transmission channel parameters, and
other mobile properties. The baseband processing includes both additional transmission-specific aspects and media-access
aspects (e.g., detection of devices in the neighborhood and initialization of synchronous or asynchronous communication
channels).

Figure 11-1. The Bluetooth protocol stack in the Linux kernel.
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between the higher layers and the baseband processing. The Bluetooth technology is primarily designed for cellular devices, so
the standard defines an audio interface on a very low layer. However, this audio interface does not play an important role for
networked computers. In addition, the standard defines a protocol stack above the three layers mentioned above, which are
implemented in hardware. This protocol stack normally runs in software on a client (e.g., a PDA or a laptop).

The bottom layer of this protocol stack—the optional Host Controller Interface (HCI)—lets you access device parameters directly,
regardless of the interface to the device (USB, serial interface), to change or view device parameters. However, it does not
serve for data transmission over a Bluetooth device.

The Logical Link Control and Adaptation Protocol (L2CAP) is used for each data transmission. It represents the data-link layer of
the Bluetooth protocol stack. More specifically, L2ZCAP is used to send higher-layer packets to the other end of the layer-2 link in
another device within the Bluetooth network and to receive from this device. Notice that this is a connection-oriented layer,
except for group communication. This means that, if a Bluetooth device moves into the receiving range of another Bluetooth
device, then L2CAP has to establish a connection before higher layers can transmit data. This requirement makes the
implementation of IP directly over L2ZCAP more difficult; no such implementation has yet been specified and implemented in the
Linux kernel. To find an intermediate solution, the RFCOMM was specified for a virtual RS232 link over the L2CAP protocol of
Bluetooth. This means that a virtual COM port is available; it can be used, for example, by PPP (see Chapter 8) to transmit data.
The PPP protocol can then also support the use of the TCP/IP protocol suite.

Linux kernel Version 2.4 introduced Bluez, a Bluetooth implementation developed by Qualcomm. You can follow up on how Bluez

is further developed at http://sourceforge.net/projects/bluez - In addition, there are other implementations,
among them the Axis stack (http://sourceforge.net/projects/openbt/ )
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11.1 Host Controller Interface (HCI)

The Host Controller Interface (HCI) forms the interface between the software protocol stack and the Link Manager underneath
it, which is implemented in the firmware of a Bluetooth device. Notice that this is a packet-oriented communication between HCI
and the Link Manager rather than a device driver. The difference is that HCI does not access the register and the memory
locations of a Bluetooth device directly. Instead, it sends command and data packets to the device and receives data packets and
event-message packets from this device. This means that the Host Controller Interface offers a uniform interface for accessing
the hardware.

11.1.1 Command Packets

There is a uniform packet format for command packets sent by HCI to the Link Manager. All packets are ordered in groups. In
the command group (opcode group), we distinguish between individual commands (opcode commands). Each command packet
consists of a 10-bit OCF (Opcode Command Field) and a 6-bit OGF (Opcode Group Field). There are the following command
groups:

e Link control commands serve to establish a connection to other Bluetooth devices and to control the connection.

o Link policy commands serve to change parameters, which are used by the Link Manager to manage connections. For
example, such commands can cause connections to switch into the hold mode.

o Host controller and baseband commands allow you to specify additional parameters for the behavior of the Link Manager
(e.g., to filter event messages or to activate the flow control discussed further below).

o Information parameters offer a pure read access to values of a Bluetooth device, such as the size of the transmit buffer,
the version number, and the 48-bit Bluetooth device address.

In addition to these groups, there are the following groups: status parameters, testing commands, Bluetooth logo testing, and
vendor-specific debug commands.

The following sections describe how command packets can be sent within the Bluetooth implementation in the Linux kernel.

hci send cnd() net/bluetooth/hci_core.c

This function is used to compose a command packet in the form of an sk puff out of the passed data, the OCF and OGF
values, the length, and a pointer to parameters. The function skb_queue tail then appends this packet to the end of the
command queue of the struct hc i dev of the Bluetooth device.

The structure hci_dev is defined in include/net/bluetooth/hci_core .h In addition to the command queue, it
contains queues for transmit data. In addition to a number of other parameters, it includes four function pointers, to the
functions open (), close(), flush(),and send() Made available by the Bluetooth device.

Finally, the function hci send cmd () invokes the function hci sched cmd () , Which marks the hdev->cmd task as
ready to be executed. This tasklet was assigned to the device by the function tasklet init () Within the function call

hci register init() (net/bluetooth/hci core.c ) When the HCI support was initialized. In addition, there is a
hdev->rx task to receive data and another hdev->tx task to send data. When the tasklet hgev->cmd task runs, then
the function hci cmd task () is invoked. This function invokes hci send frame () - -

hci send frame () net/bluetooth/hci_core.c

This function serves as a central transmit function for the HCI. This function serves not only to send command packets, but also
to send data packets. It uses the entry int (*send) from the structure nc i dev to invoke the transmit function of the
Bluetooth device, to which it passes the skp.

11.1.2 Event Packets

The time it takes to process different HCI commands can be different, Bluetooth implements asynchronous communication. The
results of a command are announced to HCI in the form of an event packet. In most cases, this is merely an event of the type
Command Complete, which means that the command was successfully completed. A Bluetooth device can receive arbitrary
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invokes the function hci rx task() -

hci rx_task() net/bluetooth/hci_core.c

This function is used to distinguish an incoming packet further by type. Incoming event packets are further processed by the

function hci event packet () i accordingly, the functions hci acldata packet () and hci scodata packet() are
invoked for the ACL and SCO data described further below.

Event packets are further distinguished by type of event in the function hci event packet () . For example, the type Number
of Completed Packets invokes the function hci num comp pkts evt () . This function evaluates the content of the event
packet, which includes the number of packets actually sent per connection by the Bluetooth device. A handle negotiated between
the Link Manager and HCI can be used to map the reported number of sent packets to a specific connection (an hci conn
structure). This is done via a hash table in the HCI layer. The counter 2c1 cnt Of struct hci dev is incremented by one
for each acknowledged packet. Feedback on the number of packets sent serves the flow control described in the following
section.

11.1.3 Data Packets

We distinguish between asynchronous connectionless (ACL) and synchronous connection-oriented (SCO) data packets. Both data
types are sent when the tasklet hdev->tx task becomes active, and then the function hci sched acl ()
(net/bluetooth/hci core.c) Isexecuted. If flow control for ACL data runs between HCI and the Link Manager, then we
first have to check on whether ACL data may be sent.

Flow control is used to prevent the transmit buffer of the Bluetooth device from overflowing. This can happen, for example,
when an application sends data faster than the Bluetooth device can transport it further—for instance, because the
communication partner is temporarily not reachable. The initial size of the output buffer can be polled from HCI. The current
size of the output buffer can be derived from event packets of the type Number of Completed Packets, described above. HCI
assumes that the free output buffer becomes smaller with each packet it passes to the Link Manager. The actual current size
can be learned only upon receipt of a new event packet.

Flow control in the Bluetooth protocol stack of the Linux kernel is handled by the function hci sched ac1 () - In turn, this
function invokes the function hci 1ow acl sent() :

hci low _acl sent() net/bluetooth/hci_core.c

First, this function finds out the total number, num, of all connections known to the specified network device. For each
connection (represented by the structure hci conn), the field 2c1 sent includes the number of ACL data packets sent over
this connection. This field is incremented during a transmission, but decremented by the number of acknowledged packets over
this connection when the described event packet Number of Completed Packets is received. In addition, the function

hci low acl sent () identifies the connection with the smallest number of ACL packets sent, which has to be smaller than
oxff££f. If none of the existing connections meets these conditions, then the function's return value is set to null. If there is
such a connection, then the total number of acknowledged packets (ac1 cnt entryin struct hci dev) is divided by the
number (num) of connections. The result is returned by the parameter qaote, and the identified connection is the return value
of the function. The number of acknowledged packets forms the transmit credit, which is distributed over all ready-to-send
connections.

hci sched acl() net/bluetooth/hci_core.c

Using the quote calculated by the function hci 1ow acl sent () , this function tries to send ACL data packets over the
specified connection (by using the function hci send frame () )- ACL data packets may be sent as long as the queue is not
empty, as long as the number of ACL packets to be formed from one sk, does not exceed the transmit credit of the Bluetooth
device, and as long as quote is not yet null. Both quote and the transmit credit stored in the hci dev structure are
decremented by one for each packet sent. At the same time, the number of packets sent over this connection is incremented.

hci sched sco() net/bluetooth/hci_core.c

Only the transmit credit for SCO packets, included in the field sco_cnt of struct hci dev, IS considered in the case of
SCO data packets. There is no distribution over several connections for SCO connections. SCO data packets are simply sent until
the transmit credit is used up.
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11.1.4 Accessing the Host Controller Interface

The functionality of the Host Controller Interface (HCI) in Linux is available in different ways. Figure 11-1 shows that HCI can be
accessed directly from the user space over a socket. This is normally a socket of the pr BL.UETOOTH SOcket family with
protocol identifier eTprROTO HCT und type sock Rraw. These sockets are created in the file net/bluetooth/hci sock.c -
The socket interface is used to supply the usual BSD socket functions. An application can use these functions to send and receive
data directly over HCI from and to the network.

Alternatively, an application can use ioct1 () calls to access the Bluetooth device (e.g., to open, close, or reset the device).

For higher protocol layers to be implemented in the Linux kernel, HCI functions are available over the macro ExporRT SYMBOL -
For example, the L2CAP protocol described in the next section accesses these functions, including functions to register and
deregister the HCI device (hci register dev() and hci unregister dev()) and interfaces to higher protocols. For
example, the functions hci register proto() and hci unregister proto() Serve to register the higher-layer
protocol (e.g., L2CAP) that supplies a receive function or other functions to the HCI. The function hci register notifier
() is used by the higher-layer protocol to register itself with the notifier chain of the device. (See Chapter 5.) The function

hci connect () , Which sends a command packet from HCI to the Link Manager (net/bluetooth/hci core.c) ,is used
to establish a connection. The counterpart of this function is the function hci disconnect () - The functions hei send acl
(), hci send sco(); and hci send raw() are used to transmit, and t—he function hci recv frame () is Used tO—
receive.

4 Frevious MNext »
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11.2 L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP) handles tasks on the data-link layer in the Bluetooth protocol stack. It
establishes ACL connections for the next lower layer, but does not transport pure audio data, which primarily is transported over
SCO connections. In particular, the L2CAP protocol is responsible for multiplexing data streams from higher layers to an ACL
connection, because there must always be at most one ACL connection at a time between two Bluetooth devices. Other
important tasks include the segmenting and reassembling of data packets to be able to send and receive the much larger

packets of the higher-layer protocols despite the small packet sizes of the baseband layer. L2CAP supports packet sizes of up to
64 Kbytes.

To multiplex several data streams, L2CAP uses the abstraction of the channel. Each channel is allocated to one specific protocol.
There are connection-oriented channels for point-to-point communication and connectionless channels used for group
communication. A simple signaling method is used to establish an L2CAP connection. The L2CAP protocol can also be accessed
directly from the user space over a socket. This is normally a socket from the pr BLUETOOTH SOcket family with protocol
identifier BTPROTO T.2CAP -

Now, when HCI receives an ACL packet, then it is passed to the receive function 1 2cap recv frame () - If the channel

identifier in the packet header is 0x0001, then it is a signaling packet. Subsequently, the function 1 2cap_sig channel () IS
invoked; otherwise, the function 12cap data channel () IS invoked.

12cap_sig channel () net/bluetooth/12cap_core.c

The type of signaling packet is recognized within this function and, depending on the type, an appropriate handling function is
invoked:

switch (cmd.code) {
case L2CAP _CONN REQ:

err = l2cap _connect reg(conn, &cmd, data);
break;

case L2CAP CONN RSP:
err = l2cap connect rsp(conn, &cmd, data);
break;

case L2CAP CONF REQ:
err = l2cap_config reqg(conn, é&cmd, data);
break;

case L2CAP CONF RSP:
err = l2cap_config rsp(conn, é&cmd, data);
break;

case L2CAP DISCONN REQ:
err = l2cap_disconnect reqg(conn, &cmd, data);
break;

case L2CAP DISCONN RSP:
err = l2cap_disconnect rsp(conn, &cmd, data);
break;

The following section uses the example of an incoming connection request from a remote communication partner in the
Bluetooth network to describe how the L2CAP protocol implementation works.

11.2.1 Connection Establishment Phase

When a request to establish a connection arrives from a remote communication partner, then the signaling code
L2CAP_CONN_REQ IS detected, and the function 12cap connect req() IS invoked.

12cap_connect req() net/bluetooth/12cap_core.c

This function first checks on whether there is a waiting socket for this connection request that matches exactly the source
address of the Bluetooth device from which the connection request originates and which concurrently matches the PSM field.
The PSM (Protocol/Service Multiplexer) field specifies the desired higher protocol (e.g., RFCOMM).
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12cap sock listen () ,and it has to be in blocking wait state after the function accept () was invoked. This wait state is
implemented in the function 12cap sock accept () s which uses the function 12cap accept dequeue () towait until the

state sk->state switches from BT 1,TSTEN t0 BT CONNECTED.

The function 12cap get sock listen () , Which searches all sockets listening to the L2CAP protocol, checks for a socket
waiting for an incoming connection request. Subsequently, it ensures that there is not already a connection with the source
address of the requesting Bluetooth device. Next, the pertinent sock structure is initialized. The state sx->state in

BT CONFIG and the new channel with the function 12cap_chan_add() are added to the list of channels, conn-

>chan list . Subsequently, the function 12cap send rsp( , which, in turn, accesses the function hci send acl ()
supplied by HCI, returns a L2CAP CONN RSP Mmessage to acknowledge the connection request.

11.2.2 Configuration Phase

If there are no errors, then the next step walks through the configuration phase, before the connection can be used for data
transmission. First, both ends send a configuration request (signaling code 1.2cap conr REQ ). The configuration phase can be
completed successfully only if the configuration request of the other end has been acknowledged and a positive
acknowledgement of its own configuration request was made.

The end that received the connection request waits for a configuration request after successful completion of the connection
establishment phase. When the connection request arrives, the function 12cap sig channel () invokes the function

12cap_config req() -

12cap_config req() net/bluetooth/12cap.core.c

This function first uses 12cap parse conf req() to evaluate the configuration options of the peer and store them in the
protinfo Structure of the sock structure. However, the QoS option is currently not evaluated. Next, the function

lZCap build conf rsp () is invoked. This function uses 12cap conf output () to discover whether the peer's
configuration options (currently only the MTU) can be accepted. The function 12cap send rsp () is used to return a
response. Subsequently, the function 12cap send req() USES the function 12cap build conf req() to create and send
a configuration request to the other end. Currently, only the MTU is considered.

12cap config rsq() net\bluetooth/12cap.core.c

This function handles the peer's response to the configuration request. If the peer sends a nonempty response, then the current
implementation disconnects immediately. Otherwise, the configuration phase can be abandoned. The field sk->state is set to
BT CONNECTED and, starting with the function call 12cap chan ready() (net/bluetooth/1l2cap core.c) , the
function pointer sk->state _change () s used to invoke the function sock def wakeup () (bothinnet/core/sock.c)
which eventually marks the process waiting at the socket as an executable process.

11.2.3 Data Transmission Phase

This section describes the data transmission.

12cap_data channel () net/bluetooth/12cap.core.c

The function 12cap data channel () IS invoked when data packets are received. The first step is to check for whether a
connection is present in the list of channels, conn->chan 1ist, for the SCID (Source Connection IDentification). This check is
done by the function 1 2cap_get chan by scid( . After further checks, the data packet is put into the receive queue, and
the function data ready () Of the sock structure |s invoked, which then informs the application that new data is ready.

Looking at things from the BSD socket interface, data is received at the socket interface over the socket call recvmsg, which is
mapped to the function 12cap sock recvmsg () - In this respect, there are no major differences from the implementations of
other protocols that also use the function sk recv datagram() (net/core/datagram.c). Thisfunction causes a
blocking or nonblocking wait for data in the input queue sk->receive queue -

When sending, the socket call sendmsg() invokes the function 1 2cap sock sendmsg () , Which uses the function
12cap chan send() to prepare a packet and then uses nci send acl () tosendit.
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11.3 Other Protocols

The L2CAP functionality is currently available for srproTO L2cap Sockets only. An interface to higher protocol layers, such as
RFCOMM, or for future developments that will allow you to run TCP/IP directly over L2CAP, was not available in the Linux kernel
implementation at the time of writing. However, the L2CAP sockets allow you to install these protocols in the user space. The
SDP (Service Discovery Protocol) protocol is not integrated in the Linux kernel either. RFCOMM might be implemented in the

kernel in the future, but this is currently not intended for SDP.
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12.1 Introduction

Local area networks (LANs) are limited both in their reach and in the number of stations that can be connected. For example,
only a maximum of 30 stations per segment can be connected to Ethernet based on the 10Base2 standard; and even if you
connect fewer than the maximum number of stations, but use an extremely traffic-intensive application, it can happen that the
traffic in a LAN is so high that the throughput of the entire network drops rapidly.

This degradation is due mainly to the fact that local area networks are broadcast networks—when station A sends a data frame
to station B, then the data packet is concurrently transported to all other stations. The bandwidth in a local area network is used
only by the sending station at that time (asynchronous time division multiplexing—TDM). The more stations there are in a local
area network, the smaller is the share of each single station. Depending on the network technology, a lot of additional time
might be used to decide which station may send next (Medium Access Control).

For the above reasons, it is meaningful to divide a heavily loaded or very large local area network into several subnetworks.
Similarly, several local area networks can be linked by single coupling elements to form one large internetwork. In this regard,
the parts of the original local area network should not be split into different subnetworks (as is possible in IP), but should always
represent themselves as one single (sub)network to the network layer. The two networks are connected transparently, for the
network layer.

One coupling element that can link different local area networks to form one single logical LAN is called a bridge. A bridge
connects several local area networks on the data-link layer (layer 2 in the OSI reference model) and distributes the traffic over
the subnetworks. Stations that communicate often are generally grouped into one subnetwork. Grouping frequently
communicating stations within the same subnetwork means that the entire network has less load to carry, because these
stations can exchange traffic within their subnetwork regardless of the traffic in other subnetworks.

4 Previous Mext b
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12.2 Basics

As was mentioned above, a bridge is a coupling element that links several local area networks on the data link layer [BaHK94].
For this purpose, a bridge has two or more network adapters (ports), which are used to connect to a local area network. In
contrast to a repeater, which can merely extend the distance of a LAN, and which simply forwards packets as it received them,
a bridge can evaluate certain information in a packet and decide whether that packet should be forwarded.

Bridges come in different variants and with various properties, which will be briefly introduced below:

e Local or remote bridges: Local bridges connect two or more neighboring local area networks—see Figure 12-1. These
local area networks are normally linked on the MAC layer.

Remote bridges connect two local area networks physically separated by another network, normally a Wide Area
Network (WAN). This bridge type interconnects local area networks on the LLC layer. [BaHK94] includes a detailed
description of local and remote bridges. This chapter considers only local bridges.

e Translation or nontranslation bridges: A translation bridge is capable of connecting several local area networks over
different media-access protocols (e.g., Ethernet and token ring). Linux is limited in supporting this property, because
there could be problems during the transition from one standard to another one. For example, 802.3 supports a limited
maximum frame size of 1,500 bytes, but 802.5 supports a much bigger size. For this reason, we cannot feed large 802.5
packets into an 802.3 network.

e Source-routing or transparent bridges: Source-routing bridges represent an extension of the token-ring standard and
must be used in token-ring networks only. We will not consider them any further.

In contrast, transparent bridges can be used in all 802.x networks. They mainly handle the transparent interconnection of
different 802.x LANs, where the participating stations do not know that there is a bridge in the LAN. In other words, the
bridge is not visible to the stations in the interconnected LANs—it is transparent. The bridge functionality under Linux
corresponds exactly to the type of a transparent bridge.

Figure 12-1. A Linux computer acts as a transparent bridge, connecting several local area networks.

Linux bridge

Station A Station B

12.2.1 Properties of Transparent Bridges

bridges: In accord with the definition in Section 12.2, a Linux system can be used to implement a local transparent translation[!]
bridge, which can interconnect different 802.x LANs. Figure 12-1 shows an example in which the Linux computer acts as a
bridge, connecting three LANs of different types: one Ethernet (IEEE 802.3), one Fast Ethernet (IEEE 802.3u), and one wireless
LAN (IEEE 802.11).

(11 ... however, with the limitation that the 802.x networks be compatible, mainly with regard to their maximum
frame lengths. For example, 802.3 and 802.11 can easily be combined, but problems could arise when you use
802.5 LANSs.

When we use a translation bridge to link different 802.x LANSs, then the properties of the different sets of protocols have to be
adapted. For example, the bridge should consider the different access methods of the interconnected LANSs; it should also
consider and convert different packet formats. In addition, we have to consider that properties could be lost during the transition
from one LAN type to another type. Examples include priorities or acknowledgments in 802.5 networks, which are lost in 802.3
networks, because the latter don't have anything comparable. Linux currently supports only the interconnection of local area
networks that use an Ethernet-compatible frame format on MAC level.
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example to allow the stations in these three networks to communicate. Data packets (which are also called frames on layer 2)
with their destination within one local area network are not transported to the other two LANs—internetwork and intranetwork
traffic is separate.

The bridge need forward only those data packets intended for another LAN. This translates into a considerable reduction of the
network load, because internal traffic loads remain within the LANs and parallel communication is possible internally in each of
these LANs. If a computer in one LAN wants to send data to another LAN, then only those LANs required for the transport are
used. In addition, the bridge ensures that faulty data packets are filtered and prevented from being transported to the other
networks. The filtering concept supported by bridges will be described in Section 12.2.2.

Transparent bridges are characterized mainly by the fact that they are hidden from the stations in the network. In addition, they
forward frames from one LAN into another LAN independently. To both the inside and the outside, it seems like there is one
large local IEEE-802-compatible network. The bridge does not consider protocols used on the network layer; you can select
arbitrary protocols.

To achieve transparency, each bridge maintains a table (forwarding database) that stores the output line used to reach a station
for each layer-2 address. We will see in Section 12.4.2 how this forwarding table is implemented in Linux.

The properties of a Linux bridge introduced above will be discussed in more detail in the next sections.
12.2.2 Forwarding Function

The main task of a bridge is its filter function to separate the traffic between local area networks from the traffic within one
local area network. For this function, the bridge is not addressed explicitly; it is transparent for the communication partners.
None of the computers in the local area networks knows that the bridge is present. For this reason, the bridge receives each
data packet as it passes each network adapter, interprets its destination address, and uses the filter criterion to decide whether
the packet should be forwarded to another LAN or not be handled. In the latter case, the addressed station is in the LAN that
received the data packet. The bridge can assume that the destination station has already received the packet, so that it does not
have to forward it.

As mentioned earlier, a transparent bridge uses a forwarding table which stores forwarding information. It also uses positive
filters, which are entered as a result of the learning function. (See Section 12.2.3.) The forwarding table provides general
information how each computer can be reached over the outputs. If only one LAN is connected to each bridge adapter, then the
decision about the LAN on which a computer resides is obvious. If this is not the case, then the LAN and an output adapter are
specified to reach the LAN of a computer (the so-called next hop).

The example in Figure 12-2 shows how the forwarding function of a bridge works. Station A sends a data packet to station B.
Though the bridge was not addressed directly, it receives the packet and searches the forwarding table for destination address
B. It finds an entry that refers to LAN2, and eventually sends the packet to this LAN. Packets addressed to computers within the
same LAN are not forwarded by the bridge. (See Figure 12-3.)

Figure 12-2. A transparent bridge forwards a packet.
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Figure 12-3. Filtering a packet.
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If the bridge cannot find a destination address in the forwarding table (i.e., if the bridge does not know to which LAN the
destination station is connected), then it sends the packet over all of its outputs, except the input port (flooding). Figure 12-4
shows this process. Flooding means that the bridge can reach all stations, including those with yet unknown location.

Figure 12-4. Forwarding a packet to all outputs.

Station B

Station C

MAC addresses are not structured hierarchically and hence cannot provide information about the LAN of a destination station, so
packets would have to be sent to all outputs of a bridge in a group of interconnected LANs. Unfortunately, flooding packets when
the destination network is not known shouldn't be done often. For this reason, transparent bridges have a way to learn the
location or direction of an unknown station.

12.2.3 Learning Function

One major problem of transparent bridges relates to how the bridge is structured and how it maintains its forwarding table.
Though the system administrator could simply use a static data configuration, this is not desirable for the following reason: A
static configuration of the forwarding table cannot respond to changes in the network topology—all tables in all bridges would
have to be changed manually as soon as a new station is added to one of the LANs. In addition, there would be consistency
problems if one station moves from one LAN to another LAN. For this reason, transparent bridges use a learning algorithm,
allowing a bridge to learn the location of an unknown station and to be able to respond to a change in location (i.e., forget the
old location and learn the new one).

For this purpose, a bridge follows the entire traffic in all LANs connected to it. For each data packet sent to one LAN, the bridge
stores its sender MAC address and the LAN that transported the packet in its forwarding table. The bridge assumes that the LAN
that received the packet is the home network of the sending station or at least the best path to reach its home network. The
method used to learn routing information by looking at the sender address and the input network is also called backward
learning in the literature [Tane97].

Backward learning allows a bridge to learn the location of each station that sent a packet. If the bridge receives a packet for a
currently unknown station, then it has to use flooding; but it is assumed that a response or acknowledgment will follow from this
packet, so the destination address can be found from this reply packet. This means that flooding is normally done only once for
each destination address.

functions used to display a topology change: To keep the entries in the forwarding table of a bridge up to date, they are
extended by a time stamp (activity time). This time value states how long this entry will be valid. This activity time is updated
each time that the bridge receives a packet with a sender MAC address it had previously learned. When the activity time of an
entry expires, then this entry is deleted (aging mechanism). It is also assumed that the station was either disconnected from the
network or no longer exists. On the other hand, if a packet with a previously unknown source address arrives, then the bridge
assumes that this station is new to the network. The address of this system and the network adapter that received the packet
are added to the forwarding table, and the activity time is initialized.

12.2.4 Spanning-Tree Protocol

There are often redundant connections in a large local internetwork. For example, there could be several bridges running in
parallel to connect two LANSs, for load-distribution and failure-safety reasons. Figure 12-5 shows an example with redundant
connected networks. In this example, if station A in LAN 2 sends a packet to computer B in LAN 5, then bridge 1 floods this
packet to LAN 1, and bridge 3 floods it to LANs 3 and 5. Bridge 3 learns that it can reach station A in LAN 2. In the meantime,
bridge 2 receives the packet in LAN 1 and floods it to LANs 3 and 4. This means that bridge 3 receives the same packet again,
only this time over a different network adapter. Using its learning function, this bridge changes that entry in the forwarding table
and floods the packet to the other networks. We could continue this example endlessly to see that, with this network topology,
the forwarding tables of all stations would change continuously, and packets would be duplicated and travel around in the
network. The bridges have no way to recognize and destroy duplicate packets.
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Figure 12-5. The effect of cycles.

Bridgel Bridge2

Station A

Bridge3 Bridge4
Station B

Transparent bridges uses the so-called spanning-tree protocol to solve this problem. This protocol should detect redundant
connections in a cyclic topology and build a tree structure that does not include any more cycles. Redundant connections are
made inactive and can be reactivated when needed. This means that the LAN internetwork maintains its redundancy. Special
messages are used by the bridges in the internetwork to work out the tree structure and to build this structure in a
decentralized way.

The spanning-tree method is known from graph theory [OTWi96]. Normally, a spanning tree with minimum total cost can be
constructed with an undirected connected graph, where the edges are used as weights to allocate costs. Several algorithms
have been introduced as minimum spanning tree (MST) methods to handle this task. The spanning-tree method described here
and the MST method have in common that a connected graph is used to form a tree structure. However, the spanning tree in a
LAN internetwork is not always the minimum spanning tree from the MST method. This is shown by the example in Figure 12-6.

Figure 12-6. Spanning-tree protocol versus the MST method.
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Under the spanning-tree protocol, the root of the tree topology is not determined by the least total cost; instead, the bridge with
the smallest bridge identifier is selected. The reason is that the spanning-tree algorithm operates in a decentralized way—it is
not calculated centrally in one station. This means that, first of all, all bridges have to agree on the bridge to be selected as the
root of the tree. Subsequently, working from the root, the branches of the tree with "minimum" path cost are calculated. These
minimum-cost paths do not necessarily have to correspond to the tree structure with the least total cost.

Prerequisites and Terminology

Bridges need certain parameters and values to be able to run the spanning-tree algorithm. These values are then used to
manipulate the resulting spanning tree. The following parameters are required by the spanning-tree algorithm:

o Each bridge requires a unique 6-byte identifier, the bridge ID.
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o Port cost is assigned to each network adapter. This cost influences the structure of the tree topology, because the total
cost should be minimized by the spanning-tree algorithm. For example, the port cost can reflect the load on or speed of a
local area network.

e When two LANs can be reached over several paths, then a priority for each network adapter (port priority) can be
considered when selecting a path. The spanning-tree algorithm will then select the adapter with higher priority and equal
path cost.

The following are other important terms:
o Root bridge: This is the bridge representing the root of the tree topology.
o Root port: This is the port of a bridge with the least transmission cost to the root bridge.

e Root-path cost: This is the sum of the cost of all root ports on the path from a LAN within the internetwork to the root
bridge. The objective is to find the path with the least root-path cost.

Figure 12-7 shows these terms in an example of the topology described above, where Bridge1 is the root of the tree structure
shown in Figure 12-8.

Figure 12-7. Topology after running the spanning-tree protocol.
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Figure 12-8. Tree topology of the LAN internetwork.
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Special packets in the form of so-called Bridge Protocol Data Units (BPDUs) are exchanged to determine the root bridge and
distribute path or port cost. There are two types of BPDUs:
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identifier, the cost currently accumulated, and certain timer values. Section 12.4.5 will describe the format of this
configuration BPDU.

o Topology change notification BPDUs (TCN BPDUs): These packets are exchanged when changes occur in the topology.
This can happen when a component has failed and when the execution of the spanning-tree method causes certain
network adapters of bridges to move into the blocking state.

Bridge PDUs are sent with a special group MAC address. This means that each bridge that receives such a packet can identify a
bridge PDU.

Running the Spanning-Tree Algorithm

The spanning-tree algorithm is defined in IEEE standard 802.1d. It specifies the principle used to build a noncyclic topology from
a partly meshed or cyclic LAN internetwork. This method operates in an absolutely decentralized way.

The spanning-tree algorithm runs in three steps:

1. Select the root bridge: The root bridge is the root of the tree topology we want to build. The problem is now to select
one of the bridges as the root bridge. To this end, we use a principle similar to the one used in token-ring networks: The
bridge with the smallest identifier (bridge ID) is selected as the root bridge.

At the beginning, the bridges in the LAN internetwork send configuration BPDUs periodically with their own identifiers as
root ID to all other bridges. When a bridge receives a BPDU, it is immediately compared with its own bridge ID. If the
received root ID is smaller, then the BPDU is forwarded. In contrast, if the own bridge ID is smaller, then it is registered
as the root ID and distributed to the other bridges. Eventually, the bridge with the smallest identifier becomes the root
bridge.

One major benefit of this principle is its decentralized property. This means that no central management unit is required.
However, the path cost in a LAN internetwork does not play any role in determining the root bridge. This means that you
won't necessarily select the best topology, such as in the Minimal Spanning Tree method.

2. Determine the root port of each bridge: Each bridge selects the network adapter with the smallest path cost on the path
to the root bridge as its root port (root-path cost, RPC). If several paths have the same cost, then the port with the
highest priority or (if no priorities are set) the port with the smallest port ID is selected as the root port.

3. Select the designated bridge for a LAN: When one subnetwork within the LAN internetwork is connected to several
bridges, so that at least one route over each of these bridges leads to the root bridge, then one of these bridges has to
be selected for traffic forwarding to the root bridge. This is the only way to create a tree topology. In a local area
network, the bridge with the smallest path cost to the root bridge (the so-called root-path cost) is normally selected. The
network adapter used to connect this designated bridge to the local area network is called the designated port.
Consequently, there is only one single designated port for each LAN. All adapters of the root bridge are designated ports.

All output adapters that were not selected as root ports or designated ports are locked (i.e., they take the p1ocking
state). Though no payload packets will be transported over these ports, they can continue receiving BPDUs. This means
that a deactivated adapter can detect a component failure and reactivate itself when needed.

Behavior When a Component Fails

When an active bridge (i.e., a root bridge or a designated bridge or an active port) fails, then this can be discovered by a
message-age mechanism. To this end, each bridge manages a max age value. If the message age value of a BPDU (see Section
12.4.5) exceeds this value, then the spanning-tree algorithm is reactivated to check for which bridges should be active in the
new topology. More specifically, bridges where network adapters change states send the topology-change notification BPDUs
described above over the path to the root bridge. This means that all other bridges are informed about a change in topology, so
that they can respond accordingly.

The message-age value of a bridge PDU is incremented after each forwarding action. If a failure or the adding of a new bridge
causes a cycle, then the message-age value increases continually as the packet cycles, eventually reaching the threshold that
triggers the spanning-tree algorithm (to reconfigure the LAN internetwork).

Figure 12-9 shows the topology from Figure 12-7, but with a change: Bridge 3 has failed. This means that the connection from
LAN 3 to the root bridge over bridge 2 has to be restored, and LAN 5 is reached over bridge 4. The blocked ports of bridge 4,
etho and eth1, are activated in this situation, allowing proper communication, even though bridge 3 failed.

Figure 12-9. Topology of Figure 12-7 after bridge 3 has failed.
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Avoiding Temporary Loops

The decentralized operation of the spanning tree algorithm makes it possible that some bridges have not stored the globally
correct information (i.e., they have only local knowledge). For this reason, the interfaces could be in a "wrong" state, causing
loops that can be removed during the further procedure.

For example, if one interface is the designated port, and if no configuration message from a higher-order bridge has arrived in
this bridge yet, then data packets would be forwarded on the basis of their local information. Globally, this would cause a loop
and the wrong behavior described earlier.

To solve this problem, the standard includes two intermediate states between the blocking and the forwarding states. The
transition from one state to another occurs when the so-called forward delay timer expires. In the 1istening State, a bridge
must neither learn addresses nor forward packets. It receives configuration messages only if these messages reset the interface
into the blocking state. The next state allows the bridge to enter addresses in the forwarding table (learning function); this state
is called the 1earning state. Inthe forwarding State, which is reached after another expiry of the forward delay timer, data
packets can be forwarded. Figure 12-10 shows the state transitions of a network adapter.

Figure 12-10. State automaton of a bridge port.
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12.3 Configuring a Bridge in Linux

A bridge interconnects several local area networks on the data-link layer, simulating the behavior of one large single network to
the outside. To connect several local area networks in a Linux system, we need only install several network adapters in the
computer. Linux also allows you to manage several bridges within one system, which can operate independently of one another.
Each bridge instance has a logical name. One network adapter can always belong to exactly one bridge instance. This allows the
system administrator to build virtual local networks (VLANSs), which previously required expensive VLAN switches.

The following sections introduce options to configure and control Linux bridges.
12.3.1 Configuring the Kernel and the Network Adapter

To be able to use a Linux system as a bridge, the Linux kernel has to contain the bridge functionality. This is normally not the
case, so we have to create a new kernel. When configuring the kernel, you should select the grTpGING Option from the
Networking Options. YOU can integrate it into the kernel either as a module or permanently.

Once you have booted your new kernel (and loaded the module, if applicable), you can use the bridge functionality. Sometimes,
you might incur problems when trying to activate several network adapters. If this happens, you can specify the boot
parameters 1inux ether=0, 0, ethx for each card when you start the system. If you use the LILO boot loader, you can also
have the boot parameter passed automatically.

If the bridge functionality resides in the loaded kernel and all network adapters are activated, you can use the prct1 tool to
create and configure the desired bridge instances. prct1 Wwill be introduced in the next section.

12.3.2 Using the ,.+1 Tool to Configure Linux Bridges

You can use the prct1 (Bridge Control) tool to configure a bridge in Linux. This tool is part of the pridge -utils package and
can be obtained from [Buyt01].

This tool can be used by the administrator to pass control commands to the bridge implementation in the kernel by using i oct1
() commands. This section gives an overview of how you can use this program. [BoBu01] includes a detailed description of
these commands and several examples.

The prct1 tool lets you use the following commands to activate and deactivate a bridge. The commands are passed as
parameters when prct1 is called:

e addbr bridge: This command creates a new instance of a bridge with the identifier pridge.

e addif bridge device: This command adds the network adapter device t0 bridge. A network adapter can
always belong to one bridge only.

e delbr bridge: This command deletes the instance of the specified bridge.
e delif bridge device: This command deletes the adapter gevice from pridge.
The following commands are available in the prct+1 tool to change the default parameters of a bridge:

e setaging bridge time: This command sets the max age parameter to the specified value. The topology of the LAN
internetwork is recalculated when a BPDU with a larger aging time arrives.

e setbridgeprio bridge prio: This command sets the bridge priority, not to be confused with the port priority.

e setfd bridge time: This command sets the bridge forward delay parameter. This value is added to the aging timer
parameter of a BPDU in each bridge.

e setgcint bridge time: This command sets the duration of the garbage collection (GC) interval for a bridge. Once a
GC interval expires, there is a check for whether the forwarding table includes old entries. If it does, then these entries
are deleted.

e sethello bridge time: This command is used to change the time interval in which hello packets are sent.
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e setpathcost bridge port cost: Thiscommand can be used to change the path cost for a network adapter of the
specified bridge.

e setportprio bridge port prio: This command changes the priority of a network adapter in a bridge.

e stp bridge [en|dis]: Thisswitch can be used to enable (en) or disable (qis) the spanning-tree protocol in a
bridge.

12.3.3 Checking the Bridge Functionality
The following commands are included in the -t 1 tool to check the operation of a bridge and control its functionality:
e show: This command shows a list of all bridge instances currently existing in the computer.

e showbr bridge: This command outputs the current configuration of the specified bridge. The output for bridge 3 from
the example in Figure 12-11 will be shown later.

e showmacs bridge: This command outputs the current filter or forwarding table, including the MAC addresses of all
known stations (as shown below).

Figure 12-11. Redundant LAN internetwork.
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In addition, you can use the +cpdump tool to monitor the traffic in each of the interconnected LANs. To monitor LANSs, you start
tcpdump -i ethnand tcpdump -i ethm €ach in a separate window. You should see packets being forwarded in both
adapters. In contrast, packets for computers in the same LAN should appear in one adapter only.

12.3.4 Sample Configuration

The following example shows how you can add a bridge based on the configuration of bridge 1 from the LAN internetwork
shown in Figure 12-11:

root@tux: # Dbrctl addbr bridgel

root@tux: # Dbrctl addif bridgel ethO

root@tux: # Dbrctl addif bridgel ethl

root@tux # Dbrctl setpathcost bridgel eth0O 5

root@tux # Dbrctl setpathcost bridgel ethl 15

root@tux: # ifconfig eth0 0.0.0.0

root@tux: # ifconfig ethl 0.0.0.0

root@tux: # ifconfig bridgel 129.13.42.100 netmask 255.255.255.0 up

In this example, we first create a bridge, pridgel . Subsequently, we add network adapters. The IP addresses are deleted,

because the network adapters are allocated to the bridge and should actually forward or filter packets in the LAN internetwork
independently of a protocol.

Nevertheless, it is possible to address the bridge (regardless of a network adapter) by using an IP address. This address is
allocated to the virtual adapter, bridge1, as shown in the last command. Each bridge instance has such a virtual network
device, which has the same name as its bridge instance.
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The outputs of prctl showstp bridge3 and brctl showmacs bridge3 are as follows:

root@tux # brctl showmstp bridge 3
bridge3

ethO

ethl

eth2

bridge id
designated
root port
max age
hello time
forward del
aging time
hello timer

root

ay

0003.00902744822b
0002.00902744da29

1

20.00

2.00

15.00

300.00

0.00

topology change timer
TOPOLOGY CHANGE

flags

(1)
port id
designated
designated
designated
designated
flags

(2)
port id
designated
designated
designated
designated
flags

(3)
port id
designated
designated
designated
designated
flags

root
bridge
port
cost

root
bridge
port
cost

root
bridge
port
cost

8001

0002.
0006.

8002

8002

0002.
0002.

8002

8003

0002.
0003.

8003
10

00902744da29
009027d1362b

00902744da29
00902744da29

00902744da29
00902744822b

root@tux # brctl showmacs bridge3
is localv?
00:90:27:44:82:2Db
00:90:27:72:0c:31
00:90:27:cb:a3:cd

port no mac
2
1
3

addr

path cost
bridge max age
bridge hello time

bridge forward delay

gc interval
tcn timer
0.00 gc timer

state

path cost

message age timer
forward delay timer
hold timer

state

path cost

message age timer
forward delay timer
hold timer

state

path cost

message age timer
forward delay timer
hold timer

aging timer
yes
yes
yes

10
20.00
2.00
15.00
4.00
0.00
0.99

forwarding
5

1.98

0.00

0.00

blocking
12

1.98
0.00
0.00

forwarding
15

0.00

0.00

0.00

4 Previous

Mest b |
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12.4 Implementation

The implementation of the bridge functionality discussed here is relatively new. It has been integrated into the Linux kernel since
Version 2.2.14 and 2.3.x and replaces the former and in many ways less flexible implementation. This version includes several
new functions (e.g., the capability of managing several bridges in one system, and better options to configure the bridge
functionality).

In addition, several details of the implementation have changed to provide more efficient handling. Among other things, the
forwarding table is no longer stored in the form of an AVL tree, but in a hash table. Though AVL trees are data structures with a
relatively low search cost, O(log n), hash tables are generally faster when the collision domain remains as low as possible. This
means that a well-distributed hash table has the cost O(1). We can assume that a Linux bridge has to store several hundred
reachable systems at most, so a hash table is probably the better choice, especially considering that it is much easier to
configure.

The following sections describe in more detail how you can implement the bridge functionality in Linux. We will first introduce
the most important data structures and how they are linked, then discuss the algorithms and functions.

12.4.1 Architecture of the Bridge Implementation

Figure 12-12 shows the architecture of the bridge implementation in the Linux kernel. The individual components are divided, by
their tasks and over several files. This makes the program text easier to understand and forces the programmer to define the
interfaces between the individual components well.

Figure 12-12. Integrating the bridge implementation into the Linux network architecture.
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12.4.2 Building and Linking Important Data Structures
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The most important data structures of a Linux bridge include information about the bridges themselves and information about
the network adapters (ports) allocated to them. We want to repeat here that you can use the new bridge implementation to
construct several logically separated bridges in a Linux system. For example, this allows you to easily configure virtual local area
networks (VLANSs) that are not mutually accessible. In addition to information about the bridge and its ports, you need to store
the forwarding table (filter table) for each bridge.

The forwarding table stores the IDs of each reachable station and the port used to reach that station. In addition, a transparent
bridge also manages information for the spanning-tree protocol.

The file net /bridge/br private.h defines the structures used to manage the information about bridges and their ports.
Figure 12-13 shows how they are built and generally interlinked.

Figure 12-13. Structures in the Linux bridge implementation.
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All bridges of a system are linked in a linear list, where the entry point is the bridge list variable.A net bridge Structure
with the following parameters is created for each bridge:

e next isusedtolinkall net bridge structures in a linear list. It points to the next element in the list.

e lock is akind of mutex used to provide atomic access to important bridge structures and to prevent problems caused by
concurrent access attempts.

e port list Isthe entry point into a linear list that stores all ports of a bridge instance.

e dev Is a pointer to the net device structure of the virtual network adapter of a bridge.

e hash is a pointer to the hash table, which stores the stations a bridge can reach (forwarding table).
The following parameters relate to the spanning-tree algorithm and are discussed in Section 12.4.5. As mentioned earlier, the
ports of a bridge are managed in a linear list, starting from the net bridge structure. Each port in this list is represented by a
net bridge port Sstructure:

e next serves for linear linking of the ports of a bridge.

e net bridge pointstothe net bridge Structure of the specified bridge. This pointer allows you to find the
appropriate bridge instance quickly.

e net device iSa pointer to the net device structure of the network adapter allocated to that port.
e port no stores the port number.

More parameters also relate to the spanning-tree algorithm and are discussed in Section 12.2.4.

Using a Hash Table for Forwarding Information

The Forwarding Data Base (fdb), which is used for forwarding in a bridge, is stored in a hash table. The major benefit of hash
tables is that they normally offer direct access to the desired data.

Each net bridge structure uses the forwarding table to point to the hash vector. The preprocessor variable Br HASH STZE
can be used to set the number of entries. If a large number of stations is connected in a LAN internetwork, then the size of the
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If you want to check on whether a MAC address is already known to the destination station, then a more complex hash function
(br_mac_hash()) IS used to select a row of the hash vector. This row links all entries linearly with the same hash value
(linear collision resolution). Figure 12-13 shows how structures are linked.

An entry in the hash table consists of @ net bridge fdb entry Structure. The first two parameters of this structure serve
to link a hash row. The other parameters store the MAC address of the destination station and a reference to the port used to
reach that station. The variable aging timer is used to delete an entry from the hash table after some time when it is no
longer required. B

12.4.3 The Path of a Packet Through the Kernel

This section describes the path of packets through the Linux kernel (i.e., through a transparent bridge in Linux). As with packets
entering a Linux router (see Chapter 6), the network adapter receives a packet, triggers an interrupt on the network adapter,
and stores the packet in an input queue. Subsequently, the function net rx action() runsthe net rx tasklet. This function
also includes the entry point for the bridge implementation (br handle frame hook()) - B

In contrast to a router implementation, the network layer is not accessed here. Instead, once a bridge is activated, the function
br handle frame () ISinvoked, and a pointer, br handle frame hook , Points to this function. If no bridge has been
activated—for instance, when the bridge functionality was created as a module—then the hook points to null. In this case, an
attempt is made to forward the packet to the higher layers. If the kernel was created without bridge support, then these
functions are missing, and no valuable computing time is wasted on searching for an activated bridge.

After a few checks (e.g., on whether the port was activated), the function br handle frame () decides whether the packet
should be forwarded or its destination should have been in the previous LAN. It obtains this information from the function

br fdb get () , Which searches the forwarding table for the MAC destination address of the packet. If the packet has to be
forwarded, then pr forward () Will forward it; otherwise, it will be rejected.

But first, br £db put () updates or creates the sender's entry in the forwarding table. As described earlier, a bridge can
alternatively pass packets to the higher layers (e.g., the IP instance). For this reason, there has to have been a previous check
on whether the destination station is the bridge itself. If this is the case, then the packet is further handled by

br pass frame up () , Where a clone rather than the original packet is passed upwards. Other cases in which the packet has
to be transported upwards are multicast packets and an adapter in promiscuous mode.

If the packet belongs to the spanning-tree protocol, it is passed to the function br stp handle bpdu () - These bridge PDUs
can be identified by a special MAC address.

As was mentioned earlier, a hash table within each bridge instance is used to manage the forwarding table. The spanning-tree
algorithm and the relevant protocol messages (Config BPDUs, TCN BPDUs) ensure that no cycles can persist in the topology of a
redundant LAN internetwork. (See Section 12.2.4). ioct1 () commands are used to configure the bridge and set the
parameters of the spanning-tree algorithm.

After this brief introduction to the architecture of the bridge implementation in Linux, the following sections describe each of the
functions in more detail.

Forwarding Functions

br handle frame () net/bridge/br_input.c

This function represents the entry point to the bridge implementation. All packets received by a Linux bridge travel through this
function. It is invoked by the neT Rrx tasklet in the function net rx action () , if the bridge functionality in the kernel was

activated (CONFIG BRIDGE) -

The first step checks for whether the input port or the network adapter is deactivated (gr PORT DISABLED !IFF UP); if
this is the case, then the packet would be rejected. Next, the MAC header is removed from the packet, and the packet is
subjected to several checks. For example, if it is @ multicast packet, or if the network adapter is in promiscuous mode, then a
clone of the packet is created and passed to the higher layers (br pass frame up()) -

Subsequently, the function checks for whether the packet is a bridge PDU. If the MAC destination address begins with the
combination g1 .80.c2.00.00, then the packet is treated as a special PDU of the spanning-tree protocol and is passed to the

function br stp handle pdu() -

If the packet is not a bridge PDU, then the bridge remembers its origin (or more specifically, the port on which it was received
and the MAC sender address within the Ethernet frame). If the bridge is in either the BR sTATE LEARNING OF
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entry to the table or renews the validity of an existing entry. If the bridge is in the BR_STATE BLOCKING state, then the packet
is rejected and the bridge does not remember its origin.

Any further handling of packets is done only in the Br sTATE FOrRwaARDING State. If an input port is in another state, then the
packets are rejected. To be able to forward a packet, a decision has to be taken as to whether the packet should be forwarded
at all and, if so, over which port. A multicast or broadcast packet is output to all ports of the bridge (or f1ood()) .In
addition, such a packet is also passed to the higher layers. B

br fdb get () Searches the forwarding table for an entry with the specified MAC destination address. If it concerns the MAC
address of an adapter of the bridge instance, then the packet is passed to the higher layers and not forwarded. If the
destination is not the bridge, then the function b+ forward () forwards the packet over the appropriate output port. Notice
that the packet is passed to br forward () , €ven if the input port was identified as the destination port, where it will
eventually be verified and filtered. If no entry is found in the forwarding table, then the packet is flooded to all outputs

(br flood()) -

br forward () net/bridge/br_forward.c

br forward () ISinvoked either once by br handle frame () Or several timesby br f1ood () - The purpose of this
function is to output a data packet on the specified port. To this end, the function dev queue xmit () , described in Section
6.2.2, is used. B B

Beforehand, however, there are two checks (br_should forward()) - First, the output port has to be in the
BR STATE FORWARDING State; and, second, it must not be identical with the input port of the packet. Otherwise, the packet
would be transferred twice within the local area network.

br flood() net/bridge/br_forward.c

br flood() IS invoked by br learn() Of br forward () when a packet should be sent to all ports, except the input port,

for some reason. br f1lood () Simply invokes the function br forward () foreachentryin port 1ist of the net bridge
structure. As mentioned earlier, this function checks for the port's forwarding state and for mismatch between input and output

adapters.

br pass_ frame up () net/bridge/br_input.c

Transparent bridges are normally invisible to the other stations in a LAN internetwork; they forward data packets on the data-
link layer or filter packets. But when we use a Linux system as a bridge, we will probably want to use it also for other purposes.
Consequently, the computer should be able to receive IP packets. This is possible with the bridge implementation discussed
here. When the bridge receives a packet with the MAC destination address of one of its adapters, it is passed to the higher
layers by br pass frame up() -

The packet type is set to packeT HosT (arrived in the destination system), and the Ethernet header is removed. Subsequently,
the packet is passed to the function netif rx (), which invokes the protocol-handling routine of the appropriate layer-3
protocol.

br fdb get () net/bridge/br_fdb.c

br fdb get () Searches the forwarding table in the hash table of the specified bridge instance for a MAC destination address
passed as a parameter. It first calculates the hash value and searches the hash row to see whether there is an entry with the
desired MAC address. If there is an entry, then the desired information for the MAC address is found, and a pointer to the
output port used to reach that station is returned. If no entry is found, then the route to the destination station is unknown and
the value null is returned.

12.4.4 Learning New MAC Addresses

The learning of new MAC addresses is a characteristic of a transparent bridge. It can be achieved only provided that the port is
in learning or forwarding state. (See Section 12.2.4.) As was described earlier, the learning function is invoked for each data
packet. The source address is added to the forwarding table. If an address already exists in the table, then the information of
the net bridge fdb entry Structure is updated and the pointer to the entry is returned.
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br fdb insert() net/bridge/br_fdb.c

br fdb insert () includes the entire learning function of a transparent bridge. The MAC sender address is entered in the
forwarding table for each incoming packet in the sr STATE LEARNING and BR STATE FORWARDING States. To this end, the
hash value of the MAC address is calculated (br mac hash () ) , and the hash row is searched for the appropriate entry. If
this entry is found, then both the entry for the input adapter and the aging timer are updated. This means that the bridge
will also learn when a station has moved.

If no entry can be found in the hash row, then br fdb insert () Createésanew net bridge fdb entry Structure and
USES hash 1ink () toadd it to the hash row.

br fdb cleanup () net/bridge/br_fdb.c

The forwarding table should be updated whenever a station is no longer active or the network has changed. Unfortunately, a
bridge cannot see such an action, because it responds actively to a station's packets only by remembering the origin of a packet
in the forwarding table. This means that, when a station has not sent anything for a certain period of time, then the bridge
assumes that the station was deactivated or moved. For this purpose, the gc timer is setin a bridge instance. This timer
starts the function b+ fdb cleanup () periodically in a specific interval, gc_ interval - It checks all entries in the hash table
of a bridge instance and removes all entries with an aging value exceeding timeout.

12.4.5 Implementing the Spanning-Tree Protocol

This section describes how the spanning-tree protocol according to IEEE 802.1d and the relevant functions are implemented.
The spanning-tree protocol is used to prevent cycles in a redundant LAN internetwork. The algorithm operates in a decentralized
way: Each station has to work out the current state in the LAN internetwork from the information contained in control packets
(BPDUs). For example, each bridge assumes initially that it is the root bridge, and it probably has to learn that this is not so from
incoming BPDUs.

For this reason, the implementation of the spanning tree protocol is based on the fact that the currently "best" configuration is
stored in each port. This means that each new incoming message is verified to see whether the information it contains is better
than the information currently stored, so that the currently best configuration is accepted. By comparing the configuration
message most recently received with the information available on the bridge itself, it is easy to figure out the root bridge, the
root port, and the designated ports.

This also means that all steps are executed consecutively for each configuration message with better information. This means
that the root bridge is not defined in all bridges to then compute the least cost for all bridges, and so on; instead, the bridges
decide first on the basis of their own knowledge, and subsequently the knowledge of the immediate neighbors is added, and so
on, until the configuration messages have eventually visited the entire LAN internetwork, so that the bridges can make their
optimal choice for the LAN internetwork. This shows clearly that a real-world implementation does not necessarily have to
correspond to the theoretical model to be efficient.

One major benefit of this implementation is that relatively few configuration messages have to be exchanged. How fast a tree
structure can be built also depends on the bridges that send their configuration messages first. It is normally more beneficial
when bridges with smaller identifiers or higher priorities send configuration messages earlier. However, bridges do not
immediately change from the blocking into the forwarding state; they take various intermediate states where no data packets
may be forwarded, so that the probability of temporary cycles is low.

The following subsections describe the important aspects of how the spanning-tree protocol is implemented.
Initialization

A bridge in the kernel is initialized by the functions b+ add bridge () and new nb () When a bridge instance is created by
the bretl addbr ... command. As the instructions in this command are processed, the bridge is set as the designated root
bridge. When prct1 addif ... adds ports to the bridge, then these ports are initially put into the BR STATE BLOCKING
state. All timers are initially set to inactive (br stp enable port()) . Subsequently, the information currently available is
verified to see the state the new port can now take. B

When a bridge instance is initialized, the bridge timer is also initialized. This timerisa timer list type (See Section 2.7.1);
it invokes the b+ tick () function each second. This function is used to control all timer functions of the bridge instance and
the spanning-tree protocol. This means that each bridge instance uses only one single system timer. All internal time-controlled
processes run over this timer. (See more information in the later subsection Timer Handling.)
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The function br handle stp pdu() Of br handle frame () iSinvoked as soon as a BPDU is received. When topology-
change packets (TCN) arrive, then br received ten bpdu() assumes all further handling. When configuration packets
(Config BPDU) arrive, then the packet content is copied into @ b+ conf ig bpdu Structure, and some of the fields are
converted into the internal representation format. For example, time values are stored in jiffies rather than in ticks.
Subsequently, the BPDU is further handled by the function br received config bpdu() -

Steps of the Spanning-Tree Algorithm

The individual steps of the spanning-tree algorithm were described in Section 12.2.4. As mentioned in that section, the
spanning-tree mechanism runs for each configuration message received that changes something in the current configuration.

Whether a new configuration message has information that is better than that currently stored is a decision implemented by
logic functions, as are the selection of a root port and the naming of a designated port. Notice that these actions normally use
few comparisons.

br received config bpdu () net/bridge/br_stp.c

This function initially invokes br is root bridge () to check on whether it has been the root bridge itself. Notice that the
bridge does not have a global view of the LAN internetwork, as mentioned earlier. There could indeed be other bridges that
classify themselves as the root bridge. This situation will change gradually as the spanning-tree algorithm runs its steps, and
one bridge will eventually become the only root bridge.

When a new configuration message is better than the current information (a result of calling br supersedes port info
() , then the following things happen:

o First, the invocation of br record config information () Ccauses the data of the configuration BPDU to be written
tothe net bridge port structure.

o Next, the br configuration update () function is invoked. It selects the root ports and designated ports. This
action could cause the information structures of the bridge and its ports to change.

e Subsequently, br port state selection() recognizes the state of a port. The hello timer is stopped, if the bridge
was the root bridge before the new information was stored, but now if it is no longer the root bridge. If a change to the
topology is discovered in additional, then the topology change timer IS stopped, the tcn timer is started, and a
topology-change message is sent (br transmit tcn()) - B

o If the input port was marked as the root port, then the timeout values of the configuration BPDU are added to the
net bridge Structure and a configuration BPDU is generated (by br config bpdu generation () )- In addition,
the function br topology change acknowledged () is invoked, if the topoplogy change ack flag was set in
the configuration BPDU.

In contrast, if nothing changes in response to the configuration BPDU, then pr rep1y () is invoked, provided that the input port
is the designated port. This means that a configuration message with locally stored values is sent.

br supersedes port info() net/bridge/br_stp.c
This function checks for whether the stored net bridge port Structure changes in response to a configuration BPDU
received (i.e., if the new configuration BPDU includes "better" information). This is the case in either of the following situations:
e The root bridge in the BPDU has a smaller ID than the root bridge currently stored in the structure.
e The two IDs are equal, but the path cost in the BPDU is less.
e The path cost is equal, but the ID of the sending bridge is smaller than the ID of the bridge itself.
e The IDs of the bridges match, but the port ID of the sending bridge is smaller than the ID of the input port.

The first two points in the above list are normally decisive, but if two local area networks are connected by parallel bridges, then
the port ID could also play a role.
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This function is invoked if the configuration message is better than the information currently stored. The root bridge ID and the
cost over the path to the root bridge (RPC) are stored in the net bridge port Structure as designated root and cost,
respectively. The bridge sending the configuration message and its output port serve as the designated bridge and port.

The message-age timer is started with the value from the configuration message, to be able to detect potential failures of a
component.

br record config timeout values net/bridge/br_stp.c
()

An invocation of this function causes the values for expiry of the timers to be copied from the configuration message to the
information memory of the bridge. This ensures that critical timers in all bridges of the LAN internetwork have the same timeout
values, which are determined by the root bridge.

br root selection() net/bridge/br_stp.c

This function selects the root port of a bridge. The function iterates over all ports, starting with the smallest port number, and it
checks for whether the conditions for the root port are met (or should become root port () ). The port must not be a
designated port, it must not have the gr sTaTE DISABLED State, and the bridge must not be the root bridge. Subsequently,
the path cost to the root bridge is compared. If the costs are equal, then the information from the net br idge port
structure is considered. Figure 12-14 shows the algorithm used for this procedure. B B

Figure 12-14. Selecting a root port.
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If the loop was fully walked through, but no root port was assigned, then the bridge itself becomes the root bridge. Finally, the
selected root bridge and the root path cost (RPC) are entered in the net bridge structure.

br designated port selection () net/bridge/br_stp.c
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This function also checks the ports one after the other. A port becomes the designated port if the configuration message that

arrived on this port is better than the configuration message received (and stored in the net bridge port structure). The
configuration message consists mainly of the root bridge ID, the path cost to the root bridge, and the bridge and port IDs, so the
corresponding fields in the net bridge Structure and in the net bridge port Structure have to be compared. Figure 12-
15 shows the algorithm used to implement this condition. B B

Figure 12-15. Selecting a designated port.

[View full size image]
| Port = 1 |

!

End -4_[ Port <0 = number of porns? ]—<—|
No
Yes | Port = Port + 1
Y i
[ Port is deactivated? Ji
Yex
Na
Y
T[ Port is designated port? ]
N
Y
Bridge_ DR unequal
Yirs Fort.DR?
No
¥
—[( ompare (Bridge. RPC, Port. DO }}7
'S
—[ Compare (Bridge.1D, DB.ID) ]7 DR = Designated Root
= e = ['Jcr-i;:1_11:|l|_'tl{‘ml
Y DB = Designated Bridpee
TTY P = Designated Port
Tort:11 < JPRI1D ]7
[ mhici i Ny I} = ldentifier
Vs
Y Compare| A, B):
—’-I Port becomes designated pm’l| <ifA<H
= ifA=1
] = ifA>=DB
br become designated port() net/bridge/br_stp.c

This function is invoked in br designated port selection() for each designated port. The port in the bridge whose
number is called in this function becomes the designated port. This means that the corresponding information is stored in the
net bridge port structure.

br port state selection() net/bridge/br_stp.c

The future state is determined for each port, and appropriate functions are invoked. If the port is in the BR STATE DISABLED
state, then nothing is done. If a port is the root port or a designated port, then br make forwarding() IS invoked to put that
port in the forwarding state.

Remember that the intermediate states, BR_STATE_LISTENING und BR_STATE LEARNING, are used first, as described in
Section 12.2.4. The forward delay timer controls this procedure.

In all other cases, br make blocking () IS invoked to put the port in the blocking state. In addition, a topology-change
request is caused by br topology change detection() , if the port has been in the forwarding or learning state.

br transmit config() net/bridge/br_stp.c
This function initially checks whether for the hold timer is active. If so, then config pending is set to 1, and the function
returns immediately.

If the hold timer has not always been active, then a configuration BPDU with the corresponding values is filled in from the
net bridge structure; then the function br send config bpdu() Isinvoked, and the hold timer is started. Figure 12-16
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Figure 12-16. Example of a configuration message.
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Example—Running the Spanning-Tree Protocol

The initialization of the bridges results in the configuration shown in Figure 12-17. However, this figure shows only the most
important fields in the structures. Each bridge is initialized as a root bridge. Though the interfaces are in blocking state,
configuration messages are sent, because the ports are defined as designated ports.

Figure 12-17. Initializing bridges for the spanning-tree protocol.
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After the bridge initialization, configuration messages are sent over all network adapters. In this example, bridge 1 sends the
first configuration message. This information is better than the information stored in the input ports of bridges 2 and 3 (in this
case), so the new information is stored in the net bridge port Structures of these ports. Figure 12-18 shows this
procedure.

Figure 12-18. Storing information from a configuration message.
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From this information, the root port is selected in bridges 2 and 3. In the example shown in Figure 12-18, port 1 is selected in
both bridges, because it is the only port that stored the root bridge with the smallest ID. This selection causes the net bridge
structure to change, as shown in Figure 12-19.

Figure 12-19. Selecting a root port.
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The next step selects designated ports in the bridges. Port 2 is defined as the designated port in each of the two bridges,
because the information about the root bridge in the net bridge port Structure of this port differs from the information in
the net bridge structure. The selecting of designated ports changes the net br idge port structure of these ports, so the
new root bridge and its path cost are entered. Figure 12-20 shows this procedure. B

Figure 12-20. Selecting designated ports.
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Two paths to the root bridge exist for LAN 3 in this example, and so there is a cycle; hence, we have to select a bridge as
designated bridge for this LAN. We opt for bridge 2 as the designated bridge, because it has the smaller ID. Notice that this
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configuration message over its designated port, then bridge 2 will check for whether it is better than the stored configuration.
Such would not be the case in this example, so bridge 2 would return a configuration message with its own values. The
information in this message would be better than the configuration stored on port 2 in bridge 3. Consequently, this bridge would
run the spanning-tree algorithm. Port 1 would remains the root port, but port 2 would no longer be a designated port and would
be put into the blocking state. (See Figure 12-21.)

Figure 12-21. Configuration for LAN 3.
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Timer Handling

Each bridge has a function, br tick(),to0 handle timers. This section describes the seven defined timers To implement these
timers, only one system timer of the type timer 1ist is used. This is the variable tick in each net bridge structure.

The timer +ick is invoked once every second (expires = jiffies + Hz) This causes the function pr tick() to be
invoked each time. This function defines the behavior of the timers in the following list. Whether a timer has expired is checked
for each timer (br check timers () )- In addition, the timers are incremented. The appropriate behavior function is invoked
as soon as a timer expires.

o Hold timer: The hold timer starts after the configuration BPDU has been sent. When it is active, no configuration BPDU
can be sent over the same port. The hold timer expires when its value reaches or exceeds the stored 614 time. Then
the function br transmit config() IS invoked, if no BPDU has been sent yet. Once it has expired, the hold timer is
not restarted. It is stopped explicitly when a port is disabled.

e GC timer: The garbage collection timer does cleanup work in the forwarding table. It checks periodically
(gc interwval) on whether there are old entries in the forwarding table. If there are, then these entries are deleted, to
respond to moving stations. In addition, this cleanup work prevents the forwarding table from filling up with entries for
inactive stations. The function br fdb cleanup () is responsible for this check.

o Hello timer: The hello timer is used to send hello packets (configuration BPDUs) at regular intervals. This timer is started
after the call of br config bpdu generation () , While the spanning-tree protocol is running. It is incremented until
its value has reached the stored hello time. Subsequently, br config bpdu generation () i invoked again, and
the hello timer is restarted.

e TCN timer: The TCN timer is used once a TCN BPDU has been sent. This timer causes TCN BPDUs to be sent at regular
intervals until the topology change has been acknowledged. The intervals are identical to those for configuration BPDUs.

e Topology-change timer: This timer is used exclusively by the root bridge. It specifies the period for which the flags for a
topology change request are set (i.e., the period during which configuration messages may be passed). The fields
topology change detected and topology change in the net bridge structure are set to null as soon as this
timer expires. This timer is not restarted.

o Message-age timer: There is one message-age timer for each network interface in each bridge. This timer is started
when the values of a configuration BPDU are written to the net bridge port Structure. The expiry of the message-
age timer means that a component has failed. For this reason, the spanning-tree protocol is restarted, where the port
with the expired timer is set to be the designated port. Subsequently, the spanning-tree algorithm runs its normal
procedure.

o Forward-delay timer: The forward-delay timer is used to move the ports of a bridge from the blocking to the forwarding
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states. It is started by the function br make forwarding() s and the state of a port is set to BR_STATE_LISTENING
in this function.

When in the BR_STATE LISTENING, the port is switched to the BR_STATE LEARNING State, and the forward-delay
timer is restarted. When the timer expires again, then the state changes from Br_sTaTE LEARNING tO

BR_STATE FORWARDING - This requires the br topology change detection () function to be invoked, if any of
the ports stored this bridge is the designated bridge. Figure 12-11 shows these transitions.

Topology Changes

When a new bridge is added to the LAN internetwork, then the spanning-tree protocol (STP) runs as described above: The
bridge is initialized as root bridge. If it is actually the (new) root bridge, then its configuration messages will win across all
bridges in the internetwork. Otherwise, it receives configuration messages from neighboring bridges, which it will then use to
configure its interfaces.

As was mentioned previously, if a bridge or an active port fails, then the message-age timer in the neighboring bridge expires.
Figure 12-22 shows this procedure in an example. The port owning the expired timer is set to be the designated port. This

means that the current configuration of this port is overwritten. Subsequently, the spanning-tree mechanism runs once more in
this bridge.

Figure 12-22, Example for a topology change: The message-age timer expires.

[View full size image]

. Bridge? [ailed:

no more conliguration messages
—» message age lmer expires
—=reconfiguration required

@ —=rerun STR
Ty L'_."'-

Functions Used to Display a Topology Change

As previously described, the execution of the spanning-tree protocol in a LAN internetwork could cause changes to the topology.
TCN BPDUs are sent over the path to the root bridge to ensure that all bridges are informed about such a topology change. In
turn, the root bridge sends then configuration BPDUs with the topo1ogy change field set, and these BPDUs are transported
across all paths within the tree topology. B

It is interesting to note that MAC addresses are not added to the forwarding table when the topology is reconfigured. Instead,
this is done exclusively by the learning function. However, the entries in the forwarding table can become invalid after a
relatively short time, so packets are sent to the relevant stations over all ports so that they will eventually reach their
destination.

br received tcn bpdu () net/bridge/br_stp.c

If the port that received a BPDU is a designated port, then the function br topology change detection() IS invoked.

br topology change acknowledge () IS used tosend a configuration message with the topology change ack field
set over the input port.

br topology change detection () net/bridge/br_stp.c

If the bridge is the root of the tree topology, then the topology change field inthe net bridge Structure is set to one, and
the topology-change timer is started. Unless the topology change has been detected, all other bridges use the

br transmit tcn () function to send a TCN BPDU over their root ports and start their TCN timers. Finally, it is marked that
the topology change was detected, to limit the number of TCN BPDUs announcing the same topology change.

br topology change acknowledged net/bridge/br_stp.c
0
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The marking for a topology change is reset, and the TCN timer is stopped. This function is invoked by
br received config bpdu() ,iftheflag topology change ack is setin the incoming configuration message.
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Chapter 13. The TCP/IP Protocols

This chapter introduces the TCP/IP protocol suite, which represents the basis of the popular Internet. Chapter 3 introduced the
TCP/IP reference model. The sections in this chapter and the following chapters begin with an introduction of the tasks of each
of these protocols and then describe how they operate and how they are implemented in Linux.

The history of the Internet and its protocols began in 1961, when Leonard Kleinrock developed packet-switching theory at MIT.
His work was based on the idea of splitting data into many small packets and sending them to the destination separately,
without specifying the exact path. After initial skepticism, the principle was eventually used in a research project of ARPA
(Advanced Research Projects Agency), a division of the United States Department of Defense. In 1968, ARPA granted a budget
of more than half a million dollars for a heterogeneous network, which was called ARPANET.

In 1969, this experimental network connected the four universities of Los Angeles (UCLA), Santa Barbara (UCSB), Utah, and the
Stanford Research Institute (SRI) and expanded very quickly. Later, satellite and cellular links were successfully connected to the
ARPANET. In one impressive demonstration, a truck in California was connected with the next university over a radio link and
used the satellite network to access a computer based in London, UK.

This system was used intensively in the years following. On the basis of the knowledge gained from this system, a second
generation of protocols was developed. By 1982, a protocol suite with the two important protocols, TCP and IP, had been
specified. Today, the name TCP/IP is used for the entire protocol suite. In 1983, TCP/IP became the standard protocol for the
ARPANET. The TCP/IP protocols proved particularly suitable for providing a reliable connection of networks within the continually
growing ARPANET. ARPA was very interested in establishing the new protocols and convinced the University of California at
Berkeley to integrate the TCP/IP protocols into its widely used Berkeley UNIX operating system. They used the principle of
sockets to design applications with network functionality. This helped the TCP/IP protocols to soon become very popular for the
exchange of data between applications.

In the following years, the ARPANET had grown to a size that made the management of all computers IP addresses in one
single file too expensive. As a consequence, the Domain Name Service (DNS) was developed and is used to hide IP addresses
behind easy-to-remember computer and domain names. Today, the Internet protocol Version 4 is the most frequently used
network-layer protocol. However, it was not designed for such an enormous proliferation and has already hit its capacity limits,
so a new version had to be developed. The new Internet Protocol Version 6 is also called IPv6 or IPng.
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13.1 The Internet Protocol Suite

Each protocol of the TCP/IP protocol suite handles certain tasks within the TCP/IP protocol stack. Figure 13-1 gives an overview
of the TCP/IP protocol stack and its protocols.

Figure 13-1. The protocols of the TCP/IP protocol stack.
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o On the data-link layer in the Internet model, you find network adapters and their drivers. They allow you to exchange
data packets having a specific maximum length within the connected LAN (Ethernet, token ring,...) or within a WAN (PPP
over ISDN, ATM). The previous chapters introduced some protocols that also belong to the data-link layer (SLIP, PPP,
ATM, Bluetooth, etc.). All adapters and protocols on this layer have the common property that they represent only one
communication link between two IP routers (i.e., they don't support Internet routing).

e The Address Resolution Protocol (ARP) also resides on the data-link layer. Notice that there are contradictory opinions in
the literature. ARP is used to map globally valid IP addresses to locally valid MAC addresses. ARP is actually not limited to
IP addresses or specific physical addresses; it was designed for general use. ARP uses the broadcast capability of local
area networks to find addresses. Chapter 15 describes this protocol in detail.

e The Internet Protocol (IP) forms the core of the entire architecture, because it allows all IP-enabled computers in the
interconnected networks to communicate. Each computer in the Internet has to support the Internet Protocol. IP offers
unreliable transport of data packets. IP uses information from routing protocols (OSPF, BGP, etc.) to forward packets to
their receivers.

o The Internet Control Message Protocol (ICMP) has to be present in each IP-enabled computer; it handles the transport of
error messages of the Internet Protocol. For example, ICMP sends a message back to the sender of a packet if the
packet cannot be forwarded because routing information is missing or faulty. Section 14.4 deals with ICMP and its
implementation in Linux.

e The Internet Group Management Protocol (IGMP) is responsible for managing multicast groups in local area networks.
Multicast provides for efficient sending of data to a specific group of computers. IGMP allows the computers of a LAN to
inform its router that they want to receive data for a certain group in the future. Chapter 17 discusses multicast in the
Internet.

e The Transmission Control Protocol (TCP) is a reliable, connection-oriented and byte-stream-oriented transport-layer
protocol. TCP is primarily responsible for providing a secured data transport between two applications over the unreliable
service of the IP protocol. TCP is the most frequently used transport protocol in the Internet. It has a large functionality,
and so its implementation is extensive. Chapter 24 discusses the TCP.

e The User Datagram Protocol (UDP) is a very simple transport protocol, providing connectionless and unreliable transport
of data packets between applications in the Internet. In this context, unreliable does not mean that the data could arrive
corrupted at the destination computer. It means that UDP does not offer any protocol mechanisms to guarantee that the
data will arrive at the destination at all. When data arrives at the destination computer, than it can only be checked for
correctness.

As compared with TCP, UDP has the benefit that it has very little functionality and so can easily be extended. Many
applications that normally transmit only small amounts of data (e.qg., client/server applications) use UDP as their
preferred transport protocol. Establishing a connection and reliable data transmission would be more costly than the
retransmission of faulty or missing data.
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of applications:

o The HyperText Transfer Protocol (HTTP) is currently the protocol most frequently used in the Internet application
layer. It allows you to exchange data in the World Wide Web—say, by loading Web sites into your Web browser
(Netscape, Mozilla, Lynx, etc.). The unprecedented success of the World Wide Web has led to the enormous
proliferation of the Internet and its revolutionary growth.

o TELNET is the protocol for virtual terminals. It is used to access a computer connected to the network in the form
of a terminal session. Its unsecured transmission of passwords and data has caused TELNET to be increasingly
replaced by the SSH (Secure Socket Shell) protocol.

o The File Transfer Protocol (FTP) can be used to transport files from a local computer to another computer and
vice versa. Like TELNET, its most important drawback is that passwords are transmitted in cleartext. FTP has
increasingly been replaced by Secure Copy (SCP).

o The Simple Mail Transfer Protocol (SMTP) is the protocol used to exchange electronic mail (e-mail) in the
Internet.

o The Domain Name Service (DNS) translates DNS names, which are most commonly used and are easy for
humans to remember (€.9., www.linux -netzwerkarchitektur.de[1] ) into IP addresses. It is used mainly
to convert computer names and mail-server locations into IP addresses.

o The Network File System (NFS) is used to allow several computers to access the same file system. The NFS
service represents an extension of local file systems beyond network boundaries.

Such protocols of the application layer are not discussed in this book, because they are not part of the Linux kernel.
Simple application programming is normally sufficient to emulate them. For example, there are many of HTTP protocol
implementations in different WWW browsers and WWW servers. Chapter 27 explains how applications with network
functionality can be programmed.

The following chapters describe each protocol of the TCP/IP protocol stack and how they are implemented in Linux. These
chapters also discuss various extensions, which are related to the Internet Protocol suite, but normally not mentioned together
with it. This includes mainly concepts and protocols for computer security (firewalls, NAT) and the support of specific
guaranteed services within the Internet Protocol (Quality of Service (QoS) with TC or KIDS).
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Chapter 14. The Internet Protocol V4

The Internet Protocol (IP) is the central element in the TCP/IP protocol stack. It provides the basic service for all the data traffic
in the Internet and other IP-based networks and was specified in RFC 791. The primary task of the Internet Protocol is to hide
differences between data transmission layers and to offer a uniform presentation of different network technologies. For
example, the Internet protocol can run on top of LAN technologies and SLIP (Serial Line IP) or PPP (Point-to-Point Protocol) over
modem or ISDN connections. The uniform presentation of the underlying technology includes an introduction of the uniform
addressing scheme (IP address family) and a mechanism to fragment large data packets, so that smaller maximum packet sizes
can be transported across networks.

In general, each network technology defines a maximum size for data packets—the Maximum Transmission Unit (MTU). The
MTU depends on the hardware used and the transmission technology and varies between 276 bytes and 9000 bytes. The
Internet layer fragments IP datagrams, which are bigger than the MTU of the network technology used, into smaller packets
(fragments). These fragments of a datagram are then put together into the original IP datagram in the destination computer.
Section 14.2.3 explains how data packets are fragmented and reassembled.

In summary, the Internet Protocol handles the following functions:
e provides an unsecured connectionless datagram service;
o defines IP datagrams as basic units for data transmission;
o defines the IP addressing scheme;
e routes and forwards IP datagrams across interconnected networks;
o verifes the lifetime of packets;
o fragments and reassembles packets; and

e uses ICMP to output errors.

4 Previous MNext k



This document is created with trial version of CHM2PDF Pilot 2.15.72.

4 Previous Mext b

14.1 Properties of the Internet Protocol

The Internet Protocol was developed with the idea of maintaining communication between two systems even when some
transmission sections fail. For this reason, the Internet Protocol was developed on the basis of the principle of datagram
switching, to transport IP data units, rather than on that of circuit-switching, like conventional telephone network.

The following sections describe the protocol mechanisms of the Internet Protocol. Section 14.2 will then explain how IP is
implemented in the Linux kernel.

14.1.1 Routing IP Packets Across Routers

Figure 14-1 shows how the Internet is structured. Rather than being one single network, the Internet is composed of many
smaller local area networks, which are connected by routers. This is the reason why it is often called the network of networks
or global network. Each network connected to the Internet can be different both in size and in technology. Within one network
(e.g., the network of a university), it is often meaningful to build several subnetworks. These—often independent—networks and
subnetworks are connected by routers and point-to-point lines.

Figure 14-1. The structure of the global Internet.

[View full size image]

Connection to the other
networks of the Internet

PreE Ethernet (IEEE 802.3)

AN (IEEE 802.11)

SIS

f o
ol

The interconnection of single local area networks offers a way to send data from an arbitrary computer to any other computer
within the internetwork. Before it sends a packet, an Internet computer checks for whether the destination computer is in the
same local area network. If this is not the case, then the data packet is forwarded to the next router. If both the sender and the
receiver are in the same local area network, then the packet is delivered to the receiver directly over the physical medium. In
either case, the IP layer uses the service of the data-link layer to physically transport the packet (horizontal communication—see
Section 3.2).

Let's assume that, in the first case, the packet has not yet arrived in the destination computer. The router checks the destination
address in the IP packet header and the information in the routing table to determine how the packet should be forwarded.
Next, the packet travels from one router to the next until it eventually arrives in the destination computer. Chapter 16 discusses
routing in IP networks.

14.1.2 The IP Packet Header

Figure 14-2 shows the format of an IP packet. The fields of the IP packet header have the properties described below.

Figure 14-2. Packet-header format of the Internet Protocol.
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Destination address

Options and payload

e Version: This field contains the version number of the Internet Protocol used. Including the version number provides a
way to use several versions of the Internet Protocol. Currently, only versions v4 and v ¢ are defined. In general, the two
versions are not specified in the Version field; they are identified by their protocol identifiers on the MAC layer (0x800 for
IPv4, 0x86DD for IPv6—see include/linux/if ether.h )

o IHL (Internet Header Length): This field contains the length of the packet header, because it can be longer than 20 bytes,
if options are used. The length is stated in multiples of 32 bits. The smallest valid value is 5 (no options), and the highest
value is 15 (corresponds to a header length of 60 bytes).

o Codepoint: This field was originally called Type of Service. Its purpose was changed to Differentiated Services Codepoint
in RFC 2474. This field shows the forwarding behavior used [NBBB98].

o Total length: This value includes the entire length of the IP packet. Its 16-bit length makes the maximum size of an IP
datagram 65,535 bytes. RFC 791 specifies that each IP-enabled computer should be capable of processing data packets
with a size of 576 bytes. In general, however, it is possible to process packets with a bigger length. Otherwise, a packet
has to be fragmented. (See Section 14.2.3.)

e Fragment ID: The destination computer can use this identifier, together with the sender address, to reassemble
fragments of IP datagrams to reconstruct the original datagrams. All fragments of an IP datagram have the same
fragment ID, which is set by the sender.

e Flags: An IP packet can include two flags (the third flag is currently not used): Don't Fragment (DF) and More Fragments
(MF). MF is used for a fragmented packet. The DF bit means that a datagram must not be fragmented, even if this
means that the packet cannot be transported any further. The MF bit shows whether more fragments follow this IP
packet (i.e., the MF flag is set in all fragments of a datagram, except for the last fragment).

o Fragment Offset: This field specifies where in relation to the beginning of the entire datagram the present fragment has
to be ordered. This information is required to reassemble the original packet from the individual fragments in the
destination computer. Since this field has a size of 13 bits, a maximum number of 8192 fragments can be created from
one IP datagram. All fragments, except the last fragment, have to be a multiple of 8 bytes. This is the elementary
fragment unit.

e Time To Live (TTL): This is a counter used to limit the lifetime of IP packets. This field originally stated the maximum
lifetime in seconds, but is used today to specify the maximum number of intermediate systems (routers). Each router on
the path has to decrement this counter by at least one. If a longer buffering time is necessary, then the counter should
be decremented by more. If the field has the value 0, then the packet has to be rejected, to keep a packet from
wandering in the network forever.

e Protocol: This field includes the number of the transport protocol to which the packet should be forwarded. Numbering of
protocols was defined in [ReP094] (e.g., TCP (6), UDP (17), IDMP(1), IGMP (2)).

e Checksum: This field includes the checksum over the fields of the IP packet header. The payload in the IP datagram is
not checked, for efficiency reasons. In general, this check occurs within the transport protocol. The checksum has to be
recomputed in each network node visited, because the IP header changes in each hop, in the TTL field. For this reason, it
is important to use efficient checksums. A sender computers the 1's-complement sum of all 16-bit quantities in the
header, excluding the checksum field itself, and then stores the 1's complement of the sum in the CHECKSUM field. A
receiver computes the same 16-bit sum of values in the header, including the checksum field. If the checksum is correct,
then the result is zero.

o Sender and destination addresses: These fields include the 32-bit Internet addresses of the sender and the receiver.
Section 15.1.5 describes the address classes of the Internet Protocol.

o Option and padding fields: To keep the headers of datagrams small, IP defines a set of options that can be present, if
needed. The header length is specified in 32-bit multiples; if options do not end on a 32-bit boundary, then PADDING that
contains zero-bits is added to make the header a multiple of 32 bits. Section 14.3 describes all IP options.

14.1.3 Lifetime of an IP Data Packet

Faulty functions in the network can cause packets to circulate in the network rather than arriving at their destination address.
These data packets consume valuable resources in the network, so they have to be destroyed by control mechanisms at some
point in time.
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The following method is used to destroy such packets: The TTL (Time To Live) field of the IP data header takes the number of
routers (hops). This field is actually intended to specify the lifetime of a packet in seconds, but it is currently used to count the
hops through the routers on the path. Each router reduces this value by 1, and the packet is rejected when the value 0 is
reached. This prevents a packet that cannot be delivered from circulating forever. In addition, you can set a specific TTL value in
the sender to limit the reach of a packet.

14.1.4 Addressing in the Internet

Three different addresses are used to reach a communication partner or an application in the Internet. These addresses identify
a unigue communication endpoint within the Internet and are often called sockets:

e The IP address specifies a unique computer in the Internet. Each computer in an IP network has to have a unique
Internet address. Section 14.1.5 explains the structure of this address format and the set of different classes.

e The transport protocol ID specifies the transport protocol instance used (i.e., TCP, UDP, ICMP, etc.). The Internet
Protocol uses this identifier to know which transport protocol is used.

e The port number identifies a unique and specific application within the TCP and UDP transport protocols (multiplexing).

The following section discusses the first part of the sockets defined above, IP addresses and their structure. The chapters
dealing with the transport layer introduce and describe the TCP and UDP protocols, which are the most important transport
protocols today. These chapters also explain the meaning of port numbers.

14.1.5 IP Addresses and IP Address Classes

Each network device in the Internet or in other IP-based networks has its own unique IP address. Computers connected to
several networks concurrently (multihomed hosts) have a separate address for each network connection. These addresses are
assigned by the Internet Assigned Numbers Authority (IANA) and their national representatives (e.g., Reseau IP Europe—RIPE).
Notice that these addresses are not assigned on an individual basis, but in blocks by so-called network classes. If somebody
needs an IP address to connect a computer to the Internet, then he or she will obtain a network address and an entire range of
addresses. For this reason, each range of network addresses is managed within those addresses themselves.

Accordingly, IP addresses are structured in a hierarchy: They are divided into a network part and a computer or host part.
Figure 14-3 shows the classes and their different network and host parts.

Figure 14-3. Address classes of the Internet Protocol.
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The network part identifies the network to which a station is connected. All computers within a network have the same network
part. The computer part identifies a specified computer within a network. If a computer is connected to more than one network,
then it has a separate IP address for each network.

IP addresses are 32 bits long and are normally written in dotted decimal notation (e.g., 129.13.42.117 ). As was mentioned
earlier, IP addresses are divided into several classes. The prefix of an IP address specifies the address class. The five classes of
IP addresses are as follows:

o Class A: The first bit of the address is zero (i.e., the first byte is smaller than 128). The first byte is the network number,
and the last three bytes identify a computer in the network. Accordingly, there are 126 class-A networks, which can
manage up to 16 million computers in one network.
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first two bytes specify the network, and the last two bytes specify a computer in this network. This results in 16,382
class-B networks with up to 64,534 computers in any one network.

e Class C: This class uses values between 192 and 223 for the first byte (the first three bits have a value of 110). There
are approximately two million class-C networks; the first three bytes are used for the network address and the last for up
to 254 computers.

e Class D: Class-D addresses have a special meaning. They identify a group of computers that can be in different
networks, rather than identifying a single computer or network adapter. Class-D addresses are also called multicast
addresses. The first byte in a multicast address has a value in the range from 224 to 239; the first four bits are to 1110.
When an application sends an IP packet to a class-D address, then the message is broadcast to all members of the
addressed group. A special protocol, the Internet Group Management Protocol (IGMP), is used to manage such groups.
Chapter 17 discusses IP multicast and IGMP.

o Class E: this last range of IP addresses, ranging from 240 to 254 in the first byte, is reserved for future use.

As mentioned earlier, IP addresses have to be unique within the Internet. For this reason, all network addresses are assigned
by a central organization to ensure that all addresses are unique and visible in the Internet. However, this is not always
required. Networks that do not connect to the global Internet do not need an address that is visible in the Internet. Also, it is not
necessary that these addresses not be used in another private network. For this reason, address ranges were defined especially
for private networks. These ranges are defined in RFC 1918. IP packets with private addresses may not be forwarded in the
Internet. This means that private IP addresses can be used in an arbitrary number of nonpublic networks.

The following address ranges are reserved for use in private networks:
e Therangefrom 10.0.0.0 t010.255.255.254 was reserved in class A for private class-A networks.

e Therange from 172.16.0.0 t0 172.31.0.0 was reserved in class B for private class-B networks. This means that 16
class-B network are reserved for private use. Each of these networks can connect up to 65,534 computers.

e Therange from 192.168.0.0 t0192.168.255.0, a total of 256 networks, was reserved in class C for private use.
Each of these networks can connect up to 254 computers.

In addition, there are other reserved IP addresses with special meanings:

e The class-A network address 127 represents the loopback network device of a computer. IP packets to an address in the
form 127.x.y.z are not output to a network adapter; they are processed locally.

o In addition to network addresses, computer addresses are also reserved for special use. The values ¢ and 255 in
computer addresses are reserved in all network classes.

An IP address with all bits of the computer part set to zero identifies the network itself. For example, the address
80.0.0.0 refers to the class-A network gg, and the address 125.66.0.0 refers to the class-B network 125 .66.

An IP address where the computer part consists of 1-bits defines a broadcast address, which can be used to address all
computers in a network.
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14.2 Implementing the Internet Protocol

This section explains the architecture of the IP instance in the Linux kernel. We will use the path a packet takes across the IP
layer to introduce the basic properties of the Internet Protocol. We assume that this is a normal IP packet without special
properties, to ensure that our explanations will be clear and easy to understand. All special functions of the Internet Protocol,
such as fragmenting and reassembling, source routing, multicasting, and so on, will be described in the next chapters.

The objective of this section is to introduce the fundamental operation of the IP implementation in Linux, to be able to better
understand more complex parts later on. This section also serves as an entry point into the other chapters of this book, because
each packet passes the IP layer, where it can take a particular path (e.g., across a firewall or a tunnel). It is necessary to
understand how the Internet Protocol is implemented in the Linux kernel to understand later chapters.

An IP packet can enter the IP instance in three different places:

o Packets arriving in a computer over a network adapter are stored in the input queue of the respective CPU, as described
in Chapter 6. Once the layer-3 protocol in the data-link layer has been determined (which is eTa_proTo 1P in this
case), the packets are passed to the ip rcv () function. The path these packets take will be described in Section
14.2.1.

e The second entry point for IP packets is at the interface to the transport protocols. These are packets used by TCP, UDP,
and other protocols that use the IP protocol. They use the ip queue xmit () function to pack a transport-layer PDU
into an IP packet and send it. Other functions are available to generate IP packets at the boundary with the transport
layer. These functions and the operation of ip queue xmit () Will be described in Section 14.2.2.

o With the third option, the IP layer generates IP packets itself, on the Internet Protocol's initiative. These are mainly new
multicast packets, new fragments of a large packet, and ICMP or IGMP packets that don't include a special payload. Such
packets are created by specific methods (e.g., icmp send () )- (See Section 14.4.)

Once a packet (or socket buffer) has entered the IP layer, there are several options for how it can exit. We generally distinguish
two different roles a computer can assume with regard to the Internet Protocol, where the first case is a special case of the
second:

e End system: A Linux computer is normally configured as an end system—it is used as a workstation or server, assuming
primarily the task of running user applications or providing application services. Also, a Web server and a network printer
are nothing but end systems (with regard to the IP layer). The basic property of end systems is that they do not forward
IP packets. This means that you can recognize an end system easily by the fact that it has only one network adapter.
Even a system that has several network accesses can be configured as a host, if packet forwarding is disabled.

o Router: A router passes IP packets arriving in a network adapter to a second network adapter. This means that a router
has several network adapters that forward packets between these interfaces. When packets arrive in a router, there are
generally two options: they can deliver packets locally (i.e., deliver them to the transport layer) or they can forward
them. The first case is identical with the procedure of packets arriving in an end system, where packets are always
delivered locally. Consequently, a router can be thought of as a generalization of an end system, with the additional
capability of forwarding packets. In contrast to end systems, generally no applications are started in routers, to ensure
that packets can be forwarded as fast as possible.

Linux lets you enable and disable the packet-forwarding mechanism at runtime, provided that the forwarding support was
integrated when the kernel was created. The directory /proc/sys/net/ipv4/ includes a virtual file, ip forward. You will
see in Appendix B.3 that there is a way to change system settings from within the proc directory. If a ¢ is written to this file,
then packet forwarding is disabled. To activate IP packet forwarding, you can use the command echo '1°

> /proc/sys/net/ipv4/ip forward-

Figure 14-4 shows the path an IP packet takes across the Internet Protocol implementation in Linux. The gray ovals represent
invoked functions, and the rectangles show the position of the netfilter hooks in the Internet Protocol.

Figure 14-4. Architecture of the Internet Protocol implementation in Linux.
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The following sections describe different paths a packet can take across the IP implementation in the Linux kernel. We begin
with incoming packets, which have to be either forwarded or delivered locally. The next section describes how packets are
passed from the transport layer to IP.

14.2.1 The Path of Incoming IP Packets

Chapter 6 introduced the path of an incoming packet up to the boundary of layer 3. Once the ngT RrRx tasklet has removed a
packet from the input queue, netif rx action() chooses the appropriate layer-3 protocol. Next, the Internet Protocol is
selected, and the ip rcv () function is invoked on the basis of the identifier in the Ethernet protocol field (eTa proTO TP) OF
from appropriate fields of other MAC transmission protocols.

ip rev() net/ipv4/ip_input.c

ip rcv(skb, dev, pkt type) doessome work for the IP protocol. First, the function rejects packets not addressed to the
local computer. For example, the promiscuous mode allows a network device to accept packets actually addressed to another
computer. Such packets are filtered by the packet type (skb—>pkt7type PACKETioTHERHOST) in the lower layers.

Subsequently, the basic correctness criteria of a packet are checked:
o Does the packet have at least the size of an IP header?
o Is this IP Version 4?
o Is the checksum correct?
o Does the packet have a wrong length?

If the actual packet size does not match the information maintained in the socket buffer (sxp->1en), then the current packet
data range is adapted by skb trim(skb, iph->total len) . (See Section 4.1.) Now that the packet is correct, the
netfilter hook N TP PRE ROUTING iS invoked. Netfilter allows you to extend the procedure of various protocols by specific
functions, if desired. Netfilter hooks always reside in strategic points of certain protocols and are used, for example, for firewall,
QoS, and address-translation functions. These examples will be discussed in later chapters. A netfilter hook is invoked by a
macro, and the function following the handling of the netfilter extension is passed to this macro in the form of a function pointer.
If netfilter was not configured, then the macro ensures that there is a direct jump to this follow-up function. We can see in
Figure 14-4 that the procedure continues with ip rcv finish (skb) -

ip recv_finish() net/ipv4/ip_input.c

The function ip route input () iSinvoked within ip rcv finish (skb) to determine the route of a packet. The sxp-
>dst pointer of the socket buffer is set to an entry in the routing cache, which stores not only the destination on the IP level,
but also a pointer to an entry in the hard header cache (cache for layer-2 frame packet headers), if present. If

ip route input () cannot find a route, then the packet is discarded.

Inthe nextstep, ip rcv finish() checks for whether the IP packet header includes options. If this is the case, then the
options are analyzed, and an ip options Structure is created. All options set are stored in this structure in an efficient form.
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Finally in ip rcv finish() , the procedure of the IP protocol reaches the junction between packets addressed to the local
computer and packets to be forwarded. The information about the further path of an IP packet is stored in the routing entry
skb->dst. Notice that a trick often used in the Linux kernel is used here. If a switch (variable value) is used to select different
functions, then we simply insert a pointer to each of these functions. This saves us an i £ or switch instruction for each
decision of how the program should continue. In the example used here, the pointer sxb->dst->input () Points to the
function that should be used to handle a packet further:

e ip local deliver () Isentered in the case of unicast and multicast packets that should be delivered to the local
computer.

e ip forward() handles all unicast packets that should be forwarded.
e ip mr input () IS used for multicast packets that should be forwarded.

We can see from the above discussion that a packet can take different paths. The following section describes how packets to be
forwarded are handled (skb->dst->input = ip forward). Subsequently, we will see how sxp->dst->input =
ip local deliver handles packets to be delivery locally.

Forwarding Packets

If a computer has several network adapters, and if packet IP forwarding is enabled (/proc/sys/net/ipv4/ip forward
1), then packets addressed to other computers are handled by the ip forward () function. This function does all the work
necessary for forwarding a packet. The most important task—routing—was already done in ip input () , because it is
necessary to be able to discover whether the packet is to be delivered locally or has to be forwarded.

ip forward() net/ipv4/ip_forward.c

The primary task of ip forward (skb) IS to process a few conditions of the Internet Protocol (e.g., a packet's lifetime) and
packet options. First, packets not marked with pkt type == PACKET HOST are deleted. Next, the reach of the packet is
checked. If the value in its TTL field is 1 (before it is decremented), then the packet is deleted. RFC 791 specifies that, if such an
action occurs, an ICMP packet has to be returned to the sender to inform the latter (1cMp TIME EXCEEDED )-

Once a redirect message has been checked, if applicable, the socket buffer is checked to see if there is sufficient memory for
the headroom. This means that the function sk cow (skb, headroom) is used to check whether there is still sufficient
space for the MAC header in the output network device (out dev->hard header len ). If this is not the case, then

skb realloc headroom() Ccreates sufficient space. Subsequently, the TTL field of the IP packet is decremented by one.

When the actual packet length (including the MAC header) is known, it is checked for whether it really fits into the frame format
of the new output network device. If it is too long (skb->1en > mtu), and if no fragmenting is allowed because the Don't-
Fragment bit is set in the IP header, then the packet is discarded, and the ICMP message 1cMp FRAG NEEDED IS transmitted
to the sender. In any case, the packet is not fragmented yet; fragmenting is delayed. The early test for such cases prevents
potential Don't-Fragment candidates from running through the entire IP protocol-handling process, only to be dropped
eventually.

ip forward finish( ) net/ipv4/ip_forward.c

We can see in Figure 14-4 that the ip forward () function is split into two parts by a netfilter hook. Once the

NF TP FORWARD hook has been processed, the procedure continues with ip forward finish () - This function has actually
very little functionality (unless rasTrRoUTE is enabled). Once the IP options, if used, have been processed in

ip forward options() ,the ip send() function is invoked to check on whether the packet has to be fragmented and to
eventually do a fragmentation, if applicable. (See Section 14.2.3.)

ip send() include/net/ip.h

ip send (skb) decides whether the packet should be passed to ip finish output () immediately or ip fragment ()
should first adapt it to the appropriate layer-2 frame size. (See Section 14.2.3.)

ip finish output () net/ipv4/ip_output.c
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ip finish output (skb) initiates the last tasks of the Internet Protocol. First, the skb->dev pointer is set to the output
network device gev, and the layer-2 packet type is set to Ty p 1p. Subsequently, the netfilter hook NF TP POST ROUTING
is processed. The exact operation of netfilter and the set of different hooking points within the Internet Protocol are described in
Section 19.3. It is common for netfilter hooks to continue with the inline function ip finish output2() after their
invocation.

ip finish output2 () net/ipv4/ip_output.c

At this point, the packet leaves the Internet Protocol, and the Address Resolution Protocol (ARP) is used, if necessary. Chapter
15 describes the Address Resolution Protocol. For now, it is sufficient to understand the following:

o If the routing entry used (skb->dst ) already includes a reference to the layer-2 header cache (4st->nhn), then the
layer-2 packet header is copied directly into the packet-data space of the socket buffer, in front of the IP packet header.
The output () function used here is dev queue xmit () , Which is invoked if the entry in the hardware header cache
is valid. gev queue xmit () ensures that the socket buffer is sent immediately over the network device, gev.

o If there is no entry in the hard header cache yet, then the corresponding address-resolution routine is invoked, which is
normally the function neigh resolve output () -

The procedure described above was optimized so that a packet can pass the router quickly without special options. However, it
became clear where there are junctions to the corresponding handling routines (e.g., neffilter, multicasting, ICMP, fragmenting,
or IP packet options).

Delivering Packets Locally

The previous section described the route a packet travels when it has to be forwarded. If ip route input () is the selected
route, then the packet is addressed to the local computer. In this case, branching is to ip local deliver () rather than to
ip forward() - This section describes the path of packets to be delivered locally.

At this point, too, instead of using a conditioned if instruction to distinguish the two options, a pointer (skb->dst->input () )
is used, which pointsto ip 1ocal deliver () inthiscase. Atthe end of ip input (), the procedure continues with the
packet's local delivery.

ip local deliver() net/ipv4/ip_input.c

The first (and only) task of 1p 10cal deliver (skb) IS to reassemble fragmented packets, using ip defrag () - Section
14.2.3 describes in detail how packets are fragmented and defragmented. For now, it is sufficient to understand that all
fragments of a packet are collected over a certain period of time, until all fragments of an IP datagram have arrived, so that
they can be passed upwards as a whole.

Subsequently, it is almost mandatory to call a netfilter hook (N\r 1P TOCAL 1N ) When the procedure continues with the
ip local deliver finish() function.

ip local deliver finish() net/ipv4/ip_input.c

The packet has now reached the end of the Internet Protocol processing. It is checked to see whether the packet is intended for
a RAW-IP socket; otherwise, the transport protocol has to be determined for further processing (demultiplexing).

All transport protocols are managed in the ipprot hash table on the IP layer in Linux. At the end of the IP processing, there is
now a special data structure, instead of simple query sequences and simple commands. The reason lies mainly in the nature of
the Internet Protocol. Unless a packet includes special options, IP processing is very simple, and so IP is efficient and easy to
implement. The complexity of IP packet options normally necessitates several more complex programming methods.

The protocol ID of the IP header modulo (Max INET PrROTOS - 1) Iis used to calculate the hash value in the ipprot hash
table. The hash table is organized so that there are no collisions. If a new transport protocol would ever have to be integrated,
then the assignment in the hash table should be checked. If the corresponding transport protocol can be found, then the
appropriate handling routine (handler) of the protocol is invoked. The following handling routines are most common:

e tcp v4 rcv () : Transmission Control Protocol (TCP)

. : User Datagram Protocol (UDP)
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e icmp rcv () ' Internet Control Message Protocol (ICMP)
e igmp rcv () ' Internet Group Management Protocol (IGMP)

If no transport protocol can be found, then the packet either is passed to a RAW socket (if there is one) or it is dropped and an
ICMP Destination Unreachable message is returned to the sender.

The chapters dealing with the TCP and UDP transport protocols describe how a packet is further handled in the transport layer.
Chapter 17 describes IGMP packets, and ICMP packets are discussed in Section 14.4. The following section describes the path a
packet takes as it passes from the transport layer to the Internet Protocol for transmission.

14.2.2 Transport-Layer Packets

Packets created locally and passed from the transport layer to the Internet Protocol are handled in a way totally separate from
the procedures introduced so far. (See Figure 14-4.) First of all, there is not just one single function available to the transport
layer, but several, including ip queue xmit () @nd ip build and send pkt () - Each of these functions is specialized

and optimized for a specific use.

This section considers only the ip queue xmit () function, because this is the one normally used for data packets;
ip build and send pkt () IS used for syn or ack packets that do not transport payload.

Figure 14-5. Hash table used to multiplex transport protocols.
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ip queue xmit () net/ipv4/ip_output.c

At the beginning, ip queue xmit (skb) Cchecks for whether the socket structure sx->dst includes a pointer to an entry in
the routing cache and, if so, whether this pointer is actually valid. The route for a packet is stored in the sxp->sk socket
structure, because all packets of a socket go to the same destination. Storing a reference means that expensive searches for
routes can be avoided.

If no route is present yet (e.g., when the first packet of a socket is ready), then the ip route output () function is used to
choose a route. Once this route has been entered in the routing cache, its use counter is incremented to ensure that the route is
not inadvertently deleted as long as there is still a socket buffer referencing it.

Subsequently, the fields of the IP packet are filled (version, header length, TOS field, fragment offset, TTL, addresses, and
protocol). Next, ip options build() handles options, if present, and the netfilter hook N 1P 1.0CcAL ouTPUT IS invoked.

ip queue xmit2 () net/ipv4/ip_output.c
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The next function, ip queue xmit2 (dev) Of the netfilter hook Nr 1P LOCAL ouTPUT, Sets the output network device as
specified in the routing cache entry. Now it is necessary to check once more how much headroom is available in the socket
buffer, although the buffer reservation is already complete. Also, it is necessary to learn the network device used and its MTU
size. Unfortunately, it can happen that a socket buffer was created for the device gev1 (With nty1), but the route has changed
in the meantime, and the packet is sent over device gev2 with a smaller MTU. This means that, infrequently, the available
headroom has to be increased. Subsequently, the packet is checked for fragmentation, and the checksum is computed
(ipisendicheck (iph) )-

Subsequently, the packet created locally crosses the path for forwarding packets. The function pointer 4st ->output () , Which
is set during the routing process, causes the ip output () function to be invoked, which executes the last steps in the Internet
Protocol, primarily guiding the packet across the netfilter hook NF_IP POST ROUTING -

14.2.3 Fragmenting Packets

The Internet Protocol has to be capable of adapting the size of IP packets to the respective network type in order to be able to
send IP datagrams over any type of network. Each network has a maximum packet size, which is called Maximum Transfer Unit
(MTU). Only packets within this size can be transported over the network. For example, if packets have to be sent over a token-
ring network, they must not be larger than 4500 bytes, and 1500 bytes must not be exceeded by Ethernet packets. If the MTU of
a transmission medium is smaller than the size of a packet, then the packet has to be split into smaller IP packets.

However, it is not sufficient to let the transport-layer protocols transmit smaller packets independently. The reason is that a
packet can traverse several networks with a different MTU each on the way from the source host to the destination host. This
means that we need a more flexible method that can create smaller packets, also in a router, on the IP layer. This method is
called fragmenting.

Fragmenting means that the IP protocol in each IP computer (router or end system) has to be capable of splitting incoming
packets, if necessary, and to transport them over a subnetwork (with a smaller MTU) all the way to the destination computer. In
addition, each end system must be able to put these fragments together to rebuild the original packet. This method is called
reassembling.

Each fragment of a split IP datagram is treated like an independent IP packet and contains a complete IP packet header. The
Fragment ID field in the IP packet header can be used to identify all fragments of an IP datagram and to allocate them to their
original datagram. However, the Fragment ID field alone is not a unique key to identify fragments arriving from different
computers. For this reason, the following packet header fields are used additionally sender address, destination address, and
protocol.

All the fragments of a datagram can take different paths to travel to the destination computer, and they may be fragmented
more than once along these paths. The position of a fragment's data within the original IP datagram is marked by the Fragment
Offset field. All fragments, except the last one, have the MF (More Fragments) bit set, which means that more fragments are to
follow. Figure 14-6 shows the example of an IP datagram that has to be fragmented several times.

Figure 14-6. Fragmenting an IP datagram.
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We will describe below how fragmenting and reassembling of IP datagrams is implemented in the Linux kernel. Remember that
IP packets can be fragmented in each IP node along the path to the destination (router or end system), but can be reassembled
only in the destination computer.
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ip fragment () net/ipv4/ip_output.c

ip fragment (skb, output) IS responsible for fragmenting an IP datagram into smaller IP packets, if the IP datagram is
too big to be transmitted over the network device. The size for the hew—smaller—packets is selected so that they do not
exceed the maximum frame length of the transmission medium.

First, the maximum packet size is computed, and then IP fragments are created in a while 1loop until the datagram has been
completely divided into smaller packets. Next, a110c skb () is used to create a new socket buffer for each new fragment.
Initially, the IP packet header is copied from the original packet to the new one, and then the payload to be transported in this
fragment is copied to the fragment. It should be mentioned once more that previously fragmented datagrams can be
fragmented again in one or more routers later along the path. Subsequently, the new value for the Fragment Offset field has to
be set in the new fragment. This field specifies the position of payload in the original IP datagram. Also, the MF bit has to be
set, unless it is the last fragment. Before the output () function (pointer to the transmit function set in the routing process) can
send the packet, the function ip options fragment () handles IP options, if present, and ip send check () computes
the checksum. B B B B

Once all fragments have been created, the original packet is released by kfree skb() -
Collecting and Reassembling Packets

Fragmented IP datagrams are reassembled in the end system only. To this end, the function ip 1o0cal deliver() Ppasses
all fragmented IP packets to ip defrag () - The fragments are then managed in the fragment cache, until either all fragments
of a datagram have arrived, so that the packet can be delivered to the local machine, or the maximum wait time for the
fragments of a datagram (ipfrag time, ~30 seconds) has expired, which means that the datagram will be discarded. The
fragment cache consists of a hash table with ipq structures. Each of these ipq structures represents a fragmented IP datagram.
The individual fragments of the datagram are collected in a linked list (fragments ). All fragments of a datagram are ordered
in the same sequence as they occur in the original packet. (See Figure 14-7.)

Figure 14-7. A fragment cache manages all incoming IP fragments.
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The parameters of the ipq structure have the following meaning:

e next and pprev are used to link j pg structures in a hash row. This means that this is a doubly linked list and a linear
collision resolution in the hash table.

e The saddr, daddr, ids,and protocol elements are keys for the hash function and the allocation of incoming
fragments to their IP datagrams.
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a datagram have arrived.

e fragments IS a list of linked socket buffers that stores all incoming fragments in the sequence required later to
reassemble the complete datagram.

e len Specifies the length of the original IP datagram, and neat specifies the number of bytes already stored in the
fragment cache. When peat reaches the value of 1en, then all fragments of the datagram have arrived, and the
fragment can be reassembled.

e lock is used to protect against parallel operations on the ipq data structure.

e timeris a pointerto a timer 1ist Structure. The associated timer restarts when the 1prrac TIME interval expires,
and it checks for whether all fragments have arrived.

e iirf contains an index to the network device and is used for ICMP replies.

The following functions are used to reassemble fragmented IP datagrams:

ipg unlink () net/ipv4/fragment.c

ipg unlink (gp) removes the ipq entry from the fragment cache referenced by the gp pointer. The counter for arrived
fragments, ip frag nqueues; IS decremented by 1.

ipg frag destroy () net/ipv4/fragment.c

ip frag destroy (gp) releases an ipq fragment list. First, frag kfree skb() releases all socket buffers of individual
fragments. Subsequently, £ rag_free queue () releases the ipq structure of the fragment cache.

ip_evictor () net/ipv4/ip_fragment.c

ip evictor () isinvoked by ip defrag() when fragmented packets use too much memory. Normally, the threshold for
maximum memory in the fragment cache (sysctl ipfrag high thresh) IS 256 Kbytes. Next, all hash rows of the
fragment cache are checked within this function, and entries are deleted. More specifically, ipg Structures and their socket
buffers are deleted until the bottom threshold (normally 192 Kbytes) is reached.

The two threshold values, ipfrag high thresh and ipfrag low thresh, and the maximum wait time for fragments,
ipfrag time, Can be changed from within the proc directory (/proc/sys/net/ipv4 )-

ip expire () net/ipv4/ip_fragment.c

ip expire () Isa handling routine for the timer that starts for the fragments of an IP datagram. If this timer expires before all
fragments of the packet have arrived, the entry in the fragment cache is deleted. This function does nothing, if all fragments
have been received (coMPLETE )-

If some fragments are still missing, but at least the first one is present, then an ICMP error message of the type
(IcMP_TIME EXCEEDED/ICMP EXC FRAGTIME ) is sent, and then the IP datagram is discarded.

ip frag create() net/ipv4/ip_fragment.c

ip frag create (hash, iph) creates a new entry in the fragment cache and uses the parameters from the IP packet
header of the fragment that just arrived to initialize this entry. The new entry represents an IP datagram that could not be
transmitted fully and had to be fragmented. This entry is created when the first fragment of an IP datagram arrives and is held
in the fragment cache until either the wait time for all fragments (1p rFrac TIME ) expires or all fragments of that IP datagram
have arrived.

ip find() net/ipv4/ip_fragment.c
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ip find(iph) Searches the fragment cache for the ipq entry for an IP datagram with the iph packet header. To this end,
ipghashfn () Is used to compute the hash value of this entry from the sender address, destination address, protocol ID, and
fragment IP from the packet header fields. Based on these parameters, different fragmented datagrams can be distinguished,
and incoming fragments can be allocated to each datagram. Collisions of several ;i pq structures with identical hash values are
resolved linearly in a doubly linked list. (See Figure 14-7.) If i find () cannot find a matching entry for the i pn fragment,
then a new ipq entry is created in the fragment cache (ip frag create () )-

ip frag queue () net/ipv4/fragment.c

ip frag queue (gp, skb) orders a new fragment, as it arrives, within the queue of fragments for an IP datagram
(represented by the ipq structure gp)- The function checks first for whether the datagram is complete, which would mean that a
new fragment is a duplicate. If this is not the case, the position (o ffset and eng) of the fragment in the original IP datagram
is computed from the Fragment Offset parameter in the IP packet header. Subsequently, the ur flag is used to check on
whether this is the last fragment of a datagram (r.asT 1N is set).

Subsequently, the list of received fragments (pgq->fragments) is searched for the correct position, and the socket buffer is
placed at this position. The neat parameter in the ipq structure of the datagram is increased by the length corresponding to the
fragment just added. As mentioned earlier, the meat parameter specifies the number of bytes received for a fragmented IP
datagram.

ip frag reasm() net/ipv4/ip_fragment.c

This function is invoked by ip defrag(); it reassembles all fragments of a packet (gp->1len == gp->meat) arrived and
treats them as a single IP datagram. First, a new socket buffer with a headroom of length qp->1en is created, and the IP
datagram header is initialized. Next, the IP payload of each single fragment is copied to the headroom of the new socket buffer.

ip defrag() net/ipv4/ip_fragment.c

The ip defrag (skb) method is invoked in ip local deliver () for each IP fragment. As described in Section 14.2.1,
this path of the Internet Protocol is taken only by packets to be delivered to the local machine (i.e., fragmented IP datagrams
are reassembled in the destination system).

The first thing here is to check on whether there is sufficient buffer space in the fragment cache for the new fragment. If this is
not the case, then ip evictor () removes entries until the bottom threshold value, sysctl ipfrag low thresh /IS
reached. Subsequently, ip find () searches the fragment cache for the relevant entry. As mentioned earlier, a new i pq
structure is created as soon as the first fragment of an IP datagram arrives.

Finally, ip frag queue () adds the new fragment to the list of present fragments. As soon as all fragments of the IP
datagram have arrived, which can be checked by pg->1en == pg->meat, reassembly of the datagram (ip frag reasm
()) can start.

14.2.4 Data of the IP Instance

The primary task of an IP instance (in a router) is to forward IP packets. To this end, several network devices have to be
configured for the IP instance. These network devices (INET devices), which are to be used by the Internet Protocol, are
managed mainly by the functions stored in the file net /ipv4/devinet.c . We will call these network devices IP network
devices in the further course of our discussion.

This section is aimed at briefly introducing the structure of IP network-device management. This point represents the binding
member between several functions of the Internet Protocol. For example, the data structures introduced below can be used to
manage IP addresses and network devices of the IP instance and active multicast groups or different IP configuration
parameters (Packet forwarding permitted?, Accept redirect packets?, etc.).

The data structure in device represents the starting point for IP network device management:

struct in device include/linux/inetdevice.h

An in device structure is created for each network device that was configured for the Internet Protocol. This structure
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devices have an ip ptr parameter each, which references the pertaining in device structure. There is no explicit list for IP
network devices. The list is accessed with dev base-

Figure 14-8. Data structures to manage IP network devices and their parameters.
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The file net /ipv4/devinet.c includes functions to manage IP network devices, including inetdev init () to initialize an
IP network device.

The structure and the elements of the in_device structure are as follows:

struct in device
{
struct net device *dev;
atomic t refcnt;
rwlock t lock;
int dead;
struct in ifaddr *ifa list; /* IP ifaddr chain */
struct ip mc list *mc_list; /* IP multicast filter chain */
unsigned long mr vl seen;
struct neigh parms *arp_ parms;
struct ipv4 devconf cnf;

e dev points to the net device Structure of the network device configured for the Internet Protocol.

e refcnt stores the number of references to this structure, orthe number of instances currently used by this IP network
device. The refcnt variable essentially is changed by the functions in dev get () and in_dev put() - (Both are
defined in <1inux/inetdevice.h> .)

e lock is used to protect against errors caused by parallel manipulation in the i1 n device Structure.

e dead shows whether the IP network device is still valid.

e ifa list pointstoa list of in_ifaddr structures, which stores the IP addresses of this IP network device. This is a
list, because Linux lets you allocate more than one IP address to a network device (alias function).

In addtion to the IP address (1 fa_address ), the in ifaddr structure stores other parameters (e.g., the subnet mask
(ifa mask), the broadcast address (ifa address) , €tc.). The content of the in ifaddr structure is as follows:

struct in ifaddr

{
struct in_ ifaddr *ifa next;
struct in device *ifa dev;
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ifa address;
ifa mask;

ifa broadcast;
ifa anycast;
ifa scope;

ifa flags;

ifa prefixlen;

char ifa label [TFNAMSIZ];

e mc list isalistconsisting of ip mc 1ist structures. Each element in this list stores information for an IP multicast
group to which the IP instance is currently subscribed, and receives it over the current network device. Section 17.4.1
describes the content of the ip mc_list Structure.

e mr vl seen iSused by IGMP. (See Section 17.3).

e arp parms points to a structure of the type neigh parms, Which stores the most important parameters of the ARP
protocol. (See Chapter 15.)

e cnf pointstoan ipv4 devconf Structure, which stores important settings for the IP instance. ipv4 devconf iS
described below.

struct ipv4 devconf include/linux/inetdevice.h

The ipc4 devcont data structure can be used to activate or deactivate various properties of the IP instance for an IP network
device. For this purpose, the proc directory /proc/sys/net/ipva/conf includes a subdirectory for each IP network
device, from which the properties mentioned below can be set. These properties will then be described briefly below. Appendix
B discusses all proc entries for the Internet Protocol.

struct ipv4 devconf

{

int accept redirects;
int send redirects;
int secure_redirects;
int shared media;

int accept source route;
int rp_filter;

int Proxy arp;

int bootp relay;

int log martians;

int forwarding;

int mc_forwarding;
int tag;

int arp filter;

void *sysctl;

e accept redirects accepts ICMP redirect packets.

e send redirects enables the transmission of ICMP redirect packets.

e secure redirects accepts ICMP redirect messages.

e accept source route accepts Source Route packets.

e rp filter disables the sender IP address check.

® proxy arp supports an ARP proxy.

e log martians enables or disables the logging of "strange" addresses ("Martians"?see Section 16.2.2).

e forwarding €nables this network device to forward packets.
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e mc_ forwarding enables multicast routing or forwarding over this IP network device.

14.2.5 Auxiliary Functions for the Internet Protocol

The functions introduced in the previous sections operate mainly in the data path of the Internet Protocol: They process
incoming IP packets. In addition to these functions, there are other things to be done in the Internet Protocol that do not directly
relate to socket buffers or IP packets. These auxiliary functions are introduced below.

Managing Transport Protocols

The Internet Protocol operates on the network layer and offers an unreliable datagram service for the transport layer. In
general, the TCP and UDP protocols are used in the transport layer. However, a layer-based architectural model should also
allow us to use our own protocols. The Linux network architecture allows you to do that. You can register and use new protocols
on top of the IP layer. In connection with kernel modules, this represents a flexible and highly dynamic property of the Linux
network architecture.

The Linux kernel includes two functions, inet add_protocol () and inet del protocol() s which will be described
below, to manage transport-layer protocols. Appendix F includes an example for a rudimentary transport protocol, which does
nothing but output the length of incoming transport-layer PDUs.

inet add protocol () net/ipv4/protocol.c

All protocols arranged immediately on top of the Internet Protocol are managed in a hash table, inet protos.
inet add protocol (prot) registersa new protocol for the transport layer and adds it to the inet protos hash table.
The required protocol information is passed in the prot structure of the type inet protocol (asshown in Figure 14-5):

e handler () is a function pointer to the entry function of the transport protocol (handling routine), for example the
tcp _va rcv () for TCP. The parameters passed here include the socket buffer and the length of the transport-layer

PDU. Appendix F includes an example of a very simple transport protocol. All it does is output the length of a PDU.

e crr handler () isa handling routine for error cases. It is invoked only once in the current implementation, in the
method icmp_unreach() -

e next isusedtolink inet protocol structuresin a hash table.
e id is the protocol identifier of the registered protocol. In the future, if an IP packet with this identifier in the protocol field
of the IP packet header arrives, then it is passed to the handier () handling routine. If several protocols with the same

id are registered, then a copy of the socket buffer is passed to each of these protocols.

e The copy bit specifies whether another protocol is registered with the same protocol ID. If a protocol with the same
protocol ID is already registered when you register a new protocol, then the new protocol is also added to the hash table,
and the copy bit of all previous protocols with the same ID is set to one. In this case, all protocols with the same ID get a
copy of the packet.

e data points to private data of the protocol, if present. However, it is not used by any of the implemented protocols (TCP,
UDP, ICMP, and IGMP).

e name Stores the name of the protocol in a string.

The Linux kernel currently implements four protocols on the transport layer, where only TCP and UDP are actually true transport
protocols. Though ICMP and IGMP also use IP to exchange data, they are normally thought of as belonging to the network layer.

inet del protocol () net/ipv4/protocol.c

inet del protocol (prot) removes the protocol, together with the passed pointer to an inet protocol structure, from
the hash table inet protos: If there is a second protocol with the same protocol ID, then the copy bit of this protocol is
checked and deleted, if applicable.

Useful Functions

in ntoa() net/ipv4/utils.c
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in ntoa(in) converts the IP address into the dotted decimal form, which is easier to read for humans (i.e., the 32-bit
address gx810D2a75 is converted into the string 129.13.42.117).

in_aton() net/ipv4/utils.c

in_aton (str) converts the string st r into a 32-bit IP address.

A Previous Mext »



This document is created with trial version of CHM2PDF Pilot 2.15.72.

4 Previous Mext b

14.3 IP Options

When a packet is sent to the IP layer, then it normally includes all required information in the packet's protocol header.
However, there could be times when packets require additional information in the protocol header—for example, for diagnostics
purposes, or if a packet's path across the Internet is specified before it is sent. For these purposes, an Option field with variable
length can be added to each IP packet header. All guidelines for these IP options are described in [Post81c].

14.3.1 Standardized IP Packet Options

Figure 14-9 shows that the IP packet options are appended to the end of an IP header. The length of the Option field is variable,
and the end of a packet header has to be aligned to a 32-bit boundary, so an additional padding field of the appropriate length is
added (and set to 0 by default). In this case, "variable" also means that the packet options can be left out, if they are not
required. The Option field can take one or several packet options, where an option can be given in either of two formats:

o One single byte describes only the option type. The length of these options is always exactly one byte.

o The first byte includes the option type, and the second byte contains the length of this packet option. The following bytes
include the actual data of that option.

Figure 14-9. The IP packet header.

Version IHL TS Tonal Length
Identification Flags Fragment Offset
TTL Protocol Header Checksum

Source Address

Destination Address

Options {optional ) Padding

Data

The byte stating the length of the packet option in the second case includes merely the number of data bytes. The first two
bytes are not counted. The option type in the first byte is composed as follows:

Copy Flag Option Class Option Number

The (1-bit) copy flag is required for packet fragmentation. If a packet has to be fragmented, then this bit states whether this
packet option has to appear in all fragments or may be set in the first fragment only.

The option class is represented by 2 bits. The (5-bit) option number shows the length of a packet option implicitly (i.e., we can
see whether the next byte also belongs to this packet option or already belongs to the next packet option). Table 14-1 lists all IP
packet options defined in RFC 791, including their lengths and their defined option numbers and option classes. There are four
option classes in total, but only two are currently used. Option class 0 includes packet options for control and management;
option class 2 includes debugging and measurement options. The option classes 1 and 3 are reserved for future IP packet-
option classes.

Table 14-1. Defined IP packet options.

Class Number Length Name
0 0 - End of Option List
0 1 - No Operation

0 2 11 Security
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Routing

0 9 var Strict Source
Routing

0 7 var Record Route

0 8 4 Stream ID

2 4 var Internet
Timestamp

We will discuss each of these IP packet options in the following sections.
End of Option List

Bit sequence:

20000000

This packet option marks the end of a series of options; it is appended to the last packet option and must never be between any
other pair of options. The End-of-Option-List packet option is superfluous if the end of the option list is aligned at a 32-bit
boundary. (See Figure 14-9.) The question mark at the beginning of this bit sequence corresponds to the copy flag, which was
described above. If fragmentation is necessary, then this option can be copied, inserted, or deleted, depending on the number
of packet options in the fragments of an IP datagram. It then has to be inserted into a fragment—for example, if only a part of
the original options has to be copied, and the end of the new option list no longer matches the 32-bit boundary.

No Operation

Bit sequence:

20000001

No Operation can be between any two packet options, for example to let the second option begin at a 32-bit boundary. If
fragmentation is necessary, then this option can be copied, inserted or deleted. Like the End-of-Option List option, this option
can always be inserted into a fragment, if only some of the original options are copied and if a packet option must begin at a 32-
bit boundary.

Security

Bit sequence:

10000010 00001011 Security

Compartments Restrictions

Transmission Control Code

The Security option is used primarily in military networks; it comprises a total of 11 bytes. The Security option allows end
systems to send security parameters or define own (controllable) groups of communication partners, which want to exchange IP
packets "in isolation" from all other traffic. The two-byte Security field can be used to state 16 security levels for an IP packet; of
these, the original RFC 791 defines eight levels, including Unclassified, Confidential, Restricted, Secret or Top Secret. The other
security levels are reserved for future use. As the One in the first bit (corresponding to the Copy Flag) of this packet option
already states, this packet option has to be set in each fragment, if IP packets are fragmented.

These fields are primarily specified by the Defense Intelligence Agency. For this reason, the current implementation in Linux
does not support the Security option.

Loose Source Routing

Bit sequence:
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10000011 Length Pointer Route Data

This option is used to specify all routers an IP packet has to visit on its way across the network. In addition, it accepts data
about the packet's path. The third byte includes a pointer to the address of the next router that the packet has to pass. This
pointer is relative to this option—the smallest possible value is four. If the pointer points to a byte not belonging to this option
according to the length byte, then the packet can be sent over an arbitrary path to the actual destination address. In contrast, if
the packet has reached the address specified in the destination address field, yet the pointer still points to another valid address,
then the destination address field is overwritten with this address. The pointer is incremented by the length of an IP address, 4
bytes. The consequence of this replacement strategy is that the protocol header of the IP packet maintains a constant length all
the time. In contrast to the Record Route packet option, addresses are defined exclusively by the sender; no addresses are
entered by intermediate systems.

If the packet has to be fragmented, then this packet option has to be copied to each packet fragment, because the fragments
are forwarded independently of one another, which means that they can reach the receiver over different paths across the
Internet.

Strict Source Routing

Bit sequence:

10001001 Length Pointer Route Data

The Strict Source Routing option differs in only one point from the Loose Source Routing option: The packet may pass exactly
those routers specified in the route Data list. If @ packet arrives in a router not explicitly present in this list, then an ICMP
message has to be generated and returned to the sender. Section 14.4 describes the Internet Control Message Protocol (ICMP).

As with the previous option, if fragmentation is required, then the Strict Source Routing option has to be copied in each single
fragment, which means that One is in the first position of this option.

Record Route

Bit sequence:

00000111 Length Pointer Route Data

The Record Route option can be used to register the addresses of all intermediate systems an IP packet will pass on its way to
the destination. The third byte includes a pointer to the field that is to accept the next address. The length of this option should
never change; the sender specifies twice the available space, which is initially filled with zeros. These zeros are not treated as
an End of Option List, because the length byte, Length, states the option's length. Each Internet node adds its address in a field
specially provided for this purpose and increases the pointer by four [bytes] (corresponding to the length of an IP address). If no
more space is available, then the IP packet is forwarded without storing the address. In this case, an ICMP message can be
returned to the sender.

In contrast to the two previous packet options (i.e., Loose Source Routing and Strict Source Routing), this option appears only in
the first fragment, if an IP packet has to be fragmented.

Stream Identifier

Bit sequence:

10001000 00000010 Stream ID

This option enables the transport of SATNET Stream Identifiers across the Internet. The Stream Identifier packet option is
always 4 bytes long and has to be copied to all fragments, if fragmentation is used. However, this option currently has no
practical use, and we list it here only for the sake of completeness.

Internet Timestamp

Bit sequence:
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01000100 Length Pointer Counter Flag

Address

Timestamp

The original RFC 791 includes the Internet Timestamp option as the only packet option of class 2 (i.e., debugging or
measurement options). This option can be used to store time stamps of selected or all network nodes. A 4-bit flag determines
the data to be stored here, and it can take either of the following values:

e 0—The option stores time stamps only.
e 1—The option stores all time stamps and addresses.
e 2—A router completes its timestamp only if its address is listed in this option.

Notice that the size of the Internet Timestamp option does not change, because the sender specifies it previously in the length
field. For this reason, there is an additional (4-bit) Counter field, which includes the number of all routers for the time stamps of
which there was no more space in the data field. The maximum length of this option is 40 bytes. The third byte points to the
next four or eight bytes to be filled with an entry.

If fragmentation is required, this option appears in the first fragment only, and so the Copy Flag is set to 0.
14.3.2 Configuration
User Access

Each Linux user can use the traceroute command to track an IP packet on its way across the Internet to the destination
node. This might suggest that the Record Route IP packet option is used in this case. Actually, this is not so; the traceroute
command uses another method, for several reasons:

o Formerly, not all routers supported the Record Route packet option, which means that they wouldn't have been available
for use.

o Record Route is normally intended for one-way use only—the receiver has to return an echo of the IP packet it received
to the sender. This means that the recorded addresses would have to be duplicated.

e However, the main reason is lack of space: A maximum of nine IP addresses fits into the address list of the Option field.
Formerly, this might have been sufficient, but today the average number of intermediate systems for a connection across
the Internet is much higher.

For these reasons, traceroute uses the Internet Control Message Protocol (ICMP; see Section 14.4) and the Time-to-Live (TTL)
field of the IP header, which stores the remaining lifetime of the packet. It sends consecutive ICMP packets with the same
destination address and increments the value in the TTL field at each step. The first packet gets a lifetime of one (i.e., the first
Internet node returns an ICMP message to the sender as soon as it receives the packet). The sender receives an ICMP message
also from each of the next receivers, so that it can follow the path to the destination address. However, a trick has to be used at
the destination address, because the receiver looks at the lifetime only if the packet is not delivered locally. For this purpose, the
UDP port number is set to a meaningless value to cause the receiver to return the ICMP message Port Unreachable.

Notice, however, that this method works only because all IP packets from a sender normally take the same path through the
Internet to reach the receiver in most cases. It was actually intended to let a user run the traceroute command to access the
packet option Strict Source Routing or Loose Source Routing. When the first version of traceroute included this option, many
system administrators found that it results in an excessive load on most routers. Consequently, to use these packet options
today, we need a corresponding patch.

The following example uses the Loose Source Routing option:

# traceroute -g 129.13.92.254 rzstudl.rz.uni-karlsruhe.de

traceroute to rzstudl.rz.uni-karlsruhe.de (129.13.197.1), 30 hops max,
40 byte packets

1 rzascOl.rz.uni-karlsruhe.de (129.13.92.1) 20 ms 20 ms 20 ms

2 r-ascend-netz.rz.uni-karlsruhe.de (129.13.92.254) 20 ms 20 ms 20 ms
3 rzstudl.rz.uni-karlsruhe.de (129.13.197.1) 213 ms 22 ms 24 ms}

Because the traceroute command, which is normally installed in Linux, does not let a user access the IP packet options,



Thiméstaermgns isErentad vatindtial, yeonpramf. GEHIM2BNERHES t-Jetiff4hat a host is reachable. For this purpose, it
continually sends ICMP requests to the destination computer and expects a reply in the form of an ICMP message. Today, there
are still o1 ng implementations that allow you to use the packet options Source Routing and Internet Timestamp. For the same
reasons as With + raceroute, the Internet Timestamp option was removed from most implementations, which means that only
the Record Route option remained. The following example shows how you can use ping with the Record Route packet option
set. The route is output after the first request.

# ping -R rzstudl.rz.uni-karlsruhe.de

PING rzstudl.rz.uni-karlsruhe.de (129.13.197.1): 56 data bytes

64 bytes from 129.13.197.1: icmp seg=0 ttl=253 time=235.977 ms

RR: 1sdn216-10.rz.uni-karlsruhe.de (129.13.216.10)
rzascOl.rz.uni-karlsruhe.de (129.13.92.1)
129.13.197.62
rzstudl.rz.uni-karlsruhe.de (129.13.197.1)
r-ascend-netz.rz.uni-karlsruhe.de (129.13.92.254)
rzascOl.rz.uni-karlsruhe.de (129.13.92.1)
isdn216-10.rz.uni-karlsruhe.de (129.13.216.10)

64 bytes from 129.13.197.1: icmp_seg=1 ttl=253 time=47.171 ms (same route)

64 bytes from 129.13.197.1: icmp seg=2 ttl=253 time=48.728 ms (same route)

--- rzstudl.rz.uni-karlsruhe.de ping statistics ---

9 packets transmitted, 9 packets received, 0% packet loss

round-trip min/avg/max = 45.100/70.545/235.977 ms

If a user at the local computer has root rights, then the verbose mode of +cpdump lets the user additionally view the packet
options of all IP packets. tcpdump Monitors the data traffic at a network adapter. The following example uses tcpdump in
verbose mode to monitor the previous ping example.

# tcpdump -v

User level filter, protocol ALL, datagram packet socket

tcpdump: listening on ipppO

15:37:56.025267 1sdn216-10.rz.uni-karlsruhe.de > rzstudl.rz.uni-karlsruhe.de:
icmp: echo request (ttl 64, id 1284, optlen=40 RR{isdn216-10.rz.uni-
karlsruhe.de#0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0 0.0.0.0}
EOL)

15:37:56.261172 rzstudl.rz.uni-karlsruhe.de > isdn216-10.rz.uni-karlsruhe.de:
icmp: echo reply (ttl 253, id 28562, optlen=40 RR{isdn216-10.rz.uni-
karlsruhe.de rzascOl.rz.uni-karlsruhe.de 129.13.197.62 rzstudl.rz.uni-
karlsruhe.de r-ascend-netz.rz.uni-karlsruhe.de rzascOl.rz.uni-karlsruhe.de#
0.0.0.0 0.0.0.0 0.0.0.0} EOL)

Programming Access

We will use the ping program once more in another example to show you how IP packet options can be accessed during
programming. This example uses Version 1.38. When ping starts, the first thing is to check the parameters passed. If they
include —g, then the Echo Request packet has to include the Record Route IP option. For this purpose, ping uses the
setsockopt () function to inform an existing socket about packet options.

The following example shows you how this function is invoked from within the source code of ping:

if (setsockopt (s, IPPROTO IP, IP OPTIONS, rspace, sizeof (rspace)) < 0)
{

perror ( ("ping: record route"));

exit (1) ;

The specified options will then be set in each packet sent over this socket in the future. The 1pprOTO TP parameter means
that the packet option to be set is an IP option. This does not necessarily mean that it is an IP option in the true sense. It could
be present in another position within the IP header (e.g., 1p 771 also belongs to the 1pproTO TP group). From the
programming perspective, we always have to assume that the current kernel implementation does not support the desired IP
option. In this case, setsockopt () returns the value 1 and outputs an error message. Subsequently, an arbitrary number of
packets with the packet option set are sent over this socket.

Incoming ICMP packets sent by ping are checked for their options as follows: An option pointer that points to the first Option
field in the protocol header is computed. The first option is processed, and the option pointer is incremented so that it points to
the next option. For the Record Route packet option, the pointer has to point to a byte that includes the number "7". ping
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#define IPOPT END (O |IPOPT CONTROL)

#define IPOPT NOOP (1 |IPOPT_ CONTROL)

#define IPOPT SEC (2 |IPOPT CONTROL|IPOPT COPY)
#define IPOPT LSRR (3 |IPOPT CONTROL|IPOPT COPY)
#define IPOPT TIMESTAMP (4 |IPOPT MEASUREMENT)
#define IPOPT RR (7 |IPOPT_CONTROL)

#define IPOPT SID (8 |IPOPT CONTROL|IPOPT COPY)
#define IPOPT SSRR (9 |IPOPT CONTROL|IPOPT COPY)
#define IPOPT RA (20|IPOPT_CONTROL|IPOPT COPY)

If one of these packet options is found, then it is output.
14.3.3 The i options Class in the Linux Kernel

This section describes all functions of the ip options class implemented in the Linux kernel. If options are passed to or from
functions, then this is normally done by use of the ip options data type. This type is defined in <1inux/ip.n> and includes
the variables, pointers, and constants required for all packet options.

ip options build() net/ipv4/ip_options.c

This function takes the information about IP options from the socket object and creates the options part in the IP header.

The parameters passed here include a socket buffer, the packet options, the packet destination address, the routing table, and
the is frag variables. The socket buffer includes a datagram with a protocol header that is not yet complete. The passed
packet options are copied to the end of the protocol header. If the option Strict Source Routing exists, then the destination
address of the packet is written to the address list of the packet option. If the packet is not a fragment, and if the Internet
Timestamp or Record Route option exists, then the required data is inserted into the corresponding lists. If the packet is a
fragment and one of the two options exists, then these options are replaced by No Operation.

ip options_echo () net/ipv4/ip_options.c

The ip options echo() routine takes the options from an IP packet received and uses them to create an echo packet (i.e.,
a reply to the incoming message). This function is normally used to send a reply when packets with IP options have been
received—for example, to invert a Strict Source Routing option. The parameters passed here are a socket buffer and the
destination options.

ip options fragment () net/ipv4/ip_options.c

This function takes the fragment that was passed as socket buffer and overwrites all packet options with the No Operation
option, with the Copy Flag not set. As described in Section 14.3.1, this flag is not set for the Internet Timestamp and Record
Route options. The replacement by No Operation has the advantage that the length of the protocol header does not change.

ip options compile () net/ipv4/ip_options.c

This function compiles the Option field at the end of the IP header. ip options build() uses data structures readily
prepared for packet options, but ip options compile() hasto compile all options. The parameters passed here include
the packet options and the socket buffer. This function works option by option until it reaches an End-of-Option List or the end of
the protocol header. Any No Operation in the option list is skipped. If an error occurs in this procedure, then an ICMP message is
returned to the sender.

ip options undo () net/ipv4/ip_options.c

It can be necessary to delete the last entries in the packet options Source Routing, Record Route, and Internet Timestamp. The
function ip options undo () is responsible for this task. This function can follow once the ip options echo() Was
invoked, for example. If an Echo Request with the Record Route option is sent to the local computer, then the function

ip options echo () duplicates the options set in the incoming packet. These packet options are then used to return an Echo
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computer. The packet options represent the only parameter passed here.

ip options get () net/ipv4/ip_options.c

This function checks on whether the IP options can be accessed when setsockopt () IS invoked. If so, then it returns 0;
otherwise, it returns a negative error code (error codes are defined in the file <include/asm/errno.h> )-

ip forward options() net/ipv4/ip_options.c

If necessary, this function adds all information required about the local IP node to a packet that has to be forwarded. This
information is added by the packet options Record Route, Strict Source Route, and Internet Timestamp. The only parameter
passed here is the appropriate socket buffer.

ip options rcv srr() net/ipv4/ip_options.c

This function checks the IP options Loose Source Routing and Strict Source Routing in an incoming packet. For example, if the
destination address in the protocol header is the local address, and if the address list has not yet been fully visited, the packet
may not be delivered locally. As with the previous function, the socket buffer is the only parameter passed here.

14.3.4 IP Options in the IP Layer

Incoming Packets

There are several ways an IP packet can move across the IP layer. It can enter either from the lower or from the higher layers
(i.e., from the local Internet module). Depending on whether it is intended for the local computer, the packet is passed to the
next higher or next lower layer. Figure 14-10 shows this relation and the position within the packet-handling process where
functions are invoked to handle IP options in the Linux kernel.

Figure 14-10. IP Options in the IP layer.
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If an IP packet enters the IP layer from a lower layer, then ip rcv () is the first function invoked. The packet is passed as
socket buffer, and it first has to pass the netfilters. Netfilters have the functionality of a firewall and can do address translations.
To translate addresses, Nk HOOK () Withthe ip rcv finish() parameter is invoked. Chapter 19 describes how netfilters
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passed to this function is the socket buffer. It finds out the packet's path and checks its protocol header. If the header length is
greater than five (i.e., more than 5 * 32 bits) then the packet includes an option field that causes the function
ip options compile () to beinvoked. The packet options are separated and stored in the opt data structure. Normally,
Boolean variables (e.g., opt->is strictroute ) are set at this point. Subsequently, the opt ->srr pointer has to be tested.
If this pointer is set to one, then the packet option Loose Source Routing or Strict Source Routing is specified, which means that
the function ip options rcv srr () has to be invoked.

The return value of the ip rcv finish () function is a pointer that points to either ip 10cal deliver() Of
ip forward () , depending on whether the packet has to be delivered locally or forwarded.

Local Packet Delivery

The function ip 1ocal deliver () isinvoked if an IP packet has to be delivered to the local computer. This packet could be
a fragment of a larger IP datagram, which has to be reassembled with the other fragments. This means that several things
have to be checked—for example, whether all fragments have arrived, which is checked by the function ip defrag() . Once
all fragments have arrived, all options have to be removed from the first fragment to reassemble the fragments into the original
datagram. The first fragment always includes all options that were copied when the datagram was fragmented. Next, the packet
traverses the netfilters once more. The function 1p 1ocal deliver finish() completes a local packet delivery in the IP
layer.

Forwarding Packets

The function ip forward () isinvoked in the event that an IP packet has to be forwarded. (See the center part of Figure 14-
10.) The packet is checked again, including a test for the Strict Source Routing option. If this option exists, and the local address
is not in the option field, then an ICMP message is returned to inform the sender accordingly. In this case, neither Strict Source
Routing nor Loose Source Routing may be specified in the option field to ensure that an ICMP Redirect message can be returned
to the sender.

A backup copy of the IP packet (including all packet options) has to be created, because the packet could be changed in the
further course. The value of the 771, variable is decremented by one. If the packet is too big and the Don't-Fragment bit is set in
the IP packet header, then the complete packet is discarded. At the end, the netfilter is called again, but this time with the

ip forward finish() parameter.

The function ip forward finish() checks the length of each IP packet options. If the length is not null, then the function
ip forward options () handles the Record Route and Source Routing options, and ip send () iS invoked in either case. If
the packet is too big and has to be fragmented, then ip send() invokes the ip fragme{t () function. Depending on
whether the Copy Flag is set, only some of the packet options or only the first fragment have to be copied to all fragments. This
function is extremely space- and time-saving. It also means that 1p options fragment () isinvoked only provided that the
content of the socket buffer is the first or only fragment. B B

The next function is ip finish output () , which completes the packet-forwarding process.
Handling Packets Created Locally
A packet created locally can take either of two paths across the IP layer:

e Thefunction ip build and send pkt() Iisinvoked. Though the passed socket buffer contains a datagram, it doesn't
have a protocol header yet. In this case, packet options are passed as parameters, separately from the payload, and all
pointers in the header structure are set. Depending on whether there are options, the header length, which was
previously set to "5" [bytes], is corrected, and the function ip options build() isinvoked, passing the socket
buffer, the packet options, the destination address, and the routing table. Next, ip send check () Vverifies the
checksum in the packet header, before the parameter output maybe reroute 0O invokes the netfilters. The IP
options play no further role on the remaining path as the packet travels through the IP layer. At the end, the packet is
passed to the lower layers or ARP (Address Resolution Protocol—see Chapter 15).

o The higher layers pass the IP packet as parameter of the function ip queue xmit () to the IP layer. Notice that the
packet options are not directly passed as parameters to the function;_ip que_ue xmit () can use a pointer referring to
the socket to access them. The first step has to decide where the packet has to be sent to. If the Source Routing option
is set, then the destination address of the packet is determined by the address specified next. This requires a check for
whether the option is strictroute () eXists and for whether the destination address is unequal to the router
registered in the local routing table. In this case, the IP packet cannot be transmitted. If the route can be determined
without problem, then the next step creates the remaining protocol header, as in the first way. The packet leaves the IP
layer on the same path.

4 Previous MNext b
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14.4 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) is the error-report mechanism for the IP layer, which also resides in the network
layer. Though ICMP is based on IP, it doesn't make IP more reliable. Packets can be lost despite the use of ICMP, and IP or ICMP
won't notice that packets are lost. The only purposes of this error-report mechanism are to report errors to other computers
and to respond to such reports. It is mendatory for each IP implementation to implement ICMP. The ICMP implementation is
defined in the following RFC documents:

e RFC 792 [Post81b]: This is the basic definition, describing the packet types and their uses.
e RFC 1122 [Brad89]: Definition of the requirements on terminal equipment (hosts) connected to the Internet.
e RFC 1812 [Bake95]: This document describes the requirements for switching computers (routers) in the Internet.

However, RFC specifications often leave much room for flexible implementation. For some functions, it is even optional whether
you implement them. For this reason, ICMP implementations and even configurations of the same implementation can differ
considerably.

The most popular application of ICMP is error detection or error diagnostics. In more than ninety percent of all cases, the first
information transmitted by a newly installed network adapter over an IP network will probably be that of the ping command,
which is fully based on ICMP. This allows you to check the reachability of other computers easily and without noticeable load on
the network. This procedure is often done in automated form (e.g., to monitor servers). Beyond simply checking the reachability
of computers, the set of different error messages allow a network administrator (or a network-analysis tool) to obtain a detailed
overview of the internal state of an IP network. For example, poorly selected local routing tables or wrongly set transmit options
in individual computers can be detected. And finally, it is possible to use ICMP to synchronize computer clocks within a network,
in addition to other—partly outdated—functions, which will be briefly discussed in this section.

14.4.1 Functional Principle of ICMP

ICMP sends and receives special IP packets representing error or information messages. Error messages occur whenever IP
packets have not reached their destinations. All other cases create information messages, which can additionally include a
request for reply. Notice that the ICMP functionality becomes active within the network implementation of the Linux kernel only
provided that a problem situation occurs during another data traffic or when ICMP packets arrive from another computer. As
mentioned earlier, ICMP transmits messages in IP packets. Figure 14-11 shows the general structure of ICMP messages (gray
fields), which are transported in the payload of an IP packet. It is typical for the IP header of a packet containing an ICMP
message that the Type-of-Service field is set to 9x00, which means that the packet is treated like a regular IP packet without
priority. The protocol type in the IP header for ICMP messages is set to 9x01, as specified in RFC 790 [Post81a].

Figure 14-11. Structure of an IP packet containing an ICMP message.
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The 8-bit Type field in the ICMP part specifies the type of ICMP message. The Code field specifies the values an ICMP message
can take. The original RFC 792 defines a total of eleven messages, but the current Linux implementation supports only some of
them. These eleven messages are listed in Table 14-2. The 16-bit checksum extends over all fields starting from the ICMP type
(i.e., over the entire part that IP treats as payload).

Table 14-2. ICMP packet types defined in RFC 792.
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Type
Destination Unreachable

Time Exceeded

Parameter Problem

Source Quench

Redirect

Echo and Echo Reply

Timestamp and Timestamp Reply

Information Request und Information Reply

Description

The destination address cannot be
reached.

A packet was discarded, because its TTL
has expired.

Unknown or false options.

Informs the sender that IP packets were
lost to overload.

Enables path optimization.

The data sent to the destination address is
returned in a reply.

The timestamp sent to the destination
address is used-to reply with the
timestamp of the destination address.

Request/reply used to find the network a
computer connects to.

The following subsections describe the ICMP messages defined in RFC 791.

Destination Unreachable

The packet for a Destination Unreachable message includes the following fields:

Type-0x03 Code
unused

IP Header + 64 Bits of Original Data

e Code =

Checksum

0x00 (Network Unreachable): The network of an IP packet's receiver is not reachable. This can happen, for

example, if the distance to the receiver's network is set to infinite in the routing table of a router.

e Code

e Code =

0x01 (Host Unreachable): The desired destination computer in the specified network cannot be reached.

0x02 (Protocol Unreachable): This message can be generated if another protocol listens to the destination port

specified in the TCP packet header. The message can be sent both by a router and by a router and by an end system.

e Code =

0x03 (Port Unreachable): The port address of the receiver specified in the TCP packet header is not reachable.

The end system is "reachable" in this case, too, so both a router and an end system can generate this message.

® Code =

0x04 (Fragmentation Needed): This ICMP packet can be sent if an IP packet has to be fragmented in a router,

but the Don't-Fragment flag is set in the packet header, so that the packet may not be fragmented. In this case, the

router has to discard the IP packet.

e Code =
message is returned to the sender.

0x05 (Source Route Failed): If the IP packet option Source Routing is set and an error occurs, then this ICMP

The IP header of the packet that caused the ICMP message, plus the first 64 data bits, are specified in the payload part of the

ICMP message Destination Unreachable.

Source Quench

The packet of a Source Quench message is structured as follows:

Type-0x04 Code-0x00
unused

IP Header + 64 Bits of Original Data

Checksum
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When the network load is high, it can happen that a router (or the receiver) discards IP packets because of a lack of resources
(e.g., memory space or computing capacity). If this happens, then a Source Quench message can be transmitted to the sender.
RFC 792 specifies that an ICMP implementation can generate such an ICMP message for each discarded packet. The sender
should then respond by slowing down its transmission rate until no more Source Quench messages arrive. Subsequently, the
sender can gradually increase its rate.

Instead of responding to discarded packets, routers, or end systems can send ICMP messages of the Source Quench type before
they reach their capacity limits, to prevent the consequences of lost packets.

The only value defined for the coge field of a Source Quench message is 0x00. The payload part includes the IP header of the
triggering IP packet and the first 64 bits of that packet's payload.

Redirect

The packet of a Redirect message is structured as follows:

Type-0x05 Code Checksum
Router IP Address
IP Header + 64 Bits of Original Data

This ICMP message type is designed to optimize routing through the Internet. Assume that a router, R1, receives an IP packet of
a sending end system, S, with receiver E. Based on a corresponding entry in the routing table of R1, this packet is forwarded to
router R2. However, if R2 and S are in the same network (which can be determined based on the sender address), this route
can be optimized by sending packets from S to receiver E directly to router R2 over R1, without detour. In this case, router R2
would send a Redirect message to end system S to announce that packets to receiver E will be sent directly to R2 in the future.
Consequently, the field router IP Address Would contain the IP address of R2. The code field would take either of the
following values:

e Code 0x00: Redirect IP packets that should be sent to the network that connects the receiver of these IP packets.

e Code 0x01: Redirect all IP packets that should be sent to the specified receiver.

e Code = 0x02: Redirect all IP packets that should be sent to the receiver's network and have the same value in the TOS
field as the IP packet that triggers the ICMP message.

e Code = 0x03: Redirect all IP packets that have the same receiver and the same TOS field as the IP packet that triggers
the ICMP message.

Notice that no Redirect message is sent if the Source Route option is set in the IP packet options, even if there would be a
shorter path to the receiver. The last field specifies the IP header and the first 64 data bits of the initiating packet.

Echo and Echo Reply

The packet of an Echo or Echo Reply message is structured as follows:

Type Code-0x00 Checksum
Identifier Sequence Number
Data...

Echo and Echo Reply messages are normally used to verify the existence of an end system or intermediate system. To this end,
an Echo message is sent to the desired system. The ICMP implementation in the receiver has to respond to this Echo request by
sending an Echo Reply message. Echo and Echo Reply messages differ only in the Type field: 0x0s specifies an Echo message
and 0x00 specifies an Echo Reply message. The code Value has to be set to gx00 for both types. RFC 792 does not define
explicit values for the other fields (i.e., 1dentifier, Sequence Number,and pata); therefore, the application can set
these fields arbitrarily. The only thing the ICMP implementation has to ensure is that these three fields are copied from an Echo
message to the Echo Reply message. The pata field can have an arbitrary length. For example, an ICMP application could use
session numbers for the 1dentifier field and increment the sequence number for each Echo message it sends.

Time Exceeded
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The packet of a Time Exceeded message is structured as follows:

Type-0x0B Code Checksum
unused

IP Header + 64 Bits of Original Data

An ICMP message of the type Time Exceeded is generated and returned to the sender if the lifetime of the IP packet has expired
(i.e., its TTL value is 0) and the packet was discarded. There could occur either of the following two cases:

e Code = 0x00: A router sends this message if it discarded a packet because its TTL had expired.

e Code = 0x01:An end system sends a message with this code if it was unable to reassemble a fragmented IP message
correctly within a certain time, because fragments were missing.

As in the Destination Unreachable message, the payload part in the Time Exceeded message includes the IP header of the
packet that caused the ICMP message, plus the first 64 data bits from that packet.

Parameter Problem

The packet of a Parameter Problem message is structured as follows:

Type-0x0C Code-0x00 Checksum
Pointer unused

IP Header + 64 Bits of Original Data

If an error due to an invalid parameter in the IP header occurs while an IP packet is being handled in an intermediate node or
end system, then this IP packet is discarded. For example, this can happen if there is a wrong argument in the IP packet
options. In this case, the router or end system can generate an ICMP message of the type Parameter Problem and return it to
the sender of the discarded IP packet. The code field has to be set to gx00¢ in all cases, which means that the pointer field
shows an error. More specifically, the pointer points to the octet in the original IP packet header where the problem occurred
while the packet was being processed. For example, the value pointer=0x01 means that the version number (i.e., the first
field in the IP packet header; see Figure 14-11) is faulty.

The IP packet header of the discarded packet and the first 64 bits of its payload are attached to the ICMP message.
Timestamp and Timestamp Reply

The packet of an Timestamp or Timestamp Reply message is structured as follows:

Type Code-0x00 Checksum
Identifier Sequence Number
Originate Timestamp

Receive Timestamp

Transmit Timestamp

These two ICMP message types are used to poll the current time from an intermediate or end system. The exchange is similar
to the two previous message types, Echo and Echo Reply. The Type field is used to distinguish between Timestamp and
Timestamp Reply: A value of gx00 specifies a Timestamp message, and ox0r denotes a Timestamp Reply message. The
exclusive value for the coge field is 0x00. As for Echo and Echo Reply, the fields 1dentifier and sequence Number are
required by the sender to be able to allocate a Timestamp Echo message to a Timestamp message properly.

The payload part of these two ICMP messages consists of 32-bit timestamps. A timestamp is the time in milliseconds that has
passed since midnight (GMT). The originate Timestamp field defines the time when the transmitted ICMP message was
last "touched" by the sender. Similarly, there is @ Receive Timestamp SPecifying the time that the message arrived in the
receiver. Transmit Timestamp Stores the time at which the Timestamp Reply message was sent.
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The packet of an Information Request or Information Reply message is structured as follows:

Type Code-0x00 Checksum

Identifier Sequence Number

The way these two ICMP message types operate is similar to the Echo and Echo Request messages, except that they don't have
a payload field. This message pair allows you to additionally identify the network that connects a computer. For this purpose,
the value ¢.0.0.0 is used as receiver address, which means that all computers in the local area network are addressed. The
ICMP modules of these computers react to an Information Request by sending an Information Reply, where they state the LAN
identifier instead of 0.0.0.0.

The 1dentifier and sequence Number fields are used to allocate Information Request and Information Reply pairs,
similarly to an Echo and Echo Reply pair. The Type field is defined as follows:

e Type = OxOF: The message is an Information Request.
e Type = 0x10: The message is an Information Reply.

14.4.2 Configuring ICMP

The specified RFCs allow the local system administrator to control the behavior of some ICMP functions. The Linux
implementation includes three cases where the sysctl() function can be used to control behavior at runtime:

o Echo Replies: The system manager can decide whether Echo Replies may be sent at all, for security reasons. This option
is activated by default.

o Echo Replies to broadcast packets: The system manager can decide whether a reply should be sent to an Echo Request
packet addressed to all computers in a LAN (i.e., destination address o .0.0.0). This option is deactivated by default.

o Monitoring illegal ICMP broadcast replies: Faulty ICMP messages sent as a response to an IP broadcast can be ignored.
(See RFC 1122 [Brad89].) This is not the case by default.

In addition, RFC 1812 [Bake95] specifies that the transmission rate of ICMP messages should be limited and that this limit
should be configurable. The transmit function i cmp send () is limited accordingly, but the rate can be set only in the source
code (in the xr1 im allow () function, XRLIM BURST FACTOR constant), which means that you have to recompile the Linux
kernel.

14.4.3 ICMP in the Linux Kernel

The Linux implementation is done mainly in the file net /ipv4/icmp.c and in the associated header file
include/linux/icmp.h - Each ICMP message type is defined as a constant with the type fields specified in RFC 792:

ICMP_ECHOREPLY = 0
ICMP DEST UNREACH = 3
ICMP_SOURCE_QUENCH
ICMP_REDIRECT = 5
ICMP _ECHO = 8
ICMP_TIME EXCEEDED = 11
ICMP PARAMETERPROB = 12
ICMP TIMESTAMP = 13
ICMP_TIMESTAMPREPLY = 14
ICMP_INFO REQUEST = 15
ICMP_INFO REPLY = 16
ICMP_ADDRESS = 17
ICMP_ADDRESSREPLY = 18

4

Almost all IP modules use the ICMP implementation to send ICMP messages.

icmp unit () include/linux/icmp.h
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two computers can include states. The ICMP socket is the only central structure included in the implementation. This socket can
be reached exclusively with oot privileges. This is the reason why, for example, the ping command requires root privileges.
The initialization function i cmp unit () creates this socket.

The statistical information mentioned in the previous section is maintained in the data structure icmp statistics - Itincludes
the number of packets sent and received in total, the number of errors incurred, and the accumulated number of ICMP types.

The current contents from this statistics variable can be output from the pseudo file /proc/net/snmp - This file includes the
meaning of the individual entries in the form of abbreviated ICMP types with leading "In" or "Out" for each packet and an
additional row with values from the statistics array. The following listing is an example to show you what the contents of

the /proc/net/snmp can look like:

> cat /proc/net/snmp

Ip: Forwarding DefaultTTL InReceives InHdrErrors InAddrErrors ForwDatagrams
InUnknownProtos InDiscards InDelivers OutRequests OutDiscards OutNoRoutes
ReasmTimeout ReasmReqgds ReasmOKs ReasmFails FragOKs FragFails

FragCreates

IP: 2 64 900 0 0 0 O O 64 963 0 0 O 0O 0O O O O O

Icmp: InMsgs InErrors InDestUnreachs InTimeExcds InParmProbs InSrcQuenchs
InRedirects InEchos InEchoReps InTimestamps InTimestampReps InAddrMasks
InAddrMaskReps OutMsgs OutErrors OutDestUnreachs OutTimeExcds

OutParmProbs

OutSrcQuenchs OutRedirects OutEchos OutEchoReps OutTimestamps
OutTimestampReps OutAddrMasks OutAddrMaskReps

Icmp: 35 0 15 0 00011 90000 26 0150000011 0O00O00O0

Tcp: RtoAlgorithm RtoMin RtoMax MaxConn ActiveOpens PassiveOpens
AttemptFails EstabResets CurrEstab InSegs OutSegs RetransSegs InErrs OutRsts
Tcp: 0 0 0040000 816 888 0 0 O

Udp: InDatagrams NoPorts InErrors OutDatagrams

Udp: 25 6 0 31

Sending ICMP Packets

You can send ICMP packets from outside of the ICMP implementation in the Linux kernel—for example, from within the ping
program. This case is independent of the functions discussed below and will not be further discussed here.

icmp send() include/linux/icmp.h

Within the Linux kernel, an ICMP message is sent by the function i cmp send () in all cases where the message is not a reply
to an ICMP message. This function gets all data from an ICMP message as call parameters, which means that it can send any
ICMP type. In addition, to generate an ICMP packet correctly, this function is responsible for limiting the transmission rate of
ICMP messages (see also the configuration options discussed in Section 14.4.2) and for catching cases where no ICMP
messages may be sent. In this respect, two cases are possible:

o If the IP packet that initiated an ICMP message was an ICMP error message, then a reply to this error message could
cause an infinite cycle of ICMP messages.

o If an IP packet was fragmented, then an ICMP message is sent for the first fragment only to avoid loading the network
unnecessarily with redundant packets.

Table 14-3 shows the cases where Linux kernel modules send ICMP messages.

Table 14-3. Generating ICMP messages from within the kernel modules.

Type Module Reason
Time Exceeded Forward and defragment A packet was discarded
packets because it's TTL expired.
Parameter Problem Detect packet options Unknown or false options
Redirect Packet routing Obvious potential for
optimization

Destination Unreachable | All modules that send, Inability to deliver a packet
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Handling Incoming ICMP Packets

The central structure used to handle ICMP packets that arrive in an end system or intermediate system is a function pointer
array named icmp pointers. This array is responsible for flow control and includes the function handling ICMP type n in
position n. The major benefit of this method, compared to using a switch-case instruction to implement the same behavior, is
that each function in the array includes context information in the form of statistics variables. These statistics variables are
defined in relation to the respective ICMP handling function. This means that this array specifies the auxiliary function used to
handle an ICMP message. These auxiliary functions can be divided into two groups: auxiliary functions for local changes only,
and auxiliary functions that also send a new ICMP packet.

The most important functions used in the ICMP implementation in Linux will be described next.

icmp_ recv () include/linux/icmp.h

This function is responsible for processing incoming ICMP packets, including a preprocessing process that drops noncompliant
packets. While the internal statistics are being updated when an ICMP message arrives, the packet is also checked for correct
length. In addition, the checksum is computed over the packet header, and the ICMP type is checked for a valid number. If the
user has not set options in sysct1, then incoming broadcast packets of the types ICMP Echo, ICMP Timestamp, ICMP
Information Request, and ICMP Information Reply are discarded.

The following functions are invoked from within the i cmp rcv () function for incoming ICMP packets:

icmp reply () include/linux/icmp.h

The function icmp reply () i generally used to reply to ICMP request packets. Before a reply is sent, the internal statistics
variables are updated first; then the TOS field is taken from Request, and the IP addresses of the sender and the receiver are
swapped. Next, the packet is returned to the sender, including the payload passed as argument (corresponding to the ICMP
reply packet). icmp reply () is used by two functions, i cmp echo() and icmp times () , to reply to Echo Request and
Timestamp Request, respectively. B B

icmp redirect () include/linux/icmp.h

This function updates the routing table when an end system receives an ICMP message of the type Redirect.

icmp unreach () include/linux/icmp.h

This function handles three ICMP message types: Destination Unreachable, Source Quench, and Time Exceeded. After a number
of tests for packet validity, this function passes the error message to the service of the next higher layer belonging to the
initiating packet. Error messages as a result of ICMP messages are similar to the error codes defined in Section 14.4.1. In the
case of Source Quench, the receiving computer is expected to reduce its sending rate, which will be handled by the protocol in
the transport layer above IP.

icmp echo(), icmp timestamp () include/linux/icmp.h

A new ICMP packet has to be sent to handle ICMP messages of the types Echo Request and Timestamp Request. The basic
function icmp reply () is used in either case. The transmission is based on the rules discussed in Section 14.4.3. For
icmp_ echo () , only the ICMP type is changed, to tcMp EcHOREPLY , then the payload part is copied from the Echo packet,
and finally i cmp reply () returns the packet to the sender.

The function icmp timestamp () responds to incoming Timestamp requests. Initially, it checks the length of packets
previously received and finds out the current time. The payload is removed from the original ICMP packet and put into the reply
packet, and the time is added to the Receive Timestamp @nd Transmit Timestamp fields. This means that the two time
values in Receive Timestamp anNd Transmit Timestamp are always identical. Once the packet type has been changed to
ICMP_TIMESTAMPREPLY , the function i cmp reply () returns the packet.
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icmp_address reply ()

The standard actually specifies that these two functions be implemented. However, this functionality is not supported by the
Linux kernel, because the designers found inconsistencies in the standards and thought that an implementation would not be
meaningful at this time. When i cmp address () is invoked, only a kernel message is output. When a Linux computer receives
an ICMP Information Reply packet, then it checks this packet for correct network mask (and complains by outputting a kernel
message if it finds an inconsistency).

Another thing specific to the Linux implementation is that no reply is sent to packet types not discussed in this chapter.
Deviations from the Standard

Several ICMP functionalities originally specified in RFCs were not included in the ICMP implementation of Linux. The following
properties are missing:

e The use of a Source Route specified in the IP options is not supported. If an IP packet that initiates an ICMP message is
to use a specified route, then the ICMP packet would actually have to follow the same path back. This property is
currently missing, but will presumably be implemented later.

e Sending Source Quench messages: The ICMP implementation in Linux sends no Source Quench packets. Today, it is
considered pointless to send such packets, because they generate additional network load in an overload situation. (See
RFC 1812 [Bake95].)

o Information Request/Reply: These packet types were originally designed for tasks that have more recently been handled
by other protocols (e.g., allocating of IP addresses to booting computers without persistent memory). Currently, this
problem is solved by RARP. For this reason, these packets are simply ignored. In addition, the use of these ICMP packet
types was found to cause problems, because these two ICMP messages cannot be correctly applied in all cases. (See
RFC 1812.) Though this functionality is still specified in this RFC, the Linux designers decided not to implement it. The
only thing done is that a local error message is output when the computer receives an Information Reply message.

4 Frevious MNext »
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Chapter 15. Address Resolution Protocol (ARP)

The conversion of addresses between different protocol layers represents an important task for unique identification of
resources in a computer network. Such a conversion is required at the transition between two neighbouring layers within a
reference model, because each layer uses its own address types, depending on its functionality (IP, MAC, ATM addresses, etc.).
For example, the destination computer is specified in the form of an IP address if a packet is sent over the Internet Protocol.
This address is valid only within the IP layer. In the data-link layer, both the service used by the Internet Protocol to transport its
data and different LAN technologies (e.g., Ethernet, token ring, ATM), each with its own address formats, can be used. The
network adapters of a LAN are generally identified by 48-bit addresses, so-called MAC addresses. A MAC address identifies a
unique network adapter within a local area network.

To be able to send a packet to the IP instance in the destination computer or to the next router, the MAC address of the
destination station has to be determined in the sending protocol instance. The problem is now to do a unique resolution of the
mapping between a MAC address and an IP address. What we need is a mapping of network-layer addresses to MAC
addresses, because the sending IP instance has to pass the MAC address of the next station in the form of interface control
information (ICI) to the lower MAC instance. (See Section 3.2.1.) At the advent of the Internet, this mapping was implemented
by static tables that maintained the mapping of IP addresses to MAC addresses in each computer. However, this method turned
out to be inflexible as the ARPANET grew, and it meant an extremely high cost when changes were necessary. For this reason,
RFC 826 introduced the Address Resolution Protocol (ARP) to convert address formats.

Though the TCP/IP protocol suite has become the leading standard for almost all computer networks, it is interesting to note
that ARP was not designed specifically for mapping between IP and MAC addresses. ARP is a generic protocol that finds a
mapping between ordered pairs (P,A) and arbitrary physical addresses, where P is a network-layer protocol and A is an address
of this protocol P. At the time at which ARP was developed, different protocols, such as CHAOS and Decnet, had been used in
the network layer. The ARP instance of a system can be extended so that the required addresses can be resolved for each of
the above combinations, which means that no new protocol is hecessary. The most common method to allocate addresses
between different layers maps the tuple (Internet Protocol, IP address) to 48-bit MAC addresses.

4 Frevious MNext b
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15.1 Using the Address Resolution Protocol

As mentioned above, the Address Resolution Protocol (ARP) is a decentralized protocol to resolve address mappings between
layer-3 addresses and layer-2 addresses in local area networks. Figure 15-1 shows how ARP works. When computer A wants to
send a packet to router R in the same LAN, then it needs the layer-2 address, in addition to the IP address, to be able to tell the
data link layer which computer is supposed to get this packet. For this purpose, computer A sends an ARP Request to all
computers connected to the LAN. This request is generally sent in a MAC broadcast message by using the MAC broadcast
address (FF:FF:FF:FF:FF:FF) . The intended computer can see from the destination IP address in the ARP PDU that this
request is for itself, so this computer returns a reply to the requesting computer, A, including its MAC address. Computer A now
learns the MAC address of R and can instruct its data-link layer to deliver the packet.

Figure 15-1. Example showing how ARP resolves addresses.

[View full size image]
ARP reguest to MAC FERFFFFFFFFFF
MAC address of 1262510011 7
Reply 1o 49: 72160864114 (1 29.25.10.72)
ARF reply to MAC 4972 16c08:6:4:14
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Computer C:

¢ 129.25.10.81

MAC: 45:TZ:16

To avoid having to request the MAC address again for subsequent packets, A stores the MAC address of R in a local table—the
ARP cache. (See Section 15.3.) Computer R can also extract the MAC address of A from A's request and store that in its own
ARP cache. It can be seen from A's request that A and R will communicate soon, which means that the MAC address of A will be
needed. In this case, we avoid one ARP request, because the mapping will have been previously stored.

15.1.1 The Structure of ARP Protocol Data Units

Figure 15-2 shows how an ARP PDU is structured; this PDU is used for the two protocol data units defined in the ARP protocol,
ARP Request and ARP Reply. The only difference between these two types is in the Operation field.

Figure 15-2. Format of the ARP Request and ARP Reply PDUs.

[View full size image]
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Layer-2 header Layer-2 payload Layer-3 trailer

Figure 15-3 uses the above example to show how values can be assigned to the two PDUs. Computer A sends a request to
router R, as shown in Figure 15-1, asking for that computer's 48-bit MAC address (say 129.25.10.11 ) in the local Ethernet
segment.
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The fields of an ARP PDU and their meani

ngs are as follows:

o ARP packets are transported in the payload field of MAC protocols. The identification as an ARP PDU is done specifically
by the MAC protocol (e.g., in the Protocol field for Ethernet or by an appropriate identifier in the SNAP header).

o Hardware Type specifies the layer-2 protocol used (e.g., 1 for an Ethernet network).

o Protocol Type specifies the layer-3 protocol used (e.g., 0x0800 for the Internet Protocol).

o Layer-2 Address Length: , specifies the length of the layer-2 address used (in bytes). This field takes the value ¢ for an
48-bit MAC address. Specifying the address length enables the use of different protocols with specific address formats.

o Layer-3 Address Length: m specifies the length of the layer-3 address. The field takes the value 4 for 32-bit Internet

addresses.

e The Operation field specifies the type of ARP PDU? for ARP Request, 2 for ARP Reply. In addition, the PDU types RARP
Request (3) and RARP Reply (4) were defined for RARP [FMMT84]).

e The fields Layer-2 Sender Address and Layer-2 Destination Address consist of n bytes and include the appropriate layer-2

addresses.

e The fields Layer-3 Sender Address and Layer-3 Destination Address have the length m bytes and include the layer-3
addresses of the requesting and the receiving station.

15.1.2 Receiving an ARP Packet and Replying

As was mentioned earlier, ARP Request and ARP Reply PDUs have the same packet format; they differ only in their Operation
fields. An ARP Request packet also differs from a subsequent reply by the missing layer-2 address of the destination, so that it is
easy to create a reply to a request. When receiving a request packet, in which the desired station finds its layer-3 address, the

following steps are completed:

e The layer-2 address of the network adapter is inserted in the field Layer-2 Destination Address.

e The two address fields for the sender and the destination are swapped.

e The Operation field takes value 2 to mark the PDU as ARP Reply.

o Finally, the reply packet is sent.

An ARP request includes a valid mapping between the layer-3 address and the layer-2 address of the request initiator, in
addition to the layer-3 address looked for, so one entry for the initiator is created in the ARP cache when the request is

received.
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15.2 The ARP Command

The arp command can be used to output the ARP table (ARP cache) of a computer. It can also be used to manipulate the ARP
table (e.g., to create permanent entries or delete entries).

The following options are available for the 5 rp command:

o Display the ARP table: you can use option -a when running the 5 rp command to view the ARP table of a computer:

root@tux # arp -a

IP address HW type HW address

129.25.10.97 10Mbit/s Ethernet 49:72:16:08:80:70
129.25.10.72 10Mbit/s Ethernet 49:72:16:08:64:14
129.25. 10.81 10Mbit/s Ethernet 49:17:92:96:96:96

The first column shows the IP address of the destination computer; the second column shows the LAN category (e.g., 10-
mbps Ethernet); the last column shows the layer-2 address of the network adapter.

If the word incomplete appearsin an entry in the last column upon repeated calls, then this means that the network
device specified by the entry has failed or is defective.

e Address format: In addition to Ethernet, ARP is also used in other broadcast-enabled LAN technologies (e.g., AX.25
amateur radio networks and token ring) for address resolution. These network technologies may use different address
formats. arp shows the address format used in the second column. Notice that 4 rp shows only the entries for Ethernet
addresses, by default. To view a list of AX.25 addresses, you have to use the -+ option with the command: arp -a -t

ax25-

o Deleting ARP entries: You can use 5 rp with the option -q computer to remove the entry of that computer. This forces
a new ARP request upon the next request for the layer-2 address of the specified computer. Deleting an ARP address
mapping can be useful when a computer's configuration is wrong or when the layer-2 address has changed—for
example, when a network adapter has been replaced.

To avoid this case, ARP entries are automatically declared invalid after a certain period of time. This period is in the
range of a few minutes, so that the replacement of a network adapter should actually not cause any problem.

o Setting ARP entries: It can sometimes be useful to add an entry manually to the ARP table. The option -5 computer
layer-2-address iS available for such cases. It can also be used when ARP requests to a specific computer are not
answered, because of faulty or missing ARP instances. The option -s can also be useful when a second computer in the
same LAN identifies itself erroneously with the same IP address and replies sooner to the ARP request. The following
command adds the computer +yx having layer-2 address 49:72:16:08:64:14 tothe ARP table: arp -5 tux

49:72:16:08:64:14 .

In contrast to entries determined automatically in the ARP cache, entries created with the option -5 are not removed
after a certain period; they remain in the ARP cache until the computer restarts (static entry).
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15.3 Implementing the ARP Instance in the Linux Kernel

In theory, ARP would have to run an address resolution for each outgoing IP packet before transmitting it. However, this would
significantly increase the required bandwidth. For this reason, address mappings are stored in a table—the so-called ARP
cache—as the protocol learns them. We have mentioned the ARP cache several times before. This section describes how the
ARP cache and the ARP instance are implemented in the Linux kernel.

Though the Address Resolution Protocol was designed for relatively generic use, to map addresses for different layers, it is not
used by all layer-3 protocols. For example, the new Internet Protocol (IPv6) uses the Neighbor Discovery (ND) address resolution
to map IPv6 address to layer-2 addresses. Though the operation of the two protocols (ARP and ND) is similar, they are actually
two separate protocol instances. The Linux kernel designers wanted to utilize the similarity between the two protocols and
implemented a generic support for address resolution protocols in LANSs, the socalled neighbour Management.

A neighbour represents a computer that is reachable over layer-2 services (i.e., directly over the LAN). Using the neighbour
interface and the available functions, you can implement special properties of either of the two protocols (ARP and Neighbour
Discovery). The following sections introduce the neighbour interface and discuss the ARP functions. Chapter 23 describes how
Neighbor Discovery is implemented.

15.3.1 Managing Reachable Computers in the ARP Cache

As was mentioned earlier, computers that can be reached directly (over layer 2) are called neighbor stations in Linux. Figure 15-
4 shows that they are represented by instances of the neighbour structure.

Figure 15-4. Structure of the ARP cache and its neighbor elements.
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The set of reachable computers is managed in the ARP cache, which is organized in a hash table. The hash function arp hash
() can be used to map neighbour Structures to rows in the hash table. A linear collision resolution occurs if several structures
fall on the same hash row. The basic functions of the ARP hash table are handled by the neighbour management. This means
that the ARP hash table is only an instance of the more general neigh table Structure.

The structures of the neighbour management and its linking are introduced below.
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struct neighbour include/neighbour.h

The neighbour Structure is the representation of a computer that can be reached directly over the data-link layer. The ARP
instance creates a neighbour Structure as soon as a layer-3 protocol (normally, the Internet Protocol) asks for the layer-2
address of a computer in the LAN. This means that the ARP cache contains all reachable stations and, additionally, the
addresses of stations that are currently being determined. To prevent the cache from growing endlessly, entries with layer-2
addresses that have not been requested are deleted after a certain time. The neighbour structure has the following parameters:

e next: Because neighbor stations are organized in hash tables, and collisions are resolved by the chaining strategy
(linear linking), the next field references the next neighbor structure in a hash row.

e tb1: This pointer points to the neigh table Structure that belongs to this neighbour and manages the current
entry.

e parms: The neigh parms Structure includes several parameters about a neighbour computer (e.g., a reference to
the associated timer and the maximum number of probes. (See neigh timer handler () function, below.)

e dev: This is a pointer to the corresponding network device.
e timer: Thisis a pointer to a timer used to initiate the handling routine neigh timer handler() -

e opts: Neighbor options define several functions used to send packets to this neighbour - The functions actually used
depend on the properties of the underlying medium (i.e., on the type of network device). Figure 15-5 shows the
neigh opts variants. For example, the hh options are used when the network device needs an address to be resolved
and supports a cache for layer-2 headers, and direct is used for network devices that do not need address resolution,
such as point-to-point connections. The functions available in a neigh opts variant are used for different tasks involved
in the address-resolution process (e.g., resolve an address (solicit ()) Or send a packet to a reachable neighboring

computer (connected output()) -
e hardware address : This array stores the physical address of the neighboring computer.

e hh: This field refers to the cache entry for the layer-2 protocol of this neighbour computer. For example, an Ethernet
packet header consists of the sender address, the destination address, and the ethertype field. It is not necessary to
fill these fields every time; it is much more efficient to have them computed and readily stored, so that they need only be
copied.

e nud state: This parameter manages the state (i.e., valid, currently unreachable, etc.) of the neighboring station.
Figure 15-5 shows all states a neighbor can possibly take. These states will be discussed in more detail in the course of
this chapter.

e output () : This function pointer points to one of the functions in the neigh ops Structure. The value depends on the
current state (nud state) Of theé neighbour entry and the type of network device used. Figure 15-5 shows the
possible combinations. The output () function is used to send packets to this neighboring station. If a function pointer is
used, then the state of a packet does not have to be checked when it is sent. Should this state ever change, then we can
simply set a new pointer.

e arp queue: The ARP instance collects in this queue all packets to be sent for neighbour entries in the
NUD INCOMPLETE State (i.e., the neighboring computer currently cannot be reached). This means that they don't have
to be discarded, but can be sent as soon as an address has been successfully resolved.

Figure 15-5. Available neighbor options.
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struct neigh table include/net/neighbour.h
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A neigh table Structure manages the neighbour Structures of an address-resolution protocol (see Figure 15-4), and
several tables like this can exist in one single computer. We describe only the special case with an ARP table here. The
neigh table instance of the ARP protocol can be reached either over the linked list in the neigh table Structures or
directly over the arp tp1 pointer.

The most important fields in a neighbour hash table are as follows:

e next: As mentioned earlier, a separate ne igh table instance is created for each protocol, and these instances are
linearly linked. This is the purpose of the hext pointer. The neigh tables variables points to the beginning of the list.

e family: This field stores the address family of neighbour entries. The ARP cache contains IP addresses, so this field
takes the value AF INET.

e constructor () : This function pointer is used to generate a new neighbour entry. Depending on the protocol
instance, different tasks may be required to generate such an entry. This is the reason why each protocol should have a
special constructor. In the arp tb1 Structure, this pointer references the function arp constructor () , Which will be
described later. B -

e gc timer: A garbage collection (GC) timer is created for each neigh table cache. This timer checks the state of
each entry and updates these states periodically. The handling routine used by this timer is ne igh periodic timer

()

e hash buckets [NEIGH HASHMASK+1]: This table includes the pointers to the hash rows that link the neighbour
entries linearly. The arp hash () function is used to compute hash values.

e phash buckets [PNEIGH HASHMASK+1]: This second hash table manages the neighbour structures entered when
the computer is used as an ARP proxy.

struct neigh ops include/net/neighbour.h

The ops field of each neighbour structure includes a pointer to @ neigh ops structure. The available options define different
types of neighbors and include several functions belonging to a neighbour type (connected output (),hh output () s
etc.). For example, the functions needed to send packets to a neighboring computer are defined in the ne ig{bour options.
The following four types are available for entries in the ARP cache: generic, direct, hh,and broken-

The respective functions of these types are shown in Figure 15-5. Depending on the type of network device used, the ops fields
for new neighbour structures in the arp constructor () function are set to one of the following four options:

e arp direct ops() IS used when the existing network device does not include hardware headers (dev-
>hard_header == NULL). Ihese stations are directly reachable, and no layer-2 packet header is required (e.g., for
PPP).

e arp broken ops() IS reserved for special network devices (ROSE, AX25, and NETROM).

e arp hh ops () Issetwhen the network device used has a cache for layer-2 packet headers (dev-
>hard_header_cache) . In this case, the ops field is set to arp_hh_ops .

e arp generic ops () isused when none of the above cases exists.

The output () functions of the neigh ops Structure are particularly important. Each neighbour structure includes an output
() pointer that points to a function used to send data packets to a neighboring station. For ARP cache entries in the

NUD REACHABLE, NUD PERMANENT, OF NUD NOARP State, the cutput () pointer references the function

connected output () Of the neigh_ops structure; it is the fastest of all. connected output () assumes that the
neighboring computer is reachable, because these three states mean either that the reachability was confirmed recently or that
no confirmation is required (permanent entry or point-to-point).

For neighbour stations in other states, the output () pointer references the output () function, which is slower and more
careful. Direct reachability is doubted, so an initial attempt is made to obtain a confirmation of the neighboring computer's
reachability (probe).

Possible States for neighbour Entries
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several reasons why these entries are valid for a limited period of time. First, it would mean memory wasted to maintain entries
for all these computers, especially if there is little or no data exchange with them. Second, we have to keep these entries
consistent. For example, there can be a situation when the network adapter in a computer is replaced and so this computer will
have a different layer-2 address. This computer could no longer be reached with the old mapping. Therefore, it is assumed that
the mapping stored for a computer is no longer valid if that computer has not sent anything for some time.

In practice, the size of the ARP cache is limited (normally to 512 entries), and old or rarely used entries are periodically
removed by a kind of garbage collection. On the other hand, it could well be that a computer does not communicate over a
lengthy time, which means that its table is empty. In fact, this was not possible up to kernel Version 2.4, because the size of a
neigh table Structure was also limited downwards: No garbage collection was done when the table included fewer than
gc thresh1 values, which normally meant 128 entries. This bottom limit no longer exists in kernel Version 2.4 and higher.
You can use the arp command (see Section 15.2) to view the contents of the ARP cache.

Each neighbour entry in the ARP cache has a state, which is stored in the hud state field of the corresponding neighbour
structure. Figure 15-6 shows all possible states and the most important state transitions. There are other transitions, but they
hardly ever occur. We left them out for the sake of keeping the figure easy to understand. The states and state transitions are
described below.

Figure 15-6. State transition diagram for neighbour entries in neighbour caches.
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e NUD NONE: This entry is invalid. A neighbor normally is in this state only temporarily. New entries for the ARP cache are
created by the neigh alloc() function, but this state is changed immediately.

e NUD NOARP, NUD PERMANENT: NO address resolution is done for entries in these two states. NUD NOARP are
neighbors that do not require address resolution (e.g., PPP). Entries with the yup PERMANENT State were permanently
set by the administrator and are not deleted by the garbage collection.

e NUD TNCOMPLETE : This state means that there is no address mapping for this neighbor yet, but that it is being
processed. This means that an ARP request has been sent, and the protocol is waiting for a reply.

e NUD REACHABLE : neighbour Structures in this state are reachable with the fastest output () function
(neigh ops->connected output ()) - An ARP reply packet from this neighbor was received, and its maximum age
iS neigh->parms->reachable time time units. This interval is restarted when a normal data packet is received.

e NUD STALE: This state is taken when an entry has been rREACHABLE, Ut reachable time time units have expired.
For this reason, it is no longer certain that the neighbouring computer can still be reached with the address mapping
currently stored. For this reason, rather than using connected output () 1O send packets to this neighbour, the

slower nej_gh_ops ->output () is used.

e NUD DELAY: If @ packet needs to be sent to a station in the nup sTaLE state, then the Nup pELAY State is set. It is
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again, then the entry changes to the NUD REACHABLE State.

e NUD PROBE: The entry in the ARP cache is in the probing phase: Consecutive ARP request packets are sent in an
attempt to obtain the layer-2 address of this computer.

e NUD FAILED: The address mapping cannot be resolved for entries in this state. ARP tries to solve the problem by
sending neigh max probes request packets. If it still doesn't get replies to these packets, then the state of the
neighbour entryis setto nup ra1LED. Subsequently, the garbage collection deletes all entries in this state from the
ARP cache. B

To understand the states better, we summarize three additional state combinations below:

e NUD IN TIMER = (NUD INCOMPLETE | NUD DELAY | NUD PROBE):An attemptis currently being made to
resolve the address.

e NUD VALID = (NUD PERMANENT | NUD NOARP | NUD REACHABLE | NUD PROBE | NUD STALE |
NUD DELAY) : The neighbour entry includes an address mapping, which has been valid.

e NUD CONNECTED = (NUD_ PERMANENT | NUD NOARP | NUD REACHABLE): The neighbour entry is valid and
the neighboring computer can be reached.

15.3.2 Operation of the Address Resolution Protocol (ARP)

Given that the ARP cache and other neighbour tables have been built as discussed in the previous section, this section describes
how the Address Resolution Protocol (ARP) in the Linux kernel operates. We first discuss the routes different ARP packets take
across the kernel and how the ARP instance operates. Figure 15-7 shows the routes of ARP request and ARP reply packets.

Figure 15-7. ARP requests and ARP replies traveling through the ARP instance.
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arp_rcv () handles incoming ARP packets on layer 3. ARP packets are packed directly in layer-2 PDUs, so a separate layer-3
protocol definition (arp_packet type) Was created for the Address Resolution Protocol. This information and the protocol
identifier eTu p arp from the LLC header are used to identify that the packet is an ARP PDU and to treat it as such.

arp_rcv () net/lpv4/arp.c

Once a computer has received it, an ARP PDU is passed to the ARP handling routine by the xeT Rrx software interrupt
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dropped if one of these conditions is true:
e Isthe net device structure a correct network device (in dev == NULL)?
e Are the ARP PDU length and the addresses it contains correct (arp->ar hln != dev->addr len) ?
o Does the network device used require the ARP protocol at all (dev->flags & IFF NOARP)?
o Is the packet directed to another computer (PACKET_OTHERHOST ) or intended for the 1,00pBACK device?

e The arp plen field should have value 4. Otherwise, the packet does not originate from a request for the layer-2

address of an IP address or a reply, respectively. Currently, the Linux kernel supports only address resolutions based on
the Internet Protocol.

The packet is dropped if one the these conditions (in brackets) is true. If the ARP packet is correct, it is checked to see whether
the MAC type specified in the packet complies with the network device. For example, if the ARP packet arrived in an Ethernet
card, then the protocol type in the ARP packet should be either ARpPHRD ETHER OF ARPHRD IEEES802 . Interestingly, the
Ethernet hardware identifier is also used for token ring and FDDI network devices. B

Subsequently, all packets are filtered, if they are neither ARP request nor ARP reply PDUs or if they probe for the layer-2
address of a loopback address (127 .x.x.x ) or a multicast IP address.

Further handling of a packet differs only slightly for an ARP request or ARP reply. Both types are entered in the ARP cache, or
neigh lookup () Updates an existing entry.

An additional step for ARP requests returns a reply PDU to the requesting computer. To this end, the arp send () function is
used to compose an ARP reply packet (as shown below). One particularity here is that the computer can act as ARP proxy for
other computers, in addition to listening to ARP requests with its own address. For example, this is necessary when the
computer acts as firewall, and the firewall does not admit ARP requests. Consequently, this computer has to accept packets for
other computers without the senders' knowledge. The computer acting as a firewall identifies itself to the ARP mechanism as
these other computers. The work of the ARP proxy is done by arpd (ARP daemon).

neigh lookup () net/core/neighbour.c

This function is required to search the ARP cache for specific entries. If the neighbor we look for is found in the hash table, then
a pointer to the neighbour Structure is returned, and the reference counter of that ARP entry is incremented by one.

arp send() net/ipv4/arp.c

The arp send() function includes all parameters to be set as arguments in an ARP PDU. It uses them to build an ARP packet
with all fields properly set. The Hardware Type field and the layer-2 address are set in relation to the corresponding network
device. The Internet Protocol is the only layer-3 protocol supported, so the fields for the layer-3 protocol type and the length of a
layer-3 address always have the same values. Fianlly, the layer-2 packet header is appended, and the complete packet is sent
by dev_queue xmit () -

neigh update () net/core/neighbour.c

The function neigh update (state) is used to set a new state (new state). This has no effect for neighbour entries in
the NUD PERMANENT and NUD NOARP States, because no state transitions are allowed from these states to another state.
(See Figure 15-6.)

If the state should be NUD CONNECTED, then neigh connect () IS invoked to set the output () function to
neigh connected output () - If thisis not the case, the function neigh suspect () has to be invoked to obtain the
opposite effect.

If the old state was invalid (if (1014 & nNUD var1D)), there might be packets waiting for this neighbor in the ARP queue. As
long as the entry remains in the yup var1D state, and packets are still waiting in the queue, these will now be sent to the

destination station.

Handling Unresolved IP Packets
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So far, we have looked only at the case where an ARP PDU arrived in the computer and some action was taken in response.

This section discusses how and when the Address Resolution Protocol resolves addresses. We know from Chapter 14 that an IP
packet is generally sent by the ip finish output () function. The netfilter hook posT rouTING handles the last steps of
this function in ip finish output2() -In the latter, the function pointer nhh _output (7 is invoked for packets to a
destination present in the layer-2 header cache. In contrast, the function pointer gst - >neighbour ->output () IS used for
network devices without layer-2 header cache. The function pointers hh output () and output () Of the neigh ops options
hide behind these two pointers. If the ARP entry is valid, then the pointers normally point t0 dev queue xmit () - (See Figure
15-5.) If there is no address resolution, then the cutput () pointer of the neighbour options is normally used; it points to
neigh resolve output () - Of course, the IP packet can be sent immediately if the network device does not use ARP, so the

pointer also points to dev_queue xmit () -

The benefits of function pointers become obvious at this point again. The protocol status—the entry in the ARP cache, in this
case—does not have to be checked every time; instead, we simply invoke the cutput () method. This means that the fast

transmit function is invoked, or the address resolution method is used, depending on the entry's state. In summary, function
pointers represent an elegant method of implementing stateful protocols.

neigh resolve output () net/core/neighbour.c

neigh resolve output (skb) IS the second function that can be referenced by the output () function pointer. In contrast
to nei;h connected output () , it cannot be assumed in this case that the stored address resolution is valid. For this
reason, ne igh event send () is used first to check the state the neighbour entry is in and whether the packet specified by
skb €an be sent to the destination station without prior address resolution. If so, then dev->hard header () Creates a layer-
2 PDU, and neigh->ops->queue xmit () Sends the packet. If the network device supports a layer-2 header cache, and no
entry yet exists for this receiver, then neigh hh init() creates this entry.

If the packet cannot yet be sent—for example, because the neighbour entry is in the NUD STALE OF NUD INCOMPLETE
states—then neigh_send_event () stores the paCket in the arp queue of the nej_ghbour entry.

neigh event send() net/core/neighbour.h

The return value of neigh event send(neigh, skb) iSa Boolean value showing whether the packet specified by sk, can
be sent to the destination station (return value 0) or the address resolution is currently invalid (1), which means that the packet

should not be sent. The value 0 is returned immediately for neighboring computers in the Nup NOARP, NUD PERMANENT, and
NUD REACHABLE States; otherwise, the function neigh event send() isinvoked, which does the following actions for the
other states:

e NUD NONE: New neighbor entries in this state are initially set to nup 1NCOMPLETE - Next, the timer of this neighbour
is set, and neigh->ops->solicit () starts the first attempt to resolve the address.

e NUD FATLED: A value of 1is returned immediately, because the attempt to resolve the address of this station failed. No
packets can be sent to this station.

e NUD INCOMPLETE : Packets intended for computers in the Nup 1ncoMPLETE State are stored in the arp queue Of
the ne ighbour entry. Subsequently, the value 1 is returned to prevent the packet from being sent. The packet is
temporarily stored in the queue of that neighbour entry until the neighboring station can be reached or the attempt to
transmit is considered to have failed.

e NUD STALE: In this case, the neighbour entry's state changes to Nup DELAY, and the timer is set to expires =
now + delay probe time. Ihetimer's handling routing, neigh timer handler () , Will then check the state of

this entry as soon as the specified time has expired.

The function returns 1 if none of the above states is applicable.

neigh connected output () net/core/neighbour.c

This function is the fastest possibility for neigh->output () to use without sending a stored layer-2 header. It is used only by
neighbors in the NUD REACHABLE State and for network devices that do not support hardware header caches. First, gev-
>hard header () IS invoked to create the layer-2 PDU; then, neigh->ops->queue xmit () Sends this PDU.

arp_solicit () net/ipv4/arp.c
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arp_solicit() IS the actual function used to obtain the MAC address of a neighboring computer. It is used to send ARP
Request packets.

The probes parameter in the neighbour Structure stores the number of requests sent so far (i.e., the number of unsuccessful
attempts since the neighbour entry was in the nup REACHABLE State).

arp solicit () checks for how many ARP requests have been sent. If the specified limit has not yet been exceeded, then an
ARP request is sent by the arp send () function. The ARP REQUEST Pparameter specifies the packet type.

If the MAC address of an interested computer is already known—for example, from an earlier request—then an attempt is first
made to send the ARP request in a unicast packet to directly the neighboring station. This means that a simple check is done to
see whether this computer is still reachable at this address, without disturbing other computers in the same LAN. Notice that a

maximum of neigh->parms->ucast probes are sent. Additional requests are then broadcast to all computers in the LAN.
If the maximum number (neigh—>max_probes) is exceeded again, then no more requests will be sent.

neigh timer handler () net/core/neighbour.c

This is a handling routine invoked by the timer of @ neighbour entry in the ARP cache. In contrast to
neigh periodic timer () , the timer calls at intervals specified in the neighbour entry, rather than continually.

The timer is set when an ARP request PDU is sent, among other events. The triggering time is set t0 expires = now +
retrans_ time to check for whether a reply has arrived for this request, when this time has expired.

One of the following actions is performed, depending on the current state of the neighpbour entry:

e NUD VALID: The state of the ARP entry has changed to nup var1D since the time when the timer was set and the
handling routine was executed. The corresponding computer is reachable, and its state is now set to NUD REACHABLE -

The neigh connect (neigh) function ensures that the correct functions of a reachable computer are executed. For
example, it sets the output () functions to neigh->ops->connected output () -

e NUD DELAY:In this case, the state of the neighbour entry is changed to NUD PROBE - The number of probes is set to
null, which means that the entry starts the probing phase.

e NUD PROBE: The entry in the ARP cache is in the probing phase; successive ARP request packets are sent in an attempt
to resolve the computer's address.

When the number of sent requests (probes) has exceeded the maximum number (neigh max probes (probes) ), itis
assumed that the computer is not reachable, and its state changes to nup rFaTLED. If there are still packets for this computer
in the queue of this neighbour entry, thenthe error report () routine is invoked for each socket buffer, and finally the
arp queue iS deleted. -

If the maximum number of probes has not yet been exceeded, the neigh->ops->solicit () routine is invoked to send an
ARP request. Before this request is sent, the timer is reinitialized, so that the timer handler will be invoked again as soon as
neigh->parms->retrans time time units (jiffies) have expired.

neigh connect () net/core/neighbour.c

neigh connect (neigh) IS invoked when the neighbour entry changes its state to NUD_ CONNECTED - The cutput ()
function of this entry is set to connected output () - If @ hardware header exists, then the procedure to send a packet at the
network device interface (hh->hh output () ) iS S€t t0 neigh->ops->hh output () , to be able to use the stored
hardware header. B B

neigh suspect () net/core/neighbour.c

The neigh->output () functions are changed to neigh->ops->output () - This means that, if the fast way over the
hardware header cache was previously used, it is no longer used now, so that, when the next packet is ready to be sent, a
probe for the MAC address will be started (neighbor solicitation by neigh resolve output () )-
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A neighbour entry is deleted from the ARP cache, and its structures are released. Entries in the hardware header cache are
also released. neigh release () INVOKES neigh destroy () - It first checks for whether there are still other pointers to this
neighbour (if (stomic dec and test (sneigh —_>refcnt) )) and for whether the entry has already been marked as unused
(if (neigh->dead)). Both conditions must be true before the neighbor may be deleted.

neigh sync () net/core/neighbour.c

This function has no effect for permanent neighbour entries (\up PERMANENT ) Or for network devices without ARP support
(Nup_NoaRP), and it returns immediately. Otherwise, the following actions are taken, depending on the entry's state:

e NUD REACHABLE : If an entry is in this state and a certain time (neigh->reachable time ) has expired since the last
acknowledgement was received from the neighboring computer, either by an incoming packet or an explicit ARP request
or ARP reply, then the entry is marked as nup sTaLE. This means that no sign of life has come from this computer over
a certain period of time and so it probably no longer exists. The function neigh suspect () IS used to verify this
situation; it tries to update that computer's state. B

e NUD vaLID: If the computer is known and an acknowledgement has arrived before the normal lifetime of the entry
(neigh—>reachableitime ) expired, then its state is set to NUD REACHABLE, and neigh connect (neigh) is

invoked.

neigh sync() isinvoked by neigh update () before the new state is entered in the neighbour Structure. The intention
is to ensure that the current state be updated before state transitions occur.

neigh periodic_timer () net/core/neighbour.c

This function initializes a timer for each neighbour cache. This timer periodically checks and updates the states of cache
entries (i.e., it runs a so-called garbage collection). The relevant handling routine is the function neigh periodic timer() -
It visits each entry in the cache and does one of the following actions, depending on the entry's state:

e NUD PERMANENT : This is a permanent entry; nothing in its state has to be changed.
e IN TIMER: AN attempt is currently being made to reach the specified computer by sending an ARP request packet. This
also means that the timer of the neighbour entry is set, and the handling routine neigh timer handler () will run

soon. In this case, the entry's state is updated at the same time, so that neigh periodic timer () changes nothing
in the state of this entry.

e nUD FATLED: If @ neighbour entry is in the yup FaTLED State, or if the time neigh->ops->staletime has expired,
the computer is considered no longer reachable, and ne igh release () deletes this entry from the ARP cache.

e NUD REACHABLE : If an entry is marked as reachable, but neigh->ops->reachable time jiffies have already
passed since the last acknowledgment, then it is classified as old (NUD_STALE ), and neigh suspect () (described
earlier) attempts to update this entry.

The function neigh periodic timer () runsasan independent tasklet in multi-processor systems.

Creating and Managing neighbour Instances

neigh create () net/core/neighbour.c

This function is responsible for creating a new neighbour entry and entering it in the respective neighbour cache.
neigh_create () is norma”y invoked by the arp_bind_neighbour () function when neigh_lookup () was unsucceSSful
at finding the ARP entry of the interested computer. Accordingly, it creates a new entry.

To create a new neighbour entry, the function first initializes a ne i ghbour structure in the appropriate neighbour instance
(neigh alloc () )- If a constructor was defined for the entries in this table, then it is invoked now.

Before it adds a neighbour to the table, the function first checks for whether such an entry already exists. If not, then the
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row, because the probability is high that it will be accessed next. The return value is a pointer to the new entry in the ARP
cache.

neigh alloc() net/core/neighbour.c

neigh alloc (tbl) Creates a Nnew neighbour Structure for a specific neighpbour table (tbl). This table is specified
additionally, because it includes some information required for the new entry. In addition, before the ne ighbour Structure is
created, the function first checks on whether the current table is full. tp1->gc thresh3 is the absolute upper limit of the
table. This limit must not be exceeded. gc thresh?2 is a threshold value that should be exceeded only briefly. The garbage
collector allows you to exceed this limit for a maximum of five seconds. When this time expires, it runs a garbage collection. The
following query tests for these two conditions:

if (tbl->entries > tbl->gc_thresh3 ||
(tbl->entries > tbl->gc thresh2 && now - tbl->last flush > 5*HZ)).

If this is the case, then neigh forced gc() runs a garbage collection and checks for whether sufficient space was freed in
the table. If the space freed is insufficient, the function returns yur1, and doesn't create a new neighbour Structure.

If the table can accommodate the new entry, a Nnew neighbour Structure is taken from the memory cache tp1-
>kmem cachep and added to the table. The state of the new entry is set to yup noNE, and a pointer to the new neighbour
structure is returned.

neigh forced gc () net/core/neighbour.c

Ifa neighbour tableis full (see neigh alioc () ), the garbage collector runs neigh force gc() immediately. This
function is invoked by neigh alloc () to free memory space for new neighbour structures. Entries that meet the following
conditions are deleted from the cache:

e There is no longer any reference to the structure (n->refcnt == 1).

e The neighbour is not permanent (n->nud state != NUD PERMANENT).

e For an empty Nup INCOMPLETE e€ntry, the structure has to have been in the cache for at least retrans time tO
avoid unnecessary duplication of request packets: (n->nud state != NUD INCOMPLETE || jiffies - n-
>used >n—>parms—>retrans_time)

The number of deleted entries is output as soon as this function has finished checking all neighpbour entries.

arp_constructor () net/ipv4/arp.c

Once neigh create () hasinvoked the neigh alloc () function to initialize a new neighbour Structure, it invokes the
appropriate constructor function for the specified neigh table?/TT>for example, the arp constructor ()
method for the ARP cache.

In the first step, arp constructor() checks for whether the network device used requires
the ARP protocol. If this is not the case, then the state of this entry is set to

NUD NOARP. Next, it checks for whether the hard header cache includes an entry for this
network device. If so, then the neigh ops field of this neighbour structure is set to
arp_hh ops. Otherwise, this neighbour entry uses the methods of the arp generic ops
options. Finally, when the entry has reached the NUD VALID state, the connected output ()
function can be used to communicate with the neighbouring computer. Otherwise, the normal
output () function will be used again.

neigh table init() net/core/neighbour.c

neigh table init() takes the following steps to initialize a new neigh table structure:

e It obtains memory for the neighbour cache (tbl->kmem cachep = kmem cache create()).
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e It initializes a timer (tbl->gc timer()) and sets the expiry time to now + tbl-
>gc_interval + tbl->reachable time . This timer calls neigh periodic_timer ()

periodically.

e It inserts the new table into a singly linked list, neigh tables.

arp_hash () net/ipv4/arp.c

The arp tabl ()
hash value is computed on the basis of the IP address

NEIGH HASHMASK (ARP table size).

(primary key), using modulo

A Previous

function uses this function as a method for computing the hash function.

The

Nest b |
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16.1 Introduction

One of the most important functions of the IP layer (the network layer of the TCP/IP protocol architecture) is to forward packets
between communicating end systems across a number of intermediate systems. (See Figure 16-1.) The determination of the
route that packets will take across the Internet and the forwarding of packets towards their destination is called routing.

Figure 16-1. Routing within the IP layer in the TCP/IP protocol architecture (protocols in the other layers are

examples).
End system Intermediate system End system
(router)
Transport TP Cj
Network P IP
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16.1.1 Networks and Routers

As was mentioned in Chapter 14, the Internet represents a network of networks. The physical subnetworks built by use of
different layer-2 transmission technologies, such as Ethernet, can include a different number of nodes each—for example just
two nodes connected over a point-to-point link. The IP layer interconnects these subnetworks to form a global network having
millions of nodes.

Special nodes, which are integrated in all subnetworks that are connected in one place, are used to link these subnetworks;
these nodes are called routers. Figure 16-2 shows an example with five local area networks, connected through three routers.
Router A also connects the network to the rest of the Internet. The network layer abstracts from lower layers, so it is irrelevant
for the communication implemented over IP that the end systems are connected to different LAN types.

Figure 16-2. Routers interconnect networks.
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Routers are used both to link local area networks and to connect local area networks to the Internet. In addition, networks in the
"core" of the Internet, which normally have a much larger geographic reach, are interconnected and linked to access networks
through routers, or even built of direct links between routers ("two-node networks").

Routers are often especially designed for this purpose—so-called "dedicated routing devices." However, the Linux kernel also
offers the required functionality to let you use a Linux system as a router.

16.1.2 Forwarding and Routing

Routers forward IP packets from one physical network to another, where the second network is normally "closer" to the
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network. To decide in what direction each packet has to be forwarded, the router requires a certain amount of information
about the Internet topology, which it stores locally.

This topological knowledge—also called forwarding information in the rest of this course—can be managed manually for small
networks like the example in Figure 16-2, because there is little of it and it changes only if the LAN topology changes. For
example, all router B actually needs to know is the end systems in networks 3, 4, and 5. It can send all packets not addressed to
end systems in these networks globally towards router A, because the "rest of the Internet" is behind router A.

In the core area of the Internet, the situation is not that simple. Rather than a small LAN, there is a large area of the entire
Internet behind a network interface of a router. The knowledge required to be able to forward IP packets with arbitrary
addresses in the correct direction is much more extensive. In addition, it has to be adapted continually: when new paths are
added, when old ones fail or are overloaded, and when the network topology in remote places changes. For these reasons, a
network the size of the global Internet requires automatic methods to continually update the topology information and determine
suitable routes.

These methods to determine forwarding information in each router are also commonly called "routing." This means that we can
identify two different functions that, together, form the entire IP routing mechanism, and which have to be clearly distinguished:

e Forwarding of IP packets in routers, which is based on given forwarding information. A router has to look up a database
and make a decision for each packet that passes through this router on its way through the Internet.

o Routing: determining the best routes over which to transport each packet between networks, and deriving forwarding
information from information about topologies and states exchanged regularly between routers within the entire network.

Forwarding is implemented in the Linux kernel, because it is a task of the IP layer. In contrast, routing is handled on higher
layers: The routing protocols used to distribute information about network topologies and states normally build on top of
transport-layer protocols, and the pertinent programs (routing daemons) are user-space processes running in Linux systems.

The interface between the two parts is built by a database, in which a routing daemon stores its forwarding information, and
which the IP layer uses as a basis for its decisions when packets have to be forwarded.

As mentioned earlier, forwarding information in small networks at the "outskirts" of the Internet is rather static and so can be
managed manually—you don't necessarily have to use a routing daemon. In this case, the system administrator can use tools
like those discussed in Section 16.2.3 to add forwarding information manually to the database. This method is called static
routing, in contrast to dynamic routing, which is based on routing protocols.

Routing is not done in the Linux kernel, so it is not discussed in detail in this book. Instead, we refer interested readers to
general books about internetworking (e.g., [Come00]). This chapter focuses on forwarding in the IP layer and the forwarding-
information database, which is also implemented in the Linux kernel.

16.1.3 IP Addresses

To be able to send packets to arbitrary end systems in the Internet, we need a means of unique identification of end systems.
We know from a previous section that this is accomplished by using IP addresses, which are 32 bits in length and normally are
represented by four single-byte values in dotted decimal notation for IP Version 4.

Network Addresses and End-System Identifiers

In addition to identifying network nodes, IP addresses have another important function involved in the finding of nodes. In fact, if
IP addresses were randomly distributed (but unique) values, they could still serve as identifiers, but it would be hard to forward

packets to a specific destination, because each router would have to know the forwarding direction for each possible destination
IP address in the Internet. Considering the enormous number of end systems connected to the Internet, this would obviously be

very expensive with regard to memory requirement and search time.

To allow for the forwarding direction to be determined efficiently, IP addresses are structured hierarchically, and consist of two
different parts: a network address and an end-system identifier. The network address is identical for all end systems in one
subnetwork; the end-system identifier distinguishes end systems in a specific subnetwork. During forwarding of packets, the
end-system identifier can be totally ignored until the packet arrives in the correct subnetwork. This means that routers do not
need to know end-system identifiers; in this way, the division of IP addresses into two parts dramatically reduces the amount of
information routers have to store.

Because it always forms the beginning of an IP address, the network-address part of an IP address is also called network prefix.
Address Classes and Classless Addressing

The next question we have to answer is about the sizes of the network part and the end-system identifier part in an IP address.
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C, having 7, 14, and 21 bits for the network part and 24, 16, and 8 bits for the end-system identifier. The class an address
belongs to is determined by the first (leftmost) bits of the address. Figure 16-3, which was also used in Chapter 14, illustrates
this scheme. We will not go into detail about the two additional classes, D and E, which are reserved for special purposes, or
into other reserved network prefixes and end-system identifiers again at this point; see Section 14.1.5 for this.

Figure 16-3. IP address classes with different division of network and end-system parts.
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This addressing scheme was originally designed by assuming that each physical network could actually have a network identifier
from one of the three classes mentioned above (depending on the size of the physical network). However, it was soon observed
that this approach would quickly exhaust all available network prefixes. In addition, the existing classes proved often to be
inappropriate: A class-A network could contain almost 224 or 16777216 end systems, a number that even the largest
organizations would hardly need, apart from the fact that no known physical network technology can handle that number of end
systems. In contrast, class-C networks are much more numerous, but cannot hold more than 254 end systems, which is not
enough in many cases.

C Network End system

D Multicast group address

These limitations motivated the development of technologies to better utilize the existing address space. The basic idea was to
have the boundary between the network prefix and the end-system identifier at an arbitrary bit position, instead of only at the
three positions dictated by the A, B, and C address classes.

e For example, a class-A network can be divided in two networks with half the size each by using the first bit of the end-
system identifier for division: All end systems with a zero at this position fall into one network, and all systems with a one
fall into the other network. This means that the network prefix has become longer by one bit inside of the new
subnetworks, from the end systems' view.

This new division of addresses is totally transparent to the outside; it plays no role for routing outside the networks
directly concerned: Only the router that connects the two new networks to the rest of the world has to know and
consider this new division. This scheme basically allows us to divide an address space several times. The length of the
valid network prefix grows then in line with the depth of the hierarchy formed by this scheme.

o Similarly, when working in the opposite direction, we could group a block of class-C addresses into a larger address
space—for example, if they belong to a single organization (e.g., an Internet Service Provider). This corresponds to
shortening the network prefix, forming a larger address space, which can be divided again, if necessary.

In this case, it is not necessarily meaningful to have the new division transparent to the outside, because it would require
many unnecessary routing entries. For example, if an organization had a block of 256 class-C addresses instead of one
single class-B address, then 256 routing entries instead of a single one would have to be published globally.

Today, the Internet uses Classless Inter-Domain Routing (CIDR) [ReLi93, FLYV93], which virtually ignores the "old" class division
of IP addresses: Network prefixes can have an arbitrary length. However, the information about the actual length of the network
identifier of a specific network can no longer be seen from the first address bits, in contrast with the method seen in the classful
scheme. Consequently, this information has to be passed on and stored with each network address. There are two common
notations:

o In the first notation, the number of bits belonging to the network prefix is denoted in decimal form, with a slash
separating it from the address. For example, 192.168.152.0/21 denotes a network with its prefix consisting of the first 21
bits of the IP address 192.168.152.0.

e The second notation denotes a bit mask in addition to the IP address; the bit mask has the same length as the IP
address. It is called a network mask and has all bits corresponding to the positions of the network prefix in the IP address
set to one. The network mentioned above would look as follows in this notation: 192.168.152.0/255.255.248.0.

Router Addresses
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network it belongs to, as we know from the previous sections, and because a router has to be connected to more than one
network to be able to mediate between networks, it is obvious that a router has more than one IP address. More precisely, each
network interface in a router has its own IP address.

Figure 16-4 shows the sample networks from Figure 16-2 again to illustrate this concept, denoting IP addresses for all end
systems and all network interfaces of each router.

Figure 16-4. Assigning IP addresses to end systems and network interfaces in routers (example).
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16.1.4 Forwarding Procedure

For a router, an IP packet received over a network interface falls into one of three categories, depending on its destination
address:

e The packet is addressed to the router: In this case, the packet is not forwarded, but passed to a protocol instance of the
transport layer in the router.

e The packet is addressed to an end system in a neighboring network: Packets addressed to an end system in a network
that is connected directly to the router over a network interface can be forwarded directly to this end system. When the
packet is passed to the data-link layer, the physical address of the destination system, which might previously have been
discovered by the ARP protocol, is used.

e The packet is addressed to an end system in a remote network: If the destination system is not in a neighboring network,
then the packet has to be forwarded over an additional router. This router is identified from the forwarding information,
and its physical address is used as destination towards the physical layer.

The first case is characterized by the fact that the IP destination address belongs to an internal network interface. The second
case can be detected by AND-combining the destination address with the network masks of neighboring networks. If the result
of this operation matches the network prefix of the respective network, then the destination system is in this network. The third
case applies when none of the two previous conditions is true.

In practice, the second case can be conveniently convered by the mechanism used to identify the next router in the third case,
and "rule-based routing" is implemented in the recent kernel versions of Linux, so that the first case is also handled in this way.
(See Section 16.1.6.)

The exact procedure involved in identifying the next router for the third case is strongly linked to the data structure used to store
the forwarding information in the router. This data structure will be discussed in the next section.

Routing Table

The structure of forwarding information can be thought of as a table, where each row describes a specific address range, which
is defined by a network prefix. This routing table specifies the network interface or the next router to be used for forwarding of
packets having their destinations in the specified address range.

Figure 16-5 uses an example to show what a routing table for router B from Figure 16-4 could look like. We use designations
common in Linux to name network interfaces. In practice, routing tables often include additional information in each row (e.g.,
describing the quality or the cost of a path, which help in selecting one of several routes to the same destination).

Figure 16-5. Simple routing table for router B in Figure
16-4.
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Destination Network Router Interface

Mask
10.0.3.0 255.255.255.0 ?2/P> eth0
10.0.4.0 255.255.255.0 ?2/P> ethl
10.0.5.0 255.255.255.0  10.0.4.3 ethi
10.0.2.0 255.255.255.0 ?2/P> ppp0
0.0.0.0 0.0.0.0 10.0.2.1 ppp0

The example shows clearly how the second and third cases from the previous section can be distinguished: If the routing table
includes an entry for a next router, then the packet has to be forwarded to that router. Otherwise, it can be sent over the
specified network interface directly to the destination system.

An entry in a routing table is also called a route in the following discussion, to simplify matters.
Longest Prefix

Denoting a network address and a network mask means that the network prefixes entered in a routing table can have an
arbitrary length. They don't even have to describe a single network that actually exists, but can instead group several networks
in neighboring address spaces to reduce the size of the routing table. The most extreme example for this is an entry having its
prefix length zero or its network mask 0.0.0.0. Such an entry represents all destination networks and is actually valid. It supplies
a default route—the route packets should take when no specific entry exists for their destination address.

Naturally, a clear regulation has to be found for conflicting cases where several matching prefixes exist for one destination
address. For example, such a conflict happens when the routing table includes a default route and additional entries. The
problem is solved by selecting the entry with the longest prefix from all entries with matching prefixes. This means that more
specific information in the routing table has priority over less specific information.

16.1.5 Routing Cache

The search for an entry with the longest matching prefix is the most time-critical operation in the forwarding procedure: It is
used frequently, so its implementation should be efficient.

In Linux, all routing-table entries are sorted by prefix length, and the table is searched successively by descending prefix length.
This method is not always efficient, especially when the table includes many different prefixes.

Rather than using different data structures to speed up the search process, Linux uses a routing cache to reduce the number of
search processes. This cache stores the table entries used last and uses a hashing method that operates on the source address
and destination address of packets to be forwarded, for accessing entries very fast. The routing table has to be consulted only
for new address combinations not yet stored in the routing cache.

This method represents a good solution for end systems with a relatively limited number of concurrent communication partners;
it is probably less suitable in the core area of the Internet.

16.1.6 Rule-based Routing

One routing particularity in Linux Version 2.4 and higher is that it lets you use several routing tables, instead of a single one. An
additional set of rules is then used to select which table should be used for what packets. This method is called rule-based
routing or policy routing and allows you to include other criteria (e.g., the source address) in the routing decision, in addition to
the destination address, whereas routing decisions taken from one single routing table are always based only on the destination
address and the destination-network prefix specified in that one table.

Rules

Each rule has a selector and a type. The selector chooses the packets to which the rule can be applied, and the type determines
what should happen with a packet when the selector matches (e.g., that a specific routing table should be used or that a packet
should be dropped). These rules are applied by priority values in ascending order. A unique priority value has to be assigned to
each rule when it is defined. If a suitable route is found based on a rule, then the process is aborted, and the packet is
forwarded. Otherwise, the process continues with the next rule.

The selector can contain the source address, the destination address, and the network interface at which the packet to be
forwarded arrived. In addition, you can use the TOS field (which has more recently been called codepoint—see Section 14.1.2)
or the iptables marking (see Section 19.3.5), which is called fwmark in the following discussion. Indirectly, the latter option lets
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are always considered to match.

There are five types of rules: ynicast, blackhole, unreachable, prohibit, and nat. The "normal case" is the
unicast type: A specific routing table stated in the rule is searched for a route. The b1ackhole, unreachable, and
prohibit types cause the packet to be discarded when the rule is applied. They differ only in the type of feedback to the
sender: blackhole Creates no feedback, unreachable reports that the destination network is unreachable, and pronhibit
reports that the communication is not permitted. The last rule type, nat, can be used for static network-address translation
(NAT). It is designed for special routing applications and not for the purpose of using one single IP address for several
computers. This mechanism would be unsuitable for this purpose, because it is stateless. We will see in Chapter 21 that the
masquerading mechanism of iptables is suitable for such cases. The nat routing rules are discussed in more detail in the
work of Alexey Kuznetsov [Kuzn99].

Default Settings

By default, the Linux kernel specifies three rules of the unicast type, with a selector each matching all packets. The priorities and
identifiers for routing tables used for each type are defined as follows:

Priority Table Name Table Number
0 local 255
32766 main 254
32767 default 253

The three routing tables, 10ca1l, main, and default, Which are searched according to the above rules in this order for
matching routes, are also created automatically. The latter two are initially empty, and the system administrator has to add
entries (or use suitable scripts to fill them with entries) when the system boots. The 1151 table is intended for "normal" routing
entries; the gefau1t table is suitable for lower-priority backup solutions. The rules belonging to the mgzin and gefault tables
can also be deleted or modified.

In contrast to the second and third rules, the first rule is fixed, and the associated routing table is managed by the kernel itself.
This table includes entries describing the addresses of local network interfaces. This realizes a very elegant approach to the
categorizing of incoming packets, which was mentioned at the beginning of Section 16.1.4: Using just one procedure for all
incoming packets, consult the set of rules and then the associated routing tables for each packet; if an entry is found in the
local table, the packet is delivered locally—otherwise, it has to be forwarded.

Notice that only two tables, 10ca1 and main, are searched in this order when rule-based routing is disabled in the kernel
configuration.

4 Previous Mext b
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16.2 Configuration

This section describes the options available to configure routing in Linux. First, this concerns the kernel configuration, which is
used, for example, to determine whether advanced features, such as rule-based routing, should be integrated into the kernel.
The options available for this configuration are described in Section 16.2.1. Second, you can also modify some routing
parameters while the system is running. The setting options available for this in the proc file system are discussed in Section
16.2.2. Third, you have to add entries to routing tables and rule lists. The i command, which is described in Section 16.2.3, is

a good tool to manage such entries.

16.2.1 Configuring the Kernel

Some routing options can be set when you configure the Linux kernel, before it is compiled. All of them are in the networking
options section and will be described briefly in this section below. In addition to the name of the preprocessor constant, which is
defined when an option is activated, the label shown in the kernel configurator is given in double quotes. A prerequisite to being
able to activate some of these options is that conrzc INET ("Tcp/ 1P networking") should be enabled; without that, routing
makes no sense, anyway. B

e CONFIG NETLINK "Kernel/User netlink socket”

Rather than directly influencing the routing mechanism, this option activates the bidirectional netlink interface between
the kernel and the user-address space, which is implemented with datagram sockets of the new protocol family,

PF NETLINK, and can be used to communicate with different kernel areas. The respective area is selected by an
identifier, which is given instead of a protocol when you open the socket. Section 26.3.3 describes more details.

In connection with routing, the neT1,1NK_ROUTE "protocol identifier" is important, and it can be used by activating the
following option. This option is available only provided that conr1c NETLINK IS active:

O CONFIG RTNETLINK "Routing messages"

Routing rules and routing tables can be modified by using sockets of the pr NETLINK Protocol family and the
NETLINK ROUTE "protocol." This interface, which will also be called RT netlink interface below, is used in the ip
configuration tool described in Section 16.2.3. Besides, by reading an RT netlink socket, you can "eavesdrop" on
changes made to routing tables by other processes.

e CONFIG IP ADVANCED ROUTER "IP: advanced router"

This option has no direct effect; it represents a switch that allows you to select a humber of additional options can be
used to obtain much more control over the routing procedure. The options conrFI¢ NETLINK and
CONFIG RTNETLINK are activated automatically when you select conrIG IP ADVANCED ROUTER -

O CONFIG IP MULTIPLE TABLES "IP: policy routing"

This option links the file fib rules.o Into the kernel and enables the rule-based routing described in Section
16.1.6. If this option is disabled, then the kernel creates only two routing tables, 16ca1 and main, and searches
them in this order.

The following additional options are available in connection with rule-based routing:

m CONFIG IP ROUTE FWMARK "IP: use netfilter MARK value as routing key"

This option allows you to include the fwmark, which can be added to certain packets by using packet filter
rules (see Section 19.3.5), in the forwarding decision (i.e., you can specify different routes for packets with
different packet filter marks). For example, you can make the route selection indirectly dependent on
transport-protocol attributes (e.g., ports). conrrc NETFILTER ("network packet filtering") has to be
active to be able to select cONFIG IP ROUTE FWMARK -

m CONFIG IP ROUTE NAT "IP: fast network address translation"

When this option is active, you can use special routing entries to translate addresses (Network Address
Translation—NAT). This functionality complements the NAT rules mentioned in Section 16.1.6; see
[Kuzn99] for a description of how you can configure this rarely used option.
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ctivating CONFIG TP ROUTE NAT CaUSeS ip nat dumb.o to be linked into the kernel.

O CONFIG IP ROUTE MULTIPATH "IP: equal cost multipath”

If the routing table includes several equal-ranking entries to a specific destination, then Linux traditionally selects
the first. This behavior cannot be used meaningfully, because the order in which the entries are found cannot be
seen or influenced from outside of the kernel. You can use the option coNFIG IP ROUTE MULTIPATH tO
enable special entries that specify several equal routes, and then have one of these routes selected randomly.

O CONFIG IP ROUTE TOS "IP: use TOS value as routing key"

When enabled, this option causes the value of the Differentiated Services Codepoint field from the IP packet
header to be included in the routing decision. (This field was formerly called Type of Service, which is the reason
it is still referred to as the TOS field in the kernel and in this chapter.) You can assign values for this field in
routing-table entries, which means that these entries will be used only for packets with matching values in the
TOS field.

O CONFIG IP ROUTE VERBOSE "IP: verbose route monitoring"

If this option is enabled, then messages are written to the system log when certain error situations occur during
the routing process—normally ones caused by attackes or faulty configurations.

O CONFIG IP ROUTE LARGE TABLES "IP: large routing tables"

The hash tables used to manage routing table entries normally have a fixed size. The size of these tables is
increased automatically when conFIG TP ROUTE TLARGE TABLES IS activated, so that the access speed
doesn't drop when they include many entries.

e CONFIG IP MROUTE "IP: multicast routing"

This option activates multicast routing and links the ipmr.o file into the kernel. Multicast routing is discussed in
Chapter 17.

e CONFIG WAN ROUTER "WAN router"

This option has no effect on the routing procedure. It includes the general management functionality for special network
interfaces used to build Wide Area Networks (WANSs). This special hardware allows you to use a Linux computer as WAN
router.

e CONFIG NET FASTROUTE "Fast switching"

If the input and output interfaces of a forwarded packet are different, then you can accelerate the copying process
required in some cases by special hardware support directly from network card to network card.

CONFIG NET FASTROUTE has to be enabled to be able to use this option. The only effect on the routing procedure is
that a mark is set in situations suitable for fast copying. This can be handled by the drivers of network cards, if the
required hardware is available.

e CONFIG NET SCHED "QoS and/or fair queuing"

This option allows you to activate the options for traffic control, described in Chapter 18. We include this option here only
because routing rules and routing-table entries can be used to classify packets. Notice that this requires the suboption
CONFIG_NET CLS ("Packet classifier aApI")and itssuboption conFIc NET cLs RoUTE4 to be activated. As
a consequence, the symbol conFIc NET cLs RrRouTk is defined additionally. This symbol can be configured nowhere
else, and it causes the data structures for routing rules and routing-table entries to be extended by an element required
for classification.

16.2.2 Files in the ;... File System

Some entries in the proc directory tree can be used to probe and manipulate data structures and routing properties. You find
such entries in two different directories, /proc/net and /proc/sys/net/ipv4 -

The /proc/net Directory

The /proc/net directory includes files that reflect extensive routing-related data structures in the kernel, namely the routing
table main in route and the routing cache in rt cache. In rt acct, you might additionally be able to read statistics about
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mentioned here have read access only.

The /proc/sys/net/ipv4 DireCtory

The entries underneath /proc/sys are created by a relatively new uniform mechanism. Each of them describes a configurable
parameter of the kernel. They can be probed and modified—either by reading from or writing to a file, or by using the system
call _sysctl() and the sysct1 command. Entries for parameters of the IPv4 implementation, some of which are related to

routing, are located underneath /proc/sys/net/ipv4 :

e ip forward: This entry represents a switch for the forwarding functionality; the system acts as a router whenever this
entry is set to one. If it is set to zero, then all packets received and not addressed to the local system are discarded.

e route Subdirectory: The files in the route subdirectory reflect numeric or Boolean values, with one exception; they are
used by the kernel to manage the routing cache, amongst others. The directory entries and their variables in the kernel
normally have the same names, with an i rt prefix for the variables. The exact meanings of these entries will not be
discussed here, apart from the one single exception: Writing to the flush entry causes the routing cache to be deleted.

e conf/device subdirectories: /proc/sys/net/ipv4/conf includes a number of subdirectories—namely, one for
each registered network interface (10, etho, ...), one named default, and one named 511 . All directories include
the same entries, which refer to the interface with the same name. In addition, the entries in the all directory are global
for all interfaces, and the entries in the gerau1t directory represent default values for any interfaces registered in the
future. The following entries are of interest for the routing mechanism:

0 forwarding: Liketheentryin /proc/sys/net/ipva/ip forward , the entry in forwarding represents a
switch for the forwarding mechanism. The entry in the 511 directory even reflects exactly the same value. The
entries in the interface directories apply only to the forwarding of packets that arrived via specific interfaces. Each
time that the switch value (except the gefau1t value) is changed, the routing cache is automatically deleted. The
a1l value (and accordingly also the value in /proc/sys/net/ipv4/ip forward ) has particular semantics:
When it is written, then all interface entries and the gefau1t entry are automatically set to the same new value.

0 log martians:Ifthe a11 entry or the entry of an interface is set to 1, then socalled "Martians"—illegal address
values (e.g., values that are incorrect with respect to the configuration of the interface that received this packet)—
are shown in the system log.

o rp filter:Ifthe 311 entry and the entry of an interface are active, then packets arriving over this interface
are subject to Reverse-Path Filtering, which means that a check tests whether a packet with exchanged source
and destination addresses, according to the routing tables, would be sent over the interface which actually
received this packet. If this test fails, then the packet is discarded. Reverse-Path Filtering is a sensible security
measure against packets with forged (or spoofed) source address. However, it can sometimes be useful to use
different interfaces for different directions intentionally, so this measure can cause problems and therefore is
allowed to be disabled.

16.2.3 Configuration on System Level

Before a Linux system can send IP packets, or act as a router and forward IP packets for other systems, we have to add
appropriate entries to routing tables. Unless we are using a routing daemon for automatic routing based on a routing protocol, a
capability hardly needed at the "outskirts" of the Internet, the system administrator has to either add static entries manually or
use scripts upon system start or when new interfaces are added (e.g., when a PPP connection is established).

The "traditional" Unix command to manage routing tables is route. However, it does not support the relatively new rule-based
routing, and all it allows you to do is modify the n5in table and read from the routing cache. It uses the ioct1 () system call
to interface to the kernel.

Alexey Kuznetsov, one of the major contributors to the development of the routing implementation in the Linux kernel, also
proposed a tool that uses the more recent RT netlink interface to the kernel. It can be used to manipulate not only routing
tables, but also a number of other parameters of the network configuration. The command is called i, and it expects that the
first parameter will always be an area to be configured. Table 16-1 shows an overview of all possible areas.

Table 16-1. Variants of the ip command.

Command Function

ip link Configures network interfaces (see also
ifconfig)-
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interfaces.
ip neighbour Manages the ARP table (see arp).
ip route Manages routing tables (see route)-
ip rule Manages the routing rules database.
ip maddress Manages multicast address entries in
network cards.
ip mroute Shows multicast routes.
ip tunnel Manages tunnels.
ip monitor Monitors the RT netlink interface.

The syntax of this command is relatively uniform for different areas: The area identifier normally is followed by an action
identifier (€.9., show, add, delete, help), followed by area-specific parameters, which are denoted by a leading keyword.
The action identifier help always supplies a syntax description. For example, ip route help Shows the syntax of commands
used to manipulate and query routing tables.

The following subsections describe only those two variants of the ip command that are used to manipulate routing rules and
routing tables: ip rule, and ip route. More information about the other variants is included in the ip tool documentation
[Kuzn99].

The ip rule Command
The ip rule variant of the j, command serves to output, add, or delete routing rules in the kernel database by using ip
rule show, ip rule add,and ip rule delete. ip rule Show outputs all rules; the other two commands require

additional parameters to describe a rule. These parameters are denoted by a leading keyword, as shown in Table 16-2; see
also Section 16.1.6 for a description of the meaning of these parameters.

Table 16-2. Parameters for ip rule add and ip rule delete.

Keyword Parameter

type Rule type (unicast, blackhole,
unreachable, prohibit, nat)-

from Source address prefix (prefix length separated
by /).

to Destination address prefix.

iif Name of the input interface.

tos Value in the TOS field of the IP packet.

fwmark Value of the fumark.

priority Unique priority value for the rule.

table Name or number of a routing table for unicast
rules.

realms Class identifier of a queuing discipline.

nat First address of a NAT source address range

for nat rules.

If mandatory parameters are not stated, then default values are used. The type used then is ynicast With a reference to the
main table, and the priority value immediately below the smallest number used (except for the value null, which is always
present) is assigned. The priority numbers should be unique, but notice that this is not checked. The names of routing tables are
translated to table numbers by using the information from the configuration file /etc/iproute2/rt tables , and so names
can also be assigned to tables other than default tables. B

For example, to use a special routing table (in this case number 99) for IP packets with source address matching the 16-bit
prefix 192.168 and received over the ethl interface, we could use the following command to insert the rule at position 1000:
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The rule type (unicast) can be omitted, because it coincides with the default value. Next, we can use ip rule Show to output
the existing set of rules, together with the default rules:

root@tux # ip rule show

0: from all lookup local

1000: from 192.168.0.0/16 iif ethl lookup 99
32766: from all lookup main

32767: from all lookup default

Of course, the table mentioned above?9—should also exist; otherwise, the rule would have no effect. We can create a new
table implicitly by using ip route add to add entries to it.

The ip route Command

Youcanuse ip route addtoadd, ip route change OF ip route replace to modify, ip route show to output,
and ip route delete (forsingle entries) or ip route flush (for several entries at once) to delete entries in routing
tables. In addition, you can use ip route get to simulate a forwarding procedure, where the route found is output and
stored in the routing cache.

Routing table entries have a large number of attributes, which can be set with appropriate parameters when you create them.
For viewing or deleting of tables, parameters stated act as selectors to limit the number of entries output or deleted. Table 16-3
shows only the most important parameters. We have divided them into three groups, by their meaning:

Table 16-3. The most important parameters for ip route.

Keyword Parameter

table name/number of the routing table to be
manipulated

to type and destination address prefix

tos value for the TOS field of the IP packet

metric route quality (the higher, the worse)

dev output interface

via address of the next router

e The tap1e parameter is actually a command attribute rather than a route attribute. It specifies the routing table this
command refers to. Here, too, either numbers or the names defined in /etc/iproute2/rt tables Can be used for
tables. If the +ap1e parameter is not stated, then it is assumed that the command refers to the nain table-

For ip route show, YOU Can also use 511 or cache together with tap1e to display all tables or the routing cache.

e The to parameter to specify a network prefix and the + s parameter to specify the TOS value of IP packets, which may
use this entry, supply the key to search a routing table for a forwarding entry: For an IP packet to be forwarded, the
search algorithm first looks for the entry with the longest matching network prefix and then checks for whether the TOS
value matches, if set in the entry. If the TOS value does not match, then the search continues with shorter prefixes.

The keyword to does not have to be stated, because the destination network prefix actually represents the default
parameter for commands to manage routing entries. For a network prefix with length zero you can state the gefault
keyword.

Between the to keyword and the network prefix, you can optionally state a type for the entry you look for. Entries
describing routes to other networks and end systems are normally of the type unicast, which is also assumed by
default. The 15ca1 table, which is maintained automatically by the kernel, can additionally use the types 16ca1 and
broadcast, which describe addresses of local network interfaces. Such entries are used to see whether incoming packets
are meant for the local system. In addition, there are other entry types that virtually never occur. (See [Kuzn99].)

The quality information, which can be set by the netric parameter, plays a role when several entries exist that
otherwise match equally well. In this case, the entry with the smallest netric value is selected.
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e The result of a search in a routing table is essentially a network interface, which should be used to forward the current
packet, and the next router, if the destination system is not in the network directly connected over this interface. The dev
parameter can be used to specify a network interface. The next router is specified by the i 5 parameter, if required.

A next router can be specified only provided that it is known how this router can be reached. This means that another
entry describing the subnetwork of this router has to exist; naturally, the next router always has to be in a directly
connected subnetwork. The network interface used to reach this router can be determined from this entry. For this
reason, when using v i s to specify a router when you create an entry, you don't have to use 4ev to specify a network
interface.

There are a number of additional attributes you can assign to a routing entry (e.g., a set of TCP parameters—see Chapter 24),
which will be used when the entry is assigned to a TCP connection.!!]

(11 For efficiency reasons, rather than doing a routing request for each single IP packet created by TCP, there is
only one single routing request when a connection is established.

The following example shows the commands used to build the 51 n routing table for router B from Figure 16-4:

root@tux # ip route add 10.0.3/24 dev ethO
root@tux # ip route add 10.0.4/24 dev ethl
root@tux # ip route add 10.0.5/24 via 10.0.4.3
root@tux # ip route add 10.0.2.1 dev pppO
root@tux # ip route add default via 10.0.2.1

However, the last two entries would normally be created not manually, but automatically by the PPP daemon as soon as a PPP
connection is established. ip route show Can be used to obtain the table shown in Figure 16-5 (in a slightly different
format):

root@tux # ip route show

10.0.2.1 dev pppO0 scope link
10.0.4.0/24 dev ethl scope 1link
10.0.5.0/24 wvia 10.0.4.3 dev ethl
10.0.3.0/24 dev eth0 scope link
default wvia 10.0.2.1 dev pppO

4 Previous Mext b
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16.3 Implementation
The following discussion divides the routing implementation in Linux into three functional units:

e As described in Section 142, ip_route_input () and ip_route_output () are the two functions invoked when IP
packets are handled to run routing-specific tasks; they will be described in Section 16.3.4. These functions are also called
"forwarding functions" in the following discussion.

o Routing rules and routing tables together form the so-called forwarding-information base (FIB). Whenever necessary,
forwarding functions query the forwarding-information base; this action is also called a forwarding query or FIB request
in the following discussion. An FIB request is initiated by calling the fib 1ookup () function. The implementation of

routing rules is strongly encapsulated within the FIB, so routing rules and routing tables will be discussed separately in
Sections 16.3.1 and 16.3.2.

e Because consulting the FIB for each single IP packet received or sent would require too much time, there is an additional
routing cache that stores the table entries used the most recently and allows fast access to these entries. Section 16.3.3
describes how this routing cache is implemented.

16.3.1 Routing Rules

As we described in Section 16.1.6, rule-based routing uses a set of rules to decide which routing tables should be searched in
which sequence for a suitable entry to forward a packet and whether the packet may be forwarded at all. The rules are
processed successively by ascending priority value until a decision can be made.

The entire implementation of the rules-processing method, including the data types used, is included in the fip rules.c file.
The rather narrow interface is described by some function prototypes and inline functions in a common header file, ip fib.h-
If rule-based routing was disabled in the kernel configuration (conFIG TP MULTIPLE TABLES oOption; see Section 16.2.1),
then fib rules.c is not compiled. In this case, the "replacement functionality" (use of the two routing tables 1c41 and
main, in this sequence) is fully handled by the inline functions in ip fib.h-

Data Structures

The set of rules is represented in the kernel by a linear list of £i, rule structures, sorted in ascending order by priority value
and hooked into the static ¢ ib rules variable. Initially, this list contains three entries: the £ ib rule Structures

default rule, main rule,and local rule, Which are statically defined. Figure 16-6 shows this initial state of the rules

list. A read-write spinlock called £ib rules lock is used to regulate access to the list.

Figure 16-6. List with routing rules (initial state). Optional structure entries are not shown.
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The £ip rule Structure, to begin with, contains two management fields, a link pointer, struct fib rule *r next,anda
reference counter, atomic t r clntref. The latter specifies the number of references to a specific instance of the
structure. This counter is incremented by atomic inc () when new rules are added, and especially when a reference to a
rule is returned in a result for a forwarding request. A call to st omic dec and test () in the interface function

fib rule put () , Which frees £ip rule instances, decrements the reference counter. The memory is actually freed when
this Eounter_reaches a value of zero. In this situation, the function additionally checks for whether the entry int r dead was
set to one by explicitly deleting the rule (by inet rtm delrule (); See further below). If this is not the case, then there
must be an implementation error, which is written to the system log for the user's attention.

Next within the structure follows some information about the described rule: the priority value u32 r preference, the
unsigned char r table identifier for a routing table to be used, and the field unsigned char r action, Which
specifies the action that should run if the rule's selector matches the packet currently being processed. The five rule types
mentioned in Section 16.1.6 can be coded with the values rRTN UNICAST, RTN BLACKHOLE, RTN UNREACHABLE,

RTN PROHIBIT,and rTN NaT, Which are declared in include/1inux/netlink.h . Additional attributes for the action are
the u32 srcmap und " u32 r tclassid entries. The first of these two entries includes the new source address for
static address translation. The second entry is present only if the kernel was configured with the cONFIG NET CLS ROUTE
option. (See Section 16.2.1.) It contains a class identifier for a queuing discipline that is assigned to packets, if the routing table
entry we select later does not itself contain a class identifier.

The rule's selector is represented by an address prefix and a corresponding network mask for the packet's source and
destination addresses (u32 r src, r src-mask, r dst, r dstmask),by the network interface index (int

r ifindex) , by the contentin the TOS  field (u8 r tos),and additionally by the fymark (u32 r fwmark), if activated
iN CONFIG TP ROUTE FWMARK . Moreover, the structure mcIudes the lengths of the address preﬁxes (unsigned char

r src_len, r dst len) and the network interface name (char r ifname[IFNAMSIZ]). These attributes are used
only when rules are inserted, deleted, and displayed at the RT netlink interface. In contrast, forwarding decisions use only the
address masks and the much faster integer index for the network interface.

Though the ug r flags entry is accepted from the RT netlink interface, it has no meaning in rules processing.
Initialization and Internal Functions

The initialization function £ip rules init () , which is invoked (from within ip fib init (), which, in turn, is invoked by
ip rt init() ) whenthe routing is initialized during system start, does not have to initialize the rules list, because its initial
entries are already statically linked and anchored. However, it registers the callback function fip rules export () inthe
notification chain for state changes to network devices. (See Section 5.2.4.) If changes occur, fib rules event () IS
invoked, which branchesto fipb rules attach () when a new network device is registered, butto fip rules detach ()
when a network device is unregistered. These two functions visit all existing rules and correct the i £ingex entry, which is
meaningful for registered devices only and should otherwise be set to ?.

As was mentioned in connection with the » c1ntrer reference counter, the fip rule put () function is used to release
references that point to i rule Structures. This function is also declared in ip fib.h, because it is invoked not only
internally, but also when structures are released that were returned as replies to forwarding requests and contain a reference
to the rule that led to the selection of a route from a routing table.

RT Netlink Interface

The RT netlink interface represents the only way to manage routing rules. For this purpose, the table

inet rtnetlink table[] (net/ipv4/devinet.c) has pointers for the message types rRTM NEWRULE,

RTM DELRULE, and RTM GETRULE that point to the functions inet rtm newrule() , inet rtm delrule() ,and
inet dump rules () , SO that these functions are invoked to handle the corresponding RT netlink messages.

A large part of the implementation of these functions consists in converting between the data structures of RT netlink messages
and the £ip rule Sstructure. In addition, when new rules are added, the values entered are checked for whether or not they
are valid and consistent. If a rule is added without stating a required routing table, then the function £ip empty table() IS
invoked and searches for a table not yet used.[?] If no priority is stated, then a new rule is added to the rules list before all other
rules with a nonzero priority. When rules are polled (message type rTM GETRULE ), the auxiliary function inet fi11 rule

() is used; it appends the information of a single rule to the RT netlink reply message currently being built. - B

(21 If you invoke ip rule add without stating a table number, then it automatically uses the table main. To create an
RT netlink message with unspecified table, you have to use the table 0 option specifically with ip rule add.

Interface to Forwarding Functions

The rules database represents the access point to the FIB virtually, because rules have to be used to identify a suitable routing
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fib rules.c (or in ip fib.h, if rule-based routing is disabled). However, it handles only a small part of the work
involved; important parts are handled by invoking functions from other FIB parts, as we will see later.

In addition to these FIB interface functions, there are several functions that access specific elements of the fip rule
structure. This structure is not visible outside the fip rule.c file.

e fib rules tclass() SImply returns the queuing discipline's class identifier assigned to a rule.
e fib rules policy() transforms the source address as specified by a rule, if applicable.

e fib rules map destination() transforms the destination address for NAT routes. (See Section 16.1.6.)

fib lookup () net/ipv4/fib_rules.c

This function, which represents the most commonly used FIB interface, returns a matching routing-table entry for a key passed

as argument. The key is passed as pointer to an r+ key Structure (declared in route.h). This structure contains the source and
destination addresses (src and dst), the input and output network interface indices (i £ and o1 £), the TOS value (tos) s
and the rymark (?) for the packet to be forwarded, if applicable:

struct rt key
{

_u32 dst;
_u32 src;
int iif;
int oif;
#ifdef CONFIG IP ROUTE FWMARK
_u32 fwmark;
fendif
__u8 tos;
__u8 scope;

}i

The scope information (scope) €an be used to limit the search range. For this, each entry in a routing table includes a scope
identifier, and only entries with equal or smaller scopes are returned for a request (but smaller scopes have bigger identifiers).
The following scopes are predefined:

Symbol Value Scope

RT SCOPE UNIVERSE 0 any destination

RT SCOPE_LINK 253 destination in the same
physical network

RT SCOPE HOST 254 destination in the local
system

RT SCOPE_NOWHERE 255 destination does not exist

To handle a request, the rules list is visited in the order of ascending priority value, and the action corresponding to the rule
type runs for each rule with a selector that matches the key passed. Rules of the types unreachable, blackhole, and
prohibit cause the function to be aborted and to return an appropriate error value. For ynicast and nat rules, the routing
table identified by the v tap1e entry of the rule is consulted.

Section 16.3.2 discusses the data structures used to represent routing tables and how these structures are searched. The
interface for this is the function pointer tb lookup () N the £ ib table Structure representing the root of a routing table. If a
table search is successful, then the result supplied by t 1ookup () IS returned; otherwise, £i 1ookup () continues with
the next rule. B B

fib select default() net/ipv4/fib_rules.c

This function serves to select a route from several default routes; it is invoked whenever a previous FIB request returns a
routing-table entry with a network prefix of length ;11 . It obtains the request key and the request result as parameters. The
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structure.

16.3.2 Routing Tables

In the Linux kernel, routing tables are represented by rather complex data structures, which manage entries by using a number
of hash tables for different prefix lengths.

Data Structures

A fib table Structure forms the basis for a routing table. This structure includes a pointer to an £, zone Structure for each
potential prefix length (0 to 32 bits). All routing table entries with the same prefix length are allocated to a specific £n zone
structure. The £n zone Structure uses an additional hash table to store the individual entries, each represented by a

£ib node Structure. The hash function used for this purpose also uses the entry's network prefix. If several routing-table
entries have the same hash value, then the corresponding £ip node Structures are linked in a linear list. Ultimately, the actual
data of an entry is not in the fip node Structure itself, butina £ip info structure referenced in the former structure.

There are up to 255 different routing tables when rule-based routing is used. The associated rip taple Structures are
managed by using the array variable struct £i table * fib tables[RT TABLE MAX+1]. Their positions within the
array correspond to the table numbers, which are used in routing rules to identify routing tables. Only position null is not used;
at the interfaces, identifier null denotes an unspecified table and normally is mapped to the main table. If rule-based routing is
not used, there are only two routing tables, each referenced by a global variable: 10cal table and main table-

Figure 16-7 shows a possible instance of fip tapble and £n zone Structures, where the routing table with number 254

(RT TABLE MAIN) includes entries with three different prefix lengths: 0 (default route), 16, and 24. The hash tables used to
reference the respective routing-table entries are shown on the right-hand side of the figure. They have different sizes: For
prefix length null, the hash function will always yield the same value, which is the reason why one single entry is sufficient here,
while 16 entries are allocated for other prefix lengths. The hash tables grow automatically when they fill up, if the option
CONFIG_IP ROUTE LARGE TABLES IS active.

Figure 16-7. The ¢;;, tan1 Structure with references to zones of different prefix lengths.
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The fib node and fib info Structures belonging to the routing-table entries are not shown in Figure 16-7, because of
limited space. They are shown in Figure 16-8, which is described further along.

Figure 16-8. Hash table of a zone with fib_node and fib_info structures.
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In addition to its number, t, id, and an unused element by the nhame of +p _stamp, the fib_table Structure includes a
number of function pointers, forming the interface to manage the entries stored in the table:

e tb insert() and tb _delete () serveto insert and delete entries; they are used in net/ipv4/fib_frontend.c
to handle RT netlink messages and ioct1 () and kernel-internal calls.

e tb dump () Serves to output entries over RT netlink, and tp get info () Serves to output entries in
the /proc/net/route format.

e tb lookup () Searches the table for an entry matching a key; it is used by the main query function, fip 1cokup () -
e tb flush() freesall entries in the table that previously have been marked as deleted.
e tb select default () Serves to select one route from several existing default routes.

These function pointers are set to functions in £ip hash.c, with names matching those of the pointers, except for the prefix
(fn_hash_ instead of tb ), Whenanew fip table Structure is created by a call to fib new table ()
(include/net/ip fib.h and net/ipv4/fib frontend.c) . Thisinitialization is accomplished by the function

fib hash init() (net/ipv4/fib hash.c),invoked from within £ip new table() -

These function pointers are the only way to access internal routing table data structures; their implementation is fully
encapsulated. The "core" structures £n zone and £fib node are defined exclusively in the file net/ipv4/fib hash.c -
Also, the fn_hash structure, which is physically part of the £ip taple Structure, is declared "anonymously” as unsigned

char tb data[0] in include/net/ip fib.h; itisactually used only within net/ipv4/fib hash.c . The
fib info Structure, which includes information about individual entries, is the only structure visible to the outside.

struct fn zone net/ipv4/fib_hash.c

An fn_zone structure manages all entries with the same prefix length by use of a hash table. The fixed prefix length is noted in
the £ _order element, and £ _mask includes an appropriate network mask. The hash table consists of an array of

fib node Structures, which are > referenced by the £, nash pointer. The array size is specified by 7 divisor.

£z hashmask holds a bit mask used to mask the hash value to the range permitted for indexing in the array in its last
computation step.

An fn_zone structure for a specific prefix length exists only provided that entries with this prefix length actually exist. All
fn_zoneStructures of a table are linked in a linear list in the order of descending prefix length (by using the £z next
element), which is hooked into the £ zone 1ist elementof the £n hash structure at the bottom of the fip table
structure. This list forms the basis of search for an entry with the longest network prefix matching a specific destination
address.
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struct £fib node net/ipv4/fib_hash.c

Each single entry in a routing table is represented by a £ip node Structure. Inits £, key element, this structure contains the
destination network prefix (with an identical length for all entries of one zone), and its rn +os elements includes a TOS value,
which is also part of the key used to search a routing table. The type and scope of an entry are coded in £p type and

fn scope,andthe £n state element stores two flags used to manage the structure. B

All additional information in a routing-table entry, which is not required for searching an entry, but represents merely part of the
search results,!) is located in the rir info Structure, which can be reached over £n info.

131 Though quality information (metric) plays a role in searching, it is not explicitly used. The reason is that it
already influences an entry's position in the fib_node list when the entry is inserted, so that entries with lower
metric values are automatically found earlier.

struct fib info include/net/ip_fib.h

The £ip info Structure represents information about the result of an FIB query, including the output interface to be used and
the next hop along the route to the destination system, if necessary. This information is included in a £ip nh Structure in the
element £ip nh of the £ip info Structure. The £ip nh element is an array to represent the situation where several
equivalent routes lead to the same destination in the FIB. This array is declared with size null, and sufficient space is reserved
for new entries that all stated routes can be stored. The number of these routes is then stored in the £1p nnhs element of the
fib info Structure. B

The fip nn Structure is declared in ip fib.nh and contains the output interface to be used in the form of its index (nh_oif);
as a pointer to the net device structure (nh_dev), it also includes the IP address of the next router (nh_gw).

The r£ip info Structure does not contain any backward references to its position within the routing-table data structures.
Instead, the fip next and f£ip prev pointers serve to arrange all existing £i, info Structures to form a doubly linked list,
which is hooked into a global variable, £i, info 1ist.When creating a new entry, the function £fip create info()
which is invoked by t1 insert () , first checks for whether an identical entry exists in the list. Rather than duplicating such an
entry, it would merely increment the reference counter fib clntref- This means that several £ip node Structures can
reference one single rip info Structure. When a fib _node IS freed, then the fib_info structure is also freed, if the
reference counter has reached null.

In contrast to £n_zone and £ib node, the £fip info Structure becomes visible to the outside again: It is declared in
include/net/ip fib.h, and its contents are read directly in some places (e.g., in net/ipv4/route.c ). All operations to
manage rfip info Structures that go beyond the plain reading of a data element are implemented in the file

net/ipv4/fib semantics.s, however.

Managing and Initializing Memory

The FIB implementation is initialized in ip fib init() (net/ipv4/fib frontend.c) . If rule-based routing is not used,
then the function £ip hash init() IS invoked directly for the two tables tap1e 1ocal and table _main held in global
variables. This function occupies memory for a fip taple Structure and sets the enclosed function pointers to the £n, _hash_
functions. The substructure of the type £n _hash, which contains the zone hash table, is initialized to null.

In contrast, if rule-based routing is used, routing tables are not previously initialized. The global array that references the tables
is created as a memory area initialized to null when the kernel is loaded. Whenever a routing table is accessed via an element
of the array, then it is checked whether the table already exists, and, if this is not the case, it is created by fip hash init

()

The function fib_hash_init () also ensures that a slab cache (see Section 2.6.2) called "ip fib hash" €Xists. This slab
cache supplies memory for fib node structures, which are allocated in the function fn hash insert () to create new
entries when needed.

Managing Hash Structures
The functions that access rn zone and £ip node Structures, which are used internally to manage routing-table entries by

using hash tables, are collected in the file net / ipv4/fib_hash.c - They are invoked by all other FIB functions to access
fn_zone and fib node structures.
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a more efficient search process, without the need to effect changes in other places.

The most important functions in net/ipv4/fib_hash.c areas follows:
e fn rehash zone () enlarges the hash tables, if necessary.
e fn new zone() Createsanew fn zone structure and sorts it into the zone list based on its prefix length.

e fn hash lookup () handles the main task in an FIB query: The fn_zone structures in a routing table are walked
through in the sequence of descending prefix length, and the hash table is searched for an entry matching the key passed
as an argument.

e fn hash select default() Selectsone out of several default routes, considering whether the intermediate system
specified as the next router is currently reachable.

e fn hash insert(), fn hash delete(),and fn hash dump () Serve to insert, delete, and display entries over
the RT netlink interface.

e fn hash flush() removes all fib info structures of a zone that were previously marked as invalid.
e fn hash get info() servesto display routing table entries over the proc file system.
Interfaces to the User-Address Space

From within the user-address space, you can manage routing tables both over the traditional i oct1 () interface and over RT
netlink.

For the RT netlink interface, the functions inet rtm newroute(), inet rtm delroute(),and inet dump fib ()

from net/ipv4/fib frontend.c are registered in the table inet rtnetlink table[] iNnet/ipv4/devinet.c, SO
that they can be invoked to add, delete, or output a routing table entry and handle corresponding messages.

ioctl () System calls are handled by ip rt ioctl() (net/ipv4/fib_frontend. ¢ ), Which is invoked in af _inet.c by
the general routine that handles ioct1 () calls at pr INET Sockets. (See Chapter 26.) The parameters for the call are
converted into an RT netlink message by fip convert rtentry() andpassedto inet rtm newroute() OF

inet rtm delroute () for further handling.

proc File System

The contents of the pseudo file /proc/net/route, Which can be used to view the nz1n routing table, are created by the
function fib_get procinfo () (net/ipv4/fib_frontend. c ), which is registered by ip fib init () ,Using
proc net create() s for this purpose. The function creates a header line and uses the function pointer tb _get info()
from the main table, which normally points to fn_hash get info() (ipv4/net/fib hash.c ), to output the data. There,
all fip node structuresin rn zone 1ist are visited, and the appropriate data is eventually output by
fibincjdeigetiinfo () (neE/iva/fibisemantics .c )

Reacting to Changes in Network Interfaces

The functions fip inetaddr event() a@nd fib netdev event () (net/ipv4/fib frontend.c ) are registered in
two notification chains for state changes to network interfaces or changes to their IP addresses when ip fip init ()
initializes the FIB.

As soon as a network device obtains an IP address or when it is reactivated after it had addresses and was deactivated
previously, then fil add ifaddr () (invokedby fib inetaddr event() OF fib netdev event () ) Creates entries for
local and broadcast routes inthe 15041 table. When addresses are removed, these entries are deleted accordingly by
fib del ifaddr () - In addition, during removal of addresses, all routing entries that use the removed address as their
preferred source address have to be deactivated. This is handled by the function £ip sync down () from

net/ipv4/fib semantics.c -

When deactivating or deleting a network interface (and also when the last address of an interface was removed),

fib netdev_event () invokes the function fib disable ip() which, in turn, uses fib_sync_down () (parametrized
differently) to declare all those £ip nh structures, that use the interface as their forwarding-output interface as invalid.
Subsequently, the routing cache is deleted, and, finally, fip disable ip () invokes arp ifdown () toinform the ARP
implementation that the interface disappeared. B B B
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This section describes several operations in addition to those discussed in Section 16.3.1, which are used by the functions in
net/ipv4/route.c to access the FIB.

fib _validate source () net/ipv4/fib_frontend.c

The function fip validate source () Serves tocheck the source addresses of IP packets within a forwarding process. This
check can be implemented elegantly by an FIB query, using £ip lookup () for the opposite direction (i.e., with source and
destination addresses swapped): If the entry found is not of the type rTn unTcasT (but RTN LoCAT, for example, which
means that the address is assigned to a local interface), then this address is not a valid source address for an incoming packet.

If the output interface noted in an inverted FIB query matches the actual input interface, then the validation is completed
successfully. This is the only acceptable result when reverse-path filtering is active.

If the actual input device does not currently have an address, then the above check is considered successful, even if the FIB
query returns no result at all. If the output device found does not match the actual input device, then another FIB query is done
with the actual input device specified as a fixed output device. If this query supplies either a result of the type rTn UNTICAST Or
no result at all, the check is considered to have been successful. B

fib select multipath () net/ipv4/fib_semantics.c

When a routing-table entry with several routes is used in a forwarding process, the function fip select multipath() IS
invoked to select one of these routes. This decision is made randomly (the jiffies counter is used rather than a "real"
random number generator), taking weights assigned to each of these routes into account.

ip dev find() net/ipv4/fib_frontend.c

To find the network interface that belongs to an IP address passed as parameter, ip dev find () uses the function pointer
tb lookup () tosearchthe 10cal table. The result has to be an entry of the type RTN LOCAL, and a reference to the
wanted net device Structure can be taken from the entry.

inet addr type () net/ipv4/fib_frontend.c

inet addr type () is another function that searches the 15ca1 table for a specific address, but the address type is the
result looked for in this case. The semantics is slightly different and is characterized by the specific requirements of the
functions that invoke inet addr type () : Formally invalid addresses are previously filtered and then yield the

RTN MULTICAST result, and an address is treated as RTn UNTCAST, even if no entry is found in the 15ca1 table.

16.3.3 The Routing Cache

Though the FIB data structures offer relatively fast queries, the cost to run such a query for each single IP packet would be
altogether excessive. For this reason, the Linux kernel has a cache, in addition to the FIB, that stores the results of the
forwarding queries used most recently allowing them to be accessed quickly. Each forwarding operation first consults the
routing cache, and the FIB is queried only if no matching entry exists in the cache. The result of the FIB query is then used to
create a new cache entry immediately.

The routing cache is based on a relatively simple data structure. One single hash table includes the cache entries, which are
linearly linked when the hash value is identical. The hash function processes the source and destination addresses for packets to
be forwarded, plus their TOS values. Each cache entry contains all information required to forward a packet.

Figure 16-9 shows the hash table (left-hand side), organized as an array of vt hash bucket Structures. The pointer struct
rt hash bucket *rt hash table references this array. Within each v+ hash bucket Structure, the chain element
forms the anchoring point for a list of ++ap1e Structures, representing the cache entries. Access to this list is controlled by the
read-write spinlock 1ock inthe vt hash bucket Structure. The size of the hash table is defined according to the main
memory size when the routing code is initialized and remains unchanged afterwards.

Figure 16-9. Data structures of the routing cache.
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struct rtable include/net/route.h

The rtaple structure is rather extensive, and Figure 16-9 shows only an excerpt. In addition, we somewhat simplified the
representation of its first element. Actually, the first element of the r+ap1e structure is a union structure, 3, which contains a
dst_entry Structure and an rtab1e pointer:

union {
struct dst entry dst;
struct rtable *rt next;

Both elements of ; are used concurrently, without representing a problem, because the first element of the gst entry
structure is the gst entry pointer next, and dst entry Structures occur only within rtap1e structures. This means that
u.dst.next and y.rt next are two different names for the same pointer; based on their types, the total object or only part
of it are referenced.

The rt_src and rt_dst elements specify the source and destination addresses for IP packets handled by this entry.
rt_gateway Stores the address of the next router—or the destination address again, if no router is required. The interface
identifier in iif can denote the output or input interface.

The rt key Structure integrated as element xey is used as the key in searching the routing cache. The values stored there do
not necessarily have to match those outside. For example, in searching for an entry of a packet that was created locally and
should be sent now, normally no source address is specified, which means that r+ key.src in the cache entry is null.
However, the source address to be assigned to the new packet is stored in v+ src.

struct dst entry include/net/dst.h

The dst_entry structure contains a large number of information elements. The most important elements are introduced
below by origin and purpose:

e Some pointers refer to other data structures required when forwarding IP packets and so they are available there
without additional effort—the net device Structure of the output interface, the neighbour structure to the next router
or the destination system (corresponding to the rt gateway €lementinthe rtap1e Structure), and the hh cache
structure, which includes a packet header of the data-link layer that just has to be copied. B

o Function pointers to operations for further processing when receiving (input ()) or transmitting (output ()) anlIP
packet that matches the cache entry are simply invoked at the appropriate positions within the IP protocol procedure, to
result in the packet's being handled appropriately. The input () pointer in entries that can be used for incoming packets
refers to ip local deliver () (unicast packets to be delivered locally), t0 ip mr input () (multicast packets), to
ip forward () (packets to be forwarded), orto ip error() (forwarding impossible because destination is
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o Avreference to a gst ops structure for IPv4 entries always points to the globally defined structure ipv4 dst ops. It
contains several function pointers, and users of routing-cache entries (e.g., TCP or ARP) can use them to supply
feedback to the routing cache (e.g., about connection failures). In addition, the gst ops Structure holds a counter for
occupied cache entries and stores a threshold value which, when exceeded, causes the cache garbage collection to start
(as described later).

e The usage counter, __use, is incremented whenever the cache entry is used. The time of the last use is also stored in
the 1astuse element.

e Various parameters for transport protocols are copied from the ¢ ib info structure.

Some functions to manage dst entry Structures are defined in the files inciude/net/dst.h and

net/core/dst.c-
Interface to Forwarding Functions

The implementation of the routing cache is hardly encapsulated against the other program logic used for forwarding; you find
both in the file net /ipv4/route.c - For example, there is no separate function that searches for a cache entry. Each search
operates directly on the cache data structure in both main interface functions for IP packet processing (ip route input ()
and ip route output () —see Section 16.3.4). Part of the creation of new cache entries is done there as well.

Nevertheless, there are a few methods that are used by the forwarding functions, yet clearly belong to the routing cache. The
most important such methods are described below.

rt _hash code () net/ipv4/route.c

rt_hash code() IS used to calculate the hash value from the source and destination addresses and the TOS value passed as
parameters. This hash value serves as index in the hash table of the routing cache.

rt_intern hash () net/ipv4/route.c

The forwarding functions use the rt intern hash() function to insert an almost complete rtabi1e structure into the hash
table of the routing cache. New entries are always inserted in the first position in a potential collision-resolution list. If an entry
with identical key exists in the list, then this entry is moved to the front, and the new entry is discarded.

In addition to inserting entries, rt_intern hash() Procures the pointer to @ neighbour Structure matching the next router
or destination system from the rtap1e Structure.

Initialization

The initialization function 1p rt init () allocates memory for the routing cache array, once an appropriate size has been
computed. Subsequently, each element of the array is initialized. In addition, the slab cache » ip dst cache" thatserves to
hold ++ab1e structures is initialized. The initialization functions of the IP interface management and FIB are invoked, the timer
for cache garbage collection is started (see below), and finally, proc entries are created (see below).

Cache Garbage Collection

An entry is added to the routing cache for each new communication partner in the Internet, so we have to ensure that old
entries that are no longer needed are deleted occasionally to limit the memory requirement and to keep cache searches fast in
the long run.

First, a timer called vt periodic timer , which is initially started by aqd timer () (see Section 2.7.1) in the initialization
function ip rt init (), invokes the function vt check expire () atregular intervals. This timer is restarted in

rt check expire () , where the interval (measured in 1,17 seconds) is specified by the global configuration variable

ip rt gc_interval (which canbesetby syscti () orbyaproc directory entry

called /proc/sys/net/ipvé4/route/gc_interval ).

Second, whenever the number of entries in the cache exceeds a threshold value, the function rt_garbage collect() IS
invoked to delete old entries also. A call to rt garbage collect() IS also made when an attempt to allocate a neighbour
structure has failed. This is done because it is then assumed that the corresponding tables are full, because some neighbour
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rt_check expire () net/ipv4/route.c

The function rt check expire () successively checks cache-entry lists anchored in the elements of the array

rt hash table []- If the element . gst . expires Of an entry specifies an expiry time, this entry is deleted if this time has
been exceeded. If no expiry time is specified, then r+ may expire () isinvoked to check on whether this entry should be
deleted nevertheless.

First of all, rt_may expire () refuses to delete referenced entries (. dst_refent != 0)- Otherwise, it determines how
long an entry has not been used and compares this "age" with two threshold values passed as arguments. Three types of
entries are distinguished:

o Low-value entries: This includes broadcast and multicast entries, which are additionally not in the last position in a
collision resolution list. Such entries are always deleted immediately.

o "Normal" entries: These entries are deleted if their age exceeds the first threshold.

o High-value entries: These are entries created by ICMP redirect messages. They are deleted only if their age exceeds the
second threshold.

The first threshold passed by rt_check expire() varies according to the entry's position in the collision-resolution list:
Starting with a value identical to that of the second threshold, which comes from the configuration variable
ip rt_gc_timeout, it decreases by half in each step.

rt_check expire () interrupts its work after a number of steps, depending on the configuration variables
ip rt gc_interval @ndip rt gc timeout (Dy default, after one-fifth of the entire array has been processed), but at
the latest when the 41 rfries counter changes its value. The next call continues processing from the same position in the array.

rt_garbage collect () net/ipv4/route.c

The approach taken by rt garbage collect () to deleting cache entries is similar to that of rt check expire () , €xcept
for the following points:

o Instead of checking a fixed number of array elements for old entries, rt_garbage collect () Setsa specific target
with regard to the number of entries to be deleted. It stops once this target has been reached (where the time is limited
to the interval between two §i fries changes as well).

e The second time threshold passed to rt may expire() IS also specified dynamically; it reduces by half after each
passage across the entire array until the target has been reached.

e The number of entries to be deleted is computed on the basis of the number used in the last call, at the beginning of
rt_garbage collect () - The computation tries to find a state of equilibrium, where about as many entries are being
deleted as are being newly created.

rt _garbage collect () IiSavery labor-intensive function, so there must be at least the time distance defined in the
configuration variable ip rt gc min interval between each two calls, except when there is acute lack of space. If this is
not the case, then the function returns immediately.

RT Netlink Interface

Routing-cache entries can be read via the RT netlink interface. The corresponding messages are created by ip rt dump () ,
which is invoked by inet dump fib () (see above) when cache entries are requested.

In addition, you can simulate a forwarding process (by using the ip route get command) over the RT netlink interface. More
specifically, this procedure invokes ip route input() OF ip route output () and returns a result, with the side effect
being to create an entry in the routing cache. The corresponding RT netlink message is processed by inet rtm getroute ()
from net/ipv4/route.c, registered in the table inet rtnetlink table[] in net/ipv4/devinet.c:

The Proc File System

Some configuration variables, including variables to control the behavior of the cache garbage collection, are mapped to files in
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the variables. The only exception is the £1ysnh file, which causes the routing cache to be deleted when it is accessed.

The files are defined by the control structure ct1 table ipv4 route table[] iNnet/ipv4/route.c ; the function
ipv4 sysctl rtcache flush() , Which handles access to the £1ush file, is also registered there. The ct1 table
structure ipv4 table[] in net/ipv4/sysctl net ipvé.c includes a reference to ipv4 route tablel] - This
structure is embedded in the central sysct1 () tree over net table[] iNnet/sysctl.net.c @ad root table[] in
kernel/sysctl.c-

The file /proc/net /rt_cache lets you read the content of the entire routing cache. The content is formatted by the function

rt_cache get info () from net/ipv4/route.c, Which is registered using proc_net create () when the routing is
initialized in lp rt init () -

16.3.4 The Forwarding Process

Section 14.2.1 discussed how a forwarding query is embedded into the processing of incoming IP packets: ip rcv finish ()
invokes ip route input () tO find a dst_entry Structure to determine the packet's further route. Section 14.2.2 discussed
outgoing packets: their routing decision is made in ip route output () , Which is invoked by, for example, ip queue xmit

()

ip route input () net/ipv4/route.c

The function ip route input () IS invoked for each IP packet arriving over a network interface. The parameters are a
pointer to the socket-buffer structure, the destination and source addresses, the TOS value, and a pointer to the net device

structure of the receiving network interface.[]

[4] The last four parameters could, alternatively, be worked out from the first. However, because they are passed
separately, knowledge about their representation in the socket-buffer structure does not have to be present in
ip_route_input(). Though the socket buffer structure is still not entirely treated as an encapsulated "black box," at
least only few data elements especially present for routing are accessed.

First, rt hash code () is used on the addresses and the TOS value to compute an index in the hash table of the routing
cache. If necessary, the list anchored in the chain element is walked through to find a cache entry matching addresses, input
interface, TOS value, and rymark, if present. If this search is successful, then a pointer to the entry is placed as 4st in the
sk pbuff structure, and the task is complete.

If no matching cache entry is found, then either of the two following functions is responsible for further handling:

e ip route input mc () Isinvoked if the destination address is a multicast address. Another prerequisite is that the
input interface either belongs to that multicast group or has been configured for multicast routing. The packet can be
discarded if this is not the case. The function ip route input mc () Will be discussed later in the chapter about IP
multicast Section 17.4. What is done there is similar to the procedure for local-destination addresses described below,
the only difference being that the packet is always delivered to the local machine rather than causing an FIB query.

e ip route input slow() Servesto handle "normal" destination addresses and is described next.

Both functions take the same parameters as ip route input () itself.

ip route input slow() net/ipv4/route.c

To begin with, an rt xey structure is filled with the parameters passed. However, before it is used to run an FIB query, the
addresses are checked for invalid values—multicast source addresses, and addresses moving a network prefix beginning with
null. Such packets are dropped, and, if verbose messages are configured with coNFIG IP ROUTE VERBOSE , they are
registered in the system log. The use of o . 0. 0.0 as source and destination addresses in the sense of limited broadcast is
explicitly allowed as an exception, for this is occasionally used for automatic network configuration.

Next, the FIB query is started by calling fib 1ookup () - If no matching entry is found, then ip route input slow() also
aborts processing and returns an error code, which subsequently causes ip rcv finish() (from where
ip route input slow() Was in