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Foreword Chapter One

Nearly every text has a throw-away chapter as Chapter One. Here's my version. Seriously, though, some
important copyright, instructional, and support information appears in this chapter. So you'll probably want
to read this stuff. Instructors will definitely want to review this material.

11

Foreword to the HLA Version of “The Art of Assembly...”

In 1987 | bgan work on a t&t | entitled “Howv to Program the IBM PC, Using 808&sembly Lan
guageé. First, the 8088dded into historyshortly thereafter the phrase “IBM PC” angte “IBM PC Com
patible” becamedr less dominant in the industrso | retitled the td “The Art of Assembly Language
Programming.l used this t&t in my courses at Cal Poly Pomona and UZeRiide for may years, getting
good reiews on the tet (not to mention lots of suggestions and corrections). Sometime around 1994-1995,
| converted the tet to HTML and posted an electroniergion on the Internethe rest, as tlyesay is his
tory. A week doesri’go by that | dort’ get seeral emails praising me for releasing sucha fixt on the
Internet. Indeed, | only hear three really big complaints about tre(1§ It's a Unversity textbook and
some people donlike to read tetbooks, (2) It5 16-bit DOS-based, and (3) there isnprint \ersion of the
text. Well, | male no apologies for complaint #The whole reason | wrote thextenvas to support my
courses at Cal Poly and UCWRIside. Complaint #2 is quitahd, thats why | wrote this \ersion of the tet.
As for complaint #3, it &s really neer cost eective to create a printersion; publishers simply cannot jus
tify printing a text 1,500 pages long with a limited matkFurthermore, véng a print \ersion vould pre
vent me from updating thexteat will for my courses.

The astute reader will note that Mea't updated the electroni@xsion of “TheArt of Assembly Lan
guage Programming” (0 ADA”) since about 1996. If the whole reason feeking the book in electronic
form has been to mekupdating the & easy why haven't there been gnupdates®ell, the story is gry
similar to Knuths “TheArt of Computer Programming” series: he/ sidetraokd by other proje&s

The static nature okoA over the past seral years &s neer really intended. During the 1995-1996
time frame, | decided it &s time to ma& a major reision toAoA. The first version ofAoA was MS-DOS
based and by 1995 itas clear that MS-DOSag fhally becoming obsolete; almostegyone &cept a fav
die-hards had switchedrer toWindows. So | knes thatAoA needed an update f@vindows, if nothing
else.

| also took some time tovaluate my curriculum to see if | couldimprove the pedagogical (teaching)
material to ma& it possible for my students to leaner more about 80x86 assembly language in a rela
tively short 10-week quarter

One thing Ve learned after teaching an assembly language courseefaa decade is that support soft
ware malks all the diierence in the wrld to students writing theirrt assembly language program#en
| first bggan teaching assembly language, my students had to write all Wheil/@ routines (including
numeric to string carersions for numeric I/O)Vhile one could ayue that there is somalue to haing stu
dents write this code for themse$y | quickly disceered that theg spent a lage percentage of their project
time over the quarter writing I/O routines. Each momeny thgent writing these relagly low-level rou
tines was one less momentailable to them for learning more athced assembly language programming
techniquesWhile, | repeat, there is somalue to learning he to write this type of code, #'not all that
related to assembly language programming (after all, the same type of problem has tedofsaty lan-
guage that allws numeric 1/O). | wanted to free the students from this drudgery sy toeld learn more
about assembly language programmiRige result of this obseation was “TheUCR Standard Library for
80x86Assembly Language ProgrammerBhis is a library containing seral hundred I/O and utility furc
tions that students could use in their assembly language programs. More than p#zry afse, the UCR
Standard Library impneed the progress students made in my courses.

1. Actually, another problem is the effort needed to maintain the HTML version since it was a manual conversion from Adobe
Framemaker. But that’s another story...
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It should come as no surprise, then, that one of may dirojects when veriting AoA was to create a
new, more paverful, version of the UCR Standard Libraifhis efort (the UCR Stdlib v2.0) ultimately
failed (although you can still dmload the code written for v2.0 from http://websteucredu). The prob
lem was that | vas trying to get MASM to do a little bit more than @&svcapable of and so the projeetsw
ultimately doomed.

To condense a really long stphdecided that | needed amassemblerOne that \&s peverful enough
to let me write the rve Standard Library the ay | felt it should be written. Heever, this nev assembler
should also makit much easier to learn assembly language; that is, it shouleréie students of some of
the drudgery of assembly language programming just as the UCR Standard Librédfyenddree years of
part-time efort, the end result as the “High Leel Assemblel or HLA.

HLA is a radical step forard in teaching assembly language. It combines the syntax of aVedjfale
guage with the M-level programming capabilities of assembly langudgegether with the HLA Standard
Library, it males learning and programming assembly language almost as easy as learning and programming
a High Level Language lik Rascal or C++Although HLA isnt the frst attempt to create a/trid high
level/low level language, nor is itven the fist attempt to create an assembly language with high lken
guage syntax, & certainly the fst complete system (with library and operating system support) that-is suit
able for teaching assembly language programming. Reg@etiences in mywn assembly language
courses shwe that HLA is a major imprneement @er MASM and other traditional assemblers when teaching
machine aganization and assembly language programming.

The introduction of HLA is bound to raise lots of questions about its suitability to the task of teaching
assembly language programming (as well it shodlddlay the primary purpose of teaching assembly lan
guage programming at the Warsity level isnt to produce a [gion of assembly language programmers; it’
to teach machine ganization and introduce students to machine architectuneiriséructors realistically
expect more than about 5% of their students to wind aikiwg in assembly language as their primary pro
gramming Ianguagfe Doesnt turning assembly language into a higheldanguage defeat the whole pur
pose of the course®ell, if HLA lets you write C/C++ or &cal programs and attempted to call these
programs “assembly language” then the ansveerdavbe “Yes, this defeats the purpose of the couksew-
ever, despite the name and the highelle(and ery high level) features present in HLA, HLA is still assem
bly languageAn HLA programmer still uses 80x86 machine instructions to accomplish most obtke w
And those high kel language statements that HLA yides are purely optional; the “purist” can use noth
ing but 80x86 assembly language, ignoring the higellstatements that HLA pvaes.Those who ajue
that HLA is nottrue assembly language should note that Micros?tASM and Borland TASM both pre
vide maty of the high lgel control structures found in HLSA

Perhaps the lgest deiation from traditional assemblers that HLA neakis in the declaration ofxi-
ables and data in a program. HLA use&gy\Rascal-lile syntax for griable, constant, type, and procedure
declarations. Hwever, this does not diminish thadt that HLA is an assembly languadéter all, at the
machine language (vs. assembly language),I¢here is no such thing as a data declarafibarefore, an
syntax for data declaration is an abstraction of data representation in mepengonally chose to use a
syntax that wuld prose more &miliar to my students than the traditional data declarations used by-assem
blers.

Indeed, perhaps the principlewdng force in HLAs design has been tosérage the studesteisting
knowledge when teaching them assembly languagepKn mind, when a studentstilearns assembly lan
guage programming, there is so much more for them to learn than a handful of 80x86 machine instructions
and the machine language programming paradidrey’ve got to learn assembler direets, hov to declare
variables, ha to write and call procedures,lado comment their code, what constitutes good programming
style in an assembly language program, etc. Unfortunatétly most assemblers, these concepts are com
pletely diferent in assembly language thanytlage in a language EkRascal or C/C++. & example, the
indentation techniques students master in order to write readable coalecal st don’apply to (tradi
tional) assembly language programbat's where HLA deiates from traditional assemblers. By using a

2. My experience suggests that only about 10-20% of my students will evelanyiéssembly language again once they
graduate; less than 5% ever become regular assembly language users.

3. Indeed, in some respects the MASM and TASM HLL control structures are abigally level than HLAs. Ispecifically
restricted the statements in HLA because | did not want students writing “C/C++ programs with MOV instructions.”
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high level syntax, HLA lets studentsverage their high il language kneledge to write good readable
programs. HLA will not let themvaid learning machine instructionsjthit doesnt force them to learn a
whole nev set of programming style guidelinesywneays to comment your code,wevays to create iden
tifiers, etc. HLA lets them use the kvledge thg already possess in those areas that reallg lidle to do

with assembly language programming sg/tban concentrate on learning the important issues in assembly
language.

So let there be no question about it: HLA is an assembly language. It is not ashidariguage mas
querading as an assemBleddowever, it is a system that mek learning and using assembly language easier
than eer before possible.

Some long-time assembly language programmers,\@rdreary instructors, wuld ague that making
a subject easier to learn diminishes the educational content. Studemtgedas much out of a course if
they don't have to work very hard at it. Certain)ystudents who dohapply themseles as well areh'going
to learn as much from a course. dwld certainly agree that if HL& only purpose as to mak it easier to
learn a fked amount of material in a course, then HLA&wd have the ngative side-efiect of reducing what
the students learn in their course wéwer, the real purpose of HLA is to makhe educational process more
efficient; not so the students spend less time learninged imount of material (although HLA could -cer
tainly achiee this), lut to allov the students to learn the same amount of material in lessdirtgy can
use the additional time available to them to advance their study of assemblygarni@aaember what |
said earlier about the UCR Standard Librang itttroduction into my course all@d me to teachven more
adwanced topics in my courséhe same is trueyen more so, for HLA. Kep in mind, Ve got ten weeks in
a quarterlf using HLA lets me teach the same material ireseveeks that took ten weeks with MASM, I'm
not going to dismiss the course aftevese weeks. Instead,ll'use this additional time to wer more
adwanced topics in assembly language programniihgt’s the real bendfto using pedagogical tools &k
HLA.

Of course, once Ve addressed the concerns of assembly language instructors and long-time assembly
language programmers, the need arises to address questions a studentveagbhduintaHLA Without ques
tion, the number one concern my studentehead is “If | spend all this time learning HLA, will | be able to
use this kneledge once | get out of school®’more blunt vay of putting this isAm | wasting my time
learning HLA?” Let me address these questions using three points.

First, as pointed out alee, most people (instructors ansperienced programmers) welearning
assembly language as an educational process. Most students will probablygrogram full-time in assem
bly language, indeed,ieprogrammers write more than aytifnaction (less than 1%) of their code in assem
bly language. One of the main reasons mosvéfgities require their students togadn assembly language
course is so thewill be familiar with the lev-level operation of their machine and soytlean appreciate
what the compiler is doing for them (and help them to write better HLL code oyoettiee hav the com
piler processes HLL statements). HLA is an assembly language and learning HLA will certainly teach you
the concepts of machineganization, the real purpose behind most assembly language courses.

The second point to ponder is that learning assembly language consisisneditwactiities; learning
the assembles’syntax and learning the assembly language programming paradigm (that is, leahiitkg to
in assembly language). Of theseotwhe second awity is, by far, the more difcult. HLA, since it uses a
high level language-lik syntax, simplifis learning the assembly language syntax. HLA also siewptifie
initial process of learning to program in assembly language wdang a crutch, the HLA high \el state
ments, that alls students to use highvkd language semantics when writing theistfprograms. Hoever,
HLA does allov students to write “pure” assembly language programs, so a good instructor will ensure that
they master the full assembly language programming paradigm befgreaimplete the course. Once a-stu
dent masters the semantics (i.e., the programming paradigm) of assembly language, leamngypiaxés
reIat'nS/er easyTherefore, a typical student should be able to pick up MASM in about a week after mastering
HLA®.

As for the third and fial point: to those thatauld ague that this is stillx@ra efort that isnt worth-
while, | would simply point out that none of thrigting assemblers kia more than a cursoryvel of com

4. The C-- language is a good example of a low-level non-assembly language, if you need a comparison.
5. This is very similar to mastering C after learning C++.
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patibility. Yes,TASM can assemble most MASM programst the reerse is not trueAnd it's certainly not
the case that ASM, A86, GAS, MASM, andlTASM let you write interchangeable code. If you master the
syntax of one of these assemblers and somequects you to write code in a fiifent assembleyoure

still faced with the prospect ofviag to learn the syntax of thewe@ssembleAnd thats going to tak& you
about a week (assuming the presence of well-written documentation). In this respect, HLA fsraotdif
than awy of the other assemblers.

Having addressed these concerns you mighé hig#ls nav time to mae on and start teaching assembly
language programming using HLA.

1.2 Intended Audience

No single t&tbook can be all things to all peoplénis tet is no ception. Ive geared this k& and the
accompaying software to Unversity lesel students whee neer previously learned assembly language
programmingThis is not to say that others cannot beredm this work; it simply means that as/g had to
make choices about the presentatiowe lnade choices that should yeanost comfortable for this audience
I’ve chosen.

A secondary audience who could ben&fm this presentation is wrmotivated person that really
wants to learn assembly languagéthough | assume a certainvid of mathematical maturity from the
reader (i.e., high school algebra), most of the “tough math” in tkiisaek is incidental to learning assem
bly language programming and you can easily skigr @ without fear that yoll’ miss too much. High
school students and those whedt seen a school in 40 years/bafectively used this te (and its DOS
counterpart) to learn assembly language programming.

The oganization of this tet reflects the dierse audience for which it is intendedr Example, in a
standard tebook each chapter typically has itsroset of questions, programminggecises, and laboratory
exercises. Since the primary audience for thid t& University students, such pedagogical material does
appear within this td. However, recognizing that notveryone who reads thisxtiewants to bother with this
material (e.g., denloading it), this tet moves such pedagogical material to the end of eattime in the
text and places this material in a separate chaphés is somehat of an unusual ganization, ot | feel
that Uniersity instructors can easily adapt to thigamization and it sees lurdening those who ardnhter
ested in this material.

One audience to whom this book is speaify not directed are those persons who are already cemfort
able programming in 80x86 assembly language. Undoubtibdise is a lot of material such programmers
will find of use in this tebook. Havever, my eperience suggests that those wieoalready learned x86
assembly language with an assemblee IMASM, TASM, or NASM rebel at the thought of hiag to
relearn basic assembly language syntax (aswvtioeld to hae to learn HLA). If you dll into this catgory; |
humbly apologize for not writing axemore to your liking. Hawever, my goal has alays been to teach
those who don’already knav assembly language, nottend the education of those who do. If you happen
to fall into this catgory and you don’particularly like this tet's presentation, there is some goodisie
there are dozens ofxts on assembly language programming that use MASMIAG# out there. So you
don't really need this one.

1.3  Teaching From This Text

The frst thing ay instructor will notice when kgewing this text is that its far too lage for aly reason
able courseThat’s because assembly language courses generally come flaMwrs: a machine ganiza
tion course (more hardwe oriented) and an assembly language programming course (morareoftw
oriented). No tet that is “just the right size” is suitable for both types of classes. Combining the information
for both courses, plus aalvced information students may need aftey firesh the course, produces agkar
text, like this one.

If you're an instructor with a limited schedule for teaching this subject|l yave to carefully select
the material you choose to presewtothe time span of your courd®. help, Ive included some brief notes
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at the bginning of each/olume in this tet that suggests whether a chapter in Yfedtime is appropriate for
a machine aganization course, an assembly language programming course, oraacedliassembly pro
gramming courselhese brief course notes can help you choose which chaptersapbtiovceer in your
course.

If you would like to ofer hard copies of this xein the bookstore for your students, | will attempt to
arrange with some “Custoniextbook Publishing” houses to makthis material ailable on an
“as-requested” basi8s | work out arrangements with such otstfil'll post ordering information owebster
(http://webstecs.ucredu). If your school has a printing and reprographics department, or yea thacal
business that handles custom publishing, you can certainly requesigbblearance to print the xe
locally.

If you're not taking a formal course, justdp in mind that you donhave to read this te straight
through, chapter by chaptdf you want to learn assembly language programming and some of the machine
organization chapters seem a little too haadsvoriented for your tastes, feel free to skip those chapters and
come back to them later on, when you understand the need to learn this information.

1.4

Copyright Notice

The full contents of this k& is copyrighted material. Here are the rights | hereby grant concerning this
material.You have the right to

» Read this text on-line from the http://webster.cs.ucr.edu web site or any other approved web
site.

 Download an electronic version of this text for your own personal use and view this text on
your own personal computer.

* Make a single printed copy for your own personal use.

| usually grant instructors permission to use this text in conjunction with their courses at recognized
academic institutions. There are two types of reproduction | allow in this instance: electronic and printed. |
grant electronic reproduction rights for one school term; after which the institution must remove the elec-
tronic copy of the text and obtain new permission to repost the electronic form (I require a new copy for each
term so that corrections, changes, and additions propagate across the net). If your institution has reproduc-
tion facilities, | will grant hard copy reproduction rights for one academic year (for the same reasons as
above). You may obtain copyright clearance by emailing me at

rhyde@cs.ucr.edu

I will respond with clearance via email. My returned email plus this page should provide sufficient
acknowledgement of copyright clearance. If, for some reason, your reproduction department needs to have
me physically sign a copyright clearance, | will have to charge $75.00 U.S. to cover my time and effort
needed to deal with this. To obtain such clearance, please email me at the address above. Presumably, your
printing and reproduction department can handle producing a master copy from PDF files. If not, | can print
a master copy on a laser printer (800x400dpi), please email me for the current cost of this service.

All other rights to this text are expressly reserved by the author. In particular, it is a copyright violation
to

e Post this text (or some portion thereof) on some web site without prior approval.
* Reproduce this text in printed or electronic form for non-personal (e.g., commercial) use.

The software accompanying this text is all public domain material unless an explicit copyright notice
appears in the software. Feel free to use the accompanying software in any way you feel fit.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pager



Chapter One Volume 1

1.5 How to Get a Hard Copy of This Text

This tet is distrituted in electronic form onlyt is not aailable in hard copform nor do | personally
intend to hae it published. If you ant a hard copof this tet, the copright allovs you to print one for
yourself.The PDF distribtion format maks this possible (though the length of thd teill make it some
what epensve).

If you're wondering wly | don't get this t&t published, thers’a \ery simple reason: &'too long. Pub
lishing houses generally ddntant to get imolved with texts for specialized subjects as it is; the cost of pro
ducing this t&t is prohibitve given its limited markt. Rather than cut it dm to the 500 or so 6” x 9” pages
that most publishers eauld accept, my decisionas to stick with the full t& and release thexein elec
tronic form on the Internehe upside is that you can get a freeycopthis tet; the devnside is that you
cant readily get a hard cgp

Note that the copight notice forbids you from cging this text for arything other than personal use
(without permission, of course). If you run a “Print to Order/CusTextbook” publishing house andowld
like to male copies for people, feel free to contact me and maybe wear&rout a deal for those who just
have to hae a hard copof this tet.

1.6  Obtaining Program Source Listings and Other Materials in This Text

All of the software appearing in thisxeis available from thaVebster web sitelThe URL is
http://webstecs.ucredu

The xact flename(s) of this material may change with time, arféréift services use tBfrent names
for these fies. Check oVebster for apimportant changes in addresses. If for some redgebster disap
pears in the future, you should use a web-based search engitfdtik/ista” and search folArt of Assem
bly” to locate the current home site of this material.

1.7  Where to Get Help

If you're reading this t& and youve got questions aboutWwdo do something, please post a message to
one of the follaving Internet ne/sgroups:

conp. | ang. asm x86
alt.lang.asm

Hundreds of knaledgeable indiiduals frequent these wsgroups and as long as y@inot simply
asking them to do your homverk assignment for you, ti#dl probably be more than happo help you with
ary problems that you lva with assembly language programming.

| certainly welcome corrections anddreports concerning thisxteat my email address. Mever, |
regret that | do not hee the time to answer general assembly language programming questions via email. |
do provide support in public forums (e.g., theasgroups abee and o’Webster at http://webstes.ucredu)
so please use thoseeaues rather than emailing questions directly to me. Due tootheng of email |
receve daily | regret that | cannot reply to all emails that | reeeiso if youte looking for a response to a
guestion, the nvesgroup is your best bet (not to mention, others might lidrmfi the answer as well).

1.8  Other Materials You Will Need (Windows Version)

In addition to this tet and the softare | pravide, you will need a machine running a 32-tatsion of
Windows (Windows 9x, NT, 2000, ME, etc.), a cgpof Microsoft's MASM and a 32-bit linkr, some sort of
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text editor, and other rudimentary general-purpose sarféatools you normally use. MASM and MS-Link
are freely mailable on the internefdlas, the procedure you must folloto dowvnload these lés from
Microsoft seems to change on a monthly basisvéder, a quick post to comp.lang.asm.x86 should turn up
the current site from which you may obtain this safievAlmost all the softwre you need to use thixtés

part ofWindows (e.g., a simple x¢ editor like Notepadee) or is freely wailable on the net (MASM, LINK,
and HLA).You shouldnt have to purchase gthing.

1.9

Other Materials You Will Need (Linux Version)

In addition to this tet and the softare | pravide, you will need a machine running Linux (preferably
Linux 2.4 or later), “as” and “ld” (if you can compile GCC programs, yewot these, tlyecome standard
with most distrilntions), some sort of xeeditor, and other rudimentary general-purpose saféaools you
normally useAlthough not necessarit helps if youve got superuser piledges during installation so you
can put the softare in a reasonable spot.
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Hello, World of Assembly Language

Hello, World of Assembly Language Chapter Two

2.1

Chapter Overview

This chapter is a “quick-start” chapter that lets you start writing basic assembly language programs right
away. This chapter presents the basic syntax of an HLA (HiglellA&sssembly) program, introduces you to
the Intel CPU architecture, prdes a handful of data declarations and machine instructions, describes some
utility routines you can call in the HLA Standard Libraaynd then shes you hev to write some simple
assembly language programs. By the conclusion of this chgpteshould understand the basic syntax of
an HLA program and be prepared to start learninglaaguage features in subsequent chapters.

2.2

Installing the HLA Distribution Package

Before you can learn assembly language programming using HLA, you mtstuticessfully install
HLA on your system. CurrentlfLA is available for the Linux antVindows operating system&his see
tion explains hev to install HLA on these tvsystems. If HLA is already running on your system, you may
skip to the ngt major section in this chapter

The latest grsion of HLA is aailable from thaNebster web seer at
http://webstecs.ucr.edu

Go to this web site and following the HLA links to the “HLA Download” page. From here you should
select the latest version of HLA for download to your computer. The HLA distribution is provided in a “Zip
File” compressed format. Under Windows, you will need a decompressor program like PKUNZIP or WinZip
in order to extract the HLA files from this zipped archive file; under Linux, you will use the GZIP and TAR
programs to decompress and extract HLA. A detailed description of the use of these decompression products
is beyond the scope of this manual, please consult the software vendor’s documentation or their web page for
information concerning the use of these products; this discussion will only briefly describe how to use them
to extract important HLA files.

This text assumes that you will unzip the HLA distribution into the root directory of your C: drive under
Windows, or to the “/usr/hla” directory under Linux. You can certainly install HLA anywhere you want, but
you will have to adjust the following descriptions if you install HLA somewhere else. If possible, you
should install HLA using root/administrator priviledges; regardless, you should make sure the permissions
are set properly on the files so everyone has read and execute access to the HLA files; if you are unsure how
to do this, please consult your operating system’s documentation or consult a system administrator.

HLA is a console application. In order to run the HLA compiler you must run the command window
program (this is “command.com” on Windows 95 and 98, or “cmd.exe” on Windows NT and Windows
2000; Linux users typically run “bash” or some other shell). This also means that you should be familiar
with some simple “command line interface” (CLI) or “shell” commands.

Most Windows distributions let you run the command prompt windows from the Start menu or from a
submenu hanging off the start menu (you may also select “RUN” from the Start menu and type “cmd” as the
program name). This text assumes that you are familiar with the Windows command window and you know
how to use some basic command window commands (e.g., dir, del, rename, etc.). If you have never before
used the Windows command line interpreter, you should consult an appropriate text to learn a few basic
commands.

Most Linux distributions run “bash” or some other shell program whenever you open up a terminal win-
dow (e.g., a GNOME or KDE terminal window or an X-TERM window). There are some minor differences
between the shells running under Linux, this document assumes that you are using GNU’s “bash” shell.
Again, this text assumes that you are comfortable with a few commands like Is, rm, and mv. If you have
never used a Unix shell program before, you should consult an appropriate text or the on-line documentation
to learn a few basic commands.
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Before you can actually run the HLA compjlgou must set the systemegution path and set upn-
ous erironment \ariables.The following subsectionsxglain hav to do this undeWindows and then
Linux.

221

Pagel?2

Installation Under Windows

HLA is not a stand alone program. It is a compiler that translates HLA source code inver-kevel
assembly languageA separate assembleuch as MASM, then completes the processing of thiddeel
intermediate code to produce an object colge fFinally you must link the object code output from the
assembler using a liek program. Typically you will link the object code produced by one or more HLA
source fies with theHLA Standard Library (hlalitb) and, possiblyseveral operating system specifi
library files (e.g., krnel32.lib undewindows). Most of this actity takes place transparently wheere you
ask HLA to compile your HLA sourceldis). Havever, for the whole process to run smoothfpu must
have installed HLA and all the supporef correctly This section will discuss moto set up HLA on your
Windows system.

First, you will need an HLA distriltion forWindows. The latest grsion of HLA is alvays &ailable
on Webster at http://webstes.ucredu. You should go there andwnoload the latestersion if you do not
already possess it.

As noted earlierHLA is not a stand alone assembl@he HLA package contains the HLA compijler
the HLA Standard Libraryand a set of includelds for the HLA Standard Librarylf you write an HLA
program with just this code, HLA will produce an "ASMrefand then stopTo produce anxecutable fe
you will need Microsofs MASM and LINK programs, along with soriéindows library fies, to complete
the process.The easiest ay to get all the fés you need is to daload the MASM32" package from
http://www pdg.com.au/home/hutch/masm.htm oy afthe other places on the net where you aaeh the
MASM32 package (Whster maintains a current link if this link is dead). Once you unzip lfnis’s easy
to install the MASM32 package using the install program it suppl¥si must install MASM32 (or
MASMI/LINK/WIin32 library files) bebre HLA will function properly.

Here are the steps | went through to install MASM32 on my system:

* | downloaded masm32v6.zip from the URL above (later versions are probably okay too,
although there is a slight chance that the installation will be different.

* | double-clicked on the masm32v6.zip file (which runs WinZip on my system).

* | choose to extract "install.exe". | told WinZip to extract this file to C:\.

* | double-clicked on the "install.exe" icon and selected the "C:" drive in the window that popped
up. Then | hit the install button and waited while MASM32 extracted all the pertinent files.
This produced a directory called "MASM32". MASM32 is a powerful assembly language
development subsystem in its own right; but it uses the traditional MASM syntax rather than
the HLA syntax. So we’ll use MASM32 mainly for the assembler, linker, and library files.
MASMS32 also includes a simple editor/IDE and several other tools that may be useful to an
HLA programmer. Feel free to check this software out and see if it is useful to you. For now,
note that the executable files you will ultimately need are ML.EXE, ML.ERR, LINK.EXE, and
a couple of DLLs. You can find them in the MASM32\BIN subdirectory. Leave them there for
the time being. The MASM32\LIB directory also contains many Win32 library files you will
need. Again, leave them alone for the time being.

* Next, if you haven't already done so, download the HLA executables file from Webster at
http://webster.cs.ucr.edu. On Webster you can download several different ZIP files associated
with HLA from the HLA download page. The "Executables" is the only one you'll absolutely
need; however, you'll probably want to grab the documentation and examples files as well. If
you're curious, or you want some more example code, you can download the source listings to
the HLA Standard Library. If you'reeally curious (or masochistic), you can download the
HLA compiler source listings to (this it for casual browsing!).

* | downloaded the HLA1_ 32.zip file while writing this. Most likely, there is a much later ver
sion available as you're reading this. Be sure to get the latest version. | chose to download this
file to my "C:\" root directory.
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»  After downloading HLA1_32.zip to my C: drive, | double-clicked on the icon to run WinZip. |
selected "Extract" and told WinZip to extract all the files to my C:\ directory. This created an
"HLA" subdirectory in my root on C: with two subdirectories (include and lib) and two EXE
files (HLA.EXE and HLAPARSE.EXE. The HLA program is a "shell" program that runs the
HLA compiler (HLAPARSE.EXE), MASM (ML.EXE), the linker (LINK.EXE), and other
programs. You can think of HLA.EXE as the "HLA Compiler".

* Next, | created the following text file and named it "IHLA.BAT" (note that you may need to
change the default drive letters if you want to install HLA on a drive other than "C:"):

pat h=c:\ hl a; c: \ masn82\ bi n; %pat h%

set lib=c:\masnB2\lib;c:\hla\hlalib;%ib%

set include=c:\hla\include;c:\masnB2\i ncl ude; % ncl ude%
set hl ai nc=c:\hl a\incl ude

set hlalib=c:\hla\hlalib\hlalib.lib

* Be sure you've typed all the lines exactly as written or HLA will fail to run properly. You may
use any reasonable TEXT editor (e.g., NOTEPAD.EXE) to create this file. Do not use a word
processing program (since they generally don’t save their data as a TEXT file). Be sure the file
is named "IHLA.BAT" and not "IHLA.BAT.TXT" or some other variation.

*  This batch file tells the system where to find all the files you will need when running HLA.
Advanced Win32 users should note that you can set all these environment variables up inside
the Windows system control panel in the "Advanced->Environment Variables" area. This is far
more convenient (ultimately) than using this batch file (for reasons you’ll soon see). However,
you can mess up you system if you don’t know what you're doing when playing with the sys
tem control panel, so only advanced users who've done this stuff before should attempt this.

* HLAis a Win32 Console Window program. To run HLA you must open up a consote Win
dow. Under Windows 2000, Microsoft has hidden this away in Start->Programs->Accesso
ries->Command Prompt. You might find it in another location. You can also start the
command prompt processor by selecting Start->Run and entering "cmd".

* Once you've got the command prompt, ("C:>" or something similar), execute the IHLA.BAT
file you've created by typing "IHLA" at the command line prompt. Hit the ENTER key to exe
cute the command.

* At this point, HLA should be properly installed and ready to run. Try typing "hla -?" at the
command line prompt and verify that you get the HLA help message. If not, go back-and fig
ure out what you've done wrong up to this point (it doesn’t hurt to start over from the begin
ning if you're lost).

* Thus far, you've verified that HLA.EXE is operational. Now try the following command:
"ML /?"  This should run the Microsoft Macro Assembler (MASM) and display the help
screen. You can ignore the information that appears; you will probably never need to know
this stuff.

* Next, let’s verify the correct operation of the linker. Type "link /?" and verify that the linker
program runs. Again, you can ignore the help screen that appears. You don’t need to know
about this stuff.

* Nowit's time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. Here’s the canonical "Hello World" program written in HLA (we
will revisit this program a little later in this chapter, don’t worry about what it means just yet).
Enter it into a text editor and save it using the filename "HW.HLA":

program Hel | oVr | d;
#incl ude( "stdlib.hhf" )
begi n Hel | oVWorl d;
stdout.put( "Hello, Wrld of Assenbly Language", nl );

end Hel | oVorl d;
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* Make sure you're in the same directory containing the HW.HLA file and type the following
command at the "C:>" prompt: "HLA -v HW". The "-v" option tells HLA to produce VER
BOSE output during compilation. This is helpful for determining what went wrong if the sys
tem fails somewhere along the line. This command should produce the following output:

HLA (H gh Level Assenbl er)
Witten by Randall Hyde and rel eased to the public donain.
Version Version 1.32 build 4904 (prototype)

Files:
1. hwhla

Conpi ling "hw hla" to "hw asnt
Assenbling hwasmvia "m /c /coff /C hw asn¥

M crosoft (R Macro Assenbl er Version 6.14. 8444
Copyright (C Mcrosoft Corp 1981-1997. Al rights reserved.

Assenbl i ng: hw. asm
Linking via "link -subsystem consol e /heap: 0x1000000, 0x1000000
/ st ack: 0x1000000, 0x1000000 / BASE: 0x3000000 / machi ne: 1 X86 -entry: ?HLAMVEi n @w. | i nk
-out: hw exe kernel 32.1ib user32.1ib c:\hla\hlalib\hlalib.lib hw obj"
Mcrosoft (R Increnental Linker Version 5.12.8078
Copyright (C Mcrosoft Corp 1992-1998. Al rights reserved.

/section:.text, ER

/ section: readonly, R
/section:.edata, R

/ section:.data, RW

/ section:.bss, RW

e If you get all of this output, you're in business. You can run the “HW” program using the fol
lowing CLI (command line interpreter) command:

HW

* One thing to remember is that unless you set the environment variables permanently in the Sys
tem control panel, you will have to run the IHLA.BAT file every time you open up a nhew com
mand prompt window. Since this is a pain, here are some instructions I've taken from the
Internet that describe how to set up the environment variab@sTHIS AT YOUR OWN
RISK)

1) Open System Properties (Winkey-Break is a convenient shortcut) and go to Advanced tab, then
Environment Variables. Add "c:\hla" to the Path in SYSTEM VARIABLES, not in "User variables
for <your win2k login name>". Click OK, but keep the Environment Variables window open, we're

not done.
2) Look at the contents of ihla.bat (ABOVE):
3) In "User Variables for <your login name>", you must end up with each of these settings. For exam

ple, to create hlainc, you click the "New..." button, type "hlainc" as the name of the variable, and
type "c:\hla\include" as the Variable value (all without quotes of course). If there is already a path
set, and it already has some value, add this immediately to the end: ";c:\hla;%path%" and that will
preserve your existing User and System paths as well as adding c:\hla.
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For example, suppose you opened up your User Variables for <login name> and it already said
"C:\Private

Files\PantiePix;c:\winnt\system32;c:\winnt;c:\winnt\System32\Wbem;d:\lcc\bin;D:\PROGRA~1\U
LTRAE~1;D:\4NT300;C:\msoffice\Office;c:/hla",

you would click on Edit and type "C:\Private Files\PantiePix;c:\hla;%path%"

(Same advice for preserving existing lib and include settings)

4) Once you reboot the computer, you should be all set for "Hello world of assembly language"!
(without having to run the IHLA.BAT file.)

Installing HLA is a complex and slightly involved process. Unfortunately, this is necessary because |
don’'t have the rights to distribute MASM, LINK, and other Microsoft files. Fortunately, HUTCH has col-
lected all of these files together so they are easy to download. If you are concerned about possible legal
issues with the download, you may legally download MASM and LINK from Microsoft's site. A link on
Webster (at the URL above) describes how to do this. At the time this was being written, work was progress-
ing on HLA to produce TASM compatible output and plans were in the works to produce NASM and Gas
versions as well. However, you will still have to obtain the Microsoft library files from some source if you
intend to produce a Win32 application. Versions of HLA may appear for other Operating Systems as well.
Check out Webster to see if any progress has been made in this direction.

The most common two problems people have running HLA involve the location of the Win32 library
files and the choice of linker. During the linking phase, HLA (well, link.exe actually) requires the
kernel32.lib, user32.lib, and gdi32.lib library files. These must be present in the pathname(s) specified by
the LIB environment variable. If, during the linker phase, HLA complains about missing object modules,
make sure that the LIB path specifies the directory containing these files. If you're a MS VC++ user, instal-
lation of VC++ should have set up the LIB path for you. If not, then locate these files (they are part of the
MASMS32 distribution) and copy them to the HLA\HLALIB directory (note that the ihla.bat file includes
c:\hla\hlalib as part of the LIB path).

Another common problem with running HLA is the use of the wrong link.exe program. Microsoft has
distributed several different versions of link.exe; in particular, there are 16-bit linkers and 32-bit linkers.
You must use a 32-bit segmented linker with HLA. If you get complaints about "stack size exceeded" or
other errors during the linker phase, this is a good indication that you're using a 16-bit version of the linker.
Obtain and use a 32-bit version and things will work. Don't forget that the 32-bit linker must appear in the
execution path (specified by the PATH environment variable) before the 16-bit linker.

222

Installation Under Linux

HLA is not a stand alone program. It is a compiler that translates HLA source code wvarkevel
assembly language? separate assemblauch as Gas (as), then completes the processing ofvthlisviel
intermediate code to produce an object colde fFinally you must link the object code output from the
assembler using a liek program. Typically you will link the object code produced by one or more HLA
source fies with theHLA Standard Library (hlalita). Most of this actity takes place transparently when
ever you ask HLA to compile your HLA sourcéefis). Havever, for the whole process to run smoothlgu
must hae installed HLA and all the supportes correctly This section will discuss loto set up HLA on
your system.

First, you will need an HLA distriltion for Linux. The latest grsion of HLA is alvays &ailable on
Webster at http://webstes.ucredu. You should go there and wnoload the latestersion if you do not
already possess it.

As noted earlierHLA is not a stand alone assembl&he HLA package contains the HLA compjler
the HLA Standard Libraryand a set of includeldis for the HLA Standard Librarylf you write an HLA
program with just this code, HLA will produce an "ASMefand then stopTo produce anxecutable fe
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you will need GNUS as and Id programs (these come with lainux distritution that supports compiling
C/C++ programs). Note that HLA onlyorks with Gas v2.10 or latefThe Gas assembler is part of the
Binutils package. If you dohhave version 2.10 or latedovnload an appropriate binutils package from the
internet. HLA will generate errors when it attempts to assemble its output vieogation of the as (Gas)
executable if you do’have Gas v2.10 or later installed in your system.

Here are the steps | went through to install HLA on my Linux system:

First, if you haven't already done so, download the HLA executables file from Webster at
http://webster.cs.ucr.edu. On Webster you can download several different ZIP files associated
with HLA from the HLA download page. The "Linux Executables" is the only one you'll
absolutely need; however, you'll probably want to grab the documentation and examples files
as well. If you're curious, or you want some more example code, you can download the source
listings to the HLA Standard Library. If you'really curious (or masochistic), you can dewn
load the HLA compiler source listings to (thisniat for casual browsing!).
| downloaded the HLA1_39.tar.gz file while writing this. Most likely, there is a much later
version available as you're reading this. Be sure to get the latest version. | chose to download
this file to my root directory; you can put the file whereever you like, though this documenta
tion assumes that all HLA files wind up in the "/usr/hla/..." directory tree. If you do not already
have a “/usr/hla” subdirectory, you can create one with the “mkdir” command (it's best to do
this using the “root” or “superuser” account; if you do not have superuser priviledges, you
should have your system administrator do this for you.
After downloading HLA1 39.tar.gz to my root directory, | executed the following shel com
mand: "gzip -d HLA1_39.tar.gz". Once decompression was complete, | extracted the individ
ual files using the command "tar xvf HLA1_39.tar". This extracted a couple of executable files
("hla" and "hlaparse™) along with two subdirectories (include and hlalib). The HLA program
is a "shell" program that runs the HLA compiler (hlaparse), Gas (as), the linker (Id), and other
programs. You can think of “hla” as the "HLA Compiler". It would be a real good idea, at this
point, to set the permissions on "hla" and "hlaparse" so that everyone can read and execute
them. You should also set read and execute permissions on the two subdirectories and read
permissions on all the files within the directories (if this isn’t the default state). Do a "man
chmod" from the Linux command-line if you don’t know how to change permissions.
Next, (logged in as a plain user rather than root or the super-user), | edited the ".bashrc" file in
my home directory (“/home/rhyde" in my particular case, this will probably be different for
you). | found the line that defined the "path" variable, it originally looked like this on my sys
tem

"PATH=$DBROOT/bin:$DBROOT/pgm:$PATH"
| edited this line to add the path to the HLA directory, producing the following:

"PATH=$DBROOT/bin:$DBROOT/pgm:/usr/hla:$PATH"
Without this modification, Linux will probably not find HLA when you attempt to execute it
unless you type a full path (e.g., "/usr/hla/hla") when running the program. Since this is a pain,
you'll definitely want to add "/usr/hla" to your path.
Next, | added the following four lines to ".bashrc" (note that Linux filenames beginning with a
period don’t normally show up in directory listings unless you supply the "-a" option to Is):

hlalib=/usr/hla/hlalib/hlalib.a

export hlalib

hlainc=/usr/hla/include

export hlainc
These four lines define (and export) environment variables that HLA needs during compilation.
Without these environment variables, HLA will probably complain about not being able to find
include files, or the linker (Id) will complain about strange undefined symbols when you
attempt to compile your programs.

After saving the ".bashrc" shell, you can tell Linux to make the changes to the system by using
the command:

source .bashrc
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Note: this discussion only applies to users who run the BASH shell. If you are using a different
shell (like the C-Shell or the Korn Shell), then the directions for setting the path and environ
ment variables differs slightly. Please see the documentation for your particular shell if you
don’t know how to do this. Also note that Linux does not normally display files whose name
begins with a period when you use the “Is” command; to see such files, use the “Is -a” shell
command.

e At this point, HLA should be properly installed and ready to run. Try typing "hla -?" at the
command line prompt and verify that you get the HLA help message. If not, go back-and fig
ure out what you've done wrong up to this point (it doesn'’t hurt to start over from the begin
ning if you're lost).

* Now it's time to try your hand at writing an honest to goodness HLA program and verify that
the whole system is working. Here’s the canonical "Hello World" program written in HLA
(we'll discuss this program in detail a little later in this chapter). Enter it into a text editor and
save it using the filename "hw.hla":

program Hel | oVWr | d;
#incl ude( "stdlib.hhf" )
begi n Hel | oWorl d;

stdout. put( "Hello, Wrld of Assenbly Language", nl );
end Hel | oVorl d;

* Make sure you're in the same directory containing the "hw.hla" file and type the following
command at the prompt: "hla -v hw". The "-v" option tells HLA to produce VERBOSE output
during compilation. This is helpful for determining what went wrong if the system fails some
where along the line. This command should produce the following output:

H.A (H gh Level Assenbler) Parser

Witten by Randall Hyde and rel eased to the public donain.
Version Version 1.39 build 6845 (prototype)

-t active

File: t.hla

Conpiling "t.hla" to "t.asnm

H.LA (H gh Level Assenbler)

Copyright 1999, by Randall Hyde, all rights reserved.
Version Version 1.39 build 6845 (prototype)

ELF out put

Usi ng GAS assenbl er

GAS out put

-test active

Files:
1. t.hla

Conpiling "t.hla" to 't.asm
using command |ine [hlaparse -v -sg -test "t.hla"]

Assenbling "t.asmf via[as -ot.o "t.asni]
Linking via [Id -0 "t" "t.o" "/usr/hla/hlalib/hlalib.a"]

Installing HLA is a compbe and slightly ivolved process; though talheart, it§ a lot simpler to install
HLA under Linux thanwindows! (See the prgous section if you need proof.Yersions of HLA may
appear for other operating systemsy(ie Windows and Linux) as well. Check oWebster to see if gn
progress has been made in this direction. Notrauwnique thing about HLA: Carefully written (console)
applications will compile and run on all supported operating systems without chiriges unheard of for
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assembly language! So if you are using multiple operating systems supported by HUAprpdably
want to devnload fles for all supported OSes.

Note: to run the Hellowd program, a Linux userauld type “hw” (or possibly “./hw”) at the com
mand line prompt.

2.2.3

Pagel8

Installing “Art of Assembly” Related Files

Although HLA is relatvely flexible about where you put it on your system, thid ssssumes youé
installed HLA in the “hla” directory on your C: &8 under aVin32 operating system or in “/usr/hla” under
Linux. This text also assumes the standard directory placement for the Hdsiiihich has the folleing
layout

HLA directory

. AoA directory

. Doc directory

. Examples directory
. hlalib directory

. hlalibsrc directory

. include directory

. Tests directory

The “Art of Assembly” (AoA) software distribution has the following directory tree structure:
* AOA directory

. volumel

. ch01 directory
. ch02 directory
. etc.

. volume2

. ch01 directory
. ch02 directory
. etc.

. etc.

The mainHLA directory contains thexecutable code for the compilérhis consists of tw files,
HLA.EXE/hla and HLARRRSE.EXE/hlaparse (Wdows/Linux). These tvo programs must be in the eur
rent ececution path in order to run the compilédnderwWindows, it wouldn't hurt to put the mbee, ml.err
link.exe, mspdbXO0.dll (x=5, 6, or greater), and msvcrt.disfiin this directory as well. Under Linux, the
“as” and “ld” programs are already in theeeution path, assuming your Linux system supports C/C++
development.

TheDocdirectory contains reference material for HLA in PDF and HTML formats. If yea haop
of AdobeAcrobat Readeryou will probably vant to read the PDFevsions since tlyeare much nicer than
the HTML versions.These documents contain the most up-to-date information about the HLA language;
you should consult them if youV®a question about the HLA language or the HLA Standard LikGaamy
erally, material in this documentation supersedes information appearing irxttsste the HLA document
is electronic and is probably more up to date.

The Exampledirectory contains a lge set of HLA programs that demonstradeious features in the
HLA language. If you hae a question about an HLA feature, you can probabty dn &ample program
that demonstrates that feature in Exeamplesdirectory Such &amples proide invaluable insight that is
often superior to a written description of the feature. Note that some of these programs may becpecifi
Windows or Linux, not all will compile and run under either operating system.
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Thehlalib directory contains the object code for the HLA Standard Libfaryou become more com
petent with HLA, you may @ant to tale a look at ha HLA implements @rious library functions by cheek
ing out the library source code in thialibsrc subdirectory

Theincludedirectory contains the HLA Standard Library includediThese speciallés (that end with
a “.hhf" sufiix, for “HLA Header File”) are needed during assembly to/jgi® prototype and other informa
tion to your programThe example programs in this chapter all include the HLA heatietdidlib.hhf” that,
in turn, includes all the other HLA headdeéi in the standard library

The Testsdirectory contains arious test fes that test the correct operation of the HLA system. HLA
includes these s as part of the distution package because yhprovide additional gamples of HLA
coding.

TheAoAdirectory contains the code speciid this t&tbook.This directory contains all the source code
to the (complete) programs appearing in this. tik also contains the programs appearing in the Laboratory
Exercises section of each chapiénerefore, this directory isevy important to you.Within this subdirec
tory, the information is further dided up by wlume and chaptefThe material for Chapter One appears in
the “ch01” subdirectory of the tlumel” directory in thé&oA directory tree, the material for Chapievo
appears in the “ch02” subdirectory of theliwmel” directoryetc..

2.3  The Anatomy of an HLA Program

An HLA program typically taks the follaving form:

program.pgn D ; The declarations section
is where you declare constants,

Decl ar ati ons — types, variables, procedures, and
other olpects in an HLAprogram.

These identifiers
specify the name
of the program.
They must all be
the same identifier

The Statements section is where
you place the executable statements
for your main program.

St at enent s

end [pgnm D ;

PROGRAM, BEGIN, and END are HLA reserved words that delineate the program. Note the
placement of the semicolons in this program.

Figure 2.1 Basic HLA Program Layout

The pgmIDin the template abe is a usedefined program identir. You must pick an appropriate,
descriptve, name for your program. In particylpgmIDwould be a horrible choice for ameal program. If
you are writing programs as part of a course assignment, your instructor will proba&yypgithe name to
use for your main program. If you are writing yowroHLA program, you will hee to choose this hame.

Identifiers in HLA are ery similar to identifers in most high lesl languages. HLA identdrs may
begin with an underscore or an alphabetic charaated may be follwed by zero or more alphanumeric or
underscore characters. HlsAdentifers arecase neutl. This means that the idenéfs are case senséi
insofar as you must aiays spell an identdér exactly the same &y in your program (e&n with respect to
upper and laver case). Haever, unlike other case sensi languages, Ik C/C++, you may not declaredw
identifiers in the program whose naméd@tié only by the case of alphabetic characters appearing in an iden
tifier. Case neutrality enforces the good programming styleaayal spelling your namesactly the same
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way (with respect to case) andvae declaring tw identifiers whose only diérence is the case of certain
alphabetic characters.

A traditional frst program people write, popularized by K&RThe C Programming Language” is the
“Hello World” program.This program mads an gcellent concretexample for someone who is learning a
new language. Herg'what the “HelldNorld” program looks like in HLA:

program hel | oVr | d;
#include( “stdlib.hhf” );

begi n hel | oWorl d;
stdout.put( “Hello, Wrld of Assenbly Language”, nl );

end hel | oWirl d;

Program 2.1  The Hello World Program

The#include statement in this program tells the HLA compiler to include a set of declarations from the
stdlib.hhf (standard libratyHLA Header File)Among other things, thislé& contains the declaration of the
stdout.putcode that this program uses.

The stdout.putstatement is the “print” statement for the HLA languageu use it to write data to the
standard output dé&e (generally the consol€lo aryone familiar with I/O statements in a highvéd lan
guage, it should be glous that this statement prints the phrase “H&llorld of Assembly LanguageThe
nl appearing at the end of this statement is a constant, alsedlii ‘stdlib.hhf”, that corresponds to the
newline sequence.

Note that semicolons folothe program, BEGINstdout.putand END statemeri'tsTechnicaIIy speak
ing, a semicolon is not necessary after the #INCLUDE statement. It is possible to create ilesluldat fi
generate an error if a semicolon fel®the #INCLUDE statement, so you maginw to get in the habit of
not putting a semicolon here (notewmwer, that the HLA standard library includée alvays allav a sen
colon after the corresponding #INCLUDE statement).

The #INCLUDE is your fist introduction to HLA declaration¥he #INCLUDE itself isrt actually a
declaration, bt it does tell the HLA compiler to substitute thle fistdlib.hhf” in place of the #INCLUDE
directive, thus inserting seral declarations at this point in your program. Most HLA programs you will
write will need to include at least some of the HLA Standard Library heddsr(fstdlibhhf” actually
includes all the standard library defions into your program; for morefifient compiles, you might ant
to be more selecste about which fes you includeYou will see hav to do this in a later chapter).

Compiling this program producescansoleapplication Running this program in a command windo
prints the speciéid string and then control returns back to the command line interpresée(lon Unix ter
minology).

Note that HLA is a free-format languagéerefore, you may split statement across multiple lines (just
like high level languages) if this helps to nekour programs more readableor Example, thestdout.put
statement in the Hellowvld program could also be written as falk

st dout . put

(
“Hell o, World of Assenbly Language”,
nl

)

1. Technically, from a language design point of view, these are not all statements. However, this chapter will not make that
distinction.
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Another item verth noting, since yolil'see it cropping up inxample code throughout thiscteis that
HLA automatically concatenatesyaadjacent string constants ihdis in your sourcelé. Therefore, the
statement abe is also equalent to:

st dout . put

(
“Hello, *

“Worl d of Assenbly Language”,
nl

)

Indeed, “nl” (the neline) is really nothing more than a string constant, so (technically) the comma
between thal and the preceding string ismiecessaryYou'll often see the abe written as:

stdout.put( “Hello, Wrld of Assenbly Language” nl );

Notice the lack of a comma between the string constant and nl; this turns out to be pegtddtiyHeA,

though it only applies to certain symbol string constants; you may not, in general, drop the comma. The
chapter on Strings, later in this text, will explain in detail how this works. This discussion appears here
because you'll probably see this “trick” employed by sample code prior to the formal discussion inthe chap

ter on Strings.

2.4  Some Basic HLA Data Declarations

HLA provides a wide ariety of constant, type, and data declaration statements. Later chapters will
cover the declaration section in more detail i's important to kne how to declare a & simple \ariables
in an HLA program.

HLA predefines three diérent signed inger typesint8, int16, andint32, corresponding to eight-bit
(one byte) signed ingers, 16-bit (tw byte) signed intgers, and 32-bit (four byte) signed igées respec
tivelyz. Typical variable declarations occur in the Hlistatic variable sectiorA typical set of ariable dee
larations taks the folleving form

"static" is the keyword that begins

stati c _ the variable declaration section.
8 i16. and i32 18: int8; o .
I, 116, and | i 16° i nt 16: —int8, int16, and int32 are the names
?ﬁg ;[/gerigt?lrgsezo i 32: b nt 323 of the data types for each declaration

declare here.

Figure 2.2 Static Variable Declarations

Those who areamiliar with the Rscal language should be comfortable with this declaration syntax.
This example demonstratesWwdo declare three separate g#es,i8, i16,andi32. Of course, in a real pro
gram you should useaviable names that are a little more desargptVhile names lik “i8” and “i32”
describe the type of the object, yrao not describe &' purposeVariable names should describe the purpose
of the object.

In the SRATIC declaration sectigryou can also ge a \ariable an initial glue that the operating system
will assign to the ariable when it loads the program into memadilye folloving figure demonstrates the
syntax for this:

2. A discussion of bits and bytes will appear in the next chapter if you are unfamiliar with these terms.
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static
i8 int8 - 8 The operand after the constant
Lo -1 assignment operator must be
116: intl6 := 1600; a constant whose type is
The constant assignment 132: int32 := -320000; compatible with the variable

operator, ":=" tells HLA / you are initializing
that you wish to initialize

the specified variable with
an initial value.

Figure 2.3 Static Variable Initialization

It is important to realize that themression follaing the assignment operator (“:=") must be a constant
expressionYou cannot assign thelues of other ariables within a SATIC variable declaration.

Those &miliar with other high leel languages (especiallyagtal) should note that you may only
declare one ariable per statemerithat is, HLA does not all®@ a comma delimited list ofariable names
followed by a colon and a type idergifiEach wariable declaration consists of a single idestifa colon, a
type ID, and a semicolon.

Here is a simple HLA program that demonstrates the usariafioles within an HLA program:

Pr ogr am DenoVar s;
#include( “stdlib.hhf” );

static
| ni t Deno: int32 .= 5;
Not I nitialized: int32;
begi n DenoVars;
// Display the value of the pre-initialized variabl e:
stdout.put( “InitDeno’s value is “, InitDermo, nl );
I/ Input an integer value fromthe user and display that val ue:
stdout.put( “Enter an integer value: “ );
stdin.get( Notlnitialized);

stdout.put( “You entered: “, Notlnitialized, nl );

end DenoVars;

Program 2.2  Variable Declaration and Use

In addition to SATIC variable declarations, thisample introduces threeweconcepts. First, thetd
out.putstatement allws multiple parameters. If you specify an gee \alue, stdout.putwill convert that
value to the string representation of thatgetés value on outputThe second e feature this sample pro
gram introduces is th&din.get statementThis statement reads alue from the standard inputwee (usu
ally the leyboard), cowmerts the walue to an intger, and stores the irger \alue into theNotlnitialized
variable. Finallythis program also introduces the syntax for (one form of) HLA comniBmesHLA com
piler ignores all tet from the “//” sequence to the end of the current liffease &miliar with C++ and Del
phi should recognize these comments.
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2.5

Boolean Values

HLA and the HLA Standard Library pvaes limited support for boolean object¥ou can declare
boolean wriables, use boolean literal constants, use bookegables in booleanxgressions (e.g., in an IF
statement), and you can print tredues of booleanariables.

Boolean literal constants consist of th@fredefned identiferstrue andfalse. Internally HLA repre
sents the alue true using the numerialue one; HLA represental§e using thealue zero. Most programs
treat zero asalse and aything else as true, so HLArepresentations forue andfalseshould pree sufi-
cient.

To declare a boolearasiable, you use thgooleandata type. HLA uses a single byte (the least amount
of memory it can allocate) to represent boolealnes. The follonving example demonstrates some typical
declarations:

static

Bool Var : bool ean;

Hasd ass: bool ean : = fal se;
Isdear: bool ean : = true;

As you can see in thixample, you may declare initialized as well as uninitialized variables.

Since boolean variables are byte objects, you can manipulate them using eight-bit registers and any
instructions that operate directly on eight-bit values. Furthermore, as long as you ensure that your boolean
variables only contain zero and one (for false and true, respectively), you can use the 80x86 AND, OR,
XOR, and NOT instructions to manipulate these boolean values (we’ll describe these instructions a little
later).

You can print boolean values by making a call tostheut.putroutine, e.g.,
stdout. put ( Bool Var )
This routine prints the % “true” or “false” depending upon the value of the boolean parameter ( zero is

false, anything else is true). Note that the HLA Standard Library does not allow you to read boolean values
via stdin.get

2.6

Character Values

HLA lets you declare one-by#®&SCIl character objects using tlekar data type You may initialize
character ariables with a literal charactealue by surrounding the character with a pair of apostrophes
The folloving example demonstratesWwdo declare and initialize charactariables in HLA:

static
c: char;
LetterA char := ‘A

You can print character variables using stabout.putroutine. We'll return to the subject of character-con
stants a little later.

2.7

An Introduction to the Intel 80x86 CPU Family

Thus fr, youve seen a couple of HLA programs that will actually compile and ruwelés, all the
statements utilized to this pointieabeen either data declarations or calls to HLA Standard Library routines.
There hasit’been ap real assembly language up to this point. Before we can progregarémer and learn
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some real assembly language, a detour is necebsannless you understand the basic structure of the Intel
80x86 CPU amily, the machine instructions will seem mysterious indeed.

The Intel CPU &mily is generally classéd as avon NeumanrArchitectue Madine Von Neumann
computer systems contain three matilding blocks: thecentral processing unif{CPU), memory and
input/output deices(lI/O). These three components are connected together usisgstieen bs. The follow-
ing block diagram shws this relationship:

I1/0O Devices

Figure 2.4 Von Neumann Computer System Block Diagram

Memory and 1/0 déces will be the subjects of later chapters; fownlet’s tale a look inside the CPU
portion of the computer system, at least at the components that are visible to the assembly language pro
grammer

The most prominent items within the CPU arertiggisters.The Intel CPU rgisters can be brek davn
into four catgories:general purpose gésters, special purpose application accessilglisters, sgment rg-
isters, and special purposerkel mode rgistersThis tect will not consider the last twsets of rgistersThe
segment rgisters are not used much in modern 32-bit operating systema\edawvs, BeOS, and Linux);
since this tet is geared around programs written for 32-bit operating systems, there is little need to discuss
the sgment rgisters.The special purposesknel mode rgisters are intended for use by people who write
operating systems, detygers, and other systenvéé tools. Such softare construction is well lgend the
scope of this ta, so once agjn there is little need to discuss the special purpeseekmode rgisters.

The 80x86 (Intel dmily) CPUs pruide seeral general purposegisters for application us@hese
include eight 32-bit misters that hae the follaving names

EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP

The “E” prefix on each name stands éatended This prefix differentiates the 32-bit registers from the eight
16-bit registers that have the following names:

AX, BX, CX, DX, SI, DI, BP, and SP
Finally, the 80x86 CPUs provide eight 8-bit registers that have the following names:
AL, AH, BL, BH, CL, CH, DL, and DH

Unfortunately, these are not all separate registers. That is, the 80x86 does not provide 24 independent
registers. Instead, the 80x86 overlays the 32-bit registers with the 16-bit registers and it overlays the 16-bit
registers with the 8-bit registers. The following diagram shows this relationship:
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Si

M
im

EBX B% EDI

ECX

CX

EDX ESP

DX

Figure 2.5 80x86 (Intel CPU) General Purpose Registers

H

The most important thing to note about the general purpgssees is that theare not independent.
Modifying one rgister will modify at least one othergister and may modify as maas three other gis-
ters. or example, modiftation of the EAX rgister may ery well modify theAL, AH, andAX registers as
well. This fact cannot bew@remphasized heré.very common mistakin programs written by gening
assembly language programmers @ister \alue corruption because the programmer did not fully under
stand the rami€ations of the abe diagram.

The EFLAGS rayister is a 32-bit igister that encapsulatessseal single-bit boolean (truafse) alues.
Most of the bits in the EFL&s reayister are either resezd for kernel mode (operating system) functions, or
are of little interest to the application programnigight of these bitsof flags) are of interest to application
programmers writing assembly language prografhese are theverflow, direction, interrupt disabfe
sign, zero, auxiliary carryarity, and carry figs.The folloving diagram shes their layout within the loer
16-bits of the EFLA&S ragister

3. Application programs cannot modify the interrupt flag, but we’ll look at this flag later in this text, hence the discussion of
this flag here.
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15 0

Overflow

Direction Not very

Interrupt interesting to
application
programmers

Sign

Zero

Auxiliary Carry

Parity

Carry

Figure 2.6 Layout of the FLAGS Register (Lower 16 bits of EFLAGS)

Of the eight fhgs that are usable by application programmers, fags fin particular arexaemely
valuable: theoverflow, carry, sign, andzero fags. Collectiely, we will call these four #igs thecondition
codeé. The state of theseafljs (booleanariables) will let you test the results of yieis computations and
allow you to malke decisions in your programsor~example, after comparing twalues, the state of the
condition code #gs will tell you if one &lue is less than, equal to, or greater than a se@bne. Vhe 80x86
CPUs preide special machine instructions that let you test #gsflalone or inarious combinations.

The last rgister of interest is th&IP (instruction pointer) gaster This 32-bit rgister contains the
memory addessof the n&t machine instruction toxecute.Although you will manipulate this gister
directly in your programs, the instructions that modify @ue treat this gister as an implicit operand.
Therefore, you will not need to remember much about thister since the 80x86 instruction sdeefively
hides it from you.

One importantdct that comes as a surprise to those just learning assembly language is that almost all
calculations on the 80x86 CPU mustadlve a rgister For example, to add tev (memory) wariables
togethey storing the sum into a third location, you must load one of the memory operands gisbes aeld
the second operand to thalwe in the rgister and then store thegister avay in the destination memory
location. Reisters are aniddlemanin nearly &ery calculationTherefore, rgisters are @ry important in
80x86 assembly language programs.

Another thing you should bevare of is that although the general purpogésters hae the name “gen
eral purpose” you should not infer that you can useregister for ay purposeThe SP/ESP gister for
example, has aery special purpose (@'thestak pointe)) that efectively prevents you from using it for gn
other purpose. Lidwise, the BP/EBP gister has a special purpose that limits its usefulness as a general
purpose rgister All the 80x86 rgisters hge their avn special purposes that limit their use in certain-con
texts. For the time being, you should simplycéd the use of the ESP and EBRisters for generic calcula
tions and kep in mind that the remainingisters are not completely interchangeable in your programs.

2.8 Some Basic Machine Instructions

The 80x86 CPUs prxide just wer a hundred to mgnthousands of diérent machine instructions,
depending on he you defne a machine instruction. En at the lov end of the count (greater than 100), it
appears as though there aaetbo mag machine instructions to learn in a short period of tinegtunately

4. Technically the parity flag is also a condition code, but we will not use that flag in this text.
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you dont need to knw all the machine instructions. ladt, most assembly language programs probably use
around 30 dferent machine instructionsindeed, you can certainly writeveeal meaningful programs with
only a small handful of machine instructiofifie purpose of this section is to pide a small handful of
machine instructions so you can start writing simple HLA assembly language programwaight a

Without question, th&#1OV instruction is the most often-used assembly language statement. In a typical
program, apwhere from 25-40% of the instructions are typically WlDstructions As its name suggests,
this instruction mees data from one location to anofhdihe HLA syntax for this instruction is

mov( source_operandlestination_operany

Thesouice_opeandcan be a mgister a memory @riable, or a constanthe destination_opend may
be a rgister or a memoryariable.Technically the 80x86 instruction set does notvaltmth operands to be
memory \ariables; HLA, haever, will automatically translate a M@Qinstruction with two 16- or 32-bit
memory operands into a pair of instructions that willycthe data from one location to anothi@ra high
level language lik Rascal or C/C++, the M@instruction is roughly equalent to the follwing assignment
statement:

destination_opend = souce_opeand ;

Perhaps the major restriction on the WiDstructions operands is that thenust both be the same size.
That is, you can me data between tweight-bit objects, between vl 6-bit objects, or between dvd2-bit
objects; you may not, n@ver, mix the sizes of the operand#$e following table lists all the al combina
tions:

Table 1: Legal 80x86 MOV Instruction Operands

Source Destination
Regg® Regg
Regg Memg
Memg Regg

constarit Regg
constant Memg

Regse Regse
Regs6 Memy g

Memyg Regse

constant Reyi6
constant Memyg

Regs; Regs,

5. Different programs may use a different set of 30 instructions, but few programs use more than 30 distinct instructions.
6. Technically, MOV actually copies data from one location to another. It does not destroy the original data in the source
operand. Perhaps a better name for this instruction should have been COPY. Alas, it’s too late to change it now.
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Table 1: Legal 80x86 MOV Instruction Operands

Regs; Memg,
Memg, Regs;
constant Regs,
constant Memg,

a. The suffix denotes the size of the register or memory location.
b. The constant must be small enough to fit in the specified destination
operand

You should study this table carefulMost of the general purpose 80x86 instructions use this same syn
tax. Note that in addition to the forms abpthe HLA MO/ instruction lets you specify wvmemory oper
ands as the source and destinationwvéter, this special translation that HLA pides only applies to the
MOV instruction; it does not generalize to the other instructions.

The 80x86ADD and SUB instructions let you add and subtract teperandsTheir syntax is nearly
identical to the M instruction:

add(source_operandestination_operangt
sub(source_operandiestination_operanjt

The ADD and SUB operands must take the same form as the MOV instruction, listed in the talfle above
The ADD instruction does the following:

destination_opend= destination_operand + source_operand
destination_opend += source_operand// For those who prefer C syntax
Similarly, the SUB instruction does the calculation:
destination_opend= destination_operand - source_opergnd
destination_opemnd = source_operang // For C fans.

With nothing more than these three instructions, plus the HLA control structures that the next section dis
cusses, you can actually write some sophisticated programs. Here’s a sample HLA program that demon
strates these three instructions:

pr ogr am DenoMVaddSUB;

#include( “stdlib.hhf” );

static
i 8: int8 = -8;
i 16: intl6 = -16;
i 32: int32 = -32;

begi n DenoMOvaddSUB;

[l First, print the initial values
/1 of our variabl es.

st dout . put
(

nl,

7. Remembertthough, that ADD and SUB do not support memory-to-memory operations.

Page28

© 2001, By Randall Hyde Beta Draft - Do not distribute



Hello, World of Assembly Language

“Initialized values: i8=", i8,
‘. i1e=", 116,
“,132=", 132,

nl

)

// Conpute the absolute val ue of the
/1l three different variables and

[l print the result.

/! Note, since all the nunbers are
I/ negative, we have to negate them
/1 Wsing only the MOV, ADD, and SUB
I/ instruction, we can negate a val ue
/1 by subtracting it fromzero.

nmov( 0, al ); /1 Conpute i8 := -i8;
sub( 18, al );

nov( al, i8);

nmov( 0, ax ); /1 Conpute i16 := -i16;
sub( 116, ax );

nmov( ax, 116 );

nov( 0, eax ); [// Conpute i32 := -i32;

sub( 132, eax );
nov( eax, i32);

/1 Display the absol ute val ues:

st dout . put
(
nl,
“After negation: i8=", i8,
‘. 116=", 116,
‘o 132=", 132,
nl
)

/1 Denonstrate ADD and constant -t o- menory
/'l operations:

add( 32323200, i32);
stdout.put( nl, “After ADD i32=", i32, nl );

end DenoMOVaddSUB;

Program 2.3  Demonstration of MOV, ADD, and SUB Instructions

2.9

Some Basic HLA Control Structures

The MOV, ADD, and SUB instructions, whilealuable, aren’suficient to let you write meaningful pro
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gramsYou will need to complement these instructions with the ability tcendakisions and create loops in
your HLA programs before you can writey#imng other than a trial program. HLA preides sgeral high
level control structures that areery similar to control structures found in higlvde languages. These
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includeIF.THEN..ELSEIF.ELSE.ENDIF, WHILE..ENDWHILE, REPEA..UNTIL, and so on. By learn
ing these statements you will be armed and ready to write some real programs.

Before discussing these highvéd control structures, &' important to point out that these are not real
80x86 assembly language statements. HLA compiles these statements into a sequence of one or more real
assembly language statements for you. Later in thisyteu’ll learn hav HLA compiles the statements and
you'll learn hav to write pure assembly language code that dbese’ them. Haever, you'll need to learn
mary new concepts before you get to that point, solivetick with these high leel language statements for
now since you'e probably alreadyamiliar with statements likthese from youngosure to high kel lan
guages.

Another importantdct to mention is that HLA high level control structures anmgot as high lgel as
they first appearThe purpose behind HL#&high level control structures is to let you start writing assembly
language programs as quickly as possible, not to letwyaid the use of real assembly language altogether
You will soon discwger that these statements/eaome seere restrictions associated with them and you will
quickly outgrav their capabilities (at least the restricted forms appearing in this sedts)s intentional.
Once you reach a certairvé of comfort with HLAs high level control structures and decide you need more
power than thg have to ofer, it's time to m@e on and learn the real 80x86 instructions behind these state
ments.

2.9.1 Boolean Expressions in HLA Statements

Several HLA statements require a boolean (trueatse) epression to control theixecution. Exam
ples include the IPNVHILE, and REPEA..UNTIL statementsThe syntax for these boolearpeessions
represents the greatest limitation of the HLA higleleontrol structures-his is one area where yowanfil-
iarity with a high leel language will wrk aguinst you — yodl want to use the same booleapessions
you use in a high lel language and HLA only supports some basic forms.

HLA boolean a&pressions alays tale the follaving form&:
flag_specification
Iflag_specification
register
Iregister
Boolean_variable
'Boolean_variable
mem_reg relop mem_reg_const
register in LowConst..HiConst
register not in LowConst..HiConst

A flag_specifcationmay be one of the foNeing symbols:

e @c carry: True if the carry is set (1), false if the carry is clear (0).
e (@nc no carry: True if the carry is clear (0), false if the carry is set (1).
e @z zero: True if the zero flag is set, false if it is clear.

e @nz not zero: True if the zero flag is clear, false if it is set.

e @o overflow:  True if the overflow flag is set, false if it is clear.

e (@no no overflow: True if the overflow flag is clear, false if it is set.

e @s sign: True if the sign flag is set, false if it is clear.

e @ns no sign: True if the sign flag is clear, false if it is set.

8. Technically, there are a few more, advanced, forms, but you'll have to wait a few chapters before seeing these additional
formats.
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The use of the dlg values in a boolean expression is somewhat advanced. You will begin to see how to use
these boolean expression operands in the next chapter.

A register operand can be any of the 8-bit, 16-bit, or 32-bit general purpose registers. The expression
evaluates false if the register contains a zero; it evaluates true if the register contains a non-zero value.

If you specify a boolean variable as the expression, the program tests it for zero (false) or non-zero
(true). Since HLA uses the values zero and one to represent false and true, respectively, the test works in an
intuitive fashion. Note that HLA requires that stand-alone variables be oboglean HLA rejects other
data types. If you ant to test some other typeadst zero/not zero, then use the general boobgaression
discussed ne.

The most general form of an HLA booleatpeession has tawvoperands and a relational operaidre
following table lists the gal combinations:

Table 2: Legal Boolean Expressions

Left Relational .
Operand Operator Right Operand
—0or ==
~ MemoryVariable,
MemoryVariable <>ori=
< Reagister
or
<= or
Register S
Constant
>=

Note that both operands cannot be memory operandactniffyou think of the Right Operand as the
source operand and the Left Operand as the destination operand, themdperands must be the same as
those allaved for theADD and SUB instructions.

Also like theADD and SUB instructions, the twoperands must be the same sizet is, thg must
both be eight-bit operands, thenust both be 16-bit operands, orytheust both be 32-bit operands. If the
Right Operand is a constantsitalue must be in the range that is compatible with the Left Operand.

There is one other issue of which you need toviere If the Left Operand is agister and the Right
Operand is a posite constant or anothergister HLA uses amunsignedcomparisonThe net chapter will
discuss the ramifations of this; for the time being, do not compargatiee \values in a rgister aginst a
constant or anothergister You may not get an intuie result.

TheIN andNOT IN operators let you test agister to see if it is within a spe@fl range. & example,
the pression “EAX in 2000..2099"valuates true if thealue in the EAX rgister is between 2000 and
2099 (inclusie). The NOT IN (two words) operator lets you check to see if thkig in a rgister is outside
the specid range. & example, AL not in ‘a’..z”” evaluates true if the character in thk register is not
a lower case alphabetic character

Here are somexamples of Igal boolean gpressions in HLA:
@c
Bool_var
al
ESI
EAX < EBX
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EBX >5
i32<-2
i8>128
al<i8
eax in 1..100
chnotin‘a’’z’

Volume 1

2.9.2 The HLA IF..THEN..ELSEIF..ELSE..ENDIF Statement

The HLA IF statement uses the fallmg syntax:

I f( expression ) then

sequence
of one or
nore statenents

The elseif clause is optional. Zero or more elseif

el seif( expression ) then clauses may appear in an if statement. If more
than one elseif clause appears, all the elseif
clauses must appear before the else clause
sequence / (or before the endif if there is no else clause).
of one or

nore statenents

el se
sequence The el I i tional. At t
e else clause is optional. most one
%r gngt gtr - \ else clause may appear within an if statement
and it must be the last clause before the
endif.
endi f;
Figure 2.7 HLA IF Statement Syntax

The pressions appearing in this statement mugt tade of the forms from the pieus section. If the
associated »@ression is true, the code after fIEN executes, otherwise control transfers to thgtne
ELSEIF or ELSE clause in the statement.

Since the ELSEIF and ELSE clauses are optional, an IF statement cailthéatorm of a single
IF.THEN clause, follwed by a sequence of statements, and a closing ENDIF clhesdolloving is an
example of just such a statement:

if( eax =0) then
stdout.put( “error: NUL value”, nl );

endif;
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If, during program xecution, the xpression ealuates true, then the code betweenTtH&EN and the
ENDIF executes. If thexpression ealuates dlse, then the program skipgeo the code between th&lEN
and the ENDIF

Another common form of the IF statement has a single ELSE clBlusdolloving is an &ample of an
IF statement with an optional ELSE:

if( eaex =0 ) then

stdout. put( “error: NJUL pointer encountered”, nl );
el se

stdout. put( “Pointer is valid’, nl );
endi f;

If the expression ealuates true, the code betweenThEN and the ELSExecutes; otherwise the code
between the ELSE and the ENDIF clausexcates.

You can create sophisticated decision-making logic by incorporating the ELSEIF clause into an IF state
ment. for example, if the CH rgister contains a charactealwe, you can select from a menu of items using
code like the follaving:

if( ch="a ) then

stdout. put( “You selected the ‘@ nenu iteni, nl );
elseif( ch =‘b ) then

stdout. put( “You selected the ‘b’ menu itent, nl );
elseif( ch =*c” ) then

stdout. put( “You selected the ‘¢’ nenu itent, nl );
el se

stdout.put( “Error: illegal menu itemselection”, nl );
endi f;

Although this simple xample doest’demonstrate it, HLA does not require an ELSE clause at the end
of a sequence of ELSEIF clauseswdeer, when making multi-ay decisions, is alvays a good idea to
provide an ELSE clause just in case an error arisesn Ewou think its impossible for the ELSE clause to
execute, just kep in mind that future modifitions to the code could possiblyidl this assertion, so &'a
good idea to hae error reporting statementsilb into your code.

2.9.3 The WHILE..ENDWHILE Statement

TheWHILE statement uses the folling basic syntax:
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The expression in the WHILE
statement has the same
restrictions as the |IF statement.

whi | e( expression ) do
sequence

of one or
nor e statenents

Loop Body

endwhi | e;

Figure 2.8 HLA While Statement Syntax

This statementwaluates the booleaxgression. If it is &lse, control immediately transfers to thstfi
statement follwing the ENDWVHILE clause. If the &lue of the gpression is true, then contrallis through
to the body of the loopfter the loop body xecutes, control transfers back to the top of the loop where the
WHILE statement retests the loop contrgpeession.This process repeats until thepeession ealuates
false.

Note that thaVHILE loop, like its high lgel language siblings, tests for loop termination at the top of
the loop.Therefore, it is quite possible that the statements in the body of the loop wikeamotte (if the
expression is dlse when the coderdt executes theVHILE statement)Also note that the body of the
WHILE loop must, at some point, modify thalwe of the boolearxpression or an infite loop will result.
nov( O, i );
while( i <10 ) do

stdout.put( “i=", i, nl );
add( 1, i );
endwhi | e;

2.9.4 The FOR..ENDFOR Statement

The HLA FOR loop ta&s the folleving general form:
for( Initial_Stnt; Term nation Expression, Post_Body Statenent ) do

<< Loop Body >>
endf or;

This is eqwialent to the follawving WHILE statement;

Initial _Stnt;
whi l e( Term nation_expression ) do

<< | oop_body >>
Post_Body St at enent ;
endwhi | e;

Initial_Stmtcan be ay single HLA/80x86 instruction. Generally this statement initializegester or
memory location (the loop counter) with zero or some other initialev Termination_e&pressionis an
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HLA boolean &pression (same format thatHILE allows). This expression determines whether the loop
body will execute. The Post_Body Statememstecutes at the bottom of the loop (asvehan theWHILE
example abwe). This is a single HLA statement. Usually it is an instructioe ABD that modifes the
value of the loop controlariable.

The following gives a completexample:
for( nov( O, i ); i < 10; add(1, i )) do

stdout.put( “i=", i, nl );

endfor;

/1 The above, rewitten as a while |oop, becores:

nov( O, i );
while( i <10 ) do

stdout.put( “i=", i, nl );
add( 1, i );
endwhi | e;

2.9.5 The REPEAT..UNTIL Statement

The HLA repeat..until statement uses the felitg syntax:

r epeat
sequence
of one or ——— Loop Body

nore statenents

until ( expression );

The expression in the UNTIL
clause has the same
restrictions as the IF statement.

Figure 2.9 HLA Repeat..Until Statement Syntax

The HLA REPEA..UNTIL statement tests for loop termination at the bottom of the [Dogrefore,
the statements in the loop bodyal/s eecute at least once. Upon encountering the UNTIL clause, the pro
gram will evaluate the xgression and repeat the loop if thression isdlse (that is, it repeats whilal$e).
If the expression ealuates true, the control transfers to thet Statement follwing the UNTIL clause.

The following simple &ample demonstrates one use for the RERPEMNTIL statement:

nov( 10, ecx );
r epeat

“

stdout.put( “ecx =*“, ecx, nl );
sub( 1, ecx );

until ( ecx =0 );
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If the loop body will avays eecute at least once, then it is morécéfnt to use a REPHAUNTIL
loop rather than WHILE loop.

2.9.6 The BREAK and BREAKIF Statements

The BREAK and BREAKIF statements pide the ability to prematurelyi from a loop.They use the
following syntax:

br eak;

breaki f ( expression );

The expression in the BREAKIF
statement has the same
restrictions as the IF statement.

Figure 2.10 HLA Break and Breakif Syntax

The BREAK statementx@s the loop that immediately contains the breBke BREAKIF statement
evaluates the booleaxgression and terminates the containing loop if #pression ealuates true.

2.9.7 The FOREVER..ENDFOR Statement

The FOREVER statement uses the fwilog syntax:

f or ever
sequence
of one or ———— Loop Body
nore statenents

endf or ;

Figure 2.11 HLA Forever Loop Syntax

This statement creates an mite loop.You may also use the BREAK and BREAKIF statements along
with FOREVER..ENDFOR to create a loop that tests for loop termination in the middle of the loop. Indeed,
this is probably the most common use of this loop as thenfiolipexample demonstrates:

f orever
stdout. put( “Enter an integer |less than 10: “);
stdin.get( i );
breakif( i < 10 );
stdout. put ( “The val ue needs to be less than 10!", nl );

endfor;
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2.9.8 The TRY..EXCEPTION..ENDTRY Statement

The HLATRY..EXCEPTION..ENDTHR statement prnades \ery paverful exception handlingapabi
ities. The syntax for this statement is the fallog:

try

sequence
of one or
nor e statenents

Statements to test

exception( exceptionlD)

At least one
exception handling
sequence block.
of one or
nore statenents
exception( exceptionlD) Zero or more (optional)
exception handling

of one or
nore statenents

endtry;

Figure 2.12 HLA Try..Except..Endtry Statement Syntax

The TRY..ENDTRY statement protects a block of statements durkeguion. If these statements,
between th@RY clause and therit EXCEPTION clause xecute without incident, control transfers to the
first statement after the ENDYRmmediately after xecuting the last statement in the protected block. If an
error (xception) occurs, then the program interrupts control at the point oktlegten (that is, the pro
gramraisesan ception). Eachyeeption has an unsigned ig& constant associated with it, krmoas the
exception ID. The “excepts.hhf” headerlé in the HLA Standard Library predeés seeral exception IDs,
although you may createwenes for your wn purposesWhen an rception occurs, the system compares
the exception ID aginst the ®lues appearing in each of the one or more EXCEPTION clausesifgjlthe
protected code. If the curremtception ID matches one of the EXCEPTIO&lues, control continues with
the block of statements immediately foliog that EXCEPTIONAfter the exception handling code com
pletes gecution, control transfers to thesti statement follwing the ENDTR.

If an exception occurs and there is no eefiRY..ENDTRY statement, or the agé TRY..ENDTRY
statements do not handle the spedafiception, the program will abort with an error message.

The folloving sample program demonstratesvhio use thelfRY..ENDTRY statement to protect the
program from bad user input:
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r epeat

nov( fal se, Goodl nteger ); /1 Note: Goodlnteger nust be a bool ean var.
try

stdout.put( “Enter an integer: “ );
stdin.get( i );
nov( true, Goodlnteger );

exception( ex.ConversionError );
stdout.put( “Illegal nuneric value, please re-enter”, nl );
exception( ex.Val ueQut & Range );
stdout. put( “Value is out of range, please re-enter”, nl );
endtry;
until ( Goodl nteger );

The REPEA..UNTIL loop repeats this code as long as there is an error during input. Shoulttepn e
tion occur control transfers to the EXCEPTION clauses to see if getsion error (e.g., ilgal characters
in the number) or a numerizerflow occurs. If either of thesexeeptions occurtthen thg print the appropri
ate message and contrall§ out of theTRY..ENDTRY statement and the REPEAUNTIL loop repeats
sinceGoodIntger was neer set to true. If a diérent exception occurs (one that is not handled in this code),
then the program aborts with the spediferror messaae

Please see theXeepts.hhf” headerl& that accompanies the HLA release for a complete list of all the
exception ID codesThe HLA documentation will describe the purpose of each of thesp#on codes.

2.10 Introduction to the HLA Standard Library

There are tw reasons HLA is much easier to learn and use than standard assembly lafige figss.
reason is HLAs high level syntax for declarations and control structuidss HLA feature lgerages your
high level language knweledge, reducing the need to learn arcane syntaxyiafioyou to learn assembly
language more &€iently. The other half of the equation is thikA Standard LibraryThe HLA Standard
Library provides lot of commonly needed, easy to use, assembly language routines that you can call without
having to write this code yourself (oven learn ha to write yourself).This eliminates one of the ar
stumbling blocks manpeople hae when learning assembly language: the need for sophisticated 1/0 and
support code in order to write basic statements. Prior to thenad¥ a standardized assembly language
library, it often took weeks of study before amnassembly language programmer could do as much as print
a string to the displayVith the HLA Standard Librarythis roadblock is remed and you can concentrate
on learning assembly language concepts rather than learnifigviel I/O details that are spedifio a gven
operating system.

A wide variety of library routines is only part of HL#\supportAfter all, assembly language libraries
have been around for quite some tieHLA's Standard Library continues the HLA tradition byyiding
a high lerel language inteafte to these routines. Indeed, the HLA language itsadf aviginally designed
speciftally to allav the creation of a high¥el accessible set of library routifésThis high level interface,

9. An experienced programmer may wonder why this code uses a boolean variable rather than a BREAKIF statement to exit
the REPEAT..UNTIL loop. There are some technical reasons for this that you will learn about later in this text.

10. E.g., the UCR Standard Library for 80x86 Assembly Language Programmers.

11. HLA was created because MASM was insufficient to support the creation of the UCR StdLib v2.0.
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power in an easy to use package.

The HLA Standard Library consists ofveeal modules @anized by catgory. The following table lists

mary of the modules that areailable'Z

Table3: HLA Standard Library Modules

Name Description
args Command line parameter parsing support routines.
conv Various cowersions between strings and othalues.
cset Character set functions.
DateTime Calendardate, and time functions.
excepts Exception handling routines.
fileio File input and output routines
hla Special HLA constants and othexlwes.
Linux Linux system calls (HLA Linux ersion only).
math Transcendental and other mathematical functions.
memory Memory allocation, deallocation, and support code.
misctypes Miscellaneous data types.
patterns The HLA pattern matching library
rand Pseudo-random number generators and support code.
stdin User input routines
stdout Provides user output andwsal other support routines.
stdlib A special include fe that links in all HLA standard library modules.
strings HLA'’s paverful string library
tables Table (associate array) support routines.
win32 Constants used Windows calls (HLAWIN32 \ersion, only)
x86 Constants and other items spexcib the 80x86 CPU.

Later sections of this xeéwill explain maly of these modules in greater detaliis section will concen

trate on the most important routines (at least tpriveng HLA programmers), thetdiolibrary.

12. Since the HLA Standard Library is expanding, this list is probably out of date. Please see the HLA documentation for a

current list of Standard Library modules.
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2.10.1 Predefined Constants in the STDIO Module

Perhaps theft place to start is with a description of some common constants that the STDIO module
defines for you. One constant yoea’'seen already in code appearing in this cha@tarsider the folling
(typical) example:

stdout.put( “Hello World”, nl );

Thenl appearing at the end of this statement standsdwline. The nl identifier is not a special HLA
resened word, nor is it specifi to thestdout.putstatementinstead, it5 simply a predefied constant that
corresponds to the string containing a single linefeed character (the stafadod's end of line sequence).

In addition to thenl constant, the HLA standard 1/O library module de§ seeral other useful charac
ter constantsThey are

e stdio.bell The ASCII bell character. Beeps the speaker when printed.
e stdio.bs The ASCII backspace character.

o stdio.tab The ASCII tab character.

e stdio.eoln A linefeed character (even under Windows).

o stdio.If The ASCII linefeed character.

e stdio.cr The ASCII carriage return character.

Except foml, these characters appear instdionamespace (and, therefore, require the “stgrefix).
The placement of theg€SCII constants within thetdio namespace is to helpad naming conitts with
your avn variablesThenl name does not appear within a namespace because you will eisedften and
typing stdio.nlwould get tiresomeery quickly

2.10.2 Standard In and Standard Out

Many of the HLA I/O routines ha astdin or stdoutprefix. Technically this means that the standard
library defnes these names innamespac’é. In practice, this prefisuggests where the input is coming
from (thestandad inputdevice) or going to (thestandad outputdevice). By deéult, the standard input
device is the systemeyboard. Lilewise, the defult standard output diee is the console displago, in
general, statements thatkatdin or stdoutprefixes will read and write data on the consoleick

When you run a program from the command line wimdor shell), you hae the option ofedirecting
the standard input and/or standard outpwicds.A command line parameter of the form “>oletfiredi-
rects the standard outputuvitee to the speciéid fle (outfie). A command line parameter of the form
“<infile” redirects the standard input so that its data comes from the sgecfut fie (infile). The follow-
ing examples demonstrate Wwao use these parameters when running a program named “testpgm” in the
command winda*

t est pgm <i nput . dat a
t est pgm >out put . t xt
testpgm <in.txt >output.txt

2.10.3 The stdout.newln Routine

Thestdout.n&vIn procedure prints a mdine sequence to the standard outpwiake This is functionally
equialent to saying “stdout.put( nl );” Of course, the calstdout.ngvIn is sometimes a little more com
nient. Example of call:

13. Namespaces will be the subject of a later chapter.
14. Note for Linux users: depending on how your system is set up, you may need to type “./” in front of the program’s name
to actually execute the program, e.g., “./testpgm <input.data”.
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stdout. new n();

2.10.4 The stdout.puti X Routines

The stdout.puti8 stdout.putil6é andstdout.puti32ibrary routines print a single parameter (one byte,
two bytes, or four bytes, respely) as a signed inger \alue.The parameter may be a constant,gister
or a memory &riable, as long as the size of the actual parameter is the same as the size of the formal param
eter

These routines print thealue of their speciid parameter to the standard outpwicke These routines
will print the value using the minimum number of print positions possible. If the numbegasvee these
routines will print a leading minus sign. Here are soraamples of calls to these routines:

stdout. puti 8( 123 );
stdout . puti16( DX );
stdout. puti 32( i32Var );

2.10.5 The stdout.puti XSize Routines

The stdout.puti8Sizestdout.putil6Sizeand stdout.puti32Sizeoutinesoutput signed inger \alues to
the standard output, just ékthestdout.putiXroutines.These routines, haever, provide more control eer
the output; the let you specify the (minimum) number of print positions thkie will require on output.
These routines also let you specify a padding character should the gddridilager than the minimum
needed to display thele.These routines require the folllng parameters:

stdout. puti 8Si ze( Val ue8, width, padchar );
stdout. puti 16Si ze( Val uel6, wi dth, padchar );
stdout. puti 32Si ze( Val ue32, width, padchar );

TheValueXparameter can be a constant,giger or a memory location of the speedisize Thewidth
parameter can be waisigned intger constant that is between -256 and +256; this parameter may be a con
stant, rgister (32-bit), or memory location (32-biflhe paddar parameter should be a single character
value.

Like thestdout.putiXroutines, these routines print the specifialue as a signed irger constant to the
standard output d&ce. These routines, lngever, let you specify théield widthfor the \alue.The field width
is the minimum number of print positions these routines will use when printinglte The width param
eter specifis theminimum field width. If the number wuld require more print positions (e.qg., if you attempt
to print “1234” with a feld width of two), then these routines will print\wvever maly characters are neces
sary to properly display thealue. On the other hand, if tmadth parameter is greater than the number of
character positions required to display th&ue, then these routines will print sonx¢ra padding characters
to ensure that the output has at legisith character positions. If theidth value is ngative, the number is
left justified in the print &Id; if thewidth value is positie, the number is right jusfil in the print &Id.

If the absolute a&lue of thewidth parameter is greater than the minimum number of print positions, then
thesestdout.putiXSizeoutines will print a padding character before or after the nuniiber paddar
parameter specés which character these routines will print. Most of the time yauldwspecify a space as
the pad character; for special cases, you might specify some other ch®actemberthepaddar param
eter is a charactemalue; in HLA character constants are surrounded by apostrophes, not quotation marks.
You may also specify an eight-bigister as this parameter

Here is a short HLA program that demonstrates the use of the puti32Size routine to display aHist of v
ues in tablar form:

pr ogr am Nuns| nCol urms;

Beta Draft - Do not distribute © 2001, By Randall Hyde Page4l



Chapter Two Volume 1
#include( “stdlib.hhf” );
var
i 32: int32;
ColOnt: int8;
begi n Nunsl nCol ums;
mov( 96, 132 );
nmov( 0, ColOnt );
while( 132 >0 ) do
if( Colnt =8 ) then

st dout . new n();
mov( 0, ColOnt );

endi f;
stdout. puti32Size( i32, 5 * ‘);
sub( 1, i32);

add( 1, GolOnt );

endwhi | €;
stdout . new n();

end Nunsl nCol ums;

Program 2.4  Columnar Output Demonstration Using stdio.Puti32Size

2.10.6 The stdout.put Routine

The :stdout.putroutine15 is one of the mostédkible output routines in the standard output library mod
ule. It combines most of the other output routines into a single, easy to use, procedure.

The generic form for thstdout.putroutine is the follwing:

stdout. put ( /ist_of_val ues_to_output );

The stdout.putparameter list consists of one or more constangsstes, or memoryariables, each
separated by a comniBhis routine displays thealue associated with each parameter appearing in the list.
Since weve already been using this routine throughout this chapiaive already seen lots okamples of
this routine$ basic form. It is wrth pointing out that this routine hawseal additional features not apparent
in the ekamples appearing in this chapter particulay each parameter can &kne of the follwing two
forms:

value
value:width

Thevaluemay be ap legal constant, gister or memory ariable object. In this chaptgrouve seen
string constants and memorgriables appearing in ttetdout.putparameter listThese parameters cofre
spond to the fst form abwe. The second parameter form abdets you specify a minimumefd width,
similar to thestdout.putiXSizeoutines®. The following sample program produces the same output as the
previous program; heever, it usesstdout.putather tharstdout.puti32Size

15. Stdout.puts actually a macro, not a procedure. The distinction between the two is beyond the scope of this chapter. How-
ever, this text will describe their differences a little later.
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progr am Nunsl nCol unns2;
#include( “stdlib.hhf” );
var

i 32: int32;

ColOnt: int§;
begi n Nunsl nCol uMms2;

nov( 96, 132 );

nov( 0, ColCnt );

while( i32 >0) do

if( Colnt =8 ) then

stdout . new n();
nov( 0, ColOnt );

endi f;
stdout.put( i32:5);
sub( 1, i32);

add( 1, Col Ont );

endwhi | e;
stdout.put( nl );

end Nunsl nCol ums2;

Program 2.5  Demonstration of stdout.put Field Width Specification

The stdout.putroutine is capable of much more than the &tributes this section describ&is text
will introduce those additional capabilities as appropriate.

2.10.7 The stdin.getc Routine.

Thestdin.getcroutine reads the reavailable character from the standard inputice's input ufferl’.
It returns this character in the CBWL register The folloving example program demonstrates a simple use
of this routine:

progr am char | nput ;
#incl ude( “stdlib.hhf” );

var
counter: int32;

16. Note that you cannot specify a padding character when usisglthe.putroutine; the padding character defaults to the
space character. If you need to use a different padding character, sadiahieputiXSizeoutines.
17. “Buffer” is just a fancy term for an array.
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begi n charl nput;

/1 The follow ng repeats as long as the user
/1 confirns the repetition

r epeat
/] Print out 14 val ues.

nov( 14, counter );
whi | e( counter > 0 ) do

stdout. put( counter:3);
sub( 1, counter );

endwhi | €;
/1 VWit until the user enters ‘y’ or ‘n'.

stdout.put( nl, nl, “Do you wish to see it again? (y/n):” );
f orever

stdin. readLn();

stdin.getc();

breakif( al =*‘n" );

breakif( al ="'y );

stdout.put( “Error, please enter only 'y’ or

n1: u);

endf or;
stdout. new n();

until( al ='n" );

end charl nput;

Program 2.6 ~ Demonstration of the stdin.getc() Routine

This program uses tretdin.ReadLmoutine to force a e line of input from the useA description of
stdin.ReadLrappears just a little later in this chapter

2.10.8 The stdin.geti X Routines

The stdin.ceti8, stdin.cetil6, andstdin.geti32 routines read eight, 16, and 32-bit signedgatewalues
from the standard input diee. These routines return theialues in theéAlL, AX, or EAX registet respee
tively. They provide the standard mechanism for reading signedént@lues from the user in HLA.

Like thestdin.getcroutine, these routines read a sequence of characters from the standardffaput b
They begin by skipping @er ary white space characters (spaces, tabs, etc.) and thegricthre follaving
stream of decimal digits (with an optional, leading, minus sign) into the corresponduey. intese rou
tines raise anxeeption (that you can trap with ti&®Y..ENDTRY statement) if the input sequence is not a
valid integer string or if the user input is toodarto ft in the specid intger size. Note thatalues read by
stdin.geti8 must be in the range -128..+127alves read bystdin.getilé must be in the range
-32,768..+32,767; ancalues read bgtdin.geti32 must be in the range -2,147,483,648..+2,147,483,647.

The folloving sample program demonstrates the use of these routines:
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programi nt | nput;

#include( “stdlib.hhf” );

var
i 8: ints;
i 16: int16;
i 32: int32;

begi n i ntlnput;
// Read integers of varying sizes fromthe user:

stdout.put( “Enter a small integer between -128 and +127: “ );
stdin.geti8();
nmov( al, i18);

stdout.put( “Enter a small integer between -32768 and +32767: “ );
stdin.getil6();
nmov( ax, 116 );

stdout.put( “Enter an integer between +/- 2 billion: “ );
stdin. geti32();
mov( eax, i32);

/1 Display the input val ues.

st dout . put
(
nl,
“Here are the nunbers you entered:”, nl, nl,
“Eight-bit integer: “, i8:12, nl,
“16-bit integer: “, 116:12, nl,
“32-bit integer: “,132:12, nl
)

end intlnput;

Program 2.7  stdin.getiX Example Code

You should compile and run this program and test what happens when you exter that is out of
range or enter an ildal string of characters.

2.10.9 The stdin.readLn and stdin.flushinput Routines

Whenever you call an input routine ldstdin.getcor stdin.geti32 the program does not necessarily read
the \alue from the user at that moment. Instead, the HLA Standard Litu#fgrsbthe input by reading a
whole line of te&t from the user Calls to input routines will fetch data from this inpuffer until the luffer
is empty While this luffering scheme is &tient and covenient, sometimes it can be confusing. Consider
the folloving code sequence:

stdout.put( "Enter a small integer between -128 and +127: " );
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stdin. geti8();
nov( al, i8);

stdout.put( "Enter a small integer between -32768 and +32767: " );
stdin.getil6();
nmov( ax, 116 );

Intuitively, you would expect the program to print thedi prompt message ait for user input, print the
second prompt message, anditvior the second user input. Wever, this isnt exactly what happens.oF
example if you run this code (from the sample program in théqus section) and enter theté123 456"
in response to therét prompt, the program will not stop for additional user input at the second prompt.
Instead, it will read the second ig&r (456) from the inputuffer read during the xecution of the
stdin.geti8 call.

In general, thetdinroutines only read % from the user when the inputiffer is emptyAs long as the
input kuffer contains additional characters, the input routines will attempt to read their data frarffehe b
You may tak adwantage of this bek#r by writing code sequences such as the \afig:

stdout. put( “Enter two integer values: “ );
stdin. geti32();

nov( eax, intval );

stdin.geti32();

nov( eax, AnotherintVal );

This sequence alles the user to enter both values on the same line (separated by one or more white space
characters) thus preserving space on the screen. So the input buffer behavior is desirable every now and then.

Unfortunately, the buffered behavior of the input routines is definitely counter-intuitive at other times.
Fortunately, the HLA Standard Library provides two routirstgdin.readLnandstdin.fushinput that let you
control the standard inputiffer. The stdin.ieadLnroutine discardswerything that is in the inputuffer and
immediately requires the user to enter w fine of text. The stdin.fushinputroutine simply discardsvery-
thing that is in the Wiffer. The ne&t time an input routinex@cutes, the system will require aankne of input
from the userYou would typically callstdin.eadLnimmediately before some standard input routine; you
would normally calktdin.fushinputimmediately after a call to a standard input routine.

Note: If you are callingtdin.leadLnand you find that you are kéng to input your data twice, this is a
good indication that you should be callistglin.fushinputrather tharstdin.ieadLn In general, you should
always be able to caditdin.fushinputto flush the input bffer and read a meline of data on the méinput
call. Thesstdin.readLnroutine is rarely necessaiso you should us&tdin.fushinputunless you really need
to immediately force the input of awmdine of text.

2.10.10The stdin.get Macro

The stdin.get macro combines marof the standard input routines into a single call, in much the same
way thatstdout.putombines all of the output routines into a single éatually, stdin.getis much easier to
use tharstdout.putsince the only parameters to this routine are a lishigéble names.

Let’s ravrite the ample gven in the preious section:

stdout. put( “Enter two integer values: “ );
stdin. geti32();

nov( eax, intval );

stdin.geti32();

nov( eax, AnotherintVal );

Using thestdin.getmacro, we could rewrite this code as:

stdout.put( “Enter two integer values: “ );
stdin.get( intval, AnotherintVval );

As you can see, thatdin.getroutine is a little more convenient to use.
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Note thatstdin.get stores the inputatues directly into the memonasiables you specify in the parame
ter list; it does not return thealues in a rgister unless you actually specify @jister as a parametéihe
stdin.get parameters must all bawables or rgister&s.

2.11

Putting It All Together

This chapter has gered a lot of groundlVhile youVe still got a lot to learn about assembly language
programming, this chaptecombined with your kneledge of high leel languages, prides just enough
information to let you start writing real assembly language programs.

In this chapteryouve seen the basic format for an HLA prografou’ve seen hwe to declare intger,
characterand booleanariablesYou hae talen a look at the internal ganization of the Intel 80x86 CPU
family and learned about the MOADD, and SUB instruction&/ou've looked at the basic HLA highvel
language control structures (WHILE, REPEA, FOR, BREAK, BREAKIEF FOREVER, andl'RY) as
well as what constitutes agkd boolean epression in these statements. Finaliys chapter has introduced
several commonly-used routines in the HLA Standard Library

You might think that kneing only three machine instructions is hardlyfiignt to write meaningful
programs. Hwever, those three instructionsifv, add,andsub), combined with the HLA high \el| control
structures and the HLA Standard Library routines are actuallyaquot to knwing several dozen machine
instructions. Certainly enough to write simple programs. Indeed, with only enfee arithmetic instruc
tions plus the ability to write youmen procedures, yoli'lbe able to write almost grprogram. Of course,
your journg into the vorld of assembly language has only jusjsg youll learn some more instructions,
and hev to use them, starting in thextehapter

2.12

Sample Programs

This section contains geral little HLA programs that demonstrate some of FLf&atures appearing in
this chapterThese short>amples also demonstrate that it is possible to write meaningful (if simple) pro
grams in HLA using nothing more than the information appearing in this chafmermay find all of the
sample programs appearing in this section in sii@directory of the “@lumel” directory in the softare
that accompanies thisxte

2.12.1 Powers of Two Table Generation

The folloving sample program generates a table listing all thespoof two between 2**0 and 2**30.

/1 Power sCf Two-

11
/1 This program generates a nicely-formatted
/1 “Powers of Two” table. It conputes the

/1 various powers of two by successively
/1 doubling the value in the pw 2 vari abl e.

pr ogr am Power sCf Two;
#include( “stdlib.hhf” );

static

18. Note that register input is always in hexadecimal or base 16. The next chapter will discuss hexadecimal numbers.
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pw Cf 2: int32;
LoopOntr: int32;
begi n Power sCf Two;
// Print a start up banner.
stdout. put( “Powers of two: “, nl, nl );
I/ Initialize “pw 2" with 2**0 (two raised to the zero power).

mov( 1, pw 2 );

/1 Because of the limtations of 32-bit signed integers,
/1 we can only display 2**0..2**30.

nov( 0, LoopOntr );
whi | e( LoopOntr < 31 ) do

stdout.put( “2**(“, LoopOntr:2, “) =", pwC2:10, nl );

/1 Double the value in pw 2 to conpute the
/1l next power of two.

mov( pw 2, eax );

add( eax, eax );

mov( eax, pw 2 );

/1 Move on to the next |oop iteration.

inc( LoopOntr );

endwhi | e;
st dout . newl n();

end Power sCf Two;

Program 2.8  Powers of Two Table Generator Program

2.12.2 Checkerboard Program

This short little program demonstrateswhto generate a cheetboard pattern with HLA.

/1 Checker Boar d-

/1

/1 This program denonstrates how to draw a
/'l checkerboard using a set of nested while
/1 | oops.

pr ogr am Checker Boar d;
#i ncl ude( “stdlib.hhf” );

static
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xCoor d: int8; /1l Counts off eight squares in each row
yCoor d: int8; /1 Counts off four pairs of squares in each col um.
Col Ontr: int8; /1 Counts off four rows in each square.

begi n Checker Boar d;

nov( 0, yGCoord );
whil e( yCoord < 4 ) do

/1 Display a row that begins with bl ack.

nmov( 4, ColOntr );
r epeat

// Each square is a 4x4 group of

/1 spaces (white) or asterisks (bl ack).
/1 Print out one row of asterisks/spaces
/1 for the current row of squares:

nmov( 0, xCoord );
whi | e( xCoord < 4) do

stdout . put ( “*x** Y
add( 1, xCoord );

endwhi | e;
stdout . new n();
sub( 1, Col Cntr );
until ( ColOntr =0 );
/1 Display a rowthat begins with white.

mov( 4, ColOntr );
r epeat

// Print out a single row of
/| spaces/asterisks for this
/1 row of squares:

mov( 0, xCoord );
while( xCoord < 4 ) do

stdout. put ( “ LEETLINY
add( 1, xCoord );

endwhi | e;
stdout . new n();
sub( 1, Col Ontr );
until( ColOntr =0 );
add( 1, yCoord );
endwhi | e;

end Checker Boar d;
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Program 2.9  Checkerboard Generation Program

2.12.3 Fibonacci Number Generation

The Fibonacci sequence isry important to certain algorithms in Computer Science and o#iés.fi
The folloving sample program generates a sequence of Fibonacci numbers for n=1..40.

Pages0

/1 This program generates the fibonocci
/'l sequence for n=1..40.
/1
/1 The fibonocci sequence is defined recursively
/1 for positive integers as follows:
/1
/1 fib(1l) = 1;
/Il fib(2) = 1,
/1 fib( n) =fib( n-1) +fib( n-2).
/1
/1 This programprovides an iterative sol ution.
program fib;
#include( “stdlib.hhf” );
static
FibOntr: i nt32;
Qur Fi b: i nt32;
Last Fi b: int32;

TwoFi bsAgo: int32;

begin fib;

// Sone sinple initialization:

nmov( 1, LastFib);
nov( 1, TwoFi bsAgo );

/1 Print fib(1l) and fib(2) as a special case:

st dout . put
(
“fib( 1) = 1", nl
“fib( 2) = 1", nl
)

/1 Use a loop to conpute the renaining fib val ues:

nmov( 3, FibOntr );
while( FibOntr <= 40 ) do

/1 Get the last two conputed fibonocci val ues
/1 and add them t oget her:

nov( LastFib, ebx );

© 2001, By Randall Hyde
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mov( TwoFi bsAgo, eax );
add( ebx, eax );

/1 Save the result and print it:

nmov( eax, QurFib);
stdout.put( “fib(“,FibOtr:2, “) =", QurFib:10, nl );

/1 Recycle current LastFib (in ebx) as TwoFi bsAgo,
/1 and recycle QurFib as LastFib.

nov( eax, LastFib);
nov( ebx, TwoFi bsAgo );

/1 Bunp up our |oop counter:
add( 1, FibOtr );
endwhi | e;

end fib;

Program 2.10 Fibonacci Sequence Generator
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Data Representation Chapter Three

A major stumbling block manbeginners encounter when attempting to learn assembly language is the
common use of theinary anchexadecimal numbering systems. Maorogrammers think that kadecimal
(or hect) numbers represent absolute proof that Gagmnimtended ayone to vork in assembly language.
While it is true that headecimal numbers are a little féifent from what you may be used to, theiradv
tages outweigh their disagntages by a lge magin. Nevertheless, understanding these numbering systems
is important because their use simpkfiother completopics including boolean algebra and logic design,
signed numeric representation, character codes, andgdeka.

3.1 Chapter Overview

This chapter discusses/seal important concepts including the binary andbldecimal numbering sys
tems, binary data ganization (bits, nibbles, bytespwds, and double ovds), signed and unsigned number
ing systems, arithmetic, logical, shift, and rotate operations on biahrgsy bit #lds and paad dataThis
is basic material and the remainder of thig tlepends upon your understanding of these concepts. If you
are alreadydmiliar with these terms from other courses or stydy should at least skim this material
before proceeding to the xtechapterIf you are urdmiliar with this material, or onlyaguely fimiliar with
it, you should study it carefully before proceediAdi.of the material in this ltapter is importantDo not
skip over ary material. In addition to the basic material, this chapter also introduces sanit_Aestate
ments and HLA Standard Library routines.

3.2 Numbering Systems

Most modern computer systems do not represent nunedues/using the decimal system. Instead; the
typically use a binary or ts complement numbering systefie. understand the limitations of computer
arithmetic, you must understanddoomputers represent numbers.

3.2.1 A Review of the Decimal System

You've been using thdecimal (base 10) numbering system for so long that you probalelyittéke
granted.When you see a number dik123”, you dont think about the alue 123; ratheryou generate a
mental image of he mary items this alue represents. In realityonvever, the number 123 represents:

1¥10%2 + 2 * 101 + 3*100°
or
100+20+3

In the positional numbering system, each digit appearing to the left of the decimal point represents a
value between zero and nine times an increasimgepof ten. Digits appearing to the right of the decimal
point represent aalue between zero and nine times an increasiggtiie paver of ten. Br example, the
value 123.456 means:

1¥10%2 + 2¢10' + 3*10° + 4101 + 5102 + 6*10°3
or
100 + 20 + 3 + 0.4 + 0.05 + 0.006

1. Hexadecimal is often abbreviatechaxeven though, technically speaking, hex means base six, not base sixteen.
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3.2.2

Pageb4

The Binary Numbering System

Most modern computer systems (including PCs) operate using binaryTogicomputer represents
values using te voltage leels (usually Ov and +2.4..5u\ith two such lgels we can representactly two
different \alues.These could be gntwo different \alues, it they typically represent thealues zero and
one.These tw values, coincidentallycorrespond to the twdigits used by the binary numbering system.
Since there is a correspondence between the logitslaesed by the 80x86 and theotdigits used in the
binary numbering system, it should come as no surprise that the PG/etgdinary numbering system.

The binary numbering systemovks just like the decimal numbering system, withotwxceptions:
binary only allavs the digits O and 1 (rather than 0-9), and binary ussersaf two rather than peers of
ten.Therefore, it is @ry easy to corert a binary number to decimabiFeach “1” in the binary string, add in
2" where “n” is the zero-based position of the binary digit. &ample, the binaryalue 11001010repre
sents:

1627 4 1¥26 4+ 0%2% + 0*2% + 1%¥23 + 0%22 + 1*21 4+ o*20

128 + 64 + 8 + 2
2020

To corvert decimal to binary is slightly more fidult. You must find those paers of two which, when
added togetheproduce the decimal result. One method is dokwWrom a lage paver of two davn to 2.
Consider the decimabiue 1359:

o 21021024, 31=2048. S0 1024 is the fast power of two less than 1359. Subtract 1024 from
1359 and begin the binary value on the left with a “1” digit. Binary = "1”, Decimal result is
1359 - 1024 = 335.

* The next lower power of two ?z 512) is greater than the result from adoso add a “0” to
the end of the binary string. Binary = “10”, Decimal result is still 335.

e The next lower power of two is 2568928ubtract this from 335 and add a “1” digit to the end
of the binary number. Binary = “101", Decimal result is 79.

« 128 (27) is greater than 79, so tack a “0” to the end of the binary string. Binary = “1010”, Dec
imal result remains 79.

*  The next lower power of two ?2—- 64) is less than79, so subtract 64 and append a “1” to the
end of the binary string. Binary = “10101”, Decimal result is 15.

« 15 s less than the next power of tw@ €32) so simply add a “0” to the end of the binary
string. Binary = “101010”, Decimal result is still 15.

« 16 (& is greater than the remainder s, fso append a “0” to the end of the binary string.
Binary = “1010100", Decimal result is 15.

« 23 (eight) is less than 15, so stick another “1” digit on the end of the binary string. Binary =
“10101001”, Decimal result is 7.

« 22is less than s@n, so subtract four from seven and append another one to the binary string.
Binary = “101010011", decimal result is 3.

« 2lis less than three, so append a one to the end of the binary string and subtfarhttine
decimal value. Binary = “1010100111", Decimal result is now 1.

*  Finally, the decimal result is one, which f§ 80 add a fial “1” to the end of the binary string.
The final binary result is “10101001111”

If you actually have to convert a decimal number to binary by hand, the algorithm above probably isn’t
the easiest to master. A simpler solution is the “even/odd — divide by two” algorithm. This algorithm uses

the following steps:

e If the number is even, emit a zero. If the number is odd, emit a one.
e Divide the number by two and throw away any fractional component or remainder.
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» If the quotient is zero, the algorithm is complete.

» If the quotient is not zero and is odd, insert a one before the current string; if the number is
even, prefix your binary string with zero.

»  Go back to step two above and repeat.

Fortunately, you'll rarely need to convert decimal numbers directly to binary strings, so neither of these
algorithms is particularly important in real life.

Binary numbers, although they have little importance in high level languages, appear everywhere in
assembly language programs (even if you don’t convert between decimal and binary). So you should be
somewhat comfortable with them.

3.2.3

Binary Formats

In the purest senseyery binary number contains an mfe number of digits (dbits which is short for
binary digits). Br example, we can represent the numbes fy:

101 00000101 0000000000101 ... 000000000000101
Any number of leading zero bits may precede the binary number without changing its value.

We will adopt the convention of ignoring any leading zeros if present in a value. For examplest01
resents the numbewé hut since the 80x86 avks with groups of eight bits, wkfind it much easier to zero
extend all binary numbers to some multiple of four or eight biterefore, folleving this corention, wedl
represent the numbewé& as 0104 or 00000104

In the United States, most people separateyethree digits with a comma to nealaiger numbers eas
ier to read. Br example, 1,023,435,208 is much easier to read and comprehend than 1023¥@5208.
adopt a similar carention in this tgt for binary numbersWe will separate each group of four binary bits
with an underscore. df example, we will write the binary alue 1010111110110010 as
1010 1111 1011_0010.

We often pack seeral \alues together into the same binary numk#re form of the 80x86 MO
instruction uses the binary encoding 1011 Orrr dddd dddd to pack three items into 16Maitbitabfieration
code (1_0110), a three-bitgister feld (rrr), and an eight-bit immediatalue (dddd_dddd).d¥ corve-
nience, wel assign a numericalue to each bit positiokVe’ll number each bit as foles:

1) The rightmost bit in a binary number is bit position zero.
2) Each bit to the left is gen the ngt successie bit number

An eight-bit binary alue uses bits zero througtves:
XX X Xg X3 X0 X Xo

A 16-bit binary \alue uses bit positions zero through fifteen:
X5 X4 X13 X12 X131 X190 X9 Xg X7 X6 X5 Xq X3 X X Xo

A 32-bit binary \alue uses bit positions zero through 31, etc.

Bit zero is usually referred to as tlosv order (L.O.) bit (some refer to this as theast signiftant bij.
The left-most bit is typically called ti@gh oder (H.O.) bit (or themost signifiant bij). We'll refer to the
intermediate bits by their respeeibit numbers.
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3.3

Data Organization

In pure mathematics alue may tak an arbitrary number of bits. Computers, on the other hand;gener
ally work with some specifinumber of bits. Common collections are single bits, groups of four bits (called
nibbleg, groups of eight bitsf/teg, groups of 16 bitswords), groups of 32 bitsdouble vords ordwords),
groups of 64-bits (quadavds orgwords), and moreThe sizes are not arbitraffhere is a good reason for
these particularalues.This section will describe the bit groups commonly used on the Intel 80x86 chips.

3.3.1

Bits

The smallest “unit” of data on a binary computer is a sibgleSince a single bit is capable of repre
senting only tw different \alues (typically zero or one) you may get the impression that there arg a v
small number of items you can represent with a single bit. Not Thezle are an infite number of items
you can represent with a single bit.

With a single bit, you can represenyawo distinct items. Examples include zero or one, trualsef
on or of, male or female, and right or wrong. \Mever, you arenotlimited to representinginary data types
(that is, those objects whichweaonly two distinct \alues).You could use a single bit to represent the num
bers 723 and 1,245. Or perhaps 6,254 antbb.could also use a single bit to represent the colors red and
blue.You could gen represent tvunrelated objects with a single bibrFexample, you could represent the
color red and the number 3,256 with a singleMaiti can represeminytwo different \alues with a single bit.
However, you can represeonly twodifferent \alues with a single bit.

To confuse thingswen more, diferent bits can representfeifent things. Br example, one bit might be
used to represent thalues zero and one, while an adjacent bit might be used to represeaiutetwe
and flse. Hav can you tell by looking at the bit3he answerof course, is that you canBut this illus
trates the whole idea behind computer data structda¢s:is what you defe it to be If you use a bit to rep
resent aboolean (trueélse) alue then that bit (by your defiion) represents true oalke. or the bit to
have ary real meaning, you must be consist@tiat is, if youre using a bit to represent true alsk at one
point in your program, you shouldnise the truedlise alue stored in that bit to represent red or blue.later

Since most items yoll'be trying to model require more thanawdifferent \alues, single bit alues
arent the most popular data type ybuise. Havever, since gerything else consists of groups of bits, bits
will play an important role in your programs. Of course, there araledata types that requiredwlistinct
values, so it wuld seem that bits are important by themsghHavever, you will soon see that inddual
bits are dificult to manipulate, so witoften use other data types to represent boolehres.

3.3.2

Nibbles

A nibbleis a collection of four bits. It auldn't be a particularly interesting data structuxeept for two
items:BCD (binary coded decimhhumberé andhexadecimal numbers. It tak four bits to represent a-sin
gle BCD or hgadecimal digitWith a nibble, we can represent up to 16 distiradties since there are 16
unique combinations of a string of four bits:

0000
0001
0010
0011
0100
0101
0110
0111
1000

2. Binary coded decimal is a numeric scheme used to represent decimal numbers using four bits for each decimal digit.
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1001
1010
1011
1100
1101
1110
1111

In the case of headecimal numbers, thales 0, 1, 2, 3,4, 5,6, 7, 8/,B, C, D, E, and F are repre
sented with four bits (sé@he Hexadecimal Numbering System” on paif@. BCD uses ten dirent digits
©, 1, 2,3,4,5, 6, 7, 8, 9) and requires four bits (since you can only represent &géntdiélues with
three bits). Indct, ary sixteen distinct &lues can be represented with a nibbig,Hexadecimal and BCD
digits are the primary items we can represent with a single nibble.

3.3.3 Bytes

Without question, the most important data structure used by the 80x86 microprocessor is the byte.
byte consists of eight bits and is the smallest addressable datum (data item) on the 80x86 microprocessor
Main memory and I/O addresses on the 80x86 are all byte addiBsisasieans that the smallest item that
can be indiidually accessed by an 80x86 program is an eightalhitevTo access aithing smaller requires
that you read the byte containing the data and mastheutnvanted bitsThe bits in a byte are normally
numbered from zero toeen as shen inFigure 3.1

7 6 5 4 3 2 1 O

Figure 3.1 Bit Numbering

Bit O is thelow order bitor least signiftant bit bit 7 is thehigh oder bitor most signiftant bitof the
byte.We'll refer to all other bits by their number

Note that a byte also containsaetly two nibbles (seEigure 3.3.

7 6 5 4 3 2 1 0

H.O. Nibble L.O. Nibble

Figure 3.2 The Two Nibbles in a Byte

Bits 0..3 comprise théow order nibble bits 4..7 form thehigh oder nibble Since a byte contains
exactly two nibbles, byte alues require tew hexadecimal digits.

Since a byte contains eight bits, it can repres%rﬂn?ZSG, diferent \alues. Generallywe'll use a byte
to represent numericalues in the range 0..255, signed numbers in the range -128..+123i{gex and
Unsigned Numbers” on pa@®), ASCII/IBM character codes, and other special data types requiring no
more than 256 diérent \alues. Mawg data types hee faver than 256 items so eight bits is usuallyfisiént.
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Since the 80x86 is a byte addressable machine (seexthehene), it turns out to be morefiefent to
manipulate a whole byte than an widual bit or nibble. Br this reason, most programmers use a whole
byte to represent data types that require no more than 256 itemsf tawver than eight bits auld sufice.

For example, well often represent the booleaalues true andafse by 000000Q1and 00000009(respee
tively).

Probably the most important use for a byte is holding a character code. Characters typee@yat the k
board, displayed on the screen, and printed on the printervallneneric alues.To allow it to communi
cate with the rest of theasld, PCs use aaviant of theASCIlI character set (séd@he ASCII Character
Encoding” on pag®@7). There are 128 defeéd codes in th&SCII character set. PCs typically use the
remaining 128 possiblealues for gtended character codes including European characters, graphic sym
bols, Greek letters, and math symbols.

Because bytes are the smallest unit of storage in the 80x86 memory space, bytes also happen to be the
smallest ariable you can create in an HLA prograis you s& in the last chapteyou can declare an
eight-bit signed intger \ariable using thént8 data type. Sincat8 objects are signed, you can represent
values in the range -128..+127 usingraB variable (seéSigned and Unsigned Numbers” on p&$gfor a
discussion of signed number formatsfou should only store signedlues intant8 variables; if you vant
to create an arbitrary byt@nable, you should use thgtedata type, as folles:

static
byteVar: byte;

Thebytedata type is a partially untyped data type. The only type information associatéytetbjects is

their size (one byte). You may store any one-byte object (small signed integers, small unsigned integers,
characters, etc.) into a byte variable. It is up to you to keep track of the type of object you've put into a byte
variable.

3.34  Words
A word is a group of 16 bits. We’ll number the bits in a word starting from zero on up to fifteen. The bit
numbering appears Figure 3.3
15 14 13 12 11 10 9 6 5 4 3
Figure 3.3 Bit Numbers in a Word

Pages8

Like the byte, bit 0 is thewoorder bit. Br words, bit 15 is the high order bitvhen referencing the
other bits in a wrd, use their bit position number

Notice that a wrd contains xactly two bytes. Bits O through 7 form thew order byte, bits 8 through
15 form thehigh order byte (sekigure 3.4.
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15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 O

H. O. Byte L. O. Byte

Figure 3.4 The Two Bytes in a Word

Naturally, a word may be further broken down into four nibbles as showigure 3.5

15 14 13 12 11 10 9 8 7 6 5 4 3 2

1 O

Nibble #3 Nibble #2 Nibble #1 Nibble #0
H. O. Nibble L. O. Nibble
Figure 3.5 Nibbles in a Word

Nibble zero is the \@ order nibble in the wrd and nibble three is the high order nibble of tloedwy
We'll simply refer to the other tavnibbles as “nibble one” or “nibble tw*

With 16 bits, you can represerf’t62{65,536) diferent \alues.These could be thealues in the range
0..65,535 aras is usually the case, -32,768..+32,767, gradner data type with no more than 65,536 v
ues.The three major uses foronds are signed inger \alues, unsigned inger \alues, and UNICODE char
acters.

Words can represent imgfer \alues in the range 0..65,535 or -32,768..32,767. Unsigned nurakrgsv
are represented by the binaglue corresponding to the bits in therd. Signed numericalues use the
two’s complement form for numeri@les (seéSigned and Unsigned Numbers” on p&g. As UNI-
CODE characters, avds can represent up to 65,53&at#nt characters, allong the use of non-Roman
character sets in a computer program. UNICODE is an international standa#&dHN, that allevs com
mputers to process non-Roman characteesAlgian, Greek, and Russian characters.

Like bytes, you can also createrd variables in an HLA program. Of course, in the last chapter you
sav how to create sixteen-bit signed igtr \ariables using thmt16 data type.To create an arbitraryavd
variable, just use theord data type, as folles:

static
W, word;

3.3.5

Double Words

A double vord is exactly what its name implies, a pair obxds.Therefore, a doubleavd quantity is 32
bits long as shen in Figure 3.6
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31 23 15 7 0
) S B R R

Figure 3.6 Bit Numbers in a Double Word

Naturally, this double wrd can be dided into ahigh order vord and dow order vord, four diferent
bytes, or eight di€rent nibbles (seEigure 3.7.

31 23 15 7 0
I eIt
H.O. Word L.O. Word
31 23 15 7 0
T o o [ 1111 T 1
H.O. Byte Byte # 2 Byte # 1 L.O. Byte
31 23 15 7 0
N e e e
Nibble #7 #6 #5 #4 #3 #2 #1 #0
H. O. L. O.
Figure 3.7 Nibbles, Bytes, and Words in a Double Word

Double words can represent all kinds offdifent thingsA common item you will represent with a dou
ble word is a 32-bit intger \alue (which allvs unsigned numbers in the range 0..4,294,967,295 or signed
numbers in the range -2,147,483,648..2,147,483,647). IMhiing point alues also fiinto a double
word. Another common use for dwd objects is to store pointeanables.

In the preious chapteryou sav how to create 32-bit (dard) signed intger \ariables using that32
data type.You can also create an arbitrary doubt@dwariable using theword data type as the follang
example demonstrates:

static
d: dword;

3.4

Page60

The Hexadecimal Numbering System

A big problem with the binary system isrbosity To represent thealue 202, requires eight binary
digits. The decimal ersion requires only three decimal digits and, thus, represents numbers much more
compactly than does the binary numbering sysfems fact was not lost on the engineers who designed
binary computer systemg/hen dealing with laye \alues, binary numbers quickly become too unwieldy
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Unfortunately the computer thinks in bingrgo most of the time it is ceenient to use the binary number
ing systemAlthough we can corert between decimal and binatile comersion is not a tvial task.The
hexadecimal (base 16) numbering system eslthese problems. kedecimal numbers fafr the two fea
tures were looking for: thg're very compact, and &' simple to covert them to binary and viceersa.
Because of this, most computer systems engineers usextidehgnal numbering system. Since tadix
(base) of a headecimal number is 16, eachxhdecimal digit to the left of the kadecimal point represents
some alue times a successipaver of 16. for example, the number 1234is equal to:

1*16%5 + 2* 162 + 3*161 + 4 169
or
4096 + 512 + 48 + 4 = 46604.

Each h&adecimal digit can represent one of sixtealues between 0 and {5 Since there are only ten
decimal digits, we need tovient six additional digits to represent tl@ues in the range 1@through 15,
Rather than create wesymbols for these digits, wkuse the letterg\ through F The followving are all
examples of alid hexadecimal numbers:

1234 DEAD;s BEEF;s OAFB;q FEED;s DEAFq

Since well often need to enter kadecimal numbers into the computer system|lweed a diferent
mechanism for representingdaglecimal numbergfter all, on most computer systems you cannot enter a
subscript to denote the radix of the associatddeAVe’ll adopt the follaving corventions:

e All hexadecimal values begin with a “$” character, e.g., $123A4.

e All binary values begin with a percent sign (“%”).

» Decimal numbers do not have a prefix character.

» If the radix is clear from the context, this text may drop the leading “$” or “%” character.

Examples of valid hexadecimal numbers:
$1234 $DEAD $BEEF $AFB $FEED $DEAF

As you can see, hexadecimal numbers are compact and easy to read. In addition, you can easily convert
between hexadecimal and binary. Consider the following table:

Table 4: Binary/Hex Conversion

Binary Hexadecimal
%0000 $0
%0001 $1
%0010 $2
%0011 $3
%0100 $4
%0101 $5
%0110 $6
%0111 $7
%1000 $8
%1001 $9
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Table 4: Binary/Hex Conversion

Binary Hexadecimal
%1010 $A
%1011 $B
%1100 $C
%1101 $D
%1110 $E
%1111 $F

This table preides all the information you'll ever need to convert any hexadecimal number into a binary
number or vice versa.

To convert a hexadecimal number into a binary number, simply substitute the corresponding four bits
for each hexadecimal digit in the number. For example, to convert $ABCD into a binary value, simply con-
vert each hexadecimal digit according to the table above:

0 A B C D Hexadecimal
0000 1010 1011 1100 1101 Binary

To convert a binary number into hexadecimal format is almost as easy. The first step is to pad the binary
number with zeros to make sure that there is a multiple of four bits in the number. For example, given the
binary number 1011001010, the first step would be to add two bits to the left of the number so that it con-
tains 12 bits. The converted binary value is 001011001010. The next step is to separate the binary value into
groups of four bits, e.g., 0010_1100_1010. Finally, look up these binary values in the table above and substi-
tute the appropriate hexadecimal digits, i.e., $2CA. Contrast this with the difficulty of conversion between
decimal and binary or decimal and hexadecimal!

Since converting between hexadecimal and binary is an operation you will need to perform over and
over again, you should take a few minutes and memorize the table above. Even if you have a calculator that
will do the conversion for you, you'll find manual conversion to be a lot faster and more convenient when
converting between binary and hex.

3.5

Page62

Arithmetic Operations on Binary and Hexadecimal Numbers

There are seral operations we can perform on binary andadlecimal numbers.df example, we can
add, subtract, multipydivide, and perform other arithmetic operatioAhough you needi’become an
expert at it, you should be able to, in a pinch, perform these operations manually using a piece of paper and
a pencil. Haing just said that you should be able to perform these operations mathaltprrect wy to
perform such arithmetic operations is toéa calculator that does them for ydhere are seral suctcat
culators on the masel; the follaving table lists some of the maagfurers who produce suchvites:

Some manucturers oHexadecimal Calculators (circa 2002):

e Casio
* Hewlett-Packard
e Sharp

e Texas Instruments

This list is by no means exhaustive. Other calculator manufacturers probably produce these devices as
well. The Hewlett-Packard devices are arguably the best of the bunch . However, they are more expensive
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than the others. Sharp and Casio produce units which sell for well under $50. If you plan on @oing an
assembly language programming at alinmg one of these calculators is essential.

To understand whyou should spend the mgnen a calculatgrconsider the folleing arithmetic prob
lem:

$9
+ $1

You're probably tempted to write in the answer “$10” as the solution to this problem. But that is not correct!
The correct answer is ten, which is “$A”, not sixteen which is “$10”. A similar problem exists with the arith
metic problem:

$10
- $1

You're probably tempted to answer “$9” even though the true answer is “$F”. Remember, this problem is
asking “what is the difference between sixteen and one?” The answer, of course, is fifteen which is “$F”.

Even if the two problems above don’t bother you, in a stressful situation your brain will switch back into
decimal mode while you're thinking about something else and you'll produce the incorrect result. Moral of
the story — if you must do an arithmetic computation using hexadecimal numbers by hand, take your time
and be careful about it. Either that, or convert the numbers to decimal, perform the operation in decimal, and
convert them back to hexadecimal.

3.6 A Note About Numbers vs. Representation

Marny people confuse numbers and their representathocommon question lggnning assembly lan
guage students @ is “I've got a binary number in the EAXgister how do | covert that to a headecimal
number in the EAX mgister?” The answer is “you doti” Although a strong gument could be made that
numbers in memory or ingesters are represented in binat\s best to vie values in memory or in ages-
ter asabstiact numeric quantities Strings of symbols Ik 128, $80, or %1000 0000 are nofetént nura
bers; thg are simply diferent representations for the same abstract quantity that we often refer to as “one
hundred twenty-eiglit. Inside the computela number is a numbergardless of representation; the only
time representation matters is when you input or outputahe\in a human readable form.

Human readable forms of numeric quantities anegs$ strings of character3o print the alue 128 in
human readable form, you must wert the numeric alue 128 to the three-character sequenciibwed
by ‘2’ followed by ‘8. This would pravide the decimal representation of the numeric quantityou pre
fer, you could cowert the numeric alue 128 to the three character sequence “$808.tH8 same number
but weve cowerted it to a diierent sequence of characters because (presumablypntedvto vier the
number using headecimal representation rather than decimal.edise, if we vant to see the number in
binary, then we must caert this numeric alue to a string containing a one folled by seen zeros.

By default, HLA displays all byte, erd, and dwerd variables using the kadecimal numbering system
when you use thstdout.putroutine. Likewise, HLASs stdout.putroutine will display all rgister \alues in
hex. Consider the follwing program that carerts \alues input as decimal numbers to thexatecimal
equvalents:

program Conver t ToHex;
#i ncl ude( “stdlib.hhf” );
static

val ue: int32;

begi n Convert ToHex;
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stdout.put( “Input a decinmal value:” );
stdin.get( value);
nmov( val ue, eax );
stdout. put( “The value “, val ue,

“

converted to hex is $", eax, nl );

end Convert ToHex;

Program 3.11 Decimal to Hexadecimal Conversion Program

In a similar &shion, the deiult input base is also x&decimal for rgisters and byte, evd, or dvord
variables. The follonving program is the carrse of the one alie- it inputs a headecimal alue and out
puts it as decimal:

progr am Conver t ToDeci nal ;
#incl ude( “stdlib.hhf” );
static

val ue: int32;

begi n Convert ToDeci mal ;
stdout. put( “Input a hexadeci mal value: “ );
stdin.get( ebx ); nov( ebx, value);

stdout. put( “The value $", ebx, “ converted to decinal is “, value, nl );

end Convert ToDeci nal ;

Program 3.12 Hexadecimal to Decimal Conversion Program

Just because the HL#tdout.putroutine chooses decimal as thealdf output base fant8, int16, and
int32 variables doest’'mean that theseaviables hold “decimal’ numbers. Remembeaemory and igs-
ters hold numericalues, not headecimal or decimalalues. The stdout.putoutine corerts these numeric
values to strings and prints the resulting strinbise choice of headecimal vs. decimal outputaw a design
choice in the HLA language, nothing moréou could \ery easily modify HLA so that it outputsgisters
andbyte word, or dword variables as decimablues rather than asxsslecimal. If you need to print the
value of a rgister orbyte word, or dword variable as a decimahiue, simply call one of the putiX routines
to do this. The stdout.puti8routine will output its parameter as an eight-bit signedyarteAny eight-bit
parameter will vork. So you could pass an eight-bigister anint8 variable, or ayte variable as the
parameter tatdout.puti8and the result will aays be decimalThe stdout.putil@andstdout.puti3Zorovide
the same capabilities for 16-bit and 32-bit objedtse folloving program demonstrates the decimaivenn
sion programRrogram 3.12bove) using only the EAX igister (i.e., it does not use thariableiValue):
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progr am Conver t ToDeci nmal 2;
#include( “stdlib.hhf” );
begi n Convert ToDeci nal 2;

stdout. put( “Input a hexadecinal value: “ );

stdin.get( ebx );

stdout. put( “The value $", ebx, “ converted to decimal is “ );
stdout. puti32( ebx );

stdout. new n();
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end Convert ToDeci nal 2;

Program 3.13 Variable-less Hexadecimal to Decimal Converter

Note that HLAs stdin.cet routine uses the same daft base for input astdout.putuses for output.
That is, if you attempt to read amt8, int16, or int32 variable, the defult input base is decimal. If you
attempt to read agester orbyte word, ordword variable, the defult input base is lkadecimal. If you ant
to change the datilt input base to decimal when readinggister or abyte word, or dword variable, then
you can usstdin.geti8, stdin.getil6, or stdin.geti32

If you want to go in the opposite direction, that is ycanivto input or output aimt8, int16, or int32
variable as a hedecimal alue, you can call thetdout.putbstdout.putwstdout.putdstdin.geth, stdin.getw
or stdin.getdroutines. Thestdout.puthstdout.putwandstdout.putdoutines write eight-bit, 16-bit, or 32-bit
objects as headecimal alues. The stdin.geth, stdin.getw andstdin.getdroutines read eight-bit, 16-bit, and
32-bit values respeately; they return their results in thslL, AX, or EAX registers. The folloving program
demonstrates the use of avfef these routines:

program Hexl Q
#include( “stdlib.hhf” );

static
i 32: int32;

begi n Hexl Q

stdout. put( “Enter a hexadecinal value: “ );
stdin.getd();

nov( eax, i32);

stdout. put( “The val ue you entered was $" );
stdout. putd( i32);

stdout. new n();

end Hexl Q

Program 3.14 Demonstration of stdin.getd and stdout.putd

3.7 Logical Operations on Bits
There are four main logical operations Ive'eed to perform on kadecimal and binary numbers:

AND, OR, XOR (exclusive-or), andNQOT. Unlike the arithmetic operations, axaeecimal calculator ist’
necessary to perform these operations. It is often easier to do them by hand than to use an eleicionic de
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to compute themThe logicalAND operation is a dyadfooperation (meaning it acceptsaetly two oper
ands).These operands are single binary (base 2)HitsAND operation is:

Oand0=0
Oand1=0
land0=0
land1=1
A compact vay to represent the logicAND operation is with a truth tablé truth table taks the fol

lowing form:

Table5: AND Truth Table

AND 0 1

0 0 0
1 0 1

This is just lile the multiplication tables you encountered in elementary schioehalues in the left
column correspond to the leftmost operand ofAN® operation. The \alues in the top m correspond to
the rightmost operand of t#eND operation. The \alue located at the intersection of thevrand column
(for a particular pair of inputalues) is the result of logicalAiNDing those two values together

In English, the logicaAND operation is, “If the fist operand is one and the second operand is one, the
result is one; otherwise the result is Zend/e could also state this as “If either or both operands are zero, the
result is zerd.

One importantdct to note about the logicAND operation is that you can use it to force a zero result.
If one of the operands is zero, the result vgagb zero rgardless of the other operand. In the truth table
above, for ekample, the rv labelled with a zero input contains only zeros and the column labelled with a
zero only contains zero results. @ersely if one operand contains a one, the resulkécty the alue of
the second operantihese features of tHeND operation are ery important, particularly when weant to
force indvidual bits in a bit string to zerVe will investicate these uses of the logiédD operation in the
next section.

Thelogical OR operation is also a dyadic operation. Itsndefh is:

Oor0=0
Oorl=1
lor0=1
lorl=1

3. Many texts call this a binary operation. The term dyadic means the same thing and avoids the confusion with the binary
numbering system.
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The truth table for the OR operation ¢akthe folloving form:

Table 6: OR Truth Table

OR 0 1

Colloquially, the logical OR operation is, “If the$t operand or the second operand (or both) is one, the
result is one; otherwise the result is Zefitis is also knan as thenclusive-ORoperation.

If one of the operands to the logical-OR operation is a one, the resulaisaine rgardless of the sec
ond operand \alue. If one operand is zero, the result igagls the alue of the second operand. &ikhe
logical AND operation, this is an important siddest of the logical-OR operation that will pt@ quite use
ful when working with bit strings since it lets you force imidiual bits to one.

Note that there is a dé@rence between this form of the inclesiogical OR operation and the standard
English meaning. Consider the phrase “I am going to the stdram going to the parkSuch a statement
implies that the speakis going to the store or to the patk hot to both place3herefore, the Englishev
sion of logical OR is slightly diérent than the inclugg-OR operation; indeed, it is closer to txelu-
sive-ORoperation.

Thelogical XOR (exclusive-or) operation is also a dyadic operation. It israafias follavs:

Oxor0=0
Oxorl=1
1xor0=1
1xorl1=0

The truth table for the XOR operation ¢skthe folleving form:

Table7: XOR Truth Table

XOR 0 1

0 0 1
1 1 0

In English, the logical XOR operation is, “If thesfi operand or the second operand, fot both, is
one, the result is one; otherwise the result is z&tote that the xclusive-or operation is closer to the
English meaning of theavd “or” than is the logical OR operation.

If one of the operands to the logicakkisve-OR operation is a one, the result isals theinverseof
the other operand; that is, if one operand is one, the result is zero if the other operand is one and the result is
one if the other operand is zero. If thestfioperand contains a zero, then the resukastly the alue of the
second operan@his feature lets you seleatly invert bits in a bit string.

Thelogical NOT operation is a monadic operation (meaning it accepts only one operand). It is:
NOT0=1
NOT1=0
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The truth table for the NDoperation ta&s the folleving form:

Table 8: NOT Truth Table

NOT 0 1

3.8 Logical Operations on Binary Numbers and Bit Strings

As described in the pvous section, the logical functionsovk only with single bit operands. Since the
80x86 uses groups of eight, sixteen, or thirtp-tits, we need toxéend the defiition of these functions to
deal with more than twbits. Logical functions on the 80x86 operate tit-dy-bit (or bitwise basis. Gren
two values, these functions operate on bit zero producing bit zero of the Tesylbperate on bit one of the
input values producing bit one of the result, etor &ample, if you vant to compute the logicAND of the
following two eight-bit numbers, youauld perform the logiceAND operation on each column indepen
dently of the others:

%4011_0101
94110_1110

%4010_0100

This bit-by-bit form of &ecution can be easily applied to the other logical operations as well.

Since we've defined logical operations in terms of binary values, you'll find it much easier to perform
logical operations on binary values than on values in other bases. Therefore, if you want to perform a logical
operation on two hexadecimal numbers, you should convert them to binary first. This applies to most of the
basic logical operations on binary numbers (e.g., AND, OR, XOR, etc.).

The ability to force bits to zero or one using the logical AND/OR operations and the ability to invert
bits using the logical XOR operation is very important when working with strings of bits (e.g., binary num-
bers). These operations let you selectively manipulate certain bits within some value while leaving other bits
unaffected. For example, if you have an eight-bit binary vlaad you vant to guarantee that bits four
through seen contain zeros, you could logicafD the \alueX with the binary alue %0000 _1111This
bitwise logicalAND operation vould force the H.O. four bits to zero and pass the L.O. four bXshabugh
unchanged. Likwise, you could force the L.O. bit &fto one and ivert bit number tw of X by logically
ORingX with %0000_0001 and logicallielusive-ORingX with %0000_0100, respeetly. Using the log
ical AND, OR, and XOR operations to manipulate bit strings in #shibn is knan asmaskingbit strings.

We use the terrmaskingbecause we can use certaatiues (one foAND, zero for OR/XOR) torhask out’
or ‘mask in’certain bits from the operation when forcing bits to zero, one, or theiisi

The 80x86 CPUs support four instructions that apply these bitwise logical operations to their operands.
The instructions ar&ND, OR, XOR, andNOT. TheAND, OR, and XOR instructions use the same syntax
as theADD and SUB instructions, that is,

and( source, dest );
or( source, dest );
xor ( source, dest );

These operands athe same limitations as the ADD operands. Specificall\gsdheceoperand has to be a
constant, memory, or register operand andi#tstoperand must be a memory or register operand. Also, the
operands must be the same size and they cannot both be memory operands. These instructions compute the
obvious bitwise logical operation via the equation:

dest= destoperatorisource
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The 80x86 logical N® instruction, since it has only a single operand, uses a slighfdyetif syntax.
This instruction tag&s the folleving form:
not ( dest );

Note that this instruction has a single operand. It computes theifajloesult:
dest= NOT(dest)

Thedestoperand (fomot) must be a register or memory operand. This instruction inverts all the bits in the
specified destination operand.

The following program inputs two hexadecimal values from the user and calculates their logical AND,
OR, XOR, and NOT:

progr am Logi cal Op;
#include( “stdlib.hhf” );
begi n Logi cal Op;

stdout.put( “Input left operand: “ );
stdin.get( eax );
stdout.put( “Input right operand: “ );
stdin.get( ebx );

nov( eax, ecx );
and( ebx, ecx );

“ ¢

stdout.put( “$", eax, “ AND $", ebx, “ = %", ecx, nl );

nov( eax, ecx );
or( ebx, ecx );
stdout.put( “$", eax, “ OR$", ebx, “ =$", ecx, nl );

nov( eax, ecx );
xor ( ebx, ecx );

stdout.put( “$", eax, “ XOR $", ebx, “ = 9", ecx, nl );
nov( eax, ecx );
not ( ecx );
stdout.put( “NOT $", eax, “ =$", ecx, nl );
nov( ebx, ecx );
not ( ecx );
stdout. put( “NOT $", ebx, “ =$", ecx, nl );
end Logi cal Op;

Program 3.15 AND, OR, XOR, and NOT Example

3.9 Signed and Unsigned Numbers
So far, weve treated binary numbers as unsignalli@s.The binary number ...00000 represents zero,

...00001 represents one, ...00010 represemsand so on tward infinity. What about ngative numbers?
Signed walues hae been tossed around in yirs sections and we& mentioned the t@s complement
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numbering system,ub we haen't discussed he to representegative numbers using the binary numbering
systemThat is what this section is all about!

To represent signed numbers using the binary numbering systenvevéohalace a restriction on our
numbers: thg must hae a fnite and fked number of bits. & our purposes, we going to seerely limit
the number of bits to eight, 16, 32, or some other small number of bits.

With a fixed number of bits we can only represent a certain number of objecsafple, with eight
bits we can only represent 256fdient \alues. Ngative values are objects in theiwa right, just lile posi
tive numbers; therefore, wiehave to use some of the 256 fdifent eight-bit @lues to represent getive
numbers. In other @rds, weve got to use up some of the (unsigned) pasitumbers to representgative
numbersTo male things &ir, we'll assign half of the possible combinations to thgatiee values and half
to the positie values and zero. So we can represent tgative values -128..-1 and the nongagive values
0..127 with a single eight bit byf@/ith a 16-bit vord we can represenales in the range -32,768..+32,767.

With a 32-bit double wrd we can represenalues in the range -2,147,483,648..+2,147,483,647. In general,

with n bits we can represent the signedues in the range "2 to +2"1-1,

Okay, so we can representgagive values. Exactly ho do we do it3Vell, there are manways, lut the
80x86 microprocessor uses tind’s complement notation. In thedis complement system, the H.O. bit of
a number is aign bit If the H.O. bit is zero, the number is pogitiif the H.O. bit is one, the number igne
ative. Examples:

For 16-bit numbers:
$8000 is ngative because the H.O. bit is one.
$100 is positie because the H.O. bit is zero.
$7FFF is positie.
$FFFF is ngative.
$FFF is positie.

If the H.O. bit is zero, then the number is pesitand is stored as a standard binatye. If the H.O. bit
is one, then the number isgagive and is stored in the i complement forno corvert a positre number
to its negyative, two’s complement form, you use the feliog algorithm:

1) Invert all the bits in the numheére., apply the logical NDfunction.

2) Add one to the iverted result.

For example, to compute the eight-bit egaient of -5:

%9000_0101 Five (in binary).
%4111 1010 Invert all the hits.
%4111 1011 Add one to obtain result.

If we take minus fve and perform the twis complement operation on it, we get our origiralg,
%0000_0101, back a, just as wexpect:

%4111 1011 Two’' s conpl erent for -5.
%9000 0100 Invert all the bits.
%9000_0101 Add one to obtain result (+5).
The folloving examples pruide some posite and ngative 16-bit signed alues:
$7FFF: +32767, the Igest 16-bit positie number
$8000: -32768, the smallest 16-bigagve number

$4000: +16,384.
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To convert the numbers above to their negative counterpart (i.e., to negate them), do the following:

$TFFF: 99111 1111 1111 1111  +32, 767
%4000_0000_0000_0000 Invert all the bits (8000h)
%4000_0000_0000_0001  Add one (8001h or -32,767)

4000h: %9100_0000_0000_0000 16, 384
04011 1111 1111 1111 Invert all the bits ($BFFF)
%4100_0000_0000_0000  Add one ($C000 or - 16, 384)

$8000: %4000_0000_0000_0000 - 32, 768
09111 1111 1111 1111 Invert all the bits ($7FFF)
%4000_0000_0000_0000 Add one (8000h or -32768)

$8000 iverted becomes $7FFRfter adding one we obtain $8008Vait, whats going on here?
-(-32,768) is -32,768? Of course not. But théue +32,768 cannot be represented with a 16-bit signed num
ber, so we cannot rate the smallest gative \alue.

Why bother with such a miserable numbering systévhy not use the H.O. bit as a sigad] storing
the positve equvalent of the number in the remaining bitd# answer lies in the hardve.As it turns out,
negating \alues is the only tedious jolvith the two’s complement system, most other operations are as easy
as the binary systemoFexample, suppose you were to perform the addition 5+[Hg.result is zero. Cen
sider what happens when we add thesevalues in the tw’'s complement system:

% 0000_0101
% 1111 1011

%4_0000_0000

We end up with a carry into the ninth bit and all other bits are zero. As it turns out, if we ignore the carry out

of the H.O. bit, adding two signed values always produces the correct result when using the two’s comple
ment numbering system. This means we can use the same hardware for signed and unsigned addition and
subtraction. This wouldn’t be the case with some other numbering systems.

Except for the questions associated with this chapter, you will not need to perform the two’'s comple-
ment operation by hand. The 80x86 microprocessor provides an instruction, NEG (negate), that performs
this operation for you. Furthermore, all the hexadecimal calculators will perform this operation by pressing
the change sign key (+/- or CHS). Nevertheless, performing a two’s complement by hand is easy, and you
should know how to do it.

Once again, you should note that the data represented by a set of binary bits depends entirely on the con-
text. The eight bit binary value %1100_0000 could represent an IBM/ASCII character, it could represent the
unsigned decimal value 192, or it could represent the signed decimal value -64. As the programmer, it is your
responsibility to use this data consistently.

The 80x86 negate instruction, NEG, uses the same syntax as the NOT instruction; that is, it takes a sin-
gle destination operand:

neg( dest );

This instruction computes “dest = -dest;” and the operand has the same limitations a$ {a@rmit
be a memory location or agister). NEG operates on bytegrd, and dwrd-sized objects. Of course, since
this is a signed ingger operation, it only mals sense to operate on signedgatealues. The followving
program demonstrates thediw complement operation by using the NEG instruction:

pr ogr am t wos Conpl enent ;
#incl ude( “stdlib.hhf” );

static
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PosVal ue: int8;
NegVal ue: int8;

begi n twosConpl enent ;

stdout. put( “Enter an integer between 0 and 127: “ );
stdin. get( PosVal ue );

stdout.put( nl, “Value in hexadecimal: $" );
stdout . put b( PosVal ue );

nov( PosVal ue, al );

not( al );

stdout.put( nl, “Invert all the bits: $, al, nl );
add( 1, al );

stdout.put( “Add one: $', al, nl );

nmov( al, NegVal ue );

stdout. put( “Result in decinal: “, NegValue, nl );

st dout . put

(
nl,
“Now do the sane thing with the NEGinstruction: “,
nl

)

nov( PosVal ue, al );

neg( al );

nmov( al, NegVal ue );

stdout.put( “Hex result = $", al, nl );

stdout. put( “Decinmal result =*“, NegValue, nl );

end twosConpl enent ;

Program 3.16 The Two’'s Complement Operation

As you sa in the preious chapters, you use th8, int16, andint32 data types to reses\storage for
signed intger \ariables. Those chapters also introduced routines dildout. puti8andstdin.geti32 that read
and write signed inter \alues. Since this section has made itralantly clear that you must fdifentiate
signed and unsigned calculations in your programs, you should probably be asking yourselfwabout no
“how do | declare and use unsigned g&e\ariables?”

The first part of the question, “modo you declare unsigned iger \ariables, is the easiest to answer
You simply use thans8 unsl16 anduns32data types when declaring thariables, for gample:

static
u8: uns8;
ulé: uns16;
u32: uns32;

As for using these unsignednables, the HLA Standard Library pides a complementary set of
input/output routines for reading and displaying unsigregthlsles. As you can probably guess, these-rou
tines include stdout.putu8 stdout.putul6, stdout.putu32,stdout.putu8Size stdout.putul6Sizestd
out.putu32Size stdin.getu8,stdin.getul6,and stdin.getu32. You use these routines just as yoald use
their signed intger counterpartsxeept, of course, you get to use the full range of the unsigaads/with
these routines.The folloving source code demonstrates unsigned 1/0 as well as demonstrating what can
happen if you mix signed and unsigned operations in the same calculation:
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pr ogr am UnsExanpl e;
#include( “stdlib.hhf” );

static
UnsVal ue: unsie;

begi n UnsExanpl e;

stdout.put( “Enter an integer between 32,768 and 65,535: “ );
stdin. getul6();
nov( ax, UnsVal ue );

st dout . put
(

“You entered “,

UnsVal ue,

If you treat this as a signed integer, it is “

)
stdout. puti 16( UnsVal ue );
stdout. new n();

end UnsExanpl e;

Program 3.17 Unsigned I/O

3.10 Sign Extension, Zero Extension, Contraction, and Saturation

Since tvwo’s complement format ingers hae a fked length, a small problemdgops.What happens if
you need to carert an eight bit tw’'s complementalue to 16 bitsThis problem, and its coprse (cowert
ing a 16 bit alue to eight bits) can be accomplishedsifgm etensiorandcontractionoperations. Likwise,
the 80x86 warks with fxed length alues, gen when processing unsigned binary numhbéeg extension
lets you cowert small unsignedalues to lager unsignedalues.

Consider the alue “-64”. The eight bit tvo’'s complement alue for this number is $C0he 16-bit
equialent of this number is $FFCO. Waconsider the alue “+64”. The eight and 16 bitersions of this
value are $40 and $0040, respeslf. The diference between the eight and 16 bit numbers can be described
by the rule: “If the number is gative, the H.O. byte of the 16 bit number contains $FF; if the number-is pos
itive, the H.O. byte of the 16 bit quantity is z&ro.

To sign etend a alue from some number of bits to a greater number of bits isjaasgopy the sign
bit into all the additional bits in the weformat. For example, to signxdend an eight bit number to a 16 bit
number simply copy bit seven of the eight bit number into bits 8..15 of the 16 bit nunTimesign etend a
16 bit number to a doubleond, simply cop bit 15 into bits 16..31 of the doubleovd.

You must use sigrxeension when manipulating signedlwes of arying lengths. Often yoll'need to
add a byte quantity to aord quantityYou must signx@end the byte quantity to aond before the operation
takes place. Other operations (multiplication andsiton, in particular) may require a sigrtension to
32-bits.You must not signxtend unsignedalues.

Si gn Extension:
Eight Bits Sixteen Bits Thirty-two Bits

$80 $FF80 $FFFF_FF80
$28 $0028 $0000_0028
$9A $FF9A $FFFF_FFOA
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$7F $007F $0000_007F
— $1020 $0000_1020
— $8086 $FFFF_8086

To extend an unsigned byte you must zextead the alue. Zero gtension is ery easy — just store a
zero into the H.O. byte(s) of the dgr operand. & example, to zeroxd¢end the alue $82 to 16-bits you
simply add a zero to the H.O. byte yielding $0082.

Zer o Extension:

E ght Bits Sixteen Bits Thirty-two Bits
$80 $0080 $0000_0080
$28 $0028 $0000_0028
$9A $009A $0000_009A
$7F $007F $0000_007F
— $1020 $0000_1020
— $8086 $0000_8086

The 80x86 pruides sgeral instructions that will let you sign or zesdend a smaller number to ader
number The first group of instructions we will look at will sigitend theAL, AX, or EAX register These
instructions are

e cbw(); /I Converts the byte in AL to a word in AX via sign extension.

e cwd(); /I Converts the word in AX to a double word in DX:AX

e cdq(); /I Converts the double word in EAX to the quad word in EDX:EAX
e cwde(); /I Converts the word in AX to a doubleword in EAX.

Note that the CWD (convert word to doubleword) instruction does not sign extend the word in AX to the
doubleword in EAX. Instead, it stores the H.O. doubleword of the sign extension into the DX register (the
notation “DX:AX” tells you that you have a double word value with DX containing the upper 16 bits and AX
containing the lower 16 bits of the value). If you want the sign extension of AX to go into EAX, you should
use the CWDE (convert word to doubleword, extended) instruction.

The four instructions above are unusual in the sense that these are the first instructions you've seen that
do not have any operands. These instructions’ operandsalied by the instructions themsels.

Within a fev chapters you will disar just hev important these instructions are, andyvthe CWD
and CDQ instructions Wmlve the DX and EDX mgisters. Huavever, for simple sign xension operations,
these instructions ke a fev major dravbacks - you do not get to specify the source and destination oper
ands and the operands must gsters.

For general sign»aension operations, the 80x86 yides an rtension of the M® instruction,
MOVSX (move with sign &tension), that copies data and sigtteads the data while cgimg it. The
MOVSX instructions syntax is gry similar to the M® instruction:

nmovsx( source, dest );

The big diference in syntax between this instruction and the MOV instruction is the fact that the destination
operand must be larger than the source operand. That s, if the source operand is a byte, the destination oper
and must be a word or a double word. Likewise, if the source operand is a word, the destination operand
must be a double word. Another difference is that the destination operand has to be a register; the source
operand, however, can be a memory locAtion

To zero &tend a walue, you can use thOVZX instruction. It has the same syntax and restrictions as
the MOVSX instruction. Zeroxtending certain eight-bit gésters (AL, BL, CL, and DL) into their core
sponding 16-bit rgisters is easily accomplished without using WEX by loading the complementary H.O.

4. This doesn’t turn out to be much of a limitation because sign extension almost always precedes an arithmetic operation
which must take place in a register.
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register (AH, BH, CH, or DH) with zero. Q@ibusly, to zero gtend AX into DX:AX or EAX into
EDX:EAX, all you need to do is load DX or EDX with z&ro

The folloving sample program demonstrates the use of the signston instructions:

progr am si gnExt ensi on;
#include( “stdlib.hhf” );

static
i 8: ints;
i 16: int16;
i 32: int32;

begi n si gnExt ensi on;

stdout.put ( “Enter a small negative nunber: * );
stdin.get( i8);

stdout.put( nl, “Sign extension using CBWand CNE: ", nl, nl );

nov( i8, al );

stdout.put( “You entered “, i8, “ (%", al, “)", nl );

cbhw();

nmov( ax, 116 );

stdout. put( “16-bit sign extension: “, i16, “ ($", ax, “)", nl );
cwde() ;

nmov( eax, 132 );

stdout.put( “32-bit sign extension: “, i32, “ (%", eax, “)”, nl );

stdout. put( nl, “Sign extension using MVSX ", nl, nl );

novsx( 8, ax );
nmov( ax, 116 );
stdout.put( “16-bit sign extension: “, i16, “ ($", ax, “)", nl );

novsx( i8, eax );
nov( eax, i32);
stdout.put( “32-bit sign extension: “, i32, “ (%, eax, “)", nl );

end si gnExt ensi on;

Program 3.18 Sign Extension Instructions

Sign contraction, comrting a \alue with some number of bits to the identicalue with a fever num
ber of bits, is a little more troublesome. Sigieasion neer fails. Gven anm-bit signed alue you can
always cowert it to ann-bit number (wher@ > m) using sign gtension. Unfortunate)ygiven ann-bit num
ber, you cannot alays comert it to anm-bit number ifm < n. For example, consider thealue -448As a
16-bit hexadecimal numbeiits representation is $FE40. Unfortunatée magnitude of this number is too
large to ft into an eight bit &lue, so you cannot sign contract it to eight Hitds is an gample of an eer
flow condition that occurs upon ogrsion.

5. Zero extending into DX:AX or EDX:EAX is just as necessary as the CWD and CDQ instructions, as you will eventually
see.
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To properly sign contract onabe to anotheryou must look at the H.O. byte(s) that yoanwto dis
card.The H.O. bytes you wish to rem@must all contain either zero or $FFyou encounter gnother \al-
ues, you cannot contract it withoutesflow. Finally, the H.O. bit of your resultingalue must matckvery
bit you've remwed from the numbeExamples (16 bits to eight bits):

$FF80 can be sign contracted to $80.
$0040 can be sign contracted to $40.
$FE40 cannot be sign contracted to 8 bhits.
$0100 cannot be sign contracted to 8 bits.

Another way to reduce the size of an igéz is through saturation. Saturation is useful in situations
where you must coert a lager object to a smaller object and yeuilling to live with possible loss of
precision. To corvert a \alue via saturation you simply cpghe lager \alue to the smalleralue if it is not
outside the range of the smaller object. If thgdaralue is outside the range of the smalkgue, then you
clip the \alue by setting it to the Igest (or smallest)alue within the range of the smaller object.

For example, when corerting a 16-bit signed inger to an eight-bit signed irger, if the 16-bit alue is
in the range -128..+127 you simply goghe L.O. byte of the 16-bit object to the eight-bit object. If the
16-bit signed &lue is greater than +127, then you clip thtug to +127 and store +127 into the eight-bit
object. Lilewise, if the alue is less than -128, you clip thedi eight bit object to -128. Saturationks
the same &y when clipping 32-bitalues to smalleralues. If the lager \alue is outside the range of the
smaller alue, then you simply set the smallafue to the &lue closest to the out of rangawe that you can
represent with the smalleale.

Obviously, if the lager \alue is outside the range of the smallgue, then there will be a loss of preci
sion during the corersion. While clipping the alue to the limits the smaller object imposes igenelesir
able, sometimes this is acceptable as the alteenadi to raise anxeeption or otherwise reject the
calculation. Br mary applications, such as audio or video processing, the clipped result is still recogniz
able, so this is a reasonable wension to use.

3.11

Shifts and Rotates

Another set of logical operations which apfybit strings are thehiftandrotateoperationsThese tvo
categories can be further brek davn intoleft shifts, left otates, right shiftsandright rotates.These opera
tions turn out to bex¢remely useful to assembly language programmers.

Theleft shift operation mees each bit in a bit string one position to the left Egare 3.8.

Figure 3.8 Shift Left Operation

Page’6

Bit zero mwes into bit position one, the pieus \alue in bit position one nves into bit position tw,
etc.There are, of course, bnguestions that naturally arise: “What goes into bit zero?” and “Where does bit
seven wind up?” We'll shift a zero into bit zero and the pieus \alue of bit seen will be thecarry out of
this operation.

The 80x86 preides a shift left instruction, SHL, that performs this useful operafitve. syntax for the
SHL instruction is the follwing:
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shl ( count, dest );

The count operand is eitheCL” or a constant in the range 0..n, where n is one less than the number of bits
in the destination operand (i.e., n=7 for eight-bit operands, n=15 for 16-bit operands, and n=31 for 32-bit
operands). The dest operand is a typical dest operand, it can be either a memory location or a register.

When the count operand is the constant one, the SHL instruction does the following:

H.O. Bit 4 3 2 1 0

Figure 3.9 Operation of the SHL( 1, Dest) Instruction

In Figure 3.9the “C” represents the carnadl. That is, the bit shifted out of the H.O. bit of the operand
is moved into the carry lg. Therefore, you can test foverflow after a SHL( 1, dest) instruction by testing
the carry fhg immediately after xecuting the instruction (e.g., by using “@c) then. or
“if( @nc) then..?).

Intel's literature suggests that the state of the caagyifl undefied if the shift count is aalue other
than one. Usuallythe carry fhg contains the last bit shifted out of the destination operandhtel doesrt’
seem to guarantee this. If you need to shift more than one bit out of an operand and you need to capture all
the bits you shift out, you should &k look at the SHLD and SHRD instructions in the appendicies.

Note that shifting aalue to the left is the same thing as multiplying it by its radix.ekample, shifting
a decimal number one position to the left ( adding a zero to the right of the nurfdE®edy multiplies it
by ten (the radix):

1234 shl 1 = 12340 (shl 1 neans shift one digit position to the |eft)

Since the radix of a binary number isotvghifting it left multiplies it by two. If you shift a binary value to
the left twice, you multiply it by two twice (i.e., you multiply it by four). If you shift a binary value to the left
three times, you multiply it by eight (2*2*2). In general, if you shift a value to the tafies, you multiply
that value by 2

A right shift operation wrks the same ay, except wete moving the data in the opposite direction. Bit
se/en maves into bit six, bit six mees into bit fve, bit five moves into bit fouretc. During a right shift, wi’
move a zero into bit sen, and bit zero will be the carry out of the operation Fégere 3.10.

Figure 3.10 Shift Right Operation

As you would probably gpect by nav, the 80x86 praides aSHR instruction that will shift the bits to
the right in a destination operanitlhe syntax is the same as the SHL instructiaept, of course, you spec
ify SHR rather than SHL:

SHR( count, dest );
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This instruction shifts a zero into the H.O. bit of the destination operand, it shifts all the other bits one place
to the right (that is, from a higher bit number to a lower bit number). Finally, bit zero is shifted into the carry
flag. If you specify a count of one, the SHR instruction does the following:

H.O. Bit 54 3 2 1 0

Figure 3.11 SHR( 1, Dest ) Operation

Once agin, Intels documents suggest that shifts of more than one bi ke carry in an undegd
state.

Since a left shift is equalent to a multiplication by tey it should come as no surprise that a right shift
is roughly comparable to aviion by two (or, in general, a dision by the radix of the number). If you per
form n right shifts, you will dvide that number by™

There is one problem with shift rights with respect tositin: as described abe a shift right is only
equialent to anunsigneddivision by two. For example, if you shift the unsigned representation of 254
(OFEh) one place to the right, you get 127 (07Fkgcty what you wuld expect. Havever, if you shift the
binary representation of -2 (OFEh) to the right one position, you get 127 (07Fh), whattcasrect.This
problem occurs because we'shifting a zero into bit gen. If bit s&#en preiously contained a one, we’
changing it from a rgative to a positie numberNot a good thing whendding by two.

To use the shift right as aviion operatqgrwe must defie a third shift operatiorarithmetic shift
right®. An arithmetic shift right wrks just lile the normal shift right operation|@ical shift righ) with one
exception: instead of shifting a zero into biver, an arithmetic shift right operation Vea bit seen alone,
that is, during the shift operation it does not modify thiei@ of bit seen asFigure 3.12shawvs.

Figure 3.12 Arithmetic Shift Right Operation

This generally produces the result yogect. For example, if you perform the arithmetic shift right opera

tion on -2 (OFEh) you get -1 (OFFh). Keep one thing in mind about arithmetic shift right, however. This oper
ation always rounds the numbers to the closest intelgieh is less than or equal to the actual resBlised

on experiences with high level programming languages and the standard rules of integer truncation, most
people assume this means that a division always truncates towards zero. But this simply isn’t the case. For
example, if you apply the arithmetic shift right operation on -1 (OFFh), the result is -1, not zero. -1 is less
than zero so the arithmetic shift right operation rounds towards minus one. This is not a “bug” inthe arith
metic shift right operation, it's just uses a diffferent (though valid) definition of integer division.

6. There is no need for an arithmetic shift left. The standard shift left operation works for both signed and unsigned numbers,
assuming no overflow occurs.
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The 80x86 preides an arithmetic shift right instructiocBAR (shift arithmetic right).This instructions
syntax is nearly identical to SHL and SHRhe syntax is

SAR( count, dest );

The usual limitations on the count and destination operands appily instruction does the following if the
count is one:

Figure 3.13 SAR(1, dest) Operation

Once agin, Intels documents suggest that shifts of more than one bi kb carry in an undefd
state.

Another pair of useful operations awgate leftandrotate right These operations belalike the shift
left and shift right operations with one majorféience: the bit shifted out from one end is shifted back in at
the other end.

Figure 3.14 Rotate Left Operation

7 6 5 4 3 2 1 0

i S i

Figure 3.15 Rotate Right Operation

The 80x86 preidesROL (rotate left) andROR (rotate right) instructions that do these basic operations
on their operandsThe syntax for these twinstructions is similar to the shift instructions:

rol ( count, dest );
ror( count, dest );
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Once agin, this instructions prxade a special bek#r if the shift count is one. Under this condition

these tw instructions also cgpthe bit shifted out of the destination operand into the caagydb the fol
lowing two figures she:

H.O. Bit

Figure 3.16 ROL( 1, Dest) Operation

Note that, Inteb documents suggest that rotates of more than one bit leave the carry in an undefined state.

H.O. Bit 5 4 3 2 1 0
- ]
c <

Figure 3.17 ROR( 1, Dest ) Operation

It will turn out that it is often more cornient for the rotate operation to shift the output bit through the
carry and shift the puous carry alue back into the input bit of the shift operatidie 80x86RCL (rotate
through carry left) anRCR (rotate through carry right) instructions aghithis for you.These instructions
use the follaving syntax:

RCL( count, dest );
RCR( count, dest );

As is true for the other shift and rotate instructions, the count operand is either a consta@t aeghe
ister and the destination operand is a memory locatiorgmtee The count operand must beaue that is
less than the number of bits in the destination operanda Eount glue of one, these twinstructions do
the following:
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Figure 3.18 RCL( 1, Dest) Operation

H.O. Bit 5 4 3 2 1 O

Figure 3.19 RCR( 1, Dest) Operation

Again, Intel's documents suggest that rotates of more than one bit leave the carry in an undefined state.

3.12 Bit Fields and Packed Data

Although the 80x86 operates mosti@ently on byte, wrd, and double ard data types, occasionally
you'll need to vork with a data type that uses some number of bits other than eight, 16, or 8arfple,
consider a date of the form “04/02/01". It éskthree numericalues to represent this date: a month, dag
year \alue. Months, of course, talon the wlues 1..12. It will require at least four bits (maximum of sixteen
different \alues) to represent the month. Days range between 1..31. So it wilivekits (maximum of 32
different \alues) to represent the day enfrige year alue, assuming that we’working with values in the
range 0..99, requires\an bits (which can be used to represent up to 12&relift \alues). Bur plus fie
plus s&en is 16 bits, or ta bytes. In other wrds, we can pack our date data into twtes rather than the
three that wuld be required if we used a separate byte for each of the monttandiayear a&lues.This
saves one byte of memory for each date stored, which could be a substamni@ifsgou need to store a lot
of datesThe bits could be arranged aswhdn the follaving figure:
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15 14 13 12 11 10 9 8 5 4 3 2 1 O

MMMMW_[.__\YYYYYYY

Figure 3.20 Short Packed Date Format (Two Bytes)

MMMM represents the four bits making up the mongtiue, DDDDD represents thevdi bits making
up the dayandYYYYYYY is the seven bits comprising the yedfach collection of bits representing a data
item is abit field. April 2nd, 2001 vould be represented as $4101:

0100 00010 0000001 = 9%9100_0001_0000_0001 or $4101
4 2 01

Although packd \alues arespace dicient (that is, \ery eficient in terms of memory usage), yhare
computationallyinefiicient(slow!). The reason? It ta&s extra instructions to unpack the data pagtknto the
various bit felds.These gtra instructions tad additional time toxecute (and additional bytes to hold the
instructions); hence, you must carefully consider whetherguadita &lds will sae you agthing. The
following sample program demonstrates tHerethat must go into packing and unpacking this 16-bit date
format:

Page82

pr ogr am dat eDenv;

#incl ude( “stdlib. hhf” ):

static
day: unss8;
nmont h: uns8;
year: unss;

packedDat e: wor d;
begi n dat eDenv;

stdout.put( “Enter the current nonth, day, and year: “ );
stdin.get( nonth, day, year );

/'l Pack the data into the follow ng bits:
Il

/115 14 13 12 11 10 9
d d

8 7 6 5 4 3 2 1 0
/I m m m md d dy vy vy yyyy

nov( 0, ax );
nov( ax, packedDate ); //Just in case there is an error.
if( month > 12 ) then
stdout. put( “Mnth value is too large”, nl );
elseif( nonth = 0 ) then
stdout. put ( “Month val ue nust be in the range 1..12", nl );

elseif( day > 31 ) then

stdout.put( “Day value is too large”, nl );
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elseif( day = 0 ) then

stdout. put ( “Day value must be in the range 1..31", nl );
el seif( year > 99 ) then

stdout. put ( “Year value nust be in the range 0..99", nl );
el se

nmov( nonth, al );

shl( 5, ax );

or( day, al );

shl (7, ax );

or( year, al );

nmov( ax, packedDate );
endif;

/1 Ckay, display the packed val ue:

stdout. put ( “Packed data = $”, packedDate, nl );

/1 Unpack the date:

nov( packedDate, ax );
and( $7f, al ); /1l Retrieve the year val ue.
nov( al, year );

nov( packedDate, ax ); // Retrieve the day val ue.
shr( 7, ax );

and( %4_1111, al );

nov( al, day );

nov( packedDate, ax ); // Retrive the nmonth val ue.
rol (4, ax );

and( %4111, al );

nmov( al, nmonth );

stdout.put( “The date is “, nonth, “/", day, “/", year, nl );

end dat eDeno;

Program 3.19 Packing and Unpacking Date Data

Of course, haing gone through the problems wit2K, using a date format that limits you to 100 years
(or even 127 years) ould be quite foolish at this time. If yog’concerned about your soéive running 100
years from nw, perhaps it wuld be wise to use a three-byte date format rather thao-bytte formatAs
you will see in the chapter on arraysyweeer, you should alays try to create data objects whose length is
an e’en paver of two (one byte, tw bytes, four bytes, eight bytes, etc.) or you will pay a performanee pen
alty. Hence, it is probably wise to go ahead and use four bytes and pack this data o @dable. Fig-
ure 3.21shavs a possible dataganization for a foubyte date.
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31 16 15 8 7 0

Year (0-65535) Month (1-12) Day (1-31) |

Figure 3.21 Long Packed Date Format (Four Bytes)

Page84

In this long packd data format seral changes were madeybad simply &tending the number of bits
associated with the yeaFirst, since there are lots ofte bits in a 32-bit derd variable, this format allots
extra bits to the month and daglfis. Since these bwfields consist of eight bits each, yhean be easily
extracted as a byte object from theahd. This leaves fever bits for the yeatut 65,536 years is probably
sufficient; you can probably assume without too much concern that youasafill not still be in use 63
thousand years from mowhen this date format will wrap around.

Of course, you could gue that this is no longer a packdate format.After all, we needed three
numeric \alues, tvo of which ft just nicely into one byte each and one that should probabtydideast tw
bytes. Since this “paekl” date format consumes the same four bytes as the wapakion, what is so
special about this format®ell, another diierence you will note between this long pedldate format and
the short date format appearingHigure 3.20s the fct that this long date format rearranges the bits so the
Yearis in the H.O. bit positions, tHdonthfield is in the middle bit positions, and thay field is in the L.O.
bit positions. This is important because it allg you to ery easily compare twdatedo see if one date is
less than, equal to, or greater than another date. Consider tiérfglmde:

nov( Datel, eax ); /1 Assume Datel and Date2 are dword vari abl es
if( eax > Date2 ) then // using the Long Packed Date fornmat.

<< do sonething if Datel > Date2 >>
endif;

Had you lept the different date fields in separate variables, or organized the fields differently, you would not
have been able to compdbatel and Date2in such a straight-forward fashion. Therefore, this example
demonstrates another reason for packing data even if you don’t realize any space savings- it can make certain
computations more convenient or even more efficient (contrary to what normally happens when you pack
data).

Examples of practical packed data types abound. You could pack eight boolean values into a single byte,
you could pack two BCD digits into a byte, etc. Of course, a classic example of packed data is the FLAGs
register (see Figure 3.22). This register packs nine important boolean objects (along with seven important
system flags) into a single 16-bit register. You will commonly need to access many of these flags. For this
reason, the 80x86 instruction set provides many ways to manipulate the individual bits in the FLAGs regis-
ter. Of course, you can test many of the condition code flags using the HLA @c, @nc, @z, @nz, etc.,
pseudo-boolean variables in an IF statement or other statement using a boolean expression.

In addition to the condition codes, the 80x86 provides instructions that directly affect certain flags.
These instructions include the following:

e cld(Q; Clears (sets to zero) the direction flag.

o std(); Sets (to one) the direction flag.

o cli); Clears the interrupt disable flag.

o sti(); Sets the interrupt disable flag.

o cle(); Clears the carry flag.

* stc(); Sets the carry flag.

« cmc(); Complements (inverts) the carry flag.

e sahf(); Stores the AH register into the L.O. eight bits of the FLAGs register.
o lahf(); Loads AH from the L.O. eight bits of the FLAGSs register.
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There are other instructions thafeat the FLAGs register as well, these, however, demonstrate how to
access several of the packed boolean values in the FLAGs register. The LAHF and SAHF instructions, in
particular, provide a convenient way to access the L.O. eight bits of the FLAGs register as an eight-bit byte
(rather than as eight separate one-bit values).

Overflow

Direction Reserved
Interrupt for System
Trace Purposes
Sign

Zero

Auxiliary Carry

Parity

Carry

Figure 3.22 The FLAGs Register as a Packed Data Type

The LAHF (loadAH with the L.O. eight bits of the FL@s reayister) and the SAHF (stoAeH into the
L.O. byte of the FL&s raister) use the follwing syntax:

lahf();
sahf () ;

3.13 Putting It All Together

In this chapter yowe seen he we represent numeri@hlues inside the comput&iou’ve seen he to
represent alues using the decimal, binagnd h&adecimal numbering systems as well as thiemifice
between signed and unsigned numeric representation. Since we representveeghing else inside a
computer using numeri@lues, the material in this chapter &wimportant.Along with the base represen
tation of numeric alues, this chapter discusses tinédi bit-string oganization of data on typical computer
systems, spedally bytes, wrds, and doubleords. Neat, this chapter discusses arithmetic and logical
operations on the numbers and presents some30&86 instructions to apply these operationséaimes
inside the CPU. Finallythis chapter concludes by sting hav you can pack seral diferent numeric &l-
ues into a fied-length object (lik a byte, wrd, or double/ord).

Absent from this chapter is anliscussion of non-inger data. &r example, hav do we represent real
numbers as well as igers? Hw do we represent characters, strings, and other non-numeric \8atg?
that's the subject of the rechapterso leep on reading...
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More Data Representation Chapter Four

4.1  Chapter Overview

Although the basic machine data objects (bytesds; and double evds) appear to represent nothing
more than signed or unsigned numeatues, we can empjdhese data types to represent ynather types
of objects. This chapter discusses some of the other objects and their internal computer representation.

This chapter bgins by discussing theofhting point (real) numeric forma#fter integer representation,
floating point representation is the second most popular numeric format in use on modern computer sys
tems-. Although the fbating point format is sonaat comple, the necessity to handle non-igée calcu
lations in modern programs requires that you understand this numeric format and its limitations.

Binary Coded DecimalBCD) is another numeric data representation that is useful in certairxtsonte
Although BCD is not suitable for general purpose arithmetic, it is useful in some embedded applications.
The principle benefiof the BCD format is the ease with which you canvednbetween string and BCD for
mat. When we look at the BCD format a little later in this chgpteu’ll see wly this is the case.

Computers can represent all kinds ofefiént objects, not just numerialues. Characters are, unques
tionably, one of the more popular data types a computer manipulates. In this chapter yowe ailloak at
a couple of dierent wvays we can represent indtlual characters on a computer systehhis chapter dis
cusses tw of the more common character sets in use todaxSk#l character set and the Unicode charac
ter set.

This chapter concludes by discussing some common non-numeric data tymeelikolors on a video
display audio data, video data, and so on. Of course, there are lotecérdifrepresentations foryakind
of standard data you couldwsion; there is no ay two chapters in a xbook can ceer them all. (And
that's not @en considering specialized data types you could createjertNeless, this chapter (and the last)
should gve you the basic idea behind representing data on a computer system.

4.2  An Introduction to Floating Point Arithmetic

Integer arithmetic does not let you represent fractional numahies. Therefore, modern CPUs sup
port an approximation akal arithmetic: fbating point arithmeticA big problem with fbating point arith
metic is that it does not follothe standard rules of algebra.Mdeheless, manprogrammers apply normal
algebraic rules when usingéting point arithmeticThis is a source of defects in nyamrograms. One of
the primary goals of this section is to describe the limitation®afifig point arithmetic so you will under
stand hav to use it properly

Normal algebraic rules apply only ftafinite precision arithmetic Consider the simple statement
“x:=x+1," x is an intger On ary modern computer this statement falbothe normal rules of algebes
long as w@erflow does not occurThat is, this statement isaNd only for certain &lues of x
(minint<=x < maxin). Most programmers do notvVea problem with this because yrere well avare of
the fact that intgers in a program do not follothe standard algebraic rules (e.g.,52.5).

Integers do not foller the standard rules of algebra because the computer represents themnitih a fi
number of bitsYou cannot representyawnf the (intger) \alues abee the maximum intger or bela the
minimum inteyer. Floating point alues suer from this same problem, onlyonse After all, the intgers are
a subset of the real numbeF$erefore, the flating point alues must represent the samenitsi set of inte
gers. Hovever, there are an infite number of &lues between grntwo real \alues, so this problem is infi
nitely worse.Therefore, as well as hiag to limit your \alues between a maximum and minimum range, you
cannot represent all thalues between thosedwanges, either

1. There are other numeric formats, such as fixed point formats and binary coded decimal format.
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To represent real numbers, mosgting point formats empjoscientifc notation and use some number
of bits to represent mantissaand a smaller number of bits to represend@onent The end result is that
floating point numbers can only represent numbers with a speaifiber ofsignificantdigits. This has a
big impact on hw floating point arithmetic operateBo easily see the impact of limited precision arith
metic, we will adopt a simpligid decimal fhating point format for ourxamples. Our fating point format
will provide a mantissa with three sigo#int digits and a decimakgonent with tv digits. The mantissa
and eponents are both signeédlues as stvn in Figure 4.1

L[ e[ 1]

Figure 4.1 Simple Floating Point Format

When adding and subtractingdmumbers in scientdinotation, you must adjust thedwalues so that
their exponents are the sameorFexample, when adding 1.23el and 4.56e0, you must adjusaliesvso
they have the samexponent. One @y to do this is to caert 4.56e0 to 0.456e1 and then abhis produces
1.686el. Unfortunatelythe result does nott finto three signifiant digits, so we must eithesundor trun-
cate the result to three signifant digits. Rounding generally produces the most accurate result,sso let’
round the result to obtain 1.69&k you can see, the lack pfecision(the number of digits or bits we main
tain in a computation) &cts the accurgothe correctness of the computation).

In the preious example, we were able to round the result because we mainfaimesignificant digits
during the calculation. If our élating point calculation is limited to three sigeéint digitsduring computa
tion, we would hase had to truncate the last digit of the smaller nuprdigaining 1.68el which izven less
correct.To improve the accurgcof floating point calculations, it is necessary to axtdaadigits for use dur
ing the calculation. Extra digitvailable during a computation are kmoasguard digits (or guard bitsin
the case of a binary formaf)hey greatly enhance accusaduring a long chain of computations.

The accurag loss during a single computation usually isehough to wrry about unless you are
greatly concerned about the accyra€ your computations. Heever, if you compute aalue which is the
result of a sequence obéting point operations, the error caccumulateand greatly déct the computa
tion itself. For example, suppose we were to add 1.23e3 with 1.08dj0sting the numbers so theixpo-
nents are the same before the addition produces 1.23e3 + 0.0B&estim of these twalues, gen after
rounding, is 1.23e3lhis might seem perfectly reasonable to you; after all, we can only maintain three sig
nificant digits, adding in a smaldle shouldrt’ affect the result at all. Heever, suppose we were to add
1.00e0 to 1.23eten timesThe frst time we add 1.00e0 to 1.23e3 we get 1.23e2&wlide, we get this same
result the second, third, fourth, ..., and tenth time we add 1.00e0 to 1.23e3. On the other hand, had we added
1.00e0 to itself ten times, then added the result (1.00el) to 1.23e3ulkhave gotten a ditrent result,
1.24e3This is an important thing to kmoabout limited precision arithmetic:

0 The order of ealuation can effect the accuracy of the result.
You will get more accurate results if the relative magnitudes (that is, the exponents) are close to one
another. If you are performing a chain calculation involving addition and subtraction, you should attempt to
group the values appropriately.

Another problem with addition and subtraction is that you can wind upfaliétl pecision Consider
the computation 1.23e0 - 1.22 €lhis produces 0.01e@lthough this is mathematically eguaient to
1.00e-2, this latter form suggests that the last digits are ractly zero. Unfortunate)ywe've only got a
single signifcant digit at this time. Indeed, some FPUs oatfhg point soft@re packages might actually
insert random digits (or bits) into the L.O. positiofis brings up a second important rule concerning lim
ited precision arithmetic:

0 Wheneer subtracting two numbers with the same signs or adding two numbers with
different signs, the accuracy of the result may be less than the precision available in
the floating point format.
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Multiplication and dvision do not sifér from the same problems as addition and subtraction since you
do not hae to adjust thex@onents before the operation; all you need to do is adkpoments and muki
ply the mantissas (or subtract thgpenents and dide the mantissas). By themsety multiplication and
division do not produce particularly poor resultswéeer, they tend to multiply ap error that alreadyxésts
in a \alue. For example, if you multiply 1.23e0 by oy when you should be multiplying 1.24e0 byif#he
result is gen less accurat&his brings up a third important rule wheonking with limited precision arith
metic:

0 When performing a chain of calculationsaiving addition, subtraction, multipliea
tion, and division, try to perform the multiplication and division operations first.

Often, by applying normal algebraic transformations, you can arrange a calculation so the multiply and
divide operations occur first. For example, suppose you want to compute x*(y+z). Normally you would add
y and z together and multiply their sum by x. However, you will get a little more accuracy if you transform
X*(y+z) to get x*y+x*z and compute the result by performing the multiplications first.

Multiplication and division are not without their own problems. When multiplying two very large or
very small numbers, it is quite possible éwerflow or underfbw to occur The same situation occurs when
dividing a small number by a @& number or diding a lage number by a small numb@&iis brings up a
fourth rule you should attempt to folowvhen multiplying or diiding values:

0 When multiplying and diding sets of numbers, try to arrange the multiplications so
that they multiply large and small numbers together; likewise, try to divide numbers
that have the same relative magnitudes.

Comparing floating point numbers is very dangerous. Given the inaccuracies present in any computa-
tion (including converting an input string to a floating point value), you shwarer compare tw floating
point values to see if tlyeare equal. In a binaryofiting point format, diérent computations which produce
the same (mathematical) result mayeatiin their least signifiant bits. Br example, adding 1.31e0+1.69e0
should produce 3.00€0. lakise, adding 1.50e0+1.50e0 should produce 3.00e@ekés were you to
compare (1.31e0+1.69e0)agst (1.50e0+1.50e0) you mighidi out that these sums aret equal to one
anotherThe test for equality succeeds if and only if all bits (or digits) in tleedperands arexactly the
same. Since this is not necessarily true afterdifferent fbating point computations which should produce
the same result, a straight test for equality may mokw

The standard ay to test for equality betweewdting point numbers is to determineshmuch error (or
tolerance) you will allev in a comparison and check to see if oakei® is within this error range of the other
The straight-fonard way to do this is to use a testdikhe follaving:

if Valuel >= (Value2-error) and Val uel <= (Val ue2+error) then ...

Another common way to handle this same comparison is to use a statement of the form:

i f abs(Val uel-Val ue2) <= error then ...

Most texts, when discussingdating point comparisons, stop immediately after discussing the problem
with floating point equalityassuming that other forms of comparison are perfectly okay witirfyy point
numbersThis isnt true! If we are assuming thety if x is within yterror, then a simple bitwise comparison
of x andy will claim thatx<y if y is greater thaw but less thary+error. However, in such a caseshould
really be treated as equalytonot less thay. Therefore, we mustwhys compare tw floating point num
bers using ranges,gardless of the actual comparison wanvto performTrying to compare tw floating
point numbers directly can lead to an erfiar compare tw floating point numberss andy, aginst one
anotheyyou should use one of the folling forms:

if abs(x-y) <= error then ...
if abs(x-y) > error then ...
if (x-y) <-error then ...

if (x-y) <= error then ...

if (x-y) >error then ...

if (x-y) >= -error then ...

vV V. IAN AN I

You must gercise care when choosing thedue forerror. This should be aalue slightly greater than
the lagest amount of error which will creep into your computatidine eact \alue will depend upon the
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particular fbating point format you useubmore on that a little lateThe final rule we will state in this sec
tion is
0 When comparing te floating point numbers, always compare one value to see if it is
in the range given by the second value plus or minus some small error value.

There are many other little problems that can occur when using floating point values. This text can only
point out some of the major problems and make you aware of the fact that you cannot treat floating point
arithmetic like real arithmetic — the inaccuracies present in limited precision arithmetic can get you into trou-
ble if you are not careful. A good text on numerical analysis or even scientific computing can help fill in the
details that are beyond the scope of this text. If you are going to be working with floating point arithmetic,
any languge, you should taf the time to study thefetts of limited precision arithmetic on your computa
tions.

HLA'’s IF statement does not support boolegressions ivolving floating point operandsTherefore,
you cannot use statementselidF( x < 3.141)THEN..” in your programs. In a later chapter that discusses
floating point operations on the 80x86 ybl€arn hav to do fbating point comparisons.

4.2.1 |IEEE Floating Point Formats

When Intel planned to introduce adting point coprocessor for theinm@&086 microprocesspthey
were smart enough to realize that the electrical engineers and solid-g&itésghwho design chips were,
perhaps, not the best people to do the necessary numerical analysis to pick the best possible binary represen
tation for a fbating point format. So Intel went out and hired the best numerical analystahlel find to
design a fhating point format for their 8087 FPWThat person then hired tnother &perts in the &ld and
the three of them (Kahn, Coonan, and Stone) designedlfibelfing point formatThey did such a good job
designing the KCS Floating Point Standard that the IEE@nization adopted this format for the IEEE
floating point formatt

To handle a wide range of performance and acguemuirements, Intel actually introductteefloat
ing point formats: single precision, double precision, atidreled precisionlhe single and double preci
sion formats corresponded tosGloat and double types or FORAN's real and double precision types.
Intel intended to usextended precision for long chains of computations. Extended precision contains 16
extra bits that the calculations could use as guard bits before roundimgtdca double precisionalue
when storing the result.

The single precision formaises a ong’complement 24 bit mantissa and an eightxuess-127 g0
nent.The mantissa usually representsafue between 1.0 to just under 2Ibe H.O. bit of the mantissa is
always assumed to be one and represenafue yust to the left of theinary poinf. The remaining 23 man
tissa bits appear to the right of the binary pdiherefore, the mantissa represents tilae:

1. nhmmmm nmmmmIm mmmmmmm

The “mmmm...” characters represent the 23 bits of the mantigsp K mind that we are working with

binary numbers here. Therefore, each position to the right of the binary point represents a value (zero or one)
times a successive negative power of two. The implied one bit is always muItipIi@dvIziyitzw is oneThis

is why the mantissa is always greater than or equal to one. Even if the other mantissa bits are all zero, the
implied one bit always gives us the value br@f course, een if we had an almost infinite number of one

bits after the binary point, they still would not add up to two. This is why the mantissa can represent values
in the range one to just under two.

Although there are an infinite number of values between one and two, we can only represent eight mil-
lion of them because we use a 23 bit mantissa (thoB4s alvays one)This is the reason for inaccuyac

2. There were some minor changes to the way certain degenerate operations were handled, but the bit representation remained
essentially unchanged.

3. The binary point is the same thing as the decimal point except it appears in binary numbers rather than decimal numbers.

4. Actually, this isn’t necessarily true. The IEEE floating point format supgertsrmalized/alues where the H.O. bit is not

zero. However, we will ignore denormalized values in our discussion.
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in floating point arithmetic — we are limited to 23 bits of precision in computatieolyiimg single precision
floating point @lues.

The mantissa useae’s complementormat rather than tels complementThis means that the 24 bit
value of the mantissa is simply an unsigned binary number and the sign bit determines whethleetisat v
positive or ngative. Ones complement numbers\Jethe unusual property that there are t@presenta
tions for zero (with the sign bit set or clear). Generdhis is important only to the person designing the
floating point softwre or hardare systeme will assume that thealue zero avays has the sign bit clear

To representalues outside the range 1.0 to just under 2.0, xberent portion of thedhting point for
mat comes into playrhe floating point format raises twmo the pwer specifed by the gponent and then
multiplies the mantissa by thigle.The eponent is eight bits and is stored inexgess-127format. In
excess-127 format, thexponent Sis represented by thele 127 ($7f)Therefore, to corert an &ponent
to excess-127 format simply add 127 to tixpenent alue. The use of xcess-127 format malk it easier to
compare fhating point @alues.The single precisiondhting point format tas the form shen in Figure 4.2

31 23 15 7 0
Sign  Exponent Bits Mantissa Bits
Bit

The 241N mantissa bit is
implied and is always one.

Figure 4.2 Single Precision (32-bit) Floating Point Format

With a 24 bit mantissa, you will get approximatelﬁ/@digits of precision (one half digit of precision
means that therft six digits can all be in the range 0.18 the seenth digit can only be in the range 0..x
where x<9 and is generally close teefi. With an eight bit rcess-127>gonent, the dynamic range of single
precision fbating point numbers is approximatefﬁzlé8 or about 18%8,

Although single precision dating point numbers are perfectly suitable for ynapplications, the
dynamic range is somat limited for mag scientifc applications and theewy limited precision is unsuit
able for may financial, scientii, and other applications. Furthermore, in long chains of computations, the
limited precision of the single precision format may introduce serious error

The double precision formdtelps @ercome the problems of single precisiomafing point. Using
twice the space, the double precision format has an 1kdass-1023>@ponent and a 53 bit mantissa (with
an implied H.O. bit of one) plus a sign Aihis prorides a dynamic range of abouf?®fand 144/2 digits of
precision, sufcient for most applications. Double precisiooafing point alues tak the form shen in

Figure 4.3
63 52 7 0
Sign Exponent Bits III Mantissa Bits
Bit d
The 53" mantissa bit is
implied and is always one.
Figure 4.3 64-Bit Double Precision Floating Point Format

In order to help ensure accuyaturing long chains of computationsatving double precisiondhating
point numbers, Intel designed theended precision formalhe etended precision format uses 80 bits.
Twelve of the additional 16 bits are appended to the mantissa, four of the additional bits are appended to the
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end of the gponent. Unlilke the single and double precisicues, thex@ended precision formatmantissa
does not hee an implied H.O. bit which iswahys oneTherefore, thexdended precision format prigles a
64 bit mantissa, a 15 bikeess-16383xponent, and a one bit sigfihe format for the xdended precision
floating point @lue is shan in Figure 4.4

79 64 7 0
Sign Exponent Bits Mantissa Bits
Bit
Figure 4.4 80-bit Extended Precision Floating Point Format

On the FPUs all computations are done using xtended precision forn¥Wheneer you load a single
or double precisionalue, the FPU automatically ogerts it to an xtended precisionalue. Likewise, when
you store a single or double precisi@ue to memorythe FPU automatically rounds thalwe devn to the
appropriate size before storing it. Byvalys working with the &tended precision format, Intel guarantees a
large number of guard bits are present to ensure the agafrgour computations. Somexts erroneously
claim that you should wer use the xended precision format in youwa programs, because Intel only
guarantees accurate computations when using the single or double precision Tdnisi&goolish. By per
forming all computations using 80 bits, Intel helps ensuner{bt guarantee) that you will get full 32 or 64
bit accurag in your computations. Since the FPUs do novioi® a lage number of guard bits in 80 bit
computations, some error will imigably creep into the L.O. bits of axtended precision computation.
However, if your computation is correct to 64 bits, the 80 bit computation wilhys preide at least64
accurate bits. Most of the time you will ggea moreWhile you cannot assume that you get an accurate 80
bit computation, you can usually do better than 64 when usingtieded precision format.

To maintain maximum precision during computation, most computationsouselizedvalues A nor-
malized fbating point @lue is one whose H.O. mantissa bit contains Aineost ary non-normalized alue
can be normalized by shifting the mantissa bits to the left and decrementirgdher& until a one appears
in the H.O. bit of the mantissa. Rememtike &ponent is a binaryxponent. Each time you increment the
exponent, you multiply the dlating point alue by tvo. Likewise, wheneer you decrement thexgonent,
you dvide the fbating point alue by tvo. By the same tan, shifting the mantissa to the left one bit posi
tion multiplies the fhating point @alue by tvo; likewise, shifting the mantissa to the rightides the fhating
point value by tvo. Therefore, shifting the mantissa to the left one postimh decrementing thexponent
does not change thalue of the thating point number at all.

Keeping fbating point numbers normalized is beaiedi because it maintains the maximum number of
bits of precision for a computation. If the H.O. bits of the mantissa are all zero, the mantissa hasythat man
fewer bits of precisiomailable for computatioriTherefore, a fiating point computation will be more aecu
rate if it involves only normalizedalues.

There are tw important cases where adting point number cannot be normalizéde \alue 0.0 is a
special case. Qfiously it cannot be normalized because thatfhg point representation for zero has no one
bits in the mantiss&his, havever, is not a problem since we caxaetly represent thealue zero with only
a single bit.

The second case is when werdnaome H.O. bits in the mantissa which are zatdhe biasedxonent
is also zero (and we cannot decrement it to normalize the mantissa). Rather tham déstdio small al-
ues, whose H.O. mantissa bits and bias@adreent are zero (the mostgaéive exponent possible), the IEEE
standard allws speciablenormalizedvalues to represent these smallaiues. Although the use of denor
malized \alues allavs IEEE fbating point computations to produce better results than if uageyticurred,
keep in mind that denormalizedlues ofer less bits of precision.

5. The alternative would be to underflow the values to zero.
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Since the FPU alays corerts single and double precisiocalwes to gtended precisionxéended pre
cision arithmetic is actuallfasterthan single or double precisiofherefore, thexgected performance ben
efit of using the smaller formats is not present on these chipgevdp when designing the Pentium/586
CPU, Intel redesigned thaiilt-in floating point unit to better compete with RISC chips. Most RISC chips
support a natie 64 bit double precision format which &sfer than Inted’ ectended precision formathere
fore, Intel proided natve 64 bit operations on the Pentium to better competiastghe RISC chip3.here
fore, the double precision format is tlestest on the Pentium and later chips.

4.2.2

HLA Support for Floating Point Values

HLA provides sgeral data types and library routines to support the useairfy point data in your
assembly language programBhese include dilt-in types to declaredhting point ariables as well as reu
tines that preide floating point input, output, and agarsion.

Perhaps the best place to start when discussingsHioating point &cilities is with a description of
floating point literal constants. HLAofkiting point constants allothe followving syntax:

e An optional “+” or “-” symbol, denoting the sign of the mantissa (if this is not present, HLA
assumes that the mantissa is positive),

e Followed by one or more decimal digits,

e Optionally followed by a decimal point and one or more decimal digits,

e Optionally followed by an “e” or “E”, optionally followed by a sign (“+” or “-") and one or
more decimal digits.

Note: the decimal point or the “e”/"E” must be present in order to differentiate this value from an integer or
unsigned literal constant. Here are some examples of legal literal floating point constants:

1.234 3. 75e2 -1.0 1. 1le-1 le+4 0.1 -123. 456e+789 +25e0

Notice that a fhating point literal constant cannot begin with a decimal point; it must begin with a decimal
digit so you must use “0.1” to represent “.1” in your programs.

HLA also allows you to place an underscore character (*_") between any two consecutive decimal digits
in a floating point literal constant. You may use the underscore character in place of a comma (or other lan-
guage-specific separator character) to help make your large floating point numbers easier to read. Here are
some examples:

1 234 837.25 1_000. 00 789 934.99 9 999. 99

To declare a @lating point ariable you use theeal32 real64 or real80data types. Li& their intger
and unsigned brethren, the number at the end of these data type declaratiors $peaifimber of bits
used for each typgbinary representatio.herefore, you useeal32to declare single precision reallves,
real64to declare double precisioroéiting point @lues, andeal80to declare gtended precision dhating
point values. Other than thadt that you use these types to declaratithg point @ariables rather than inte
gers, their use is nearly identical to thatifu8, int16, int32etc. The folloving examples demonstrate these
declarations and their syntax:

static

fltVarl: real 32;

fltVarla: real32 := 2. 7;

pi: real 32 := 3.14159;

Dol Var: real 64;

Dbl Var 2: real 64 := 1.23456789e+10;
XPVar : r eal 80;

XPVar 2: real 80 : = -1. Oe-104;
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To output a fhating point ariable inASCII form, you would use one of thetdout.putr32,std
out.putr64,or stdout.putr80routines. These procedures display a number in decimal notation, that is, a
string of digits, an optional decimal point and a closing string of digits. Other than their names, these three
routines usexactly the same calling sequence. Here are the calls and parameters for each of these routines:

stdout. putr80( r:real 80; width:uns32; decpts:uns32 );
stdout. putr64( r:real 64; wi dth:uns32; decpts:uns32 );
stdout. putr32( r:real 32; w dth:uns32; decpts:uns32 );

The first parameter to these procedures is thatifig point @lue you wish to print.The size of this
parameter must match the procedsineame (e.g., the parameter must be an 80-bktended precision
floating point ariable when calling thetdout.putr80routine). The second parameter spexsfithe fld
width for the output tet; this is the number of print positions the number will require when the procedure
displays it. Note that this width must include print positions for the sign of the number and the decimal
point. The third parameter spe@§ the number of print positions after the decimal poiot. ekample,

stdout. putr32( pi, 10, 4);

displays the &lue
_ 3.1416

(the underscores represent leading spaces inxhise).

Of course, if the number is very large or very small, you will want to use scientific notation rather than
decimal notation for your floating point numeric output. The HLA Standard Lilstalgut.pute32,ts-
out.pute64andstdout.pute8@outines pruide this fcility. These routines use the folllng procedure pro
totypes:

stdout . put e80( r:real 80; wi dth:uns32 );
stdout . put e64( r:real 64; w dth:uns32 );
stdout. pute32( r:real 32; w dth:uns32 );

Unlike the decimal output routines, these scientifdtation output routines do not require a third
parameter specifying the number of digits after the decimal point to display width parameteindi-
rectly, specifes this @alue since all bt one of the mantissa digitsxalys appears to the right of the decimal
point. These routines output theialues in decimal notation, similar to the foliog:

1. 23456789e+10 -1. Oe- 104 le+2

You can also outputdéating point alues using the HLA Standard Librasydout.putroutine. If you
specify the name of adfting point ariable in thestdout.pufparameter list, thetdout.putcode will output
the \alue using scientifi notation. The actual #ld width \aries depending on the size of theaflng point
variable (thestdout.putroutine attempts to output as nyasignificant digits as possible, in this case). Exam
ple:

stdout.put( “XPVar2 = “, XPVar2 );

If you specify a ®ld width specifiation, by using a colon folleed by a signed ingger \alue, then the
stdout.putroutine will use the appropriatedout.puteXXoutine to display thealue. That is, the number
will still appear in scientifi notation, kat you get to control thedid width of the outputalue. Like the feld
width for integer and unsignedalues, a posite field width right justifes the number in the speetifield, a
negative number left justiis the alue. Here is anxample that prints th¥P\ar2 variable using ten print
positions:

stdout.put( “XPVar2 = “, XPVar2:10 );

If you wish to usestdout.puto print a fbating point @lue in decimal notation, you need to use the fol
lowing syntax:

Variabl e_Narre : Wdth : DecPts
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Note that thédecPtsfield must be a non-negative integer value.

Whenstdout.putcontains a parameter of this form, it calls the corresporstohmut.putrXXroutine to
display the speciid floating point @lue. As an éample, consider the folldng call:

stdout.put( “Pi =*“, pi:5:3);

The corresponding output is
3.142

The HLA Standard Library prxades sgeral other useful routines you can use when outputtiragirig
point values. Consult the HLA Standard Library reference manual for more information on these routines.

The HLA Standard Library pxades sgeral routines to let you display#iting point alues in a wide
variety of formats. In contrast, the HLA Standard Library onlyigles two routines to supportdating
point input:stdin.cetf() andstdin.cget(). The stdin.getf() routine requires the use of the 80x86 FPU stack, a
hardware component that this chapter is not going t@cadl herefore, this chapter will defer the discussion
of thestdin.getf() routine until the chapter on arithmetic, later in thid.teSince thestdin.get() routine pre
vides all the capabilities of trstdin.cetf() routine, this deference will not pre@to be a problem.

You've already seen the syntax for #tein.get() routine; its parameter list simply contains a list of
variable namesStdin.get() reads appropriatealues for the user for each of thaeriables appearing in the
parameter list. If you specify the name of @afing point ariable, thestdin.get() routine automatically
reads a flating point alue from the user and stores the result into the specdriable. The folloving
example demonstrates the use of this routine:

stdout. put ( “Input a double precision floating point value: “ );
stdin. get( Dbl Var );

Warning: This section has discussed how you would declare floating point variables and
how you would input and output them. It did not discuss arithmetic. Floating point arith
metic is different than integer arithmetic; you cannot use the 80x86 ADD and SUB
instructions to operate on floating point values. Floating point arithmetic will be the sub
ject of a later chapter in this text.

4.3

Binary Coded Decimal (BCD) Representation

Although the intger and fbating point formats ae@r most of the numeric needs of aemage program,
there are some special cases where other numeric representationyemnentn In this section wedis-
cuss the Binary Coded Decimal (BCD) format since the 80x86 CPlidpsoa small amount of hardve
support for this data representation.

BCD values are a sequence of nibbles with each nibble representahgeairvthe range zero through
nine. Of course you can represealues in the range 0..15 using a nibble; the BCD formateles, uses
only 10 of the possible 16 ¢&rent \alues for each nibble.

Each nibble in a BCDalue represents a single decimal digiterefore, with a single byte (i.e.,dw
digits) we can represenalues containing tavdecimal digits, oralues in the range 0..9%Vith a word, we
can representalues hging four decimal digits, oralues in the range 0..9999. kilise, with a double
word we can represenalies with up to eight decimal digits (since there are eight nibbles in a daardle w
value).
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H.O. Nibble L.O. Nibble
(H.O. Digit) (L.O. Digit)

0..9 09

Figure 4.5 BCD Data Representation in Memory

As you can see, BCD storage tsparticularly memory ditient. For example, an eight-bit BCDari-
able can represenalues in the range 0..99 while that same eight bits, when holding a béitaey an rep
resent alues in the range 0..255. kikise, a 16-bit binaryalue can represenalues in the range 0..65535
while a 16-bit BCD alue can only represent ab&lg. of those walues (0..9999). In&€ient storage ishthe
only problem. BCD calculations tend to bengto than binary calculations.

At this point, youte probably wndering wly aryone would ever use the BCD formatThe BCD for
mat does hae two sasing graces: is very easy to corert BCD \alues between the internal numeric repre
sentation and their string representation; alsogitg ®asy to encode multi-digit decimalwes in hardare
(e.g., using a “thumb wheel” or dial) using BCD than it is using binBoy these tw reasons, yote likely
to see people using BCD in embedded systems (e.g., toastex and alarm clocksubrarely in general
purpose computer sofase.

A few decades ago people mistaky thought that calculationsviolving BCD (or just ‘decimal’) arith
metic was more accurate than binary calculatiofiserefore, thg would often perform ‘importantalcula
tions, like those imolving dollars and cents (or other monetary units) using decimal-based arithvkikiie.
it is true that certain calculations can produce more accurate results in BCD, this statement is not true in gen
eral. Indeed, for most calculationyvée those molving fixed pointdecimal arithmetic), the binary repre
sentation is more accurateorihis reason, most modern computer programs represeatusbvn a binary
form. For example, the Intel x86 dkting point unit (FPU) supports a pair of instructions for loading and
storing BCD walues. Internallyhavever, the FPU coverts these BCDalues to binary and performs all cal
culations in binary It only uses BCD as axternal data format &ernal to the FPU, that is)his generally
produces more accurate results and requinele$s silicon than kiang a separate coprocessor that supports
decimal arithmetic.

This text will take up the subject of BCD arithmetic in a later chaptémtil then, you can safely ignore
BCD unless you fid yourself comerting a COBOL program to assembly language (which is quite
unlikely).

4.4

Paged6

Characters

Perhaps the most important data type on a personal computer is the character datetigren “char
acter” refers to a human or machine readable symbol that is typically a non-numericlargigneral, the
term “character” refers to sgrsymbol that you can normally type on eylioard (including some symbols
that may require multiplegy presses to produce) or display on a video displgry beginners often con
fuse the terms “character” and “alphabetic chardciEnese terms are not the same. Punctuation symbols,
numeric digits, spaces, tabs, carriage returns (enter), other control characters, and other special symbols are
also charactersWhen this t&t uses the term “character” it refers toyaf these characters, not just the
alphabetic characterswhen this t&t refers to alphabetic characters, it will use phrases“kphabetic
characters, “upper case charactersyr “lower case charactefrs.
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Another common problem baners hae when the first encounter the character data type fedihti
ating between numeric characters and numb@&hge character ‘lis distinct and dferent from the alue
one. The computer (generally) usesawlifferent internal, binaryrepresentations for numeric characters
(0, ‘1, ..., '9)) versus the numericalues zero through nin&ou must tak care not to confuse thedw

Most computer systems use a one ar byte sequence to encode tlagious characters in binary form.
Windows and Linux certainlydil into this catgory, using either th&SCII or Unicode encodings for char
acters. This section will discuss th&SCII character set and the character declaratoitities that HLA
provides.

44.1

The ASCII Character Encoding

The ASCIl (American Standard Code for Information Interchange) Character set mapstliaBdiear
acters to the unsigned iger \alues 0..127 ($0..$7F). Internalbf course, the computer represemsrg
thing using binary numbers; so it should come as no surprise that the computer also usealbesaty v
represent non-numeric entities such as characditsough the gact mapping of characters to numeradtv
ues is arbitrary and unimportant, it is important to use a standardized code for this mapping since you will
need to communicate with other programs and periphevadedeand you need to talk the same “language”
as these other programs andides. This is where thSCIl code comes into play; it is a standardized
code that nearlyveryone has agreed upohherefore, if you use th&SCIl code 65 to represent the charac
ter “A” then you knev that some peripheral dee (such as a printer) will correctly interpret thidue as the
character A” whenever you transmit data to thatwvdee.

You should not get the impression tASCII is the only character set in use on computer systems. I1BM
uses the EBCDIC character setrily on may of its mainframe computer systennother common char
acter set in use is the Unicode character set. Unicode idearsion to thé\SCIl character set that uses 16
bits rather than sen to represent characterBhis allavs the use of 65,536 €ifrent characters in the char
acter set, alwing the inclusion of most symbols in therid’s different languages into a single uedi
character set.

Since theASCII character set pvides only 128 dferent characters and a byte can represent 2te8-dif
ent\alues, an interesting question arises: “what do we do withatbes/128..255 that one could store into
a byte alue when wrking with character data?” One answer is to ignore thxse wlues. That will be
the primary approach of thisxte Another possibility is tox@end theASCII character set and add an addi
tional 128 characters to the character set. Of course, dhisitend to defeat the whole purpose ofihg a
standardized character set unless you couldwggyene to agree upon thgtensions. That is a dificult
task.

When IBM first created their IBM-PC, thedefned thesexdra 128 character codes to conta@mious
non-English alphabetic characters, some lingvohig graphics characters, some mathematical symbols, and
several other special characters. Since IBFAC vas the foundation for what we typically call a PC today
that character set has become a pseudo-standard on all IBM-PC compatible machémesn &Ewodern
machines, which are not IBM-PC compatible and cannot run early PGaseftive IBM &tended character
set still surwes. Note, hwever, that this PC character set (attemsion of theASCII character set) is not
universal. Most printers will not print thextended characters when using vationts and manprograms
(particularly in non-English countries) do not use those characters for the upper 128 codes in an eight-bit
value. fr these reasons, thisctewill generally stick to the standard 128 chara&®CII character set.
However, a fav examples and programs in thixtevill use the IBM PC gtended character set, particularly
the line draving graphic characters (sdppendix B).

Should you need toxehange data with other machines which are not PC-compatible, yewhby
two alternaties: stick to standar®lSCII or ensure that the gt machine supports the&tended IBM-PC
character set. Some machinese ltheApple Macintosh, do not pwide natve support for thex¢ended
IBM-PC character set; gver you may obtain a PC font which lets you display tttereled character set.

6. Upper and lower case characters are always alphabetic characters within this text.
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Other machines a similar capabilities. Heever, the 128 characters in the standARCIl character set
are the only ones you should count on transferring from system to system.

Despite thedct that it is a “standard”, simply encoding your data using sta#&€dl characters does
not guarantee compatibility across syste¥dhkile it's true that anA” on one machine is most kky an ‘A”
on another machine, there isry little standardization across machines with respect to the use of the control
characters. Indeed, of the 32 control codes plus delete, there are only four control codes commonly sup
ported — backspace (BS), tab, carriage return (CR), and line feed\afg still, diferent machines often
use these control codes infdient ways. End of line is a particularly troublesomeample.Windows,
MS-DOS, CP/M, and other systems mark end of line by tleectvaracter sequence CR/I&pple Macin
tosh, and manother systems mark the end of line by a single CR charaatex, BeOS, and other UNIX
systems mark the end of a line with a single LF charadisdless to sapttempting to xchange simple
text files between such systems can bexgerence in frustration. Ew if you use standaiiSCII charae
ters in all your fes on these systems, you will still need tovewhthe data whernxehanging fies between
them. ortunately such cowersions are rather simple.

Despite some major shortcoming§Cll data ighestandard for data interchange across computer sys
tems and programs. Most programs can acs8glll data; lilkewise most programs can produwe®BClI data.
Since you will be dealing witASCII characters in assembly language,ould be wise to study the layout
of the character set and memorizewa key ASCII codes (e.g., “0",A”, “a”, etc.).

TheASCII character set xeluding the &tended characters dedid by IBM) is dvided into four groups
of 32 characterslhe first 32 character&,SCIl codes 0 through $1F (31), form a special set of non-printing
characters called theontrol charactersWe call them control characters because therform \arious
printer/display control operations rather than displaying symbols. Examples icelu@ge return, which
positions the cursor to the left side of the current line of charédliesfeed (which mees the cursor den
one line on the output diee), and back space (which wes the cursor back one position to the left). Unfor
tunately different control characters performfdilent operations on d&rent output déces.There is ery
little standardization among outputvitees. To find out &actly hav a control character faficts a particular
device, you will need to consult its manual.

The second group of 3RSCII character codes comprisarius punctuation symbols, special charac
ters, and the numeric digitfhe most notable characters in this group include the space character (ASCII
code $20) and the numeric digits (ASCII codes $30..$39). Note that the numeric digitrdin their
numeric \alues only in the H.O. nibble. By subtracting $30 fromABEII code for ag particular digit you
can obtain the numeric egaient of that digit.

The third group of 3ASCII characters contains the upper case alphabetic chardétessSCIl codes
for the charactersA”..”Z” lie in the range $41..$5A (65..90). Since there are only 2éreifit alphabetic
characters, the remaining six codes h@dous special symbols.

The fourth, and fial, group of 3ASCII character codes represent thedo case alphabetic symbols,
five additional special symbols, and another control character (delete). Note thatethedse character
symbols use thASCII codes $61..$7A. If you ceart the codes for the upper andvér case characters to
binary, you will notice that the upper case symbolgedifrom their laver case equalents in gactly one bit
position. For example, consider the character code for “E” and “e” in theviatig figure:

7. Historically, carriage return refers to theper carriageused on typewriters. A carriage return consisted of physically mov-
ing the carriage all the way to the right so that the next character typed would appear at the left hand side of the paper.
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Figure 4.6 ASCII Codes for “E” and “e”

The only place these tacodes dier is in bit five. Upper case charactersvays contain a zero in bit
five; lower case alphabetic charactemsas contain a one in bivg.You can use thisatt to quickly cowert
between upper andvuer case. If you hee an upper case character you can force itted@ase by setting
bit five to one. If you hae a laver case character and you wish to force it to upper case, you can do so by set
ting bit five to zeroYou can toggle an alphabetic character between upperwwaddase by simply rert
ing bit five.

Indeed, bits fie and six determine which of the four groups inABEIIl character set yor€ in:

Table9: ASCII Groups

Bit 6 Bit 5 Group
0 0 Control Characters
0 1 Digits & Punctuation
1 0 Upper Case & Special
1 1 Lower Case & Special

So you could, for instance, ogrtt any upper or lower case (or corresponding special) character to its equiv
alent control character by setting bits five and six to zero.

Consider, for a moment, the ASCII codes of the numeric digit characters:

Table 10: ASCII Codesfor Numeric Digits

Character Decimal Hexadecimal
“0” 48 $30
“1” 49 $31
“2" 50 $32
“3” 51 $33
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Table 10: ASCII Codesfor Numeric Digits

Character Decimal Hexadecimal
“4” 52 $34
“5” 53 $35
“6” 54 $36
“r" 55 $37
“8” 56 $38
“9” 57 $39

The decimal representations of thA&LClIl codes are notery enlightening. Heoever, the headecimal
representation of the#e&SClIl codes reeals somethingery important — the L.O. nibble of tR&ClI code is
the binary equialent of the represented numtgy stripping avay (i.e., setting to zero) the H.O. nibble of a
numeric characteryou can cowvert that character code to the corresponding binary representation. Con
versely you can covert a binary glue in the range 0..9 to &SCII character representation by simply-set
ting the H.O. nibble to three. Note that you can use the logical-AND operation to force the H.O. bits to zero;
likewise, you can use the logical-OR operation to force the H.O. bits to %0011 (three).

Note that yowcannotcorvert a string of numeric characters to their egl@int binary representation by
simply stripping the H.O. nibble from each digit in the string.\@oiing 123 ($31$32 $33) in this &shion
yields three bytes: $010203, not the corretti® which is $7B. Carerting a string of digits to an irger
requires more sophistication than this; theveosion abwe works only for single digits.

4.4.2

HLA Support for ASCII Characters

Although you could easily store charactefues inbyte variables and use the corresponding numeric
equivalentASCII code when using a character literal in your program, suchyagamnecessary - HLA
provides good support for characteriables and literals in your assembly language programs.

Character literal constants in HLA &kne of tw forms: a single character surrounded by apostrophes
or a pound symbol (“#") follwed by a numeric constant in the range 0..127 specifying 3@ code of
the characterHere are somexamples:

‘A #65 #$41 #%9100_0001

Note that thesexamples all represent the same character (‘A) since the ASCII code of ‘A’ is 65.

With a single exception, only a single character may appear between the apostrophes in a literal charac-
ter constant. That single exception is the apostrophe character itself. If you wish to create an apostrophe lit-
eral constant, place four apostrophes in a row (i.e., double up the apostrophe inside the surrounding
apostrophes), i.e.,

Thepound sign operator#°) must precede adal HLA numeric constant (either decimalxhédecimal
or binary as thexamples abee indicate). In particulathe pound sign is not a generic charactevexsion
function; it cannot precedegisters or ariable names, only constanss a general rule, you shouldhalys
use the apostrophe form of the character literal constant for graphic characters (that is, those that are print
able or displayable). Use the pound sign form for control characters (thatiait@enor do fung things
when you print them) or forxéendedASCII characters that may not display or print properly within your
source code.
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Notice the diference between a character literal constant and a string literal constant in your programs.
Strings are sequences of zero or more characters surrounded by quotation marks, characters are surrounded
by apostrophes. It is especially important to realize that

A £ A

The character constay ‘and the string containing the single charac®tiave two completely difer-
ent internal representations. If you attempt to use a string containing a single character whetpadtsA e
a character constant, HLA will report an errdstrings and string constants will be the subject of a later
chapter

To declare a characteanable in an HLA program, you use ttiear data type.The folloving declara
tion, for xkample, demonstrates\Wwdo declare aariable namedtlserinput

static
User | nput : char;

This declaration reseeg one byte of storage that you could use to storelzaracter &lue (including
eight-bit ectendedASCII characters).You can also initialize characteanables as the folleing example

demonstrates:

static
TheChar A: char := ‘A;
Ext endedChar char := #128;

Since characterariables are eight-bit objects, you can manipulate them using eightisiers. You
can mee characterariables into eight-bit gisters and you can store thaue of an eight-bit gister into a
character ariable.

The HLA Standard Library pxades a handful of routines that you can use for character I/O and-manip
ulation; these includstdout.putg¢stdout.putcSizestdout.put, stdingfc,andstdin.get.

Thestdout.putaoutine uses the follwing calling sequence:

stdout. putc( chvar );

This procedure outputs the single character parameter passed to it as a character to the standard output
device. The parameter may be a&hgr constant or variable, ortgytevariable or registér

The stdout.putcSizeoutine preides output width control when displaying charactariables. The
calling sequence for this procedure is

stdout. put cSi ze( charvar, widthint32, fillchar );

This routine prints the speafi character (parameterusing at leaswidth print positions. If the absolute
value ofwidth is greater than one, thatdout.putcSizerints thefill character as padding. If the value of
width is positive, therstdout.putcSizerints the character right justified in the print field;witith is nega

tive, thenstdout.putcSizprints the character left justified in the print field. Since character output is usually
left justified in a field, thevidth value will normally be negative for this call. The space character is the most
commonfill value.

You can also print character values using the gesttaut.putroutine. If a characteraviable appears
in thestdout.putparameter list, thestdout.putwill automatically print it as a charactealue, e.g.,

stdout. put( “Character ¢ =", ¢, “‘”", nl );
You can read characters from the standard input usingttie gtc and stdin.get routines. The

stdin.getcroutine does not lva ary parameters. It reads a single character from the standard uffart b
and returns this character in tA& register You may then store the charactalue avay or otherwise

8. If you specify a byte variable or a byte-sized register as the parametsitidiaé putcroutine will output the character
whose ASCII code appears in the variable or register.

9. The only timestdout.putcSizases more print positions than you specify is when you specify zero as the width; then this
routine uses exactly one print position.
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manipulate the character in tAé register The following program reads a single character from the, user
corverts it to upper case if it is ader case characteand then displays the character:

progr am char | nput Deno;
#include( “stdlib.hhf” );
static

c: char;

begi n char | nput Deno;

stdout.put( “Enter a character: “ );
stdin.getc();
if( al >*a ) then

if( al <=2 ) then

and( $5f, al );

endi f;

endi f;

st dout . put

(
“The character you entered, possibly “, nl,
“converted to upper case, was ‘"

)

stdout.putc( al );

stdout.put( “*”, nl );

end char | nput Deno;

Program 4.1  Character Input Sample

You can also use the genesidin.gt routine to read characteanables from the userlf a stdin.get
parameter is a charactariable, then thetdin.get routine will read a character from the user and store the
character alue into the spec#d \ariable. Here is the program aeaevritten to use thstdin.getroutine:

progr am char | nput Deno2;
#include( “stdlib.hhf” );
static
c: char;
begi n char | nput Deno2;
stdout. put( “Enter a character: “ );
stdin.get(c);
if( c>"'a ) then
if( c<="'2 ) then
and( $5f, c );

endi f;
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endi f;

st dout . put

(
“The character you entered, possibly “, nl,
“converted to upper case, was ‘",
c,
“oroonl

)

end char | nput Deno2;

Program 4.2  Stdin.get Character Input Sample

As you may recall from the last chaptére HLA Standard Libraryifers its input. Whene&er you
read a character from the standard input usidin.getcor stdin.cet, the library routines read thextevail-
able character from thauffer; if the ffer is emptythen the program reads aankne of text from the user
and returns ther§t character from that line. If youant to guarantee that the program readsmalime of
text from the user when you read a characteiable, you should call th&tdin.fushinputroutine before
attempting to read the charact@iis will flush the current inputuffer and force the input of awdine of
text on the net input (which should be yowtdin.getcor stdin.get call).

The end of line is problematic. Befent operating systems handle the end of lirferdifitly on output
versus input. From the consolevibe, pressing the ENTERek signals the end of a line; \Wwever, when
reading data from al& you get an end of line sequence which is typically a line feed or a carriage return/line
feed pair To help sole this problem, HLA Standard Library pwides an “end of line” functionThis pre
cedure returns true (one) in tAk register if all the current input characters@deen ghausted, it returns
false (zero) otherwiselhe folloving sample program demonstrates the use détttin.eolnfunction.

pr ogr am eol nDeno2;
#include( “stdlib.hhf” );
begi n eol nDeno2;

stdout.put( “Enter a short line of text: “ );
stdin. flushlnput();
r epeat

stdin.getc();

stdout. putc( al );

stdout.put( “=$", al, nl );
until ( stdin.eoln() );

end eol nDeno2;

Program 4.3  Testing for End of Line Using Stdin.eoln

The HLA language and the HLA Standard Libraryyide maiy other procedures and additional sup
port for character objects. Later chapters in thitbteok, as well as the HLA reference documentation,
describe he to use these features.
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4.4.3 The ASCII Character Set

The following table lists the binayjexadecimal, and decimal representations for each of thA328
character codes.

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0000_0000 00 0 NULL
0000_0001 | 01 1 ctrl A
0000_0010 | 02 2 ctrl B
0000_0011 | 03 3 ctrl C
0000_0100 | 04 4 ctrl D
0000_0101 | 05 5 ctrl E
0000_0110 | 06 6 ctrl F
0000_0111 | 07 7 bell
0000_1000 | 08 8 backspace
0000_1001 | 09 9 tab
0000_1010 | OA 10 line feed
0000_1011 | OB 11 ctrl K
0000 1100 | OC 12 form feed
0000 _1101 | OD 13 return
0000_1110 | OE 14 ctrl N
0000_1111 | OF 15 ctrl O
0001_0000 | 10 16 ctrl P
0001_0001 | 11 17 ctrl Q
0001_0010 | 12 18 ctrl R
0001_0011 | 13 19 ctrl S
0001_0100 | 14 20 ctrl T
0001_0101 | 15 21 ctrl U
0001_0110 | 16 22 ctrl v
0001_0111 | 17 23 ctrl W

Pagel04 © 2001, By Randall Hyde Beta Draft - Do not distribute



More Data Representation

Table 11: ASCII| Character Set

Binary Hex Decimal Character
0001_1000 | 18 24 ctrl X
0001_1001 | 19 25 ctrlY
0001_1010 | 1A 26 ctrl Z
0001_1011 | 1B 27 ctrl [
0001_1100 | 1C 28 ctrl \
0001_1101 | 1D 29 Esc
0001 1110 | 1E 30 ctrl A
0001 1111 | 1F 31 ctrl
0010_0000 | 20 32 space
0010_0001 | 21 33 !
0010_0010 | 22 34 "
0010_0011 | 23 35 #
0010_0100 | 24 36 $
0010_0101 | 25 37 %
0010_0110 | 26 38 &
0010 0111 | 27 39 '
0010 1000 | 28 40 (
0010_1001 | 29 41 )
0010_1010 | 2A 42 *
0010_1011 | 2B 43 +
0010_1100 | 2C 44 :
0010_1101 | 2D 45 -
0010_1110 | 2E 46
0010_1111 | 2F 47 /
0011_0000 | 30 48 0
0011_0001 | 31 49 1
0011_0010 | 32 50 2
0011_0011 | 33 51 3
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Table 11: ASCII| Character Set

Binary Hex Decimal Character
0011_0100 | 34 52 4
0011_0101 | 35 53 5
0011_0110 | 36 54 6
0011_0111 | 37 55 7
0011_1000 | 38 56 8
0011_1001 | 39 57 9
0011_1010 | 3A 58
0011_1011 | 3B 59 ;
0011_1100 | 3C 60 <
0011 1101 | 3D 61 =
0011_1110 | 3E 62 >
0011_1111 | 3F 63 ?
0100_0000 | 40 64 @
0100_0001 | 41 65 A
0100_0010 | 42 66 B
0100_0011 | 43 67 C
0100_0100 | 44 68 D
0100_0101 | 45 69 E
0100_0110 | 46 70 F
0100_0111 | 47 71 G
0100_1000 | 48 72 H
0100_1001 | 49 73 |
0100_1010 | 4A 74 J
0100_1011 | 4B 75 K
0100_1100 | 4C 76 L
0100_1101 | 4D 77 M
0100_1110 | 4E 78 N
0100_1111 | 4F 79 @)
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Table 11: ASCII| Character Set

Binary Hex Decimal Character
0101_0000 | 50 80 P
0101_0001 | 51 81 Q
0101_0010 | 52 82 R
0101_0011 | 53 83 S
0101_0100 | 54 84 T
0101_0101 | 55 85 U
0101_0110 | 56 86 \Y
0101_0111 | 57 87 W
0101_1000 | 58 88 X
0101_1001 | 59 89 Y
0101_1010 | 5A 90 Z
0101_1011 | 5B 91 [
0101_1100 | 5C 92 \
0101_1101 | 5D 93 ]
0101_1110 | 5E 94 n
0101_1111 | 5F 95 _
0110_0000 | 60 96
0110_0001 | 61 97 a
0110_0010 | 62 98 b
0110_0011 | 63 99 c
0110_0100 | 64 100 d
0110_0101 | 65 101 e
0110_0110 | 66 102 f
0110_0111 | 67 103 g
0110_1000 | 68 104 h
0110_1001 | 69 105 i
0110_1010 | 6A 106 ]
0110_1011 | 6B 107 k
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Table 11: ASCII| Character Set

Binary Hex Decimal Character
0110_1100 | 6C 108 I
0110_1101 | 6D 109 m
0110_1110 | 6E 110 n
0110_1111 | 6F 111 0]
0111 0000 | 70 112 p
0111 0001 | 71 113 o}
0111 0010 | 72 114 r
0111 0011 | 73 115 S
0111 _0100 | 74 116 t
0111 0101 | 75 117 u
0111 0110 | 76 118 v
0111 0111 | 77 119 w
0111 1000 | 78 120 X
0111 1001 | 79 121 y
0111 1010 | 7A 122 z
0111 1011 | 7B 123 {
0111 1100 | 7C 124 |
0111 1101 | 7D 125 }
0111 1110 | 7E 126 ~
0111 1111 | 7F 127

4.5

The UNICODE Character Set

Although theASCII character set is, unquestionalihe most popular character representation orr com
puters, it is certainly not the only format aroundr &xample, IBM uses the EBCDIC code on manf its
mainframe and minicomputer lines. Since EBCDIC appears mainly onsiBlg'iron and yodi rarely
encounter it on personal computer systems, we will not consider that character setin tArsotber char
acter representation that is becoming popular on small computer systemsdaruhés, for that matter) is
the Unicode character set. Unicodeei@omes tw of ASCII's greatest limitations: the limited character
space (i.e., a maximum of 128/256 characters in an eight-bit byte) and the lack of internatyomal {he
USA) characters.

Unicode uses a 16-bitord to represent a single charactéherefore, Unicode supports up to 65,536
different character codeshis is olviously a huge adance oer the 256 possible codes we can represent
with an eight-bit byte. Unicode is upnds compatible froMASCIl. Specifcally, if the H.O. 17 bits of a
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Unicode character contain zero, then the L.@esdits represent the same character a&3i@| character
with the same character code. If the H.O. 17 bits contain some nonahgégpthien the character represents
some other alue. If youte wondering wly so mawy different character codes are necesssirgply note
that certairAsian character sets contain 4096 characters (at least, their Unicode subset).

This text will stick to theASCII character setxeept for a fev brief mentions of Unicode here and there.
Unfortunately mary string algorithms are not as e@miently written for Unicode as fé&SCIl (especially
character set functions) so Westick with ASCII in this text as long as possible.

4.6  Other Data Representations

Of course, we can represent malifferent objects other than numbers and characters in a computer
system. The following subsections pwide a brief description of the €#fent real-world data types you
might encounter

4.6.1 Representing Colors on a Video Display

As you'e probably ware, color images on a computer display are made up of a series of datsadeno
pixels(which is short for “picture elemenis. Different display modes (depending on the capability of the
display adapter) use &Bfent data representations for each of theselgixThe one thing in common
between these data types is thaytbentrol the mixture of the three addaiprimary colors (red, green, and
blue)to form a specié color on the displayThe question, of course, ismanuch of each of these colors do
they mix together?

Color depthis the term video card maradturers use to describevhonuch red, green, and blue yhe
mix together for each pel. Modern video cards generally pide three color depths of eight, sixteen, or
twenty-four bits, allaing 256, 65536, orver 16 million colors per pd on the display This produces
images that are somvbat coarse and grair{eight-bit images) to “Polaroid quality” (16-bit images), on up
to “photographic quality” (24-bit imagé@

One problem with these color depths is that biithe three formats do not contain a number of bits that
is evenly dvisible by three.Therefore, in each of these formats at least one of the three primary colors will
have fewer bits than the others.oFexample, with an eight-bit color depth,dvef the colors can ke three
bits (or eight diferent shades) associated with them while one of the colors nvasbhly two bits (or four
shades).Therefore, when distriliing the bits there are three formats possible: 2-3-8 lfits red, three bits
green, and three bits blue), 3-2-3, or 3-3-2. ehike, with a 16 bit color depth, tnof the three colors can
have five bits while the third color can V& six bits. This lets us generate threefdient palettes using the
bit values 5-5-6, 5-6-5, or 6-5-5.0F24-bit displays, each primary color carvéaight bits, so there is an
even distrilution of the colors for each pk

A 24-bit display produces amazingly good resuks16-bit display produces okay images. Eight-bit
displays, to put it bluntlyproduce horrible photographic images Ytli® produce good synthetic images
like those you wuld manipulate with a dwaprogram). To produce better images when using an eight-bit
display most cards prade a hardwarepalette A palette is nothing more than an array of 24-blties con
taining 256 elementd. The system uses the eight-bit glixalue as an indeinto this array of 256alues
and displays the color associated with the 24-bit entry in the palette Adthleugh the display can still dis
play only 256 diferent colors at one time, the palette mechanism lets users seletty @/hich colors the

10. Some graphic artists would argue that 24 bit images are not of a sufficient quality. There are some display/primter./scanne
devices capable of working with 32-bit, 36-bit, and even 48-bit images; if, of course, you're willing to pay for them.

11. Actually, the color depth of each palette entry is not necessarily fixed at 24 bits. Some display devices, for example, use
18-bit entries in their palette.
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want to display For example, thg could display 250 shades of blue and six shades of purple if suchra mix
ture produces a better image for them.

I
Pixel Cola
to Display
Eight-bit pixel value provid
an index into a table of 256
24-bit values. The value of
the selected element specifies
the 24-bit color to display.

Figure 4.7 Extending the Number of Colors Using a Palette

Unfortunately the palette scheme onlyovks for displays with minimal color depths.orFexample,
attempting to use a palette with 16-bit imagesild require a lookup table with 65,536fdient three-byte
entries — a bit much for todaybperating systems (since yhmay hae to reload the paletteery time you
select a winde on the display). értunately the higher bit depths ddmrequire the palette concept as much
as the eight-bit color depth.

Obviously, we could dream up other schemes for representirgj gaor on the displaySome display
systems, for xaample, use the subtraai primary colors (Cyanyellow, and Magenta, plus Black, the
so-calledCYMK color space). Other display system useefieor more bits to represent thalwes. Some
distribute the bits betweeravious shadesMonochrome displays typically use one, foorr eight bit piels
to display arious gray scales (e.g.,dwsixteen, or 256 shades of gray). wéeer, the bit oganizations of
this section are among the more popular in use by display adapters.
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4.6.2 Representing Audio Information

Another real-wrld quantity youll often find in digital form on a computer is audio informatioWAV
files,MP3 files, and other audio formats are quite popular on personal compArergeresting question is
“how do we represent audio information inside the comput@aile mary sound formats aref too com
plex to discuss here (e.g., the MP3 format), it is nedéifieasy to represent sound using a simple sound data
format (something similar to th&AV file format). In this section witexplore a couple of possibleays to
represent audio information;ubbefore we tad a look at the digital format, perhaps & wise idea to study
the analog formatrf$t.

The speaker
responds by
pushing the
air in an out
——® according to
the electrical
signal.

Input an alternating electrical signa
to the peaker.

L

Figure 4.8 Operation of a Speaker

Sounds you hear are the result of vibrating air molecWégn air molecules quickly vibrate back and
forth between 20 and 20,000 times per second, we interpret this as some sort & speatkr (sed-igure
4.9) is a deice which vibrates air in response to an electrical sigriat is, it comerts an electric signal
which alternates between 20 and 20,000 times per second (Hz) to an audibidtéonating a signal is
very easy on a compujell you hae to do is apply a logic one to an output port for some period of time and
then write a logic zero to the output port for a short pefibeén repeat thisver and @er agin. A plot of
this actvity over time appears iRigure 4.9

Voltage applied
to speaker One Clock

Period

Logic 1 I | | |_| | | \
Logic 0 ' - Time

Note: Frequency is equal to the recipricol of the clock period. Audible sounds are
between 20 and 20,000 Hz.

Figure 4.9 An Audible Sound Wave

Although may humans are capable of hearing tones in the range 20-20Khz, theg&@kr is not
capable of dithfully reproducing the tones in this range. lbriss pretty good for sounds in the range
100-10Khz, lot the wlume drops dfdramatically outside this rangeoffunately most modern PCs contain
a sound card that is quite capable (with appropriger®al speagrs) of fithfully representing “CD-Qual
ity” sound. Of course, a good question might be “what is CD-Quality soupadag” Well, to answer
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that question, wee got to decide o we're going to represent sound information in a binary format (see
“What is “DigitalAudio” Anyway? on pagell?).

Take another look atigure 4.9 This is a graph of amplitudedume level) over time. If logic one
corresponds to a fullyxéended speadt cone and logic zero corresponds to a fully retracted speake,
then the graph ifrigure 4.9suggests that we are constantly pushing the speadne in an out as time
progressesThis analog data, by theay produces what is ki as a “square ae” which tends to be a
very bright sound at high frequencies aneée/Nuzzy sound at w frequencies. One admtage of a square
wave tone is that we only need to alternate a single bit of datatime in order to produce a ton€his is
very easy to do andewy inexpensve. These tw reasons are whthe PCs Luilt-in spealer (not the sound
card) usesyactly this technique for producing beeps and sdgsa

To produce dierent tones with a squareawve sound system iewy easy All you've got to do is write a
one and a zero to some bit connected to the spsakna/here between 20 and 20,000 times per second.
You can gen produce “wrbling” sounds by arying the frequencat which you write those zeros and ones
to the speads.

One easy data format we carvelep to represent digitized (@whould we sgy'binarized”) audio data
is to create a stream of bits that we feed to the speadry 1/40,0003econds. By alternating ones and zeros
in this bit stream, we get a 20 KHz tone (rememibdéakes a high and avosection to gie us one clock
period, hence it will taé two bits to produce a singlgde on the output).To get a 20 Hz tone, youawmld
create a bit stream that alternates between 1,000 zeros and 1,000Vithes,000 zeros, the speakwill
remain in the retracted position fb’ﬁo seconds, follwing that with 1,000 ones lees the spead in the
fully extended position for1/40 seconds.The end result is that the speaknores in and out 20 times a sec
ond (gving us our 20 Hz frequept Of course, you dohhave to emit a rgular pattern of zeros and ones.
By varying the positions of the ones and zeros in your data stream you can dramafedlishaftype of
sound the system will produce.

The length of your data stream will determineviong the sound playswith 40,000 bits, the sound
will play for one second (assuming eachshituration i§/4oioooseconds)As you can see, this sound format
will consume 5,000 bytes per seconthis may seem li& a lot, ot it's relatvely modest by digital audio
standards.

Unfortunately square \aves are ery limited with respect to the soundsythmn produce and are not
very high fdelity (certainly not “CD-Quality”). Real analog audio signals are much more compteyou
cannot represent them withdwdifferent wltage leels on a speak Figure 4.1(orovides a typical xample

What is “Digital A udio” Anyway?

“Digital Audio” or “digitized audio” is the corentional term the consumer electronics industry uses
to describe audio information encoded for use on a compitieat xactly does the term “digital” mean
in this case. Historicallythe term “digit” refers to ariger A digital numbering system is one based on
counting ones fingers. Traditionally, then, a “digital number” as a base ten number (since the number
ing system we most commonly use is based on the ten digits with which Gadeenas). In the early
days of computer systems the terms “digital computer” and “binary computer” were quikeiprewith
digital computers describing decimal computer systems (i.e., BCD-based systems). Binary computers, of
course, were those based on the binary numbering systiéinough BCD computers are mainly an arti
fact in the historical dust bin, the name “digital computeedion and is the common term to describe all
computer systems, binary or otherwis&€herefore, when people talk about the logateg computer
designers use to create computer systemy, dak them “digital logic. Lik ewise, when thg refer to
computerized data (l&audio data), tlyerefer to it as “digital. Technically the term “digital” should
mean base ten, not baseotwi herefore, we should really refer to “digital audio” as “binary audio” to be
technically correct. Hwever, it's a little late in the @me to change this term, so “digital XXXXXVés
on. Just kep in mind that the vterms “digital audio” and “binary audio” really do mean the same thing,
even though theg shouldnt.
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of an audio wveform. Notice that the frequenand the amplitude (the height of the signaljies consid
erably aer time. To capture the height of theaweform at ag given point in time we will need more than
two values; hence, wikheed more than a single bit.

Voltage applied
to speaker

High Voltag

Low Voltage

Time

Figure 4.10 A Typical Audio Waveform

An obvious frst approximation is to use a byte, rather than a single bit, to represent each point in time
on our vaveform. We can cowert this byte data to an analog signal using a “digital to analogeder’
(how olvious) or DAC. This accepts some binary number as input and produces an aokapge \on its
output. This allovs us to represent an impress56 diferent \oltage leels in the vaveform. By using
eight bits, we can produce arfwider range of sounds than are possible with a single bit. Of course, our
data stream @ consumes 40,000 bytes per second; quite a big step up from the 5,000 bytes/second in the
previous example, ot still relatvely modest in terms of digital audio data rates.

You might think that 256 \els would be sufcient to produce some impressiaudio. Unfortunately
our hearing is logrithmic in nature and it tek an order of magnitude fdifence in signal for a sound to
appear just a little bit louderTherefore, our 256 diérent analog Mels arert as impressie to our ears.
Although you can produce some decent sounds with an eight-bit data streastil] itot high filelity and
certainly not “CD-Quality” audio.

The ne&t obvious step up the ladder is a 16-katwe for each point of our digital audio streaxith
65,536 diferent analog kels we fnally reach the realm of “CD-Quality” audio. Of course,eiav con
suming 80,000 bytes per second to aahithis! For technical reasons, the Compact Disc format actually
requires 44,100 16-bit samples per seconal aFstereo (rather than monaural) data stream, you need tw
16-bit values eacH/44llooseconds.This produces a whopping data rate w¢r0160,000 bytes per second.
Now you understand the claim a littler earlier that 5,000 bytes per second isvelyelatidest data rate.

Some ‘ery high quality digital audio systems use 20 or 24 bits of information and record the data at a
higher frequengthan 44.1 KHz (48 KHz is populdor example). Such data formats record a better signal
at the @pense of a higher data rate. Some sound systenisrequnire agwhere near thedelity levels of
even aCD-Quality recording. Telephone corersations, for xample, require only about 5,000 eight-bit
samples per second (this, by thaywis why phone modems are limited to approximately 56,000 bits per
second, which is about 5,000 bytes per second plus seeneead). Some common “digitizing” rates for
audio include the folling:

* Eight-bit samples at 11 KHz

*  Eight-bit samples at 22 KHz

*  Eight-bit samples at 44.1 KHz

e 16-bit samples at 32 KHz

e 16-bit samples at 44.1 KHz

e 16-bit samples at 48 KHz

e 24-bit samples at 44.1 KHz (generally in professional recording systems)
e 24-bit samples at 48 KHz (generally in professional recording systems)

The fidelity increases as you move down this list.
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The act format for @rious audio fe formats is &y begrond the scope of thisxesince man of the
formats incorporate data compression. Some simple alaiorimats lilke WAV andAIFF consist of little
more than the digitized byte streanut lother formats are nearly indecipherable in their coxitgle The
exact nature of a sound data type is highly dependent upon the soundtesirdyour system, so weow't
delve ary farther into this subjectThere are seral books @ailable on computer audio and sourid for-
mats if youte interested in pursuing this subjeatther

4.6.3 Representing Musical Information

Although it is possible to compress an audio data streanvdmahehigh-quality audio will consume a
large amount of data. CD-Quality audio consumes just 460 Kilobytes per second, so a CD at 650
Megabytes holds enough data for jugepan hour of audio (in stereo). Earligou sav that we could use a
palette to allav higher quality color images on an eight-bit displAwy interesting question is “can we create
a sound palette to let us encode higher quality audio?” Unfortuntitelgeneral answer is no because
audio information is much less redundant than video information and you cannot produce good results with
rough approximation (which using a sound paletbell require). Hwever, if you're trying to produce a
specift sound, rather than trying taithfully reproduce some recording, there are some possibilities open to
you.

The adwantage to the digitized audio format is that it recexdsything In a music track, fon@mple,
the digital information records all the instruments, tbealists, the background noise, and, weigrything
Sometimes you might not need to retain all this informatiar. ekample, if all you vant to record is agy-
board playes synthesizerthe ability to record all the other audio information simultaneously is not-neces
sary In fact, with an appropriate intade to the computerecording the audio signal from theykoard is
completely unnecessanj far more cost-ééctive approach (from a memory usage point ofwies to sim
ply record the notes thejoardist plays (along with the duration of each note anddloeity at which the
keyboardist plays the note) and then simply feed teybéard information back to the synthesizer to play
the music at a later time. Since it onlydala fev bytes to record each note theyloardist plays, and the
keyboardist generally playsvier than 100 notes per second, the amount of data needed to record a comple
piece of music is tyncompared to a digitized audio recording of the same performance.

One \ery popular format for recording musical information in thlishion is the MIDI format (MIDI
stands for Musical Instrument Digital Intace and it spec#s hev to connect musical instruments, comput
ers, and other equipment togethefhe MIDI protocol uses multi-bytealues to record information about a
series of instruments (a simple MIDlefican actually control up to 16 or more instruments simultaneously).

Although the internal data format of the MIDI protocol iydred the scope of this chaptéris interest
ing to note that a MIDI command ifeftively equivalent to a “palette look-up” for an audio signsiVhen
a musical instrument resgis a MIDI command telling it to play back some note, that instrument generally
plays back some aveform stored in the synthesizer

Note that you dom’actually need anxéernal leyboard/synthesizer to play back MIDlefs. Most sound
cards contain softare that will interpret MIDI commands and play the accompentes. These cards defi
nitely use the MIDI command as an irdeto a “wave table” (short for weform lookup table) to play the
accompanping sound.Although the quality of the sound these cards reproduce is often inferior to that a pro
fessior;lazl synthesizer produces ytlie let you play MIDI fies without purchasing arxjgensve synthesizer
module.

If you're interested in the actual data format that MIDI uses, there are dozexts efdadable on the
MIDI format. Any local music store should carryveeal of these.You should also be able tod lots of
information on MIDI on the Internet (try Rolasdiveb site as a good starting point).

12. For those who would like a better MIDI experience using a sound card, some synthesizer manufacturers produce sound
cards with an integrated synthesizer on-board.
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4.6.4

Representing Video Information

Recent increases in disk space, computer speed, andrketecess he alloved an &plosion in the
popularity of multimedia on personal computekdthough the term “multimedia” suggests that the data for
mat deals with mandifferent types of media, most people use this term to describe digital video recording
and playback on a computer system. dctf most multimedia formats support at least tmediums: video
and audio. The more popular formats BkKApple’s Quicktime support other concurrent media streams as
well (e.g., a separate subtitle track, time codes, avidaleontrol). To simplify matters, we limit the discus
sion in this section to digital video streams.

Fundamentallya video image is nothing more than a succession of still pictures that the system displays
at some rate lik 30 images per secondherefore, if we \ant to create a digitized video image format, all
we really need to do is store 30 or so pictures for each second of video we wish tdhige may not seem
like a big deal, lt consider that a typical “full screen” video display has 640x486Ipiar a total of
307,200 piels. If we use a 24-bit RGB color space, then eadH pil require three bytes, raising the total
to 921,600 bytes per image. Displaying 30 of these images per second means our video format will con
sume 27,648,000 bytes per second. Digital audio, at 160 Kilobytes per second is virtually nothing compared
to the data requirements for digital video.

Although computer systems and hard disk systemms hehanced tremendouslyer the past decade,
maintaining a 30 MByte/second data rate from disk to display is a little too muxpect drom all loit the
most epensve workstations currentlyvailable (at least, in the year 2000 as th&swritten). Therefore,
most multimedia systems usarious techniques (or combinations of these techniques) to get the data rate
down to something more reasonable. In stock computer systems, a common technique is to display a
320x240 quarter screen image rather than a full-screen 640x480 iftsigeeduces the data rate to about
seven meabytes per second.

Another technique digital video formats use istonpessthe video dataVideo data tends to contain
lots of redundant information that the system can eliminate through the use of compréssiqropular
DV format fordigital video camcorders, foxample, compresses the data stream by almost 90%, requiring
only a 3.3 MByte/second data rate for full-screen vidguas type of compression is not without coShere
is a detectable, though slight, loss in image quality when gmgldV compression on a video image.
Nevertheless, this compression reakit possible to deal with digital video data streams on a contemporary
computer system. Compressed data formats are a lijitentbehe scope of this chapter; wever, by the
time you fhish this tet you should be well-prepared to deal with compressed data formats. Programmers
writing video data compression algorithms often use assembly language because compression and decom
pression algorithms need to bery fast to process a video stream in real tiberefore, kep reading this
text if you're interested in wrking on these types of algorithms.

4.6.5

Where to Get More Information About Data Types

Since there are mgiways to represent a particular readld object inside the computemd nearly an
infinite variety of real-vorld objects, this t¢ cannot gen bein to coser all the possibilities. Iratt, one of
the most important steps in writing a piece of computer soéws to carefully consider what objects the
software needs to represent and then choose an appropriate internal representation for thabob@uoe F
objects or processes, an internal representatiairig bbvious; for other objects or processesjaedeping
an appropriate data type representation isfecdif task. Although we will continue to look at dérent data
representations throughout thigttef you're really interested in learning more about data representation of
real world objects, actities, and processes, you should consult a good “Data Structurédgamnithms”
textbook. This text does not hae the space to treat these subjects properly (since it still has to teach assem
bly language). Most xs on data structures present their material in a high language.Adopting this
material to assembly language is nofidiflt, especially once yowe digested a lge percentage of thisxte
For something a little closer to home, you might consider reading kntitheArt of Computer Program
ming” that describes data structures and algorithms using a synthetic assembly languagdiXalled
Although MIX isn't the same as HLA orven x86 assembly language, you will probabhdfit easier to
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corvert algorithms in this te to x86 than it wuld be to cowvert algorithms written in &scal, Jea, or C++ to
assembly language.

4.7

Putting It All Together

Perhaps the most importaraict this chapter and the last chapter present is that computer programs all
use strings of binary bits to represent data internaltyis up to an application program to distinguish
between the possible representationst ékample, the bit string %0100_0001 could represent the numeric
value 65, a\SCII character &'), or the mantissa portion of aé#iting point alue ($41). The CPU cannot
and does not distinguish between thesteiht representations, it simply processes this eighghiewas a
bit string and leges the interpretation of the data to the application.

Beginning assembly language programmers oftese i@uble comprehending that yhare responsible
for interpreting the type of data found in memory; after all, one of the most important abstractions that high
level languages prade is to associate a data type with a bit string in membinys allovs the compiler to
do the interpretation of data representation rather than the programhegefore, an important point this
chapter maés is that assembly language programmers must handle this interpretation teembseNALA
language prades huilt-in data types that seem to pide these abstractionsytbkeep in mind that once
you've loaded aalue into a rgister HLA can no longer interpret that data for you, it is your responsibility
to use the appropriate machine instructions that operate on theespdaita.

One small amount of checking that HLA and the CPU does enforce is size checking - HLA will not
allow you to mix sizes of operands within most instructfdnsThat is, you cannot specify a byte operand
and a vord operand in the same instruction thqgiexts its tw operands to be the same size.wHe®r, as
the following program indicates, you can easily write a program that treats the slmmeas completely dif
ferent types.

program dat al nterpretation;
#include( “stdlib.hhf” );
static

r: real32 :=-1.0;

begi n datal nterpretation;

st dout . put ( r’ interpreted as a real 32 value: “, r:5:2, nl );
stdout.put( “‘r’ interpreted as an uns32 value: “ );

nov( r, eax );

stdout. putu32( eax );

stdout. new n();

stdout. put( “*
nmov( r, eax );
stdout. puti 32( eax );
stdout. new n();

r’ interpreted as an int32 value: “ );

st dout . put (
mov( r, eax );
stdout. putd( eax );
stdout . new n();

r’ interpreted as a dword value: $ );

end datal nterpretation;

13. The sign and zero extension instructions are an obvious exception, though HLA still checks the operand sizes to ensure
they are appropriate.
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Program 4.4  Interpreting a Single Value as Several Different Data Types

As this sample program demonstrates, you can get complefeledifresults by interpreting your data
differently during your prograra’execution. So alays remembeiit is your responsibility to interpret the
data in your program. HLA helps a little by aliag you to declare data types that are slightly more abstract
than bytes, wrds, or double wrds; HLA also preides certain support routines, dilstdout.put, that will
automatically interpret these abstract data types for yoweveq it is generally your responsibility to use
the appropriate machine instructions to consistently manipulate memory objects according to their data type.
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puting systems.

The I/O Subsystem

Input and output are two of the most important functions
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occurs on a typical 80x86 system.

Questions, Projects, and Laboratory Exercises
See what you've learned in this topic!

This topic, as its title suggests, is primarily geted
towards a machine ganization course.Those who wish

to study assembly language programming should at least
read Chaptefwo and possibly Chapter One. Chapter
Three is a lwv-level discussion of digital logicThis infor
mation is important to those who are interested in design
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Volume2

ing CPUs and other system componeni&hose indviduals who are main interested in
programming can safely skip this chapteChapters &ur, Five, and Six preide a more
in-depth look at computer systenasthitecture. Those vanting to knav how things work
"under the hood" will \ant to read these chapters. wdger, programmers who justamt to

learn assembly language programming can safely skip these chapters. Chapietdise
cusses I/0 on the 80x86. Under modern 32-bit operating systems you will not be able to uti
lize much of this information unless you are writingide drivers. Havever, those interested

in learning hav low-level 1/O tales place in assembly language willw to read this chapter
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System Organization

System Organization Chapter One

To write ezen a modest 80x86 assembly language program requires considenattikrify with the
80x86 aamily. To write good assembly language programs requires a stronglkdge of the underlying
hardware. Unfortunatelythe underlying hardare is not consisterifechniques that are crucial for 8088-pro
grams may not be useful on Pentium systemsawige, programming techniques that yide big perfor
mance boosts on the Pentium chip may not help at all on an 80d&6ndtely some programming
techniques wrk well no matter which microprocessor y@uusing.This chapter discusses théeet hard
ware has on the performance of computer soiw

11

Chapter Overview

This chapter describes the basic components tha¢ myala computer system: the CPU, memb@,
and the bs that connects thelthough you can write softare that is ignorant of these concepts, high per
formance softwre requires a complete understanding of this matdrias chapter also discusses the 80x86
memory addressing modes andvh@u access memory data from your programs.

This chapter bgins by discussingus oganization and memory ganization.These tw hardvare corm
ponents will probably he a bigger performance impact on your safevthan the CPY’speed. Under
standing the ganization of the systemub will allow you to design data structures and algorithms that
operate at maximum speed. Similakgoning about memory performance characteristics, data locatity
cache operation can help you design safeathat runs asét as possible. Of course, if yauhot interested
in writing code that runs asdt as possible, you can skip this discussiomeher, most people do care
about speed at one point or anotiserlearning this information is useful.

With the generic hardare issues out of theay this chapter then discusses the program-visible compo
nents of the memory architecture - speaifly the 80x86 addressing modes and lzoprogram can access
memory In addition to the addressing modes, this chapter introdueesakaev 80x86 instructions that
are quite useful for manipulating memoryhis chapter also presents/sgal nev HLA Standard Library
calls you can use to allocate and deallocate memory

Some might ayue that this chapter gets toodtved with computer architectur€hey feel such mate
rial should appear in an architectural book, not an assembly language programminthizoo&uldnt be
farther from the truthWriting good assembly language programs requires a stronglkdge of the archi
tecture. Hence the emphasis on computer architecture in this chapter

1.2

The Basic System Components

The basic operational design of a computer system is callacthisecture. JohnvVon Neumanna pic
neer in computer design, issgh credit for the architecture of most computers in use tédagample, the
80x86 aimily uses th&bn Neumann architecture (VNA). A typical Von Neumann system has three major
components: theentral processing unit (or CPU), memory, andinput/output (or 1/0). The way a system
designer combines these components impacts system performanE@(Bed..).
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Memory

1/0 Devices

Figure 1.1 Typical Von Neumann Machine

In VNA machines, lik the 80x86dmily, the CPU is where all the action éskplaceAll computations
occur inside the CPU. Data and machine instructions reside in memory until required by thHeo GiirdJ.
CPU, most I/O déces look like memory because the CPU can store data to an outpce éed read data
from an input deice. The major diference between memory and 1/O locations is #oe that I/O locations
are generally associated witkternal deices in the outside avld.

1.2.1 The System Bus

Thesystem bus connects thearious components of\8NA machine.The 80x86 &mily has three major
busses: thaddress bus, thedata bus, and theontrol bus.A bus is a collection of wires on which electrical
signals pass between components in the systbase hisses &ry from processor to processbiowever,
each los carries comparable information on all processors; e.g., theusataaly hee a diferent implemen
tation on the 80386 than on the 808&, Ihoth carry data between the proces@r, and memory

A typical 80x86 system component ustandard TTL logic levels'. This means each wire on ash
uses a standaraltage leel to represent zero and Sneve will always specify zero and one rather than the
electrical l@els because thesevéds \ary on diferent processors (especially laptops).

1.2.1.1 The Data Bus

The 80x86 processors use tiata bus to shufle data between therious components in a computer
systemThe size of this s \aries widely in the 80x8@fmily. Indeed, this bs defies the “size” of the pro
cessor

Every modern x86 CPU from the Pentium on up elypla 64-bit wide dataus. Some of the earlier
processors used 8-bit, 16-bit, or 32-bit datades, bt such machines are figfently obsolete that we do
not need to consider them here..

1. Actually, newer members of the family tend to use lower voltage signals, but these remain compatible with TTL signals.

2. TTL logic represents the value zero with a voltage in the range 0.0-0.8v. It represents a one with a voltage in the range
2.4-5v. If the signal on a bus line is between 0.8v and 2.4y, it's value is indeterminate. Such a condition should only exist
when a bus line is changing from one state to the other.

Pagel38 © 2001, By Randall Hyde Beta Draft - Do not distribute



System Organization

You'll often hear a processor called eight, 16, 32, or 64 bit processor. While there is a mild contro
versy concerning the sizd# a processomost people ne agree that the minimum of either the number of
data lines on the processor or the size of tlgefrgeneral purpose iger reyister determines the processor
size.The modern x86 CPUs all ra 64-bit lusses, bt only pravide 32-bit general purpose igeer reisters,
so most people classify thesevides as 32-bit processors.

Although the 80x86d&mily members with eight, 16, 32, and 64 bit dataslescan process data up to
the width of the bs, thg can also access smaller memory units of eight, 16, or 3Z hisefore, aything
you can do with a small dataid can be done with a tmr data bs as well; the lgier data bs, havever,
may access memorgdter and can accessger chunks of data in one memory operatitou’ll read about
the eact nature of these memory accesses a little latef $meMemory Subsystehon pagel40).

1.2.1.2 The Address Bus

The data bs on an 80x86aimily processor transfers information between a particular memory location
or 1/0 device and the CPUlhe only question is,Which memory location or 1/O device? ” The addressus
answers that questioiio differentiate memory locations and I/Ovaes, the system designer assigns a
unigue memory address to each memory element and Vi€ed#/hen the softare wants to access some
particular memory location or 1/O dee, it places the corresponding address on the addrss€iocuitry
associated with the memory or I/Ovite recognizes this address and instructs the memory orVi€ede
read the data from or place data on to the dasa Im either case, all other memory locations ignore the
request. Only the d&ce whose address matches thiie on the addressidresponds.

With a single address line, a processor could creaietlg two unique addresses: zero and &ugh n
address lines, the processor carvig® 2" unique addresses (since there dreirdique \alues in am-bit
binary number)Therefore, the number of bits on the addrass Wwill determine thenaximum number of
addressable memoand /O locations. Early x86 processors, fxaraple, proided only 20 bit addressib
sesTherefore, thg could only access up to 1,048,576 (8f)Znemory locations. Lger addressusses can
access more memory

Table 12: 80x86 Family Address Bus Sizes

Address Bus Max Addressable .
Processor : In English!
Size Memory
8088, 8086, 80186, 20 1,048,576 One Majabyte
80188

80286, 80386sx 24 16,777,216 Sixteen Mgabytes

80386dx 32 4,294,976,296 Four Gigabytes

80486, Pentium 32 4,294,976,296 Four Gigabytes

Pentium Pro, II, IlI, IV 36 68,719,476,736 64 Gigabytes

Future 80x86 processors (e.g., &MD “Hammer”) will probably support 40, 48, and 64-bit address
bussesThe time is coming when most programmers will consider fowahyites of storage to be too small,
much like they consider one ngabyte insuicient today(There vas a time when one gebyte vas consie
ered &r more than arone would eser need!).

1.2.1.3 The Control Bus

The control lis is an eclectic collection of signals that contrak libe processor communicates with
the rest of the system. Consider for a moment the datd e CPU sends data to memory and maedata
from memory on the dataub.This prompts the question, “Is it sending or reicg?” There are tw lines on
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the control los,read andwrite, which specify the direction of datawl. Other signals include system clocks,
interrupt lines, status lines, and so ©he «act male up of the controlis \aries among processors in the
80x86 amily. However, some control lines are common to all processors andatk & brief mention.

Theread andwrite control lines control the direction of data on the das\When both contain a logic
one, the CPU and memory-I/O are not communicating with one aniittiex read line is \ (logic zero),
the CPU is reading data from memory (that is, the system is transferring data from memory to the CPU). If
the write line is lay, the system transfers data from the CPU to memory

Thebyte enable lines are another set of important control lin€sese control lines allo 16, 32, and 64
bit processors to deal with smaller chunks of datiaitional details appear in thexiesection.

The 80x86 &mily, unlike maty other processors, priales two distinct address spacesie for memory
and one for I/OWhile the memory addressisses onarious 80x86 processorary in size, the I/Gddress
bus on all 80x86 CPUs is 16 bits widéis allovs the processor to address up to 65,536érdifit I/Oloca-
tions. As it turns out, most deces (like the lkeyboard, printerdisk drives, etc.) require more than one I/O
location. Nonetheless, 65,536 1/O locations are more théicisat for most application3he original IBM
PC design only allwed the use of 1,024 of these.

Although the 80x86&mily supports tw address spaces, it does noteheno address Usses (for 1/0
and memory). Instead, the system shares the addies®rmboth 1/0 and memory addressadditional
control lines decide whether the address is intended for memory dviéh such signals are aetj the 1/0
devices use the address on the L.O. 16 bits of the addies&/ben inactie, the 1/0 deices ignore the sig
nals on the addressi® (the memory subsystem ¢askwyer at that point).

1.2.2 The Memory Subsystem

A typical 80x86 processor addresses a maximun® dffferent memory locations, whends the num
ber of bits on the addresas. As youVe seen alread0x86 processors i 20, 24, 32, and 36 bit address
busses (with 64 bits on theaw).

Of course, the fst question you should ask is, “Whatetly is a memory location?The 80x86 sup
ports byte addressable memory. Therefore, the basic memory unit is a byte. So with 20, 24, 32, and 36
address lines, the 80x86 processors can address aqgabytes 16 mgabytes, four gigbytes, and 64
gigabytes of memoryespectiely.

Think of memory as a linear array of bytébe address of ther§it byte is zero and the address of the
last byte is 9-1. For an 8088 with a 20 bit addressshthe folleving pseudo-Bscal array declaration is a
good approximation of memaory:

Memory: array [0..1048575] of byte;

To executethe equialent of the Bscal statement “Memory [125] := 0;” the CPU places #iaevzero
on the datas, the address 125 on the address bnd asserts the write line (since the CPU is writing data
to memory), se€&igure 1.2

3. This is thanaximum. Most computer systems built around 80x86 family do not include the maximum addressable amount
of memory.
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Address = 125 Memory
Data =0 Location

CPU | 125
Write = 0

=

Figure 1.2 Memory Write Operation

To execute the equalent of “CPU := Memory [125];” the CPU places the address 125 on the address
bus, asserts the read line (since the CPU is reading data from memory), and then reads the resulting data
from the data bs (sed-igure 1.3.

Address = 125 Memory

Location

Data = Memory[125]

CPU l 125
Read =0
Figure 1.3 Memory Read Operation

The abee discussion appliemly when accessing a single byte in mem&y what happens when the
processor accesses arnd or a double wrd? Since memory consists of an array of bytes, dan we possi
bly deal with \alues lager than eight bits?

Different computer systemsveadifferent solutions to this problerihe 80x86 &mily deals with this
problem by storing the L.O. byte of somd at the address speeiiand the H.O. byte at thexhdocation.
Therefore, a wrd consumes ta/consecutie memory addresses (as yoould expect, since a ard consists
of two bytes). Similarlya double wrd consumes four conseagtimemory locationsThe address for the
double vord is the address of its L.O. bylhe remaining three bytes follothis L.O. byte, with the H.O.
byte appearing at the address of the douldedwglus three (seeFigure 1.4. Bytes, words, and double
words may begin atany valid address in memarWe will soon see, hoever, that starting lager objects at
an arbitrary address is not a good idea.
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Double Word
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Figure 1.4 Byte, Word, and DWord Storage in Memory

Volume Two

Address

Note that it is quite possible for byteord, and double ard values to gerlap in memoryFor example,
in Figure 1.4you could hae a word variable bginning at address 193, a bytriable at address 194, and a
double vord value bginning at address 19Zhese wariables wuld all overlap.

A processor with an eight-biub (like the old 8088 CPU) can transfer eight bits of data at a time. Since
each memory address corresponds to an eight bit byte, this turns out to be the veos¢mbarrangement
(from the hardware perspeacte), sed-igure 1.5
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Address
Data comes from memory
CPU eight bits at a time.
Data
Figure 1.5 Eight-Bit CPU <-> Memory Interface

Theterm “byte addressable memory array” means that the CPU can address memory in chunks as small
as a single byte. It also means that this isthedlest unit of memory you can access at once with the proces
sor That is, if the processoramts to access a four balue, it must read eight bits and then ignore #iee
four bits.Also realize that byte addressability does not imply that the CPU can access eight bjtardni an
trary bit boundaryWhen you specify address 125 in memgmu get the entire eight bits at that address,
nothing less, nothing morAddresses are irgers; you cannot, forxample, specify address 125.5 to fetch
fewer than eight bits.

CPUs with an eight-bitus can manipulateavd and double ord \values, gen through their dataus is
only eight bits wide. Haever, this requires multiple memory operations because these processors can only
move eight bits of data at onc® load a werd requires tw memory operations; to load a doublerds
requires four memory operations.

Some older x86 CPUs (e.g., the 8086 and 8028&) &4 6 bit dataus. This allavs these processors to
access twice as much memory in the same amount of time as their eight bit biétbsenprocessorsgar
nize memory into tw banks: an “even” bank and an “odd” bank (ségure 1.9. Figure 1.7illustrates the
connection to the CPU (D0-D7 denotes the L.O. byte of the datal8-D15 denotes the H.O. byte of the
data hus):
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Even Odd
Word 3 6 7
Numbers in cells
Word 2 4 > represent the
Word 1 2 3 byte addresses
Word 0 0 1
Figure 1.6 Byte Addressing in Word Memory

Even Odd

Figure 1.7 Sixteen-Bit Processor (8086, 80186, 80286, 80386sx) Memory Organization

The 16 bit members of the 80x8&rhily can load a wrd from ary arbitrary addres#&is mentioned ear
lier, the processor fetches the L.O. byte of thki@ from the address speetfiand the H.O. byte from the
next consecutie addressThis creates a subtle problem if you look closely at the diagraxeabthat hap
pens when you access ang on an odd address? Suppose yantio read a ard from location 125. Okay
the L.O. byte of the ard comes from location 125 and the H.@revcomes from location 12@/hat’s the
big deal? It turns out that there aretproblems with this approach.

First, look agin atFigure 1.7 Data lus lines eight through 15 (the H.O. byte) connect to the odd bank,
and data bs lines zero throughwen (the L.O. byte) connect to thee@ bankAccessing memory location
125 will transfer data to the CPU on the H.O. byte of the dadayet we want this data in the L.O. byte!
Fortunately the 80x86 CPUs recognize this situation and automatically transfer the data on D8-D15 to the
L.O. byte.

The second problem izen more obscur&Vhen accessingavds, wefe really accessing twseparate
bytes, each of which has ita/o byte address. So the question arises, “What address appears on the address
bus?”The 16 bit 80x86 CPUswhys place een addresses on thesh Exen bytes alays appear on data
lines DO-D7 and the odd bytesvalys appear on data lines D8-D15. If you accessrd at an een address,
the CPU can bring in the entire 16 bit chunk in one memory operatimwik# if you access a single byte,
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the CPU actiates the appropriate bank (using a “byte enable” control line). If the byte appeared at an odd
address, the CPU will automatically weoit from the H.O. byte on theub to the L.O. byte.

Sowhat happens when the CPU accessesrd at an odd address, é#khe &ample gven earlier?Vell,
the CPU cannot place the address 125 onto the address\th read the 16 bits from memdriere are no
odd addresses coming out of a 16 bit 80x86 Cd.addresses arenalys &en. So if you try to put 125 on
the addressus, this will put 124 on to the addreassb/Nere you to read the 16 bits at this address, you
would get the wrd at addresses 124 (L.O. byte) and 125 (H.O. byte) — not what gqéct.Accessing a
word at an odd address require® tlmemory operations. First the CPU must read the byte at address 125,
then it needs to read the byte at address 126. Fiitallgeds to sap the positions of these bytes internally
since both entered the CPU on the wrong half of the desta b

Fortunately the 16 bit 80x86 CPUs hide these details from Your programs can accessnds atany
address and the CPU will properly access arapgiif necessary) the data in memadtipwever, to access a
word at an odd address require® tmmemory operations (just Bkthe 8088/80188)herefore, accessing
words at odd addresses on a 16 bit processonigisthan accessingords at gen addresse8y carefully
arranging how you use memory, you can improve the speed of your program on these CPUs.

AccessingB2 bit quantities aays tales at least twmemory operations on the 16 bit processors. If you
access a 32 bit quantity at an odd address, a 16-bit processor will require three memory operations to access
the data.

The 80x86 processors with a 32-bit datia fe.g., the 80386 and 80486) use four banks of memory con
nected to the 32 hit dataid (sed-igure 1.8.

Address

D16-D23

D24-D31

Figure 1.8 32-Bit Processor (80386, 80486, Pentium Overdrive) Memory Organization

The address placed on the addrass is alvays some multiple of foutJsing \arious “byte enable”
lines, the CPU can select which of the four bytes at that address tharsofamts to accesés with the 16
bit processqrthe CPU will automatically rearrange bytes as necessary

With a 32 bit memory integaice, the 80x86 CPU can accesyg hyte with one memory operation. If
(address MOD 4) does not equal three, then a 32 bit CPU can access at that address using a single
memory operation. Heever, if the remainder is three, then it will akvo memory operations to access that
word (sed~igure 1.9. This is the same problem encountered with the 16 bit pro¢ezesept it occurs half
as often.
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/ H.O.Byte (2nd access)
I I

| —

L.O. Byte (1st access)

Figure 1.9 Accessing a Word at (Address mod 4) = 3.

A 32 bit CPU can access a doublerd/in a single memory operatiohthe address of thalue is
evenly dvisible by four If not, the CPU will require tay memory operations.

Once agin, the CPU handles all of this automaticdifyterms of loading correct data the CPU handles
everything for you. Hwever, there is a performance bemédi proper data alignmeris a general rule you
should alvays place wrd values at een addresses and doublerd values at addresses which averdy
divisible by four This will speed up your program.

The Pentium and later processorsvite a 64-bit bit dataus and special cache memory that reduces
the impact of non-aligned data acces$though there may still be a penalty for accessing data at an inap
propriate address, modern x86 CPUsesufom the problem less frequently than the earlier CRbe. dis
cussion of cache memory in a later chapter will discuss the details.

1.2.3

The I/O Subsystem

Besides the 20, 24, or 32 address lines which access meh®B0x86 dmily provides a 16 bit 1/0
address bs. This gives the 80x86 CPUs twseparate address spaces: one for memory and one for 1fO oper
ations. Lines on the controlb diferentiate between memory and 1/0O addresses. Other than separate control
lines and a smallerus, I/O addressing beles &actly like memory addressing. Memory and I/Qvides
both share the same datzstand the L.O. 16 lines on the addrass b

There are three limitations to the 1/0 subsystem on the BE€tfie 80x86 CPUs require special instruc
tions to access I/O diees; second, the designers of the PC used the “best” I/O locations fomthgiue
poses, forcing third party delopers to use less accessible locations; third, 80x86 systems can address no
more than 65,536 (2) I/O addressedVhen you consider that a typical video display card requives o
eight mgabytes of addressable locations, you can see a problem with the size ws.1/O b

Fortunately hardvare designers can map their I/Qvides into the memory address space as easily as
they can the 1/0 address space. So by using the appropriate cjrtugrgan mak their I/O deices look
just like memoryThis is hav, for example, display adapters on the P@rkv

1.3

HLA Support for Data Alignment

In order to write thedstest running programs, you need to ensure that your data objects are properly
aligned in memory Data becomes misaligned wheaeyou allocate storage for fdifent sized objects in
adjacent memory locations. Since it is nearly impossible to writege)lprogram that uses objects that are
all the same size, some othacifity is necessary in order to realign data thati normally be unaligned
in memory

Consider the follwing HLA variable declarations:
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static
dw. dwor d;
b: byt e;
W, wor d;
dwe: dwor d;
W2: wor d;
b2: byt e;
dws: dwor d;

The frst static declaration in a program (running undfe@rdows, Linux, and most 32-bit operating sys
tems) places itsariables at an address that is a@remultiple of 4096 bytes. Since 4096 is avpoof two,
whatever variable fist appears in the static declaration is guaranteed to be aligned on a reasonable address.
Each succesg \ariable is allocated at an address that is the sum of the sizes of all the preagédlrigss
plus the starting addres$herefore, assuming the aleovariables are allocated at a starting address of 4096,
then each ariable will be allocated at the folling addresses:

// Start Adrs Lengt h
dw dwor d; /1 4096 4
b: byt e; /1 4100 1
W, wor d; /1 4101 2
dw2: dwor d; /1 4103 4
W2: wor d; /1 4107 2
b2: byt e; /1 4109 1
dwa: dwor d; /1 4110 4

With the eception of the fist variable (which is aligned on a 4K boundary) and the bgtéables
(whose alignment doedmhatter), all of theseariables are misaligned in memoiyhew, w2, anddwz2 vari-
ables are aligned on odd addresses andviBevariable is aligned on arven address that is not avee
multiple of four

An easy vay to guarantee that youanables are aligned on an appropriate address is to put all the
dword variables fist, the vord variables second, and the bytaiables last in the declaration:

static
dw: dwor d;
dwe: dwor d;
dws: dwor d;
W, wor d;
W2: wor d;
b: byt e;
b2: byt e;

This oganization produces the following addresses in memory (again, assuming the first variable is allo
cated at address 4096):

/1 Start Adrs Lengt h
dw. dwor d; /1 4096 4
dwe: dwor d; /1 4100 4
dwa: dwor d; /1 4104 4
W, wor d; /1 4108 2
W2: wor d; /1 4110 2
b: byt e; /1 4112 1
b2: byt e; Il 4113 1

As you can see, thesanables are all aligned at reasonable addresses.

Unfortunately, it is rarely possible for you to arrange your variables in this manner. While there are lots
of technical reasons that make this alignment impossible, a good practical reason for not doing this is
because it doesn't let you organize your variable declarations by logical function (that is, you probably want
to keep related variables next to one another regardless of their size).
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To resole this problem, HLA prades two solutions. The first is an alignment option wherex you
encounter &tatic section. If you follav the static kyword by an intger constant inside parentheses, HLA
will align the \ery net variable declaration at an address that isvem enultiple of the specéd constant,

edgd..,

static( 4)
dw. dwor d;
b: byt e;
W, wor d;
dwe: dwor d;
W2: wor d;
b2: byt e;
dws: dwor d;

Of course, if you hee only a singlestatic section in your entire program, this declaration doesn't buy you
much because the first declaration in the section is already aligned on a 4096 byte boundary. However, HLA
does allow you to put multiplgtatic sections into your program, so you can specify an alignment constant
for eachstatic section:

static( 4)

dw. dwor d;

b: byt e;
static( 2 )

W, wor d;
static( 4)

dw2: dwor d;

W2: wor d;

b2: byt e;
static( 4)

dws: dwor d;

This particular sequence guarantees that all doubid wariables are aligned on addresses that are-multi
ples of four and all word variables are aligned on even addresses (note that a special section was not created
for w2 since its address is going to be an even multiple of four).

While the alignment parameter to thatic directive is useful on occasion, there are tsroblems with
it: The frst problem is that inserting so nyastatic directives into the middle of youraviable declarations
tends to disrupt the readability of yowariable declarations. ai of this problem can bevercome by sim
ply placing astatic directive before eery variable declaration:

static( 4 ) dw. dwor d;
static( 1) b: byt e;
static( 2 ) W, wor d;
static( 4) dw2: dwor d;
static( 2 ) W2: wor d;
static( 1) b2: byt e;
static( 4 ) dwa: dwor d;

While this approach can,grably, make a program easier to read, it certainly involves more typing and it
doesn’t address the second problem: variables appearing in sefsiagections are not guaranteed to be
allocated in adjacent memory locations. Once in a while it is very important to ensure that two variables are
allocated in adjacent memory cells and most programmers assume that variables declared next to one
another in the source code are allocated in adjacent memory cells. The mechanism above does not guarantee
this.

The second facility HLA provides to help align adjacent memory locations @igredirective. The
align directive uses the folleing syntax:
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align( integer_constant );

The intger constant must be one of the following small unsigned integer values: 1, 2, 4, 8, or 16. If HLA
encounters thalign directive in astatic section, it will align the very next variable on an address that is an
even multiple of the specified alignment constant. The previous example could be rewritten, ualigg the
directive, as follows:

static( 4)
dw: dwor d;
b: byt e;
align( 2);
W, wor d;
align( 4);
dwe: dwor d;
W2: wor d;
b2: byt e;
align( 4);
dws: dwor d;

If you're wondering hav thealign directive works, it's really quite simple. If HLA determines that the
current address is not amem multiple of the specéd \alue, HLA will quietly emit &tra bytes of padding
after the preious \ariable declaration until the current address irstatec section is anwen multiple of the
specifed walue. This has the é&fct of making your program slightly @er (by a fev bytes) in &hange for
faster access to your data;v&i that your program will only gmoby a small number of bytes when you use
this feature, this is a good tradé. of

1.4

System Timing

Although modern computers are quitestf and gettingaster all the time, tlyestill require a fnite
amount of time to accomplistven the smallest tasks. Gfon Neumann machines ékthe 80x86, most
operations areserialized. This means that the computexeeutes commands in a prescribed arder
wouldn't do, for kample, to gecute the statemehtI*5+2; before 1=J; in the follaving sequence:

| J;
| | * 5+ 2;

Clearly we need someay to control which statement executes first and which executes second.

Of course, on real computer systems, operations do not occur instantaneously. Moving & aupy of
takes a certain amount of time. keikise, multiplyingl by five and then adding twand storing the result
back intol takes time As you might &pect, the secondaBcal statement ab® tales quite a bit longer to
execute than therft. For those interested in writing$t softvare, a natural question to ask is, tHdoes
the processonecute statements, andwhdo we measure kolong the take to xecute?”

The CPU is aery compla piece of circuitryWithout going into too mandetails, let us just say that
operations inside the CPU must lerwcarefully coordinated or the CPU will produce erroneous re3alts.

ensure that all operations occur at just the right moment, the 80x86 CPUs use an alternating signal called the

system clock.

141

The System Clock

At the most basic el, thesystem clock handles all synchronization within a computer sysfEme. sys
tem clock is an electrical signal on the contnas lvhich alternates between zero and one at a periodic rate
(seeFigure 1.10. All activity within the CPU is synchronized with the edges (risingaling) of this clock
signal.
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One Clock
“Period”

1

0]

Time —pp

Figure 1.10 The System Clock

The frequeng with which the system clock alternates between zero and one sgste@a clock fre-
guency. The time it taks for the system clock to switch from zero to one and back to zercisdkperiod.
One full period is also called cock cycle. On most modern systems, the system clock switches between
zero and one at ratesaeeding seeral hundred million times per second teesal billion times per second.
The clock frequencis simply the number of clockycles which occur each secordtypical Pentium IV
chip, circa 2002, runs at speeds of 2 billignles per second oaster “Hertz” (Hz) is the technical term
meaning oneycle per secondlherefore, the aforementioned Pentium chip runs at 2000 million hertz, or
2000 mgahertz (MHz), also knen as tvo gigahertz Typical frequencies for 80x86 parts range from 5 MHz
up to seeral Gigahertz (GHz, or billions ofycles per second) andymnd. Note that one clock period (the
amount of time for one complete clogkcte) is the reciprocal of the clock frequgnEor example, a 1 MHz
clock would have a clock period of one microsecond (1/1,000t,r06Da second). Likwise, a 10 MHz clock
would hare a clock period of 100 nanoseconds (100 billionths of a se@d@BU running at 1 GHz auld
have a clock period of one nanosecond. Note that we usuglhess clock periods in millionths or billionths
of a second.

To ensure synchronization, most CPUs start an operation on eitlfigfitigeedge (when the clock goes
from one to zero) or thesing edge (when the clock goes from zero to onE)e system clock spends most
of its time at either zero or one anery little time switching between the ewTherefore clock edge is the
perfect synchronization point.

Since all CPU operations are synchronized around the clock, the CPU cannot performytéagieian
than the clock. Heever, just because a CPU is running at some clock frequsmesnt mean that it is»e-
cuting that may operations each second. Maoperations ta& multiple clock gcles to complete so the
CPU often performs operations at a siguaifitly lover rate.

1.4.2 Memory Access and the System Clock

Memory access is one of the most common CPWides. Memory access is deitiely an operation
synchronized around the system clock or some submultiple of the systemTdlatks, reading aalue
from memory or writing a alue to memory occurs no more often than omnvegyeclock gcle. Indeed, on
mary 80x86 processors, it tak sgeral clock gcles to access a memory locati®he memory access time
is the number of clockycles the system requires to access a memory location; this is an impattent v
since longer memory access times resultweloperformance..

Memory access time is the amount of time between a memory operation request (read or write) and the
time the memory operation completes. Modern x86 CPUs are so asiehthan memory that systenusito
around these CPUs often use a second clockuthelbck, that is some sub-multiple of the CPU speed. F
example, typical processors in the 100 MHz to 2 GHz range use 400MHz, 133MHz, 100MHz, or 66 MHz
bus clocks (often, theus speed is selectable on the CPU).

When reading from memarthe memory access time is the amount of time from the point that the CPU
places an address on the addressand the CPU tak the data 6the data bs. On typical x86 CPU with a
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one gcle memory access time, a read looks somethiegsliovn in Figure 1.11Writing data to memory is
similar (see~igure 1.12.

data from the data
the address bus . N
. e bus during this time
during this time i
period The memory system must period
decode the address and

place the data on the data
bus during this time period

The CPU places / W The CPU reads the
the address on \

Figure 1.11 The 80x86 Memory Read Cycle

The CPU places Sometime before the end

the address and of the clock period the

data onto the bus memory subsystem must

at this time grab and store the specified
\ value

Figure 1.12 The 80x86 Memory Write Cycle

Note that the CPU doegnvait for memoryThe access time is speeifi by the bs clock frequenc If
the memory subsystem doeswork fast enough, the CPU will readrpage data on a memory read opera
tion and will not properly store the data on a memory write operatlua.will surely cause the system to
fail.

Memory deices hae various ratings, lit the twp major ones are capacity and speed (access fige).
ical dynamic RAM (random access memoryides hae capacities of 512 (or more) gabytes and speeds
of 0.25-100 nsYou can iy bigger or &ster deices, lut they are much morexpensve. A typical 2 GHz
Pentium system uses 2.5 ns (400 MHz) memovicds.

Wait just a second herdélt 2 GHz the clock period is roughly 0.5 ns.wigan a system designer get
away with using 2.5 ns memoryrhe answer isvait states.

1.4.3 Wait States

A wait state is nothing more than axtra clock gcle to gve some déce time to complete an opera
tion. For example, a 100 MHz Penitum system has a 10 ns clock pdtiislimplies that you need 10 ns
memory In fact, the situation is @rse than this. In most computer systems there is additional circuitry
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between the CPU and memory: decoding arfteling logic.This additional circuitry introduces additional
delays into the system (séeure 1.13. In this diagram, the system loses 10nstufieling and decoding.
So if the CPU needs the data back in 10 ns, the memory must respond in less than 0 ns (which is impossible).

5 ns delay

through >
decoder

Figure 1.13 Decoding and Buffer Delays

If cost-efective memory wn’t work with a &ist processphov do companies manage to selstf PCs?
One part of the answer is thaitvstate. Br example, if you hae a 2 GHz processor with a memoygle
time of 0.5 ns and you lose 2 ns tdfbring and decoding, yoliineed 2.5 ns memoryhat if your system
can only support 10 ns memory (i.e., a 100 MHz systesi?Adding three \ait states toxdend the mem
ory ¢ycle to 10 ns (oneus clock gcle) will solve this problem.

Almost every general purpose CPU irigtence proides a signal on the contrali$to allav the inser
tion of wait states. Generallyhe decoding circuitry asserts this line to delay one additional clock period, if
necessaryl his gives the memory sfi€ient access time, and the systeorks properly (se€igure 1.14.
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The CPU reads the
\data from the data

The memory system must bus during this time
The CPU places decode the address and period
the address on place the data on the data
the address bus bus during this time period,
during this time since one clock cycle is insufficient,
period the systems adds a second clock cycle,

a wait state

Figure 1.14 Inserting a Wait State into a Memory Read Operation

Needless to sajrom the system performance point ofwjigvait states araot a good thingWhile the
CPU is waiting for data from memory it cannot operate on that datding a single \&it state to a memory
cycle on a typical CPUoublesthe amount of time required to access the ddtes, in turnhalvesthe speed
of the memory access. Running with aitvstate onery memory access is almostdikutting the processor
clock frequeng in half.You're going to get a lot lessork done in the same amount of time.

However, we're not doomed to sho execution because of addeditvstatesThere are seeral tricks
hardware designers can play to acldezero vait statesgnost of the time.The most common of these is the
use ofcache (pronounced “cash”) memary

1.4.4

Cache Memory

If you look at a typical program (as myaresearchers ka), youll discover that it tends to access the
same memory locations repeatediurthermore, you also disger that a program often accesses adjacent
memory locationsThe technical nameswgn to this phenomenon at@mporal locality of reference and
spatial locality of reference. When &hibiting spatial localitya program accesses neighboring memory-loca
tions.When displaying temporal locality of reference a program repeatedly accesses the same memory loca
tion during a short time period. Both forms of locality occur in the fiotig Pascal code ggnent:

for i :=0to 10 do
Ali] :=0;

There are tw occurrences each of spatial and temporal locality of reference within this loop. Let’s consider
the obvious ones first.

In the Pascal code above, the program references the varsmgal timesThe for loop compareis
against 10 to see if the loop is complete. It also incremieimysone at the bottom of the loophe assign
ment statement also usieas an array inde This shavs temporal locality of reference in action since the
CPU accessédsat three points in a short time period.

This program alsoxibits spatial locality of referenc&he loop itself zeros out the elements of akay
by writing a zero to therft location inA, then to the second locationAnand so onAssuming that Bscal
stores the elements Afinto consecutie memory locations, each loop iteration accesses adjacent memory
locations.
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There is an additionalxample of temporal and spatial locality of reference in thsc@® &ample
above, although it is not so glwus. Computer instructions that tell the system to do the sgbtéfsk also
reside in memorylhese instructions appear sequentially in memory — the spatial locality [paudomputer
also &ecutes these instructions repeatedhce for each loop iteration — the temporal locality part.

If you look at the gecution profie of a typical program, yod'discaer that the program typicallyke
cutes less than half the statements. Genegatlypical program might only use 10-20% of the memory-allot
ted to it.At ary one gven time, a one ngabyte program might only access four to eight kilobytes of data
and code. So if you paid an outrageous sum of gnfareexpensve zero vait state RAM, you wuldn't be
using most of it at anone gven time!Wouldn' it be nice if you could tly a small amount ot RAM and
dynamically reassign its address(es) as the progxaouges?

This is exactly what cache memory does for you. Cache memory sits between the CPU and main mem
ory. It is a small amount ofery fast (zero wit state) memoryJUnlike normal memorythe bytes appearing
within a cache do not kia fixed addresses. Instead, cache memory can reassign the address of a data object.
This allovs the system todep recently accessedlwes in the cachéddresses that the CPU has/ee
accessed or hagrdccessed in some time remain in mainvw$lmemory Since most memory accesses are
to recently accesse@nables (or to locations near a recently accessed location), the data generally appears
in cache memory

Cache memory is not perfeétithough a program may spend considerable tirez@ting code in one
place, gentually it will call a procedure oramder of to some section of code outside cache memary
such an eent the CPU has to go to main memory to fetch the data. Since main memovy, ihislavill
require the insertion of ait states.

A cachehit occurs wheneer the CPU accesses memory anddgithe data in the cache. In such a case
the CPU can usually access data with zeait statesA cachemiss occurs if the CPU accesses memory and
the data is not present in cacfiben the CPU has to read the data from main memuyrring a perfor
mance lossTo talke adwantage of locality of reference, the CPU copies data into the cachewshéne
accesses an address not present in the cache. Since d@lyisthi& system will access that same location
shortly the system will sz wait states by hang that data in the cache.

As described ab@, cache memory handles the temporal aspects of memory actess, the spatial
aspects. Caching memory locatiomisen you access them won't speed up the program if you constantly
access consecud locations (spatial locality of referenc®). sole this problem, most caching systems read
several consecute bytes from memory when a cache miss 0éc8@x86 CPUs, forx@mple, read heeen
16 and 64 bytes at a shot (depending upon the CPU) upon a cache miss. If you read 16ybsgad, thvbm
in blocks rather than as you need theks?it turns out, most memory chipsadlable today hee special
modes which let you quickly accesyveel consecute memory locations on the chiphe cache xploits
this capability to reduce the@erage number of ait states needed to access memory

If you write a program that randomly accesses memaing a cache might actually wiggou davn.
Reading 16 bytes on each cache misgp&mrsve if you only access aiebytes in the corresponding cache
line. Nonetheless, cache memory systeragkwuite well in the @erage case.

It should come as no surprise that thgo of cache hits to misses increases with the size (in bytes) of
the cache memory subsystefhe 80486 chip, fore@mple, has 8,192 bytes of on-chip cache. Intel claims to
get an 80-95% hit rate with this cache (meaning 80-95% of the time the @Ule data in the cache).
This sounds ery impressie. Havever, if you play around with the numbers a little bit, ylbdiscover it's
not allthat impressve. Suppose we pick the 80%uie.Then one out ofvery five memory accesses, on the
average, will not be in the cache. If yowka 50 MHz processor and a 90 ns memory access time, four out
of five memory accesses require only one cloahtec(since thg are in the cache) and th&Hiwill require
about 10 \ait states, Altogether the system will require 15 cloclkdes to accessvie memory locations,

4. Engineers call this block of data a catihe.

5. Ten wait states were computed as follows: five clock cycles to read the first four bytes (10+20+20+20+20=90). However,
the cache always reads 16 consecutive bytes. Most memory subsystems let you read consecutive addresses in about 40 ns
after accessing the first location. Therefore, the 80486 will require an additional six clock cycles to read the remaining thre
double words. The total is 11 clock cycles or 10 walit states.
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or three clock gcles per access, on thesgage That's equvalent to tvo wait states added tvery memory
access. Doesnhsound as impresa, does it?

There are a couple ofays to improe the situation. First, you can add more cache meriitig
improves the cache hit ratio, reducing the number ait states. &r example, increasing the hit ratio from
80% to 90% lets you access 10 memory locations iny2l@< This reduces thevarage number of ait
states per memory access to oratwstate in our 80486xample — a substantial imprement.Alas, you
cant pull an 80486 chip apart and solder more cache onto the chiveipmodern Pentium CPUsVea
significantly lager cache than the 80486 and operates witkifeverage vait states.

Another vay to imprae performance is touild atwo-level caching systemMary 80486 systems avk
in this fashion.The frst level is the on-chip 8,192 byte cacfide net level, between the on-chip cache and
main memoryis a secondary cacheilh on the computer system circuit board (5égure 1.1%. Pentiums
and later chips typically nve the secondary cache onto the same chip carrier as the CPU (that &, Intel’
designers hae included the secondary cache as part of the CPU module).

Memory

On-chip (primary)
cache

Secondary Cache

Figure 1.15 A Two Level Caching System

A typical secondary cache containg/ahere from 32,768 bytes to one megabyte of memory. Common
sizes on PC subsystems are 256K, 512K, and 1024 Kbytes (1 MB) of cache.

You might ask, “Why bother with a two-level cache? Why not use a 262,144 byte cache to begin with?”
Well, the secondary cache generally does not operate at zero wait states. The circuitry to support 262,144
bytes fast memory would be&ry expensve. So most system designers usastomemory which requires
one or tvo wait statesThis is stillmuch faster than main memor€ombined with the on-chip cache, you
can get better performance from the system.

Consider the prgous example with an 80% hit ratio. If the secondary cache requiresopeles for
each memory access and thrgeles for the fist access, then a cache miss on the on-chip cache will require
a total of six clock gcles.All told, the average system performance will beotalocks per memory access.
Quite a bit &ster than the three required by the system without the secondary cache. Furthermore, the sec
ondary cache can update ilwes in parallel with the CPU. So the number of cache misses (wfech af
CPU performance) goesay davn.

You're probably thinking, “Sodr this all sounds interestingytowhat does it ha to do with program
ming?” Quite a bit, actual\By writing your program carefully to tekadwantage of the ay the cache mem
ory system wrks, you can impnre your prograns performance. By co-locatin@nables you commonly
use together in the same cache line, you can force the cache system to loaatititdes as a group,\sag
extra wait states on each access.

If you organize your program so that it tends xe@ute the same sequence of instructions repeatedly
will have a high dgree of temporal locality of reference and will, thereforecate aster
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1.5 Putting It All Together

This chapter has pvaled a quick @erview of the components that makip a typical computer system.
The remaining chapters in thislume will expand upon these comments teegyou a completeverview of
computer system ganization.
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Memory Access and Organization Chapter Two

2.1 Chapter Overview

In earlier chapters you wahow to declare and access simphriables in an assembly language-pro
gram. In this chapter you will learn\wdhe 80x86 CPUs actually access memory (eagiables).You will
also learn ha to eficiently oganize your ariable declarations so the CPU can access thsterf In this
chapter you will also learn about the 80x86 stack amdtbananipulate data on the stack with some 80x86
instructions this chapter introduces. Fingjlgu will learn about dynamic memory allocation.

2.2  The 80x86 Addressing Modes

The 80x86 processors let you access memory iry rdéferent ways. Until nav, youve only seen a
single way to access aaviable, the so-calledisplacement-onladdressing mode that you can use to access
scalar ariables. Ny it's time to look at the mardifferent ways that you can access memory on the 80x86.

The 80x86memory add¥ssing modeprovide flexible access to memargllowing you to easily access
variables, arrays, records, pointers, and other congala types. Mastery of the 80x86 addressing modes is
the frst step twards mastering 80x86 assembly language.

When Intel designed the original 8086 procestmy provided it with a féxible, though limited, set of
memory addressing modes. Intel addedss nev addressing modes when it introduced the 80386 micro
processarNote that the 80386 retained all the modes of theiqure processors. kaver, in 32-bit ewi-
ronments lile Win32, BeOS, and Linux, these earlier addressing modes arenyotiseful; indeed, HLA
doesnt even support the use of these o|ds-bit only addressing modes.ofunately anything you can do
with the older addressing modes can be done with thexddressing modes as weNé¢a betteras a matter
of fact). Therefore, you wn't need to bother learning the old 16-bit addressing modes ongddgh-per
formance processors. Dedp in mind, havever, that if you intend to wrk under MS-DOS or some other
16-bit operating system, you will need to study up on those old addressing modes.

2.2.1 80x86 Register Addressing Modes

Most 80x86 instructions can operate on the 80x&@&neral purpose gster set. By specifying the
name of the mgister as an operand to the instruction, you may access the contents afisiett Gonsider
the 80x86 M (move) instruction

nov( source, destination );
This instruction copies the data from tbeurce operand to thelestinationoperand.The eight-bit,

16-bit, and 32-bit rgisters are certainlyalid operands for this instructiomhe only restriction is that both
operands must be the same sizewN&t's look at some actual 80x86 MGnstructions:

nov( bx, ax ); /1 Copies the value fromBX into AX
nov( al, dl ); /1 Copies the value fromAL into DL
nov( edx, esi ); // Copies the value fromEDX into ESI
nmov( bp, sp); /1 Copies the value fromBP into SP
mov( cl, dh); /1 Copies the value fromCL into DH
nov( ax, ax ); I/l Yes, this is legal!

Rememberthe registers are the best place to keep often used variables. As you'll see a little later, instruc
tions using the registers are shorter and faster than those that access memory. Throughout this chapter you'll
see the abbreviated operameigandr/m (register/memory) used wherever you may use one of the 80x86'’s
general purpose registers.
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2.2.2 80x86 32-bit Memory Addressing Modes

The 80x86 preides hundreds of dérent ways to access memofihis may seem lik quite a bit at fst,
but fortunately most of the addressing modes are singpiants of one another so yhee very easy to learn.
And learn them you shouldhe ley to good assembly language programming is the proper use of memory
addressing modes.

The addressing modes pided by the 80x86dmily include displacement-onlpase, displacement

plus base, base plus in@el, and displacement plus base plusxedeVariations on theseviée forms pre
vide the man different addressing modes on the 80x86. See, from 286 tidfive. It's not so bad after all!

2.2.2.1 The Displacement Only Addressing Mode

The most common addressing mode, and the one tetiest to understand, is thgplacement-only
(or direc)) addressing modé&he displacement-only addressing mode consists otit 8@nstant that spec
ifies the address of the gat location. Assuming that ariableJ is anint8 variable allocated at address
$8088, the instructiofimov( J, al );” loads theAL register with a cop of the byte at memory location
$8088. Lilewise, ifint8 variableK is at address $1234 in memgttyen the instruction “mdq dl, K );” stores
the walue in the DL rgister to memory location $1234 (deigure 2.).

AL — $8088 (Address of J)
mov( J, al );
DL —_— $1234 (Address of K)
mov( dI, K);
Figure 2.1 Displacement Only (Direct) Addressing Mode

The displacement-only addressing mode is perfect for accessing simple agalaes.

Intel named this the displacement-only addressing mode because a 32-bit constant (displacement) fol
lows theMQV opcode in memory On the 80x86 processors, this displacement isfaatdfom the bgin-
ning of memory (that is, address zerdhe examples in this chapter will typically access bytes in memory
Don't forget, havever, that you can also accesends and double @rds on the 80x86 processors (Bégure

2.2).
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| $1235
AX < | $1234 (address of K)
mov( K, ax ); T =
$1003
$1002
EDX ol $1002

$1000 (address of M)

mov( edx, M);

Figure 2.2 Accessing a Word or DWord Using the Displacement Only Addressing Mode

2.2.2.2 The Register Indirect Addressing Modes

The 80x86 CPUs let you access memory indirectly througgistee using the gister indirect address
ing modesThe term indirect means that the operand is not the actual addresghbythe operand’ value
specifes the memory address to use. In the case of gieenreindirect addressing modes, thgisters
value is the memory location to acces®r &ample, the instruction “nmq eax, [ebx] );” tells the CPU to
store EAXS \value at the location whose address is in EBX (the squaregisamiound EBX tell HLA to use
the r@ister indirect addressing mode).

There are eight forms of this addressing mode on the 80x86, best demonstrated bynting fiokktruc
tions:

nov( [eax], al )
nov( [ebx], al )
nov( [ecx], al )
nov( [edx], al );
nov( [edi], al )
mov( [esi], al )
nov( [ebp], al )
nov( [esp], al )

These eight addressing modes reference the memory location ds#tdamfnd in the register enclosed by
brackets (EAX, EBX, ECX, EDX, EDI, ESI, EBP, or ESP, respectively).

Note that the register indirect addressing modes require a 32-bit register. You cannot specify a 16-bit or
eight-bit register when using an indirect addressing ﬂloﬂ'echnically you could load a 32-bit géster
with an arbitrary numericalue and access that location indirectly using tlygster indirect addressing
mode:

nov( $1234_5678, ebx );
nov( [ebx], al ); /1 Attenpts to access |ocation $1234_5678.

Unfortunately (or fortunate)ydepending on how you look at it), this will probably cause the operating sys
tem to generate a protection fault since it's not always legal to access arbitrary memory locations.

1. Actually, the 80x86 does support addressing modes involving certain 16-bit registers, as mentioned earlier. However, HLA
does not support these modes and they are not particularly useful under 32-bit operating systems.
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The raister indirect addressing mode has lots of u¥si can use it to access data referenced by a
pointer you can use it to step through array data, and, in general, you can use \tevlgeneneed to mad
ify the address of aaviable while your program is running.

The raister indirect addressing mode yides an gample of saanonymousariable. When using the
register indirect addressing mode you refer to thley of a ariable by its numeric memory address (e.g.,
the \alue you load into a gister) rather than by the name of tlagiable. Hence the phrase ayomus \ari-
able.

HLA provides a simple operator that you can use te thk address of a ATIC variable and put this
address into a 32-bitgester This is the “&” (address of) operator (note that this is the same symbol that
C/C++ uses for the address-of operatdrhe folloving example loads the address @friableJ into EBX
and then stores thele in EAX intoJ using the rgister indirect addressing mode:

nmov( &J, ebx ); /! Load address of J into EBX
nmov( eax, [ebx] ); /| Store EAX into J.

Of course, it wuld have been simpler to store the value in EAX directlydmégher than using two instruc

tions to do this indirectly. However, you can easily imagine a code sequence where the program loads one of
several different addresses into EBX prior to the execution of the “mov( eax, [ebx]);” statement, thus storing
EAX into one of several different locations depending on the execution path of the program.

Warning: the “&” (address-of) operator is not a general address-of operator like the “&” operator in C/C++.
You may only apply this operator to static variahlei$ cannot be applied to generic addregzessions or
other types of variables. For more information on taking the address of such objet@htageng the
Address of a Memory Object” on pa@@l

2.2.2.3 Indexed Addressing Modes

The indexed addressing modes use the folltg syntax:

mov( VarNane[ eax ], al );
nmov( VarNane[ ebx ], al )
nov( VarNane[ ecx ], al )
nov( VarNane[ edx ], al )
nov( VarNane[ edi ], al );
nov( VarNane[ esi ], al )
mov( VarNane[ ebp ], al )
nmov( VarNane[ esp ], al )

VarNameis the name of somesiable in your program.

The indexed addressing mode computesediective addess by adding the address of the spedfi
variable to the alue of the 32-bit gister appearing inside the square bedsk This sum is the actual
address in memory that the instruction will access. SarMameis at address $1100 in memory and EBX
contains eight, then “nw§ VarName[ ebx ], al );” loads the byte at address $1108 intAlthegister (see
Figure 2.3.

2. Note: the term “static” here indicates @A$TC, READONLY, or STORAGE object.
3. The effective address is the ultimate address in memory that an instruction will access, once all the address caéculations a
complete.
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mov( VarName[ ebx ], al);

_:$1108—> AL

EBX | $08 + E =)

This is the

[Yerane }——e- S0 e

Figure 2.3 Indexed Addressing Mode

The indexed addressing mode is really handy for accessing elements of afcaywill see ha to use
this addressing mode for that purpose a little later in thts felittle later in this chapter you will see Wwo
to use the indeed addressing mode to step through dataes in a table.

2.2.2.4 Variations on the Indexed Addressing Mode

There are tw important syntacticalariations of the indeed addressing mode. Both forms generate the
same basic machine instructionst their syntax suggests other uses for thasiants.

The frst variant uses the folleing syntax:
nmov( [ ebx + constant ], al );
nmov( [ ebx - constant ], al );

These ramples use only the EBX register. However, you can use any of the other 32-bit general purpose
registers in place of EBX. This addressing mode computes its effective address by adding the value in EBX
to the specified constant, or subtracting the specified constant from EBKi¢Bex2.4andFigure 2.5.
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mov( [ ebx + constant ], al );

EBX .
Figure 2.4 Indexed Addressing Mode Using a Register Plus a Constant
EBX — P

"
'y
17/

—>- I —| AL

mov( [ ebx - constant], al );

Figure 2.5 Indexed Addressing Mode Using a Register Minus a Constant

This particular ariant of the addressing mode is useful if a 32-lgister contains thbase addessof a
multi-byte object and you wish to access a memory location some number of bytes before or after that loca
tion. One important use of this addressing mode is accesslitg dif a record (or structure) when yowdna
a pointer to the record datéou’ll see a little later in this k& that this addressing mode is alseailiable for
accessing automatic (localables in procedures.

The secondariant of the indeed addressing mode is actually a combination of theéqure two forms.
The syntax for thisersion is the follwing:

nov( VarNane[ ebx + constant ], al );
mov( VarNarme[ ebx - constant ], al );

Once agin, this example uses only the EBX register. You may, however, substitute any of the 32-bit general
purpose registers in place of EBX in these two examples. This particular form is quite useful when access
ing elements of an array of records (structures) in an assembly language program (more on that in a few
chapters).

These instructions compute their effective address by adding or subtractiogstentvalue fromvar-
Nameand then adding thealue in EBX to this result. Note that HLA, not the CPU, computes the sum or
difference oVarNameandconstant The actual machine instructions &baontain a single constardlue
that the instructions add to thelue in EBX at run-time. Since HLA substitutes a constanvdoXame it
can reduce an instruction of the form

nov( VarNane[ ebx + constant], al );

to an instruction of the form:
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nov( constantl] ebx + constant2], al );

Because of the ay these addressing modes work, this is semantically equivalent to

nmov( [ebx + (constantl + constant2)], al );

HLA will add the two constants together at compile time, effectively producing the following instruction:

nov( [ebx + constant_sunj, al );

So, HLA corverts the first addressing mode of this sequence to the last in this sequence.

Of course, there is nothing special about subtraction. You can easily convert the addressing mode
involving subtraction to addition by simply taking the two’s complement of the 32-bit constant and then add-
ing this complemented value (rather than subtracting the uncomplemented value). Other transformations
are equally possible and legal. The end result is that these three variations on the indexed addressing mode
are indeed equivalent.

2.2.2.5 Scaled Indexed Addressing Modes

The scaled indeed addressing modes are similar to thexedeaddressing modes withdwlifferences:
(1) the scaled inded addressing modes allyou to combine tw registers plus a displacement, and (2) the
scaled indeed addressing modes let you multiply the indgister by a (scalingkgttor of one, tw, four, or
eight. The allavable forms for these addressing modes are

Var Narre[ | ndexRegz,*scal e ]
Var Nane[ | ndexRegs,*scal e + di spl acenent ]
Var Narre[ | ndexRegs,*scal e - di spl acenent ]

[ BaseReg3, + I ndexRegz,*scal e ]
[ BaseRegz, + | ndexRegz,*scal e + di splacerment ]
[ BaseRegs, + I ndexRegs,*scal e - displacenent ]

Var Narre[ BaseRegs, + | ndexRegs,*scal e ]
Var Nane[ BaseRegs, + | ndexRegs,*scal e + di spl acenent ]
Var Nare[ BaseRegs, + | ndexRegz,*scal e - di spl acenent ]

In these gamplesBaseReg, represents angeneral purpose 32-bit registerilexReg, represents angen
eral purpose 32-bit register except ESP, snalemust be one of the constants: 1, 2, 4, or 8.

The primary difference between the scaled indexed addressing mode and the indexed addressing mode
is the inclusion of théndexRey3,*scale component.The efective address computation istended by add
ing in the \alue of this n& register after it has been multiplied by the spedifcalingdctor (sed-igure 2.6
for an ekample ivolving EBX as the basegister and ESI as the indeegister).
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mov( VarName[ ebx + esi*scale ], al );

Figure 2.6 The Scaled Indexed Addressing Mode

In Figure 2.6 suppose that EBX contains $100, ESI contains $20Varidameis at base address
$2000 in memorythen the follaving instruction:

nov( VarNane[ ebx + esi*4 + 4], al );

will move the byte at address $2184 ($1000 + $100 + $20*4 + 4) into the AL register.

The scaled indexed addressing mode is typically used to access elements of arrays whose elements are
two, four, or eight bytes each. This addressing mode is also useful for access elements of an array when you
have a pointer to the beginning of the array.

Warning: although this addressing mode containsaoable components (the base and indagis-
ters), dont get the impression that you use this addressing mode to access elements-dinaetvgional
array by loading the tavarray indices into the twregisters. Two-dimensional array access is quite a bit
more complicated than thig\ later chapter in this % will consider multi-dimensional array access and dis
cuss hw to do this.

2.2.2.6  Addressing Mode Wrap-up

Well, believe it or not, yowe just learned seral hundred addressing modeBhat wasnt hard naev,
was it? If youte wondering where all these modes came from, just consideadhthét the igister indirect
addressing mode idna single addressing modeytkeight diferent addressing modes\aiving the eight
different rgisters). Combinations ofgisters, constant sizes, and othaatérs multiply the number of pos
sible addressing modes on the system.ad, fyou only need to memorize less than tlezen forms and
you've got it made. In practice, ydluuse less than half thevailable addressing modes inyagiven pro
gram (and manaddressing modes you mayaeuse at all). So learning all these addressing modes is actu
ally much easier than it sounds.

2.3

Run-Time Memory Organization

An operating system l&k Linux orWindows tends to put dérent types of data into dérent sections
(or sgments) of main memonAlthough it is possible to recogfire memory to your choice by running the
Linker and specify arious parameters, by @efit Windows loads an HLA program into memory using the
following basic aganization (Linux is similarthough it rearranges some of the sections):
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High Addresses o )
Storage (uninitialized ) variables

Static variables

Read-only data

- Constants (not user accessible)

Code (program instructions )

Heap (Default Size = 16 MB ytes )

Stack (Default Size = 16 MB ytes )
Adrs=$0 Reserved by O/S (Typically 128 KBytes)

Figure 2.7 Win32 Typical Run-Time Memory Organization

The lavest memory addresses are resdrly the operating system. Genetaftlyur application is not
allowed to access data (oxezute instructions) at theviest addresses in memorne reason the O/S
resenes this space is to help trefLL pointer references. If you attempt to access memory location zero,
the operating system will generategeteral protectioraiult” meaning yowe accessed a memory location
that doesit’ contain \alid data. Since programmers often initialize pointers to NULL (zero) to indicate that
the pointer is not pointing gwhere, an access of location zero typically means that the programmer has
made a mistakand has not properly initialized a pointer togalénon-NULL) \value. Also note that if you
attempt to use one of the 80x86 sixteen-bit addressing modes (HLA tdakam’this, hut were you to
encode the instruction yourself andeeute it...) the address willvedys be in the range 0..$1FFEEThis
will also access a location in the resgharea, generating aufit.

The remaining six areas in the memory map hol@int types of data associated with your program.
These sections of memory include the stack section, the heap section, the code section, the READONL
section, the SATIC section, and the SIRAGE section. Each of these memory sections correspond to
some type of data you can create in your HLA prograhte folloving sections discuss each of these sec
tions in detail.

231

The Code Section

The code section contains the machine instructions that appear in an HLA program. HLA translates
each machine instruction you write into a sequence of one or moredbyés.vThe CPU interprets these
byte \alues as machine instructions during prograscetion.

By default, when HLA links your program it tells the system that your programx@ue instructions
out of the code ggnent and you can read data from the cogensat. Note, specdally, that you cannot
write data to the code gment. The operating system will generate a general proteciahif you attempt
to store ap data into the code gment.

4. It's $1FFFE, not $FFFF because you could use the indexed addressing mode with a displacement of $FFFF along with the
value $FFFF in a 16-bit register.
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Remembermachine instructions are nothing more than data bytes. In th@arcould write a pro
gram that stores datalies into memory and then transfers control to the data it just wrote, thereby produc
ing a program that writes itself as eeutes. This possibility produces romantic visions Auttifi cially
Intelligent programs that modify themses$/to produce some desired result. In real life, tleetsb some
what less glamorous.

Prior to the popularity gfrotected mode opating systemslike Windows and Linux, a program could
overwrite the machine instructions duringeeution. Most of the time thisas caused by defects in a pro
gram, not by some supsmart artiftial intelligence programA program vould bejin writing data to some
array anddil to stop once it reached the end of the amagntually awerwriting the &ecuting instructions
that male up the program. &f from imprwing the quality of the code, such a defect usually causes the pro
gram to &il spectacularly

Of course, if a feature ivailable, someone is bound to ¢éakdwantage of it. Some programmeryéa
discovered that in some special cases, useifmodifying codehat is, a program that modisi its machine
instructions during »ecution, can produce slighthadter or slightly smaller programs. Unfortunately
self-modifying code is ery difficult to test and dely. Gven the speed of modern processors combined
with their instruction set and widanety of addressing modes, there is almost no reason to use self-modify
ing code in a modern program. Indeed, protected mode operating systetiauik andWindows male it
difficult for you to write self modifying code.

HLA automatically stores the data associated with your machine code into the code section. In addition
to machine instructions, you can also store data into the code section by using thengollo
pseudo-opcodes:

e hyte

e word

e dword
e uns8

e unsl6
e uns32
e int8

e intl6

e in32

e boolean
e char

The syntax for each of thepseudo-opcodéss exemplified by the follwing BYTE statement:

byte comma_separated |ist_of _byte constants ;

Here are somexamples:

bool ean true;

char A

byt e 0,1,2;

byt e “Hello”, O
wor d 0, 2;

int8 -5;

uns32 356789, O;

If more than onealue appears in the list odlues after the pseudo-opcode, HLA emits each sugeessi
value to the code stream. So thetfbytestatement ab@ emits three bytes to the code stream, #hges
zero, one, and tw If a string appears within a byte statement, HLA emits one byte of data for each charac
ter in the string.Therefore, the second byte statementvalEmits six bytes: the characters ‘H’, ‘e’, ‘I', ‘I,
and ‘o', followed by a zero byte.

5. A pseudo-opcode is a data declaration statement that emits data to the code section, but isn’'t a true machine instruction
(e.g., BYTE is a pseudo-opcode, MOV is a machine instruction).
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Keep in mind that the CPU will attempt to treat data you emit to the code stream as machine instructions
unless you tad special care not to allothe execution of the data. df example, if you write something kk

the following:
nov( 0, ax );
byte 0,1, 2, 3;
add( bx, cx );

Your program will attempt to execute the 0, 1, 2, and 3 byte values as a machine instruction after executing
the MOV. Unless you know the machine code for a particular instruction sequence, sticking such data values
into the middle of your code will almost always produce unexpected results. More often than not, this will
crash your program. Therefore, you should never insert arbitrary data bytes into the middle of an instruction
stream unless you know exactly what executing those data values will do in your ﬁrogram

2.3.2 The Static Sections

In addition to declaring stati@viables, you can also embed lists of data into ter'8T memory sg-
ment. You use the same technique to embed data into yAAFISTsection that you use to embed data into
the code section: you use twgte word, dword, uns32 etc., pseudo-opcodes. Consider the fahg exam-

ple:
static
b: byte := 0;
byte 1, 2, 3;
u: uns32 :=1;
uns32 5, 2, 10;
c: char;
char ‘a’, ‘b, ‘c’, ‘d, ‘e, ‘f';

bn: bool ean;
bool ean true;

Data that HLA writes to the &IIC memory sgment using these pseudo-opcodes is written to the
sgment after the precedin@nables. Br example, the bytealues one, te, and three are emitted to the
STATIC section afteb’s zero byte in thexample abwge. Since there ardrary labels associated with these
values, you do not ka direct access to thesalwes in your programThe section on addresspgessions,
later in this chaptemwill discuss hav to access thesatea values.

In the kamples abee, note that the andbn variables do not h& an (eplicit) initial value. Haovever,
HLA always initializes wariables in the SATIC section to all zero bits, so HLA assigns the NULL character
(ASCII code zero) te as its initial alue. Likewise, HLA assignsdise as the initialalue forbn. In partic
ular, you should note that youasiable declarations in the ATIC section avays consume memargven if
you haren't assigned them an initiahlue. Any data you declare in a pseudo-opcode BY TE will always
follow the actual data associated with tlaeiable declaration.

2.3.3 The Read-Only Data Section

The READONLY data section holds constants, tables, and other data that your program must not
change during progranxecution.You can place read only objects in your program by declaring them in the

6. The main reason for encoding machine code using a data directibgtiie to implement machine instructions that HLA
does not support (for example, to implement machine instructions added after HLA was written but before HLA could be
updated for the new instruction(s).
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READONLY declaration sectionThe READONLY data declaration section igny similar to the SATIC
section with three primary dérences:

 The READONLY section begins with the reserved word READONLY rather than STATIC,
* All declarations in the READONLY section must have an initializer, and
* You are not allowed to store data into a READONLY object while the program is running.

Example:

readonl y
pi: real 32 : = 3.14159;
e: real 32 := 2.71;
MaxUL6: unslé = 65_535;
Max| 16: intle := 32_767;

All READONLY object declarations must have an initializer because you cannot initialize the value under
program control (since you are not allowed to write data into a READONLY object). The operating system
will generate an exception and abort your program if you attempt to write a value to a READONLY object.
For all intents and purposes, READONLY objects can be thought of as constants. However, these constants
consume memory and other than the fact that you cannot write data to READONLY objects, they behave
like, and can be used like, STATIC variables. Since they behave like STATIC objects, you cannot use a
READONLY object everywhere a constant is allowed; in particular, READONLY objects are memory
objects, sr? you cannot supply a READONLY object and some other memory object as the operand to an
instructior.

The READONLY resened word allavs an alignment parametgust like the SATIC keyword (See
“HLA Support for DataAlignment” on pagel46). You may also place th&LIGN directive in the REA
DONLY section in order to align indidual objects on a speafboundary The folloving example demon
strates both of these features in the READ®NEction:

readonly( 8)

pi: real 64 := 3.14159265359;
aChar: char =‘a;

align(4);

d: dword : = 4;

Note that, also li& the STATIC section, you may embed data values in the READONLY section using the
BYTE, WORD, DWORD, etc., data declarations, e.g.,

readonl y
roArray: byte := 0;
byte 1, 2, 3, 4, 5;
gwval : dword : = 1,
dword O;

234

The Storage Section

The READONLY section requires that you initialize all objects you decldiiee SATIC section lets
you optionally initialize objects (or lea them uninitialized, in which case jhieave the dedult initial value
of zero). The STORAGE section completes the initializationveoage: you use it to declaranables that
are alvays uninitialized when the programdies running. The STORAGE section bgins with the “stor
age” resergd word and then containsaxiable declarations that are identical to those appearing in the
STATIC section gcept that you are not alled to initialize the object. Here is axaenple:

st orage
Uni ni t Uns32: uns32;

7.MOQV is an exception to this rule since HLA emits special code for memory to memory move operations.
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i: int32;
character: char;
b: byt e;

Linux andWindows will initialize all storage objects to zero whenyth@ad your program into memory
However, it's probably not a good idea to depend upon this implicit iniitialization. If you need an object ini
tialized with zero, declare it in a &TIC section and>licitly set it to zero.

Variables you declare in the SRAGE section may consume less disk space inxbeutable fe for
the program.This is because HLA writes out initiadlues for READONY and SATIC objects to thexe-
cutable fie, kut uses a compact representation for uninitializethbles you declare in the SRAGE see
tion.

Like the SATIC and READONL sections, you can supply an alignment parameter after tO&RST
AGE keyword and theALIGN directive may appear within the ®RAGE section $ee “HLA Support for
DataAlignment” on pagel46). Of course, aligning your data can produzstdr access to that data at the
expense of a slightly lger STORAGE section. The folloving example demonstrates the use of these tw
features in the STRAGE section:

storage( 4 )

d: dwor d;
b: byt e;
align(2);

W, wor d;

Since the SDRAGE section does not allow initialized values, ymmnnotput unlabelled values in the
STORAGE section using the BYTE, WORD, DWORD, etc., data declarations.

2.3.5

The @NOSTORAGE Attribute

The @NOSDRAGE attritute lets you declareaviables in the static data declaration sections (i.e.,
STATIC, READONLY, and SDORAGE) without actually allocating memory for thariable. The @NOS$S
TORAGE option tells HLA to assign the current address in a data declaration sectioari@bbe vt not
allocate ap storage for the objeciTherefore, thatariable will share the same memory address as ttie ne
object appearing in theaviable declaration section. Here is the syntax for the @NBRAGE option:

vari abl eNane: var Type; @ost or age;

Note that you follav the type name with “@nostorage;” rather than some initial value or just a semicolon.
The following code sequence provides an example of using the @NOSTORAGE option in the READONLY
section:

readonl y
abcd: dword; nostorage;
byt e ‘ av , . b1 , . C) , 3 d) ;

In this xkample,abcdis a double word whose L.O. byte contains 97 (‘a’), byte #1 contains 98 (‘b’), byte #2
contains 99 (‘c’), and the H.O. byte contains 100 (‘d’). HLA does not reserve storagedbcthariable,
so HLA associates the following four bytes in memory (allocated by the BYTE directivedheith

Note that the @NOSTORAGE attribute is only legal in the STATIC, STORAGE, and READONLY sec-
tions. HLA does not allow its use in the VAR section.

2.3.6

The Var Section

HLA provides another ariable declaration section, tNMAR section, that you can use to creats#o-
matic variables. Your program will allocate storage fautomatic @riables whener a program unit (i.e.,
main program or procedure)dirs eecution, and it will deallocate storage for automasidables when
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that program unit returns to its callédf course, anautomatic ariables you declare in your main program
have the saméfetime® as all the SATIC, READONLY, and SDRAGE objects, so the automatic allocation
feature of the/AR section is vasted on the main program. In general, you should only use automatic
objects in procedures (see the chapter on procedures for details). HuA thiéan in your main progras’
declaration section as a generalization.

Since \ariables you declare in thé\R section are created at run-time, HLA does notaltgtializers
on \variables you declare in this section. So the syntax fovAlResection is nearly identical to that for the
STORAGE section; the only real ¢#frence in the syntax between thetig the use of th€AR resered
word rather than the IRAGE resered word. The follonving example illustrates this:

var
vint: int32;
vChar: char;

HLA allocates variables you declare in thAR section in the stack gment. HLA does not allocate
VAR objects at fied locations within the stackgraent; instead, it allocates thesgigbles in amctivation
recod associated with the current program ufiihe chapter on intermediate procedures will discusgaacti
tion records in greater detail, forwmat is important only to realize that HLA programs use the EBjidter
as a pointer to the current aetiion record.Therefore, aytime you access av object, HLA automatically
replaces theariable name with “[EBP+displacement]”. Displacement is tifigebbf the object in the aeti
vation record.This means that you cannot use the full scaledkediaddressing mode (a basgister plus
a scaled inderegister) withVAR objects becauséAR objects already use the EBRjister as their base
register Although you will not directly use the twrggister addressing modes often, thetfthat th&/AR
section has this limitation is a good reasorvimichusing the/AR section in your main program.

TheVAR section supports the align parameter andMH&N directive, like the other declaration sec
tions, havever, these align directés only guarantee that the alignment within thevatitin record is on the
boundary you specifylf the actvation record is not aligned on a reasonable boundary éylthut possi
ble) then the actuakviable alignment wn'’t be correct.

2.3.7 Organization of Declaration Sections Within Your Programs

The SATIC, READONLY, STORAGE, andvAR sections may appear zero or more times between the
PROGRAM header and the associated BEGIN for the main program. Between thgseiritg in your
program, the declaration sections may appearyroaser as the follwing example demonstrates:

pr ogr am denoDecl ar at i ons;

static
i_static: int32

var
i _auto: int32;
st orage
i_uninit: int32;
readonl y
i _readonly: int32 :=5;
static
j: uns32;
var

8. The lifetime of a variable is the point from which memory is first allocated to the point the memory is deallocated for that
variable.
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k: char;

readonl y
i2:uns8 := 9;

st or age
c: char;

st or age
d: dwor d;

begi n denoDecl ar ati ons;
<< code goes here >>
end denoDecl arati ons;

In addition to demonstrating that the sections may appear in an arbitrarytioisisection also demen
strates that a gén declaration section may appear more than once in your progfhen multiple declara
tion sections of the same type (e.g., the thre@FFAGE sections ab) appear in a declaration section of
your program, HLA combines them into a single seCtion

2.4

Address Expressions

In the section on addressing modes (Sd&e 80x86Addressing Modes” on padé?) this chapter
points out that addressing modesetakcouple generic forms, including:

Var Nanme[ Regss ]
Var Nane[ Regs, + offset ]
Var Nane[ RegNot ESP3,* Scal e ]
Var Nare[ Regz, + RegNot ESP3,*Scal e ]
Var Name[ RegNot ESP3,*Scal e + of fset ]
and
Var Nare[ Regs, + RegNot ESP3,*Scal e + of fset ]

Another Igal form, which isn’t actually a new addressing mode but simply an extension of the displace
ment-only addressing mode is

Var Nane[ of fset ]

This latter @ample computes its fetctive address by adding the (constant$etfwithin the braasts to
the specifed \ariable address. oF example, the instruction “M@(Address[3],AL);" loads theAL register
with the byte in memory that is three bytegdoed theAddressobject.

9. Remember, though, that HLA combirstaticanddatadeclarations into the same memory segment.
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mowv(i[3], AL );
AL <— $1003 (i+3)
$1002
$1001
$1000 (address of I)
Figure 2.8 Using an Address Expression to Access Data Beyond a Variable

It is extremely important to remember that thfsetvalue in these>amples must be a constant. If
Index is anint32 variable, then “driable[Inde&]” is not a leyal speciftation. If you wish to specify an inde
that \aries an run-time, then you must use one of thexgdler scaled inded addressing modes; that is,
ary index that changes at run-time must be held in a general purpose 3@idiitre

Another important thing to remember is that thisetfin “Address[ofset]” is a byte dket. Despite the
fact that this syntax is reminiscent of array kidg in a high lgel language lik C/C++ or Rscal, this does
not properly inde into an array of objects unledsldressis an array of bytes.

This text will consider araddress &pressiorto be ay legal 80x86 addressing mode that includes a dis
placement (i.e.,ariable name) or anfskt. In addition to the alse forms, the follwing are also address
expressions:

[ Regz, + offset ]
[ Regs, + RegNot ESP;,*Scal e + of fset ]

This text will notconsider the following to be address expressions since they do not involve a displacement
or offset component:

[ Regs; |
[ Regz, + RegNot ESP3,* Scal e ]

Address gpressions are special because those instructions containing an adgdressi@n abays
encode a displacement constant as part of the machine instrubtiaiis, the machine instruction contains
some number of bits (usually eight or thirtyeithat hold a numeric constarithat constant is the sum of
the displacement (i.e., the address @saifof the ariable) plus the éet supplied in the addressing mode.
Note that HLA automatically adds thesentvalues together for you (or subtracts thiseffif you use the “-”
rather than “+” operator in the addressing mode).

Until this point, the d&et in all the addressing modeaenples has alays been a single numeric eon
stant. Havever, HLA also allavs aconstant gpressionanywhere an dset is lgal. A constant gpression
consists of one or more constant terms manipulated by operators such as addition, subtraction,-multiplica
tion, division, modulo, and a wideaviety of other operators. Most addresgressions, hoever, will only
involve addition, subtraction, multiplication, and sometimegsiin. Consider the follsing example:

mov( X[ 2*4+1 ], al );

This instruction will mee the byte at addres&+9 into the AL register.
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The \alue of an addresgjgression is alays computed at compile-time vee while the program is run
ning. When HLA encounters the instruction abo it calculates 2*4+1 on the spot and adds this result to
the base address ¥fin memory HLA encodes this single sum (base addressmiis nine) as part of the
instruction; HLA does not emitxé&ra instructions to compute this sum for you at run-time (which is good,
doing so vould be less éitient). Since HLA computes thalue of addressxpressions at compile-time, all
components of thexpression must be constants since HLA cannotianbat the @lue of a ariable will be
at run-time while it is compiling the program.

Address gpressions areery useful for accessing additional bytes in memowpbd a \ariable, partie
ularly when yowe used théyte word, dwod, etc., statements in a 8TC, or READONLY section to tack
on additional bytes after a data declaratioor ésample, consider the folling program:

pr ogr am adr SExpr essi ons;
#include( “stdlib.hhf” );
static
i: int8; @ostorage;
byte 0, 1, 2, 3;

begi n adr sExpr essi ons;

st dout . put

(
“i[o]=", i[o], nl,
“if1=", i[1, nl,
“i[21=", i[2], nl,
“i[31=", i[3], nl

)

end adr sExpr essi ons;

Program 3.1  Demonstration of Address Expressions

Throughout this chapter and those that felimu will see several additional uses of address expressions.

2.5 Type Coercion

Although HLA is fairly loose when it comes to type checking, HLA does ensure that you specify appro
priate operand sizes to an instructioror &ample, consider the folldng (incorrect) program:

program hasErrors;

static
i8: i nt8;
i 16: int16;
i 32: int32;

begi n hasErrors;
nmov( I8, eax );
mov( 116, al );
nmov( 132, ax );

end hasErrors;
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HLA will generate errors for the three MOnstructions appearing in this prograihis is because the
operand sizes do not agre€he frst instruction attempts to me a byte into EAX, the second instruction
attempts to mee a word intoAL and the third instruction attempts to weoa dvord intoAX. The MOV
instruction, of course, requires that itotaperands both be the same size.

While this is a good feature in HIR there are times when it gets in theywof the task at hand.oF
example, consider the folldng data declaration:

static
byt e_val ues: byte; @ostorage;
byt e 0, 1;

nov( byte val ues, ax );

In this example lets assume that the programmer realgnis to load the @rd starting at address
byte valuesn memory into thé\X register because thevant to loadAL with zero andAH with one using
a single instruction. HLA will refuse, claiming there is a type mismatch error (syteevaluess abyte
object andAX is aword object). The programmer could break this intootwstructions, one to loadlL
with the byte at addredsyte valuesand the other to loadH with the byte at addressyte values[1]
Unfortunately this decomposition mak the program slightly lesfiefent (which vas probably the reason
for using the single M@ instruction in the fist place). Somekg it would be nice if we could tell HLA that
we knav what wete doing and we ant to treat théyte valuevariable as avord object. HLAstype coer
cion facilities praide this capability

Type coercioh! is the process of telling HLA that youawt to treat an object as axpécitly specified
type, r@ardless of its actual typélo coerce the type of axiable, you use the folldng syntax:

(type newlypeNane addressi nghbde)

ThenewTypeNameomponent is the metype you wish HLA to apply to the memory location spedifi
by addressingMode You may use this coercion operatoyahere a memory address igdé To correct
the preious example, so HLA doeshtomplain about type mismatches, yoould use the follwing state
ment:

mov( (type word byte val ues), ax );

This instruction tells HLA to load th&X register with the word starting at addrésge_valuesn memory.
Assumingbyte_valuestill contains its initial values, this instruction will load zero into AL and one into AH.

Type coercion is necessary when you specify an anonymous variable as the operand to an instruction
that modifies memory directly (e.g., NEG, SHL, NOT, etc.). Consider the following statement:

not( [ebx] );

HLA will generate an error on this instruction because it cannot determine the size of the memory operand.
That is, the instruction does not supply sufficient information to determine whether the program should
invert the bits in the byte pointed at by EBX, the word pointed at by EBX, or the double word pointed at by
EBX. You must use type coercion to explicitly tell HLA the size of the memory operand when using anony
mous variables with these types of instructions:

not ( (type byte [ebx]) );
not( (type word [ebx]) );
not ( (type dword [ebx]) );

Warning: do not use the type coercion operator unless yow laxactly what you are doing and the
effect that it has on your program. d@ening assembly language programmers often use type coercion as a

10. After all, if the two operand sizes are different this usually indicates an error in the program.
11. Also called type casting in some languages.
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tool to quiet the compiler when it complains about type mismatches without solving the underlying problem.
For example, consider the folldng statement (whergyte\ar is an actual eight-bitariable):

nov( eax, (type dword bytevar) );

Without the type coercion operator, HLA probably complains about this instruction because it attempts to
store a 32-bit register into an eight-bit memory location (assubyiteyaris a byte variable). A beginning
programmer, wanting their program to compile, may take a short cut and use the type coercion operator as
shown in this instruction; this certainly quiets the compiler - it will no longer complain about a type mis
match. So the beginning programmer is happy. But the program is still incorrect, the only difference is that
HLA no longer warns you about your error. The type coercion operator does not fix the problem of attempt
ing to store a 32-bit value into an eight-bit memory location - it simply allows the instruction to store a 32-bit
valuestarting at the addresspecified by the eight-bit variable. The program still stores away four bytes,
overwriting the three bytes followingyteVarin memory. This often produces unexpected results including

the phantom modification of variables in your prog’r%rrAnother, rarer, possibility is for the program to

abort with a general protection fault. This can occur if the three bytes folltwiagarare not allocated in

real memory or if those bytes just happen to fall in a read-only segment in memory. The important thing to
remember about the type coercion operator is this: “If you can’t exactly state the affect this operator has,
don’t use it.”

Also keep in mind that the type coercion operator does not perform any translation of the data in mem-
ory. It simply tells the compiler to treat the bits in memory as a different type. It will not automatically sign
extend an eight-bit value to 32 bits nor will it convert an integer to a floating point value. It simply tells the
compiler to treat the bit pattern that exists in memory as a different type.

2.6

Register Type Coercion

You can also cast agister as a speaifitype using the type coercion operatdy defult, the eight-bit
registers are of typbyte the 16-bit rgisters are of typaord, and the 32-bit igisters are of typeword.
With type coercion, you can cast gisder as a diérent typeas long as the size of thewméype grees with
the size of theegister This is an important restriction that does not apply when applying type coercion to a
memory \ariable.

Most of the time you do not need to coercegister to a diierent type. After all, asbyte word, and
dword objects, thg are already compatible with all one,awand four byte objects. Mever, there are a
few instances where gester type coercion is handij not davnright necessary Two examples include
boolean gpressions in HLA high ieel language statements (e.g., IF 8dILE) and reister 1/O in thestd
out.putandstdin.get (and related) statements.

In boolearexpressionsbyte word, anddword objects are atays treated as unsignealwes. Therefore,
without type coercion gaster objects arewhys treated as unsignedlwes so the boolearmession in the
following IF statement is alays flse (since there is no unsignedue less than zero):

if( eax <0 ) then
stdout. put( “EAX is negative!”, nl );
endif;

You can overcome this limitation by casting EAX asraB2 value:
if( (type int32 eax) < 0 ) then

stdout.put( “EAX is negative!”, nl );

endi f;

12.1f you have a variable immediately followityteVarin this example, the MOV instruction will surely overwrite the value
of that variable, whether or not you intend this to happen.
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In a similar \ein, the HLA Standard Librargtdout.putroutine alvays output$yte word, anddword
values as hadecimal numbersTherefore, if you attempt to print agister thestdout.putoutine will print
it as a he value. If you would like to print the mlue as some other type, you can uggster type coercion
to achiee this:

stdout.put( “AL printed as a char =", (type char al), “*", nl );

The same is true for tredin.getroutine. It will always read a hexadecimal value for a register unless you
coerce its type to something other thoge, word or dword

2.7

The Stack Segment and the Push and Pop Instructions

This chapter mentions that athnables you declare in théAR section wind up in the stack memory
segment (seéThe Var Section” on pag&69. However, VAR objects are not the only things that wind up in
the stack sgment in memory; your programs manipulate data in the stgokese in maw different vays.
This section introduces a set of instructions, the PUSH and POP instructions, that also manipulate data in the
stack sgment.

The stack sgment in memory is where the 80x86 maintainsdiaek. The stack is a dynamic data
structure that gnws and shrinks according to certain memory needs of the prograenstack also stores
important information about program including locatiables, subroutine information, and temporary data.

The 80x86 controls its stack via the ESP (stack pointgidtex When your program lggns eecution,
the operating system initializes ESP with the address of the last memory location in the stack neemory se
ment. Data is written to the staclgagent by “pushing” data onto the stack and “popping” or “pulling” data
off of the stack.Wheneer you push data onto the stack, the 80x86 decrements the stack pointer by the size
of the data you are pushing and then it copies the data to memory where ESP is then pairtiogncrete
example, consider the 80x86 PUSH instruction:

push( regss );

push( regsz );
push( nenoryqs );
push( nenorys, ):
pushw( constant );
pushd( constant );

These six forms all@ you to pushword or dword registers, memory locations, and constants. You should
specifically note that you cannot pusjtevalues onto the stack.

2.7.1

The Basic PUSH Instruction

The PUSH instruction does the follang:

ESP := ESP - Size_of _Register_or_Mnory_Qperand (2 or 4)
[ESP] := (perand’ s_Val ue

ThePUSHW and PUSHD operand sizes are always two or four bytes, respectively.

Assuming that ESP contains $00FF_FFES8, then the instruction “PUSH( EAX );” will set ESP to
$00FF_FFE4 and store the current value of EAX into memory location $00FF_FFE4 as shown in Figure 2.9
and Figure 2.10:
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Before $00FF_FFFF
$00FF_FFFE
push(eax); $00FF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

A\
\

7

$00FF_FFES
ESP > $00FF_FFES
$00FF_FFE?
EAX $00FF_FFE€
$00FF_FFES
$00FF_FFE4
$00FF_FFEZ
$00FF_FFEZ

Figure 2.9 Stack Segment Before “PUSH( EAX );” Operation

After $00FF_FFFF
$00FF_FFFE
push(eax); $00FF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

$00FF_FFES
EAX $00FF_FFES
[ Current —] $OOFF_FFE7
L EAX —| $S00FF_FFEE

$00FF_FFES
ESP ——p Vale $00FF_FFE4
$00FF_FFE2
$00FF_FFE2

Figure 2.10 Stack Segment After “PUSH( EAX );” Operation

Note that the “PUSH( EAX );” instruction does nofieat the value in the EAX register.

Although the 80x86 supports 16-bit push operations, these are intended primarily for use in 16-bit envi-
ronments such as DOS. For maximum performance, the stack pointer should always be an even multiple of
four; indeed, your program may malfunction under Windows or Linux if ESP contains a value that is not a
multiple of four and you make an HLA Standard Library or an operating system API call. The only practical
reason for pushing less than four bytes at a time on the stack is because you're building up a double word via
two successive word pushes.

2.7.2 The Basic POP Instruction

To retrieve data yowe pushed onto the stack, you use the POP instruciiba.basic POP instruction
allows the follaving different forms:

pop( rede );
pop( regsy );
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pop( nmenoryg );
pop( nenorys, );

Like the PUSH instruction, the POP instruction only supports 16-bit and 32-bit operands; you cannot
pop an eight-bitalue from the stackAlso like the PUSH instruction, you shoultba popping 16-bit &l-
ues (unless you do twl6-bit pops in a k@) because 16-bit pops may Veathe ESP gister containing a
value that is not anven multiple of four One major ditrence between PUSH and POP is that you cannot
POP a constantalue (which maks sense, because the operand for PUSH is a source operand while the
operand for POP is a destination operand).

Formally, heres what the POP instruction does:

Qperand : = [ ESP]
ESP := ESP + Size_of _(perand (2 or 4)

As you can see, the POP operation is thevexse of the PUSH operation. Note that the POP instruction
copies the data from memory location [ESP] before adjusting the value in ESPig@ee?.1landFigure
2.12for details on this operation:
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Before $00FF_FFFF
$00FF_FFFE
pop(eax); $00FF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

e ]

$00FF_FFES
EAX $00FF_FFES
L EAX _| $00FF_FFE7
L Value — $00FF_FFE6
| onStk _| $00FF_FFES
ESP ——» $00FF_FFE4
$00FF_FFE3
$00FF_FFE2

Figure 2.11 Memory Before a “POP( EAX );” Operation

After $00FF_FFFF
$00FF_FFFE
pop(eax); $00FF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

P
e ]

$00FF_FFES
ESP —mmp $00FF_FFES
[ —_ | $00FF_FFE7
| \E,';ﬁe _| $00FF_FFE€
| on Stk —]$O00FF_FFEE

$00FF_FFE4
EAX Value From Stack $OOFF_FFE3

$O0FF_FFEZ2

Figure 2.12 Memory After the “POP( EAX);” Instruction

Note that the &lue popped from the stack is still present in mem&gpping a @alue does not erase the
value in memoryit just adjusts the stack pointer so that it points at tkevadue abwe the poppedalue.
However, you should neer attempt to access alue youve popped dfthe stack.The net time something
is pushed onto the stack, the poppali® will be obliterated. Since your code ighe only thing that uses
the stack (i.e., the operating system uses the stack as do other subroutines), you cannot rely on data remain
ing in stack memory once yoi# popped it dfthe stack.

2.7.3 Preserving Registers With the PUSH and POP Instructions

Perhaps the most common use of the PUSH and POP instructionsvis tegisder \alues during inter
mediate calculationsA problem with the 80x86 architecture is that it\pdes \ery few general purpose
registers. Since masters are the best place to hold temporatyes, and gisters are also needed for the
various addressing modes, it isry easy to run out of gesters when writing code that performs comple
calculations.The PUSH and POP instructions can come to your rescue when this happens.

Beta Draft - Do not distribute © 2001, By Randall Hyde Pagel79



Chapter Two Volume Two

Consider the follwing program outline:

<< Some sequence of instructions that use the EAX regi ster >>

<< Some sequence of instructions that need to use EAX, for a
di fferent purpose than the above instructions >>

<< Sonme sequence of instructions that need the original value in EAX >>

The PUSH and POP instructions are perfect for this situation. By inserting a PUSH instruction before
the middle sequence and a POP instruction after the middle sequenegyancan preseevthe alue in
EAX across those calculations:

<< Some sequence of instructions that use the EAX regi ster >>
push( eax );
<< Some sequence of instructions that need to use EAX, for a
di fferent purpose than the above instructions >>
pop( eax );
<< Some sequence of instructions that need the original value in EAX >>

The PUSH instruction abe copies the data computed in thstfsequence of instructions onto the
stack. Nav the middle sequence of instructions can use EAX fgrpampose it choosedfter the middle
sequence of instructionsnishes, the POP instruction restores thkie in EAX so the last sequence of
instructions can use the originallue in EAX.

2.7.4 The Stack is a LIFO Data Structure

You can push more than onaluve onto the stack withoutdt popping preous \alues of the stack.
However, the stack is &st-in, frst-out LIFO) data structure, so you must be careful/ lyou push and pop
multiple values. Br example, suppose youant to presew EAX and EBX across some block of instruc
tions, the folleving code demonstrates thevaius way to handle this:

push( eax );
push( ebx );
<< Code that uses EAX and EBX goes here >>
pop( eax );
pop( ebx );

Unfortunately this code will not work properly! Figur@sl3 2.14 2.15 and2.16show the problem. Since

this code pushes EAX first and EBX second, the stack pointer is left pointing at EBX’s value on the stack.
When the POP( EAX ) instruction comes along, it removes the value that was originally in EBX from the
stack and places it in EAX! Likewise, the POP( EBX) instruction pops the value that was originally in EAX
into the EBX register. The end result is that this code has managed to swap the values in the registers by
popping them in the same order that it pushed them.
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After $00FF_FFFF
$00FF_FFFE

push(ebx); $00FF_FFFD
$00FF_FFFC

Instruction $00FF_FFFB
$00FF_FFFA

A\
\
\

$00FF_FFES
| \E/Q\J)Se __| $00FF_FFES8
L on Stk —] $00FF_FFE7
$00FF_FFEE
| EBX __| $00FF_FFES
| Value . $00FF_FFE4
| onStk _|$00FF_FFEZ

ESP ——p $00FF_FFE2

Figure 2.13 Stack After Pushing EAX

After $00FF_FFFF
$00FF_FFFE
push(eax); $00FF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

$00FF_FFES
B \E/;ﬁe __| $00FF_FFE®
| on Stk —J| $00FF_FFE7
ESP ——p $00FF_FFEE
$00FF_FFES
$00FF_FFE4
$00FF_FFE2
$00FF_FFE2

Figure 2.14 Stack After Pushing EBX

After $00FF_FFFF
$00FF_FFFE
pop(eax); $00OFF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

C —| $00FF_FFES
L \E,';ﬁe _| $00FF_FFES
| on Stk —] $00FF_FFE7
ESP ———% $00FF_FFEE
L EBX —| $00FF_FFEE

L Value ] $OOFF_FFE4
EAX [ onStk _|$00FF_FFEZ
$00FF_FFE2
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Figure 2.15 Stack After Popping EAX

After $00FF_FFFF
$00FF_FFFE
pop(ebx); $00FF_FFFD
$00FF_FFFC
Instruction $00FF_FFFB
$00FF_FFFA

lﬂ

ESP

L EAX —| $00FF_FFES

L Value — $OOFF_FFE8
EBX L on Stk — $00FF_FFE7
$00FF_FFE6
| __| $00FF_FFES
| \E/El)ée | $00FF_FFEA4
| on Stk — $00FF_FFE3
$00FF_FFE2

Figure 2.16 Stack After Popping EBX

To rectify this problem, you must note that the stack is a lastgirofiit data structure, so thesfithing
you must pop is the last thing yea’pushed onto the stackherefore, you mustahys obsere the follav-
ing maxim:

0 Always pop values in the reverse order that you push them.

The correction to the previous code is

push( eax );
push( ebx );
<< Code that uses EAX and EBX goes here >>
pop( ebx );
pop( eax );

Another important maxim to remember is

0 Always pop exactly the same number of bytes that you push.

This generally means that the number of pushes and pops must exactly agree. If you have too few pops, you
will leave data on the stack which may confuse the running pr&&raﬁyou hare too many pops, you will
accidentally remove previously pushed data, often with disastrous results.

A corollary to the maxim above is “Be careful when pushing and popping data within a loop.” Often it
is quite easy to put the pushes in a loop and leave the pops outside the loop (or vice versa), creating an incon-
sistent stack. Remember, it is the execution of the PUSH and POP instructions that matters, not the number
of PUSH and POP instructions that appear in your program. At run-time, the number (and order) of the
PUSH instructions the program executes must match the number (and reverse order) of the POP instructions.

13.You'll see why when we cover procedures.
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2.7.5 Other PUSH and POP Instructions

The 80x86 preides seeral additional PUSH and POP instructions in addition to the basic instructions
described in the pv@us sectionsThese instructions include the folling:

.«  PUSHA
«  PUSHAD
.+  PUSHF
«  PUSHFD
- POPA

.« POPAD
- POPF

- POPFD

The PUSHA instruction pushes all the general-purpose 16-bit registers onto the stack. This instruction
is primarily intended for older 16-bit operating systems like DOS. In general, you will have very little need
for this instruction. The PUSHA instruction pushes the registers onto the stack in the following order:

ax
CcX
dx
bx
sp
bp
Si

di

The PUSHAD instruction pushes all the 32-bit @) registers onto the stack. It pushes thgisters
onto the stack in the folldng order:

eax
ecx
edx
ebx
esp
ebp
esi

edi

Since the SP/ESPgister is inherently mod#id by the PUSHA and PUSHAD instructions, you may
wonder wly Intel bothered to push it at all. Itas probably easier in the hamle to go ahead and push
SP/ESP rather than mak special case out of it. Inyacase, these instructions do push SP or ESP sb don’
worry about it too much - there is nothing you can do about it.

The PORA and PORD instructions preide the corresponding “pop all” operation to the PUSHA and
PUSHAD instructions.This will pop the rgisters pushed by PUSHA or PUSHAD in the appropriate order
(that is, POR and PORD will properly restore the gaster \alues by popping them in thevegse order that
PUSHA or PUSHAD pushed them).

Although the PUSHA/PO®and PUSHAD/PORD sequences are short and wemient, thg are actu
ally slowver than the corresponding sequence of PUSH/POP instructions, this is especially true when you
consider that you rarely need to push a majaritych less all the gisters®. So if youte looking for max
imum speed, you should carefully consider whether to use the PUSHA(2YPiRstructions. This text
generally opts for carenience and readability; so it will use the PUSHAD andAIDiAstructions without
worrying about lost difciengy.

14. For example, it is extremely rare for you to need to push and pop the ESP register with the PUSHAD/POPAD instruction
sequence.
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The PUSHE, PUSHFD,POPF and POPFD instructions push and pop ®Bd-AGs ragjister These
instructions allav you to presery condition code and otheadl settings across theeeution of some
sequence of instructions. Unfortunatelgless you go to a lot of trouble, it isfaitilt to preserg individual
flags. When using the PUSHF(D) and POPF(D) instructiossaiti all or nothing proposition - you preserv
all the fegs when you push them, you restore all thgsfiwhen you pop them.

Like the PUSHA and P@Hnstructions, you should really use the PUSHFD and POPFD instructions to
push the full 32-bit &rsion of the EFL&s rajister Although the &tra 16-bits you push and pop are essen
tially ignored when writing applications, you stillawt to leep the stack aligned by pushing and popping
only double verds.

2.7.6

Removing Data From the Stack Without Popping It

Once in a while you may diseer that yowe pushed data onto the stack that you no longer need.
Although you could pop the data into an unusegister or memory location, there is an easiay wo
remove unvanted data from the stack - simply adjust thei® in the ESP ggster to skip wer the unvanted
data on the stack.

Consider the folleing dilemma:
push( eax );
push( ebx );

<< Some code that w nds up conputing sone val ues we want to keep
into EAX and EBX >>

if( Calculation_was_perforned ) then

/1 Whoops, we don’t want to pop EAX and EBX
/1 What to do here?

el se

/1 No cal culation, so restore EAX, EBX

pop( ebx );
pop( eax );

endif;
Within the THEN section of the IF statement, this code wants to remove the old values of EAX and EBX
without otherwise affecting any registers or memory locations. How to do this?

Since the ESP register simply contains the memory address of the item on the top of the stack, we can
remove the item from the top of stack by adding the size of that item to the ESP register. In the example
above, we want to remove two double word items from the top of stack, so we can easily accomplish this by
adding eight to the stack pointer:

push( eax );
push( ebx );

<< Sone code that wi nds up conputing sone val ues we want to keep
into EAX and EBX >>

if( Calculation_was_performed ) then
add( 8, ESP); /1 Renove unneeded EAX and EBX val ues fromthe stack.

el se
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/1 No calculation, so restore EAX, EBX

pop( ebx );
pop( eax );

endif;

ESP + 8
_| ESP+7
| EAX _| ESP+6
ESP+5
ESP+ 4
ESP + 3
| EBX _| ESP+2
ESP+1

ESP ——pp ESP + 0

Figure 2.17 Removing Data from the Stack, Before ADD( 8, ESP )

m
92}
o

l\‘\

ESP+0

L EAX

L EBX ]

Figure 2.18 Removing Data from the Stack, After ADD( 8, ESP );

Effectively, this code pops the data off the stack without moving it anywhere. Also note that this code is
faster than two dummy POP instructions because it can remove any number of bytes from the stack with a
single ADD instruction.

Warning: remember to &ep the stack aligned on a doublerevboundary Therefore, you should
always add a constant that is areie multiple of four to ESP when remiong data from the stack.
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2.7.7 Accessing Data You've Pushed on the Stack Without Popping It

Once in a while you will push data onto the stack and you wifitwo get a copof that datas value, or
perhaps you will &nt to change that dasalalue, without actually popping the datd tfe stack (that is,
you wish to pop the datafahe stack at a later time)lhe 80x86 “[rgj;, + offset]” addressing mode pro
vides the mechanism for this.

Consider the stack after theeeution of the follaving two instructions (seEigure 2.19:

push( eax );
push( ebx );

A\
\
A\\

ESP+ 8
_| ESP+7
| EAX _| ESP+6
ESP+5
ESP+4
ESP+ 3
|  EBX _J| ESP+2
ESP+1

ESP —p ESP+ 0

Figure 2.19 Stack After Pushing EAX and EBX

If you wanted to access the original EBX value without removing it from the stack, you could cheat and pop
the value and then immediately push it again. Suppose, however, that you wish to access EAX’s old value;
or some other value even farther up on the stack. Popping all the intermediate values and then pushing them
back onto the stack is problematic at best, impossible at worst. However, as you will notiéegiicen

2.19 each of the values pushed on the stack is at some offset from the ESP register in memory. Therefore,
we can use the “[ESP + offset]” addressing mode to gain direct access to the value we are interested it. In
the example above, you can reload EAX with its original value by using the single instruction:

mov( [esp+4], eax );

This code copies the four bytes starting at memory address ESP+4 into the gigt&r.reThis value just
happens to be the value of EAX that was earlier pushed onto the stack. This same technique can be used to
access other data values you've pushed onto the stack.

Warning: Don't forget that the offsets of values from ESP into the stack change every
time you push or pop data. Abusing this feature can create code that is hard to modify; if
you use this feature throughout your code, it will make it difficult to push and pop other
data items between the point you first push data onto the stack and the point you decide to
access that data again using the “[ESP + offset]” memory addressing mode.

The previous section pointed out how to remove data from the stack by adding a constant to the ESP
register. That code example could probably be written more safely as:

push( eax );
push( ebx );
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<< Sone code that wi nds up conputing sone val ues we want to keep
into EAX and EBX >>

if( Calculation_was_performed ) then

/1 Qverwrite saved val ues on stack wth new EAX/ EBX val ues.

/'l (so the pops that follow won't change the val ues in EAX/ EBX.)
nov( eax, [esp+4] );

nov( ebx, [esp] );

endi f;
pop( ebx );
pop( eax );

In this code sequence, the calculated resa#t stored over the top of the values saved on the stack. Later
on, when the values are popped off the stack, the program loads these calculated values into EAX and EBX.

2.8  Dynamic Memory Allocation and the Heap Segment

Although static and automati@arables are all simple programs may need, more sophisticated programs
need the ability to allocate and deallocate storage dynamically (at run-time) under program control. In the C
language, you wuld use thanalloc andfreefunctions for this purpose. C++ pides thenew anddelete
operators. &scal usesew anddispose Other languages priole comparable routine§.hese memory alto
cation routines share a couple of things in commory. listethe programmer requestvhanary bytes of
storage to allocate, theeturn gpointerto the navly allocated storage, and thprovide a &cility for returnt
ing the storage to the system so the system can reuse it in a future allocatiohscgdiuve probably
guessed, HLA also pvides a set of routines in the HLA Standard Library that handle memory allocation
and deallocation.

The HLA Standard Librarynalloc and free routines handle the memory allocation and deallocation
chores (respectély)'®. Themallocroutine uses the foling calling sequence:

nal | oc( Nunber _of Bytes Requested );

The single parameter isdavord value (an unsigned constant) specifying the number of bytes of storage you
are requesting. This procedure allocate storages tmedggsegment in memory. The HLA malloc function
locates an unused block of memory of the specified size in the heap segment and marks the block as “in use”
so that future calls tmallocwill not reallocate this same storage. After marking the block as “in use” the
mallocroutine returns a pointer to the first byte of this storage in the EAX register.

For many objects, you will know the number of bytes that you need in order to represent that object in
memory. For example, if you wish to allocate storage fame32variable, you could use the folling call
to themallocroutine:

malloc( 4 );
Although you can specify a literal constant as thengple suggests, it's generally a poor idea to do so when

allocating storage for a specific data type. Instead, use the HLA built-in compile-time fu@dineto
compute the size of some data type. @wizefunction uses the following syntax:

@i ze( variabl e_or_type_nane )
The @sizefunction returns an unsigned integer constant that specifies the size of its parameter in bytes. So
you should rewrite the previous callrt@lloc as follows:
mal | oc( @ize( uns32 ));

15. HLA provides some other memory allocation and deallocation routines as well. See the HLA Standard Library documen-
tation for more details.
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This call will properly allocate a didient amount of storage for the specified object, regardless of its type.
While it is unlikely that the number of bytes required byuasa32object will ever change, this is not neces
sarily true for other data types; so you should alwayg@sigerather than a literal constant in these calls.

Upon return from the malloc routine, the EAX register contains the address of the storage you have
requested (see Figure 2.20):

Heap Segment

A\
\
A\

Uns32 Storage
Allocated by
call to malloc

EAX e

Figure 2.20 Call to Malloc Returns a Pointer in the EAX Register

To access the storag®llocallocates you must use a register indirect addressing mode. The following code
sequence demonstrates how to assign the value 1234unsB2variablemalloccreates:

mal | oc( @i ze( uns32 ));
nmov( 1234, (type uns32 [eax]));

Note the use of the type coercion operatidhis is necessary in this example because anonymous variables
don’t have a type associated with them and the constant 1234 coulddrd @ dword value. The type
coercion operator eliminates the ambiguity.

A call to themallocroutine is not guaranteed to succeed. If ther¢ @&sgaingle contiguous block of free
memory in the heap gment that is laye enough to satisfy the request, thenntiadloc routine will raise an
ex.MemoryAllocation&ilure exception. If you do not prade aTRY..EXCEPTION..ENDTR handler to
deal with this situation, a memory allocati@ildre will cause your program to aboxeeution. Since most
programs do not allocate massiamounts of dynamic storage usimgllog this eception rarely occurs.
However, you should neer assume that the memory allocation will@ys occur without error

When you are done using alue thaimallocallocates on the heap, you can release the storage (that is,
mark it as “no longer in use”) by calling tfreeprocedure.Thefreeroutine requires a single parameter that
must be an address thaasva preious return alue of themallocroutine (that you hae not already freed).

The following code fragment demonstrates the nature ofrihléoc/freepairing:

nmal | oc( @i ze( uns32));

<< use the storage pointed at by EAX >>
<< Note: this code nust not nodify EAX >>

free( eax );

This code demonstrates ary important point - in order to properly free the storagerttadioc allocates,
you must preserve the value thaallocreturns. There are several ways to do this if you need to use EAX
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for some other purpose; you couldethe pointer value on the stack using PUSH and POP instructions or
you could save EAX’s value in a variable until you need to free it.

Storage you release is available for reuse by future calls toahecroutine. Like automatic a&riables
you declare in th¥AR section, the ability to allocate storage while you need it and then free the storage for
other use when you are done with it imyrs the memory &tieng/ of your program. By deallocating stor
age once you arenished with it, your program can reuse that storage for other purposeim@i@ur pre
gram to operate with less memory thanaid if you statically allocated storage for the indiial objects.

The are seeral problems that can occur when you use pointersshould bewsare of a fax common
errors that bginning programmers makwhen using dynamic storage allocation routines rilalloc and
free

» Mistake #1: Continuing to refer to storage after you free it. Once you return storage te the sys
tem via the call tédree, you should no longer access that storage. Doing so may cause a protec
tion fault or, worse yet, corrupt other data in your program without indicating an error.

* Mistake #2: Callindgreetwice to release a single block of storage. Doing so may accidentally
free some other storage that you did not intend to release or, worse yet, it may corrupt the sys
tem memory management tables.

A later chapter will discuss some additional problems you will typically encounter when dealing with
dynamically allocated storage.

The examples thus far in this section have all allocated storage for a single unsigned 32-bit object.
Obviously you can allocate storage for any data type using a ca#lltocby simply specifying the size of
that object asnalloc’s parameter It is also possible to allocate storage for a sequence of contiguous objects
in memory when callingnalloc For example, the follaving code will allocate storage for a sequence of 8
characters:

mal |l oc( @ize( char ) * 8);
Note the use of the constantpeession to compute the number of bytes required by an eight-character

sequence. Since@size(char)” always returns a constant value (one in this case), the compiler can compute
the value of the expression “@size(char) * 8” without generating any extra machine instructions.

Calls tomalloc always allocate multiple bytes of storage in contiguous memory locations. Hence the
former call tomallocproduces the sequence appearingigure 2.21
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Heap Segment

A\
\
\

EAX +7

Eight char values Eﬁi : g

allocated via a call to EAX + 4
malloc( @size(char) *8

(@size(char) *8, EAX+

EAX + 2

EAX + 1

EAX iy EAX + 0

Figure 2.21 Allocating a Sequence of Eight Character Objects Using Malloc

To access thesatea characteralues you use anfget from the base address (contained in EAX upon
return frommallog). For example, “MOV( CH, [EAX + 2] );” stores the character found in CH into the third
byte thatmallocallocates.You can also use an addressing mode jEAX + EBX]” to step through each
of the allocated objects under program contrar écample, the follaing code will set all the characters in
a block of 128 bytes to the NULL character (#0):

mal | oc( 128 );
for( nov( O, ebx ); ebx < 128; add( 1, ebx ) ) do

nov( O, (type byte [eax+ebx]) );
endfor;

The chapter on arrays, later in thigtfeliscusses additional ways to deal with blocks of memory.

2.9 The INC and DEC Instructions

As the éample in the last section indicates, indeed, asraéexamples up to this point ke indicated,
adding or subtracting one from aigter or memory location is &k common operation. ladt, this oper
ation is so common that Intelenginees included a pair of instructions to perform these speojfera
tions: the INC (increment) and DEC (decrement) instructions.

The INC and DEC instructions use the fallog syntax:
inc( menmreg );
dec( menireg );

The single operand can beyalegal eight-bit, 16-bit, or 32-bit register or memory operand. The INC
instruction will add one to the specified operand, the DEC instruction will subtract one from the specified
operand.

These two instructions are slightly more efficient (they are smaller) than the corresponding ADD or
SUB instructions. There is also one slight difference between these two instructions and the corresponding
ADD or SUB instructions: they do not affect the carry flag.

Pagel90 © 2001, By Randall Hyde Beta Draft - Do not distribute



Memory Access and Organization

As an eample of the INC instruction, consider theample from the prgous section, recoded to use
INC rather tharADD:

mal | oc( 128 );
for( nmov( O, ebx ); ebx < 128; inc( ebx ) ) do

nmov( O, (type byte [eax+ebx]) );

endf or;

2.10 Obtaining the Address of a Memory Object

In the sectioriThe Ragister IndirecAddressing Modes” on pagé9this chapter discusseswdo use
the address-of operatof&”, to take the address of a statiariable'®, Unfortunately you cannot use the
address-of operator to &lthe address of an automatarigble (one you declare in tMAR section), you
cannot use it to compute the address of anyanouns \ariable, nor can you use this operator tettie
address of a memory reference that uses ameddar scaled inded addressing modeven if a static ari-
able is part of the addresgpeession).You may only use the address-of operator te thle address of a
static \ariable that uses the displacement-only memory addressing mode. Often, you will needhe tak
address of other memory objects as well; fortunatieé/80x86 praides theload efective addessinstruc
tion, LEA, to give you this capability

TheLEA instruction uses the folging syntax”:

| ea( regs,, Menory_operand );

The first operand must be a 32-bit register, the second operand can be any legal memory reference using any
valid memory addressing mode. This instruction will load the address of the specified memory location into
the register. This instruction does not modify the value of the memory operand in any way, nor does it refer
ence that value in memory.

Once you load the effective address of a memory location into a 32-bit general purpose register, you can
use the register indirect, indexed, or scaled indexed addressing modes to access the data at the specified
memory address. For example, consider the following code:

static
b: byte; @ost or age;
byte 7, 0, 6, 1, 5, 2, 4, 3;

lea( ebx, b);
for( mov( O, ecx ); ecx < 8; inc( ecx )) do

stdout. put ( “[ebx+ecx] =", (type byte [ebx+ecx]), nl );
endwhi | e;

This code steps through each of the eight byteswWailp theb label in the STATIC section and prints their
values. Note the use of the “[ebx+ecx]” addressing mode. The EBX register holds the base address of the
list (that is, the address of the first item in the list) and ECX contains the byte index into the list.

programtestds;

16. A static variable is one that you declare ingtadic, readonlystorage or datasections of your program.
17. Actually, the lea instruction allows the operands to appear in either order since there is no ambiguity. Howener, the sta
dard syntax is to specify the register as the first operand and the memory location as the second operand.
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#i ncl ude( “stdlib.hhf” );
begin testds;

/1 Throw up sone text to prove that
// this programreally clears the screen:

st dout . put
(
nl,
“HLA consol e.cl s() Test Routine”, nl
B R R T ", nl
nl
“This routine will clear the screen and nove the cursor to (0,0),”, nl
“then it will print a short message and quit”, nl
nl

“Press the Enter key to continue:”

)

I/ Make the user hit Enter to continue. This is so that they
/1l can see that the screen is not bl ank.

stdin. readLn();
/1 Ckay, clear the screen and print a sinple nessage:

consol e. cl s();
stdout. put( “The screen was cleared.”, nl );

end testd s;
program t est Got oxy;
#include( “stdlib.hhf” );

var
X:int16;
y:int16;

begi n t est Got oxy;

/'l Throw up sone text to prove that
/1 this programreally clears the screen:

st dout . put

(
nl,
“HLA consol e. got oxy() Test Routine”, nl,
o "ol
nl,

“This routine will clear the screen then denonstrate the use”, nl,
“of the gotoxy routine to position the cursor at various”, nl,
“points on the screen.”,nl,

nl,

“Press the Enter key to continue:”

)

I/ Make the user hit Enter to continue. This is so that they
/1 can control when they see the effect of consol e. gotoxy.

stdin. readbLn();

I/l Ckay, clear the screen:
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consol e. cl s();

/1 Now denonstrate the gotoxy routine:

consol e. got oxy( 5,10 );
stdout. put ( “(5,10)" );

consol e. gotoxy( 10, 5 );
stdout. put( “(10,5)" );

nov( 20, X );
for( nov( O,y ); y<20; inc(y)) do

consol e.gotoxy( y, X );
stdout.put ( “(*, x, “,”, Yy, )" );
inc( x);
endf or ;
end t est Cot oxy;
programt est Get xy;
#include( “stdlib.hhf” );
var
X:uns32;
y: uns32;
begi n test Get xy;

// Begin by getting the current cursor position

consol e. get X();
nov( eax, X );

consol e. get Y();
mov( eax, y );
/1 dear the screen and print a banner message:

consol e. cl s();

st dout . put

(
nl,
“HLA consol e. Get X() and consol e. Get Y() Test Routine”, nl,
B e e e L TR "ol
nl,

“This routine will clear the screen then denonstrate the use”, nl,
“of the GetX and GetY routines to reposition the cursor”, nl,
“toits original location on the screen.”, nl,

nl,

“Press the Enter key to continue:”

)

/1 NMake the user hit Enter to continue. This is so that they
/1 can control when they see the effect of consol e. got oxy.

stdin. readlLn();
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/1 Now denonstrate the GetX and GetY routines by calling
/1 the gotoxy routine to nove the cursor back to its original
/1 position.

consol e. got oxy( (type unsl6 y), (type unsl6 x) );
stdout.put( “*<- Qursor was originally here.”, nl );

end test Get xy;
programtest Set Qut put Attr;
#include( “stdlib.hhf” );
var
X:uns32;
y: uns32;
begin testSet Qut put Attr;
// Qear the screen and print a banner nessage:

consol e. cl s();

consol e.setQutput Attr( win.fgnd_LightRed | w n.bgnd_Bl ack );

st dout . put

(
nl,
“HLA consol e. set Qutput Attr Test Routine”, nl,
e ",onl,
nl,

“Press the Enter key to continue:”

)

/1 NMake the user hit Enter to continue. This is so that they
/1 can control when they see the effect of consol e. got oxy.

stdin. readlLn();

consol e. setQut put Attr( win.fgnd_Yell ow | win.bgnd_Blue );

st dout . put
(
“nl

“ In blue and yel | ow “.nl,
“ “oonl,
“ Press Enter to continue “, nl
“ “oonl
nl

)

stdin. readbLn();
/1 Note: set the attributes back to black and white when
/1 the programexits so the consol e wi ndow doesn’t continue
// displaying text in Bl ue and Yel | ow.
consol e. setQut put Attr( win.fgnd_Wite | wn.bgnd_Bl ack );
end testSetQut put Attr;
programtestFill Rect;
#include( “stdlib.hhf” );

var
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X: uns32;
y: uns32;

begin testFill Rect;

consol e. set Qut put Attr( w n.fgnd_LightRed | w n.bgnd_Bl ack );

st dout . put

(
nl,
“HLA console.fill Rect Test Routine”, nl,
B ",onl,
nl,

“Press the Enter key to continue:”

)
/] Make the user hit Enter to continue.

stdin.readlLn();
consol e. cl s();

/1 Test outputting rectangul ar bl ocks of col or.
/1 Note that the blocks are always filled wth spaces,
// so there is no need to specify a foreground col or.

console.fillRect( 2, 50, 5, 55 ‘ ‘, win.bgnd Bl ack );
console.fillRect( 6, 50, 9, 55 *‘ ‘, win. bgnd_Geen);
consol e.fill Rect( 10, 50, 13, 55, * ‘, wn.bgnd_Cyan );
console.fillRect( 14, 50, 17, 55, ‘ ‘, win.bgnd_Red );
console.fillRect( 18, 50, 21, 55, ‘ ‘, wi n.bgnd_Magenta );
console.fillRect( 2, 60, 5, 65 ‘ ‘, win. bgnd Brown );
console.fillRect( 6, 60, 9, 65 ‘ ‘, win.bgnd LightGay );
console.fillRect( 10, 60, 13, 65, ‘ ‘, win.bgnd DarkGay );
console.fillRect( 14, 60, 17, 65, ‘ ‘, win.bgnd_LightBl ue );
console.fillRect( 18, 60, 21, 65, ‘ ‘, win.bgnd_LightGeen );
console.fillRect( 2, 70, 5, 75, ‘ ‘, win.bgnd LightCyan );
console.fillRect( 6, 70, 9, 75, ‘ “, win.bgnd LightRed );
console.fillRect( 10, 70, 13, 75, ‘ ‘, win.bgnd_Light Magenta );
console.fillRect( 14, 70, 17, 75, ‘ *, win.bgnd_Yellow);
console.fillRect( 18, 70, 21, 75, * *, win.bgnd _Wite );

/1 Note: set the attributes back to black and white when
/1l the programexits so the consol e wi ndow doesn’t continue
/1 displaying text in Blue and Yel |l ow
consol e.setQutput Attr( win.fgnd Wite | w n.bgnd_Black );
end testFill Rect;
program t est Put sx;
#include( “stdlib.hhf” );
var
X:uns32;
y: uns32;
begi n test Put sx;

// dear the screen and print a banner nessage:

consol e. cl s();
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/1 Note that console.puts always defaults to black and white text.
/1 The following setQutputAttr call proves this.
consol e.setQutput Attr( win.fgnd_LightRed | w n.bgnd_Bl ack );
I/l Display the text in black and white:

consol e. put s

(
10,
10,
“HLA consol e. set Qut put Attr Test Routine”
)
consol e. puts
(
11,
10,
)
consol e. puts
(
13,
10,
“Press the Enter key to continue:”
)

/] Make the user hit Enter to continue.
stdin. readlLn();

/1 Denonstrate the consol e. putsx routine.
/1l Note that the colors set by putsx are

/!l “local” to this call. Hence, the current
// output attribute colors will not be affected
/1l by this call.
consol e. put sx
(

15,

15,

wi n. bgnd_Wiite | win.fgnd_Bl ue,

35,

“Putsx at (15, 15) of length 35.......... "
)
consol e. put sx
(

16,

15,

wi n. bgnd_Wiite | win.fgnd_Red,

40,

“1234567890123456789012345678901234567890"
)

/1 Since the following is a stdout call, the text
[l will use the current output attribute, which

I/ is the red/black attributes set at the begi nni ng
/1 of this program
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consol e. gotoxy( 23, 0);

stdout.put( “Press enter to continue:” );
stdin. readlLn();

// Note: set the attributes back to black and white when
/'l the programexits.

consol e.setQutput Attr( win.fgnd Wite | w n.bgnd_Bl ack );
consol e. cl s();

end test Put sx;

2.11

Putting It All Together

This chapter discussed the 80x86 address modes and other related topigan hybdiscussing the
80x865 raister displacement-only (direct), gister indirect, and inded addressing modesA good
knowledge of these addressing modes and their uses is essential ibgbtowvrite good assembly kan
guage programsAlthough this chapter does not deldeeply into the use of each of these addressing
modes, it does present their syntax andwadienple eamples of each (later chapters witpand on ha
you use each of these addressing modes).

After discussing addressing modes, this chapter describetihd and the operating systemganizes
your code and data in memongt this point this chapter also discussed the HLABT, READONLY,
STORAGE, andVAR data declaration sectiond.he alignment of data in memory carfeat the perfor
mance of your programs; therefore, when discussing this topic, this chapter also desuriteegrbperly
align objects in memory to obtain thesfest gecuting code.

One special section of memory is the 80x86 stack. In addition toylieflussing the stack, this chap
ter also described hoto use the stack tosatemporary alues using the PUSH and POP instructions (and
several \ariations on these instructions).

To a running program, aaviable is really nothing more than a simple address in menmorgn HLA
source fie, havever, you may specify the address and type of an object in memory usirgfplbaddress
expressions and type coercion operatdrsese chapter discusses the syntax for thqaessions and oper
ators and gies sgeral ekamples of wk you would want to use them.

This chapter concludes by discussing twodules in the HLA Standard Library: the dynamic memory
allocation routinesnfalloc andfree).
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Intr oduction to Digital Design Chapter Three

Logic circuits are the basis for modern digital computer systems. To appreciate how computer
systems operate you will need to understand digital logic and boolean algebra.

This chapter provides only a basic introduction to boolean algebra. That subject alone is often
the subject of an entire textbook. This chapter concentrates on those subjects that support other
chapters in this text.

Chapter Overview

Boolean logic forms the basis for computation in modern binary computer systems. You can
represent any algorithm, or any electronic computer circuit, using a system of boolean equations.
This chapter provides a brief introduction to boolean algebra, truth tables, canonical representa-
tion, of boolean functions, boolean function simplification, logic design, and combinatorial and
sequential circuits.

This material is especially important to those who want to design electronic circuits or write
software that controls electronic circuits. Even if you never plan to design hardware or write soft-
ware than controls hardware, the introduction to boolean algebra this chapter provides is still
important since you can use such knowledge to optimize certain complex conditional expressions
within IF, WHILE, and other conditional statements.

The section on minimizing (optimizing) logic functions uses Veitch Diagrams or Karnaugh
Maps. The optimizing techniques this chapter uses reduce the number of ferms in a boolean func-
tion. You should realize that many people consider this optimization technique obsolete because
reducing the number of terms in an equation is not as important as it once was. This chapter uses
the mapping method as an example of boolean function optimization, not as a technique one
would regularly employ. If you are interested in circuit design and optimization, you will need to
consult a text on logic design for better techniques.

3.1 Boolean Algebra

Boolean algebra is a deductive mathematical system closed over the values zero and one
(false and true). A binary operator | defined over this set of values accepts a pair of boolean
inputs and produces a single boolean value. For example, the boolean AND operator accepts two
boolean inputs and produces a single boolean output (the logical AND of the two inputs).

For any given algebra system, there are some initial assumptions, or postulates, that the sys-
tem follows. You can deduce additional rules, theorems, and other properties of the system from
this basic set of postulates. Boolean algebra systems often employ the following postulates:

¥ ¥Closure. The boolean system is closed with respect to a binary operator if for every pair
of boolean values, it produces a boolean result. For example, logical AND is closed in the
boolean system because it accepts only boolean operands and produces only boolean
results.

¥ ¥Commutativity. A binary operator | is said to be commutative if A°B = B°A for all possi-
ble boolean values A and B.

¥ ¥Associativity. A binary operator j is said to be associative if
¥ (AiB)jC=AjB;0)
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for all boolean values A, B, and C.
¥Distribution. Two binary operators | and % are distributive if
AiB%C)=(AiB)%(A[C)

for all boolean values A, B, and C.

G e B G

Yldentity. A boolean value I is said to be the identity element with respect to some binary operator | if A
°1=A

for all boolean values A.

¥ ¥nverse. A boolean value I is said to be the inverse element with respect to some binary operator | if A
°1=B and B#A (i.e., B is the opposite value of A in a boolean system)

for all boolean values A and B.

For our purposes, we will base boolean algebra on the following set of operators and values:

The two possible values in the boolean system are zero and one. Often we will call these values false and true
(respectively).

The symbol ¥ represents the logical AND operation; e.g., A« B is the result of logically ANDing the boolean
values A and B. When using single letter variable names, this text will drop the ¥ symbol; Therefore, AB also
represents the logical AND of the variables A and B (we will also call this the product of A and B).

The symbol + represents the logical OR operation ; e.g., A + B is the result of logically ORing the boolean
values A and B. (We will also call this the sum of A and B.)

Logical complement, negation, or not, is a unary operator. This text will use the (") symbol to denote logical
negation. For example, A’ denotes the logical NOT of A.

If several different operators appear in a single boolean expression, the result of the expression depends on
the precedence of the operators. We 1l use the following precedences (from highest to lowest) for the boolean
operators: parenthesis, logical NOT, logical AND, then logical OR. The logical AND and OR operators are /left
associative. If two operators with the same precedence are adjacent, you must evaluate them from left to right.
The logical NOT operation is right associative, although it would produce the same result using left or right asso-
ciativity since it is a unary operator.

We will also use the following set of postulates:
P1 Boolean algebra is closed under the AND, OR, and NOT operations.

P2 The identity element with respect to ¥ is one and + is zero. There is no identity element with respect to

logical NOT.

P3 The ¥ and + operators are commutative.

P4 ¥ and + are distributive with respect to one another. That is,A+(B+C)=(A«B)+(A+C)and A+ (B+C)=(A+B)
«(A+C).

P5 For every value A there exists a value A’ such that A-A’ = 0 and A+A’ = 1. This value is the logical comple-
ment (or NOT) of A.

P6 ¥ and + are both associative. That is, (A+B)+C = A«(B+C) and (A+B)+C = A+(B+C).

You can prove all other theorems in boolean algebra using these postulates. This text will not go into the for-
mal proofs of these theorems, however, it is a good idea to familiarize yourself with some important theorems in
boolean algebra. A sampling includes:
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Thl: A+A=A

Th2: A¥A=A

Th3: A+0=A

Thd: A¥1=A

Th5: A¥0=0

The: A+1=1

Th7: (A+B)=A¥B
Th8: (A¥B)=A +B
Th9: A+A¥B=A
Th10: A¥(A+B)=A
Thil: A+AB=A+B
Thi2: A¥(A+B)=AB
Thi3: AB+AB =A
Thl4: (A+B)¥(A +B)=A
Th1S: A+A=1

Th16: A¥A =0

Theorems seven and eight above are known as DeMorgan s Theorems after the mathematician who discov-
ered them.

The theorems above appear in pairs. Each pair (e.g., Th1 & Th2, Th3 & Th4, etc.) form a dual. An important
principle in the boolean algebra system is that of duality. Any valid expression you can create using the postu-
lates and theorems of boolean algebra remains valid if you interchange the operators and constants appearing in
the expression. Specifically, if you exchange the ¥ and + operators and swap the 0 and 1 values in an expression,
you will wind up with an expression that obeys all the rules of boolean algebra. This does not mean the dual
expression computes the same values, it only means that both expressions are legal in the boolean algebra sys-
tem. Therefore, this is an easy way to generate a second theorem for any fact you prove in the boolean algebra
system.

Although we will not be proving any theorems for the sake of boolean algebra in this text, we will use these
theorems to show that two boolean equations are identical. This is an important operation when attempting to
produce canonical representations of a boolean expression or when simplifying a boolean expression.

3.2 Boolean Functions and Truth Tables

A boolean expression is a sequence of zeros, ones, and /iterals separated by boolean operators. A literal is a
primed (negated) or unprimed variable name. For our purposes, all variable names will be a single alphabetic
character. A boolean function is a specific boolean expression; we will generally give boolean functions the
name F with a possible subscript. For example, consider the following boolean:

Fo = AB+C

This function computes the logical AND of A and B and then logically ORs this result with c. If A=1, B=0, and
c=1, then F, returns the value one (1¥0 + 1 =1).
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Another way to represent a boolean function is via a truth table. A previous chapter (see Logical Operations
on Bits on page 65) used truth tables to represent the AND and OR functions. Those truth tables took the forms:

Table 13: AND Truth Table

AND 0 1

= O
o O
= O

Table 14: OR Truth Table

OR 0 1

For binary operators and two input variables, this form of a truth table is very natural and convenient. How-
ever, reconsider the boolean function Fy above. That function has three input variables, not two. Therefore, one
cannot use the truth table format given above. Fortunately, it is still very easy to construct truth tables for three or
more variables. The following example shows one way to do this for functions of three or four variables:

BA
F=AB+C
00 01 10 11
0 0 0 0 1
C
1 1 1 1 1
BA
F=AB+CD
00 01 10 11
00 0 0 0 1
01 0 0 0 1
DC
10 0 0 0 1
11 1 1 1 1

In the truth tables above, the four columns represent the four possible combinations of zeros and ones for A & B
(B 1s the H.O. or leftmost bit, A is the L.O. or rightmost bit). Likewise the four rows in the second truth table
above represent the four possible combinations of zeros and ones for the C and D variables. As before, D is the
H.O. bit and c is the L.O. bit.

The following table shows another way to represent truth tables. This form has two advantages over the
forms above — it is easier to fill in the table and it provides a compact representation for two or more functions.
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C B A F=ABC F=AB+C F=A+BC
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 0 0
0 1 1 0 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 0 1 1
1 1 1 1 1 1

Note that the truth table a®provides the values for three separate functions of three variables.

Although you can create an infinite variety of boolean functions, they are not all unique. For example, F=A
and F=AA are two different functions. By theorem two, however, it is easy to show that these two functions are
equivalent, that is, they produce exactly the same outputs for all input combinations. If you fix the number of
input variables, there are a finite number of unique boolean functions possible. For example, there are only 16
unique boolean functions with two inputs and there are only 256 possible boolean functions of three input vari-

ables. Given n input variables, there are 2**(2") (two raised to the two raised to the nth power)1 unique boolean

functions of those » input values. For two input variables, 2%%(2%) = 2% or 16 different functions. With three input
variables there are 2**(23) =28 or 256 possible functions. Four input variables create 2**(24) or 216, or 65,536

different unique boolean functions.

When dealing with only 16 boolean functions, it s easy enough to name each function. The following table
lists the 16 possible boolean functions of two input variables along with some common names for those func-

tions:

Function #

Description

0

Zero or Clear. Always returns zero regardless of A and B input \
ues.

Logical NOR (NOT (A OR B)) = (A+B)’

Inhibition = AB’ (A, not B). Also equivalent to A>B or B < A.

NOT B. Ignores A and returns B’.

Inhibition = BA’ (B, not A). Also equivalent to B>A or A<B.

NOT A. Returns A’ and ignores B

Exclusive-or (XOR) = ALl B. Also equivalent to AB.

Logical NAND (NOT (A AND B)) = (A*B)’

O Nl | | W[N] P

Logical AND = A«B. Returns A AND B.

1. In this context, the operator ** means exponentiation.

al
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Function # Description

9 Equivalence = (A = B). Also known as exclusive-NOR (not exclu
sive-or).

10 Copy A. Returns the value of A and ignores B’s value.

11 Implication, B implies A, or A + B’. (if B then A). Also equivalent tp
B>=A.

12 Copy B. Returns the value of B and ignores A’s value.

13 Implication, A implies B, or B + A’ (if A then B). Also equivalent tp
A >=B.

14 Logical OR = A+B. Returns A OR B.

15 One or Set. Always returns one regardless of A and B input valyes.

Beyond two input variables there are too many functions to provide specific names. Therefore, we will refer
to the function s number rather than the function s name. For example, Fg denotes the logical AND of A and B for
a two-input function and F,, is the logical OR operation. Of course, the only problem is to determine a function s
number. For example, given the function of three variables F=AB+C, what is the corresponding function number?
This number is easy to compute by looking at the truth table for the function. If we treat the values for A, B, and C
as bits in a binary number with C being the H.O. bit and A being the L.O. bit, they produce the binary numbers in
the range zero through seven. Associated with each of these binary strings is a zero or one function result. If we
construct a binary value by placing the function result in the bit position specified by A, B, and c, the resulting
binary number is that function s number. Consider the truth table for F=AB+C:

CBA: 7 6 5 4 3 2 1 0
F=AB+C:1 1 1 1 1 0 0 0
If we treat the function values for F as a binary number, this produces the value F84 or 248,,. We will usually

denote function numbers in decimal.

This also provides the insight into why there are 2**2" different functions of n variables: if you have n input
variables, there are 2" bits in function s number. If you have m bits, there are 2™ different values. Therefore, for n
input variables there are m=2" possible bits and 2™ or 2**2" possible functions.

3.3  Algebraic Manipulation of Boolean Expressions

You can transform one boolean expression into an equivalent expression by applying the postulates and theo-
rems of boolean algebra. This is important if you want to convert a given expression to a canonical form (a stan-
dardized form) or if you want to minimize the number of literals (primed or unprimed variables) or terms in an
expression. Minimizing terms and expressions can be important because electrical circuits often consist of indi-
vidual components that implement each term or literal for a given expression. Minimizing the expression allows
the designer to use fewer electrical components and, therefore, can reduce the cost of the system.

Unfortunately, there are no fixed rules you can apply to optimize a given expression. Much like constructing
mathematical proofs, an individual s ability to easily do these transformations is usually a function of experience.
Nevertheless, a few examples can show the possibilities:

ab + ab’ + a’b a(btb’) + a'b By P4

= a*l + a’b By P5
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= a + ab By Th4
= a+b By Thll
(&b + &b + b )" = (& (btb) + b )’ By P4
= (a’"°*1l + b )’ By P5
= (a' + b)) By Th4
= ( (ab)" )’ By Th8
= ab By definition of not

b(atc) + ab’ + bc” + c= ba + bc + ab/ + bc” + cBy P4
= a(btb’) + b(c + ") + cBy P4
= a°*l + bel + cBy P5

a + b + cBy Th4

Although these examples all use algebraic transformations to simplify a boolean expression, we can also use
algebraic operations for other purposes. For example, the next section describes a canonical form for boolean
expressions. We can use algebraic manipulation to produce canonical forms even though the canonical forms are
rarely optimal.

3.4 Canonical Forms

Since there are a finite number of boolean functions of z input variables, yet an infinite number of possible
logic expressions you can construct with those n input values, clearly there are an infinite number of logic
expressions that are equivalent (i.e., they produce the same result given the same inputs). To help eliminate pos-
sible confusion, logic designers generally specify a boolean function using a canonical, or standardized, form.
For any given boolean function there exists a unique canonical form. This eliminates some confusion when deal-
ing with boolean functions.

Actually, there are several different canonical forms. We will discuss only two here and employ only the first
of the two. The first is the so-called sum of minterms and the second is the product of maxterms. Using the dual-
ity principle, it is very easy to convert between these two.

A term is a variable or a product (logical AND) of several different literals. For example, if you have two
variables, A and B, there are eight possible terms: A, B, A’, B', AB’, A'B, AB’, and AB. For three variables we have 26
different terms: A, B, C, A", B, C’, AB’, A'B, AB’, AB, A'C’, A'C, AC’, AC, B'C’, B'C, BC', BC, AB'C’, AB'C’, ABC’, ABC’, AB'C, AB'C,
A'BC, and ABC. As you can see, as the number of variables increases, the number of terms increases dramatically.
A minterm is a product containing exactly » literals. For example, the minterms for two variables are A'B’, AB’, A'B,
and AB. Likewise, the minterms for three variables A, B, and C are A'B'C’, AB'C’, ABC’, ABC’, AB'C, AB'C, ABC, and ABC.

In general, there are 2" minterms for n variables. The set of possible minterms is very easy to generate since they
correspond to the sequence of binary numbers:
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Binary Minterm
Equivalent

(CBA)
000 ABC
001 AB'C’
010 A'BC’
011 ABC’
100 ABC
101 AB'C
110 A'BC
111 ABC

We can specify any boolean function using a sum (logical OR) of minterms. Given F,,5=AB+C the equivalent
canonical form is ABC+A'BC+AB'C+A'B'C+ABC’. Algebraically, we can show that these two are equivalent as follows:
ABC+A’ BC+ABR’ C+A’ B’ C+ABC’ = BC(A+A’) + B/ C(A+A’) + ABC’' By P4

= BCel +B' Cel + ABC By Thl5

= C(B+B') + ABC By P4

= C + ABC By Thl5 & Th4
= C + AB By Thll

Obviously, the canonical form is not the optimal form. On the other hand, there is a big advantage to the sum of
minterms canonical form: it is very easy to generate the truth table for a function from this canonical form. Fur-
thermore, it is also very easy to generate the logic equation from the truth table.

To build the truth table from the canonical form, simply convert each minterm into a binary value by substi-
tuting a 1 for unprimed variables and a 0 for primed variables. Then place a 1 in the corresponding posi -
tion (specified by the binary minterm value) in the truth table:

1) Convert minterms to binary equivalents:
Fougs =CBA+CBA +CBA+CBA +CBA

=111+110+ 101 + 100+ 011

2) Substitute a one in the truth table for each entry above:
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F = AB+C

Rl FRP|PFRP|RP|O|lO|lO| OO
Rl Rr|lO|O|RrR|FRP|O| Ol T
Rrlo|lrRr|O|R|O|FR|O| >

Pl Rr|Rr| PR

Finally, put zeros in all the entries that you did not fill with ones in the first step above:

F = AB+C

RPlrRP|[FRP|FRP|O|]OC|O|O|O
R|lRr|lOoO|lO|FR|FR,|O|O|l T
Rrlo|lrRr|O|RFR|O|FR|O| >
R|lrRr|lFRr|FRP|PFR,|O| O

Going in the other direction, generating a logic function from a truth table, is almost as easy. First, locate all
the entries in the truth table with a one. In the table above, these are the last five entries. The number of table
entries containing ones determines the number of minterms in the canonical equation. To generate the individual
minterms, substitute A, B, or C for ones and A, B’, or C’ for zeros in the truth table above. Then compute the sum of
these items. In the example above, F,,g contains one for cBA= 111, 110, 101, 100, and 011. Therefore, F,,5 = CBA
+ CBA’ + CB'A + CB'A’ + C'AB. The first term, CBA, comes from the last entry in the table above. C, B, and A all contain
ones so we generate the minterm CBA (or ABC, if you prefer). The second to last entry contains 110 for CBA, so we
generate the minterm CBA'. Likewise, 101 produces cB'A; 100 produces cB'A, and 011 produces c'BA. Of course,
the logical OR and logical AND operations are both commutative, so we can rearrange the terms within the min-
terms as we please and we can rearrange the minterms within the sum as we see fit. This process works equally
well for any number of variables. Consider the function Fs350, = ABCD + ABCD + A'B'CD + A'B'C'D. Placing ones in the
appropriate positions in the truth table generates the following:
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F=ABCD + A'BCD + AB'CD +
AB'CD

O
@

Rlr|kr|lRr|[RrR|rPr|R|RrR|o|o|lo|]o|o|o|o] o

R|lr|kr|lRr|lo|lo|lo|lo|r|kr|RrR|r|o|lo|lo]| o

Rr|lr|lo|lo|r|r|lo|lo|r|r|lo|lo|r|rRr|o]|oO

r|lo|lr|lo|r|o|r|o|r|o|lrR|o|r|o|r]|oO
'—\

The remaining elements in this truth table all contain zero.

Perhaps the easiest way to generate the canonical form of a boolean function is to first generate the truth table
for that function and then build the canonical form from the truth table. We 1l use this technique, for example,
when converting between the two canonical forms this chapter presents. However, it is also a simple matter to
generate the sum of minterms form algebraically. By using the distributive law and theorem 15 (A + A’= 1) makes
this task easy. Consider F,,5 = AB + C. This function contains two terms, AB and C, but they are not minterms. Min-
terms contain each of the possible variables in a primed or unprimed form. We can convert the first term to a sum
of minterms as follows:

AB = AB « 1 By Th4
= AB + (C + C') By Th 15
= ABC + ABC By distributive law
= CBA + C'BA By associative law

Similarly, we can convert the second term in F,,g to a sum of minterms as follows:

C = C 1 By Th4
C s (A + 7)) By Thl5
= CA + C& By distributive law
= CA*l + CA «1 By Th4
= CA e« (B+ B ) + CA + (B + B")By Thlb
= CAB + CAB’ + CA'B + CA' B By distributive law
= CBA + CBA” + CB'A + CB A/ By associative law
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The last step (rearranging the terms) in these two conversions is optional. To obtain the final canonical form for
Foag We need only sum the results from these two conversions:
F,ig = (CBA + C'BA) + (CBA + CBA’ + CB'A + CB A7)
= CBA + CBA’ + CB'A + CB'A + C'BA

Another way to generate a canonical form is to use products of maxterms. A maxterm is the sum (logical OR)
of all input variables, primed or unprimed. For example, consider the following logic function G of three vari-
ables:

G = (A+B+C) + (X +B+C) + (A+B +C).

Like the sum of minterms form, there is exactly one product of maxterms for each possible logic function. Of
course, for every product of maxterms there is an equivalent sum of minterms form. In fact, the function G,
above, is equivalent to

Fus=CBA+CBA +CBA +CBA +CBA=AB +C.

Generating a truth table from the product of maxterms is no more difficult than building it from the sum of
minterms. You use the duality principle to accomplish this. Remember, the duality principle says to swap AND
for OR and zeros for ones (and vice versa). Therefore, to build the truth table, you would first swap primed and
non-primed literals. In G above, this would yield:

G=(A+B +C)¥(A+B +C)¥(A+B+C)

The next step is to swap the logical OR and logical AND operators. This produces
G=ABC +ABC +ABC

Finally, you need to swap all zeros and ones. This means that you store zeros into the truth table for each of
the above entries and then fill in the rest of the truth table with ones. This will place a zero in entries zero, one,
and two in the truth table. Filling the remaining entries with ones produces Fys.

You can easily convert between these two canonical forms by generating the truth table for one form and
working backwards from the truth table to produce the other form. For example, consider the function of two
variables, F; = A + B. The sum of minterms form is F; = AB + AB’ + AB. The truth table takes the form:

Table 15: F; (OR) Truth Table for Two Variables

F, A B

= = O O
= O B+ O
= = O O

Working backwards to get the product of maxterms, we locate all entries that have a zero result. This is the
entry with A and B equal to zero. This gives us the first step of G=A'B". However, we still need to invert all the vari-
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ables to obtain G=AB. By the duality principle we need to swap the logical OR and logical AND operators obtain-
ing G=A+B. This is the canonical product of maxterms form.

Since working with the product of maxterms is a little messier than working with sums of mintermes, this text
will generally use the sum of minterms form. Furthermore, the sum of minterms form is more common in bool-
ean logic work. However, you will encounter both forms when studying logic design.

3.5 Simplification of Boolean Functions

Since there are an infinite variety of boolean functions of n variables, but only a finite number of unique
boolean functions of those n variables, you might wonder if there is some method that will simplify a given bool-
ean function to produce the optimal form. Of course, you can always use algebraic transformations to produce
the optimal form, but using heuristics does not guarantee an optimal transformation. There are, however, two
methods that will reduce a given boolean function to its optimal form: the map method and the prime implicants
method. In this text we will only cover the mapping method, see any text on logic design for other methods.

Since for any logic function some optimal form must exist, you may wonder why we don t use the optimal
form for the canonical form. There are two reasons. First, there may be several optimal forms. They are not guar-
anteed to be unique. Second, it is easy to convert between the canonical and truth table forms.

Using the map method to optimize boolean functions is practical only for functions of two, three, or four

variables. With care, you can use it for functions of five or six variables, but the map method is cumbersome to

use at that point. For more than six variables, attempting map simplifications by hand would not be wise?.

The first step in using the map method is to build a two-dimensional truth table for the function (see Figure
3.1)

2. However, it s probably quite reasonable to write a program that uses the map method for seven or more variables.
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BA

A
0 1 00 01 11 10
0| BA B'A 0| CB'A'| CBA| C'AB| CBA
B C
1| BA' BA 1| CB'A'| CB'A| CAB| CBA'
Two Variable Truth Table Three Variable Truth Table
BA
00 01 11 10
00| D'C'B'A] D'C'BA| D'C'AB| D'C'BA
01| D'CB'A| D'CBA| D'CAB| D'CBA'
DC
11| DCB'A'| DCBA| DCAB | DCBA'
10| DC'B'A| DC'BA| DC'AB| DC'BA'
Four Variable Truth Table
Figure 3.1 Two, Three, and Four Dimensional Truth Tables

Warning: Take a careful look at these truth tables. They do not use the same forms appearing earlier in this
chapter. In particular, the progression of the values is 00, 01, 11, 10, not 00, 01, 10, 11. This is very important! If
you organize the truth tables in a binary sequence, the mapping optimization method will not work properly. We
will call this a fruth map to distinguish it from the standard truth table.

Assuming your boolean function is in canonical form (sum of minterms), insert ones for each of the truth
map entries corresponding to a minterm in the function. Place zeros everywhere else. For example, consider the
function of three variables F=C'B'A + C'BA' + C'BA + CB'A’ + CB'A + CBA’ + CBA. Figure 3.2 shows the truth map for this

function.
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BA
00 01 11 10

F=C'B'A + C'BA’+ C'BA+ CB'A’+ CB’A + CBA’ + CBA.

Figure 3.2 A Simple Truth Map

The next step is to draw rectangles around rectangular groups of ones. The rectangles you enclose must have
sides whose lengths are powers of two. For functions of three variables, the rectangles can have sides whose
lengths are one, two, and four. The set of rectangles you draw must surround all cells containing ones in the truth
map. The trick is to draw all possible rectangles unless a rectangle would be completely enclosed within another.
Note that the rectangles may overlap if one does not enclose the other. In the truth map in Figure 3.3 there are
three such rectangles (see Figure 3.3)

Three possible rectangles whose lengths
and widths are powers of two.

Figure 3.3 Surrounding Rectangular Groups of Ones in a Truth Map

Each rectangle represents a term in the simplified boolean function. Therefore, the simplified boolean func-
tion will contain only three terms. You build each term using the process of elimination. You eliminate any vari-
ables whose primed and unprimed form both appear within the rectangle. Consider the long skinny rectangle
above that is sitting in the row where c=1. This rectangle contains both A and B in primed and unprimed form.
Therefore, we can eliminate A and B from the term. Since the rectangle sits in the c=1 region, this rectangle rep-
resents the single literal C.

Now consider the blue square above. This rectangle includes c, C’, B, B'and A. Therefore, it represents the sin-
gle term A. Likewise, the red square above contains C, C', A, A’and B. Therefore, it represents the single term B.

The final, optimal, function is the sum (logical OR) of the terms represented by the three squares. Therefore,
F=A+B+C. You do not have to consider the remaining squares containing zeros.

When enclosing groups of ones in the truth map, you must consider the fact that a truth map forms a torus
(i.e., a doughnut shape). The right edge of the map wraps around to the left edge (and vice-versa). Likewise, the
top edge wraps around to the bottom edge. This introduces additional possibilities when surrounding groups of
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ones in a map. Consider the boolean function F=C'B'A’ + C'BA’ + CB'A’ + CBA'. Figure 3.4 shows the truth map for this
function.

BA
00 01 11 10

F=C"B’A’+ C'BA'+ CB'A’+ CBA'"

Figure 3.4 Truth Map for F=C'B’A’ + C'BA’ + CB'A’ + CBA’

At first glance, you would think that there are two possible rectangles Heries 3.5shows.

1 C C 1
C
1 C C 1
Figure 3.5 First Attempt at Surrounding Rectangles Formed by Ones

However, because the truth map is a continuous object with the right side and left sides connected, we can form a sin
square rectangle, &gure 3.6shows.

BA
00 01 11 10
<C 1 C C 1 >
C
1 1 C C 1
< >
Figure 3.6 Correct Rectangle for the Function

So whatWhy do we care if we ha one rectangle or twin the truth mapThe answer is because thegkr the rectan
gles are, the more terms yheill eliminate. The faver rectangles that we Vg, the fever terms will appear in thenfal boolean
function. For example, the formen@mple with tvo rectangles generates a function witl terms.The frst rectangle (on the
left) eliminates theC variable, leaing A’'B’ as its termThe second rectangle, on the right, also eliminates taiable, les-
ing the ternBA'. Therefore, this truth mapould produce the equati¢ixA'B’ + A’'B. We knaw this is not optimal, se€h 13.
Now consider the second truth map eboHere we hze a single rectangle so our boolean function will onlyeha single
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term. Olviously this is more optimal than an equation witlo t@rms. Since this rectangle includes bot#ndC’ and alsB
andB’, the only term left ig\. This boolean function, therefore, reducef+a..

There are only te cases that the truth map method cannot handle properly: a truth map that contains all zeros or a trt
map that contains all oneBhese tw cases correspond to the boolean functierisandF=1 (that is, the function number is
2"™1), respectiely. These functions are easy to generate by inspection of the truth map.

An important thing you mustdep in mind when optimizing boolean functions using the mapping method is that you
always vant to pick the lagest rectangles whose sidesigths are a peer of two. You must do thiswen for oserlapping rect
angles (unless one rectangle encloses another). Consider the boolean funci@®n' + C'BA' + CB'A' + CAB + CBA' +
CBA. This produces the truth map appearingigure 3.7

BA
00 01 11 10
0 1 0 1 1

C
1 1 0 1 1

Figure 3.7 Truth Map for F = C'B'A'+ C'BA'+ CB'A' + C'AB + CBA' + CBA

The initial temptation is to create one of the sets of rectangles foukidure 3.8 However, the correct mapping appears in

Figure 3.9
BA BA
00 01 11 10 00 01 11 10
- >
01 0 1 1 0l 1 0 1 1
C C
1{11 0 1 1 1 1 0 1 1
- >
Figure 3.8 Obvious Choices for Rectangles
BA
00 01 11 10
- —
0 1 0 1
C
1 1 0 1
- —

Figure 3.9 Correct Set of Rectangles for F = C'B'A' + C'BA'+ CB'A' + C'AB + CBA' + CBA

All three mappings will produce a boolean function witlo terms. However, the first two will produce the expressierns
+ A'B' andF = AB + A'. The third form produceb = B + A'. Obviously, this last form is better optimized than the other two
forms (see theorems 11 and 12).
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For functions of threeariables, the size of the rectangle determines the number of terms it represents:

e Arectangle enclosing a single square represents a minterm. The associated term will have three literals (assum
ing we're working with functions of three variables).

e A rectangle surrounding two squares containing ones represents a term containing two literals.

e Arectangle surrounding four squares containing ones represents a term containing a single literal.

e A rectangle surrounding eight squares represents the function F = 1.

Truth maps you create for functions of four variables are even trickier. This is because there are lots of places rectang
can hide from you along the edges. Figure 3.10 shows some possible places rectangles can hide.

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10

| 00
01
11

10

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 | | oo
01
11
10

00 01 11 10 00 01 11 10

10

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10

00 01 11 10 00 01 11 10 00 01 11 10 00 01 11 10
00 e
01 G ol
11 T n
10 10
00 01 11 10 00 01 11 10
00
01
11
10 10
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Figure 3.10 Partial Pattern List for 4x4 Truth Map

This list of patterns doedréven bein to caver all of them! Br example, these diagrams shaone of the 1x2 rectangles.
You must gercise care whenavking with four \ariable maps to ensure you select thgdat possible rectangles, especially
when woerlap occursThis is particularly important with you ta a rectangle m¢to an edge of the truth map.

As with functions of threeariables, the size of the rectangle in a faaniable truth map controls the number of terms it
represents:

e Arectangle enclosing a single square represents a minterm. The associated term will have four literals.
e A rectangle surrounding two squares containing ones represents a term containing three literals.

e A rectangle surrounding four squares containing ones represents a term containing two literals.

e A rectangle surrounding eight squares containing ones represents a term containing a single literal.

e A rectangle surrounding sixteen squares represents the function F=1.

This last example demonstrates an optimization of a function containing four variables. The furfctioD’GB'A’ +
D'C'B'A+ D'C'BA+ D'C'BA’+ D')CB’'A + D'CBA + DCB’A + DCBA + DC'B'A’ + DC'BA’, the truth map appearshigure 3.11

BA
00 01 11 10

Figure 3.11 Truth Map for F =D'C'B'A’+ D'C'B'A + D'C'BA + D'C'BA’+ D'CB’A + D'CBA + DCB’'A + DCBA + DC'B'A’ +
DC'BA

Here are tw possible sets of maximal rectangles for this function, each producing three terfrigisee.12. Both
functions are equalent; both are as optimal as you carf.géither will sufice for our purposes.

Figure 3.12 Two Combinations of Surrounded Values Yielding Three Terms

First, lets consider the term represented by the rectangle formed by the four cbnierectangle contair B’, D, and
D’; so we can eliminate those terfihe remaining terms contained within these rectangleS’ amdA’, so this rectangle rep
resents the ter@A’.

3. Remember, there is no guarantee that there is a unique optimal solution.
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The second rectangle, common to both magsgare 3.12is the rectangle formed by the middle four squarbis rect
angle includes the terms B, B’, C, D, andD’. EliminatingB, B’, D, andD’ (since both primed and unprimed termssg, we
obtainCA as the term for this rectangle.

The map on the left iRigure 3.12has a third term represented by the tap fichis term includes theaviablesa, A, B, B’,
C’ andD'. Since it containg, A’, B, andB’, we can eliminate these termisis leaves the ternC’D’. Therefore, the function
represented by the map on the left3€’A" + CA+ C'D'.

The map on the right iRigure 3.12has a third term represented by the top/middle four squehsstectangle subsumes
the \ariablesA, B, B’, C, C’, andD’. We can eliminaté&, B’, C, andC’ since both primed and unprimedrsions appeathis
leaves the ternAD. Therefore, the function represented by the function on the righttg + CA + AD'.

Since both gpressions are equlent, contain the same number of terms, and the same number of operators, either form |
equivalent. Unless there is another reason for choosingmrelee otheryou can use either form.

3.6

What Does This Have To Do With Computers, Anyway?

Although there is a tenuous relationship between boolean functions and boglezssiens in programming languages
like C or Rscal, it is &ir to wonder wly we're spending so much time on this materialwieeer, the relationship between
boolean logic and computer systems is much stronger thest éffipearsThere is a one-to-one relationship between boolean
functions and electronic circuits. Electrical engineers who design CPUs and other computer related circuits need to be i
mately amiliar with this stuft Even if you neer intend to design youmm electronic circuits, understanding this relationship
is important if you vant to mak the most of ancomputer system.

3.6.1

Correspondence Between Electronic Circuits and Boolean Functions

There is a one-to-one correspondence between an electrical circuits and boolean functayddolean function you
can design an electronic circuit and viegsa. Since boolean functions only requireAN®, OR, and N boolean opera
tors’, we can construct grelectronic circuit using these operatiomslasively. The boolearAND, OR, and NQ functions
correspond to the foleing electronic circuits, th&ND, OR, and inerter (NO) gates (se€&igure 3.13.

A —] A
A and B AorB A A
B — B

Figure 3.13 AND, OR, and Inverter (NOT) Gates

One interestingdct is that you only need a singlatg type to implemerany electronic circuitThis gate is theNAND
gate, shwn in Figure 3.14

4. We know this is true because these are the only operators that appear within canonical forms.
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A —
} not (A and B)
B —

Figure 3.14 The NAND Gate

To prove that we can construct any boolean function using only NAND gates, we need only show how to build an invert
(NOT), an AND gate, and an OR gate from a NAND (since we can create any boolean function using only AND, NOT, ar
OR). Building an inverter is easy, just connect the two inputs togethefi(gee 3.15.

A@A.

Figure 3.15 Inverter Built from a NAND Gate

Once we cantdld an irverter building anAND gate is easy — justwirt the output of a AND gate.After all, NOT (NOT
(A AND B)) is equvalent toA AND B (seeFigure 3.16. Of course, this tas two NAND gates to construct a singh\ND
gate, lut no one said that circuits constructed only witkND gates vould be optimal, only that it is possible.

A
A and B
B

Figure 3.16 Constructing an AND Gate From Two NAND Gates

The remaining gte we need to synthesize is the logical-@Re Ve can easily construct an ORtg from MND gates
by applying DeMagan’s theorems.

(Aor B’ = A and B DeMorgan’ s Theorem
Aor B = (A and B)’ Invert both sides of the equation.
Aor B = A nand B Definition of NAND operation.

By applying these transformations, you get the circutigure 3.17

AorB

Figure 3.17 Constructing an OR Gate from NAND Gates

Now you might be wndering wly we would even bother with thisAfter all, why not just use logicaAND, OR, and
inverter cates directlyThere are tw reasons for this. First, AND gates are generally lesspensve to huild than other gtes.
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Second, it is also much easier tolth up comple integrated circuits from the same basiglting blocks than it is to construct
an intgrated circuit using diérent basic gtes.

Note, by the &y, that it is possible to constructyalvgic circuit using only NOR @fesS. The correspondence between
NAND and NOR logic is orthogonal to the correspondence between dheatvonical forms appearing in this chapter (sum of
minterms vs. product of maxterm$Yyhile NOR logic is useful for mancircuits, most electronic designs us&N\D logic.

3.6.2 Combinatorial Circuits

A combinatorial circuit is a system containing basic boolean operations (AND, OR, Bline inputs, and a set of out
puts. Since each output corresponds to awiithaial logic function, a combinatorial circuit often implementgesal diferent
boolean functions. It isary important that you remember théef — each output represents dedént boolean function.

A computers CPU is hilt up from arious combinatorial circuits.of example, you can implement an addition circuit
using boolean functions. Suppose youehtno one-bit numbersd andB. You can produce the one-bit sum and the one-bit
carry of this addition using the tnboolean functions:

S = AB +AB Sum of A and B.

C = AB Carry fromaddition of A and B.

These tw boolean functions implementhalf-adder Electrical engineers call it a half adder because it adddiis
together bt cannot add in a carry from a pi@us operationA full adderadds three one-bit inputs @vbits plus a carry from
a previous addition) and producesdwutputs: the sum and the caiffie two logic equations for a full adder are

S = ABGp,+ABG, +ABG, + ABG,

Gout = AB+ AGp, + BG,

Although these logic equations only produce a single bit result (ignoring the carry), it is easy to construct an n-bibsum by ¢
bining adder circuits (sdeigure 3.18. So, as this example clearly illustrates, we can use logic functions to implement arith
metic and boolean operations.
Ao —Harf So
A — Full ——S1
B, __| Adder
1 Carry
Ao — Full So
B, — Adder L Carry
Figure 3.18 Building an N-Bit Adder Using Half and Full Adders

Another common combinatorial circuit is tiseven-sgment decodeiThis is a combinatorial circuit that accepts four
inputs and determines which of thegs®nts on a sen-sgment LED display should be on (logic one) dfr (tdgic zero).
Since a seen sgment display containsgen output alues (one for each@ment), there will be sen logic functions assaci

5. NOR is NOT (A OR B).
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ated with the display (genent zero through gment six). Se€igure 3.1%or the sgment assignments:igure 3.20shows the
sggment assignments for each of the ten deciralaies.

So
S1 S3
S
s s
4| sg | 6

Figure 3.19 Seven Segment Display

Figure 3.20 Seven Segment Values for “0” Through “9”

The four inputs to each of theseree boolean functions are the four bits from a binary number in the range OD%béd. et
the H.O. hit of this number amdbe the L.O. bit of this numbeEach logic function should produce a ongysent on) for a
given input if that particular genent should be illuminated oF exampleS, (segment four) should be on for binarglues
0000, 0010, 0110, and 100Grreach alue that illuminates a gment, you will hae one minterm in the logic equation:

S, =DCBA +DCBA +DCBA + DCBA.

Sy, as a secondkample, is on for &lues zero, tw, three, fie, six, seen, eight, and nindherefore, the logic function for
Spis
S =DCBA +DCBA +DCBA+D®BA+DM®BA +D®BA+DCBA +DCBA

You can generate the other five logic functions in a similar fashion.

Decoder circuits are among the more important circuits in computer system design. They provide the ability to recogni
(or ‘decode’) a string of bits. One very common use for a decoder is memory expansion. For example, suppose a Sys
designer wishes to install four (identical) 256 MByte memory modules in a system to bring the total to one gigabyte of RAN
These 256 MByte memory modules have 28 address lineé\¢h) assuming each memory module is eight bits wi8§>(23
bits is 256 MByteﬁ Unfortunately if the system designer haeadk up those four memory modules to the GPadidressus
they would all respond to the same addresses onuke Bandemonium wuld result. To correct this problem, we need to
select each memory module when dedént set of addresses appear on the addusssBy adding a chip enable line to each
of the memory modules and using atimput, fouroutput decoder circuit, we can easily do this. Bigere 3.21for the
details.

6. Actually, most memory modules are wider than eight bits, so a real 256 MByte memory module will have fewer than 28
address lines, but we will ignore this technicality in this example.
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Chip Select Lines

el

Two to Fou
Decoder\

Arg—
A29— \

Address Line
Ao--A27 nnnoonnnnnnnnnnnannAnnANNANL

Figure 3.21 Adding Four 256 MByte Memory Modules to a System

The two-line to fourline decoder circuit ifrigure 3.21actually incorporates four dérent logic functions, one function
for each of the outputsAssume the inputs afeandB (A=A,g andB=A,g) then the four output functions\ethe follaving
(simple) equations:

Q=A B
Q=AB
Q=AB
Q =AB

Following standard electronic circuit notation, these equations use “Q” to denote an output (electronic designers use “Q”
output rather than “O” because “Q” looks somewhat like an “O” and is more easily differentiated from zero). Also note thg
most circuit designers usetive low logicfor decoders and chip enables. This means that they enable a circuit with a low
input value (zero) and disable the circuit with a high input value (one). Likewise, the output lines of a decoder chip are n
mally high and go low when the inputs select a given output line. This means that the equations above really need to
inverted for real-world examples. We’ll ignore this issue here and use positive (or active hidh) logic

Another big use for decoding circuits is to decode a byte in memory that represents a machine instruction in order to a
vate the corresponding circuitry to perform whatetasks the instruction requireg/e’ll cover this subject in much greater
depth in a later chaptemt a simple gample at this point will pndde another solidxample for using decoders.

Most modern (dn Neumann) computer systems represent machine instructionalwés vn memory To execute an
instruction the CPU fetches alue from memorydecodes thatalue, and the does the appropriatevigtithe instruction
specifes. OMiously, the CPU uses decoding circuitry to decode the instrucfiorsee hw this is done, le$ create asry
simple CPU with aery simple instruction setrigure 3.22orovides the instruction format (that is, it spessfiall the numeric
codes) for our simple CPU.

7. Electronic circuits often use active low logic because the circuits that employ them typically require fewer transistors to
implement.
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Instruction (opcode) Format:

Bit: 7 6 5 4 3 2 1 0

0 i | [ S S d d
iii ss & dd

000 = MOV 00 = EAX

001 = ADD 0l= EBX

010 = SUB 10= ECX

011 = MUL 11= EDX

100 = DIV

101 = AND

110 = OR

111 = XOR

Figure 3.22 Instruction (opcode) Format for a Very Simple CPU

To determine the eight-bit operation code (opcode) fovengnstruction, the ft thing you do is choose the instruction
you want to encode. Let’pick “MOV( EAX, EBX);” as our simple xample. To corvert this instruction to its numeric eguli
alent we must fst look up the &lue for MOV in theiii table abwe; the correspondingalue is 000.Therefore, we must substi
tute 00O foriii in the opcode byte.

Second, we consider our source operafige source operand is EAX, whose encoding in the source operandsable (
dd) is 00. Therefore, we substitute 00 feg in the instruction opcode.

Next, we need to carert the destination operand to its numeric egjent. Once agjn, we look up thealue for this
operand in thes & dd table. The destination operand is EBX and italue is 01. So we substitute 01 tafin our opcode
byte. Assembling these threefis into the opcode byte (a padkdata type), we obtain the fallmg bit value: %00000001.
Therefore, the numerialue $1 is thealue for the “M/( EAX, EBX);” instruction (sed-igure 3.23.
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iii ss & dd

000 = MOV 00= EAX
01= EBX
10= ECX
11 = EDX

Figure 3.23 Encoding the MOV( EAX, EBX); Instruction

As another gample, consider theAND( EDX, ECX);” instruction. Br this instruction théi field is %101, thes field is
%211, and theld field is %210.This yields the opcode %01011110 or $%B6u may easily create other opcodes for our simple
instruction set using this same technique.

Warning: please do not come to the conclusion that these encodings apply to the 80x86 instruction set. The
encodings in this examples are highly simplified in order to demonstrate instruction decoding. They do not
correspond to any real-life CPU, and they especially don’t apply to the x86 family.

In these past few examples we were actuatigodingthe instructions. Of course, the real purpose of tkescise is to
discover hav the CPU can use a decoder circuit to decode these instructionsegntbethem at run timeA typical set of
decoder circuits for this might look &kthat inFigure 3.24
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A Qo —EAX

B Q1 —EBX
_ Q2 —ECX

2line Q3 |—EDX

to

4 line

decode

See Not

I I

A Qo— Circuitry to do a MOV
B Q1— Circuitry to do an ADD
C Q2— Circuitry to do a SUB

Qz— Circuitry to do a MUL
Qa— Circuitry to do a DIV

? line o5l Circuitry to do an AND
80I' Qs— Circuitry to do an OR

IN€  Q;t— Circuitry to do an XOR
decode

Note: the circuitry attached to the destination register bits is identical
to the circuitry for the source register bits.

Figure 3.24 Decoding Simple Machine Instructions

Notice hav this circuit uses three separate decoders to decode thieliradiifields of the opcodeThis is much less com
plex than creating a sen-line to 128-line decoder to decode eachviddal opcode. Of course, all that the circuit\abuwvill
do is tell you which instruction and what operandsvargopcode specés. To actually &ecute this instruction you must sup
ply additional circuitry to select the source and destination operands from an armgigtefseand act accordingly upon those
operands. Such circuitry isymnd the scope of this chaptso well save the juiy details for later

Combinatorial circuits are the basis for maomponents of a basic computer systéou can construct circuits for addi
tion, subtraction, comparison, multiplicationyidion, and may other operations using combinatorial logic.

3.6.3

Sequential and Clocked Logic

One major problem with combinatorial logic is that itiemorylessin theory all logic function outputs depend only on
the current inputsAny change in the inputalues is immediately reftted in the outputsUnfortunately computers need the
ability toremembethe results of past computationiis is the domain of sequential or cledkogic.
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A memory cells an electronic circuit that remembers an in@ltie after the remal of that input alue.The most basic
memory unit is theet/leset fp-flop.You can construct a8R fip-flop using two NAND gates, as shan in Figure 3.25

D
B

Figure 3.25 Set/Reset Flip Flop Constructed from NAND Gates

ThesS andR inputs are normally high. If yotempoarily set theS input to zero and then bring it back to otaggle theS
input), this forces th@ output to one. Likwise, if you toggle th& input from one to zero back to one, this setsQlotput
to zero.TheQ' input is generally the uerse of theQ output.

Note that if boths andR are one, then th@ output depends updd. That is, whateer Q happens to be, the topAND
gate continues to output thadlue. IfQ was originally one, then there areotwnes as inputs to the bottonp4ilop @ nand
R). This produces an output of zei@). Therefore, the tev inputs to the top AND gate are zero and onghis produces the
value one as an output (matching the origirdli® forQ).

If the original \alue forQ was zero, then the inputs to the bottomNND gate areQ=0 andR=1. Therefore, the output of
this NAND gate is oneThe inputs to the top AND gate, therefore, ar@=1 andQ'=1. This produces a zero output, the origi
nal value ofQ.

Suppose) is zero,S is zero andR is one.This sets the twinputs to the topifi-flop to one and zero, forcing the output
(Q) to one. Returning to the high state does not change the output &allcan obtain this same resulQiis one,S is zero,
andR is one.Again, this produces an outputlue of oneThis value remains oneven whenS switches from zero to one.
Therefore, toggling ths input from one to zero and then back to one produces a one on the outagtéilee, fip-flop). The
same idea applies to tReinput, except it forces th€ output to zero rather than to one.

There is one catch to this circuit. It does not operate properly if you set bahatitR inputs to zero simultaneously
This forces both th@ andQ’ outputs to one (which is logically inconsisteithichever input remains zero the longest deter
mines the fial state of theifp-flop. A flip-flop operating in this mode is said tolestable

The only problem with the S/Rigtlop is that you must use separate inputs to remember a zero oraumA memory
cell would be more aluable to us if we could specify the datdue to remember on one input andvide aclodk inputto
latch the input alue.This type of fip-flop, the D fip-flop (fordata) uses the circuit iffigure 3.26

8. In practice, there is a short propagation delay between a change in the inputs and the corresponding outputs in any elec-
tronic implementation of a boolean function.
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ol DL

Figure 3.26 Implementing a D flip-flop with NAND Gates

Assuming you fi theQ andQ’ outputs to either 0/1 or 1/0, sendinglack pulsehat goes from zero to one back to zero will

copy theD input to theQ output. It will also cop D’ to Q’. The exercises at the end of this topic section will expect you to
describe this operation in detail, so study this diagram carefully.

Although remembering a single bit is often important, in most computer systems you will want to remember a group
bits. You can remember a sequence of bits by combining several D flip-flops in parallel. Concatenating flip-flops to store an

bit value forms aegister The electronic schematic figure 3.27%havs hav to kuild an eight-bit rgister from a set of Dif-
flops.

Clk

Figure 3.27 An Eight-bit Register Implemented with Eight D Flip-flops

Note that the eight Difi-flops use a common clock line. This diagram does not sho@ theputs on theifp-flops since they
are rarely required in a register.

D flip-flops are useful for building many sequential circuits above and beyond simple registers. For example, you c:

build a shift registerthat shifts the bits one position to the left on each clock pal§sur-bit shift register appears iRigure
3.28
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Clk

Data In
D CIk D Clk D CIk D CIk
Q Q' Q Q Q
| | |
| I
Qo Q1 Q2 Q3

Figure 3.28 A Four-bit Shift Register Built from D Flip-flops

You can gen huild acounter that counts the number of times the clock toggles from one to zero and back to one using
flip-flops.The circuit inFigure 3.29mplements a four bit counter using pfflops.

Clk

[ ] ] ]
D Clk D Clk D Clk D Clk
—ol|| L] Lo |L s
I I |
Qo' Q1' Q2 Q3

Figure 3.29 Four-bit Counter Built from D Flip-flops

Surprisingly you can hild an entire CPU with combinatorial circuits and onlywa &lditional sequential circuits yend
these. Br example, you canuild a simple state machine kmo as a sequencer by combining a counter and a decoder as
shavn in Figure 3.30 For each gcle of the clock this sequencer aates one of its output lines’hose lines, in turn, may
control other circuitry By “firing” these circuits on each of the 16 output lines of the decadecan control the order in
which these 16 diérent circuits accomplish their task$his is a fundamental need in a CPU since we often need to control
the sequence ofwious operations (forxample, it vouldn't be a good thing if theADD( EAX, EBX);” instruction stored the
result into EBX before fetching the source operand from EAX (or EBX§imple sequencer such as this one can tell the CPU
when to fetch the fst operand, when to fetch the second operand, when to add them togredhethen to store the result
away. But wete getting a little ahead of ourseb; well discuss this in greater detail in a later chapter
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4lne  Qp State 0
to
16-ine Q1 State 1
Decoder
Four-bit Q2 State 2
Counter Q3 State 3
Qo A
Q1 B .
Q2 C Q14 State 14
——Clk Q3 D Q15 State 15

Figure 3.30 A Simple 16-State Sequencer

3.7

Okay, What Does It Have To Do With Programming, Then?

Once you hee rajisters, counters, and shifgisters, you canuild state mahines.The implementation of an algorithm
in hardware using state machines is wellybed the scope of thisxe However, one important point must be made with
respect to such circuitry any algorithm you can implement in softeaou can also implement éatly in hadware. This
suggests that boolean logic is the basis for computation on all modern computer gysygunsgram you can write, you can
specify as a sequence of boolean equations.

Of course, it is much easier to specify a solution to a programming problem using langeaBeschk C, orvwen assem
bly language than it is to specify the solution using boolean equalioaiefore, it is unlikly that you wuld eser implement
an entire program using a set of state machines and other logic cifdeiteytheless, there are times when a haréwmple
mentation is betteA hardware solution can be one,dwthree, or morerders of m@nitudefaster than an equilent softvare
solution.Therefore, some time critical operations may require a teaedsolution.

A more interestingdct is that the caerse of the ab@ statement is also true. Not only can you implement all aodtw
functions in hardware, hut it is also possible tonplement all hastware functions in softwar This is an important xelation
because manoperations you wuld normally implement in hardwe aremud cheaperto implement using softare on a
microprocessonndeed, this is a primary use agsembly languge in modern systems — to ixgensvely replace a compte
electronic circuit. It is often possible to replace yngans or hundreds of dollars of electronic components with a single $5
microcomputer chiprhe whole feld ofembedded systerdsals with this gry problem. Embedded systems are computer sys
tems embedded in other productsr Example, most micrwave ovens,TV sets, video gmes, CD players, and other eon
sumer deices contain one or more complete computer systems whose sole purpose is to replacexénacamale design.
Engineers use computers for this purpose becaugatbkess epensiveandeasier to design witthan traditional electronic
circuitry.

You can easily design sofane that reads switches (inpariables) and turns on motors, LEDs or lights, locks or unlocks
a door etc. (output functionsYo write such softare, you will need an understanding of boolean functions amddimnple
ment such functions in sofewe.

Of course, there is one other reason for studying boolean functiensif gou neer intend to write softare intended for
an embedded system or write safte that manipulates realbwd desices. Mawy high level languages process boolean
expressions (e.g., thosgmressions that control an IF statementHILE loop). By applying transformations kDeMokr
gan’s theorems or a mapping optimization it is often possible to wepite performance of highviel language coddhere
fore, studying boolean functions important @en if you neer intend to design an electronic circuit. It can help you write
better code in a traditional programming language.

For example, suppose you Vethe follaving statement in&scal:
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if ((x=y) and (a <> b)) or ((x=y) and (c <= d)) then SoneStnt;

You can use the distributive law to simplify this to:
if ((x=y) and ((a <> hb) or (c <=d)) then SoneStnt;

Likewise, we can use DeMorgan’s theorem to reduce
while (not((a=b) and (c=d)) do Sonet hi ng,

to
while (a <> b) or (¢ <> d) do Sonething;

So as you can see, understanding a little boolean algebra can actually help you write bedter. softw

3.8

Putting It All Together

A good understanding of boolean algebra and digital design is absolutely necessaygriervamo vants to understand
the internal operation of a CPWs an added bonus, programmers who understand digital design can write better assembl
language (and highvel language) programd-his chapter prades a basic introduction to boolean algebra and digital circuit
design. Although a detailed knaledge of this material ishhecessary if you simply ant to write assembly language pro
grams, this knwledge will help &plain why Intel chose to implement instructions in certaiayg; questions that will
undoubtedly arise as wedir to look at the lav-level implementation of the CPU.

This chapter is not, by grmeans, a complete treatment of this subject. Ifrganterested in learning more about bool
ean algebra and digital circuit design, there are dozens and dozerts aint¢his subjectvailable. Since this is axteon
assembly language programming, we canrfotéto spend additional time on this subject; please see one of thesexdther te
for more information.
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CPU Architecture Chapter Four

4.1  Chapter Overview

This chapter discusses history of the 80x86 CPU family and the major improvements occuring along the line.
The historical background will help you better understand the design compromises they made as well as under-
stand the legacy issues surrounding the CPU s design. This chapter also discusses the major advances in com-

puter architecture that Intel employed while improving the x86'.

4.2  The History of the 80x86 CPU Family

Intel developed and delivered the first commercially viable microprocessor way back in the early 1970 s: the
4004 and 4040 devices. These four-bit microprocessors, intended for use in calculators, had very little power.
Nevertheless, they demonstrated the future potential of the microprocessor — an entire CPU on a single piece of

silicon”. Intel rapidly followed their four-bit offerings with their 8008 and 8080 eight-bit CPUs. A small outfit
in Santa Fe, New Mexico, incorporated the 8080 CPU into a box they called the Altair 8800. Although this was
not the world s first "personal computer" (there were some limited distribution machines built around the 8008
prior to this), the Altair was the device that sparked the imaginations of hobbyists the world over and the personal
computer revolution was born.

Intel soon had competition from Motorola, MOS Technology, and an upstart company formed by disgrunt-
eled Intel employees, Zilog. To compete, Intel produced the 8085 microprocessor. To the software engineer, the
8085 was essentially the same as the 8080. However, the 8085 had lots of hardware improvements that made it
easier to design into a circuit. Unfortunately, from a software perspective the other manufacturer s offerings
were better. Motorola s 6800 series was easier to program, MOS Technologies 65xx family was easier to pro-
gram and very inexpensive, and Zilog s Z80 chip was upwards compatible with the 8080 with lots of additional
instructions and other features. By 1978 most personal computers were using the 6502 or Z80 chips, not the Intel
offerings.

Sometime between 1976 and 1978 Intel decided that they needed to leap-frog the competition and produce a
16-bit microprocessor that offered substantially more power than their competitor s eight-bit offerings. This ini-
tiative led to the design of the 8086 microprocessor. The 8086 microprocessor was not the world s first 16-bit
microprocessor (there were some oddball 16-bit microprocessors prior to this point) but it was certainly the high-
est performance single-chip 16-bit microprocessor when it was first introduced.

During the design timeframe of the 8086 memory was very expensive. Sixteen Kilobytes of RAM was sell-
ing above $200 at the time. One problem with a 16-bit CPU is that programs tend to consume more memory
than their counterparts on an eight-bit CPU. Intel, ever cogniscent of the fact that designers would reject their
CPU if the total system cost was too high, made a special effort to design an instruction set that had a high mem-
ory density (that is, packed as many instructions into as little RAM as possible). Intel achieved their design goal
and programs written for the 8086 were comparable in size to code running on eight-bit microprocessors. How-
ever, those design decisions still haunt us today as you Il soon see.

1. Note that Intel wasn t the inventor of most of these new technological advances. They simply duplicated research long
since commercially employed by mainframe designers.
2. Prior to this point, commerical computer systems used multiple semiconductor devices to implement the CPU.
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At the time Intel designed the 8086 CPU the average lifetime of a CPU was only a couple of years. Their
experiences with the 4004, 4040, 8008, 8080, and 8085 taught them that designers would quickly ditch the old
technology in favor of the new technology as long as the new stuff was radically better. So Intel designed the
8086 assuming that whatever compromises they made in order to achieve a high instruction density would be
fixed in newer chips. Based on their experience, this was a reasonable assumption.

Intel s competitors were not standing still. Zilog created their own 16-bit processor that they called the
78000, Motorola created the 68000, their own 16-bit processor, and National Semicondutor introduced the
16032 device (later to be renamed the 32016). The designers of these chips had different design goals than Intel.
Primarily, they were more interested in providing a reasonable instruction set for programmers even if their code
density wasn t anywhere near as high as the 8086. The Motorola and National offers even provided 32-bit inte-
ger registers, making programming the chips even easier. All in all, these chips were much better (from a soft-
ware development standpoint) than the Intel chip.

Intel wasn t resting on its laurels with the 8086. Immediately after the release of the 8086 they created an
eight-bit version, the 8088. The purpose of this chip was to reduce system cost (since a minimal system could
get by with half the memory chips and cheaper peripherals since the 8088 had an eight-bit data bus). In the very
early 1980 s, Intel also began work on their intended successor to the 8086 — tha APX432 CPU. Intel fully
expected the 8086 and 8088 to die away and that system designers who were creating general purpose computer
systems would choose the 432 chip instead.

Then a major event occurred that would forever change history: in 1980 a small group at IBM got the go-
ahead to create a "personal computer" along the likes of the Apple II and TRS-80 computers (the most popular
PCs at the time). IBM s engineers probably evaluated lots of different CPUs and system designs. Ultimately,
they settled on the 8088 chip. Most likely they chose this chip because they could create a minimal system with
only 16 Kilobytes of RAM and a set of cheap eight-bit peripheral devices. So Intel s design goals of creating
CPUs that worked well in low-cost systems landed them a very big "design win" from IBM.

Intel was still hard at work on the (ill-fated) iAPX432 project, but a funny thing happened — IBM PCs started
selling far better than anyone had ever dreamed. As the popularity of the IBM PCs increased (and as people
began "cloning" the PC), lots of software developers began writing software for the 8088 (and 8086) CPU,
mostly in assembly language. In the meantime, Intel was pushing their iAPX432 with the Ada programming lan-
guage (which was supposed to be the next big thing after Pascal, a popular language at the time). Unfortunately
for Intel, no one was interested in the 432. Their PC software, written mostly in assembly language wouldn t
run on the 432 and the 432 was notoriously slow. It took a while, but the iAPX432 project eventually died off
completely and remains a black spot on Intel s record to this day.

Intel wasn t sitting pretty on the 8086 and 8088 CPUs, however. In the late 1970 s and early 1980 s they
developed the 80186 and 80188 CPUs. These CPUs, unlike their previous CPU offerings, were fully upwards
compatible with the 8086 and 8088 CPUs. In the past, whenever Intel produced a new CPU it did not necessarily
run the programs written for the previous processors. For example, the 8086 did not run 8080 software and the
8080 did not run 4040 software. Intel, recognizing that there was a tremendous investment in 8086 software,
decided to create an upgrade to the 8086 that was superior (both in terms of hardware capability and with respect
to the software it would execute). Although the 80186 did not find its way into many PCs, it was a very popular
chip in embedded applications (i.e., non-computer devices that use a CPU to control their functions). Indeed,
variants of the 80186 are in common use even today.

The unexpected popularity of the IBM PC created a problem for Intel. This popularity obliterated the
assumption that designers would be willing to switch to a better chip when such a chip arrived, even if it meant
rewriting their software. Unfortunately, IBM and tens of thousands of software developers weren t willing to do
this to make life easy for Intel. They wanted to stick with the 8086 software they d written but they also wanted
something a little better than the 8086. If they were going to be forced into jumping ship to a new CPU, the
Motorola, Zilog, and National offerings were starting to look pretty good. So Intel did something that saved their
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bacon and has infuriated computer architects ever since: they started creating upwards compatible CPUs that
continued to execute programs written for previous members of their growing CPU family while adding new fea-
tures.

As noted earlier, memory was very expensive when Intel first designed the 8086 CPU. At that time, com-
puter systems with a megabyte of memory usually cost megabucks. Intel was expecting a typical computer sys-
tem employing the 8086 to have somewhere between 4 Kilobytes and 64 Kilobytes of memory. So when they
designed in a one megabyte limitation, they figured no one would ever install that much memory in a system.
Of course, by 1983 people were still using 8086 and 8088 CPUs in their systems and memory prices had dropped
to the point where it was very common to install 640 Kilobytes of memory on a PC (the IBM PC design effec-
tively limited the amount of RAM to 640 Kilobytes even though the 8086 was capable of addressing one mega-
byte). By this time software developers were starting to write more sophisticated programs and users were
starting to use these programs in more sophisticated ways. The bottom line was that everyone was bumping up
against the one megabyte limit of the 8086. Despite the investment in existing software, Intel was about to lose
their cash cow if they didn t do something about the memory addressing limitations of their 8086 family (the
68000 and 32016 CPUs could address up to 16 Megbytes at the time and many system designers [e.g., Apple]
were defecting to these other chips). So Intel introduced the 80286 which was a big improvement over the previ-
ous CPUs. The 80286 added lots of new instructions to make programming a whole lot easier and they added a
new "protected" mode of operation that allowed access to as much as 16 megabytes of memory. They also
improved the internal operation of the CPU and bumped up the clock frequency so that the 80286 ran about 10
times faster than the 8088 in IBM PC systems.

IBM introduced the 80286 in their IBM PC/AT (AT = "advanced technology"). This change proved enour-
mously popular. PC/AT clones based on the 80286 started appearing everywhere and Intel s financial future was
assured.

Realizing that the 80x86 (x ="", "1", or "2") family was a big money maker, Intel immediately began the pro-
cess of designing new chips that continued to execute the old code while improving performance and adding new
features. Intel was still playing catch-up with their competitors in the CPU arena with respect to features, but
they were definitely the king of the hill with respect to CPUs installed in PCs. One significant difference
between Intel s chips and many of their competitors was that their competitors (noteably Motorola and National)
had a 32-bit internal architecture while the 80x86 family was stuck at 16-bits. Again, concerned that people
would eventually switch to the 32-bit devices their competitors offered, Intel upgraded the 80x86 family to 32
bits by adding the 80386 to the product line.

The 80386 was truly a remarkable chip. It maintained almost complete compatibility with the previous 16-
bit CPUs while fixing most of the real complaints people had with those older chips. In addition to supporting
32-bit computing, the 80386 also bumped up the maximum addressablility to four gigabytes as well as solving
some problems with the "segmented" organization of the previous chips (a big complaint by software developers
at the time). The 80386 also represented the most radical change to ever occur in the 80x86 family. Intel more
than doubled the total number of instructions, added new memory management facilities, added hardware debug-
ging support for software, and introduced many other features. Continuing the trend they set with the 80286, the
80386 executed instructions faster than previous generation chips, even when running at the same clock speed
plus the new chip ran at a higher clock speed than the previous generation chips. Therefore, it ran existing 8088
and 80286 programs faster than on these older chips. Unfortunately, while people adopted the new chip for its
higher performance, they didn t write new software to take advantage of the chip s new features. But more on
that in a moment.

Although the 80386 represented the most radical change in the 80x86 architecture from the programmer s
view, Intel wasn t done wringing all the performance out of the x86 family. By the time the 80386 appeared,
computer architects were making a big noise about the so-called RISC (Reduced Instruction Set Computer)
CPUs. While there were several advantages to these new RISC chips, a important advantage of these chips is
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that they purported to execute one instruction every clock cycle. The 80386 instructions required a wildly vary-
ing number of cycles to execute ranging from a few cycles per instruction to well over a hundred. Although
comparing RISC processors directly with the 80386 was dangerous (because many 80386 instructions actually
did the work of two or more RISC instructions), there was a general perception that, at the same clock speed, the
80386 was slower since it executed fewer instructions in a given amount of time.

The 80486 CPU introduced two major advances in the x86 design. First, the 80486 integrated the floating
point unit (or FPU) directly onto the CPU die. Prior to this point Intel supplied a separate, external, chip to pro-
vide floating point calculations (these were the 8087, 80287, and 80387 devices). By incorporating the FPU with
the CPU, Intel was able to speed up floating point operations and provide this capability at a lower cost (at least
on systems that required floating point arithmetic). The second major architectural advance was the use of pipe-
lined instruction execution. This feature (which we will discuss in detail a little later in this chapter) allowed
Intel to overlap the execution of two or more instructions. The end result of pipelining is that they effectively
reduced the number of cycles each instruction required for execution. With pipelining, many of the simpler
instructions had an aggregate throughput of one instruction per clock cycle (under ideal conditions) so the 80486
was able to compete with RISC chips in terms of clocks per instruction cycle.

While Intel was busy adding pipelining to their x86 family, the companies building RISC CPUs weren t
standing still. To create ever faster and faster CPU offerings, RISC designers began creating superscalar CPUs
that could actually execute more than one instruction per clock cycle. Once again, Intel s CPUs were perceived
as following the leaders in terms of CPU performance. Another problem with Intel s CPU is that the integrated
FPU, though faster than the earlier models, was significantly slower than the FPUs on the RISC chips. As a
result, those designing high-end engineering workstations (that typically require good floating point hardware
support) began using the RISC chips because they were faster than Intel s offerings.

From the programmer s perspective, there was very little difference between an 80386 with an 80387 FPU
and an 80486 CPU. There were only a handful of new instructions (most of which had very little utility in stan-
dard applications) and not much in the way of other architectural features that software could use. The 80486,
from the software engineer s point of view, was just a really fast 80386/80387 combination.

So Intel went back to their CAD? tools and began work on their next CPU. This new CPU featured a super-
scalar design with vastly improved floating point performance. Finally, Intel was closing in on the performance
of the RISC chips. Like the 80486 before it, this new CPU added only a small number of new instructions and
most of those were intended for use by operating systems, not application software.

Intel did not designate this new chip the 80586. Instead, they called it the Pentium *“ Pr ocessor*. The reason
they discontinued referring to processors by number and started naming them was because of confusion in the
marketplace. Intel was not the only company producing x86 compatible CPUs. AMD, Cyrix, and a host of oth-
ers were also building and selling these chips in direct competition with Intel. Until the 80486 came along, the
internal design of the CPUs were relatively simple and even small companies could faithfully reproduce the
functionality of Intel s CPUs. The 80486 was a different story altogether. This chip was quite complex and
taxed the design capabilities of the smaller companies. Some companies, like AMD, actually licensed Intel s
design and they were able to produce chips that were compatible with Intel s (since they were, effectively, Intel s
chips). Other companies attempted to create their own version of the 80486 and fell short of the goal. Perhaps
they didn t integrate an FPU or the new instructions on the 80486. Many didn t support pipelining. Some chips
lacked other features found on the 80486. In fact, most of the (non-Intel) chips were really 80386 devices with
some very slight improvements. Nevertheless, they called these chips 80486 CPUs.

3. Computer aided design.
4. Pentium Processor is a registered trademark of Intel Corporation. For legal reasons Intel could not trademark the name
Pentium by itself, hence the full name of the CPU is the "Pentium Processor".
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This created massive confusion in the marketplace. Prior to this, if you d purchased a computer with an
80386 chip you knew the capabilities of the CPU. All 80386 chips were equivalent. However, when the 80486
came along and you purchased a computer system with an 80486, you didn t know if you were getting an actual
80486 or a remarked 80386 CPU. To counter this, Intel began their enormously successful "Intel Inside" cam-
paign to let people know that there was a difference between Intel CPUs and CPUs from other vendors. This
marketing campaign was so successful that people began specifying Intel CPUs even though some other ven-
dor s chips (i.e., AMD) were completely compatible.

Not wanting to repeat this problem with the 80586 generation, Intel ditched the numeric designation of their
chips. They created the term "Pentium Processor" to describe their new CPU so they could trademark the name
and prevent other manufacturers from using the same designation for their chip. Initially, of course, savvy com-
puter users griped about Intel s strong-arm tactics but the average user benefited quite a bit from Intel s market-
ing strategy. Other manufacturers release their own 80586 chips (some even used the "586" designation), but
they couldn t use the Pentium Processor name on their parts so when someone purchased a system with a Pen-
tium in it, they knew it was going to have all the capabilities of Intel s chip since it had to be Intel s chip. This
was a good thing because most of the other 586 class chips that people produced at that time were not as power-
ful as the Pentium.

The Pentium cemented Intel s position as champ of the personal computer. It had near RISC performance
and ran tons of existing software. Only the Apple Macintosh and high-end UNIX workstations and servers went
the RISC route. Together, these other machines comprised less than 10% of the total desktop computer market.

Intel still was not satisfied. They wanted to control the server market as well. So they developed the Pentium
Pro CPU. The Pentium Pro had a couple of features that made it ideal for servers. Intel improved the 32-bit per-
formance of the CPU (at the expense of its 16-bit performance), they added better support for multiprocessing to
allow multiple CPUs in a system (high-end servers usually have two or more processors), and they added a hand-
ful of new instructions to improve the performance of certain instruction sequences on the pipelined architecture.
Unfortunately, most application software written at the time of the Pentium Pro s release was 16-bit software
which actually ran slower on the Pentium Pro than it did on a Pentium at equivalent clock frequencies. So
although the Pentium Pro did wind up in a few server machines, it was never as popular as the other chips in the
Intel line.

The Pentium Pro had another big strike against it: shortly after the introduction of the Pentium Pro, Intel s
engineers introduced an upgrade to the standard Pentium chip, the MMX (multimedia extension) instruction set.
These new instructions (nearly 60 in all) gave the Pentium additional power to handle computer video and audio
applications. These extensions became popular overnight, putting the last nail in the Pentium Pro s coffin. The
Pentium Pro was slower than the standard Pentium chip and slower than high-end RISC chips, so it didn t see
much use.

Intel corrected the 16-bit performance in the Pentium Pro, added the MMX extensions and called the result

the Pentium II°. The Pentium II demonstrated an interesting point. Computers had reached a point where they
were powerful enough for most people s everyday activities. Prior to the introduction of the Pentium II, Intel
(and most industry pundits) had assumed that people would always want more power out of their computer sys-
tems. Even if they didn t need the machines to run faster, surely the software developers would write larger (and
slower) systems requiring more and more CPU power. The Pentium II proved this idea wrong. The average user
needed email, word processing, Internet access, multimedia support, simple graphics editing capabilities, and a
spreadsheet now and then. Most of these applications, at least as home users employed them, were fast enough
on existing CPUs. The applications that were slow (e.g., Internet access) were generally beyond the control of
the CPU (i.e., the modem was the bottleneck not the CPU). As a result, when Intel introduced their pricey Pen-

5. Interestingly enough, by the time the Pentium II appeared, the 16-bit efficiency was no longer a facter since most software
was written as 32-bit code.
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tium II CPUs, they discovered that system manufacturers started buying other people s x86 chips because they
were far less expensive and quite suitable for their customer s applications. This nearly stunned Intel since it
contradicted their experience up to that point.

Realizing that the competition was capturing the low-end market and stealing sales away, Intel devised a low-

cost (lower performance) version of the Pentium II that they named Celeron®. The initial Celerons consisted of a
Pentium II CPU without the on-board level two cache. Without the cache, the chip ran only a little bit better than
half the speed of the Pentium II part. Nevertheless, the performance was comparable to other low-cost parts so
Intel s fortunes improved once more.

While designing the low-end Celeron, Intel had not lost sight of the fact that they wanted to capture a chunk
of the high-end workstation and server market as well. So they created a third version of the Pentium II, the
Xeon Processor with improved cache and the capability of multiprocessor more than two CPUs. The Pentium II
supports a two CPU multiprocessor system but it isn t easy to expand it beyond this number; the Xeon processor
corrected this limitation. With the introduction of the Xeon processor (plus special versions of Unix and Win-
dows NT), Intel finally started to make some serious inroads into the server and high-end workstation markets.

You can probably imagine what followed the Pentium II. Yep, the Pentium III. The Pentium III introduced
the SIMD (pronounced SIM-DEE) extensions to the instruction set. These new instructions provided high per-
formance floating point operations for certain types of computations that allow the Pentium III to compete with
high-end RISC CPUs. The Pentium III also introduced another handful of integer instructions to aid certain
applications.

With the introduction of the Pentium III, nearly all serious claims about RISC chips offering better perfor-
mance were fading away. In fact, for most applications, the Intel chips were actually faster than the RISC chips
available at the time. Next, of course, Intel introduced the Pentium IV chip (it was running at 2 GHz as this was
being written, a much higher clock frequency than its RISC contemporaries). An interesting issues concerning
the Pentium IV is that it does not execute code faster than the Pentium III when running at the same clock fre-
quency (it runs slower, in fact). The Pentium IV makes up for this problem by executing at a much higher clock
frequency than is possible with the Pentium III. One would think that Intel would soon own it all. Surely by the
time of the Pentium V, the RISC competition wouldn t be a factor anymore.

There is one problem with this theory: even Intel is admiting that they ve pushed the x86 architecture about
as far as they can. For nearly 20 years, computer architects have blasted Intel s architecture as being gross and
bloated having to support code written for the 8086 processor way back in 1978. Indeed, Intel s design decisions
(like high instruction density) that seemed so important in 1978 are holding back the CPU today. So-called
"clean" designs, that don t have to support legacy applications, allow CPU designers to create high-performance
CPUs with far less effort than Intel s. Worse, those decisions Intel made in the 1976-1978 time frame are begin-
ning to catch up with them and will eventually stall further development of the CPU. Computer architects have
been warning everyone about this problem for twenty years; it is a testament to Intel s design effort (and willing-
ness to put money into R&D) that they ve taken the CPU as far as they have.

The biggest problem on the horizon is that most RISC manufacturers are now extending their architectures to
64-bits. This has two important impacts on computer systems. First, arithmetic calculations will be somewhat
faster as will many internal operations and second, the CPUs will be able to directly address more than four
gigabytes of main memory. This last factor is probably the most important for server and workstation systems.
Already, high-end servers have more than four gigabytes installed. In the future, the ability to address more than
four gigabytes of physical RAM will become essential for servers and high-end workstations. As the price of a
gigabyte or more of memory drops below $100, you 1l see low-end personal computers with more than four
gigabytes installed. To effectively handle this kind of memory, Intel will need a 64-bit processor to compete with
the RISC chips.

6. The term "Celeron Processor" is also an Intel trademark.
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Perhaps Intel has seen the light and decided it s time to give up on the x86 architecture. Towards the middle
to end of the 1990 s Intel announced that they were going to create a partnership with Hewlet-Packard to create a
new 64-bit processor based around HP s PA-RISC architecture. This new 64-bit chip would execute x86 code in
a special "emulation" mode and run native 64-bit code using a new instruction set. It s too early to tell if Intel
will be successful with this strategy, but there are some major risks (pardon the pun) with this approach. The first
such CPUs (just becoming available as this is being written) run 32-bit code far slower than the Pentium III and
IV chips. Not only does the emulation of the x86 instruction set slow things down, but the clock speeds of the
early CPUs are half the speed of the Pentium IVs. This is roughly the same situation Intel had with the Pentium
Pro running 16-bit code slower than the Pentium. Second, the 64-bit CPUs (the IA64 family) rely heavily on
compiler technology and are using a commercially untested architecture. This is similar to the situation with the
1APX432 project that failed quite miserably. Hopefully Intel knows what they re doing and ten years from now
we 1l all be using [A64 processors and wondering why anyone ever stuck with the IA32. On the other hand,
hopefully Intel has a back-up plan in case the [A64 intiative fails.

Intel is betting that people will move to the IA64 when they need 64-bit computing capabilities. AMD, on
the other hand, is betting that people would rather have a 64-bit x86 processor. Although the details are sketchy,
AMD has announced that they will extend the x86 architecture to 64 bits in much the same way that Intel extend
the 8086 and 80286 to 32-bits with the introduction of the the 80386 microprocessor. Only time will tell if Intel
or AMD (or both) are successful with their visions.
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a. By the introduction of the next generation this value was usually higher.

b. Maximum clock frequency at introduction was very limited sampling. Usually, the chips were available
at the next lower clock frequency in Intel's scale. Also note that by the introduction of the next generation
this value was usually much higher.

c. Shortly after the introduction of the 25MHz 80486, Intel began using "Clock doubling” techniques to run
the CPU twice as fast internally as the external clock. Hence, a 50 MHz 80486 DX2 chip was really run-
ning at 25 MHz externally and 50 MHz internally. Most chips after the 80486 employ a different internal
clock frequency compared to the external (or "bus") frequency.

4.3 A History of Software Development for the x86

A section on the history of software development may seem unusual in a chapter on CPU Architecture.
However, the 80x86 s architecture is inexorably tied to the development of the software for this platform. Many
architectural design decisions were a direct result of ensuring compatibility with existing software. So to fully
understand the architecture, you must know a little bit about the history of the software that runs on the chip.

From the date of the very first working sample of the 8086 microprocessor to the latest and greatest IA-64
CPU, Intel has had an important goal: as much as possible, ensure compatibility with software written for previ-
ous generations of the processor. This mantra existed even on the first 8086, before there was a previous genera-
tion of the family. For the very first member of the family, Intel chose to include a modicum of compatibilty with
their previous eight-bit microprocessor, the 8085. The 8086 was not capable of running 8085 software, but Intel
designed the 8086 instruction set to provide almost a one for one mapping of 8085 instructions to 8086 instruc-
tions. This allowed 8085 software developers to easily translate their existing assembly language programs to
the 8086 with very little effort (in fact, software translaters were available that did about 85% of the work for
these developers).

Intel did not provide object code compatibilily7 with the 8085 instruction set because the design of the 8085
instruction set did not allow the expansion Intel needed for the 8086. Since there was very little software running
on the 8085 that needed to run on the 8086, Intel felt that making the software developers responsible for this
translation was a reasonable thing to do.

When Intel introduced the 8086 in 1978, the majority of the world s 8085 (and Z80) software was written in
Microsoft s BASIC running under Digital Research s CP/M operating system. Therefore, to "port" the majority
of business software (such that it existed at the time) to the 8086 really only required two things: porting the CP/
M operating system (which was less than eight kilobytes long) and Microsoft s BASIC (most versions were
around 16 kilobytes a the time). Porting such small programs may have seemed like a bit of work to developers
of that era, but such porting is trivial compared with the situation that exists today. Anyway, as Intel expected,
both Microsoft and Digital Research ported their products to the 8086 in short order so it was possible for a large
percentage of the 8085 software to run on 8086 within about a year of the 8086 s introduction.

Unfortunately, there was no great rush by computer hobbyists (the computer users of that era) to switch to the
8086. About this time the Radio Shack TRS-80 and the Apple II microcomputer systems were battling for
supremacy of the home computer market and no one was really making computer systems utilizing the 8086 that
appealed to the mass market. Intel wasn t doing poorly with the 8086; its market share, when you compared it
with the other microprocessors, was probably better than most. However, the situation certainly wasn t like it is
today (circa 2001) where the 80x86 CPU family owns 85% of the general purpose computer market.

7. That is, the ability to run 8085 machine code directly.
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The 8086 CPU, and it smaller sibling, the eight-bit 8088, was happily raking in its portion of the micropro-
cessor market and Intel naturally assumed that it was time to start working on a 32-bit processor to replace the
8086 in much the same way that the 8086 replaced the eight-bit 8085. As noted earlier, this new processor was
the ill-fated 1APX 432 system. The iAPX 432 was such a dismal failure that Intel might not have survived had it
not been for a big stroke of luck — IBM decided to use the 8088 microprocessor in their personal computer sys
tem.

To most computer historians, there were two watershed events in the history of the personal computer. The
first was the introduction of the Visicalc spreadsheet program on the Apple II personal computer system. This
single program demonstrated that there was a real reason for owning a computer beyond the nerdy "gee, I ve got
my own computer" excuse. Visicalc quickly (and, alas, briefly) made Apple Computer the largest PC company
around. The second big event in the history of personal computers was, of course, the introduction of the IBM
PC. The fact that IBM, a "real" computer company, would begin building PCs legitimized the market. Up to that
point, businesses tended to ignore PCs and treated them as toys that nerdy engineers liked to play with. The
introduction of the IBM PC caused a lot of businesses to take notice of these new devices. Not only did they take
notice, but they liked what they saw. Although IBM cannot make the claim that they started the PC revolution,
they certainly can take credit for giving it a big jumpstart early on in its life.

Once people began buying lots of PCs, it was only natural that people would start writing and selling soft-
ware for these machines. The introduction of the IBM PC greatly expanded the marketplace for computer sys-
tems. Keep in mind that at the time of the IBM PC s introduction, most computer systems had only sold tens of
thousands of units. The more popular models, like the TRS-80 and Apple II had only sold hundreds of thosands
of units. Indeed, it wasn t until a couple of years after the introduction of the IBM PC that the first computer
system sold one million units; and that was a Commodore 64 system, not the IBM PC.

For a brief period, the introduction of the IBM PC was a godsend to most of the other computer manufactur-
ers. The original IBM PC was underpowered and quite a bit more expensive than its counterparts. For example,
a dual-floppy disk drive PC with 64 Kilobytes of memory and a monochrome display sold for $3,000. A compa-
rable Apple II system with a color display sold for under $2,000. The original IBM PC with it s 4.77 MHz 8088
processor (that s four-point-seven-seven, not four hundred seventy-seven!) was only about two to three times as
fast as the Apple II with its paltry 1 MHz eight-bit 6502 processor. The fact that most Apple II software was
written by expert assembly language programmers while most (early) IBM software was written in a high level
language (often interpreted) or by inexperienced 8086 assembly language programmers narrowed the gap even
more.

Nonetheless, software development on PCs accelerated. The wide range of different (and incompatible) sys-
tems made software development somewhat risky. Those who did not have an emotional attachment to one par-
ticular company (and didn t have the resources to develop for more than one platform) generally decided to go
with IBM s PC when developing their software.

One problem with the 8086 s architecture was beginning to show through by 1983 (remember, this is five
years after Intel introduced the 8086). The segmented memory architecture that allowed them to extend their 16-
bit addressing scheme to 20 bits (allowing the 8086 to address a megabyte of memory) was being attacked on
two fronts. First, this segmented addressing scheme was difficult to use in a program, especially if that program
needed to access more than 64 kilobytes of data or, worse yet, needed to access a single data structure that was
larger than 64K long. By 1983 software had reached the level of sophistication that most programs were using
this much memory and many needed large data structures. The software community as a whole began to grum-
ble and complain about this segmented memory architecture and what a stupid thing it was.

The second problem with Intel s segmented architecture is that it only supported a maximum of a one mega-
byte address space. Worse, the design of the IBM PC effectively limited the amount of RAM the system could
have to 640 kilobytes. This limitation was also beginning to create problems for more sophisticated programs
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running on the PC. Once again, the software development community grumbled and complained about Intel s
segmented architecture and the limitations it imposed upon their software.

About the time people began complaining about Intel s architecture, Intel began running an ad campaign
bragging about how great their chip was. They quoted top executives at companies like Visicorp (the outfit sell-
ing Visicalc) who claimed that the segmented architecture was great. They also made a big deal about the fact
that over a billion dollars worth of software had been written for their chip. This was all marketing hype, of
course. Their chip was not particularly special. Indeed, the 8086 s contemporaries (Z8000, 68000, and 16032)
were archiecturally superior. However, Intel was quite right about one thing — people had written a lot of soft
ware for the 8086 and most of the really good stuff was written in 8086 assembly language and could not be eas-
ily ported to the other processors. Worse, the software that people were writing for the 8086 was starting to get
large; making it even more difficult to port it to the other chips. As a result, software developers were becoming
locked into using the 8086 CPU.

About this time, Intel undoubtedly realized that they were getting locked into the 80x86 architecture, as well.
The 1APX 432 project was on its death bed. People were no more interested in the iAPX 432 than they were the
other processors (in fact, they were less interested). So Intel decided to do the only reasonable thing — extend the
8086 family so they could continue to make more money off their cash cow.

The first real extension to the 8086 family that found its way into general purpose PCs was the 80286 that
appeared in 1982. This CPU answered the second complaint by adding the ability to address up to 16 MBytes of
RAM (a formidable amount in 1982). Unfortunately, it did not extend the segment size beyond 64 kilobytes. In
1985 Intel introduced the 80386 microprocessor. This chip answered most of the complaints about the x86 fam-

ily, and then some, but people still complained about these problems for nearly ten years after the introduction of
the 80386.

Intel was suffering at the hands of Microsoft and the installed base of existing PCs. When IBM introduced
the floppy disk drive for the IBM PC they didn t choose an operating system to ship with it. Instead, they offered
their customers a choice of the widely available operating systems at the time. Of course, Digital Research had
ported CP/M to the PC, UCSD/Softech had ported UCSD Pascal (a very popular language/operating system at
the time) to the PC, and Microsoft had quickly purchased a CP/M knock-off named QD DOS (for Quick and
Dirty DOS) from Seattle Microsystems, relabelled it "MS-DOS", and offered this as well. CP/M-86 cost some-
where in the vicenity of $595. UCSD Pascal was selling for something like $795. MS-DOS was selling for $50.
Guess which one sold more copies! Within a year, almost no one ran CP/M or UCSD Pascal on PCs. Microsoft
and MS-DOS (also called IBM DOS) ruled the PC.

MS-DOS v1.0 lived up to its "quick and dirty" heritage. Working furiously, Microsoft s engineers added lots
of new features (many taken from the UNIX operating system and shell program) and MS-DOS v2.0 appeared
shortly thereafter. Although still crude, MS-DOS v2.0 was a substantial improvement and people started writing
tons of software for it.

Unfortunately, MS-DOS, even in its final version, wasn t the best operating system design. In particular, it
left all but rudimentary control of the hardware to the application programmer. It provided a file system so appli-
cation writers didn t have to deal with the disk drive and it provided mediocre support for keyboard input and
character display. It provided nearly useless support for other devices. As a result, most application program-
mers (and most high level languages) bypassed MS-DOS device control and used MS-DOS primarily as a file
system module.

In addition to poor device management, MS-DOS provided nearly non-existant memory management. For
all intents and purposes, once MS-DOS started a program running, it was that program s responsibility to man-
age the system s resources. Not only did this create extra work for application programmers, but it was one of
the main reasons most software could not take advantage of the new features Intel was adding to their micropro-
CEesSOrs.
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When Intel introduced the 80286 and, later, the 80386, the only way to take advantage of their extra address-
ing capabilities and the larger segments of the 80386 was to operate in a so-called protected mode. Unfortu-
nately, neither MS-DOS nor most applications (that managed memory themselves) were capable of operating in
protected mode without substantial change (actually, it would have been easy to modify MS-DOS to use pro-
tected mode, but it would have broken all the existing software that ran under MS-DOS; Microsoft, like Intel,
couldn t afford to alienate the software developers in this manner).

Even if Microsoft could magically make MS-DOS run under protected mode, they couldn t afford to do so.
When Intel introduced the 80386 microprocessor it was a very expensive device (the chip itself cost over $1,000
at initial introduction). Although the 80286 had been out for three years, systems built around the 8088 were still
extremely popular (since they were much lower cost than systems using the 80386). Software developers had a
choice: they could solve their memory addressing problems and use the new features of the 80386 chip but limit
their market to the few who had 80386 systems, or they could continue to suffer with the 64K segment limitation
imposed by the 8088 and MS-DOS and be able to sell their software to millions of users who owned one of the
earlier machines. The marketing departments of these companies ruled the day, all software was written to run
on plain 8088 boxes so that it had a larger market. It wasn t until 1995, when Microsoft introduced Windows 95
that people finally felt they could abandon processors earlier than the 80386. The end result was the people were
still complaining about the Intel architecture and its 64K segment limitation ten years after Intel had corrected
the problem. The concept of upwards compatibility was clearly a double-edged sword in this case.

Segmentation had developed such a bad name over the years that Microsoft abandoned the use of segments
in their 32-bit versions of Windows (95, 98, NT, 2000, ME, etc.). In a couple of respects, this was a real shame
because Intel finally did segmentation right (or, at least, pretty good) in the 80386 and later processors. By not
allowing the use of segmentation in Win32 programs Microsoft limited the use of this powerful feature. They
also limited their users to a maximum address space of 4GB (the Pentium Pro and later processors were capable
of addressing 64GB of physical memory). Considering that many applications are starting to push the 4GB bar-
rier, this limitation on Microsoft s part was ill-considered. Nevertheless, the "flat" memory model that Microsoft
employs is easier to write software for, undoubtedly a big part of their decision not to use segmentation.

The introduction of Windows NT, that actually ran on CPUs other than Intel s, must have given Intel a major
scare. Fortunately for Intel, NT was an asbysmal failure on non-Intel architectures like the Alpha and the Pow-
erPC. On the other hand, the new Windows architecture does make it easier to move existing applications to 64-
bit processors like the IA-64; so maybe WinNT s flexibility will work to Intel s advantage after all.

The 8086 software legacy has both advanced and retarded the 80x86 architecture. On the one hand, had soft-
ware developers not written so much software for the 80x86, Intel would have abandoned the family in favor of
something better a long time ago (not an altogether bad thing, in many people s opinions). On the other hand,
however, the general acceptance of the 80386 and later processors was greatly delayed by the fact that software
developers were writing software for the installed base of processors.

Around 1996, two types of software actually accellerated the design and acceptance of Intel s newer proces-
sors: multimedia software and games. When Intel introduced the MMX extensions to the 80x86 instruction set,
software developers ignored the installed base and immediately began writing software to take advantage of
these new instructions. This change of heart took place because the MMX instructions allowed developers to do
things they hadn t been able to do before - not simply run faster, but run fast enough to display actual video and
quick render 3D images. Combined with a change in pricing policy by Intel on new processor technology, the
public quickly accepted these new systems.

Hard-core gamers, multimedia artists, and others quickly grabbed new machines and software as it became
available. More often than not, each new generation of software would only run on the latest hardware, forcing
these individuals to upgrade their equipment far more rapidly than ever before.

Intel, sensing an opportunity here, began developing CPUs with additional instruction targetted at specific
applications. For example, the Pentium III introduced the SIMD (pronounced SIM-DEE) instructions that did
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for floating point calculations what the MMX instructions did for integer calculations. Intel also hired lots of
software engineers and began funding research into topic areas like speech recognition and (visual) pattern rec-
ognition in order to drive the new technologies that would require the new instructions their Pentium IV and
later processors would offer. As this is being written, Intel is busy developing new uses for their specialized
instructions so that system designers and software developers continue to use the 80x86 (and, perhaps, 1A-64)
family chips.

However, this discussion of fancy instruction sets is getting way ahead of the game. Let s take a long step
back to the original 8086 chip and take a look at how system designers put a CPU together.

4.4  Basic CPU Design

A fair question to ask at this point is How exactly does a CPU perform assigned chores? This is accom-
plished by giving the CPU a fixed set of commands, or instructions, to work on. Keep in mind that CPU design-
ers construct these processors using logic gates to execute these instructions. To keep the number of logic gates
reasonably small, CPU designers must necessarily restrict the number and complexity of the commands the CPU
recognizes. This small set of commands is the CPU s instruction set.

Programs in early (pre-Von Neumann) computer systems were often hard-wired into the circuitry . That is,
the computer s wiring determined what problem the computer would solve. One had to rewire the circuitry in
order to change the program. A very difficult task. The next advance in computer design was the programmable
computer system, one that allowed a computer programmer to easily rewire the computer system using a
sequence of sockets and plug wires. A computer program consisted of a set of rows of holes (sockets), each row
representing one operation during the execution of the program. The programmer could select one of several
instructions by plugging a wire into the particular socket for the desired instruction (see Figure 4.1).

: 3 5 3 -,
it QO OO00000O0
sz QO O0O00000O0
s QO O0O00000O0
Figure 4.1 Patch Panel Programming

Of course, a major difficulty with this scheme is that the number of possible instructions is severely limited
by the number of sockets one could physically place on each row. However, CPU designers quickly discovered
that with a small amount of additional logic circuitry, they could reduce the number of sockets required from n
holes for n instructions to log,(n) holes for n instructions. They did this by assigning a numeric code to each

instruction and then encode that instruction as a binary number using log,(n) holes (see Figure 4.2).
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C B A CBA Instruction
000 move
Instr #1 O O O 001 add
010 subtract
Instr #2 O O O 011 multiply
100 divide
Instr #3 O O O 101 and
110 or
111 Xor
Figure 4.2 Encoding Instructions

This addition requires eight logic functions to decode the A, B, and C bits from the patch panel, but the extra
circuitry is well worth the cost because it reduces the number of sockets that must be repeated for each instruc-
tion (this circuitry, by the way, is nothing more than a single three-line to eight-line decoder).

Of course, many CPU instructions are not stand-alone. For example, the move instruction is a command that
moves data from one location in the computer to another (e.g., from one register to another). Therefore, the move
instruction requires two operands: a source operand and a destination operand. The CPU s designer usually
encodes these source and destination operands as part of the machine instruction, certain sockets correspond to
the source operand and certain sockets correspond to the destination operand. Figure 4.3 shows one possible
combination of sockets to handle this. The move instruction would move data from the source register to the des-
tination register, the add instruction would add the value of the source register to the destination register, etc.

B
Instr #1 O O
Instr #2 O O
Instr #3 O O

CBA Instruction

000 move DD -or- SS Register
001 add
010 subtract 00 AX
011 multiply 01 BX
100 divide 10 CX
101 and 11 DX
110 or
111 xor

Figure 4.3 Encoding Instructions with Source and Destination Fields

One of the primary advances in computer design that the VNA provides is the concept of a stored program.
One big problem with the patch panel programming method is that the number of program steps (machine
instructions) is limited by the number of rows of sockets available on the machine. John Von Neumann and oth-
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ers recognized a relationship between the sockets on the patch panel and bits in memory; they figured they could
store the binary equivalents of a machine program in main memory and fetch each program from memory, load it
into a special decoding register that connected directly to the instruction decoding circuitry of the CPU.

The trick, of course, was to add yet more circuitry to the CPU. This circuitry, the control unit (CU), fetches
instruction codes (also known as operation codes or opcodes) from memory and moves them to the instruction
decoding register. The control unit contains a special register, the instruction pointer that contains the address of
an executable instruction. The control unit fetches this instruction s opcode from memory and places it in the
decoding register for execution. After executing the instruction, the control unit increments the instruction
pointer and fetches the next instruction from memory for execution, and so on.

When designing an instruction set, the CPU s designers generally choose opcodes that are a multiple of eight
bits long so the CPU can easily fetch complete instructions from memory. The goal of the CPU s designer is to
assign an appropriate number of bits to the instruction class field (move, add, subtract, etc.) and to the operand
fields. Choosing more bits for the instruction field lets you have more instructions, choosing additional bits for
the operand fields lets you select a larger number of operands (e.g., memory locations or registers). There are
additional complications. Some instructions have only one operand or, perhaps, they don t have any operands at
all. Rather than waste the bits associated with these fields, the CPU designers often reuse these fields to encode
additional opcodes, once again with some additional circuitry. The Intel 80x86 CPU family takes this to an

extreme with instructions ranging from one to almost 15 bytes longg.

4.5 Decoding and Executing Instructions: Random Logic Versus Microcode

Once the control unit fetches an instruction from memory, you may wonder "exactly how does the CPU exe-
cute this instruction?" In traditional CPU design there have been two common approaches: hardwired logic and
emulation. The 80x86 family uses both of these techniques.

A hardwired, or random logicg, approach uses decoders, latches, counters, and other logic devices to move
data around and operate on that data. The microcode approach uses a very fast but simple internal processor that
uses the CPU s opcodes as an index into a table of operations (the microcode) and executes a sequence of micro-
instructions that do the work of the macroinstruction (i.e., the CPU instruction) they are emulating.

The random logic approach has the advantage that it is possible to devise faster CPUs if typical CPU speeds
are faster than typical memory speeds (a situation that has been true for quite some time). The drawback to ran-
dom logic is that it is difficult to design CPUs with large and complex instruction sets using a random logic
approach. The logic to execute the instructions winds up requiring large percentage of the chip s real estate and
it becomes difficult to properly lay out the logic so that related circuits are close to one another in the two-dimen-
sional space of the chip,

CPUs based on microcode contain a small, very fast, execution unit that fetches instructions from the micro-
code bank (which is really nothing more than fast ROM on the CPU chip). This microcode executes one micro-
instruction per clock cycle and a sequence of microinstructions decode the instruction, fetch its operands, move
the operands to appropriate functional units that do whatever calculations are necessary, store away necessary
results, and then update appropriate registers and flags in anticipation of the next instruction.

8. Though this is, by no means, the most complex instruction set. The VAX, for example, has instructions up to 150 bytes
long!

9. There is actually nothing random about this logic at all. This design technique gets its name from the fact that if you view
a photomicrograph of a CPU die that uses microcode, the microcode section looks very regular; the same photograph of a
CPU that utilizes random logic contains no such easily discernable patterns.
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The microcode approach may appear to be substantially slower than the random logic approach because of
all the steps involved. Actually, this isn t necessarily true. Keep in mind that with a random logic approach to
instruction execution, part of the random logic is often a sequencer that steps through several states (one state per
clock cycle). Whether you use your clock cycles executing microinstructions or stepping through a random logic
state machine, you re still burning up clock cycles.

One advantage of microcode is that it makes better reuse of existing silicon on the CPU. Many CPU instruc-
tions (macroinstructions) execute some of the same microinstructions as many other instructions. This allows
the CPU designer to use microcode subroutines to implement many common operations, thus saving silicon on
the CPU. While it is certainly possible to share circuitry in a random logic device, this is often difficult if two
circuits could otherwise share some logic but are across the chip from one another.

Another advantage of microcode is that it lets you create some very complex instructions that consist of sev-
eral different operations. This provides programmers (especially assembly language programmers) with the abil-
ity to do more work with fewer instructions in their programs. In theory, this lets them write faster programs
since they now execute half as many instructions, each doing twice the work of a simpler instruction set (the
80x86 MMX instruction set extension is a good example of this theory in action, although the MMX instructions
do not use a microcode implementation).

Microcode does suffer from one disadvantage compared to random logic: the speed of the processor is tied to
the speed of the internal microcode execution unit. Although the "microengine" itself is usually quite fast, the
microengine must fetch its instruction from the microcode ROM. Therefore, if memory technology is slower
than the execution logic, the microcode ROM will slow the microengine down because the system will have to
introduce wait states into the microcode ROM access. Actually, microengines generally don t support the use of
wait states, so this means that the microengine will have to run at the same speed as the microcode ROM. This
effectively limits the speed at which the microengine, and therefore the CPU, can run.

Which approach is better for CPU design? That depends entirely on the current state of memory technology.
If memory technology is faster than CPU technology, then the microcode approach tends to make more sense. If
memory technology is slower than CPU technology, then random logic tends to produce the faster CPUs.

When Intel first began designing the 8086 CPU sometime between 1976 and 1978, memory technology was
faster so they used microcode. Today, CPU technology is much faster than memory technology, so random logic
CPUs tend to be faster. Most modern (non-x86) processors use random logic. The 80x86 family uses a combi-
nation of these technologies to improve performance while maintaining compatibility with the complex instruc-
tion set that relied on microcode way back in 1978.

46 RISCvs. CISC vs.VLIW

In the 1970 s, CPU designers were busy extending their instruction sets to make their chips easier to pro-
gram. It was very common to find a CPU designer poring over the assembly output of some high level language
compiler searching for common two and three instruction sequences the compiler would emit. The designer
would then create a single instruction that did the work of this two or three instruction sequence, the compiler
writer would modify the compiler to use this new instruction, and a recompilation of the program would, pre-
sumably, produce a faster and shorter program than before.

Digital Equipment Corporation (now part of Compaq Computer who is looking at merging with Hewlett
Packard as this is being written) raised this process to a new level in their VAX minicomputer series. It is not
surprising, therefore, that many research papers appearing in the 1980 s would commonly use the VAX as an
example of what not to do.

The problem is, these designers lost track of what they were trying to do, or to use the old cliche, they
couldn t see the forest for the trees. They assumed that there were making their processors faster by executing a
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single instruction that previously required two or more. They also assumed that they were making the programs
smaller, for exactly the same reason. They also assumed that they were making the processors easier to program
because programmers (or compilers) could write a single instruction instead of using multiple instructions. In
many cases, they assumed wrong.

In the early 80 s, researchers at IBM and several institutions like Stanford and UC Berkeley challenged the
assumptions of these designers. They wrote several papers showing how complex instructions on the VAX mini-
computer could actually be done faster (and sometimes in less space) using a sequence of simpler instructions.
As a result, most compiler writers did not use the fancy new instructions on the VAX (nor did assembly language
programmers). Some might argue that having an unused instruction doesn t hurt anything, but these researchers
argued otherwise. They claimed that any unnecessary instructions required additional logic to implement and as
the complexity of the logic grows it becomes more and more difficult to produce a high clock speed CPU.

This research led to the development of the RISC, or Reduced Instruction Set Computer, CPU. The basic
idea behind RISC was to go in the opposite direction of the VAX. Decide what the smallest reasonable instruc-
tion set could be and implement that. By throwing out all the complex instructions, RISC CPU designers could
use random logic rather than microcode (by this time, CPU speeds were outpacing memory speeds). Rather than
making an individual instruction more complex, they could move the complexity to the system level and add
many on-chip features to improve the overall system performance (like caches, pipelines, and other advanced

mainframe features of the time). Thus, the great "RISC vs. CISC!?" debate was born.

Before commenting further on the result of this debate, you should realize that RISC actually means
"(Reduced Instruction) Set Computer," not "Reduced (Instruction Set) Computer." That is, the goal of RISC was
to reduce the complexity of individual instructions, not necessarily reduce the number of instructions a RISC
CPU supports. It was often the case that RISC CPUs had fewer instructions than their CISC counterparts, but
this was not a precondition for calling a CPU a RISC device. Many RISC CPUs had more instructions than some
of their CISC contemporaries, depending on how you count instructions.

First, there is no debate about one thing: if you have two CPUs, one RISC and one CISC and they both run at
the same clock frequency and they execute the same average number of instructions per clock cycle, CISC is the
clear winner. Since CISC processors do more work with each instruction, if the two CPUs execute the same
number of instructions in the same amount of time, the CISC processor usually gets more work done.

However, RISC performance claims were based on the fact that RISC s simpler design would allow the CPU
designers to reduce the overall complexity of the chip, thereby allowing it to run at a higher clock frequency.
Further, with a little added complexity, they could easily execute more instructions per clock cycle, on the aver-
age, than their CISC contemporaries.

One drawback to RISC CPUs is that their code density was much lower than CISC CPUs. Although memory
devices were dropping in price and the need to keep programs small was decreasing, low code density requires
larger caches to maintain the same number of instructions in the cache. Further, since memory speeds were not
keeping up with CPU speeds, the larger instruction sizes found on the RISC CPUs meant that the system spent
more time bringing in those instructions from memory to cache since they could transfer fewer instructions per
bus transaction. For many years, CPU architects argued to and fro about whether RISC or CISC was the better
approach. With one big footnote, the RISC approach has generally won the argument. Most of the popular CISC
systems, e.g., the VAX, the Z8000, the 16032/32016, and the 68000, have quitely faded away to be replaced by
the likes of the PowerPC, the MIPS CPUs, the Alpha, and the SPARC. The one footnote here is, of course, the
80x86 family. Intel has proven that if you really want to keep extending a CISC architecture, and you re willing
to throw a lot of money at it, you can extend it far beyond what anyone ever expected. As of late 2001/early 2002
the 80x86 is the raw performance leader. The CPU runs at a higher clock frequency than the competing RISC

10.CISC stands for Complex Instruction Set Computer and defines those CPUs that were popular at the time like the VAX and
the 80x86.
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chips; it executes fairly close to the same number of instructions per clock cycle as the competing RISC chips; it
has about the same "average instruction size to cache size" ratio as the RISC chips; and it is a CISC, so many of
the instructions do more work than their RISC equivalents. So overall, the 80x86 is, on the average, faster than

contemporary RISC chips1 L

To achieve this raw performance advantage, the 80x86 has borrowed heavily from RISC research. Intel has
divided the instruction set into a set of simple instructions that Intel calls the "RISC core" and the remaining,
complex instructions. The complex instructions do not execute as rapidly as the RISC core instructions. In fact,
it is often the case that the task of a complex instruction can be accomplished faster using multiple RISC core
instructions. Intel supports the complex instructions to provide full compatibility with older software, but com-
piler writers and assembly language programmers tend to avoid the use of these instructions. Note that Intel
moves instructions between these two sets over time. As Intel improves the processor they tend to speed up
some of the slower, complex, instructions. Therefore, it is not possible to give a static list of instructions you
should avoid; instead, you will have to refer to Intel s documentation for the specific processor you use.

Later Pentium processors do not use an interpretive engine and microcode like the earlier 80x86 processors.
Instead, the Pentium core processors execute a set of "micro-operations" (or "micro-ops"). The Pentium proces-
sors translate the 80x86 instruction set into a sequence of micro-ops on the fly. The RISC core instructions typi-
cally generate a single micro-op while the CISC instructions generate a sequence of two or more micro-ops. For
the purposes of determining the performance of a section of code, we can treat each micro-op as a single instruc-
tion. Therefore, the CISC instructions are really nothing more than "macro-instructions" that the CPU automati-
cally translates into a sequence of simpler instructions. This is the reason the complex instructions take longer to
execute.

Unfortunately, as the x86 nears its 25th birthday, it s clear (to Intel, at least) that it s been pushed to its limits.
This is why Intel 1s working with HP to base their IA-64 architecture on the PA-RISC instruction set. The 1A-64
architecture is an interesting blend. On the one hand, it (supposedly) supports object-code compatibility with the
previous generation x86 family (though at reduced performance levels). Obviously, it s a RISC architecture
since it was originally based on Hewlet-Packard s PA-RISC (PA=Precision Architecture) design. However, Intel
and HP have extended on the RISC design by using another technology: Very Long Instruction Word (VLIW)
computing. The idea behind VLIW computing is to use a very long opcode that handle multiple operations in
parallel. In some respects, this is similar to CISC computing since a single VLIW "instruction" can do some very
complex things. However, unlike CISC instructions, a VLIW instruction word can actually complete several
independent tasks simultaneously. Effectively, this allows the CPU to execute some number of instructions in
parallel.

Intel s VLIW approach is risky. To succeed, they are depending on compiler technology that doesn t yet
exist. They made this same mistake with the iIAPX 432. It remains to be seen whether history is about to repeat
itself or if Intel has a winner on their hands.

4.7  Instruction Execution, Step-By-Step

To understand the problems withvaioping an dfcient CPU, les consider four representai80x86 instructions: MQ
ADD, LOOR and JNZ (jump if not zero)These instructions will alle us to e&plore may of the issuesating the x86 CPU
designer

You've seen the M@ andADD instructions in preious chapters so there is no need tere them here.The LOOP and
JNZ instructions are me so it's probably a good idea tamain what thg do before proceeding. Both of these instructions

11.Note, by the way, that this doesn t imply that 80x86 systems are faster than computer systems built around RISC chips.
Many RISC systems gain additional speed by supporting multiple processors better than the x86 or by having faster bus
throughput. This is one reason, for example, why Internet companies select Sun equipment for their web servers.
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areconditional jumpinstructions.A conditional jump instruction tests some condition and jumps to some other instruction in
memory if the condition is true and th&all through to the né instruction if the condition isafse. This is basically the oppo

site of HLAs IF statement (whickafls through if the condition is true and jumps to the else section if the conditalae}k f
TheJNZ (jump if not zero) instruction tests the CRW@ero fag and transfers control to somegegtriocation if the zerodh
contains zero; JNZafls through to the ¢ instruction if the zero dlg contains oneThe program specés the taget instrue

tion to jump to by specifying the distance from the JNZ instruction to tgettarstruction as a small signed e (for our
purposes here, weassume that the distance is within the range £128 bytes so the instruction uses a single byte to specify t
distance to the tget location).

The last instruction of interest to us here islt@®OP instruction.The LOOP instruction decrements ttadue of the ECX
register and transfers control to ager instruction within +128 bytes if ECX does not contain zero (after the decrembist).
is a good rample of a CISC instruction since it does multiple operations: (1) it subtracts one from ECX and then it (2) does
conditional jump if ECX does not contain zefBhat is, LOOP is equalent to the folling two 80x86 instructions:

| oop SoneLabel ;
-is roughly equival ent to-

dec( ecx );
j nz SonelLabel ;

Note thatSomelLabespecifies the address of the target instruction that must be within about +128 bytes of the LOOP or JN
instructions above. The LOOP instruction is a good example of a complex (vs. RISC core) instruction on the Pentium proc
sors. lItis actually faster to execute a DEC and a JNZ instrittieam it is to ecute a LOOP instruction. In this section we

will not concern ourselves with this issue; we will assume that the LOOP instruction operates as though it were a RISC ¢
instruction.

The 80x86 CPUs do not execute instructions in a single clock cycle. For example, the MOV instruction (which is rele
tively simple) could use the following execution stéps

* Fetch the instruction byte from memory.

» Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

» If required, fetch a 16-bit instruction operand from memory.

» If required, update EIP to point beyond the operand.

» If required, compute the address of the operand (e.g., EBX+disp) .
* Fetch the operand.

» Store the fetched value into the destination register

If we allocate one clock cycle for each of the above steps, an instruction could take as many as eight clock cycles to comp
(note that three of the steps above are optional, depending on the MOV instruction’s addressing mode, so a simple M
instruction could complete in as few as five clock cycles).

The ADD instruction is a little more complex. Here’s a typical set of operations the ADD( reg, reg) instruction must com
plete:

* Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

* Decode the instruction.

*  Get the value of the source operand and send it to the ALU.

* Fetch the value of the destination operand (a register) and send it to the ALU.
* Instruct the ALU to add the values.

e  Store the result back into the first register operand.

* Update the flags register with the result of the addition operation.

If the source operand is a memory location, the operation is slightly more complicated:

12.This sequence is not exactly equivalent to LOOP since this sequence affects the flags while LOOP does not.

13.Actually, you 1l see a little later that there is a decrement instruction you can use to subtract one from ECX. The decrement
instruction is better because it is shorter.

14.1t is not possible to state exactly what steps each CPU requires since many CPUs are different from one another.
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* Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

* Decode the instruction.

» If required, fetch a displacement for use in the effective address calculation

» If required, update EIP to point beyond the displacement value.

*  Get the value of the source operand from memory and send it to the ALU.

» Fetch the value of the destination operand (a register) and send it to the ALU.
e Instruct the ALU to add the values.

e Store the result back into the register operand.

* Update the flags register with the result of the addition operation.

ADD( const, memory) is the messiest of all, this code sequence looks something like the following:

* Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

* Decode the instruction.

» If required, fetch a displacement for use in the effective address calculation
» If required, update EIP to point beyond the displacement value.

* Fetch the constant value from memory and send it to the ALU.

e Update EIP to point beyond the constant’s value (at the next instruction in memory).
*  Get the value of the source operand from memory and send it to the ALU.
* Instruct the ALU to add the values.

e Store the result back into the memory operand.

* Update the flags register with the result of the addition operation.

Note that there are other forms of the ADD instruction requiring their own special processing. These are just representa
examples. As you see in these examples, the ADD instruction could take as many as ten steps (or cycles) to complete. |
that this is one advantage of a RISC design. Most RISC design have only one or two forms of the ADD instruction (that a
registers together and, perhaps, that add constants to registers). Since register to register adds are often thecdastest (an
stant to register adds are probably the second fastest), the RISC CPUs force you to use the fastest forms of these instructi

The JNZ instruction might use the following sequence of steps:

e Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

» Decode the instruction.

e Fetch a displacement byte to determine the jump distance send this to the ALU

e Update EIP to point at the next byte.

e Testthe zero flag to see if it is clear.

» If the zero flag was clear, copy the EIP register to the ALU.

« If the zero flag was clear, instruct the ALU to add the displacement and EIP register values.
» If the zero flag was clear, copy the result of the addition above back to the EIP register.

Notice how the JNZ instruction requires fewer steps if the jump is not taken. This is very typical for conditional juiip instru

tions. If each step above corresponds to one clock cycle, the JNZ instruction would take six or nine clock cycles, depending
whether the branch is taken. Because the 80x86 JNZ instruction does not allow different types of operands, there is only
sequence of steps needed for this application.

The 80x86 LOOP instruction might use an execution sequence like the following:

e Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

» Decode the instruction.

e Fetch the value of the ECX register and send it to the ALU.

* Instruct the ALU to decrement the value.

e Send the result back to the ECX register. Set a special internal flag if this value is non-zero.
» Fetch a displacement byte to determine the jump distance send this to the ALU

e Update EIP to point at the next byte.

e Test the special flag to see if ECX was non-zero.

« If the flag was set, copy the EIP register to the ALU.

» If the flag was set, instruct the ALU to add the displacement and EIP register values.
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» If the flag was set, copy the result of the addition above back to the EIP register.

Although a given 80x86 CPU might not execute the steps for the instructions above, they all execute some sequenc
operations. Each operation requires a finite amount of time to execute (generally, one clock cycle per ofstegé@s ave
usually refer to each of the aleosteps). Oliously, the more steps needed for an instruction, theesldt will run. This is
why complec instructions generally run si@r than simple instructions, complastructions usually he lots of &ecution
stages.

4.8

Parallelism — the Key to Faster Processors

An early goal of the RISC processorasito @ecute one instruction per clockate, on the werage. Hwever, even if a
RISC instruction is simplifid, the actuab@cution of the instruction still requires multiple steps. Ss bould thg achiere
this goal?And how do later members the 80x&nfily with their complg instruction sets also ackithis goal?The answer
is parallelism.

Consider the folleing steps for a M¥( reg, reg) instruction:

* Fetch the instruction byte from memory.

» Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

» Fetch the source register.

»  Store the fetched value into the destination register

There are five stages in the exection of this instruction with certain dependencies between each stage. For example
CPU must fetch the instruction byte from memory before it updates EIP to point at the next byte in memory. Likewise, tt
CPU must decode the instruction before it can fetch the source register (since it doesn’t know it needs to fetch a s&urce reg
until it decodes the instruction). As a final example, the CPU must fetch the source register before it can store the fetcl
value in the destination register.

Most of the stages in the execution of this MOV instructionsar@al. That is, the CPU musixecute one stage before
proceeding to the mé The one eception is the "Update EIP" ste@lthough this stage must follothe frst stage, none of
the folloving stages in the instruction depend upon this siéygrefore, this could be the third, forth, ditfistep in the calcu
lation and it vouldn't affect the outcome of the instruction. Furth&e could gecute this step concurrently withyaof the
other steps and itouldn't affect the operation of the MQinstruction, e.g.,

* Fetch the instruction byte from memory.

» Decode the instruction to see what it does.

» Fetch the source register and update the EIP register to point at the next byte.
»  Store the fetched value into the destination register

By doing two of the stages in parallel, we can reduce the execution time of this instruction by one clock cycle. Althouc
the remaining stages in the "mov( reg, reg );" instruction must remain serialized (that is, they must take place in®xactly t
order), other forms of the MOV instruction offer similar opportunities to overlapped portions of their execution to save som
cycles. For example, consider the "mov( [ebx+disp], eax );" instruction:

* Fetch the instruction byte from memory.

* Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

* Fetch a displacement operand from memory.

* Update EIP to point beyond the displacement.

*  Compute the address of the operand (e.g., EBX+disp) .
* Fetch the operand.

»  Store the fetched value into the destination register

Once again there is the opportunity to overlap the execution of several stages in this instruction, for example:

* Fetch the instruction byte from memory.

» Decode the instruction to see what it does and update the EIP register to point at the next byte.

* Fetch a displacement operand from memory.

e Compute the address of the operand (e.g., EBX+disp) and update EIP to point beyond the displacement..
*  Fetch the operand.
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e  Store the fetched value into the destination register

In this example, we reduced the number of execution steps from eight to six by overlapping the update of EIP with two ott
operations.

As a last example, consider the "add( const, [ebx+disp] );" instruction (the instruction with the largest number of stej
we've considered thus far). It's non-overlapped execution looks like this:

e Fetch the instruction byte from memory.

e Update EIP to point at the next byte.

» Decode the instruction.

e Fetch a displacement for use in the effective address calculation

e Update EIP to point beyond the displacement value.

e Fetch the constant value from memory and send it to the ALU.

e Compute the address of the memory operand (EBX+disp).

e Get the value of the source operand from memory and send it to the ALU.
* Instruct the ALU to add the values.

e Store the result back into the memory operand.

» Update the flags register with the result of the addition operation.

e Update EIP to point beyond the constant’s value (at the next instruction in memory).

We can overlap at least three steps in this instruction by noting that certain stages don’t depend on the result of tlagé immed
predecessor

e Fetch the instruction byte from memory.

e Decode the instruction and update EIP to point at the next byte.

e Fetch a displacement for use in the effective address calculation

e Update EIP to point beyond the displacement value.

e Fetch the constant value from memory and send it to the ALU.

e Compute the address of the memory operand (EBX+disp).

e Get the value of the source operand from memory and send it to the ALU.

* Instruct the ALU to add the values.

e  Store the result back into the memory operand and update the flags register with the result of the addition opera
tion and update EIP to point beyond the constant’s value.

Note that we could not merge one of the "Update EIP" operations because the previous stage and following stages of
instruction both use the value of EIP before and after the update.

Unlike the MOV instruction, the steps in the ADD instruction above are not all dependent upon the previous stage in t
instruction’s execution. For example, the sequence above fetches the constant from memory and then computes the effe
address (EBX+disp) of the memory operand. Neither operation depends upon the other, so we could easily swap their p
tions above to yield the following:

e Fetch the instruction byte from memory.

» Decode the instruction and update EIP to point at the next byte.

» Fetch a displacement for use in the effective address calculation

e Update EIP to point beyond the displacement value.

e Compute the address of the memory operand (EBX+disp).

e Fetch the constant value from memory and send it to the ALU.

e Get the value of the source operand from memory and send it to the ALU.

* Instruct the ALU to add the values.

e  Store the result back into the memory operand and update the flags register with the result of the addition opera
tion and update EIP to point beyond the constant’s value.

This doesn’t save any steps, but it does reduce some dependencies between certain stages and their immediate predec
allowing additional parallel operation. For example, we can now merge the "Update EIP" operation with the effective addre
calculation:

e Fetch the instruction byte from memory.
» Decode the instruction and update EIP to point at the next byte.
» Fetch a displacement for use in the effective address calculation
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* Compute the address of the memory operand (EBX+disp) and update EIP to point beyond the displacement
value.

* Fetch the constant value from memory and send it to the ALU.

*  Get the value of the source operand from memory and send it to the ALU.

e Instruct the ALU to add the values.

e  Store the result back into the memory operand and update the flags register with the result of the addition opera
tion and update EIP to point beyond the constant’s value.

Although it might seem possible to fetch the constant and the memory operand in the same step (since their values do
depend upon one another), the CPU can'’t actually do this (yet!) because it has only a single data bus. Since both of these
ues are coming from memory, we can'’t bring them into the CPU during the same step because the CPU uses the data b
fetch these two values. In the next section you'll see how we can overcome this problem.

By overlapping various stages in the execution of these instructions we've been able to substantially reduce the numbe
steps (i.e., clock cycles) that the instructions need to complete execution. This process of executing various steps of
instruction in parallel with other steps is a major key to improving CPU performance without cranking up the clock speed ¢
the chip. In this section we've seen how to speed up the execution of an instruction by doing many of the internal ofperation:
that instruction in parallel. However, there’s only so much to be gained from this approach. In this approach, thengstructic
themselves are still serialized (one instruction completes before the next instruction begins execution). Starting xtith the n
section we’ll start to see how to overlap the execution of adjacent instructions in order to save additional cycles.

48.1

The Prefetch Queue — Using Unused Bus Cycles

The key to improving the speed of a processor is to perform operations in parallel. If we were able toogetations on
each clock ycle, the CPU wuld eecute instructions twice aast when running at the same clock speedveder, simply
deciding to gecute tvo operations per clockscle is not so easary steps in thexecution of an instruction shafenctional
unitsin the CPU (functional units are groups of logic that perform a common operation, eAl.ltlad the CU)A func-
tional unit is only capable of one operation at a tifiterefore, you cannot do twoperations that use the same functional unit
concurrently (e.g., incrementing the Elgister and adding twvalues togetherfnother dificulty with doing certain opera
tions concurrently is that one operation may depend on the otieetilt. Br example, the tw steps of thé\DD instruction
that involve adding tw values and then storing their suviou cannot store the sum into gister until after yowe computed
the sumThere are also some other resources the CPU cannot share between steps in an instri&aomlE, there is only
one data bis; the CPU cannot fetch an instruction opcode at the same time it is trying to store some data toTime tnicky
in designing a CPU thakecutes seeral steps in parallel is to arrange those steps to reducetsooifladd additional logic so
the two (or more) operations can occur simultaneouslydegting in diferent functional units.

Consider agin the steps the M mem/re, reg ) instruction requires:

* Fetch the instruction byte from memory.

* Update the EIP register to point at the next byte.

» Decode the instruction to see what it does.

* If required, fetch a displacement operand from memory.

» If required, update EIP to point beyond the displacement.

»  Compute the address of the operand, if required (i.e., EBX+xxxx) .
* Fetch the operand.

»  Store the fetched value into the destination register

The first operation uses the value of the EIP register (so we cannot overlap incrementing EIP with it) and it uses the bu.
fetch the instruction opcode from memory. Every step that follows this one depends upon the opcode it fetches from memc
so it is unlikely we will be able to overlap the execution of this step with any other.

The second and third operations do not share any functional units, nor does decoding an opcode depend upon the vall
the EIP register. Therefore, we can easily modify the control unit so that it increments the EIP register at the same time
decodes the instruction. This will shave one cycle off the execution of the MOV instruction.

The third and fourth operations above (decoding and optionally fetching the displacement operand) do not look like th
can be done in parallel since you must decode the instruction to determine if it the CPU needs to fetch an operand from m
ory. However, we could design the CPU to go ahead and fetch the operand anyway, so that it's available if we need it. Ther
one problem with this idea, though, we must have the address of the operand to fetch (the value in the EIP register) and if
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#1
#2
#3
#4

#1
#2
#3
#4

must vait until we are done incrementing the EIBister before fetching this operand. If we are incrementing EIP at the same
time wete decoding the instruction, we will\eto wait until the ne&t cycle to fetch this operand.

Since the ne three steps are optional, there angesa possible instruction sequences at this point:
(step 4, step 5, step 6, and step 7) — e.g., MOV( [ebx+1000], eax )
(step 4, step 5, and step 7) — e.g., MOV( disp, eax ) -- assume disp s address is 1000
(step 6 and step 7) — e.g., MOV( [ebx], eax )
(step 7) — e.g., MOV( ebx, eax )
In the sequences alm step seen alvays relies on the prus steps in the sequendéerefore, step sen cannot -
cute in parallel with anof the other steps. Step six also relies upon step3oep fire cannot gecute in parallel with step four

since step four uses thelue in the EIP igister hovever, step fie can gecute in parallel with another stepTherefore, we
can shge one gcle of the first two sequences abe as follavs:

(step 4, step 5/6, and step 7)
(step 4, step 5/7)
(step 6 and step 7)

(step 7)
Of course, there is noay to oserlap the gecution of steps sen and eight in the M®Qinstruction since it must surely
fetch the alue before storing itveay. By combining these steps, we obtain the foile steps for the M@ instruction:

e Fetch the instruction byte from memory.

» Decode the instruction and update ip

e If required, fetch a displacement operand from memory.

e Compute the address of the operand, if required (i.e., ebx+xxxx) .
» Fetch the operand, if required update EIP to point beyond xxxx.

» Store the fetched value into the destination register

By adding a small amount of logic to the CPU, we've shaved one or two cycles off the execution of the MOV instructior
This simple optimization works with most of the other instructions as well.

Consider what happens with the MOV instruction above executes on a CPU with a 32-bit data bus. If the MOV instru
tion fetches an eight-bit displacement from memory, the CPU may actually wind up fetching the following three bytes after
displacement along with the displacement value (since the 32-bit data bus lets us fetch four bytes in a single bus cycle).
second byte on the data bus is actually the opcode of the next instruction. If we could save this opcode until the £xecutiol
the next instruction, we could shave a cycle of its execution time since it would not have to fetch the opcode byte. Eurthermc
since the instruction decoder is idle while the CPU is executing the MOV instruction, we can actually decode the next instrt
tion while the current instruction is executing, thereby shaving yet another cycle off the execution of the next in&histion.
effectively, overlaps a portion of the MOV instruction with the beginning of the execution of the next instruction, allowing
additional parallelism.

Can we improve on this? The answer is yes. Note that during the execution of the MOV instruction the CPU is not acce
ing memory on every clock cycle. For example, while storing the data into the destination register the bus is idle. During tir
periods when the bus is idle we can pre-fetch instruction opcodes and operands and save these values for executing the
instruction.

The hardware to do this is the prefetch queue. Figure 4.4 shows the internal organization of a CPU with a prefetch que
The Bus Interface Unit, as its name implies, is responsible for controlling access to the address and data busses. Wher
some component inside the CPU wishes to access main memory, it sends this request to the bus interface unit (or BIU)
acts as a "traffic cop" and handles simultaneous requests for bus access by different modules (e.g., the execution unit an
prefetch queue).
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Figure 4.4 CPU Design with a Prefetch Queue

Wheneer the &ecution unit is not using the Bus Intcé Unit, the BIU can fetch additional bytes from the instruction
streamWheneer the CPU needs an instruction or operand byte, it grabsxhavagable byte from the prefetch queue. Since
the BIU grabs four bytes at a time from memory (assuming a 32-bit aigltamd it generally consumesvir than four bytes
per clock gcle, ary bytes the CPU auld normally fetch from the instruction stream will already be sitting in the prefetch
queue.

Note, havever, that wete not guaranteed that all instructions and operands will be sitting in the prefetch queue when wi
need them. & example, consider the "JNZ Label;" instruction, if it transfers contraltwel will invalidate the contents of
the prefetch queue. If this instruction appears at locations 400 and 401 in memory (ibibydetinstruction), the prefetch
gueue will contain the bytes at addresses 402, 403, 404, 405, 406, 407, etc. ¢ethadidness of the JNZ instruction is 480,
the bytes at addresses 402, 403, 404, etm;twlo us ay good. So the system has to pause for a moment to fetch the double
word at address 480 before it can go on.

Another impreement we can makis to @erlap instruction decoding with the last step of theiptes instructionAfter
the CPU processes the operand, the ailable byte in the prefetch queue is an opcode, and the CPU can decode it in antic
ipation of its e&ecution. Of course, if the current instruction madifthe EIP mgister then aytime spent decoding the xte
instruction goes to aste, It since this occurs in parallel with other operations, it does netdgian the system (though it
does requirexdra circuitry to do this).

The instruction gecution sequence mwoassumes that the follang events occur in the background:
CPU Prefetch Eents:

« If the prefetch queue is not full (generally it can hold between eight and thirty-two bytes, depending on the pro
cessor) and the BIU is idle on the current clock cycle, fetch the next double word from memory at the address in

EIP at the beginning of the clock cytte

e If the instruction decoder is idle and the current instruction does not require an instruction operand, begin decod
ing the opcode at the front of the prefetch queue (if present), otherwise begin decoding the byte beyond the cur
rent operand in the prefetch queue (if present). If the desired byte is not in the prefetch queue, do not execute this
event.

15.This operation fetches only a byte if ip contains an odd value.
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Now let’s reconsider our "nvg reg, reg );" instruction from the pxéous section.With the addition of the prefetch queue
and the bis interfice unit, fetching and decoding opcode bytes, as well as updating thgiEi takes place in parallel with
the previous instruction.Without the BIU and the prefetch queue, the V(neyg, reg );" requires the follwing steps:

e Fetch the instruction byte from memory.

» Decode the instruction to see what it does.

e Fetch the source register and update the EIP register to point at the next byte.
e Store the fetched value into the destination register

However, now that we can overlap the instruction fetch and decode with the previous instruction, we now get the followir
steps:

e Fetch and Decode Instruction - overlapped with previous instruction
e Fetch the source register and update the EIP register to point at the next byte.
e Store the fetched value into the destination register

The instruction execution timings make a few optimistic assumptions, namely that the opcode is already present in f
prefetch queue and that the CPU has already decoded it. If either case is not true, additional cycles will be necesgary so the
tem can fetch the opcode from memory and/or decode the instruction.

Because they invalidate the prefetch queue, jump and conditional jump instructions (when actually taken) are mu
slower than other instructions. This is because the CPU cannot overlap fetching and decoding the opcode for the next inst
tion with the execution of the jump instruction since the opcode is (probably) not in the prefetch queue. Therefordet may te
several cycles after the execution of one of these instructions for the prefetch queue to recover and the CPU is decol
opcodes in parallel with the execution of previous instructions. The has one very important implication to your programs:
you want to write fast code, make sure to avoid jumping around in your program as much as possible.

Note that the conditional jump instructions only invalidate the prefetch queue if they actually make the jump. If the cond
tion is false, they fall through to the next instruction and continue to use the values in the prefetch queue as wedl-as any |
decoded instruction opcodes. Therefore, if you can determine, while writing the program, which condition is most likely (e.c
less than vs. not less than), you should arrange your program so that the most common case falls through and conditional |
rather than take the branch.

Instruction size (in bytes) can also affect the performance of the prefetch queue. The longer the instruction, the faster
CPU will empty the prefetch queue. Instructions involving constants and memory operands tend to be the largest. If you pl:
a string of these in a row, the CPU may wind up having to wait because it is removing instructions from the prefetch que
faster than the BIU is copying data to the prefetch queue. Therefore, you should attempt to use shorter instructions when
possible since they will improve the performance of the prefetch queue.

Usually, including the prefetch queue improves performance. That's why Intel provides the prefetch queue on many mc
els of the 80x86 family, from the 8088 on up. On these processors, the BIU is constantly fetching data for the prefetch que
whenever the program is not actively reading or writing data.

Prefetch queues work best when you have a wide data bus. The 8086 processor runs much faster than the 8088 beca
can keep the prefetch queue full with fewer bus accesses. Don't forget, the CPU needs to use the bus for other purposes
fetching opcodes, displacements, and immediate constants. Instructions that access memory compete with the prefetch g
for access to the bus (and, therefore, have priority). If you have a sequence of instructions that all access memetgh the pre
gueue may become empty if there are only a few bus cycles available for filling the prefetch queue during the execution
these instructions. Of course, once the prefetch queue is empty, the CPU must wait for the BIU to fetch new opcodes fr
memory, slowing the program.

A wider data bus allows the BIU to pull in more prefetch queue data in the few bus cycles available for this purpose, sc
is less likely the prefetch queue will ever empty out with a wider data bus. Executing shorter instructions also helps keep
prefetch queue full. The reason is that the prefetch queue has time to refill itself with the shorter instructions. Moral of t
story: when programming a processor with a prefetch queue, always use the shortest instructions possible to accompli:
given task.
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4.8.2 Pipelining — Overlapping the Execution of Multiple Instructions

Executing instructions in parallel using ashinterice unit and anxecution unit is a special case of pipelinimge 80x86

family, starting with the 80486, incorporates pipelining to imprperformanceWith just a fev exceptions, wdl see that
pipelining allavs us to gecute one instruction per clockate.

The adwantage of the prefetch queuasithat it let the CPUverlap instruction fetching and decoding with instruction

execution.That is, while one instruction isecuting, the BIU is fetching and decoding th&triestruction Assuming you'e
willing to add hardware, you canxecute almost all operations in paraliBhat is the idea behind pipelining.

48.2.1

A Typical Pipeline

Consider the steps necessary to do a generic operation:

» Fetch opcode.

» Decode opcode and (in parallel) prefetch a possible displacement or constant operand (or both)

*  Compute complex addressing mode (e.g., [ebx+xxxx]), if applicable.

» Fetch the source value from memory (if a memory operand) and the destination register value (if applicable).
e Compute the result.

»  Store result into destination register.

Assuming you're willing to pay for some extra silicon, you can build a little “mini-processor” to handle each of the above

steps. The organization would look something like Figure 4.5.

Figure 4.5

Stage 1 2 3 4 5 6

Fetch Decode Comput || Fetch Comput | | Store
Opcode || Opcode &| Effective || Source & | Result Resul
Prefetch [| Address|| Dest
Operand Values

A Pipelined Implementation of Instruction Execution

Note hav we've combined some stages from thevjmes section. &r example, in stage four dfigure 4.5the CPU

fetches the source and destination operands in the samerstepan do this by putting multiple data paths inside the CPU
(e.g., from the mgisters to thé\LU) and ensuring that no tvoperandswer compete for simultaneous use of the data(be.,
no memory-to-memory operations).

If you design a separate piece of haadevfor each stage in the pipeline adcalmost all these steps canegace in par

allel. Of course, you cannot fetch and decode the opcode for more than one instruction at the saute/dimeali fetch one
opcode while decoding the preus instruction. If you ha an n-stage pipeline, you will usuallyiean instructions»ecuting
concurrently
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T1 T2 T3 T4 T5 T6 T7 T8 T9...
Opcode| Decode| Addreqds Valuep Qde] Store Instruction #1

Opcode | Decode| Address Values  fdm| Store Instruction #2
Opcode| Decode| Addreds Valuep Conjpute Strénstruction #3

Opcode| Decod Addregs  Valuds Confpute St*re

Figure 4.6 Instruction Execution in a Pipeline

Figure 4.6shavs pipelining in operatoint1, T2, T3, etc., represent consewati‘ticks” of the system cloclat T=T1 the
CPU fetches the opcode byte for thstfinstruction.

At T=T2, the CPU bgins decoding the opcode for thesfiinstruction. In parallel, it fetches a block of bytes from the
prefetch queue in thesent the instruction has an operand. Since tiseifistruction no longer needs the opcode fetching cir
cuitry, the CPU instructs it to fetch the opcode of the second instruction in parallel with the decodingrsf it&rfiction.
Note there is a minor coidt here.The CPU is attempting to fetch thexhbyte from the prefetch queue for use as an operand,
at the same time it is fetching operand data from the prefetch queue for use as an opcad®. iHdo both at onc&du’ll
see the solution in aviemoments.

At T=T3 the CPU computes an operand address forrgtarfstruction, if ap. The CPU does nothing on thesfiinstrue
tion if it does not use an addressing mode requiring such computation. D8riteg CPU also decodes the opcode of the sec
ond instruction and fetchesyanecessary operand. Finally the CPU also fetches the opcode for the third instwitti@ach
adwancing tick of the clock, another step in tike@ution of each instruction in the pipeline completes, and the CPU fetches yet
another instruction from memory

This process continues until BtT6 the CPU completes th&ezution of the fist instruction, computes the result for the
second, etc., andhfilly, fetches the opcode for the sixth instruction in the pipelihe.important thing to see is that after
T=T5 the CPU completes an instruction @eny clock gcle. Once the CPUIIG the pipeline, it completes one instruction on
each gcle. Note that this is trueven if there are compteaddressing modes to be computed, memory operands to fetch, or
other operations which usgales on a non-pipelined procesdll you need to do is add more stages to the pipeline, and you
can still efectively process each instruction in one clogkle.

A bit earlier you sa& a small conftt in the pipeline aganization. At T=T2, for xkample, the CPU is attempting to
prefetch a block of bytes for an operand and at the same time it is trying to fetcktthpaoele byte. Until the CPU decodes
the frrst instruction it doeshknov howv mary operands the instruction requires nor does itkti®ir length. Hwever, the
CPU needs to kno this information to determine the length of the instruction so #knehat byte to fetch as the opcode of
the net instruction. So ho can the pipeline fetch an instruction opcode in parallel with an address operand?

One solution is to disal this. If an instruction as an address or constant operand, we simply delay the startxdf the ne
instruction (this is kmen as éhazad as you shall soon see). Unfortunatehary instructions hee these additional operands,
so this approach will ve a substantial gative impact on thexecution speed of the CPU.

The second solution is to thwga lot) more hardare at the problem. Operand and constant sizes usually come in one,
two, and fowbyte lengths.Therefore, if we actually fetch three bytes from mematypfsets one, three, and/d, begond the
current opcode we are decoding, werthat one of these bytes will probably contain the opcode of tkteimstruction.

Once we are through decoding the current instruction we kroav long it will be and, therefore, we kwahe ofset of the
next opcode.We can use a simple data selector circuit to choose which of the three opcode byaes ioause.

In actual practice, we kia to select the mé opcode byte from more than three candidates because 80x86 instructons tak
mary different lengths. & example, an instruction that mes a 32-bit constant to a memory location can be ten or more
bytes long.And there are instruction lengths for neangry value between one andtéien bytes. Also, some opcodes on the
80x86 are longer than one byte, so the CPU mag t@fetch multiple bytes in order to properly decode the current instruc
tion. Nevertheless, by thming more hardware at the problem we can decode the current opcode at the same tenfetsle’
ing the nat.
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4.8.2.2

Stalls in a Pipeline

Unfortunately the scenario presented in theyioes section is a little too simplisti€here are tw dravbacks to that sim
ple pipeline: ns contention among instructions and non-sequential progacatéon. Both problems may increase thera
age eecution time of the instructions in the pipeline.

Bus contentioroccurs wheneer an instruction needs to access some item in merRoryexample, if a "meo( reg,
mem);" instruction needs to store data in memory and a&('mem, rg);" instruction is reading data from memocgnten
tion for the address and datastmay deelop since the CPU will be trying to simultaneously fetch data and write data in mem
ory.

One simplistic vay to handle s contention is throughpapeline stall The CPU, whendced with contention for thaub,
gives priority to the instruction furthest along in the pipelirtee CPU suspends fetching opcodes until the current instruction
fetches (or stores) its operafthis causes the neinstruction in the pipeline to takwo cycles to &ecute rather than one (see
Figure 4.7.

T1 T2 T3 T4 TS T6 T7 T8 T9...

Opcode | Decode| Addreds Valuep fida] Store Instruction #1

Opcode | Decode| Addresp Values  fidge| Store Ilnstruction #2
Opcode | Decode| Addregs Valties Compute  Jtore

/ Instruction #3 appears

L . . to take two clock cycles
Pipeline stall occurs here because instruction #1 to execute because of

is attempting to store a value to memory at the the pipeline stall.
same time instruction #2 is attempting to read
a value from memagr

Figure 4.7 A Pipeline Stall

This exkample is It one case ofus contentionThere are manothers. Br example, as noted earljdetching instruction
operands requires access to the prefetch queue at the same time the CPU needs to fetch anepctuesi@ple scheme
above, it's unlikely that most instructionsauld execute at one clock per instruction (CPI).

Fortunately the intelligent use of a cache system can eliminatey pgeline stalls like the ones discussed &boThe
next section on caching will describeviaghis is done. Hwever, it is not alvays possible,ven with a cache, tovaid stalling
the pipelineWhat you cannotXiin hardvare, you can takcare of with softare. If you &oid using memoryyou can reduce
bus contention and your programs wileeute &ster Likewise, using shorter instructions also reduags dontention and the
possibility of a pipeline stall.

What happens when an instructimodifiesthe EIP rgister?This, of course, implies that thexteset of instructions to
execute do not immediately follothe instruction that modés EIP By the time the instruction

INZ Label ;

completes xecution (assuming the zero flag is clear so the branch is taken), we've already started five other instructions &
we’re only one clock cycle away from the completion of the first of these. Obviously, the CPU must not execute thase instrt
tions or it will compute improper results.

The only reasonable solution isftoshthe entire pipeline and gim fetching opcodes aweHowever, doing so causes a
severe ecution time penaltylt will take six clock gcles (the length of the pipeline in owaenples) before the reinstruc
tion completesxecution. Clearlyyou should @oid the use of instructions which interrupt the sequerntiet@ion of a pro
gram.This also shas another problem — pipeline lengtiihe longer the pipeline is, the more you can accomplishypé m
the system. Hwever, lengthening a pipeline may sl@ program if it jumps around quite a bit. Unfortungtgbu cannot con
trol the number of stages in the pipefifi&fou can, haever, control the number of transfer instructions which appear in your
programs. Obiously you should &ep these to a minimum in a pipelined system.
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4.8.3 Instruction Caches — Providing Multiple Paths to Memory

System designers can resminaly problems with bs contention through the intelligent use of the prefetch queue and the
cache memory subsysteifhey can design the prefetch queue tdfér up data from the instruction stream, andytban
design the cache with separate data and code areas. Both techniques can sggteon performance by eliminating some
conflcts for the lns.

The prefetch queue simply acts asuéfdr between the instruction stream in memory and the opcode fetching circuitry
The prefetch queuearks well when the CPU ish¢onstantly accessing memovyhen the CPU isih'accessing memarthe
BIU can fetch additional instruction opcodes for the prefetch qédas. the pipelined 80x86 CPUs are constantly accessing
memory since thefetch an opcode byte owery clock gcle. Therefore, the prefetch queue cannotetakhantage of an
“dead” kus g/cles to fetch additional opcode bytes — there &y “dead” us g/cles. Havever, the prefetch queue is still
valuable for a gry simple reason: the BIU fetches multiple bytes on each memory access and most instructions are shor
Without the prefetch queue, the systeould have to eplicitly fetch each opcodeyen if the BIU had already “accidentally”
fetched the opcode along with the ypoeis instructionWith the prefetch queue, Wever, the system will not refetch an
opcodes. It fetches them once angesahem for use by the opcode fetch unit.

For example, if you ®ecute tvo one-byte instructions in awpthe BIU can fetch both opcodes in one memagugle;
freeing up the bs for other operation$he CPU can use theseadlable lus g/cles to fetch additional opcodes or to deal with
other memory accesses.

Of course, not all instructions are one byte Iofte 80x86 has a lge number of dierent instruction sizes. If yoe
cute sgeral lage instructions in a W you're going to run sleer. Once agin we return to that same rutée fastest -
grams ae the ones whituse the shortest instructiorifyou can use shorter instructions to accomplish some task, do so.

Suppose, for a moment, that the CPU has $eparate memory spaces, one for instructions and one for data, each with
their ovn bus.This is called thédarvard Architecture since the fist such machine as hiilt at Hanard On a Harard machine
there would be no contention for theud. The BIU could continue to fetch opcodes on the instructisnvishile accessing
memory on the data/memoryd(sed-igure 4.9,

I/O Subystem

Data Memoy
Data/Memory Bus

Instruction Memoy

Instruction Bus

Figure 4.8 A Typical Harvard Machine

In the real world, there are ery fav true Hanard machinesThe «tra pins needed on the processor to suppartptwsi-
cally separateusses increase the cost of the processor and introdugeathen engineering problems. Wever, micropre

16.Note, by the way, that the number of stages in an instruction pipeline varies among CPUs.
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cessor designers Vediscaoered that thg can obtain manbenefis of the Harard architecture with ¥ of the disadantages
by using separate on-chip caches for data and instructiduanced CPUs use an internal Hand/ architecture and amter-
nalVon Neumann architecturigure 4.9shavs the structure of the 80x86 with separate data and instruction caches.

j s Data/Address
Busses

N

Instructian
Cache

Prefetd
Queue

Figure 4.9 Using Separate Code and Data Caches

Each path inside the CPU represents an independsnData can éwv on all paths concurrentlifhis means that the
prefetch queue can be pulling instruction opcodes from the instruction cache whiedinoa unit is writing data to the data
cache. Nw the BIU only fetches opcodes from memory whemét cannot locate them in the instruction cacheeige, the
data cacheuffers memoryThe CPU uses the data/address bnly when reading alue which is not in the cache or when
flushing data back to main memory

Although you cannot control the presence, size, or type of cache on a CPU, as an assembly language programmer
must be ware of hav the cache operates to write the best programs. On-afgibdee instruction caches are generally quite
small (8,192 bytes on the 80486, fammple).Therefore, the shorter your instructions, the more of them wifl the cache
(getting tired of “shorter instructions” yetA)he more instructions you ¥ in the cache, the less oftemsbcontention will
occur Likewise, using rgisters to hold temporary results places less strain on the data cache so ité@ekto fish data to
memory or retriee data from memory quite so oftésse the egisters wheever possible!

4.8.4

Hazards

There is another problem with using a pipeline: the data hatatts look at the xeecution profie for the follaving
instruction sequence:

nov( Sonevar, ebx );
nmov( [ebx], eax );

When these twinstructions eecute, the pipeline will look somethingdilshavn in Figure 4.10
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T1 T2 T3 T4 TS5 T6 T7 ..

Opcode Operand | Address Load Compute Store I mov( SomeVar, ebx );
&SomeVar — x* rom SomeVar into ebx
Opcode |Operand | Address I Load I Load Store mov( [ebx], eax);
ebx [ebx] into eax

Figure 4.10 A Data Hazard

Note a major problem herghese tw instructions fetch the 32 biakue whose address appears at locatiSo@edr in
memory But this sequence of instructions wiowork pioperly! Unfortunately the second instruction has already used the
value in EBX before therft instruction loads the contents of memory locatiGofe¥r (T4 & T6 in the diagram ahe).

CISC processors, lkthe 80x86, handle hazards automaticalliiowever, they will stall the pipeline to synchronize the
two instructionsThe actual xecution wuld look something li& shevn in Figure 4.11

T3 T4 T5 T6 T7
Address Load Computel Store I mov(SomeVar, ebx);
*kk from i
SomeVar into ebx
Operand | Address Delay Delay I Lod I Load Store mov( [ebx], eax );

ebx [ebj into eax

Figure 4.11 How the 80x86 Handles a Data Hazard

By delaying the second instructiondwlock gcles, the CPU guarantees that the load instruction will load EAX from the
proper address. Unfortunatetiie second load instructionwmaxecutes in three clockscles rather than one. ever, requir
ing two extra clock gcles is better than producing incorrect resultstihately you can reduce the impact of hazardsxm e
cution speed within your softwe.

Note that the data hazard occurs when the source operand of one instrastiandestination operand of a\poes
instruction.There is nothing wrong with loading EBX froBome¥r and then loading EAX frorfEBX], unless thg occur
one right after the otheBuppose the code sequence had been:

mov( 2000, ecx );
nov( SoneVar, ebx );
nmov( [ebx], eax );

We could reduce thefett of the hazard thakists in this code sequence by simparranging the instructiond.et’s do
that and obtain the folleing:

nov( SoneVar, ebx );
nov( 2000, ecx );
mov( [ebx], eax );

Now the "mov( [ebx], eax);" instruction requires only one additional clock cycle rather than two. By inserting yet anothe
instruction between the "mov( SomeVar, ebx);" and the "mov( [ebx], eax);" instructions you can eliminate the effects of tt
hazard altogeth&?.

17.Some RISC chips do not. If you tried this sequence on certain RISC chips you would get an incorrect answer.
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On a pipelined processdhe order of instructions in a program may dramaticafgcathe performance of that program.
Always look for possible hazards in your instruction sequences. Eliminate thervevlparssible by rearranging the instruc
tions.

In addition to data hazards, there are atmutol hazads We've actually discussed control hazards alreatifijough we
did not refer to them by that nam&.control hazard occurs wherex the CPU branches to somewlecation in memory and
the CPU has todkh the follaving instructions follaving the branch that are imrous stages ofxecution.

4.8.5 Superscalar Operation— Executing Instructions in Parallel

With the pipelined architecture we could askieat best,»ecution times of on€PI (clock per instruction). Is it possible
to execute instructionsaster than thisAt first glance you might think, “Of course not, we can do at most one operation per
clock g/cle. So there is noay we canxecute more than one instruction per clogkle” Keep in mind havever, that a single
instruction isnota single operation. In thex@mples presented earlier each instruction hantaktween six and eight opera
tions to complete. By adding\an or eight separate units to the CPU, we cod&t®fely execute these eight operations in
one clock gcle, yielding one CPI. If we add more haate and xecute, sayl6 operations at once, can we aechi@.5 CPI?
The answer is a quakiil “yes: A CPU including this additional hardwe is asupescalar CPUand can xecute more than
one instruction during a single clockate. The 80x86 &mily began supporting superscalateeution with the introduction of
the Pentium processor

A superscalar CPU has, essentiadligeral execution units (seBigure 4.12. If it encounters tw or more instructions in
the instruction stream (i.e., the prefetch queue) whichxacuée independentljt will do so.

Superscalar CPU

E u| |E U DC B
X n X n aa
e i e i t ﬁ . | Data/Address
c t c t a o U Busses
u u
t # t #
i 2 i 1
o} o} —— -
n n Instruction

Cache

||
Prefetch
Queue

Figure 4.12 A CPU that Supports Superscalar Operation

There are a couple of aavtages to going superscal@uppose you ka the follaving instructions in the instruction
stream:

nov( 1000, eax );
mov( 2000, ebx );

18.0f course, any instruction you insert at this point must nof modify the values in the eax and ebx registers. Also note that the
examples in this section are contrived to demonstrate pipeline stalls. Actual 80x86 CPUs have additional circuitry to help
reduce the effect of pipeline stalls on the execution time.

Page 265



If there are no other problems or hazards in the surrounding code, and all six bytes foradhestuetions are currently in
the prefetch queue, there is no reason why the CPU cannot fetch and execute both instructions in parallel. All it takes is e
silicon on the CPU chip to implement two execution units.

Besides speeding up independent instructions, a superscalar CPU can also speed up program sequences that have h:
One limitation of superscalar CPU is that once a hazard occurs, the offending instruction will completely stall the pipelin
Every instruction which follows will also have to wait for the CPU to synchronize the execution of the instructions. With ¢
superscalar CPU, however, instructions following the hazard may continue execution through the pipeline as long as they d
have hazards of their own. This alleviates (though does not eliminate) some of the need for careful instruction scheduling.

As an assembly language programmer, the way you write software for a superscalar CPU can dramatically affect its
formance. First and foremost is that rule you're probably sick of by negvshort instructiong he shorter your instructions
are, the more instructions the CPU can fetch in a single operation and, therefore, theeafyateeli€PU will @ecute aster
than one CPI. Most superscalar CPUs do not completely duplicatesthigtion unit.There might be multipl&LUs, floating
point units, etcThis means that certain instruction sequences xecuee ery quickly while others wn't. You have to study
the exact composition of your CPU to decide which instruction sequences produce the best performance.

4.8.6

Out of Order Execution

In a standard superscalar CPU it is the progransnfer’compilers) responsibility to schedule (arrange) the instructions
to avoid hazards and pipeline stallsarfeier CPUs can actually resesome of thistrden and impnee performance by auto
matically rescheduling instructions while the programcetes. To understand o this is possible, consider the fallimg
instruction sequence:

nov( SoneVar, ebx );
mov( [ebx], eax );
nov( 2000, ecx );

A data hazard»asts between therfit and second instructions &eo The second instruction must delay until thrstfi
instruction completeskecution. This introduces a pipeline stall and increases the running time of the profypitally, the
stall afects &ery instruction that follws. Hawever, note that the third instructioniecution does not depend on the result
from either of the fst two instructions.Therefore, there is no reason to stall tkecation of the "me( 2000, ecx );" instruc
tion. It may continuex@cuting while the second instructiomits for the fist to complete This technique, appearing in later
members of the Pentium line, is called "out of ordercation" because the CPU completes ttecation of some instruction
prior to the &ecution of preious instructions appearing in the code stream.

Clearly, the CPU may only>@cute instruction out of sequence if doing so produxastly the same results as in-order
execution. While there a lots of little technical issues that s#ks problem a little more dii€ult than it seems, with enough
engineering dort it is quite possible to implement this feature.

Although you might think that thisxea efort is not worth it (why not male it the programmes’or compilers responsi
bility to schedule the instructions) there are some situations where out of xedeti@n will improve performance that static
scheduling could not handle.

4.8.7

Register Renaming

One problem that hampers théeefiveness of superscalar operation on the 80x86 CPU is the 80xBied number of
general purpose gésters. Suppose, forample, that the CPU had four féifent pipelines and, thereforeasvcapable ofxe-
cuting four instructions simultaneoushctually achieing four instructions per clockycle would be \ery difiicult because
most instructions (that caxecute simultaneously with other instructions) operate orrdgister operands. df four instrue
tions to eecute concurrent)yyou'd need four separate destinatiogisters and four sourcegisters (and the twsets of rg-
isters must be disjoint, that is, a destinatiagister for one instruction cannot be the source of another). CPUs\kdbtsof
registers can handle this task quite eadilit the limited rgister set of the 80x86 me&k this dificult. Fortunately there is a
way to alleriate part of the problem: througégister enaming
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Register renaming is a sngakvay to give a CPU more ggsters than it actually has. Programmers will noehdirect
access to thesetea ragisters, it the CPU can use these additiongister to preent hazards in certain casesr Bxample,
consider the follwing short instruction sequence:

mov( 0, eax );

nov( eax, i );
nov( 50, eax );
nov( eax, | );

Clearly a data hazardists between thert and second instructions andglikse, a data hazardists between the third
and fourth instructions in this sequence. Out of orgecwion in a superscalar CPlWwd normally allev the frst and third
instructions to xecute concurrently and then the second and fourth instructions coulcedsieeconcurrently Hovever, a
data hazard, of sorts, alsgists between therft and third instructions since thase the same gester The programmer
could hae easily soled this problem by using a fifent rgister (say EBX) for the third and fourth instructions. weeer,
let's assume that the programmeaswunable to do this because the othgisters are all holding importanahues. Is this
sequence doomed tgexuting in four gcles on a superscalar CPU that should only requin@ tw

One adanced trick a CPU can empl@ to create a bank ofgisters for each of the general purpoggsters on the CPU.
That is, rather than kiang a single EAX rgister the CPU could support an array of EAXjisters; les call these gsters
EAX][0], EAX[1], EAX[2], etc. Similarly, you could hae an array of each of thegisters, so we could also J&a
EBX][0]..EBX[n], ECX|[0]..ECX]|n], etc. Nav the instruction set does notvgithe programmer the ability to select one of
these specifi rggister array elements for avgh instruction, bt the CPU can automatically choose dedént rgjister array
element if doing so auld not change theverall computation and doing so could speed upxkelgion of the program. oF
example, consider the folldng sequence (with gister array elements automatically chosen by the CPU):

mov( 0, eax[0] );

nov( eax[0], i );
nov( 50, eax[1] );
nov( eax[1], | );

Since EAX[0] and EAX[1] are diérent registers, the CPU can execute the first and third instructions concurrently. Likewise,
the CPU can execute the second and fourth instructions concurrently.

The code above provides an exampleegfster ienaming Dynamically the CPU automatically selects one ofesall
different elements from agister array in order to prent data hazardsAlthough this is a simplexample, and dferent
CPUs implement gister renaming in mandifferent ways, this gample does demonstratevhthe CPU can impre perfor
mance in certain instances through the use of this technique.

4.8.8

Very Long Instruction Word Architecture (VLIW)

Superscalar operation attempts to schedule, in eaejuthe recution of multiple instructions simultaneoushmnother
technique that Intel is using in their IA-64 architecture is the usergfleng instruction wrds, o?VLIW. In aVLIW com-
puter system, the CPU fetches ay&ablock of bytes (41 in the case of the IA-64 Itanium CPU) and decodegsemutes this
block all at once.This block of bytes usually containsdawer more instructions (three in the case of the IA-84)IW com-
puting requires the programmer or compiler to properly schedule the instructions in each block (so there are no hazard:
other conficts), tut if properly scheduled, the CPU cateeute three or more instructions per clogkle.

The Intel IA-64Architecture is not the only computer system to emalLIW architecture. Transmeta Crusoe pro
cessor &mily also uses "WLIW architecture. The Crusoe processor isfdifent than the IA-64 architecture inaofs it does
not support natie execution of 1A-32 instructions. Instead, the Crusoe processor dynamically translates 80x86 instructions t
Crusoes VLIW instructions. This "code morphing” technology results in code running about 50%eiskhan natie code,
though the Crusoe processor has otheaatdhges.

We will not consideWLIW computing ary further since the 1A-32 architecture does not support it. 8ep khis architec
tural adance in mind if you mee tovards the IA-64dmily or the Crusoeaimily.
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4.8.9 Parallel Processing

Most of the techniques for imprimg CPU performance via architectural adees imolve the parallel (eerlapped) re-
cution of instructions. Most of the techniques of this chapter are transparent to the progréinatnist the programmer does
not hare to do agthing special to tak minimal adantage of the parallel operation of pipelines and superscalar operations.
True, if programmers arevare of the underlying architecture yhean write code that runsen faster but these architectural
advances often impre performanceven if programmers do not write special code te tathantage of them.

The only problem with this approach (attempting to dynamically parallelize an inherently sequential program) is that the
is only so much you can do to parallelize a program that requires sequeattigi@n for proper operation (whichvars most
programs). To truly produce a parallel program, the programmer must sgahifivrite parallel code; of course, this does
require architectural support from the CPThis section and the retouches on the types of support a CPU caxigeo

Typical CPUs use what is kwo as theSISD modelSingle Instruction, Single Datal' his means that the CPWexutes
one instruction at a time that operates on a single piece oPdateo common parallel models are the so-caié®lD (Sin
gle Instruction, Multiple DataandMIMD (Multiple Instruction, Multiple Datamodels.As it turns out, x86 systems can sup
port both of these parallexecution models.

In the SIMD model, the CPWkecutes a single instruction stream, just like standard SISD model. \aver, the CPU
executes the sped#il operation on multiple pieces of data concurrently rather than a single data alnjexantple, consider
the 80x86ADD instruction. This is a SISD instruction that operates on (that is, produces) a single piece of data; true, th
instruction fetchesalues from tw source operands and stores a sum into a destination opatahd bnd result is that the
ADD instruction will only produce a single sumin SIMD version ofADD, on the other hand, auld compute the sum of
several \alues simultaneouslyrhe Pentium 1115 MMX and SIMD instructionxensions operate irxactly this aishion. With
an MMX instruction, for gample, you can add up to eight separate pairslakg with the xecution of a single instruction.
The aptly named SIMD instructioxtensions operate in a similashion.

Note that SIMD instructions are only useful in specialized situations. Unless yeoamalgorithm that can taladwan
tage of SIMD instructions, tlygre not that useful. drtunately high-speed 3-D graphics and multimedia applications lenefi
greatly from these SIMD (and MMX) instructions, so their inclusion in the 80x86 Cfets af huge performance boost for
these important applications.

The MIMD model uses multiple instructions, operating on multiple pieces of data (usually one instruction per data objec
though one of these instructions could also operate on multiple data ifE#mese multiple instructionxecute independently
of one anotherTherefore, it5 very rare that a single program ,(arore specitially, a single thread ofxecution) would use
the MIMD model. Havever, if you have a multiprogramming @ironment with multiple programs attempting teeeute con
currently in memorythe MIMD model does all® each of those programs tgegute their wn code stream concurrently
This type of parallel system is usually called a multiprocessor system. Multiprocessor systems are the subjext sé¢he ne
tion.

The common computation models are SISD, SIMD, and MIMD. Ifrgombndering if there is a MISD model (Multiple
Instruction, Single Data) the answer is no. Such an architecture taadly male sense.

4.8.10 Multiprocessing

Pipelining, superscalar operation, out of ordexceition, and/LIW design are techniques CPU designers use in order to
execute seeral operations in parallelThese techniques suppdirtie-grained palstllelism20 and are useful for speeding up
adjacent instructions in a computer system. If adding more functional units increases parallelism (and, therefore,lspeeds uy
system), you might ander what wuld happen if you added 6aCPUs to the systenT.his technique, knen asmultiprocess
ing, can impree system performance, though not as uniformly as other techniggsiemted in the préous section, a mukHi
processor system uses the MIMD parali@aition model.

The techniques weé considered to this point déméquire special programming to realize a performance increase,
if you do pay attention you will get better performancet o special programming is necessary tovatgithese features.
Multiprocessing, on the other hand, doé$®lp a program one bit unless that prograas wpecifially written to use muki

19.We will ignore the parallelism provided by pipelining and superscalar operation in this discussion.
20.For our purposes, fine-grained parallelism means that we are executing adjacent program instructions in parallel.
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processor (or runs under an O/S speadify written to support multiprocessing). If youilol a system with tew CPUs, those
CPUs cannot trade foéxecuting alternate instructions within a program. dctfit is \ery expensve (timavise) to switch the
execution of a program from one processor to anotfieerefore, multiprocessor systems are really orfgcébe in a system
that execute multiple programs concurrently (i.e., a multitasking sygﬂerﬁ)) differentiate this type of parallelism from that
afforded by pipelining and superscalar operation]iveall this kind of parallelisntoarse-gained paeallelism

Adding multiple processors to a system is not as simple as wiring the processor to the mothArb@apioblem with
multiple processors is tlmde coheencyproblem. To understand this problem, consideotseparate programs running on
separate processors in a multiprocessor system. Suppose also thatdhpgeedasor communicate with one another by writ
ing to a block of shared phical memory Unfortunatelywhen CPU #1 writes to this block of addresses the CPU caches the
data up and might not actually write the data tgspdal memory for some time. Simultaneous?U #2 might be attempting
to read this block of shared memomyt vinds up reading the data out of its local cache rather than the data that CPU #1 wrote
to the block of shared memory (assuming the data made it out of CRUb&dl cache). In order for theseotfunctions to
operate properjythe two CPUS must communicate writes to common memory addresses in cache between #sembislv
is a \ery comple and irvolved process.

Currently the Pentium 1ll and IV processors directly support cache updates betwe&@Ptys in a system. Intel also
builds a more xpensve processothe XEON, that supports more tharot@PUs in a system. Ma@ver, one area where the
RISC CPUs hee a big adantage wer Intel is in the support for multiple processors in a sysiathile Intel systems reach a
point of diminishing returns at about 16 processors, S&REPand other RISC processors easily support 64-CPU systems
(with more arwing, it seems,\&ery day). This is wly large databases and derweb sersr systems tend to usgpensve
UNIX-based RISC systems rather than x86 systems.

Putting It All Together

The performance of modern CPUs is intrinsically tied to the architecture of that CRi.th@\past half century there
have been manmajor adances in CPU design thatveadramatically impreed preformanceAlthough the clock frequegc
has impreed by wer four orders of magnitude during this time period, other irgnents hee added one or tworders of
magnitude impreement as well. Gar the 80x8& lifetime, performance has imwex 10,000-fold.

Unfortunately the 80x86d&mily has just about pushed the limits of what it can aehy etending the architecture. Per
haps another order of manitude is possiblg,libtel is reaching the point of diminishing returns.vidg realized this, Intel
has chosen to implement amnarchitecture usingLIW for their 1A-64 family. Only time will prove whether their approach
is the correct one,ub most people bele that the 1A-32 has reached the end of its lifetime. On the other hand, pe@ple ha
been announcing the death of the 1A-32 for the past decade, lseagaivhat happens wo

21.Technically, it only needs to execute multiple threads concurrently, but we 11 ignore this distinction here since the technical
distinction between threads and programs/processes is beyond the scope of this chapter.
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Instruction Set Architecture Chapter Five

5.1 Chapter Overview

This chapter discusses the low-level implementation of the 80x86 instruction set. It describes how the Intel
engineers decided to encode the instructions in a numeric format (suitable for storage in memory) and it dis-
cusses the trade-offs they had to make when designing the CPU. This chapter also presents a historical back-
ground of the design effort so you can better understand the compromises they had to make.

5.2 The Importance of the Design of the Instruction Set

In this chapter we will be exploring one of the most interesting and important aspects of CPU design: the
design of the CPU s instruction set. The instruction set architecture (or ISA) is one of the most important design
issues that a CPU designer must get right from the start. Features like caches, pipelining, superscalar implemen-
tation, etc., can all be grafted on to a CPU design long after the original design is obsolete. However, it is very
difficult to change the instructions a CPU executes once the CPU is in production and people are writing soft-
ware that uses those instructions. Therefore, one must carefully choose the instructions for a CPU.

You might be tempted to take the "kitchen sink" approach to instruction set design1 and include as many
instructions as you can dream up in your instruction set. This approach fails for several reasons we 1l discuss in
the following paragraphs. Instruction set design is the epitome of compromise management. Good CPU design
is the process of selecting what to throw out rather than what to leave in. It s easy enough to say "let s include
everything." The hard part is deciding what to leave out once you realize you can t put everything on the chip.

Nasty reality #1: Silicon real estate. The first problem with "putting it all on the chip" is that each feature
requires some number of transistors on the CPU s silicon die. CPU designers work with a "silicon budget" and
are given a finite number of transistors to work with. This means that there aren t enough transistors to support
"putting all the features" on a CPU. The original 8086 processor, for example, had a transistor budget of less
than 30,000 transistors. The Pentium III processor had a budget of over eight million transistors. These two bud-
gets reflect the differences in semiconductor technology in 1978 vs. 1998.

Nasty reality #2: Cost. Although it is possible to use millions of transistors on a CPU today, the more tran-
sistors you use the more expensive the CPU. Pentium IV processors, for example, cost hundreds of dollars (circa
2002). A CPU with only 30,000 transistors (also circa 2002) would cost only a few dollars. For low-cost sys-
tems it may be more important to shave some features and use fewer transistors, thus lowering the CPU s cost.

Nasty reality #3: Expandability. One problem with the "kitchen sink" approach is that it s very difficult to
anticipate all the features people will want. For example, Intel s MMX and SIMD instruction enhancements
were added to make multimedia programming more practical on the Pentium processor. Back in 1978 very few
people could have possibly anticipated the need for these instructions.

Nasty reality #4: Legacy Support. This is almost the opposite of expandability. Often it is the case that an
instruction the CPU designer feels is important turns out to be less useful than anticipated. For example, the
LOOP instruction on the 80x86 CPU sees very little use in modern high-performance programs. The 80x86
ENTER instruction is another good example. When designing a CPU using the "kitchen sink" approach, it is
often common to discover that programs almost never use some of the available instructions. Unfortunately, you
cannot easily remove instructions in later versions of a processor because this will break some existing programs

1. As in "Everything, including the kitchen sink."
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that use those instructions. Generally, once you add an instruction you have to support it forever in the instruc-
tion set. Unless very few programs use the instruction (and you re willing to let them break) or you can automat-
ically simulate the instruction in software, removing instructions is a very difficult thing to do.

Nasty reality #4: Complexity. The popularity of a new processor is easily measured by how much software
people write for that processor. Most CPU designs die a quick death because no one writes software specific to
that CPU. Therefore, a CPU designer must consider the assembly programmers and compiler writers who will
be using the chip upon introduction. While a "kitchen sink" approach might seem to appeal to such program-
mers, the truth is no one wants to learn an overly complex system. If your CPU does everything under the sun,
this might appeal to someone who is already familiar with the CPU. However, pity the poor soul who doesn t
know the chip and has to learn it all at once.

These problems with the "kitchen sink" approach all have a common solution: design a simple instruction set
to begin with and leave room for later expansion. This is one of the main reasons the 80x86 has proven to be so
popular and long-lived. Intel started with a relatively simple CPU and figured out how to extend the instruction
set over the years to accommodate new features.

5.3 Basic Instruction Design Goals

In a typicalVon Neumann architecture CPU, the computer encodes CPU instructions as nalnes@wud stores these

numeric \alues in memoryThe encoding of these instructions is one of the major tasks in instruction set design and require

very careful thought.
To encode an instruction we must pick a unique numeric opade for each instruction (clearlvo different instrue

tions cannot share the same numesdlu® or the CPU will not be able to feifentiate them when it attempts to decode the
opcode walue). With an n-bit numberthere are 2different possible opcodes, so to encode m instructions you will need an

opcode that is at least lggn) bits long.
Encoding opcodes is a little morevaved than assigning a unique numeraue to each instruction. Remembee

have to use actual harcse (i.e., decoder circuits) t@fire out what each instruction does and command the rest of the hard

ware to do the sped#fil task. Suppose youvgea seen-bit opcode With an opcode of this size we could encode 12@wif
ent instructions.To decode each instruction ingtlually requires a sen-line to 128-line decoder — arpensve piece of
circuitry. Assuming our instructions contain certain patterns, we can reduce thearatgreplacing this lge decoder with
three smaller decoders.

If you have 128 truly unique instructions, thegdittle you can do other than to decode each instructionidudilly.

However, in most architectures the instructions are not completely independent of one.aRotheample, on the 80x86
CPUs the opcodes for "mpeax, ebx );" and "md ecx, edx );" are diérent (because these aref@liént instructions) it
these instructions are not unrelatéthey both mae data from one gister to another In fact, the only dierence between
them is the source and destination operaitiés suggests that we could encode instructiomsMKV with a sub-opcode and
encode the operands using other strings of bits within the opcode.

For example, if we really hae only eight instructions, each instruction has tperands, and each operand can be one of
four different \alues, then we can encode the opcode as threegéelkls containing three, ttyand tve bits (sed-igure 5.).
This encoding only requires the use of three simple decoders to completely determine what instruction the CPxé-should €
cute. While this is a bit of a tvial case, it does demonstrate oeeyvimportant &cet of instruction set design — it is important
to male opcodes easy to decode and the easestavdo this is to break up the opcode inteesal diferent bit felds, each
field contriluting part of the information necessary xeeute the full instructionThe smaller these bitids, the easier it will
be for the hardare to decode andecute therh

2. Not to mention faster and less expensive.
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A Qo —EAX

B Q1 —EBX
_ Q2 —ECX

2line Q3 |—EDX

to

4 line

decode

See Not

I I

A Qo— Circuitry to do a MOV
B Q1— Circuitry to do an ADD
C Q2— Circuitry to do a SUB

Qz— Circuitry to do a MUL
Qa— Circuitry to do a DIV

? line o5l Circuitry to do an AND
80I' Qs— Circuitry to do an OR

IN€  Q;t— Circuitry to do an XOR
decode

Note: the circuitry attached to the destination register bits is identical
to the circuitry for the source register bits.

Figure 5.1 Separating an Opcode into Separate Fields to Ease Decoding

Although Intel probably went a little overboard with the design of the original 8086 instruction set, an impor-
tant design goal is to keep instruction sizes within a reasonable range. CPUs with unnecessarily long instructions
consume extra memory for their programs. This tends to create more cache misses and, therefore, hurts the over-
all performance of the CPU. Therefore, we would like our instructions to be as compact as possible so our pro-
grams code uses as little memory as possible.

It would seem that if we are encoding 2" different instructions using n bits, there would be very little leeway

in choosing the size of the instruction. It s going to take n bits to encode those 2" instructions, you can t do it
with any fewer. You may, of course, use more than n bits; and believe it or not, that s the secret to reducing the
size of a typical program on the CPU.

Before discussing how to use longer instructions to generate shorter programs, a short digression is neces-
sary. The first thing to note is that we generally cannot choose an arbitrary number of bits for our opcode length.
Assuming that our CPU is capable of reading bytes from memory, the opcode will probably have to be some
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even multiple of eight bits long. If the CPU is not capable of reading bytes from memory (e.g., most RISC CPUs
only read memory in 32 or 64 bit chunks) then the opcode is going to be the same size as the smallest object the
CPU can read from memory at one time (e.g., 32 bits on a typical RISC chip). Any attempt to shrink the opcode
size below this data bus enforced lower limit is futile. Since we re discussing the 80x86 architecture in this text,
we 1l work with opcodes that must be an even multiple of eight bits long.

Another point to consider here is the size of an instruction s operands. Some CPU designers (specifically,
RISC designers) include all operands in their opcode. Other CPU designers (typically CISC designers) do not
count operands like immediate constants or address displacements as part of the opcode (though they do usually
count register operand encodings as part of the opcode). We will take the CISC approach here and not count
immediate constant or address displacement values as part of the actual opcode.

With an eight-bit opcode you can only encode 256 different instructions. Even if we don t count the instruc-
tion s operands as part of the opcode, having only 256 different instructions is somewhat limiting. It s not that
you can t build a CPU with an eight-bit opcode, most of the eight-bit processors predating the 8086 had eight-bit
opcodes, it s just that modern processors tend to have far more than 256 different instructions. The next step up
is a two-byte opcode. With a two-byte opcode we can have up to 65,536 different instructions (which is probably
enough) but our instructions have doubled in size (not counting the operands, of course).

If reducing the instruction size is an important design goal3 we can employ some techniques from data com-
pression theory to reduce the average size of our instructions. The basic idea is this: first we analyze programs
written for our CPU (or a CPU similar to ours if no one has written any programs for our CPU) and count the
number of occurrences of each opcode in a large number of typical applications. We then create a sorted list of
these opcodes from most-frequently-used to least-frequently-used. Then we attempt to design our instruction set
using one-byte opcodes for the most-frequently-used instructions, two-byte opcodes for the next set of most-fre-
quently-used instructions, and three (or more) byte opcodes for the rarely used instructions. Although our maxi-
mum instruction size is now three or more bytes, most of the actual instructions appearing in a program will use
one or two byte opcodes, so the average opcode length will be somewhere between one and two bytes (let s call
it 1.5 bytes) and a typical program will be shorter than had we chosen a two byte opcode for all instructions (see
Figure 5.2).

3. To many CPU designers it is not; however, since this was a design goal for the 8086 we 11 follow this path.
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If the H.O. two bits of the first opcode byte are not both zero, then
the whole opcode is one byte long and the remaining six bits let u
encode 64 one-byte instructions. Since there are a total of three
opcode bytes of these form, we can encode up to 192 different

one-byte instructions.

If the H.O. three bits of our first opcode byte contain %001, then the
opcode is two bytes long and the remaining 13 bits let us encode 8192

different instructions.

If the H.O. three bits of our first opcode byte contain all zeros, then the
opcode is three bytes long and the remaining 21 bits let us encode two

million (221) different instructions.

Figure 5.2 Encoding Instructions Using a Variable-Length Opcode

Although using variable-length instructions allows us to create smaller programs, it comes at a price. First of
all, decoding the instructions is a bit more complicated. Before decoding an instruction field, the CPU must first
decode the instruction s size. This extra step consumes time and may affect the overall performance of the CPU
(by introducing delays in the decoding step and, thereby, limiting the maximum clock frequency of the CPU).
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Another problem with variable length instructions is that it makes decoding multiple instructions in a pipeline
quite difficult (since we cannot trivially determine the instruction boundaries in the prefetch queue). These rea-
sons, along with some others, is why most popular RISC architectures avoid variable-sized instructions. How-
ever, for our purpose, we 1l go with a variable length approach since saving memory is an admirable goal.

Before actually choosing the instructions you want to implement in your CPU, now would be a good time to
plan for the future. Undoubtedly, you will discover the need for new instructions at some point in the future, so
reserving some opcodes specifically for that purpose is a real good idea. If you were using the instruction encod-
ing appearing in Figure 5.2 for your opcode format, it might not be a bad idea to reserve one block of 64 one-byte
opcodes, half (4,096) of the two-byte instructions, and half (1,048,576) of the three-byte opcodes for future use.
In particular, giving up 64 of the very valuable one-byte opcodes may seem extravagant, but history suggests that
such foresight is rewarded.

The next step is to choose the instructions you want to implement. Note that although we ve reserved nearly
half the instructions for future expansion, we don t actually have to implement instructions for all the remaining
opcodes. We can choose to leave a good number of these instructions unimplemented (and effectively reserve
them for the future as well). The right approach is not to see how quickly we can use up all the opcodes, but
rather to ensure that we have a consistent and complete instruction set given the compromises we have to live
with (e.g., silicon limitations). The main point to keep in mind here is that it s much easier to add an instruction
later than it is to remove an instruction later. So for the first go-around, it s generally better to go with a simpler
design rather than a more complex design.

The first step is to choose some generic instruction types. For a first attempt, you should limit the instruc-
tions to some well-known and common instructions. The best place to look for help in choosing these instruc-
tions is the instruction sets of other processors. For example, most processors you find will have instructions like
the following:

Data movement instructions (e.g., MOV)

Arithmetic and logical instructions (e.g., ADD, SUB, AND, OR, NOT)

Comparison instructions

A set of conditional jump instructions (generally used after the compare instructions)
Input/Output instructions

Other miscellaneous instructions

Your goal as the designer of the CPU s initial instruction set is to chose a reasonable set of instructions that
will allow programmers to efficiently write programs (using as few instructions as possible) without adding so
many instructions you exceed your silicon budget or violate other system compromises. This is a very strategic
decision, one that CPU designers should base on careful research, experimentation, and simulation. The job of
the CPU designer is not to create the best instruction set, but to create an instruction set that is optimal given all
the constraints.

Once you ve decided which instructions you want to include in your (initial) instruction set, the next step is
to assign opcodes for them. The first step is to group your instructions into sets by common characteristics of
those instructions. For example, an ADD instruction is probably going to support the exact same set of operands
as the SUB instruction. So it makes sense to put these two instructions into the same group. On the other hand,

the NOT instruction generally requires only a single operand4 as does a NEG instruction. So you d probably put
these two instructions in the same group but a different group than ADD and SUB.

4. Assuming this operation treats its single operand as both a source and destination operand, a common way of handling this
instruction.
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Once you ve grouped all your instructions, the next step is to encode them. A typical encoding will use some
bits to select the group the instruction falls into, it will use some bits to select a particular instruction from that
group, and it will use some bits to determine the types of operands the instruction allows (e.g., registers, memory
locations, and constants). The number of bits needed to encode all this information may have a direct impact on
the instruction s size, regardless of the frequency of the instruction. For example, if you need two bits to select a
group, four bits to select an instruction within that group, and six bits to specify the instruction s operand types,
you re not going to fit this instruction into an eight-bit opcode. On the other hand, if all you really want to do is
push one of eight different registers onto the stack, you can use four bits to select the PUSH instruction and three
bits to select the register (assuming the encoding in Figure 5.2 the eighth and H.O. bit would have to contain
Zero).

Encoding operands is always a problem because many instructions allow a large number of operands. For

example, the generic 80x86 MOV instruction requires a two-byte opcode5 . However, Intel noticed that the
"mov( disp, eax );" and "mov( eax, disp );" instructions occurred very frequently. So they created a special one
byte version of this instruction to reduce its size and, therefore, the size of those programs that use this instruc-
tion frequently. Note that Intel did not remove the two-byte versions of these instructions. They have two differ-
ent instructions that will store EAX into memory or load EAX from memory. A compiler or assembler would
always emit the shorter of the two instructions when given an option of two or more instructions that wind up
doing exactly the same thing.

Notice an important trade-off Intel made with the MOV instruction. They gave up an extra opcode in order
to provide a shorter version of one of the MOV instructions. Actually, Intel used this trick all over the place to
create shorter and easier to decode instructions. Back in 1978 this was a good compromise (reducing the total
number of possible instructions while also reducing the program size). Today, a CPU designer would probably
want to use those redundant opcodes for a different purpose, however, Intel s decision was reasonable at the time
(given the high cost of memory in 1978).

To further this discussion, we need to work with an example. So the next section will go through the process
of designing a very simple instruction set as a means of demonstrating this process.

The Y86 Hypothetical Processor

Because of enhancements made to the 80x86 processor family over the years, Intel s design goals in 1978,
and advances in computer architecture occurring over the years, the encoding of 80x86 instructions is very com-
plex and somewhat illogical. Therefore, the 80x86 is not a good candidate for an example architecture when dis-
cussing how to design and encode an instruction set. However, since this is a text about 80x86 assembly
language programming, attempting to present the encoding for some simpler real-world processor doesn t make
sense. Therefore, we will discuss instruction set design in two stages: first, we will develop a simple (trivial)
instruction set for a hypothetical processor that is a small subset of the 80x86, then we will expand our discus-
sion to the full 80x86 instruction set. Our hypothetical processor is not a true 80x86 CPU, so we will call it the
Y86 processor to avoid any accidental association with the Intel x86 family.

The Y86 processor is a very stripped down version of the x86 CPUs. First of all, the Y86 only supports one
operand size — 16 bits.This simplification frees us from having to encode the size of the operand as part of the
opcode (thereby reducing the total number of opcodes we will need). Another simplification is that the Y86 pro-
cessor only supports four 16-bit registers: AX, BX, CX, and DX. This lets us encode register operands with only
two bits (versus the three bits the 80x86 family requires to encode eight registers). Finally, the Y86 processors
only support a 16-bit address bus with a maximum of 65,536 bytes of addressable memory. These simplifica-
tions, plus a very limited instruction set will allow us to encode all Y86 instructions using a single byte opcode
and a two-byte displacement/offset (if needed).

5. Actually, Intel claims it s a one byte opcode plus a one-byte "mod-reg-r/m" byte. For our purposes, we 1l treat the mod-reg-
r/m byte as part of the opcode.
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The Y86 CPU provides 20 instructions. Seven of these instructions have two operands, eight of these instruc-
tions have a single operand, and five instructions have no operands at all. The instructions are MOV (two forms),
ADD, SUB, CMP, AND, OR, NOT, JE, JNE, JB, JBE, JA, JAE, IMP, BRK, IRET, HALT, GET, and PUT. The
following paragraphs describe how each of these work.

The MOV instruction is actually two instruction classes merged into the same instruction. The two forms of
the mov instruction take the following forms:

mov( reg/memory/constant, reg );

mov( reg, memory );

where reg is any of AX, BX, CX, or DX; constant is a numeric constant (using hexadecimal notation), and
memory is an operand specifying a memory location. The next section describes the possible forms the memory
operand can take. The reg/memory/constant operand tells you that this particular operand may be a register ,
memory location, or a constant.

The arithmetic and logical instructions take the following forms:
add( reg/memory/constant, reg );
sub( reg/memory/constant, reg );
cmp( reg/memory/constant, reg );
and( reg/memory/constant, reg );

or( reg/memory/constant, reg );

not( reg/memory );

Note: the NOT instruction appears separately because it is in a different class than the other arithmetic
instructions (since it supports only a single operand).

The ADD instruction adds the value of the first operand to the second (register) operand, leaving the sum in
the second (register) operand. The SUB instruction subtracts the value of the first operand from the second, leav-
ing the difference in the second operand. The CMP instruction compares the first operand against the second and
saves the result of this comparison for use with one of the conditional jump instructions (described in a moment).
The AND and OR instructions compute the corresponding bitwise logical operation on the two operands and
store the result into the first operand. The NOT instruction inverts the bits in the single memory or register oper-
and.

The control transfer instructions interrupt the sequential execution of instructions in memory and transfer
control to some other point in memory either unconditionally, or after testing the result of the previous CMP
instruction. These instructions include the following:

ja dest; -- Jump if above (i.e., greater than)

jae dest; -- Jump if above or equal (i.e., greater than or equal)
jb dest; -- Jump if below (i.e., less than)

jbe dest; -- Jump if below or equal (i.e., less than or equal)

je dest; -- Jump if equal

jne dest; -- Jump if not equal
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jmp dest; -- Unconditional jump
iret; -- Return from an interrupt

The first six instructions let you check the result of the previous CMP instruction for greater than, greater or

equal, less than, less or equal, equality, or inequality6. For example, if you compare the AX and BX registers with
a "cmp( ax, bx );" instruction and execute the JA instruction, the Y86 CPU will jump to the specified destination
location if AX was greater than BX. If AX was not greater than BX, control will fall through to the next instruc-
tion in the program.

The JMP instruction unconditionally transfers control to the instruction at the destination address. The IRET
instruction returns control from an interrupt service routine, which we will discuss later.

The GET and PUT instructions let you read and write integer values. GET will stop and prompt the user for a
hexadecimal value and then store that value into the AX register. PUT displays (in hexadecimal) the value of the
AX register.

The remaining instructions do not require any operands, they are HALT and BRK. HALT terminates program
execution and BRK stops the program in a state that it can be restarted.

The Y86 processors require a unique opcode for every different instruction, not just the instruction classes.
Although mov( bx, ax ); and mov( cx, ax ); are both in the same class, they must have dif ferent opcodes if
the CPU is to differentiate them. However, before looking at all the possible opcodes, perhaps it would be a good
idea to learn about all the possible operands for these instructions.

5.3.1 Addressing Modes on the Y86

The Y86 instructions use five different operand types: registers, constants, and three memory addressing

schemes. Each form is called an addressing mode. The Y86 processor supports the register addressing mode’,
the immediate addressing mode, the indirect addressing mode, the indexed addressing mode, and the direct
addressing mode. The following paragraphs explain each of these modes.

Register operands are the easiest to understand. Consider the following forms of the MOV instruction:
mov( ax, ax );
mov( bx, ax );
mov( cx, ax );

mov( dx, ax );

The first instruction accomplishes absolutely nothing. It copies the value from the AX register back into the
AX register. The remaining three instructions copy the values of BX, CX and DX into AX. Note that these
instructions leave BX, CX, and DX unchanged. The second operand (the destination) is not limited to AX; you
can move values to any of these registers.

Constants are also pretty easy to deal with. Consider the following instructions:

mov( 25, ax );

6. The Y86 processor only performs unsigned comparisons.
7. Technically, registers do not have an address, but we apply the term addressing mode to registers nonetheless.
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mov( 195, bx );
mov( 2056, cx );
mov( 1000, dx );

These instructions are all pretty straightforward; they load their respective registers with the specified hexa-
decimal constant®.

There are three addressing modes which deal with accessing data in memory. The following instructions
demonstrate the use of these addressing modes:

mov( [1000], ax );
mov( [bx], ax );
mov( [1000+bx], ax );

The first instruction above uses the direct addressing mode to load AX with the 16 bit value stored in memory
starting at location $1000.

The "mov( [bx], ax );" instruction loads AX from the memory location specified by the contents of the bx
register. This is an indirect addressing mode. Rather than using the value in BX, this instruction accesses to the
memory location whose address appears in BX. Note that the following two instructions:

mov( 1000, bx );

mov( [bx], ax );

are equivalent to the single instruction:
mov( [1000], ax );

Of course, the second sequence is preferable. However, there are many cases where the use of indirection is
faster, shorter, and better. We 1l see some examples of this a little later.

The last memory addressing mode is the indexed addressing mode. An example of this memory addressing
mode is

mov( [1000+bx], ax );

This instruction adds the contents of BX with $1000 to produce the address of the memory value to fetch.
This instruction is useful for accessing elements of arrays, records, and other data structures.

5.3.2 Encoding Y86 Instructions

Although we could arbitrarily assign opcodes to each of the Y86 instructions, keep in mind that a real CPU
uses logic circuitry to decode the opcodes and act appropriately on them. A typical CPU opcode uses a certain
number of bits in the opcode to denote the instruction class (e.g., MOV, ADD, SUB), and a certain number of bits
to encode each of the operands.

8. All numeric constants in Y86 assembly language are given in hexadecimal. The "$" prefix is not necessary.
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A typical Y86 instruction takes the form shown in Figure 5.3. The basic instruction is either one or three
bytes long. The instruction opcode consists of a single byte that contains three fields. The first field, the H.O.
three bits, defines the instruction. This provides eight combinations. As you may recall, there are 20 different
instructions; we cannot encode 20 instructions with three bits, so we 1l have to pull some tricks to handle the
other instructions. As you can see in Figure 5.3, the basic opcode encodes the MOV instructions (two instruc-
tions, one where the 77 field specifies the destination, one where the mmm: field specifies the destination), and the
ADD, SUB, CMP, AND, and OR instructions. There is one additional instruction field: special. The special
instruction class provides a mechanism that allows us to expand the number of available instruction classes, we
will return to this expansion opcode shortly.

iffirrmmm
I rr mmm This 16-bit field is present
) only if the instruction is a
000 = special 00 = AX 000=AX jump instruction or an operand
001 = or 01 =BX 001=BX is a memory addressing mode
010 = and 10 = CX 010=CX of the form [xxxx+bx], [xxxxx],
011 = cmp 11 = DX 011=DX or a constant.
100 = sub 100 =[BX]
101 = add 101 = [xxxx+BX]
110 = mov(mem/reg/const, reg) 1 1 0 = [xxxx]
111 = mov( reg, mem ) 11 1 = constant
Figure 5.3 Basic Y86 Instruction Encoding

To determine a particular instruction s opcode, you need only select the appropriate bits for the iii, rr, and
mmm fields. The rr field contains the destination register (except for the MOV instruction whose iii field is
%111) and the mmm field encodes the source operand. For example, to encode the "mov( bx, ax );" instruction
you would select iii=110 ("mov( reg, reg );), r#=00 (AX), and mmm=001 (BX). This produces the one-byte
instruction %11000001 or $CO.

Some Y86 instructions require more than one byte. For example, the instruction "mov( [1000], ax );" loads
the AX register from memory location $1000. The encoding for the opcode is %11000110 or $C6. However, the
encoding for the "mov( [2000], ax );" instruction s opcode is also $C6. Clearly these two instructions do differ-
ent things, one loads the AX register from memory location $1000 while the other loads the AX register from
memory location $2000. To encode an address for the [xxxx] or [xxxx+bx] addressing modes, or to encode the
constant for the immediate addressing mode, you must follow the opcode with the 16-bit address or constant,
with the L.O. byte immediately following the opcode in memory and the H.O. byte after that. So the three byte
encoding for "mov( [1000], ax );" would be $C6, $00, $10 and the three byte encoding for "mov( [2000], ax );"
would be $C6, $00, $20.

The special opcode allows the x86 CPU to expand the set of available instructions. This opcode handles sev-
eral zero and one-operand instructions as shown in Figure 5.4 and Figure 5.5.
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i mmm (if it = 10) This 16-bit field is present
only if the instruction is a

00 = zero operand instructions 000 = AX jump instruction or an operand
01 = jump instructions 001 =BX is a memory addressing mode
10 = not 010 =CX of the form [bx+xxxx], [xxxxx],
11 =illegal (reserved) 011 = DX or a constant.

100 = [BX]

101 = [xxxx+BX]

110 = [xxxx]

111 = constant

Figure 5.4 Single Operand Instruction Encodings
OOQO|0oQiili
i
000 = illegal
001 =illegal
010 = illegal
011 = brk
100 = iret
101 = halt
110 = get
111 = put
Figure 5.5 Zero Operand Instruction Encodings

There are four one-operand instruction classes. The first encoding (00) further expands the instruction set
with a set of zero-operand instructions (see Figure 5.5). The second opcode is also an expansion opcode that pro-
vides all the Y86 jump instructions (see Figure 5.6). The third opcode is the NOT instruction. This is the bitwise
logical not operation that inverts all the bits in the destination register or memory operand. The fourth single-
operand opcode is currently unassigned. Any attempt to execute this opcode will halt the processor with an ille-
gal instruction error. CPU designers often reserve unassigned opcodes like this one to extend the instruction set
at a future date (as Intel did when moving from the 80286 processor to the 80386).
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mmm (if ii = 10) This 16-bit field is always present
and contains the target address to

000 = je jump move into the instruction

001 = jne pointer register if the jump

010=jb is taken.

011 = jbe

100 = ja

101 = jae

110 = jmp

111 = illegal

Figure 5.6 Jump Instruction Encodings

There are seven jump instructions in the x86 instruction set. They all take the following form:

JXX  address,

The JMP instruction copies the 16-bit value (address) following the opcode into the IP register. Therefore,
the CPU will fetch the next instruction from this target address; effectively, the program jumps from the point
of the JMP instruction to the instruction at the target address.

The JMP instruction is an example of an unconditional jump instruction. It always transfers control to the tar-
get address. The remaining six instructions are conditional jump instructions. They test some condition and jump
if the condition is true; they fall through to the next instruction if the condition is false. These six instructions,
JA, JAE, JB, JBE, JE, and JNE let you test for greater than, greater than or equal, less than, less than or equal,
equality, and inequality. You would normally execute these instructions immediately after a CMP instruction
since it sets the less than and equality flags that the conditional jump instructions test. Note that there are eight
possible jump opcodes, but the x86 uses only seven of them. The eighth opcode is another illegal opcode.

The last group of instructions, the zero operand instructions, appear in Figure 5.5. Three of these instructions
are illegal instruction opcodes. The BRK (break) instruction pauses the CPU until the user manually restarts it.
This is useful for pausing a program during execution to observe results. The IRET (interrupt return) instruction
returns control from an interrupt service routine. We will discuss interrupt service routines later. The HALT pro-
gram terminates program execution. The GET instruction reads a hexadecimal value from the user and returns
this value in the AX register; the PUT instruction outputs the value in the AX register.

5.3.3 Hand Encoding Instructions

Keep in mind that the Y86 processor fetches instructions as bit patterns from memory. It decodes and exe-
cutes those bit patterns. The processor does not execute instructions of the form "mov( ax, bx );" (that is, a string
of characters that are readable by humans). Instead, it executes the bit pattern $C1 from memory. Instructions
like "mov( ax, bx );" and "add( 5, cx );" are human-readable representations of these instructions that we must
first convert into machine code (that is, the binary representation of the instruction that the machine actually exe-
cutes). In this section we will explore how to manually accomplish this task.
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The first step is to chose an instruction to convert into machine code. We 1l start with a very simple example,
the "add( cx, dx );" instruction. Once you ve chosen the instruction, you look up the instruction in one of the
figures of the previous section. The ADD instruction is in the first group (see Figure 5.3) and has an iii field of
%101. The source operand is CX, so the mmm field is %010 and the destination operand is DX so the rr field is
%11. Merging these bits produces the opcode %10111010 or $BA.

1101]1 1|10 1{0

M rr mmm This 16-bit field is not presén
101 = add 11 = DX 010=CX since no numeric operand

is required by this insruction

Figure 5.7 Encoding ADD( cx, dx);

Now consider the "add( 5, ax );" instruction. Since this instruction has an immediate source operand, the
mmm field will be %111. The destination register operand is AX (%00) so the full opcode becomes $10100111
or $A7. Note, however, that this does not complete the encoding of the instruction. We also have to include the
16-bit constant $0005 as part of the instruction. The binary encoding of the constant must immediately follow
the opcode in memory, so the sequence of bytes in memory (from lowest address to highest address) is $A7, $05,
$00. Note that the L.O. byte of the constant follows the opcode and the H.O. byte of the constant follows the
L.O. byte. This sequence appears backwards because the bytes are arranged in order of increasing memory
address and the H.O. byte of a constant always appears in the highest memory address.

1f0 10 of1 1|2 5
I rr mmm This 16-bit field holds ta
101 = add 00 = AX 111 = constant binary equivalent of the

constant (5)

Figure 5.8 Encoding ADD( 5, ax );

The "add( [2ff+bx], cx );" instruction also contains a 16-bit constant associated with the instruction s encod-
ing — the displacement portion of the indexed addressing mode.To encode this instruction we use the following
field values: iii=%101, r=%10, and mmm=%101. This produces the opcode byte %10110101 or $B5. The
complete instruction also requires the constant $2FF so the full instruction is the three-byte sequence $B5, $FF,
$02.
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101|10/10]1 | $2H

i rr mmm This 16-bit field holds th
101 = add 10 = X 101 = [$2ff+bx] binary equivalent of the
displacement ($2FF)

Figure 5.9 Encoding ADD( [$2ff+bx], cx );

Now consider the "add( [1000], ax );" instruction. This instruction adds the 16-bit contents of memory loca-
tions $1000 and $1001 to the value in the AX register. Once again, iii=%101 for the ADD instruction. The des-
tination register is AX so r7=%00. Finally, the addressing mode is the displacement-only addressing mode, so
mmm=%110. This forms the opcode %10100110 or $A6. The instruction is three bytes long since it must
encode the displacement (address) of the memory location in the two bytes following the opcode. Therefore, the
complete three-byte sequence is $A6, $00, $10.

110 1{0 of1 1{o0 | $1000
Hi rr mmm This 16-bit field holds th
101 = add 00 = AX 110 = [$1000] binary equivalent of the
displacement ($1000)

Figure 5.10 Encoding ADD( [1000], ax );

The last addressing mode to consider is the register indirect addressing mode, [bx]. The "add( [bx], bx );"
instruction uses the following encoded values: mmm=%101, rr=%01 (bx), and mmm=%100 ([bx]). Since the
value in the BX register completely specifies the memory address, there is no need for a displacement field.
Hence, this instruction is only one byte long.

110 1|10 111 00 |

i rr mmm Since there isn't a disglacehmﬁn
_ _ or constant associated with this
101 = add 01=BX 100 = [bx] instruction, this 16-bit field is

not present in the instruction.

Figure 5.11 Encoding the ADD( [bx], bx ); Instruction

You use a similar approach to encode the SUB, CMP, AND, and OR instructions as you do the ADD instruc-
tion. The only difference is that you use different values for the #ii field in the opcode.
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The MOV instruction is special because there are two forms of the MOV instruction. You encode the first
form (iii=%110) exactly as you do the ADD instruction. This form copies a constant or data from memory or a
register (the mmm field) into a destination register (the rr field).

The second form of the MOV instruction (iii=%111) copies data from a source register (77) to a destination
memory location (that the mmm field specifies). In this form of the MOV instruction, the source/destination
meanings of the r7 and mmm fields are reversed so that 77 is the source field and mmm is the destination field.
Another difference is that the mmm field may only contain the values %100 ([bx]), %101 ([disp+bx]), and %110
([disp]). The destination values cannot be %000..%011 (registers) or %111 (constant). These latter five encod-
ings are illegal (the register destination instructions are handled by the other MOV instruction and storing data
into a constant doesn t make any sense).

The Y86 processor supports a single instruction with a single memory/register operand — the NOTinstruc-
tion. The NOT instruction has the syntax: "not( reg );" or "not( mem );" where mem represents one of the mem-
ory addressing modes ([bx], [disp+bx], or [disp]). Note that you may not specify a constant as the operand of the
NOT instruction.

Since the NOT instruction has only a single operand, it only uses the mmm field to encode this operand. The
rr field, combined with the iii field, selects the NOT instruction (iii=%000 and »7=%10). Whenever the iii field
contains zero this tells the CPU that special decoding is necessary for the instruction. In this case, the rr field
specifies whether we have the NOT instruction or one of the other specially decoded instructions.

To encode an instruction like "not( ax );" you would simply specify %000 for iii and %10 for the rr fields.
Then you would encode the mmm tield the same way you would encode this field for the ADD instruction. Since
mmm=%000 for AX, the encoding of "not( ax );" would be %00010000 or $10.

010 0Of1 0[O0 O]O

P rr mmm Since there isn't a displacemen
) or constant associated with this
000 = special 10 =NOT 000 = AX instruction, this 16-bit field is

not present in the instruction.

Figure 5.12 Encoding the NOT( ax ); Instruction

The NOT instruction does not allow an immediate (constant) operand, hence the opcode %00010111 ($17) is
an illegal opcode.

The Y86 conditional jump instructions also use a special encoding. These instructions are always three bytes
long. The first byte (the opcode) specifies which conditional jump instruction to execute and the next two bytes
specify where the CPU transfers if the condition is met. There are seven different Y86 jump instructions, six
conditional jumps and one unconditional jump. These instructions set mmm=%000, r#=%01, and use the mmm
field to select one of the seven possible jumps; the eighth possible opcode is an illegal opcode (see Figure 5.6).
Encoding these instructions is relatively straight-forward. Once you pick the instruction you want to encode,
you ve determined the opcode (since there is a single opcode for each instruction). The opcode values fall in the
range $08..$0E ($0F is the illegal opcode).

The only field that requires some thought is the 16-bit operand that follows the opcode. This field holds the
address of the target instruction to which the (un)conditional jump transfers if the condition is true (e.g., JE trans-
fers control to this address if the previous CMP instruction found that its two operands were equal). To properly
encode this field you must know the address of the opcode byte of the target instruction. If you ve already con-
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verted the instruction to binary form and stored it into memory, this isn t a problem; just specify the address of
that instruction as the operand of the condition jump. On the other hand, if you haven t yet written, converted,
and placed that instruction into memory, knowing its address would seem to require a bit of divination. Fortu-
nately, you can figure out the target address by computing the lengths of all the instructions between the current
jump instruction you re encoding and the target instruction. Unfortunately, this is an arduous task. The best
solution is to write all your instructions down on paper, compute their lengths (which is easy, all instructions are
one or three bytes long depending on the presence of a 16-bit operand), and then assign an appropriate address to
each instruction. Once you ve done this (and, assuming you haven t made any mistakes) you Il know the start-
ing address for each instruction and you can fill in target address operands in your (un)conditional jump instruc-
tions as you encode them. Fortunately, there is a better way to do this, as you 1l see in the next section.

The last group of instructions, the zero operand instructions, are the easiest to encode. Since they have no
operands they are always one byte long and the instruction uniquely specifies the opcode for the instruction.
These instructions always have iii=%000, 7#=%00, and mmm specifies the particular instruction opcode (see Fig-
ure 5.5). Note that the Y86 CPU leaves three of these instructions undefined (so we can use these opcodes for
future expansion).

5.3.4 Using an Assembler to Encode Instructions

Of course, hand coding machine language programs as demonstrated in the previous section is impractical
for all but the smallest programs. Certainly you haven t had to do anything like this when writing HLA pro-
grams. The HLA compiler lets you create a text file containing human readable forms of the instructions. You
might wonder why we can write such code for the 80x86 but not for the Y86. The answer is to use an assembler
or compiler for the Y86. The job of an assembler/compiler is to read a text file containing human readable text
and translate that text into the binary encoded representation for the corresponding machine language program.

An assembler or compiler is nothing special. It s just another program that executes on your computer sys-
tem. The only thing special about an assembler or compiler is that it translates programs from one form (source
code) to another (machine code). A typical Y86 assembler, for example, would read lines of text with each line

containing a Y86 instruction, it would parse9 each statement and then write the binary equivalent of each instruc-
tion to memory or to a file for later execution.

Assemblers have two big advantages over coding in machine code. First, they automatically translate strings
like "ADD( ax, bx );" and "MOV( ax, [1000]);" to their corresponding binary form. Second, and probably even
more important, assemblers let you attach labels to statements and refer to those labels within jump instructions;
this means that you don t have to know the target address of an instruction in order to specify that instruction as
the target of a jump or conditional jump instruction. Windows users have access to a very simple Y86 assem-
bler!” that lets you specify up to 26 labels in a program (using the symbols A .. Z). To attach a label to a state-
ment, you simply preface the instruction with the label and a colon, e.g.,

L:mov( 0, ax );

To transfer control to a statement with a label attached to it, you simply specify the label name as the operand
of the jump instruction, e.g.,

jmp L;

9. "Parse" means to figure out the meaning of the statement.
10.This program is written with Borland s Delphi and was not ported to Linux by the time this was written.
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The assembler will compute the address of the label and fill in the address for you whenever you specify the
label as the operand of a jump or conditional jump instruction. The assembler can do this even if it hasn t yet
encountered the label in the program s source file (i.e., the label is attached to a later instruction in the source
file). Most assemblers accomplish this magic by making two passes over the source file. During the first pass
the assembler determines the starting address of each symbol and stores this information in a simple database
called the symbol table. The assembler does not emit any machine code during this first pass. Then the assem-
bler makes a second pass over the source file and actually emits the machine code. During this second pass it
looks up all label references in the symbol table and uses the information it retrieves from this database to fill in
the operand fields of the instructions that refer to some symbol.

5.3.5 Extending the Y86 Instruction Set

The Y86 CPU is a trivial CPU, suitable only for demonstrating how to encode machine instructions. How-
ever, like any good CPU the Y86 design does provide the capability for expansion. So if you wanted to improve
the CPU by adding new instructions, the ability to accomplish this exists in the instruction set.

There are two standard ways to increase the number of instructions in a CPU s instruction set. Both mecha-
nisms require the presence of undefined (or illegal) opcodes on the CPU. Since the Y86 CPU has several of
these, we can expand the instruction set.

The first method is to directly use the undefined opcodes to define new instructions. This works best when
there are undefined bit patterns within an opcode group and the new instruction you want to add falls into that
same group. For example, the opcode %0001 1mmm falls into the same group as the NOT instruction. If you
decided that you really needed a NEG (negate, take the two s complement) instruction, using this particular
opcode for this purpose makes a lot of sense because you d probably expect the NEG instruction to use the same
syntax (and, therefore, decoding) as the NOT instruction.

Likewise, if you want to add a zero-operand instruction to the instruction set, there are three undefined zero-
operand instructions that you could use for this purpose. You d just appropriate one of these opcodes and assign
your instruction to it.

Unfortunately, the Y86 CPU doesn t have that many illegal opcodes open. For example, if you wanted to add
the SHL, SHR, ROL, and ROR instructions (shift and rotate left and right) as single-operand instructions, there is
insufficient space in the single operand instruction opcodes to add these instructions (there is currently only one
open opcode you could use). Likewise, there are no two-operand opcodes open, so if you wanted to add an XOR
instruction or some other two-operand instruction, you d be out of luck.

A common way to handle this dilemma (one the Intel designers have employed) is to use a prefix opcode
byte. This opcode expansion scheme uses one of the undefined opcodes as an opcode prefix byte. Whenever the
CPU encounters a prefix byte in memory, it reads and decodes the next byte in memory as the actual opcode.
However, it does not treat this second byte as it would any other opcode. Instead, this second opcode byte uses a
completely different encoding scheme and, therefore, lets you specify as many new instructions as you can
encode in that byte (or bytes, if you prefer). For example, the opcode $FF is illegal (it corresponds to a "mov(

dx, const );" instruction) so we can use this byte as a special prefix byte to further expand the instruction set!!.

11.We could also have used values $F7, $EF, and $E7 since they also correspond to an attempt to store a register into a con-
stant. However, $FF is easier to decode. On the other hand, if you need even more prefix bytes for instruction expansion,
you can use these three values as well.
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1111111 1)1

Opcode Expansion Prefix Byte (§FF)  Instruction opcode Any additional
byte (you have to operand bytes
define this) as defined by

your instructions

Figure 5.13 Using a Prefix Byte to Extend the Instruction Set

5.4  Encoding 80x86 Instructions

The Y86 processor is simple to understand, easy to hand encode instructions for it, and a great vehicle for
learning how to assign opcodes. It s also a purely hypothetical device intended only as a teaching tool There-
fore, you can now forget all about the Y86, it s served its purpose. Now it s time to take a look that the actual
machine instruction format for the 80x86 CPU family.

They don t call the 80x86 CPU a Complex Instruction Set Computer for nothing. Although more complex
instruction encodings do exist, no one is going to challenge the assertion that the 80x86 has a complex instruc-
tion encoding. The generic 80x86 instruction takes the form shown in Figure 5.14. Although this diagram seems
to imply that instructions can be up to 16 bytes long, in actuality the 80x86 will not allow instructions greater
than 15 bytes in length.
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Optional Immediate

One or two byte Scaled Indexed (constant) data.

instruction opcode (two Byte if the This is a zero,

bytes if the special $OF  jnqiryction uses one, two, or four

opcode expansion prefix is 5 'scajed indexed byte constant value

present) memory addressing if the instruction has
mode an immediate operand

CITT T 0 &8 & LT T T [T T T

Prefix Bytes

Zero to four “mod-reg-r/m” Displacement.
special prefix byte that specifies This is a zero,
values that the addressing med one, two, or
affect the and instruction four byte value
operation of operand size. that specifies a
the instruction memory address
This byte is only displacement fo
required if the the instruction.

instruction supports
register or memory
operands

Figure 5.14 80x86 Instruction Encoding

The prefix bytes are not the "opcode expansion prefix" that the previous sections in this chapter discussed.
Instead, these are special bytes to modify the behavior of existing instructions (rather than define new instruc-
tions). We Il take a look at a couple of these prefix bytes in a little bit, others we 1l leave for discussion in later
chapters. The 80x86 certainly supports more than four prefix values, however, an instruction may have a maxi-
mum of four prefix bytes attached to it. Also note that the behavior of many prefix bytes are mutually exclusive
and the results are undefined if you put a pair of mutually exclusive prefix bytes in front of an instruction.

The 80x86 supports two basic opcode sizes: a standard one-byte opcode and a two-byte opcode consisting of
a $0F opcode expansion prefix byte and a second byte specifying the actual instruction. One way to view these
opcode bytes is as an eight-bit extension of the iii field in the Y86 encoding. This provides for up to 512 differ-
ent instruction classes (although the 80x86 does not yet use them all). In reality, various instruction classes use
certain bits in this opcode for decidedly non-instruction-class purposes. For example, consider the ADD instruc-
tion opcode. It takes the form shown in Figure 5.15.

Note that bit number zero specifies the size of the operands the ADD instruction operates upon. If this field
contains zero then the operands are eight bit registers and memory locations. If this bit contains one then the
operands are either 16-bits or 32-bits. Under 32-bit operating systems the default is 32-bit operands if this field
contains a one. To specify a 16-bit operand (under Windows or Linux) you must insert a special "operand-size
prefix byte" in front of the instruction.

Bit number one specifies the direction of the transfer. If this bit is zero, then the destination operand is a
memory location (e.g., "add( al, [ebx]);" If this bit is one, then the destination operand is a register (e.g., "add(
[ebx], al );" You Il soon see that this direction bit creates a problem that results in one instruction have two dif-
ferent possible opcodes.
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ADD opcode.

d = 0 if adding from register to memory.
d = 1 if adding from memory to register.
s = 0 if adding eight-bit operands.

s = 1 if adding 16-bit or 32-bit operands

Figure 5.15 80x86 ADD Opcode

5.4.1 Encoding Instruction Operands

The "mod-reg-r/m" byte (in Figure 5.14) specifies a basic addressing mode. This byte contains the following
fields:

Figure 5.16 MOD-REG-R/M Byte

The REG field specifies an 80x86 register. Depending on the instruction, this can be either the source or the
destination operand. Many instructions have the "d" (direction) field in their opcode to choose whether this oper-
and is the source (d=0) or the destination (d=1) operand. This field is encoded using the bit patterns found in the
following table:

REGValue Reg::tgifgjl;?zgfls size Regisi;e£ g_gﬁ;a size Regisitse; |2f gﬁtsa sizel

%000 al ax cax
%001 cl o ook
%010 dl dx cdx
%011 bl bx bx
%100 ah sp esp
%101 ch bp ebp
%110 dh i osi
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Ragister if data size| Register if data size| Register if data size

REGValue is eight bits is 16-bits is 32 bits

%111 bh di edi

For certain (single operand) instructions, the REG field may contain an opcode extension rather than a regis-
ter value (the R/M field will specify the operand in this case).

The MOD and R/M fields combine to specify the other operand in a two-operand instruction (or the only
operand in a single-operand instruction like NOT or NEG). Remember, the "d" bit in the opcode determines
which operand is the source and which is the destination. The MOD and R/M fields together specify the follow-
ing addressing modes:

MOD Meaning

%00 Register indirect
addressing mode of
SIB with no dis
placement (when
R/M=%2100) or
Displacement only
addressing mode
(when R/
M=%101).

%01 One-byte signed
displacement fol
lows addressing
mode byte(s).

%10 Four-byte signed
displacement fal
lows addressing
mode byte(s).

%11 Register address
ing mode.
MOD R/M Addressing Mode
%00 %000 [eax]
%01 %000 [eax+disp]
%10 %000 [eax+disp,)
%11 %000 register (al/ax/eax)
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MOD R/M Addressing Mode
%00 %001 [ecx]
%01 %001 [ecx+disg]
%10 %001 [ecx+disg,]
%11 %001 register (cl/cx/ecx)
%00 %010 [edX]
%01 %010 [edx+disg]
%10 %010 [edx+dispy)]
%11 %010 register (dl/dx/edx)
%00 %011 [ebx]
%01 %011 [ebx+disg]
%10 %011 [ebx+dispo]
%11 %011 register (bl/bx/ebx)
%00 %100 SIB Mode
%01 %100 SIB + disg Mode
%10 %100 SIB + disg, Mode
%11 %100 register (ah/sp/esp)
%00 %101 Displacement Only Mode

(32-bit displacement)

%01 %101 [ebp+disg]
%10 %101 [ebp+disp]
%11 %101 register (ch/bp/ebp)
%00 %110 [esi]
%01 %110 [esi+disg]
%10 %110 [esi+disp,]
%11 %110 register (dh/si/esi)
%00 %111 [edi]
%01 %111 [edi+disy]
%10 %111 [edi+disp;]
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MOD R/M Addressing Mode

%11 %111 register (bh/di/edi)

a. The size bit in the opcode specifies eight or 32-bit register size. To select a 16-bit reg-
ister requires a prefix byte.

There are a couple of interesting things to note about this table. First of all, note that there are two forms of
the [reg+disp] addressing modes: one form with an eight-bit displacement and one form with a 32-bit displace-
ment. Addressing modes whose displacement falls in the range -128..+127 require only a single byte displace-
ment after the opcode; hence these instructions will be shorter (and sometimes faster) than instructions whose
displacement value is outside this range. It turns out that many offsets are within this range, so the assembler/
compiler can generate shorter instructions for a large percentage of the instructions.

The second thing to note is that there is no [ebp] addressing mode. If you look in the table above where this
addressing mode logically belongs, you 1l find that it s slot is occupied by the 32-bit displacement only address-
ing mode. The basic encoding scheme for addressing modes didn t allow for a displacement only addressing
mode, so Intel "stole" the encoding for [ebp] and used that for the displacement only mode. Fortunately, any-
thing you can do with the [ebp] addressing mode you can do with the [ebp+dispg] addressing mode by setting the

eight-bit displacement to zero. True, the instruction is a little bit longer, but the capabilities are still there. Intel
(wisely) chose to replace this addressing mode because they anticipated that programmers would use this
addressing mode less often than the other register indirect addressing modes (for reasons you Il discover in a
later chapter).

Another thing you Il notice missing from this table are addressing modes of the form [ebx+edx*4], the so-
called scaled indexed addressing modes. You Il also notice that the table is missing addressing modes of the
form [esp], [esp+dispg], and [esp+disps,]. In the slots where you would normally expect these addressing modes
you Il find the SIB (scaled index byte) modes. If these values appear in the MOD and R/M fields then the
addressing mode is a scaled indexed addressing mode with a second byte (the SIB byte) following the MOD-
REG-R/M byte that specifies the registers to use (note that the MOD field still specifies the displacement size of
zero, one, or four bytes). The following diagram shows the layout of this SIB byte and the following tables
explain the values for each field.

Figure 5.17 SIB (Scaled Index Byte) Layout

ScaleValue Index*ScaleValue
%00 Indec*1
%01 Index*2
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ScaleValue Index*ScaleValue
%10 Index*4
%11 Index*8
Index Register

%000 EAX

%001 ECX

%010 EDX

%011 EBX

%100 lllegal

%101 EBP

%110 ESI

%111 EDI

Base Register

%000 EAX

%001 ECX

%010 EDX

%011 EBX

%100 ESP

%101 Displacement-only
if MOD = %00,
EBP if MOD =
%01 or %10

%110 ESI

%111 EDI

The MOD-REG-R/M and SIB bytes are complex and convoluted, no question about that. The reason these
addressing mode bytes are so convoluted is because Intel reused their 16-bit addressing circuitry in the 32-bit
mode rather than simply abandoning the 16-bit format in the 32-bit mode. There are good hardware reasons for
this, but the end result is a complex scheme for specifying addressing modes.
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Part of the reason the addressing scheme is so convoluted is because of the special cases for the SIB and dis-
placement-only modes. You will note that the intuitive encoding of the MOD-REG-R/M byte does not allow for
a displacement-only mode. Intel added a quick kludge to the addressing scheme replacing the [EBP] addressing
mode with the displacement-only mode. Programmers who actually want to use the [EBP] addressing mode
have to use [EBP+0] instead. Semantically, this mode produces the same result but the instruction is one byte
longer since it requires a displacement byte containing zero.

You will also note that if the REG field of the MOD-REG-R/M byte contains %100 and MOD does not con-
tain %11 then the addressing mode is an "SIB" mode rather than the expected [ESP], [ESP+dispg], or

[ESP+disps,] mode. The SIB mode is used when an addressing mode uses one of the scaled indexed registers,
1.e., one of the following addressing modes:

[regz,Teax*n] MOD = %00
[reg;,+ebx™n] Note:n=1, 2, 4, or 8.
[regz,+ecx*n]

[regz,+edx™n]

[regsp+ebp*n]

[regs,tesi*n]

[reg;,t+edi*n]

[disptreggteax™n] MOD = %01
[disptreggtebx*n]

[disptreggtecx*n]
[dispt+reggtedx*n]
[dispt+regg+ebp*n]

[disptreggtesi*n]

[disptreggtedi*n]

[disptreg;,+eax™n] MOD = %10
[disptreg;,+ebx*n]
[disptreg;,tecx®n]
[disptregz,tedx*n]
[disp+regs,+ebp*n]
[disptreg;,+esi*n]

[disptregs,tedi*n]
[dispteax*n] MOD = %00 and BASE field contains %101

[disptebx*n]
[disptecx*n]
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[dispt+edx*n]
[dispt+ebp*n]
[disp+esi*n]

[disp+edi*n]

In each of these addressing modes, the MOD field of the MOD-REG-R/M byte specifies the size of the dis-
placement (zero, one, or four bytes). This is indicated via the modes "SIB Mode," "SIB + dispg Mode," and

"SIB + disp3, Mode." The Base and Index fields of the SIB byte select the base and index registers, respectively.

Note that this addressing mode does not allow the use of the ESP register as an index register. Presumably, Intel
left this particular mode undefined to provide the ability to extend the addressing modes in a future version of the
CPU (although extending the addressing mode sequence to three bytes seems a bit extreme).

Like the MOD-REG-R/M encoding, the SIB format redefines the [EBP+index*scale] mode as a displace-
ment plus index mode. Once again, if you really need this addressing mode, you will have to use a single byte
displacement value containing zero to achieve the same result.

5.4.2 Encoding the ADD Instruction: Some Examples

To figure out how to encode an instruction using this complex scheme, some examples are warranted. So
let s take a lot at how to encode the 80x86 ADD instruction using various addressing modes. The ADD opcode is
$00, $01, $02, or $03, depending on the direction and size bits in the opcode (see Figure 5.15). The following
figures each describe how to encode various forms of the ADD instruction using different addressing modes.

%11 indicate  Thjs field, along with the d bit

Zero indicates that ~ thatthe R/M in the opcode indicates that the
we are adding eigh field is a destination field is the CL reg-
bit values together  register. ister.

opoloofoolo 1L o|pofool1

%000000 indicates This field, along

that this is an ADD with the d bit

instruction. in the opcode,

indicates that ADD(al, cl') = $00, $C1

the source field
is the AL register

Zero indicates that we
are adding the REG
field to the R/M field.

Figure 5.18 Encoding the ADD( al, cl); Instruction

There is an interesting side effect of the operation of the direction bit and the MOD-REG-R/M organization:
some instructions have two different opcodes (and both are legal). For example, we could encode the "add( al, cl
);" instruction from Figure 5.18 as $02, $C8 by reversing the AL and CL registers in the REG and R/M fields and
then setting the d bit in the opcode (bit #1). This issue applies to instructions with two register operands.
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%11 indicate  Thjs field, along with the d bit

One indicates that  that the R/M in the opcode indicates that the
we are adding 32 fieldis a destination field is the ECX
bit values togethe  register. register.

opolooloof1 1L olpofoof1

%000000 indicates This field, along

that this is an ADD with the d bit

instruction. in the opcode,

ADD( eax, ecx ) =

indicates that $01, $C1

the source field
is the EAX register.

Zero indicates that we
are adding the REG
field to the R/M field.

Figure 5.19 Encoding the ADD( eax, ecx ); instruction

Note that we can also encode "add( eax, ecx );" using the bytes $03, $CS.

The combination of MOD =%00
One indicates that and R/M = %101 indicates that
we are adding 32 this is the Displacement-only
bit values togethe addressing mode.

OpoO[0O0O|01)1 Op Off 111 01 DISP32

%000000 indicates This field, along -bit di /
that this is an ADD witithe dbit ~  {gliows the istruction
Instruction. in the opcode,

indicates that
the destination fiel
is the EDX register.

One indicates that we
are adding the R/M
field to the REG field.

ADD( disp, edx ) = $03, $1D, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displace-
ment byte values with $ww being the L.O. byte ard $z
being the H.O. byte.

Figure 5.20 Encoding the ADD( disp, edx ); Instruction
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%00 indicates %011 indicates the
One indicates that ~ a zero byte use of the [EBX]
we are adding 32 displacement. addressing mode.
bit values togettre

opofjoofo1]1 op 1{L 1]0 1|1
%000000 indicates This field, along
that this is an ADD with the d bit
instruction. in the opcode,

indicates that
the destination fiel L
is the EDI register. Q%D&[seé)x], edi) =

One indicates that we
are adding the R/M
field to the REG field.

Figure 5.21 Encoding the ADD( [ebx], edi ); Instruction
o %01 indicates %110 indicates the
One indicates that ~ a one byte use of the [ESI]
we are adding 32 displacement. addressing mode.
bit values togethe
opoljoofo1f1 OfL ofpof11]0
o Eight-bit
%000000 indicates This field, along di
S ; isplacement
that this is an ADD with the d bit follgws the
Instruction. !n the OpCOde, MOD_REG_R/M
One indicates that we ![ﬂgl(élaetset?ng]t%n fiel byte.
are adding the R/M ; :
field to the REG field. 'S e EAX register.
ADD ( [esi + dispg], eax ) = $03, $46, $xx
Figure 5.22 Encoding the ADD( [esi+dispg], eax ); Instruction
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MOD = %10 indi
cates the use of a
32-bit displace-
ment.

— R/M = %101
One indicates that is [ebp]
we are adding 32

bit values togethe

OpoO[0O0O|01)1 1p O|gf 1(10]12

/

32-bit displacement
follows the instruction

2000000 indicates
that this is an ADD
instruction.

This field, along
with the d bit

in the opcode,
indicates that

the destination fiel
is the EBX register.

One indicates that we
are adding the R/M
field to the REG field.

ADD( [ebp+disp32], ebx ) = $03, $9D, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displace-
ment byte values with $ww being the L.O. byte ard $z
being the H.O. byte.

Figure 5.23 Encoding the ADD ( [ebp+dispgzy], ebx); Instruction
One indicates that MOD=%00 and Base=%101 means
we are adding 32 R/M=%100 means displacement only
bit values togethre  disp3g+reg*l mode addressing mode.
[opopofoafs [ [ [ ][0od101[100 [0d000[101| RIEI kY

%000000 indicates

that this is an ADD EBP is the des

instruction. tination register.

Figure 5.24

One indicates that we
are adding the R/M
field to the REG field.

These two fields
select the EAX*1
scaled index mode.

ADD ( [disp32 + eax*1], ebp ) = $03, $2C, $05, $ww, $xx, $yy, $zz

Note: $ww, $xx, $yy, $zz represent the four displace-
ment byte values with $ww being the L.O. byte ard $z

being the H.O. byte.

Encoding the ADD( [disps, +eax*1], ebp ); Instruction
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One indicates that MOD=%00 and
we are adding 32 R/M=%100 means
bit values togethe SIB mode Base=%011 = EBX.

[opopolod2 | [ [ |]0Q001| 100 {10 111(011|

9000000 indicates
that this is an ADD ECX is the des

instruction. tination register.
T These two fields
One indicates that we
are adding the R/M selelcgt_hedEDI*4d
field to the REG field. SCEE NI 1710 2,

ADD ( [ebx+ edi*4], ecx ) = $03, $0C, $BB

Figure 5.25 Encoding the ADD( [ebx + edi * 4], ecx ); Instruction

5.4.3 Encoding Immediate Operands

You may hsge noticed that the MOD-REG-R/M and SIB bytes da@ontain ay bit combinations you can use to specify
an immediate operandlhe 80x86 uses a completelyfdient opcode to specify an immediate operaRidure 5.26shavs
the basic encoding for &xDD immediate instruction.

: Optional one or
These fields have the usual MOD-yyo pyte dis-

s=0: 8-bit operands REG-R/M meaning and specify placement (as
s=1: 32-bit operared the destination operand. specified by
MOD-R/M)
1[0 0|0 0f0 x|s op ofpo|1o0f1
96100000 indicates that Opcode exter: /

this is an immediate
mode instruction.

Eight, 16, or 32-bit constan

ADD immediate  ¢oiows the instruction.

0 indicates that the constant is the 1 indicates that the constant is a one byte ogeran
same size as specified by the s fieldthat is sign extended to the size of the operand.

Figure 5.26 Encoding an ADD Immediate Instruction

There are three major tbfences between the encoding of ARD immediate and the standak®D instruction. First,
and most important, the opcode has a one in the H.O. bit positlus.tells the CPU that the instruction has an immediate
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constant. This indvidual change, heever, does not tell the CPU that it musteeute anADD instruction, as youl' see
momentarily

The second diérence is that there is no direction bit in the opcorlds males sense because you cannot specify a con
stant as a destination operaritherefore, the destination operand isajfs the location the MOD and R/M bits specify in the
MOD-REG-R/M field.

In place of the direction bit, the opcode has a sigension ) bit. For eight-bit operands, the CPU ignores this bitr F
16-bit and 32-bit operands, this bit spexsfihe size of the constant fallimg theADD instruction. If this bit contains zero
then the constant is the same size as the operand (i.e., 16 or 32 hits). If this bit contains one then the constantiigha-signe
bit value and the CPU signxtends this &lue to the appropriate size before adding it to the operahis. little trick often
makes programs quite a bit shorter because one commonly adds alwedl gonstants to 16 or 32 bit operands.

The third diference between theDD immediate and the standa&k®D instruction is the meaning of the RE@Id in the
MOD-REG-R/M byte. Since the instruction implies that the source operand is a constant and the MO&ddR A dicify the
destination operand, the instruction does not need to use the &&®fspecify an operand. Instead, the 80x86 CPU uses
these three bits as an opcodéeasion. Br theADD immediate instruction these three bits must contain zero (other bit pat
terns wuld correspond to a @rent instruction).

Note that when adding a constant to a memory location, the displacemeny) @saaciated with the memory location
immediately precedes the immediate (constant) data in the opcode sequence.

5.4.4

Encoding Eight, Sixteen, and Thirty-Two Bit Operands

When Intel designed the 8086 yhesed one bitdj to select between eight and sixteen bitgeteoperand sizes in the
opcode. Latewhen thg extended the 80x86 architecture to 32 bits with the introduction of the 80386)datea problem,
with this single bit the could only encode twsizes bt they needed to encode three (8, 16, and 32 biig)solwe this prob
lem, the used aperand size pefix byte

Intel studied their instruction set and came to the conclusion that in a 324bdnement, programs were moredily to
use eight-bit and 32-bit operands fmore often than 16-bit operands. So Intel decided to let the sizp ibittlie opcode
select between eight and thirtyevibit operands, as the preus sections describedlthough modern 32-bit programs don’
use 16-bit operands that often, ttao need them o and then.To allow for 16-bit operands, Intel lets you preéi 32-bit
instruction with the operand size prebyte, whose &lue is $66. This prefk byte tells the CPU to operand on 16-bit data
rather than 32-bit data.

You do not hee to eplicitly put an operand size prefbyte in front of your 16-bit instructions; the assembler wiletak
care of this automatically for you whese you use a 16-bit operand in an instructionwéler, do keep in mind that when
ever you use a 16-bit operand in a 32-bit program, the instruction is longer (by one byte) because of tfeueretihere
fore, you should be careful about using 16-bit instructions if size (and to a let&sdr speed) are important because these
instructions are longer (and may bevwgto because of theirfett on the cache).

5.4.5

Alternate Encodings for Instructions

As noted earlier in this chapteme of Intels primary design goals for the 80x8@swmo create an instruction set to &llo
programmers to writeary short programs in order tovggprecious (at the time) memor@®ne vay the did this vas to create
alternate encodings of somery commonly used instructionsThese alternate instructions were shorter than the standard
counterparts and Intel hoped that programmengldvmale extensive use of these instructions, thus creating shorter programs.

A good example of these alternate instructions are the "add( constant, accumulator );" instructions (the accuklulator is
AX, or EAX). The 80x86 preides a single byte opcode for "add( constant, al );" and "add( constant, eax );" (the opcodes ar
$04 and $05, respeetily). With a one-byte opcode and no MOD-REG-R/M byte, these instructions are one byte shorter thal
their standardDD immediate counterparts. Note that the "add( constant, ax );" instruction requires an operandxs{as prefi
does the standard "add( constant, ax );" instruction, sopttode is &ctively two bytes if you count the prefbyte. This,
however, is still one byte shorter than the corresponding starlaBlimmediate.

You do not hee to specify aything special to use these instructioAsly decent assembler will automatically choose the
shortest possible instruction it can use when translating your source code into machine eaaler, i#mu should note that
Intel only pravides alternate encodings for the accumulatgisters. Therefore, if you hee a choice of seral instructions to
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use and the accumulatogrsters are among these choices AbRAX/EAX re gisters almost alays malk the best betThis is

a good reason whyou should tak some time and scan through the encodings of the 80x86 instructions some tiramil-By f
iarizing yourself with the instruction encodings, ylbihow which instructions ha special (and, therefore, shorter) encod
ings.

5.5

Putting It All Together

Designing an instruction set that can stand the test of time is a true intellectual chalemgegineer must balancevse
eral compromises when choosing an instruction set and assigning opcodes for the instiiotidniel 80x86 instruction set
is a classicxample of a kludge that people are currently using for purposes the original desigreisteaded. Hoever,
the 80x86 is also a maous testament to the ingenuity of Iréedngineers who weraded with the dffcult task of &tend
ing the CPU in ays it was neer intended.The end result, though functional, igremely complg. Clearly no one design
ing a CPU (from scratch) todayowld choose the encoding that Intedngineers are using. Wetheless, the 80x86 CPU does
demonstrate that careful planning (or just plain luck) doesthie designer the ability tatend the CPUdr begond it’s orig
inal design.

Historically, an importantdct weve learned from the 80x8@rhily is that its very poor planning to assume that your
CPU will last only a short time period and that users will replace the chip and theiareofthven something better comes
along. Softvare deelopers usually dob’have a problem adapting to awerchitecture when tlyewrite nev software
(assuming fiancial incentie to do so), bt they are \ery resistant to mang existing software from one platform to another
This is the primary reason the Intel 80x86 platform remains popular to this day

Choosing which instructions youant to incorporate into the initial design of am@PU is a dificult task.You must bal
ance the desire to prigle lots of useful instructions with the silicondget and you must also be careful not to include lots of
irrelevant instructions that programmers wind up ignoring for one reason or an®keremberall future \ersions of the
CPU will probably heae to support all the instructions in the initial instruction set, sdétter to err on the side of supplying
too faw instructions rather than too manRememberyou can aliays epand the instruction set in a latersion of the chip.

Hand in hand with selecting the optimal instruction set isvéig for easy future>gansion of the chipYou must leae
some undefied opcodesvailable so you can easilxgand the instruction set later on. wiwer, you must balance the nam
ber of undefied opcodes with the number of initial instructions and the size of your opcamte=fidienc/ reasons, we ant
the opcodes to be as short as possiile.also need a reasonable set of instructions in the initial instructiof ssdsonable
instruction set may consume most of thgaléit patterns in small opcode. So a hard decision has to be made: reduce-the num
ber of instructions in the initial instruction set, increase the size of the opcode, or rely on an opoobgter@fihich maks
the never instructions (you add later) longéihere is no easy answer to this problem, as the CPU designenust carefully
weigh these choices during the initial CPU design. Unfortunatelycant easily change your mind later on.

Most CPUs (\dn Neumann architecture) use a binary encoding of instructions and fetch these instructions from memor
This chapter introduces the concept of binary instruction encoding vigpbéhktical "Y86" processofThis is a trvial (and
not very practical) CPU design that neakit easy to demonstratevihto choose opcodes for a simple instruction set, encode
operands, and lga room for future xgansion. Some of the more interesting feature¥ &edemonstrates includes trect
that an opcode often contains saelfs and we usually group instructions by the number of types of operapdsitpert.
TheY86 encoding also demonstratesvhio use special opcodes tofdientiate one group of instructions from another and to
provide undefined (illegal) opcodes that we can use for futuxpansion.

TheY86 CPU is purely ypothetical and useful only as an educational téftier exploring the design of a simple instruc
tion set with ther86, this chapter lman to discuss the encoding of instructions on the 80x86 platfdrhile the full 80x86
instruction set isdr too comple to discuss this early in thisxte(i.e., there are lots of instructions we stilbdo discuss later
in this tet), this chapter &s able to discuss basic instruction encoding usingi2 instruction as anxample. Note that
this chapter only touches on the 80x86 instruction encoding schema.fl#l discussion of 80x86 encoding, see the appendi
ces in this tet and the Intel 80x86 documentation.
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Memory Architecture

Memory Architecture Chapter Six

6.1 Chapter Overview
This chapter discusses the memory hienarelthe diferent types and performancerdés of memory
found on a typical 80x86 computer system. klamgrammers tend to wviememory as this big naebous
block of storage that holdsles for future use. From a semantic point ofvytlis is a reasonable wie
However, from a performance point of viethere are mandifferent kinds of memory and using the wrong
one or using one form improperly carvha dramatically rgative impact on the performance of a program.
This chapter discusses the memory hienaeaeid hev to best use it within your programs.
6.2 The Memory Hierarchy
Most modern programs can bemegfieatly from a lage amount of ery fast memory A physical reality
however, is that as a memory dee gets lager, it tends to get slwer. For example, cache memories (see
“Cache Memory” on pag#53) are \ery fast lut are also small ankpensve. Main memory is ingensve
and lage, lut is slav (requiring vait states, seWVait States” on pagesl). The memory hierarghis a
mechanism of comparing the cost and performance ofaieus places we can store data and instructions.
Figure 6.1provides a look at one possible form of the memory hiegsarch
Registes A
Level One Cach |ncreasing
Cost,
Level Two Cach Increasing
Main Memoy Speed,
Decreasig
NUMA Size.
Virtual Memoly
File Storag Decreasig
Cost,
Network Storag Decreasig
Near-Line Storag Speed,
Increasing
Off-Line Storag Size.
Hard Copy v
Figure 6.1 The Memory Hierarchy

At the top leel of the memory hierarghare the CPL$ general purposegisters. The ragisters proide
the fastest access to data possible on the 80x86 TRE rayister fle is also the smallest memory object in
the memory hierargh(with just eight general purposeyisters &ailable). By virtue of theafct that it is vir
tually impossible to add moregisters to the 80x86, gesters are also the mosgpensve memory locations.
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Chapter Six Volume Two

Note that we can include FPU, MMX, SIMD, and other CPgisters in this class as wellhese additional
registers do not change thact that there are a&xy limited number of mggisters and the cost per byte is quite
high (figuring the cost of the CPUuililed by the number of bytes ofyister aailable).

Working our vay davn, theLevel One Cache system is thexhbighest performance subsystem in the
memory hierarcih On the 80x86 CPUs, the \ad One Cache is pvaded on-chip by Intel and cannot be
expanded. The size is usually quite small (typically between 4Kbytes and 32Kbytes), though ngeth lar
than the rgisters &ailable on the CPU chipAlthough the Lgel One Cache size isxéd on the CPU and
you cannot xpand it, the cost per byte of cache memory is mueiddhan that of the gisters because the
cache containsaf more storage than igsalable in all the combined gesters.

TheLevel Two Cache is present on some CPUSs, on other CPUs it is the system desighdo incor
porate this cache (if it is present at all)or Example, most Pentium Il, 1ll, and IV CPUsueaa level two
cache as part of the CPU packagé,mary of Intel's Celeron chips do not The Level Two Cache is gen
erally much lager than the kel one cache (e.g., 256 or 512KBytessus 16 Kilobytes). On CPUs where
Intel includes the Leel Two Cache as part of the CPU package, the cache igpent@able. It is still ver
cost than the heel One Cache because we amortize the cost of the CPU across all the bytesvalthed_e
Cache. On systems where thevéleTwo Cache isdernal, mag system designers let the end user select
the cache size and upgrade the sizar. ééonomic reasonsxternal caches are actually mospensve than
caches that are part of the CPU packageftte cost per bit at the transistovdkis still equvalent to the
in-package caches.

Below the Level Two Cache system in the memory hiergréills the main memory subsysteifhis is
the general-purpose, relaly low-cost memory found in most computer systemgpically, this is DRAM
or some similar ingpensve memory technology

Below main memory is the NUMA cagery. NUMA, which stands foNonUniform MemoryAccess is
a bit of a misnomer here. NUMA means thatedtént types of memory ka different access timeS here
fore, the term NUMA isdirly descriptve of the entire memory hierarchin Figure 6.1, havever, we'll use
the term NUMA to describe blocks of memory that are electronically similar to main mentdigr lone
reason or another operate sigrafitly slaver than main memonA good example is the memory on a video
display card.Access to memory on video display cards is often muaheslthan access to main memory
Other peripheral deces that preide a block of shared memory between the CPU and the peripheral proba
bly have similar access times as this video cardngple. Another kample of NUMA includes certain
slower memory technologies BkFlash Memory that ke signifcant slever access and transfers times than
standard semiconductor RAMVe’ll use the term NUMA in this chapter to describe these blocks of-mem
ory that look like