
 < Day Day Up >

A Practical Guide to Linux® Commands, Editors, and Shell Programming

By Mark G. Sobell

...

Publisher: Prentice Hall PTR

Pub Date: July 01, 2005

ISBN: 0-13-147823-0

Pages: 1008

Table of Contents | Index

The essential reference for core commands that Linux users need daily, along with superior
tutorial on shell programming and much moreSystem administrators, software developers,
quality assurance engineers and others working on a Linux system need to work from the
command line in order to be effective. Linux is famous for its huge number of command line
utility programs, and the programs themselves are famous for their large numbers of options,
switches, and configuration files. But the truth is that users will only use a limited (but still
significant) number of these utilities on a recurring basis, and then only with a subset of the
most important and useful options, switches and configuration files. This book cuts through all
the noise and shows them which utilities are most useful, and which options most important.
And it contains examples, lot's and lot's of examples. This is not just a reprint of the man pages.

And Linux is also famous for its "programmability." Utilities are designed, by default, to work
wtih other utilities within shell programs as a way of automating system tasks. This book
contains a superb introduction to Linux shell programming. And since shell programmers need
to write their programs in text editors, this book covers the two most popular ones: vi and
emacs.

 < Day Day Up >

 < Day Day Up >

A Practical Guide to Linux® Commands, Editors, and Shell Programming

By Mark G. Sobell

...

Publisher: Prentice Hall PTR

Pub Date: July 01, 2005

ISBN: 0-13-147823-0

Pages: 1008

Table of Contents | Index

The essential reference for core commands that Linux users need daily, along with superior
tutorial on shell programming and much moreSystem administrators, software developers,
quality assurance engineers and others working on a Linux system need to work from the
command line in order to be effective. Linux is famous for its huge number of command line
utility programs, and the programs themselves are famous for their large numbers of options,
switches, and configuration files. But the truth is that users will only use a limited (but still
significant) number of these utilities on a recurring basis, and then only with a subset of the
most important and useful options, switches and configuration files. This book cuts through all
the noise and shows them which utilities are most useful, and which options most important.
And it contains examples, lot's and lot's of examples. This is not just a reprint of the man pages.

And Linux is also famous for its "programmability." Utilities are designed, by default, to work
wtih other utilities within shell programs as a way of automating system tasks. This book
contains a superb introduction to Linux shell programming. And since shell programmers need
to write their programs in text editors, this book covers the two most popular ones: vi and
emacs.

 < Day Day Up >

 < Day Day Up >

Copyright

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim,
the designations have been printed with initial capital letters or in all capitals.

The author and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for
incidental or consequential damages in connection with or arising out of the use of the information or
programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special
sales, which may include electronic versions and/or custom covers and content particular to your business,
training goals, marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U.S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: www.phptr.com

Library of Congress Cataloging-in-Publication Data

Sobell, Mark G.
 A Practical Guide to Linux Commands, Editors, and Shell Programming / Mark G. Sobell
 p. cm.
 Includes bibliographical references and index.
 ISBN 0-13-147823-0 (alk. paper)
 1. Linux. 2. Operating systems (Computers) I. Title.
QA76.76.O63.S59483 2005
005.4'46—dc22
 2005050051

Copyright © 2005 Mark Sobell

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or
likewise. For information regarding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department

One Lake Street
Upper Saddle River, NJ 07458

Text printed in the United States on recycled paper at Courier in Stoughton, Massachusetts.

First printing, June 2005

Dedication

With love for my guys,

Sam, Zach, and Max

 < Day Day Up >

 < Day Day Up >

Praise for Mark Sobell's Books

"I keep searching for books that collect everything you want to know about a subject in one place, and
keep getting disappointed. Usually the books leave out some important topic, while others go too deep
in some areas and must skim lightly over the others. A Practical Guide to Red Hat ® Linux ® is one of
those rare books that actually pulls it off. Mark G. Sobell has created a single reference for Red Hat
Linux that cannot be beat! This marvelous text (with a 4-CD set of Linux Fedora Core 2 included) is
well worth the price. This is as close to an "everything you ever needed to know" book that I've seen.
It's just that good and rates 5 out of 5."

—Ray Lodato Slashdot contributor

"Mark Sobell has written a book as approachable as it is authoritative."

—Jeffrey Bianchine Advocate, Author, Journalist

"Excellent reference book, well suited for the sysadmin of a linux cluster, or the owner of a PC
contemplating installing a recent stable linux. Don't be put off by the daunting heft of the book. Sobell
has striven to be as inclusive as possible, in trying to anticipate your system administration needs."

—Wes Boudville Inventor

"A Practical Guide to Red Hat ® Linux ® is a brilliant book. Thank you Mark Sobell."

—C. Pozrikidis University of California at San Diego

"This book presents the best overview of the Linux operating system that I have found. . . . [It] should
be very helpful and understandable no matter what the reader's background is: traditional UNIX user,
new Linux devotee, or even Windows user. Each topic is presented in a clear, complete fashion and
very few assumptions are made about what the reader knows. . . . The book is extremely useful as a
reference, as it contains a 70-page glossary of terms and is very well indexed. It is organized in such a
way that the reader can focus on simple tasks without having to wade through more advanced topics
until they are ready."

—Cam Marshall Marshall Information Service LLC Member of Front Range UNIX Users Group
[FRUUG] Boulder, Colorado

"Conclusively, this is THE book to get if you are a new Linux user and you just got into RH/Fedora
world. There's no other book that discusses so many different topics and in such depth."

—Eugenia Loli-Queru Editor in Chief OSNews.com

 < Day Day Up >

 < Day Day Up >

Preface

A Practical Guide to Linux ® Commands, Editors, and Shell Programming explains how to work with the
Linux operating system from the command line. The first few chapters quickly bring readers with little
computer experience up to speed. The rest of the book is appropriate for more experienced computer users.
This book does not describe a particular release or distribution of Linux but rather pertains to all recent
versions of Linux.

 < Day Day Up >

 < Day Day Up >

Command line interface (CLI)

In the beginning there was the command line (textual) interface (CLI), which enabled you to give Linux
commands from the command line. There was no mouse or icons to drag and drop. Some programs, such as
emacs, implemented rudimentary windows using the very minimal graphics available in the ASCII character
set. Reverse video helped separate areas of the screen. Linux was born and raised in this environment.

Naturally all of the original Linux tools were invoked from the command line. The real power of Linux still
lies in this environment, which explains why many Linux professionals work exclusively from the command
line. Using clear descriptions and lots of examples, this book shows you how to get the most out of your
Linux system using the command line interface.

 < Day Day Up >

 < Day Day Up >

Linux distributions

A Linux distribution comprises the Linux kernel, utilities, and application programs. Many distributions are
available, including Debian, Red Hat, Fedora Core, SUSE, Mandriva (formerly Mandrake), KNOPPIX, and
Slackware. Although the distributions differ from one another in various ways, all of them rely on the Linux
kernel, utilities, and applications. This book is based on the code that is common to most distributions. As a
consequence you can use it regardless of which distribution you are running.

 < Day Day Up >

 < Day Day Up >

Overlap

If you read A Practical Guide to Red Hat ® Linux ®: Fedora Core ™ and Red Hat Enterprise Linux , Second
Edition, or a subsequent edition, you will notice some overlap between that book and the one you are reading
now. The introduction, the appendix on regular expressions, and the chapters on the utilities (Chapter 3 of
this book—not Part V), the filesystem, and programming tools are very similar in the two books. The three
chapters that cover the Bourne Again Shell (bash) have been expanded and rewritten for this text. Chapters
that appear in this book and but not in A Practical Guide to Red Hat ® Linux ®, Second Edition, include those
covering the vim and emacs editors, the TC Shell (tcsh), the gawk and sed languages, and Part V, which
describes 80 of the most useful Linux utility programs in detail.

 < Day Day Up >

 < Day Day Up >

Audience

This book is designed for a wide range of readers. It does not require programming experience, although
some experience using a general-purpose computer is helpful. It is appropriate for the following readers:

Students taking a class in which they use Linux

Power users who want to explore the power of Linux from the command line

Professionals who use Linux at work

System administrators who need a deeper understanding of Linux and the tools that are available to
them

Computer science students who are studying the Linux operating system

Programmers who need to understand the Linux programming environment

Technical executives who want to get a grounding in Linux

 < Day Day Up >

 < Day Day Up >

Benefits

A Practical Guide to Linux ® Commands, Editors, and Shell Programming gives you an in-depth
understanding of how to use Linux from the command line. Regardless of your background, it offers the
knowledge you need to get on with your work: You will come away from this book understanding how to
use Linux, and this text will remain a valuable reference for years to come.

 < Day Day Up >

 < Day Day Up >

Features Of This Book

This book is organized for ease of use in different situations. For example, you can read it from cover to
cover to learn command line Linux from the ground up. Alternatively, once you are comfortable using
Linux, you can use this book as a reference: Look up a topic of interest in the table of contents or index and
read about it. Or, refer to one of the utilities covered in Part V, "Command Reference." You can also think of
this book as a catalog of Linux topics: Flip through the pages until a topic catches your eye. The book also
includes many pointers to Web sites where you can get additional information: Consider the Web an
extension of this book.

A Practical Guide to Linux ® Commands, Editors, and Shell Programming offers the following features:

Optional sections allow you to read the book at different levels, returning to more difficult material
when you are ready to tackle it.

Caution boxes highlight procedures that can easily go wrong, giving you guidance before you run into
trouble.

Tip boxes highlight places in the text where you can save time by doing something differently or when
it may be useful or just interesting to have additional information.

Security boxes point out ways that you can make a system more secure.

The Supporting Web site at www.sobell.com includes corrections to the book, downloadable
examples from the book, pointers to useful Web sites, and answers to even-numbered exercises.

Concepts are illustrated by practical examples found throughout the book.

The many useful URLs (Internet addresses) identify sites where you can obtain software and
information.

Chapter summaries review the important points covered in each chapter.

Review exercises are included at the end of each chapter for readers who want to hone their skills.
Answers to even-numbered exercises are available at www.sobell.com.

Important GNU tools, including gcc, gdb, GNU Configure and Build System, make, gzip, and many
others, are described in detail.

Pointers throughout the book provide help in obtaining online documentation from many sources,
including the local system and the Internet.

 < Day Day Up >

 < Day Day Up >

Contents

This section describes the information that each chapter covers and explains how that information can help
you take advantage of the power of Linux. You may want to review the table of contents for more detail.

Chapter 1 Welcome to Linux Presents background information on Linux. This chapter covers the
history of Linux, explains how the GNU Project helped Linux get started, and discusses some of
Linux's important features that distinguish it from other operating systems.

Part I: The Linux Operating System

tip: Experienced users may want to skim Part I

If you have used a UNIX/Linux system before, you may want to skim or skip some or all of the
chapters in Part I. All readers should take a look at " Conventions Used in This Book" (page 22),
which explains the typographic conventions that this book uses, and "Getting the Facts: Where to
Find Documentation" (page 29), which points you toward both local and remote sources of Linux
documentation.

Part I introduces Linux and gets you started using it.

Chapter 2 Getting Started Explains the typographic conventions that this book uses to make
explanations clearer and easier to read. This chapter provides basic information and explains how to
log in, change your password, give Linux commands using the shell, and find system
documentation.

Chapter 3 Command Line Utilities Explains the command line interface (CLI) and briefly
introduces more than 30 command line utilities. Working through this chapter gives you a feel for
Linux and introduces some of the tools you will use day in and day out. The utilities covered in this
chapter include

grep, which searches through files for strings of characters;

unix2dos, which converts Linux text files to Windows format;

tar, which creates archive files that can hold many other files;

bzip2 and gzip, which compress files so that they take up less space on disk and allow you to
transfer them over a network more quickly; and

diff, which displays the differences between two text files.

Chapter 4 The Linux Filesystem Discusses the Linux hierarchical filesystem, covering files,
filenames, pathnames, working with directories, access permissions, and hard and symbolic links.
Understanding the filesystem allows you to organize your data so that you can find information
quickly. It also enables you to share some of your files with other users while keeping other files
private.

Chapter 5 The Shell Explains how to use shell features to make your work faster and easier. All of the
features covered in this chapter work with both bash and tcsh. This chapter discusses

Using command line options to modify the way a command works;

How a minor change in a command line can redirect input to a command to come from a file
instead of the keyboard;

How to redirect output from a command to go to a file instead of the screen;

Using pipes to send the output of one utility directly to another utility so that you can solve
problems right on the command line;

Running programs in the background so that you can work on one task while Linux is working
on a different one; and

Using the shell to generate filenames to save you time spent on typing and help you when you do
not remember the exact name of a file.

Part II: The Editors

Part II covers two classic, powerful Linux command line text editors. Most Linux distributions include the
vim text editor, an "improved" version of the widely used vi editor, as well as the popular GNU emacs
editor. Text editors enable you to create and modify text files that can hold programs, shell scripts, memos,
and input to text formatting programs. Because Linux system administration involves editing text-based
configuration files, skilled Linux administrators are adept at using text editors.

Chapter 6 The vim Editor Starts with a tutorial on vim and then explains how to use many of the
advanced features of vim, including special characters in search strings, the General-Purpose and
Named buffers, parameters, markers, and execution of commands from vim. The chapter concludes
with a summary of vim commands.

Chapter 7 The emacs Editor Opens with a tutorial and then explains many of the features of the
emacs editor as well as how to use the META, ALT, and ESCAPE keys. The chapter also covers key
bindings, buffers, and incremental and complete searching for both character strings and regular
expressions. In addition, it details the relationship between Point, the cursor, Mark, and Region. It also
explains how to take advantage of the extensive online help facilities available from emacs. Other
topics covered include cutting and pasting, using multiple windows and frames, and working with
emacs modes—specifically C mode, which aids programmers in writing and debugging C code.
Chapter 7 concludes with a summary of emacs commands.

Part III: The Shells

Part III goes into more detail about bash and introduces the TC Shell (tcsh).

Chapter 8 The Bourne Again Shell Picks up where Chapter 5 leaves off, covering more advanced
aspects of working with a shell. For examples it uses the Bourne Again Shell—bash, the shell used
almost exclusively for system shell scripts. Chapter 8 describes how to

Use shell startup files, shell options, and shell features to customize your shell;

Use job control to stop jobs and move jobs from the foreground to the background and vice
versa;

Modify and reexecute commands using the shell history list;

Create aliases to customize commands;

Work with user-created and keyword variables in shell scripts;

Set up functions, which are similar to shell scripts but can execute more quickly;

Write and execute simple shell scripts; and

Redirect error messages so that they go to a file instead of the screen.

Chapter 9 The TC Shell Describes tcsh and covers features that are common to and different
between bash and tcsh. This chapter explains how to

Run tcsh and change your default shell to tcsh;

Redirect error messages so that they go to files instead of the screen;

Use control structures to alter the flow of control within shell scripts;

Work with tcsh array and numeric variables; and

Use shell builtin commands.

Part IV: Programming Tools

Part IV covers programming under Linux. It discusses the C programming environment, the use of bash as a
programming language, and ways to write programs using gawk and sed.

Chapter 10 Programming Tools Introduces Linux's exceptional programming environment. This
chapter

Explains how to invoke the GNU gcc compiler;

Describes how to use make to keep a set of programs up-to-date;

Explains how to debug a C program using gdb;

Describes how to work with shared libraries;

Explains how to set up and use CVS to manage and track program modules in a software
development project; and

Discusses system calls and explains how you can use them to initiate kernel operations.

Once you have mastered the basics of Linux, you can use your knowledge to build more complex and
specialized programs, using the shell as a programming language.

Chapter 11 Programming the Bourne Again Shell Shows how to use bash to write advanced shell
scripts. This chapter discusses

Control structures such as if...then...else and case;

Variables, including locality of variables;

Arithmetic and logical (Boolean) expressions; and

Some of the most useful shell builtin commands, including exec, trap, and getopts.

Chapter 11 poses two complete shell programming problems and then shows you how to solve them
step by step. The first problem uses recursion to create a hierarchy of directories. The second problem
develops a quiz program and shows you how to set up a shell script that interacts with a user and how
the script processes data. (The examples in Part V also demonstrate many features of the utilities you
can use in shell scripts.)

Chapter 12 The gawk Pattern Processing Language Explains how to write programs using the
powerful gawk language that filter data, write reports, and retrieve data from the Internet. The
advanced programming section describes how to set up two-way communication with another
program using a coprocess and how to obtain input over a network instead of from a local file.

Chapter 13 The sed Editor Describes sed, the noninteractive stream editor that finds many
applications as a filter within shell scripts. This chapter discusses how to use sed's buffers to write
simple yet powerful programs and includes many examples.

Part V: Command Reference

Linux includes hundreds of utilities. Chapters 11 and 12 as well as Part V provide extensive examples of the
use of more than 80 of the most important utilities with which you can solve problems without resorting to
programming in C. If you are already familiar with UNIX/Linux, this part of the book will be a valuable,
easy-to-use reference. If you are not an experienced user, it will serve as a useful supplement while you are
mastering the earlier sections of the book.

Although the descriptions of the utilities in Chapters 11 and 12 and Part V are presented in a format similar
to that used by the Linux manual (man) pages, they are much easier to read and understand. These utilities
were chosen because you will work with them day in and day out (for example, ls and cp), because they
are powerful tools that are especially useful in shell scripts (sort, paste, and test), because they help you
work with your Linux system (ps, kill, and fsck), or because they enable you to communicate with

other systems (ssh, scp, and ftp). Each utility description includes complete explanations of its most useful
options. The "Discussion" and "Notes" sections present tips and tricks for using the utility to full advantage.
The "Examples" sections demonstrate how to use these utilities in real life, alone and together with other
utilities to generate reports, summarize data, and extract information. Take a look at the "Examples" sections
for gawk (more than 20 pages, starting on page 537), ftp (page 674), and sort (page 764) to see how
extensive these sections are.

Part VI: Appendixes

Part VI includes the appendixes, the glossary, and the index.

Appendix A Regular Expressions Explains how to use regular expressions to take advantage of the
hidden power of Linux. Many utilities, including grep, sed, vim, and gawk, accept regular expressions
in place of simple strings of characters. A single regular expression can match many simple strings.

Appendix B Help Details the steps typically used to solve the problems you may encounter with a
Linux system. This appendix also includes many links to Web sites that offer documentation, useful
Linux information, mailing lists, and software.

Appendix C Keeping the System Up-to-date Describes how to use tools to download software and
keep your system current. This appendix includes information on

yum Downloads software from the Internet, keeping a system up-to-date and resolving
dependencies as it goes.

Apt An alternative to yum for keeping a system current.

BitTorrent Good for distributing large amounts of data such as Linux installation CDs.

Glossary Defines more than 500 terms that pertain to the use of Linux.

Index Helps you find the information you want quickly.

 < Day Day Up >

 < Day Day Up >

Supplements

The author's home page (www.sobell.com) contains downloadable listings of the longer programs from this
book as well as pointers to many interesting and useful Linux-related sites on the World Wide Web, a list of
corrections to the book, answers to even-numbered exercises, and a solicitation for corrections, comments,
and suggestions.

 < Day Day Up >

 < Day Day Up >

Thanks

First and foremost I want to thank my editor at Prentice Hall PTR, Mark L. Taub, who encouraged me and
kept me on track. Mark is unique in my experience: He is an editor who works with the tools I am writing
about. Because Mark runs Linux on his home computer, we could share experiences as I wrote. His
comments and direction were invaluable. Thank you, Mark T.

A big "Thank You" to the folks who read through the drafts of the book and made comments that caused me
to refocus parts of the book where things were not clear or were left out altogether: Lars Kellogg-Stedman,
Harvard University; Jim A. Lola, Principal Systems Consultant, Privateer Systems, LLC; Eric S. Raymond,
cofounder, Open Source Initiative; Scott Mann; Randall Lechlitner, Independent Computer Consultant;
Jason Wertz, Computer Science Instructor, Montgomery County Community College; Justin Howell, Solano
Community College; Ed Sawicki, The Accelerated Learning Center; David Mercer, Contechst; Jeffrey
Bianchine, Advocate, Author, Journalist; John Kennedy; Chris Karr; and Jim Dennis, Starshine Technical
Services.

Thanks to Molly Sharp of ContentWorks, the production manager who made sure the book came together as
it was supposed to, and to Jill Hobbs, the copy editor who kept the various parts of the English language in
their proper relative places. Thanks also to the folks at Prentice Hall PTR who helped bring this book to life:
Heather Fox, Publicist; Suzette Ciancio, Marketing Manager; Robin O'Brien, Executive Marketing Manager;
Julie Nahil, Full-Service Production Manager; Noreen Regina, Editorial Assistant; and everyone else who
worked behind the scenes to make this book happen.

I am also indebted to Denis Howe, the editor of The Free On-Line Dictionary of Computing (FOLDOC).
Dennis has graciously permitted me to use entries from his compilation. Be sure to visit the dictionary
(www.foldoc.org).

Dr. Brian Kernighan and Rob Pike graciously allowed me to reprint the bundle script from their book, The
UNIX Programming Environment (Prentice Hall, 1984).

Parts of A Practical Guide to Linux ® Commands, Editors, and Shell Programming have grown from my
previous Linux books and I want to thank the people who helped with those books.

Thank you to David Chisnall, computer scientist extraordinaire; Carsten Pfeiffer, Software Engineer and
KDE Developer; Aaron Weber, Ximian; Matthew Miller, Boston University; Cristof Falk, Software
Developer at CritterDesign; Scott Mann, IBM, Systems Managment and Integration Professional; Steve
Elgersma, Computer Science Department, Princeton University; Scott Dier, University of Minnesota; and
Robert Haskins, Computer Net Works.

Thanks also to Dustin Puryear, Puryear Information Technology; Gabor Liptak, Independent Consultant;
Bart Schaefer, Chief Technical Officer, iPost; Michael J. Jordan, Web Developer, Linux Online Inc.; Steven
Gibson, owner of SuperAnt.com; John Viega, founder and Chief Scientist, Secure Software, Inc.; K. Rachael
Treu, Internet Security Analyst, Global Crossing; Kara Pritchard, K & S Pritchard Enterprises, Inc.; Glen
Wiley, Capitol One Finances; Karel Baloun, Senior Software Engineer, Looksmart, Ltd.; Matthew
Whitworth; Dameon D. Welch-Abernathy, Nokia Systems; Josh Simon, Consultant; Stan Isaacs; and Dr.
Eric H. Herrin II, Vice President, Herrin Software Development, Inc. And thanks to Doug Hughes, long-time
system designer and administrator, who gave me a big hand with the sections on system administration,

networks, the Internet, and programming.

More thanks go to consultants Lorraine Callahan and Steve Wampler; Ronald Hiller, Graburn Technology,
Inc.; Charles A. Plater, Wayne State University; Bob Palowoda; Tom Bialaski, Sun Microsystems; Roger
Hartmuller, TIS Labs at Network Associates; Kaowen Liu; Andy Spitzer; Rik Schneider; Jesse St. Laurent;
Steve Bellenot; Ray W. Hiltbrand; Jennifer Witham; Gert-Jan Hagenaars; and Casper Dik.

A Practical Guide to Linux ® Commands, Editors, and Shell Programming is based in part on two of my
previous UNIX books: UNIX System V: A Practical Guide and A Practical Guide to the UNIX System . Many
people helped me with those books, and thanks here go to Pat Parseghian, Dr. Kathleen Hemenway, and
Brian LaRose; Byron A. Jeff, Clark Atlanta University; Charles Stross; Jeff Gitlin, Lucent Technologies;
Kurt Hockenbury; Maury Bach, Intel Israel Ltd.; Peter H. Salus; Rahul Dave, University of Pennsylvania;
Sean Walton, Intelligent Algorithmic Solutions; Tim Segall, Computer Sciences Corporation; Behrouz
Forouzan, DeAnza College; Mike Keenan, Virginia Polytechnic Institute and State University; Mike
Johnson, Oregon State University; Jandelyn Plane, University of Maryland; Arnold Robbins and Sathis
Menon, Georgia Institute of Technology; Cliff Shaffer, Virginia Polytechnic Institute and State University;
and Steven Stepanek, California State University, Northridge, for reviewing the book.

I continue to be grateful to the many people who helped with the early editions of my UNIX books. Special
thanks are due to Roger Sippl, Laura King, and Roy Harrington for introducing me to the UNIX system. My
mother, Dr. Helen Sobell, provided invaluable comments on the original manuscript at several junctures.
Also, thanks go to Isaac Rabinovitch, Professor Raphael Finkel, Professor Randolph Bentson, Bob
Greenberg, Professor Udo Pooch, Judy Ross, Dr. Robert Veroff, Dr. Mike Denny, Joe DiMartino, Dr. John
Mashey, Diane Schulz, Robert Jung, Charles Whitaker, Don Cragun, Brian Dougherty, Dr. Robert Fish, Guy
Harris, Ping Liao, Gary Lindgren, Dr. Jarrett Rosenberg, Dr. Peter Smith, Bill Weber, Mike Bianchi, Scooter
Morris, Clarke Echols, Oliver Grillmeyer, Dr. David Korn, Dr. Scott Weikart, and Dr. Richard Curtis.

I take responsibility for any errors and omissions in this book. If you find one or just have a comment, let me
know (mgs@sobell.com) and I will fix it in the next printing. My home page (www.sobell.com) contains a
list of errors and credits those who found them. It also offers copies of the longer scripts from the book and
pointers to many interesting Linux pages.

Mark G. Sobell
San Francisco, California

 < Day Day Up >

 < Day Day Up >

Chapter 1. Welcome to Linux

IN THIS CHAPTER

The GNU–Linux Connection 2

The Heritage of Linux: UNIX 5

What Is So Good About Linux? 6

Overview of Linux 10

Additional Features of Linux 15

The Linux kernel was developed by Finnish undergraduate student Linus Torvalds, who used the Internet to
make the source code immediately available to others for free. Torvalds released Linux version 0.01 in
September 1991.

The new operating system came together through a lot of hard work. Programmers around the world were
quick to extend the kernel and develop other tools, adding functionality to match that already found in both
BSD UNIX and System V UNIX (SVR4) as well as new functionality.

The Linux operating system, developed through the cooperation of many, many people around the world, is a
product of the Internet and is a free operating system. In other words, all the source code is free. You are free
to study it, redistribute it, and modify it. As a result, the code is available free of cost—no charge for the
software, source, documentation, or support (via newsgroups, mailing lists, and other Internet resources). As
the GNU Free Software Definition (www.gnu.org/philosophy/free-sw.html) puts it:

 < Day Day Up >

 < Day Day Up >

Free beer

"Free software" is a matter of liberty, not price. To understand the concept, you should think of "free" as in
"free speech," not as in "free beer."

 < Day Day Up >

 < Day Day Up >

The Gnu–Linux Connection

An operating system is the low-level software that schedules tasks, allocates storage, and handles the
interfaces to peripheral hardware, such as printers, disk drives, the screen, keyboard, and mouse. An
operating system has two main parts: the kernel and the system programs. The kernel allocates machine
resources, including memory, disk space, and CPU (page 869) cycles, to all other programs that run on the
computer. The system programs perform higher-level housekeeping tasks, often acting as servers in a
client/server relationship. Linux is the name of the kernel that Linus Torvalds presented to the world in 1991
and that many others have worked on since then to enhance, stabilize, expand, and make more secure.

The History of Gnu–Linux

This section presents some background on the relationship between GNU and Linux.

Fade to 1983

Richard Stallman (www.stallman.org) announces[1] the GNU Project for creating an operating system, both
kernel and system programs, and presents the GNU Manifesto,[2] which begins as follows:

[1] www.gnu.org/gnu/initial-announcement.html

[2] www.gnu.org/gnu/manifesto.html.

GNU, which stands for Gnu's Not UNIX, is the name for the complete UNIX-compatible software
system which I am writing so that I can give it away free to everyone who can use it.

Some years later Stallman added a footnote to the preceding sentence when he realized that it was creating
confusion:

The wording here was careless. The intention was that nobody would have to pay for *permission* to
use the GNU system. But the words don't make this clear, and people often interpret them as saying
that copies of GNU should always be distributed at little or no charge. That was never the intent; later
on, the manifesto mentions the possibility of companies providing the service of distribution for a
profit. Subsequently I have learned to distinguish carefully between "free" in the sense of freedom and
"free" in the sense of price. Free software is software that users have the freedom to distribute and
change. Some users may obtain copies at no charge, while others pay to obtain copies—and if the funds
help support improving the software, so much the better. The important thing is that everyone who has
a copy has the freedom to cooperate with others in using it.

In the manifesto, after explaining a little about the project and what has been accomplished so far, Stallman
continues:

Why I Must Write GNU

I consider that the golden rule requires that if I like a program I must share it with other people who
like it. Software sellers want to divide the users and conquer them, making each user agree not to share

with others. I refuse to break solidarity with other users in this way. I cannot in good conscience sign a
nondisclosure agreement or a software license agreement. For years I worked within the Artificial
Intelligence Lab to resist such tendencies and other inhospitalities, but eventually they had gone too far:
I could not remain in an institution where such things are done for me against my will.

So that I can continue to use computers without dishonor, I have decided to put together a sufficient
body of free software so that I will be able to get along without any software that is not free. I have
resigned from the AI Lab to deny MIT any legal excuse to prevent me from giving GNU away.

Next Scene, 1991

The GNU Project has moved well along toward its goal. Much of the GNU operating system, except for the
kernel, is complete. Richard Stallman later writes:

By the early '90s we had put together the whole system aside from the kernel (and we were also
working on a kernel, the GNU Hurd,[3] which runs on top of Mach[4]). Developing this kernel has been
a lot harder than we expected, and we are still working on finishing it.[5]

. . . [M]any believe that once Linus Torvalds finished writing the kernel, his friends looked around for
other free software, and for no particular reason most everything necessary to make a UNIX-like
system was already available.

What they found was no accident—it was the GNU system. The available free software[6] added up to
a complete system because the GNU Project had been working since 1984 to make one. The GNU
Manifesto had set forth the goal of developing a free UNIX-like system, called GNU. The Initial
Announcement of the GNU Project also outlines some of the original plans for the GNU system. By the
time Linux was written, the [GNU] system was almost finished.[7]

[3] www.gnu.org/software/hurd/hurd.html

[4] www.gnu.org/software/hurd/gnumach.html

[5] www.gnu.org/software/hurd/hurd-and-linux.html

[6] www.gnu.org/philosophy/free-sw.html

[7] www.gnu.org/gnu/linux-and-gnu.html

Today the GNU "operating system" runs on top of the FreeBSD (www.freebsd.org) and NetBSD
(www.netbsd.org) kernels with complete Linux binary compatibility and on top of Hurd pre-releases and
Darwin (developer.apple.com/darwin) without this compatibility.

The Code is Free

The tradition of free software dates back to the days when UNIX was released to universities at nominal
cost, which contributed to its portability and success. This tradition died as UNIX was commercialized and
manufacturers regarded the source code as proprietary, making it effectively unavailable. Another problem
with the commercial versions of UNIX related to their complexity. As each manufacturer tuned UNIX for a
specific architecture, it became less portable and too unwieldy for teaching and experimentation.

MINIX

Two professors created their own stripped-down UNIX look-alikes for educational purposes: Doug Comer
created XINU (www.cs.purdue.edu/research/xinu.html) and Andrew Tanenbaum created MINIX
(www.cs.vu.nl/~ast/minix.html). Linus Torvalds created Linux to counteract the shortcomings in MINIX.
Every time there was a choice between code simplicity and efficiency/features Tanenbaum chose simplicity
(to make it easy to teach with MINIX), which meant that this system lacked many of features people wanted.
Linux goes in the opposite direction.

You can obtain Linux at no cost over the Internet . You can also obtain the GNU code via the U.S. mail at a
modest cost for materials and shipping. You can support the Free Software Foundation by buying the same
(GNU) code in higher-priced packages, and you can buy commercial packaged releases of Linux (called
distributions) that include installation instructions, software, and support.

GPL

Linux and GNU software are distributed under the terms of the GNU General Public License (GPL,
www.gnu.org/licenses/licenses.html). The GPL says you have the right to copy, modify, and redistribute the
code covered by the agreement. If you redistribute the code, you must also distribute the same license with
the code, making the code and the license inseparable. If you get the source code off the Internet for an
accounting program that is under the GPL, modify the code, and then redistribute an executable version of
the program, you must also distribute the modified source code and the GPL agreement with it. Because this
is the reverse of the way a normal copyright works (it gives rights instead of limiting them), it has been
termed a copyleft. (This paragraph is not a legal interpretation of the GPL; it simply gives you an idea of how
it works. Refer to the GPL itself when you want to make use of it.)

Have fun!

Two key words for Linux are "Have Fun!" These words pop up in prompts and documentation. The
UNIX—now Linux—culture is steeped in humor that can be seen throughout the system. For example, less
is more—GNU has replaced the UNIX paging utility named more with an improved utility named less. The
utility to view PostScript documents is named ghostscript, and one of several replacements for the vi
editor is named elvis. While machines with Intel processors have "Intel Inside" logos on their outside, some
Linux machines sport "Linux Inside" logos. And Torvalds himself has been seen wearing a T-shirt bearing a
"Linus Inside" logo.

 < Day Day Up >

 < Day Day Up >

The Heritage of Linux: Unix

The UNIX system was developed by researchers who needed a set of modern computing tools to help them
with their projects. The system allowed a group of people working together on a project to share selected
data and programs while keeping other information private.

Universities and colleges played a major role in furthering the popularity of the UNIX operating system
through the "four-year effect." When the UNIX operating system became widely available in 1975, Bell Labs
offered it to educational institutions at nominal cost. The schools, in turn, used it in their computer science
programs, ensuring that computer science students became familiar with it. Because UNIX was such an
advanced development system, the students became acclimated to a sophisticated programming
environment. As these students graduated and went into industry, they expected to work in a similarly
advanced environment. As more of them worked their way up the ladder in the commercial world, the UNIX
operating system found its way into industry.

In addition to introducing students to the UNIX operating system, the Computer Systems Research Group
(CSRG) at the University of California at Berkeley made significant additions and changes to it. In fact, it
made so many popular changes that one version of the system is called the Berkeley Software Distribution
(BSD) of the UNIX system (or just Berkeley UNIX). The other major version is UNIX System V (SVR4),
which descended from versions developed and maintained by AT&T and UNIX System Laboratories.

 < Day Day Up >

 < Day Day Up >

What is so good about linux?

In recent years Linux has emerged as a powerful and innovative UNIX work-alike. Its popularity is
surpassing that of its UNIX predecessors. Although it mimics UNIX in many ways, the Linux operating
system departs from UNIX in several significant ways: The Linux kernel is implemented independently of
both BSD and System V, the continuing development of Linux is taking place through the combined efforts
of many capable individuals throughout the world, and Linux puts the power of UNIX within easy reach of
business and personal computer users. Using the Internet, today's skilled programmers submit additions and
improvements to the operating system to Linus Torvalds, GNU, or one of the other authors of Linux.

Applications

A rich selection of applications is available for Linux—both free and commercial—as well as a wide variety
of tools: graphical, word processing, networking, security, administration, Web server, and many others.
Large software companies have recently seen the benefit in supporting Linux and have now on-staff
programmers whose job it is to design and code the Linux kernel, GNU, KDE, or other software that runs on
Linux For example, IBM (www.ibm.com/linux) is a major Linux supporter. Linux conforms increasingly
more closely to POSIX standards, and some distributions and parts of others meet this standard. (See
"Standards" on page 8 for more information.) These facts mean that Linux is becoming more mainstream and
is respected as an attractive alternative to other popular operating systems.

Peripherals

Another aspect of Linux that appeals to users is the amazing range of peripherals that is supported and the
speed with which support for new peripherals emerges. Linux often supports a peripheral or interface card
before any company does. Unfortunately some types of peripherals—particularly proprietary graphics
cards—lag in their support because the manufacturers do not release specifications or source code for drivers
in a timely manner, if at all.

Software

Also important to users is the amount of software that is available—not just source code (which needs to be
compiled) but also prebuilt binaries that are easy to install and ready to run. These include more than free
software. Netscape, for example, has been available for Linux from the start and included Java support
before it was available from many commercial vendors. Now its sibling Mozilla is also a viable browser,
mail client, and newsreader, performing many other functions as well.

Platforms

Linux is not just for Intel-based platforms but has been ported to and runs on the Power PC—including
Apple computers (ppclinux), the Compaq's (née Digital Equipment Corporation) Alpha-based machines,
MIPS-based machines, Motorola's 68K-based machines, and IBM's S/390. Nor is Linux just for single-

processor machines: As of version 2.0, it runs on multiple processor machines (SMPs). As of version 2.5.2,
Linux includes an O(1) scheduler, which dramatically increases scalability on SMP systems.

Emulators

Linux supports programs, called emulators , that run code intended for other operating systems. By using
emulators you can run some DOS, Windows, and Macintosh programs under Linux. Wine
(www.winehq.com) is an open-source implementation of the Windows API on top of X and UNIX/Linux;
QEMU (fabrice.bellard.free.fr/qemu) is a CPU-only emulator that executes x86 Linux binaries on non-x86
Linux systems.

Why Linux Is Popular With Hardware Companies And Developers

Two trends in the computer industry set the stage for the popularity of UNIX and Linux. First, advances in
hardware technology created the need for an operating system that could take advantage of available
hardware power. In the mid-1970s, minicomputers began challenging the large mainframe computers
because, in many applications, minicomputers could perform the same functions less expensively. More
recently, powerful 64-bit processor chips, plentiful and inexpensive memory, and lower-priced hard disk
storage have allowed hardware companies to install multiuser operating systems on desktop computers.

Proprietary operating systems

Second, with the cost of hardware continually dropping, hardware manufacturers can no longer afford to
develop and support proprietary operating systems. A proprietary operating system used to be written and
owned by the manufacturer of the hardware (for example, DEC/Compaq owns VMS). Today's manufacturers
need a generic operating system that they can easily adapt to their machines.

Generic operating systems

A generic operating system is written outside of the company manufacturing the hardware and is sold
(UNIX, Windows) or given (Linux) to the manufacturer. Linux is a generic operating system because it runs
on different types of hardware produced by different manufacturers. Of course, if manufacturers can pay only
for development and avoid per-unit costs (as they have to pay to Microsoft for each copy of Windows they
sell), developers are much better off. In turn, software developers need to keep the prices of their products
down; they cannot afford to convert their products to run under many different proprietary operating systems.
Like hardware manufacturers, software developers need a generic operating system.

Although the UNIX system once met the needs of hardware companies and researchers for a generic
operating system, over time it has become more proprietary as each manufacturer has added support for
specialized features and introduced new software libraries and utilities.

Linux emerged to serve both needs. It is a generic operating system that takes advantage of available
hardware power.

Linux Is Portable

A portable operating system is one that can run on many different machines. More than 95 percent of the
Linux operating system is written in the C programming language, and C is portable because it is written in a
higher-level, machine-independent language. (The C compiler is written in C.)

Because Linux is portable, it can be adapted (ported) to different machines and can meet special
requirements. For example, Linux is used in embedded computers, such as the ones found in cellphones,
PDAs, and the cable boxes on top of many TVs. The file structure takes full advantage of large, fast hard
disks. Equally important, Linux was originally designed as a multiuser operating system—it was not
modified to serve several users as an afterthought. Sharing the computer's power among many users and
giving them the ability to share data and programs are central features of the system.

Because it is adaptable and takes advantage of available hardware, Linux now runs on many different
microprocessor-based systems as well as mainframes. The popularity of the microprocessor-based hardware
drives Linux; these microcomputers are getting faster all the time, at about the same price point. Linux on a
fast microcomputer has become good enough to displace workstations on many desktops. Linux benefits
both users, who do not like having to learn a new operating system for each vendor's hardware, and the
system administrators, who like having a consistent software environment.

The advent of a standard operating system has aided the development of the software industry. Now software
manufacturers can afford to make one version of a product available on machines from different
manufacturers.

Standards

Individuals from companies throughout the computer industry have joined together to develop the POSIX
(Portable Operating System Interface for computer Environments) standard, which is based largely on the
UNIX System V Interface Definition (SVID) and other earlier standardization efforts. These efforts have
been spurred by the U.S. government, which needs a standard computing environment to minimize its
training and procurement costs. Now that these standards are gaining acceptance, software developers are
able to develop applications that run on all conforming versions of UNIX, Linux, and other operating
systems.

The C Programming Language

Ken Thompson wrote the UNIX operating system in 1969 in PDP-7 assembly language. Assembly language
is machine dependent: Programs written in assembly language work on only one machine or, at best, one
family of machines. The original UNIX operating system therefore could not easily be transported to run on
other machines (it was not portable).

To make UNIX portable, Thompson developed the B programming language, a machine-independent
language, from the BCPL language. Dennis Ritchie developed the C programming language by modifying B
and, with Thompson, rewrote UNIX in C in 1973. The revised operating system could be transported more
easily to run on other machines.

That development marked the start of C. Its roots reveal some of the reasons why it is such a powerful tool.
C can be used to write machine-independent programs. A programmer who designs a program to be portable
can easily move it to any computer that has a C compiler. C is also designed to compile into very efficient
code. With the advent of C, a programmer no longer had to resort to assembly language to get code that

would run well (that is, quickly, although an assembler will always generate more efficient code than a high-
level language).

C is a good systems language. You can write a compiler or an operating system in C. It is highly structured
but is not necessarily a high-level language. C allows a programmer to manipulate bits and bytes, as is
necessary when writing an operating system. But it also has high-level constructs that allow efficient,
modular programming.

In the late 1980s the American National Standards Institute (ANSI) defined a standard version of the C
language, commonly referred to as ANSI C or C89 (for the year the standard was published). Ten years later
the C99 standard was published; it is mostly supported by the GNU Project's C compiler (named gcc). The
original version of the language is often referred to as Kernighan & Ritchie (or K&R) C, named for the
authors of the book that first described the C language.

Another researcher at Bell Labs, Bjarne Stroustrup, created an object-oriented programming language named
C++, which is built on the foundation of C. Because object-oriented programming is desired by many
employers today, C++ is preferred over C in many environments. The GNU Project's C compiler and its C++
compiler (g++) are integral parts of the Linux operating system.

 < Day Day Up >

 < Day Day Up >

Overview of Linux

The Linux operating system has many unique and powerful features. Like other operating systems, Linux is a
control program for computers. But like UNIX, it is also a well-thought-out family of utility programs
(Figure 1-1) and a set of tools allowing users to connect and use these utilities to build systems and
applications.

Figure 1-1. A layered view of the Linux operating system

Linux Has a Kernel Programming Interface

The heart of the Linux operating system is the Linux kernel, which is responsible for allocating the
computer's resources and scheduling user jobs so that each one gets its fair share of system resources,
including access to the CPU; peripheral devices, such as disk, DVD, and CD-ROM storage; printers; and
tape drives. Programs interact with the kernel through system calls, special functions with well-known
names. A programmer can use a single system call to interact with many kinds of devices. For example, there
is one write system call, not many device-specific ones. When a program issues a write request, the kernel
interprets the context and passes the request to the appropriate device. This flexibility allows old utilities to
work with devices that did not exist when the utilities were originally written. It also makes it possible to
move programs to new versions of the operating system without rewriting them (provided that the new
version recognizes the same system calls).

Linux Can Support Many Users

Depending on the hardware and what types of tasks the computer performs, a Linux system can support from
1 to more than 1,000 users, each concurrently running a different set of programs. The per-user cost of a
computer that can be used by many people at the same time is less than that of a computer that can be used

by only a single person at a time. It is less because one person cannot generally use all the resources a
computer has to offer. No one can keep the printers going constantly, keep all the system memory in use,
keep the disks busy reading and writing, keep the Internet connection in use, and keep all the terminals busy
at the same time. A multiuser operating system allows many people to use these system resources almost
simultaneously. The use of costly resources can be maximized, and the cost per user can be minimized.
These are the primary objectives of a multiuser operating system.

Linux Can Run Many Tasks

Linux is a fully protected multitasking operating system, allowing each user to run more than one job at a
time. Processes can communicate with one another but remain fully protected from one another, just as the
kernel is protected from all processes. You can run several jobs in the background while giving all your
attention to the job being displayed on your screen, and you can switch back and forth between jobs. If you
are running the X Window System (page 15), you can run different programs in different windows on the
same screen and watch all of them. This capability ensures that users can be more productive.

Linux Provides a Secure Hierarchical Filesystem

A file is a collection of information, such as text for a memo or report, an accumulation of sales figures, an
image, a song, or an executable program. Each file is stored under a unique identifier on a storage device,
such as a hard disk. The Linux filesystem provides a structure whereby files are arranged under directories,
which are like folders or boxes. Each directory has a name and can hold other files and directories.
Directories, in turn, are arranged under other directories, and so forth, in a treelike organization. This
structure helps users keep track of large numbers of files by grouping related files into directories. Each user
has one primary directory and as many subdirectories as required (Figure 1-2).

Figure 1-2. The Linux filesystem structure

Standards

With the idea of making life easier for system administrators and software developers, a group got together
over the Internet and developed the Linux Filesystem Standard (FSSTND), which has since evolved into the
Linux Filesystem Hierarchy Standard (FHS). Before this standard was adopted, key programs were located
in different places in different Linux distributions. Today you can sit down at a Linux system and know
where to expect to find any given standard program.

Links

A link allows a given file to be accessed by means of two or more different names. (Windows uses the term
shortcut instead of link.) The alternative names can be located in the same directory as the original file or in
another directory. Links can be used to make the same file appear in several users' directories, enabling them
to share the file easily.

Security

Like most multiuser operating systems, Linux allows users to protect their data from access by other users. It
also allows users to share selected data and programs with certain other users by means of a simple but
effective protection scheme. This level of security is provided by file access permissions, which limit which
users can read from, write to, or execute a file. Access Control Lists (ACLs) have recently been added to the
Linux kernel. ACLs give users and administrators finer-grained control over file access permissions.

The Shell: Command Interpreter And Programming Language

In a textual environment, the shell—the command interpreter—acts as an interface between you and the
operating system. When you enter a command on the screen, the shell interprets the command and calls the
program you want. A number of shells are available for Linux including these two common ones:

The Bourne Again Shell (bash), an enhanced version of the Bourne Shell, one of the original UNIX
shells

The TC Shell (tcsh), an enhanced version of the C Shell, developed as part of BSD UNIX

Because users often prefer different shells, multiuser systems can have a number of different shells in use at
any given time. The choice of shells demonstrates one of the powers of the Linux operating system: the
ability to provide a customized user interface.

Besides performing its function of interpreting commands from a keyboard and sending them to the
operating system, the shell is a high-level programming language. Shell commands can be arranged in a file
for later execution. Linux calls these files shell scripts; DOS and Windows call them batch files. Their
flexibility allows users to perform complex operations with relative ease, often by using rather short
commands, and to build with surprisingly little effort elaborate programs that perform highly complex
operations.

Filename Generation

When you are typing commands to be processed by the shell, you can construct patterns using characters that
have special meanings to the shell. The characters are called wildcard characters. These patterns represent a
kind of shorthand: Rather than typing in complete filenames users can type in patterns, and the shell will
expand them into matching filenames. These patterns are called ambiguous file references. An ambiguous
file reference can save you the effort of typing a long filename or a long series of similar filenames. It can
also be useful when you know only part of a filename or cannot remember its exact spelling.

Device-Independent Input And Output

Redirection

Devices (such as a printer or terminal) and disk files all appear as files to Linux programs. When you give a
command to the Linux operating system, you can instruct it to send the output to any one of several devices
or files. This diversion is called output redirection.

In a similar manner a program's input that normally comes from a keyboard can be redirected so that it
comes from a disk file instead. Input and output are device independent; they can be redirected to or from
any appropriate device.

As an example, the cat utility normally displays the contents of a file on the screen. When you run a cat
command, you can easily redirect its output to go to a disk file instead of the screen.

Shell Functions

One of the most important features of the shell is that users can use it as a programming language. Because
the shell is an interpreter, it does not compile programs written for it but rather interprets them each time
they are loaded from the disk. Loading and interpreting programs can be time-consuming.

Many shells, including the Bourne Again Shell, include shell functions that the shell holds in memory so that
it does not have to read them from the disk each time you want to execute them. The shell also keeps
functions in an internal format so that it does not have to spend as much time interpreting them.

Job Control

Job control is a shell feature that allows users to work on several jobs at once, switching back and forth
between them as desired. When you start a job it is frequently in the foreground, so it is connected to your
terminal. Using job control, you can move the job you are working with into the background and continue
running it there while working on or observing another job in the foreground. If a background job then needs
your attention, you can move it into the foreground so that it is once again attached to the terminal. The
concept of job control originated with BSD UNIX, where it appeared in the C Shell.

A Large Collection Of Useful Utilities

Linux includes a family of several hundred utility programs, often referred to as commands. These utilities
perform functions that are universally required by users. An example is sort. The sort utility puts lists (or
groups of lists) in alphabetical or numerical order and can be used to sort by part number, last name, city,

ZIP code, telephone number, age, size, cost, and so forth. The sort utility is an important programming tool
and is part of the standard Linux system. Other utilities allow users to create, display, print, copy, search, and
delete files, as well as to edit, format, and typeset text. The man (for manual) and info utilities provide
online documentation of Linux itself.

Interprocess Communication

Pipes and filters

Linux allows users to establish both pipes and filters on the command line. A pipe sends the output of one
program to another program as input. A filter is a special form of a pipe that processes a stream of input data
to yield a stream of output data. A filter processes another program's output, altering it as a result. The filter's
output then becomes input to another program.

Pipes and filters frequently join utilities to perform a specific task. For example, you can use a pipe to send
the output of the cat utility to sort, a filter. You can then use another pipe to send the output of sort to a
third utility, lpr, that sends the data to a printer. Thus, in one command line, you can use three utilities
together to sort and print a file.

System Administration

On a Linux system the system administrator is frequently the owner and only user of the system. This person
has many responsibilities. The first responsibility may be to set up the system and install the software.

Once the system is up and running, the system administrator is responsible for downloading and installing
software (including upgrading the operating system), backing up and restoring files, and managing such
system facilities as printers, terminals, servers, and a local network. The system administrator is also
responsible for setting up accounts for new users on a multiuser system, bringing the system up and down as
needed, and taking care of any problems that arise.

 < Day Day Up >

 < Day Day Up >

Additional Features of Linux

The developers of Linux included features from BSD, System V, and Sun Microsystems' Solaris, as well as
new features in their operating system. Although most of the tools found on UNIX exist for Linux, in many
cases these tools have been replaced by more modern counterparts. The following sections describe many of
the popular tools and features available under Linux.

Guis: Graphical User Interfaces

The X Window System (also called X) was developed in part by researchers at the Massachusetts Institute of
Technology and provides the foundation for the GUIs available with Linux. Given a terminal or workstation
screen that supports X, a user can interact with the computer through multiple windows on the screen,
display graphical information, or use special-purpose applications to draw pictures, monitor processes, or
preview formatted output. X is an across-the-network protocol that allows a user to open a window on a
workstation or computer system that is remote from the CPU generating the window.

Desktop manager

Usually two layers run under X: a desktop manager and a window manager. A desktop manager is a picture-
oriented user interface that enables you to interact with system programs by manipulating icons instead of
typing the corresponding commands to a shell. GNOME (www.gnome.org) and KDE (www.kde.org) are the
most popular desktop managers.

Window manager

A window manager is a program that runs under the desktop manager and allows you to open and close
windows, start programs running, and set up a mouse so it does different things depending on how and
where you click. The window manager also gives the screen its personality. Microsoft Windows allows you
to change the color of key elements in a window, but a window manager under X allows you to change the
overall look and feel of your screen: change the way a window looks and works (by giving it different
borders, buttons, and scrollbars), set up virtual desktops, create menus, and more.

Several popular window managers run under X and Linux, including Metacity (default under GNOME) and
kwin (default under KDE). Other window managers, such as Sawfish and WindowMaker, are also available.

(Inter)Networking Utilities

Linux network support includes many valuable utilities that enable you to access remote systems over a
variety of networks. In addition to sending email to users on other systems, you can access files on disks
mounted on other computers as if they were located on the local system, make your files available to other
systems in a similar manner, copy files back and forth, run programs on remote systems while displaying the
results on the local system, and perform many other operations across local area networks (LANs) and wide

area networks (WANs), including the Internet.

Layered on top of this network access are a wide range of application programs that extend the computer's
resources around the globe. You can carry on conversations with people throughout the world, gather
information on a wide variety of subjects, and download new software over the Internet quickly and reliably.

Software Development

One of Linux's major strengths is its rich software development environment. You can find compilers and
interpreters for many computer languages. Besides C and C++, languages available for Linux include Ada,
Fortran, Java, Lisp, Pascal, Perl, and Python among many others. The bison utility generates parsing code
that makes it easier to write programs to build compilers (tools that parse files containing structured
information). The flex utility generates scanners, or code that recognizes lexical patterns in text. The make
utility and GNU's automatic configuration utility (configure) make it easy to manage complex development
projects. Source code management systems, such as CVS, simplify version control. Several debuggers,
including ups and gdb, help in tracking down and repairing software defects. The GNU C compiler (gcc)
works with the gprof profiling utility to help programmers identify potential bottlenecks in a program's
performance. The C compiler includes options to perform extensive checking of C code that can make the
code more portable and reduce debugging time.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The Linux operating system grew out of the UNIX heritage to become a popular alternative to traditional
systems (that is, Windows) available for microcomputer (PC) hardware. UNIX users will find a familiar
environment in Linux. Distributions of Linux contain the expected complement of UNIX utilities,
contributed by programmers around the world, including the set of tools developed as part of the GNU
Project. The Linux community is committed to the continued development of this system. Support for new
microcomputer devices and features is added soon after the hardware becomes available, and the tools
available on Linux continue to be refined. With many commercial software packages available to run on
Linux platforms and many hardware manufacturers offering Linux on their systems, it is clear that the
system has evolved well beyond its origin as an undergraduate project to become an operating system of
choice for academic, commercial, professional, and personal use.

 < Day Day Up >

 < Day Day Up >

Exercises

1. What is free software? List three characteristics of free software.

2. Why is Linux popular? Why is it popular in academia?

3. What are multiuser systems? Why are they successful?

4. What is the Free Software Foundation/GNU? What is Linux? Which parts of the Linux
operating system did each provide? Who else has helped build and refine this operating system?

5. In what language is Linux written? What does the language have to do with the success of
Linux?

6. What is a utility program?

7. What is a shell? How does it work with the kernel? With the user?

8. How can you use utility programs and a shell to create your own applications?

9. Why is the Linux filesystem referred to as hierarchical?

10. What is the difference between a multiprocessor and a multiprocessing system?

11. Give an example of when you would want to use a multiprocessing system.

12. Approximately how many people wrote Linux? Why is this unique?

13. What are the key terms of the GNU General Public License (GPL)?

 < Day Day Up >

 < Day Day Up >

Part I: The Linux Operating System

 CHAPTER 2 Getting Started

 CHAPTER 3 Command Line Utilities

 CHAPTER 4 The Linux Filesystem

 CHAPTER 5 The Shell

 < Day Day Up >

 < Day Day Up >

Chapter 2. Getting Started

IN THIS CHAPTER

Conventions Used in This Book 22

Logging In 24

Logging In Remotely: Terminal Emulation, ssh, and telnet 25

Curbing Your Power: Superuser Access 28

Getting the Facts: Where to Find Documentation 29

The ––help Option 29

man: Displays the System Manual 30

info: Displays Information About Utilities 32

HOWTOs: Finding Out How Things Work 34

What to Do If You Cannot Log In 36

Changing Your Password 37

One way or another you are sitting in front of a screen that is connected to a computer that is running Linux.
You may be working with a graphical user interface (GUI) or a textual interface. This book is about the
textual, or command line, interface to Linux. If you are working with a GUI, you will need to use a terminal
emulator such as xterm, Konsole, or GNOME Terminal, to follow along with the examples in this book.

This chapter starts with a discussion of the typographical conventions used in this book, followed by a
section on logging in on the system. Next there is a brief reminder about the powers of Superuser (root) and
how to avoid making mistakes that will make your system inoperable or hard to work with. The chapter
continues with a discussion about where to find more information about Linux. It concludes with additional
information on logging in, including how to change your password.

While heeding the warning about the dangers of misusing the powers of Superuser on page 29, feel free to
experiment with your system: Give commands, create files, follow the examples in this book, and have fun.

 < Day Day Up >

 < Day Day Up >

Conventions Used in This Book

This book uses conventions to make its explanations shorter and clearer. The following paragraphs describe
these conventions.

Text and examples

The text is set in this type, whereas examples are shown in a monospace font (also called a fixed-width
font):

$ cat practice

This is a small file I created

with a text editor.

The next paragraph explains why part of the first line is in a bold typeface.

Items you enter

Everything you enter at the keyboard is shown in a bold typeface: Within the text, this bold typeface is used;
within examples and screens, this one is used. In the previous example, the dollar sign ($) on the first line
is a prompt that Linux displays, so it is not bold; the remainder of the first line is entered by a user, so it is
bold.

Utility names

Names of utilities are printed in this bold sans serif typeface. This book references the emacs editor
and the ls utility or ls command (or just ls), but instructs you to enter ls –a on the command line. The text
distinguishes between utilities, which are programs, and the instructions you give on the command line to
invoke the utilities.

Filenames

Filenames appear in a bold typeface. Examples are memo5, letter.1283, and reports. Filenames may
include uppercase and lowercase letters; however, Linux is case sensitive (866), so memo5, MEMO5, and
Memo5 name three different files.

Character strings

Within the text, characters and character strings are marked by putting them in a bold typeface. This
convention avoids the need for quotation marks or other delimiters before and after a string. An example is
the following string, which is displayed by the passwd utility: Sorry, passwords do not match.

Keys and characters

This book uses SMALL CAPS for three kinds of items:

Important keyboard keys, such as the SPACE bar and the RETURN,[1] ESCAPE, and TAB keys.

[1] Different keyboards use different keys to move the cursor (870) to the beginning of the next line. This book always
refers to the key that ends a line as the RETURN key. Your keyboard may have a RET, NEWLINE, Enter, RETURN , or
other key. Some keyboards have a key with a bent arrow on it. (The key with the bent arrow is not an arrow key. Arrow
keys have straight shafts.) Use the corresponding key on your keyboard each time this book asks you to press RETURN.

The characters that keys generate, such as the SPACEs generated by the SPACE bar.

Keyboard keys that you press with the CONTROL key, such as CONTROL-D. (Even though D is
shown as an uppercase letter, you do not have to press the SHIFT key. Enter CONTROL-D by holding
down the CONTROL key and pressing d.)

Prompts and RETURNs

Most examples include the shell prompt —the signal that Linux is waiting for a command—as a dollar sign
($). The prompt is not in boldface, because you do not enter it. Do not type the prompt on the keyboard when
you are experimenting with examples from this book. If you do, the examples will not work.

Examples omit the RETURN keystroke that you must use to execute them. An example of a command line is

$ vim memo.1204

To use this example as a model for running the vim editor, give the command vim memo.1204 and press the
RETURN key. (Press ESCAPE ZZ to exit from vim; see page 141 for a vim tutorial.) This method of
entering commands makes the examples in the book correspond to what appears on your screen.

Definitions

All entries marked with FOLDOC are courtesy of Denis Howe, editor of the Free Online Dictionary of
Computing (www.foldoc.org), and are used with permission. This site is an ongoing work containing not just
definitions but also anecdotes and trivia.

optional

Passages marked as optional are not central to the ideas presented in the chapter but often
involve more challenging concepts. A good strategy when reading a chapter is to skip the
optional sections and then return to them when you are comfortable with the main ideas
presented in the chapter. This is an optional paragraph.

URLs (Web addresses)

Web addresses, or URLs, have an implicit http:// prefix, unless ftp:// or https:// is shown. You do not
normally need to specify a prefix when the prefix is http://, but you must use a prefix from a browser when
you specify an FTP or secure HTTP site. Thus you can specify a URL in a browser exactly as shown in this
book.

Tip, Caution, and Security boxes

The following boxes highlight information that may be helpful while you are using or administrating a Linux
system.

tip: This is a tip box

A tip box may help you avoid repeating a common mistake or may point toward additional
information.

caution: This box warns you about something

A caution box warns you about a potential pitfall.

security: This box marks a security note

A security box highlights a potential security issue. These notes are usually for system
administrators but some apply to all users.

 < Day Day Up >

 < Day Day Up >

Logging In

To log in on a terminal, terminal emulator, or other text-based device, enter your username and password in
response to the system prompts. If you are using a terminal (905) and your screen does not display login:,
check whether the terminal is plugged in and turned on, and then press the RETURN key a few times. If
login: still does not appear, try pressing CONTROL-Q. If you are using a workstation (910), make sure it is
running. Run ssh, telnet, or whatever communications/emulation software you have to log in on the
system. Try logging in, making sure that you enter your username and password as they were specified when
your account was set up; the routine that verifies the username and password is case sensitive. Like most
systems, Linux does not echo your password when you enter it.

tip: Make sure TERM is set correctly

The TERM shell variable establishes the pseudographical characteristics of a character-based
terminal or terminal emulator. Typically TERM is set for you—you do not have to set it manually.
If things on the screen do not look right, refer to "Specifying a Terminal" on page 844.

Logging In From a Terminal

The following example shows what it looks like when you log in from a terminal. Max is logging in on the
bravo system.

bravo login: max

Password:

Last login: Tue Mar 1 19:50:38 from kudos

[max@bravo max]$

After you log in, the shell prompt (or just prompt) appears, indicating that you have successfully logged in. It
shows that the system is ready for you to give it a command. The shell prompt line may be preceded by one
or two short messages called the message of the day (or motd) and issue. These messages generally identify
the version of Linux that is running, along with local messages placed in either the /etc/motd or the
/etc/issue file.

security: Did you log in last?

Immediately after you log in, the system may display information about the last login on this
account, showing when it took place and where it originated. You can use this information to see
whether anyone else may have accessed this account since you last used it. Perhaps an
unauthorized user has learned your password and has logged in as you. In the interest of security,
advise the system administrator of the circumstances that made you suspicious and change your
password (page 37).

The usual prompt is a dollar sign ($). Do not be concerned if you have a different prompt; the examples in
this book will work regardless of what your prompt looks like. In the previous example the $ prompt (last
line) is preceded by the username (max), an at sign (@), the system name (bravo), and the name of the
directory Max is working in (max). For information on how to change your prompt, refer to page 286 (bash)
or page 363 (tcsh).

Logging In Remotely: Terminal Emulation, ssh, and telnet

When you are not using the console, a terminal, or another device connected directly to the Linux system you
are logging in on, you are probably connected to Linux using terminal emulation software on another system.
This software runs on your computer, connects to the Linux system via a network (e.g., Ethernet,
asynchronous phone line, PPP), and allows you to log in on the Linux system.

When you log in via a dial-up line, the connection is straightforward: You instruct the emulator program to
contact the computer, it dials the phone, and you get a login prompt from the remote system. When you log
in via a directly connected network, you use telnet (not secure, page 792) or ssh (secure, page 773) to
connect to the remote system. One of the reasons that telnet is not secure is that it sends your username and
password over the network in cleartext (867) when you log in, allowing someone to capture your login
information and log in on your account. The ssh utility encrypts all information it sends over the network
and, if available, is a better choice than telnet.

From an Apple, PC, UNIX, or other machine, give the command ssh or telnet, followed by the name or IP
address (882) of the machine you want to log in on. Following is an example of logging in using ssh:

$ ssh bravo

max@bravo's password:

Permission denied, please try again.

max@bravo's password:

Last login: Wed Mar 2 21:21:49 2005 from bravo.example.com

[max@bravo max]$

In the preceding example the user mistyped his password, received an error message and another prompt,
and retyped the password correctly.

 < Day Day Up >

 < Day Day Up >

Working with the Shell

When you log in and are working in a textual (nongraphical) environment, and when you are using a
terminal emulator window in a graphical environment, you are using the shell as a command interpreter.
That is, the shell displays a prompt, you type a command, and the shell executes the command and displays
another prompt.

This section tells you how to identify the shell you are using and explains the keystrokes you can use to
correct mistakes on the command line. It covers how to abort a running command and briefly discusses how
to edit a command line. Several chapters of this book are dedicated to shells: Chapter 5 introduces shells,
Chapter 8 goes into more detail about the Bourne Again Shell with some coverage of the TC Shell, Chapter
9 covers the TC Shell exclusively, and Chapter 11 discusses writing programs (shell scripts) using the
Bourne Again Shell.

Which Shell Are You Running?

This book discusses both the Bourne Again Shell (bash) and the TC Shell (tcsh). You are probably running
bash, but you may be running tcsh or another shell such as the Z Shell (zsh). You can identify the shell you
are running by using the ps utility. Type ps in response to the shell prompt and press RETURN.

$ ps

 PID TTY TIME CMD

 2402 pts/5 00:00:00 bash

 7174 pts/5 00:00:00 ps

This command shows that you are running two utilities or commands: bash and ps. If you are running tcsh,
ps will display tcsh instead of bash. If you are running a different shell, ps will display its name.

Correcting Mistakes

This section explains how to correct typographical and other errors you may make while you are logged in
on a character-based display. Because the shell does not begin to interpret the command line or other text
until you press RETURN, you can correct typing mistakes before you press that key.

You can correct typing mistakes in several ways: You can erase one character at a time, back up a word at a
time, or back up to the beginning of the command line in one step. After you press RETURN, it is too late to
correct a mistake. You must either wait for the command to run to completion or abort execution of the
program (page 27).

Erasing a Character

While entering characters from the keyboard, you can back up and erase a mistake by pressing the erase key
once for each character you want to delete. The erase key backs over as many characters as you wish.
Usually it will not back up past the beginning of the line.

The default erase key is BACKSPACE. If this key does not work, try DELETE or CONTROL-H. If these
keys do not work, give the following command to set the erase and line kill keys (see "Deleting a Line" on
page 27) to their defaults:

$ stty ek

For information on changing which key erases characters, refer to page 781.

tip: CONTROL-Z suspends a program

Although not a way of correcting a mistake, you may press the suspend key (typically CONTROL-
Z) by mistake and wonder what happened (you will see a message containing the word Stopped).
You have just stopped the job you were running, using job control (page 271). Give the command
fg to continue your job in the foreground, and you should return to where you were before you
pressed the suspend key. For more information refer to "bg: Sends a Job to the Background: Sends
a Job to the Background" on page 273.

Deleting a Word

You can delete a word you entered by pressing CONTROL-W. A word is any sequence of characters that
does not contain a SPACE or TAB. When you press CONTROL-W , the cursor moves left to the beginning
of the current word (as you are entering a word) or the previous word (when you have just entered a SPACE
or TAB), removing the word it passes over.

Deleting a Line

Any time before you press RETURN, you can delete a line you are entering by pressing the line kill key, also
called the kill key. When you press this key, the cursor moves to the left, erasing characters as it goes, back
to the beginning of the line. The default line kill key is CONTROL-U. If this key does not work, try
CONTROL-X. If neither key works, give the following command to set the erase and line kill keys to their
defaults:

$ stty ek

For information on changing which key deletes a line, refer to page 781.

Aborting Execution

Sometimes you may want to terminate a running program. For example, a Linux program may be performing
a lengthy task such as displaying the contents of a file that is several hundred pages long or copying a file
that is not the one you meant to copy.

To terminate a program from a character-based display, press the interrupt key (CONTROL-C or sometimes
DELETE or DEL). When you press this key, the Linux operating system sends a terminal interrupt signal
both to the program you are running and to the shell. Exactly what effect this signal has depends on the
program. Some programs stop execution immediately; others ignore the signal. Some programs take other
actions. When it receives a terminal interrupt signal, the shell displays a prompt and waits for another
command. For information on changing which key aborts execution, refer to page 781.

If these methods do not terminate the program, try stopping the program with the suspend key (typically
CONTROL-Z), giving the jobs command to verify the job number of the program, and using kill to abort
the program. The job number is the number within the brackets at the left end of the line that jobs displays
([1]). The kill command sends a signal to the job specified as its argument. You must precede the job
number with a percent sign (%1):

$ bigjob

^Z

[1]+ Stopped bigjob

$ jobs

[1]+ Stopped bigjob

$ kill %1

[1]+ Stopped bigjob

$ RETURN

[1]+ Killed bigjob

By default kill sends a software termination signal (–TERM). When this signal does not work, try using a
kill (–KILL) signal:

$ kill -KILL %1

A running program cannot ignore a kill signal—it is sure to abort the program. The kill command returns a
prompt; press RETURN again to see the confirmation message. For more information on job control, refer to
"Running a Program in the Background" on page 125. For a list of signals, see Table 11-5 on page 494.

Repeating/Editing Command Lines

To repeat a previous command on the command line, press the UP ARROW key. Each time you press UP
ARROW , you see an earlier command line. To reexecute the displayed command line, press RETURN.
Press DOWN ARROW to browse through the command lines in the other direction.

The RIGHT and LEFT ARROW keys move the cursor back and forth along the displayed command line. At
any point along the command line, you can add characters by typing. Use the erase key to remove characters
from the command line.

For more complex command line editing, see page 297 (bash) and page 353 (tcsh).

 < Day Day Up >

 < Day Day Up >

Curbing Your Power: Superuser Access

While you are logged in as the user named root, you are referred to as Superuser or administrator and have
extraordinary privileges. You can read from or write to any file on the system, execute programs that
ordinary users cannot, and more. On a multiuser system you may not be permitted to know the root
password, but someone—usually the system administrator— knows the root password and maintains the
system. When you are running Linux on your own computer, you will assign a password to root when you
install Linux.

caution: Do not experiment as Superuser

Feel free to experiment when you are logged in as yourself. When you log in as Superuser, also
called root or administrator, or whenever you give the Superuser password, do only what you have
to do and make sure you know exactly what you are doing. After you have completed the task at
hand, revert to working as yourself. When working as Superuser you can damage the Linux system
to such an extent that you will need to reinstall Linux to get it working again.

 < Day Day Up >

 < Day Day Up >

Getting the Facts: Where to Find Documentation

Distributions of Linux typically do not come with hardcopy reference manuals. However, its online
documentation has always been one of Linux's strengths. The manual (or man) and info pages have been
available via the man and info utilities since early releases of the operating system. With the growth of
Linux and the Internet, the sources of documentation have expanded. The following sections discuss some of
the places you can look for information on various aspects of Linux.

The ––help Option

Most GNU utilities have a ––help option that displays information about the utility.

$ cat --help

Usage: cat [OPTION] [FILE]...

Concatenate FILE(s), or standard input, to standard output.

 -A, --show-all equivalent to -vET

 -b, --number-nonblank number nonblank output lines

 -e equivalent to -vE

 -E, --show-ends display $ at end of each line

...

If the information that ––help displays runs off the screen, send the output through the less pager (page 31)
using a pipe:

$ ls --help | less

More information about pipes appears on page 52. Non-GNU utilities may use a –h or –help option to
display help information.

Figure 2-1. The man utility displaying information about who

WHO(1) User Commands WHO(1)

NAME

 who - show who is logged on

SYNOPSIS

 who [OPTION]... [FILE | ARG1 ARG2]

DESCRIPTION

 -a, --all

 same as -b -d --login -p -r -t -T -u

 -b, --boot

 time of last system boot

 -d, --dead

 print dead processes

 -H, --heading

 print line of column headings

 -i, --idle

 add idle time as HOURS:MINUTES, . or old (deprecated, use -u)

man: Displays the System Manual

The man (manual) utility displays pages (man pages) from the system documentation. This documentation is
helpful when you know which utility you want to use but have forgotten exactly how to use it. You can also
refer to the man pages to get more information about specific topics or to determine which features are
available with Linux. Because the descriptions in the system documentation are often terse, they are most
helpful if you already understand basically what a utility does.

To find out more about a utility, including the man utility itself, give the command man, followed by the
name of the utility. Figure 2-1 shows the output of a man who command.

less (pager)

The command man man displays information about the man utility. The man utility automatically sends the
output through a pager , usually less (page 45), which allows you to view a file one screen at a time. When
you display a manual page in this manner, less displays a prompt (:) at the bottom of the screen after each
screen of text and waits for you to request another screen by pressing the SPACE bar. Pressing h (help)
displays a list of less commands. Pressing q (quit) stops man and causes the shell to display a prompt. You
can search for topics covered by man pages by using the apropos utility (page 62).

Manual sections

Based on the FHS (Filesystem Hierarchy Standard, page 86), the Linux system manual and the man pages are
divided into ten sections. Each section describes related tools:

User Commands1.

System Calls2.

Subroutines3.

Devices4.

File Formats5.

Games6.

Miscellaneous7.

System Administration8.

Local9.

New10.

This layout closely mimics the way the set of UNIX manuals has always been divided. Unless you specify a
manual section, man displays the earliest occurrence in the manual of the word you provide on the command
line. Most users find the information they need in sections 1, 6, and 7; programmers and system
administrators frequently need to consult the other sections.

In some cases the manual contains entries for different tools with the same name. For example, the following
command displays the manual page for the write utility (page 67) from section 1 of the system manual:

$ man write

To see the manual page for the write system call from section 2, enter

$ man 2 write

The preceding command instructs man to look only in section 2 for the manual page. Use the –a option (see
the adjacent tip) to view all the man pages for a given subject (press q to move to the next section). Use man
–a write to view all the man pages for write.

tip: Options

An option modifies the way a utility or command works. Options are specified as one or more
letters that are preceded by one or two hyphens (with some exceptions). The option appears
following the name of the utility you are calling and a SPACE. Any other arguments (861) to the
command follow the option and a SPACE. For more information refer to "Options" on page 109.

tip: man and info display different information

The info utility displays more complete and up-to-date information on GNU utilities than does
man. When a man page displays abbreviated information on a utility that is covered by info, the
man page refers you to info. The man utility frequently displays the only information available on
non-GNU utilities. When info displays information on non-GNU utilities, it is frequently a copy
of the man page.

info: Displays Information About Utilities

The character-based info utility is a menu-based hypertext system developed by the GNU project and
distributed with Linux. The info utility includes a tutorial on itself (give the command info info or go to
www.gnu.org/software/texinfo/manual/info) and documentation on many Linux shells, utilities, and
programs developed by the GNU project (page 2). Figure 2-2 shows the screen that info displays when you
give the command info.

Figure 2-2. The first screen that info displays

[View full size image]

Because the information on this screen is drawn from an editable file, your display may differ. When you see
the initial info screen, you can press

h to go through an interactive tutorial on info

? to list info commands

SPACE to scroll through the menu of items for which information is available

m followed by the name of the menu item you want to display

q to quit

The notation info uses to describe keyboard keys may not be familiar to you. The notation C-h is the same
as CONTROL-H. Similarly M-x means hold down the META or ALT key and press x. (On some systems
you need to press ESCAPE and then x to duplicate the function of META-x.)

After giving the command info, press the SPACE bar a few times to scroll the display. Figure 2-3 shows the
entry for sleep. The asterisk at the left end of the line means that this entry is the beginning of a menu item.
Following the asterisk is the name of the menu item, followed by a colon, the name of the package (in
parentheses) that the menu item belongs to, other information, and a description of the item on the right.

Figure 2-3. The screen that info displays after you press SPACE a few times

[View full size image]

Each menu item is an active link to the info page that describes the item. To jump to that page, move the
cursor to the line containing the menu item and press RETURN. Alternatively you can type the name of the
menu item in a menu command to view the information. To get information on sleep, for example, you give
the command m sleep, followed by a RETURN. When you type m (for menu), the cursor moves to the
bottom line of the screen and displays Menu item:. Typing sleep displays sleep on that line, and pressing
RETURN takes you to the menu item you have chosen.

Figure 2-4 shows the top node of information on sleep. A node is one group of information that you can
scroll through with the SPACE bar. To get to the next node, press n. Press p to get to the previous node. You
can always press d to display the initial menu (Figure 2-2).

Figure 2-4. The info page on the sleep utility

[View full size image]

As you read this book and learn about new utilities, you can use man or info to find out more about the
utilities. If you can print PostScript documents, you can print a manual page with the man utility using the –t
option (for example, man –t cat | lpr prints information about the cat utility). Better yet, use a browser to
look at the documentation at www.tldp.org and print the information from the browser.

HOWTOs: Finding Out How Things Work

A HOWTO document explains in detail how to do something related to Linux—from setting up a
specialized piece of hardware to performing a system administration task to setting up specific networking
software. Mini-HOWTOs offer shorter explanations. As with Linux software, one person or a few people
generally are responsible for a HOWTO document, yet many people contribute to it.

The Linux Documentation Project (LDP, page 35) site houses most HOWTO and mini-HOWTO documents.
Use a browser to go to www.tldp.org, click HOWTOs, and pick the index you want to use to find a
HOWTO or mini-HOWTO. Or use the LDP search feature on its home page to find HOWTOs and more.

Using the Internet to Get Help

The Internet provides many helpful sites related to Linux. Aside from sites that carry various forms of
documentation, you can enter an error message that you are having a problem with in a search engine such as
Google (www.google.com). Enclose the error message within double quotation marks to improve the quality
of your results. You will likely find a post concerning your problem and how to solve it. See Figure 2-5.

Figure 2-5. Google reporting on an error message

[View full size image]

GNU

GNU makes many of its manuals available at www.gnu.org/manual. In addition, go to the GNU home page
(www.gnu.org) for more documentation and other GNU resources. Many of the GNU pages and resources
are available in a wide variety of languages.

The Linux Documentation Project

The Linux Documentation Project (www.tldp.org), which has been around for almost as long as Linux,
houses a complete collection of guides, HOWTOs, FAQs, man pages, and Linux magazines. The home page
is available in English, Portuguese, Spanish, Italian, Korean, and French and is easy to use, supporting local
text searches. It also has a complete set of links (Figure 2-6) that can help you find almost anything you want
that is related to Linux (click Links in the Search box or go to www.tldp.org/links). The links page includes
sections on general information, events, getting started, user groups, mailing lists, and newsgroups, each
containing many subsections.

Figure 2-6. The Linux Documentation Project home page

[View full size image]

 < Day Day Up >

 < Day Day Up >

More About Logging In

This section covers what to do if you have a problem logging in, how to use virtual consoles, how to log in
remotely, and how to change your password.

What to Do If You Cannot Log In

When you enter your username or password incorrectly, the system displays an error message after you enter
both your username and your password. This message indicates that you have entered either the login name
or the password incorrectly or that they are not valid. It does not differentiate between an unacceptable login
name and an unacceptable password to discourage unauthorized people from guessing names and passwords
to gain access to the system. Some common reasons that logins fail are listed here:

Log In on the Right Machine

The login/password combination may not be valid if you are trying to log in on the wrong machine. On
a larger, networked system, you may have to specify the machine that you want to connect to before
you can log in.

Login Name and Password Are Case Sensitive

Make sure the CAPS LOCK key is off and that you enter your name and password exactly as specified
or as you set them up.

Make Sure Your Login Name Is Valid

The login/password combination may not be valid if you have not been set up as a user.

Refer to "Changing Your Password" on page 37 when you want to change your password.

Logging Out

To log out from a character-based interface, press CONTROL-D or give the command exit in response to the
shell prompt.

Using Virtual Consoles

When running Linux on a personal computer, you frequently work with the display and keyboard attached to
the computer. Using this physical console, you can access as many as 63 virtual consoles (also called virtual
terminals). Some are set up to allow logins, whereas others act as graphical displays. To switch between
virtual consoles, hold down the CONTROL and ALT keys and press the function key that corresponds to the
console you want to view. For example, CONTROL-ALT-F5 displays the fifth virtual console. This book
refers to the console that you see when you first boot a system (or press CONTROL-ALT-F1) as the system
console (or just console).

Typically, six virtual consoles are active and have text login sessions running. When you want to use both a
character-based interface and a GUI, you can set up a character-based session on one virtual console and a
graphical session on another. Whichever virtual console you start a graphical session from, the graphical
session finds the first unused virtual console (typically number seven).

Changing Your Password

If someone else assigned you a password, it is a good idea to give yourself a new one. A good password is
seven or eight characters long and contains a combination of numbers, uppercase and lowercase letters, and
punctuation characters. Avoid using control characters (such as CONTROL-H) because they may have a
special meaning to the system, making it impossible for you to log in. Do not use names, words from English
or other languages, or other familiar words that someone can easily guess.

For security reasons none of the passwords you enter is ever displayed by any utility.

security: Protect your password

Do not allow someone to find out your password: Do not put your password in a file that is not
encrypted, allow someone to watch you type your password, give it to someone you do not know (a
system administrator never needs to know your password), or write it down.

security: Choose a password that is difficult to guess

Do not use phone numbers, names of pets or kids, birthdays, words from a dictionary (not even a
foreign language), and so forth. Do not use permutations of these items.

security: Differentiate between important and less important passwords

It is important to differentiate between important and less important passwords. For example, Web
site passwords for blogs or download access are not very important; it is not bad if you choose the
same password for these types of sites. However, your login, mail server, and bank account Web
site passwords are critical: Never use these passwords for an unimportant Web site.

To change your password, give the command passwd from a command line:

$ passwd

Changing password for user zach.

Changing password for zach

(current) UNIX password:

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully.

The first item the system asks you for is your current (old) password. This password is verified to ensure that
an unauthorized user is not trying to alter your password. Next the system requests the new password.

A password should meet the following criteria to be relatively secure. Only the first item is mandatory.

It must be at least six characters long (or longer if the system administrator sets it up that way).

It should not be a word in a dictionary of any language, no matter how seemingly obscure.

It should not be the name of a person, place, pet, or other thing that might be discovered easily.

It should contain at least two letters and one digit.

It should not be your login name, the reverse of your login name, or your login name shifted by one or
more characters.

If you are changing your password, the new password should differ from the old one by at least three
characters. Changing the case of a character does not make it count as a different character.

After you enter your new password, the system asks you to retype it to make sure you did not make a mistake
when you entered it the first time. If the new password is the same both times you enter it, your password is
changed. If the passwords differ, it means that you made an error in one of them, and the system displays an
error message:

Sorry, passwords do not match

If your password is not long enough, the system displays the following message:

BAD PASSWORD: it is too short

When it is too simple, the system displays this message:

BAD PASSWORD: it is too simplistic/systematic

When it is formed from words, the system displays this message:

BAD PASSWORD: it is based on a dictionary word

If you get one of these messages you need to start over. Press RETURN a few times until the shell displays a
prompt and run passwd again.

When you successfully change your password, you change the way you log in. If you forget your password,
Superuser can change it and tell you your new password.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

As with many operating systems, your access to a Linux system is authorized when you log in. You enter
your username in response to the login: prompt, followed by a password. You can change your password any
time while you are logged in. Choose a password that is difficult to guess and that conforms to the criteria
imposed by the utility that changes your password.

The system administrator is responsible for maintaining the system. On a single-user system, you are the
system administrator. On a small, multiuser system, you or another user act as the system administrator, or
this job may be shared. On a large, multiuser system or network of systems, there is frequently a full-time
system administrator. When extra privileges are required to perform certain system tasks, the system
administrator logs in as the root user by entering the username root and the root password; this user is called
Superuser or administrator. On a multiuser system, several trusted users may be given the root password.

Do not work as Superuser as a matter of course. When you have to do something that requires Superuser
privileges, work as Superuser for only as long as you need to; then revert to working as yourself as soon as
possible.

The man utility provides online documentation on system utilities. This utility is helpful both to new Linux
users and to experienced users who must often delve into the system documentation for information on the
fine points of a utility's behavior. The info utility helps the beginner and the expert alike. It includes a
tutorial on its use and documentation on many Linux utilities.

 < Day Day Up >

 < Day Day Up >

Exercises

1. The following message is displayed when you attempt to log in with an incorrect username or
an incorrect password:

Login incorrect

This message does not indicate whether your username, your password, or both are invalid.
Why does it not tell you this information?

2. Give three examples of poor password choices. What is wrong with each? Include one that is
too short. Give the error message the system displays.

3. Is fido an acceptable password? Give several reasons why or why not.

4. What would you do if you could not log in?

5. Try to change your password to dog. What happens? Change it to a more secure password.
What makes that password relatively secure?

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

6. Change your login shell to tcsh without becoming root (Superuser).

7. How many man pages are in the Devices subsection of the system manual? (Hint: Devices is a
subsection of Special Files.)

8. The example on page 31 shows that man pages for write appear in sections 1 and 2 of the system
manual. Explain how you can use man to determine which sections of the system manual contain
a manual page with a given name.

9. How would you find out which Linux utilities create and work with archive files?

 < Day Day Up >

 < Day Day Up >

Chapter 3. Command Line Utilities

IN THIS CHAPTER

Special Characters 42

Basic Utilities 43

less Is more: Displaying a Text File One Screen at a Time 45

Working with Files 45

lpr: Prints a File 47

| (Pipe): Communicates Between Processes 52

Compressing and Archiving Files 56

Obtaining User and System Information 63

When Linus Torvalds introduced Linux and for a long time thereafter, Linux did not have a graphical user
interface: It ran on character-based terminals only. All the tools ran from a command line. Today the Linux
GUI is important, but many people—especially system administrators—run many command line programs.
Command line utilities are often faster, more powerful, or more complete than their GUI counterparts.
Sometimes there is no GUI counterpart to a text-based utility; some people just prefer the hands-on feeling
of the command line.

When you work with a command line interface, you are working with a shell. Before you start working with
a shell, it is important to understand something about the characters that are special to the shell, so this
chapter starts with a discussion of shell special characters. The chapter then describes four basic utilities you
can use to create and manipulate files (ls, cat, rm, and less) and one utility that tells you the name of the
system you are using (hostname). It continues with a section on additional file manipulation utilities
(including lpr, which prints files), followed by a brief discussion of how you can use a pipe on the
command line. This chapter then describes utilities that compress and decompress files, locate other utilities,
obtain user and system information, and allow you to communicate with other users. It concludes with a
section on email.

tip: Run these utilities from a command line

This chapter describes command line (i.e., text-based) utilities. You can experiment with these
utilities from a terminal, a terminal emulator within a GUI, or a virtual console (page 36).

 < Day Day Up >

 < Day Day Up >

Special Characters

Special characters, which have a special meaning to the shell, are discussed in "Filename
Generation/Pathname Expansion" on page 127. These characters are mentioned here so that you can avoid
accidentally using them as regular characters until you understand how the shell interprets them. For
example, it is best to avoid using any of the following characters in a filename (even though emacs and some
other programs do) because they make the file harder to reference on the command line:

& ; | * ? ' " ' [] () $ < > { } ^ # / \ % ! ~ +

Whitespace

Although not considered special characters, RETURN, SPACE, and TAB also have special meanings to the
shell. RETURN usually ends a command line and initiates execution of a command. The SPACE and TAB
characters separate elements on the command line and are collectively known as whitespace or blanks.

If you need to use one of the characters that has a special meaning to the shell as a regular character, you can
quote (or escape) it. When you quote a special character, you keep the shell from giving it special meaning.
The shell treats a quoted special character as a regular character.

Backslash

To quote a character, precede it with a backslash (\). When you have two or more special characters
together, you must precede each with a backslash (for example, enter ** as **). You can quote a backslash
just as you would quote any other special character—by preceding it with a backslash (\\).

Single quotation marks

Another way of quoting special characters is to enclose them between single quotation marks: '**'. You can
quote many special and regular characters between a pair of single quotation marks: 'This is a special
character: >'. The regular characters remain regular, and the shell also interprets the special characters as
regular characters.

The only way to quote the erase character (CONTROL-H), the line kill character (CONTROL-U), and other
control characters (try CONTROL-M) is by preceding it with a CONTROL-V. Single quotation marks and
backslashes do not work. Try the following:

$ echo 'xxxxxxCONTROL-U'

$ echo xxxxxxCONTROL-V CONTROL-U

optional

Although you cannot see the CONTROL-U displayed by the second of the preceding pair of
commands, it is there. The following command sends the output of echo (page 647) through a
pipe (page 52) to od (page 737) to display the CONTROL-U as an octal 25 (025):

$ echo xxxxxxCONTROL-V CONTROL-U | od -c

0000000 x x x x x x 025 \n

0000010

The \n is the NEWLINE character that echo sends at the end of its output.

 < Day Day Up >

 < Day Day Up >

Basic Utilities

One of the important advantages of Linux is that it comes with thousands of utilities that perform myriad
functions. You will use utilities whenever you use Linux, whether you use them directly by name from the
command line or indirectly from a menu or icon. The following sections discuss some of the most basic and
important utilities; these utilities are available from a character-based interface. Some of the more important
utilities are also available from a GUI, and some are available only from a GUI.

The term directory is used extensively in the next sections. A directory is a resource that can hold files. On
other operating systems, including Windows, Macintosh, and frequently Linux GUIs, a directory is referred
to as a folder. That is a good analogy: A directory is a folder that can hold files.

tip: In this chapter you work in your home directory

When you log in on the system, you are working in your home directory . In this chapter that is the
only directory you use: All the files you create in this chapter are in your home directory. Chapter 4
goes into more detail about directories.

ls: Lists the Names of Files

Using the editor of your choice, create a small file named practice. (A tutorial on vim appears on page 141
and a tutorial on emacs appears on page 198.) After exiting from the editor, you can use the ls (list) utility to
display a list of the names of the files in your home directory. In the first command in Figure 3-1 ls lists the
name of the practice file. (You may also see files the system or a program created automatically.)
Subsequent commands in Figure 3-1 display the contents of the file and remove the file. These commands
are described next.

Figure 3-1. Using ls, cat, and rm on the file named practice

$ ls

practice

$ cat practice

This is a small file that I created

with a text editor.

$ rm practice

$ ls

$ cat practice

cat: practice: No such file or directory

$

cat: Displays a Text File

The cat utility displays the contents of a text file. The name of the command is derived from catenate ,
which means to join together, one after the other. (Figure 5-8 on page 118 shows how to use cat to string
together the contents of three files.)

A convenient way to display the contents of a file to the screen is by giving the command cat, followed by a
SPACE and the name of a file. Figure 3-1 shows cat displaying the contents of practice. This figure shows
the difference between the ls and cat utilities: The ls utility displays the name of a file, whereas cat
displays the contents of a file.

rm: Deletes a File

The rm (remove) utility deletes a file. Figure 3-1 shows rm deleting the file named practice. After rm deletes
the file, ls and cat show that practice is no longer in the directory. The ls utility does not list its filename,
and cat says that there is no such file. Use rm carefully.

tip: A safer way of removing files

You can use the interactive form of rm to make sure that you delete only the file(s) you intend to
delete. When you follow rm with the – i option (see page 31 for a tip on options) and the name of
the file you want to delete,rm displays the name of the file and then waits for you to respond with y
(yes) before it deletes the file. It does not delete the file if you respond with a string that does not
begin with y.

$ rm -i toollist

rm: remove regular file 'toollist'? y

Optional: You can create an alias (page 312) and put it in your startup file (page 83) so that rm
always runs in interactive mode.

less Is more: Displaying a Text File One Screen at a Time

Pagers

When you want to view a file that is longer than one screen, you can use either the less utility or the more
utility. Each of these utilities pauses after displaying a screen of text. Because these utilities show one page
at a time, they are called pagers . Although they are very similar, they have subtle differences. At the end of
the file, for example, less displays an EOF (end of file) message and waits for you to press q before
returning you to the shell. In contrast, more returns you directly to the shell. In both utilities you can press h
to display a help screen that lists commands you can use while paging through a file. Replace the cat
command in Figure 3-1 with less practice and more practice to see how these commands work. Use the
command less /etc/termcap if you want to experiment with a long file. Refer to page 697 for more
information on less.

tip: Filename completion

After you enter one or more letters of a filename (following a command) on a command line, press
TAB and the shell will complete as much of the filename as it can. When only one filename starts
with the characters you entered, the shell completes the filename and places a SPACE after it. You
can keep typing or you can press RETURN to execute the command at this point. When the
characters you entered do not uniquely identify a filename, the shell completes what it can and
waits for more input. When pressing TAB does not change the display, press TAB again to display
a list of possible completions. (Refer to "Pathname Completion" on page 308.)

The preceding description assumes you are running bash. Filename completion works a little
differently if you are running tcsh; see "Word Completion" on page 350.

hostname: Displays the System Name

The hostname command displays the name of the system you are working on. Use this command if you are
not sure that you are logged in on the right system.

$ hostname

bravo.example.com

 < Day Day Up >

 < Day Day Up >

Working with Files

The following sections describe utilities that copy, move, and print files.

cp: Copies a File

The cp (copy) utility (Figure 3-2) makes a copy of a file. This utility can copy any file, including text and
executable program (binary) files. You can use cp to make a backup copy of a file or a copy to experiment
with.

The cp command line uses the following syntax to specify source and destination files:

cp source-file destination-file

The source-file is the name of the file that cp will copy. The destination-file is the name that cp assigns to
the resulting (new) copy of the file.

caution: cp can destroy a file

If the destination-file exists before you give a cp command, cp overwrites it. Because cp
overwrites (and destroys the contents of) an existing destination-file without warning, take care
not to cause cp to overwrite a file that you need. The cp – i (interactive) option (see page 31 for a
tip on options) prompts you before it overwrites a file.

The following example assumes that the file named orange.2 exists before you give the cp
command. The user answers y to overwrite the file:

$ cp – i orange orange.2

cp: overwrite 'orange.2'? y

The cp command line in Figure 3-2 copies the file named memo to memo.copy. The period is part of the
filename—just another character. The initial ls command shows that memo is the only file in the directory.
After the cp command, a second ls shows two files in the directory, memo and memo.copy.

Sometimes it is useful to incorporate the date in the name of a copy of a file. The following example
includes the date January 30 (0130) in the copied file:

$ cp memo memo.0130

Although it has no significance to Linux, the date can help you find a version of a file that you created on a
certain date. It can also help you avoid overwriting existing files by providing a unique filename each day.
Refer to "Filenames" on page 78.

Use scp (page 758) or ftp (page 671) when you need to copy a file from one system to another on a
common network.

mv: Changes the Name of a File

The mv (move) utility can rename a file without making a copy of it. The mv command line specifies an
existing file and a new filename using the same syntax as cp:

mv existing-filename new-filename

Figure 3-2. cp copies a file

$ ls

memo

$ cp memo memo.copy

$ ls

memo memo.copy

Figure 3-3. mv renames a file

$ ls

memo

$ mv memo memo.0130

$ ls

memo.0130

The command line in Figure 3-3 changes the name of the file memo to memo.0130. The initial ls command
shows that memo is the only file in the directory. After you give the mv command, memo.0130 is the only
file in the directory. Compare this result to that of the earlier cp example.

The mv utility can be used for more than changing the name of a file. Refer to "mv, cp: Moves or Copies a
File" on page 90.

caution: mv can destroy a file

Just as cp can destroy a file, so can mv. Also like cp, mv has a –i (interactive) option. See the
caution box labeled "cp can destroy a file" on page 46.

lpr: Prints a File

The lpr (line printer) utility places one or more files in a print queue for printing. Linux provides print
queues so that only one job is printed on a given printer at a time. A queue allows several people or jobs to
send output simultaneously to a single printer with the expected results. On machines with access to more
than one printer, you can use the –P option to instruct lpr to place the file in the queue for a specific printer,
including one that is connected to another machine on the network. The following command prints the file
named report:

$ lpr report

Because this command does not specify a printer, the output goes to the default printer, which is the printer
when you have only one printer.

The next command line prints the same file on the printer named mailroom:

$ lpr -Pmailroom report

You can see what jobs are in the print queue by using the lpq utility:

$ lpq

lp is ready and printing

Rank Owner Job Files Total Size

active alex 86 (standard input) 954061 bytes

In this example, Alex has one job that is being printed; no other jobs are in the queue. You can use the job
number (86 in this case) with the lprm utility to remove the job from the print queue and stop it from
printing:

$ lprm 86

You can send more than one file to the printer with a single command. The following command line prints
three files on the printer named laser1:

$ lpr -Plaser1 05.txt 108.txt 12.txt

grep: Finds a String

The grep (global regular expression print[1]) utility searches through one or more files to see whether any
contain a specified string of characters. It does not change the file it searches but simply displays each line
that contains the string.

[1] Originally this utility's name was a play on an ed—an original UNIX editor, available on Linux—command: g/re/p. In this
command the g stands for global, re is a regular expression delimited by slashes, and p means print.

The grep command in Figure 3-4 searches through the file memo for lines that contain the string credit and
displays a single line that meets this criterion. If memo contained such words as discredit, creditor, or
accreditation, grep would have displayed those lines as well because they contain the string it was
searching for. The –w option causes grep to match only whole words. You do not need to enclose the string
you are searching for in single quotation marks, but doing so allows you to put SPACEs and special
characters in the search string.

The grep utility can do much more than search for a simple string in a single file. Refer to page 683 for more
information on grep.

Figure 3-4. grep searches for a string

$ cat memo

Helen:

In our meeting on June 6 we

discussed the issue of credit.

Have you had any further thoughts

about it?

 Alex

$ grep 'credit' memo

discussed the issue of credit.

head: Displays the Beginning of a File

By default the head utility displays the first ten lines of a file. You can use head to help you remember what
a particular file contains. For example, if you have a file named months that lists the 12 months of the year
in order, one to a line, head displays Jan through Oct (Figure 3-5).

This utility can display any number of lines, so you can use it to look at only the first line of a file, at a full
screen, or even more. To specify the number of lines head displays, include a hyphen followed by the
number of lines in the head command. For example, the following command displays only the first line of
months:

$ head -1 months

Jan

The head utility can also display parts of a file based on a count of blocks or characters rather than lines.
Refer to page 691 for more information on head.

tail: Displays the End of a File

The tail utility is similar to head but by default displays the last ten lines of a file. Depending on how you
invoke it, this utility can display fewer or more than ten lines, use a count of blocks or characters rather than
lines to display parts of a file, and display lines being added to a file that is changing. The following
command causes tail to display the last five lines, Aug through Dec, of the months file shown in Figure 3-
5:

Figure 3-5. head displays the first lines of a file

$ cat months

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Nov

Dec

$ head months

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

Figure 3-6. sort displays a file in order

$ cat days

Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday

$ sort days

Friday

Monday

Saturday

Sunday

Thursday

Tuesday

Wednesday

$ tail -5 months

Aug

Sep

Oct

Nov

Dec

You can monitor lines as they are added to the end of the growing file named logfile with the following
command:

$ tail -f logfile

Press the interrupt key (usually CONTROL-C) to stop tail and display the shell prompt. Refer to page 783
for more information on tail.

sort: Displays a File in Order

The sort utility displays the contents of a file in order by lines but does not change the original file. If you
have a file named days that contains the name of each day of the week in order on a separate line, sort
displays the file in alphabetical order (Figure 3-6).

The sort utility is useful for putting lists in order. The –u option generates a sorted list in which each line is
unique (no duplicates). The –n option puts a list of numbers in order. Refer to page 762 for more

information on sort.

Figure 3-7. uniq removes duplicate lines

$ cat dups

Cathy

Fred

Joe

John

Mary

Mary

Paula

$ uniq dups

Cathy

Fred

Joe

John

Mary

Paula

uniq: Removes Duplicate Lines from a File

The uniq (unique) utility displays a file, skipping adjacent duplicate lines, but does not change the original
file. If a file contains a list of names and has two successive entries for the same person, uniq skips the extra
line (Figure 3-7).

If a file is sorted before it is processed by uniq, this utility ensures that no two lines in the file are the same.
(Of course, sort can do that all by itself with the –u option.) Refer to page 812 for more information on
uniq.

diff: Compares Two Files

The diff (difference) utility compares two files and displays a list of the differences between them. This
utility does not change either file, so it is useful when you want to compare two versions of a letter or a
report or two versions of the source code for a program.

The diff utility with the –u (unified output format) option first displays two lines indicating which of the

files you are comparing will be denoted by a plus sign (+) and which by a minus sign (–). In Figure 3-8, a
minus sign indicates the colors.1 file; a plus sign indicates the colors.2 file.

The diff –u command breaks long, multiline text into hunks. Each hunk is preceded by a line starting and
ending with two at signs (@@). This hunk identifier indicates the starting line number and the number of
lines from each file for this hunk. In Figure 3-8, the –1,6 indicates that the hunk covers the section of the
colors.1 file (indicated by a minus sign) from the first line and continuing for six lines (for a total of seven
lines). Similarly the +1,5 indicates that the hunk covers colors.2 from the first line through five subsequent
lines.

Figure 3-8. diff displaying the unified output format

$ diff -u colors.1 colors.2

--- colors.1 Fri Nov 25 15:45:32 2005

+++ colors.2 Fri Nov 25 15:24:46 2005

@@ -1,6 +1,5 @@

 red

+blue

 green

 yellow

-pink

-purple

 orange

Following these header lines, diff –u displays each line of text with a leading minus sign, plus sign, or
nothing. The leading minus sign indicates that the line occurs only in the file denoted by the minus sign. The
leading plus sign indicates that the line comes from the file denoted by the plus sign. A line that begins with
neither a plus sign nor a minus sign occurs in both files in the same location. Refer to page 638 for more
information on diff.

file: Tests the Contents of a File

You can use the file utility to learn about the contents of any file on a Linux system without having to open
and examine the file yourself. In the following example, file reports that letter_e.bz2 contains data that was
compressed by the bzip2 utility (page 56):

$ file letter_e.bz2

letter_e.bz2: bzip2 compressed data, block size = 900k

Next file reports on two more files:

$ file memo zach.jpg

memo: ASCII text

zach.jpg: JPEG image data, ... resolution (DPI), 72 x 72

Refer to page 653 for more information on file.

 < Day Day Up >

 < Day Day Up >

| (Pipe): Communicates Between Processes

Because pipes are integral to the functioning of a Linux system, they are introduced here for use in examples.
Pipes are covered in detail on page 122.

A process is the execution of a command by Linux (page 292). Communication between processes is one of
the hallmarks of UNIX/Linux. A pipe (written as a vertical bar, |, on the command line and appearing as a
solid or broken vertical line on keyboards) provides the simplest form of this kind of communication. Simply
put, a pipe takes the output of one utility and sends that output as input to another utility. Using UNIX/Linux
terminology, a pipe takes standard output of one process and redirects it to become standard input of another
process. (See page 113 for more information on standard input and output.) Most of what a process displays
on the screen is sent to standard output. If you do not redirect it, this output appears on the screen. Using a
pipe, you can redirect the output so that it becomes instead standard input of another utility. A utility such as
head can take its input from a file whose name you specify on the command line following the word head,
or it can take its input from standard input. For example, you can give the command shown in Figure 3-5 on
page 49 as follows:

$ cat months | head

Jan

Feb

Mar

Apr

May

Jun

Jul

Aug

Sep

Oct

The next command displays the first line of the months file:

$ cat months | head -1

Jan

You can use a pipe to send output of a program to the printer:

$ tail months | lpr

 < Day Day Up >

 < Day Day Up >

Four More Utilities

The echo and date utilities are two of the most frequently used from the large collection of Linux utilities.
The script utility helps you record part of a session in a file, and unix2dos makes a copy of a text file that
can be read on a Windows machine.

echo: Displays Text

The echo utility copies anything you put on the command line, after echo, to the screen. Some examples are
shown in Figure 3-9. The last example shows what the shell does with an unquoted asterisk (*) on the
command line: It expands the asterisk into a list of filenames in the directory.

Figure 3-9. echo copies the command line (but not the word echo) to the screen

$ ls

memo memo.0714 practice

$ echo Hi

Hi

$ echo This is a sentence.

This is a sentence.

$ echo star: *

star: memo memo.0714 practice

$

The echo utility is a good tool for learning about the shell and other Linux programs. Some examples on
page 129 use echo to illustrate how special characters, such as the asterisk, work. Throughout the chapters
explaining the shells, echo helps explain how shell variables work and how you can send messages from
shell scripts to the screen. Refer to page 647 for more information on echo.

date: Displays the Time and Date

The date utility displays the current date and time:

$ date

Thu Jan 20 10:24:00 PST 2005

The following example shows how you can choose the format and select the contents of the output of date.
Refer to page 630 for more information on date.

$ date +"%A %B %d"

Thursday January 20

script: Records a Linux Session

The script utility records all or part of a login session, including your input and the system's responses. This
utility is useful only from character-based devices, such as a terminal or a terminal emulator. It does capture
a session with vim; however, because vim uses control characters to position the cursor and display different
typefaces, such as bold, the output will be difficult to read and may not be useful. When you cat a file that
has captured a vim session, the session quickly passes before your eyes.

By default script captures the session in a file named typescript. To use a different filename, follow the
script command with a SPACE and the new filename. To append to a file, use the –a option after script but
before the filename; otherwise, script overwrites an existing file. Following is a session being recorded by
script:

$ script

Script started, file is typescript

$ date

Thu Jan 20 10:28:56 PST 2005

$ who am i

alex pts/4 Jan 8 22:15

$

$ apropos mtools

mtools (1) - utilities to access DOS disks in Unix

mtools.conf [mtools] (5) - mtools configuration files

mtoolstest (1) - tests and displays the configuration

$ exit

Script done, file is typescript

$

Use the exit command to terminate a script session. You can view the file you created with cat, less, more,
or an editor. Following is the file that was created by the preceding script command:

$ cat typescript

Script started on Thu Jan 20 10:28:56 2005

$ date

Thu Jan 20 10:28:56 PST 2005

$ who am i

alex pts/4 Jan 8 22:15

$

$ apropos mtools

mtools (1) - utilities to access DOS disks in Unix

mtools.conf [mtools] (5) - mtools configuration files

mtoolstest (1) - tests and displays the configuration

$ exit

Script done on Thu Jan 20 10:29:58 2005

$

If you will be editing the file with vim, emacs, or another editor, you can use dos2unix to eliminate from the
typescript file the ^M characters that appear at the ends of the lines.

unix2dos: Converts Linux Files to Windows Format

If you want to share a text file that you created on a Linux system with someone on a Windows system, you
need to convert the file before the person on the Windows system can read it easily. The unix2dos utility
converts a Linux text file so that it can be read on a Windows system. Give the following command to
convert a file named memo.txt (created with a text editor) to a DOS-format file:

$ unix2dos memo.txt

Without any options unix2dos overwrites the original file. You can now email the file as an attachment to
someone on a Windows system.

dos2unix

You can use the dos2unix utility to convert DOS files so they can be read on a Linux system:

$ dos2unix memo.txt

See the unix2dos and dos2unix man pages for more information.

You can also use TR (page 804) to change a DOS text file into a Linux text file. In the following example,
the –d option causes TR to remove RETURNs (represented by \r) as it makes a copy of the file:

$ cat memo | tr -d '\r' > memo.txt

Converting a file the other way without unix2dos is not as easy.

 < Day Day Up >

 < Day Day Up >

Compressing and Archiving Files

Large files use a lot of disk space and take longer than smaller files to transfer from one system to another
over a network. If you do not need to look at the contents of a large file very often, you may want to save it
on a CD, DVD, or other medium and remove it from the hard disk. If you have a continuing need for the file,
retrieving a copy from a CD may be inconvenient. To reduce the amount of disk space you use without
removing the file entirely, you can compress the file without losing any of the information it holds. Also you
may frequently download compressed files from the Internet. The utilities described in this section compress
and decompress files.

bzip2: Compresses a File

The bzip2 utility (sources.redhat.com/bzip2) compresses a file by analyzing it and recoding it more
efficiently. The new version of the file looks completely different. In fact, because the new file contains
many nonprinting characters, you cannot view it directly. The bzip2 utility works particularly well on files
that contain a lot of repeated information, such as text and image data, although most image data is already
in a compressed format.

The following example shows a boring file. Each of the 8,000 lines of this file, named letter_e, contains 72
e's and a NEWLINE character that marks the end of the line. The file occupies more than half a megabyte of
disk storage.

$ ls -l

-rw-rw-r-- 1 sam sam 584000 Mar 1 22:31 letter_e

The –l (long) option causes ls to display more information about a file. Here it shows that letter_e is
584,000 bytes long. The – –verbose (or –v) option causes bzip2 to report how much it was able to reduce
the size of the file. In this case, it shrank the file by 99.99 percent:

$ bzip2 -v letter_e

letter_e: 11680.00:1, 0.001 bits/byte, 99.99% saved, 584000 in, 50 out.

$ ls -l

-rw-rw-r-- 1 sam sam 50 Mar 1 22:31 letter_e.bz2

.bz2 filename extension

Now the file is only 50 bytes long. The bzip2 utility also renamed the file, appending .bz2 to its name. This
naming convention reminds you that the file is compressed; you would not want to display or print it, for
example, without first decompressing it. The bzip2 utility does not change the modification date associated
with the file, even though it completely changes the file's contents.

In the following, more realistic example, the file zach.jpg contains a computer graphics image:

$ ls -l

-rw-r--r-- 1 sam sam 33287 Mar 1 22:40 zach.jpg

The gzip utility can reduce the size of the file by only 28 percent because the image is already in a
compressed format:

$ bzip2 -v zach.jpg

zach.jpg: 1.391:1, 5.749 bits/byte, 28.13% saved, 33287 in, 23922 out.

$ ls -l

-rw-r--r-- 1 sam sam 23922 Mar 1 22:40 zach.jpg.bz2

Refer to page 596 and the Bzip2 mini-HOWTO (see page 34 for help finding it) for more information.

bunzip2 and bzcat: Decompress a File

You can use the bunzip2 utility to restore a file that has been compressed with bzip2:

$ bunzip2 letter_e.bz2

$ ls -l

-rw-rw-r-- 1 sam sam 584000 Mar 1 22:31 letter_e

$ bunzip2 zach.jpg.bz2

$ ls -l

-rw-r--r-- 1 sam sam 33287 Mar 1 22:40 zach.jpg

The bzcat utility displays a file that has been compressed with bzip2. The equivalent of cat for .bz2 files,
bzcat decompresses the compressed data and displays the contents of the decompressed file. Like cat,
bzcat does not change the source file. The pipe in the following example redirects the output of zcat so that

instead of being displayed on the screen it becomes the input to head, which displays the first two lines of
the file:

$ bzcat letter_e.bz2 | head -2

ee

ee

After bzcat is run, the contents of letter_e.bz is unchanged; the file is still stored on the disk in compressed
form.

bzip2recover

The bzip2recover utility supports limited data recovery from media errors. Give the command
bzip2recover followed by the name of the file from which you want to try to recover data.

gzip: Compresses a File

gunzip and zcat

The gzip (GNU zip) utility is older and less efficient than bzip2. Its flags and operation are very similar to
those of bzip2. A file compressed by gzip is marked by a .gz filename extension. Linux stores manual pages
in gzip format to save disk space; likewise, files you download from the Internet are frequently in gzip
format. Use gzip, gunzip, and zcat just as you would use bzip2, bunzip2, and bzcat. Refer to page 688 for
more information on gzip.

compress

The compress utility can also compress files, albeit not as well as gzip. This utility marks a file it has
compressed by adding .Z to its name.

tip: gzip versus zip

Do not confuse gzip and gunzip with the zip and unzip utilities. These last two are used to pack
and unpack zip archives containing several files compressed into a single file that has been
imported from or is being exported to Windows. The zip utility constructs a zip archive, whereas
unzip unpacks zip archives. The zip and unzip utilities are compatible with PKZIP, a Windows
compress and archive program.

tar: Packs and Unpacks Files

The tar utility performs many functions. Its name is short for tape archive, as its original function was to
create and read archive and backup tapes. Today it is used to create a single file (called a tar file) from
multiple files or directory hierarchies and to extract files from a tar file.

In the following example, the first ls shows the existence and sizes of the files g, b, and d. Next tar uses –
c (create), –v (verbose), and –f (write to or read from a file) options[2] to create an archive named all.tar
from these files. Each line of the output from tar starts with the letter a to indicate that it is appending to the
archive. This letter is followed by the name of the file tar is appending.

[2] Although the original UNIX tar did not use a leading hyphen to indicate an option on the command line, it now accepts
hyphens. The GNU tar described here will accept tar commands with or without a leading hyphen. This book uses the hyphen
for consistency with most other utilities.

The tar utility does add overhead when it creates an archive. The next command shows that the archive file
all.tar is about 9,700 bytes, whereas the sum of the sizes of the three files is about 6,000 bytes. This
overhead is more appreciable on smaller files, such as the ones in this example.

$ ls -l g b d

-rw-r--r-- 1 jenny jenny 1302 Aug 20 14:16 g

-rw-r--r-- 1 jenny other 1178 Aug 20 14:16 b

-rw-r--r-- 1 jenny jenny 3783 Aug 20 14:17 d

$ tar -cvf all.tar g b d

a g

a b

a d

$ ls -l all.tar

-rw-r--r-- 1 jenny jenny 9728 Aug 20 14:17 all.tar

$ tar -tvf all.tar

-rw-r--r-- jenny/jenny 1302 2003-08-20 14:16 2005 g

-rw-r--r-- jenny/other 1178 2003-08-20 14:16 2005 b

-rw-r--r-- jenny/jenny 3783 2003-08-20 14:17 2005 d

The final command in the preceding example uses the –t option to display a table of contents for the archive.
Use –x instead of –t to extract files from a tar archive. Omit the –v option if you want tar to do its work
silently.

You can use bzip2, compress, or gzip to compress tar files and make them easier to store and handle.
Many files you download from the Internet are in one of these formats. Files that have been processed by tar
and compressed by bzip2 frequently have a filename extension of .tar.bz2. Those processed by tar and
gzip have an extension of .tz or .tar.gz, while files processed by tar and compress use .tar.Z as the
extension.

You can unpack a tarred and gzipped file in two steps. (Follow the same procedure if the file was
compressed by bzip2, but use bunzip2 instead of gunzip.) The next example shows how to unpack the
GNU make utility after it has been downloaded (ftp.gnu.org/pub/gnu/make/make-3.80.tar.gz):

$ ls -l mak*

-rw-rw-r-- 1 sam sam 1211924 Jan 20 11:49 make-3.80.tar.gz

$ gunzip mak*

$ ls -l mak*

-rw-rw-r-- 1 sam sam 4823040 Jan 20 11:49 make-3.80.tar

$ tar -xvf mak*

make-3.80/

make-3.80/po/

make-3.80/po/Makefile.in.in

...

make-3.80/tests/run_make_tests.pl

make-3.80/tests/test_driver.pl

The first command lists the downloaded tarred and gzipped file: make-3.80.tar.gz (about 1.2 megabytes).
The asterisk (*) in the filename matches any characters in any filenames (page 129), so you end up with a list
of files whose names begin with mak; in this case there is only one. Using an asterisk saves typing and can
improve accuracy with long filenames. The gunzip command decompresses the file and yields make-
3.80.tar (no .gz extension), which is about 4.8 megabytes. The tar command creates the make-3.80
directory in the working directory and unpacks the files into it.

$ ls -ld mak*

drwxrwxr-x 8 sam sam 4096 Oct 3 2002 make-3.80

-rw-rw-r-- 1 sam sam 4823040 Jan 20 11:49 make-3.80.tar

$ ls -l make-3.80

total 1816

-rw-r--r-- 1 sam sam 24687 Oct 3 2002 ABOUT-NLS

-rw-r--r-- 1 sam sam 1554 Jul 8 2002 AUTHORS

-rw-r--r-- 1 sam sam 18043 Dec 10 1996 COPYING

...

-rw-r--r-- 1 sam sam 16520 Jan 21 2000 vmsify.c

-rw-r--r-- 1 sam sam 16409 Aug 9 2002 vpath.c

drwxrwxr-x 5 sam sam 4096 Oct 3 2002 w32

After tar exTRacts the files from the archive, the working directory contains two files whose names start
with mak: make-3.80.tar and make-3.80. The –d (directory) option causes ls to display only file and
directory names, not the contents of directories as it normally does. The final ls command shows the files
and directories in the make-3.80 directory. Refer to page 786 for more information on tar.

caution: tar: the –x option may extract a lot of files

Some tar archives contain many files. Run tar with the –t option and the name of the tar file to
list the files in the archive without unpacking them. In some cases you may want to create a new
directory (mkdir [page 80]), move the tar file into that directory, and expand it there. That way the
unpacked files do not mingle with your existing files, and there is no confusion. This strategy also
makes it easier to delete the extracted files. Some tar files automatically create a new directory
and put the files into it. Refer to the preceding example.

caution: tar: the –x option can overwrite files

The –x option to tar overwrites a file that has the same filename as a file you are extracting.
Follow the suggestion in the preceding caution box to avoid overwriting files.

optional

You can combine the gunzip and tar commands on one command line with a pipe (|), which
redirects the output of gunzip so that it becomes the input to tar:

$ gunzip -c make-3.80.tar.gz | tar -xvf -

The – c option causes gunzip to send its output through the pipe instead of creating a file. Refer
to "Pipes" (page 122), gzip (page 688), and tar (page 786) for more information about how
this command line works.

A simpler solution is to use the –z option to tar. This option causes tar to call gunzip (or
gzip when you are creating an archive) directly and simplifies the preceding command line to

$ tar -xvzf make-3.80.tar.gz

In a similar manner, the –j option calls bzip2 or bunzip2.

 < Day Day Up >

 < Day Day Up >

Locating Commands

The whereis and apropos utilities help you find a command whose name you have forgotten or whose location you do not know. When there
are multiple copies of a utility or program, which can tell you which copy you will run. The slocate utility searches for files on the local
system.

which and whereis: Locate a Utility

When you give Linux a command, the shell searches a list of directories for a program with that name and runs the first one it finds. This list
of directories is called a search path. For information on how to change the search path, refer to "PATH: Where the Shell Looks for
Programs" on page 284. If you do not change the search path, the shell searches only a standard set of directories and then stops searching.
Other directories on the system may also contain useful utilities, however.

which

The which utility locates utilities (commands) by displaying the full pathname to the file for the utility. (Chapter 4 contains more information
on pathnames and the structure of the Linux filesystem.) The local system may include several commands that have the same name. When
you type the name of a command, the shell searches for the command in your search path and runs the first one it finds. You can find out
which copy of the program the shell will run by using which. In the following example, which reports the location of the tar command:

$ which tar

/bin/tar

The which utility can be helpful when a command seems to be working in unexpected ways. By running which, you may discover that you are
running a nonstandard version of a tool or a different one than you expected. (Refer to "Important Standard Directories and Files" on page 86
for a list of standard locations for executable files.) For example, if tar is not working properly and you find that you are running
/usr/local/bin/tar instead of /bin/tar, you might suspect that the local version is broken.

whereis

The whereis utility searches for files related to a utility by looking in standard locations instead of using your search path. For example, you
can find the locations for files related to tar:

$ whereis tar

tar: /bin/tar /usr/include/tar.h /usr/share/man/man1/tar.1.gz

In this example whereis finds three references to tar: the tar utility file, a tar header file, and the tar man page.

caution: which, whereis, and builtin commands

Both the which and whereis utilities report only the names for commands as they are found on disk and do not report shell builtins
(utilities that are built into a shell; see page 132). When you use whereis to try to find out where the echo command (which exists
as both a utility program and a shell builtin) is kept, you get the following result:

$ whereis echo

echo: /bin/echo /usr/share/man/man1/echo.1.gz /usr/share/man/man1p/echo.1p.gz /usr/share

/man/man3/echo.3x.gz

The whereis utility does not display the echo builtin. Even the which utility reports the wrong information:

$ which echo

/bin/echo

Under bash you can use the type builtin (page 487) to determine whether a command is a builtin.

$ type echo

echo is a shell builtin

tip: which versus whereis

Given the name of a program, which looks through the directories in your search path , in order, and locates the program. If more
than one program with the specified name is in the search path, which displays the name of only the first one (the one you would
run).

The whereis utility looks through a list of standard directories and works independently of your search path. Use whereis to locate
a binary (executable) file, any manual pages, and source code for a program you specify; whereis displays all the files it finds.

apropos: Searches for a Keyword

When you do not know the name of the command you need to carry out a particular task, you can use a keyword and the apropos utility to
search for it. (The whatis database has to be set up and regularly maintained with makewhatis for apropos to work; this task is typically
handled by cron. Refer to crontab on page 624 for more information.) This utility searches for the keyword in the short description line (the
top line) of all of the man pages and displays those that contain a match. The man utility, when called with the –k (keyword) option, displays
the same output as apropos (it is actually the same command).

The following example shows the output of apropos when you call it with the who keyword. The output includes the name of each
command, the section of the manual that contains it, and the brief description from the top of the man page. This list includes the utility that
you need (who) and identifies other, related tools that you might find useful:

$ apropos who

at.allow [at] (5) - determine who can submit jobs via at or batch

at.deny [at] (5) - determine who can submit jobs via at or batch

jwhois (1) - client for the whois service

ldapwhoami (1) - LDAP who am i? tool

w (1) - Show who is logged on and what they are doing

who (1) - show who is logged on

whoami (1) - print effective userid

whatis

The whatis utility is similar to apropos but finds only complete word matches for the name of the utility.

$ whatis who

who (1) - show who is logged on

slocate: Searches for a File

The slocate utility, a secure version of locate, searches for files on the local system:

$ slocate motd

/lib/security/pam_motd.so

/usr/share/man/man5/motd.5.gz

/etc/motd

Before you can use slocate the updatedb utility must build/update the slocate database. Typically the database is updated once a day by a
cron script. Refer to crontab on page 624 for more information.

 < Day Day Up >

 < Day Day Up >

Obtaining User and System Information

tip: If you are not on a network, skip the rest of this chapter

If you are the only user on a system that is not connected to a network, you may want to skip the rest of this chapter. If
you are not on a network but are set up to send and receive email, read "Email" on page 69.

This section covers utilities that display who is using the system, what those users are doing, and how the system is running. To find
out who is using the local system, you can employ several utilities that vary in the details they provide and the options they support.
The oldest utility, who, produces a list of users who are logged in on the local system, the device each person is using, and the time
the person logged in.

The w and finger utilities show more detail, such as each user's full name and the command line each user is running. You can use
the finger utility to retrieve information about users on remote systems if your computer is attached to a network. Table 3-1 on
page 67 summarizes the output of these utilities.

Figure 3-10. who lists who is logged in

$ who

root console Mar 27 05:00

alex pts/4 Mar 27 12:23

alex pts/5 Mar 27 12:33

jenny pts/7 Mar 26 08:45

Table 3-1. Comparison of w, who, and finger

Information Displayed w who finger

User login name x x x

Terminal-line identification (tty) x x x

Login day and time x x

Login date and time x

Idle time x x

What program the user is executing x

Where the user logged in from x

CPU time used x

Full name (or other information from
/etc/passwd)

 x

User-supplied vanity information x

System uptime and load average x

who: Lists Users on the System

The who utility displays a list of users who are logged in. In Figure 3-10, the first column shows Alex and Jenny logged in. (Alex is
logged in from two locations.) The second column shows the device that each person's terminal, workstation, or terminal emulator
is connected to. The third column shows the date and time the person logged in.

The information that who displays is useful when you want to communicate with a user at your installation. When the user is logged
in, you can use write (page 67) to establish communication immediately. If who does not list the user or if you do not need to
communicate immediately, you can send email to that person (page 69).

If the output of who scrolls off the screen, you can redirect the output through a pipe so that it becomes the input to less, which
displays the output one page at a time. You can also use a pipe to redirect the output through grep to look for a specific name.

If you need to find out which terminal you are using or what time you logged in, you can use the command who am i:

$ who am i

alex pts/5 Mar 27 12:33

finger: Lists Users on the System

security: finger can be a security risk

On systems where security is a concern, the system administrator may disable finger. This utility can give information
that can help a malicious user break into the system.

You can use finger to display a list of the users who are logged in on the system. In addition to login names, finger supplies each
user's full name along with information about which device the person's terminal is connected to, how recently the user typed
something on the keyboard, when the user logged in, and where the user is located (if the device appears in a system database). If
the user has logged in over the network, the name of the remote system is shown as the user's location. For example, in Figure 3-11
jenny and hls are logged in from the remote system named bravo. The asterisk (*) in front of the name of Helen's device (TTY)
indicates that she has blocked others from sending messages directly to her terminal (refer to "mesg: Denies or Accepts Messages"
on page 68).

Figure 3-11. finger I: lists who is logged in

$ finger

Login Name Tty Idle Login Time Office Office Phone

root root 1 1:35 May 24 08:38

alex Alex Watson /0 Jun 7 12:46 (:0)

alex Alex Watson /1 19 Jun 7 12:47 (:0)

jenny Jenny Chen /2 2:24 Jun 2 05:33 (bravo.example.com)

hls Helen Simpson */2 2 Jun 2 05:33 (bravo.example.com)

You can use finger to learn more about a particular individual by specifying that user on the command line. In Figure 3-12, finger
displays detailed information about Alex. Alex is logged in and actively using one of his terminals (pts/1); he has not used his other
terminal (pts/0) for 5 minutes and 52 seconds. You also learn from finger that if you want to set up a meeting with Alex, you
should contact Jenny at extension 1693.

.plan and .project

Most of the information in Figure 3-12 was collected by finger from system files. The information shown after the heading Plan:,
however, was supplied by Alex. The finger utility searched for a file named .plan in Alex's home directory and displayed its
contents. (Filenames that begin with a period, such as .plan, are not normally listed by ls and are called invisible filenames [page
80].) You may find it helpful to create a .plan file for yourself; it can contain any information you choose, such as your typical
schedule, interests, phone number, or address. In a similar manner finger displays the contents of the .project file in your home
directory. If Alex had not been logged in, finger would have reported only his user information, the last time he logged in, the last
time he read his email, and his plan.

Figure 3-12. finger II: lists details about one user

$ finger alex

Login: alex Name: Alex Watson

Directory: /home/alex Shell: /bin/tcsh

On since Wed Jun 7 12:46 (PDT) on pts/0 from :0

 5 minutes 52 seconds idle

On since Wed Jun 7 12:47 (PDT) on pts/1 from bravo

Last login Wed Jun 7 12:47 (PDT) on 1 from bravo

New mail received Wed Jun 7 13:16 2006 (PDT)

 Unread since Fri May 26 15:32 2006 (PDT)

Plan:

I will be at a conference in Hawaii all next week. If you need to see me, contact Jenny

 Chen, x1693.

You can use finger to display a user's login name. For example, you might know that Helen's last name is Simpson but might not
guess that her login name is hls. The finger utility, which is not case sensitive, can search for information on Helen using her first
or last name. The following commands find the information you seek as well as information on other users whose names are Helen
or Simpson.

$ finger HELEN

Login: hls Name: Helen Simpson.

...

$ finger simpson

Login: hls Name: Helen Simpson.

...

w: Lists Users on the System

The w utility displays a list of the users who are logged in. As discussed in the section on who, the information that w displays is
useful when you want to communicate with someone at your installation.

The first column in Figure 3-13 shows that Alex, Jenny, and Scott are logged in. The second column shows the device number that
each person's terminal is connected to. The third column shows the system that a remote user is logged in from. The fourth column
shows the time each person logged in. The fifth column indicates how long each person has been idle (how much time has elapsed

since the user pressed a key on the keyboard). The next two columns give measures of how much computer processor time each
person has used during this login session and on the task that is running. The last column shows the command each person is
running.

The first line that the w utility displays includes the time of day, the period of time the computer has been running (in days, hours,
and minutes), the number of users logged in, and the load average (how busy the system is). The three load average numbers
represent the number of jobs waiting to run, averaged over the past 1, 5, and 15 minutes. Use the uptime utility to display just this
line. Table 3-1 compares the w, who, and finger utilities.

Figure 3-13. The w utility

$ w

 8:20am up 4 days, 2:28, 3 users, load average: 0.04, 0.04, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

alex pts/4 :0 5:55am 13:45 0.15s 0.07s w

alex pts/5 :0 5:55am 27 2:55 1:01 bash

jenny pts/7 bravo 5:56am 13:44 0.51s 30s vim 3.txt

scott pts/12 bravo 7:17pm 1.00s 0:14s run_bdgt

 < Day Day Up >

 < Day Day Up >

Communicating with Other Users

The utilities discussed in this section exchange messages and files with other users either interactively or
through email.

write: Sends a Message

The write utility sends a message to another user who is logged in. When you and another user use write to
send messages to each other, you establish two-way communication. Initially a write command (Figure 3-
14) displays a banner on the other user's terminal, saying that you are about to send a message.

The syntax of a write command line is

write username [terminal]

Figure 3-14. The write utility I

$ write alex

Hi Alex, are you there? o

Figure 3-15. The write utility II

$ write alex

Hi Alex, are you there? o

Message from alex@bravo.example.com on pts/0 at 16:23 ...

Yes Jenny, I'm here. o

The username is the login name of the user you want to communicate with. The terminal is an optional
terminal name that is useful if the user is logged in more than once. You can display the login and terminal
names of the users who are logged in on your system by using who, w, or finger.

To establish two-way communication with another user, you and the other user must each execute write,

specifying the other's login name as the username . The write utility then copies text, line by line, from one
keyboard/display to the other (Figure 3-15). Sometimes it helps to establish a convention, such as typing o
(for over) when you are ready for the other person to type and typing oo (for over and out) when you are
ready to end the conversation. When you want to stop communicating with the other user, press CONTROL-
D at the beginning of a line. Pressing CONTROL-D tells write to quit, displays EOF (end of file) on the
other user's terminal, and returns you to the shell. The other user must do the same.

If the Message from... banner appears on your screen and obscures something you are working on, press
CONTROL-L or CONTROL-R to refresh the screen and remove the banner. Then you can clean up, exit
from your work, and respond to the person who is writing to you. You just have to remember who is writing
to you, because the banner will no longer appear on the screen.

mesg: Denies or Accepts Messages

Give the following command when you do not wish to receive messages from another user:

$ mesg n

If Alex had given this command before Jenny tried to send him a message, she would have seen the
following:

$ write alex

Permission denied

You can allow messages again by entering mesg y. Give the command mesg by itself to display is y (for yes,
messages are allowed) or is n (for no, messages are not allowed).

 < Day Day Up >

 < Day Day Up >

Email

You can use email, or electronic mail, to send and receive letters, memos, reminders, invitations, and even
junk mail (unfortunately). Email can also transmit binary data, such as pictures or compiled code, as
attachments. An attachment is a file that is attached to, but is not part of, a piece of email. Attachments are
frequently opened by programs that are called by your mail program, so you may not be aware that they are
not an integral part of an email message.

You can use email to communicate with users on your system and, if your installation is part of a network,
with other users on the network. If you are connected to the Internet, you can communicate electronically
with users around the world.

Email utilities differ from write in that email utilities can send a message when the recipient is not logged
in. These utilities can also send the same message to more than one user at a time.

Many mail programs are available for Linux, including the original character-based mail program,
Netscape/Mozilla mail, pine, mail through emacs, Kmail, evolution, and exmh, which are supplied with
many Linux distributions. Another popular graphical mail program is sylpheed (sylpheed.good-day.net).

You can use two programs to make any mail program easier to use and more secure. The procmail program
(www.procmail.org) creates and maintains mail servers and mailing lists; preprocesses mail by sorting it into
appropriate files and directories; starts various programs depending on the characteristics of incoming mail;
forwards mail; and so on. The GNU Privacy Guard (gpg or GNUpg) encrypts and decrypts email and makes
it almost impossible for an unauthorized person to read.

Network addresses

If your system is part of a LAN, you can generally send mail to and receive mail from users on other systems
on the LAN by using their login names. Someone sending Alex email on the Internet would need to specify
his domain name (page 873) along with his login name. Use the following address to send email to the
author of this book: mgs@sobell.com.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The utilities introduced in this chapter and Chapter 2 constitute a small but powerful subset of the many
utilities available on a typical Linux system. Because you will use them frequently and because they are
integral to the following chapters, it is important that you become comfortable using them.

The utilities listed in Table 3-2 manipulate, display, compare, and print files.

Table 3-2. File utilities

Utility Function

cp Copies one or more files (page 45)

diff Displays the differences between two files (page 51)

file Displays information about the contents of a file (page 52)

grep Searches file(s) for a string (page 48)

head Displays the lines at the beginning of a file (page 49)

lpq Displays a list of jobs in the print queue (page 47)

lpr Places file(s) in the print queue (page 47)

lprm Removes a job from the print queue (page 48)

mv Renames a file or moves file(s) to another directory (page 46)

sort Puts a file in order by lines (page 50)

tail Displays the lines at the end of a file (page 49)

uniq Displays the contents of a file, skipping successive duplicate lines
(page 51)

To reduce the amount of disk space a file occupies, you can compress it with the bzip2 utility. The
compression works especially well on files that contain patterns, such as most text files, but reduces the size
of almost all files. The inverse of bzip2—bunzip2—restores a file to its original, decompressed form. Table
3-3 lists utilities that compress and decompress files. The bzip2 utility is the most efficient of these.

Table 3-3. (De)compression utilities

Utility Function

bunzip2 Returns a file compressed with bzip2 to its original size and format
(page 57)

bzcat Displays a file compressed with bzip2 (page 57)

bzip2 Compresses a file (page 56)

compress Compresses a file (not as well as gzip) (page 58)

gunzip Returns a file compressed with gzip or compress to its original size
and format (page 58)

gzip Compresses a file (page 58)

zcat Displays a file compressed with gzip (page 58)

An archive is a file, usually compressed, that contains a group of files. The tar utility (Table 3-4) packs and
unpacks archives. The filename extensions .tar.bz2, .tar.gz, and .tgz identify compressed tar archive files
and are often seen on software packages obtained over the Internet.

Table 3-4. Archive utility

Utility Function

tar Creates or extracts files from an archive file (page 58)

The utilities listed in Table 3-5 determine the location of a utility on the local system. For example, they can
display the pathname of a utility or a list of C++ compilers available on the system.

Table 3-5. Location utilities

Utility Function

apropos Searches the man page one-line descriptions for a keyword (page 62)

slocate Searches for files on the local system (page 63)

whereis Displays the full pathnames of a utility, source code, or man page
(page 61)

which Displays the full pathname of a command you can run (page 61)

Table 3-6 lists utilities that display information about other users. You can easily learn a user's full name, the

user's login status, the login shell of the user, and other information maintained by the system.

Table 3-6. User and system information utilities

Utility Function

finger Displays detailed information about users, including their full names
(page 64)

w Displays detailed information about users who are logged in (page
66)

who Displays information about users who are logged in (page 64)

The utilities shown in Table 3-7 can help you stay in touch with other users on the local network.

Table 3-7. User communication utilities

mesg Permits or denies messages sent by write (page 68)

write Sends a message to another user who is logged in (page 67)

Table 3-8 lists miscellaneous utilities.

Table 3-8. Miscellaneous utilities

date Displays the current date and time (page 54)

echo Copies its arguments (page 861) to the screen (page 53)

 < Day Day Up >

 < Day Day Up >

Exercises

1. What commands can you use to determine who is logged in on a specific terminal?

2. How can you keep other users from using write to communicate with you? Why would you
want to?

3. What happens when you give the following commands if the file named done already exists?

$ cp to_do done

$ mv to_do done

4. How can you find out which utilities are available on your system for editing files? Which
utilities are available for editing on your system?

5. How can you find the phone number for Ace Electronics in a file named phone that contains a
list of names and phone numbers? Which command can you use to display the entire file in
alphabetical order? How can you remove adjacent duplicate lines from the file? How can you
remove all duplicates?

6. What happens when you use diff to compare two binary files that are not identical? (You can
use gzip to create the binary files.) Explain why the diff output for binary files is not the same
as the diff output for ASCII files.

7. Create a .plan file in your home directory. Does finger on your system display the contents of
your .plan file?

8. What is the result of giving the which utility the name of a command that resides in a directory
that is not in your search path?

9. Are any of the utilities discussed in this chapter found in more than one directory on your
system? If so, which ones?

10. Experiment by calling the file utility with names of files in /usr/bin. How many different types
of files are there?

11. Which command can you use to look at the first few lines of a file named status.report? Which
command can you use to look at the end of the file?

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

12. Re-create the colors.1 and colors.2 files used in Figure 3-8 on page 52. Test your files by
running diff –u on them, and see whether you get the same results as in the figure.

13. Try giving these two commands.

$ echo cat

$ cat echo

Explain the differences between them.

14. Repeat exercise 5 using the file phone.gz, a compressed version of the list of names and phone
numbers. Try to consider more than one approach to answer each question, and explain how you
made your choices.

15. Find existing files or create files that

gzip compresses by more than 80 percenta.

gzip compresses by less than 10 percentb.

get larger when compressed with gzipc.

Use ls –l to determine the sizes of the files in question. Can you characterize the files in a, b, and
c?

16. Some mailers—particularly older ones—are not able to handle binary files. Suppose that you are
mailing a file that has been compressed with gzip, which produces a binary file, and you do not
know what mailer the recipient is using. Refer to the man page for uuencode, which converts a
binary file to an ASCII file. Learn about the utility and how to use it.

Convert a compressed file to ASCII, using uuencode. Is the encoded file larger or smaller
than the compressed file? Explain. (If uuencode is not on your system, you can download it
from rpmfind.net; it is part of the GNU sharutils package.)

a.

Would it ever make sense to use uuencode on a file before compressing it? Explain.b.

 < Day Day Up >

 < Day Day Up >

Chapter 4. The Linux Filesystem

IN THIS CHAPTER

The Hierarchical Filesystem 76

Directory and Ordinary Files 77

Absolute Pathnames 83

Relative Pathnames 84

Working with Directories 88

Access Permissions 91

Hard Links 97

Symbolic Links 99

A Filesystem is a data structure (870) that usually resides on part of a disk and that holds directories of files.
Filesystems store user and system data that are the basis of users' work on the system and the system's
existence. This chapter discusses the organization and terminology of the Linux filesystem, defines ordinary
and directory files, and explains the rules for naming them. It also shows how to create and delete
directories, move through the filesystem, and use pathnames to access files in various directories. It includes
a discussion of important files and directories as well as various types of files and ways to work with them.
In addition, this chapter covers file access permissions, which allow you to share selected files with other
users, and links, which can make a single file appear in more than one directory.

In addition to reading this chapter, you may want to refer to the df, fsck, mkfs, and tune2fs utilities in Part
V for more information on filesystems.

 < Day Day Up >

 < Day Day Up >

The Hierarchical Filesystem

Family tree

A hierarchical (878) structure frequently takes the shape of a pyramid. One example of this type of structure
is found by tracing a family's lineage: A couple has a child, who may in turn have several children, each of
whom may have more children. This hierarchical structure (shown in Figure 4-1) is called a family tree .

Figure 4-1. A family tree

Directory tree

Like the family tree it resembles, the Linux filesystem is called a tree. It consists of a set of connected files.
This structure allows you to organize files so you can easily find any particular one. On a standard Linux
system, each user starts with one directory, to which the user can add subdirectories to any desired level. By
creating multiple levels of subdirectories, a user can expand the structure as needed.

Subdirectories

Typically each subdirectory is dedicated to a single subject, such as a person, project, or event. The subject
dictates whether a subdirectory should be subdivided further. For example, Figure 4-2 shows a secretary's
subdirectory named correspond. This directory contains three subdirectories: business, memos, and
personal. The business directory contains files that store each letter the secretary types. If you expect many
letters to go to one client, as is the case with milk_co, you can dedicate a subdirectory to that client.

Figure 4-2. A secretary's directories

One major strength of the Linux filesystem is its ability to adapt to users' needs. You can take advantage of
this strength by strategically organizing your files so they are most convenient and useful for you.

 < Day Day Up >

 < Day Day Up >

Directory and Ordinary Files

Like a family tree, the tree representing the filesystem is usually pictured upside down, with its root at the
top. Figures 4-2 and 4-3 show that the tree "grows" downward from the root, with paths connecting the root
to each of the other files. At the end of each path is either an ordinary file or a directory file. Ordinary files,
or simply files, appear at the ends of paths that cannot support other paths. Directory files, usually referred to
as directories or folders, are points that other paths can branch off from. (Figures 4-2 and 4-3 show some
empty directories.) When you refer to the tree, up is toward the root and down is away from the root.
Directories directly connected by a path are called parents (closer to the root) or children (farther from the
root). A pathname is a series of names that traces a path along branches from one file to another.

Figure 4-3. Directories and ordinary files

Filenames

Every file has a filename . The maximum length of a filename varies with the type of filesystem; Linux
includes support for several types of filesystems. Most of today's filesystems allow you to create files with
names up to 255 characters in length, but some older filesystems may restrict you to 14-character names.
Although you can use almost any character in a filename, you will avoid confusion if you choose characters
from the following list:

Uppercase letters (A–Z)

Lowercase letters (a–z)

Numbers (0–9)

Underscore (_)

Period (.)

Comma (,)

/ or root

The root directory is always named / (slash) and referred to by this single character. No other file can use this
name or have a / in its name. However, in a pathname, which is a string of filenames including directory
names, the slash separates filenames (page 83).

Like the children of one parent, no two files in the same directory can have the same name. (Parents give
their children different names because it makes good sense, but Linux requires it.) Files in different
directories, like children of different parents, can have the same name.

The filenames you choose should mean something. Too often a directory is filled with important files with
such unhelpful names as hold1, wombat, and junk, not to mention foo and foobar. Such names are poor
choices because they do not help you recall what you stored in a file. The following filenames conform to the
suggested syntax and convey information about the contents of the file:

correspond

january

davis

reports

2001

acct_payable

Filename length

When you share files with users on other systems, you may need to make long filenames differ within the
first 14 characters. If you keep the filenames short, they are easy to type; later you can add extensions to
them without exceeding the 14-character limit imposed by some filesystems. The disadvantage of short
filenames is that they are typically less descriptive than long filenames. When you share files with systems
running DOS or older versions of Windows, you must respect the 8-character filename body length and 3-
character filename extension length imposed by those systems.

Long filenames enable you to assign descriptive names to files. To help you select among files without
typing entire filenames, shells support filename completion. For more information about this feature, see the
"Filename completion" tip on page 45.

You can use uppercase and/or lowercase letters within filenames. Linux is case sensitive, so files named
JANUARY, January, and january represent three distinct files.

caution: Do not use SPACEs within filenames

Although you can use SPACEs within filenames, it is a poor idea. Because a SPACE is a special
character, you must quote it on a command line. Quoting a character on a command line can be
difficult for a novice user and cumbersome for an experienced user. Use periods or underscores
instead of SPACEs: joe.05.04.26, new_stuff.

Filename Extensions

In the filenames listed in Table 4-1, filename extensions help describe the contents of the file. A filename
extension is the part of the filename following an embedded period. Some programs, such as the C
programming language compiler, depend on specific filename extensions. In most cases, however, filename
extensions are optional. Use extensions freely to make filenames easy to understand. You can use several
periods within the same filename—for example, notes.4.10.01 or files.tar.gz.

Table 4-1. Filename extensions

compute.c A C programming language source file

compute.o The object code for the program

compute The same program as an executable file

memo.0410.txt A text file

memo.pdf A PDF file; view with xpdf under a GUI

memo.ps A PostScript file; view with gs under a GUI

memo.Z A file compressed with compress (page 58); use uncompress or
gunzip (page 58) to decompress

memo.tgz or
memo.tar.gz

A tar (page 58) archive of files compressed with gzip (page
58)

memo.gz A file compressed with gzip (page 58); view with zcat or
decompress with gunzip (both on page 58)

memo.bz2 A file compressed with bzip2 (page 56); view with bzcat or
decompress with bunzip2 (both on page 57)

memo.html A file meant to be viewed using a Web browser, such as
Mozilla

photo.jpg or
photo.gif

A file containing graphical information, such as a picture (also
.jpeg)

Invisible Filenames

A filename that begins with a period is called an invisible filename (or an invisible file or sometimes a
hidden file) because ls does not normally display it. The command ls –a displays all filenames, even
invisible ones. Names of startup files (page 83) usually begin with a period so that they are invisible and do
not clutter a directory listing. The .plan file (page 65) is also invisible. Two special invisible entries—a
single and double period (. and . .)—appear in every directory (page 85).

mkdir:Creates a Directory

The mkdir utility creates a directory. The argument (861) to mkdir becomes the pathname of the new
directory. The following examples develop the directory structure shown in Figure 4-4. In the figure the
directories that are added are a lighter shade than the others and are connected by dashes.

Figure 4-4. The file structure developed in the examples

In Figure 4-5, ls shows the names of the files Alex has been working with in his home directory: demo,
names, and temp. Using mkdir, Alex then creates a directory named literature as a child of the /home/alex
directory. When you use mkdir, enter the pathname of your home directory (page 82) in place of /home/alex.
The second ls verifies the presence of the new directory.

Figure 4-5. The mkdir utility

$ ls

demo names temp

$ mkdir /home/alex/literature

$ ls

demo literature names temp

$ ls -F

demo literature/ names temp

$ ls literature

$

You can use the –F option with ls to display a slash after the name of each directory and an asterisk after
each executable file (shell script, utility, or program). When you call it with an argument that is the name of
a directory, ls lists the contents of the directory. If the directory is empty, ls does not display anything.

The working directory

pwd

While you are logged in on a character-based interface to a Linux system, you are always associated with a
directory. The directory you are associated with, or are working in, is called the working directory or current
directory. Sometimes this association is referred to in a physical sense: "You are in (or working in) the jenny
directory." The pwd command displays the pathname of the working directory.

To access any file in the working directory, you need only a simple filename. To access a file in another
directory, you must use a pathname.

Significance of the Working Directory

Typing a long pathname is tedious and increases the chance of making a mistake. This possibility is less
likely under a GUI, where you click filenames or icons. You can choose a working directory for any
particular task to reduce the need for long pathnames. Your choice of a working directory does not allow you
to do anything you could not do otherwise. Instead, it simply makes some operations easier.

Refer to Figure 4-6 as you read this paragraph. Files that are children of the working directory can be
referenced by simple filenames. Grandchildren of the working directory can be referenced by short relative
pathnames: two filenames separated by a slash. When you manipulate files in a large directory structure,
short relative pathnames can save time and aggravation. If you choose a working directory that contains the
files used most often for a particular task, you need to use fewer long, cumbersome pathnames.

Figure 4-6. Relative pathnames

Home directory

When you first log in on a Linux system, your working directory is your home directory . To display the
pathname of your home directory, use pwd just after you log in (see Figure 4-7).

When used without any arguments, the ls utility displays a list of the files in the working directory. Because
your home directory has been the only working directory you have used so far, ls has always displayed a list
of files in your home directory. (All the files you have created up to this point were created in your home
directory.)

cd: Changes to Another Working Directory

The cd (change directory) utility makes another directory the working directory but does not change the
contents of the working directory. The first cd command in Figure 4-8 makes the /home/alex/literature
directory the working directory, as verified by pwd.

When used without an argument, cd makes your home directory the working directory, as it was when you
first logged in. The second cd command in Figure 4-8 does not have an argument and makes Alex's home
directory the working directory.

Figure 4-7. Logging in and displaying the pathname of your home directory

login: alex

Password:

Last login: Wed Oct 20 11:14:21 from bravo

$ pwd

/home/alex

Figure 4-8. cd changes your working directory

$ cd /home/alex/literature

$ pwd

/home/alex/literature

$ cd

$ pwd

/home/alex

tip: The working directory versus your home directory

The working directory is not the same as your home directory. Your home directory remains the
same for the duration of your session and usually from session to session. Each time immediately
after you log in, you are working in the same directory: your home directory.

Unlike your home directory, the working directory can change as often as you like. You have no
set working directory, which is why some people refer to it as the current directory . When you log
in and until you change directories by using cd, your home directory is your working directory. If
you were to change directories to Scott's home directory, then Scott's home directory would be
your working directory.

Startup files

Startup files, which appear in your home directory, give the shell and other programs information about you
and your preferences. Frequently, one of these files tells the shell what kind of terminal you are using and
executes the stty (set terminal) utility to establish your line kill and erase keys.

Either you or the system administrator can put a shell startup file containing shell commands in your home
directory. The shell executes the commands in this file each time you log in. Because the startup files have
invisible filenames, you must use the ls –a command to see whether one is in your home directory. See pages
257 and 342 for more information about startup files.

Absolute Pathnames

Every file has a pathname. Figure 4-9 shows the pathnames of directories and ordinary files in part of a
filesystem hierarchy. An absolute pathname always starts with a slash (/), the name of the root directory. You
can build the absolute pathname of a file by tracing a path from the root directory through all the
intermediate directories to the file. String all the filenames in the path together, separating each from the next
with a slash (/) and preceding the entire group of filenames with a slash (/). This path of filenames is called

an absolute pathname because it locates a file absolutely by tracing a path from the root directory to the file.
The part of a pathname following the final slash is called a simple filename or just filename .

Figure 4-9. Absolute pathnames

Another form of absolute pathname begins with a tilde (~), which represents a home directory. For more
information refer to "~ (Tilde) in Pathnames" on page 89.

Relative Pathnames

A relative pathname traces a path from the working directory to a file. The pathname is relative to the
working directory. Any pathname that does not begin with the root directory (/) or a tilde (~) is a relative
pathname. Like absolute pathnames, relative pathnames can describe a path through many directories.

Alex could have created the literature directory in Figure 4-5 more easily by using a relative pathname:

$ pwd

/home/alex

$ mkdir literature

The pwd command shows that Alex's home directory (/home/alex) is the working directory. The mkdir
utility displays an error message if a directory or file named literature exists: You cannot have two files or
directories with the same name in the same directory. The pathname used in this example is a simple
filename—a kind of relative pathname that specifies a file in the working directory.

The following commands show two ways to create the promo directory as a child of the newly created
literature directory. The first way works when /home/alex is the working directory and uses a relative
pathname.

$ pwd

/home/alex

$ mkdir literature/promo

caution: When using a relative pathname, know which directory is the working
directory

The location of the file that you are accessing with a relative pathname depends on (is relative to)
the working directory. Always make sure you know which directory is the working directory
before you use a relative pathname. Use pwd to verify the directory. If you are using mkdir and you
are not where you think you are in the file hierarchy, the new directory will end up in an
unexpected location.

It does not matter which directory is the working directory when you use an absolute pathname.

The second way uses an absolute pathname:

$ mkdir /home/alex/literature/promo

Use the –p (parents) option to mkdir to create both the literature and promo directories with a single
command.

$ pwd

/home/alex

$ ls

demo names temp

$ mkdir -p literature/promo

or

$ mkdir -p /home/alex/literature/promo

The . and .. Directory entries

The mkdir utility automatically puts two entries in each directory it creates: a single period (.) and a double
period (. .), representing the directory itself and the parent directory, respectively. These entries are invisible
because each of their filenames begins with a period.

Because mkdir automatically places these entries in every directory, you can rely on their presence. The . is
synonymous with the pathname of the working directory and can be used in its place; . . is synonymous with
the pathname of the parent of the working directory.

With the literature directory as the working directory, the following example uses . . three times: first to list
the contents of the parent directory (/home/alex), second to copy the memoA file to the parent directory, and
third to list the contents of the parent directory again.

$ pwd

/home/alex/literature

$ ls ..

demo literature names temp

$ cp memoA ..

$ ls ..

demo literature memoA names temp

While working in the promo directory, Alex can use a relative pathname to edit a file in his home directory.
Before calling the editor, Alex checks which directory he is in:

$ pwd

/home/alex/literature/promo

$ vim ../../names

Virtually anywhere that a utility or program requires a filename or pathname, you can use an absolute or
relative pathname or a simple filename. This usage holds true for ls, vim, mkdir, rm, and other Linux
utilities.

Important Standard Directories and Files

Originally files on a Linux system were not located in standard places. The scattered files made it difficult to
document and maintain a Linux system and just about impossible for someone to release a software package
that would compile and run on all Linux systems. The first standard for the Linux filesystem, the FSSTND

(Linux Filesystem Standard), was released on February 14, 1994. In early 1995 work was started on a
broader standard covering many UNIX-like systems: FHS (Linux Filesystem Hierarchy
Standard—www.pathname.com/fhs). More recently, FHS has been incorporated in LSB (Linux Standard
Base—www.linuxbase.org), a workgroup of FSG (Free Standards Group—www.freestandards.org). Figure
4-10 shows the locations of some important directories and files as specified by FHS. The significance of
many of these directories will become clear as you continue reading.

Figure 4-10. A typical FHS-based Linux system file structure

The following list describes the directories shown in Figure 4-10, some of the directories specified by FHS,
and some other directories. Most Linux distributions do not use all the directories specified by FHS. You
cannot always determine the function of a directory by its name. For example, although /opt stores add-on
software, /etc/opt stores configuration files for the software in /opt.

/ Root The root directory, present in all Linux system file structures, is the
ancestor of all files in the filesystem.

/bin Essential command binaries Holds the files needed to bring the system
up and run it when it first comes up in single-user mode.

/boot Static files of the boot loader Contains most of the files needed to boot
the system.

/dev Device files Contains all files that represent peripheral devices, such as
disk drives, terminals, and printers.

/etc Machine–local system configuration Holds administrative,
configuration, and other system files. One of the most important is
/etc/passwd, which contains a list of all users who have permission to
use the system.

/etc/X11 Machine–local configuration for the X Window System

/etc/opt Configuration files for add-on software packages kept in /opt

/home User home directories Each user's home directory is typically one of
many subdirectories of the /home directory. As an example, assuming
that users' directories are under /home, the absolute pathname of Jenny's
home directory is /home/jenny. On some systems the users' directories
may not be under /home but instead might be spread among /inhouse
and /clients.

/lib Shared libraries and kernel modules

/lib/modules Loadable kernel modules

/mnt Mount point for temporary mounting of filesystems

/opt Add-on software packages (optional packages)

/proc Kernel and process information virtual filesystem

/root Home directory for root

/sbin Essential system binaries Utilities used for system administration are
stored in /sbin and /usr/sbin. The /sbin directory includes utilities
needed during the booting process, and /usr/sbin holds utilities used
after the system is up and running. In older versions of Linux, many
system administration utilities were scattered through several directories
that often included other system files (/etc, /usr/bin, /usr/adm,
/usr/include).

/tmp Temporary files Used to hold temporary files.

/usr Second major hierarchy Traditionally includes subdirectories that
contain information used by the system. Files in /usr subdirectories do
not change often and may be shared by multiple systems.

/usr/bin Most user commands Contains the standard Linux utility
programs—that is, binaries that are not needed in single-user mode.

/usr/bin/X11 Symbolic link to /usr/X11R6/bin

/usr/games Games and educational programs

/usr/include Header files included by C programs

/usr/include/X11 Symbolic link to /usr/X11R6/include/X11

/usr/lib Libraries

/usr/lib/X11 Symbolic link to /usr/X11R6/lib/X11

/usr/local Local hierarchy Holds locally important files and directories that are
added to the system. Subdirectories can include bin, games, include,
lib, sbin, share, and src.

/usr/man Online manuals

/usr/sbin Nonvital system administration binaries See /sbin.

/usr/share Architecture-independent data Subdirectories can include dict, doc,
games, info, locale, man, misc, terminfo, and zoneinfo.

/usr/share/doc Miscellaneous documentation

/usr/share/info GNU info system's primary directory

/usr/src Source code

/usr/X11R6 X Window System, version 11 release 6

/var Variable data Files with contents that vary as the system runs are found
in subdirectories under /var. The most common examples are temporary
files, system log files, spooled files, and user mailbox files.
Subdirectories can include cache, lib, lock, log, opt, run, spool, tmp,
and yp. Older versions of Linux scattered such files through several
subdirectories of /usr (/usr/adm, /usr/mail, /usr/spool, /usr/tmp).

/var/log Log files Contains lastlog (a record of the last login by each user),
messages (system messages from syslogd), and wtmp (a record of all
logins/logouts).

/var/spool Spooled application data Contains anacron, at, cron, lpd, mail,
mqueue, news, samba, and uucp. The file /var/spool/mail typically has
a symbolic link in /var.

 < Day Day Up >

 < Day Day Up >

Working with Directories

This section covers deleting directories, copying and moving files between directories, and moving
directories. It also describes how to use pathnames to make your work with Linux easier.

rmdir: Deletes a directory

The rmdir (remove directory) utility deletes a directory. You cannot delete the working directory or a
directory that contains files other than . and . . entries. If you need to delete a directory with files in it, first
use rm to delete the files and then delete the directory. You do not have to (nor can you) delete the . and . .
entries; rmdir removes them automatically. The following command deletes the directory that was created in
Figure 4-5 on page 81:

$ rmdir /home/alex/literature

The rm utility has a –r option (rm –r filename) that recursively deletes files, including directories, within a
directory as well as the directory itself.

caution: Use rm – r carefully, if at all

Although rm –r is a handy command, you must use it carefully. Do not use it with an ambiguous
file reference such as *. It is quite easy to wipe out your entire home directory with a single short
command.

Pathnames

 < Day Day Up >

 < Day Day Up >

touch

Use a text editor to create a file named letter if you want to experiment with the examples that follow. Or
you can use touch to create an empty file:

$ touch letter

With /home/alex as the working directory, the following example uses cp with a relative pathname to copy
the file letter to the /home/alex/literature/promo directory. The copy of the file has the simple filename
letter.0610:

$ pwd

/home/alex

$ cp letter literature/promo/letter.0610

If Alex does not change to another directory, he can use vim to edit the copy of the file he just made:

$ vim literature/promo/letter.0610

If Alex does not want to use a long pathname to specify the file, he can use cd to make promo the working
directory before calling vim:

$ cd literature/promo

$ pwd

/home/alex/literature/promo

$ vim letter.0610

To make the parent of the working directory (named /home/alex/literature) become the new working
directory, Alex can give the following command, which takes advantage of the . . directory entry:

$ cd ..

$ pwd

/home/alex/literature

~ (Tilde) in pathnames

The shell expands the characters ~/ (a tilde followed by a slash) at the start of a pathname into the pathname
of your home directory. Using this shortcut, you can display your .bashrc startup file (page 258) with the
following command, no matter which directory is your working directory:

$ less ~/.bashrc

A tilde quickly references paths that start with your or someone else's home directory. The shell expands a
tilde followed by a login name at the beginning of a pathname into the pathname of that user's home
directory. Assuming he has permission to do so, Alex can examine Scott's ~/.bashrc file with the following
command:

$ less ~scott/.bashrc

Refer to "Tilde expansion" on page 326 for more information.

mv, cp: Moves or Copies a File

Chapter 3 discussed the use of mv to rename files. However, mv is more general than that: You can use this
utility to move files from one directory to another (change the pathname of a file) as well as to change a
simple filename. When used to move one or more files to a new directory, the mv command has this syntax:

mv existing-file-list directory

If the working directory is /home/alex, Alex can use the following command to move the files names and
temp from the working directory to the literature directory:

$ mv names temp literature

This command changes the absolute pathnames of the names and temp files from /home/alex/names and
/home/alex/temp to /home/alex/literature/names and /home/alex/literature/temp, respectively (Figure 4-
11). Like most Linux commands, mv accepts either absolute or relative pathnames.

Figure 4-11. Using mv to move names and temp

As you work with Linux and create more and more files, you will need to create directories using mkdir to
keep the files organized. The mv utility is a useful tool for moving files from one directory to another as you
develop your file tree. The cp utility works in the same way that mv does, but it makes copies of the existing-
file-list in the specified directory .

mv: Moves a Directory

Just as it moves ordinary files from one directory to another, so mv can move directories. The syntax is
similar except that you specify one or more directories, not ordinary files, to move:

mv existing-directory-list new-directory

If new-directory does not exist, the existing-directory-list must contain just one directory name, which mv
changes to new-directory (mv renames the directory). Although directories can be renamed using mv, their
contents cannot be copied with cp unless you use the – r option. Refer to the explanations of tar (page 786)
and cpio (page 619) for other ways to copy and/or move directories.

 < Day Day Up >

 < Day Day Up >

Access peremissions

Three types of users can access a file: the owner of the file (owner), a member of a group to which the owner
belongs (group), and everyone else (other). A user can attempt to access an ordinary file in three ways: by
trying to read from, write to, or execute it. Three types of users, each of whom is able to access a file in three
ways, equals a total of nine possible ways to access an ordinary file.

ls –l: Displays Permissions

When you call ls with the –l option and the name of an ordinary file, ls displays a line of information about
the file. The following example displays information for two files. The file letter.0610 contains the text of a
letter, and check_spell contains a shell script, a program written in a high-level shell programming language:

$ ls -l letter.0610 check_spell

-rw-r--r-- 1 alex pubs 3355 May 2 10:52 letter.0610

-rwxr-xr-x 2 alex pubs 852 May 5 14:03 check_spell

From left to right, the lines that an ls –l command displays contain the following information (refer to Figure
4-12):

The type of file (first character)

The file's access permissions (the next nine characters)

The number of links to the file (page 96)

The name of the file's owner (usually the person who created the file)

The name of the group that has group access to the file

The size of the file in characters (bytes)

The date and time the file was created or last modified

The name of the file

Figure 4-12. The columns displayed by the ls – l command

The type of file (first column) for letter.0610 is a hyphen (–) because it is an ordinary file (directory files
have a d in this column).

The next three characters represent the access permissions for the owner of the file: r indicates read
permission and w indicates write permission. The – in the next column indicates that the owner does not
have execute permission; otherwise, an x would appear here.

In a similar manner the next three characters represent permissions for the group, and the final three
characters represent permissions for other (everyone else). In the preceding example, the owner of
letter.0610 can read from and write to the file, whereas the group and others can only read from the file and
no one is allowed to execute it. Although execute permission can be allowed for any file, it does not make
sense to assign execute permission to a file that contains a document, such as a letter. The check_spell file is
an executable shell script, and execute permission is appropriate. (The owner, the group, and others all have
execute access permission.)

chmod: Changes Access Permissions

The owner of a file controls which users have permission to access the file and how they can access it. When
you own a file, you can use the chmod (change mode) utility to change access permissions for that file. In the
following example, chmod adds (+) read and write permission (rw) for all (a) users:

$ chmod a+rw letter.0610

$ ls -l letter.0610

-rw-rw-rw- 1 alex pubs 3355 May 2 10:52 letter.0610

tip: You must have read permission to execute a shell script

Because a shell needs to read a shell script (an ASCII file containing shell commands) before it can
execute the commands within the script, you must have read permission to the file containing the
script to execute it. You also need execute permission to execute a shell script directly on the
command line. Binary (program) files do not need to be read; they are executed directly. You need
only execute permission to run a binary (nonshell) program.

In the next example, chmod removes (–) read and execute (rx) permissions for users other (o) than the owner

of the file (Alex) and members of the group associated with the file (pubs):

$ chmod o-rx check_spell

$ ls -l check_spell

-rwxr-x--- 2 alex pubs 852 May 5 14:03 check_spell

In addition to a (for all) and o (for other), you can use g (for group) and u (for user , although user refers to
the owner of the file, who may or may not be the user of the file at any given time) in the argument to chmod.
Refer to page 263 for more information on using chmod to make a file executable.

In addition to the symbolic arguments described in this section, you can use absolute, or numeric, arguments
with chmod. See page 604 for information on absolute arguments and chmod in general.

The Linux file access permission scheme lets you give other users access to the files you want to share yet
keep your private files confidential. You can allow other users to read from and write to a file (you may be
one of several people working on a joint project). You can allow others only to read from a file (perhaps a
project specification you are proposing). Or you can allow others only to write to a file (similar to an inbox
or mailbox, where you want others to be able to send you mail but do not want them to read your mail).
Similarly, you can protect entire directories from being scanned (covered shortly).

There is an exception to the access permissions just described. Anyone who knows the root password can
log in as Superuser and have full access to all files, regardless of owner or access permissions.

tip: chmod: o for other, u for owner

When using chmod, many people assume that the o stands for owner ; it does not. The o stands for
other , whereas u stands for owner (user).

Setuid and setgid permissions

When you execute a file that has setuid (set user ID) permission, the process executing the file takes on the
privileges of the file's owner. For example, if you run a setuid program that removes all files in a directory,
you can remove files in any of the file owner's directories, even if you do not normally have permission to do
so.

In a similar manner, setgid (set group ID) permission means that the process executing the file takes on the
privileges of the group the file is associated with. The ls utility shows setuid permission by placing an s in
the owner's executable position and setgid by placing an s in the group's executable position:

$ ls -l program1

-rwxr-xr-x 1 alex pubs 15828 Nov 5 06:28 program1

$ chmod u+s program1

$ ls -l program1

-rwsr-xr-x 1 alex pubs 15828 Nov 5 06:28 program1

$ chmod g+s program1

$ ls -l program1

-rwsr-sr-x 1 alex pubs 15828 Nov 5 06:28 program1

security: Minimize use of setuid and setgid programs owned by root

Executable files that are setuid and owned by root have Superuser privileges when they are run,
even if they are not run by root. This type of program is very powerful because it can do anything
that Superuser can do (that the program is designed to do). Similarly, executable files that are
setgid and belong to the group root have extensive privileges.

Because of the power they hold and their potential for destruction, you should avoid creating and
using setuid and setgid programs owned by root or belonging to the group root indiscriminately.
Because of their inherent dangers, many sites do not allow these programs on their systems.

security: Do not write setuid shell scripts

Never give shell scripts setuid permission. Several techniques for subverting them are well known.

Directory access permissions

Access permissions have slightly different meanings when they are used with directories. Although the three
types of users can read from or write to a directory, the directory cannot be executed. Execute access
permission is redefined for a directory: It means that you can cd into the directory and/or examine files that
you have permission to read in the directory. It has nothing to do with executing a file.

When you have only execute permission for a directory, you can use ls to list a file in the directory if you
know its name. You cannot use ls without an argument to list the entire contents of the directory. In the
following exchange, Jenny first verifies that she is logged on as herself. Then she checks the permissions on
Alex's info directory and cds into it. You can view the access permissions associated with a directory by
running ls with the –d (directory) and –l (long) options:

$ who am i

jenny pts/7 Aug 21 10:02

$ ls -ld /home/alex/info

drwx-----x 2 alex pubs 512 Aug 21 09:31 /home/alex/info

$ ls -l /home/alex/info

ls: /home/alex/info: Permission denied

The d at the left end of the line displayed by ls indicates that /home/alex/info is a directory. Alex has read,
write, and execute permissions; members of the pubs group have no access permissions; and other users
have execute permission only as indicated by the x at the right end of the permissions. Because Jenny does
not have read permission for the directory, the ls –l command returns an error.

When Jenny specifies the names of the files she wants information about, she is not reading new directory
information but searching for specific information, which she is allowed to do with execute access to the
directory. She has read access to notes, so she has no problem using cat to display the file. She cannot
display financial because she does not have read access to it:

$ ls -l /home/alex/info/financial /home/alex/info/notes

-rw------- 1 alex pubs 34 Aug 21 09:31 /home/alex/info/financial

-rw-r--r-- 1 alex pubs 30 Aug 21 09:32 /home/alex/info/notes

$ cat /home/alex/info/notes

This is the file named notes.

$ cat /home/alex/info/financial

cat: /home/alex/info/financial: Permission denied

Next Alex gives others read access to his info directory:

$ chmod o+r /home/alex/info

When Jenny checks her access permissions on info, she finds that she has both read and execute access to
the directory. Now ls –l works just fine without arguments, but she still cannot read financial. (This is an
issue of file permissions, not directory permissions.)

Finally, Jenny tries to create a file named newfile by using touch. If Alex were to give her write permission
to the info directory, she would be able to create new files in it:

$ ls -ld /home/alex/info

drwx---r-x 2 alex pubs 512 Aug 21 09:31 /home/alex/info

$ ls -l /home/alex/info

total 8

-rw------- 1 alex pubs 34 Aug 21 09:31 financial

-rw-r--r-- 1 alex pubs 30 Aug 21 09:32 notes

$ cat financial

cat: financial: Permission denied

$ touch /home/alex/info/newfile

touch: cannot touch '/home/alex/info/newfile': Permission denied

 < Day Day Up >

 < Day Day Up >

Links

A link is a pointer to a file. Each time you create a file using vim, touch, cp, or any other means, you are putting
a pointer in a directory. This pointer associates a filename with a place on the disk. When you specify a filename
in a command, you are indirectly pointing to the place on the disk that holds the information you want.

Sharing files can be useful when two or more people are working on the same project and need to share
information. You can make it easy for other users to access one of your files by creating additional links to the
file.

To share a file with another user, first give the user permission to read from and write to the file. (You may also
have to change the access permission of the parent directory of the file to give the user read, write, and/or execute
permission.) Once the permissions are set appropriately, the user can create a link to the file so that each of you
can access the file from your separate file trees.

A link can also be useful to a single user with a large file tree. You can create links to cross-classify files in your
file tree, using different classifications for different tasks. For example, if your file tree is the one depicted in
Figure 4-2, you might have a file named to_do in each subdirectory of the correspond directory—that is, in
personal, memos, and business. If you later find it difficult to keep track of everything you need to do, you can
create a separate directory named to_do in the correspond directory and link each subdirectory's to-do list into
that directory. For example, you could link the file named to_do in the memos directory to a file named memos
in the to_do directory. This set of links is shown in Figure 4-13.

Figure 4-13. Using links to cross-classify files

Although it may sound complicated, this technique keeps all your to-do lists conveniently in one place. The
appropriate list is easily accessible in the task-related directory when you are busy composing letters, writing
memos, or handling personal business.

tip: About the discussion of hard links

Two kinds of links exist: hard links and symbolic (soft) links. Hard links are older and becoming dated.
The section on hard links is marked as optional; you can skip it, although it discusses inodes and gives
you insight into how the filesystem is structured.

optional: Hard Links

A hard link to a file appears as another file in the file structure. If the link appears in the same
directory as the linked-to file, the links must have different filenames because two files in the same
directory cannot have the same name.

ln: CREATES A HARD LINK

The ln (link) utility (without the –s or – –symbolic option) creates an additional hard link to an
existing file using the following syntax:

ln existing-file new-link

The next command makes the link shown in Figure 4-14 by creating a new link named
/home/alex/letter to an existing file named draft in Jenny's home directory:

$ pwd

/home/jenny

$ ln draft /home/alex/letter

Figure 4-14. Two links to the same file: /home/alex/letter and /home/jenny/draft

The new link appears in the /home/alex directory with the filename letter. In practice Alex may
need to change directory and file permissions as shown in the previous section for Jenny to be able
to access the file.

The ln utility creates an additional pointer to an existing file but does not make another copy of the
file. Because there is only one file, the file status information—such as access permissions, owner,
and the time the file was last modified—is the same for all links. Only the filenames differ. When
Jenny modifies /home/jenny/draft, Alex sees the changes in /home/alex/letter.

cp VERSUS ln

The following commands verify that ln does not make an additional copy of a file. Create a file,
use ln to make an additional link to the file, change the contents of the file through one link, and
verify the change through the other link:

$ cat file_a

This is file A.

$ ln file_a file_b

$ cat file_b

This is file A.

$ vim file_b

...

$ cat file_b

This is file B after the change.

$ cat file_a

This is file B after the change.

If you try the same experiment using cp instead of ln and change a copy of the file, the difference
between the two utilities will become clearer. Once you change a copy of a file, the two files are
different:

$ cat file_c

This is file C.

$ cp file_c file_d

$ cat file_d

This is file C.

$ vim file_d

...

$ cat file_d

This is file D after the change.

$ cat file_c

This is file C.

ls and link counts

You can use ls with the –l option, followed by the names of the files you want to compare, to see
that the status information is the same for two links to the same file and is different for files that are
not linked. In the following example, the 2 in the links field (just to the left of alex) shows there are
two links to file_a and file_b:

$ ls -l file_a file_b file_c file_d

-rw-r--r-- 2 alex pubs 33 May 24 10:52 file_a

-rw-r--r-- 2 alex pubs 33 May 24 10:52 file_b

-rw-r--r-- 1 alex pubs 16 May 24 10:55 file_c

-rw-r--r-- 1 alex pubs 33 May 24 10:57 file_d

Although it is easy to guess which files are linked to one another in this example, ls does not
explicitly tell you.

ls and inodes

Use ls with the –i option to determine definitively which files are linked. The –i option lists the

inode (page 880) number for each file. An inode is the control structure for a file. If two filenames
have the same inode number, they share the same control structure and are links to the same file.
Conversely, when two filenames have different inode numbers, they are different files. The
following example shows that file_a and file_b have the same inode number and that file_c and
file_d have different inode numbers:

$ ls -i file_a file_b file_c file_d

3534 file_a 3534 file_b 5800 file_c 7328 file_d

All links to a file are of equal value: The operating system cannot distinguish the order in which
multiple links were created. When a file has two links, you can remove either one and still access
the file through the remaining link. You can remove the link used to create the file and, as long as
one link remains, still access the file through that link.

SYMBOLIC LINKS

In addition to hard links, Linux supports links called symbolic links, soft links, or symlinks. A hard link is a
pointer to a file (the directory entry points to the inode), whereas a symbolic link is an indirect pointer to a file
(the directory entry contains the pathname of the pointed-to file—a pointer to the hard link to the file).

Limitations of hard links

Symbolic links were developed because of the limitations inherent in hard links. You cannot create a hard link to
a directory, but you can create a symbolic link to a directory. A symbolic link can point to any file, regardless of
where it is located in the file structure, but a hard link to a file must be in the same filesystem as the other hard
link(s) to the file.

Often the Linux file hierarchy is composed of several filesystems. Because each filesystem keeps separate control
information (that is, separate inode tables) for the files it contains, it is not possible to create hard links between
files in different filesystems. When you create links only among files in your own directories, you will not notice
these limitations.

One of the big advantages of a symbolic link is that it can point to a nonexistent file. This ability is useful if you
need a link to a file that is periodically removed and re-created. A hard link keeps pointing to a "removed" file,
which the hard link keeps alive even after a new file is created. A symbolic link always points to the newly
created file and does not interfere with deleting the old file. For example, a symbolic link could point to a file
that gets checked in and out under a source code control system, a .o file that is re-created by the C compiler each
time you run make, or a log file that is periodically archived.

Although they are more general than hard links, symbolic links have some disadvantages. Whereas all hard links
to a file have equal status, symbolic links do not have the same status as hard links. When a file has multiple hard
links, it is analogous to a person having multiple full legal names, as many married women do. In contrast,
symbolic links are analogous to nicknames. Anyone can have one or more nicknames but these nicknames have a
lesser status than legal names. The following sections describe some of the peculiarities of symbolic links.

ln: Creates a Symbolic Link

Use ln with the – –symbolic (or –s) option to create a symbolic link. The following example creates the
symbolic link /tmp/s3 to the file sum in Alex's home directory. When you use the ls –l command to look at the
symbolic link, ls displays the name of the link and the name of the file it points to. The first character of the
listing is l (for link):

$ ln --symbolic /home/alex/sum /tmp/s3

$ ls -l /home/alex/sum /tmp/s3

-rw-rw-r-- 1 alex alex 38 Jun 12 09:51 /home/alex/sum

lrwxrwxrwx 1 alex alex 14 Jun 12 09:52 /tmp/s3 -> /home/alex/sum

$ cat /tmp/s3

This is sum.

The sizes and times of the last modification of the two files are different. Unlike a hard link, a symbolic link to a
file does not have the same status information as the file itself.

Similarly you can use ln to create a symbolic link to a directory. When you use the – –symbolic option, ln does
not care whether the file you are creating a link to is a regular file or a directory.

tip: Use absolute pathnames with symbolic links

Symbolic links are literal and are not aware of directories. A link that points to a relative pathname,
which includes simple filenames, assumes that the relative pathname is relative to the directory that the
link was created in (not the directory the link was created from). In the following example, the link
points to the file named sum in the /tmp directory. Because no such file exists, cat gives an error
message:

$ pwd

/home/alex

$ ln --symbolic sum /tmp/s4

$ ls -l sum /tmp/s4

lrwxrwxrwx 1 alex alex 3 Jun 12 10:13 /tmp/s4 -> sum

-rw-rw-r-- 1 alex alex 38 Jun 12 09:51 sum

$ cat /tmp/s4

cat: /tmp/s4: No such file or directory

optional: cd AND SYMBOLIC LINKS

When you use a symbolic link as an argument to cd to change directories, the results can be
confusing, particularly if you did not realize that you were using a symbolic link.

If you use cd to change to a directory that is represented by a symbolic link, the pwd builtin lists the
name of the symbolic link. The pwd utility (/bin/pwd) lists the name of the linked-to directory, not
the link, regardless of how you got there:

$ ln -s /home/alex/grades /tmp/grades.old

$ pwd

/home/alex

$ cd /tmp/grades.old

$ pwd

/tmp/grades.old

$ /bin/pwd

$/home/alex/grades

When you change directories back to the parent, you end up in the directory holding the symbolic
link:

$ cd ..

$ pwd

/tmp

$ /bin/pwd

/tmp

rm: Removes a Link

When you create a file, there is one hard link to it. You can delete the file or, using Linux terminology, remove
the link with the rm utility. When you remove the last hard link to a file, you can no longer access the information
stored there and the operating system releases for use by other files the space the file occupied on the disk. The
space is released even if symbolic links to the file remain. When there is more than one hard link to a file, you
can remove a hard link and still access the file from any remaining link. Unlike in DOS and Windows, there is no
easy way in Linux to undelete a file once you have removed it. A skilled hacker can sometimes piece the file
together with time and effort.

When you remove all the hard links to a file, you will not be able to access the file through a symbolic link. In the
following example, cat reports that the file total does not exist because it is a symbolic link to a file that has
been removed:

$ ls -l sum

-rw-r--r-- 1 alex pubs 981 May 24 11:05 sum

$ ln -s sum total

$ rm sum

$ cat total

cat: total: No such file or directory

$ ls -l total

lrwxrwxrwx 1 alex pubs 6 May 24 11:09 total -> sum

When you remove a file, be sure to remove all symbolic links to it. Remove a symbolic link the same way you
remove other files:

$ rm total

 < Day Day Up >

 < Day Day Up >

Chapter summary

Linux has a hierarchical, or treelike, file structure that makes it possible to organize files so that you can find
them quickly and easily. This file structure contains directory files and ordinary files. Directories contain
other files, including other directories; ordinary files generally contain text, programs, or images. The
ancestor of all files is the root directory named /.

This chapter introduced many important system files and directories, explaining what each does. The section
on file types explained the difference between ordinary and directory files and the inodes that hold each. It
also covered the use of hard and symbolic links.

Most Linux filesystems support 255-character filenames. Nonetheless, it is a good idea to keep filenames
simple and intuitive. Filename extensions can help make filenames more meaningful.

An absolute pathname starts with the root directory and contains all the filenames that trace a path to a given
file. Such a pathname starts with a slash representing the root directory and contains additional slashes
between the other filenames in the path.

A relative pathname is similar to an absolute pathname but starts the path tracing from the working directory.
A simple filename is the last element of a pathname and is a form of a relative pathname.

When you are logged in, you are always associated with a working directory. Your home directory is your
working directory from the time you first log in until you use cd to change directories.

A Linux filesystem contains many important directories, including /usr/bin, which stores most of the Linux
utility commands, and /dev, which stores device files, many of which represent physical pieces of hardware.
An important standard file is /etc/passwd; it contains information about users, such as the user ID and full
name.

Among the attributes associated with each file are access permissions. They determine who can access the
file and the manner in which the file may be accessed. Three groups of user(s) can access the file: the owner,
members of a group, and all other users. A regular file can be accessed in three ways: read, write, and
execute. The ls utility with the –l option displays these permissions. For directories, execute access is
redefined to mean that the directory can be searched.

The owner of a file or Superuser can use the chmod utility to change the access permissions of a file. This
utility defines read, write, and execute permissions for the file's owner, the group, and all other users on the
system.

A link is a pointer to a file. You can create several links to a single file so that you can share the file with
other users or have the file appear in more than one directory. Because only one copy of a file with multiple
links exists, changing the file through any one link causes the changes to appear in all the links. Hard links
cannot link directories or span filesystems, whereas symbolic links can.

Table 4-2 lists the utilities introduced in this chapter.

Table 4-2. Utilities introduced in Chapter 4

cd Associates you with another working directory (page 82)

chmod Changes the access permissions on a file (page 92)

ln Makes a link to an existing file (page 97)

mkdir Creates a directory (page 80)

pwd Displays the pathname of the working directory (page 81)

rmdir Deletes a directory (page 88)

 < Day Day Up >

 < Day Day Up >

Exercises

1. Is each of the following an absolute pathname, a relative pathname, or a simple filename?

milk_coa.

correspond/business/milk_cob.

/home/alexc.

/home/alex/literature/promod.

. .e.

letter.0610f.

2. List the commands you can use to

Make your home directory the working directorya.

Identify the working directoryb.

3. If your working directory is /home/alex with a subdirectory named literature, give three sets of
commands that you can use to create a subdirectory named classics under literature. Also give
several sets of commands you can use to remove the classics directory and its contents.

4. The df utility displays all mounted filesystems along with information about each. Use the df
utility with the –h (humanly readable) option to answer the following questions.

How many filesystems are on your Linux system?a.

Which filesystem stores your home directory?b.

Assuming that your answer to exercise 4a is two or greater, attempt to create a hard link to a
file on another filesystem. What error message do you get? What happens when you attempt
to create a symbolic link to the file instead?

c.

5. Suppose that you have a file that is linked to a file owned by another user. What can you do so
that changes to the file are no longer shared?

6. You should have read permission for the /etc/passwd file. To answer the following questions, use
cat or less to display /etc/passwd. Look at the fields of information in /etc/passwd for the users
on your system.

Which character is used to separate fields in /etc/passwd?a.

How many fields are used to describe each user?b.

How many users are on your system?c.

How many different login shells are in use on your system? (Hint: Look at the last field.)d.

The second field of /etc/passwd stores user passwords in encoded form. If the password
field contains an x, your system uses shadow passwords and stores the encoded passwords
elsewhere. Does your system use shadow passwords?

e.

7. If /home/jenny/draft and /home/alex/letter are links to the same file and the following sequence
of events occurs, what will be the date in the opening of the letter?

Alex gives the command vim letter.a.

Jenny gives the command vim draft.b.

Jenny changes the date in the opening of the letter to January 31, 2006, writes the file, and
exits from vim.

c.

Alex changes the date to February 1, 2006, writes the file, and exits from vim.d.

8. Suppose that a user belongs to a group that has all permissions on a file named jobs_list, but the
user, as the owner of the file, has no permissions. Describe what operations, if any, the user/owner
can perform on jobs_list.

Which command can the user/owner give that will grant the user/owner all permissions on the
file?

9. Does the root directory have any subdirectories that you cannot search? Does the root directory
have any subdirectories that you cannot read? Explain.

10. Assume that you are given the directory structure shown in Figure 4-2 on page 77 and the
following directory permissions:

d--x--x--- 3 jenny pubs 512 Mar 10 15:16 business

drwxr-xr-x 2 jenny pubs 512 Mar 10 15:16 business/milk_co

For each category of permissions—owner, group, and other—what happens when you run each of
the following commands? Assume that the working directory is the parent of correspond and that
the file cheese_co is readable by everyone.

cd correspond/business/milk_coa.

ls –l correspond/businessb.

cat correspond/business/cheese_coc.

 < Day Day Up >

 < Day Day Up >

ADVANCED EXERCISES

11. What is an inode? What happens to the inode when you move a file within a filesystem?

12. What does the . . entry in a directory point to? What does this entry point to in the root (/)
directory?

13. How can you create a file named –i? Which techniques do not work, and why do they not work?
How can you remove the file named –i?

14. Suppose that the working directory contains a single file named andor. What error message do
you get when you run the following command line?

$ mv andor and\/or

Under what circumstances is it possible to run the command without producing an error?

15. The ls –i command displays a filename preceded by the inode number of the file (page 99). Write
a command to output inode/filename pairs for the files in the working directory, sorted by inode
number. (Hint: Use a pipe.)

16. Do you think that the system administrator has access to a program that can decode user
passwords? Why or why not (see exercise 6)?

17. Is it possible to distinguish a file from a hard link to a file? That is, given a filename, can you tell
whether it was created using an ln command? Explain.

18. Explain the error messages displayed in the following sequence of commands:

$ ls -l

total 1

drwxrwxr-x 2 alex pubs 1024 Mar 2 17:57 dirtmp

$ ls dirtmp

$ rmdir dirtmp

rmdir: dirtmp: Directory not empty

$ rm dirtmp/*

rm: No match.

 < Day Day Up >

 < Day Day Up >

Chapter 5. The Shell

IN THIS CHAPTER

The Command Line 108

Standard Input and Standard Output 113

Redirection 116

Pipes 122

Running a Program in the Background 125

kill: Aborting a Background Job 127

Filename Generation/Pathname Expansion 127

Builtins 132

This chapter takes a close look at the shell and explains how to use some of its features. For example, it
discusses command line syntax and also describes how the shell processes a command line and initiates
execution of a program. The chapter also explains how to redirect input to and output from a command,
construct pipes and filters on the command line, and run a command in the background. The final section
covers filename expansion and explains how you can use this feature in your everyday work.

Except as noted everything in this chapter applies to the Bourne Again (bash) and TC (tcsh) Shells. The
exact wording of the shell output differs from shell to shell: What your shell displays may differ slightly
from what appears in this book. For shell-specific information, refer to Chapters 8 (bash) and 9 (tcsh).
Chapter 11 covers writing and executing bash shell scripts.

 < Day Day Up >

 < Day Day Up >

The Command Line

The shell executes a program when you give it a command in response to its prompt. For example, when you
give the ls command, the shell executes the utility program named ls. You can cause the shell to execute other
types of programs—such as shell scripts, application programs, and programs you have written—in the same
way. The line that contains the command, including any arguments, is called the command line . In this book the
term command refers to the characters you type on the command line as well as to the program that action
invokes.

Syntax

Command line syntax dictates the ordering and separation of the elements on a command line. When you press
the RETURN key after entering a command, the shell scans the command line for proper syntax. The syntax for
a basic command line is

command [arg1] [arg2] ... [argn] RETURN

One or more SPACEs must separate elements on the command line. The command is the name of the
command, arg1 through argn are arguments, and RETURN is the keystroke that terminates all command lines.
The brackets in the command line syntax indicate that the arguments they enclose are optional. Not all
commands require arguments: Some commands do not allow arguments; other commands allow a variable
number of arguments; and others require a specific number of arguments. Options, a special kind of argument,
are usually preceded by one or two hyphens (also called a dash or minus sign: –).

Command Name

Usage message

Some useful Linux command lines consist of only the name of the command without any arguments. For
example, ls by itself lists the contents of the working directory. Most commands accept one or more
arguments. Commands that require arguments typically give a short error message, called a usage message ,
when you use them without arguments, with incorrect arguments, or with the wrong number of arguments.

Arguments

On the command line each sequence of nonblank characters is called a token or word . An argument is a token,
such as a filename, string of text, number, or other object that a command acts on. For example, the argument to
a vim or emacs command is the name of the file you want to edit.

The following command line shows cp copying the file named temp to tempcopy:

$ cp temp tempcopy

Arguments are numbered starting with the command itself as argument zero. In this example cp is argument
zero, temp is argument one, and tempcopy is argument two. The cp utility requires two arguments on the
command line. (The utility can take more arguments but not fewer; see page 616.) Argument one is the name of
an existing file. Argument two is the name of the file that cp is creating or overwriting. Here the arguments are
not optional; both arguments must be present for the command to work. When you do not supply the right
number or kind of arguments, cp displays a usage message. Try typing cp and then pressing RETURN.

Options

An option is an argument that modifies the effects of a command. You can frequently specify more than one
option, modifying the command in several different ways. Options are specific to and interpreted by the
program that the command line calls, not the shell.

By convention options are separate arguments that follow the name of the command and usually precede other
arguments, such as filenames. Most utilities require you to prefix options with a single hyphen. However, this
requirement is specific to the utility and not the shell. GNU program options are frequently preceded by two
hyphens in a row. For example, – –help generates a (sometimes extensive) usage message.

Figure 5-1 first shows what happens when you give an ls command without any options. By default ls lists the
contents of the working directory in alphabetical order, vertically sorted in columns. Next the –r (reverse order;
because this is a GNU utility, you can also use – –reverse) option causes the ls utility to display the list of files
in reverse alphabetical order, still sorted in columns. The –x option causes ls to display the list of files in
horizontally sorted rows.

Combining options

When you need to use several options, you can usually group multiple single-letter options into one argument
that starts with a single hyphen; do not put SPACEs between the options. You cannot combine options that are
preceded by two hyphens in this way, however. Specific rules for combining options depend on the program
you are running. Figure 5-1 shows both the –r and –x options with the ls utility. Together these options
generate a list of filenames in horizontally sorted columns, in reverse alphabetical order. Most utilities allow
you to list options in any order; thus ls –xr produces the same results as ls –rx. The command ls –x –r also
generates the same list.

Figure 5-1. Using options

$ ls

alex house mark office personal test

hold jenny names oldstuff temp

$ ls -r

test personal office mark house alex

temp oldstuff names jenny hold

$ ls -x

alex hold house jenny mark names

office oldstuff personal temp test

$ ls -rx

test temp personal oldstuff office names

mark jenny house hold alex

tip: Displaying readable file sizes: the –h option

Most utilities that report on file sizes specify the size of a file in bytes. Bytes work well when you are
dealing with smaller files, but the numbers can be difficult to read when you are working with file
sizes that are measured in megabytes or gigabytes. Use the –h (or – –human-readable) option to
display file sizes in kilo-, mega-, and gigabytes. Experiment with df –h (disk free) and ls –lh
commands.

Option arguments

Some utilities have options that themselves require arguments. For example, the gcc utility has a – o option that
must be followed by the name you want to give the executable file that gcc generates. Typically an argument to
an option is separated from its option letter by a SPACE:

$ gcc -o prog prog.c

Arguments that start with a hyphen

Another convention allows utilities to work with arguments, such as filenames, that start with a hyphen. If a
file's name is –l, the following command is ambiguous:

$ ls -l

This command could mean a long listing of all files in the working directory or a listing of the file named – l. It
is interpreted as the former. You should avoid creating files whose names begin with hyphens. If you do create
them, many utilities follow the convention that a – – argument (two consecutive hyphens) indicates the end of
the options (and the beginning of the arguments). To disambiguate the command, you can type

$ ls -- -l

You can use an alternative format in which the period refers to the working directory and the slash indicates that
the name refers to a file in the working directory:

$ ls ./-l

Assuming that you are working in the /home/alex directory, the preceding command is functionally equivalent
to

$ ls /home/alex/-l

You can give the following command to get a long listing of this file:

$ ls -l -- -l

These are conventions, not hard-and-fast rules, and a number of utilities do not follow them (e.g., find).
Following such conventions is a good idea; it makes it much easier for users to work with your program. When
you write shell programs that require options, follow the Linux option conventions.

tip: The – –help option

Many utilities display a (sometimes extensive) help message when you call them with an argument of
– –help. All GNU utilities accept this option. An example follows.

$ bzip2 --help

bzip2, a block-sorting file compressor. Version 1.0.2, 30-Dec-2001.

 usage: bzip2 [flags and input files in any order]

 -h --help print this message

 -d --decompress force decompression

 -z --compress force compression

 -k --keep keep (don't delete) input files

 -f --force overwrite existing output files

 -t --test test compressed file integrity

 -c --stdout output to standard out

 -q --quiet suppress noncritical error messages

 -v --verbose be verbose (a 2nd -v gives more)

...

Processing the Command Line

As you enter a command line, the Linux tty device driver (part of the Linux operating system kernel) examines
each character to see whether it must take immediate action. When you press CONTROL-H (to erase a
character) or CONTROL-U (to kill a line), the device driver immediately adjusts the command line as required;
the shell never sees the character(s) you erased or the line you killed. Often a similar adjustment occurs when
you press CONTROL-W (to erase a word). When the character you entered does not require immediate action,
the device driver stores the character in a buffer and waits for additional characters. When you press RETURN,
the device driver passes the command line to the shell for processing.

Parsing the command line

When the shell processes a command line, it looks at the line as a whole and parses (breaks) it into its
component parts (Figure 5-2). Next the shell looks for the name of the command. Usually the name of the
command is the first item on the command line after the prompt (argument zero). The shell takes the first
characters on the command line up to the first blank (TAB or SPACE) and then looks for a command with that
name. The command name (the first token) can be specified on the command line either as a simple filename or
as a pathname. For example, you can call the ls command in either of the following ways:

$ ls

$ /bin/ls

Figure 5-2. Processing the command line

optional

The shell does not require that the name of the program appear first on the command line. Thus
you can structure a command line as follows:

$ >bb <aa cat

This command runs cat with standard input coming from the file named aa and standard output
going to the file named bb. When the shell recognizes the redirect symbols (page 116), it
recognizes and processes them and their arguments before finding the name of the program that
the command line is calling. This is a properly structured—albeit rarely encountered and possibly
confusing—command line.

Absolute versus relative pathnames

When you give an absolute pathname on the command line or a relative pathname that is not a simple filename

(i.e., any pathname that includes at least one slash), the shell looks in the specified directory (/bin in the case of
the /bin/ls command) for a file that has the name ls and that you have permission to execute. When you give a
simple filename, the shell searches through a list of directories for a filename that matches the specified name
and that you have execute permission for. The shell does not look through all directories but only the ones
specified by the variable named PATH. Refer to page 284 (bash) or page 363 (tcsh) for more information on
PATH. Also refer to the discussion of the which and whereis utilities on page 61.

When it cannot find the executable file, the Bourne Again Shell (bash) displays a message such as the
following:

$ abc

bash: abc: command not found

One reason the shell may not be able to find the executable file is that it is not in a directory in your PATH.
Under bash the following command temporarily adds the working directory (.) to your PATH:

$ PATH=$PATH:.

For security reasons, you may not want to add the working directory to PATH permanently; see the tip on page
285.

When the shell finds the program but cannot execute it (you do not have execute permission for the file that
contains the program), it displays a message similar to

$ def

bash: ./def: Permission denied

See "ls –l: Displays Permissions" on page 91 for information on displaying access permissions for a file and
"chmod: Changes Access Permissions" on page 92 for instructions on how to change file access permissions.

Executing the Command Line

Process

If it finds an executable file with the same name as the command, the shell starts a new process. A process is
the execution of a command by Linux (page 292). The shell makes each command line argument, including
options and the name of the command, available to the called program. While the command is executing, the
shell waits for the process to finish. At this point the shell is in an inactive state called sleep. When the program

finishes execution, it passes its exit status (page 479) to the shell. The shell then returns to an active state
(wakes up), issues a prompt, and waits for another command.

The shell does not process arguments

Because the shell does not process command line arguments but only hands them to the called program, the
shell has no way of knowing whether a particular option or other argument is valid for a given program. Any
error or usage messages about options or arguments come from the program itself. Some utilities ignore bad
options.

 < Day Day Up >

 < Day Day Up >

Standard Input and Standard Output

Standard output is a place that a program can send information, such as text. The program never "knows"
where the information it sends to standard output is going (Figure 5-3). The information can go to a printer,
an ordinary file, or the screen.

Figure 5-3. The command does not know where standard input comes from or where
standard output and standard error go

The following sections show that by default the shell directs standard output from a command to the
screen[1] and describe how you can cause the shell to redirect this output to another file.

[1] The term screen is used throughout this book to mean screen, terminal emulator window, or workstation. Screen refers to
the device that you see the prompt and messages displayed on.

Standard input is a place that a program gets information from. As with standard output the program never
"knows" where the information came from. The following sections also explain how to redirect standard
input to a command so that it comes from an ordinary file instead of from the keyboard (the default).

In addition to standard input and standard output, a running program normally has a place to send error
messages: standard error . Refer to page 260 (bash) and page 349 (tcsh) for more information on handling
standard error.

tip: chsh: changes your login shell

The person who sets up your account determines which shell you will use when you first log in on
the system or when you open a terminal emulator window in a GUI environment. You can run any
shell you like once you are logged in. Enter the name of the shell you want to use (bash or tcsh)
and press RETURN; the next prompt will be that of the new shell. Give an exit command to return
to the previous shell. Because shells you call in this manner are nested (one runs on top of the
other), you will be able to log out only from your original shell. When you have nested several
shells, keep giving exit commands until you reach your original shell. You will then be able to log
out.

Use the chsh utility when you want to change your login shell permanently. First give the
command chsh. Then in response to the prompts enter your password and the absolute pathname

of the shell you want to use (/bin/bash or /bin/tcsh). When you change your login shell in this
manner using a terminal emulator PAGE under a GUI, subsequent terminal emulator windows will
not reflect the change until you log out the system and log back in.

The Screen as a File

Chapter 4 introduced ordinary files, directory files, and hard and soft links. Linux has an additional type of
file: a device file . A device file resides in the Linux file structure, usually in the /dev directory, and
represents a peripheral device, such as a terminal emulator window, screen, printer, or disk drive.

The device name that the who utility displays after your login name is the filename of your screen. For
example, when who displays the device name pts/4, the pathname of your screen is /dev/pts/4. When you
work with multiple windows, each window has its own device name. You can also use the tty utility to
display the name of the device that you give the command from. Although you would not normally have
occasion to do so, you can read from and write to this file as though it were a text file. Writing to it displays
what you wrote on the screen; reading from it reads what you entered on the keyboard.

The Keyboard and Screen as Standard Input and Standard Output

When you first log in, the shell directs standard output of your commands to the device file that represents
your screen (Figure 5-4). Directing output in this manner causes it to appear on your screen. The shell also
directs standard input to come from the same file, so that your commands receive as input anything you type
on your keyboard.

Figure 5-4. By default, standard input comes from the keyboard andstandard output goes to
the screen

cat

The cat utility provides a good example of the way the keyboard and the screen function as standard input
and standard output, respectively. When you use cat, it copies a file to standard output. Because the shell

directs standard output to the screen, cat displays the file on the screen.

Up to this point cat has taken its input from the filename (argument) you specified on the command line.
When you do not give cat an argument (that is, when you give the command cat followed immediately by
RETURN), cat takes its input from standard input. Thus, when called without an argument, cat copies
standard input to standard output, one line at a time.

To see how cat works, type cat and press RETURN in response to the shell prompt. Nothing happens. Enter
a line of text and press RETURN. The same line appears just under the one you entered. The cat utility is
working. Because the shell associates cat's standard input with the keyboard and cat's standard output with
the screen, when you type a line of text cat copies the text from standard input (the keyboard) to standard
output (the screen). This exchange is shown in Figure 5-5.

Figure 5-5. The cat utility copies standard input to standard output

$ cat

This is a line of text.

This is a line of text.

Cat keeps copying lines of text

Cat keeps copying lines of text

until you press CONTROL-D at the beginning

until you press CONTROL-D at the beginning

of a line.

of a line.

CONTROL-D

$

CONTROL-D signals EOF

The cat utility keeps copying text until you enter CONTROL-D on a line by itself. Pressing CONTROL-D
sends an EOF (end of file) signal to cat to indicate that it has reached the end of standard input and there is
no more text for it to copy. The cat utility then finishes execution and returns control to the shell, which
displays a prompt.

Redirection

The term redirection encompasses the various ways you can cause the shell to alter where standard input of a
command comes from and where standard output goes to. By default the shell associates standard input and
standard output of a command with the keyboard and the screen as mentioned earlier. You can cause the

shell to redirect standard input or standard output of any command by associating the input or output with a
command or file other than the device file representing the keyboard or the screen. This section demonstrates
how to redirect input from and output to ordinary text files and utilities.

Redirecting Standard Output

The redirect output symbol (>) instructs the shell to redirect the output of a command to the specified file
instead of to the screen (Figure 5-6). The format of a command line that redirects output is

command [arguments] > filename

Figure 5-6. Redirecting standard output

where command is any executable program (such as an application program or a utility), arguments are
optional arguments, and filename is the name of the ordinary file the shell redirects the output to.

Figure 5-7 uses cat to demonstrate output redirection. This figure contrasts with Figure 5-3 on page 114,
where both standard input and standard output are associated with the keyboard and the screen. The input in
Figure 5-7 comes from the keyboard. The redirect output symbol on the command line causes the shell to
associate cat's standard output with the sample.txt file specified on the command line.

After giving the command and typing the text shown in Figure 5-7, the sample.txt file contains the text you
entered. You can use cat with an argument of sample.txt to display this file. The next section shows another
way to use cat to display the file.

caution: Redirecting output can destroy a file I

Use caution when you redirect output to a file. If the file exists, the shell will overwrite it and
destroy its contents. For more information, see the "Redirecting output can destroy a file II"

caution on page 120.

Figure 5-7 shows that redirecting the output from cat is a handy way to create a file without using an editor.
The drawback is that once you enter a line and press RETURN, you cannot edit the text. While you are
entering a line, the erase and kill keys work to delete text. This procedure is useful for making short, simple
files.

Figure 5-7. cat with its output redirected

$ cat > sample.txt

This text is being entered at the keyboard and

cat is copying it to a file.

Press CONTROL-D to indicate the

end of file.

CONTROL-D

$

Figure 5-8. Using cat to catenate files

$ cat stationery

2,000 sheets letterhead ordered: 10/7/05

$ cat tape

1 box masking tape ordered: 10/14/05

5 boxes filament tape ordered: 10/28/05

$ cat pens

12 doz. black pens ordered: 10/4/05

$ cat stationery tape pens > supply_orders

$ cat supply_orders

2,000 sheets letterhead ordered: 10/7/05

1 box masking tape ordered: 10/14/05

5 boxes filament tape ordered: 10/28/05

12 doz. black pens ordered: 10/4/05

$

Figure 5-8 shows how to use cat and the redirect output symbol to catenate (join one after the other—the
derivation of the name of the cat utility) several files into one larger file. The first three commands display
the contents of three files: stationery, tape, and pens. The next command shows cat with three filenames as
arguments. When you call it with more than one filename, cat copies the files, one at a time, to standard
output. In this case standard output is redirected to the file supply_orders. The final cat command shows
that supply_orders contains the contents of all three files.

Redirecting Standard Input

Just as you can redirect standard output, so you can redirect standard input. The redirect input symbol (<)
instructs the shell to redirect a command's input to come from the specified file instead of from the keyboard
(Figure 5-9). The format of a command line that redirects input is

command [arguments] < filename

Figure 5-9. Redirecting standard input

where command is any executable program (such as an application program or a utility), arguments are
optional arguments, and filename is the name of the ordinary file the shell redirects the input from.

Figure 5-10 shows cat with its input redirected from the supply_orders file that was created in Figure 5-8
and standard output going to the screen. This setup causes cat to display the sample file on the screen. The
system automatically supplies an EOF (end of file) signal at the end of an ordinary file.

Figure 5-10. cat with its input redirected

$ cat < supply_orders

2,000 sheets letterhead ordered: 10/7/05

1 box masking tape ordered: 10/14/05

5 boxes filament tape ordered: 10/28/05

12 doz. black pens ordered: 10/4/05

Utilities that take input from a file or standard input

Giving a cat command with input redirected from a file yields the same result as giving a cat command
with the filename as an argument. The cat utility is a member of a class of Linux utilities that function in
this manner. Other members of this class of utilities include lpr, sort, and grep. These utilities first
examine the command line that you use to call them. If you include a filename on the command line, the
utility takes its input from the file you specify. If you do not specify a filename, the utility takes its input
from standard input. It is the utility or program—not the shell or operating system—that functions in this
manner.

noclobber: Avoids Overwriting Files

The shell provides a feature called noclobber that stops you from inadvertently overwriting an existing file
using redirection. When you enable this feature by setting the noclobber variable and then attempt to
redirect output to an existing file, the shell displays an error message and does not execute the command. If
the preceding examples result in one of the following messages, the noclobber feature has been set. The
following examples set noclobber, attempt to redirect the output from echo into an existing file, and then
unset noclobber under bash and tcsh:

bash $ set -o noclobber

 $ echo "hi there" > tmp

 bash: tmp: Cannot overwrite existing file

 $ set +o noclobber

 $ echo "hi there" > tmp

 $

tcsh tcsh $ set noclobber

 tcsh $ echo "hi there" > tmp

 tmp: File exists.

 tcsh $ unset noclobber

 tcsh $ echo "hi there" > tmp

 $

You can override noclobber by putting a pipe symbol (tcsh uses an exclamation point) after the symbol you
use for redirecting output (>|).

In the following example, the user first creates a file named a by redirecting the output of date to the file.
Next the user sets the noclobber variable and tries redirecting output to a again. The shell returns an error
message. Then the user tries the same thing but using a pipe symbol after the redirect symbol. This time the
shell allows the user to overwrite the file. Finally, the user unsets noclobber (using a plus sign in place of the
hyphen) and verifies that it is no longer set.

$ date > a

$ set -o noclobber

$ date > a

bash: a: Cannot overwrite existing file

$ date >| a

$ set +o noclobber

$ date > a

For more information on using noclobber under tcsh, refer to page 367.

caution: Redirecting output can destroy a file II

Depending on which shell you are using and how your environment has been set up, a command
such as the following may give you undesired results:

$ cat orange pear > orange

cat: orange: input file is output file

Although cat displays an error message, the shell goes ahead and destroys the contents of the
existing orange file. The new orange file will have the same contents as pear because the first
action the shell takes when it sees the redirection symbol (>) is to remove the contents of the
original orange file. If you want to catenate two files into one, use cat to put the two files into a
temporary file and then use mv to rename this third file:

$ cat orange pear > temp

$ mv temp orange

What happens in the next example can be even worse. The user giving the command wants to
search through files a, b, and c for the word apple and redirect the output from grep (page 48) to
the file a.output. Unfortunately the user enters the filename as a output, omitting the period and
inserting a SPACE in its place:

$ grep apple a b c > a output

grep: output: No such file or directory

The shell obediently removes the contents of a and then calls grep. The error message may take a
moment to appear, giving you a sense that the command is running correctly. Even after you see
the error message, it may take a while to realize that you destroyed the contents of a.

Appending Standard Output to a File

The append output symbol (>>) causes the shell to add new information to the end of a file, leaving any
existing information intact. This symbol provides a convenient way of catenating two files into one. The
following commands demonstrate the action of the append output symbol. The second command
accomplishes the catenation described in the preceding caution box:

 $ cat orange

 this is orange

 $ cat pear >> orange

 $ cat orange

 this is orange

 this is pear

You first see the contents of the orange file. Next the contents of the pear file is added to the end of
(catenated with) the orange file. The final cat shows the result.

caution: Do not trust noclobber

Appending output is simpler than the two-step procedure described in the preceding caution box
but you must be careful to include both greater than signs. If you accidentally use only one and the
noclobber feature is not on, you will overwrite the orange file. Even if you have the noclobber
feature turned on, it is a good idea to keep backup copies of files you are manipulating in these
ways in case you make a mistake.

Although it protects you from making an erroneous redirection, noclobber does not stop you from
overwriting an existing file using cp or mv. These utilities include the – i (interactive) option that
helps protect you from this type of mistake by verifying your intentions when you try to overwrite
a file. For more information, see the "cp can destroy a file" tip on page 46.

The next example shows how to create a file that contains the date and time (the output from date), followed
by a list of who is logged in (the output from who). The first line in Figure 5-11 redirects the output from
date to the file named whoson. Then cat displays the file. Next the example appends the output from who to
the whoson file. Finally cat displays the file containing the output of both utilities.

Figure 5-11. Redirecting and appending output

$ date > whoson

$ cat whoson

Thu Mar 24 14:31:18 PST 2005

$ who >> whoson

$ cat whoson

Thu Mar 24 14:31:18 PST 2005

root console Mar 24 05:00(:0)

alex pts/4 Mar 24 12:23(:0.0)

alex pts/5 Mar 24 12:33(:0.0)

jenny pts/7 Mar 23 08:45 (bravo.example.com)

/dev/null: Making Data Disappear

The /dev/null device is a data sink, commonly referred to as a bit bucket. You can redirect output that you
do not want to keep or see to /dev/null. The output disappears without a trace:

$ echo "hi there" > /dev/null

$

When you read from /dev/null, you get a null string. Give the following cat command to truncate a file
named messages to zero length while preserving the ownership and permissions of the file:

$ ls -l messages

-rw-r--r-- 1 alex pubs 25315 Oct 24 10:55 messages

$ cat /dev/null > messages

$ ls -l messages

-rw-r--r-- 1 alex pubs 0 Oct 24 11:02 messages

Pipes

The shell uses a pipe to connect standard output of one command directly to standard input of another
command. A pipe (sometimes referred to as a pipeline) has the same effect as redirecting standard output of
one command to a file and then using that file as standard input to another command. A pipe does away with
separate commands and the intermediate file. The symbol for a pipe is a vertical bar (|). The syntax of a
command line using a pipe is

command_a [arguments] | command_b [arguments]

The preceding command line uses a pipe to generate the same result as the following group of command
lines:

command_a [arguments] > temp

command_b [arguments] < temp

rm temp

In the preceding sequence of commands, the first line redirects standard output from command_a to an
intermediate file named temp . The second line redirects standard input for command_b to come from temp .
The final line deletes temp . The command using a pipe is not only easier to type, but is generally more
efficient because it does not create a temporary file.

tr

You can use a pipe with any of the Linux utilities that accept input either from a file specified on the

command line or from standard input. You can also use pipes with commands that accept input only from
standard input. For example, the tr (translate) utility (page 804) takes its input from standard input only. In
its simplest usage tr has the following format:

tr string1 string2

The tr utility accepts input from standard input and looks for characters that match one of the characters in
string1 . Upon finding a match, tr translates the matched character in string1 to the corresponding character
in string2 . (The first character in string1 translates into the first character in string2 , and so forth.) The tr
utility sends its output to standard output. In both of the following examples, tr displays the contents of the
abstract file with the letters a, b, and c translated into A, B, and C, respectively:

$ cat abstract | tr abc ABC

$ tr abc ABC < abstract

The TR utility does not change the contents of the original file; it cannot change the original file because it
does not "know" the source of its input.

lpr

The lpr (line printer) utility also accepts input from either a file or standard input. When you type the name
of a file following lpr on the command line, it places that file in the print queue. When you do not specify a
filename on the command line, lpr takes input from standard input. This feature enables you to use a pipe to
redirect input to lpr. The first set of commands in Figure 5-12 shows how you can use ls and lpr with an
intermediate file (temp) to send a list of the files in the working directory to the printer. If the temp file
exists, the first command overwrites its contents. The second set of commands sends the same list (with the
exception of temp) to the printer using a pipe.

The commands in Figure 5-13 redirect the output from the who utility to temp and then display this file in
sorted order. The sort utility (page 50) takes its input from the file specified on the command line or, when a
file is not specified, from standard input and sends its output to standard output. The sort command line in
Figure 5-13 takes its input from standard input, which is redirected (<) to come from temp. The output that
sort sends to the screen lists the users in sorted (alphabetical) order.

Because sort can take its input from standard input or from a filename on the command line, omitting the <
symbol from Figure 5-13 yields the same result.

Figure 5-12. A pipe

$ ls > temp

$ lpr temp

$ rm temp

or

$ ls | lpr

Figure 5-13. Using a temporary file to store intermediate results

$ who > temp

$ sort < temp

alex pts/4 Mar 24 12:23

alex pts/5 Mar 24 12:33

jenny pts/7 Mar 23 08:45

root console Mar 24 05:00

$ rm temp

Figure 5-14 achieves the same result without creating the temp file. Using a pipe the shell redirects the
output from who to the input of sort. The sort utility takes input from standard input because no filename
follows it on the command line.

When many people are using the system and you want information about only one of them, you can send the
output from who to grep (page 48) using a pipe. The grep utility displays the line containing the string you
specify—root in the following example:

$ who | grep 'root'

root console Mar 24 05:00

Another way of handling output that is too long to fit on the screen, such as a list of files in a crowded
directory, is to use a pipe to send the output through less or more (both on page 45).

$ ls | less

The less utility displays text one screen at a time. To view another screen, press the SPACE bar. To view
one more line, press RETURN. Press h for help and q to quit.

Filters

A filter is a command that processes an input stream of data to produce an output stream of data. A
command line that includes a filter uses a pipe to connect standard output of one command to the filter's
standard input. Another pipe connects the filter's standard output to standard input of another command. Not
all utilities can be used as filters.

In the following example, sort is a filter, taking standard input from standard output of who and using a pipe
to redirect standard output to standard input of lpr. This command line sends the sorted output of who to the
printer:

$ who | sort | lpr

The preceding example demonstrates the power of the shell combined with the versatility of Linux utilities.
The three utilities who, sort, and lpr were not specifically designed to work with each other, but they all use
standard input and standard output in the conventional way. By using the shell to handle input and output,
you can piece standard utilities together on the command line to achieve the results you want.

Figure 5-14. A pipe doing the work of a temporary file

$ who | sort

alex pts/4 Mar 24 12:23

alex pts/5 Mar 24 12:33

jenny pts/7 Mar 23 08:45

root console Mar 24 05:00

tee: Sends Output in Two Directions

The tee utility copies its standard input both to a file and to standard output. The utility is aptly named: It
takes a single input and sends the output in two directions. In Figure 5-15 the output of who is sent via a pipe
to standard input of tee. The tee utility saves a copy of standard input in a file named who.out and also
sends a copy to standard output. Standard output of tee goes via a pipe to standard input of grep, which
displays lines containing the string root.

 < Day Day Up >

 < Day Day Up >

Running a Program in the Background

Foreground

In all the examples so far in this book, commands were run in the foreground. When you run a command in
the foreground, the shell waits for it to finish before giving you another prompt and allowing you to
continue. When you run a command in the background, you do not have to wait for the command to finish
before you start running another command.

Jobs

A job is a series of one or more commands that can be connected by pipes. You can have only one
foreground job in a window or on a screen, but you can have many background jobs. By running more than
one job at a time, you are using one of Linux's important features: multitasking. Running a command in the
background can be useful when the command will run for a long time and does not need supervision. It
leaves the screen free so that you can use it for other work. Of course, when you are using a GUI, you can
open another window to run another job.

Job number, PID number

To run a command in the background, type an ampersand (&) just before the RETURN that ends the
command line. The shell assigns a small number to the job and displays this job number between brackets.
Following the job number, the shell displays the process identification (PID) number— a larger number
assigned by the operating system. Each of these numbers identifies the command running in the background.
Then the shell displays another prompt and you can enter another command. When the background job
finishes running, the shell displays a message giving both the job number and the command line used to run
the command.

Figure 5-15. Using tee

$ who | tee who.out | grep root

root console Mar 24 05:00

$ cat who.out

root console Mar 24 05:00

alex pts/4 Mar 24 12:23

alex pts/5 Mar 24 12:33

jenny pts/7 Mar 23 08:45

The following examples use the Bourne Again Shell. The TC Shell produces almost identical results. The
next example runs in the background and sends its output through a pipe to lpr, which sends it to the printer.

$ ls -l | lpr &

[1] 22092

$

The [1] following the command line indicates that the shell has assigned job number 1 to this job. The 22092
is the PID number of the first command in the job. (The TC Shell shows PID numbers for all commands in
the job.) When this background job completes execution, you see the message

[1]+ Done ls -l | lpr

(In place of ls –l, the shell may display something similar to ls – –color=tty –l. This difference is due to the
fact that ls is aliased [page 312] to ls – –color=tty.)

Moving a Job from the Foreground to the Background

CONTROL-Z

You can suspend a foreground job (stop it from running) by pressing the suspend key, usually CONTROL-Z
. The shell then stops the process and disconnects standard input from the keyboard. You can put a
suspended job in the background and restart it by using the bg command followed by the job number. You
do not need to use the job number when there is only one stopped job.

Only the foreground job can take input from the keyboard. To connect the keyboard to a program running in
the background, you must bring it into the foreground. Type fg without any arguments when only one job is
in the background. When more than one job is in the background, type fg, or a percent sign (%), followed by
the number of the job you want to bring into the foreground. The shell displays the command you used to
start the job (promptme in the following example), and you can enter any input the program requires to
continue:

bash $ fg 1

promptme

Redirect the output of a job you run in the background to keep it from interfering with whatever you are
doing on the screen. Refer to "Separating and Grouping Commands" on page 267 for more detail about
background tasks.

kill: Aborting A Background Job

The interrupt key (usually CONTROL-C) cannot abort a process you are running in the background; you
must use kill (page 693) for this purpose. Follow kill on the command line with either the PID number of
the process you want to abort or a percent sign (%) followed by the job number.

Determining a PID number with ps

If you forget the PID number, you can use the ps (process status) utility (page 293) to display it. Using the
TC Shell, the following example runs a tail –f outfile command (the –f option causes tail to watch outfile
and display new lines as they are written to the file) as a background job, uses ps to display the PID number
of the process, and aborts the job with kill. The same commands work under bash. So that it does not
interfere with anything on the screen, the message saying that the job is terminated does not appear until you
press RETURN after the RETURN that ends the kill command:

tcsh $ tail -f outfile &

[1] 22170

tcsh $ ps | grep tail

22170 pts/7 00:00:00 tail

tcsh $ kill 22170

tcsh $ RETURN

[1] Terminated tail -f outfile

tcsh $

If you forget the job number, you can use the jobs command to display a list of job numbers. The next
example is similar to the previous one but uses the job number instead of the PID number to kill the job:

tcsh $ tail -f outfile &

[1] 3339

tcsh $ bigjob &

[2] 3340

tcsh $ jobs

[1] + Running tail -f outfile

[2] - Running bigjob

tcsh $ kill %1[1] Terminated tail -f outfile

tcsh $

 < Day Day Up >

 < Day Day Up >

Filename Generation/Pathname Expansion

Wildcards, globbing

When you give the shell abbreviated filenames that contain special characters, also called metacharacters,
the shell can generate filenames that match the names of existing files. These special characters are also
referred to as wildcards because they act as the jokers do in a deck of cards. When one of these characters
appears in an argument on the command line, the shell expands that argument in sorted order into a list of
filenames and passes the list to the program that the command line calls. Filenames that contain these special
characters are called ambiguous file references because they do not refer to any one specific file. The process
that the shell performs on these filenames is called pathname expansion or globbing.

Ambiguous file references refer to a group of files with similar names quickly, saving you the effort of
typing the names individually. They can also help you find a file whose name you do not remember in its
entirety. If no filename matches the ambiguous file reference, the shell generally passes the unexpanded
reference—special characters and all—to the command.

The ? Special Character

The question mark (?) is a special character that causes the shell to generate filenames. It matches any single
character in the name of an existing file. The following command uses this special character in an argument
to the lpr utility:

$ lpr memo?

The shell expands the memo? argument and generates a list of files in the working directory that have names
composed of memo followed by any single character. The shell then passes this list to lpr. The lpr utility
never "knows" that the shell generated the filenames it was called with. If no filename matches the
ambiguous file reference, the shell passes the string itself (memo?) to lpr or, if it is set up to do so, passes a
null string (see nullglob, page 322).

The following example uses ls first to display the names of all files in the working directory and then to
display the filenames that memo? matches:

$ ls

mem memo12 memo9 memoalex newmemo5

memo memo5 memoa memos

$ ls memo?

memo5 memo9 memoa memos

The memo? ambiguous file reference does not match mem, memo, memo12, memoalex, or newmemo5.
You can also use a question mark in the middle of an ambiguous file reference:

$ ls

7may4report may4report mayqreport may_report

may14report may4report.79 mayreport may.report

$ ls may?report

may.report may4report may_report mayqreport

To practice generating filenames, you can use echo and ls. The echo utility displays the arguments that the
shell passes to it:

$ echo may?report

may.report may4report may_report mayqreport

The shell first expands the ambiguous file reference into a list of all files in the working directory that match
the string may?report and then passes this list to echo, as though you had entered the list of filenames as
arguments to echo. Next echo displays the list of filenames.

A question mark does not match a leading period (one that indicates an invisible filename; see page 80).
When you want to match filenames that begin with a period, you must explicitly include the period in the
ambiguous file reference.

The * Special Character

The asterisk (*) performs a function similar to that of the question mark but matches any number of
characters, including zero characters, in a filename. The following example shows all of the files in the
working directory and then shows three commands that display all the filenames that begin with the string
memo, end with the string mo, and contain the string alx:

$ ls

amemo memo memoalx.0620 memosally user.memo

mem memo.0612 memoalx.keep sallymemo

memalx memoa memorandum typescript

$ echo memo*

memo memo.0612 memoa memoalx.0620 memoalx.keep memorandum memosally

$ echo *mo

amemo memo sallymemo user.memo

$ echo *alx*

memalx memoalx.0620 memoalx.keep

The ambiguous file reference memo* does not match amemo, mem, sallymemo, or user.memo. Like the
question mark, an asterisk does not match a leading period in a filename.

The –a option causes ls to display invisible filenames. The command echo * does not display . (the working
directory), . . (the parent of the working directory), .aaa, or .profile. In contrast, the command echo . *

displays only those four names:

$ ls

aaa memo.sally sally.0612 thurs

memo.0612 report saturday

$ ls -a

. .aaa aaa memo.sally sally.0612 thurs

.. .profile memo.0612 report saturday

$ echo *

aaa memo.0612 memo.sally report sally.0612 saturday thurs

$ echo .*

. .. .aaa .profile

In the following example .p* does not match memo.0612, private, reminder, or report. Next the ls .*
command causes ls to list .private and .profile in addition to the contents of the . directory (the working
directory) and the . . directory (the parent of the working directory). When called with the same argument,
echo displays the names of files (including directories) in the working directory that begin with a dot (.), but
not the contents of directories.

$ ls -a

. .private memo.0612 reminder

.. .profile private report

$ echo .p*

.private .profile

$ ls .*

.private .profile

.:

memo.0612 private reminder report

..:

.

.

$ echo .*

. .. .private .profile

You can take advantage of ambiguous file references when you establish conventions for naming files. For
example, when you end all text filenames with .txt, you can reference that group of files with *.txt. The next
command uses this convention to send all the text files in the working directory to the printer. The
ampersand causes lpr to run in the background.

$ lpr *.txt &

The [] Special Characters

A pair of brackets surrounding a list of characters causes the shell to match filenames containing the
individual characters. Whereas memo? matches memo followed by any character, memo[17a] is more
restrictive, and matches only memo1, memo7, and memoa. The brackets define a character class that
includes all the characters within the brackets. (GNU calls this a character list; a GNU character class is
something different.) The shell expands an argument that includes a character-class definition, by
substituting each member of the character class, one at a time, in place of the brackets and their contents.
The shell then passes the list of matching filenames to the program it is calling.

Each character-class definition can replace only a single character within a filename. The brackets and their
contents are like a question mark that substitutes only the members of the character class.

The first of the following commands lists the names of all the files in the working directory that begin with
a, e, i, o, or u. The second command displays the contents of the files named page2.txt, page4.txt,
page6.txt, and page8.txt.

$ echo [aeiou]*

...

$ less page[2468].txt

...

A hyphen within brackets defines a range of characters within a character-class definition. For example,
[6–9] represents [6789], [a–z] represents all lowercase letters in English, and [a–zA–Z] represents all letters,
both uppercase and lowercase, in English.

The following command lines show three ways to print the files named part0, part1, part2, part3, and
part5. Each of these command lines causes the shell to call lpr with five filenames:

$ lpr part0 part1 part2 part3 part5

$ lpr part[01235]

$ lpr part[0-35]

The first command line explicitly specifies the five filenames. The second and third command lines use
ambiguous file references, incorporating character-class definitions. The shell expands the argument on the
second command line to include all files that have names beginning with part and ending with any of the
characters in the character class. The character class is explicitly defined as 0, 1, 2, 3, and 5. The third
command line also uses a character-class definition but defines the character class to be all characters in the
range 0–3 plus 5.

The following command line prints 39 files, part0 through part38:

$ lpr part[0-9] part[12][0-9] part3[0-8]

The next two examples list the names of some of the files in the working directory. The first lists the files
whose names start with a through m. The second lists files whose names end with x, y, or z.

$ echo [a-m]*

...

$ echo *[x-z]

...

optional

When an exclamation point (!) or a caret (^) immediately follows the opening bracket ([) that
defines a character class, the string enclosed by the brackets matches any character not between
the brackets. Thus [^ab]* matches any filename that does not begin with a or b.

The following examples show that *[^ab] matches filenames that do not end with the letters a
or b and that [b-d] * matches filenames that begin with b, c, or d.

$ ls

aa ab ac ad ba bb bc bd cc dd

$ ls *[^ab]

ac ad bc bd cc ddcc dd

$ ls [b-d]*

ba bb bc bd cc dd

You can match a hyphen (–) or a closing bracket (]) by placing it immediately before the final
closing bracket.

The next example demonstrates that the ls utility cannot interpret ambiguous file references. First ls is
called with an argument of ?old . The shell expands ?old into a matching filename, hold, and passes that
name to ls. The second command is the same as the first, except the ? is quoted (refer to "Special
Characters" on page 42). The shell does not recognize this question mark as a special character and passes it
on to ls. The ls utility generates an error message saying that it cannot find a file named ?old (because there
is no file named ?old).

$ ls ?old

hold

$ ls \?old

ls: ?old: No such file or directory

Like most utilities and programs, ls cannot interpret ambiguous file references; that work is left to the shell.

tip: The shell expands ambiguous file references

The shell does the expansion when it processes an ambiguous file reference, not the program that
the shell runs. In the examples in this section, the utilities (ls, cat, echo, lpr) never see the
ambiguous file references. The shell expands the ambiguous file references and passes a list of
ordinary filenames to the utility. In the previous examples, echo shows this to be true because it
simply displays its arguments; it never displays the ambiguous file reference.

 < Day Day Up >

 < Day Day Up >

Builtins

A builtin is a utility (also called a command) that is built into a shell. Each of the shells has its own set of
builtins. When it runs a builtin, the shell does not fork a new process. Consequently builtins run more
quickly and can affect the environment of the current shell. Because builtins are used in the same way as
utilities, you will not typically be aware of whether a utility is built into the shell or is a stand-alone utility.

The echo utility is a shell builtin. The shell always executes a shell builtin before trying to find a command
or utility with the same name. See page 487 for an in-depth discussion of builtin commands, page 500 for a
list of bash builtins, and page 377 for a list of tcsh builtins.

Listing bash builtins

To get a complete list of bash builtins, give the command info bash builtin. To display a page with more
information on each builtin, move the cursor to one of the lines listing a builtin command and press
RETURN. Alternatively, after typing info bash, give the command /builtin to search the bash
documentation for the string builtin. The cursor will rest on the word Builtin in a menu; press RETURN to
display the builtins menu.

Because bash was written by GNU, the info page has better information than does the man page. If you want
to read about builtins in the man page, give the command man bash and then search for the section on
builtins with the command /^SHELL BUILTIN COMMANDS (search for a line that begins with SHELL
. . .).

Listing tcsh builtins

For tcsh, give the command man tcsh to display the tcsh man page and then search for the second
occurrence of Builtin commands with the following two commands: /Builtin commands (search for the
string) and n (search for the next occurrence of the string).

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The shell is the Linux command interpreter. It scans the command line for proper syntax, picking out the
command name and any arguments. The first argument is argument one, the second is argument two, and so
on. The name of the command itself is argument zero. Many programs use options to modify the effects of a
command. Most Linux utilities identify an option by its leading one or two hyphens.

When you give it a command, the shell tries to find an executable program with the same name as the
command. When it does, the shell executes the program. When it does not, the shell tells you that it cannot
find or execute the program. If the command is a simple filename, the shell searches the directories given in
the variable PATH in an attempt to locate the command.

When it executes a command, the shell assigns one file to the command's standard input and another file to
its standard output. By default the shell causes a command's standard input to come from the keyboard and
its standard output to go to the screen. You can instruct the shell to redirect a command's standard input from
or standard output to any file or device. You can also connect standard output of one command to standard
input of another command using a pipe. A filter is a command that reads its standard input from standard
output of one command and writes its standard output to standard input of another command.

When a command runs in the foreground, the shell waits for it to finish before it displays a prompt and
allows you to continue. When you put an ampersand (&) at the end of a command line, the shell executes the
command in the background and displays another prompt immediately. Run slow commands in the
background when you want to enter other commands at the shell prompt. The jobs builtin displays a list of
jobs and includes the job number of each.

The shell interprets special characters on a command line to generate filenames. A question mark represents
any single character, and an asterisk represents zero or more characters. A single character may also be
represented by a character class: a list of characters within brackets. A reference that uses special characters
(wildcards) to abbreviate a list of one or more filenames is called an ambiguous file reference.

A builtin is a utility that is built into a shell. Each shell has its own set of builtins. When it runs a builtin, the
shell does not fork a new process. Consequently builtins run more quickly and can affect the environment of
the current shell.

Utilities and Builtins Introduced in This Chapter

Table 5-1 lists the utilities introduced in this chapter.

Table 5-1. New utilities

Utility Function

tr Maps one string of characters into another (page 122)

Tee Sends standard input to both a file and standard output (page 125)

Bg Moves a process into the background (page 126)

Fg Moves a process into the foreground (page 126)

Jobs Displays a list of currently running jobs (page 127)

 < Day Day Up >

 < Day Day Up >

Exercises

1: What does the shell ordinarily do while a command is executing? What should you do if you do
not want to wait for a command to finish before running another command?

2: Using sort as a filter, rewrite the following sequence of commands:

$ sort list > temp

$ lpr temp

$ rm temp

3: What is a PID number? Why are these numbers useful when you run processes in the background?
Which utility displays the PID numbers of the commands you are running?

4: Assume that the following files are in the working directory:

$ ls

intro notesb ref2 section1 section3 section4b

notesa ref1 ref3 section2 section4a sentrev

Give commands for each of the following, using wildcards to express filenames with as few
characters as possible.

List all files that begin with section.a.

List the section1, section2, and section3 files only.b.

List the intro file only.c.

List the section1, section3, ref1, and ref3 files.d.

5: Refer to the documentation of utilities in Part V or the man pages to determine which commands
will

Output the number of lines in the standard input that contain the word a or A.a.

Output only the names of the files in the working directory that contain the pattern $(.b.

List the files in the working directory in their reverse alphabetical order.c.

Send a list of files in the working directory to the printer, sorted by size.d.

6: Give a command to

Redirect the standard output from a sort command into a file named phone_list. Assume
that the input file is named numbers.

a.

Translate all occurrences of the characters [and { to the character (, and all occurrences of the
characters] and } to the character) in the file permdemos.c. (Hint: Refer to tr on page 804.)

b.

Create a file named book that contains the contents of two other files: part1 and part2.c.

7: The lpr and sort utilities accept input either from a file named on the command line or from
standard input.

Name two other utilities that function in a similar manner.a.

Name a utility that accepts its input only from standard input.b.

8: Give an example of a command that uses grep

With both input and output redirected.a.

With only input redirected.b.

With only output redirected.c.

Within a pipe.d.

In which of the preceding is grep used as a filter?

9: Explain the following error message. What filenames would a subsequent ls display?

$ ls

abc abd abe abf abg abh

$ rm abc ab*

rm: cannot remove 'abc': No such file or directory

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

10. When you use the redirect output symbol (>) with a command, the shell creates the output file
immediately, before the command is executed. Demonstrate that this is true.

11. In experimenting with shell variables, Alex accidentally deletes his PATH variable. He decides
that he does not need the PATH variable. Discuss some of the problems he may soon encounter
and explain the reasons for these problems. How could he easily return PATH to its original
value?

12. Assume that your permissions allow you to write to a file but not to delete it.

Give a command to empty the file without invoking an editor.a.

Explain how you might have permission to modify a file that you cannot delete.b.

13. If you accidentally create a filename that contains a nonprinting character, such as a CONTROL
character, how can you rename the file?

14. Why does the noclobber variable not protect you from overwriting an existing file with cp or mv?

15. Why do command names and filenames usually not have embedded SPACEs? How would you
create a filename containing a SPACE? How would you remove it? (This is a thought exercise,
not recommended practice. If you want to experiment, create and work in a directory that
contains only your experimental file.)

16. Create a file named answer and give the following command:

$ > answers.0102 < answers cat

Explain what the command does and why. What is a more conventional way of expressing this
command?

 < Day Day Up >

 < Day Day Up >

Part II: The Editors

 CHAPTER 6 THE vim EDITOR

 CHAPTER 7 THE emacs EDITOR

 < Day Day Up >

 < Day Day Up >

Chapter 6. The vim Editor

IN THIS CHAPTER

Tutorial: Creating and Editing a File with vim 141

Introduction to vim Features 148

Online Help 149

Command Mode: Moving the Cursor 154

Input Mode 158

Command Mode: Deleting and Changing Text 160

Searching and Substituting 164

Yank, Put, and Delete Commands 171

The General-Purpose Buffer 171

Reading and Writing Files 174

The .vimrc Startup File 176

This chapter begins with a history and description of vi, the original, powerful, sometimes cryptic,
interactive, visually oriented text editor. The chapter continues with a tutorial that explains how to use vim
(vi improved—a vi clone supplied with or available for most Linux distributions) to create and edit a file.
Much of the tutorial and the balance of the chapter apply to vi and other vi clones. Following the tutorial,
the chapter delves into the details of many vim commands and explains how to use parameters to customize
vim to meet your needs. It concludes with a quick reference/summary of vim commands. The vim home page
is www.vim.org.

 < Day Day Up >

 < Day Day Up >

History

Before vi was developed, the standard UNIX system editor was ed (still available on most Linux systems), a
line-oriented editor that made it difficult to see the context of your editing. Next came ex,[1] a superset of ed.
The most notable advantage that ex has over ed is a display-editing facility that allows you to work with a
full screen of text instead of just a line. While using ex, you can bring up the display-editing facility by
giving a vi (Visual mode) command. People used this display-editing facility so extensively that the
developers of ex made it possible to start the editor with the display-editing facility already running, without
having to start ex and then give a vi command. Appropriately they named the program vi. You can call the
Visual mode from ex, and you can go back to ex while you are using vi. Start by running ex; give a vi
command to switch to Visual mode, and give a Q command while in Visual mode to use ex. Give a quit
command to exit from ex.

[1] The ex program is usually a link to vi, which is a version of vim on some systems.

vi clones

Linux offers a number of versions, or clones, of vi. The most popular vi clones found on Linux are elvis
(elvis.the-little-red-haired-girl.org), nvi (an implementation of the original vi editor, www.bostic.com/vi),
vile (dickey.his.com/vile/vile.html), and vim (www.vim.org). Each clone offers additional features beyond
those provided with the original vi.

The examples in this book are based on vim. Several Linux distributions support multiple versions of vim.
For example, Red Hat provides /bin/vi, a minimal build of vim that is compact and faster to load but offers
fewer features, and /usr/bin/vim, a full-featured version of vim.

If you use one of the clones other than vim, or vi itself, you may notice slight differences from the examples
presented in this chapter. The vim editor is compatible with almost all vi commands and runs on many
platforms, including Windows, Macintosh, OS/2, UNIX, and Linux. Refer to the vim home page
(www.vim.org) for more information and a very useful Tips section.

What vim is not

The vim editor is not a text formatting program. It does not justify margins or provide the output formatting
features of a sophisticated word processing system such as OpenOffice.org Writer. Rather, vim is a
sophisticated text editor meant to be used to write code (C, HTML, Java, and so on), short notes, and input to
a text formatting system, such as groff or TRoff. You can use fmt (page 664) to do minimal formatting on a
text file that you create with vim.

Reading this chapter

Because vim is so large and powerful, this chapter describes only some of its features. Nonetheless, if vim is
completely new to you, you may find even this limited set of commands overwhelming. The vim editor

provides a variety of ways to accomplish any specified editing task. A useful strategy for learning vim is to
begin by learning a subset of commands to accomplish basic editing tasks. Then, as you become more
comfortable with the editor, you can learn other commands that enable you to do things more quickly and
efficiently. The following tutorial section introduces a basic but useful set of vim commands and features
that create and edit a file.

 < Day Day Up >

 < Day Day Up >

Tutorial: Creating and Editing a File with vim

This section explains how to start vim, enter text, move the cursor, correct text, save the file to the disk, and
exit from vim. The tutorial discusses two of the modes of operation of vim and explains how to switch from
one mode to the other.

vimtutor

In addition to working with this tutorial, you may want to try vim's tutor, named vimtutor: Give its name as
a command to run it.

Specifying a terminal

Because vim takes advantage of features that are specific to various kinds of terminals, you must tell it what
type of terminal or terminal emulator you are using. On many systems, and usually when you work on a
terminal emulator, your terminal type is set automatically. If you need to specify your terminal type, refer to
"Specifying a Terminal" on page 844.

tip: The vi command runs vim

On some systems the command vi runs a minimal build of vim that is compact and faster to load
than vim but includes fewer features. See "The compatible Parameter" on page 148 for information
on running vim in vi compatible mode.

Starting vim

Start vim with the following command line to create and edit a file named practice:

$ vim practice

When you press RETURN, the command line disappears, and the screen looks similar to the one shown in
Figure 6-1.

Figure 6-1. Starting vim

The tildes (~) at the left of the screen indicate that the file is empty. They disappear as you add lines of text
to the file. If your screen looks like a distorted version of the one shown, your terminal type is probably not
set correctly.

If you start vim with a terminal type that is not in the terminfo database, vim displays an error message and
the terminal type defaults to ansi, which works on many terminals. In the following example, the user
mistyped vt100 and set the terminal type to vg100:

Terminal entry not found in terminfo

'vg100' not known. Available builtin terminals are:

 builtin_riscos

 builtin_amiga

 builtin_beos-ansi

 builtin_ansi

 builtin_pcansi

 builtin_win32

 builtin_vt320

 builtin_vt52

 builtin_xterm

 builtin_iris-ansi

 builtin_debug

 builtin_dumb

defaulting to 'ansi'

If you want to reset the terminal type, press ESCAPE and then give the following command to exit from vim
and get the shell prompt back:

:q!

When you enter the colon (:), vim moves the cursor to the bottom line of the screen. The characters q! tell
vim to quit without saving your work. (You will not ordinarily exit from vim this way because you typically
want to save your work.) You must press RETURN after you give this command. Once you get the shell
prompt back, refer to "Specifying a Terminal" on page 844, and then start vim again.

If you start it without a filename, vim assumes that you are a novice and tells you how to get started (Figure
6-2).

Figure 6-2. Starting vim without a filename

The practice file is new so it does not contain any text. The vim editor displays a message similar to the one
shown in Figure 6-1 on the status (bottom) line of the terminal to show that you are creating and editing a
new file. When you edit an existing file, vim displays the first few lines of the file and gives status

information about the file on the status line.

Command and Input Modes

Two of vim's modes of operation are Command mode (also called Normal mode) and Input mode (Figure 6-
3). While vim is in Command mode, you can give vim commands. For example, you can delete text or exit
from vim. You can also command vim to enter Input mode. In Input mode, vim accepts anything you enter as
text and displays it on the screen. Press ESCAPE to return vim to Command mode.

Figure 6-3. Modes in vim

By default the vim editor keeps you informed about which mode it is in. You will see – – INSERT – – at the
lower-left corner of the screen while vim is in Insert mode.

The following command causes vim to display line numbers next to the text you are editing:

:set number RETURN

Last Line mode

The colon (:) in the preceding command puts vim into another mode, Last Line mode. While in this mode,
vim keeps the cursor on the bottom line of the screen. When you finish entering the command by pressing
RETURN, vim restores the cursor to its place in the text. Give the command :set nonumber RETURN to
turn off line numbers.

vim is case sensitive

When you give vim a command, remember that the editor is case sensitive. Thus vim editor interprets the
same letter as two different commands, depending on whether you enter an uppercase or lowercase character.
Beware of the CAPS LOCK (SHIFTLOCK) key. If you set this key to enter uppercase text while you are in
Input mode and then exit to Command mode, vim interprets your commands as uppercase letters. It can be
confusing when this happens because vim does not appear to be executing the commands you are entering.

Entering Text

Input mode (i/a)

When you start vim, you must put it in Input mode before you can enter text. To put vim in Input mode, press
the i key (insert before the cursor) or the a key (append after the cursor).

If you are not sure whether vim is currently in Input mode, press the ESCAPE key; vim returns to Command
mode if it was in Input mode or beeps, flashes, or does nothing if it is already in Command mode. You can
put vim back in Input mode by pressing the i or a key again.

While vim is in Input mode, you can enter text by typing on the keyboard. If the text does not appear on the
screen as you type, you are not in Input mode.

To continue with this tutorial, enter the sample paragraph shown in Figure 6-4, pressing the RETURN key to
end each line. If you do not press RETURN before the cursor reaches the right side of the screen or window,
vim will wrap the text so that it appears to start a new line. Physical lines will not correspond to
programmatic (logical) lines in this situation, and editing will be more difficult.

Figure 6-4. Entering text with vim

[View full size image]

While you are using vim, you can always correct any typing mistakes you make. If you notice a mistake on
the line you are entering, you can correct it before you continue (page 146). You can correct other mistakes
later. When you finish entering the paragraph, press ESCAPE to return vim to Command mode.

Getting Help

To get help while you are using vim, give the command :help [feature] followed by RETURN (you must be
in Command mode when you give this command). The colon puts the cursor on the last line of the screen. If
you type :help, vim displays an introduction to vim Help (Figure 6-5). Each dark band near the bottom of the
screen names the file that is displayed above it. (Each area of the screen that displays a file, such as the two
areas shown in Figure 6-5, is a vim "window.") The help.txt file occupies most of the screen (the upper
window) in Figure 6-5. The file that is being edited (practice) occupies a few lines in the lower portion of
the screen (the lower window).

Figure 6-5. The main vim Help screen

[View full size image]

Read through the introduction to Help by scrolling the text as you read. Pressing j or the DOWN ARROW
key moves the cursor down one line at a time; pressing CONTROL-D or CONTROL-U scrolls the cursor
down or up half a window at a time. Give the command :q! to close the Help window.

You can get help with the insert commands by giving the command :help insert while vim is in Command
mode (Figure 6-6).

Figure 6-6. Help with insert

[View full size image]

Correcting Text as You Insert It

The keys that back up and correct a shell command line serve the same functions when vim is in Input mode.
These keys include the erase, line kill, and word kill keys (usually CONTROL-H, CONTROL-U, and
CONTROL-W , respectively). Although vim may not remove deleted text from the screen as you back up
over it, the editor does remove it when you type over it or press RETURN.

Moving the Cursor

You need to be able to move the cursor on the screen so that you can delete, insert, and correct text. While
vim is in Command mode, you can use the RETURN key, the SPACE bar, and the ARROW keys to move
the cursor. If you prefer to keep your hand closer to the center of the keyboard, if your terminal does not have
ARROW keys, or if the emulator you are using does not support them, you can use the h, j, k, and l
(lowercase "l") keys to move the cursor left, down, up, and right, respectively.

Deleting Text

Delete character (x) Delete word (dw) Delete line (dd)

You can delete a single character by moving the cursor until it is over the character you want to delete and
then giving the command x . You can delete a word by positioning the cursor on the first letter of the word
and then giving the command dw (Delete word). You can delete a line of text by moving the cursor until it is
anywhere on the line and then giving the command dd.

Undoing Mistakes

Undo (u)

If you delete a character, line, or word by mistake or give any command you want to undo, give the
command u (Undo) immediately after the command you want to undo. The vim editor will restore the text to
the way it was before you gave the last command. If you give the u command again, vim will undo the
command you gave before the one it just undid. You can use this technique to back up over many of your
actions. With the compatible parameter (page 148) set, vim can undo only the most recent change.

Redo (:redo)

If you undo a command you did not mean to undo, give a Redo command: CONTROL-R or :redo (followed
by a RETURN). The vim editor will redo the undone command. As with the Undo command, you can give
the Redo command many times in a row.

Entering Additional Text

Insert (i) Append (a)

When you want to insert new text within existing text, move the cursor so it is on the character that follows
the new text you plan to enter. Then give the i (Insert) command to put vim in Input mode, enter the new
text, and press ESCAPE to return vim to Command mode. Alternatively, you can position the cursor on the
character that precedes the new text, and use the a (Append) command.

Open (o and O)

To enter one or more lines, position the cursor on the line above where you want the new text to go. Give the
command o (Open). The vim editor opens a blank line, puts the cursor on it, and goes into Input mode. Enter
the new text, ending each line with a RETURN. When you are finished entering text, press ESCAPE to
return vim to Command mode. The O command works in the same way o works, except that it opens a line
above the line the cursor is on.

Correcting Text

To correct text, use dd, dw, or x to remove the incorrect text. Then use i, a, o, or O to insert the correct text.

For example, to change the word pressing to hitting in Figure 6-4 on page 145 you might use the ARROW
keys to move the cursor until it is on top of the p in pressing. Then give the command dw to delete the word
pressing. Put vim in Input mode by giving an i command, enter the word hitting followed by a SPACE, and
press ESCAPE. The word is changed and vim is in Command mode, waiting for another command. A
shorthand for the two commands dw followed by the i command is cw (Change word). The command cw
puts vim into Input mode.

tip: Page breaks for the printer

CONTROL-L is a signal to a printer to skip to the top of thse next page. You can enter this
character anywhere in a document by pressing CONTROL-L while you are in Input mode. If ^L
does not appear, press CONTROL-V before CONTROL-L.

Ending the Editing Session

While you are editing, vim keeps the edited text in an area named the Work buffer . When you finish editing,
you must write out the contents of the Work buffer to a disk file so that the edited text is saved and available
when you next want it.

Make sure that vim is in Command mode, and then use the ZZ command (you must use uppercase Z's) to
write your newly entered text to the disk and end the editing session. After you give the ZZ command, vim
returns control to the shell. You can exit with :q! if you do not want to save your work. Refer to page 188 for
a summary of vim commands.

caution: Do not confuse ZZ with CONTROL-Z

When you exit from vim with ZZ, make sure that you type ZZ and not CONTROL-Z (typically the
suspend key). When you press CONTROL-Z, vim disappears from your screen, almost as though
you had exited from it. In fact, vim will continue running in the background with your work
unsaved. Refer to "Job Control" on page 271. If you try to start editing the same file with a new
vim command, vim displays a message about a swap file; refer to "File Locks" on page 152.

 < Day Day Up >

 < Day Day Up >

The compatible Parameter

The compatible parameter makes vim more compatible with vi. By default this parameter is set so that vim
works like vi. If you set up a ~/.vimrc startup file (page 176), the compatible parameter is unset and vim
works like vim. To get started with vim you can ignore this parameter.

Setting the compatible parameter changes many aspects of how vim works. For example, when the
compatible parameter is set, the Undo command (page 146) can undo only your most recent change; with
the compatible parameter unset, you can call undo repeatedly to undo many changes. This chapter notes
when the compatible parameter affects a command. To obtain more details on the compatible parameter,
give the command :help compatible RETURN. For a complete list of how vim differs from the original vi,
use :help vi-diff RETURN. See page 144 for a discussion of the help command.

From the command line use the –C option to set the compatible parameter and the –N option to unset it.
Refer to "Setting Parameters from Within vim" on page 175 for information on how to change the
compatible parameter while you are running vim.

 < Day Day Up >

 < Day Day Up >

Introduction to vim Features

This section covers modes of operation, online help, the Work buffer, emergency procedures, and other vim
features. To see which features are incorporated in a particular build, give a vim command followed by the –
–version option.

Online Help

As covered briefly earlier, vim provides help while you are using it. Give the command :help feature to
display information about feature . As you scroll through the various help texts you will see words with a bar
on either side, such as |tutor|. These words are active links: Move the cursor on top of an active link and
press CONTROL-] to jump to the linked text. Use CONTROL-O (lowercase "o") to jump back to where you
were in the help text. You can also use the active link words in place of feature . For example, you might see
the reference |credits|; you could enter :help credits RETURN to read more about credits. Enter :q! to close
a help window.

Some common features that you may want to look up using the help system are insert, delete, and opening-
window. Although opening-window is not intuitive, you will get to know the names of features as you spend
more time with vim. You can also give the command :help doc-file-list to view a complete list of the help
files. Although vim is a free program, the author requests that you donate the money you would have spent
on similar software to help the kids in Uganda (:help uganda for more information).

Modes of Operation

The vim editor is part of the ex editor, which has five modes of operation:

ex Command mode

ex Input mode

vim Command mode

vim Input mode

vim Last Line mode

While in Command mode, vim accepts keystrokes as commands, responding to each command as you enter
it. It does not display the characters you type in this mode. While in Input mode, vim accepts and displays
keystrokes as text that it eventually puts into the file you are editing. All commands that start with a colon (:)
put vim in Last Line mode. The colon moves the cursor to the bottom line of the screen, where you enter the
rest of the command.

In addition to the position of the cursor, there is another important difference between Last Line mode and
Command mode. When you give a command in Command mode, you do not terminate the command with a
RETURN. However, you must terminate all Last Line mode commands with a RETURN.

You do not normally use the ex modes. When this chapter refers to Input and Command modes, it means the
vim modes, not the ex modes.

At the start of an editing session, vim is in Command mode. Several commands, including Insert and
Append, put vim in Input mode. When you press the ESCAPE key, vim always reverts to Command mode.

The Change and Replace commands combine the Command and Input modes. The Change command deletes
the text you want to change and puts vim in Input mode so you can insert new text. The Replace command
deletes the character(s) you overwrite and inserts the new one(s) you enter. Figure 6-3 on page 143 shows
the modes and the methods for changing between them.

tip: Watch the mode and the CAPS LOCK key

Almost anything you type in Command mode means something to vim. If you think that vim is in
Input mode when it is actually in Command mode, typing in text can produce confusing results.
When learning vim, make sure that the showmode parameter (page 180) is set (it is by default) to
remind you which mode you are using. You may also find it useful to turn on the status line by
giving a :set laststatus=2 command (page 178).

Also keep your eye on the CAPS LOCK key. In Command mode typing uppercase letters produces
different results than typing lowercase ones. It can be disorienting to give commands and have vim
give the "wrong" responses.

The Display

The vim editor uses the status line and several special symbols to give information about what is happening
during an editing session.

Status Line

The vim editor displays status information on the bottom line of the display area. This information includes
error messages, information about the deletion or addition of blocks of text, and file status information. In
addition, vim displays Last Line mode commands on the status line.

Redrawing the Screen

Sometimes the screen becomes garbled or overwritten. When vim puts characters on the screen, it sometimes
leaves @ on a line instead of deleting the line. When output from a program becomes intermixed with the
display of the Work buffer things can get confusing. The output does not become part of the Work buffer but
affects only the display. If the screen gets overwritten, press ESCAPE to make sure vim is in Command
mode, and press CONTROL-L to redraw (refresh) the screen.

Tilde (~) Symbol

If the end of the file is displayed on the screen, vim marks lines that would appear past the end of the file
with a tilde (~) at the left of the screen. When you start editing a new file, the vim editor marks each line on
the screen (except for the first line) with this symbol.

Correcting Text as You Insert It

While vim is in Input mode, you can use the erase and line kill keys to back up over text so you can correct
it. You can also use CONTROL-W to back up over words.

Work Buffer

The vim editor does all of its work in the Work buffer. At the start of an editing session, vim reads the file
you are editing from the disk into the Work buffer. During the editing session, it makes all changes to this
copy of the file but does not change the file on the disk until you write the contents of the Work buffer back
to the disk. Normally when you end an editing session, you command vim to write out the contents of the
Work buffer, which makes the changes to the text final. When you edit a new file, vim creates the file when
it writes the contents of the Work buffer to the disk, usually at the end of the editing session.

Storing the text you are editing in the Work buffer has both advantages and disadvantages. If you
accidentally end an editing session without writing out the contents of the Work buffer, your work is lost.
However, if you unintentionally make some major changes (such as deleting the entire contents of the Work
buffer), you can end the editing session without implementing the changes.

If you want to use vim to look at a file but not to change it, you can use the view utility:

$ view filename

Calling the view utility is the same as calling the vim editor with the –R (readonly) option. Once you have
invoked the editor in this way, you cannot write the contents of the Work buffer back to the file whose name
appeared on the command line. You can always write the Work buffer out to a file with a different name.

Line Length and File Size

The vim editor operates on any format file, provided the length of a single "line" (that is, the characters
between two NEWLINE characters) can fit into available memory. The total length of the file is limited only
by available disk space and memory.

Windows

The vim editor allows you to open, close, and hide multiple windows, each of which allows you to edit a
different file. Most of the window commands consist of CONTROL-W followed by another letter. For
example, CONTROL-W s opens another window (splits the screen) that is editing the same file. CONTROL-
W n opens a second window that is editing an empty file. CONTROL-W w moves the cursor between

windows, and CONTROL-W q (or :q) quits (closes) a window. Give the command :help windows to
display a complete list of windows commands.

File Locks

When you edit an existing file, vim displays the first few lines of the file, gives status information about the
file on the status line, and locks the file. When you try to open a locked file with vim, you will see a message
similar to the one shown in Figure 6-7. You will see this type of message in two cases: when you try to edit a
file that someone is already editing (perhaps you are editing it in another window or on another terminal) or
when you try to edit a file that you were editing when vim or the system crashed.

Figure 6-7. Attempting to open a locked file

Although it is advisable to follow the instructions that vim displays, a second user can edit a file and write it
out with a different filename. Refer to the next sections for more information.

Abnormal Termination of an Editing Session

You can end an editing session in one of two ways: When you exit from vim, you can save the changes you
made during the editing session or you can abandon those changes. You can use the ZZ or :wq command
from Command mode to save your changes and exit from vim (see "Ending the Editing Session" on page
147).

To end an editing session without writing out the contents of the Work buffer, give the following command:

:q!

When you use this command to end an editing session, vim does not preserve the contents of the Work
buffer, so you will lose all the work you did since the last time you wrote the Work buffer to disk. The next
time you edit or use the file, it will appear as it did the last time you wrote the Work buffer to disk. Use the
:q! command cautiously.

Sometimes you may find that you created or edited a file but vim will not let you exit. For example, if you
forgot to specify a filename when you first called vim, you will get a message saying No file name when you
give a ZZ command. If vim does not let you exit normally, you can use the Write command (:w) to name the
file and write it to disk before you quit vim. Give the following command, substituting the name of the file
for filename (remember to follow the command with a RETURN):

:w filename

After you give the Write command, you can use :q to quit using vim. You do not need to use the exclamation
point (as in q!); it is necessary only when you have made changes since the last time you wrote the Work
buffer to disk. Refer to page 174 for more information about the Write command.

tip: When you cannot write to a file

It may be necessary to write a file using :w filename if you do not have write permission for the
file you are editing. If you give a ZZ command and see the message "filename" is read only, you
do not have write permission for the file. Use the Write command with a temporary filename to
write the file to disk under a different filename. If you do not have write permission for the
working directory, vim may still not be able to write the file to the disk. Give the command again,
using an absolute pathname of a dummy (nonexistent) file in your home directory in place of the
filename. (For example, Alex might give the command :w /home/alex/temp or :w ~/temp.)

If vim reports File exists, you will need to use :w! filename to overwrite the existing file (make
sure that you want to do this). Refer to page 175.

Recovering Text After a Crash

The vim editor temporarily stores the file you are working on in a swap file. If the system crashes while you
are editing a file with vim, you can often recover its text from the swap file. When you attempt to edit a file
that has a swap file, you will see a message similar to the one shown in Figure 6-7 on page 152. If someone
else is editing the file, quit or open the file as a readonly file.

Alex checks whether the swap file exists for a file named memo, which he was editing when the system

went down:

$ vim -r

Swap files found:

 In current directory:

1. .memo.swp

 dated: Mon Oct 18 13:16:06 2004

 owned by: alex

 file name: ~alex/memo

 host name: bravo.example.com

 user name: alex

 process ID: 19786

 In directory ~/tmp:

 -- none --

 In directory /var/tmp:

 -- none --

 In directory /tmp:

 -- none --

With the –r option vim displays a list of any swap files that it has saved (some may be old). If your work was
saved, give the same command followed by a SPACE and the name of the file. You will then be editing a
recent copy of your Work buffer. Use :w filename immediately to save the salvaged copy of the Work buffer
to disk under a name different from the original file. Then check the recovered file to make sure it is OK.
Following is Alex's exchange with vim as he recovers memo. Subsequently he deletes the swap file:

$ vim -r memo

Using swap file ".memo.swp"

Original file "~/memo"

Recovery completed. You should check if everything is OK.

(You might want to write out this file under another name

and run diff with the original file to check for changes)

Delete the .swp file afterwards.

Hit ENTER or type command to continue

:w memo2

:q

$ rm .memo.swp

tip: You must recover files on the system you were using

The recovery feature of vim is specific to the system you were using when the crash occurred. If
you are running on a cluster, you must log in on the system you were using before the crash to use
the –r option.

 < Day Day Up >

 < Day Day Up >

Command Mode: Moving the Cursor

While vim is in Command mode, you can position the cursor over any character on the screen. You can also
display a different portion of the Work buffer on the screen. By manipulating the screen and cursor position,
you can place the cursor on any character in the Work buffer.

You can move the cursor forward or backward through the text. As illustrated in Figure 6-8, forward means
toward the right and bottom of the screen and the end of the file. Backward means toward the left and top of
the screen and the beginning of the file. When you use a command that moves the cursor forward past the
end (right) of a line, the cursor generally moves to the beginning (left) of the next line. When you move it
backward past the beginning of a line, the cursor moves to the end of the previous line.

Figure 6-8. Forward and backward

Long lines

Sometimes a line in the Work buffer may be too long to appear as a single line on the screen. In such a case
vim wraps the current line onto the next line (unless you set the nowrap option [page 178]).

You can move the cursor through the text by any Unit of Measure (that is, character, word, line, sentence,
paragraph, or screen). If you precede a cursor-movement command with a number, called a Repeat Factor ,
the cursor moves that number of units through the text. Refer to pages 184 and 187 for more precise
definitions of these terms.

Moving the Cursor by Characters

l/h

The SPACE bar moves the cursor forward, one character at a time, toward the right side of the screen. The l

(lowercase "l") key and the RIGHT ARROW key (Figure 6-9) do the same thing. The command 7 SPACE or
7l moves the cursor seven characters to the right. These keys cannot move the cursor past the end of the
current line to the beginning of the next line. The h and LEFT ARROW keys are similar to the l key but
work in the opposite direction.

Figure 6-9. Moving the cursor by characters

Moving the Cursor to a Specific Character

f/F

You can move the cursor to the next occurrence of a specified character on the current line by using the Find
command. For example, the following command moves the cursor from its current position to the next
occurrence of the character a, if one appears on the same line:

fa

You can also find the previous occurrence by using a capital F. The following command moves the cursor to
the position of the closest previous a in the current line:

Fa

A semicolon (;) repeats the last Find command.

Moving the Cursor by Words

w/W

The w (word) key moves the cursor forward to the first letter of the next word (Figure 6-10). Groups of
punctuation count as words. This command goes to the next line if the next word is located there. The
command 15w moves the cursor to the first character of the fifteenth subsequent word.

Figure 6-10. Moving the cursor by words

The W key is similar to the w key but moves the cursor by blank-delimited words, including punctuation, as
it skips forward. (Refer to "Blank-Delimited Word" on page 185.)

b/B

The b (back) key moves the cursor backward to the first letter of the previous word. The B key moves the
cursor backward by blank-delimited words. Similarly the e key moves the cursor to the end of the next word;
E moves it to the end of the next blank-delimited word.

Moving the Cursor by Lines

j/k

The RETURN key moves the cursor to the beginning of the next line; the j and DOWN ARROW keys move
it down one line to the character just below the current character (Figure 6-11). If no character is
immediately below the current character, the cursor moves to the end of the next line. The cursor will not
move past the last line of text in the work buffer.

Figure 6-11. Moving the cursor by lines

The k and UP ARROW keys are similar to the j key but work in the opposite direction. The minus (–) key is

similar to the RETURN key but works in the opposite direction.

Moving the Cursor by Sentences and Paragraphs

)/(}/{

The) and } keys move the cursor forward to the beginning of the next sentence or the next paragraph,
respectively (Figure 6-12). The (and { keys move the cursor backward to the beginning of the current
sentence or paragraph. You can find more information on sentences and paragraphs starting on page 186.

Figure 6-12. Moving the cursor by sentences, paragraphs, H, M, and L

[View full size image]

Moving the Cursor Within the Screen

H/M/L

The H (home) key positions the cursor at the left end of the top line of the screen. The M (middle) key
moves the cursor to the middle line, and the L (lower) key moves it to the bottom line (Figure 6-12).

Viewing Different Parts of the Work Buffer

The screen displays a portion of the text that is in the Work buffer. You can display the text preceding or
following the text on the screen by scrolling the display. You can also display a portion of the Work buffer
based on a line number.

CONTROL-D CONTROL-U

Press CONTROL-D to scroll the screen down (forward) through the file so that vim displays half a screen of
new text. Use CONTROL-U to scroll the screen up (backward) by the same amount. If you precede either of
these commands with a number, vim will scroll that number of lines each time you use CONTROL-D or
CONTROL-U for the rest of the session (unless you again change the number of lines to scroll). See page
179 for a discussion of the scroll parameter.

CONTROL-F CONTROL-B

The CONTROL-F (forward) and CONTROL-B (backward) keys display almost a whole screen of new text,
leaving a couple of lines from the previous screen for continuity. On many keyboards you can use the PAGE
DOWN and PAGE UP keys in place of CONTROL-F and CONTROL-B.

Line numbers (G)

When you enter a line number followed by G (goto), vim positions the cursor on that line in the Work buffer.
If you press G without a number, vim positions the cursor on the last line in the Work buffer. Line numbers
are implicit; your file does not need to have actual line numbers for this command to work. Refer to "Line
numbers" on page 178 if you want vim to display line numbers.

 < Day Day Up >

 < Day Day Up >

Input Mode

The Insert, Append, Open, Change, and Replace commands put vim in Input mode. While vim is in this
mode, you can put new text into the Work buffer. You need to press the ESCAPE key to return vim to
Command mode when you finish entering text. Refer to "Show mode" on page 180 if you want vim to
remind you when it is in Input mode (it does by default).

Inserting Text

Insert (i/I)

The i (Insert) command puts vim in Input mode and places the text you enter before the character the cursor
is on (the current character). The I command places text at the beginning of the current line (Figure 6-13).
Although the i and I commands sometimes overwrite text on the screen, the characters in the Work buffer
are not changed; only the display is affected. The overwritten text is redisplayed when you press ESCAPE
and vim returns to Command mode. Use i or I to insert a few characters or words into existing text or to
insert text in a new file.

Figure 6-13. The I, i, a, and A commands

Appending Text

Append (a/A)

The a (Append) command is similar to the i command, except that it places the text you enter after the
current character (Figure 6-13). The A command places the text after the last character on the current line.

Opening a Line for Text

Open (o/O)

The o (Open) and O commands open a blank line within existing text, place the cursor at the beginning of

the new (blank) line, and put vim in Input mode. The O command opens a line above the current line; o
opens one below the current line. Use the Open commands when you are entering several new lines within
existing text.

Replacing Text

Replace (r/R)

The r and R (Replace) commands cause the new text you enter to overwrite (replace) existing text. The
single character you enter following an r command overwrites the current character. After you enter that
character, vim automatically returns to Command mode—you do not need to press the ESCAPE key.

The R command causes all subsequent characters to overwrite existing text until you press ESCAPE to
return vim to Command mode.

tip: Replacing TABs

The Replace commands may appear to behave strangely when you replace TAB characters. TAB
characters can appear as several SPACEs—until you try to replace them. They are actually only
one character and are replaced by a single character. Refer to "Invisible characters" on page 178 for
information on how to display TABs as visible characters.

Quoting Special Characters in Input Mode

CONTROL-V

While you are in Input mode, you can use the Quote command, CONTROL-V , to enter any character into
the text, including characters that normally have special meaning to vim. Among these characters are
CONTROL-L (or CONTROL-R), which redraws the screen; CONTROL-W , which backs the cursor up a
word to the left; and ESCAPE , which ends Input mode.

To insert one of these characters into the text, type CONTROL-V followed by the character. CONTROL-V
quotes the single character that follows it. For example, to insert the sequence ESCAPE[2J into a file you are
creating in vim, you type the character sequence CONTROL-V ESCAPE[2J . This character sequence clears
the screen of a DEC VT-100 and other similar terminals. Although you would not ordinarily want to type
this sequence into a document, you might want to use it or another ESCAPE sequence in a shell script you
are creating in vim. Refer to Chapter 11 for information about writing shell scripts.

 < Day Day Up >

 < Day Day Up >

Command Mode: Deleting and Changing Text

This section describes the commands to delete and replace, or change, text in the document you are editing.
The Undo command is covered here because it allows you to restore deleted or changed text.

Undoing Changes

Undo (u/U)

The u command (Undo) restores text that you just deleted or changed by mistake. A single Undo command
restores only the most recently deleted text. If you delete a line and then change a word, the first Undo
restores only the changed word; you have to give a second Undo command to restore the deleted line. The U
command restores the last line you changed to the way it was before you started changing it, even after
several changes.

Deleting Characters

Delete character (x/X)

The x command deletes the current character. You can precede the x command by a Repeat Factor (page
187) to delete several characters on the current line, starting with the current character. The X command
deletes characters to the left of the cursor.

Deleting Text

Delete (d/D)

The d (Delete) command removes text from the Work buffer. The amount of text that d removes depends on
the Repeat Factor and the Unit of Measure (page 184) you enter after the d. After the text is deleted, vim is
still in Command mode.

tip: Use dd to delete a single line

The command d RETURN deletes two lines: the current line and the following one. Use dd to
delete just the current line, or precede dd by a Repeat Factor (page 187) to delete several lines.

You can delete from the current cursor position up to a specific character on the same line. To delete up to
the next semicolon (;), give the command dt; (see page 164 for more information on the t command). To
delete the remainder of the current line, use D or d$. Table 6-1 lists some Delete commands. Each
command, except the last group that starts with dd, deletes from/to the current character.

Table 6-1. Delete command examples

Command Result

dl Deletes current character (same as the x command)

d0 Deletes from beginning of line

d^ Deletes from first character of the line (not including leading
SPACEs or TABs)

dw Deletes to end of word

d3w Deletes to end of third word

db Deletes from beginning of word

dW Deletes to end of blank-delimited word

dB Deletes from beginning of blank-delimited word

d7B Deletes from seventh previous beginning of blank-delimited word

d) Deletes to end of sentence

d4) Deletes to end of fourth sentence

d(Deletes from beginning of sentence

d} Deletes to end of paragraph

d{ Deletes from beginning of paragraph

d7{ Deletes from seventh paragraph preceding beginning of paragraph

d/text Deletes up to the next occurrence of word text

dfc Deletes on current line up to and including next occurrence of
character c

dtc Deletes on current line up to next occurrence of c

D Deletes to end of line

d$ Deletes to end of line

dd Deletes the current line

5dd Deletes five lines starting with the current line

dL Deletes through last line on screen

dH Deletes from first line on screen

dG Deletes through end of Work buffer

d1G Deletes from beginning of Work buffer

tip: Exchange characters and lines

If two characters are out of order, position the cursor on the first character and give the commands
xp.

If two lines are out of order, position the cursor on the first line and give the commands ddp.

See page 172 for more information on the Put commands.

Changing Text

Change (c/C)

The c (Change) command replaces existing text with new text. The new text does not have to occupy the
same space as the existing text. You can change a word to several words, a line to several lines, or a
paragraph to a single character. The C command replaces the text from the cursor position to the end of the
line.

The c command deletes the amount of text specified by the Repeat Factor and the Unit of Measure (page
184) and puts vim in Input mode. When you finish entering the new text and press ESCAPE, the old word,
line, sentence, or paragraph is changed to the new one. Pressing ESCAPE without entering new text deletes
the specified text (replaces the specified text with nothing).

Table 6-2 lists some Change commands. Except for the last two, each command changes text from/to the
current character.

Table 6-2. Change command examples

Command Result

cl Changes current character

cw Changes to end of word

c3w Changes to end of third word

cb Changes from beginning of word

cW Changes to end of blank-delimited word

cB Changes from beginning of blank-delimited word

c7B Changes from beginning of seventh previous blank-delimited word

c$ Changes to end of line

c0 Changes from beginning of line

c) Changes to end of sentence

c4) Changes to end of fourth sentence

c(Changes from beginning of sentence

c} Changes to end of paragraph

c{ Changes from beginning of paragraph

c7{ Changes from beginning of seventh preceding paragraph

ctc Changes on current line up to next occurrence of c

C Changes to end of line

cc Changes the current line

5cc Changes five lines starting with the current line

tip: dw works differently from cw

The dw command deletes all the characters through (including) the SPACE at the end of a word.
The cw command changes only the characters in the word, leaving the trailing SPACE intact.

Replacing Text

Substitute (s/S)

The s and S (Substitute) commands also replace existing text with new text (Table 6-3). The s command
deletes the character the cursor is on and puts vim into Input mode. It has the effect of replacing the single
character that the cursor is on with whatever you type until you press ESCAPE. The S command does the

same thing as the cc command: It changes the current line. The s command replaces characters only on the
current line. If you specify a Repeat Factor before an s command and this action would replace more
characters than exist on the current line, s changes characters only to the end of the line (same as C).

Table 6-3. Substitute command examples

Command Result

s Substitutes one or more characters for current character

S Substitutes one or more characters for current line

5s Substitutes one or more characters for five characters, starting with
current character

Changing Case

The tilde (~) character changes the case of the character under the cursor from uppercase to lowercase, or
vice versa. You can precede the tilde with a number to specify the number of characters you want the
command to affect. For example, 5~ will transpose the next five characters starting with the character under
the cursor, but it will not transpose characters past the end of the line the cursor is on.

 < Day Day Up >

 < Day Day Up >

Searching and Substituting

Searching for and replacing a character, a string of text, or a string that is matched by a regular expression is
a key feature of any editor. The vim editor provides simple commands for searching for a character on the
current line. It also provides more complex commands for searching for and optionally substituting for single
and multiple occurrences of strings or regular expressions anywhere in the Work buffer.

Searching for a Character

Find (f/F)

You can search for and move the cursor to the next occurrence of a specified character on the current line
using the f (Find) command. Refer to "Moving the Cursor to a Specific Character" on page 155.

t/T

The next two commands are used in the same manner as the Find command. The t command places the
cursor on the character before the next occurrence of the specified character. The T command places the
cursor on the character after the previous occurrence of the specified character.

A semicolon (;) repeats the last f, F, t, or T command.

You can combine these search commands with other commands. For example, the command d2fq deletes
the text from the location of the cursor to the second occurrence of the letter q on the current line.

Searching for a String

The vim editor can search backward or forward through the Work buffer to find a string of text or a string
that matches a regular expression (see Appendix A). To find the next occurrence of a string (forward), press
the forward slash (/) key, enter the text you want to find (called the search string), and press RETURN.
When you press the slash key, vim displays a slash on the status line. As you enter the string of text, it is also
displayed on the status line. When you press RETURN, vim searches for the string. If this search is
successful, vim positions the cursor on the first character of the string. If you use a question mark (?) in place
of the forward slash, vim searches for the previous occurrence of the string. If you need to include a forward
slash in a forward search or a question mark in a backward search, you must quote it by preceding it with a
backslash (\).

tip: Two distinct ways of quoting characters

You use CONTROL-V to quote special characters in text that you are entering into a file (page

159). This section discusses the use of a backslash (\) to quote special characters in a search
string. The two techniques of quoting characters are not interchangeable.

The N and n keys repeat the last search without any need for you to reenter the search string. The n key
repeats the original search exactly, and the N key repeats the search in the opposite direction of the original
search.

If you are searching forward and vim does not find the search string before it gets to the end of the Work
buffer, the editor typically wraps around and continues the search at the beginning of the Work buffer.
During a backward search, vim wraps around from the beginning of the Work buffer to the end. Also, vim
normally performs case-sensitive searches. Refer to "Wrap scan" (page 180) and "Ignore case in searches"
(page 178) for information about how to change these search parameters.

Normal Versus Incremental Searches

When vim performs a normal search (its default behavior), you enter a slash or question mark followed by
the search string and press RETURN. The vim editor moves the cursor to the next or previous occurrence of
the string you are searching for.

When vim performs an incremental search, you enter a slash or question mark. As you enter each character
of the search string, vim moves the highlight to the next or previous occurrence of the string you have
entered so far. When the highlight is on the string you are searching for, you must press RETURN to move
the cursor to the highlighted string. If the string you enter does not match any text, vim does not highlight
anything.

The type of search that vim performs depends on the incsearch parameter (page 178). Give the command
:set incsearch to turn on incremental searching. Use noincsearch to turn it off. When you set the
compatible parameter (page 148), vim turns off incremental searching.

Special Characters in Search Strings

Because the search string is a regular expression, some characters take on a special meaning within the
search string. The following paragraphs list some of these characters. See also "Extended Regular
Expressions" on page 834.

The first two items in the following list (^ and $) always have their special meanings within a search string
unless you quote them by preceding them with a backslash (\). You can turn off the special meanings within
a search string for the rest of the items in the list by setting the nomagic parameter. See "Allow special
characters in searches" (page 177) for more information.

^ Beginning-of-Line Indicator

When the first character in a search string is a caret (also called a circumflex) it matches the beginning of a
line. For example, the command /^the finds the next line that begins with the string the.

$ End-of-Line Indicator

A dollar sign matches the end of a line. For example, the command /!$ finds the next line that ends with an
exclamation point and / $ matches the next line that ends with a SPACE.

. Any-Character Indicator

A period matches any character, anywhere in the search string. For example, the command /l..e finds line,
followed, like, included, all memory, or any other word or character string that contains an l followed by
any two characters and an e. To search for a period, use a backslash to quote the period (\ .).

\ > End-of-Word Indicator

This pair of characters matches the end of a word. For example, the command /s\ > finds the next word that
ends with an s . Whereas a backslash (\) is typically used to turn off the special meaning of a character, the
character sequence \ > has a special meaning, while > alone does not.

\ < Beginning-of-Word Indicator

This pair of characters matches the beginning of a word. For example, the command / \<The finds the next
word that begins with the string The . The beginning-of-word indicator uses the backslash in the same,
atypical way as the end-of-word indicator.

* Zero or More Occurrences

This character is a modifier that will match zero or more occurrences of the character immediately preceding
it. For example, the command /dis*m will match the string di followed by zero or more s characters followed
by an m. Examples of successful matches are dim or dism or dissm.

[] Character-Class Definition

Brackets surrounding two or more characters match any single character located between the brackets. For
example, the command /dis[ck] finds the next occurrence of either disk or disc.

There are two special characters you can use within a character-class definition. A caret (^) as the first
character following the left bracket defines the character class to be any except the following characters. A
hyphen between two characters indicates a range of characters. Refer to the examples in Table 6-4.

Table 6-4. Search examples

Search string What it finds

/and Finds the next occurrence of the string and

Examples: sand and standard slander andiron

/ \ <and\ > Finds the next occurrence of the word and

Example: and

/ ^The Finds the next line that starts with The

Examples:

The . . .

There . . .

/ ^[0-9][0-9]) Finds the next line that starts with a two-digit number followed by
a right parenthesis

Examples:

77)...

01)...

15)...

/ \ <[adr] Finds the next word that starts with an a, d, or r

Examples: apple drive road argument right

/^[A-Za-z] Finds the next line that starts with an uppercase or lowercase letter

Examples:

will not find a line starting with the number 7 . . .

Dear Mr. Jones . . .

in the middle of a sentence like this . . .

Substituting One String for Another

A Substitute command combines the effects of a Search command and a Change command. That is, it
searches for a string (regular expression) just as the / command does, allowing the same special characters
discussed in the previous section. When it finds the string or matches the regular expression, the Substitute
command changes the string or regular expression it matches. The syntax of the Substitute command is

:[g][address] s/search-string/replacement-string[/option]

As with all commands that begin with a colon, vim executes a Substitute command from the status line.

The Substitute Address

If you do not specify an address , Substitute searches only the current line. If you use a single line number as
the address , Substitute searches that line. If the address is two line numbers separated by a comma,
Substitute searches those lines and the lines between them. Refer to "Line numbers" on page 178 if you want
vim to display line numbers. Wherever a line number is allowed in the address, you may also use an address -
string enclosed between slashes. The vim editor operates on the next line that the address -string matches.
When you precede the first slash of the address -string with the letter g (for global), vim operates on all lines
in the file that the address -string matches. (This g is not the same as the one that goes at the end of the
Substitute command to cause multiple replacements on a single line; see "Searching for and Replacing
Strings" below).

Within the address , a period represents the current line, a dollar sign represents the last line in the Work
buffer, and a percent sign represents the entire Work buffer. You can perform address arithmetic using plus
and minus signs. Table 6-5 shows some examples of address es.

Table 6-5. Addresses

Address Portion of Work buffer addressed

5 Line 5

77,100 Lines 77 through 100 inclusive

1,. Beginning of Work buffer through current line

.,$ Current line through end of Work buffer

1,$ Entire Work buffer

% Entire Work buffer

/pine/ The next line containing the word pine

g/pine/ All lines containing the word pine

.,.+10 Current line through tenth following line (11 lines in all)

Searching for and Replacing Strings

An s comes after the address in the command syntax, indicating that this is a Substitute command. A
delimiter follows the s, marking the beginning of the search-string . Although the examples in this book use
a forward slash, you can use as a delimiter any character that is not a letter, number, blank, or backslash. You
must use the same delimiter at the end of the search-string .

Next comes the search-string . It has the same format as the search string in the / command and can include

the same special characters (page 165). (The search-string is a regular expression; refer to Appendix A for
more information.) Another delimiter marks the end of the search-string and the beginning of the replace-
string .

The replace-string replaces the text matched by the search-string . It should be followed by the delimiter
character. You can omit the final delimiter when no option follows the replace-string ; a final delimiter is
required if an option is present.

Several characters have special meanings in the search-string , and other characters have special meanings in
the replace-string . For example, an ampersand (&) in the replace-string represents the text that was
matched by the search-string . A backslash in the replace-string quotes the character that follows it. Refer to
Table 6-6 and Appendix A.

Table 6-6. Search and replace examples

Command Result

:s/bigger/biggest/ Replaces the first
occurrence of the string
bigger on the current line
with biggest

Example:

bigger biggest

:1,.s/Ch 1/Ch 2/g Replaces every
occurrence of the string
Ch 1, before or on the
current line, with the
string Ch 2

Examples:

Ch 1 Ch 2

Ch 12 Ch 22

:1,$s/ten/10/g Replaces every
occurrence of the string
ten with the string 10

Examples:

ten 10

often of10

tenant 10ant

:g/chapter/s/ten/10/ Replaces the first
occurrence of the string
ten with the string 10 on
all lines containing the
word chapter

Examples:

chapter ten chapter
10

chapters will often
chapters will of10

:%s/ \<ten\ >/10/g Replaces every
occurrence of the word
ten with the string 10

Example:

ten 10

:.,.+10s/every/each/g Replaces every
occurrence of the string
every with the string
each on the current line
through the tenth
following line

Examples:

every each

everything
eachthing

:s/ \<short\ >/ "&"/ Replaces the word short
on the current line with
"short" (enclosed within
quotation marks)

Example:

the shortest of the short
 the shortest of the

"short"

Normally, the Substitute command replaces only the first occurrence of any text that matches the search-
string on a line. If you want a global substitution—that is, if you want to replace all matching occurrences of
text on a line—append the g (global) option after the delimiter that ends the replace-string . Another useful
option, c (check), causes vim to ask whether you would like to make the change each time it finds text that
matches the search-string . Pressing y replaces the search-string , q terminates the command, l (last) makes

the replacement and quits, a (all) makes all remaining replacements, and n continues the search without
making that replacement.

The address -string need not be the same as the search-string . For example,

:/candle/s/wick/flame/

substitutes flame for the first occurrence of wick on the next line that contains the string candle. Similarly,

:g/candle/s/wick/flame/

performs the same substitution for the first occurrence of wick on each line of the file containing the string
candle and

:g/candle/s/wick/flame/g

performs the same substitution for all occurrences of wick on each line that contains the string candle.

If the search-string is the same as the address , you can leave the search-string blank. For example, the
command :/candle/s//lamp/ is equivalent to the command :/candle/s/candle/lamp/.

 < Day Day Up >

 < Day Day Up >

Miscellaneous Commands

This section describes three commands that do not fit naturally into any other groups.

Join

Join (J)

The J (Join) command joins the line below the current line to the end of the current line, inserting a SPACE between
what was previously two lines and leaving the cursor on this SPACE. If the current line ends with a period, vim inserts
two SPACEs.

You can always "unjoin" (break) a line into two lines by replacing the SPACE or SPACEs where you want to break
the line with a RETURN.

Status

Status (CONTROL-G)

The Status command, CONTROL-G , displays the name of the file you are editing, information about whether the file
has been modified, the total number of lines in the Work buffer, the percentage of the Work buffer preceding the
current line, and the number of the line and character the cursor is on. You can also use :f to display status
information. Following is a sample status line:

"termcap" 17103 lines --3%-- 569,1 3%

. (Period)

.

The . (period) command repeats the most recent command that made a change. If you had just given a d2w command
(delete the next two words), for example, the . command would delete the next two words. If you had just inserted
text, the . command would repeat the insertion of the same text. This command is useful if you want to change some
occurrences of a word or phrase in the Work buffer. Search for the first occurrence of the word (use /) and then make
the change you want (use cw). You can then use n to search for the next occurrence of the word and . to make the
same change to it. If you do not want to make the change, use n again to find the next occurrence.

 < Day Day Up >

 < Day Day Up >

Yank, Put, and Delete Commands

The vim editor has a General-Purpose buffer and 26 Named buffers that can hold text during an editing
session. These buffers are useful if you want to move or copy a portion of text to another location in the
Work buffer. A combination of the Delete and Put commands removes text from one location in the Work
buffer and places it in another location in the Work buffer. The Yank and Put commands copy text to another
location in the Work buffer, without changing the original text.

The General-Purpose Buffer

The vim editor stores the text that you most recently changed, deleted, or yanked in the General-Purpose
buffer. The Undo command retrieves text from the General-Purpose buffer when it restores text.

Copying Text to the Buffer

Yank (y/Y)

The Yank command (y) is identical to the Delete (d) command except that it does not delete text from the
Work buffer. The vim editor places a copy of the yanked text in the General-Purpose buffer. You can then
use a Put command to place another copy of it elsewhere in the Work buffer. Use the Yank command just as
you use the Delete command. The uppercase Y command yanks an entire line into the General-Purpose
buffer.

tip: Use yy to yank one line

Just as d RETURN deletes two lines, so y RETURN yanks two lines. Use the yy command to yank
and dd to delete the current line.

tip: D works differently from Y

The D command (page 160) does not work in the same manner as the Y command. Whereas D
deletes to the end of the line, Y yanks the entire line regardless of the cursor position.

Copying Text From the Buffer

Put (p/P)

The Put commands, p and P, copy text from the General-Purpose buffer to the Work buffer. If you delete or
yank characters or words into the General-Purpose buffer, p inserts them after the current character, and P
inserts them before this character. If you delete or yank lines, sentences, or paragraphs, P inserts the contents
of the General-Purpose buffer before the line the cursor is on, and p inserts them after this line.

Put commands do not destroy the contents of the General-Purpose buffer. Thus you can place the same text
at several points within the file by using one Delete or Yank command and several Put commands.

Deleting Text Copies It into the Buffer

Any of the Delete commands described earlier in this chapter (page 160) place the deleted text in the
General-Purpose buffer. Just as you can use the Undo command to put the deleted text back where it came
from, so you can use a Put command to put the deleted text at another location in the Work buffer.

For example, if you delete a word from the middle of a sentence by using the dw command and then move
the cursor to a SPACE between two words and give a p command, vim places the word you just deleted at
the new location. If you delete a line using the dd command and then move the cursor to the line below the
line where you want the deleted line to appear and give a P command, vim places the line at the new
location.

optional: Named Buffers

You can use a Named buffer with any of the Delete, Yank, or Put commands. Each of the 26
Named buffers is named by a letter of the alphabet. Each Named buffer can store a different
block of text so that you can recall each block as needed. Unlike the General-Purpose buffer,
vim does not change the contents of a Named buffer unless you use a command that specifically
overwrites that buffer. The vim editor maintains the contents of the Named buffers throughout
an editing session.

The vim editor stores text in a Named buffer if you precede a Delete or Yank command with a
double quotation mark (") and a buffer name (for example, "kyy yanks a copy of the current
line into buffer k). You can use a Named buffer in two ways. First, if you give the name of the
buffer as a lowercase letter, vim overwrites the contents of the buffer when it deletes or yanks
text into the buffer. Second, if you use an uppercase letter for the buffer name, vim appends the
newly deleted or yanked text to the end of the buffer. This feature enables you to collect blocks
of text from various sections of a file and deposit them at one place in the file with a single
command. Named buffers are also useful when you are moving a section of a file and do not
want to use a Put command immediately after the corresponding Delete command, and when
you want to insert a paragraph, sentence, or phrase repeatedly in a document.

If you have one sentence that you use throughout a document, you can yank that sentence into a
Named buffer and put it wherever you need it by using the following procedure: After entering
the first occurrence of the sentence and pressing ESCAPE to return to Command mode, leave
the cursor on the line containing the sentence. (The sentence must appear on a line or lines by

itself for this procedure to work.) Then yank the sentence into Named buffer a by giving the
"ayy command (or "a2yy if the sentence takes up two lines). Now anytime you need the
sentence, you can return to Command mode and give the command "ap to put a copy of the
sentence below the line the cursor is on.

This technique provides a quick and easy way to insert text that you use frequently in a
document. For example, if you were editing a legal document, you might store the phrase The
Plaintiff alleges that the Defendant in a Named buffer to save yourself the trouble of typing it
every time you want to use it. Similarly, if you were creating a letter that frequently used a long
company name, such as National Standards Institute, you might put it into a Named buffer.

NUMBERED BUFFERS

In addition to the 26 Named buffers and 1 General-Purpose buffer, 9 Numbered buffers are
available. They are, in one sense, readonly buffers. The vim editor fills them with the nine most
recently deleted chunks of text that are at least one line long. The most recently deleted pattern
is held in "1, the next most recent in "2, and so on. If you delete a block of text and then give
other vim commands so that you cannot reclaim the deleted text with Undo, use "1p to paste
the most recently deleted chunk of text below the location of the cursor. If you have deleted
several blocks of text and want to reclaim a specific one, proceed as follows: Paste the contents
of the first buffer with "1p. If the first buffer does not have the text you are looking for, undo
the paste with u and then give the period (.) command to repeat the previous command. The
Numbered buffers work in a unique way with the period command: Instead of pasting the
contents of buffer "1, the period command pastes the contents of the next buffer ("2). Another
u and period replace the contents of buffer "2 with that of buffer "3, and so on through the nine
buffers.

 < Day Day Up >

 < Day Day Up >

Reading and Writing Files

Exit (ZZ)

The vim editor reads a disk file into the Work buffer when you specify a filename on the command line you
use to call vim. The ZZ command that terminates the editing session writes the contents of the Work buffer
back to the disk file. This section discusses other ways of reading text into the Work buffer and writing it to
a file.

Reading Files

Read (:r)

The Read command reads a file into the Work buffer. The new file does not overwrite any text in the Work
buffer but rather is positioned following the single address you specify (or the current line if you do not
specify an address). You can use an address of 0 to read the file into the beginning of the Work buffer. The
Read command has the following syntax:

:[address]r [filename]

As with other commands that begin with a colon, when you enter the colon it appears on the status line. The
filename is the pathname of the file that you want to read and must be terminated by RETURN. If you omit
the filename , vim reads the file you are editing from the disk.

Writing Files

Write (:w)

The Write command writes part or all of the Work buffer to a file. You can use an address to write out part
of the Work buffer and a filename to specify a file to receive the text. If you do not use an address or
filename, vim writes the entire contents of the Work buffer to the file you are editing, updating the file on the
disk.

During a long editing session, it is a good idea to use the Write command occasionally. If a problem later
develops, a recent copy of the Work buffer is then safe on the disk. If you use a :q! command to exit from
vim, the disk file reflects the version of the Work buffer at the time you last used the Write command. The
Write command has two possible formats:

:[address]w[!] [filename]

:[address]w>> filename

The second format appends text to an existing file. The address specifies the portion of the Work buffer vim
will write to the file. The address follows the form of the address that the Substitute command uses (page
167). If you do not specify an address , vim writes the entire contents of the Work buffer. The optional
filename is the pathname of the file you are writing to. If you do not specify a filename , vim writes to the
file you are editing.

w!

Because the Write command can quickly destroy a large amount of work, vim demands that you enter an
exclamation point (!) following the w as a safeguard against accidentally overwriting a file. The only times
you do not need an exclamation point are when you are writing out the entire contents of the Work buffer to
the file being edited (using no address and no filename) and when you are writing part or all of the Work
buffer to a new file. When you are writing part of the file to the file being edited or when you are overwriting
another file, you must use an exclamation point.

Identifying the Current File

The File command (:f) provides the same information as the Status command (CONTROL-G, page 171).
The filename the File command displays is the one the Write command uses if you give a :w command
without a filename.

 < Day Day Up >

 < Day Day Up >

Setting Parameters

You can tailor the vim editor to your unique needs and habits by setting vim parameters. Parameters perform
such functions as displaying line numbers, automatically inserting RETURNs for you, and establishing
incremental and nonstandard searches.

You can set parameters in several ways. For example, you can set them to establish the environment for the
current editing session while you are using vim. Alternatively, you can set the parameters in your
~/.bash_profile (bash) or ~/.login (tcsh) shell startup file or in the vim startup file, ~/.vimrc. When you set
the parameters in any of these files, each time you use vim, the environment has been established and you
can begin editing immediately.

Setting Parameters from Within vim

To set a parameter while you are using vim, enter a colon (:), the word set , a SPACE, and the parameter
(refer to "Parameters" on page 177). The command appears on the status line as you type it and takes effect
when you press RETURN. The following command establishes incremental searches for the current editing
session:

:set incsearch

Setting Parameters in a Startup File

VIMINIT

If you are using bash, you can put a line with the following format in your ~/.bash_profile startup file (page
257):

export VIMINIT='set param1 param2 ...'

Replace param1 and param2 with parameters selected from Table 6-7. VIMINIT is a shell variable that vim
reads. The following statement ignores the case of characters in searches, displays line numbers, uses the TC
Shell to execute Linux commands, and wraps text 15 characters from the right edge of the screen:

export VIMINIT='set autoindent number shell=/bin/tcsh wrapmargin=15'

Table 6-7. Parameters

Parameter Effect

Allow special characters
in searches

magic

Refer to "Special Characters in Search Strings" on page
165. By default the following characters have special
meanings when used in a search string:

. [] *

When you set the nomagic parameter, these characters no
longer have special meanings. The magic parameter
restores their special meanings.

The ̂ and $ characters always have special meanings
within search strings, regardless of how you set this
parameter.

Automatic indention

autoindent, ai

The automatic indention feature works with the shiftwidth
parameter to provide a regular set of indentions for
programs or tabular material. This feature is off by default.
You can turn it on by setting autoindent and turn it off by
setting noautoindent.

When automatic indention is on and vim is in Input mode,
CONTROL-T moves the cursor from the left margin (or an
indention) to the next indention position, RETURN moves
the cursor to the left side of the next line under the first
character of the previous line, and CONTROL-D backs up
over indention positions. The CONTROL-T and
CONTROL-D keys work only before text is placed on a
line.

Automatic write

autowrite, aw

By default vim asks you before writing out the Work buffer
when you have not explicitly told it to do so (as when you
give a :n command to edit the next file). The autowrite
option causes vim to write the Work buffer automatically
when you use commands, such as :n, to edit to another file.
You can disable this parameter by setting the noautowrite
or noaw option.

Flash

flash, fl

The vim editor normally causes the terminal to beep when
you give an invalid command or press ESCAPE when it is
in Command mode. Setting the parameter flash causes the
terminal to flash instead of beep. Set noflash to cause it to
beep. Not all terminals and emulators support this
parameter.

Ignore case in searches

ignorecase, ic

The vim editor normally performs case-sensitive searches,
differentiating between uppercase and lowercase letters. It
performs case-insensitive searches when you set the
ignorecase parameter. Set noignorecase to restore case-
sensitive searches.

Incremental search

incsearch, is

Refer to "Normal Versus Incremental Searches" on page
165. By default vim does not perform incremental searches.
To cause vim to perform incremental searches, set the
parameter incsearch. To cause vim not to perform
incremental searches, set the parameter noincsearch.

Invisible characters

list

To cause vim to display each TAB as ^I and to mark the
end of each line with a $, set the list parameter. To display
TABs as whitespace and not mark ends of lines, set nolist.

Status line

laststatus=n, ls=n

Displays a status line that shows the name of the file you
are editing, a [+] if the file has been changed since it was
last written out, and the position of the cursor. Set the
parameter laststatus=n, where n is 0 (zero) to turn off the
status line, 1 to display the status line when at least two
windows are displayed, or 2 to always display the status
line.

Line numbers

number, nu

The vim editor does not normally display the line number
associated with each line. To display line numbers, set the
parameter number . To cause line numbers not to be
displayed, set the parameter nonumber.

Line numbers are not part of the file, are not stored with the
file, and are not displayed when the file is printed. They
appear on the screen only while you are using vim.

Line wrap

wrap

The line wrap controls how vim displays lines that are too
long to fit on the screen. To cause vim to wrap long lines
and continue them on the next line, set wrap (set by
default). If you set nowrap, vim TRuncates long lines at the
right edge of the screen.

Line wrap margin

wrapmargin=nn,
wm=nn

The line wrap margin causes vim to break the text that you
are inserting at approximately the specified number of
characters from the right margin. The vim editor breaks the
text by inserting a NEWLINE character at the closest blank-
delimited word boundary. Setting the line wrap margin is
handy if you want all your text lines to be about the same
length. It relieves you of having to remember to press
RETURN to end each line of input.

Set the parameter wrapmargin=nn, where nn is the
number of characters from the right side of the screen where
you want vim to break the text. This number is not the
column width of the text but the distance from the end of
the text to the right edge of the screen. Setting the wrap
margin to 0 (zero) turns this feature off. By default the line
wrap margin is off (set to 0).

Report

report=nn

Causes vim to display a report on the status line whenever
you make a change that affects at least nn lines. For
example, if report is set to 7 and you delete seven lines,
vim displays the message 7 lines deleted. When you delete
six or fewer lines, vim does not display a message. The
default for report is 5.

Scroll

scroll=nn, scr=nn

Controls the number of lines that CONTROL-D and
CONTROL-U (page 158) scroll text on the screen. By
default scroll is set to half the window height.

There are two ways to change the value of scroll. First you
can enter a number before giving a CONTROL-D or
CONTROL-U command; vim sets scroll to that number.
Alternatively, you can set scroll explicitly with scroll=nn,
where nn is the number of lines you want to scroll with
each CONTROL-D or CONTROL-U command.

Shell

shell=path , sh=path

While you are using vim, you can cause it to spawn a new
shell. You can either create an interactive shell (if you want
to run several commands) or run a single command. The
shell parameter determines which shell vim invokes. By
default vim sets the shell parameter to your login shell. To
change it, set the parameter shell=path , where path is the
absolute pathname of the shell you want to use.

Shift width

shiftwidth=nn, sw=nn

Controls the functioning of CONTROL-T and CONTROL-
D in Input mode when automatic indention is on (see
"Automatic indention" in this table). Set the parameter
shiftwidth=nn, where nn is the spacing of the indention
positions (8 by default). Setting the shift width is similar to
setting the TAB stops on a typewriter; with shiftwidth,
however, the distance between TAB stops remains constant.

Show match

showmatch, sm

Useful for programmers working in languages that use
braces ({ }) or parentheses as expression delimiters (Lisp, C,
Tcl, and so on). When showmatch is set and you are
entering code (in Input mode) and type a closing brace or
parenthesis, the cursor jumps briefly to the matching
opening brace or parenthesis (that is, the preceding
corresponding element at the same nesting level). After it
highlights the matching element, the cursor resumes its
previous position. When you type a right brace or
parenthesis that does not have a match, vim beeps. Use
noshowmatch to turn off automatic matching.

Show mode

showmode, smd

Set the parameter showmode to display the mode in the
lower-right corner of the screen when vim is in Input mode
(default). Set noshowmode to cause vim not to display the
mode.

vi compatibility

compatible, cp

Refer to "The compatible Parameter" on page 148. By
default, except when you have a .vimrc startup file (page
176), vim attempts to be compatible with vi. To cause vim
to be compatible with vi, set the parameter compatible. To
cause vim not to be compatible with vi, set the parameter
nocompatible.

Wrap scan

wrapscan, ws

By default, when a search for the next occurrence of a
search string reaches the end of the Work buffer, vim
continues the search at the beginning of the Work buffer.
The reverse is true of a search for the previous occurrence
of a search string. The nowrapscan parameter stops the
search at either end of the Work buffer. Set the wrapscan
parameter if you want searches to wrap around the ends of
the Work buffer.

If you use the parameter abbreviations, it looks like this:

export VIMINIT='set ai nu sh=/bin/tcsh wm=15'

If you are using tcsh, put the following line in your ~/.tcshrc startup file (page 342).

setenv VIMINIT 'set param1 param2 ...'

Again, replace param1 and param2 with parameters from Table 6-7. The values between the single
quotation marks are the same as shown in the preceding examples.

The .vimrc Startup File

Instead of setting vim parameters in your shell startup file, you can create a ~/.vimrc file in your home
directory and set them there. Creating a .vimrc file causes vim to start with the compatible parameter unset
(page 148). Lines in a .vimrc file use the following format:

set param1 param2 ...

Following are examples of .vimrc files that perform the same function as VIMINIT described previously:

$ cat ~/.vimrc

set ignorecase

set number

set shell=/bin/tcsh

set wrapmargin=15

$ cat ~/.vimrc

set ic nu sh=/bin/tcsh wm=15

Parameters set by the VIMINIT variable take precedence over those set in the .vimrc file.

Parameters

Table 6-7 lists some of the most useful vim parameters. The vim editor displays a complete list of parameters
and indicates how they are currently set when you give the command :set all followed by a RETURN. The
command :set RETURN displays a list of options that are set to values other than their default values. Two
classes of parameters exist: those that contain an equal sign (and can take on a value) and those that are
optionally prefixed with no (switches that are on or off). You can change the sense of a switch parameter by
giving the command :set [no]param . For example, give the command :set number (or :set nonumber) to
turn on (or off) line numbering. To change the value of a parameter that takes on a value (and uses an equal
sign), give a command such as :set shiftwidth=15.

Most parameters have abbreviations such as nu for number, nonu for no number, and sw for shiftwidth.
The abbreviations are listed in the left column of Table 6-7, following the name of the parameter.

 < Day Day Up >

 < Day Day Up >

Advanced Editing Techniques

This section presents several commands that you may find useful once you have become comfortable using
vim.

optional: Using Markers

While you are using vim, you can set and use markers to make addressing more convenient. Set
a marker by giving the command mc, where c is any character. (Letters are preferred because
some characters, such as a single quotation mark, have special meanings when used as
markers.) The vim editor does not preserve markers when you exit from vim.

Once you have set a marker, you can use it in a manner similar to a line number. You can move
the cursor to the beginning of a line that contains a marker by preceding the marker name with a
single quotation mark. For example, to set marker t , position the cursor on the line you want to
mark and give the command mt. During this editing session, unless you reset marker t or delete
the line it marks, you can return to the beginning of the line you marked with the command 't.

You can delete all text from the current line through the line containing marker r with the
following command:

d'r

You can use a back tick (', also called a grave accent or reverse single quotation mark) to go to
the exact position of the mark on the line. After setting marker t, you can move the cursor to the
location of this marker (not the beginning of the line that holds the marker) with the command
't. The following command deletes all the text from the current line up to the character where
the mark r was placed; the rest of the line containing the marker remains intact:

d'r

You can use markers in addresses of commands instead of line numbers. The following
command replaces all occurrences of The with THE on all lines from marker m to the current
line (marker m must precede the current line):

:'m,.s/The/THE/g

EDITING OTHER FILES

The following command causes vim to edit the file you specify with filename :

:e[!] [filename]

If you want to save the contents of the Work buffer, you must write it out (using :w) before you
give this command. If you do not want to save the contents of the Work buffer, vim insists that
you use an exclamation point to acknowledge that you will lose the work you did since the last
time you wrote out the Work buffer. If you do not supply a filename , vim edits the same file
you are currently working on.

:e!

The command :e! starts an editing session over again. This command returns the Work buffer
to the state it was in the last time you wrote it out or, if you have not written it out, the state it
was in when you started editing the file. It is useful when you make mistakes while editing a
file and decide that it would be easier to start over than to fix the mistakes.

Because this command does not destroy the contents of the General-Purpose or Named buffers,
you can store text from one file in a buffer, use a :e command to edit a second file, and put text
from the buffer in the second file.

:e#

The command :e# closes the current file and opens the last file you were editing, placing the
cursor on the line that it was on when you last closed the file. If you do not save the file you are
working on before you give this command, vim prompts you to do so. Setting the autowrite
parameter (page 178) will not stop vim from prompting you.

:n

:rew

The :e# command can help you copy blocks of text from one file to another. Call vim with the
names of several files as arguments. You can use :n to edit the next file, :e# to edit the file you
just edited, and :rew to rewind the sequence of files so that you are editing the first file again.
As you move between files, you can copy text from one file into a buffer and paste that text into
another file. You can use :n! to force vim to close a file without writing out changes before it
opens the next file.

MACROS AND SHORTCUTS

:map

The vim editor allows you to create macros and shortcuts. The :map command defines a key or
sequence of keys that perform some action in Command mode. The following command maps
CONTROL-X to the commands that will find the next left bracket on the line the cursor is on
(f[), delete all characters from that bracket to the next right bracket (df]) on the same line,
delete the next character (x), move the cursor down two lines (2j), and finally move the cursor
to the beginning of the line (0):

:map ^X f[df]x2j0

You can use ESCAPE and CONTROL sequences but try to avoid remapping characters or
sequences that are vim commands. Type :map by itself to see a list of the current mappings.
You may need to use CONTROL-V (page 159) to quote some of the characters you want to
enter into the :map string.

:abbrev

The :abbrev command is similar to :map but creates abbreviations you can use while in Input
mode. When you are in Input mode and type a string you have defined with :abbrev, followed
by a SPACE, vim replaces the string and the SPACE with the characters you specified when
you defined the string. For ease of use, do not use common sequences of characters when
creating abbreviations. The following command defines ZZ as an abbreviation for Mark G.
Sobell:

:abbrev ZZ Mark G. Sobell

Even though ZZ is a vim command, it is used only in Command mode. It has no special
meaning in Input mode, where you use abbreviations.

Executing Shell Commands from Within vim

You can execute shell commands in several ways while you are using vim. You can spawn a new interactive
shell by giving the following command and pressing RETURN:

:sh

The vim shell parameter (page 179) determines which shell is spawned (usually bash or tcsh). By default
shell is the same as your login shell.

After you have finished your work in the shell, you can return to vim by exiting from the shell (press
CONTROL-D or give an exit command).

tip: If :sh does not work correctly

The :sh command may behave strangely depending on how your shell has been configured. You
may get warnings with the :sh command or it may even hang. Experiment with the :sh command
to be sure it works with your configuration. If it does not, then you might want to set the vim shell
parameter to another shell before using :sh. For example, the following command causes vim to
use tcsh with the :sh command:

:set shell=/bin/tcsh

You may need to change the SHELL environment variable after starting :sh to show the correct
shell.

caution: Edit only one copy of a file

When you create a new shell by using :sh, remember that you are still using vim. A common
mistake is to try to edit the same file from the new shell, forgetting that vim is already editing the
file from a different shell. Because you can lose information by editing the same file from two
instances of an editor, vim warns you when you make this mistake. Refer to "File Locks" on page
152 to see an example of the message that vim displays.

You can execute a shell command line from vim by giving the following command, replacing command
with the command line you want to execute and terminating the command with a RETURN:

:!command

The vim editor spawns a new shell that executes the command . When the command runs to completion, the
newly spawned shell returns control to the editor.

You can execute a command from vim and have it replace the current line with the output from the
command. If you do not want to replace any text, put the cursor on a blank line before giving the following
command:

!!command

Nothing happens when you enter the first exclamation point. When you enter the second one, vim moves the
cursor to the status line and allows you to enter the command you want to execute. Because this command
puts vim in Last Line mode, you must end the command with a RETURN (as you would end most shell
commands).

Finally you can execute a command from vim with standard input to the command coming from all or part of
the file you are editing and standard output from the command replacing the input in the file you are editing.
You can use this type of command to sort a list in place within a file.

To specify the block of text that will become standard input for the command, move the cursor to one end of
the block of text. Then enter an exclamation point followed by a command that would normally move the
cursor to the other end of the block of text. For example, if the cursor is at the beginning of the file and you
want to specify the whole file, give the command !G. If you want to specify the part of the file between the
cursor and marker b, give the command !'b. After you give the cursor-movement command, vim displays an
exclamation point on the status line and waits for you to enter a shell command.

To sort a list of names in a file, move the cursor to the beginning of the list and set marker q with an mq
command. Then move the cursor to the end of the list and give the following command:

!'sort

Press RETURN and wait. After a few seconds, the sorted list should replace the original list on the screen. If
the command did not do what you expected, you can usually undo the change with a u command. Refer to
page 762 for more information on sort.

caution: ! can destroy a file

If you enter the wrong command or mistype a command, you can destroy a file (for example, if the
command hangs or stops vim from working). For this reason it is a good idea to save your file
before using this command. The Undo command (page 160) can be a lifesaver. A :e! command
(page 181) will get rid of your changes, returning the buffer to the state it was in last time you
saved it.

As with the :sh command, the default shell may not work properly with the ! command. You may
want to test the shell with a simple file before executing this command with your real work. If the
usual shell does not work properly, change the shell parameter.

 < Day Day Up >

 < Day Day Up >

Units of Measure

Many vim commands operate on a block of text—ranging from one character to many paragraphs. You
specify the size of a block of text with a Unit of Measure. You can specify multiple Units of Measure by
preceding a Unit of Measure with a Repeat Factor (page 187). This section defines the various Units of
Measure.

Character

A character is one character—visible or not, printable or not—including SPACEs and TABs. Some
examples of characters are

a q A . 5 R - > TAB SPACE

Word

A word, similar to an ordinary word in the English language, is a string of one or more characters bounded
on both sides by any combination of one or more of the following elements: a punctuation mark, SPACE,
TAB, numeral, or NEWLINE. In addition, vim considers each group of punctuation marks to be a word
(Table 6-8).

Table 6-8. Words

Word count Text

1 pear

2 pear!

2 pear!)

3 pear!) The

4 pear!) "The

11 This is a short, concise line (no frills).

Blank-Delimited Word

A blank-delimited word is the same as a word but includes adjacent punctuation. Blank-delimited words are
separated by one or more of the following elements: a SPACE, TAB, or NEWLINE (Table 6-9).

Table 6-9. Blank-delimited words

Word count Text

1 pear

1 pear!

1 pear!)

2 pear!) The

2 pear!) "The

8 This is a short, concise line (no frills).

Line

A line is a string of characters bounded by NEWLINEs that is not necessarily displayed as a single physical
line on the screen. You can enter a very long single (logical) line that wraps around (continues on the next
physical line) several times or disappears off the right edge of the display. It is a good idea to avoid long
logical lines by terminating lines with a RETURN before they reach the right side of the screen. Terminating
lines in this manner ensures that each physical line contains one logical line and avoids confusion when you
edit and format text. Some commands do not appear to work properly on physical lines that are longer than
the width of the screen. For example, with the cursor on a long logical line that wraps around several
physical lines, pressing RETURN once appears to move the cursor down more than one line. You can use
fmt (page 664) to break long logical lines into shorter ones.

Sentence

A sentence is an English sentence or the equivalent. A sentence starts at the end of the previous sentence and
ends with a period, exclamation point, or question mark, followed by two SPACEs or a NEWLINE (Table 6-
10).

Table 6-10. Sentences

Sentence count Text

One: only one SPACE after the first period and a
NEWLINE after the second period

That's it. This is one
sentence.

Two: two SPACEs after the first period and a NEWLINE
after the second period

That's it. This is two
sentences.

Three : two SPACEs after the first two question marks and a
NEWLINE after the exclamation point

What? Three sentences?
One line!

One: NEWLINE after the period

This sentence takes

up a total of

three lines.

Paragraph

A paragraph is preceded and followed by one or more blank lines. A blank line is composed of two
NEWLINE characters in a row (Table 6-11).

Table 6-11. Paragraphs

Paragraph count Text

One: blank line before and after text One paragraph

One: blank line before and after text

 This may appear to be

more than one paragraph.

 Just because there are

two indentions does not mean

it qualifies as two paragraphs.

Three : three blocks of text separated by blank lines

Even though in

English this is only

one sentence,

vim considers it to be

three paragraphs.

Window

Under vim, a screen or terminal emulator window can display one or more logical windows of information.
A window displays all or part of a Work buffer. Figure 6-5 on page 145 shows a screen with two windows.

Repeat Factor

A number that precedes a Unit of Measure (page 184) is a Repeat Factor. Just as the 5 in 5 inches causes you
to consider 5 inches as a single Unit of Measure, so a Repeat Factor causes vim to group more than one Unit
of Measure and consider it as a single Unit of Measure. For example, the command w moves the cursor
forward 1 word, the command 5w moves it forward 5 words, and the command 250w moves it forward 250
words. If you do not specify a Repeat Factor, vim assumes a Repeat Factor of 1. If the Repeat Factor would
move the cursor past the end of the file, the cursor is left at the end of the file.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

This summary of vim includes all the commands covered in this chapter, plus a few more. Table 6-12 lists
some of the ways you can call vim from the command line.

Table 6-12. Calling vim

Command Result

vim filename Edits filename starting at line 1

vim +n filename Edits filename starting at line n

vim + filename Edits filename starting at the last line

vim +/pattern filename Edits filename starting at the first
line containing pattern

vim –r filename Recovers filename after a system
crash

vim –R filename Edits filename readonly (same as
opening the file with view)

You must be in Command mode to use commands that move the cursor by Units of Measure (Table 6-13).
You can use these Units of Measure with Change, Delete, and Yank commands. Each of these commands
can be preceded by a Repeat Factor.

Table 6-13. Moving the cursor by Units of Measure

Command Moves the cursor

SPACE, l (ell), or

RIGHT ARROW

Space to the right

h or LEFT ARROW Space to the left

w Word to the right

W Blank-delimited word to the right

b Word to the left

B Blank-delimited word to the left

$ End of line

e End of word to the right

E End of blank-delimited word to the right

0 (zero) Beginning of line (cannot be used with a Repeat Factor)

RETURN Beginning of next line

j or DOWN
ARROW

Down one line

– Beginning of previous line

k or UP ARROW Up one line

) End of sentence

(Beginning of sentence

} End of paragraph

{ Beginning of paragraph

% Move to matching brace of same type at same nesting level

Table 6-14 shows the commands that enable you to view different parts of the Work buffer.

Table 6-14. Viewing the Work buffer

Command Moves the cursor

CONTROL-D Forward one-half window

CONTROL-U Backward one-half window

CONTROL-F or
PAGE DOWN

Forward one window

CONTROL-B or
PAGE UP

Backward one window

nG To line n (without n, to the last line)

H To top of window

M To middle of window

L To bottom of window

The commands in Table 6-15 enable you to add text to the buffer. All these commands, except r, leave vim
in Input mode. You must press ESCAPE to return to Command mode.

Table 6-15. Adding text

Command Adds text

i Before cursor

I Before first nonblank character on line

a After cursor

A At end of line

o Open a line below current line

O Open a line above current line

r Replace current character (no ESCAPE needed)

R Replace characters, starting with current character (overwrite until
ESCAPE)

Table 6-16 lists commands that delete and change text. In this table M is a Unit of Measure that you can
precede with a Repeat Factor, n is an optional Repeat Factor, and c is any character.

Table 6-16. Deleting and changing text

Command Result

nx Deletes the number of
characters specified by n,
starting with the current
character

nX Deletes n characters
before the current
character, starting with
the character preceding
the current character

dM Deletes text specified by
M

n dd Deletes n lines

dtc Deletes to the next
character c on the current
line

D Deletes to end of the line

n~ Change case of the next n
characters

The following commands leave vim in Input mode. You must press ESCAPE to return
to Command mode.

ns Substitutes n characters

S Substitutes for the entire
line

cM Changes text specified by
M

ncc Changes n lines

ctc Changes to the next
character c on the current
line

C Changes to end of line

Table 6-17 lists search commands. Here rexp is a regular expression that can be a simple string of characters.

Table 6-17. Searching

Command Result

/rexpRETURN Searches forward for rexp

?rexpRETURN Searches backward for rexp

n Repeats original search exactly

N Repeats original search, in the opposite direction

/RETURN Repeats original search forward

?RETURN Repeats original search backward

fc Positions the cursor on the next character c on the current line

Fc Positions the cursor on the previous character c on the current
line

tc Positions the cursor on the character before (to the left of) the
next character c on the current line

Tc Positions the cursor on the character after (to the right of) the
previous character c on the current line

; Repeats the last f, F, t, or T command

The format of a Substitute command is

:[address]s/search-string/replacement-string [/g]

where address is one line number or two line numbers separated by a comma. A . (period) represents the
current line, $ represents the last line, and % represents the entire file. You can use a marker or a search
string in place of a line number. The search-string is a regular expression that can be a simple string of
characters. The replacement-string is the replacement string. A g indicates a global replacement (more than
one replacement per line).

Table 6-18 lists miscellaneous vim commands.

Table 6-18. Miscellaneous commands

Command Result

J Joins the current line and the following line

. Repeats the most recent command that made a change

:w filename Writes contents of Work buffer to filename (or to current file if
there is no filename)

:q Quits vim

ZZ Writes contents of Work buffer to the current file and quits vim

:f or CONTROL-G Displays the filename, status, current line number, number of
lines in the Work buffer, and percentage of the Work buffer
preceding the current line

CONTROL-V Inserts the next character literally even if it is a vim command
(use in Input mode)

Table 6-19 lists commands that yank and put text. In this table M is a Unit of Measure that you can precede
with a Repeat Factor and n is a Repeat Factor. You can precede any of these commands with the name of a
buffer using the form "x, where x is the name of the buffer (a–z).

Table 6-19. Yanking and putting text

Command Result

yM Yanks text specified by M

nyy Yanks n lines

Y Yanks to end of line

P Puts text before or above

p Puts text after or below

Table 6-20 lists advanced vim commands.

Table 6-20. Advanced commands

Command Result

mx Sets marker x, where x is a letter from a to z.

''(two single
quotation marks)

Moves cursor back to its previous location.

'x Moves cursor to line with marker x.

'x Moves cursor to character with marker x.

:e filename Edits filename , requiring you to write out changes to the current
file (with :w or autowrite) before editing the new file. Use :e!
filename to discard changes to the current file. Use :e! without a
filename to discard changes to the current file and start editing the
saved version of the current file.

:n Edits the next file when vim is started with multiple filename
arguments. Requires you to write out changes to the current file
(with :w or autowrite) before editing the next file. Use :n! to
discard changes to the current file and edit the next file.

:rew Rewinds the filename list when vim is started with multiple
filename arguments and starts editing with the first file. Requires
you to write out changes to the current file (with :w or autowrite)
before editing the first file. Use :rew! to discard changes to the
current file and edit the first file.

:sh Starts a shell. Exit from the shell to return to vim.

:!command Starts a shell and executes command .

!!command Starts a shell, executes command , and places output in the Work
buffer, replacing the current line.

 < Day Day Up >

 < Day Day Up >

Exercises

1. How can you cause vim to enter Input mode? How can you make vim revert to Command mode?

2. What is the Work buffer? Name two ways of writing the contents of the Work buffer to the disk.

3. Suppose that you are editing a file that contains the following paragraph and the cursor is on the
second tilde (~):

The vim editor has a command, tilde (~),

that changes lowercase letters to

uppercase, and vice versa.

The ~ command works with a Unit of Measure or

a Repeat Factor, so you can change

the case of more than one character at a time.

How can you

Move the cursor to the end of the paragraph?a.

Move the cursor to the beginning of the word Unit?b.

Change the word character to letter?c.

4. While working in vim, with the cursor positioned on the first letter of a word, you give the
command x followed by p. Explain what happens.

5. What are the differences between the following commands?

i and Ia.

a and Ab.

o and Oc.

r and Rd.

u and Ue.

6. Which command would you use to search backward through the Work buffer for lines that start
with the word it?

7. Which command substitutes all occurrences of the phrase this week with the phrase next week?

8. Consider the following scenario: You start vim to edit an existing file. You make many changes
to the file and then realize that you deleted a critical section of the file early in your editing
session. You want to get that section back but do not want to lose all the other changes you made.
What would you do?

9. How can you move the line that the cursor is on to the beginning of the file?

10. Use vim to create the letter_e file of e's used on page 56. Use as few vim commands as possible.
Which vim commands did you use?

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

11. Which commands can you use to take a paragraph from one file and insert it in a second file?

12. Create a file that contains the following list, and then execute commands from within vim to sort
the list and display it in two columns. (Hint: Refer to page 744 for more information on pr.)

Command mode

Input mode

Last Line mode

Work buffer

General-Purpose buffer

Named buffer

Regular Expression

Search String

Replacement String

Startup File

Repeat Factor

13. How do the Named buffers differ from the General-Purpose buffer?

14. Assume that your version of vim does not support multiple Undo commands. If you delete a line
of text, then delete a second line, and then a third line, which commands would you use to
recover the first two lines that you deleted?

15. Which command would you use to swap the words hither and yon on any line with any number
of words between them? (You need not worry about special punctuation, just uppercase and
lowercase letters and spaces.)

 < Day Day Up >

 < Day Day Up >

Chapter 7. The emacs Editor

IN THIS CHAPTER

History 196

emacs Versus vim 197

Tutorial: Getting Started with emacs 198

Basic Editing Commands 204

Online Help 209

Advanced Editing 212

Language-Sensitive Editing 225

Customizing emacs 235

In 1956 the Lisp (List processing) language was developed at MIT by John McCarthy. In its original
conception, Lisp had only a few scalar (atomic) data types and only one data structure (page 870): a list.
Lists could contain atomic data or perhaps other lists. Lisp supported recursion and nonnumeric data
(exciting concepts in those FORTRAN and COBOL days) and, in the Cambridge culture at least, was once
the favored implementation language. Richard Stallman and Guy Steele were part of this MIT Lisp culture.
In 1975 they collaborated on emacs, which Stallman maintained by himself for a long time. This chapter
discusses the emacs editor as implemented by the Free Software Foundation (GNU). The emacs home page
is www.gnu.org/software/emacs.

 < Day Day Up >

 < Day Day Up >

History

The emacs editor was prototyped as a series of extension commands or macros for the late 1960s text editor
TECO (Text Editor and COrrector). Its acronymic name, Editor MACroS, reflects this origin, although there
have been many humorous reinterpretations, including ESCAPE META ALT CONTROL SHIFT, Emacs
Makes All Computing Simple, and the unkind translation Eight Megabytes And Constantly Swapping.

Evolution

Over time emacs has grown and evolved through more than 20 major revisions to the mainstream GNU
version. The emacs editor, which is coded in C, contains a complete Lisp interpreter and fully supports the X
Window System and mouse interaction. The original TECO macros are long gone, but emacs is still very
much a work in progress. There are plans to support variable-width fonts, wide character sets, and the
world's major languages as well as to move emacs in the direction of a WYSIWYG (what you see is what
you get) word processor and make it easier for beginners to use.

The emacs editor has always been considerably more than a text editor. Not having been developed
originally in a UNIX environment, it does not adhere to the UNIX/Linux philosophy. Whereas a
UNIX/Linux utility is typically designed to do one thing and to be used in conjunction with other utilities,
emacs is designed to "do it all." Taking advantage of the underlying programming language (Lisp), emacs
users tend to customize and extend the editor rather than to use existing utilities or create new general-
purpose tools. Instead they share their ~/.emacs (customization) files.

Well before the emergence of the X Window System, Stallman put a great deal of thought and effort into
designing a window-oriented work environment, and he used emacs as his research vehicle. Over time he
built facilities within emacs for reading and composing email messages, reading and posting netnews, giving
shell commands, compiling programs and analyzing error messages, running and debugging these programs,
and playing games. Eventually it became possible to enter the emacs environment and not come out all day,
switching from window to window and from file to file. If you had only an ordinary serial, character-based
terminal, emacs gave you tremendous leverage.

In an X Window System environment, emacs does not need to control the whole display. Instead, it usually
operates only one or two windows. The original work environment is still available and is covered in this
chapter.

As a language-sensitive editor, emacs has special features that you can turn on to help edit text, nroff, TeX,
Lisp, C, Fortran, and so on. These feature sets are called modes, but they are not related in any way to the
Command mode and Input mode found in vi, vim, and other editors. Because you never need to switch
emacs between Input and Command modes, emacs is a modeless editor.

emacs Versus vim

Like vim, emacs is a display editor: It displays on the screen the text you are editing and changes the display
as you type each command or insert new text. Unlike vim, emacs does not require you to keep track of

whether you are in Command mode or Insert mode: Commands always use CONTROL or other special
keys. The emacs editor inserts ordinary characters into the text you are editing (as opposed to using ordinary
characters as commands), another trait of modeless editing. For many people this approach is convenient and
natural.

Like vim, emacs has a rich, extensive command set for moving about in the buffer and altering text. This
command set is not "cast in concrete"—you can change or customize commands at any time. Literally any
key can be coupled (bound) to any command so as to match a particular keyboard better or just to fulfill a
personal whim. Usually key bindings are set in the. emacs startup file, but they can also be changed
interactively during a session. All the key bindings described in this chapter are standard on current GNU
emacs versions, which also support many visual, mouse-oriented capabilities that are not covered here.

caution: Too many key bindings

If you change too many key bindings, you may produce a command set that you will not remember
or that will make it impossible for you to get back to the standard bindings again in the same
session.

Finally, and very unlike vim, emacs allows you to use Lisp to write new commands or override old ones.
Stallman calls this feature online extensibility, but it would take a gutsy Lisp guru to write and debug a new
command while editing live text. It is much more common to add a few extra debugged commands to the
.emacs file, where they are loaded when emacs starts up. Experienced emacs users often write modes, or
environments, that are conditionally loaded by emacs for specific tasks.

tip: The screen and emacs windows

In this chapter, the term screen denotes a character-based terminal screen or a terminal emulator
window in a graphical environment. The term window refers to an emacs window within a screen.

tip: emacs and the X Window System

With version 19, GNU emacs fully embraced the X Window System environment. If you start
emacs from a terminal emulator window running in a graphical environment, you will bring up the
X (GUI) interface to emacs. This book does not cover the graphical interface; use the –nw option
when you start emacs to bring up the textual interface in any environment. See "Starting emacs" on
page 198.

 < Day Day Up >

 < Day Day Up >

Tutorial: Getting Started with emacs

The emacs editor has many, many features, and there are many ways to use it. Its complete manual includes
more than 35 chapters. Nevertheless, you can do a considerable amount of meaningful work with a relatively
small subset of the commands. This section describes a simple editing session, explaining how to start and
exit from emacs and how to move the cursor and delete text. Some issues are postponed or simplified in the
interest of clarity.

Starting emacs

To edit a file named sample using emacs as a text-based editor, enter the following command. The –nw
option, which must be the first option on the emacs command line, tells emacs not to use its X (GUI)
interface.

$ emacs -nw -q sample

This command starts emacs, reads the file named sample into a buffer, and displays its contents on the
screen or window. If no file has this name, emacs displays a blank screen with New File at the bottom
(Figure 7-1). If the file exists, emacs displays another message (Figure 7-2, page 200). The – q option tells
emacs not to read the ~/.emacs startup file from your home directory. Not reading the startup file guarantees
that you get standard, uncustomized behavior and is sometimes useful for beginners or for other users who
want to bypass a .emacs file.

Figure 7-1. The emacs welcome screen

[View full size image]

Figure 7-2. Sample buffer

[View full size image]

The screen starts with a single window. At the bottom of this window is a reverse-video titlebar called the
Mode Line. At a minimum, the Mode Line shows which buffer the window is viewing, whether the buffer
has been changed, what major and minor modes are in effect, and how far down the buffer the window is
positioned. When you have more than one window, one Mode Line appears in each window. At the bottom
of the screen, emacs leaves a single line open. This Echo Area, or Minibuffer, line is used for short messages
and special one-line commands.

A cursor is in the window or Minibuffer. All input and nearly all editing takes place at the cursor. As you
type ordinary characters, emacs inserts them at the cursor position. If characters are under the cursor or to its
right, they get pushed to the right as you type, so no characters are lost.

Stopping emacs

The command to exit from emacs is the two-key sequence CONTROL-X CONTROL-C. You can give this
command at almost any time (in some modes you may have to press CONTROL-G first). It stops emacs
gracefully, asking you to confirm changes if you made any during the editing session.

If you want to cancel a half-typed command or stop a running command before it is done, you can quit by
pressing CONTROL-G. The emacs editor displays Quit in the Echo Area and waits for your next command.

Inserting Text

Typing an ordinary (printing) character pushes the cursor and any characters to the right of the cursor one
position to the right and inserts the new character in the position just opened. Backspacing pulls the cursor
and any characters to the right of the cursor one position to the left, erasing the character that was there
before.

Deleting Characters

Depending on the keyboard you are using and the emacs startup file, different keys may delete characters in
different ways. CONTROL-D typically deletes the character under the cursor, as do DELETE and DEL.
BACKSPACE typically deletes the character to the left of the cursor. Try each of these keys and see what it
does.

tip: More about deleting characters

If the instructions described in this section do not work, read the emacs info section on deletion.
Give this command from a shell prompt:

$ info emacs

From info give the command m deletion to display a document that describes in detail how to
delete small amounts of text. Use the SPACE bar to scroll through the document. Type q to exit
from info.

Start emacs and type a few lines of text. If you make a mistake, use the deletion characters discussed
previously. The RETURN key inserts an invisible end-of-line character in the buffer and returns the cursor to

the left margin, one line down. It is possible to back up past the start of a line and up to the end of the
previous line. Figure 7-2 shows a sample buffer.

Moving the Cursor

You can position the cursor over any character in the emacs window and move the window so it displays any
portion of the buffer. You can move the cursor forward or backward through the text (Figure 6-8, page 155)
by various textual units—for example, characters, words, sentences, lines, and paragraphs. Any of the
cursor-movement commands can be preceded by a repetition count (CONTROL-U followed by a numeric
argument), which causes the cursor to move that number of textual units through the text. Refer to page 205
for a discussion of numeric arguments.

tip: Use the ARROW keys

Sometimes the easiest way to move the cursor is by using the LEFT, RIGHT, UP, and DOWN
ARROW keys.

Moving the Cursor by Characters

CONTROL-F

Pressing the RIGHT ARROW key or CONTROL-F moves the cursor forward one character. If the cursor is
at the end of a line, these commands wrap it to the beginning of the next line. The command CONTROL-U 7
CONTROL-F moves the cursor seven characters forward (to the right).

CONTROL-B

Pressing the LEFT ARROW key or CONTROL-B moves the cursor backward one character. The command
CONTROL-U 7 CONTROL-B moves the cursor seven characters backward (to the left). CONTROL-B
works in a manner similar to CONTROL-F (Figure 7-3).

Figure 7-3. Moving the cursor by characters

Moving the Cursor by Words

META-f

Pressing META-f moves the cursor forward one word. To press META-f hold down the META or ALT key
while you press f . If you do not have either of these keys, press ESCAPE, release it, and then press f. This
command leaves the cursor on the first character that is not part of the word the cursor started on. The
command CONTROL-U 4 META-f moves the cursor forward one space past the end of the fourth word. See
page 204 for more about keys.

META-b

Pressing META-b moves the cursor backward one word so the cursor is on the first letter of the word it
started on. If the cursor was on the first letter of a word, META-b moves the cursor to the first letter of the
preceding word. It works in a manner similar to META-f (Figure 7-4).

Figure 7-4. Moving the cursor by words

Moving the Cursor by Lines

CONTROL-A CONTROL-E
CONTROL-P CONTROL-N

Pressing CONTROL-A moves the cursor to the beginning of the line it is on; CONTROL-E moves it to the
end. Pressing the UP ARROW key or CONTROL-P moves the cursor up one line to the position directly
above where the cursor started; the DOWN ARROW key or CONTROL-N moves it down. As with the other
cursor-movement keys, you can precede CONTROL-P and CONTROL-N with CONTROL-U and a numeric
argument to move up or down multiple lines. You can use pairs of these commands to move the cursor up to
the beginning of the previous line, down to the end of the following line, and so on (Figure 7-5).

Figure 7-5. Moving the cursor by lines

Moving the Cursor by Sentences, Paragraphs, and Window Position

META-a, META-e META-{, META-}

Pressing META-a moves the cursor to the beginning of the sentence the cursor is on; META-e moves the
cursor to the end. META-{ moves the cursor to the beginning of the paragraph the cursor is on; META-}
moves it to the end. (Sentences and paragraphs are defined starting on page 227.) You can precede any of
these commands with a repetition count (CONTROL-U and a numeric argument) to move the cursor that
many sentences or paragraphs.

META-r

Pressing META-r moves the cursor to the beginning of the middle line of the window. You can precede this
command with CONTROL-U and a line number (here CONTROL-U does not indicate a repetition count but
a screen line number). The command CONTROL-U 0 META-r moves the cursor to the beginning of the top
line (line zero) in the window. You can replace zero with the line number of the line you want to move the
cursor to or with a minus sign (–), in which case the cursor moves to the beginning of the last line of the
window (Figure 7-6).

Figure 7-6. Moving the cursor by sentences, paragraphs, and window position

[View full size image]

Editing at the Cursor Position

With the cursor in the window you can type new text, pushing the existing text to the right. Entering new
text requires no special commands once the cursor is positioned. If you type so many characters that the text
in a line goes past the right edge of the window, emacs puts a backslash (\) near the right edge of the window
and wraps the text to the next line. The backslash appears on the screen but is not saved as part of the file
and is never printed. Although you can create an arbitrarily long line, some UNIX tools have problems with
text files containing such lines. You can split a line at any point by positioning the cursor and pressing
RETURN.

Deleting text

Pressing DELETE removes characters to the left of the cursor. The cursor and the remainder of the text on
this line both move to the left each time you press DELETE. To join a line with the line above it, position the
cursor on the first character of the second line and press DELETE.

Press CONTROL-D to delete the character under the cursor. The cursor remains stationary, but the
remainder of the text on the line moves left to replace the deleted character. See the tip "More about deleting
characters" on page 199 if either of these keys does not work as described here.

Saving and Retrieving the Buffer

No matter what happens to a buffer during an emacs session, the associated file does not change until you
save the buffer. If you leave emacs without saving the buffer (this is possible if you are insistent enough), the
file is not changed and the session's work is discarded.

Backups

As mentioned previously, emacs prompts you about unsaved changes to the buffer contents. As it writes a
buffer's edited contents back to the file, emacs may optionally first make a backup of the original file

contents. You can choose to make no backups, one level (default), or an arbitrary number of levels. The one-
level backup filenames are formed by appending a ~ character to the original filename. The multilevel
backups append .~n~ to the filename, where n is the sequential backup number, starting with 1. The version-
control variable dictates how emacs saves backups.

Saving the buffer

The command CONTROL-X CONTROL-S saves the current buffer in its associated file. The emacs editor
confirms a successful save with a message in the Echo Area.

Visiting another file

If you are already editing a file with emacs and want to edit another file (also called visiting a file), you can
copy the new file into a new emacs buffer by giving the command CONTROL-X CONTROL-F . The emacs
editor prompts you for a filename, reads that file into a new buffer, and displays that buffer in the current
window. Having two files open in one editing session is more convenient than exiting from emacs, returning
to the shell, and then starting a new copy of emacs to edit a second file.

tip: Visiting a file with CONTROL-X CONTROL-F

When you use CONTROL-X CONTROL-F, emacs partially completes the path to the filename
you are to enter. Normally it is the path to the working directory, but in some situations emacs may
display a different path, such as the path to your home directory. You can edit this path if it is not
pointing to the directory you want.

 < Day Day Up >

 < Day Day Up >

Basic Editing Commands

This section takes a more detailed look at the fundamental emacs editing commands. It covers
straightforward editing of a single file in a single window.

Keys: Notation and Use

Mainstream emacs uses the 128-character ASCII character set. ASCII keyboards have a typewriter-style
SHIFT key and a CONTROL key. Some keyboards also have a META (diamond or ALT) key that controls
the eighth bit. It takes seven bits to describe an ASCII character; the eighth bit of an eight-bit byte can be
used to communicate other information. Because so much of the emacs command set is in the nonprinting
CONTROL or META case, Stallman was one of the first to confront the problem of developing a notation
for writing about keystrokes.

His solution, although not popular outside the emacs community, is clear and unambiguous (Table 7-1). It
uses the capital letters C and M to denote holding down the CONTROL and META (or ALT) keys,
respectively, and a few simple acronyms for the most common special characters, such as RET (this book
uses RETURN), LFD (LINEFEED), DEL (DELETE), ESC (ESCAPE), SPC (SPACE), and TAB. Most
emacs documentation, including the online help, uses this notation.

Table 7-1. emacs key notation

Character Classic emacs notation

(lowercase) a a

(uppercase) SHIFT -a A

CONTROL-a C-a

CONTROL-A C-a (do not use SHIFT), equivalent to CONTROL-
a

META-a M-a

META-A M-A (do use SHIFT), different from M-a

CONTROL-META-a C-M-a

META-CONTROL-a M-C-a (not used frequently)

This use of keys had some problems. Many keyboards had no META key, and some operating systems
discarded the META bit. In addition, the emacs character set clashes with XON-XOFF flow control, which
also uses CONTROL-S and CONTROL-Q.

Although the flow-control problem still exists, the META key issue was resolved by making it an optional

two-key sequence starting with ESCAPE. For instance, you can type ESCAPE-a instead of META-a or type
ESCAPE CONTROL-A to get CONTROL-META-a . If the keyboard you are using does not have a META
or ALT key, you can use the two-key ESCAPE sequence by pressing the ESCAPE key, releasing it, and then
pressing the key following the META key in this book. For example, when this book says to press META-r,
you can either press the META or ALT key while you press r or press and release ESCAPE and then press r.

tip: The notation used in this book

This book uses an uppercase letter following the CONTROL key and a lowercase letter following
the META key. In either case you do not have to hold down the SHIFT key while entering a
CONTROL or META character . Although the META uppercase character (that is, META-A) is a
different character, it is usually set up to cause no action or the same effect as its lowercase
counterpart.

Key Sequences and Commands

In emacs the relationship between key sequences (one or more keys that are pressed together or in sequence
to issue an emacs command) and commands is very flexible, and there is considerable opportunity for
exercising your personal preference. You can translate and remap key sequences to other commands and
replace or reprogram commands.

Although most emacs documentation glosses over the details and talks about keystrokes as though they were
the commands, it is important to recognize that the underlying machinery remains separate from the key
sequences and to understand that you can change the behavior of the key sequences and the commands. For
more information refer to "Customizing emacs" on page 235.

META-x: Running a Command Without a Key Binding

The emacs keymaps (the tables, or vectors, that emacs uses to translate key sequences to commands [page
237]) are very crowded, and often it is not possible to bind every command to a key sequence. You can
execute any command by name by preceding it with META-x. When you press META-x, the emacs editor
prompts you for a command in the Echo Area. After you enter the command name and press RETURN, it
executes the command.

Smart completion

When a command has no common key sequence, it is sometimes described as META-x command-name .
The emacs editor has a smart completion for most prompted answers, using SPACE or TAB to complete, if
possible, to the end of the current word or the whole command, respectively. Forcing a completion past the
last unambiguous point or typing ? displays a list of alternatives. You can find more details on smart
completion in the online emacs manual.

Numeric Arguments

Some of the emacs editing commands accept a numeric argument as a repetition count. You place this
argument immediately before the key sequence for the command. Absence of an argument almost always
means a count of 1. Even an ordinary alphabetic character can have a numeric argument, which means
"insert this many times." To give a command a numeric argument, you can do either of the following:

Press META with each digit (0–9) or the minus sign (–). For example, to insert 10 z characters, type
META-1 META-0 z.

Use CONTROL-U to begin a string of digits, including the minus sign. For example, to move the
cursor forward 20 words, type CONTROL-U 20 META-f.

CONTROL-U

For convenience, CONTROL-U defaults to multiply by 4 when you do not follow it with a string of one or
more digits. For example, entering CONTROL-U r means insert rrrr (4 * 1), whereas CONTROL-U
CONTROL-U r means insert rrrrrrrrrrrrrrrr (4 * 4 * 1). For quick partial scrolling of a tall window, you
may find it convenient to use repeated sequences of CONTROL-U CONTROL-V to scroll down four lines,
CONTROL-U META-v to scroll up four lines, CONTROL-U CONTROL-U CONTROL-V to scroll down
16 lines, or CONTROL-U CONTROL-U META-v to scroll up 16 lines.

Point and the Cursor

Point is the place in a buffer where editing takes place and is where the cursor is positioned. Strictly
speaking, Point is the left edge of the cursor—it is thought of as lying between two characters.

Each window has its own Point, but there is only one cursor. When the cursor is in a window, moving the
cursor also moves Point. Switching the cursor out of a window does not change that window's Point; it is in
the same place when you switch the cursor back to that window.

All of the cursor-movement commands described previously also move Point.

Scrolling Through a Buffer

CONTROL-V META-v
CONTROL-L

A buffer is likely to be much larger than the window through which it is viewed, so you need a way of
moving the display of the buffer contents up or down to position the interesting part in the window. Scrolling
forward refers to moving the text upward, with new lines entering at the bottom of the window. Use
CONTROL-V or the PAGEDOWN key to scroll forward one window (minus two lines for context).
Scrolling backward refers to moving the text downward, with new lines entering at the top of the window.
Use META-v or the PAGEUP key to scroll backward one window (again leaving two lines for context).
Pressing CONTROL-L clears the screen and repaints it, moving the current line to the center of the window.
This command is useful if the screen becomes garbled.

A numeric argument to CONTROL-V or META-v means "scroll that many lines"; thus CONTROL-U 10
CONTROL-V means scroll forward ten lines. A numeric argument to CONTROL-L means "scroll the text
so the cursor is on that line of the window," where 0 means the top line and –1 means the bottom, just above
the Mode Line. Scrolling occurs automatically if you exceed the window limits with CONTROL-P or
CONTROL-N.

META-<META->

You can move the cursor to the beginning of the buffer with META-< or to the end of the buffer with
META->.

Erasing Text

Delete versus kill

When you erase text you can discard it or move it into a holding area and optionally bring it back later. The
term delete means permanently discard, and the term kill means move to a holding area. The holding area,
called the Kill Ring, can hold several pieces of killed text. You can use the text in the Kill Ring in many
ways (refer to "Cut and Paste: Yanking Killed Text" on page 215).

The META-d command kills from the cursor forward to the end of the current word. CONTROL-K kills
forward to the end of the current line. It does not delete the line-ending LINEFEED character unless Point
and the cursor are just to the left of the LINEFEED. This setup allows you to reach the left end of a line with
CONTROL-A, kill the whole line with CONTROL-K, and then immediately type a replacement line without
having to reopen a hole for the new line. Another consequence is that, from the beginning of the line, it takes
CONTROL-K CONTROL-K (or CONTROL-U 2 CONTROL-K) to kill the text and close the hole.

Searching

The emacs editor has several types of search commands. You can search in the following ways:

Incrementally for a character string

Incrementally for a regular expression (possible but uncommon)

For a complete character string

For a complete regular expression (Appendix A)

You can run each of the four types of searches either forward or backward in the buffer.

The complete searches behave in the same manner as a search on other editors. Searching begins only when
the search string is complete. In contrast, an incremental search begins when you type the first character of
the search string and keeps going as you enter additional characters. Initially this approach may sound
confusing, but it is surprisingly useful.

Incremental Searches

CONTROL-S CONTROL-R

A single command selects the direction of and starts an incremental search. CONTROL-S starts a forward
incremental search, and CONTROL-R starts a reverse incremental search.

When you start an incremental search, emacs prompts you with I-search: in the Echo Area. When you enter
a character, it immediately searches for that character in the buffer. If it finds that character, emacs moves
Point and cursor to that position so you can see the search progress. If the search fails, emacs tells you so.

After you enter each character of the search string, you can take one of several actions depending on the
result of the search to that point.

The search finds the string you are looking for in the buffer, leaving the cursor positioned just to its
right. Stop the search and leave the cursor in its new position by pressing RETURN. (Any emacs
command not related to searching will also stop the search but remembering exactly which ones apply
can be difficult. For a new user, RETURN is safer.)

The search finds a string but it is not the one you are looking for. You can refine the search string by
adding another letter, press CONTROL-R or CONTROL-S again to look for the next occurrence of this
search string, or press RETURN to stop the search and leave the cursor where it is.

The search hits the beginning or end of the buffer and reports Failing I-Search. You can proceed in
several ways at this point.

If you mistyped the search string, press BACKSPACE as needed to remove characters from the
search string. The text and cursor in the window jump backward in step with your removal of
characters.

If you want to wrap past the beginning or end of the buffer and continue searching, you can force
a wrap by pressing CONTROL-R or CONTROL-S again.

If the search has not found the string you are looking for but you want to leave the cursor at its
current position, press RETURN to stop the search.

If the search has gone wrong and you just want to get back to where you started, press
CONTROL-G (the quit character). From an unsuccessful search a single CONTROL-G backs out
all the characters in the search string that could not be found. If this action returns you to a place
you wish to continue searching from, you can add characters to the search string again. If you do
not want to continue the search from that position, a second CONTROL-G stops the search and
leaves the cursor where it was initially.

Nonincremental Searches

CONTROL-S RETURN CONTROL-R RETURN

If you prefer that your searches succeed or fail without showing all the intermediate results, you can give the
nonincremental command CONTROL-S RETURN to search forward or CONTROL-R RETURN to search
backward. Searching does not begin until you enter a search string in response to the emacs prompt and press
RETURN again. Neither of these commands wraps past the end of the buffer.

Regular Expression Searches

You can perform both incremental and nonincremental regular expression searching in emacs. Use the
commands listed in Table 7-2 to begin a regular expression search.

Table 7-2. Searching for regular expressions

Command Result

META-CONTROL-s Incrementally searches forward for a regular
expression; prompts for a regular expression one
character at a time

META-x isearch-backward-
regexp

Incrementally searches backward for a regular
expression; prompts for a regular expression one
character at a time

META-x isearch-complete
RETURN

Prompts for and then searches forward for a
complete regular expression

META-x isearch-backward-
regexp RETURN

Prompts for and then searches backward for a
complete regular expression

 < Day Day Up >

 < Day Day Up >

Online Help

The emacs help system is always available. With the default key bindings, you can start it with CONTROL-
H. The help system then prompts you for a one-letter help command. If you do not know which help
command you want, type ? or CONTROL-H to switch the current window to a list of help commands, each
with a one-line description; emacs again requests a one-letter help command. If you decide you do not want
help after all, type CONTROL-G to cancel your help request and return to the former buffer.

If the help output is only a single line, it appears in the Echo Area. If it consists of more text, the output
appears in its own window. Use CONTROL-V and META-v to scroll forward and backward through the
buffer (page 206). You can move the cursor between windows with CONTROL-X o (lowercase "o"). See
page 222 for a discussion on working with multiple windows.

On many terminals the BACKSPACE or LEFT ARROW key generates CONTROL-H. If you forget that you
are using emacs and try to back over a few characters, you may unintentionally enter the help system. This
action does not pose a danger to the buffer you are editing, but it can be unsettling to lose the window
contents and not have a clear picture of how to restore it. While you are being prompted for the type of help
you want you can type CONTROL-G to remove the prompt and return to editing the buffer. Some users elect
to put help on a different key (page 237). Table 7-3 lists some of the help commands.

Table 7-3. Help commands

Command Type of help offered

CONTROL-H a Prompts for a string and displays a list of commands
whose names contain that string.

CONTROL-H b Displays a long table of the key bindings in effect.

CONTROL- H c key-
sequence

Displays the name of the command bound to key-
sequence . Multiple key sequences are allowed. For a
long key sequence where only the first part is
recognized, the command describes the first part and
quietly inserts the unrecognized part into the buffer.
This can happen with three-character function keys
(F1, F2, and so on, on the keyboard) that generate
character sequences such as ESCAPE [SHIFT.

CONTROL-H f Prompts for the name of a Lisp function and displays
the documentation for it. Because commands are Lisp
functions, you can use a command name with this
command.

CONTROL-H i Displays the top info (page 32) menu where you can
browse emacs or other documentation.

CONTROL-H k key-sequence Displays the name and documentation of the command
bound to key-sequence . (See the notes on CONTROL-
H c.)

CONTROL-H l (lowercase
"l")

Displays the last 100 characters typed. The record is
kept after the first-stage keyboard translation. If you
have customized the keyboard translation table, you
must make a mental reverse translation.

CONTROL-H m Displays the documentation and special key bindings
for the current Major mode (Text, C, Fundamental,
and so on, [page 226]).

CONTROL-H n Displays the emacs news file which lists recent
changes to emacs, ordered with the most recent
changes first. See the tip "Closing the help window"
on page 210.

CONTROL-H t Runs an emacs tutorial session. See the tip "Closing
the help window" on page 210.

CONTROL-H v Prompts for a Lisp variable name and displays the
documentation for that variable.

CONTROL-H w Prompts for a command name and identifies any key
sequence bound to that command. Multiple key
sequences are allowed. (See the notes on CONTROL-
H c.)

tip: Closing the help window

To delete the help window while the cursor is in the window that holds the text you are editing,
type CONTROL-X 1 (one). Alternatively, you can move the cursor to the help window
(CONTROL-X o [lowercase "o"]) and type CONTROL-X 0 (zero) to delete the current window.

If help displays a window that occupies the entire screen, as is the case with CONTROL-H n
(emacs news) and CONTROL-H t (emacs tutorial), you can kill the help buffer with CONTROL-X
k or use CONTROL-X b to switch buffers (both on page 220).

As this abridged presentation makes clear, you can use the help system to browse through the emacs internal
Lisp system. For the curious, following is Stallman's list of strings that match many names in the Lisp
system. To get a view of the internal functionality of emacs, you can use any of these strings with
CONTROL-H a (help system list of commands) or META-x apropos (prompts for a string and lists
variables whose names contain that string).

backward dir insert previous view

beginning down kill region what

buffer end line register window

case file list screen word

change fill mark search yank

char find mode sentence

defun forward next set

delete goto page sexp

describe indent paragraph up

 < Day Day Up >

 < Day Day Up >

Advanced Editing

The basic emacs commands suffice for many editing tasks but the serious user will quickly discover the need
for more power. This section presents some of the more advanced emacs capabilities.

Undoing Changes

An editing session begins when you read a file into an emacs buffer. At that point the buffer content matches
the file exactly. As you insert text and give editing commands, the buffer content becomes increasingly more
different from the file. If you are satisfied with the changes, you can write the altered buffer back out to the
file and end the session.

Near the left end of the Mode Line (Figure 7-1, page 198) is an indicator that shows the modification state of
the buffer that is displayed in the window. The three possible states are – – (not modified), ** (modified),
and %% (readonly).

The emacs editor keeps a record of all the keys you have pressed (text and commands) since the beginning of
the editing session, up to a limit currently set at 20,000 characters. If you are within this limit, it is possible
to undo the entire session for this buffer, one change at a time. If you have multiple buffers (page 220), each
buffer has its own undo record.

Undoing is considered so important that it has a backup key sequence, just in case some keyboards cannot
easily handle the primary sequence. The two sequences are CONTROL-_ (underscore, which on old ASR-33
TTY keyboards was LEFT ARROW) and CONTROL-X u. When you type CONTROL-_, emacs undoes the
last command and moves the cursor to that position in the buffer so you can see what happened. If you type
CONTROL-_ a second time, the next-to-last command is undone, and so on. If you keep typing CONTROL-
_, eventually you will get the buffer back to its original unmodified state and the ** Mode Line indicator will
change to – –.

When you break the string of Undo commands with anything (text or any command except Undo), all
reverse changes you made during the string of undos become a part of the change record and can themselves
be undone. This strategy offers a way to redo some or all the undo operations. If you decide you backed up
too far, type a command (something innocuous, such as CONTROL-F , that does not change the buffer), and
begin undoing in reverse. Table 7-4 lists some examples of Undo commands.

Table 7-4. Undo commands

Commands Result

CONTROL-_ Undoes the last change

CONTROL-_ CONTROL-F CONTROL-_ Undoes the last change and changes it
back again

CONTROL-_ CONTROL-_ Undoes the last two changes

CONTROL-_ CONTROL-_ CONTROL-F
CONTROL-_ CONTROL-_

Undoes two changes and changes them
both back again

CONTROL-_ CONTROL-_ CONTROL-F
CONTROL-_

Undoes two changes and changes one of
them back again

If you do not remember the last change you made, you can type CONTROL-_ and undo it. If you wanted to
make this change, type CONTROL-F CONTROL-_ and make it again. If you modified a buffer by accident,
you can keep typing CONTROL-_ until the Mode Line indicator shows – – once more.

If the buffer is completely ruined and you want to start over, issue the command META-x revert-buffer to
discard the current buffer contents and reread the associated file. The emacs editor asks you to confirm this
command.

Mark and Region

Point is the current editing position in a buffer which you can move anywhere within the buffer by moving
the cursor. It is also possible to set a marker called Mark in the buffer. The contiguous characters between
Point and Mark (either one may come first) are called the Region . Many commands operate on a buffer's
Region, not just on the characters near Point.

Moving Mark and Establishing a Region

CONTROL-@ CONTROL-SPACE CONTROL-X CONTROL-X

Mark is not as easy to move as Point. Once set, Mark can be moved only by setting it somewhere else. Each
buffer has only one Mark. The CONTROL-@ (or CONTROL-SPACE) command explicitly sets Mark at the
current cursor (and Point) position. Some keyboards generate CONTROL-@ when you type CONTROL-Q.
Although this is not really a backup key binding, it is occasionally a convenient alternative. You can use
CONTROL-X CONTROL-X to exchange Point and Mark (and move the cursor to the new Point).

To establish a Region, you usually position the cursor (and Point) at one end of the desired Region, set Mark
with CONTROL-@, and then move the cursor (and Point) to the other end of the Region. If you forget where
you left Mark, you can move the cursor back to it again with CONTROL-X CONTROL-X or hop back and
forth with repeated CONTROL-X CONTROL-X to show the Region more clearly.

If a Region boundary is not to your liking, you can swap Point and Mark using CONTROL-X CONTROL-X

to move the cursor from one end of the Region to the other and then move Point. Continue until you are
satisfied with the Region.

Operating on a Region

Table 7-5 lists selected commands that operate on a Region. Give the command CONTROL-H a region to
see a complete list of these commands.

Table 7-5. Operating on a region

Command Result

META-w Copies the Region nondestructively (without killing it)
to the Kill Ring

CONTROL-W Kills the Region

META-x print-region Sends the Region to the printer

META-x append-to-buffer Prompts for a buffer and appends the Region to that
buffer

META-x append-to-file Prompts for a filename and appends the Region to that
file

META-x capitalize-region Converts the Region to uppercase

The Mark Ring

Each time you set Mark in a buffer, you are also pushing Mark's former location onto the buffer's Mark Ring .
The Mark Ring is organized as a FIFO (first-in-first-out) list and holds the 16 most recent locations where
Mark was set. Each buffer has its own Mark Ring. This record of recent Mark history is useful because it
often holds locations that you want to jump back to quickly. Jumping to a location pointed to by the Mark
Ring can be faster and easier than scrolling or searching your way through the buffer to find the site of a
previous change.

CONTROL-U CONTROL-@

To work your way backward along the trail of former Mark locations, give the command CONTROL-U
CONTROL-@ one or more times. Each time you give the command, emacs

Moves Point (and the cursor) to the current Mark location

Saves the current Mark location at the oldest end of the Mark Ring

Pops off the youngest (most recent) Mark Ring entry and sets Mark

Each additional CONTROL-U CONTROL-@ command causes emacs to move Point and the cursor to the

previous entry on the Mark Ring.

Although this process may seem complex, it really just makes a safe jump to a previous Mark location. It is
safe because each jump's starting point is recirculated through the Mark Ring, where it is easy to find again.
You can jump to all previous locations on the Mark Ring (it may be fewer than 16) by giving the command
CONTROL-U CONTROL-@ again and again. You can go around the ring as many times as you like and
stop whenever you want.

Setting Mark Automatically

Some commands set Mark automatically: The idea is to leave a bookmark before moving Point a long
distance. For example, META-> sets Mark before jumping to the end of the buffer. You can then return to
your starting position with CONTROL-U CONTROL-@. Searches behave similarly. To avoid surprises the
message Mark Set appears in the Echo Area whenever Mark is set, either explicitly or implicitly.

Cut and Paste: Yanking Killed Text

Recall that killed text is not discarded but rather is kept in the Kill Ring. The Kill Ring holds the last 30
pieces of killed text and is visible from all buffers.

Retrieving text from the Kill Ring is called yanking. This terminology is the opposite of that used in vim: In
vim yanking pulls text from the buffer, and putting puts text into the buffer. Killing and yanking—which are
roughly analogous to cutting and pasting—are emacs's primary mechanisms for moving and copying text.
Table 7-6 lists the most common kill and yank commands.

Table 7-6. Common kill and yank commands

Command Result

META-d Kills to end of current word

META- D Kills from beginning of previous word

CONTROL-K Kills to end of line, not including LINEFEED

CONTROL-U 1 CONTROL-
K

Kills to end of line, including LINEFEED

CONTROL-U 0 CONTROL-
K

Kills from beginning of line

META-w Copies the Region (between Point and Mark) to the Kill
Ring but does not erase the Region from the buffer

CONTROL-W Kills the Region (between Point and Mark)

META-z char Kills up to next occurrence of char

CONTROL-Y Yanks the most recently killed text into the current
buffer at Point, sets Mark at the beginning of this text,
and positions Point and the cursor at the end

META-y Erases the just-yanked text, rotates the Kill Ring, and
yanks the next item (only after CONTROL-Y or
META-y)

To move two lines of text, move Point to the beginning of the first line and then enter CONTROL-U 2
CONTROL-K to kill two lines. Next move Point to the destination position, and enter CONTROL-Y.

To copy two lines of text, move Point to the beginning of the first line and give the commands CONTROL-
U 2 CONTROL-K CONTROL-Y to kill and then yank back immediately. Then move Point to the
destination position and type CONTROL-Y.

To copy a larger piece of the buffer, set the Region to cover this piece and then type CONTROL-W
CONTROL-Y to kill and yank back at once. Next move Point to the destination, and type CONTROL-Y.
You can also set the Region and use META-w to copy the Region to the Kill Ring.

The Kill Ring is organized as a fixed-length FIFO list, with each new entry causing the eldest to be discarded
(once you build up to 30 entries). Simple cut-and-paste operations generally use only the newest entry. The
older entries are retained to give you time to change your mind about a deletion. If you do change your mind
you can "mine" the Kill Ring like an archaeological dig, working backward through time and down through
the strata of killed material to copy a specific item back into the buffer.

To view every entry in the Kill Ring, begin a yanking session by pressing CONTROL-Y. This action copies
the youngest entry to your buffer at the current cursor position. If this entry is not the item you want,
continue the yanking session by pressing META-y. This action erases the previous yank and copies the next
youngest entry to the buffer at the current cursor position. If this still is not the item you wanted, press
META-y again to erase it and retrieve a copy of the next entry, and so on. You can continue giving META-y
commands all the way back to the oldest entry. If you continue to press META-y, you wrap back to the
youngest entry again. In this manner you can examine each entry as many times as you wish.

The sequence used in a yanking session consists of CONTROL-Y followed by any mixture of CONTROL-Y
and META-y. If you type any other command after META-y, the sequence is broken and you must give the
CONTROL-Y command again to start another yanking session.

As you work backward in the Kill Ring, it is useful to think of this process as advancing a Last Yank pointer
back through history to increasingly older entries. This pointer is not reset to the youngest entry until you
give a new kill command. Using this technique, you can work backward partway through the Kill Ring with
CONTROL-Y and a few META-y commands, give some commands that do not kill, and then pick up where
you left off with another CONTROL-Y and a succession of META-y commands.

It is also possible to position the Last Yank pointer with positive or negative numeric arguments to META-y
. Refer to the online documentation for more information.

Inserting Special Characters

As stated earlier, emacs inserts everything that is not a command into the buffer at the position of the cursor.

To insert characters that would ordinarily be emacs commands, you can use the emacs escape character:
CONTROL-Q. There are two ways of using this escape character:

CONTROL-Q followed by any other character inserts that character in the buffer, no matter what
command interpretation it was supposed to have.

CONTROL-Q followed by three octal digits inserts a byte with that value in the buffer.

tip: CONTROL-Q

Depending on the way your terminal is set up, CONTROL-Q may clash with software flow
control. If CONTROL-Q seems to have no effect, it is most likely being used for flow control. In
that case you must bind another key to the command quoted-insert (page 237).

Global Buffer Commands

The vim editor and its predecessors have global commands for bufferwide search and replace operations.
Their default operating Region is the entire buffer. The emacs editor has a similar family of commands. Their
operating Region begins at Point and extends to the end of the buffer. If you wish to operate on the entire
buffer, use META-< to set Point at the beginning of the buffer before issuing the command.

Line-Oriented Operations

The commands listed in Table 7-7 take a regular expression and apply it to the lines between Point and the
end of the buffer.

Table 7-7. Line-oriented operations

Command Result

META-x occur Prompts for a regular expression and copies each line
with a match for the expression in a buffer named
Occur

META-x delete-matching-
lines

Prompts for a regular expression and deletes each line
with a match for the expression

META-x delete-non-
matching-lines

Prompts for a regular expression and deletes each line
that does not have a match for that expression

The META-x occur command puts its output in a special buffer named *Occur*, which you can peruse and
discard or use as a jump menu to reach each line quickly. To use the *Occur* buffer as a jump menu, switch
to it (CONTROL-X o [lowercase "o"]), move the cursor to the copy of the desired destination line, and type

CONTROL-C CONTROL-C. This command moves the cursor to the buffer that was searched and positions
it on the line that the regular expression matched.

As with any buffer change, you can undo the deletion commands.

Unconditional and Interactive Replacement

The commands listed in Table 7-8 operate on the characters between Point and the end of the buffer,
changing every string match or regular expression match. An unconditional replacement makes all
replacements automatically. An interactive replacement gives you the opportunity to see and approve each
replacement before it is made.

Table 7-8. Replacement commands

Command Result

META-x replace-string Prompts for string and newstring and replaces every
instance of string with newstring . Point is left at the
site of the last replacement, but Mark is set when you
give the command, so you can return to it with
CONTROL-U CONTROL-@.

META-x replace-regexp Prompts for regexp and newstring and replaces
every match for regexp with newstring . Point is left
at the site of the last replacement, but Mark is set
when you give the command, so you can return to it
with CONTROL-U CONTROL-@.

META-% string or META-x
query-replace

The first form uses string , the second form prompts
for string . Both forms prompt for newstring , query
each instance of string, and, depending on your
response, replace it with newstring . Point is left at
the site of the last replacement, but Mark is set when
you give the command, so you can return to it with
CONTROL-U CONTROL-@.

META-x query-replace-regexp Prompts for regexp and newstring , queries each
match for regexp , and, depending on your response,
replaces it with newstring . Point is left at the site of
the last replacement, but Mark is set when you give
the command, so you can return to it with
CONTROL-U CONTROL-@.

If you perform an interactive replacement, emacs displays each instance of string or match for regexp and
prompts you for an action to take. Table 7-9 lists some of the possible responses.

Table 7-9. Responses to interactive replacement prompts

Response Meaning

RETURN Do not do any more replacements; quit now.

SPACE Make this replacement and go on.

DELETE Do not make this replacement. Skip it and go on.

, (comma) Make this replacement, display the result, and ask for
another command. Any command is legal except
DELETE is treated like SPACE and does not undo the
change.

. (period) Make this replacement and quit searching.

! (exclamation point) Replace this and all remaining instances without asking
any more questions.

Files

When you visit (emacs terminology for "call up") a file, emacs reads it into a buffer (page 220), allows you to
edit the buffer, and eventually saves the buffer back to the file. The commands discussed here relate to
visiting and saving files.

META-x pwd META-x cd

Each emacs buffer keeps a record of its default directory (the directory the file was read from or the working
directory, if it is a new file) that is prepended to any relative pathname you specify. This convenience is
meant to save some typing. Enter META-x pwd to print the default directory for the current buffer or
META-x cd to prompt for a new default directory and assign it to this buffer.

Visiting Files

The emacs editor deals well with visiting a file that has already been called up and whose image is now in a
buffer. After a check of the modification time to ensure that the file has not been changed since it was last
called up, emacs simply switches to that buffer. Table 7-10 lists commands used to visit files.

Table 7-10. Visiting files

Command Result

CONTROL-X CONTROL-F Prompts for a filename and reads its contents into a
freshly created buffer. Assigns the file's simple
filename as the buffer name. Other buffers are
unaffected. It is common and often useful to have
several files open simultaneously for editing.

CONTROL-X CONTROL-V Prompts for a filename and replaces the current
buffer with a buffer containing the contents of the
requested file. The current buffer is destroyed.

CONTROL-X 4 CONTROL-F Prompts for a filename and reads its contents into a
new buffer. Assigns the file's simple filename as
the buffer name. Creates a new window for this
buffer and selects that window. The window
selected before the command still displays the
buffer it was showing before this operation,
although the new window may cover up part of the
old window.

To create a new file, simply call it up. An empty buffer is created and properly named so you can eventually
save it. The message (New File) appears in the Echo Area, reflecting emacs's understanding of the situation.
Of course, if this "new file" grew out of a typographical error, you will probably want to issue CONTROL-X
CONTROL-V with the correct name.

Saving Files

You save a buffer by copying its contents back to the original file you called up. The relevant commands are
listed in Table 7-11.

Table 7-11. Saving files

Command Result

CONTROL-X CONTROL-S This workhorse file-saving command saves the current
buffer into its original file. If the current buffer is not
modified, you get the following message: (No changes
need to be saved).

CONTROL-X s For each modified buffer, you are asked whether you
wish to save it. Answer y or n. This command is given
automatically as you exit from emacs and allows you to
save any buffers that have been modified but not yet
written out. If you want to save intermediate copies of
your work, you can give this command at any time.

META-x set-visited-file-
name

Prompts for a filename and sets this name as the current
buffer's "original" name.

CONTROL-X CONTROL-W Prompts for a filename, sets this name as the "original"
name for the current buffer, and saves the current buffer
into that file. It is equivalent to META-x set-visited-
file-name followed by CONTROL-X CONTROL-S.

META-~ (tilde) Clears modified flag from the current buffer. If you
mistakenly typed META-~ against a buffer with
changes you want to keep, you need to make sure that
the modified condition and its ** indicator are turned
back on before leaving emacs, or all the changes will be
lost. One easy way to do this is to insert a SPACE into
the buffer and then remove it again with DELETE.

Buffers

An emacs buffer is a storage object that you can edit. It often holds the contents of a file but can also exist
without being associated with a file. You can select only one buffer at a time, designated as the current
buffer. Most commands operate only on the current buffer, even when multiple windows show two or more
buffers on the screen. For the most part each buffer is its own world: It has its own name, its own modes, its
own file associations, its own modified state, and perhaps its own special key bindings. You can use the
commands shown in Table 7-12 to create, select, list, and manipulate buffers.

Table 7-12. Work with buffers

Command Result

CONTROL-X b Prompts for a buffer name and selects it. If the buffer you
name does not exist, this command creates it.

CONTROL-X 4 b Prompts for a buffer name and selects it in another window.
The existing window is not disturbed, although the new
window may overlap it.

CONTROL-X
CONTROL-B

Creates a buffer named * Buffer list * and displays it in
another window. The existing window is not disturbed,
although the new window may overlap it. The new buffer is
not selected. In the * Buffer list * buffer, each buffer's data
is shown along with the name, size, mode(s), and original
filename. A % appears for a readonly buffer, a * indicates a
modified buffer, and . appears for the selected buffer.

META-x rename-buffer Prompts for a new buffer name and gives this new name to
the current buffer.

CONTROL-X
CONTROL-Q

Toggles the current buffer's readonly status and the
associated %% Mode Line indicator. This can be useful to
prevent accidental buffer modification or to allow
modification of a buffer when visiting a readonly file.

META-x append-to-
buffer

Prompts for a buffer name and appends the Region
(between Point and Mark) to the end of that buffer.

META-x prepend-to-
buffer

Prompts for a buffer name and prepends the Region
(between Point and Mark) to the beginning of that buffer.

META-x copy-to-buffer Prompts for a buffer name and deletes the contents of the
buffer before copying the Region (between Point and Mark)
to that buffer.

META-x insert-buffer Prompts for a buffer name and inserts the entire contents of
that buffer into the current buffer at Point.

CONTROL-X k Prompts for a buffer name and deletes that buffer. If the
buffer is modified but unsaved, you are asked to confirm
the operation.

META-x kill-some-
buffers

Goes through the entire buffer list and offers the chance to
delete each buffer. As with CONTROL-X k, you are asked
to confirm the kill command if a modified buffer is not yet
saved.

caution: Did you modify a buffer by mistake?

When you give a CONTROL-X s command, you may discover files whose buffers were modified
by mistake as emacs tries to save the wrong changes back to the file. When emacs prompts you to
confirm the save, do not answer y if you are not sure. First exit from the CONTROL-X s dialog by
typing n to any saves you are not sure about. You then have several options:

Save the suspicious buffer into a temporary file with CONTROL-X CONTROL-W and
analyze it later.

Undo the changes with a string of CONTROL-_ commands until the ** indicator disappears
from the buffer's Mode Line.

If you are sure that all the changes are wrong, use META-x revert-buffer to get a fresh copy
of the file.

Kill the buffer outright. Because it is modified, emacs asks whether you are sure before
carrying out this command.

Give the META-~ (tilde) command to clear the modified condition and ** indicator. A
subsequent CONTROL-X s then believes that the buffer does not need to be written.

caution: You can exit without first getting a warning

Clearing the modified flag (META-~) allows you to exit without saving a modified buffer with no
warning. Make sure you know what you are doing when you use META-~.

Windows

An emacs window is a viewport that looks into a buffer. The emacs screen begins by displaying a single
window, but this screen space can later be divided among two or more windows. On the screen the current
window holds the cursor and views the current buffer. For a tip on terminology, see "The screen and emacs
windows" on page 197.

A window views one buffer at a time. You can switch the buffer that a window views by giving the
command CONTROL-X b buffer-name in the current window. Multiple windows can view one buffer; each
window may view different parts of the same buffer; and each window has its own Point value. Any change
to a buffer is reflected in all the windows viewing that buffer. Also, a buffer can exist without a window
open on it.

Splitting a Window

One way to divide the screen is to split the starting window explicitly into two or more pieces. The command
CONTROL-X 2 splits the current window in two, with one new window appearing above the other. A
numeric argument is taken as the size of the upper window in lines. The command CONTROL-X 3 splits the
current window in two, with the new windows being arranged side by side (Figure 7-7). A numeric argument

is taken as the number of columns to give the left window. For example, CONTROL-U CONTROL-X 2
splits the current window in two; because of the special "times 4" interpretation of CONTROL-U standing
alone, the upper window is given four lines (barely enough to be useful).

Figure 7-7. Splitting a window vertically

[View full size image]

Although these commands split the current window, both windows continue to view the same buffer. You
can select a new buffer in either or both new windows, or you can scroll each window to show different
portions of the same buffer.

Manipulating Windows

CONTROL-X o META-CONTROL-V

You can use CONTROL-X o (lowercase "o") to select the other window. If more than two windows appear
on the screen, a sequence of CONTROL-X o commands cycles through them in top-to-bottom, left-to-right
order. The META-CONTROL-V command scrolls the other window. If more than two windows are visible,
the command scrolls the window that CONTROL-X o would select next. You can use a positive or negative
scrolling argument, just as with CONTROL-V scrolling in the current window.

Other-Window Display

CONTROL-X 4b CONTROL-X 4f

In normal emacs operation, explicit window splitting is not nearly as common as the implicit splitting done
by the family of CONTROL-X 4 commands. The CONTROL-X 4b command, for example, prompts for a
buffer name and selects it in the other window. If there is no other window, this command begins with a half-
and-half split that arranges the windows one above the other. The CONTROL-X 4f command prompts for a
filename , calls it up in the other window, and selects the other window. If there is no other window, this
command begins with a half-and-half split that arranges the windows one above the other.

Adjusting and Deleting Windows

CONTROL-X 0 CONTROL-X 1

Windows may be destroyed when they get in the way. No data is lost in the window's associated buffer with
this operation, and you can make another window whenever you like. The CONTROL-X 0 (zero) command
deletes the current window and gives its space to its neighbors; CONTROL-X 1 deletes all windows except
the current window.

META-x shrink-window CONTROL-X ^ CONTROL-X } CONTROL-X {

You can also adjust the dimensions of the current window, once again at the expense of its neighbors. To
make a window shorter, use META-x shrink-window . Use CONTROL-X ^ to increase the height of a
window, CONTROL-X } to make the window wider, and CONTROL-X { to make the window narrower.
Each of these commands adds or subtracts one line or column to or from the window, unless you precede the
command with a numeric argument.

The emacs editor has its own guidelines for a window's minimum useful size and may destroy a window
before you force one of its dimensions to zero. Although the window may disappear, the buffer remains
intact.

Foreground Shell Commands

The emacs editor can run a subshell (a shell that is a child of the shell that is running emacs—refer to
"Executing a Command" on page 294) to execute a single command line, optionally with standard input
coming from the Region of the current buffer and optionally with standard output replacing the Region
(Table 7-13). This process is analogous to executing a shell command from the vim editor and having the
input come from the file you are editing and the output go back to the same file (page 183). As with vim,
how well this process works depends in part on the capabilities of the shell.

Table 7-13. Foreground shell commands

Command Result

META-! (exclamation point) Prompts for a shell command, executes it, and displays
the output

CONTROL-U META-!
(exclamation point)

Prompts for a shell command, executes it, and inserts
the output at Point

META- | (vertical bar) Prompts for a shell command, gives the Region as
input, filters it through the command, and displays the
output

CONTROL-U META- |
(vertical bar)

Prompts for a shell command, gives the Region as
input, filters it through the command, deletes the old
Region, and inserts the output in that position

The emacs editor can also start an interactive subshell that runs continuously in its own buffer. See "Shell
Mode" on page 234 for more information.

Background Shell Commands

The emacs editor can run processes in the background, with their output being fed into a growing emacs
buffer that does not have to remain in view. You can continue editing while the background process runs and
look at its output later. Any shell command can be run in this way.

The growing output buffer is always named *compilation*. You can read it, copy from it, or edit it in any
way, without waiting for the background process to finish. Most commonly this buffer is used to review the
output of program compilation and to correct any syntax errors found by the compiler.

META-x compile

To run a process in the background, give the command META-x compile to prompt for a shell command
and begin executing it as a background process. The screen splits in half to show the *compilation* buffer.

You can switch to the *compilation* buffer and watch the execution, if you wish. To make the display scroll
as you watch, position the cursor at the very end of the text with a META-> command. If you are not
interested in this display just remove the window with CONTROL-X 0 (zero) if you are in it or CONTROL-
X 1 otherwise and keep working. You can switch back to the *compilation* buffer later with CONTROL-X
b.

You can kill the background process with META-x kill-compilation. The emacs editor asks for
confirmation and then kills the background process.

If standard format error messages appear in *compilation*, you can automatically visit the line in the file
where each error occurred. Give the command CONTROL-X' (back tick) to split the screen into two
windows and visit the file and line of the next error message. Scroll the *compilation* buffer until this error

message appears at the top of its window. Use CONTROL-U CONTROL-X' to start over with the first error
message and visit that file and line.

 < Day Day Up >

 < Day Day Up >

Language-Sensitive Editing

The emacs editor has a large collection of feature sets, each specific to a certain variety of text. The feature
sets are called Major modes. A buffer can have only one Major mode at any time.

A buffer's Major mode is private to the buffer and does not affect editing in any other buffer. If you switch to
a new buffer having a different mode, rules for the new mode immediately take effect. To avoid confusion,
the name of a buffer's Major mode appears in the Mode Line of any window viewing that buffer (Figure 7-1
on page 198).

The three classes of Major modes are used for the following tasks:

Editing human languages (for example, text, nroff, TeX)

Editing programming languages (for example, C, Fortran, Lisp)

Special purposes (for example, shell, mail, dired, ftp)

In addition, one Major mode—Fundamental—does nothing special. A Major mode usually sets up the
following:

Special commands unique to the mode, possibly with their own key bindings. Languages may have just
a few special commands, but special-purpose modes may have dozens.

Mode-specific character syntax and regular expressions defining word constituent characters,
delimiters, comments, whitespace, and so on. This setup conditions the behavior of commands oriented
to syntactic units, such as words, sentences, comments, or parenthesized expressions.

Selecting a Major Mode

META-x modename

The emacs editor chooses and sets a mode when a file is called up by matching the filename against a set of
regular expression patterns describing the filename and filename extension. The explicit command to enter a
Major mode is META-x modename . This command is rarely used except to correct wrong guesses.

A file can define its own mode by including the text – *– modename – *– somewhere in the first nonblank
line, possibly inside a comment suitable for that programming language.

Human-Language Modes

A human language is meant eventually to be used by humans, possibly after being formatted by some text-

formatting program. Human languages share many conventions about the structure of words, sentences, and
paragraphs. With regard to these textual units, the major human language modes all behave in the same way.

Beyond this area of commonality, each mode offers additional functionality oriented to a specific text
formatter, such as TeX, LaTeX, or nroff. Text-formatter extensions are beyond the scope of this
presentation; the focus here is on the commands relating to human textual units (for example, words,
sentences, and paragraphs).

Words

As a mnemonic aid, the bindings for words are defined parallel to the character-oriented bindings
CONTROL-F, CONTROL-B, CONTROL-D, DELETE, and CONTROL-T.

Just as CONTROL-F and CONTROL-B move forward and backward over characters, META-f and META-
b move forward and backward over words. They may start from a position inside or outside the word to be
traversed, but in all cases Point finishes just beyond the word, adjacent to the last character skipped over.
Both commands accept a numeric argument specifying the number of words to be traversed.

Just as CONTROL-D and DELETE delete characters forward and backward, the keys META-d and META-
DELETE kill words forward and backward. They leave Point in exactly the same finishing position as
META-f and META-b do, but they kill the words they pass over. They also accept a numeric argument.

META-t transposes the word before Point with the word after Point.

Sentences

As a mnemonic aid, three of the bindings for sentences are defined parallel to the line-oriented bindings:
CONTROL-A, CONTROL-E, and CONTROL-K. The META-a command moves backward to the beginning
of a sentence, and META-e moves forward to the end of a sentence. In addition, CONTROL-X DELETE
kills backward to the beginning of a sentence; META-k kills forward to the end of a sentence.

The emacs editor recognizes the ends of sentences by referring to a regular expression that is kept in a
variable named sentence-end. (If you are curious, give the command CONTROL-H v sentence-end
RETURN to view this variable.) Briefly, it looks for the characters ., ?, or ! followed by two SPACEs or an
end-of-line marker, possibly with close quotation marks or close braces.

The META-a and META-e commands leave Point adjacent to the first or last nonblank character in the
sentence. They accept a numeric argument specifying the number of sentences to traverse; a negative
argument runs them in reverse.

The META-k and CONTROL-X DELETE commands kill sentences forward and backward, in a manner
analogous to CONTROL-K line kill. They leave Point in exactly the same finishing position as META-a and
META-e do, but they kill the sentences they pass over. They also accept a numeric argument. CONTROL-X
DELETE is useful for quickly backing out of a half-finished sentence.

Paragraphs

The META-{ command moves backward to the most recent paragraph beginning, and META-} moves

forward to the next paragraph ending. The META-h command marks the paragraph (that is, puts Point at the
beginning and Mark at the end) that the cursor is currently on, or the next paragraph if it is between
paragraphs.

The META-} and META-{ commands leave Point at the beginning of a line, adjacent to the first character
or last character of the paragraph. They accept a numeric argument specifying the number of paragraphs to
traverse and run in reverse if given a negative argument.

In human-language modes, paragraphs are separated by blank lines and text-formatter command lines, and
an indented line starts a paragraph. Recognition is based on the regular expressions stored in the variables
paragraph-separate and paragraph-start. A paragraph is composed of complete lines, including the final
line terminator. If a paragraph starts following one or more blank lines, the last blank line before the
paragraph belongs to the paragraph.

Fill

The emacs editor can fill a paragraph to fit a specified width, breaking lines and rearranging them as
necessary. Breaking takes place only between words and no hyphenation occurs. Filling can be done
automatically as you type or in response to an explicit command.

The META-x auto-fill-mode command toggles Auto Fill mode on and off. When Auto Fill mode is on,
emacs automatically breaks lines when you press SPACE or RETURN and are currently beyond the
specified line width. This feature is useful when you are entering new text.

Auto Fill mode does not automatically refill the entire paragraph you are currently working on. If you add
new text in the middle of a paragraph, Auto Fill mode breaks your new text as you type but does not refill
the complete paragraph. To refill a complete paragraph or Region of paragraphs, use either META-q to refill
the current paragraph or META-x fill-region to refill each paragraph in the Region between Point and Mark.

You can change the filling width from its default value of 70 by setting the fill-column variable. Use
CONTROL-X f to set fill-column to the current cursor position and CONTROL-U nnn CONTROL-X f to
set fill-column to nnn , where 0 is the left margin.

Case Conversion

The emacs editor can force words or Regions to all uppercase, all lowercase, or initial caps (the first letter of
each word uppercase, the rest lowercase). Refer to Table 7-14.

Table 7-14. Case conversion

Command Result

META- l (lowercase "l") Converts word to the right of Point to lowercase

META-u Converts word to the right of Point to uppercase

META-c Converts word to the right of Point to initial caps

CONTROL-X CONTROL-L Converts the Region (between Point and Mark) to
lowercase

CONTROL-X CONTROL-U Converts the Region (between Point and Mark) to
uppercase

The word-oriented conversions move Point over the word just converted (just as META-f does), allowing
you to walk through text and convert each word with META-l, META-u, or META-c, or skip over words to
be left alone with META-f. A positive numeric argument converts that number of words to the right of Point,
moving Point as it goes. A negative numeric argument converts that number of words to the left of Point but
leaves Point stationary. This feature is useful for quickly changing the case of words you have just typed.
Table 7-15 shows some examples.

Table 7-15. Examples of case conversion

Characters and commands Result

HELLOMETA- – META-l
(lowercase "l")

hello

helloMETA- – META-u HELLO

helloMETA- – META-c Hello

The word conversions are not picky about beginning in the middle of a word. In all cases, they consider the
first word-constituent character to the right of Point as the beginning of the word to be converted.

Text Mode

With very few exceptions, the commands for human-language text units, such as words and sentences, are
always turned on and available, even in the programming-language modes. Text mode adds very little to
these basic commands but is still worth turning on just to get the TAB key. Use the command META-x text-
mode to activate Text mode.

In Text mode TAB runs the function tab-to-tab-stop. By default TAB stops are set every eight columns.
You can adjust them with META-x edit-tab-stops, which switches to a special *Tab Stops* buffer. The
current stops are laid out in this buffer on a scale for you to edit. The new stops are installed when or if you
type CONTROL-C CONTROL-C. Of course, you are free to kill this buffer (CONTROL-X k) or switch

away from it (CONTROL-X b) without ever changing the stops.

The tab stops you set with the META-x edit-tab-stops command affect only the interpretation of TAB
characters arriving from the keyboard. The emacs editor automatically inserts enough spaces to reach the
TAB stop. This command does not affect the interpretation of TAB characters already in the buffer or the
underlying file. If you edit the TAB stops and then use them, you can still print the file and the hard copy
will look the same as the text on the screen.

C Mode

Programming languages are read by humans but are interpreted by machines. Besides continuing to handle
some of the human-language text units (for example, words and sentences), the major programming-
language modes address several additional problems:

Balanced expressions enclosed by parentheses, brackets, or braces as textual units

Comments as textual units

Indention

The emacs editor includes Major modes to support C, Fortran, and several variants of Lisp. In addition, many
users have contributed modes for their favorite languages. In these modes the commands for human textual
units are still available, with occasional redefinitions. For example, a paragraph is bounded only by blank
lines and indention does not signal a paragraph start. In addition, each mode has custom coding to handle the
language-specific conventions for balanced expressions, comments, and indention. This presentation
discusses only C mode.

Expressions

The emacs Major modes are limited to lexical analysis. They can recognize most tokens (for example,
symbols, strings, and numbers) and all matched sets of parentheses, brackets, and braces. This is enough for
Lisp but not for C. The C mode lacks a full-function syntax analyzer and is not prepared to recognize all of
C's possible expressions.[1]

[1] In the emacs documentation the recurring term sexp refers to the Lisp term S-expression. Unfortunately, it is sometimes
used interchangeably with expression , even though the language might not be Lisp.

Table 7-16 lists the emacs commands applicable to parenthesized expressions and some tokens. By design
the bindings run parallel to the CONTROL commands for characters and the META commands for words.
All these commands accept a numeric argument and run in reverse if that argument is negative.

Table 7-16. Commands for expressions and tokens

Command Result

CONTROL-META-f Moves forward over an expression. The exact behavior
depends on which character lies to the right of Point (or
left of Point, depending on which direction you are
moving Point).

If the first nonwhitespace is an opening delimiter
(parenthesis, bracket, or brace), Point is moved
just past the matching closing delimiter.

If the first nonwhitespace is a token, Point is
moved just past the end of this token.

CONTROL-META-b Moves backward over an expression.

CONTROL-META-k Kills an expression forward. This command leaves
Point at the same finishing position as CONTROL-
META-f but kills the expression it traverses.

CONTROL-META-@ Sets Mark at the position CONTROL-META-f would
move to but does not change Point. To see the marked
Region clearly, give a pair of CONTROL-X
CONTROL-X commands to interchange Point and
Mark.

Function Definitions

In emacs a balanced expression at the outermost level is considered to be a function definition and is often
called a defun, even though that term is specific to Lisp. More generally it is understood to be a function
definition in the language at hand.

In C mode a function definition includes the return data type, the function name, and the argument
declarations appearing before the { character. Table 7-17 shows the commands for operating on function
definitions.

Table 7-17. Function definitions

Command Result

CONTROL-META-a Moves to the beginning of the most recent function
definition. Use this command to scan backward through
a buffer one function at a time.

CONTROL-META-e Moves to the end of the next function definition. Use
this command to scan forward through a buffer one
function at a time.

CONTROL-META-h Puts Point at the beginning and Mark at the end of the
current function definition (or next function definition,
if between two). This command sets up an entire
function definition for a Region-oriented operation such
as kill.

caution: Function indention style

The emacs editor assumes that an opening brace at the left margin is part of a function definition.
This heuristic speeds up the reverse scan for a definition's leading edge. If your code has an
indention style that puts that opening brace elsewhere, you may get unexpected results.

Indention

The emacs C mode has extensive logic to control the indention of C programs. Furthermore, you can adjust
this logic for many different styles of C indention (Table 7-18).

Table 7-18. Indention commands

Command Result

TAB Adjusts the indention of the current line. TAB inserts or
deletes whitespace at the beginning of the line until the
indention conforms to the current context and rules in
effect. Point is not moved unless it lies in the
whitespace area; in that case it is moved to the end of
the whitespace. TAB does not insert anything except
leading whitespace, so you can hit it at any time and at
any position in the line. If you really want to insert a tab
in the text, use META-i or CONTROL-Q TAB.

LINEFEED Shorthand for RETURN followed by TAB. The
LINEFEED key is a convenience for entering new
code, giving you an autoindent as you begin each line.

The next two commands indent multiple lines with a single command.

CONTROL-META-q Reindents all lines inside the next pair of matched
braces. CONTROL-META-q assumes that the left
brace is correctly indented and drives the indention
from there. If you need to adjust the left brace type
TAB just to the left of the brace before giving this
command. All lines up to the matching brace are
indented as if you had typed TAB on each one.

CONTROL-META-\ Reindents all lines in the Region (between Point and
Mark). Put Point just to the left of a left brace and then
give the command. All lines up to the matching brace
are indented as if you had typed TAB on each one.

Customizing Indention

Many styles of C programming have evolved, and emacs does its best to support automatic indention for all
of them. The indention coding was completely rewritten for emacs version 19; it supports C, C++, Objective-
C, and Java. The new emacs syntactic analysis is much more precise and can classify each syntactic element
of each line of program text into a single syntactic category (out of about 50), such as statement, string, or
else-clause. With the result of that analysis in hand, emacs goes to an offset table named c-offsets-alist and
looks up how much each line should be indented from the preceding line.

To customize indention, you must change the offset table. It is possible to define a completely new offset
table for each customized style but much more convenient to feed in a short list of exceptions to the standard
rules. Each mainstream style (GNU, K&R [Kernighan and Ritchie], BSD, and so on) has such an exception
list; all are collected in c-style-alist. Here is one entry from c-style-alist:

("gnu"

(c-basic-offset . 2)

(c-comment-only-line-offset . (0 . 0))

(c-offsets-alist . ((statement-block-intro . +)

 (knr-argdecl-intro . 5)

 (substatement-open . +)

 (label . 0)

 (statement-case-open . +)

 (statement-cont . +)

 (arglist-intro . c-lineup-arglist-intro-after-paren)

 (arglist-close . c-lineup-arglist)

))

)

Constructing a custom style is beyond the scope of this book. If you are curious, the long story is available in
emacs online info beginning at "Customizing C Indentation." The sample .emacs file given in this chapter
(page 239) adds a very simple custom style and arranges to use it on every .c file that is edited.

Comments

Each buffer has its own comment-column variable, which you can view with the CONTROL-H v
comment-column RETURN help command. Table 7-19 lists commands that facilitate working with
comments.

Table 7-19. Comments

Command Result

META-; Inserts a comment on the current line or aligns an
existing comment. This command's behavior differs
according to the situation.

If no comment is on this line, META-; creates an
empty comment at the value of comment-
column.

If text already on this line overlaps the position of
comment-column, META-; creates an empty
comment one SPACE after the end of the text.

If a comment is already on this line but not at the
current value of comment-column, META-;
realigns the comment at that column. If text is in
the way, it places the comment one SPACE after
the end of the text.

Once an aligned (possibly empty) comment exists on
the line, Point moves to the start of the comment text.

CONTROL-X ; Sets comment-column to the column after Point. The
left margin is column 0.

CONTROL-U – CONTROL-
X ;

Kills the comment on the current line. This command
sets comment-column from the first comment found
above this line and then performs a META-; command
to insert or align a comment at that position.

CONTROL-U CONTROL-X
;

Sets comment-column to the position of the first
comment found above this line and then executes a
META-; command to insert or align a comment on this
line.

Special-Purpose Modes

The emacs editor includes a third family of Major modes that are not oriented toward a particular language or
even toward ordinary editing. Instead, these modes perform some special function. The following modes
may define their own key bindings and commands to accomplish that function:

Rmail: reads, archives, and composes email

Dired: moves around in an ls –l display and operates on files

VIP: simulates a complete vi environment

VC: allows you to drive version-control systems (including RCS, CVS, and Subversion) from within
emacs

GUD: Grand Unified Debugger; allows you to run and debug C (and other) programs from within
emacs

Tramp: allows you to edit files on any remote system you can reach with ftp or scp

Shell: runs an interactive subshell from inside an emacs buffer

This book discusses only Shell mode.

Shell Mode

One-time shell commands and Region filtering were discussed earlier; refer to "Foreground Shell
Commands" on page 224. In Shell mode, however, each emacs buffer has an underlying interactive shell
permanently associated with it. This shell takes its input from the last line of the buffer and sends its output
back to the buffer, advancing Point as it goes. If you do not edit the buffer, it holds a record of the complete
shell session.

The shell runs asynchronously, whether or not you have its buffer in view. The emacs editor uses idle time to
read the shell's output and add it to the buffer.

Type META-x shell to create a buffer named *shell* and start a subshell. If a buffer named *shell* already
exists, emacs just switches to that buffer. The shell that this command runs is taken from one of the
following sources:

The Lisp variable explicit-shell-file-name

The environment variable ESHELL

The environment variable SHELL

To start a second shell, first use META-x rename-buffer to change the name of the existing shell's buffer,
and then use META-x shell to start another shell. You can create as many subshells and buffers as you like,
all running in parallel.

A special set of commands is defined in Shell mode (Table 7-20). They are bound mostly to two-key
sequences starting with CONTROL-C. Each sequence is similar to the ordinary control characters found in
Linux but uses a leading CONTROL-C.

Table 7-20. Shell mode

Command Result

RETURN If Point is at the end of the buffer, emacs inserts the
RETURN and sends this (the last) line to the shell. If
Point is elsewhere, it copies this line to the end of the
buffer, peeling off the old shell prompt (see the regular
expression shell-prompt-pattern), if one existed. Then
this copied line—now the last in the buffer—is sent to
the shell.

CONTROL-C CONTROL-D Sends CONTROL-D to the shell or its subshell.

CONTROL-C CONTROL-C Sends CONTROL-C to the shell or its subshell.

CONTROL-C CONTROL-\ Sends a quit signal to the shell or its subshell.

CONTROL-C CONTROL-U Kills the text on the current line not yet completed.

CONTROL-C CONTROL-R Scrolls back to the beginning of the last shell output,
putting the first line of output at the top of the window.

CONTROL-C CONTROL-O Deletes the last batch of shell output.

optional: Customizing emacs

At the heart of emacs is a Lisp interpreter written in C. This version of Lisp is significantly extended
with many special commands specifically oriented to editing. The interpreter's main task is to execute
the Lisp-coded system that implements the look-and-feel of emacs.

Reduced to its essentials, this system implements a continuous loop that watches keystrokes arrive,
parses them into commands, executes those commands, and updates the screen. This behavior can be
customized in a number of ways.

As single keystrokes come in, they are mapped immediately through a keyboard translation
table. By changing the entries in this table, it is possible to swap keys. If you are used to vi or
vim, you can swap DELETE and CONTROL-H. Then CONTROL-H backspaces as it does in
vim, and DELETE (which is not used by vim) is the help key. If you use DELETE as an
interrupt key, you may want to choose another key to swap with CONTROL-H.

The mapped keystrokes are gathered into small groups called key sequences . A key sequence
may be only a single key, such as CONTROL-N, or may include two or more keys, such as
CONTROL-X CONTROL-F. Once gathered the key sequences are used to select a particular
procedure to be executed. The rules for gathering each key sequence and the specific procedure
name to be executed when that sequence comes in are codified in a series of tables called
keymaps. By altering the keymaps, you can change the gathering rules or change which
procedure is associated with which sequence. If you are used to vi's or vim's use of CONTROL-

W to back up over the word you are entering, you may want to change emacs's CONTROL-W
binding from the standard kill-region to delete-word-backward.

The command behavior is often conditioned by one or more global variables or options. It may
be possible to get the behavior you want by setting some of these variables.

The command itself is usually a Lisp program that can be reprogrammed to make it behave as
desired. Although this task is not appropriate for beginners, the Lisp source to nearly all
commands is available and the internal Lisp system is fully documented. As mentioned earlier,
it is common practice to load customized Lisp code at startup time, even if you did not write it
yourself.

Most emacs documentation glosses over all the translation, gathering, and procedure selection and
talks about keystrokes as though they were commands. However, it is still important to know that the
underlying machinery exists and to understand that its behavior can be changed.

THE .emacs STARTUP FILE

Each time you start emacs, it loads the file of Lisp code named ~/.emacs. Using this file is the most
common way to customize emacs. Two command line options control the use of the .emacs file. The
–q option ignores the .emacs file so that emacs starts up without it; this is one way to get past a bad
.emacs file. The –u user option uses the ~user/.emacs file (the .emacs file from the home directory of
user).

The .emacs startup file is generally concerned only with key bindings and option settings; it is
possible to write the Lisp statements for this file in a straightforward style. Each parenthesized Lisp
statement is a Lisp function call. Inside the parentheses the first symbol is the function name; the rest
of the SPACE-separated tokens are arguments to that function. The most common function in the
.emacs file, setq, is a simple assignment to a global variable. The first argument is the name of the
variable to set and the second argument is its value. The following example sets the variable named c-
indent-level to 8:

(setq c-indent-level 8)

You can set the default value for a variable that is buffer-private by using the function name setq-
default. To set a specific element of a vector, use the function name aset. The first argument is the
name of the vector, the second is the target offset, and the third is the value of the target entry. In the
startup file the new values are usually constants. Table 7-21 shows the formats of these constants.

Table 7-21. Formats of constants in .emacs

Command Result

Numbers Decimal integers, with an optional minus sign

Strings Similar to C strings but with extensions for CONTROL
and META characters: \C-s yields CONTROL-S, \M-s
yields META-s, and \M-\C-s yields CONTROL-
META-s

Characters Not like C characters; start with ? and continue with a
printing character or with a backslash escape sequence
(for example, ?a, ?\C-i, ?\033)

Booleans Not 1 and 0; use t for true and nil for false

Other Lisp objects Begin with a single quotation mark and continue with
the object's name

REMAPPING KEYS

The emacs command loop begins each cycle by translating incoming keystrokes into the name of the
command to be executed. The basic translation operation uses the ASCII value of the incoming
character to index a 128-element vector called a keymap.

Sometimes a character's eighth bit is interpreted as the META case, but this cannot always be relied
on. At the point of translation all META characters appear with the ESCAPE prefix, whether or not
they were actually typed that way.

Each position in this vector is one of the following:

Not defined at all: No translation possible in this map.

The name of another keymap: Switches to that keymap and waits for the next character to arrive.

The name of a Lisp function to be called: Translation process is done; call this command.

Because keymaps can reference other keymaps, an arbitrarily complex recognition tree can be set up.
The mainstream emacs bindings use at most three keys, with a very small group of well-known prefix
keys, each with its well-known keymap name.

Each buffer can have a local keymap that is used first for any keystrokes arriving while a window into
that buffer is selected. The local keymap allows the regular mapping to be extended or overridden on
a per-buffer basis and is most often used to add bindings for a Major mode.

The basic translation flow runs as follows:

Map the first character through the buffer's local keymap. If it is defined as a Lisp function
name, translation is done and emacs executes that function. If it is not defined, use this same
character to index the global top-level keymap.

Map the first character through the top-level global keymap global-map. At this and each
following stage, the following conditions hold:

If the entry for this character is not defined, it is an error. Send a bell to the terminal and
discard all the characters entered in this key sequence.

If the entry for this character is defined as a Lisp function name, translation is done and the
function is executed.

If the entry for this character is defined as the name of another keymap, switch to that
keymap and wait for another character to select one of its elements.

Everything must be a command or an error. Ordinary characters that are to be inserted in the buffer
are usually bound to the command self-insert-command. Each of the well-known prefix characters is
each associated with a keymap (Table 7-22).

Table 7-22. Keymap prefixes

Keymap prefix Applies to

ctl-x-map For characters following CONTROL-X

ctl-x-4-map For characters following CONTROL-X 4

esc-map For characters following ESCAPE (including META
characters)

help-map For characters following CONTROL-H

mode-specific-map For characters following CONTROL-C

To see the current state of the keymaps, type CONTROL-H b. They appear in the following order:
local, global, and shorter maps for each prefix key. Each line specifies the name of the Lisp function
to be called; the documentation for that function can be retrieved with the commands CONTROL-H f
function-name or CONTROL-H k key-sequence .

The most common type of keymap customization is making small changes to the global command
assignments without creating any new keymaps or commands. This type of customization is most
easily done in the .emacs file using the Lisp function define-key . The define-key function takes
three arguments:

The keymap name

A single character defining a position in that map

The command to be executed when this character appears

For instance, to bind the command backward-kill-word to CONTROL-W , use the statement

(define-key global-map "\C-w" 'backward-kill-word)

To bind the command kill-region to CONTROL-X CONTROL-K, use the statement

(define-key ctl-x-map "\C-k" 'kill-region)

The \ character causes C-w to be interpreted as CONTROL-W instead of three letters (equivalent to
\^w). The unmatched single quotation mark in front of the command name is correct. This Lisp
escape character keeps the name from being evaluated too soon.

A SAMPLE .emacs FILE

The following ~/.emacs file produces a plain editing environment that minimizes surprises for vi and
vim users. Of course, if any section or any line is inapplicable or not to your liking, you can edit it out
or comment it with one or more ; comment characters, beginning in column 1.

;;; Preference Variables

(setq make-backup-files nil) ;Do not make backup files

(setq backup-by-copying t) ;If you do, at least do not

 destroy links

(setq delete-auto-save-files t) ;Delete autosave files when

 writing orig

(setq blink-matching-paren nil) ;Do not blink opening delim

(setq-default case-fold-search nil) ;Do not fold cases in search

(setq require-final-newline 'ask) ;Ask about missing final

 newline

;; Reverse mappings for C-h and DEL.

(keyboard-translate ?\C-h ?\177)

(keyboard-translate ?\177 ?\C-h)

;; reassigning C-w to keep on deleting words backward

;; C-w is supposed to be kill-region, but it's a great burden for

 vi-trained fingers.

;; Bind it instead to backward-kill-word for more familiar,

 friendly behavior.

(define-key global-map "\^w" 'backward-kill-word)

;; for kill-region use a two-key sequence c-x c-k.

(define-key ctl-x-map "\^k" 'kill-region)

;; C mode customization: set vanilla (8-space bsd) indention style

(require 'cc-mode) ;kiss: be sure it's here

(c-add-style ;add indentation style

"bsd8" ;old bsd (8 spaces)

 '((c-basic-offset . 8)

 (c-hanging-comment-ender-p . nil) ;isolated "*/" ends blk

 comments

 (c-comment-only-line-offset . 0)

 (c-offsets-alist . ((statement-block-intro . +)

 (knr-argdecl-intro . +)

 (substatement-open . 0)

 (label . 0)

 (statement-cont . +)

))

))

(add-hook ;this is our default style,

 'c-mode-hook ;set it always in

 c-mode-hook

 (function

 (lambda ()

 (c-set-style "bsd8"))))

;; end of c mode style setup

 < Day Day Up >

 < Day Day Up >

More Information

A lot of emacs documentation is available in both paper and electronic form. The GNU emacs Web page is a
good place to start: www.gnu.org/software/emacs.

The comp.emacs and gnu.emacs.help newsgroups offer support for and a general discussion about emacs.

Access to emacs

The emacs editor is included with most Linux distributions. You can download and install emacs with Apt
(page 850) or yum (page 848). You can download the latest version of the source code from www.gnu.org.

The Free Software Foundation can be reached at these addresses:

Mail: Free Software Foundation, Inc.

59 Temple Place, Suite 330

Boston, MA 02111-1307, USA

E-mail: gnu@gnu.org

Phone: 1 617-542-5942

 < Day Day Up >

 < Day Day Up >

Chapter Summary

You can precede many of the commands in the following tables with a numeric argument to make the
command repeat the number of times specified by the argument. Precede a numeric argument with
CONTROL-U to keep emacs from entering the argument as text.

Table 7-23 lists commands that move the cursor.

Table 7-23. Moving the cursor

Command Result

CONTROL-F Forward by characters

CONTROL-B Backward by characters

META-f Forward by words

META-b Backward by words

META-e To end of sentence

META-a To beginning of sentence

META-} To end of paragraph

META-{ To beginning of paragraph

META-> Forward to end of buffer

META-< Backward to beginning of buffer

CONTROL-ESCAPE To end of line

CONTROL-A To beginning of line

CONTROL-N Forward (down) one line

CONTROL-P Backward (up) one line

CONTROL-V Scroll forward (down) one window

META-v Scroll backward (up) one window

CONTROL-L Clear and repaint screen, and scroll current line to
center of window

META-r To beginning of middle line

CONTROL-U num META-r To beginning of line number num (0 = top, – = bottom)

Table 7-24 lists commands that kill and delete text.

Table 7-24. Killing and deleting text

Command Result

CONTROL-DELETE Deletes character under cursor

DELETE Deletes character to left of cursor

META-d Kills forward to end of current word

META-DELETE Kills backward to beginning of previous word

META-k Kills forward to end of sentence

CONTROL-X DELETE Kills backward to beginning of sentence

CONTROL-K Kills forward to, but not including, line-ending
LINEFEED; if there is no text between the cursor and
the LINEFEED, kills the LINEFEED

CONTROL-U 1 CONTROL-
K

Kills from cursor forward to and including LINEFEED

CONTROL-U 0 CONTROL-
K

Kills from cursor backward to beginning of line

META-z char Kills forward to, but not including, next occurrence of
char

META-w Copies Region to Kill Ring (does not delete Region
from buffer)

CONTROL-W Kills Region (deletes Region from buffer)

CONTROL-Y Yanks most recently killed text into current buffer at
Point; sets Mark at beginning of this text, with Point
and cursor at the end

META-y Erases just-yanked text, rotates Kill Ring, and yanks
next item (only after CONTROL-Y or META-y)

Table 7-25 lists commands that search for strings and regular expressions.

Table 7-25. Search commands

Command Result

CONTROL-S Prompts incrementally for a string and searches forward

CONTROL-S RETURN Prompts for a complete string and searches forward

CONTROL-R Prompts incrementally for a string and searches
backward

CONTROL-R RETURN Prompts for a complete string and searches backward

META-CONTROL-S Prompts incrementally for a regular expression and
searches forward

META- – CONTROL-S
RETURN

Prompts for a complete regular expression and searches
forward

META-x isearch-backward-
regexp

Prompts incrementally for a regular expression and
searches forward

META-x isearch-backward-
regexp RETURN

Prompts for a complete regular expression and searches
backward

Table 7-26 lists commands that provide online help.

Table 7-26. Online help

Command Result

CONTROL-H a Prompts for string and displays a list of commands
whose names contain string

CONTROL-H b Displays a (long) table of all key bindings now in effect

CONTROL-H c key-
sequence

Displays the name of the command bound to key-
sequence

CONTROL-H k key-
sequence

Displays the name of and documentation for the
command bound to key-sequence

CONTROL-H f Prompts for the name of a Lisp function and displays
the documentation for that function

CONTROL-H i (lowercase
"i")

Displays the top menu of info (page 32)

CONTROL-H l (lowercase
"l")

Displays the last 100 characters typed

CONTROL-H m Displays the documentation and special key bindings
for the current Major mode

CONTROL-H n Displays the emacs news file

CONTROL-H t Starts an emacs tutorial session

CONTROL-H v Prompts for a Lisp variable name and displays the
documentation for that variable

CONTROL-H w Prompts for a command name and displays the key
sequence, if any, bound to that command

Table 7-27 lists commands that work with a Region.

Table 7-27. Working with a Region

Command Result

META-W Copies Region nondestructively to the Kill Ring

CONTROL-W Kills (deletes) Region

META-x print-region Copies Region to the print spooler

META-x append-to-buffer Prompts for buffer name and appends Region to that
buffer

META-x append-to-file Prompts for filename and appends Region to that file

CONTROL-X CONTROL-U Converts Region to uppercase

CONTROL-X CONTROL-L Converts Region to lowercase

Table 7-28 lists commands that work with lines.

Table 7-28. Working with lines

Command Result

META-x occur Prompts for a regular expression and lists each line
containing a match for the expression in a buffer named
Occur

META-x delete-matching-
lines

Prompts for a regular expression and deletes lines from
Point forward that have a match for the regular
expression

META-x delete-non-
matching-lines

Prompts for a regular expression and deletes lines from
Point forward that do not have a match for the regular
expression

Table 7-29 lists commands that replace strings and regular expressions unconditionally and interactively.

Table 7-29. Commands that replace text

Command Result

META-x replace-string Prompts for two strings and replaces each instance of
the first string with the second string from Mark
forward; sets Mark at the start of the command

META-% or META-x query-
replace

As above but queries for each replacement (see
Table 7-30 for a list of responses)

META-x replace-regexp Prompts for a regular expression and a string, and
replaces each match for the regular expression with
the string; sets Mark at the start of the command

META-x query-replace-regexp As above but queries for each replacement (see
Table 7-30 for a list of responses)

Table 7-30. Responses to replacement queries

Command Result

RETURN Quits searching (does not make or query for any
more replacements)

SPACE Makes this replacement and continues querying

DELETE Does not make this replacement and continues
querying

, (comma) Makes this replacement, displays the result, and
asks for another command

. (period) Makes this replacement and does not make or
query for any more replacements

! (exclamation point) Replaces this and all remaining instances without
querying

Table 7-30 lists responses to replacement queries.

Table 7-31 lists commands that work with windows.

Table 7-31. Working with windows

Command Result

CONTROL-X b Prompts for and displays a different buffer in current
window

CONTROL-X 2 Splits current window vertically into two

CONTROL-X 3 Splits current window horizontally into two

CONTROL-X o (lowercase
"o")

Selects other window

META-CONTROL-V Scrolls other window

CONTROL-X 4b Prompts for buffer name and selects it in other window

CONTROL-X 4f Prompts for filename and selects it in other window

CONTROL-X 0 (zero) Deletes current window

CONTROL-X 1 (one) Deletes all windows except current window

META-x shrink-window Makes current window one line shorter

CONTROL-X ^ Makes current window one line taller

CONTROL-X } Makes current window one character wider

CONTROL-X { Makes current window one character narrower

Table 7-32 lists commands that work with files.

Table 7-32. Working with files

Command Result

CONTROL-X CONTROL-F Prompts for a filename and reads its contents into a
new buffer; assigns the file's simple filename as the
buffer name.

CONTROL-X CONTROL-V Prompts for a filename and reads its contents into the
current buffer (overwriting the contents of the current
buffer).

CONTROL-X 4 CONTROL-
F

Prompts for a filename and reads its contents into a
new buffer; assigns the file's simple filename as the
buffer name. Creates a new window for the new buffer
and selects that window. This command splits the
screen in half if you begin with only one window.

CONTROL-X CONTROL-S Saves the current buffer to the original file.

CONTROL-X S Prompts for whether to save each modified buffer (y/n).

META-x set-visited-file-
name

Prompts for a filename and sets the current buffer's
"original" name to that filename.

CONTROL-X CONTROL-W Prompts for a filename, sets the current buffer's
"original" name to that filename, and saves the current
buffer in that file.

META-~ (tilde) Clears modified flag from the current buffer. Use with
caution.

Table 7-33 lists commands that work with buffers.

Table 7-33. Working with buffers

Command Result

CONTROL-X CONTROL-S Saves current buffer in its associated file.

CONTROL-X CONTROL-F Prompts for filename and visits (opens) that file.

CONTROL-X b Prompts for buffer name and selects it. If that buffer
does not exist, creates it.

CONTROL-X 4b Prompts for buffer name and displays that buffer in
another window. The existing window is not disturbed,
although the new window may overlap it.

CONTROL-X CONTROL-B Creates a buffer named *Buffer List* and displays it in
another window. The existing window is not disturbed,
although the new window may overlap it. The new
buffer is not selected. In the *Buffer List* buffer, each
buffer's data is displayed with its name, size, mode(s),
and original filename.

META-x rename-buffer Prompts for a new buffer name and assigns this new
name to the current buffer.

CONTROL-X CONTROL-Q Toggles the current buffer's readonly status and the
associated %% Mode Line indicator.

META-x append-to-buffer Prompts for buffer name and appends Region to the end
of that buffer.

META-x prepend-to-buffer Prompts for buffer name and prepends Region to
beginning of that buffer.

META-x copy-to-buffer Prompts for buffer name, deletes contents of that
buffer, and copies the Region to that buffer.

META-x insert-buffer Prompts for buffer name and inserts entire contents of
that buffer in current buffer at Point.

CONTROL-X k Prompts for buffer name and deletes that buffer.

META-x kill-some-buffers Goes through the entire buffer list and offers the chance
to delete each buffer.

Table 7-34 lists commands that run shell commands in the foreground. These commands may not work with
all shells.

Table 7-34. Foreground shell commands

Command Result

META-! (exclamation point) Prompts for shell command, executes it, and displays
the output

CONTROL-U META-!
(exclamation point)

Prompts for shell command, executes it, and inserts the
output at Point

META-| (vertical bar) Prompts for shell command, supplies Region as input
to that command, and displays output of command

CONTROL-U META-|
(vertical bar)

Prompts for shell command, supplies Region as input
to that command, deletes old Region, and inserts output
of command in place of Region

Table 7-35 lists commands that run shell commands in the background.

Table 7-35. Background shell commands

Command Result

META-x compile Prompts for shell command and runs that command in
the background, with output going to the buffer named
compilation

META-x kill-compilation Kills background process

Table 7-36 lists commands that convert text from uppercase to lowercase and vice versa.

Table 7-36. Case conversion commands

Command Result

META-l (lowercase "l") Converts word to right of Point to lowercase

META-u Converts word to right of Point to uppercase

META-c Converts word to right of Point to initial caps

CONTROL-X CONTROL-L Converts Region to lowercase

CONTROL-X CONTROL-U Converts Region to uppercase

Table 7-37 lists commands that work in C mode.

Table 7-37. C mode commands

Command Result

CONTROL-META-f Moves forward over expression

CONTROL-META-b Moves backward over expression

CONTROL-META-k Moves forward over expression and kills it

CONTROL-META-@ Sets Mark at the position CONTROL-META-f would
move to, without changing Point

CONTROL-META-a Moves to beginning of the most recent function
definition

CONTROL-META-e Moves to the end of the next function definition

CONTROL-META-h Moves Point to beginning and Mark to end of current
(or next, if between) function definition

Type META-x shell to create a buffer named *shell* and start a subshell. Table 7-38 lists commands that
work on this buffer.

Table 7-38. Shell mode commands

Command Result

RETURN Sends current line to the shell

CONTROL-C CONTROL-D Sends CONTROL-D to shell or its subshell

CONTROL-C CONTROL-C Sends CONTROL-C to shell or its subshell

CONTROL-C CONTROL-\ Sends quit signal to shell or its subshell

CONTROL-C CONTROL-U Kills text on the current line not yet completed

CONTROL-C CONTROL-R Scrolls back to beginning of last shell output,
putting first line of output at the top of the window

CONTROL-C CONTROL-O
(uppercase "O")

Deletes last batch of shell output

 < Day Day Up >

 < Day Day Up >

Exercises

1. Given a buffer full of English text, answer the following questions:

How would you change every instance of his to hers?a.

How would you do this only in the final paragraph?b.

Is there a way to look at every usage in context before changing it?c.

How would you deal with the possibility that His might begin a sentence?d.

2. Which command moves the cursor to the end of the current paragraph? Can you use this command
to skip through the buffer in one-paragraph steps?

3. Suppose that you get lost in the middle of typing a long sentence.

Is there an easy way to kill the botched sentence and start over?a.

What if only one word is incorrect? Is there an alternative to backspacing one letter at a time?b.

4. After you have been working on a paragraph for a while, most likely some lines will have become
too short and others too long. Is there a command to "neaten up" the paragraph without rebreaking
all the lines by hand?

5. Is there a way to change the entire contents of the buffer to capital letters? Can you think of a way
to change just one paragraph?

6. How would you reverse the order of two paragraphs?

7. How would you reverse two words?

8. Imagine that you saw a Usenet posting with something particularly funny in it and saved the
posting to a file. How would you incorporate this file into your own buffer? What if you wanted
only a couple of paragraphs? How would you add > to the beginning of each included line?

9. On the keyboard alone emacs has always offered a full set of editing possibilities. Generally
several techniques will accomplish the same goal for any editing task. In the X environment the
choice is enlarged still further with a new group of mouse-oriented visual alternatives. From these
options you must select the way that you like to solve a given editing puzzle best.

Consider this Shakespearean fragment:

1. Full fathom five thy father lies;

2. Of his bones are coral made;

3. Those are pearls that were his eyes:

4. Nothing of him that doth fade,

5. But doth suffer a sea-change

6. Into something rich and strange.

7. Sea-nymphs hourly ring his knell:

8. Ding-dong.

9. Hark! now I hear them--

10. Ding-dong, bell!

The following fragment has been typed with some errors:

1. Full fathiom five tyy father lies;

2. These are pearls that were his eyes:

3. Of his bones are coral made;

4. Nothin of him that doth fade,

5. But doth susffer a sea-change

6. Into something rich and strange.

7. Sea-nymphs hourly ring his knell:

8. Ding=dong.

9. Hard! now I hear them--

10. Ding-dong, bell!

Use only the keyboard to answer the following:

How many ways can you think of to move the cursor to the spelling errors?a.

Once the cursor is on or near the errors, how many ways can you think of to fix them?b.

Are there ways to fix errors without explicitly navigating to/searching for them? How many
can you think of?

c.

Lines 2 and 3 are transposed. How many ways can you think of to correct this situation?d.

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

10. Assume that your buffer contains the C code shown here, with the Major mode set for C and the cursor
positioned at the end of the while line as shown by the black square:

/*

* Copy string s2 to s1. s1 must be large enough

* return s1

*/

char *

strcpy(s1, s2)

register char *s1, *s2;

{

 register char *os1;

 os1 = s1;

 while (*s1++ = *s2++)

 ;

return(os1);

}

/* Copy source into dest, stopping after '\0' is copied, and

 return a pointer to the '\0' at the end of dest. Then our caller

 can concatenate to the dest string wit_out another strlen call. */

char *

stpcpy (dest, source)

 char *dest;

 char *source;

{

 while ((*dest++ = *source++) != '\0')

 ; /* void loop body */

 return (dest - 1);

}

Which command moves the cursor to the opening brace of strcpy? Which command moves the
cursor past the closing brace? Can you use these commands to skip through the buffer in one-
procedure steps?

a.

Assume the cursor is just past the closing parenthesis of the while condition. How do you move
to the matching opening parenthesis? How do you move back to the matching close parenthesis
again? Does the same command set work for matched [] and { }? How does this differ from the
vim % command?

b.

One procedure is indented in the Berkeley indention style; the other is indented in the GNU style.
Which command reindents a line in accordance with the current indention style you have set up?
How would you reindent an entire procedure?

c.

Suppose that you want to write five string procedures and intend to use strcpy as a starting point
for further editing. How would you make five copies of the strcpy procedure?

d.

How would you compile the code without leaving emacs?e.

 < Day Day Up >

 < Day Day Up >

Part III: THE SHELLS

 CHAPTER 8 THE BOURNE AGAIN SHELL

 CHAPTER 9 THE TC SHELL

 < Day Day Up >

 < Day Day Up >

Chapter 8. The Bourne Again Shell

IN THIS CHAPTER

Startup Files 257

Redirecting Standard Error 260

Writing a Simple Shell Script 263

Job Control 271

Manipulating the Directory Stack 274

Parameters and Variables 277

Processes 292

History 295

Reexecuting and Editing Commands 297

Aliases 312

Functions 315

Controlling bash Features and Options 318

Processing the Command Line 322

This chapter picks up where Chapter 5 left off by focusing on the Bourne Again Shell (bash). It notes where
tcsh implementation of a feature differs from that of bash; if appropriate, you are directed to the page where
the alternative implementation is discussed. Chapter 11 expands on this chapter, exploring control flow
commands and more advanced aspects of programming the Bourne Again Shell. The bash home page is
www.gnu.org/software/bash. The bash info page is a complete Bourne Again Shell reference.

The Bourne Again Shell and TC Shell (tcsh) are command interpreters and high-level programming
languages. As command interpreters, they process commands you enter on the command line in response to
a prompt. When you use the shell as a programming language, it processes commands stored in files called
shell scripts. Like other languages, shells have variables and control flow commands (for example, for loops
and if statements).

When you use a shell as a command interpreter, you can customize the environment you work in. You can
make your prompt display the name of the working directory, create a function or alias for cp that keeps it
from overwriting certain kinds of files, take advantage of keyword variables to change aspects of how the
shell works, and so on. You can also write shell scripts that do your bidding, from a one-line script that
stores a long, complex command to a longer script that runs a set of reports, prints them, and mails you a
reminder when the job is done. More complex shell scripts are themselves programs; they do not just run
other programs. Chapter 11 has some examples of these types of scripts.

Most system shell scripts are written to run under the Bourne Again Shell. If you will ever work in single-
user mode—as when you boot your system or do system maintenance, administration, or repair work, for
example—it is a good idea to become familiar with this shell.

This chapter expands on the interactive features of the shell described in Chapter 5, explains how to create
and run simple shell scripts, discusses job control, introduces the basic aspects of shell programming, talks
about history and aliases, and describes command line expansion. Chapter 9 covers interactive use of the TC
Shell and TC Shell programming, and Chapter 11 presents some more challenging shell programming
problems.

 < Day Day Up >

 < Day Day Up >

Background

The Bourne Again Shell is based on the Bourne Shell (the early UNIX shell; this book refers to it as the
original Bourne Shell to avoid confusion), which was written by Steve Bourne of AT&T's Bell Laboratories.
Over the years the original Bourne Shell has been expanded but it remains the basic shell provided with
many commercial versions of UNIX.

sh Shell

Because of its long and successful history, the original Bourne Shell has been used to write many of the shell
scripts that help manage UNIX systems. Some of these scripts appear in Linux as Bourne Again Shell
scripts. Although the Bourne Again Shell includes many extensions and features not found in the original
Bourne Shell, bash maintains compatibility with the original Bourne Shell so you can run Bourne Shell
scripts under bash. On UNIX systems the original Bourne Shell is named sh. On Linux systems sh is a
symbolic link to bash ensuring that scripts that require the presence of the Bourne Shell still run. When
called as sh, bash does its best to emulate the original Bourne Shell.

Korn Shell

System V UNIX introduced the Korn Shell (ksh), written by David Korn. This shell extended many features
of the original Bourne Shell and added many new features. Some features of the Bourne Again Shell, such as
command aliases and command line editing, are based on similar features from the Korn Shell.

POSIX standards

The POSIX (the Portable Operating System Interface) family of related standards is being developed by
PASC (IEEE's Portable Application Standards Committee, www.pasc.org). A comprehensive FAQ on
POSIX, including many links, appears at www.opengroup.org/austin/papers/posix_faq.html.

POSIX standard 1003.2 describes shell functionality. The Bourne Again Shell provides the features that
match the requirements of this POSIX standard. Efforts are under way to make the Bourne Again Shell fully
comply with the POSIX standard. In the meantime, if you invoke bash with the – –posix option, the
behavior of the Bourne Again Shell will more closely match the POSIX requirements.

 < Day Day Up >

 < Day Day Up >

Shell Basics

This section covers writing and using startup files, redirecting standard error, writing and executing simple
shell scripts, separating and grouping commands, implementing job control, and manipulating the directory
stack.

Startup Files

When a shell starts, it runs startup files to initialize itself. Which files the shell runs depends on whether it is
a login shell, an interactive shell that is not a login shell (such as you get by giving the command bash), or a
noninteractive shell (one used to execute a shell script). You must have read access to a startup file to execute
the commands in it. Typically Linux distributions put appropriate commands in some of these files. This
section covers bash startup files. See page 342 for information on tcsh startup files.

Login Shells

The files covered in this section are executed by login shells and shells that you start with the – –login
option. Login shells are, by their nature, interactive.

/etc/profile

The shell first executes the commands in /etc/profile. Superuser can set up this file to establish systemwide
default characteristics for bash users.

.bash_profile .bash_login .profile

Next the shell looks for ~/.bash_profile, ~/.bash_login, and ~/.profile (~/ is shorthand for your home
directory), in that order, executing the commands in the first of these files it finds. You can put commands in
one of these files to override the defaults set in /etc/profile.

.bash_logout

When you log out, bash executes commands in the ~/.bash_logout file. Frequently commands that clean up
after a session, such as those that remove temporary files, go in this file.

Interactive Nonlogin Shells

The commands in the preceding startup files are not executed by interactive, nonlogin shells. However, these
shells inherit from the login shell variables that are set by these startup files.

/etc/bashrc

Although not called by bash directly, many ~/.bashrc files call /etc/bashrc. This setup allows Superuser to
establish systemwide default characteristics for nonlogin bash shells.

.bashrc

An interactive nonlogin shell executes commands in the ~/.bashrc file. Typically a startup file for a login
shell, such as .bash_profile, runs this file, so that both login and nonlogin shells benefit from the commands
in .bashrc.

Noninteractive Shells

The commands in the previously described startup files are not executed by noninteractive shells, such as
those that runs shell scripts. However, these shells inherit from the login shell variables that are set by these
startup files.

BASH_ENV

Noninteractive shells look for the environment variable BASH_ENV (or ENV, if the shell is called as sh)
and execute commands in the file named by this variable.

Setting Up Startup Files

Although many startup files and types of shells exist, usually all you need are the .bash_profile and .bashrc
files in your home directory. Commands similar to the following in .bash_profile run commands from
.bashrc for login shells (when .bashrc exists). With this setup, the commands in .bashrc are executed by
login and nonlogin shells.

if [-f ~/.bashrc]; then source ~/.bashrc; fi

The [–f ~/.bashrc] tests whether the file named .bashrc in your home directory exists. See page 794 for
more information on test and its synonym [].

tip: Use .bash_profile to set PATH

Because commands in .bashrc may be executed many times, and because subshells inherit
exported variables, it is a good idea to put commands that add to existing variables in the

.bash_profile file. For example, the following command adds the bin subdirectory of the home
directory to PATH (page 284) and should go in .bash_profile:

PATH=$PATH:$HOME/bin

When you put this command in .bash_profile and not in .bashrc, the string is added to the PATH
variable only once, when you log in.

Modifying a variable in .bash_profile allows changes you make in an interactive session to
propagate to subshells. In contrast, modifying a variable in .bashrc overrides changes inherited
from a parent shell.

Sample .bash_profile and .bashrc files follow. Some of the commands used in these files are not covered
until later in this chapter. In any startup file, you must export variables and functions that you want to be
available to child processes. For more information refer to "Locality of Variables" on page 475.

$ cat ~/.bash_profile

if [-f ~/.bashrc]; then

 source ~/.bashrc # read local startup file if it exists

fi

PATH=$PATH:. # add the working directory to PATH

export PS1='[\h \W \!]\$ ' # set prompt

The first command in the preceding .bash_profile file executes the commands in the user's .bashrc file if it
exists. The next command adds to the PATH variable (page 284). Typically PATH is set and exported in
/etc/profile so it does not need to be exported in a user's startup file. The final command sets and exports
PS1 (page 286), which controls the user's prompt.

Next is a sample .bashrc file. The first command executes the commands in the /etc/bashrc file if it exists.
Next the LANG (page 290) and VIMINIT (page 176) variables are set and exported and several aliases
(page 312) are established. The final command defines a function (page 315) that swaps the names of two
files.

$ cat ~/.bashrc

if [-f /etc/bashrc]; then

 source /etc/bashrc # read global startup file if it exists

fi

set -o noclobber # prevent overwriting files

unset MAILCHECK # turn off "you have new mail" notice

export LANG=C # set LANG variable

export VIMINIT='set ai aw' # set vim options

alias df='df -h' # set up aliases

alias rm='rm -i' # always do interactive rm's

alias lt='ls -ltrh | tail'

alias h='history | tail'

alias ch='chmod 755 '

function switch() # a function to exchange the names

{ # of two files

 local tmp=$$switch

 mv "$1" $tmp

 mv "$2" "$1"

 mv $tmp "$2"

}

. (Dot) OR source: Runs a Startup File in the Current Shell

After you edit a startup file such as .bashrc, you do not have to log out and log in again to put the changes
into effect. You can run the startup file using the . (dot) or source builtin (they are the same command under
bash; only source is available under tcsh [page 380]). As with all other commands, the . must be followed
by a SPACE on the command line. Using the . or source builtin is similar to running a shell script, except
that these commands run the script as part of the current process. Consequently, when you use . or source to
run a script, changes you make to variables from within the script affect the shell that you run the script from.
You can use the . or source command to run any shell script—not just a startup file—but undesirable side
effects (such as changes in the values of shell variables you rely on) may occur. If you ran a startup file as a
regular shell script and did not use the . or source builtin, the variables created in the startup file would
remain in effect only in the subshell running the script—not in the shell you ran the script from. For more
information refer to "Locality of Variables" on page 475.

In the following example, .bashrc sets several variables and sets PS1, the prompt, to the name of the host.
The . builtin puts the new values into effect.

$ cat ~/.bashrc

export TERM=vt100 # set the terminal type

export PS1="$(hostname -f): " # set the prompt string

export CDPATH=:$HOME # add HOME to CDPATH string

stty kill '^u' # set kill line to control-u

$. ~/.bashrc

bravo.example.com:

Commands That Are Symbols

The Bourne Again Shell uses the symbols (,), [,], and $ in a variety of ways. To minimize confusion, Table
8-1 lists the most common use of each of these symbols, even though some of them are not introduced until
later.

Table 8-1. Builtin commands that are symbols

Symbol Command

() Subshell (page 270)

$() Command substitution (page 329)

(()) Arithmetic evaluation; a synonym for let (use when the enclosed
value contains an equal sign) (page 501)

$(()) Arithmetic expansion (not for use with an enclosed equal sign)
(page 327)

[] The test command. (pages 437, 440, 453, and 794)

[[]] Conditional expression; similar to [] but adds string comparisons
(page 503)

Redirecting Standard Error

Chapter 5 covered the concept of standard output and explained how to redirect standard output of a
command. In addition to standard output, commands can send output to standard error . A command can
send error messages to standard error to keep them from getting mixed up with the information it sends to
standard output.

Just as it does with standard output, by default the shell sends a command's standard error to the screen.
Unless you redirect one or the other, you may not know the difference between the output a command sends
to standard output and the output it sends to standard error. This section covers the syntax used by the Bourne
Again Shell. See page 349 if you are using the TC Shell.

File descriptors

A file descriptor is the place a program sends its output to and gets its input from. When you execute a
program, the process running the program opens three file descriptors: 0 (standard input), 1 (standard output),
and 2 (standard error). The redirect output symbol (> [page 116]) is shorthand for 1>, which tells the shell to
redirect standard output. Similarly < (page 118) is short for 0<, which redirects standard input. The symbols
2> redirect standard error. For more information refer to "File Descriptors" on page 470.

The following examples demonstrate how to redirect standard output and standard error to different files and
to the same file. When you run the cat utility with the name of a file that does not exist and the name of a
file that does exist, cat sends an error message to standard error and copies the file that does exist to standard
output. Unless you redirect them, both messages appear on the screen.

$ cat y

This is y.

$ cat x

cat: x: No such file or directory

$ cat x y

cat: x: No such file or directory

This is y.

When you redirect standard output of a command, output sent to standard error is not affected and still
appears on the screen.

$ cat x y > hold

cat: x: No such file or directory

$ cat hold

This is y.

Similarly, when you send standard output through a pipe, standard error is not affected. The following
example sends standard output of cat through a pipe to tr (page 804), which in this example converts
lowercase characters to uppercase. The text that cat sends to standard error is not translated because it goes
directly to the screen rather than through the pipe.

$ cat x y | tr "[a-z]" "[A-Z]"

cat: x: No such file or directory

THIS IS Y.

The following example redirects standard output and standard error to different files. The notation 2> tells
the shell where to redirect standard error (file descriptor 2). The 1> tells the shell where to redirect standard
output (file descriptor 1). You can use > in place of 1>.

$ cat x y 1> hold1 2> hold2

$ cat hold1

This is y.

$ cat hold2

cat: x: No such file or directory

Duplicating a file descriptor

In the next example, 1> redirects standard output to hold. Then 2>&1 declares file descriptor 2 to be a
duplicate of file descriptor 1. As a result both standard output and standard error are redirected to hold.

$ cat x y 1> hold 2>&1

$ cat hold

cat: x: No such file or directory

This is y.

In the preceding example, 1> hold precedes 2>&1. If they had been listed in the opposite order, standard
error would have been made a duplicate of standard output before standard output was redirected to hold. In
that case only standard output would have been redirected to hold.

The next example declares file descriptor 2 to be a duplicate of file descriptor 1 and sends the output for file
descriptor 1 through a pipe to the tr command.

$ cat x y 2>&1 | tr "[a-z]" "[A-Z]"

CAT: X: NO SUCH FILE OR DIRECTORY

THIS IS Y.

Sending errors to standard error

You can also use 1>&2 to redirect standard output of a command to standard error. This technique is often
used in shell scripts to send the output of echo to standard error. In the following script, standard output of
the first echo is redirected to standard error:

$ cat message_demo

echo This is an error message. 1>&2

echo This is not an error message.

If you redirect standard output of message_demo, error messages such as the one produced by the first echo
will still go to the screen because you have not redirected standard error. Because standard output of a shell
script is frequently redirected to another file, you can use this technique to display on the screen error
messages generated by the script. The lnks script (page 445) uses this technique. You can also use the exec
builtin to create additional file descriptors and to redirect standard input, standard output, and standard error
of a shell script from within the script (page 491).

The Bourne Again Shell supports the redirection operators shown in Table 8-2.

Table 8-2. Redirection operators

Operator Meaning

< filename Redirects standard input from filename .

> filename Redirects standard output to filename unless filename exists and
noclobber (page 119) is set. If noclobber is not set, this redirection
creates filename if it does not exist.

>| filename Redirects standard output to filename , even if the file exists and
noclobber (page 119) is set.

>> filename Redirects and appends standard output to filename unless filename
exists and noclobber (page 119) is set. If noclobber is not set, this
redirection creates filename if it does not exist.

<&m Duplicates standard input from file descriptor m (page 471).

[n] >&m Duplicates standard output or file descriptor n if specified from file
descriptor m (page 471).

[n]<&– Closes standard input or file descriptor n if specified (page 471).

[n] >&– –Closes standard output or file descriptor n if specified.

Writing a Simple Shell Script

A shell script is a file that contains commands that the shell can execute. The commands in a shell script can
be any commands you can enter in response to a shell prompt. For example, a command in a shell script
might run a Linux utility, a compiled program, or another shell script. Like the commands you give on the
command line, a command in a shell script can use ambiguous file references and can have its input or output
redirected from or to a file or sent through a pipe (page 122). You can also use pipes and redirection with the
input and output of the script itself.

In addition to the commands you would ordinarily use on the command line, control flow commands (also
called control structures) find most of their use in shell scripts. This group of commands enables you to alter
the order of execution of commands in a script just as you would alter the order of execution of statements
using a structured programming language. Refer to "Control Structures" on page 436 (bash) and page 368
(tcsh) for specifics.

The shell interprets and executes the commands in a shell script, one after another. Thus a shell script enables
you to simply and quickly initiate a complex series of tasks or a repetitive procedure.

chmod: Makes a File Executable

To execute a shell script by giving its name as a command, you must have permission to read and execute the
file that contains the script (refer to "Access Permissions" on page 91). Read permission enables you to read
the file that holds the script. Execute permission tells the shell and the system that the owner, group, and/or
public has permission to execute the file; it implies that the content of the file is executable.

When you create a shell script using an editor, the file does not typically have its execute permission set. The
following example shows a file named whoson that contains a shell script:

$ cat whoson

date

echo "Users Currently Logged In"

who

$ whoson

bash: ./whoson: Permission denied

You cannot execute whoson by giving its name as a command because you do not have execute permission
for the file. The shell does not recognize whoson as an executable file and issues an error message when you
try to execute it. When you give the filename as an argument to bash (bash whoson), bash takes the
argument to be a shell script and executes it. In this case bash is executable and whoson is an argument that
bash executes so you do not need to have permission to execute whoson. You can do the same with tcsh
script files.

tip: Command not found?

If you get the message

$ whoson

bash: whoson: command not found

the shell is not set up to search for executable files in the working directory. Give this command
instead:

$./whoson

The . / tells the shell explicitly to look for an executable file in the working directory. To change
the environment so that the shell searches the working directory automatically, see page 284.

The chmod utility changes the access privileges associated with a file. Figure 8-1 shows ls with the –l option
displaying the access privileges of whoson before and after chmod gives execute permission to the file's
owner.

Figure 8-1. Using chmod to make a shell script executable

The first ls displays a hyphen (–) as the fourth character, indicating that the owner does not have permission

to execute the file. Next chmod gives the owner execute permission: The u+x causes chmod to add (+) execute
permission (x) for the owner (u). (The u stands for user, although it means the owner of the file who may be
the user of the file at any given time.) The second argument is the name of the file. The second ls shows an x
in the fourth position, indicating that the owner now has execute permission.

If other users will execute the file, you must also change group and/or public access permissions for the file.
Any user must have execute access to use the file's name as a command. If the file is a shell script, the user
trying to execute the file must also have read access to the file. You do not need read access to execute a
binary executable (compiled program).

The final command in Figure 8-1 shows the shell executing the file when its name is given as a command.
For more information refer to "Access Permissions" on page 91 and to ls and chmod in Part V.

#! Specifies a Shell

You can put a special sequence of characters on the first line of a file to tell the operating system which shell
should execute the file. Because the operating system checks the initial characters of a program before
attempting to exec it, these characters save the system from making an unsuccessful attempt. If # ! are the
first two characters of a script, the system interprets the characters that follow as the absolute pathname of the
utility that should execute the script. This can be the pathname of any program, not just a shell. The following
example specifies that bash should run the script:

$ cat bash_script

#!/bin/bash

echo "This is a Bourne Again Shell script."

The #! characters are useful if you have a script that you want to run with a shell other than the shell you are
running the script from. The following example shows a script that should be executed by tcsh:

$ cat tcsh_script

#!/bin/tcsh

echo "This is a tcsh script."

set person = jenny

echo "person is $person"

Because of the #! line, the operating system ensures that tcsh executes the script no matter which shell you
run it from.

You can use ps –f within a shell script to display the name of the shell that is executing the script. The three
lines that ps displays in the following example show the process running the parent bash shell, the process

running the tcsh script, and the process running the ps command:

$ cat tcsh_script2

#!/bin/tcsh

ps -f

$ tcsh_script2

UID PID PPID C STIME TTY TIME CMD

alex 3031 3030 0 Nov16 pts/4 00:00:00 -bash

alex 9358 3031 0 21:13 pts/4 00:00:00 /bin/tcsh ./tcsh_script2

alex 9375 9358 0 21:13 pts/4 00:00:00 ps -f

If you do not follow #! with the name of an executable program, the shell reports that it cannot find the
command that you asked it to run. You can optionally follow #! with SPACEs. If you omit the #! line and try
to run, for example, a tcsh script from bash, the shell may generate error messages or the script may not run
properly.

See page 576 for an example of a stand-alone sed script that uses #!.

Begins A Comment

Comments make shell scripts and all code easier to read and maintain by you and others. The comment
syntax is common to both the Bourne Again and the TC Shells.

If a pound sign (#) in the first character position of the first line of a script is not immediately followed by an
exclamation point (!) or if a pound sign occurs in any other location in a script, the shell interprets it as the
beginning of a comment. The shell then ignores everything between the pound sign and the end of the line
(the next NEWLINE character).

Running A Shell Script

fork and exec system calls

A command on the command line causes the shell to fork a new process, creating a duplicate of the shell
process (a subshell). The new process attempts to exec (execute) the command. Like fork, the exec routine is
executed by the operating system (a system call). If the command is a binary executable program, such as a
compiled C program, exec succeeds and the system overlays the newly created subshell with the executable
program. If the command is a shell script, exec fails. When exec fails, the command is assumed to be a shell
script, and the subshell runs the commands in the script. Unlike a login shell, which expects input from the
command line, the subshell takes its input from a file: the shell script.

As discussed earlier, if you have a shell script in a file that you do not have execute permission for, you can
run the commands in the script by using a bash command to exec a shell to run the script directly. In the
following example, bash creates a new shell that takes its input from the file named whoson:

$ bash whoson

Because the bash command expects to read a file containing commands, you do not need execute permission
for whoson. (You do need read permission.) Even though bash reads and executes the commands in
whoson, standard input, standard output, and standard error remain connected to the terminal.

Although you can use bash to execute a shell script, this technique causes the script to run more slowly than
giving yourself execute permission and directly invoking the script. Users typically prefer to make the file
executable and run the script by typing its name on the command line. It is also easier to type the name, and
this practice is consistent with the way other kinds of programs are invoked (so you do not need to know
whether you are running a shell script or another kind of program). However, if bash is not your interactive
shell or if you want to see how the script runs with different shells, you may want to run a script as an
argument to bash or tcsh.

caution: sh does not call the original Bourne Shell

The original Bourne Shell was invoked with the command sh. Although you can call bash with an
sh command, it is not the original Bourne Shell. The sh command (/bin/sh) is a symbolic link to
/bin/bash, so it is simply another name for the bash command. When you call bash using the
command sh, bash tries to mimic the behavior of the original Bourne Shell as closely as possible. It
does not always succeed.

Separating and Grouping Commands

Whether you give the shell commands interactively or write a shell script, you must separate commands from
one another. This section, which applies to the Bourne Again and the TC Shells, reviews the ways to separate
commands that were covered in Chapter 5 and introduces a few new ones.

; AND NEWLINE Separate Commands

The NEWLINE character is a unique command separator because it initiates execution of the command
preceding it. You have seen this throughout this book each time you press the RETURN key at the end of a
command line.

The semicolon (;) is a command separator that does not initiate execution of a command and does not
change any aspect of how the command functions. You can execute a series of commands sequentially by
entering them on a single command line and separating each from the next with a semicolon (;). You initiate
execution of the sequence of commands by pressing RETURN:

$ x ; y ; z

If x, y, and z are commands, the preceding command line yields the same results as the next three commands.
The difference is that in the next example the shell issues a prompt after each of the commands (x, y, and z)
finishes executing, whereas the preceding command line causes the shell to issue a prompt only after z is
complete:

$ x

$ y

$ z

Whitespace

Although the whitespace around the semicolons in the earlier example makes the command line easier to
read, it is not necessary. None of the command separators needs to be surrounded by SPACEs or TABs.

\ Continues a Command

When you enter a long command line and the cursor reaches the right side of the screen, you can use a
backslash (\) character to continue the command on the next line. The backslash quotes, or escapes, the
NEWLINE character that follows it so that the shell does not treat the NEWLINE as a command terminator.
Enclosing a backslash within single quotation marks turns off the power of a backslash to quote special
characters such as NEWLINE. Enclosing a backslash within double quotation marks has no effect on the
power of the backslash.

Although you can break a line in the middle of a word (token), it is typically easier to break a line just before
or after whitespace.

optional

You can enter a RETURN in the middle of a quoted string on a command line without using a
backslash. The NEWLINE (RETURN) that you enter will then be part of the string:

$ echo "Please enter the three values

> required to complete the transaction."

Please enter the three values

required to complete the transaction.

In the three examples in this section, the shell does not interpret RETURN as a command terminator
because it occurs within a quoted string. The > is a secondary prompt indicating that the shell is
waiting for you to continue the unfinished command. In the next example, the first RETURN is
quoted (escaped) so the shell treats it as a separator and does not interpret it literally.

$ echo "Please enter the three values \

> required to complete the transaction."

Please enter the three values required to complete the transaction.

Single quotation marks cause the shell to interpret a backslash literally:

$ echo 'Please enter the three values \

> required to complete the transaction.'

Please enter the three values \

required to complete the transaction.

| AND & Separate Commands and Do Something Else

The pipe symbol (|) and the background task symbol (&) are also command separators. They do not start
execution of a command but do change some aspect of how the command functions. The pipe symbol alters
the source of standard input or the destination of standard output. The background task symbol causes the
shell to execute the task in the background so you get a prompt immediately and can continue working on

other tasks.

Each of the following command lines initiates a single job comprising three tasks:

$ x | y | z

$ ls -l | grep tmp | less

In the first job, the shell redirects standard output of task x to standard input of task y and redirects y's
standard output to z's standard input. Because it runs the entire job in the foreground, the shell does not
display a prompt until task z runs to completion: Task z does not finish until task y finishes, and task y does
not finish until task x finishes. In the second job, task x is an ls –l command, task y is grep tmp, and task z is
the pager less. The shell displays a long (wide) listing of the files in the working directory that contain the
string tmp, piped through less.

The next command line executes tasks d and e in the background and task f in the foreground:

$ d & e & f

[1] 14271

[2] 14272

The shell displays the job number between brackets and the PID (process identification) number for each
process running in the background. You get a prompt as soon as f finishes, which may be before d or e
finishes.

Before displaying a prompt for a new command, the shell checks whether any background jobs have
completed. For each job that has completed, the shell displays its job number, the word Done, and the
command line that invoked the job; then the shell displays a prompt. When the job numbers are listed, the
number of the last job started is followed by a + character and the job number of the previous job is followed
by a – character. Any other jobs listed show a SPACE character. After running the last command, the shell
displays the following before issuing a prompt:

[1]- Done d

[2]+ Done e

The next command line executes all three tasks as background jobs. You get a shell prompt immediately:

$ d & e & f &

[1] 14290

[2] 14291

[3] 14292

You can use pipes to send the output from one task to the next task and an ampersand (&) to run the entire
job as a background task. Again the prompt comes back immediately. The shell regards the commands joined
by a pipe as being a single job. That is, it treats all pipes as single jobs, no matter how many tasks are
connected with the pipe (|) symbol or how complex they are. The Bourne Again Shell shows only one process
placed in the background:

$ d | e | f &

[1] 14295

The TC Shell shows three processes (all belonging to job 1) placed in the background:

tcsh $ d | e | f &

[1] 14302 14304 14306

optional: () Groups Commands

You can use parentheses to group commands. The shell creates a copy of itself, called a
subshell , for each group. It treats each group of commands as a job and creates a new process to
execute each command (refer to "Process Structure" on page 293 for more information on
creating subshells). Each subshell (job) has its own environment, meaning that it has its own set
of variables with values that can differ from those of other subshells.

The following command line executes commands a and b sequentially in the background while
executing c in the background. The shell prompt returns immediately.

$ (a ; b) & c &

[1] 15520

[2] 15521

The preceding example differs from the earlier example d & e & f & in that tasks a and b are
initiated sequentially, not concurrently.

Similarly the following command line executes a and b sequentially in the background and, at
the same time, executes c and d sequentially in the background. The subshell running a and b
and the subshell running c and d run concurrently. The prompt returns immediately.

$ (a ; b) & (c ; d) &

[1] 15528

[2] 15529

The next script copies one directory to another. The second pair of parentheses creates a
subshell to run the commands following the pipe. Because of these parentheses,the output of the
first tar command is available for the second tar command despite the intervening cd
command. Without the parentheses, the output of the first tar command would be sent to cd
and lost because cd does not process input from standard input. The shell variables $1 and $2
represent the first and second command line arguments (page 481), respectively. The first pair
of parentheses, which creates a subshell to run the first two commands, allows users to call
cpdir with relative pathnames. Without them the first cd command would change the working
directory of the script (and consequently the working directory of the second cd command).
With them only the working directory of the subshell is changed.

$ cat cpdir

(cd $1 ; tar -cf - .) | (cd $2 ; tar -xvf -)

$ cpdir /home/alex/sources /home/alex/memo/biblio

The cpdir command line copies the files and directories in the /home/alex/sources directory to
the directory named /home/alex/memo/biblio. This shell script is almost the same as using cp
with the –r option. Refer to Part V for more information on cp (page 616) and tar (page 786).

Job Control

A job is a command pipeline. You run a simple job whenever you give Linux a command. For example, type
date on the command line and press RETURN: You have run a job. You can also create several jobs with
multiple commands on a single command line:

$ find . -print | sort | lpr & grep -l alex /tmp/* > alexfiles &

[1] 18839

[2] 18876

The portion of the command line up to the first & is one job consisting of three processes connected by
pipes: find (page 655), sort (page 50), and lpr (page 47). The second job is a single process running grep.
Both jobs have been put into the background by the trailing & characters, so bash does not wait for them to
complete before displaying a prompt.

Using job control you can move commands from the foreground to the background (and vice versa), stop
commands temporarily, and list all the commands that are running in the background or stopped.

jobs: Lists Jobs

The jobs builtin lists all background jobs. The following sequence demonstrates what happens when you
give a jobs command. Here the sleep command runs in the background and creates a background job that
jobs reports on:

$ sleep 60 &

[1] 7809

$ jobs

[1] + Running sleep 60 &

fg: Brings a Job to the Foreground

The shell assigns job numbers to commands you run in the background (page 269). Several jobs are started in
the background in the next example. For each job the shell lists the job number and PID number
immediately, just before it issues a prompt.

$ xclock &

[1] 1246

$ date &

[2] 1247

$ Sun Dec 4 11:44:40 PST 2005

[2]+ Done date

$ find /usr -name ace -print > findout &

[2] 1269

$ jobs

[1]- Running xclock &

[2]+ Running find /usr -name ace -print > findout &

Job numbers, which are discarded when a job is finished, can be reused. When you start or put a job in the
background, the shell assigns a job number that is one more than the highest job number in use.

In the preceding example, the jobs command lists the first job, xclock, as job 1. The date command does
not appear in the jobs list because it finished before jobs was run. Because the date command was
completed before find was run, the find command became job 2.

To move a background job into the foreground, use the fg builtin followed by the job number. Alternatively,
you can give a percent sign (%) followed immediately by the job number as a command. Either of the
following commands moves job 2 into the foreground:

$ fg 2

or

$ %2

You can also refer to a job by following the percent sign with a string that uniquely identifies the beginning
of the command line used to start the job. Instead of the preceding command, you could have used either fg
%find or fg %f because both uniquely identify job 2. If you follow the percent sign with a question mark
and a string, the string can match any part of the command line. In the preceding example, fg %?ace also
brings job 2 into the foreground.

Often the job you wish to bring into the foreground is the only job running in the background or is the job
that jobs lists with a plus (+). In these cases you can use fg without an argument.

bg: Sends a Job to the Background

To move the foreground job to the background, you must first suspend (temporarily stop) the job by pressing
the suspend key (usually CONTROL-Z). Pressing the suspend key immediately suspends the job in the
foreground. You can then use the bg builtin to resume execution of the job in the background.

$ bg

If a background job attempts to read from the terminal, the shell stops it and notifies you that the job has been

stopped and is waiting for input. You must then move the job into the foreground so that it can read from the
terminal. The shell displays the command line when it moves the job into the foreground.

$ (sleep 5; cat > mytext) &

[1] 1343

$ date

Sun Dec 4 11:58:20 PST 2005

[1]+ Stopped (sleep 5; cat >mytext)

$ fg

(sleep 5; cat >mytext)

Remember to let the cat out!

CONTROL-D

$

In the preceding example, the shell displays the job number and PID number of the background job as soon
as it starts, followed by a prompt. Demonstrating that you can give a command at this point, the user gives
the command date and its output appears on the screen. The shell waits until just before it issues a prompt
(after date has finished) to notify you that job 1 is stopped. When you give an fg command, the shell puts the
job in the foreground and you can enter the input that the command is waiting for. In this case the input needs
to be terminated with a CONTROL-D to signify EOF (end of file). The shell then displays another prompt.

The shell keeps you informed about changes in the status of a job, notifying you when a background job
starts, completes, or is stopped, perhaps waiting for input from the terminal. The shell also lets you know
when a foreground job is suspended. Because notices about a job being run in the background can disrupt
your work, the shell delays displaying these notices until just before it displays a prompt. You can set notify
(page 321) to make the shell display these notices without delay.

If you try to exit from a shell while jobs are stopped, the shell issues a warning and does not allow you to
exit. If you then use jobs to review the list of jobs or you immediately try to leave the shell again, the shell
allows you to leave and terminates the stopped jobs. Jobs that are running (not stopped) in the background
continue to run. In the following example, find (job 1) continues to run after the second exit terminates the
shell, but cat (job 2) is terminated:

$ find / -size +100k > $HOME/bigfiles 2>&1 &

[1] 1426

$ cat > mytest &

[2] 1428

$ exit

exit

There are stopped jobs.

$ exit

exit

login:

Manipulating the Directory Stack

Both the Bourne Again and the TC Shells allow you to store a list of directories you are working with,
enabling you to move easily among them. This list is referred to as a stack. It is analogous to a stack of dinner
plates: You typically add plates to and remove plates from the top of the stack, creating a first-in last-out,
(FILO) stack.

dirs: Displays the Stack

The dirs builtin displays the contents of the directory stack. If you call dirs when the directory stack is
empty, it displays the name of the working directory:

$ dirs

~/literature

The dirs builtin uses a tilde (~) to represent the name of the home directory. The examples in the next
several sections assume that you are referring to the directory structure shown in Figure 8-2.

Figure 8-2. The directory structure in the examples

pushd: Pushes a Directory on the Stack

To change directories and at the same time add a new directory to the top of the stack, use the pushd (push
directory) builtin. In addition to changing directories, the pushd builtin displays the contents of the stack. The
following example is illustrated in Figure 8-3:

$ pushd ../demo

~/demo ~/literature

$ pwd

/home/sam/demo

$ pushd ../names

~/names ~/demo ~/literature

$ pwd

/home/sam/names

Figure 8-3. Creating a directory stack

When you use pushd without an argument, it swaps the top two directories on the stack and makes the new
top directory (which was the second directory) become the new working directory (Figure 8-4):

$ pushd

~/demo ~/names ~/literature

$ pwd

/home/sam/demo

Figure 8-4. Using pushd to change working directories

Using pushd in this way, you can easily move back and forth between two directories. You can also use cd –
to change to the previous directory, whether or not you have explicitly created a directory stack. To access
another directory in the stack, call pushd with a numeric argument preceded by a plus sign. The directories in
the stack are numbered starting with the top directory, which is number 0. The following pushd command
continues with the previous example, changing the working directory to literature and moving literature to
the top of the stack:

$ pushd +2

~/literature ~/demo ~/names

$ pwd

/home/sam/literature

popd: Pops a Directory Off the Stack

To remove a directory from the stack, use the popd (pop directory) builtin. As the following example and
Figure 8-5 show, popd used without an argument removes the top directory from the stack and changes the
working directory to the new top directory:

$ dirs

~/literature ~/demo ~/names

$ popd

~/demo ~/names

$ pwd

/home/sam/demo

Figure 8-5. Using popd to remove a directory from the stack

To remove a directory other than the top one from the stack, use popd with a numeric argument preceded by a
plus sign. The following example removes directory number 1, demo:

$ dirs

~/literature ~/demo ~/names

$ popd +1

~/literature ~/names

Removing a directory other than directory number 0 does not change the working directory.

 < Day Day Up >

 < Day Day Up >

Parameters and Variables

Variables

Within a shell, a shell parameter is associated with a value that is accessible to the user. There are several
kinds of shell parameters. Parameters whose names consist of letters, digits, and underscores are often
referred to as shell variables, or simply variables. A variable name must start with a letter or underscore, not
with a number. Thus A76, MY_CAT, and _ _ _ X _ _ _ are valid variable names, whereas 69TH_STREET
(starts with a digit) and MY-NAME (contains a hyphen) are not.

User-created variables

Shell variables that you name and assign values to are user-created variables. You can change the values of
user-created variables at any time, or you can make them readonly so that their values cannot be changed.
You can also make user-created variables global. A global variable (also called an environment variable) is
available to all shells and other programs you fork from the original shell. One naming convention is to use
only uppercase letters for global variables and to use mixed-case or lowercase letters for other variables.
Refer to "Locality of Variables" on page 475 for more information on global variables.

To assign a value to a variable in the Bourne Again Shell, use the following syntax:

VARIABLE=value

There can be no whitespace on either side of the equal sign (=). An example assignment follows:

$ myvar=abc

Under the TC Shell the assignment must be preceded by the word set and the SPACEs on either side of the
equal sign are optional:

$ set myvar = abc

The Bourne Again Shell permits you to put variable assignments on a command line. These assignments are
local to the command shell—that is, they apply to the command only. The my_script shell script displays the
value of TEMPDIR. The following command runs my_script with TEMPDIR set to /home/sam/temp. The

echo builtin shows that the interactive shell has no value for TEMPDIR after running my_script. If
TEMPDIR had been set in the interactive shell, running my_script in this manner would have had no effect
on its value.

$ cat my_script

echo $TEMPDIR

$ TEMPDIR=/home/sam/temp my_script

/home/sam/temp

$ echo $TEMPDIR

$

Keyword variables

Keyword shell variables (or simply keyword variables) have special meaning to the shell and usually have
short, mnemonic names. When you start a shell (by logging in, for example), the shell inherits several
keyword variables from the environment. Among these variables are HOME, which identifies your home
directory, and PATH, which determines which directories the shell searches and in what order to locate
commands that you give the shell. The shell creates and initializes (with default values) other keyword
variables when you start it. Still other variables do not exist until you set them.

You can change the values of most of the keyword shell variables at any time but it is usually not necessary
to change the values of keyword variables initialized in the /etc/profile or /etc/csh.cshrc systemwide startup
files. If you need to change the value of a bash keyword variable, do so in one of your startup files (for bash
see page 257; for tcsh see page 342). Just as you can make user-created variables global, so you can make
keyword variables global; this is usually done automatically in the startup files. You can also make a
keyword variable readonly.

Positional parameters
Special parameters

The names of one group of parameters do not resemble variable names. Most of these parameters have one-
character names (for example, 1, ?, and #) and are referenced (as are all variables) by preceding the name
with a dollar sign ($1, $?, and $#). The values of these parameters reflect different aspects of your ongoing
interaction with the shell.

Whenever you give a command, each argument on the command line becomes the value of a positional
parameter . Positional parameters (page 480) enable you to access command line arguments, a capability that
you will often require when you write shell scripts. The set builtin (page 484) enables you to assign values
to positional parameters.

Other frequently needed shell script values, such as the name of the last command executed, the number of

command line arguments, and the status of the most recently executed command, are available as special
parameters. You cannot assign values to special parameters.

User-Created Variables

The first line in the following example declares the variable named person and initializes it with the value
alex (use set person = alex in tcsh):

$ person=alex

$ echo person

person

$ echo $person

alex

Because the echo builtin copies its arguments to standard output, you can use it to display the values of
variables. The second line of the preceding example shows that person does not represent alex. Instead, the
string person is echoed as person. The shell substitutes the value of a variable only when you precede the
name of the variable with a dollar sign ($). The command echo $person displays the value of the variable
person; it does not display $person because the shell does not pass $person to echo as an argument.
Because of the leading $, the shell recognizes that $person is the name of a variable, substitutes the value of
the variable, and passes that value to echo. The echo builtin displays the value of the variable—not its
name—never knowing that you called it with a variable.

Quoting the $

You can prevent the shell from substituting the value of a variable by quoting the leading $. Double
quotation marks do not prevent the substitution; single quotation marks or a backslash (\) do.

$ echo $person

alex

$ echo "$person"

alex

$ echo '$person'

$person

$ echo \$person

$person

SPACEs

Because they do not prevent variable substitution but do turn off the special meanings of most other
characters, double quotation marks are useful when you assign values to variables and when you use those
values. To assign a value that contains SPACEs or TABs to a variable, use double quotation marks around
the value. Although double quotation marks are not required in all cases, using them is a good habit.

$ person="alex and jenny"

$ echo $person

alex and jenny

$ person=alex and jenny

bash: and: command not found

When you reference a variable that contains TABs or multiple adjacent SPACEs, you need to use quotation
marks to preserve the spacing. If you do not quote the variable, the shell collapses each string of blank
characters into a single SPACE before passing the variable to the utility:

$ person="alex and jenny"

$ echo $person

alex and jenny

$ echo "$person"

alex and jenny

When you execute a command with a variable as an argument, the shell replaces the name of the variable
with the value of the variable and passes that value to the program being executed. If the value of the
variable contains a special character, such as * or ?, the shell may expand that variable.

Pathname expansion in assignments

The first line in the following sequence of commands assigns the string alex* to the variable memo. The
Bourne Again Shell does not expand the string because bash does not perform pathname expansion (page
127) when assigning a value to a variable. All shells process a command line in a specific order. Within this
order bash (but not tcsh) expands variables before it interprets commands. In the following echo command
line, the double quotation marks quote the asterisk (*) in the expanded value of $memo and prevent bash
from performing pathname expansion on the expanded memo variable before passing its value to the echo
command:

$ memo=alex*

$ echo "$memo"

alex*

All shells interpret special characters as special when you reference a variable that contains an unquoted
special character. In the following example, the shell expands the value of the memo variable because it is
not quoted:

$ ls

alex.report

alex.summary

$ echo $memo

alex.report alex.summary

Here the shell expands $memo to alex*, expands alex* to alex.report and alex.summary, and passes these
two values to echo.

optional: Braces

The $VARIABLE syntax is a special case of the more general syntax ${VARIABLE }, in which
the variable name is enclosed by ${}. The braces insulate the variable name. Braces are
necessary when catenating a variable value with a string:

$ PREF=counter

$ WAY=$PREFclockwise

$ FAKE=$PREFfeit

$ echo $WAY $FAKE

$

The preceding example does not work as planned. Only a blank line is output because, although

the symbols PREFclockwise and PREFfeit are valid variable names, they are not set. By
default the shell evaluates an unset variable as an empty (null) string and displays this value
(bash) or generates an error message (tcsh). To achieve the intent of these statements, refer to
the PREF variable using braces:

$ PREF=counter

$ WAY=${PREF}clockwise

$ FAKE=${PREF}feit

$ echo $WAY $FAKE

counterclockwise counterfeit

The Bourne Again Shell refers to the arguments on its command line by position, using the
special variables $1, $2, $3, and so forth up to $9. If you wish to refer to arguments past the
ninth argument, you must use braces: ${10}. The name of the command is held in $0 (page
481).

unset: Removes a Variable

Unless you remove a variable, it exists as long as the shell in which it was created exists. To remove the
value of a variable but not the variable itself, set the value to null (use set person = in tcsh):

$ person=

$ echo $person

$

You can remove a variable with the unset builtin. To remove the variable person, give the following
command:

$ unset person

Variable Attributes

This section discusses attributes and explains how to assign them to variables.

readonly: Makes the Value of a Variable Permanent

You can use the readonly builtin (not in tcsh) to ensure that the value of a variable cannot be changed. The
next example declares the variable person to be readonly. You must assign a value to a variable before you
declare it to be readonly; you cannot change its value after the declaration. When you attempt to unset or
change the value of a readonly variable, the shell displays an error message:

$ person=jenny

$ echo $person

jenny

$ readonly person

$ person=helen

bash: person: readonly variable

If you use the readonly builtin without an argument, it displays a list of all readonly shell variables. This list
includes keyword variables that are automatically set as readonly as well as keyword or user-created
variables that you have declared as readonly. See "Listing variable attributes" on page 282 for an example
(readonly and declare –r produce the same output).

declare AND typeset: Assign Attributes to Variables

The declare and typeset builtins (two names for the same command, neither of which is available in tcsh)
set attributes and values for shell variables. Table 8-3 lists five of these attributes.

Table 8-3. Variable attributes (typeset or declare)

Attribute Meaning

–a Declares a variable as an array (page 474)

–f Declares a variable to be a function name (page 315)

–i Declares a variable to be of type integer (page 283)

–r Makes a variable readonly; also readonly (page 281)

–x Exports a variable (makes it global); also export (page 475)

The following commands declare several variables and set some attributes. The first line declares person1
and assigns it a value of alex. This command has the same effect with or without the word declare.

$ declare person1=alex

$ declare -r person2=jenny

$ declare -rx person3=helen

$ declare -x person4

The readonly and export builtins are synonyms for the commands declare –r and declare –x, respectively.
It is legal to declare a variable without assigning a value to it, as the preceding declaration of the variable
person4 illustrates. This declaration makes person4 available to all subshells (makes it global). Until an
assignment is made to the variable, it has a null value.

You can list the options to declare separately in any order. The following is equivalent to the preceding
declaration of person3:

$ declare -x -r person3=helen

Use the + character in place of – when you want to remove an attribute from a variable. You cannot remove
a readonly attribute, however. After the following command is given, the variable person3 is no longer
exported but it is still readonly.

$ declare +x person3

You can also use typeset instead of declare.

Listing variable attributes

Without any arguments or options, the declare builtin lists all shell variables. The same list is output when
you run set (page 484) without any arguments.

If you use a declare builtin with options but no variable names as arguments, the command lists all shell
variables that have the indicated attributes set. For example, the option –r with declare gives a list of all
readonly shell variables. This list is the same as that produced by a readonly command without any
arguments. After the declarations in the preceding example have been given, the results are as follows:

$ declare -r

declare -ar BASH_VERSINFO='([0]="2" [1]="05b" [2]="0" [3]="1" ...)'

declare -ir EU

declare -ir PP

declare -r SHELLOPTS="braceexpand:emacs:hashall:histexpand:history:..."

declare -ir U

declare -r person2="jenny"

declare -rx person3="helen"

The first five entries are keyword variables that are automatically declared as readonly. Some of these
variables are stored as integers (–i). The –a option indicates that BASH_VERSINFO is an array variable;
the value of each element of the array is listed to the right of an equal sign.

Integer

By default the values of variables are stored as strings. When you perform arithmetic on a string variable, the
shell converts the variable into a number, manipulates it, and then converts it back to a string. A variable
with the integer attribute is stored as an integer. Assign the integer attribute as follows:

$ typeset -i COUNT

Keyword Variables

Keyword variables either are inherited or are declared and initialized by the shell when it starts. You can
assign values to these variables from the command line or from a startup file. Typically you want these
variables to apply to all subshells you start as well as to your login shell. For those variables not
automatically exported by the shell, you must use export (bash, page 475) or setenv (tcsh, page 356) to
make them available to child shells.

HOME: Your Home Directory

By default your home directory is your working directory when you log in. Your home directory is
determined when you establish your account; its name is stored in the /etc/passwd file.

$ grep sam /etc/passwd

sam:x:501:501:Sam S. x301:/home/sam:/bin/bash

When you log in, the shell inherits the pathname of your home directory and assigns it to the variable
HOME. When you give a cd command without an argument, cd makes the directory whose name is stored
in HOME the working directory:

$ pwd

/home/alex/laptop

$ echo $HOME

/home/alex

$ cd

$ pwd

/home/alex

This example shows the value of the HOME variable and the effect of the cd builtin. After you execute cd
without an argument, the pathname of the working directory is the same as the value of HOME: your home
directory.

Tilde (~)

The shell uses the value of HOME to expand pathnames that use the shorthand tilde (~) notation (page 89)
to denote a user's home directory. The following example uses echo to display the value of this shortcut and
then uses ls to list the files in Alex's laptop directory, which is a subdirectory of his home directory:

$ echo ~

/home/alex

$ ls ~/laptop

tester count lineup

PATH: Where the Shell Looks for Programs

When you give the shell an absolute or relative pathname rather than a simple filename as a command, it
looks in the specified directory for an executable file with the specified filename. If the file with the
pathname you specified does not exist, the shell reports command not found. If the file exists as specified
but you do not have execute permission for it, or in the case of a shell script you do not have read and
execute permission for it, the shell reports Permission denied.

If you give a simple filename as a command, the shell searches through certain directories for the program
you want to execute. It looks in several directories for a file that has the same name as the command and that
you have execute permission for (a compiled program) or read and execute permission for (a shell script).
The PATH shell variable controls this search.

The default value of PATH is determined when bash or tcsh is compiled. It is not set in a startup file,
although it may be modified there. Normally the default specifies that the shell search several system
directories used to hold common commands and then search the working directory. These system directories

include /bin and /usr/bin and other directories appropriate to the local system. When you give a command,
if the shell does not find the executable—and, in the case of a shell script, readable—file named by the
command in any of the directories listed in PATH, the shell generates one of the aforementioned error
messages.

Working directory

The PATH variable specifies the directories in the order the shell should search them. Each directory must
be separated from the next by a colon. The following command sets PATH so that a search for an executable
file starts with the /usr/local/bin directory. If it does not find the file in this directory, the shell first looks in
/bin, and then in /usr/bin. If the search fails in those directories, the shell looks in the bin director, a
subdirectory of the user's home directory. Finally the shell looks in the working directory. Exporting PATH
makes its value accessible to subshells:

$ export PATH=/usr/local/bin:/bin:/usr/bin:~/bin:

A null value in the string indicates the working directory. In the preceding example, a null value (nothing
between the colon and the end of the line) appears as the last element of the string. The working directory is
represented by a leading colon (not recommended; see the following security tip), a trailing colon (as in the
example), or two colons next to each other anywhere in the string. You can also represent the working
directory explicitly with a period (.).

See "PATH" on page 363 for a tcsh example. Because Linux stores many executable files in directories
named bin (binary), users typically put their own executable files in their own ~/bin directories. If you put
your own bin directory at the end of your PATH, as in the preceding example, the shell looks there for any
commands that it cannot find in directories listed earlier in PATH.

security: PATH and security

Do not put the working directory first in PATH when security is a concern. If you are running as
Superuser, you should never put the working directory first in PATH. It is common for Superuser
PATH to omit the working directory entirely. You can always execute a file in the working
directory by prepending . / to the name: ./ls.

Putting the working directory first in PATH can create a security hole. Most people type ls as the
first command when entering a directory. If the owner of a directory places an executable file
named ls in the directory, and the working directory appears first in a user's PATH, the user giving
an ls command from the directory executes the ls program in the working directory instead of the
system ls utility, possibly with undesirable results.

If you want to add directories to PATH, you can reference the old value of the PATH variable while you are
setting PATH to a new value (but see the preceding security tip). The following command adds

/usr/X11R6/bin to the beginning of the current PATH and /usr/local/bin and the working directory to the
end:

$ PATH=/usr/X11R6/bin:$PATH:/usr/local/bin:

MAIL: Where Your Mail Is Kept

The MAIL variable (mail under tcsh) contains the pathname of the file that holds your mail (your mailbox,
usually /var/spool/mail/name , where name is your login name). If MAIL is set and MAILPATH (next) is
not set, the shell informs you when mail arrives in the file specified by MAIL. In a graphical environment
you can unset MAIL so that the shell does not display mail reminders in a terminal emulator window
(assuming you are using a graphical mail program).

The MAILPATH variable (not available under tcsh) contains a list of filenames separated by colons. If this
variable is set, the shell informs you when any one of the files is modified (for example, when mail arrives).
You can follow any of the filenames in the list with a question mark (?), followed by a message. The
message replaces the you have mail message when you get mail while you are logged in.

The MAILCHECK variable (not available under tcsh) specifies how often, in seconds, the shell checks for
new mail. The default is 60 seconds. If you set this variable to zero, the shell checks before each prompt.

PS1: User Prompt (Primary)

The default Bourne Again Shell prompt is a dollar sign ($). When you run bash as root, you may have a
pound sign (#) prompt. The PS1 variable (prompt under tcsh, page 363) holds the prompt string that the
shell uses to let you know that it is waiting for a command. When you change the value of PS1 or prompt,
you change the appearance of your prompt.

You can customize the prompt displayed by PS1. For example, the assignment

$ PS1="[\u@\h \W \!]$ "

displays the following prompt:

[user@host directory event]$

where user is the username, host is the hostname up to the first period, directory is the basename of the
working directory, and event is the event number of the current command.

If you are working on more than one system, it can be helpful to incorporate the system name into your

prompt. For example, you might change the prompt to the name of the system you are using, followed by a
colon and a SPACE (a SPACE at the end of the prompt makes the commands that you enter after the prompt
easier to read):

$ PS1="$(hostname): "

bravo.example.com: echo test

test

bravo.example.com:

Use the following command under tcsh:

tcsh $ set prompt = "`hostname`: "

The first example that follows changes the prompt to the name of the local host, a SPACE, and a dollar sign
(or, if the user is running as root, a pound sign). The second example changes the prompt to the time
followed by the name of the user. The third example changes the prompt to the one used in this book (a
pound sign for root and a dollar sign otherwise):

$ PS1='\h \$ '

bravo $

$ PS1='\@ \u $ '

09:44 PM alex $

$ PS1='\$ '

$

Table 8-4 describes some of the symbols you can use in PS1. For a complete list of special characters you
can use in the prompt strings, open the bash man page and search for the second occurrence of
PROMPTING (give the command /PROMPTING and then press n).

Table 8-4. PS1 symbols

Symbol Display in prompt

\$ # if the user is running as root; otherwise, $

\w Pathname of the working directory

\W Basename of the working directory

\! Current event (history) number (page 300)

\d Date in Weekday Month Date format

\h Machine hostname, without the domain

\H Full machine hostname, including the domain

\u Username of the current user

\@ Current time of day in 12-hour, AM/PM format

\T Current time of day in 12-hour HH:MM:SS format

\A Current time of day in 24-hour HH:MM format

\t Current time of day in 24-hour HH:MM:SS format

PS2: User Prompt (Secondary)

Prompt String 2 is a secondary prompt that the shell stores in PS2 (not under tcsh). On the first line of the
next example, an unclosed quoted string follows echo. The shell assumes that the command is not finished
and, on the second line, gives the default secondary prompt (>). This prompt indicates that the shell is
waiting for the user to continue the command line. The shell waits until it receives the quotation mark that
closes the string and then executes the command:

$ echo "demonstration of prompt string

> 2"

demonstration of prompt string

2

$ PS2="secondary prompt: "

$ echo "this demonstrates

secondary prompt: prompt string 2"

this demonstrates

prompt string 2

The second command changes the secondary prompt to secondary prompt: followed by a SPACE. A
multiline echo demonstrates the new prompt.

PS3: Menu Prompt

PS3 holds the menu prompt for the select control structure (page 467).

PS4: Debugging Prompt

PS4 holds the bash debugging symbol (page 449).

caution: Be careful when changing IFS

Changing IFS has a variety of side effects so work cautiously. You may find it useful to first save
the value of IFS before changing it; you can easily then restore the original value if you get
unexpected results. Alternatively, you can fork a new shell with a bash command before
experimenting with IFS; if you get into trouble, you can exit back to the old shell, where IFS is
working properly. You can also set IFS to its default value with the following command:

$ IFS=' \t\n'

IFS: Separates Input Fields (Word Splitting)

The IFS (Internal Field Separator) shell variable (not under tcsh) specifies the characters that you can use to
separate arguments on a command line and has the default value of SPACE TAB NEWLINE. Regardless of
the value of IFS, you can always use one or more SPACE or TAB characters to separate arguments on the
command line, provided that these characters are not quoted or escaped. When you assign IFS character
values, these characters can also separate fields but only if they undergo expansion. This type of
interpretation of the command line is called word splitting.

The following example demonstrates how setting IFS can affect the interpretation of a command line:

$ a=w:x:y:z

$ cat $a

cat: w:x:y:z: No such file or directory

$ IFS=":"

$ cat $a

cat: w: No such file or directory

cat: x: No such file or directory

cat: y: No such file or directory

cat: z: No such file or directory

The first time cat is called, the shell expands the variable a, interpreting the string w:x:y:z as a single word
to be used as the argument to cat. The cat utility cannot find a file named w:x:y:z and reports an error for
that filename. After IFS is set to a colon (:), the shell expands the variable a into four words, each of which
is an argument to cat. Now cat reports an error for four separate files: w, x, y, and z. Word splitting based
on the colon (:) takes place only after the variable a is expanded.

The shell splits all expanded words on a command line according to the separating characters found in IFS.
When there is no expansion, there is no splitting. Consider the following commands:

$ IFS="p"

$ export VAR

Although IFS is set to p, the p on the export command line is not expanded so the word export is not split.

The next example uses variable expansion in an attempt to produce an export command:

$ IFS="p"

$ aa=export

$ echo $aa

ex ort

This time expansion occurs so that the character p in the token export is interpreted as a separator as the
preceding echo command shows. Now when you try to use the value of the aa variable to export the VAR
variable, the shell parses the $aa VAR command line as ex ort VAR. The effect is that the command line
starts the ex editor with two filenames: ort and VAR.

$ $aa VAR

2 files to edit

"ort" [New File]

Entering Ex mode. Type "visual" to go to Normal mode.

:q

E173: 1 more file to edit

:q

$

If you unset IFS, only SPACEs and TABs work as field separators.

CDPATH: Broadens the Scope of cd

The CDPATH variable (cdpath under tcsh) allows you to use a simple filename as an argument to the cd
builtin to change the working directory to a directory other than a child of the working directory. If you have
several directories you like to work out of, this variable can speed things up and save you the tedium of using
cd with longer pathnames to switch among them.

When CDPATH or cdpath is not set and you specify a simple filename as an argument to cd, cd searches
the working directory for a subdirectory with the same name as the argument. If the subdirectory does not
exist, cd displays an error message. When CDPATH or cdpath is set, cd searches for an appropriately
named subdirectory in the directories in the CDPATH list. If cd finds one, that directory becomes the
working directory. With CDPATH or cdpath set, you can use cd and a simple filename to change the
working directory to a child of any of the directories listed in CDPATH or cdpath.

The CDPATH or cdpath variable takes on the value of a colon-separated list of directory pathnames
(similar to the PATH variable). It is usually set in the ~/.bash_profile (bash) or ~/.tcshrc (tcsh) startup file
with a command line such as the following:

export CDPATH=$HOME:$HOME/literature

Use the following format for tcsh:

setenv cdpath $HOME\:$HOME/literature

These commands cause cd to search your home directory, the literature directory, and then the working
directory when you give a cd command. If you do not include the working directory in CDPATH or cdpath,
cd searches the working directory if the search of all the other directories in CDPATH or cdpath fails. If
you want cd to search the working directory first (which you should never do when you are logged in as
root—refer to the security tip on page 285), include a null string, represented by two colons (::), as the first
entry in CDPATH:

export CDPATH=::$HOME:$HOME/literature

If the argument to the cd builtin is an absolute filename—one starting with a slash (/)—the shell does not
consult CDPATH or cdpath.

Keyword Variables: A Summary

Table 8-5 lists the bash keyword variables.

Table 8-5. bash keyword variables

Variable Value

BASH_ENV The pathname of the startup file for noninteractive shells (page
258)

CDPATH The cd search path (page 289)

COLUMNS The width of the display used by select (page 466)

FCEDIT The name of the editor that fc uses by default (page 298)

HISTFILE The pathname of the file that holds the history list (default:
~/.bash_history; page 295)

HISTFILESIZE The maximum number of entries saved in HISTFILE (default:
500; page 295)

HISTSIZE The maximum number of entries saved in the history list (default:
500; page 295)

HOME The pathname of the user's home directory (page 283); used as the
default argument for cd and in tilde expansion (page 89)

IFS Internal Field Separator (page 288); used for word splitting (page
330)

INPUTRC The pathname of the Readline startup file (default: ~/.inputrc; page
309)

LANG The locale category when that category is not specifically set with
an LC_* variable

LC_* A group of variables that specify locale categories including
LC_COLLATE, LC_CTYPE, LC_MESSAGES, and
LC_NUMERIC; use the locale builtin to display a complete list
with values

LINES The height of the display used by select (page 466)

MAIL The psathname of the file that holds a user's mail (page 285)

MAILCHECK How often, in seconds, bash checks for mail (page 285)

MAILPATH A colon-separated list of file pathnames that bash checks for mail
in (page 285)

PATH A colon-separated list of directory pathnames that bash looks for
commands in (page 284)

PROMPT_COMMAND A command that bash executes just before it displays the primary
prompt

PS1 Prompt String 1; the primary prompt (default: '\s–\v\$ '; page 286)

PS2 Prompt String 2; the secondary prompt (default: '> '; page 287)

PS3 The prompt issued by select (page 466)

PS4 The bash debugging symbol (page 449)

REPLY Holds the line that read accepts (page 488); also used by select
(page 466)

Special Characters

Table 8-6 lists most of the characters that are special to the bash and tcsh shells.

Table 8-6. Shell special characters

Character Use

NEWLINE Initiates execution of a command (page 267)

; Separates commands (page 267)

() Groups commands (page 270) for execution by a
subshell or identifies a function (page 315)

& Executes a command in the background (pages 125
and 269)

| Sends standard output of preceding command to
standard input of following command (pipe; page
269)

> Redirects standard output (page 116)

>> Appends standard output (page 121)

< Redirects standard input (page 118)

<< Here document (page 468)

* Any string of zero or more characters in an
ambiguous file reference (page 129)

? Any single character in an ambiguous file reference
(page 128)

\ Quotes the following character (page 42)

' Quotes a string, preventing all substitution (page 42)

" Quotes a string, allowing only variable and
command substitution (pages 42 and 279)

'...' Performs command substitution (page 329)

[] Character class in an ambiguous file reference (page
130)

$ References a variable (page 277)

. (dot builtin) Executes a command (only at the beginning of a line,
page 259)

Begins a comment (page 266)

{ } Used to surround the contents of a function (page
315)

: (null builtin) Returns true (page 495)

&& (Boolean AND) Executes command on right only if command on left
succeeds (returns a zero exit status, page 507)

| | (Boolean OR) Executes command on right only if command on left
fails (returns a nonzero exit status; page 507)

! (Boolean NOT) Reverses exit status of a command

$() (not in tcsh) Performs command substitution (preferred form;
page 329)

[] Evaluates an arithmetic expression (page 327)

 < Day Day Up >

 < Day Day Up >

Processes

A process is the execution of a command by Linux. The shell that starts when you log in is a command , or a process, like
any other. When you give the name of a Linux utility on the command line, you initiate a process. When you run a shell
script, another shell process is started and additional processes are created for each command in the script. Depending on
how you invoke the shell script, the script is run either by the current shell or, more typically, by a subshell (child) of the
current shell. A process is not started when you run a shell builtin, such as cd.

Process Structure

fork system call

Like the file structure, the process structure is hierarchical, with parents, children, and even a root. A parent process forks a
child process, which in turn can fork other processes. (The term fork indicates that, as with a fork in the road, one process
turns into two. Initially the two forks are identical except that one is identified as the parent and one as the child. You can
also use the term spawn ; the words are interchangeable.) The operating system routine, or system call, that creates a new
process is named fork.

When Linux begins execution when a system is started, it starts init, a single process called a spontaneous process, with
PID number 1. This process holds the same position in the process structure as the root directory does in the file structure:
It is the ancestor of all processes that the system and users work with. When the system is in multiuser mode, init runs
getty or mingetty processes, which display login: prompts on terminals and virtual consoles. When someone responds to
the prompt and presses RETURN, getty hands control over to a utility named login, which checks the username and
password combination. After the user logs in, the login process becomes the user's shell process.

Process Identification

PID number

Linux assigns a unique PID (process identification) number at the inception of each process. As long as a process exists, it
keeps the same PID number. During one session the same process is always executing the login shell. When you fork a
new process—for example, when you use an editor—the PID number of the new (child) process is different from that of
its parent process. When you return to the login shell, it is still being executed by the same process and has the same PID
number as when you logged in.

The following example shows that the process running the shell forked (is the parent of) the process running ps (page
127). When you call it with the –f option, ps displays a full listing of information about each process. The line of the ps
display with bash in the CMD column refers to the process running the shell. The column headed by PID identifies the
PID number. The column headed PPID identifies the PID number of the parent of the process. From the PID and PPID
columns you can see that the process running the shell (PID 21341) is the parent of the process running sleep (PID
22789). The parent PID number of sleep is the same as the PID number of the shell (21341).

$ sleep 10 &

[1] 22789

$ ps -f

UID PID PPID C STIME TTY TIME CMD

alex 21341 21340 0 10:42 pts/16 00:00:00 bash

alex 22789 21341 0 17:30 pts/16 00:00:00 sleep 10

alex 22790 21341 0 17:30 pts/16 00:00:00 ps -f

Refer to page 746 for more information on ps and the columns it displays with the –f option. A second pair of sleep and ps
–f commands shows that the shell is still being run by the same process but that it forked another process to run sleep:

$ sleep 10 &

[1] 22791

$ ps -f

UID PID PPID C STIME TTY TIME CMD

alex 21341 21340 0 10:42 pts/16 00:00:00 bash

alex 22791 21341 0 17:31 pts/16 00:00:00 sleep 10

alex 22792 21341 0 17:31 pts/16 00:00:00 ps -f

You can also use pstree (or ps – –forest, with or without the –e option) to see the parent–child relationship of processes.
The next example shows the –p option to pstree, which causes it to display PID numbers:

$ pstree -p

init(1)-+-acpid(1395)

 |-atd(1758)

 |-crond(1702)

 ...

 |-kdeinit(2223)-+-firefox(8914)---run-mozilla.sh(8920)---firefox-bin(8925)

 | |-gaim(2306)

 | |-gqview(14062)

 | |-kdeinit(2228)

 | |-kdeinit(2294)

 | |-kdeinit(2314)-+-bash(2329)---ssh(2561)

 | | |-bash(2339)

 | | '-bash(15821)---bash(16778)

 | |-kdeinit(16448)

 | |-kdeinit(20888)

 | |-oclock(2317)

 | '-pam-panel-icon(2305)---pam_timestamp_c(2307)

 ...

 |-login(1823)---bash(20986)-+-pstree(21028)

 | '-sleep(21026)

 ...

The preceding output is abbreviated. The line that starts with –kdeinit shows a graphical user running many processes,
including firefox, gaim, and oclock. The line that starts with –login shows a textual user running sleep in the background
while running pstree in the foreground. Refer to "$$: PID Number: PID Number" on page 478 for a description of how to
instruct the shell to report on PID numbers.

Executing A Command

fork and sleep

When you give the shell a command, it usually forks (spawns) a child process to execute the command. While the child
process is executing the command, the parent process sleeps. While a process is sleeping, it does not use any computer
time but remains inactive, waiting to wake up. When the child process finishes executing the command, it tells its parent
of its success or failure via its exit status and then dies. The parent process (which is running the shell) wakes up and
prompts for another command.

Background process

When you run a process in the background by ending a command with an ampersand (&), the shell forks a child process
without going to sleep and without waiting for the child process to run to completion. The parent process, which is
executing the shell, reports the job number and PID number of the child and prompts for another command. The child
process runs in the background, independent of its parent.

Builtins

Although the shell forks a process to run most of the commands you give it, some commands are built into the shell. The
shell does not need to fork a process to run builtins. For more information refer to "Builtins" on page 132.

Variables

Within a given process, such as your login shell or a subshell, you can declare, initialize, read, and change variables. By
default, however, a variable is local to a process. When a process forks a child process, the parent does not pass the value
of a variable to the child. You can make the value of a variable available to child processes (global) by using the export
builtin under bash (page 475) or the setenv builtin under tcsh (page 356).

 < Day Day Up >

 < Day Day Up >

History

The history mechanism, a feature adapted from the C Shell, maintains a list of recently issued command
lines, also called events, providing a quick way to reexecute any of the events in the list. This mechanism
also enables you to execute variations of previous commands and to reuse arguments from them. You can
replicate complicated commands and arguments that you used earlier in this login session or in a previous
one and enter a series of commands that differ from one another in minor ways. The history list also serves
as a record of what you have done. It can prove helpful when you have made a mistake and are not sure what
you did or when you want to keep a record of a procedure that involved a series of commands.

The history builtin (both in bash and tcsh) displays the history list. If it does not, read on—you need to set
some variables.

tip: history can help track down mistakes

When you have made a command line mistake (not an error within a script or program) and are not
sure what you did wrong, look at the history list to review your recent commands. Sometimes this
list can help you figure out what went wrong and how to fix things.

Variables That Control History

The TC Shell's history mechanism is similar to bash's but uses different variables and has other differences.
See page 344 for more information.

The value of the HISTSIZE variable determines the number of events preserved in the history list during a
session. A value in the range of 100 to 1,000 is normal.

When you exit from the shell, the most recently executed commands are saved in the file given by the
HISTFILE variable (the default is ~/.bash_history). The next time you start the shell, this file initializes the
history list. The value of the HISTFILESIZE variable determines the number of lines of history saved in
HISTFILE (not necessarily the same as HISTSIZE). HISTSIZE holds the number of events remembered
during a session, HISTFILESIZE holds the number remembered between sessions, and the file designated
by HISTFILE holds the history list. See Table 8-7.

Table 8-7. History variables

Variable Default Function

HISTSIZE 500 events Maximum number of events saved during a
session

HISTFILE ~/.bash_history Location of the history file

HISTFILESIZE 500 events Maximum number of events saved between
sessions

Event number

The Bourne Again Shell assigns a sequential event number to each command line. You can display this event
number as part of the bash prompt by including \! in PS1 (page 286). Examples in this section show
numbered prompts when they help to illustrate the behavior of a command.

Give the following command manually or place it in ~/.bash_profile (to affect future sessions) to establish a
history list of the 100 most recent events:

$ HISTSIZE=100

The following command causes bash to save the 100 most recent events across login sessions:

$ HISTFILESIZE=100

After you set HISTFILESIZE, you can log out and log in again, and the 100 most recent events from the
previous login session will appear in your history list.

Give the command history to display the events in the history list. The list of events is ordered with oldest
events at the top of the list. A tcsh history list includes the time the command was executed. The following
history list includes a command to modify the bash prompt so that it displays the history event number. The
last event in the history list is the history command that displayed the list.

32 $ history | tail

 23 PS1="\! bash$ "

 24 ls -l

 25 cat temp

 26 rm temp

 27 vim memo

 28 lpr memo

 29 vim memo

 30 lpr memo

 31 rm memo

 32 history | tail

As you run commands and your history list becomes longer, it may run off the top of the screen when you
use the history builtin. Pipe the output of history through less to browse through it, or give the command
history 10 to look at the ten most recent commands.

Reexecuting and Editing Commands

You can reexecute any event in the history list. This feature can save you time, effort, and aggravation. Not
having to reenter long command lines allows you to reexecute events more easily, quickly, and accurately
than you could if you had to retype the entire command line. You can recall, modify, and reexecute
previously executed events in three ways: You can use the fc builtin (covered next); the exclamation point
commands (page 300); or the Readline Library, which uses a one-line vi- or emacs-like editor to edit and
execute events (page 305).

tip: Which method to use?

If you are more familiar with vi or emacs and less familiar with the C or TC Shell, use fc or the
Readline Library. If you are more familiar with the C or TC Shell and less familiar with vi and
emacs, use the exclamation point commands. If it is a toss-up, try the Readline Library; it will
benefit you in other areas of Linux more than learning the exclamation point commands will.

fc: Displays, Edits, and Reexecutes Commands

The fc (fix command) builtin (not in tcsh) enables you to display the history list and to edit and reexecute
previous commands. It provides many of the same capabilities as the command line editors.

Viewing the History List

When you call fc with the –l option, it displays commands from the history list. Without any arguments, fc
–l lists the 16 most recent commands in a numbered list, with the oldest appearing first:

$ fc -l

1024 cd

1025 view calendar

1026 vim letter.adams01

1027 aspell -c letter.adams01

1028 vim letter.adams01

1029 lpr letter.adams01

1030 cd ../memos

1031 ls

1032 rm *0405

1033 fc -l

1034 cd

1035 whereis aspell

1036 man aspell

1037 cd /usr/share/doc/*aspell*

1038 pwd

1039 ls

1040 ls man-html

The fc builtin can take zero, one, or two arguments with the –l option. The arguments specify the part of the
history list to be displayed:

fc –l [first [last]]

The fc builtin lists commands beginning with the most recent event that matches first . The argument can be
an event number, the first few characters of the command line, or a negative number, which is taken to be the
nth previous command. If you provide last, fc displays commands from the most recent event that matches
first through the most recent event that matches last. The next command displays the history list from event
1030 through event 1035:

$ fc -l 1030 1035

1030 cd ../memos

1031 ls

1032 rm *0405

1033 fc -l

1034 cd

1035 whereis aspell

The following command lists the most recent event that begins with view through the most recent command
line that begins with whereis:

$ fc -l view whereis

1025 view calendar

1026 vim letter.adams01

1027 aspell -c letter.adams01

1028 vim letter.adams01

1029 lpr letter.adams01

1030 cd ../memos

1031 ls

1032 rm *0405

1033 fc -l

1034 cd

1035 whereis aspell

To list a single command from the history list, use the same identifier for the first and second arguments. The
following command lists event 1027:

$ fc -l 1027 1027

1027 aspell -c letter.adams01

Editing and Reexecuting Previous Commands

You can use fc to edit and reexecute previous commands.

fc [–e editor] [first [last]]

When you call fc with the – e option followed by the name of an editor, fc calls the editor with event(s) in
the Work buffer. Without first and last, fc defaults to the most recent command. The next example invokes
the vi(m) editor to edit the most recent command:

$ fc -e vi

The fc builtin uses the stand-alone vi(m) editor. If you set the FCEDIT variable, you do not need to use the
– e option to specify an editor on the command line. Because the value of FCEDIT has been changed to
/usr/bin/emacs and fc has no arguments, the following command edits the most recent command with the
emacs editor:

$ export FCEDIT=/usr/bin/emacs

$ fc

If you call it with a single argument, fc invokes the editor on the specified command. The following
example starts the editor with event 21 in the Work buffer. When you exit from the editor, the shell executes
the command:

$ fc 21

Again you can identify commands with numbers or by specifying the first few characters of the command
name. The following example calls the editor to work on events from the most recent event that begins with
the letters vim through event 206:

$ fc vim 206

caution: Clean up the fc buffer

When you execute an fc command, the shell executes whatever you leave in the editor buffer,
possibly with unwanted results. If you decide you do not want to execute a command, delete
everything from the buffer before you exit from the editor.

Reexecuting Commands Without Calling the Editor

You can reexecute previous commands without going into an editor. If you call fc with the –s option, it
skips the editing phase and reexecutes the command. The following example reexecutes event 1029:

$ fc -s 1029

lpr letter.adams01

The next example reexecutes the previous command:

$ fc -s

When you reexecute a command you can tell fc to substitute one string for another. The next example
substitutes the string john for the string adams in event 1029 and executes the modified event:

$ fc -s adams=john 1029

lpr letter.john01

Using an Exclamation Point (!) to Reference Events

The C Shell history mechanism uses an exclamation point to reference events and is available under bash
and tcsh. It is frequently more cumbersome to use than fc but nevertheless has some useful features. For
example, the !! command reexecutes the previous event, and the !$ token represents the last word on the
previous command line.

You can reference an event by using its absolute event number, its relative event number, or the text it
contains. All references to events, called event designators, begin with an exclamation point (!). One or
more characters follow the exclamation point to specify an event.

You can put history events anywhere on a command line. To escape an exclamation point so that it is treated
literally instead of as the start of a history event, precede it with a backslash (\) or enclose it within single
quotation marks.

Event Designators

An event designator specifies a command in the history list. See Table 8-8 on page 301 for a list of event
designators.

Table 8-8. Event designators

Designator Meaning

! Starts a history event unless followed immediately by SPACE,
NEWLINE, =, or (.

!! The previous command.

!n Command number n in the history list.

!–n The n th preceding command.

!string The most recent command line that started with string .

!?string [?] The most recent command that contained string . The last ? is
optional.

!# The current command (as you have it typed so far).

!{event} The event is an event designator. The braces isolate event from the
surrounding text. For example, !{–3}3 is the third most recently
executed command followed by a 3.

!! reexecutes the previous event

You can always reexecute the previous event by giving a !! command. In the following example, event 45
reexecutes event 44:

44 $ ls -l text

-rw-rw-r-- 1 alex group 45 Apr 30 14:53 text

45 $!!

ls -l text

-rw-rw-r-- 1 alex group 45 Apr 30 14:53 text

The !! command works whether or not your prompt displays an event number. As this example shows, when
you use the history mechanism to reexecute an event, the shell displays the command it is reexecuting.

!n event number

A number following an exclamation point refers to an event. If that event is in the history list, the shell
executes it. Otherwise, the shell displays an error message. A negative number following an exclamation
point references an event relative to the current event. For example, the command ! – 3 refers to the third
preceding event. After you issue a command, the relative event number of a given event changes (event –3
becomes event – 4). Both of the following commands reexecute event 44:

51 $!44

ls -l text

-rw-rw-r-- 1 alex group 45 Nov 30 14:53 text

52 $!-8

ls -l text

-rw-rw-r-- 1 alex group 45 Nov 30 14:53 text

!string event text

When a string of text follows an exclamation point, the shell searches for and executes the most recent event
that began with that string. If you enclose the string between question marks, the shell executes the most
recent event that contained that string. The final question mark is optional if a RETURN would immediately
follow it.

68 $ history 10

 59 ls -l text*

 60 tail text5

 61 cat text1 text5 > letter

 62 vim letter

 63 cat letter

 64 cat memo

 65 lpr memo

 66 pine jenny

 67 ls -l

 68 history

69 $!l

ls -l

...

70 $!lpr

lpr memo

71 $!?letter?

cat letter

...

optional: WORD DESIGNATORS

A word designator specifies a word or series of words from an event. Table 8-9 on page 303
lists word designators.

Table 8-9. Word designators

Designator Meaning

n The nth word. Word 0 is normally the command name.

^ The first word (after the command name).

$ The last word.

m –n All words from word number m through word number n; m defaults
to 0 if you omit it (0–n).

n* All words from word number n through the last word.

* All words except the command name. The same as 1*.

% The word matched by the most recent ?string ? search.

The words are numbered starting with 0 (the first word on the line—usually the command),
continuing with 1 (the first word following the command), and going through n (the last word
on the line).

To specify a particular word from a previous event, follow the event designator (such as !14)
with a colon and the number of the word in the previous event. For example, !14:3 specifies the
third word following the command from event 14. You can specify the first word following the
command (word number 1) by using a caret (^) and the last word by using a dollar sign ($).
You can specify a range of words by separating two word designators with a hyphen.

72 $ echo apple grape orange pear

apple grape orange pear

73 $ echo !72:2

echo grape

grape

74 $ echo !72:^

echo apple

apple

75 $!72:0 !72:$

echo pear

pear

76 $ echo !72:2-4

echo grape orange pear

grape orange pear

77 $!72:0-$

echo apple grape orange pear

apple grape orange pear

As the next example shows, !$ refers to the last word of the previous event. You can use this
shorthand to edit, for example, a file you just displayed with cat:

$ cat report.718

...

$ vim !$

vim report.718

...

If an event contains a single command, the word numbers correspond to the argument numbers.
If an event contains more than one command, this correspondence does not hold true for
commands after the first. In the following example event 78 contains two commands separated
by a semicolon so that the shell executes them sequentially; the semicolon is word number 5.

78 $!72 ; echo helen jenny barbara

echo apple grape orange pear ; echo helen jenny barbara

apple grape orange pear

helen jenny barbara

79 $ echo !78:7

echo helen

helen

80 $ echo !78:4-7

echo pear ; echo helen

pear

helen

MODIFIERS

On occasion you may want to change an aspect of an event you are reexecuting. Perhaps you
entered a complex command line with a typo or incorrect pathname or you want to specify a
different argument. You can modify an event or a word of an event by putting one or more
modifiers after the word designator, or after the event designator if there is no word designator.
Each modifier must be preceded by a colon (:).

Substitute modifier

The substitute modifier is more complex than the other modifiers. The following example
shows the substitute modifier correcting a typo in the previous event:

$ car /home/jenny/memo.0507 /home/alex/letter.0507

bash: car: command not found

$!!:s/car/cat

cat /home/jenny/memo.0507 /home/alex/letter.0507

...

The substitute modifier has the following syntax:

[g]s/old /new /

where old is the original string (not a regular expression), and new is the string that replaces
old. The substitute modifier substitutes the first occurrence of old with new . Placing a g before
the s (as in gs/old/new /) causes a global substitution, replacing all occurrences of old. The / is
the delimiter in the examples but you can use any character that is not in either old or new . The
final delimiter is optional if a RETURN would immediately follow it. As with the vim
Substitute command, the history mechanism replaces an ampersand (&) in new with old. The
shell replaces a null old string (s//new /) with the previous old string or string within a command
that you searched for with ?string?

Quick substitution

An abbreviated form of the substitute modifier is quick substitution. Use it to reexecute the
most recent event while changing some of the event text. The quick substitution character is the
caret (^). For example, the command

$ ̂old^new^

produces the same results as

$!!:s/old/new/

Thus substituting cat for car in the previous event could have been entered as

$ ̂car^cat

cat /home/jenny/memo.0507 /home/alex/letter.0507

...

You can omit the final caret if it would be followed immediately by a RETURN. As with other
command line substitutions, the shell displays the command line as it appears after the
substitution.

Other modifiers

Modifiers (other than the substitute modifier) perform simple edits on the part of the event that
has been selected by the event designator and the optional word designators. You can use
multiple modifiers, each preceded by a colon (:).

The following series of commands uses ls to list the name of a file, repeats the command
without executing it (p modifier), and repeats the last command, removing the last part of the
pathname (h modifier) again without executing it:

$ ls /etc/sysconfig/harddisks

/etc/sysconfig/harddisks

$!!:p

ls /etc/sysconfig/harddisks

$!!:h:p

ls /etc/sysconfig

$

Table 8-10 lists event modifiers other than the substitute modifier.

Table 8-10. Modifiers

Modifier Function

e (extension) Removes all but the filename extension

h (head) Removes the last part of a pathname

p (print-not) Displays the command, but does not
execute it

q (quote) Quotes the substitution to prevent further
substitutions on it

r (root) Removes the filename extension

t (tail) Removes all elements of a pathname
except the last

x Like q but quotes each word in the
substitution individually

The Readline Library

Command line editing under the Bourne Again Shell is implemented through the Readline Library, which is
available to any application written in C. Any application that uses the Readline Library supports line editing
that is consistent with that provided by bash. Programs that use the Readline Library, including bash, read
~/.inputrc (page 309) for key binding information and configuration settings. The – –noediting command
line option turns off command line editing in bash.

vi mode

You can choose one of two editing modes when using the Readline Library in bash: emacs or vi(m). Both
modes provide many of the commands available in the stand-alone versions of the vi(m) and emacs editors.
You can also use the ARROW keys to move around. Up and down movements move you backward and forward
through the history list. In addition, Readline provides several types of interactive word completion (page
307). The default mode is emacs; you can switch to vi mode with the following command:

$ set -o vi

emacs mode

The next command switches back to emacs mode:

$ set -o emacs

vi Editing Mode

Before you start make sure you are in vi mode.

When you enter bash commands while in vi editing mode, you are in Input mode (page 142). As you enter a
command, if you discover an error before you press RETURN, you can press ESCAPE to switch to vi
Command mode. This setup is different from the stand-alone vi(m) editor's initial mode. While in Command
mode you can use many vi(m) commands to edit the command line. It is as though you were using vi(m) to
edit a copy of the history file with a screen that has room for only one command. When you use the k
command or the UP ARROW to move up a line, you access the previous command. If you then use the j
command or the DOWN ARROW to move down a line, you will return to the original command. To use the
k and j keys to move between commands you must be in Command mode; you can use the ARROW keys in
both Command and Input modes.

tip: The stand-alone editor starts in Command mode

The stand-alone vim editor starts in Command mode, whereas the command line vi(m) editor starts
in Input mode. If commands display characters and do not work properly, you are in Input mode.
Press ESCAPE and enter the command again.

In addition to cursor-positioning commands, you can use the search-backward (?) command followed by a
search string to look back through your history list for the most recent command containing that string. If
you have moved back in your history list, use a forward slash (/) to search forward toward your most recent
command. Unlike the search strings in the stand-alone vi(m) editor, these search strings cannot contain
regular expressions. You can, however, start the search string with a caret (^) to force the shell to locate
commands that start with the search string. As in vi(m), pressing n after a successful search looks for the
next occurrence of the same string.

You can also access events in the history list by using event numbers. While you are in Command mode
(press ESCAPE), enter the event number followed by a G to go to the command with that event number.

When you use /, ?, or G to move to a command line, you are in Command mode, not Input mode. Now you
can edit the command as you like or press RETURN to execute it.

Once the command you want to edit is displayed, you can modify the command line using vi(m) Command

mode editing commands such as x (delete character), r (replace character), ~ (change case), and . (repeat last
change). To change to Input mode, use an Insert (i, I), Append (a, A), Replace (R), or Change (c, C)
command. You do not have to return to Command mode to run a command; simply press RETURN, even if
the cursor is in the middle of the command line.

Refer to page 188 for a summary of vim commands.

emacs Editing Mode

Unlike the vi(m) editor, emacs is modeless. You need not switch between Command mode and Input mode
because most emacs commands are control characters (page 204), allowing emacs to distinguish between
input and commands. Like vi(m), the emacs command line editor provides commands for moving the cursor
on the command line and through the command history list and for modifying part or all of a command. The
emacs command line editor commands differ in a few cases from the commands in the stand-alone emacs
editor.

In emacs you perform cursor movement by using both CONTROL and ESCAPE commands. To move the
cursor one character backward on the command line, press CONTROL-B. Press CONTROL-F to move one
character forward. As in vi, you may precede these movements with counts. To use a count you must first
press ESCAPE; otherwise, the numbers you type will appear on the command line.

Like vi(m), emacs provides word and line movement commands. To move backward or forward one word on
the command line, press ESCAPE b or ESCAPE f. To move several words by using a count, press ESCAPE
followed by the number and the appropriate escape sequence. To get to the beginning of the line, press
CONTROL-A; to the end of the line, press CONTROL-E; and to the next instance of the character c, press
CONTROL-X CONTROL-F followed by c.

You can add text to the command line by moving the cursor to the correct place and typing the desired text.
To delete text, move the cursor just to the right of the characters that you want to delete and press the erase
key (page 26) once for each character you want to delete.

tip: CONTROL-D can terminate your screen session

If you want to delete the character directly under the cursor, press CONTROL-D. If you enter
CONTROL-D at the beginning of the line, it may terminate your shell session.

If you want to delete the entire command line, type the line kill character (page 27). You can type this
character while the cursor is anywhere in the command line. If you want to delete from the cursor to the end
of the line, use CONTROL-K.

Refer to page 241 for a summary of emacs commands.

Readline Completion Commands

You can use the TAB key to complete words you are entering on the command line. This facility, called

completion, works in both vi and emacs editing modes and is similar to the completion facility available in
tcsh. Several types of completion are possible, and which one you use depends on which part of a command
line you are typing when you press TAB.

Command Completion

If you are typing the name of a command (the first word on the command line), pressing TAB results in
command completion. That is, bash looks for a command whose name starts with the part of the word you
have typed. If no command starts with what you have entered, bash beeps. If there is one such command,
bash completes the command name for you. If there is more than one choice, bash does nothing in vi mode
and beeps in emacs mode. Pressing TAB a second time causes bash to display a list of commands whose
names start with the prefix you typed and allows you to finish typing the command name.

In the following example, the user types bz and presses TAB. The shell beeps (the user is in emacs mode) to
indicate that several commands start with the letters bz. The user enters another TAB to cause the shell to
display a list of commands that start with bz followed by the command line as the user had entered it so far:

$ bz TAB (beep) TAB

bzcat bzdiff bzip2 bzless

bzcmp bzgrep bzip2recover bzmore

$ bz

Next the user types c and presses TAB twice. The shell displays the two commands that start with bzc. The
user types a followed by TAB and the shell then completes the command because only one command starts
with bzca.

$ bzc TAB (beep) TAB

bzcat bzcmp

$ bzca TAB t

Pathname Completion

Pathname completion, which also uses TABs, allows you to type a portion of a pathname and have bash
supply the rest. If the portion of the pathname that you have typed is sufficient to determine a unique
pathname, bash displays that pathname. If more than one pathname would match it, bash completes the
pathname up to the point where there are choices so that you can type more.

When you are entering a pathname, including a simple filename, and press TAB, the shell beeps (if the shell
is in emacs mode—in vi mode there is no beep). It then extends the command line as far as it can.

$ cat films/dar TAB (beep) cat films/dark_

In the films directory every file that starts with dar has k_ as the next characters, so bash cannot extend the
line further without making a choice among files. You are left with the cursor just past the _ character. At
this point you can continue typing the pathname or press TAB twice. In the latter case bash beeps, displays
your choices, redisplays the command line, and again leaves the cursor just after the _ character.

$ cat films/dark_ TAB (beep) TAB

dark_passage dark_victory

$ cat films/dark_

When you add enough information to distinguish between the two possible files and press TAB, bash
displays the unique pathname. If you enter p followed by TAB after the _ character, the shell completes the
command line:

$ cat films/dark_p TAB assage

Because there is no further ambiguity, the shell appends a SPACE so you can finish typing the command line
or just press RETURN to execute the command. If the complete pathname is that of a directory, bash
appends a slash (/) in place of a SPACE.

Variable Completion

When typing a variable name, pressing TAB results in variable completion, where bash tries to complete the
name of the variable. In case of an ambiguity, pressing TAB twice displays a list of choices:

$ echo $HO TAB TAB

$HOME $HOSTNAME $HOSTTYPE

$ echo $HOM TAB E

caution: Pressing RETURN executes the command

Pressing RETURN causes the shell to execute the command regardless of where the cursor is on

the command line.

.inputrc: Configuring Readline

The Bourne Again Shell and other programs that use the Readline Library read the file specified by the
INPUTRC environment variable to obtain initialization information. If INPUTRC is not set, these
programs read the ~/.inputrc file. They ignore lines of .inputrc that are blank or that start with a pound sign
(#).

Variables

You can set variables in .inputrc to control the behavior of the Readline Library using the following syntax:

set variable value

Table 8-11 lists some variables and values you can use. See Readline Variables in the bash man or info
page for a complete list.

Table 8-11. Readline variables

Variable Effect

editing-mode Set to vi to start Readline in vi mode. Set to emacs to
start Readline in emacs mode (the default). Similar to
the set –o vi and set –o emacs shell commands (page
305).

horizontal-scroll-mode Set to on to cause long lines to extend off the right edge
of the display area. Moving the cursor to the right when
it is at the right edge of the display area shifts the line to
the left so you can see more of the line. You can shift
the line back by moving the cursor back past the left
edge. The default value is off, which causes long lines
to wrap onto multiple lines of the display.

mark-directories Set to off to cause Readline not to place a slash (/) at
the end of directory names it completes. Normally it is
on.

mark-modified-lines Set to on to cause Readline to precede modified history
lines with an asterisk. The default value is off.

Key Bindings

You can specify bindings that map keystroke sequences to Readline commands, allowing you to change or
extend the default bindings. As in emacs, the Readline Library includes many commands that are not bound
to a keystroke sequence. To use an unbound command, you must map it using one of the following forms:

keyname: command_name

"keystroke_sequence": command_name

In the first form, you spell out the name for a single key. For example, CONTROL-U would be written as
control-u. This form is useful for binding commands to single keys.

In the second form, you specify a string that describes a sequence of keys that will be bound to the command.
You can use the emacs-style backslash escape sequences to represent the special keys CONTROL (\C),
META (\M), and ESCAPE (\e). Specify a backslash by escaping it with another backslash: \\. Similarly, a
double or single quotation mark can be escaped with a backslash: \" or \'.

The kill-whole-line command, available in emacs mode only, deletes the current line. Put the following
command in .inputrc to bind the kill-whole-line command (which is unbound by default) to the keystroke
sequence CONTROL-R.

control-r: kill-whole-line

bind

Give the command bind –P to display a list of all Readline commands. If a command is bound to a key
sequence, that sequence is shown. Commands you can use in vi mode start with vi. For example, vi-next-
word and vi-prev-word move the cursor to the beginning of the next and previous words, respectively.
Commands that do not begin with vi are generally available in emacs mode.

Use bind –q to determine which key sequence is bound to a command:

$ bind -q kill-whole-line

kill-whole-line can be invoked via "\C-r".

You can also bind text by enclosing it within double quotation marks (emacs mode only):

"QQ": "The Linux Operating System"

This command causes bash to insert the string The Linux Operating System when you type QQ.

Conditional Constructs

You can conditionally select parts of the .inputrc file using the $if directive. The syntax of the conditional
construct is

$if [test[=value]]

 commands

 [$else

 commands

$endif

where test is mode, term, or bash. If test equals value or if test is true, this structure executes the first set of
commands . If test does not equal value or if test is false, it executes the second set of commands if they are
present or exits from the structure if they are not present.

The power of the $if directive lies in the three types of tests it can perform.

You can test to see which mode is currently set.

$if mode=vi

The preceding test is true if the current Readline mode is vi and false otherwise. You can test for vi or
emacs.

1.

You can test the type of terminal.

$if term=xterm

The preceding test is true if the TERM variable is set to xterm. You can test for any value of TERM.

2.

3.

You can test the application name.

$if bash

The preceding test is true when you are running bash and not another program that uses the Readline
Library. You can test for any application name.

3.

These tests can customize the Readline Library based on the current mode, the type of terminal, and the
application you are using. They give you a great deal of power and flexibility when using the Readline
Library with bash and other programs.

The following commands in .inputrc cause CONTROL-Y to move the cursor to the beginning of the next
word regardless of whether bash is in vi or emacs mode:

$ cat ~/.inputrc

set editing-mode vi

$if mode=vi

 "\C-y": vi-next-word

 $else

 "\C-y": forward-word

$endif

Because bash reads the preceding conditional construct when it is started, you must set the editing mode in
.inputrc. Changing modes interactively using set will not change the binding of CONTROL-Y.

For more information on the Readline Library, open the bash man page and give the command
/^READLINE, which searches for the word READLINE at the beginning of a line.

tip: If Readline commands do not work, log out and log in again

The Bourne Again Shell reads ~/.inputrc when you log in. After you make changes to this file,
you should log out and log in again before testing the changes.

 < Day Day Up >

 < Day Day Up >

Aliases

An alias is a (usually short) name that the shell translates into another (usually longer) name or (complex)
command. Aliases allow you to define new commands by substituting a string for the first token of a simple
command. They are typically placed in the ~/.bashrc (bash) or ~/.tcshrc (tcsh) startup files so that they are
available to interactive subshells.

Under bash the syntax of the alias builtin is

alias [name[=value]]

Under tcsh the syntax is

alias [name[value]]

In the bash syntax there are no SPACEs around the equal sign. If value contains SPACEs or TABs, you
must enclose value between quotation marks. Unlike aliases under tcsh, a bash alias does not accept an
argument from the command line in value . Use a bash function (page 315) when you need to use an
argument.

An alias does not replace itself, which avoids the possibility of infinite recursion in handling an alias such as
the following:

$ alias ls='ls -F'

You can nest aliases. Aliases are disabled for noninteractive shells (that is, shell scripts). To see a list of the
current aliases, give the command alias. To view the alias for a particular name, use alias followed by the
name and nothing else. You can use the unalias builtin to remove an alias.

When you give an alias builtin without any arguments, the shell displays a list of all defined aliases:

$ alias

alias ll='ls -l'

alias l='ls -ltr'

alias ls='ls -F'

alias zap='rm -i'

Most Linux distributions define at least some aliases. Give an alias command to see which aliases are in
effect. You can delete the aliases you do not want from the appropriate startup file.

Single Versus Double Quotation Marks in Aliases

The choice of single or double quotation marks is significant in the alias syntax when the alias includes
variables. If you enclose value within double quotation marks, any variables that appear in value are
expanded when the alias is created. If you enclose value within single quotation marks, variables are not
expanded until the alias is used. The following example illustrates the difference.

The PWD keyword variable holds the pathname of the working directory. Alex creates two aliases while he
is working in his home directory. Because he uses double quotation marks when he creates the dirA alias,
the shell substitutes the value of the working directory when he creates this alias. The alias dirA command
displays the dirA alias and shows that the substitution has already taken place:

$ echo $PWD

/home/alex

$ alias dirA="echo Working directory is $PWD"

$ alias dirA

alias dirA='echo Working directory is /home/alex'

When Alex creates the dirB alias, he uses single quotation marks, which prevent the shell from expanding
the $PWD variable. The alias dirB command shows that the dirB alias still holds the unexpanded $PWD
variable:

$ alias dirB='echo Working directory is $PWD'

$ alias dirB

alias dirB='echo Working directory is $PWD'

After creating the dirA and dirB aliases, Alex uses cd to make cars his working directory and gives each of
the aliases as commands. The alias that he created with double quotation marks displays the name of the
directory that he created the alias in as the working directory (which is wrong) and the dirB alias displays the
proper name of the working directory:

$ cd cars

$ dirA

Working directory is /home/alex

$ dirB

Working directory is /home/alex/cars

tip: How to prevent the shell from invoking an alias

The shell checks only simple, unquoted commands to see if they are aliases. Commands given as
relative or absolute pathnames and quoted commands are not checked. When you want to give a
command that has an alias but do not want to use the alias, precede the command with a backslash,
specify the command's absolute pathname, or give the command as . /command.

Examples of Aliases

The following alias allows you to type r to repeat the previous command or r abc to repeat the last command
line that began with abc:

$ alias r='fc -s'

If you use the command ls –ltr frequently, you can create an alias that substitutes ls –ltr when you give the
command l:

$ alias l='ls -ltr'

$ l

total 41

-rw-r--r-- 1 alex group 30015 Mar 1 2004 flute.ps

-rw-r----- 1 alex group 3089 Feb 11 2005 XTerm.ad

-rw-r--r-- 1 alex group 641 Apr 1 2005 fixtax.icn

-rw-r--r-- 1 alex group 484 Apr 9 2005 maptax.icn

drwxrwxr-x 2 alex group 1024 Aug 9 17:41 Tiger

drwxrwxr-x 2 alex group 1024 Sep 10 11:32 testdir

-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor

drwxrwxr-x 2 alex group 1024 Oct 27 20:19 Test_Emacs

Another common use of aliases is to protect yourself from mistakes. The following example substitutes the
interactive version of the rm utility when you give the command zap:

$ alias zap='rm -i'

$ zap f*

rm: remove 'fixtax.icn'? n

rm: remove 'flute.ps'? n

rm: remove 'floor'? n

The –i option causes rm to ask you to verify each file that would be deleted, to help you avoid accidentally
deleting the wrong file. You can also alias rm with the rm –i command: alias rm='rm –i'.

The aliases in the next example cause the shell to substitute ls –l each time you give an ll command and ls –F
when you use ls:

$ alias ls='ls -F'

$ alias ll='ls -l'

$ ll

total 41

drwxrwxr-x 2 alex group 1024 Oct 27 20:19 Test_Emacs/

drwxrwxr-x 2 alex group 1024 Aug 9 17:41 Tiger/

-rw-r----- 1 alex group 3089 Feb 11 2005 XTerm.ad

-rw-r--r-- 1 alex group 641 Apr 1 2005 fixtax.icn

-rw-r--r-- 1 alex group 30015 Mar 1 2004 flute.ps

-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor*

-rw-r--r-- 1 alex group 484 Apr 9 2005 maptax.icn

drwxrwxr-x 2 alex group 1024 Sep 10 11:32 testdir/

The –F option causes ls to print a slash (/) at the end of directory names and an asterisk (*) at the end of the
names of executable files. In this example, the string that replaces the alias ll (ls –l) itself contains an alias
(ls). When it replaces an alias with its value, the shell looks at the first word of the replacement string to see
whether it is an alias. In the preceding example, the replacement string contains the alias ls, so a second

substitution occurs to produce the final command ls –F –l. (To avoid a recursive plunge, the ls in the
replacement text, although an alias, is not expanded a second time.)

When given a list of aliases without the =value or value field, the alias builtin responds by displaying the
value of each defined alias. The alias builtin reports an error if an alias has not been defined:

$ alias ll l ls zap wx

alias ll='ls -l'

alias l='ls -ltr'

alias ls='ls -F'

alias zap='rm -i'

bash: alias: wx: not found

You can avoid alias substitution by preceding the aliased command with a backslash (\):

$ \ls

Test_Emacs XTerm.ad flute.ps maptax.icn

Tiger fixtax.icn floor testdir

Because the replacement of an alias name with the alias value does not change the rest of the command line,
any arguments are still received by the command that gets executed:

$ ll f*

-rw-r--r-- 1 alex group 641 Apr 1 2005 fixtax.icn

-rw-r--r-- 1 alex group 30015 Mar 1 2004 flute.ps

-rwxr-xr-x 1 alex group 485 Oct 21 08:03 floor*

You can remove an alias with the unalias builtin. When the zap alias is removed, it is no longer displayed
with the alias builtin and its subsequent use results in an error message:

$ unalias zap

$ alias

alias ll='ls -l'

alias l='ls -ltr'

alias ls='ls -F'

$ zap maptax.icn

bash: zap: command not found

 < Day Day Up >

 < Day Day Up >

Functions

A shell function (tcsh does not have functions) is similar to a shell script in that it stores a series of
commands for execution at a later time. However, because the shell stores a function in the computer's main
memory (RAM) instead of in a file on the disk, the shell can access it more quickly than the shell can access
a script. The shell also preprocesses (parses) a function so that it starts up more quickly than a script. Finally
the shell executes a shell function in the same shell that called it. If you define too many functions, the
overhead of starting a subshell (as when you run a script) can become unacceptable.

You can declare a shell function in the ~/.bash_profile startup file, in the script that uses it, or directly from
the command line. You can remove functions with the unset builtin. The shell does not keep functions once
you log out.

tip: Removing variables and functions

If you have a shell variable and a function with the same name, using unset removes the shell
variable. If you then use unset again with the same name, it removes the function.

The syntax that declares a shell function is

[function] function-name ()

{

commands

}

where the word function is optional, function-name is the name you use to call the function, and commands
comprise the list of commands the function executes when you call it. The commands can be anything you
would include in a shell script, including calls to other functions.

The first brace ({) can appear on the same line as the function name. Aliases and variables are expanded
when a function is read, not when it is executed. You can use the break statement (page 459) within a
function to terminate its execution.

Shell functions are useful as a shorthand as well as to define special commands. The following function
starts a process named process in the background, with the output normally displayed by process being
saved in .process.out:

start_process() {

process > .process.out 2>&1 &

}

The next example shows how to create a simple function that displays the date, a header, and a list of the
people who are using the system. This function runs the same commands as the whoson script described on
page 264. In this example the function is being entered from the keyboard. The greater-than (>) signs are
secondary shell prompts (PS2); do not enter them.

$ function whoson ()

> {

> date

> echo "Users Currently Logged On"

> who

> }

$ whoson

Sun Aug 7 15:44:58 PDT 2005

Users Currently Logged On

hls console Aug 6 08:59 (:0)

alex pts/4 Aug 6 09:33 (0.0)

jenny pts/7 Aug 6 09:23 (bravo.example.com)

Functions in startup files

If you want to have the whoson function always be available without having to enter it each time you log in,
put its definition in ~/.bash_profile. Then run .bash_profile, using the . (dot) command to put the changes
into effect immediately:

$ cat ~/.bash_profile

export TERM=vt100

stty kill '^u'

whoson ()

{

 date

 echo "Users Currently Logged On"

 who

}

$. ~/.bash_profile

You can specify arguments when you call a function. Within the function these arguments are available as
positional parameters (page 480). The following example shows the arg1 function entered from the
keyboard.

$ arg1 () {

> echo "$1"

> }

$ arg1 first_arg

first_arg

See the function switch () on page 259 for another example of a function. "Functions" on page 477 discusses
the use of local and global variables within a function.

optional

The following function allows you to export variables using tcsh syntax. The env builtin lists
all environment variables and their values and verifies that setenv worked correctly:

$ cat .bash_profile

...

setenv - keep tcsh users happy

function setenv()

{

 if [$# -eq 2]

 then

 eval $1=$2

 export $1

 else

 echo "Usage: setenv NAME VALUE" 1>&2

 fi

}

$. ~/.bash_profile

$ setenv TCL_LIBRARY /usr/local/lib/tcl

$ env | grep TCL_LIBRARY

TCL_LIBRARY=/usr/local/lib/tcl

eval

The $# special parameter (page 480) takes on the value of the number of command line
arguments. This function uses the eval builtin to force bash to scan the command $1=$2 twice.
Because $1=$2 begins with a dollar sign ($), the shell treats the entire string as a single
token—a command. With variable substitution performed, the command name becomes
TCL_LIBRARY=/usr/local/lib/tcl, which results in an error. Using eval, a second scanning
splits the string into the three desired tokens, and the correct assignment occurs.

 < Day Day Up >

 < Day Day Up >

Controlling bash Features and Options

This section explains how to control bash features and options using command line options and the set and
shopt builtins.

Command Line Options

Two kinds of command line options are available: short and long. Short options consist of a hyphen followed
by a letter; long options have two hyphens followed by multiple characters. Long options must appear before
short options on a command line that calls bash. Table 8-12 lists some commonly used command line
options.

Table 8-12. Command line options

Option Explanation Syntax

Help Displays a usage message. – –help

No edit Prevents users from using the Readline Library (page 305) to
edit command lines in an interactive shell.

– –noediting

No
profile

Prevents reading these startup files (page 257): /etc/profile,
~/.bash_profile, ~/.bash_login, and ~/.profile.

– –noprofile

No rc Prevents reading the ~/.bashrc startup file (page 258). This
option is on by default if the shell is called as sh.

– –norc

POSIX Runs bash in POSIX mode. – –posix

Version Displays bash version information and exits. – –version

Login Causes bash to run as though it were a login shell. –l (lowercase "l")

shopt Runs a shell with the opt shopt option (page 319). A –O
(uppercase "O") sets the option; +O unsets it.

[±]O [opt]

End of
options

On the command line, signals the end of options. Subsequent
tokens are treated as arguments even if they begin with a
hyphen (–).

– –

Shell Features

You can control the behavior of the Bourne Again Shell by turning features on and off. Different features use
different methods to turn features on and off. The set builtin controls one group of features, while the shopt
builtin controls another group. You can also control many features from the command line you use to call
bash.

tip: Features, options, variables?

To avoid confusing terminology, this book refers to the various shell behaviors that you can
control as features . The bash info page refers to them as "options" and "values of variables
controlling optional shell behavior."

set ±o: Turns Shell Features On and Off

The set builtin (there is a set builtin in tcsh, but it works differently), when used with the –o or +o option,
enables, disables, and lists certain bash features. For example, the following command turns on the
noclobber feature (page 119):

$ set -o noclobber

You can turn this feature off (the default) by giving the command

$ set +o noclobber

The command set –o without an option lists each of the features controlled by set followed by its state (on
or off). The command set +o without an option lists the same features in a form that you can use as input to
the shell. Table 8-13 lists bash features.

Table 8-13. bash features

Feature Description Syntax Alternate
syntax

allexport Automatically exports all variables and
functions that you create or modify after
giving this command.

set –o allexport set –a

braceexpand Causes bash to perform brace expansion
(the default; page 324).

set –o braceexpand set –B

cdspell Corrects minor spelling errors in directory
names used as arguments to cd.

shopt –s cdspell

cmdhist Saves all lines of a multiline command in
the same history entry, adding semicolons
as needed.

shopt –s cmdhist

dotglob Causes shell special characters (wildcards;
page 127) in an ambiguous file reference
to match a leading period in a filename.
By default special characters do not to
match a leading period. You must always
specify the filenames . and . . explicitly
because no pattern ever matches them.

shopt –s dotglob

emacs Specifies emacs editing mode for
command line editing (the default; page
306).

set –o emacs

errexit Causes bash to exit when a simple
command (not a control structure) fails.

set –o errexit set –e

execfail Causes a shell script to continue running
when it cannot find the file that is given as
an argument to exec. By default a script
terminates when exec cannot find the file
that is given as its argument.

shopt –s execfail

expand_aliases Causes aliases (page 312) to be expanded
(by default it is on for interactive shells
and off for noninteractive shells).

shopt –s expand_alias

hashall Causes bash to remember where
commands it has found using PATH
(page 284) are located (default).

set –o hashall set –h

histappend Causes bash to append the history list to
the file named by HISTFILE (page 295)
when the shell exits. By default bash
overwrites this file.

shopt –s histappend

histexpand Causes the history mechanism (which
uses exclamation points; page 300) to
work (default). Turn this feature off to
turn off history expansion.

set –o histexpand set –H

history Enable command history (on by default;
page 295).

set –o history

ignoreeof Specifies that bash must receive ten EOF
characters before it exits. Useful on noisy
dial-up lines.

set –o ignoreeof

monitor Enables job control (on by default, page
271).

set –o monitor set –m

nocaseglob Causes ambiguous file references (page
127) to match filenames without regard to
case (off by default).

shopt –s nocaseglob

noclobber Helps prevent overwriting files (off by
default; page 119).

set –o noclobber set –C

noglob Disables pathname expansion (off by
default; page 127).

set –o noglob set –f

notify With job control (page 271) enabled,
reports the termination status of
background jobs immediately. The default
behavior is to display the status just
before the next prompt.

set –o notify set –b

nounset Displays an error and exits from a shell
script when you use an unset variable in
an interactive shell. The default is to
display a null value for an unset variable.

set –o nounset set –u

nullglob Causes bash to expand ambiguous file
references (page 127) that do not match a
filename to a null string. By default bash
passes these file references without
expanding them.

shopt –s nullglob

posix Runs bash in POSIX mode. set –o posix

verbose Displays command lines as bash reads
them.

set –o verbose set –v

vi Specifies vi editing mode for command
line editing (page 305).

set –o vi

xpg_echo Causes the echo builtin to expand
backslash escape sequences without the
need for the –e option (page 463).

shopt –s xpg_echo

xtrace Turns on shell debugging (page 448). set –o xtrace set –x

shopt: Turns Shell Features On and Off

The shopt (shell option) builtin (not available in tcsh) enables, disables, and lists certain bash features that
control the behavior of the shell. For example, the following command causes bash to include filenames that
begin with a period (.) when it expands ambiguous file references (the –s stands for set):

$ shopt -s dotglob

You can turn this feature off (the default) by giving the command (the –u stands for unset)

$ shopt -u dotglob

The shell displays how a feature is set if you give the name of the feature as the only argument to shopt:

$ shopt dotglob

dotglob off

The command shopt without any options or arguments lists the features controlled by shopt and their state.
The command shopt –s without an argument lists the features controlled by shopt that are set or on. The
command shopt –u lists the features that are unset or off. Table 8-13 lists bash features.

tip: Setting set ±o features using shopt

You can use shopt to set/unset features that are otherwise controlled by set ±o. Use the regular
shopt syntax with –s or –u and include the –o option. For example, the following command turns
on the noclobber feature:

$ shopt -o -s noclobber

 < Day Day Up >

 < Day Day Up >

Processing The Command Line

Whether you are working interactively or running a shell script, bash needs to read a command line before it can start
processing it—bash always reads at least one line before processing a command. Some bash builtins, such as if and
case, as well as functions and quoted strings, span multiple lines. When bash recognizes a command that covers more
than one line, it reads the entire command before processing it. In interactive sessions bash prompts you with the
secondary prompt (PS2, > by default; page 287) as you type each line of a multiline command until it recognizes the
end of the command:

$ echo 'hi

> end'

hi

end

$ function hello () {

> echo hello there

> }

$

After reading a command line, bash applies history expansion and alias substitution to the line.

History Expansion

"Reexecuting and Editing Commands" on page 297 discusses the commands you can give to modify and reexecute
command lines from the history list. History expansion is the process that bash uses to turn a history command into an
executable command line. For example, when you give the command !!, history expansion changes that command line
so it is the same as the previous one. History expansion is turned on by default for interactive shells; set +o
histexpand turns it off. History expansion does not apply to noninteractive shells (shell scripts).

Alias Substitution

Aliases (page 312) substitute a string for the first word of a simple command. By default aliases are turned on for
interactive shells and off for noninteractive shells. Give the command shopt –u expand_aliases to turn aliases off.

Parsing and Scanning the Command Line

After processing history commands and aliases, bash does not execute the command immediately. One of the first

things the shell does is to parse (isolate strings of characters in) the command line into tokens or words. The shell then
scans each token for special characters and patterns that instruct the shell to take certain actions. These actions can
involve substituting one word or words for another. When the shell parses the following command line, it breaks it
into three tokens (cp, ~/letter, and .):

$ cp ~/letter .

After separating tokens and before executing the command, the shell scans the tokens and performs command line
expansion.

Command Line Expansion

In both interactive and noninteractive use, the shell transforms the command line using command line expansion
before passing the command line to the program being called. You can use a shell without knowing much about
command line expansion, but you can use what a shell has to offer to a better advantage with an understanding of this
topic. This section covers Bourne Again Shell command line expansion; TC Shell command line expansion is covered
starting on page 344.

The Bourne Again Shell scans each token for the various types of expansion and substitution in the following order.
Most of these processes expand a word into a single word. Only brace expansion, word splitting, and pathname
expansion can change the number of words in a command (except for the expansion of the variable "$@"—page
482).

Brace expansion (page 324)1.

Tilde expansion (page 326)2.

Parameter and variable expansion (page 326)3.

Arithmetic expansion (page 327)4.

Command substitution (page 329)5.

Word splitting (page 330)6.

Pathname expansion (page 330)7.

Process substitution (page 332)8.

Quote removal

After bash finishes with the preceding list, it removes from the command line single quotation marks, double
quotation marks, and backslashes that are not a result of an expansion. This process is called quote removal.

Order of Expansion

The order in which bash carries out these steps affects the interpretation of commands. For example, if you set a
variable to a value that looks like the instruction for output redirection and then enter a command that uses the
variable's value to perform redirection, you might expect bash to redirect the output.

$ SENDIT="> /tmp/saveit"

$ echo xxx $SENDIT

xxx > /tmp/saveit

$ cat /tmp/saveit

cat: /tmp/saveit: No such file or directory

In fact, the shell does not redirect the output—it recognizes input and output redirection before it evaluates variables.
When it executes the command line, the shell checks for redirection and, finding none, evaluates the SENDIT
variable. After replacing the variable with > /tmp/saveit, bash passes the arguments to echo, which dutifully copies
its arguments to standard output. No /tmp/saveit file is created.

The following sections provide more detailed descriptions of the steps involved in command processing. Keep in
mind that double and single quotation marks cause the shell to behave differently when performing expansions.
Double quotation marks permit parameter and variable expansion but suppress other types of expansion. Single
quotation marks suppress all types of expansion.

Brace Expansion

Brace expansion, which originated in the C Shell, provides a convenient way to specify filenames when pathname
expansion does not apply. Although brace expansion is almost always used to specify filenames, the mechanism can
be used to generate arbitrary strings; the shell does not attempt to match the brace notation with the names of existing
files.

Brace expansion is turned on in interactive and noninteractive shells by default; you can turn it off with set +o
braceexpand. The shell also uses braces to isolate variable names (page 280).

The following example illustrates how brace expansion works. The ls command does not display any output because
there are no files in the working directory. The echo builtin displays the strings that the shell generates with brace
expansion. In this case the strings do not match filenames (there are no files in the working directory.)

$ ls

$ echo chap_{one,two,three}.txt

chap_one.txt chap_two.txt chap_three.txt

The shell expands the comma-separated strings inside the braces in the echo command into a SPACE-separated list of

strings. Each string from the list is prepended with the string chap_, called the preamble, and appended with the string
.txt, called the postscript. Both the preamble and the postscript are optional. The left-to-right order of the strings
within the braces is preserved in the expansion. For the shell to treat the left and right braces specially and for brace
expansion to occur, at least one comma and no unquoted whitespace characters must be inside the braces. You can
nest brace expansions.

Brace expansion is useful when there is a long preamble or postscript. The following example copies the four files
main.c, f1.c, f2.c, and tmp.c located in the /usr/local/src/C directory to the working directory:

$ cp /usr/local/src/C/{main,f1,f2,tmp}.c .

You can also use brace expansion to create directories with related names:

$ ls -F

file1 file2 file3

$ mkdir vrs{A,B,C,D,E}

$ ls -F

file1 file2 file3 vrsA/ vrsB/ vrsC/ vrsD/ vrsE/

The –F option causes ls to display a slash (/) after a directory and an asterisk (*) after an executable file.

If you tried to use an ambiguous file reference instead of braces to specify the directories, the result would be different
(and not what you wanted):

$ rmdir vrs*

$ mkdir vrs[A-E]

$ ls -F

file1 file2 file3 vrs[A-E]/

An ambiguous file reference matches the names of existing files. Because it found no filenames matching vrs[A–E],
bash passed the ambiguous file reference to mkdir, which created a directory with that name. Page 130 has a
discussion of brackets in ambiguous file references.

Tilde Expansion

Chapter 4 (page 89) showed a shorthand notation to specify your home directory or the home directory of another
user. This section provides a more detailed explanation of tilde expansion.

The tilde (~) is a special character when it appears at the start of a token on a command line. When it sees a tilde in
this position, bash looks at the following string of characters—up to the first slash (/) or to the end of the word if there
is no slash—as a possible login name. If this possible login name is null (that is, if the tilde appears as a word by itself
or if it is immediately followed by a slash), the shell substitutes the value of the HOME variable for the tilde. The
following example demonstrates this expansion, where the last command copies the file named letter from Alex's
home directory to the working directory:

$ echo $HOME

/home/alex

$ echo ~

/home/alex

$ echo ~/letter

/home/alex/letter

$ cp ~/letter .

If the string of characters following the tilde forms a valid login name, the shell substitutes the path of the home
directory associated with that login name for the tilde and name. If it is not null and not a valid login name, the shell
does not make any substitution:

$ echo ~jenny

/home/jenny

$ echo ~root

/root

$ echo ~xx

~xx

Tildes are also used in directory stack manipulation (page 274). In addition, ~ + is a synonym for PWD (the name of
the working directory), and ~ – is a synonym for OLDPWD (the name of the previous working directory).

Parameter and Variable Expansion

On a command line a dollar sign ($) that is not followed by an open parenthesis introduces parameter or variable
expansion. Parameters include command line, or positional, parameters (page 480) and special parameters (page
478). Variables include user-created variables (page 278) and keyword variables (page 283). The bash man and info
pages do not make this distinction, however.

Parameters and variables are not expanded if they are enclosed within single quotation marks or if the leading dollar
sign is escaped (preceded with a backslash). If they are enclosed within double quotation marks, the shell expands
parameters and variables.

Arithmetic Expansion

The shell performs arithmetic expansion by evaluating an arithmetic expression and replacing it with the result. See
page 358 for information on arithmetic expansion under tcsh. Under bash the syntax for arithmetic expansion is

$((expression))

The shell evaluates expression and replaces $((expression)) with the result of the evaluation. This syntax is similar to
the syntax used for command substitution [$(...)] and performs a parallel function. You can use $((expression)) as an
argument to a command or in place of any numeric value on a command line.

The rules for forming expression are the same as those found in the C programming language; all standard C
arithmetic operators are available (see Table 11-8 on page 505). Arithmetic in bash is done using integers. Unless you
use variables of type integer (page 283) or actual integers, however, the shell must convert string-valued variables to
integers for the purpose of the arithmetic evaluation.

You do not need to precede variable names within expression with a dollar sign ($). In the following example, an
arithmetic expression determines how many years are left until age 60:

$ cat age_check

#!/bin/bash

echo -n "How old are you? "

read age

echo "Wow, in $((60-age)) years, you'll be 60!"

$ age_check

How old are you? 55

Wow, in 5 years, you'll be 60!

You do not need to enclose the expression within quotation marks because bash does not perform filename expansion
on it. This feature makes it easier for you to use an asterisk (*) for multiplication, as the following example shows:

$ echo There are $((60*60*24*365)) seconds in a non-leap year.

There are 31536000 seconds in a non-leap year.

The next example uses wc, cut, arithmetic expansion, and command substitution to estimate the number of pages
required to print the contents of the file letter.txt. The output of the wc utility (page 816) used with the –l option is the
number of lines in the file, in columns 1 through 4, followed by a SPACE and the name of the file (the first command
following). The cut utility (page 627) with the –c1-4 option extracts the first four columns.

tip: Fewer dollar signs ($)

When you use variables within $((and)), the dollar signs that precede individual variable references are
optional:

$ x=23 y=37

$ echo $((2*$x + 3*$y))

157

$ echo $((2*x + 3*y))

157

$ wc -l letter.txt

351 letter.txt

$ wc -l letter.txt | cut -c1-4

351

The dollar sign and single parenthesis instruct the shell to perform command substitution; the dollar sign and double
parentheses indicate arithmetic expansion:

$ echo $(($(wc -l letter.txt | cut -c1-4)/66 + 1))

6

The preceding example sends standard output from wc to standard input of cut via a pipe. Because of command
substitution, the output of both commands replaces the commands between the $(and the matching) on the command

line. Arithmetic expansion then divides this number by 66, the number of lines on a page. A 1 is added at the end
because the integer division results in any remainder being discarded.

Another way to get the same result without using cut is to redirect the input to wc instead of having wc get its input
from a file you name on the command line. When you redirect its input, wc does not display the name of the file:

$ wc -l < letter.txt

 351

It is common practice to assign the result of arithmetic expansion to a variable:

$ numpages=$(($(wc -l < letter.txt)/66 + 1))

let builtin

The let builtin (not available in tcsh) evaluates arithmetic expressions just as the $(()) syntax does. The following
command is equivalent to the preceding one:

$ let "numpages=$(wc -l < letter.txt)/66 + 1"

The double quotation marks keep the SPACEs (both those you can see and those that result from the command
substitution) from separating the expression into separate arguments to let. The value of the last expression
determines the exit status of let. If the value of the last expression is 0, the exit status of let is 1; otherwise, the exit
status is 0.

You can give multiple arguments to let on a single command line:

$ let a=5+3 b=7+2

$ echo $a $b

8 9

When you refer to variables when doing arithmetic expansion with let or $(()), the shell does not require you to
begin the variable name with a dollar sign ($). Nevertheless, it is a good practice to do so, as in most places you must
include this symbol.

Command Substitution

Command substitution replaces a command with the output of that command. The preferred syntax for command
substitution under bash follows:

$(command)

Under bash you can also use the following syntax, which is the only syntax allowed under tcsh:

'command '

The shell executes command within a subshell and replaces command , along with the surrounding punctuation, with
standard output of command .

In the following example, the shell executes pwd and substitutes the output of the command for the command and
surrounding punctuation. Then the shell passes the output of the command, which is now an argument, to echo, which
displays it.

$ echo $(pwd)

/home/alex

The next script assigns the output of the pwd builtin to the variable where and displays a message containing the value
of this variable:

$ cat where

where=$(pwd)

echo "You are using the $where directory."

$ where

You are using the /home/jenny directory.

Although it illustrates how to assign the output of a command to a variable, this example is not realistic. You can
more directly display the output of pwd without using a variable:

$ cat where2

echo "You are using the $(pwd) directory."

$ where2

You are using the /home/jenny directory.

The following command uses find to locate files with the name README in the directory tree with its root at the
working directory. This list of files is standard output of find and becomes the list of arguments to ls.

$ ls -l $(find . -name README -print)

The next command line shows the older 'command' syntax:

$ ls -l 'find . -name README -print'

One advantage of the newer syntax is that it avoids the rather arcane rules for token handling, quotation mark
handling, and escaped back ticks within the old syntax. Another advantage of the new syntax is that it can be nested,
unlike the old syntax. For example, you can produce a long listing of all README files whose size exceeds the size
of ./README with the following command:

$ ls -l $(find . -name README -size +$(echo $(cat ./README | wc -c)c) -print)

Try giving this command after giving a set –x command (page 448) to see how bash expands it. If there is no
README file, you just get the output of ls – l.

For additional scripts that use command substitution, see pages 444, 464, and 496.

tip: $ ((Versus $ (

The symbols $((constitute a separate token. They introduce an arithmetic expression, not a command
substitution. Thus, if you want to use a parenthesized subshell (page 270) within $(), you must insert a
SPACE between the $(and the next (.

Word Splitting

The results of parameter and variable expansion, command substitution, and arithmetic expansion are candidates for
word splitting. Using each character of IFS (page 288) as a possible delimiter, bash splits these candidates into words

or tokens. If IFS is unset, bash uses its default value (SPACE-TAB-NEWLINE). If IFS is null, bash does not split
words.

Pathname Expansion

Pathname expansion (page 127), also called filename generation or globbing, is the process of interpreting ambiguous
file references and substituting the appropriate list of filenames. Unless noglob (page 321) is set, the shell performs
this function when it encounters an ambiguous file reference—a token containing any of the unquoted characters *, ?,
[, or]. If bash cannot locate any files that match the specified pattern, the token with the ambiguous file reference is
left alone. The shell does not delete the token or replace it with a null string but rather passes it to the program as is
(except see nullglob, page 322). The TC Shell generates an error message.

In the first echo command in the following example, the shell expands the ambiguous file reference tmp* and passes
three tokens (tmp1, tmp2, and tmp3) to echo. The echo builtin displays the three filenames it was passed by the shell.
After rm removes the three tmp* files, the shell finds no filenames that match tmp* when it tries to expand it. Thus it
passes the unexpanded string to the echo builtin, which displays the string it was passed.

$ ls

tmp1 tmp2 tmp3

$ echo tmp*

tmp1 tmp2 tmp3

$ rm tmp*

$ echo tmp*

tmp*

By default the same command causes the TC Shell to display an error message:

tcsh $ echo tmp*

echo: No match

A period that either starts a pathname or follows a slash (/) in a pathname must be matched explicitly unless you have
set dotglob (page 320). The option nocaseglob (page 321) causes ambiguous file references to match filenames
without regard to case.

Quotation marks

Putting double quotation marks around an argument causes the shell to suppress pathname and all other expansion
except parameter and variable expansion. Putting single quotation marks around an argument suppresses all types of

expansion. The second echo command in the following example shows the variable $alex between double quotation
marks, which allow variable expansion. As a result the shell expands the variable to its value: sonar. This expansion
does not occur in the third echo command, which uses single quotation marks. Because neither single nor double
quotation marks allow pathname expansion, the last two commands display the unexpanded argument tmp*.

$ echo tmp* $alex

tmp1 tmp2 tmp3 sonar

$ echo "tmp* $alex"

tmp* sonar

$ echo 'tmp* $alex'

tmp* $alex

The shell distinguishes between the value of a variable and a reference to the variable and does not expand ambiguous
file references if they occur in the value of a variable. As a consequence you can assign to a variable a value that
includes special characters, such as an asterisk (*).

Levels of expansion

In the next example, the working directory has three files whose names begin with letter. When you assign the value
letter* to the variable var, the shell does not expand the ambiguous file reference because it occurs in the value of a
variable (in the assignment statement for the variable). No quotation marks surround the string letter*; context alone
prevents the expansion. After the assignment the set builtin (with the help of grep) shows the value of var to be
letter*.

The three echo commands demonstrate three levels of expansion. When $var is quoted with single quotation marks,
the shell performs no expansion and passes the character string $var to echo, which displays it. When you use double
quotation marks, the shell performs variable expansion only and substitutes the value of the var variable for its name,
preceded by a dollar sign. No pathname expansion is performed on this command because double quotation marks
suppress it. In the final command, the shell, without the limitations of quotation marks, performs variable substitution
and then pathname expansion before passing the arguments to echo.

$ ls letter*

letter1 letter2 letter3

$ var=letter*

$ set | grep var

var='letter*'

$ echo '$var'

$var

$ echo "$var"

letter*

$ echo $var

letter1 letter2 letter3

Process Substitution

A special feature of the Bourne Again Shell is the ability to replace filename arguments with processes. An argument
with the syntax <(command) causes command to be executed and the output written to a named pipe (FIFO). The
shell replaces that argument with the name of the pipe. If that argument is then used as the name of an input file
during processing, the output of command is read. Similarly an argument with the syntax >(command) is replaced by
the name of a pipe that command reads as standard input.

The following example uses sort (page 762) with the –m (merge, which works correctly only if the input files are
already sorted) option to combine two word lists into a single list. Each word list is generated by a pipe that extracts
words matching a pattern from a file and sorts the words in that list.

$ sort -m -f <(grep "[^A-Z]..$" memo1 | sort) <(grep ".*aba.*" memo2 |sort)

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The shell is both a command interpreter and a programming language. As a command interpreter, the shell
executes commands you enter in response to its prompt. As a programming language, the shell executes
commands from files called shell scripts. When you start a shell, it typically runs one or more startup files.

Running a shell script

Assuming that the file holding a shell script is in the working directory, there are three basic ways to execute
the shell script from the command line.

Type the simple filename of the file that holds the script.1.

Type a relative pathname, including the simple filename preceded by ./.2.

Type bash or tcsh followed by the name of the file.3.

Technique 1 requires that the working directory be in the PATH variable. Techniques 1 and 2 require that
you have execute and read permission for the file holding the script. Technique 3 requires that you have read
permission for the file holding the script.

Job control

A job is one or more commands connected by pipes. You can bring a job running in the background into the
foreground by using the fg builtin. You can put a foreground job into the background by using the bg builtin,
provided that you first suspend the job by pressing the suspend key (typically CONTROL-Z). Use the jobs
builtin to see which jobs are running or suspended.

Variables

The shell allows you to define variables. You can declare and initialize a variable by assigning a value to it;
you can remove a variable declaration by using unset. Variables are local to a process unless they are
exported using the export (bash) or setenv (tcsh) builtin to make them available to child processes.
Variables you declare are called user-created variables. The shell also defines called keyword variables.
Within a shell script you can work with the command line (positional) parameters the script was called with.

Process

Each process has a unique identification (PID) number and is the execution of a single Linux command.
When you give it a command, the shell forks a new (child) process to execute the command, unless the
command is built into the shell (page 132). While the child process is running, the shell is in a state called

sleep. By ending a command line with an ampersand (&), you can run a child process in the background and
bypass the sleep state so that the shell prompt returns immediately after you press RETURN. Each command
in a shell script forks a separate process, each of which may in turn fork other processes. When a process
terminates, it returns its exit status to its parent process. An exit status of zero signifies success and nonzero
signifies failure.

History

The history mechanism, a feature adapted from the C Shell, maintains a list of recently issued command
lines, also called events, that provides a way to reexecute previous commands quickly. There are several
ways to work with the history list; one of the easiest is to use a command line editor.

Command line editors

When using an interactive Bourne Again Shell, you can edit your command line and commands from the
history file, using either of the Bourne Again Shell's command line editors (vi[m] or emacs). When you use
the vi(m) command line editor, you start in Input mode, unlike the way you normally enter vi(m). You can
switch between Command and Input modes. The emacs editor is modeless and distinguishes commands from
editor input by recognizing control characters as commands.

Aliases

An alias is a name that the shell translates into another name or (complex) command. Aliases allow you to
define new commands by substituting a string for the first token of a simple command. The Bourne Again
and TC Shells use different syntaxes to define an alias, but aliases in both shells work similarly.

Functions

A shell function is a series of commands that, unlike a shell script, are parsed prior to being stored in
memory so that they run faster than shell scripts. Shell scripts are parsed at runtime and are stored on disk. A
function can be defined on the command line or within a shell script. If you want the function definition to
remain in effect across login sessions, you can define it in a startup file. Like the functions of a programming
language, a shell function is called by giving its name followed by any arguments.

Shell features

There are several ways to customize the shell's behavior. You can use options on the command line when
you call bash and you can use the bash set and shopt builtins to turn features on and off.

Command line expansion

When it processes a command line, the Bourne Again Shell may replace some words with expanded text.
Most types of command line expansion are invoked by the appearance of a special character within a word
(for example, a leading dollar sign denotes a variable). See Table 8-6 on page 291 for a list of special

characters. The expansions take place in a specific order. Following the history and alias expansions, the
common expansions are parameter and variable expansion, command substitution, and pathname expansion.
Surrounding a word with double quotation marks suppresses all types of expansion except parameter and
variable expansion. Single quotation marks suppress all types of expansion, as does quoting (escaping) a
special character by preceding it with a backslash.

 < Day Day Up >

 < Day Day Up >

Exercises

1. Explain the following unexpected result:

$ whereis date

date: /bin/date

$ echo $PATH

.:/usr/local/bin:/usr/bin:/bin

$ cat > date

echo "This is my own version of date."

$ date

Tue May 24 11:45:49 PDT 2005

2. What are two ways you can execute a shell script when you do not have execute access permission for
the file containing the script? Can you execute a shell script if you do not have read access permission
for the file containing the script?

3. What is the purpose of the PATH variable?

Set the PATH variable so that it causes the shell to search the following directories in order:

/usr/local/bin

/usr/bin/X11

/usr/bin

/bin

/usr/kerberos/bin

The bin directory in your home directory

The working directory

a.

If there is a file named doit in /usr/bin and another file with the same name in your ~/bin,
which one will be executed? (Assume that you have execute permission for both files.)

b.

c.

b.

If your PATH variable is not set to search the working directory, how can you execute a
program located there?

c.

Which command can you use to add the directory /usr/games to the end of the list of directories
in PATH?

d.

4. Assume that you have made the following assignment:

$ person=jenny

Give the output of each of the following commands:

echo $persona.

echo '$person'b.

echo "$person"c.

5. The following shell script adds entries to a file named journal-file in your home directory. This script
helps you keep track of phone conversations and meetings.

$ cat journal

journal: add journal entries to the file

$HOME/journal-file

file=$HOME/journal-file

date >> $file

echo -n "Enter name of person or group: "

read name

echo "$name" >> $file

echo >> $file

cat >> $file

echo "--" >> $file

echo >> $file

What do you have to do to the script to be able to execute it?a.

b.

a.

Why does the script use the read builtin (page 487) the first time it accepts input from the
terminal and the cat utility the second time?

b.

6. Assume that the /home/jenny/grants/biblios and /home/jenny/biblios directories exist. Give Jenny's
working directory after she executes each sequence of commands given. Explain what happens in
each case.

$ pwd

/home/jenny/grants

$ CDPATH=$(pwd)

$ cd

$ cd biblios

a.

$ pwd

/home/jenny/grants

$ CDPATH=$(pwd)

$ cd $HOME/biblios

b.

7. Name two ways you can identify the PID number of your login shell.

8. Give the following command:

$ sleep 30 | cat /etc/inittab

Is there any output from sleep? Where does cat get its input from? What has to happen before the
shell displays another prompt?

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

9. Write a sequence of commands or a script that demonstrates that variable expansion occurs
before pathname expansion.

10. Write a shell script that outputs the name of the shell that is executing it.

11. Explain the behavior of the following shell script:

$ cat quote_demo

twoliner="This is line 1.

This is line 2."

echo "$twoliner"

echo $twoliner

How many arguments does each echo command see in this script? Explain.a.

Redefine the IFS shell variable so that the output of the second echo is the same as the first.b.

12. Add the exit status of the previous command to your prompt so that it behaves similarly to the
following:

$ [0] ls xxx

ls: xxx: No such file or directory

$ [1]

13. The dirname utility treats its argument as a pathname and writes to standard output the path
prefix—that is, everything up to but not including the last component:

$ dirname a/b/c/d

a/b/c

If you give dirname a simple filename (no / characters) as an argument, dirname writes a . to
standard output:

$ dirname simple

.

Implement dirname as a bash function. Make sure that it behaves sensibly when given such
arguments as /.

14. Implement the basename utility, which writes the last component of its pathname argument to
standard output, as a bash function. For example, given the pathname a/b/c/d, basename writes d
to standard output:

$ basename a/b/c/d

d

15. The Linux basename utility has an optional second argument. If you give the command
basename path suffix , basename removes the suffix and the prefix from path :

$ basename src/shellfiles/prog.bash .bash

prog

$ basename src/shellfiles/prog.bash .c

prog.bash

Add this feature to the function you wrote for exercise 14.

 < Day Day Up >

 < Day Day Up >

Chapter 9. The Tc Shell

IN THIS CHAPTER

Shell Scripts 340

Entering and Leaving the TC Shell 341

Features Common to the Bourne Again and TC Shells 343

Redirecting Standard Error 349

Word Completion 350

Editing the Command Line 353

Variables 355

Reading User Input 361

Control Structures 368

Builtins 377

The TC Shell (tcsh) performs the same function as the Bourne Again Shell and other shells: It provides an
interface between you and the Linux operating system. The TC Shell is an interactive command interpreter
as well as a high-level programming language. Although you use only one shell at any given time, you
should be able to switch back and forth comfortably between shells as the need arises (you may want to run
different shells in different windows). Chapters 8 and 11 apply to tcsh as well as to bash so they provide a
good background for this chapter. This chapter explains tcsh features that are not found in bash and those
that are implemented differently from their bash counterparts. The tcsh home page is www.tcsh.org.

The TC Shell is an expanded version of the C Shell (csh), which originated on Berkeley UNIX. The "T" in
TC Shell comes from the TENEX and TOPS-20 operating systems, which inspired command completion
and other features in the TC Shell. A number of features not found in csh are present in tcsh, including file
and username completion, command line editing, and spelling correction. As with csh, you can customize
tcsh to make it more tolerant of mistakes and easier to use. By setting the proper shell variables, you can
have tcsh warn you when you appear to be accidentally logging out or overwriting a file. Many popular
features of the original C Shell are now shared by bash and tcsh.

 < Day Day Up >

 < Day Day Up >

Assignment statement

Although some of the functionality of tcsh is present in bash, differences arise in the syntax of some commands. For
example, the tcsh assignment statement has the following syntax:

set variable = value

Having SPACEs on either side of the equal sign, although illegal in bash, is allowed in tcsh. By convention shell
variables in tcsh are generally named with lowercase letters, not uppercase (you can use either). If you reference an
undeclared variable (one that has had no value assigned to it), tcsh will give you an error message, whereas bash will
not. Finally the default tcsh prompt is a greater than sign (>), but it is frequently set to a single $ character followed
by a SPACE. The examples in this chapter use a prompt of tcsh $ to avoid confusion with the bash prompt.

tip: Do not use tcsh as a programming language

If you have used UNIX and are comfortable with the C or TC Shell, you may want to use tcsh as your login
shell. However, you may find that the TC Shell is not as good a programming language as bash. If you are
going to learn only one shell programming language, learn bash. The Bourne Again Shell is used
throughout Linux to program many system administration scripts.

Shell Scripts

With tcsh you can execute files containing TC Shell commands, just as bash can execute files containing Bourne
Again Shell commands. The concepts of writing and executing scripts in the two shells are similar. However, the
methods of declaring and assigning values to variables and the syntax of control structures are different.

You can run bash and tcsh scripts while using any one of the shells as a command interpreter. Various methods exist
for selecting the shell that runs a script. Refer to "#! Specifies a Shell" on page 265 for more information.

If the first character of a shell script is a pound sign (#) and the following character is not an exclamation point (!), the
TC Shell executes the script under tcsh. If the first character is anything other than #, tcsh calls the sh link to bash to
execute the script.

tip: echo: getting rid of the RETURN

The tcsh echo builtin accepts either a – n option or a trailing \c to get rid of the RETURN that echo
normally displays at the end of a line. The bash echo builtin accepts only the – n option (refer to "read:

Accepts User Input" on page 487).

tip: Shell game

When you are working with an interactive TC Shell, if you run a script in which # is not the first character
of the script and you call the script directly (without preceding its name with tcsh), tcsh calls the sh link to
bash to run the script. The following script was written to be run under tcsh but, when called from a tcsh
command line, is executed by bash. The set builtin (page 484) works differently under bash and tcsh. As
a result the following example (from page 361) issues a prompt but does not wait for you to respond:

tcsh $ cat user_in

echo -n "Enter input: "

set input_line = "$<"

echo $input_line

tcsh $ user_in

Enter input:

Although in each case the examples are run from a tcsh command line, the following one calls tcsh
explicitly so that tcsh executes the script and it runs correctly.

tcsh $ tcsh user_in

Enter input: here is some input

here is some input

Entering and Leaving the TC Shell

chsh

You can execute tcsh by giving the command tcsh. If you are not sure which shell you are using, use the ps utility to
find out. It shows whether you are running tcsh, bash, sh (linked to bash), or possibly another shell. The finger
command followed by your username displays the name of your login shell, which is stored in the /etc/passwd file. If
you want to use tcsh as a matter of course, you can use the chsh (change shell) utility to change your login shell:

bash $ chsh

Changing shell for sam.

Password:

New shell [/bin/bash]: /bin/tcsh

Shell changed.

bash $

The shell you specify will be in effect for your next login and all subsequent logins until you specify a different login
shell. The /etc/passwd file stores the name of your login shell.

You can leave tcsh in several ways. The approach you choose depends on two factors: whether the shell variable
ignoreeof is set and whether you are using the shell that you logged in on (your login shell) or another shell that you
created after you logged in. If you are not sure how to exit from tcsh, press CONTROL-D on a line by itself with no
leading SPACEs, just as you would to terminate standard input to another program. You will either exit or receive
instructions on how to exit. If you have not set ignoreeof (page 366) and it has not been set for you in a startup file,
you can exit from any shell by using CONTROL-D (the same procedure you use to exit from the Bourne Again
Shell).

When ignoreeof is set, CONTROL-D does not work. The ignoreeof variable causes the shell to display a message
telling you how to exit. You can always exit from tcsh by giving an exit command. A logout command allows you to
exit from your login shell only.

Startup Files

When you log in on the TC Shell, it automatically executes various startup files. These files are normally executed in
the order described in this section, but you can compile tcsh so that it uses a different order. You must have read
access to a startup file to execute the commands in it.

/etc/csh.cshrc and /etc/csh.login

The shell first executes the commands in /etc/csh.cshrc and /etc/csh.login. Superuser can set up these files to
establish systemwide default characteristics for tcsh users. They contain systemwide configuration information, such
as the default path, the location to check for mail, and so on.

.tcshrc and .cshrc

Next the shell looks for ~/.tcshrc or, if it does not exist, ~/.cshrc (~/ is shorthand for your home directory). You can
use these files to establish variables and parameters that are local to your shell. Each time you create a new shell, tcsh
reinitializes these variables for the new shell. The following .tcshrc file sets several shell variables, establishes two

aliases (page 347), and adds two new directories to path—one at the start of the list and one at the end:

tcsh $ cat ~/.tcshrc

set noclobber

set dunique

set ignoreeof

set history=256

set path = (~/bin $path /usr/games)

alias h history

alias ll ls -l

.history

Login shells rebuild the history list from the contents of ~/.history. If the histfile variable exists, tcsh uses the file
that histfile points to in place of .history.

.login

Login shells read and execute the commands in ~/.login. This file contains commands that you want to execute once,
at the beginning of each session. You can use setenv (page 356) to declare environment (global) variables here. You
can also declare the type of terminal you are using and set some terminal characteristics in your .login file.

tcsh $ cat ~/.login

setenv history 200

setenv mail /var/spool/mail/$user

if (-z $DISPLAY) then

 setenv TERM vt100

 else

 setenv TERM xterm

endif

stty erase '^h' kill '^u' -lcase tab3

date '+Login on %A %B %d at %I:%M %p'

The preceding .login file establishes the type of terminal you are using by setting the TERM variable (the if statement
[page 368] determines whether you are using a graphical interface and therefore what value should be assigned to
TERM). It then runs stty (page 778) to set terminal characteristics and date (page 630) to display the time you
logged in.

/etc/csh.logout and .logout

The TC Shell runs the /etc/csh.logout and ~/.logout files, in that order, when you exit from a login shell. The
following sample .logout file uses date to display the time you logged out. The sleep command ensures that echo
has time to display the message before the system logs you out. The delay may be useful for dial-up lines that take
some time to display the message.

tcsh $ cat ~/.logout

date '+Logout on %A %B %d at %I:%M %p'

sleep 5

Features Common to the Bourne Again and TC Shells

Most of the features common to both bash and tcsh are derived from the original C Shell:

Command line expansion (also called substitution; page 344)

History (page 344)

Aliases (page 347)

Job control (page 348)

Filename substitution (page 348)

Directory stack manipulation (page 349)

Command substitution (page 349)

Because the chapters on bash discuss these features in detail, this section focuses on the differences between the bash
and tcsh implementations.

Command Line Expansion (Substitution)

Refer to "Processing the Command Line" on page 322 for an introduction to command line expansion in the Bourne
Again Shell. The tcsh man page uses the term substitution instead of expansion, which is used by bash. The TC
Shell scans each token for possible expansion in the following order:

1.

2.

History substitution (page 344)1.

Alias substitution (page 347)2.

Variable substitution (page 356)3.

Command substitution (page 349)4.

Filename substitution (page 348)5.

Directory stack substitution (page 349)6.

History

The TC Shell assigns a sequential event number to each command line. You can display this event number as part of
the tcsh prompt (refer to "prompt" on page 363). Examples in this section show numbered prompts when they help
illustrate the behavior of a command.

history Builtin

As in bash, the tcsh history builtin displays the events in your history list. The list of events is ordered with the
oldest events at the top. The last event in the history list is the history command that displayed the list. In the
following history list, which is limited to ten lines by the argument of 10 to the history command, command 23
modifies the tcsh prompt to display the history event number. The time each command was executed appears to the
right of the event number.

32 $ history 10

 23 23:59 set prompt = "! $ "

 24 23:59 ls -l

 25 23:59 cat temp

 26 0:00 rm temp

 27 0:00 vim memo

 28 0:00 lpr memo

 29 0:00 vim memo

 30 0:00 lpr memo

 31 0:00 rm memo

 32 0:00 history

History Expansion

The same event and word designators work in both shells. For example, !! refers to the previous event in tcsh, just as

it does in bash. The command !328 executes event number 328 and !?txt? executes the most recent event containing
the string txt. For more information refer to "Using an Exclamation Point (!) to Reference Events" on page 300. Table
9-1 lists the few tcsh word modifiers not found in bash.

Table 9-1. Word modifiers

Modifier Function

u Converts the first lowercase letter into uppercase

l Converts the first uppercase letter into lowercase

a Applies the next modifier globally within a single word

You can use more than one word modifier in a command. For instance, the a modifier, in combination with the u or l
modifier, enables you to change the case of an entire word.

tcsh $ echo $VERSION

VERSION: Undefined variable.

tcsh $ echo !!:1:al

echo $version

tcsh 6.12.00 (Astron) 2002-07-23 (i386-intel-linux) options 8b,nls,...

In addition to using event designators to access the history list, you can use the command line editor to access,
modify, and execute previous commands (page 353).

Variables

The variables that you set to control history in tcsh are different from those used in bash. Whereas bash uses
HISTSIZE and HISTFILESIZE to determine the number of events that are preserved during and between sessions,
tcsh uses history and savehist (Table 9-2) for these purposes.

Table 9-2. History variables

Variable Default Function

history 100 events Maximum number of events saved during a session

histfile ~/.history Location of the history file

savehist not set Maximum number of events saved between sessions

history and savehist

When you exit from a tcsh shell, the most recently executed commands are saved in your ~/.history file. The next
time you start the shell this file initializes the history list. The value of the savehist variable determines the number of
lines saved in the .history file (not necessarily the same as the history variable). If savehist is not set, tcsh does not
save history between sessions. The history and savehist variables must be local (declared with set, not setenv). The
history variable holds the number of events remembered during a session and the savehist variable holds the number
remembered between sessions. See Table 9-2.

If you set the value of history too high, it can use too much memory. If it is unset or set to zero, the shell does not
save any commands. To establish a history list of the 500 most recent events, give the following command manually
or place it in your ~/.tcshrc startup file:

tcsh $ set history = 500

The following command causes tcsh to save the 200 most recent events across login sessions:

tcsh $ set savehist = 200

You can combine these two assignments into a single command:

tcsh $ set history=500 savehist=200

After you set savehist you can log out and log in again, and the 200 most recent events from the previous login
sessions will appear in your history list. Set savehist in your ~/.tcshrc file if you want to maintain your event list from
login to login.

histlit

If you set the variable histlit (history literal), history displays the commands in the history list exactly as they were
typed in without any shell interpretation. The following example shows the effect of this variable (compare the lines
numbered 32):

tcsh $ cat /etc/csh.cshrc

...

tcsh $ cp !!:1 ~

cp /etc/csh.cshrc ~

tcsh $ set histlit

tcsh $ history

...

 31 9:35 cat /etc/csh.cshrc

 32 9:35 cp !!:1 ~

 33 9:35 set histlit

 34 9:35 history

tcsh $ unset histlit

tcsh $ history

...

 31 9:35 cat /etc/csh.cshrc

 32 9:35 cp /etc/csh.cshrc ~

 33 9:35 set histlit

 34 9:35 history

 35 9:35 unset histlit

 36 9:36 history

optional

There is a difference in how bash and tcsh expand history event designators. If you give the command
!250w, bash replaces it with command number 250 with a character w appended to it. In contrast, tcsh
looks back through your history list for an event that begins with the string 250w to execute. The reason
for the difference: bash interprets the first three characters of 250w as the number of a command,
whereas tcsh interprets those characters as part of the search string 250w. (If the 250 stands alone, tcsh
treats it as a command number.)

If you want to append w to command number 250, you can insulate the event number from the w by
surrounding it with braces:

!{250}w

Aliases

The alias/unalias feature in tcsh closely resembles its counterpart in bash (page 312). However, the alias builtin
has a slightly different syntax:

alias name value

The following command creates an alias for ls:

tcsh $ alias ls "ls -lF"

The tcsh alias allows you to substitute command line arguments, whereas bash does not:

$ alias nam "echo Hello, \!^ is my name"

$ nam Sam

Hello, Sam is my name

The string \!* within an alias expands to all command line arguments:

$ alias sortprint "sort \!* | lpr"

The next alias displays its second argument:

$ alias n2 "echo \!:2"

Special Aliases

Some alias names, called special aliases, have special meaning to tcsh. If you define an alias with one of these
names, tcsh executes it automatically as explained in Table 9-3. Initially all special aliases are undefined.

Table 9-3. Special aliases

Alias When executed

beepcmd Whenever the shell would normally ring the terminal bell. Gives you a
way to have other visual or audio effects take place at those times.

cwdcmd Whenever you change to another working directory.

periodic Periodically, as determined by the number of minutes in the tperiod
variable. If tperiod is unset or has the value 0, periodic has no
meaning.

precmd Just before the shell displays a prompt.

shell Gives the absolute pathname of the shell that you want to use to run
scripts that do not start with #! (page 265).

To see a list of current aliases, give the command alias. To view the alias for a particular name, give the command
alias followed by the name.

History Substitution In Aliases

You can substitute command line arguments by using the history mechanism, where a single exclamation point
represents the command line containing the alias. Modifiers are the same as those used by history (page 300). In the
following example, the exclamation points are quoted so that the shell does not interpret them when building the
aliases:

21 $ alias last echo \!:$

22 $ last this is just a test

test

23 $ alias fn2 echo \!:2:t

24 $ fn2 /home/jenny/test /home/alex/temp /home/barbara/new

temp

Event 21 defines for last an alias that displays the last argument. Event 23 defines for fn2 an alias that displays the
simple filename, or tail, of the second argument on the command line.

Job Control

Job control is similar in both bash (page 271) and tcsh. You can move commands between the foreground and
background, suspend jobs temporarily, and get a list of the current jobs. The % character references a job when
followed by a job number or a string prefix that uniquely identifies the job. You will see a minor difference when you

run a multiple-process command line in the background from each shell. Whereas bash displays only the PID number
of the last background process in each job, tcsh displays the numbers for all processes belonging to a job. The
example from page 271 looks like this under tcsh:

tcsh $ find . -print | sort | lpr & grep -l alex /tmp/* > alexfiles &

[1] 18839 18840 18841

[2] 18876

Filename Substitution

The TC Shell expands the characters *, ?, and [] in a pathname just as bash does (page 127). The * matches any string
of zero or more characters, ? matches any single character, and [] defines a character class, which is used to match
single characters appearing within a pair of brackets.

The TC Shell expands command line arguments that start with a tilde (~) into filenames in much the same way that
bash does (page 351), with the ~ standing for the user's home directory or the home directory of the user whose name
follows the tilde. The bash special expansions ~ + and ~ – are not available in tcsh.

Brace expansion (page 324) is available in tcsh. Like tilde expansion, it is regarded as an aspect of filename
substitution even though brace expansion can generate strings that are not the names of actual files.

In tcsh and its predecessor csh, the process of using patterns to match filenames is referred to as globbing and the
pattern itself is called a globbing pattern. If tcsh is unable to identify one or more files that match a globbing pattern,
it reports an error (unless the pattern contains a brace). Setting the shell variable noglob suppresses filename
substitution, including both tilde and brace interpretation.

Manipulating the Directory Stack

Directory stack manipulation in tcsh does not differ much from that in bash (page 274). The dirs builtin displays the
contents of the stack, and the pushd and popd builtins push directories onto and pop directories off of the stack.

Command Substitution

The $(...) format for command substitution is not available in tcsh. In its place you must use the original '...' format.
Otherwise, the implementation in bash and tcsh is identical. Refer to page 329 for more information on command
substitution.

Redirecting Standard Error

Both bash and tcsh use a greater than symbol (>) to redirect standard output, but tcsh does not use the bash notation
2> to redirect standard error. Under tcsh you use a greater than symbol followed by an ampersand (>&) to combine
and redirect standard output and standard error. Although you can use this notation under bash, it is not common. The
following examples, like the bash examples on page 261, reference file x, which does not exist, and file y, which

contains a single line.

tcsh $ cat x

cat: x: No such file or directory

tcsh $ cat y

This is y.

tcsh $ cat x y >& hold

tcsh $ cat hold

cat: x: No such file or directory

This is y.

With an argument of y in the preceding example, cat sends a string to standard output. An argument of x causes cat
to send an error message to standard error.

Unlike bash, tcsh does not provide a simple way to redirect standard error separately from standard output. A work-
around frequently provides a reasonable solution. The following example runs cat with arguments of x and y in a
subshell (the parentheses ensure that the command within them runs in a subshell—see page 270). Also within the
subshell a > redirects standard output to the file outfile. Output sent to standard error is not touched by the subshell
but rather is sent to the parent shell, where both it and standard output are sent to errfile. Because standard output has
already been redirected, errfile contains only output sent to standard error.

tcsh $ (cat x y > outfile) >& errfile

tcsh $ cat outfile

This is y.

tcsh $ cat errfile

cat: x: No such file or directory

It can be useful to combine and redirect output when you want to run a slow command in the background and do not
want its output cluttering up the terminal screen. For example, because the find utility (page 655) often takes some
time to complete, it may be a good idea to run it in the background. The next command finds in the filesystem
hierarchy all files that contain the string biblio in their name. The command runs in the background and sends its
output to the findout file. Because the find utility sends to standard error a report of directories that you do not have
permission to search, the findout file contains a record of any files that are found as well as a record of the directories
that could not be searched.

tcsh $ find / -name "*biblio*" -print >& findout &

In this example, if you did not combine standard error with standard output and redirected only standard output, the
error messages would appear on the screen and findout would list only files that were found.

While a command that has its output redirected to a file is running in the background, you can look at the output by
using tail (page 783) with the –f option. The –f option causes tail to display new lines as they are written to the
file:

tcsh $ tail -f findout

To terminate the tail command, press the interrupt key (usually CONTROL-C).

Working with the Command Line

This section covers word completion, editing the command line, and correcting spelling.

Word Completion

The TC Shell completes filenames, commands, and variable names on the command line when you prompt it to do so.
The generic term used to refer to all these features under tcsh is word completion .

Filename Completion

The TC Shell can complete a filename after you specify a unique prefix. Filename completion is similar to filename
generation, but the goal of filename completion is to select a single file. Together they make it practical to use long,
descriptive filenames.

To use filename completion when you are entering a filename on the command line, type enough of the name to
identify the file in the directory uniquely and press TAB ; tcsh fills in the name and adds a SPACE, leaving the
cursor so you can enter additional arguments or press RETURN. In the following example, the user types the
command cat trig1A and presses TAB; the system fills in the rest of the filename that begins with trig1A:

tcsh $ cat trig1A TAB cat trig1A.302488

If two or more filenames match the prefix that you have typed, tcsh cannot complete the filename without obtaining
more information from you. The shell attempts to maximize the length of the prefix by adding characters, if possible,
and then beeps to signify that additional input is needed to resolve the ambiguity:

tcsh $ ls h*

help.hist help.trig01 help.txt

tcsh $ cat h TAB cat help. (beep)

You can fill in enough characters to resolve the ambiguity and then press the TAB key again. Alternatively, you can
press CONTROL-D to cause tcsh to display a list of matching filenames:

tcsh $ cat help. CONTROL-D

help.hist help.trig01 help.txt

tcsh $ cat help.

After displaying the filenames tcsh redraws the command line so you can disambiguate the filename (and press TAB
again) or finish typing the filename manually.

Tilde Completion

The TC Shell parses a tilde (~) appearing as the first character of a word and attempts to expand it to a username
when you enter a TAB:

tcsh $ cd ~al TAB cd ~alex/ RETURN

tcsh $ pwd

/home/alex

By appending a slash (/), tcsh indicates that the completed word is a directory. The slash also makes it easy to
continue specifying the pathname.

Command and Variable Completion

You can use the same mechanism that you use to list and complete filenames with command and variable names.
Unless you give a full pathname, the shell uses the variable path in an attempt to complete a command name. The
choices listed are likely to be located in different directories.

tcsh $ up TAB (beep) CONTROL-D

up2date updatedb uptime

up2date-config update-mime-database

up2date-nox updmap

tcsh $ up t TAB uptime RETURN

9:59am up 31 days, 15:11, 7 users, load average: 0.03, 0.02, 0.00

If you set the autolist variable as in the following example, the shell lists choices automatically when you invoke
completion by pressing TAB. You do not have to press CONTROL-D.

tcsh $ set autolist

tcsh $ up TAB (beep)

up2date updatedb uptime

up2date-config update-mime-database

up2date-nox updmap

tcsh $ up t TAB uptime RETURN

10:01am up 31 days, 15:14, 7 users, load average: 0.20, 0.06, 0.02

If you set autolist to ambiguous, the shell lists the choices when you press TAB only if the word you enter is the
longest prefix of a set of commands. Otherwise, pressing TAB causes the shell to add one or more characters to the
word until it is the longest prefix; pressing TAB again then lists the choices:

tcsh $ set autolist=ambiguous

tcsh $ echo $h TAB (beep)

histfile history home

tcsh $ echo $h i TAB echo $hist TAB

histfile history

tcsh $ echo $hist o TAB echo $history RETURN

1000

The shell must rely on the context of the word within the input line to determine whether it is a filename, a username,
a command, or a variable name. The first word on an input line is assumed to be a command name; if a word begins
with the special character $, it is viewed as a variable name; and so on. In the following example, the second which
command does not work properly: The context of the word up makes it look like the beginning of a filename rather
than the beginning of a command. The TC Shell supplies which with an argument of updates (a nonexecutable file)
and which displays an error message:

tcsh $ ls up*

updates

tcsh $ which updatedb ups uptime

/usr/bin/updatedb

/usr/local/bin/ups

/usr/bin/uptime

tcsh $ which up TAB which updates

updates: Command not found.

Editing the Command Line

bindkey

The tcsh command line editing feature is similar to that available under bash. You can use either emacs mode
commands (default) or vi(m) mode commands. Change to vi(m) mode commands by using bindkey –v and to emacs
mode commands by using bindkey –e. The ARROW keys are bound to the obvious motion commands in both
modes, so you can move back and forth (up and down) through your history list as well as left and right on the current
command line.

Without an argument, the bindkey builtin displays the current mappings between editor commands and the key
sequences you can enter at the keyboard:

tcsh $ bindkey

Standard key bindings

"^@" -> set-mark-command

"^A" -> beginning-of-line

"^B" -> backward-char

"^C" -> tty-sigintr

"^D" -> delete-char-or-list-or-eof

...

Multi-character bindings

"^[[A" -> up-history

"^[[B" -> down-history

"^[[C" -> forward-char

"^[[D" -> backward-char

"^[[H" -> beginning-of-line

"^[[F" -> end-of-line

...

Arrow key bindings

down -> down-history

up -> up-history

left -> backward-char

right -> forward-char

home -> beginning-of-line

end -> end-of-line

The ̂ indicates a CONTROL character (^B = CONTROL-B). The ^[indicates a META or ALT character; you press
and hold the META or ALT key while you press the key for the next character. If this substitution does not work or if
the keyboard you are using does not have a META or ALT key, press and release the ESCAPE key and then press the
key for the next character. For ^[[F you would press META-[or ALT-[followed by the F key or else ESCAPE [F).
The down/up/left/right indicate ARROW keys, and home/end indicate the HOME and END keys on the numeric
keypad.

The preceding example shows the output from bindkey with the user in emacs mode. Change to vi(m) mode
(bindkey –v) and give another bindkey command to display the vi(m) key bindings. You can pipe the output of
bindkey through less to make it easier to read the list.

Correcting Spelling

You can have tcsh attempt to correct the spelling of command names, filenames, and variables (but only using
emacs-style key bindings). Spelling correction can take place only at two times: before and after you press RETURN.

before you press return

For tcsh to correct a word or line before you press RETURN, you must indicate that you want it to do so. The two
functions for this purpose are spell-line and spell-word:

$ bindkey | grep spell

"^[$" -> spell-line

"^[S" -> spell-word

"^[s" -> spell-word

The output from bindkey shows that spell-line is bound to META-$ (ALT-$ or ESCAPE $) and spell-word is bound
to META-S and META-s (ALT-s or ESCAPE s and ALT-S or ESCAPE S). To correct the spelling of the word to the
left of the cursor, enter META-s. Entering META-$ invokes the spell-line function, which attempts to correct all
words on a command line:

tcsh $ ls

bigfile.gz

tcsh $ gunzipp META-s gunzip bigfele.gz META-s gunzip bigfile.gz

tcsh $ gunzip bigfele.gz META-$ gunzip bigfile.gz

tcsh $ ecno $usfr META-$ echo $user

After You Press Return

The variable named correct controls what tcsh attempts to correct or complete after you press RETURN and before
it passes the command line to the command being called. If you do not set correct, tcsh will not correct anything:

tcsh $ unset correct

tcsh $ ls morning

morning

tcsh $ ecno $usfr morbing

usfr: Undefined variable.

The shell reports the error in the variable name and not the command name because it expands variables before it
executes the command (page 344). When you give a bad command name without any arguments, the shell reports on
the bad command name.

Set correct to cmd to correct only commands; all to correct commands, variables, and filenames; or complete to
complete commands:

tcsh $ set correct = cmd

tcsh $ ecno $usfr morbing

CORRECT>echo $usfr morbing (y|n|e|a)? y

usfr: Undefined variable.

tcsh $ set correct = all

tcsh $ echo $usfr morbing

CORRECT>echo $user morning (y|n|e|a)? y

alex morning

With correct set to cmd, tcsh corrects the command name from ecno to echo. With correct set to all, tcsh corrects
both the command name and the variable. It would also correct a filename if one was present on the command line.

Automatic spell checking displays a special prompt that lets you enter y to accept the modified command line, n to
reject it, e to edit it, or a to abort the command. Refer to "prompt3" on page 364 for a discussion of the special prompt
used in spelling correction.

In the next example, after setting the correct variable the user mistypes the name of the ls command; tcsh then
prompts for a correct command name. Because the command that tcsh has offered as a replacement is not ls, the
user chooses to edit the command line. The shell leaves the cursor following the command so the user can correct the
mistake:

tcsh $ set correct=cmd

tcsh $ lx -l RETURN (beep)

CORRECT>lex -l (y|n|e|a)? e

tcsh $ lx -l

If you assign the value complete to the variable correct, tcsh attempts command name completion in the same
manner as filename completion (page 350). In the following example, after setting correct to complete the user enters
the command up. The shell responds with Ambiguous command because several commands start with these two
letters but differ in the third letter. The shell then redisplays the command line. The user could press TAB at this point
to get a list of commands that start with up but decides to enter t and press RETURN. The shell completes the
command because these three letters uniquely identify the uptime utility:

tcsh $ set correct = complete

tcsh $ upRETURN

Ambiguous command

tcsh $ up tRETURN uptime

4:45pm up 5 days, 9:54, 5 users, load average: 1.62, 0.83, 0.33

Variables

Although tcsh stores variable values as strings, you can work with these variables as numbers. Expressions in tcsh
can use arithmetic, logical, and conditional operators. The @ builtin can evaluate integer arithmetic expressions.

This section uses the term numeric variable to describe a string variable that contains a number that tcsh uses in
arithmetic or logical arithmetic computations. However, no true numeric variables exist in tcsh.

Variable name

A tcsh variable name consists of 1 to 20 characters, which can be letters, digits, and underscores (_). The first
character cannot be a digit but can be an underscore.

Variable Substitution

Three builtins declare, display, and assign values to variables: set, @, and setenv. The set and setenv builtins both
assume nonnumeric string variables. The @ builtin works only with numeric variables. Both set and @ declare local
variables. The setenv builtin declares a variable and places it in the calling environment of all child processes (makes
it global). Using setenv is similar to assigning a value to a variable and then using export in the Bourne Again Shell.
See "Locality of Variables" on page 475 for a discussion of local and environment variables.

Once the value—or merely the existence—of a variable has been established, tcsh substitutes the value of that
variable when the name of the variable, preceded by a dollar sign ($), appears on a command line. If you quote the
dollar sign by preceding it with a backslash or enclosing it within single quotation marks, the shell does not perform
the substitution. When a variable is within double quotation marks, the substitution occurs even if you quote the
dollar sign by preceding it with a backslash.

String Variables

The TC Shell treats string variables similarly to the way the Bourne Again Shell does. The major difference is in their
declaration and assignment: tcsh uses an explicit command, set (or setenv), to declare and/or assign a value to a
string variable.

tcsh $ set name = fred

tcsh $ echo $name

fred

tcsh $ set

argv ()

cwd /home/alex

home /home/alex

name fred

path (/usr/local/bin /bin /usr/bin /usr/X11R6/bin)

prompt $

shell /bin/tcsh

status 0

term vt100

user alex

The first line in the example declares the variable name and assigns the string fred to it. Unlike bash, tcsh allows but
does not demand SPACEs around the equal sign. The next line displays this value. When you give a set command
without any arguments, it displays a list of all local shell variables and their values (your list will be longer than the
one in the example). When you give a set command with the name of a variable and no value, the command sets the
value of the variable to a null string.

You can use the unset builtin to remove a variable:

tcsh $ set name

tcsh $ echo $name

tcsh $ unset name

tcsh $ echo $name

name: Undefined variable.

With setenv you must separate the variable name from the string being assigned to it by one or more SPACEs and no
equal sign. The tcsh command creates a subshell, echo shows that the variable and its value are known to the
subshell, and exit returns to the original shell. Try this example, using set in place of setenv:

tcsh $ setenv SCRDIR /usr/local/src

tcsh $ tcsh

tcsh $ echo $SCRDIR

/usr/local/src

tcsh $ exit

If you use setenv with no arguments, it displays a list of the environment (global) variables—variables that are
passed to the shell's child processes. By convention, environment variables are named using uppercase letters.

As with set, giving setenv a variable name without a value sets the value of the variable to a null string. Although

you can use unset to remove environment and local variables, unsetenv can remove only environment variables.

Arrays of String Variables

An array is a collection of strings, each of which is identified by its index (1, 2, 3, and so on). Arrays in tcsh use
one-based indexing (the first element of the array has the subscript 1). Before you can access individual elements of
an array, you must declare the entire array by assigning a value to each element of the array. The list of values must be
enclosed in parentheses and separated by SPACEs:

8 $ set colors = (red green blue orange yellow)

9 $ echo $colors

red green blue orange yellow

10 $ echo $colors[3]

blue

11 $ echo $colors[2-4]

green blue orange

12 $ set shapes = ('' '' '' '' '')

13 $ echo $shapes

14 $ set shapes[4] = square

15 $ echo $shapes[4]

square

Event 8 declares the array of string variables named colors to have five elements and assigns values to each of them.
If you do not know the values of the elements at the time you declare an array, you can declare an array containing the
necessary number of null elements (event 12).

You can reference an entire array by preceding its name with a dollar sign (event 9). A number in brackets following a
reference to the array refers to an element of the array (events 10, 14, and 15). Two numbers in brackets, separated by
a hyphen, refer to two or more adjacent elements of the array (event 11). Refer to "Special Variable Forms" on page
361 for more information on arrays.

Numeric Variables

The @ builtin assigns the result of a numeric calculation to a numeric variable (as described under "Variables" [page
355], tcsh has no true numeric variables). You can declare single numeric variables with @, just as you can use set to
declare nonnumeric variables. However, if you give it a nonnumeric argument, @ displays an error message. Just as
set does, the @ command used without any arguments lists all shell variables.

Many of the expressions that the @ builtin can evaluate and the operators it recognizes are derived from the C
programming language. The following format shows a declaration or assignment using @ (the SPACE after the @ is
required):

@ variable-name operator expression

The variable-name is the name of the variable that you are assigning a value to. The operator is one of the C
assignment operators: =, +=, – =, *=, /=, or %=. (See page 533 for an explanation of these operators.) The expression
is an arithmetic expression that can include most C operators (see the next section). You can use parentheses within
the expression for clarity or to change the order of evaluation. Parentheses must surround parts of the expression that
contain any of the following characters: <, >, &, or |.

Expressions

An expression is composed of constants, variables, and most any of the bash operators (page 505). Expressions that
involve files rather than numeric variables or strings are described in Table 9-8 on page 368.

Table 9-8. Value of n

n Meaning

b File is a block special file

c File is a character special file

d File is a directory file

e File exists

f File is an ordinary or directory file

g File has the set-group-ID bit set

k File has the sticky bit (page 903) set

l File is a symbolic link

o File is owned by user

p File is a named pipe (FIFO)

r The user has read access to the file

s File is not empty (has nonzero size)

S File is a socket special file

t File descriptor (a single digit replacing filename) is open and connected to
the screen

u File has the set-user-ID bit set

w User has write access to the file

x User has execute access to the file

X File is either a builtin or an executable found by searching the directories in
$path

z File is 0 bytes long

Expressions follow these rules:

The shell evaluates a missing or null argument as 0.1.

All results are decimal numbers.2.

Except for != and = =, the operators act on numeric arguments.3.

You must separate each element of an expression from adjacent elements by a SPACE, unless the adjacent
element is &, |, <, >, (, or).

4.

tip: Do not use $ when assigning a value to a variable

As with bash, variables having a value assigned to them (those on the left of the operator) must not be
preceded by a dollar sign ($). Thus

 tcsh $ @ $answer = 5 + 5

will yield

 answer: Undefined variable.

or, if answer is defined,

 @: Variable name must begin with a letter.

whereas

 tcsh $ @ answer = 5 + 5

assigns the value 10 to the variable answer.

Following are some examples that use @:

216 $ @ count = 0

217 $ echo $count

0

218 $ @ count = (10 + 4) / 2

219 $ echo $count

7

220 $ @ result = ($count < 5)

221 $ echo $result

0

222 $ @ count += 5

223 $ echo $count

12

224 $ @ count++

225 $ echo $count

13

Event 216 declares the variable count and assigns it a value of 0. Event 218 shows the result of an arithmetic
operation being assigned to a variable. Event 220 uses @ to assign the result of a logical operation involving a constant
and a variable to result. The value of the operation is false (= 0) because the variable count is not less than 5. Event
222 is a compressed form of the following assignment statement:

tcsh $ @ count = $count + 5

Event 224 uses a postfix operator to increment count by 1.

Postincrement and postdecrement operators

You can use the postincrement (++) and postdecrement (– –) operators only in expressions containing a single
variable name, as shown in the following example:

tcsh $ @ count = 0

tcsh $ @ count++

tcsh $ echo $count

1

tcsh $ @ next = $count++

@: Badly formed number.

Unlike in the C programming language and bash, expressions in tcsh cannot use preincrement and predecrement
operators.

Arrays of Numeric Variables

You must use the set builtin to declare an array of numeric variables before you can use @ to assign values to the
elements of that array. The set builtin can assign any values to the elements of a numeric array, including zeros, other
numbers, and null strings.

Assigning a value to an element of a numeric array is similar to assigning a value to a simple numeric variable. The
only difference is that you must specify the element, or index, of the array. The syntax is

@ variable-name [index] operator expression

The index specifies the element of the array that is being addressed. The first element has an index of 1. The index
cannot be an expression but must be either a numeric constant or a variable. In the preceding syntax the brackets
around index are part of the syntax and do not indicate that index is optional. If you specify an index that is too large
for the array you declared with set, tcsh displays @: Subscript out of range.

226 $ set ages = (0 0 0 0 0)

227 $ @ ages[2] = 15

228 $ @ ages[3] = ($ages[2] + 4)

229 $ echo $ages[3]

19

230 $ echo $ages

0 15 19 0 0

231 $ set index = 3

232 $ echo $ages[$index]

19

233 $ echo $ages[6]

ages: Subscript out of range.

Elements of a numeric array behave as though they were simple numeric variables. Event 226 declares an array with
five elements, each having a value of 0. Events 227 and 228 assign values to elements of the array, and event 229
displays the value of one of the elements. Event 230 displays all the elements of the array, 232 specifies an element by
using a variable, and 233 demonstrates the out-of-range error message.

Braces

Like with bash, tcsh allows you to use braces to distinguish a variable from surrounding text without the use of a
separator:

$ set bb=abc

$ echo $bbdef

bbdef: Undefined variable.

$ echo ${bb}def

abcdef

Special Variable Forms

The special variable with the following syntax has the value of the number of elements in the variable-name array:

$#variable-name

You can determine whether variable-name has been set by looking at the value of the variable with the following
syntax:

$?variable-name

This variable has a value of 1 if variable-name is set and 0 otherwise:

tcsh $ set days = (mon tues wed thurs fri)

tcsh $ echo $#days

5

tcsh $ echo $?days

1

tcsh $ unset days

tcsh $ echo $?days

0

Reading User Input

Within a tcsh shell script, you can use the set builtin to read a line from the terminal and assign it to a variable. The
following portion of a shell script prompts the user and reads a line of input into the variable input_line:

echo -n "Enter input: "

set input_line = "$<"

The value of the shell variable $< is a line from standard input. The quotation marks around $< keep the shell from
assigning only the first word of the line of input to the variable input_line.

Shell Variables

TC Shell variables may be set by the shell, inherited by the shell from the environment, or set by the user and used by
the shell. Some variables take on significant values (for example, the PID number of a background process). Other
variables act as switches: on if they are declared and off if they are not. Many of the shell variables are often set from
one of tcsh's two startup files: ~/.login and ~/.tcshrc (page 342).

Shell Variables That Take On Values

argv Contains the command line arguments (positional parameters) from the
command line that invoked the shell. Like all tcsh arrays, this array uses one-
based indexing; argv[1] contains the first command line argument. You can
abbreviate references to $argv[n] as $n. The token argv[*] references all the
arguments together; you can abbreviate it as $*. Use $0 to reference the name
of the calling program. Refer to "Positional Parameters" on page 480. The
Bourne Again Shell does not use the argv form, only the abbreviated form.

$#argv or $# Holds the number of elements in the argv array. Refer to "Special Variable
Forms" on page 361.

autolist Controls command and variable completion (page 351).

autologout Enables tcsh's automatic logout facility, which logs you out if you leave the
shell idle for too long. The value of the variable is the number of minutes of
inactivity that tcsh waits before logging you out. The default is 60 minutes if
you are Superuser. This variable is initially unset for other users.

cdpath Affects the operation of cd in the same way as the CDPATH variable does in
bash (page 289). The cdpath variable is assigned an array of absolute
pathnames (see path, later in this section) and is usually set in the ~/.login file
with a command line such as the following:

tcsh $ set cdpath = (/home/scott /home/scott/letters)

 When you call cd with a simple filename, it searches the working directory for
a subdirectory with that name. If one is not found, cd searches the directories
listed in cdpath for the subdirectory.

correct Set to cmd for automatic spelling correction of command names, to all to
correct the entire command line, and to complete for automatic completion of
command names. This variable works on corrections that are made after you
press RETURN. Refer to "After You Press RETURN" on page 354.

cwd The shell sets this variable to the name of the working directory. When you
access a directory through a symbolic link (page 99), tcsh sets cwd to the
name of the symbolic link.

dirstack The shell keeps the stack of directories used with the pushd, popd, and dirs
builtins in this variable. For more information refer to "Manipulating the
Directory Stack" on page 274.

fignore Holds an array of suffixes that tcsh ignores during filename completion.

gid The shell sets this variable to your group ID.

histfile Holds the full pathname of the file that saves the history list between login
sessions (page 345). The defaults is ~/.history.

history Specifies the size of your history list. Refer to "History" on page 344.

home or
HOME

Holds the pathname of the user's home directory. The cd builtin refers to this
variable, as does the filename substitution of ~ (page 326).

mail Specifies files and directories to check for mail. The TC Shell checks for new
mail every 10 minutes unless the first word of mail is a number, in which case
that number specifies how often the shell should check in seconds.

owd The shell keeps the name of your previous (old) working directory in this
variable, which is equivalent to ~ – in bash.

path or PATH Holds a list of directories that tcsh searches for executable commands (page
284). If this array is empty or unset, you can execute commands only by giving
their full pathnames. You can set path with a command such as the following:

tcsh $ set path = (/usr/bin /bin /usr/local/bin

/usr/bin/X11 ~/bin .)

prompt Holds the primary prompt, similar to the bash PS1 variable (page 286). If it is
not set, the prompt is >, or # for root (Superuser). The shell expands an
exclamation point in the prompt string to the current event number. The
following is a typical line from a .tcshrc file that sets the value of prompt:

set prompt = '! $ '

Table 9-4 lists a number of special formatting sequences you can use in prompt to achieve special effects.

Table 9-4. prompt formatting sequences

Sequence Displays in prompt

%/ Value of cwd (the working directory)

%~ Same as %/, but replaces the path of the user's home directory with a
tilde

%! or %h or ! Current event number

%m Hostname without the domain

%M Full hostname, including the domain

%n User's username

%t Time of day through the current minute

%p Time of day through the current second

%d Day of the week

%D Day of the month

%W Month as mm

%y Year as yy

%Y Year as yyyy

%# A pound sign (#) if the user is running as root (Superuser); otherwise
a greater than sign (>)

%? Exit status of the preceding command

prompt2 Holds the prompt used in foreach and while control structures (pages 373
and 375). The default value is '%R? ', where R is replaced by the word
while if you are inside a while structure and foreach if you are inside a
foreach structure.

prompt3 Holds the prompt used during automatic spelling correction. The default
value is 'CORRECT>%R (y|n|e|a)?', where R is replaced by the corrected
string.

savehist Specifies the number of commands saved from the history list when you log
out. These events are saved in a file named ~/.history. The shell uses these
events as the initial history list when you log in again, causing your history
list to continue across login sessions (page 345).

shell Holds the pathname of the shell you are using.

shlvl Is incremented each time you start a subshell and decremented each time
you exit a subshell. The value is set to 1 for login a shell.

status Contains the exit status returned by the last command. Similar to $? in bash
(page 479).

tcsh Holds the version number of tcsh that you are running.

time Provides two functions: automatic timing of commands using the time
builtin and the format used by time. You can set this variable to either a
single numeric value or an array holding a numeric value and a string. The
numeric value is used to control automatic timing; any command that takes
more than that number of CPU seconds to run has time display the
command statistics when it finishes execution. A value of 0 results in
statistics being displayed after every command. The string controls the
formatting of the statistics using special formatting sequences, including
those listed in Table 9-5.

Table 9-5. time formatting sequences

Sequence Displays

%U Time the command spent running user code, in CPU seconds (user mode)

%S Time the command spent running system code, in CPU seconds (kernel
mode)

%E Wall clock time (total elapsed) taken by the command

%P Percentage of time the CPU spent on this task during this period, computed
as (%U+%S)/%E

%W Number of times the command's processes were swapped out to disk

%X Average amount of shared code memory used by the command, in kilobytes

%D Average amount of data memory used by the command, in kilobytes

%K
Total memory used by the command (as %X+%D), in kilobytes

%M Maximum amount of memory used by the command, in kilobytes

%F Number of major page faults (pages of memory that had to be read from
disk)

%I Number of input operations

%O Number of output operations

By default the time builtin uses the string

"%Uu %Ss %E %P% %X+%Dk %I+%Oio %Fpf+%Ww"

which generates output in the following format:

tcsh $ time

0.200u 0.340s 17:32:33.27 0.0% 0+0k 0+0io 1165pf+0w

You can time commands when you are concerned about system performance. If your commands consistently show
many page faults and swaps, your system is probably memory starved and you should consider adding more memory
to the system. You can use the information that time reports to compare the performance of various system
configurations and program algorithms.

tperiod Controls how often, in minutes, the shell executes the special periodic alias
(page 347).

user The shell sets this variable to your username.

version The shell sets this variable to contain detailed information about the version
of tcsh you are using.

watch Set to an array of user and terminal pairs to watch for logins and logouts. The
word any means any user or any terminal, so (any any) monitors all logins
and logouts on all terminals, and (scott ttyS1 any console $user any)
watches for scott on ttyS1, any user who accesses the system console, and
any logins and logouts that use your account (presumably to catch intruders).
By default logins and logouts are checked once every 10 minutes, but you
can change this value by beginning the array with a numeric value giving the
number of minutes between checks. If you set watch to (1 any console),
logins and logouts by any user on the console will be checked once a minute.
Reports are displayed just before a new shell prompt is issued. Also, the log
builtin forces an immediate check whenever it is executed. See who for
information about how you can control the format of the watch messages.

who Controls the format of the information displayed in watch messages (Table
9-6).

Table 9-6. who formatting sequence

Sequence Displays

%n Username

%a Action taken by user

%l Terminal on which action took place

%M Full hostname of remote host (or local if none) from which action
took place

$m Hostname without domain name

The default string used for watch messages when who is unset is "%n has %a %l from %m", which generates the
following line:

jenny has logged on tty2 from local

$ As in bash, this variable contains the PID number of the current shell; use it as
$$.

Shell Variables That Act as Switches

The following shell variables act as switches; their values are not significant. If the variable has been declared, the
shell takes the specified action. If not, the action is not taken or is negated. You can set these variables in your
~/.tcshrc startup file, in a shell script, or from the command line.

autocorrect Causes the shell to attempt spelling correction automatically, just before
each attempt at completion.

dunique Normally pushd blindly pushes the new working directory onto the
directory stack, meaning that you can end up with many duplicate entries
on this stack. Set dunique to cause the shell to look for and delete any
entries that duplicate the one it is about to push.

echo Causes the shell to display each command before it executes that
command. Set echo by calling tcsh with the –x option or by using set.

filec Enables filename completion (page 350) when running tcsh as csh (and
csh is linked to tcsh).

histlit Displays the commands in the history list exactly as entered, without
interpretation by the shell (page 346).

ignoreeof Prevents you from using CONTROL-D to exit from a shell so you cannot
accidentally log out. When this variable is declared, you must use exit or
logout to leave a shell.

listjobs Causes the shell to list all jobs whenever a job is suspended.

listlinks Causes the ls–F builtin to show the type of file each symbolic link points
to instead of marking the symbolic link with an @ symbol.

loginsh Set by the shell if the current shell is running as a login shell.

nobeep Disables all beeping by the shell.

noclobber Prevents you from accidentally overwriting a file when you redirect
output and prevents you from creating a file when you attempt to append
output to a nonexistent file (Table 9-7). To override noclobber, add an
exclamation point to the symbol you use for redirecting or appending
output (for example, >! and >>!). For more information see page 119.

Table 9-7. How noclobber works

Command
line

noclobber not declared noclobber declared

x > fileout Redirects standard output
from process x to fileout .
Overwrites fileout if it
exists.

Redirects standard output from process x to
fileout . The shell displays an error message
if fileout exists and does not overwrite the
file.

x >> fileout Redirects standard output
from process x to fileout .
Appends new output to the
end of fileout if it exists.
Creates fileout if it does not
exist.

Redirects standard output from process x to
fileout . Appends new output to the end of
fileout if it exists. The shell displays an
error message if fileout does not exist and
does not create the file.

noglob Prevents the shell from expanding ambiguous filenames. Allows you to
use *, ?, ~, and [] on the command line or in a shell script without
quoting them.

nonomatch Causes the shell to pass an ambiguous file reference that does not match
a filename to the command that is being called. The shell does not
expand the file reference. When you do not set nonomatch, tcsh
generates a No match error message and does not execute the command.

tcsh $ cat questions?

cat: No match

tcsh $ set nonomatch

tcsh $ cat questions?

cat: questions?: No such file or directory

notify When set, tcsh sends a message to the screen immediately whenever a
background job completes. Ordinarily tcsh notifies you about job
completion just before displaying the next prompt. Refer to "Job
Control" on page 271.

pushdtohome Causes a call to pushd without any arguments to change directories to
your home directory (equivalent to pushd –).

pushdsilent Causes pushd and popd not to display the directory stack.

rmstar Causes the shell to request confirmation when you give an rm *
command.

verbose Causes the shell to display each command after a history expansion
(page 344). Set verbose by calling tcsh with the –v option or by using
set.

visiblebell Causes audible beeps to be replaced by flashing the screen.

Control Structures

The TC Shell uses many of the same control structures as the Bourne Again Shell. In each case the syntax is different,
but the effects are the same. This section summarizes the differences between the control structures in the two shells.
For more information refer to "Control Structures" on page 436.

if

The syntax of the if control structure is

if (expression) simple-command

The if control structure works only with simple commands, not with pipes or lists of commands. You can use the
if...then control structure (page 372) to execute more complex commands.

tcsh $ cat if_1

#!/bin/tcsh

Routine to show the use of a simple if control structure.

#

if ($#argv == 0) echo "if_1: there are no arguments"

The if_1 script checks whether it was called without any arguments. If the expression enclosed in parentheses
evaluates to true—that is, if zero arguments were on the command line—the if structure displays a message.

In addition to logical expressions such as the one the if_1 script uses, you can use expressions that return a value
based on the status of a file. The syntax for this type of expression is

–n filename

where n is from the list in Table 9-8.

If the result of the test is true, the expression has a value of 1; if it is false, the expression has a value of 0. If the
specified file does not exist or is not accessible, tcsh evaluates the expression as 0. The following example checks
whether the file specified on the command line is an ordinary or directory file (and not a device or other special file):

tcsh $ cat if_2

#!/bin/tcsh

if -f $1 echo "Ordinary or Directory file"

You can combine operators where it makes sense. For example, –ox filename is true if you own and have execute
permission for the file. This expression is equivalent to – o filename && –x filename.

Some operators return useful information about a file other than reporting true or false. They use the same –n
filename format, where n is one of the values shown in Table 9-9.

Table 9-9. Value of n

n Meaning

A The last time the file was accessed.[*]

A: The last time the file was accessed displayed in a human-readable format.

M The last time the file was modified.[*]

M: The last time the file was modified displayed in a human-readable format.

C The last time the file's inode was modified.[*]

C: The last time the file's inode was modified displayed in a human-readable
format.

D Device number for the file. This number uniquely identifies the device (disk
partition, for example) on which the file resides.

I Inode number for the file. The inode number uniquely identifies a file on a
particular device.

F A string of the form device:inode. This string uniquely identifies a file
anywhere on the system.

N Number of hard links to the file.

P The file's permissions, shown in octal, without a leading 0.

U Numeric user ID of the file's owner.

U: Username of the file's owner.

G Numeric group ID of the file's group.

G: Name of the file's group.

Z Number of bytes in the file.

[*] Time measured in seconds from the epoch (usually the start of January 1, 1970).

You can use only one of these operators in a given test, and it must appear as the last operator in a multiple-operator
sequence. Because 0 can be a valid response from some of these operators (for instance, the number of bytes in a file
might be 0), most return –1 on failure instead of the 0 that the logical operators return on failure. The one exception is
F, which returns a colon if it cannot determine the device and inode for the file.

When you want to use one of these operators outside of a control structure expression, you can use the filetest
builtin to evaluate a file test and report the result:

tcsh $ filetest -z if_1

0

tcsh $ filetest -F if_1

2051:12694

tcsh $ filetest -Z if_1

131

goto

The goto statement has the following syntax:

goto label

A goto builtin transfers control to the statement beginning with label: . The following script fragment demonstrates
the use of goto:

tcsh $ cat goto_1

#!/bin/tcsh

#

test for 2 arguments

#

if ($#argv == 2) goto goodargs

echo "Usage: goto_1 arg1 arg2"

exit 1

goodargs:

...

The goto_1 script displays a usage message (page 440) when it is called with more or fewer than two arguments.

Interrupt Handling

The onintr statement transfers control when you interrupt a shell script. The format of an onintr statement is

onintr label

When you press the interrupt key during execution of a shell script, the shell transfers control to the statement
beginning with label: . This statement allows you to terminate a script gracefully when it is interrupted. You can use it
to ensure that when you interrupt a shell script, the script removes temporary files before returning control to the
parent shell.

The following script demonstrates onintr. It loops continuously until you press the interrupt key, at which time it
displays a message and returns control to the shell:

tcsh $ cat onintr_1

#!/bin/tcsh

demonstration of onintr

onintr close

while (1)

 echo "Program is running."

 sleep 2

end

close:

echo "End of program."

If a script creates temporary files, you can use onintr to remove them.

close:

rm -f /tmp/$$*

The ambiguous file reference /tmp/$$* matches all files in /tmp that begin with the PID number of the current shell.
Refer to page 478 for a description of this technique for naming temporary files.

if...then...else

The if...then...else control structure has three forms. The first form, an extension of the simple if structure, executes
more complex commands or a series of commands if expression is true. This form is still a one-way branch.

if (expression) then

 commands

endif

The second form is a two-way branch. If expression is true, the first set of commands is executed. If it is false, the set
of commands following else is executed.

if (expression) then

 commands

else

 commands

endif

The third form is similar to the if...then...elif structure (page 442). It performs tests until it finds an expression that is
true and then executes the corresponding commands .

if (expression) then

 commands

else if (expression) then

 commands

. . .

else

 commands

endif

The following program assigns a value of 0, 1, 2, or 3 to the variable class based on the value of the first command
line argument. The program declares the variable class at the beginning for clarity; you do not need to declare it
before its first use. Also for clarity, the script assigns the value of the first command line argument to number.

tcsh $ cat if_else_1

#!/bin/tcsh

routine to categorize the first

command line argument

set class

set number = $argv[1]

#

if ($number < 0) then

 @ class = 0

else if (0 <= $number && $number < 100) then

 @ class = 1

else if (100 <= $number && $number < 200) then

 @ class = 2

else

 @ class = 3

endif

#

echo "The number $number is in class ${class}."

The first if statement tests whether number is less than 0. If it is, the script assigns 0 to class and transfers control to
the statement following endif. If it is not, the second if tests whether the number is between 0 and 100. The && is the
Boolean AND operator, yielding a value of true if the expression on each side is true. If the number is between 0 and
100, 1 is assigned to class and control is transferred to the statement following endif. A similar test determines
whether the number is between 100 and 200. If it is not, the final else assigns 3 to class. The endif closes the if
control structure. The final statement uses braces ({ }) to isolate the variable class from the following period. The
braces isolate the period for clarity; the shell does not consider a punctuation mark to be part of a variable name. The
braces would be required if you wanted other characters to follow immediately after the variable.

foreach

The foreach structure parallels the bash for...in structure (page 449). The syntax is

foreach loop-index (argument-list)

 commands

end

This structure loops through commands . The first time through the loop, the structure assigns the value of the first
argument in argument-list to loop-index . When control reaches the end statement, the shell assigns the value of the
next argument from argument-list to loop-index and executes the commands again. The shell repeats this procedure
until it exhausts argument-list .

The following tcsh script uses a foreach structure to loop through the files in the working directory containing a
specified string of characters in their filename and to change the string. For example, you can use it to change the
string memo in filenames to letter. The filenames memo.1, dailymemo, and memories would change to letter.1,
dailyletter, and letterries.

This script requires two arguments: the string to be changed (the old string) and the new string. The argument-list of
the foreach structure uses an ambiguous file reference to loop through all filenames that contain the first argument.
For each filename that matches the ambiguous file reference, the mv utility changes the filename. The echo and sed
commands appear within back ticks (') that indicate command substitution: Executing the commands within the back
ticks replaces the back ticks and everything between them. Refer to "Command Substitution" on page 329 for more
information. The sed utility (page 563) substitutes the first argument for the second argument in the filename. The $1
and $2 are abbreviated forms of $argv[1] and $argv[2].

tcsh $ cat ren

#!/bin/tcsh

Usage: ren arg1 arg2

changes the string arg1 in the names of files

in the working directory into the string arg2

if ($#argv != 2) goto usage

foreach i (*$1*)

 mv $i 'echo $i | sed -n s/$1/$2/p'

end

exit 0

usage:

echo "Usage: ren arg1 arg2"

exit 1

optional

The next script uses a foreach loop to assign the command line arguments to the elements of an array
named buffer:

tcsh $ cat foreach_1

#!/bin/tcsh

routine to zero-fill argv to 20 arguments

#

set buffer = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)

set count = 1

#

if ($#argv > 20) goto toomany

#

foreach argument ($argv[*])

 set buffer[$count] = $argument

 @ count++

end

REPLACE command ON THE NEXT LINE WITH

THE PROGRAM YOU WANT TO CALL.

exec command $buffer[*]

#

toomany:

echo "Too many arguments given."

echo "Usage: foreach_1 [up to 20 arguments]"

exit 1

The foreach_1 script calls another program named command with a command line guaranteed to
contain 20 arguments. If foreach_1 is called with fewer than 20 arguments, it fills the command line
with zeros to complete the 20 arguments for command. Providing more than 20 arguments causes it to
display a usage message and exit with an error status of 1.

The foreach structure loops through the commands one time for each command line argument. Each
time through the loop, foreach assigns the value of the next argument from the command line to the
variable argument. Then the script assigns each of these values to an element of the array buffer. The
variable count maintains the index for the buffer array. A postfix operator increments the count
variable using @ (@ count++). The exec builtin (bash and tcsh; page 491) calls command so that a
new process is not initiated. (Once command is called, the process running this routine is no longer
needed so a new process is not required.)

while

The syntax of the while structure is

while (expression)

 commands

end

This structure continues to loop through commands while expression is true. If expression is false the first time it is
evaluated, the structure never executes commands .

tcsh $ cat while_1

#!/bin/tcsh

Demonstration of a while control structure.

This routine sums the numbers between 1 and n,

with n being the first argument on the command # line.

#

set limit = $argv[1]

set index = 1

set sum = 0

#

while ($index <= $limit)

 @ sum += $index

 @ index++

end

#

echo "The sum is $sum"

This program computes the sum of all integers up to and including n, where n is the first argument on the command
line. The += operator assigns the value of sum + index to sum.

break and continue

You can interrupt a foreach or while structure with a break or continue statement. These statements execute the
remaining commands on the line before they transfer control. The break statement transfers control to the statement
after the end statement, terminating execution of the loop. The continue statement transfers control to the end
statement, which continues execution of the loop.

switch

The switch structure is analogous to the bash case structure (page 459):

switch (test-string)

 case pattern:

 commands

 breaksw

 case pattern:

 commands

 breaksw

 ...

 default:

 commands

 breaksw

endsw

The breaksw statement transfers control to the statement following the endsw statement. If you omit a breaksw,
control falls through to the next command. You can use any of the special characters listed in Table 11-2 on page 462
within pattern except the pipe symbol (|).

tcsh $ cat switch_1

#!/bin/tcsh

Demonstration of a switch control structure.

This routine tests the first command line argument

for yes or no in any combination of uppercase and

lowercase letters.

#

#

test that argv[1] exists

if ($#argv != 1) then

 echo "Usage: switch_1 [yes|no]"

 exit 1

else

argv[1] exists, set up switch based on its value

 switch ($argv[1])

 # case of YES

 case [yY][eE][sS]:

 echo "Argument one is yes."

 breaksw

 #

 # case of NO

 case [nN][oO]:

 echo "Argument one is no."

 breaksw

 #

 # default case

 default:

 echo "Argument one is neither yes nor no."

 breaksw

 endsw

endif

Builtins

Builtins are commands that are part of (built into) the shell. When you give a simple filename as a command, the shell
first checks whether it is the name of a builtin. If it is, the shell executes it as part of the calling process; the shell does
not fork a new process to execute the builtin. The shell does not need to search the directory structure for builtin
programs because they are immediately available to the shell.

If the simple filename you give as a command is not a builtin, the shell searches the directory structure for the
program you want, using the PATH variable as a guide. When it finds the program the shell forks a new process to
execute the program.

Although they are not listed in Table 9-10, the control structure keywords (if, foreach, endsw, and so on) are builtins.
The table describes many of the tcsh builtins, some of which are also built into other shells.

Table 9-10. tcsh builtins

Builtin Function

% job A synonym for the fg builtin. The job is the job number of the job
you want to bring to the foreground (page 272).

% job & A synonym for the bg builtin. The job is the number of the job you
want to put in the background (page 273).

@ Similar to the set builtin but evaluates numeric expressions. Refer
to "Numeric Variables" on page 358.

alias Creates and displays aliases; bash uses a different syntax than tcsh.
Refer to "Aliases" on page 347.

alloc Displays a report of the amount of free and used memory.

bg Moves a suspended job into the background (page 273).

bindkey Controls the mapping of keys to the tcsh command line editor
commands.

bindkey Without any arguments, bindkey lists all key bindings (page 353).

bindkey –l Lists all available editor commands along with a short description of
each.

bindkey –e Puts the command line editor in emacs mode (page 353).

bindkey –v Puts the command line editor in vi(m) mode (page 353).

bindkey key
command

Attaches the editor command command to the key key.

bindkey –b key
command

Similar to the previous form but allows you to specify control keys
by using the form C–x (where x is the character you type while you
press the CONTROL key), specify meta key sequences as M–x (on
most keyboards used with Linux, the ALT key is the meta key), and
specify function keys as F-x.

bindkey –c key
command

Binds the key key to the command command . Here the command is
not an editor command but either a shell builtin or an executable
program.

bindkey –s key
string

Whenever you type key, string is substituted.

builtins Displays a list of all builtins.

cd or chdir Changes working directories (page 82).

dirs Displays the directory stack (page 274).

echo Displays its arguments. You can prevent echo from displaying a
RETURN at the end of a line by using the –n option (see "Reading
User Input" on page 361) or by using a trailing \c (see "read:
Accepts User Input: Accepts User Input" on page 487). The echo
builtin is similar to the echo utility (page 647).

eval Scans and evaluates the command line. When you put eval in front
of a command, the command is scanned twice by the shell before it
is executed. This feature is useful with a command that is generated
by command or variable substitution. Because of the order in which
the shell processes a command line, it is sometimes necessary to
repeat the scan to achieve the desired result (page 318).

exec Overlays the program currently being executed with another
program in the same shell. The original program is lost. Refer to
"exec: Executes a Command: Executes a Command" on page 491
for more information; also refer to source (page 380).

exit Exits from a TC Shell. When you follow it with a numeric
argument, tcsh returns that number as the exit status (page 479).

fg
Moves a job into the foreground (page 271).

filetest Takes one of the file inquiry operators followed by one or more
filenames and applies the operator to each filename (page 370).
Returns the results as a space-separated list.

glob Like echo, but does not display SPACEs between its arguments and
does not follow its display with a NEWLINE.

hashstat Reports on the efficiency of tcsh's hash mechanism. The hash
mechanism speeds the process of searching through the directories
in your search path. See also rehash (page 380) and unhash (page
381).

history Displays a list of recent commands (page 344).

jobs Displays a list of jobs (suspended commands and those running in
the background).

kill Terminates a job or process (page 497).

limit Limits the computer resources that the current process and any
processes it creates can use. You can put limits on the number of
seconds of CPU time the process can use, the size of files that the
process can create, and so forth.

log Immediately produces the report that the watch shell variable (page
365) would normally produce every 10 minutes.

login Logs in a user. Can be followed by a username.

logout Ends a session if you are using your original (login) shell.

ls–F Similar to ls –F but faster. (This builtin is the characters ls–F
without any SPACEs.)

nice Lowers the processing priority of a command or a shell. It is useful
if you want to run a command that makes large demands on the
system and you do not need the output right away. If you are
Superuser, you can use nice to raise the priority of a command.
Refer to page 734 for more information on the nice builtin and the
nice utility, which is available from bash.

nohup Allows you to log out without terminating processes running in the
background. Some systems are set up to do this automatically. Refer
to page 736 for information on the nohup builtin and the nohup
utility, which is available from bash.

notify Causes the shell to notify you immediately when the status of one of
your jobs changes (page 271).

onintr Controls what action an interrupt causes within a script (page 371).
See "trap: Catches a Signal" on page 493 for information on the
equivalent command in bash.

popd
Removes a directory from the directory stack (page 274).

printenv Displays all environment variable names and values.

pushd Changes the working directory and places the new directory at the
top of the directory stack (page 274).

rehash Re-creates the internal tables used by the hash mechanism.
Whenever a new instance of tcsh is invoked, the hash mechanism
creates a sorted list of all available commands based on the value of
path. After you add a command to a directory in path, use rehash
to re-create the sorted list of commands. If you do not, tcsh may not
be able to find the new command. Also refer to hashstat (page
379) and unhash (page 381).

repeat Takes two arguments—a count and simple command (no pipes or
lists of commands)—and repeats the command the number of times
specified by the count.

sched Executes a command at a specified time. For example, the following
command causes the shell to print the message Dental
appointment. at 10 AM:

tcsh $ sched 10:00 echo "Dental appointment."

Without any arguments, sched prints the list of scheduled
commands. When the time to execute a scheduled command arrives,
tcsh executes the command just before it displays a prompt.

set Declares, initializes, and displays local variables (page 355).

setenv Declares, initializes, and displays environment variables (page 355).

shift Analogous to the bash shift builtin (page 483). Without an
argument, shift promotes the indexes of the argv array. You can
use it with an argument of an array name to perform the same
operation on that array.

source Executes the shell script given as its argument: source does not fork
another process. It is similar to the bash . (dot) builtin (page 259).
The source builtin expects a TC Shell script so no leading #! is
required in the script. The current shell executes source so that the
script can contain commands, such as set, that affect the current
shell. After you make changes to your .tcshrc or .login file, you can
use source to execute it from the shell and thereby put the changes
into effect without logging off and on. You can nest source builtins.

stop Stops a job or process that is running in the background. The stop
builtin accepts multiple arguments.

suspend Stops the current shell and puts it in the background. It is similar to
the suspend key, which stops jobs running in the foreground.

time Executes the command that you give it as an argument. It displays a
summary of time-related information about the executed command,
according to the time shell variable (page 364). Without an
argument, time displays the times for the current shell and its
children.

umask Identifies or changes the access permissions that are assigned to files
you create (page 810).

unalias Removes an alias (page 347).

unhash Turns off the hash mechanism. See also hashstat (page 379) and
rehash (page 380).

unlimit Removes limits (page 379) on the current process.

unset Removes a variable declaration (page 355).

unsetenv Removes an environment variable declaration (page 355).

wait Causes the shell to wait for all child processes to terminate. When
you give a wait command in response to a shell prompt, tcsh does
not display a prompt until all background processes have finished
execution. If you interrupt it with the interrupt key, wait displays a
list of outstanding processes before tcsh displays a prompt.

where When given the name of a command as an argument, locates all
occurrences of the command and, for each, tells you whether it is an
alias, a builtin, or an executable program in your path.

which Similar to where but reports on only the command that would be
executed, not all occurrences. This builtin is much faster than the
Linux which utility and knows about aliases and builtins.

Chapter Summary

Like the Bourne Again Shell, the TC Shell is both a command interpreter and a programming language. The TC Shell,
which is based on the C Shell that was developed at the University of California at Berkeley, includes popular
features such as history, alias, and job control.

You may prefer to use tcsh as a command interpreter, especially if you are familiar with the C Shell. You can use
chsh to change your login shell to tcsh. However, running tcsh as your interactive shell does not cause tcsh to run
shell scripts; they will continue to be run by bash unless you explicitly specify another shell on the first line of the
script or specify the script name as an argument to tcsh. Specifying the shell on the first line of a shell script ensures
the behavior you expect.

If you are familiar with bash, you will notice some differences between the two shells. For instance, the syntax you
use to assign a value to a variable differs and tcsh allows SPACEs around the equal sign. Both numeric and
nonnumeric variables are created and given values using the set builtin. The @ builtin can evaluate numeric
expressions for assignment to numeric variables.

setenv

Because there is no export builtin in tcsh, you must use the setenv builtin to create an environment (global)
variable. You can also assign a value to the variable with the setenv command. The command unset removes both
local and environment variables, whereas the command unsetenv removes only environment variables.

Aliases

The syntax of the tcsh alias builtin is slightly different from that of alias in bash. Unlike bash, the tcsh aliases
permit you to substitute command line arguments using the history mechanism syntax.

Most other tcsh features, such as history, word completion, and command line editing, closely resemble their bash
counterparts. The syntax of the tcsh control structures is slightly different but provides functionality equivalent to
that found in bash.

Globbing

The term globbing, a carryover from the original Bourne Shell, refers to the matching of strings containing special
characters (such as * and ?) to filenames. If tcsh is unable to generate a list of filenames matching a globbing pattern,
it displays an error message. This behavior contrasts with that of bash, which simply leaves the pattern alone.

Standard input and standard output can be redirected in tcsh, but there is no straightforward way to redirect them
independently. Doing so requires the creation of a subshell that redirects standard output to a file while making
standard error available to the parent process.

Exercises

1. Assume that you are working with the following history list:

37 mail alex

38 cd /home/jenny/correspondence/business/cheese_co

39 less letter.0321

40 vim letter.0321

41 cp letter.0321 letter.0325

42 grep hansen letter.0325

43 vim letter.0325

44 lpr letter*

45 cd ../milk_co

46 pwd

47 vim wilson.0321 wilson.0329

Using the history mechanism, give commands to

Send mail to Alex.a.

Use vim to edit a file named wilson.0329.b.

Send wilson.0329 to the printer.c.

Send both wilson.0321 and wilson.0329 to the printer.d.

2. How can you display the aliases currently in effect? Write an alias named homedots that lists the names
(only) of all invisible files in your home directory.

3. How can you prevent a command from sending output to the terminal when you start it in the background?
What can you do if you start a command in the foreground and later decide that you want it to run in the
background?

4. What statement can you put in your ~/.tcshrc file to prevent accidentally overwriting a file when you
redirect output? How can you override this feature?

5. Assume that the working directory contains the following files:

adams.ltr.03

adams.brief

adams.ltr.07

abelson.09

abelson.brief

anthony.073

anthony.brief

azevedo.99

What happens if you press TAB after typing the following commands?

less adams.la.

cat ab.

ls antc.

file az

What happens if you press CONTROL-D after typing the following commands?

d.

ls abe.

less af.

6. Write an alias named backup that takes a filename as an argument and creates a copy of that file with the
same name and a filename extension of .bak.

7. Write an alias named qmake (quiet make) that runs make with both standard output and standard error
redirected to the file named make.log. The command qmake should accept the same options and
arguments as make.

8. How can you make tcsh always display the pathname of the working directory as part of its prompt?

Advanced Exercises

9. What lines do you need to change in the Bourne Again Shell script command_menu (page 462) to turn it
into a TC Shell script? Make the changes and verify that the new script works.

10. Users often find rm (and even rm –i) too unforgiving because it removes files irrevocably. Create an alias
named delete that moves files specified by its argument(s) into the ~/.trash directory. Create a second
alias named undelete that moves a file from the ~/.trash directory into the working directory. Put the
following line in your ~/.logout file to remove any files that you deleted during the login session:

/bin/rm -f $HOME/.trash/* >& /dev/null

Explain what could be different if the following line were put in your ~/.logout file instead:

rm $HOME/.trash/*

11. Modify the foreach_1 script (page 374) so that it takes the command to exec as an argument.

12. Rewrite the program while_1 (page 375) so that it runs faster. Use the time builtin to verify the
improvement in execution time.

13. Write your own version of find named myfind that writes output to the file findout but without the
clutter of error messages, such as those generated when you do not have permission to search a directory.
The myfind command should accept the same options and arguments as find. Can you think of a situation
in which myfind does not work as desired?

14. When the foreach_1 script (page 374) is supplied with 20 or fewer arguments, why are the commands
following toomany: not executed? (Why is there no exit command?)

 < Day Day Up >

 < Day Day Up >

Part IV: Programming Tools

 CHAPTER 10 Programming Tools

 CHAPTER 11 Programming The Bourne Again Shell

 CHAPTER 12 The gawk Pattern Processing Language

 CHAPTER 13 The sed Editor

 < Day Day Up >

 < Day Day Up >

Chapter 10. Programming Tools
IN THIS CHAPTER

Programming in C 388

Using Shared Libraries 396

make: Keeps a Set of Programs Current 399

Debugging C Programs 407

Threads 417

System Calls 417

Source Code Management 420

CVS: Concurrent Versions System 420

With its rich set of languages and development tools, the Linux operating system provides an outstanding
environment for programming. C is one of the most popular system programming languages to use in
conjunction with Linux, in part because the operating system itself is written mostly in C. Using C,
programmers can easily access system services using function libraries and system calls. In addition, a
variety of helpful tools can facilitate the development and maintenance of programs.

This chapter explains how to compile and link C programs. It introduces the GNU gdb debugger and tools
that provide feedback about memory, disk, and CPU resources. It also covers some of the most useful
software development tools: the make utility and CVS. The make utility helps you keep track of which
program modules have been updated and helps to ensure that you use the latest versions of all program
modules when you compile a program. CVS (Concurrent Versions System) is a source code management
system that tracks the versions of files involved in a project.

 < Day Day Up >

 < Day Day Up >

Programming In C

A major reason that the Linux system provides an excellent C programming environment is that C programs can easily access
the services of the operating system. The system calls—the routines that make operating system services available to
programmers—can be called from C programs. These system calls provide such services as creating files, reading from and
writing to files, collecting information about files, and sending signals to processes. When you write a C program, you can use
system calls in the same way you use ordinary C program modules, or functions, that you have written. For more information
refer to "System Calls" on page 417.

Several libraries of functions have been developed to support programming in C. The libraries are collections of related
functions that you can use just as you use your own functions and the system calls. Many of the library functions access basic
operating system services through the system calls, providing the services in ways that are more suited to typical programming
tasks. Other library functions, such as the math library functions, serve special purposes.

This chapter describes the processes of writing and compiling C programs. However, it will not teach you to program in C.

Checking Your Compiler

The C compiler in common use on Linux is GNU gcc (www.gnu.org/software/gcc/gcc.html), which comes as part of most
distributions. Give the following command to see if you have access to the gcc compiler:

$ gcc --version

bash: gcc: command not found

If you get a response other than version information, either the compiler is not installed or your PATH variable does not
contain the necessary pathname (usually gcc is installed in /usr/bin). If you get version information from the gcc command,
the GNU C compiler is installed.

Next make sure that the compiler is functioning. As a simple test, create a file named Makefile with the following lines. The
line that starts with gcc must be indented by using a TAB, not SPACEs.

$ cat Makefile

morning: morning.c

TAB gcc -o morning morning.c

Now create a source file named morning.c with the following lines:

$ cat morning.c

#include <stdio.h>

int main(int argc, char** argv) {

 printf("Good Morning\n");

 return 0;

}

Compile the file with the command make morning. When it compiles successfully, run the program by giving the command
morning or ./morning. When you get output from this program, you know that you have a working C compiler:

$ make morning

gcc -o morning morning.c

$ morning

Good Morning

A C Programming Example

You must use an editor, such as emacs or vim, to create or change a C program. The name of the C program file must end in .c.
Entering the source code for a program is similar to typing a memo or shell script. Although emacs and vim "know" that you
are editing a C program, many editors do not know whether your file is a C program, a shell script, or an ordinary text
document. You are responsible for making the contents of the file syntactically suitable for the C compiler to process.

Figure 10-1 illustrates the structure of a simple C program named tabs.c . The first two lines of the program are comments that
describe what the program does. The string /* identifies the beginning of the comment, and the string */ identifies the end of
the comment; the C compiler ignores all the characters between them. Because a comment can span two or more lines, the */ at
the end of the first line and the /* at the beginning of the second line are not necessary but are included for clarity. As the
comment explains, the program reads standard input, converts TAB characters into the appropriate number of spaces, and
writes the transformed input to standard output. Like many Linux utilities, this program is a filter.

Figure 10-1. A simple C program: tabs.c (The line numbers are not part of the source code.)

[View full size image]

Following the comments at the top of tabs.c are preprocessor directives, which are instructions for the C preprocessor. During
the initial phase of compilation the C preprocessor expands these directives, making the program ready for the later stages of
the compilation process. Preprocessor directives begin with the pound sign (#) and may optionally be preceded by SPACE and
TAB characters.

Symbolic constants

You can use the #define preprocessor directive to define symbolic constants and macros. Symbolic constants are names that
you can use in a program in place of constant values. For example, tabs.c uses a #define preprocessor directive to associate the
symbolic constant TABSIZE with the constant 8. TABSIZE is used in the program in place of the constant 8 as the distance
between TAB stops. By convention the names of symbolic constants consist of all uppercase letters.

By defining symbolic names for constant values you can make a program easier to read and easier to modify. If you later decide
to change a constant, you need to change only the preprocessor directive rather than the value everywhere it occurs in the
program. If you replace the #define directive for TABSIZE in Figure 10-1 with the following directive, the program will place
TAB stops every four columns rather than every eight:

#define TABSIZE 4

A symbolic constant, which is a type of macro , maps a symbolic name to replacement text. Macros are handy when the
replacement text is needed at multiple points throughout the source code or when the definition of the macro is subject to
change. The process of substituting the replacement text for the symbolic name is called macro expansion.

Macros

You can also use #define directives to define macros with arguments. Use of such a macro resembles a function call. Unlike C
functions, however, macros are replaced with C code prior to compilation into object files.

The NEXTTAB macro computes the distance to the next TAB stop, given the current column position curcol:

#define NEXTTAB(curcol) (TABSIZE - ((curcol) % TABSIZE))

This definition uses the macro TABSIZE, whose definition must appear prior to NEXTTAB in the source code. The macro
NEXTTAB could be used in tabs.c to assign a value to retval in the function findstop:

retval = NEXTTAB(*col);

Headers (include files)

When modules of a program use several macro definitions, the definitions are typically collected together in a single file called
a header file or an include file . Although the C compiler does not place constraints on the names of header files, by convention
they end in .h. The name of the header file is listed in an #include preprocessor directive in each program source file that uses
any of the macros. The program in Figure 10-1 uses getchar and putchar, which are macros defined in stdio.h. The stdio.h
header file defines a variety of general-purpose macros and is used by many C library functions.

The angle brackets (< and >) that surround stdio.h in tabs.c instruct the C preprocessor to look for the header file in a standard
list of directories (such as /usr/include). To include a header file from another directory, enclose its pathname between double
quotation marks. You can specify an absolute pathname within the double quotation marks or you can give a relative pathname.
If you give a relative pathname, searching begins with the working directory and then moves to the same directories that are
searched when the header file is surrounded by angle brackets. By convention header files that you supply are surrounded by
double quotation marks.

You can also specify directories to be searched for header files by using the –I option to the C compiler. Assume that you want
to compile the program deriv.c, which contains the following preprocessor directive:

#include "eqns.h"

If the header file eqns.h is located in the subdirectory myincludes, you can compile deriv.c with the –I option to tell the C
preprocessor to look for the file eqns.h there:

$ gcc -I./myincludes deriv.c

When the C preprocessor encounters the #include directive in the deriv.c file, it will look for eqns.h in the myincludes
subdirectory of the working directory.

tip: Use relative pathnames for include files

Using absolute pathnames for include files does not work if the location of the header file within the filesystem
changes. Using relative pathnames for header files works as long as the location of the header file relative to the
working directory remains the same. Relative pathnames also work with the –I option on the gcc command line and
allow header files to be moved.

Function prototype

Preceding the definition of the function main is a function prototype. This declaration tells the compiler what type a function
returns, how many arguments a function expects, and what the types of those arguments are. In tabs.c the prototype for the
function findstop informs the compiler that findstop returns type int and that it expects a single argument of type pointer to
int:

int findstop(int *);

Once the compiler has seen this declaration, it can detect and flag inconsistencies in the definition and the uses of the function.
As an example, suppose that the reference to findstop in tabs.c was replaced with the following statement:

inc = findstop();

The prototype for findstop would cause the compiler to detect a missing argument and issue an error message. You could then
easily fix the problem. When a function is present in a separate source file or is defined after it is referenced in a source file (as
findstop is in the example), the function prototype helps the compiler check that the function is being called properly. Without
the prototype, the compiler would not issue an error message and the problem might manifest itself as unexpected behavior
during execution. At this late point, finding the bug might be difficult and time-consuming.

Functions

Although you can call most C functions anything you want, each program must have exactly one function named main. The
function main is the control module: A program begins execution with the function main, which typically calls other
functions, which in turn may call still other functions, and so forth. By putting different operations into separate functions, you
can make a program easier to read and maintain. For example, the program in Figure 10-1 uses the function findstop to
compute the distance to the next TAB stop. Although the few statements of findstop could easily have been included in the
main function, isolating them in a separate function draws attention to a key computation.

Functions can make both development and maintenance of the program more efficient. By putting a frequently used code
segment into a function, you avoid entering the same code into the program over and over again. When you later want to make
changes to the code, you need change it only once.

If a program is long and includes several functions, you may want to split it into two or more files. Regardless of its size, you
may want to place logically distinct parts of a program in separate files. A C program can be split into any number of different
files; however, each function must be wholly contained within a single file.

tip: Use a header file for multiple source files

When you are creating a program that takes advantage of multiple source files, put #define preprocessor directives
into a header file and use an include statement with the name of the header file in any source file that uses the
directives.

Compiling and Linking a C Program

To compile tabs.c and create an executable file named a.out, give the following command:

$ gcc tabs.c

The gcc utility calls the C preprocessor, the C compiler, the assembler, and the linker. Figure 10-2 shows these four
components of the compilation process. The C preprocessor expands macro definitions and includes header files. The
compilation phase creates assembly language code corresponding to the instructions in the source file. Then the assembler
creates machine-readable object code. One object file is created for each source file. Each object file has the same name as the
source file, except that the .c extension is replaced with a .o. The preceding example creates a single object file named tabs.o.
After successfully completing all phases of the compilation process for a program, the C compiler creates the executable file
and then removes any .o files.

Figure 10-2. The compilation process

During the final phase of the compilation process, the linker searches specified libraries for functions the program uses and
combines object modules for those functions with the program's object modules. By default the C compiler links the standard C
library libc.so (usually found in /lib), which contains functions that handle input and output and provides many other general-
purpose capabilities. If you want the linker to search other libraries, you must use the –l (lowercase "l") option to specify the
libraries on the command line. Unlike most options to Linux system utilities, the –l option does not come before all filenames
on the command line but usually appears after the filenames of all modules that it applies to. In the next example, the C
compiler searches the math library libm.so (usually found in /lib):

$ gcc calc.c -lm

The –l option uses abbreviations for library names, appending the letter following –l to lib and adding a .so or .a extension. The
m in the example stands for libm.so.

Using the same naming mechanism, you can have a graphics library named libgraphics.a, which can be linked with the
following command:

$ gcc pgm.c -lgraphics

When you use this convention to name libraries, gcc knows to search for them in /usr/lib and /lib. You can have gcc also
search other directories by using the –L option:

$ gcc pgm.c -L. -L/usr/X11R6/lib -lgraphics

The preceding command causes gcc to search for the library file libgraphics.a in the working directory and in /usr/X11R6/lib
before searching /usr/lib and /lib.

As the last step of the compilation process, the linker creates an executable file named a.out unless you specify a different
filename with the –o option. Object files are deleted after the executable is created.

ELF format

You may occasionally encounter references to the a.out format, an old UNIX binary format. Linux uses the Executable and
Linking Format (ELF) for binaries; recent versions of gcc produce this format—not the a.out format, in spite of the filename.
Use the file utility (page 653) to determine the format of the executable that gcc generates:

$ file a.out

a.out: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2.5,

 dynamically linked (uses shared libs), not stripped

In the next example, the –O3 option causes gcc to use the C compiler optimizer. The optimizer makes object code more
efficient so that the executable program runs more quickly. Optimization has many facets, including locating frequently used
variables and taking advantage of processor-specific features. The number after the –O indicates the level of optimization,
where a higher number specifies more optimization. See the gcc info page for specifics. The following example also shows
that the .o files are not present after a.out is created:

$ ls

acctspay.c acctsrec.c ledger.c

$ gcc -O3 ledger.c acctspay.c acctsrec.c

$ ls

a.out acctspay.c acctsrec.c ledger.c

You can use the executable a.out in the same way you use shell scripts and other programs: by typing its name on the
command line. The program in Figure 10-1 on page 390 expects to read from standard input, so once you have created the
executable a.out you can use a command such as the following to run it:

$./a.out < mymemo

If you want to save the a.out file, you should change the name to a more descriptive one. Otherwise, you might accidentally
overwrite it during a later compilation:

$ mv a.out accounting

To save yourself the trouble of renaming an a.out file, you can specify the name of the executable file when you use gcc. The –
o option causes the C compiler to give the executable the name you specify rather than a.out. In the next example, the
executable is named accounting:

$ gcc -o accounting ledger.c acctspay.c acctsrec.c

If accounting does not require arguments, you can run it with the following command:

$ accounting

You can suppress the linking phase of compilation by using the – c option with the gcc command. The – c option does not treat
unresolved external references as errors; this capability enables you to compile and debug the syntax of the modules of a
program as you create them. Once you have compiled and debugged all the modules, you can run gcc again with the object
files as arguments to produce an executable program. In the next example, gcc produces three object files but no executable:

$ gcc -c ledger.c acctspay.c acctsrec.c

$ ls

acctspay.c acctspay.o acctsrec.c acctsrec.o ledger.c ledger.o

If you then run gcc again and name the object files on the command line, gcc will produce the executable. Because it
recognizes the filename extension .o, the C compiler knows that the files need only to be linked. You can also include both .c
and .o files on a single command line:

$ gcc -o accounting ledger.o acctspay.c acctsrec.o

The C compiler recognizes that the .c file needs to be preprocessed and compiled, whereas the .o files do not. The C compiler
also accepts assembly language files ending in .s and assembles and links them. This feature makes it easy to modify and
recompile a program.

You can use separate files to divide a project into functional groups. For instance, you might put graphics routines in one file,
string functions in another, and database calls in a third. Multiple files can enable several engineers to work on the same project
concurrently and can speed up compilation. If all functions are in one file and you make a change, the compiler must recompile

all functions in the file. Thus the entire program will be recompiled, which may take considerable time even if you made only a
small change. When you use separate files, only the file that you change must be recompiled. For large programs with many
source files (for example, the C compiler or emacs), the time lost by recompiling one huge file for every small change would be
enormous. For more information, refer to "make: Keeps a Set of Programs Current" on page 399.

tip: What not to name a program

Do not name a program test or any other name of a builtin or other executable on the local system. If you do, you
will likely execute the builtin or other program instead of the program you intend to run. Use which (page 61) to
determine which program you will run when you give a command.

 < Day Day Up >

 < Day Day Up >

Using Shared Libraries

Most modern operating systems use shared libraries, also called dynamic libraries. These libraries are not
linked into a program at compile time but rather are loaded when the program starts (or later in some cases).
The names of files housing shared libraries have filename extensions of .so (shared object)—for example
libc.so. Usually libaaa.so is a symbolic link to libaaa.so.x, where x is a small number representing the
version of the library. Many of these libraries are kept in /usr/lib: A typical Linux installation has more than
300 shared libraries in /usr/lib and more than 30 in /usr/X11R6/lib. Applications can have their own shared
libraries. For example, the gcc compiler might keep its libraries in /usr/lib/gcc-lib/i386-redhat-linux/3.4.0.

Archived libraries

In contrast to shared libraries are the older, statically linked libraries (with a .a filename extension), also
called archived libraries. Archived libraries are added to the executable file during the last (link) phase of
compilation. This addition can make a program run slightly faster the first time it is run, albeit at the expense
of program maintainability and size. Taken together, the combined size of several executables that use a
shared library and the size of the shared library are smaller than the combined size of the same executables
with static libraries. When a running program has already loaded a dynamic library, a second program that
requires the same dynamic library starts slightly faster.

Reducing memory usage and increasing maintainability are the primary reasons for using shared object
libraries; they have largely replaced statically linked libraries as the library type of choice. Consider what
happens when you discover an error in a library. With a static library, you need to relink every program that
uses the library once the library has been fixed and recompiled. With a dynamic library, you need to fix and
recompile only the library itself.

Shared object libraries also make dynamic loading of program libraries on the fly possible (for example,
perl, python, and tcl extensions and modules). The Apache (HTTP) Web server specifies modules in the
httpd.conf file and loads them as needed.

ldd

The ldd (list dynamic dependencies) utility tells you which shared libraries a program needs. The following
example shows that cp uses libacl, the Access Control Lists library; libc, the C library; libattr, the Extended
Attributes library; and ld-linux, the runtime linker:

$ ldd /bin/cp

 libacl.so.1 => /lib/libacl.so.1 (0x40026000)

 libc.so.6 => /lib/i686/libc.so.6 (0x42000000)

 libattr.so.1 => /lib/libattr.so.1 (0x4002d000)

 /lib/ld-linux.so.2 => /lib/ld-linux.so.2 (0x40000000)

Running ldd on /usr/bin/gnome-session (a program that starts a graphical GNOME session) lists 59
libraries from /usr/lib, /usr/X11R6/lib, and /lib.

The program that does the dynamic runtime linking, ld-linux.so, always looks in /usr/lib for libraries. The
other directories that ld searches vary depending on how ld is set up. You can add directories for ld to look
in by specifying a search path at compile (actually link) time, using the –r option followed by a colon-
separated list of directories (do not put a SPACE after –r). Use only absolute pathnames in the search path.
Although you use this option on the gcc command line, it is passed to the linker (ld). The gnome-session
desktop manager was likely linked with a command such as the following:

gcc flags –o gnome-session objects –r/lib:/usr/X11R6/lib libraries

This command line allows ld.so (and ldd) to search /lib and /usr/X11R6/lib in addition to the standard
/usr/lib for the libraries needed by the executable.

The compiler needs to see the shared libraries at link time to make sure that the needed functions and
procedures are present as promised by the header (.h) files. Use the –L option to tell the compile-time linker
to look in the directory mylib for shared or static libraries: –L mylib. Unlike the search path, –L can use
relative pathnames such as –L ../lib—handy when a program builds its own shared library. The library can
be in one location at build time (–L) but in another location at runtime after it is installed (–rpath). The
SPACE after –L is optional and is usually omitted; –r must not be followed by a SPACE. You can repeat the
–L and the –r options multiple times on the link line.

Fixing Broken Binaries

The command line search path is a fairly new idea. The search path was traditionally created by using the
LD_LIBRARY_PATH and, more recently, the LD_RUN_PATH environment variables. These variables
have the same format as PATH (page 284).

The directories in LD_LIBRARY_PATH are normally searched before the usual library locations. Newer
Linux releases extend the function of LD_LIBRARY_PATH to specify directories to be searched either
before or after the normal locations. See the ld man page for details. The LD_RUN_PATH variable behaves
similarly to LD_LIBRARY_PATH. If you use –r, however, LD_LIBRARY_PATH supersedes anything
in LD_RUN_PATH.

The use of LD_LIBRARY_PATH brings up several problems. Because only one environment variable
exists, it must be shared among all programs. If two programs have the same name for a library or use
different, incompatible versions of the same library, only the first will be found. As a result one of the
programs will not run or—worse—will not run correctly.

security: LD_LIBRARY_PATH

Under certain circumstances a malicious user can create a Trojan horse named libc.so and place it
in a directory that is searched before /usr/lib (any directory in LD_LIBRARY_PATH, which
appears before /usr/lib). The fake libc will then be used instead of the real libc.

Wrappers

LD_LIBRARY_PATH still has its place in the scripts, called wrappers, that are used to fix broken binaries.
Suppose that the broken binary bb uses the shared library libbb.so, which you want to put in /opt/bb/lib and
not in /usr/lib, as the bb programmer requested. The command ldd bb will tell you which libraries are
missing. Not a problem: Rename bb to bb.broken, and create a /bin/sh wrapper named bb.

#!/bin/sh

LD_LIBRARY_PATH=/opt/bb/lib

export LD_LIBRARY_PATH

exec bb.broken "$@"

(Using $@ rather than $* preserves SPACEs in the parameters; see page 482.) A wrapper can also allow you
to install programs in arbitrary locations.

Creating Shared Libraries

Building a dynamically loadable shared library is not a trivial matter: It involves using reentrant function
calls, defining a library entrance routine, and performing other tasks. When you want to create a shared
object library, you must at a minimum compile the source files with the –fPIC (position-independent code)
option to gcc and link the resulting object files into the libxx.so file using the –shared –x options to the
linker (for example, ld –shared –x –o libmylib.so *.o). The best resource for investigating shared library
construction and usage is existing code on the Internet. For example, you can look at the source files for
zlib (www.gzip.org/zlib).

C+ +

C+ + files have special needs, and libraries (shared or not) often have to be made by the compiler rather than
ld or ar. Shared libraries can depend on other shared libraries and have their own search paths. If you set
LD_LIBRARY_PATH, add the –i flag to the link phase when compiling to ignore the current
LD_LIBRARY_PATH or you may have unexpected results. Ideally, you would not have
LD_LIBRARY_PATH set on a global level but would use it only in wrappers as needed.

 < Day Day Up >

 < Day Day Up >

make: Keeps a Set of Programs Current

tip: This section covers the GNU make program

This section describes the GNU make program. Other make tools (BSN make, GNUStep make,
Borland make, and so on) are available as well as similar tools such as ant (the Apache build tool).
Makefiles created for GNU make are often incompatible with other make tools, which can be
problematic if you are trying to compile code targeted for another platform.

In a large program with many source and header files, the files typically depend on one another in complex
ways. When you change a file that other files depend on, you must recompile all dependent files. For
example, you might have several source files, all of which use a single header file. When you change the
header file, you must recompile each of the source files. The header file might depend on other header files,
and so forth. Figure 10-3 shows a simple example of dependency relationships. Each arrow in this figure
points from a file to another file that depends on it.

Figure 10-3. Dependency graph for the target form

When you are working on a large program, it can be difficult, time-consuming, and tedious to determine

which modules need to be recompiled because of their dependency relationships. The make utility automates
this process.

Dependency lines: target files and prerequisite files

At its simplest, make looks at dependency lines in a file named Makefile or makefile in the working
directory. The dependency lines indicate relationships among files, specifying a target file that depends on
one or more prerequisite files. If you have modified any of the prerequisite files more recently than their
target file, make updates the target file based on construction commands that follow the dependency line. The
make utility normally stops if it encounters an error during the construction process.

The file containing the updating information for the make utility is called a makefile. (See page 388 for a
trivial example.) A simple makefile has the following syntax:

target: prerequisite-list

TAB construction-commands

The dependency line consists of the target and the prerequisite-list , separated by a colon. Each construction-
commands line (you may have more than one) must start with a TAB and must follow the dependency line.
Long lines can be continued with a BACKSLASH (\) as the last character on the line.

The target is the name of the file that depends on the files in the prerequisite-list . The construction-
commands are regular shell commands that construct (usually compile and/or link) the target file. The make
utility executes the construction-commands when the modification time of one or more files in the
prerequisite-list is more recent than that of the target file.

The following example shows the dependency line and construction commands for the file named form in
Figure 10-3. The form file depends on the prerequisites size.o and length.o. An appropriate gcc command
constructs the target:

form: size.o length.o

TAB gcc -o form size.o length.o

Each of the prerequisites on one dependency line can be a target on another dependency line. For example,
both size.o and length.o are targets on other dependency lines. Although the example in Figure 10-3 is
simple, the nesting of dependency specifications can create a complex hierarchy that dictates relationships
among many files.

The following makefile (named Makefile) corresponds to the complete dependency structure shown in
Figure 10-3. The executable file form depends on two object files, and the object files each depend on their
respective source files and a header file, form.h. In turn, form.h depends on two other header files.

$ cat Makefile

form: size.o length.o

 gcc -o form size.o length.o

size.o: size.c form.h

 gcc -c size.c

length.o: length.c form.h

 gcc -c length.c

form.h: num.h table.h

 cat num.h table.h > form.h

Although the last line would not normally be seen in a makefile, it illustrates the fact that you can put any
shell command on a construction line. Because the shell processes makefiles, the command line should be
one that you could enter in response to a shell prompt.

The following command builds the default target form if any of its prerequisites are more recent than their
corresponding targets or if any of the targets do not exist:

$ make

Thus, if the file form has been deleted, make will rebuild it, regardless of the modification dates of its
prerequisite files. The first target in a makefile is the default and is built when you call make without any
arguments.

If you want make to rebuild a target other than the first in the makefile, you must provide that target as an
argument to make. The following command rebuilds only form.h if it does not exist or if its prerequisites are
more recent than the target:

$ make form.h

Implied Dependencies

You can rely on implied dependencies and construction commands to facilitate the job of writing a makefile.
For instance, if you do not include a dependency line for an object file, make assumes that it depends on a
compiler or assembler source code file. Thus, if a prerequisite for a target file is xxx.o and no dependency
line identifies xxx.o as a target, make looks at the extension to determine how to build the .o file. If it finds
an appropriate source file, make provides a default construction command line that calls the proper compiler
or the assembler to create the object file. Table 10-1 lists some filename extensions that make recognizes and

the type of file that corresponds to each suffix.

Table 10-1. Filename extensions

Filename with extension Type of file

filename.c C programming language source code

filename.C, filename.cc,
filename.cxx, filename.c++,
filename.cpp

C++ programming language source code

filename.f Fortran programming language source code

filename.h Header file

filename.l flex, lex lexical analyzer generator source code

filename.o Object module

filename.s Assembler code

filename.sh Shell script

filename.y bison, yacc parser generator source code

C and C++ are traditional programming languages that are available with many Linux distributions. The
bison and flex tools create command languages.

In the next example a makefile keeps the file named compute up-to-date. The make utility ignores any line
that begins with a pound sign (#). Thus the first three lines of the following makefile are comment lines. The
first dependency line shows that compute depends on two object files: compute.o and calc.o. The
corresponding construction line gives the command make needs to produce compute. The second
dependency line shows that compute.o depends not only on its C source file but also on the compute.h
header file. The construction line for compute.o uses the C compiler optimizer (–O3 option). The third set of
dependency and construction lines is not required. In their absence, make infers that calc.o depends on calc.c
and produces the command line needed for the compilation:

$ cat Makefile

#

Makefile for compute

#

compute: compute.o calc.o

 gcc -o compute compute.o calc.o

compute.o: compute.c compute.h

 gcc -c -O3 compute.c

calc.o: calc.c

 gcc -c calc.c

clean:

 rm *.o *core* *~

There are no prerequisites for clean, the last target. This target is commonly used to get rid of extraneous
files that may be out-of-date or no longer needed, such as .o files.

Following are some sample executions of make based on the previous makefile. As the ls command shows,
compute.o, calc.o, and compute are not up-to-date. Consequently the make command runs the construction
commands that re-create them.

$ ls -ltr

total 22

-rw-rw---- 1 alex pubs 311 Jun 21 15:56 makefile

-rw-rw---- 1 alex pubs 354 Jun 21 16:02 calc.o

-rwxrwx--- 1 alex pubs 6337 Jun 21 16:04 compute

-rw-rw---- 1 alex pubs 49 Jun 21 16:04 compute.h

-rw-rw---- 1 alex pubs 880 Jun 21 16:04 compute.o

-rw-rw---- 1 alex pubs 780 Jun 21 18:20 compute.c

-rw-rw---- 1 alex pubs 179 Jun 21 18:20 calc.c

$ make

gcc -c - O3 compute.c

gcc -c calc.c

gcc -o compute compute.o calc.o

If you run make once and then run it again without making any changes to the prerequisite files, make
indicates that the program is up-to-date and does not execute any commands:

$ make

make: 'compute' is up to date.

touch

The next example uses the touch utility to change the modification time of a prerequisite file. This
simulation shows what happens when you alter the file. The make utility executes only the commands
necessary to bring the out-of-date targets up-to-date:

$ touch calc.c

$ make

gcc -c calc.c

gcc -o compute compute.o calc.o

In the next example, touch changes the modification time of compute.h. The make utility re-creates
compute.o because it depends on compute.h and re-creates the executable because it depends on
compute.o:

$ touch compute.h

$ make

gcc -c - O3 compute.c

gcc -o compute compute.o calc.o

–n

If you want to see what make would do if you ran it, run make with the –n (no execute) option. The –n option
shows the commands that make would execute but it does not execute them.

–t

As these examples illustrate, touch is useful when you want to fool make either into recompiling programs or
into not recompiling them. You can use touch to update the modification times of all source files so that
make considers nothing to be up-to-date; make will then recompile everything. Alternatively, you can use
touch or the –t option to make to touch all relevant files; make then considers everything to be up-to-date.
Using touch in this manner is useful if the modification times of files have changed yet the files remain up-
to-date (as can happen when you copy a set of files from one directory to another).

The following example uses make –n several times to see what make would do if you gave a make

command. The first command shows that the target, compute, is up-to-date. Next touch makes the
modification dates on all the *.c files more recent than their targets and make –n shows what make would do
if you called it without the –n option. The make –t command then brings all the targets up-to-date. The final
make –n confirms that compute is up-to-date.

$ make -n

make: 'compute' is up to date.

$ touch *.c

$ make -n

gcc -c -O3 compute.c

gcc -c calc.c

gcc -o compute compute.o calc.o

$ make -t

touch compute.o

touch calc.o

touch compute

$ make -n

make: 'compute' is up to date.

–j

The –j (jobs) option performs a number of tasks in parallel; the numeric argument to –j specifies the number
of jobs or processes. Most make tasks hit the disk first and then the CPU, resulting in CPU usage dropping
between compiles. On a multiprocessor system, you can reduce CPU usage by using make –j n, where n is
the number of CPUs plus 1. Running tasks in parallel can significantly reduce the build time for a large
project.

Once you are satisfied with the program you have created, you can use the makefile to remove extraneous
files. It is helpful to keep intermediate files around while you are writing and debugging a program so that
you need to rebuild only the ones that change. When you will not be working on the program for a while,
you can release the disk space. Using a clean target in a makefile means that you do not have to remember
all the little pieces that can safely be deleted. The next example simply removes all object (.o) files:

$ make clean

rm *.o

optional: Macros

The make utility's macro facility enables you to create and use macros within a makefile. The
syntax of a macro definition is

ID = list

Replace ID with an identifying name, and replace list with a list of filenames. After this macro
definition, $(ID) represents list in the makefile.

With a macro you can compile a program with any of several C compilers, making only a minor
change to the makefile. By using the CC macro and replacing all occurrences of gcc in the
makefile on page 402 with $(CC), for example, you need to assign a value only to CC to use
the compiler of your choice:

$ cat Makefile

#

Makefile for compute

#

CC=gcc

compute: compute.o calc.o

 $(CC) -o compute compute.o calc.o

compute.o: compute.c compute.h

 $(CC) -c - O3 compute.c

calc.o: calc.c

 $(CC) -c calc.c

clean:

 rm *.o

This example assumes that the compiler/loader flags are the same across compilers/loaders. In a

more complex situation, you need to create macros for these flags or use the default values.
Several commercial, high-performance compilers are available for Linux. You could specify the
compiler from the Portland Group, pgcc, by replacing the CC=gcc assignment with CC=pgcc.
If you do not assign a value to the CC macro, it defaults to gcc under Linux. The CC macro
invokes the C compiler with only the options that you specify.

Several other macro definitions are commonly used. The CFLAGS macro sends arguments to
the C compiler, LDFLAGS sends arguments to the linker (ld, or gcc –o), and CPPFLAGS
sends arguments to the C preprocessor and programs that use it, including gcc. The
COMPILE.c macro expands to $(CC) –c $(CFLAGS) $(CPPFLAGS). The LINK.c macro
expands to $(CC) $(CFLAGS) $(CPPFLAGS) $(LDFLAGS).

By default make invokes the C compiler without any options (except the – c option when it is
appropriate to compile but not to link a file). You can use the CFLAGS macro definition to
cause make to call the C compiler with specific options. Replace options with the options you
want to use:

CFLAGS = options

The following makefile uses macros as well as implied dependencies and constructions:

makefile: report, print, printf, printh

#

CC=gcc

CFLAGS = -O3

comment out the two lines above and uncomment the

two below when you are using the Portland Group's compiler

#CC=pgcc

#CFLAGS = -fast

FILES = in.c out.c ratio.c process.c tally.c

OBJECTS = in.o out.o ratio.o process.o tally.o

HEADERS = names.h companies.h conventions.h

report: $(OBJECTS)

 $(LINK.c) -o report $(OBJECTS)

ratio.o: $(HEADERS)

process.o: $(HEADERS)

tally.o: $(HEADERS)

print:

 pr $(FILES) $(HEADERS) | lpr

printf:

 pr $(FILES) | lpr

printh:

 pr $(HEADERS) | lpr

Following the comment lines in this example, the makefile uses the CFLAGS macro to cause
make always to use the optimizer (–O3 option) when it invokes the C compiler as the result of
an implied construction. (The CC and CFLAGS definitions for the pgcc C compiler perform
the same functions when they are uncommented and you are working with pgcc, except that
you use –fast with pgcc where you use –O3 with gcc.) A construction line in a makefile
overrides the corresponding implied construction line, if one exists. If you want to apply a
macro to a construction command, you must include the macro in that command; see
OBJECTS in the construction command for the report target. Following CFLAGS, the
makefile defines the FILES, OBJECTS, and HEADERS macros. Each of these macros
defines a list of files.

The first dependency line in the preceding example shows that report depends on the list of
files that OBJECTS defines. The corresponding construction line links the OBJECTS and
creates an executable file named report.

The next three dependency lines show that three object files depend on the list of files that
HEADERS defines. Because there are no construction lines, make looks for a source code file
corresponding to each object file and compiles it. These three dependency lines ensure that the
object files are recompiled if any header files change.

Finally the LINK.c macro is invoked to link the executable file. If you specify any LDFLAGS,
they are used in this step.

You can combine several targets on one dependency line, so these three dependency lines could
have been combined into one line as follows:

ratio.o process.o tally.o: $(HEADERS)

The three final dependency lines in the preceding example send source and header files to the
printer. They have nothing to do with compiling the report file. None of these targets (print,
printf, and printh) depends on anything. When you call one of these targets from the command
line, make executes the construction line following it. The following command prints all the
source files that FILES defines:

$ make printf

You can override macros in a makefile by specifying them on the command line. The following
command adds debugging symbols to all object files:

$ make CFLAGS=-g ...

 < Day Day Up >

 < Day Day Up >

Debugging C Programs

The C compiler is liberal about the kinds of constructs it allows in programs. In keeping with the UNIX philosophy
that "no news is good news" and that the user knows what is best, gcc, like many other Linux utilities, accepts
almost anything that is logically possible according to the definition of the language. Although this approach gives
the programmer a great deal of flexibility and control, it can make debugging difficult.

Figure 10-4 on page 409 shows badtabs.c, a flawed version of the tabs.c program discussed earlier. It contains some
errors and does not run properly. This section uses this program to illustrate some debugging techniques.

Figure 10-4. The badtabs.c program (The line numbers are not part of the source code; the arrows
point to errors in the program.)

[View full size image]

In the following example, badtabs.c is compiled and then run with input from the testtabs file. Inspection of the
output shows that the TAB character has not been replaced with the proper number of SPACEs:

$ gcc -o badtabs badtabs.c

$ cat testtabs

abcTABxyz

$ badtabs < testtabs

abc xyz

One way to debug a C program is to insert print statements at critical points throughout the source code. To learn
more about the behavior of badtabs.c when it runs, you can replace the contents of the switch statement with

case '\t': /* c is a tab */

 fprintf(stderr, "before call to findstop, posn is %d\n", posn);

 inc = findstop(&posn);

 fprintf(stderr, "after call to findstop, posn is %d\n", posn);

 for(; inc > 0; inc--)

 putchar(' ');

 break;

case '\n': /* c is a newline */

 fprintf(stderr, "got a newline\n");

 putchar(c);

 posn = 0;

 break;

default: /* c is anything else */

 fprintf(stderr, "got another character\n");

 putchar(c);

 posn++;

 break;

The fprintf statements in this code send their messages to standard error. Thus, if you redirect standard output of
this program, it will not be interspersed with the output sent to standard error. The next example demonstrates the
operation of this program on the input file testtabs:

$ gcc -o badtabs badtabs.c

$ badtabs < testtabs > testspaces

got another character

got another character

got another character

before call to findstop, posn is 3

after call to findstop, posn is 3

got another character

got another character

got another character

got a newline

$ cat testspaces

abcTABxyz

The fprintf statements provide additional information about the execution of tabs.c. The value of the variable posn
is not incremented in findstop, as it should be. This clue might be enough to lead you to the bug in the program. If
not, you might attempt to "corner" the offending code by inserting print statements in findstop.

For simple programs or when you have an idea of what is wrong with a program, adding print statements that trace
the execution of the code can often help you solve the problem quickly. A better strategy may be to take advantage of
the tools that Linux provides to help you debug programs.

gcc: Compiler Warning Options

The gcc compiler includes many of the features of lint, the classic C program verifier, and then some. (The lint
utility is not available under Linux; use splint [secure programming lint; www.splint.org] instead.) The gcc
compiler can identify many C program constructs that pose potential problems, even for programs that conform to
the syntax rules of the language. For instance, you can request that the compiler report whether a variable is declared
but not used, a comment is not properly terminated, or a function returns a type not permitted in older versions of C.
Options that enable this stricter compiler behavior all begin with the uppercase letter W (Warning).

Among the –W options is a class of warnings that typically result from programmer carelessness or inexperience (see
Table 10-2). The constructs that generate these warnings are generally easy to fix and easy to avoid.

Table 10-2. gcc –W options

Option Reports an error when

–Wimplicit A function or parameter is not explicitly declared

–Wreturn-type A function that is not void does not return a value or the type of a
function defaults to int

–Wunused A variable is declared but not used

–Wcomment The characters /*, which normally begin a comment, occur within a
comment

–Wformat Certain input/output statements contain format specifications that
do not match the arguments

The –Wall option displays warnings about all the errors listed in Table 10-2, along with other, similar errors.

The program badtabs.c is syntactically correct: It compiles without generating an error. However, if you compile it
(–c causes gcc to compile but not to link) with the –Wall option, gcc displays several problems. (Warning messages
do not stop the program from compiling, whereas error messages do.)

$ gcc -c -Wall badtabs.c

badtabs.c:47: warning: '/*' within comment

badtabs.c:11: warning: return-type defaults to 'int'

badtabs.c: In function 'main':

badtabs.c:34: warning: control reaches end of non-void function

badtabs.c: In function 'findstop':

badtabs.c:40: warning: unused variable 'colindex'

badtabs.c:49: warning: control reaches end of non-void function

The first warning message references line 47. Inspection of the code for badtabs.c around that line reveals a
comment that is not properly terminated. The compiler sees the string /* in the following line as the beginning of a
comment:

/* increment argument (current column position) to next tabstop * /

However, because the characters * and / at the end of the line are separated by a SPACE, they do not signify the end
of the comment to the compiler. Instead the compiler interprets all the statements—including the statement that
increments the argument—through the string */ at the very end of the findstop function as part of the comment.

Compiling with the –Wall option can be very helpful when you are debugging a program. After you remove the
SPACE between the characters * and /, badtabs produces the correct output.

The next few paragraphs discuss the remaining warning messages. Although most do not cause problems in the
execution of badtabs, you can generally improve a program by rewriting those parts of the code that produce such
warnings.

Because the definition of the function main does not include an explicit type, the compiler assumes type int, the
default. This results in the warning message referencing line 11 in badtabs.c, the top of the function main. An
additional warning is given when the compiler encounters the end of the function main (line 34) without seeing a
value returned.

If a program runs successfully, by convention it should return a zero value; if no value is returned, the exit code is
undefined. Although many C programs do not return a value, this oversight can cause problems when the program is
executed. When you add the following statement at the end of the function main in badtabs.c, the warning
referencing line 34 disappears:

return 0;

Line 40 of badtabs.c contains the definition for the local variable colindex in the function findstop. The warning
message referencing that line occurs because the colindex variable is never used. Removing its declaration
eliminates the warning message.

The final warning message, referencing line 49, results from the improperly terminated comment discussed earlier.
The compiler issues the warning message because it never sees a return statement in findstop. (The compiler
ignores commented text.) Because the function findstop returns type int, the compiler expects a return statement
before reaching the end of the function. The warning disappears when the comment is properly terminated.

Many other –W options are available with the gcc compiler. The ones not covered in the –Wall class often deal with
portability differences; modifying the code causing these warnings may not be appropriate. The warnings usually
result from programs that are written in different C dialects as well as from constructs that may not work well with
other (especially older) C compilers. The –pedantic-errors option turns warnings into errors, causing a build to fail
if it contains items that would generate warnings. To learn more about these and other warning options, refer to the
gcc info page.

Symbolic Debugger

Many debuggers are available to tackle problems that evade the simpler debugging methods such as print statements
and compiler warning options. These debuggers include gdb, kdbg, xxgdb mxgdb, ddd, and ups, which are available
from the Web (refer to Appendix B). All are high-level symbolic debuggers that enable you to analyze the execution
of a program in terms of C language statements. The debuggers also provide a lower-level view for analyzing the
execution of a program in terms of the machine instructions. Except for gdb, each of these debuggers provides a
GUI.

A debugger enables you to monitor and control the execution of a program. You can step through a program line by
line while you examine the state of the execution environment.

Core dumps

A debugger also allows you to examine core files. (Core files are named core.) When a serious error occurs during
the execution of a program, the operating system can create a core file containing information about the state of the
program and the system when the error occurred. This file comprises a dump of the computer's memory (it was
previously called core memory— hence the term core dump) that was being used by the program. To conserve disk
space, your system may not save core files automatically. You can use the ulimit builtin to enable core files to be
saved. If you are running bash, the following command allows core files of unlimited size to be saved to disk:

$ ulimit -c unlimited

The operating system advises you when it dumps core. You can use a symbolic debugger to read information from
the core file to identify the line in the program where the error occurred, to check the values of variables at that
point, and so forth. Because core files tend to be large and take up disk space, be sure to remove these files when you
no longer need them.

gdb: Symbolic Debugger

The following examples demonstrate the use of the GNU gdb debugger. Other symbolic debuggers offer a different
interface but operate in a similar manner. To make full use of a symbolic debugger with a program, you must
compile the program with the –g option, which causes gcc to generate additional information that the debugger uses.
This information includes a symbol table —a list of variable names used in the program and their associated values.
Without the symbol table information, the debugger cannot display the values and types of variables. If a program is
compiled without the –g option, gdb cannot identify source code lines by number, as many gdb commands require.

tip: Always use –g

It can be helpful always to use the –g option even when you are releasing software. Including debugging
symbols makes a binary a bit bigger. Debugging symbols do not make a program run more slowly, but they
do make it much easier to find problems identified by users.

tip: Avoid using optimization flags with the debugger

Limit the optimization flags to –O or –O2 when you compile a program for debugging. Because debugging
and optimizing inherently have different goals, it may be best to avoid combining the two operations.

The following example uses the –g option when creating the executable file tabs from the C program tabs.c,
discussed at the beginning of this chapter:

$ gcc -g tabs.c -o tabs

tip: Optimization should work

Turning optimization off completely can sometimes eliminate errors. Eliminating errors in this way should
not be seen as a permanent solution, however. When optimization is not enabled, the compiler may
automatically initialize variables and perform certain other checks for you, resulting in more stable code.
Correct code should work correctly when compiled with at least –O and almost certainly –O2. The –O3
setting often includes experimental optimizations so it may not generate correct code in all cases.

Input for tabs is contained in the file testtabs, which consists of a single line:

$ cat testtabs

xyzTABabc

You cannot specify the input file to tabs when you first call the debugger. Specify the input file once you have called
the debugger and started execution with the run command.

To run the debugger on the sample executable, give the name of the executable file on the command line when you
run gdb. You will see some introductory statements about gdb, followed by the gdb prompt [(gdb)]. At this point the
debugger is ready to accept commands. The list command displays the first ten lines of source code. A subsequent
list command displays the next ten lines of source code.

$ gdb tabs

GNU gdb 4.18

...

(gdb) list

4 #include <stdio.h>

5 #define TABSIZE 8

6

7 /* prototype for function findstop */

8 int findstop(int *);

9

10 int main()

11 {

12 int c; /* character read from stdin */

13 int posn = 0; /* column position of character */

(gdb) list

14 int inc; /* column increment to tab stop */

15

16 while ((c = getchar()) != EOF)

17 switch(c)

18 {

19 case '\t': /* c is a tab */

20 inc = findstop(&posn);

21 for(; inc > 0; inc--)

22 putchar(' ');

23 break;

(gdb)

One of the most important features of a debugger is its ability to run a program in a controlled environment. You can
stop the program from running whenever you want. While it is stopped, you can check the state of an argument or
variable. For example, you can give the break command a source code line number, an actual memory address, or a
function name as an argument. The following command tells gdb to stop the process whenever the function findstop
is called:

(gdb) break findstop

Breakpoint 1 at 0x804849f: file tabs.c, line 41.

(gdb)

The debugger acknowledges the request by displaying the breakpoint number, the hexadecimal memory address of
the breakpoint, and the corresponding source code line number (41). The debugger numbers breakpoints in
ascending order as you create them, starting with 1.

After setting a breakpoint you can issue a run command to start execution of tabs under the control of the debugger.
The run command syntax allows you to use angle brackets to redirect input and output (just as the shells do). In the
following example, the testtabs file is specified as input. When the process stops (at the breakpoint), you can use the
print command to check the value of *col. The backtrace (or bt) command displays the function stack. The

example shows that the currently active function has been assigned the number 0. The function that called findstop
(main) has been assigned the number 1:

(gdb) run < testtabs

Starting program: /home/mark/book/10/tabs < testtabs

Breakpoint 1, findstop (col=0xbffffc70) at tabs.c:41

41 retval = (TABSIZE - (*col % TABSIZE));

(gdb) print *col

$1 = 3

(gdb) backtrace

#0 findstop (col=0xbffffc70) at tabs.c:41

#1 0x804843a in main () at tabs.c:20

(gdb)

You can examine anything in the current scope—variables and arguments in the active function as well as globals. In
the next example, the request to examine the value of the variable posn at breakpoint 1 results in an error. The error
is generated because the variable posn is defined locally in the function main, not in the function findstop:

(gdb) print posn

No symbol "posn" in current context.

The up command changes the active function to the caller of the currently active function. Because main calls the
function findstop, the function main becomes the active function when the up command is given. (The down
command does the inverse.) The up command may be given an integer argument specifying the number of levels in
the function stack to backtrack, with up 1 having the same meaning as up. (You can use the backtrace command to
determine the argument to use with up.)

(gdb) up

1 0x804843a in main () at tabs.c:20

20 inc = findstop(&posn);

(gdb) print posn

$2 = 3

(gdb) print *col

No symbol "col" in current context.

(gdb)

The cont (continue) command causes the process to continue running from where it left off. The testtabs file
contains only one line; the process finishes executing and the results appear on the screen. The debugger reports the
exit code of the program. A cont command given after a program has finished executing reminds you that execution
of the program is complete. The debugging session is then ended with a quit command.

(gdb) cont

Continuing.

abc xyz

Program exited normally.

(gdb) cont

The program is not being run.

(gdb) quit

$

The gdb debugger supports many commands that are designed to make debugging easier. Type help at the (gdb)
prompt to get a list of the command classes available under gdb:

(gdb) help

List of classes of commands:

aliases -- Aliases of other commands

breakpoints -- Making program stop at certain points

data -- Examining data

files -- Specifying and examining files

internals -- Maintenance commands

obscure -- Obscure features

running -- Running the program

stack -- Examining the stack

status -- Status inquiries

support -- Support facilities

tracepoints -- Tracing of program execution without stopping the program

user-defined -- User-defined commands

Type "help" followed by a class name for a list of commands in that class.

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

As explained in the instructions following the list, entering help followed by the name of a command class or
command name will display more information. The following lists the commands in the class data:

(gdb) help data

Examining data.

List of commands:

call -- Call a function in the program

delete display -- Cancel some expressions to be displayed when program stops

disable display -- Disable some expressions to be displayed when program stops

disassemble -- Disassemble a specified section of memory

display -- Print value of expression EXP each time the program stops

enable display -- Enable some expressions to be displayed when program stops

inspect -- Same as "print" command

output -- Like "print" but don't put in value history and don't print newline

print -- Print value of expression EXP

printf -- Printf "printf format string"

ptype -- Print definition of type TYPE

set -- Evaluate expression EXP and assign result to variable VAR

set variable -- Evaluate expression EXP and assign result to variable VAR

undisplay -- Cancel some expressions to be displayed when program stops

whatis -- Print data type of expression EXP

x -- Examine memory: x/FMT ADDRESS

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

(gdb)

The following requests information on the command whatis, which takes a variable name or other expression as an
argument:

(gdb) help whatis

Print data type of expression EXP.

Graphical Symbolic Debuggers

Several graphical interfaces to gdb exist. The xxgdb graphical version of gdb provides a number of windows,
including a Source Listing window, a Command window that contains a set of commonly used commands, and a
Display window for viewing the values of variables. The left mouse button selects commands from the Command
window. You can click the desired line in the Source Listing window to set a breakpoint, and you can select
variables by clicking them in the Source Listing window. Selecting a variable and clicking print in the Command
window will display the value of the variable in the Display window. You can view lines of source code by scrolling
(and resizing) the Source Listing window.

The GNU ddd debugger (www.gnu.org/software/ddd) also provides a GUI to gdb. Unlike xxgdb, ddd can graphically
display complex C structures and the links between them. This display makes it easier to see errors in these
structures. Otherwise, the ddd interface is very similar to that of xxgdb.

Unlike xxgdb, ups (ups.sourceforge.net) was designed from the ground up to work as a graphical debugger; the
graphical interface was not added after the debugger was complete. The resulting interface is simple yet powerful.
For example, ups automatically displays the value of a variable when you click it and provides a built-in C
interpreter that allows you to attach C code to the program you are debugging. Because this attached code has access
to the variables and values in the program, you can use it to perform sophisticated checks, such as following and
displaying the links in a complex data structure (page 870).

 < Day Day Up >

 < Day Day Up >

Threads

A thread is a single sequential flow of control within a process. Threads are the basis for multithreaded
programs, which allow a single program to control concurrently running threads, each performing a different
task. Multithreaded programs generally use reentrant code (code that multiple threads can use
simultaneously) and are most valuable when run on multiple-CPU machines. Under Linux, multithreaded
servers, such as NFS, can provide a cleaner interface and may be easier to write than multiple server
processes. When applied judiciously, multithreading can also serve as a lower-overhead replacement for the
traditional fork-exec idiom for spawning processes. See the FAQ at tldp.org/FAQ/Threads-FAQ.

tip: Multiple threads are not always better

If you write a multithreaded program with no clear goal or division of effort for a single-CPU
system (for example, a parallel-server process), the resulting program will likely run more slowly
than a nonthreaded program on the same system.

 < Day Day Up >

 < Day Day Up >

System Calls

Three fundamental responsibilities of the Linux kernel are to control processes, manage the filesystem, and
operate peripheral devices. As a programmer you have access to these kernel operations through system calls
and library functions. This section discusses system calls at a general level; a detailed treatment is beyond
the scope of this book.

As the name implies, a system call instructs the system (kernel) to perform some work directly on your
behalf. The request is a message that tells the kernel what work needs to be done and includes the necessary
arguments. For example, a system call to open a file includes the name of the file. A library routine is
indirect; it issues system calls for you. The advantages of a library routine are that it may insulate you from
the low-level details of kernel operations and that it has been written carefully to make sure that it performs
efficiently.

For example, it is straightforward to use the standard I/O library function fprintf() to send text to standard
output or standard error. Without this function, you would need to issue several system calls to achieve the
same result. The calls to the library routines putchar() and getchar() in Figure 10-1 on page 390 ultimately
use the write() and read() system calls to perform the I/O operations.

strace: TRaces System Calls

The strace utility is a debugging tool that displays a trace of all system calls made by a process or program.
Because you do not need to recompile the program that you want to trace, you can use strace on binaries
that you do not have source for.

System calls are events that take place at the interface (boundary) between user code and kernel code.
Examining this boundary can help you isolate bugs, track down race conditions, and perform sanity
checking. The Linux kernel does not fully cooperate with strace. See the strace home page
(www.liacs.nl/~wichert/strace) for kernel patches that improve kernel cooperation with strace.

Controlling Processes

When you enter a command line at a shell prompt, the shell process calls the fork system call to create a
copy of itself (spawn a child) and then uses an exec system call to overlay that copy in memory with a
different program (the command you asked it to run). Table 10-3 lists system calls that affect processes.

Table 10-3. System calls: processes control

System call Function

fork() Creates a copy of a process

exec() Overlays a program in memory with another

getpid() Returns the PID number of the calling process

wait() Causes the parent process to wait for the child to finish running
before it resumes execution

exit() Causes a process to exit

nice() Changes the priority of a process

kill() Sends a signal to a process

Accessing The Filesystem

Many operations take place when a program reads from or writes to a file. The program needs to know
where the file is located; the filename must be converted to an inode number on the correct filesystem. Your
access permissions must be checked not only for the file itself but also for all intervening directories in the
path to the file. The file is not stored in one continuous piece on the disk so all disk blocks that contain
pieces of the file must be located. The appropriate kernel device driver must be called to control the
operation of the disk. Once the file has been found, the program may need to find a particular location within
the file rather than working with it sequentially from beginning to end. Table 10-4 lists some of the most
common system calls for filesystem operations.

Table 10-4. System calls: filesystem

System call Function

stat() Gets status information from an inode, such as the inode number,
the device on which it is located, owner and group information, and
the size of the file

lseek() Moves to a position in the file

creat() Creates a new file

open() Opens an existing file

read() Reads a file

write() Writes a file

close() Closes a file

unlink() Unlinks a file (deletes a name reference to the inode)

chmod() Changes file access permissions

chown() Changes file ownership

Access to peripheral devices on a Linux system is handled through the filesystem interface. Each peripheral
device is represented by one or more special files, usually located under /dev. When you read or write to one
of these special files, the kernel passes your requests to the appropriate kernel device driver. As a result you
can use the standard system calls and library routines to interact with these devices; you do not need to learn
a new set of specialized functions. This ability is one of the most powerful features of a Linux system
because it allows users to use the same basic utilities on a wide range of devices.

The availability of standard system calls and library routines is the key to the portability of Linux tools. For
example, as an applications programmer, you can rely on the read and write system calls working the same
way on different versions of the Linux system and on different types of computers. The systems programmer
who writes a device driver or ports the kernel to run on a new computer, however, must understand the
details at their lowest level.

 < Day Day Up >

 < Day Day Up >

Source Code Management

When you work on a project involving many files that evolve over long periods of time, it can be difficult to keep
track of the different versions of the files, particularly if several people are updating the files. This problem
frequently occurs in large software development projects. Source code and documentation files change frequently
as you fix bugs, enhance programs, and release new versions of the software. The task becomes even more
complex when more than one version of each file is active. Frequently customers are using one version of a file
while a newer version is being modified. You can easily lose track of the versions and accidentally undo changes or
duplicate earlier work.

To help avoid these kinds of problems, Linux includes CVS (Concurrent Versions System; www.cvshome.org) for
managing and tracking changes to files. Although CVS can be used on any file, it is most often used to manage
source code and software documentation. CVS is based on RCS (GNU's Revision Control System) and is designed
to control the concurrent access and modification of source files by multiple users.

A graphical front end to CVS named TkCVS (page 429) simplifies the use of CVS, especially if you do not use it
frequently enough to memorize its many commands and options.

CVS controls who is allowed to update files. For each update, CVS records who made the changes and why the
changes were made. Because CVS stores the most recent version of a file and the information needed to re-create
all previous versions, it is possible to regenerate any version of a file.

A set of versions for several files may be grouped together to form a release. An entire release can be re-created
from the change information stored with each file. Saving the changes for a file rather than saving a complete copy
of the file generally conserves a lot of disk space, well in excess of the space required to store each update in the
CVS files themselves.

This section provides an overview of CVS and TkCVS. See the CVS-RCS-HOW-TO Document for Linux for more
information.

CVS: Concurrent Versions System

CVS treats collections of files as single units, making it easy to work on large projects and permitting multiple
users to work on the same file. CVS also provides valuable self-documenting features for its utilities.

Built-In CVS Help

CVS uses a single utility, cvs, for all its functions. To display the instructions for getting help, use the – –help
option:

$ cvs --help

Usage: cvs [cvs-options] command [command-options-and-arguments]

 where cvs-options are -q, -n, etc.

 (specify --help-options for a list of options)

 where command is add, admin, etc.

 (specify --help-commands for a list of commands

 or --help-synonyms for a list of command synonyms)

 where command-options-and-arguments depend on the specific command

 (specify -H followed by a command name for command-specific help)

 Specify --help to receive this message

The Concurrent Versions System (CVS) is a tool for version control.

For CVS updates and additional information, see

 the CVS home page at http://www.cvshome.org/ or Pascal Molli's CVS

 site at http://www.loria.fr/~molli/cvs-index.html

To get help with a cvs command, use the – –help option followed by the name of the utility. The following
example shows help for the log command:

$ cvs --help log

Usage: cvs log [-lRhtNb] [-r[revisions]] [-d dates] [-s states]

 [-w[logins]] [files...]

 -l Local directory only, no recursion.

 -R Only print name of RCS file.

 -h Only print header.

 -t Only print header and descriptive text.

 -N Do not list tags.

 -b Only list revisions on the default branch.

 -r[revisions] Specify revision(s)s to list.

 rev1:rev2 Between rev1 and rev2, including rev1 and rev2.

 rev1::rev2 Between rev1 and rev2, excluding rev1 and rev2.

 rev: rev and following revisions on the same branch.

 rev:: After rev on the same branch.

 :rev rev and previous revisions on the same branch.

 ::rev Before rev on the same branch.

 rev Just rev.

 branch All revisions on the branch.

 branch. The last revision on the branch.

 -d dates Specify dates (D1<D2 for range, D for latest before).

 -s states Only list revisions with specified states.

 -w[logins] Only list revisions checked in by specified logins.

(Specify the --help global option for a list of other help options)

Options for individual cvs commands (command options) go to the right of the individual command names.
Options to the cvs utility itself, such as the – –help option to the log command, go to the left of all individual
command names (that is, they follow the word cvs on the command line). The two types of options sometimes use
the same letter yet may have an entirely different meaning.

How CVS Stores Revision Files

With CVS, revision files are kept in a common area called a source repository. This area is identified by the value
of the environment variable CVSROOT, which holds the absolute pathname of the repository. The system
administrator can tell you what value of CVSROOT to use, or you can create your own private repository and have
CVSROOT point to it.

The source repository is organized as a hierarchical collection of files and directories. CVS does not limit you to
checking out one file at a time; you can check out an entire subdirectory containing many files—typically all the
files for a particular project. A subdirectory of CVSROOT that can be checked out as a single unit is called a
module . Several people can check out and simultaneously modify the files within a single module.

CVS users typically store all the modules they are currently working on in a special directory. If you want to follow
this practice, you must use cd to make that special directory the working directory before you check out a module.
When you check out a module, CVS replicates the module's tree structure in the working directory. Multiple
developers can check out and edit CVS files simultaneously because the originals are retained in the source
repository; the files in the repository undergo relatively infrequent modification in a controlled manner.

Basic Cvs Commands

Although many cvs commands are available, a handful of commands allows a software developer to use CVS and
to contribute changes to a module. A discussion of some useful commands follows. All examples assume that the
appropriate modules have been installed in the CVS source repository. "Adding a Module to the Repository" (page
426) explains how to install a module.

Of the commands discussed in this section, cvs commit is the only one that changes the source repository. The
other commands affect only the files in the working directory.

To simplify examples in the following sections, the pathname of the working directory is given by the variable
CVSWORK; all modules can be assumed to be subdirectories of CVSWORK. Although this variable has no

special meaning to CVS, you may find it helpful to define such a variable for your own work.

Checking Out Files from the Source Repository

To check out a module from the CVS source repository, use the cvs checkout command. The following example
checks out the Project2 module, which consists of four source files. First use cd to change working directories to
the directory you want the module copied into (CVSWORK in this case). The cvs utility always copies into the
working directory.

$ cd $CVSWORK

$ ls

Project1

$ cvs checkout Project2

cvs checkout: Updating Project2

U Project2/adata.h

U Project2/compute.c

U Project2/randomfile.h

U Project2/shuffle.c

$ ls

Project1 Project2

$ ls Project2

CVS adata.h compute.c randomfile.h shuffle.c

The name of the module, Project2, is given as an argument to cvs checkout. Because the Project2 directory does
not already exist, cvs creates it in the working directory and places copies of all source files for the Project2
module into it: The name of the module and the name of the directory holding the module are the same. The
checkout command preserves the tree structure of the cvs module, creating subdirectories as needed.

The second ls command after checkout reveals, in addition to the four source files for Project2, a directory named
CVS. The CVS system uses this directory for administrative purposes; you do not normally access it.

Once you have your own copies of the source files, you can edit them as you see fit. You can change files within
the module even if other developers are modifying the same files at the same time.

Making Your Changes Available to Others

To check in your changes so that others have access to them, you need to run the cvs commit command. When you
give this command, cvs prompts you to provide a brief log message describing the changes, unless you use the –m
option. With this option, cvs uses the string following the option as the log message. The file or files that you want

to commit follow the optional log message on the command line:

$ cvs commit -m "function shuffle inserted" compute.c

cvs commit: Up-to-date check failed for 'compute.c'

cvs [commit aborted]: correct above errors first!

Here the cvs utility reports an error because the version of compute.c that you modified is not up-to-date. A newer
version of compute.c has been committed by someone else since you last checked it out of the source repository.
After informing you of the problem, cvs exits without storing your changes in the source repository.

To make your version of compute.c current, you need to run the update command. A subsequent commit will then
succeed, and your changes will apply to the latest revision in the source repository.

Updating Your Copies with Changes by Others

As the preceding example shows, CVS does not notify you when another developer checks in a new revision of a
file after you have checked out your working copy. You learn this fact only when you attempt to commit your
changes to the source repository. To incorporate up-to-date revisions of a CVS source file, use the cvs update
command:

$ cvs update compute.c

RCS file: /usr/local/src/master/Project2/compute.c,v

retrieving revision 1.9

retrieving revision 1.10

Merging differences between 1.9 and 1.10 into compute.c

M compute.c

The changes made to the working copy of compute.c remain intact because the update command merges the latest
revision in the source repository with the version specified on the update command line. The result of the merge is
not always perfect, however. The cvs update command informs you if it detects overlapping changes.

Adding New Files to the Repository

You can use the cvs add command to schedule new files to be added to the source repository as part of the module
you are working on. Once you have moved to the directory containing the files, give the cvs add command, listing
the files you want to add as arguments:

$ cd $CVSWORK/Project2

$ ls

CVS compute.c shuffle.c tabout2.c

adata.h randomfile.h tabout1.c

$ cvs add tabout[1-2].c

cvs add: scheduling file 'tabout1.c' for addition

cvs add: scheduling file 'tabout2.c' for addition

cvs add: use 'cvs commit' to add these files permanently

The add command marks the files tabout1.c and tabout2.c for entry into the repository. These files will not be
available for others until you give a commit command. This staging allows you to prepare several files before
others incorporate the changes into their working copies with the cvs update command.

Removing Files from the Repository

The cvs remove command records the fact that you wish to remove a file from the source repository. Like the add
command, it does not affect the source repository. To delete a file from the repository, you must first delete your
working copy of the file, as the following example shows:

$ cvs remove shuffle.c

cvs remove: file 'shuffle.c' still in working directory

cvs remove: 1 file exists; use 'rm' to remove it first

$ rm shuffle.c

$ cvs remove shuffle.c

cvs remove: scheduling 'shuffle.c' for removal

cvs remove: use 'cvs commit' to remove this file permanently

After using rm to delete the working copy of shuffle.c, invoke a cvs remove command. Again, you must give the
commit command before the file is actually removed from the source repository.

Other CVS Commands

Although the commands given earlier are sufficient for most work on a module, you may find some other
commands to be useful as well.

Tagging a Release

You can apply a common label, or tag, to the files in a module as they currently exist. Once you have tagged files
of a module, you can re-create them in exactly the same form even if they have been modified, added, or deleted
since that time. This ability enables you to freeze a release yet allows development to continue on the next release:

$ cvs rtag Release_1 Project1

cvs rtag: Tagging Project1

Here the Project1 module has been tagged with the label Release_1. You can use this tag with the cvs export
command to extract the files as they were frozen at this time.

Extracting a Release

The cvs export command lets you extract files as they were frozen and tagged:

$ cvs export -r Release_1 -d R1 Project1

cvs export: Updating R1

U R1/scm.txt

This command works like the cvs checkout command but does not create the CVS support files. You must give
either the –r option to identify the release (as shown above) or a date with the –D option. The –d R1 option
instructs cvs to place the files for the module into the directory R1 instead of using the module name as the
directory.

Removing Working Files

When you are finished making changes to the files you have checked out of the repository, you may decide to
remove your copy of the module from your working directory. One simple method is to move into the working
directory and recursively remove the module. For example, if you want to remove your working copy of Project2,
you could use the following commands:

$ cd $CVSWORK

$ rm -rf Project2

The repository will not be affected by removing these files. However, if you had made changes to the files but had
not yet committed those changes, they would be lost if you used this approach. The cvs release command is helpful
in this situation:

$ cd $CVSWORK

$ cvs release -d Project2

The release command also removes the working files but first checks each one to see whether it has been marked
for addition into the repository but has not yet been committed. If that is the case, the release command warns you
and asks you to verify your intention to delete the file. You can fix the problem at this point if you like and redo the
release command. The release command also warns you if the repository holds a newer version of the file than the
one in your working directory. Thus you have the opportunity to update and commit your file before deleting it.
(Without the – d option, your working files will not be deleted, but the same sequence of warning messages will be
given.)

Adding a Module to the Repository

The discussion of CVS to this point assumes that a module is already present in the CVS source repository. If you
want to install a directory hierarchy as a new module in the repository or update an existing module with a new
release that was developed elsewhere, go to the directory that holds the files for the project and run the cvs import
command. The following example installs the files for Project1 in the source repository:

$ cvs import -m "My first project" Project1 ventag reltag

The –m option allows you to enter a brief description of the module on the command line. Following the
description is the directory or the pathname of the directory under CVSROOT that you want to hold the module.
The last two fields are symbolic names for the vendor branch and the release. Although they are not significant
here, they can be useful when releases of software are supplied by outside sources.

You can now use the cvs checkout command to check out the Project1 module:

$ cvs checkout Project1

CVS Administration

Before you install a CVS repository, think about how you would like to administer it. Many installations have a
single repository where separate projects are kept as separate modules. You may choose to have more than one
repository. The CVS system supports a single repository that is shared across several computer systems using NFS.

Inside a repository is a module, named CVSROOT that contains administrative files (here CVSROOT is the name
of a module and is different from the CVSROOT directory). Although the files in this module are not required to
use CVS, they can simplify access to the repository.

Do not change any files in the CVSROOT module by editing them directly. Instead, check out the file you want to

change, edit the checked-out copy, and then check it back in, just as you would with files in any other module in
the repository. For example, to check out the modules file from the CVSROOT module, use the command

$ cvs checkout CVSROOT/modules

This command creates the directory CVSROOT in your working directory and places a checked-out copy of
modules in that directory. After checking it out, you can edit the modules file in the CVSROOT directory:

$ cd CVSROOT

$ vim modules

After you edit the modules file, check it back into the repository:

$ cd ..

$ cvs checkin CVSROOT/modules

Of all the administrative files in the CVSROOT module, the modules file is the most important. You can use this
file to attach symbolic names to modules in the repository, allow access to subdirectories of a module as if they
were themselves modules, and specify actions to take when checking specific files in or out.

Most repositories start with a modules file that allows you to check out the modules file with the following
command, instead of the one shown earlier:

$ cvs checkout modules

With the preceding command CVS creates a subdirectory named modules within the working directory, instead of
one named CVSROOT. The modules file is then checked out into this directory.

The following is an example of a modules file (the lines that start with # are comment lines and, along with blank
lines, are ignored by CVS):

The CVS modules file

#

Three different line formats are valid:

key -a aliases...

key [options] directory

key [options] directory files...

#

Where "options" are composed of:

-i prog Run "prog" on "cvs commit" from top-level of module.

-o prog Run "prog" on "cvs checkout" of module.

-t prog Run "prog" on "cvs rtag" of module.

-u prog Run "prog" on "cvs update" of module.

-d dir Place module in directory "dir" instead of module name.

-l Top-level directory only -- do not recurse.

#

And "directory" is a path to a directory relative to $CVSROOT.

#

The "-a" option specifies an alias. An alias is interpreted as if

everything on the right of the "-a" had been typed on the command line.

#

#

You can encode a module within a module by using the special '&'

character to interpose another module into the current module. This

can be useful for creating a module that consists of many directories

spread out over the entire source repository.

Convenient aliases

world -a .

CVSROOT support; run mkmodules whenever anything changes.

CVSROOT -i mkmodules CVSROOT

modules -i mkmodules CVSROOT modules

loginfo -i mkmodules CVSROOT loginfo

commitinfo -i mkmodules CVSROOT commitinfo

rcsinfo -i mkmodules CVSROOT rcsinfo

editinfo -i mkmodules CVSROOT editinfo

Add other modules here...

testgen testgen

testdata1 testdata1

testdata2 testdata2

testdata3 testdata3

testdata4 testdata4

testcode testgen/_code

cvs cvs

The lines after the comment and blank lines define symbolic names for many modules. For example, the following
line defines world to be an alias for the root of the CVS repository:

world -a .

You can use such names in CVS commands as the names of modules. For example, the following command checks
out the entire repository (probably not a good idea):

$ cvs checkout world

In the sample modules file, the administrative files have been given definitions that attach both a symbolic name to
the file and an action (–i mkmodules) to take when each file is checked into the repository. The –i mkmodules
action causes CVS to run the mkmodules program when the file is checked in. This program ensures that a copy of
the checked-in file exists in a location where CVS can locate it.

Following the action is the name of the subdirectory in CVSROOT where any files associated with the symbolic
name are located. Any remaining arguments on the line are the names of specific files within that directory.

The following line identifies CVSROOT as the name for the module in the directory
$CVSROOT/CVSROOT—that is, for all the administrative files for CVS:

CVSROOT -i mkmodules CVSROOT

Similarly the following line associates the modules module with the modules file within the CVSROOT
directory:

modules -i mkmodules CVSROOT modules

The preceding line allows the following command to find and check out the modules file:

$ cvs checkout modules

The last set of lines in the sample modules file associates symbolic module names with directories and files in the
repository.

Using TkCVS

The cvs utility is useful enough that an X Window System interface, TkCVS
(www.twobarleycorns.net/tkcvs.html), has been written for it using the Tk extension to the Tcl programming
language (tcl.sourceforge.net). It provides a convenient point-and-click interface to CVS (Figure 10-5). After you
have downloaded and installed TkCVS, start it by using cd to change to the directory you want to work in and
entering the following command:

$ tkcvs &

Figure 10-5. The TkCVS utility

All operations are available through the pull-down menus at the top of the window. Along the bottom are buttons
for accessing the most common actions. A description of the action bound to a button appears when you position
the mouse pointer on top of a button.

In the middle of the window is a browse list. Move into a subdirectory by double-clicking the left mouse button
while the mouse pointer is on the directory name in the list. Edit a file by double-clicking the filename. To select
more than one file, hold down the left mouse button and drag the mouse pointer across several names. Clicking the
right mouse button will mark all selected files. Some of the operations (such as viewing the revision log messages)
will work on all marked files.

The Help pull-down menu in the upper-right corner is an excellent way to learn how TkCVS works. For example,
when you select the Help menu item CVS modules file..., an explanation of the lines that you can add to the CVS
modules file to support TkCVS better appears in a window. If you choose not to add these lines to the modules
file, some TkCVS commands, such as browsing the repository, may not display all available modules.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The operating system interface to C programs and a variety of software development tools make the Linux
system well suited to programming in C. The C libraries provide general-purpose C functions that make
operating system services and other functionality available to C programmers. The standard C library libc is
always accessible to C programs, and you can specify other libraries by using the –l option to the gcc
compiler.

You can write a C program using a text editor, such as vim or emacs. C programs always have a function
named main and often include several other functions. Preprocessor directives define symbolic constants
and macros and instruct the preprocessor to include header files.

gcc

When you use gcc, it calls the C preprocessor followed by the C compiler and the assembler. The compiler
creates assembly language code, which the assembler uses to create object modules. The linker combines
these object modules into an executable file. You can use the –Wall option to gcc to detect risky
constructs—ones that are legal but suggest the possibility of later problems. Other options to gcc can help
locate areas of your code that might not be portable.

gdb

Although using printf statements and the –Wall option can help in tracking program bugs, it is a good
practice to compile C programs routinely with the –g option. This option causes information that can be
interpreted by gdb, a symbolic debugger, to be generated as part of the executable file. When you run a
program under the control of gdb, you can specify points where you want gdb to pause the program, inquire
about the values of variables, display the program stack, and use a wide range of commands to learn about
many other aspects of the program's behavior.

make

The make utility uses a file named Makefile (or makefile) that documents the relationships among files. It
determines which modules of a program are out-of-date and compiles files to keep all modules up-to-date.
The dependency line, which specifies the exact dependency relationship between target and prerequisite
files, is the key to the operation of a makefile. Following the dependency line are construction commands
that can bring the target up-to-date. Implied dependencies, construction commands, and the make macro
facility are available to simplify the writing of complex makefiles.

The Linux system includes utilities that assist in keeping track of groups of files that undergo multiple
revisions, often at the hands of multiple developers. These source code management systems include CVS,
the Concurrent Versions System. CVS is built on top of RCS but provides a much more extensive set of
operations for managing directories of files that may be accessed and modified by many users. It is a good
choice for large-scale projects and for maintaining software releases that are sent to and from other sites.

 < Day Day Up >

 < Day Day Up >

Exercises

1. What function does every C program have? Why should you split large programs into several
functions?

2. What command could you use to compile prog.c and func.c into an executable named cprog?

3. Show two ways to instruct the C preprocessor to include the header file /usr/include/math.h in
your C program. Assuming that the declar.h header file is located in the subdirectory named
headers of your home directory, describe two ways to instruct the C preprocessor to include this
header file in your C program.

4. How are the names of system libraries abbreviated on the gcc command line? Where does gcc
search for libraries named in this manner? Describe how to specify your own library on the gcc
command line.

5. Write a makefile that reflects the following relationships:

The C source files transactions.c and reports.c are compiled to produce an executable
accts.

a.

Both transactions.c and reports.c include a header file accts.h.b.

The header file accts.h is composed of two other header files: trans.h and reps.h.c.

6. If you retrieve version 4.1 of the file answer for editing and then attempt to retrieve the same
version again, what will CVS do? Why is CVS set up this way?

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

7. Modify the badtabs.c program (page 409) so that it exits cleanly (with a specific return value).
Compile the program and run it using gdb or another debugger. What values does the debugger
report when the program finishes executing?

8. For the makefile

$ cat Makefile

leads: menu.o users.o resellers.o prospects.o

 gcc -o leads menu.o users.o resellers.o prospects.o

menu.o: menu.h dialog.h inquiry.h

users.o: menu.h dialog.h

prospects.o: dialog.h

identify:

Targets.a.

Construction commands.b.

Prerequisites.c.

9. Refer to Makefile in exercise 8 to answer the following questions:

If the target leads is up-to-date and you then change users.c, what happens when you run
make again? Be specific.

a.

Rewrite the makefile to include the following macros:

OBJECTS = menu.o users.o resellers.o prospects.o

HFILES = menu.h dialog.h

b.

10. Review the make info page to answer the following questions:

What does the –t option do?a.

If you have files named makefile and Makefile in the working directory, how can you
instruct make to use Makefile?

b.

Give two ways to define a variable so that you can use it inside a makefile.c.

11. Refer to the makefile for compute on page 402.

Suppose that a file in the working directory is named clean. What is the effect of giving the
following command? Explain.

$ make clean

a.

The discussion on page 401 states that the following command is not normally seen in
makefiles:

cat num.h table.h > form.h

Discuss the effect of removing this construction command from the makefile while retaining
the dependency line.

b.

The preceding construction command works only because the file form.h is made up of
num.h and table.h. More often #include directives in the target define the dependencies.
Suggest a more general technique that updates form.h whenever num.h or table.h has a

c.

more recent modification date.

c.

 < Day Day Up >

 < Day Day Up >

Chapter 11. Programming The Bourne Again
Shell
IN THIS CHAPTER

Control Structures 436

File Descriptors 470

Parameters and Variables 474

Array Variables 474

Locality of Variables 475

Special Parameters 478

Positional Parameters 480

Builtin Commands 487

Expressions 501

Shell Programs 510

A Recursive Shell Script 510

The quiz Shell Script 513

Chapter 5 introduced the shells and Chapter 8 went into detail about the Bourne Again Shell. This chapter
introduces additional Bourne Again Shell commands, builtins, and concepts that carry shell programming to
a point where it can be useful. The first part of this chapter covers programming control structures, which are
also known as control flow constructs. These structures allow you to write scripts that can loop over
command line arguments, make decisions based on the value of a variable, set up menus, and more. The
Bourne Again Shell uses the same constructs found in such high-level programming languages as C.

The next part of this chapter discusses parameters and variables, going into detail about array variables, local
versus global variables, special parameters, and positional parameters. The exploration of builtin commands
covers type, which displays information about a command, and read, which allows you to accept user input
in a shell script. The section on the exec builtin demonstrates how exec provides an efficient way to execute
a command by replacing a process and explains how you can use it to redirect input and output from within a
script. The next section covers the TRap builtin, which provides a way to detect and respond to operating
system signals (such as that which is generated when you press CONTROL-C). The discussion of builtins
concludes with a discussion of kill, which can abort a process, and getopts, which makes it easy to parse
options for a shell script. (Table 11-6 on page 500 lists some of the more commonly used builtins.)

Table 11-6. bash builtins

Builtin Function

: Returns 0 or true (the null builtin; page 495)

. (dot) Executes a shell script as part of the current process
(page 259)

bg Puts a suspended job in the background (page 273)

break Exits from a looping control structure (page 459)

cd Changes to another working directory (page 82)

continue Starts with the next iteration of a looping control
structure (page 459)

echo Displays its arguments (page 53)

eval Scans and evaluates the command line (page 318)

exec Executes a shell script or program in place of the
current process (page 491)

exit Exits from the current shell (usually the same as
CONTROL-D from an interactive shell; page 480)

export Places the value of a variable in the calling
environment (makes it global; page 475)

fg Brings a job from the background into the
foreground (page 272)

getopts Parses arguments to a shell script (page 497)

jobs Displays list of background jobs (page 271)

kill Sends a signal to a process or job (page 693)

pwd Displays the name of the working directory (page
81)

read Reads a line from standard input (page 487)

readonly Declares a variable to be readonly (page 281)

set Sets shell flags or command line argument
variables; with no argument, lists all variables
(pages 319, 356, and 484)

shift Promotes each command line argument (page 483)

test Compares arguments (pages 437 and 794)

times Displays total times for the current shell and its
children

trap Traps a signal (page 493)

type Displays how each argument would be interpreted
as a command (page 487)

umask Returns the value of the file-creation mask (page
810)

unset Removes a variable or function (page 281)

wait Waits for a background process to terminate (page
381)

Next the chapter examines arithmetic and logical expressions and the operators that work with them. The
final section walks through the design and implementation of two major shell scripts.

This chapter contains many examples of shell programs. Although they illustrate certain concepts, most use
information from earlier examples as well. This overlap not only reinforces your overall knowledge of shell
programming but also demonstrates how you can combine commands to solve complex tasks. Running,
modifying, and experimenting with the examples in this book is a good way to become comfortable with the
underlying concepts.

tip: Do not name a shell script test

You can unwittingly create a problem if you give a shell script the name test because a Linux
utility has the same name. Depending on how the PATH variable is set up and how you call the
program, you may run your script or the utility, leading to confusing results.

This chapter illustrates concepts with simple examples, which are followed by more complex ones in
sections marked "Optional". The more complex scripts illustrate traditional shell programming practices and
introduce some Linux utilities often used in scripts. You can skip these sections without loss of continuity
the first time you read the chapter. Return to them later when you feel comfortable with the basic concepts.

 < Day Day Up >

 < Day Day Up >

Control Structures

The control flow commands alter the order of execution of commands within a shell script. The TC Shell
uses a different syntax for these commands (page 368) than the Bourne Again Shell does. Control structures
include the if...then, for...in, while, until, and case statements. In addition, the break and continue
statements work in conjunction with the control structures to alter the order of execution of commands
within a script.

if...then

The if...then control structure has the following syntax:

if test-command

 then

 commands

fi

The bold words in the syntax description are the items you supply to cause the structure to have the desired
effect. The nonbold words are the keywords the shell uses to identify the control structure.

test builtin

Figure 11-1 shows that the if statement tests the status returned by the test-command and transfers control
based on this status. The end of the if structure is marked by a fi statement, (if spelled backward). The
following script prompts for two words, reads them, and then uses an if structure to execute commands
based on the result returned by the test builtin (tcsh uses the test utility) when it compares the two words.
(See page 794 for information on the test utility, which is similar to the test builtin.) The test builtin
returns a status of true if the two words are the same and false if they are not. Double quotation marks
around $word1 and $word2 make sure that test works properly if you enter a string that contains a SPACE
or other special character:

$ cat if1

echo -n "word 1: "

read word1

echo -n "word 2: "

read word2

if test "$word1" = "$word2"

 then

 echo "Match"

fi

echo "End of program."

$ if1

word 1: peach

word 2: peach

Match

End of program.

Figure 11-1. An if...then flowchart

In the preceding example the test-command is test "$word1" = "$word2". The test builtin returns a true
status if its first and third arguments have the relationship specified by its second argument. If this command
returns a true status (= 0), the shell executes the commands between the then and fi statements. If the
command returns a false status (not = 0), the shell passes control to the statement following fi without
executing the statements between then and fi. The effect of this if statement is to display Match if the two
words are the same. The script always displays End of program.

Builtins

In the Bourne Again Shell, test is a builtin—part of the shell. It is also a stand-alone utility kept in
/usr/bin/test. This chapter discusses and demonstrates many Bourne Again Shell builtins. Each bash builtin
may or may not be a builtin in tcsh. You usually use the builtin version if it is available and the utility if it is
not. Each version of a command may vary slightly from one shell to the next and from the utility to any of
the shell builtins. See page 487 for more information on shell builtins.

Checking arguments

The next program uses an if structure at the beginning of a script to check that you have supplied at least one
argument on the command line. The –eq test operator compares two integers, where the $# special
parameter (page 480) takes on the value of the number of command line arguments. This structure displays a
message and exits from the script with an exit status of 1 if you do not supply at least one argument:

$ cat chkargs

if test $# -eq 0

 then

 echo "You must supply at least one argument."

 exit 1

fi

echo "Program running."

$ chkargs

You must supply at least one argument.

$ chkargs abc

Program running.

A test like the one shown in chkargs is a key component of any script that requires arguments. To prevent
the user from receiving meaningless or confusing information from the script, the script needs to check
whether the user has supplied the appropriate arguments. Sometimes the script simply tests whether
arguments exist (as in chkargs). Other scripts test for a specific number or specific kinds of arguments.

You can use test to ask a question about the status of a file argument or the relationship between two file
arguments. After verifying that at least one argument has been given on the command line, the following
script tests whether the argument is the name of a regular file (not a directory or other type of file) in the
working directory. The test builtin with the –f option and the first command line argument ($1) check the
file:

$ cat is_regfile

if test $# -eq 0

 then

 echo "You must supply at least one argument."

 exit 1

fi

if test -f "$1"

 then

 echo "$1 is a regular file in the working directory"

 else

 echo "$1 is NOT a regular file in the working directory"

fi

You can test many other characteristics of a file with test and various options. Table 11-1 lists some of
these options.

Table 11-1. Options to the test builtin

Option Tests file to see if it

– d Exists and is a directory file

– e Exists

– f Exists and is a regular file (not a directory)

–r Exists and is readable

–s Exists and has a size greater than 0 bytes

–w Exists and is writable

–x Exists and is executable

Other test options provide ways to test relationships between two files, such as whether one file is newer
than another. Refer to later examples in this chapter and to test on page 794 for more detailed information.

tip: Always test the arguments

To keep the examples in this book short and focused on specific concepts, the code to verify
arguments is often omitted or abbreviated. It is a good practice to test arguments in shell programs
that other people will use. Doing so results in scripts that are easier to run and debug.

[] is a synonym for test

The following example—another version of chkargs—checks for arguments in a way that is more traditional
for Linux shell scripts. The example uses the bracket ([]) synonym for test. Rather than using the word
test in scripts, you can surround the arguments to test with brackets. The brackets must be surrounded by
whitespace (SPACEs or TABs).

$ cat chkargs2

if [$# -eq 0]

 then

 echo "Usage: chkargs2 argument..." 1>&2

 exit 1

fi

echo "Program running."

exit 0

$ chkargs2

Usage: chkargs2 arguments

$ chkargs2 abc

Program running.

Usage message

The error message that chkargs2 displays is called a usage message and uses the 1>&2 notation to redirect
its output to standard error (page 260). After issuing the usage message, chkargs2 exits with an exit status of
1, indicating that an error has occurred. The exit 0 command at the end of the script causes chkargs2 to exit
with a 0 status after the program runs without an error. The Bourne Again Shell returns a 0 status if you omit
the status code.

The usage message is commonly employed to specify the type and number of arguments the script takes.
Many Linux utilities provide usage messages similar to the one in chkargs2. If you call a utility or other
program with the wrong number or kind of arguments, you will often see a usage message. Following is the
usage message that cp displays when you call it without any arguments:

$ cp

cp: missing file argument

Try 'cp --help' for more information.

if...then...else

The introduction of an else statement turns the if structure into the two-way branch shown in Figure 11-2.
The if...then...else control structure (available in tcsh with a slightly different syntax) has the following
syntax:

if test-command

 then

 commands

 else

 commands

fi

Figure 11-2. An if ... then ... else flowchart

Because a semicolon (;) ends a command just as a NEWLINE does, you can place then on the same line as if
by preceding it with a semicolon. (Because if and then are separate builtins, they require a command
separator between them; a semicolon and NEWLINE work equally well.) Some people prefer this notation for

aesthetic reasons, while others like it because it saves space:

if test-command; then

 commands

 else

 commands

fi

If the test-command returns a true status, the if structure executes the commands between the then and else
statements and then diverts control to the statement following fi. If the test-command returns a false status,
the if structure executes the commands following the else statement.

When you run the next script, named out, with arguments that are filenames, it displays the files on the
terminal. If the first argument is –v (called an option in this case), out uses less (page 45) to display the
files one page at a time. After determining that it was called with at least one argument, out tests its first
argument to see whether it is –v. If the result of the test is true (if the first argument is –v), out uses the
shift builtin to shift the arguments to get rid of the –v and displays the files using less. If the result of the
test is false (if the first argument is not –v), the script uses cat to display the files:

$ cat out

if [$# -eq 0]

 then

 echo "Usage: out [-v] filenames..." 1>&2

 exit 1

fi

if ["$1" = "-v"]

 then

 shift

 less -- "$@"

 else

 cat -- "$@"

fi

optional

In out the – – argument to cat and less tells these utilities that no more options follow on the
command line and not to consider leading hyphens (–) in the following list as indicating
options. Thus – – allows you to view a file with a name that starts with a hyphen. Although not
common, filenames beginning with a hyphen do occasionally occur. (You can create such a file
by using the command cat > –fname.) The – – argument works with all Linux utilities that use
the getopts builtin (page 497) to parse their options; it does not work with more and a few
other utilities. This argument is particularly useful when used in conjunction with rm to remove
a file whose name starts with a hyphen (rm – – –fname), including any that you create while
experimenting with the – – argument.

if...then...elif

The if...then...elif control structure (Figure 11-3; not available in tcsh) has the following syntax:

if test-command

 then

 commands

 elif test-command

 then

 commands

...

 else

 commands

fi

Figure 11-3. An if ... then ... elif flowchart

The elif statement combines the else statement and the if statement and allows you to construct a nested set
of if...then...else structures (Figure 11-3). The difference between the else statement and the elif statement is
that each else statement must be paired with a fi statement, whereas multiple nested elif statements require
only a single closing fi statement.

The following example shows an if...then...elif control structure. This shell script compares three words that
the user enters. The first if statement uses the Boolean operator AND (–a) as an argument to test. The test
builtin returns a true status only if the first and second logical comparisons are true (that is, if word1
matches word2 and word2 matches word3). If test returns a true status, the script executes the command
following the next then statement, passes control to the statement following fi, and terminates:

$ cat if3

echo -n "word 1: "

read word1

echo -n "word 2: "

read word2

echo -n "word 3: "

read word3

if ["$word1" = "$word2" -a "$word2" = "$word3"]

 then

 echo "Match: words 1, 2, & 3"

 elif ["$word1" = "$word2"]

 then

 echo "Match: words 1 & 2"

 elif ["$word1" = "$word3"]

 then

 echo "Match: words 1 & 3"

 elif ["$word2" = "$word3"]

 then

 echo "Match: words 2 & 3"

 else

 echo "No match"

fi

$ if3

word 1: apple

word 2: orange

word 3: pear

No match

$ if3

word 1: apple

word 2: orange

word 3: apple

Match: words 1 & 3

$ if3

word 1: apple

word 2: apple

word 3: apple

Match: words 1, 2, & 3

If the three words are not the same, the structure passes control to the first elif, which begins a series of tests
to see if any pair of words is the same. As the nesting continues, if any one of the if statements is satisfied,
the structure passes control to the next then statement and subsequently to the statement following fi. Each
time an elif statement is not satisfied, the structure passes control to the next elif statement. The double
quotation marks around the arguments to echo that contain ampersands (&) prevent the shell from
interpreting the ampersands as special characters.

optional: The lnks Script

The following script, named lnks, demonstrates the if...then and if...then...elif control structures.
This script finds hard links to its first argument, a filename. If you provide the name of a
directory as the second argument, lnks searches for links in that directory and all subdirectories.
If you do not specify a directory, lnks searches the working directory and its subdirectories. This
script does not locate symbolic links.

$ cat lnks

#!/bin/bash

Identify links to a file

Usage: lnks file [directory]

if [$# -eq 0 -o $# -gt 2]; then

 echo "Usage: lnks file [directory]" 1>&2

 exit 1

fi

if [-d "$1"]; then

 echo "First argument cannot be a directory." 1>&2

 echo "Usage: lnks file [directory]" 1>&2

 exit 1

else

 file="$1"

fi

if [$# -eq 1]; then

 directory="."

 elif [-d "$2"]; then

 directory="$2"

 else

 echo "Optional second argument must be a directory." 1>&2

 echo "Usage: lnks file [directory]" 1>&2

 exit 1

fi

Check that file exists and is a regular file:

if [! -f "$file"]; then

 echo "lnks: $file not found or special file" 1>&2

 exit 1

fi

Check link count on file

set -- $(ls -l "$file")

linkcnt=$2

if ["$linkcnt" -eq 1]; then

 echo "lnks: no other hard links to $file" 1>&2

 exit 0

fi

Get the inode of the given file

set $(ls -i "$file")

inode=$1

Find and print the files with that inode number

echo "lnks: using find to search for links..." 1>&2

find "$directory" -xdev -inum $inode -print

Alex has a file named letter in his home directory. He wants to find links to this file in his and

other users' home directory file trees. In the following example, Alex calls lnks from his home
directory to perform the search. The second argument to lnks, /home, is the pathname of the
directory he wants to start the search in. The lnks script reports that /home/alex/letter and
/home/jenny/draft are links to the same file:

$ lnks letter /home

lnks: using find to search for links...

/home/alex/letter

/home/jenny/draft

In addition to the if...then...elif control structure, lnks introduces other features that are
commonly used in shell programs. The following discussion describes lnks section by section.

Specify the shell

The first line of the lnks script uses #! (page 265) to specify the shell that will execute the script:

#!/bin/bash

In this chapter the #! notation appears only in more complex examples. It ensures that the proper
shell executes the script, even when the user is running a different shell or the script is called
from another shell script.

Comments

The second and third lines of lnks are comments; the shell ignores the text that follows a pound
sign up to the next NEWLINE character. These comments in lnks briefly identify what the file does
and how to use it:

Identify links to a file

Usage: lnks file [directory]

Usage messages

The first if statement tests whether lnks was called with zero arguments or more than two
arguments:

if [$# -eq 0 -o $# -gt 2]; then

 echo "Usage: lnks file [directory]" 1>&2

 exit 1

fi

If either of these conditions is true, lnks sends a usage message to standard error and exits with a
status of 1. The double quotation marks around the usage message prevent the shell from
interpreting the brackets as special characters. The brackets in the usage message indicate that the
directory argument is optional.

The second if statement tests whether the first command line argument ($1) is a directory (the – d
argument to test returns a true value if the file exists and is a directory):

if [-d "$1"]; then

 echo "First argument cannot be a directory." 1>&2

 echo "Usage: lnks file [directory]" 1>&2

 exit 1

else

 file="$1"

fi

If the first argument is a directory, lnks displays a usage message and exits. If it is not a
directory, lnks saves the value of $1 in the file variable because later in the script set resets the
command line arguments. If the value of $1 is not saved before the set command is issued, its
value will be lost.

Test the arguments

The next section of lnks is an if...then...elif statement:

if [$# -eq 1]; then

 directory="."

 elif [-d "$2"]; then

 directory="$2"

 else

 echo "Optional second argument must be a directory." 1>&2

 echo "Usage: lnks file [directory]" 1>&2

 exit 1

fi

The first test-command determines whether the user specified a single argument on the
command line. If the test-command returns 0 (true), the user-created variable named directory is
assigned the value of the working directory (.). If the test-command returns false, the elif
statement tests whether the second argument is a directory. If it is a directory, the directory
variable is set equal to the second command line argument, $2. If $2 is not a directory, lnks sends
a usage message to standard error and exits with a status of 1.

The next if statement in lnks tests whether $file does not exist. This test keeps lnks from wasting
time looking for links to a nonexistent file.

The test builtin with the three arguments !, – f, and $file evaluates to true if the file $file does
not exist:

[! -f "$file"]

The ! operator preceding the – f argument to test negates its result, yielding false if the file $file
does exist and is a regular file.

Next lnks uses set and ls – l to check the number of links $file has:

Check link count on file

set -- $(ls -l "$file")

linkcnt=$2

if ["$linkcnt" -eq 1]; then

 echo "lnks: no other hard links to $file" 1>&2

 exit 0

fi

The set builtin uses command substitution (page 329) to set the positional parameters to the
output of ls –l. The second field in this output is the link count, so the user-created variable
linkcnt is set equal to $2. The – – used with set prevents set from interpreting as an option the
first argument produced by ls – l (the first argument is the access permissions for the file and
typically begins with –). The if statement checks whether $linkcnt is equal to 1; if it is, lnks
displays a message and exits. Although this message is not truly an error message, it is redirected

to standard error. The way lnks has been written, all informational messages are sent to standard
error. Only the final product of lnks—the pathnames of links to the specified file—is sent to
standard output, so you can redirect the output as you please.

If the link count is greater than one, lnks goes on to identify the inode (page 880) for $file. As
explained on page 99, comparing the inodes associated with filenames is a good way to
determine whether the filenames are links to the same file. The lnks script uses set to set the
positional parameters to the output of ls –i. The first argument to set is the inode number for the
file, so the user-created variable named inode is assigned the value of $1:

Get the inode of the given file

set $(ls -i "$file")

inode=$1

Finally lnks uses the find utility (page 655) to search for files having inode numbers that match
$inode:

Find and print the files with that inode number

echo "lnks: using find to search for links..." 1>&2

find "$directory" -xdev -inum $inode -print

The find utility searches for files that meet the criteria specified by its arguments, beginning its
search with the directory specified by its first argument ($directory) and searching all
subdirectories. The remaining arguments specify that the filenames of files having inodes
matching $inode should be sent to standard output. Because files in different filesystems can
have the same inode number and not be linked, find must search only directories in the same
filesystem as $directory. The –xdev argument prevents find from searching directories on other
filesystems. Refer to page 96 for more information about filesystems and links.

The echo command preceding the find command in lnks, which tells the user that find is
running, is included because find frequently takes a long time to run. Because lnks does not
include a final exit statement, the exit status of lnks is that of the last command it runs, find.

DEBUGGING SHELL SCRIPTS

When you are writing a script such as lnks, it is easy to make mistakes. You can use the shell's
–x option to help debug a script. This option causes the shell to display each command before it
runs the command. Tracing a script's execution in this way can give you information about where
a problem lies.

You can run lnks as in the previous example and cause the shell to display each command before

it is executed. Either set the –x option for the current shell (set –x) so that all scripts display
commands as they are run or use the –x option to affect only the shell that is running the script
called by the command line.

$ bash -x lnks letter /home

+ '[' 2 -eq 0 -o 2 -gt 2 ']'

+ '[' -d letter ']'

+ file=letter

+ '[' 2 -eq 1 ']'

+ '[' -d /home ']'

+ directory=/home

+ '[' '!' -f letter ']'

...

PS4

Each command that the script executes is preceded by the value of the PS4 variable—a plus sign
(+) by default, so you can distinguish debugging output from script-produced output. You must
export PS4 if you set it in the shell that calls the script. The next command sets PS4 to >>>>
followed by a SPACE and exports it:

$ export PS4='>>>> '

You can also set the –x option of the shell running the script by putting the following set
command at the top of the script:

set -x

Put set –x anywhere in the script you want to turn debugging on. Turn the debugging option off
with a plus sign.

set +x

The set –o xtrace and set +o xtrace commands do the same things as set –x and set +x,

respectively.

for...in

The for...in control structure (tcsh uses foreach) has the following syntax:

for loop-index in argument-list

do

 commands

done

The for...in structure (Figure 11-4) assigns the value of the first argument in the argument-list to the loop-
index and executes the commands between the do and done statements. The do and done statements mark
the beginning and end of the for loop.

Figure 11-4. A for ... in flowchart

After it passes control to the done statement, the structure assigns the value of the second argument in the
argument-list to the loop-index and repeats the commands . The structure repeats the commands between
the do and done statements one time for each argument in the argument-list . When the structure exhausts
the argument-list , it passes control to the statement following done.

The following for...in structure assigns apples to the user-created variable fruit and then displays the value
of fruit, which is apples. Next the structure assigns oranges to fruit and repeats the process. When it
exhausts the argument list, the structure transfers control to the statement following done, which displays a
message.

$ cat fruit

for fruit in apples oranges pears bananas

do

 echo "$fruit"

done

echo "Task complete."

$ fruit

apples

oranges

pears

bananas

Task complete.

The next script lists the names of the directory files in the working directory by looping over all the files,
using test to determine which files are directories:

$ cat dirfiles

for i in *

do

 if [-d "$i"]

 then

 echo "$i"

 fi

done

The ambiguous file reference character * matches the names of all files (except invisible files) in the
working directory. Prior to executing the for loop, the shell expands the * and uses the resulting list to assign
successive values to the index variable i.

for

The for control structure (not available in tcsh) has the following syntax:

for loop-index

do

 commands

done

In the for structure the loop-index takes on the value of each of the command line arguments, one at a time.
It is the same as the for...in structure (Figure 11-4) except for where it gets values for the loop-index . The
for structure performs a sequence of commands, usually involving each argument in turn.

The following shell script shows a for structure displaying each command line argument. The first line of the
script, for arg, implies for arg in "$@", where the shell expands "$@" into a list of quoted command line
arguments "$1" "$2" "$3" and so on. The balance of the script corresponds to the for...in structure.

$ cat for_test

for arg

do

 echo "$arg"

done

$ for_test candy gum chocolate

candy

gum

chocolate

optional: The whos Script

The following script, named whos, demonstrates the usefulness of the implied "$@" in the for
structure. You give whos one or more user or login names as arguments, and whos displays
information about the users. The whos script gets the information it displays from the first and
fifth fields in the /etc/passwd file. The first field always contains a username, and the fifth field
typically contains the user's full name. You can provide a login name as an argument to whos to
identify the user's name or provide a name as an argument to identify the username. The whos
script is similar to the finger utility, although whos delivers less information.

$ cat whos

#!/bin/bash

adapted from finger.sh by Lee Sailer

UNIX/WORLD, III:11, p. 67, Fig. 2

if [$# -eq 0]

 then

 echo "Usage: whos id..." 1>&2

 exit 1

fi

for id

do

 gawk -F: '{print $1, $5}' /etc/passwd |

 grep -i "$id"

done

Below whos identifies the user whose username is chas and the user whose name is Marilou
Smith:

$ whos chas "Marilou Smith"

chas Charles Casey

msmith Marilou Smith

Use of "$@"

The whos script uses a for statement to loop through the command line arguments. In this script
the implied use of "$@" in the for loop is particularly beneficial because it causes the for loop

to treat an argument that contains a SPACE as a single argument. This example quotes Marilou
Smith, which causes the shell to pass it to the script as a single argument. Then the implied
"$@" in the for statement causes the shell to regenerate the quoted argument Marilou Smith
so that it is again treated as a single argument.

gawk

For each command line argument, whos searches the /etc/passwd file. Inside the for loop the
gawk utility (Chapter 12) extracts the first ($1) and fifth ($5) fields from the lines in
/etc/passwd. The –F: option causes gawk to use a colon (:) as a field separator when it reads
/etc/passwd, allowing it to break each line into fields. The gawk command sets and uses the $1
and $5 arguments; they are included within single quotation marks and are not interpreted by
the shell. Do not confuse these arguments with positional parameters, which correspond to
command line arguments. The first and fifth fields are sent to grep (page 683) via a pipe. The
grep utility searches for $id (which has taken on the value of a command line argument) in its
input. The –i option causes grep to ignore case as it searches; grep displays each line in its
input that contains $id.

| at the end of a line

An interesting syntactical exception that bash gives the pipe symbol (|) appears on the line with
the gawk command: You do not have to quote a NEWLINE that immediately follows a pipe
symbol (that is, a pipe symbol that is the last thing on a line) to keep the NEWLINE from
executing a command. Try giving the command who | and pressing RETURN. The shell (not
tcsh) displays a secondary prompt. If you then enter sort followed by another RETURN, you
see a sorted who list. The pipe works even though a NEWLINE follows the pipe symbol.

while

The while control structure (not available in tcsh) has the following syntax:

while test-command

do

 commands

done

As long as the test-command (Figure 11-5) returns a true exit status, the while structure continues to execute
the series of commands delimited by the do and done statements. Before each loop through the commands ,
the structure executes the test-command . When the exit status of the test-command is false, the structure
passes control to the statement after the done statement.

Figure 11-5. A while flowchart

test builtin

The following shell script first initializes the number variable to zero. The test builtin then determines
whether number is less than 10. The script uses test with the –lt argument to perform a numerical test. For
numerical comparisons, you must use –ne (not equal), –eq (equal), –gt (greater than), –ge (greater than or
equal to), –lt (less than), or –le (less than or equal to). For string comparisons use = (equal) or != (not equal)
when you are working with test. In this example, test has an exit status of 0 (true) as long as number is
less than 10. As long as test returns true, the structure executes the commands between the do and done
statements. See page 794 for information on the test utility, which is very similar to the test builtin.

$ cat count

#!/bin/bash

number=0

while ["$number" -lt 10]

 do

 echo -n "$number"

 ((number +=1))

 done

echo

$ count

0123456789

$

The echo command following do displays number. The –n prevents echo from issuing a NEWLINE following

its output. The next command uses arithmetic evaluation [((...)); page 501] to increment the value of number
by 1. The done statement terminates the loop and returns control to the while statement to start the loop over
again. The final echo causes count to send a NEWLINE character to standard output, so that the next prompt
occurs in the leftmost column on the display (rather than immediately following 9).

optional: The spell_check Script

The aspell utility checks the words in a file against a dictionary of correctly spelled words.
With the –l option, aspell runs in list mode: Input comes from standard input and aspell
sends each potentially misspelled word to standard output. The following command produces a
list of possible misspellings in the file letter.txt:

$ aspell -l < letter.txt

quikly

portible

frendly

The next shell script, named spell_check, shows another use of a while structure. To find the
incorrect spellings in a file, you can use spell_check, which calls aspell to check a file against
a system dictionary but goes a step further: It enables you to specify a list of correctly spelled
words and removes these words from the output of aspell. This script is useful for removing
words that you use frequently, such as names and technical terms, that are not in a standard
dictionary. Although you can duplicate the functionality of spell_check by using additional
aspell dictionaries, the script is included here for its instructive value.

The spell_check script requires two filename arguments: a file containing the list of correctly
spelled words and a file that you want to check. The first if statement verifies that the user
specified two arguments. The next two if statements verify that both arguments are readable
files. (The exclamation point negates the sense of the following operator; the –r operator causes
test to determine whether a file is readable. The result is a test that determines whether a file is
not readable.)

$ cat spell_check

#!/bin/bash

remove correct spellings from aspell output

if [$# -ne 2]

 then

 echo "Usage: spell_check file1 file2" 1>&2

 echo "file1: list of correct spellings" 1>&2

 echo "file2: file to be checked" 1>&2

 exit 1

fi

if [! -r "$1"]

 then

 echo "spell_check: $1 is not readable" 1>&2

 exit 1

fi

if [! -r "$2"]

 then

 echo "spell_check: $2 is not readable" 1>&2

 exit 1

fi

aspell -l < "$2" |

while read line

do

 if ! grep "^$line$" "$1" > /dev/null

 then

 echo $line

 fi

done

The spell_check script sends the output from aspell (with the –l option so that it produces a
list of misspelled words on standard output) through a pipe to standard input of a while
structure, which reads one line at a time (each line has one word on it) from standard input. The
test-command (that is, read line) returns a true exit status as long as it receives a line from
standard input.

Inside the while loop an if statement[1] monitors the return value of grep, which determines
whether the line that was read is in the user's list of correctly spelled words. The pattern that

grep searches for (the value of $line) is preceded and followed by special characters that
specify the beginning and end of a line (^ and $, respectively). These special characters ensure
that grep finds a match only if the $line variable matches an entire line in the file of correctly
spelled words. (Otherwise, grep would match a string, such as paul, in the output of aspell if
the file of correctly spelled words contained the word paulson.) These special characters,
together with the value of the $line variable, form a regular expression (Appendix A).

The output of grep is redirected to /dev/null (page 122) because the output is not needed; only
the exit code is important. The if statement checks the negated exit status of grep (the leading
exclamation point negates or changes the sense of the exit status—true becomes false, and vice
versa), which is 0 or true (false when negated) when a matching line is found. If the exit status
is not 0 or false (true when negated), the word was not in the file of correctly spelled words.
The echo builtin sends a list of words that are not in the file of correctly spelled words to
standard output.

Once it detects the EOF (end of file), the read builtin returns a false exit status. Control then
passes out of the while structure, and the script terminates.

Before you use spell_check, create a file of correct spellings containing words that you use
frequently but that are not in a standard dictionary. For example, if you work for a company
named Blinkenship and Klimowski, Attorneys, you would put Blinkenship and Klimowski
into the file. The following example shows how spell_check checks the spelling in a file named
memo and removes Blinkenship and Klimowski from the output list of incorrectly spelled
words:

$ aspell -l < memo

Blinkenship

Klimowski

targat

hte

$ cat word_list

Blinkenship

Klimowski

$ spell_check word_list memo

targat

hte

Refer to page 589 for more information on aspell.

[1] This if statement can also be written as

if ! grep -qw "$line" "$1"

The –q option suppresses the output from grep so that only an exit code is returned. The –w option causes grep to match only a
whole word.

until

The until (not available in tcsh) and while (available in tcsh with a slightly different syntax) structures are
very similar, differing only in the sense of the test performed at the top of the loop. Figure 11-6 shows that
until continues to loop until the test-command returns a true exit status. The while structure loops while the
test-command continues to return a true or nonerror condition. The until control structure has the following
syntax:

until test-command

do

 commands

done

Figure 11-6. An until flowchart

The following script demonstrates an until structure that includes read. When the user enters the correct
string of characters, the test-command is satisfied and the structure passes control out of the loop.

$ cat until1

secretname=jenny

name=noname

echo "Try to guess the secret name!"

echo

until ["$name" = "$secretname"]

do

 echo -n "Your guess: "

 read name

done

echo "Very good."

$ until1

Try to guess the secret name!

Your guess: helen

Your guess: barbara

Your guess: rachael

Your guess: jenny

Very good

The following locktty script is similar to the lock command on Berkeley UNIX and the Lock Screen menu
selection in GNOME. The script prompts you for a key (password) and uses an until control structure to lock
the terminal. The until statement causes the system to ignore any characters typed at the keyboard until the
user types in the key on a line by itself, which unlocks the terminal. The locktty script can keep people from
using your terminal while you are away from it for short periods of time. It saves you from having to log out
if you are concerned about other users using your login.

$ cat locktty

#! /bin/bash

UNIX/WORLD, III:4

trap '' 1 2 3 18

stty -echo

echo -n "Key: "

read key_1

echo

echo -n "Again: "

read key_2

echo

key_3=

if ["$key_1" = "$key_2"]

 then

 tput clear

 until ["$key_3" = "$key_2"]

 do

 read key_3

 done

 else

 echo "locktty: keys do not match" 1>&2

fi

stty echo

tip: Forget your password for locktty?

If you forget your key (password), you will need to log in from another (virtual) terminal and kill
the process running locktty.

trap builtin

The trap builtin (page 493; not available in tcsh) at the beginning of the locktty script stops a user from
being able to terminate the script by sending it a signal (for example, by pressing the interrupt key). Trapping
signal 18 means that no one can use CONTROL-Z (job control, a stop from a tty) to defeat the lock. (See Table
11-5 on page 494 for a list of signals.) The stty – echo command (page 778) causes the terminal not to
display characters typed at the keyboard, thereby preventing the key that the user enters from appearing on
the screen. After turning off keyboard echo, the script prompts the user for a key, reads it into the user-
created variable key_1, prompts the user to enter the same key again, and saves it in key_2. The statement
key_3= creates a variable with a NULL value. If key_1 and key_2 match, locktty clears the screen (with the

tput command) and starts an until loop. The until loop keeps attempting to read from the terminal and
assigning the input to the key_3 variable. Once the user types in a string that matches one of the original
keys (key_2), the until loop terminates and keyboard echo is turned on again.

Table 11-5. Signals

Type Name Number Generating condition

Not a real signal EXIT 0 Exit because of exit command
or reaching the end of the
program (not an actual signal
but useful in trap)

Hang up SIGHUP or HUP 1 Disconnect the line

Terminal interrupt SIGINT or INT 2 Press the interrupt key (usually
CONTROL-C)

Quit SIGQUIT or
QUIT

3 Press the quit key (usually
CONTROL-SHIFT-| or
CONTROL-SHIFT-\)

Kill SIGKILL or
KILL

9 The kill command with the
–9 option (cannot be trapped;
use only as a last resort)

Software termination SIGTERM or
TERM

15 Default of the kill command

Stop SIGTSTP or
TSTP

20 Press the suspend key (usually
CONTROL-Z)

Debug DEBUG Executes commands specified
in the TRap statement after
each command (not an actual
signal but useful in trap)

Error ERR Executes commands specified
in the TRap statement after
each command that returns a
nonzero exit status (not an
actual signal but useful in
TRap)

break AND continue

You can interrupt a for, while, or until loop by using a break or continue statement. The break statement
transfers control to the statement after the done statement, which terminates execution of the loop. The
continue command transfers control to the done statement, which continues execution of the loop.

The following script demonstrates the use of these two statements. The for...in structure loops through the
values 1–10. The first if statement executes its commands when the value of the index is less than or equal to
3 ($index –le 3). The second if statement executes its commands when the value of the index is greater than
or equal to 8 ($index –ge 8). In between the two ifs, echo displays the value of the index. For all values up to
and including 3, the first if statement displays continue and executes a continue statement that skips echo
$index and the second if statement and continues with the next for statement. For the value of 8, the second
if statement displays break and executes a break statement that exits from the for loop:

$ cat brk

for index in 1 2 3 4 5 6 7 8 9 10

 do

 if [$index -le 3] ; then

 echo "continue"

 continue

 fi

#

 echo $index

#

 if [$index -ge 8] ; then

 echo "break"

 break

 fi

done

$ brk

continue

continue

continue

4

5

6

7

8

break

case

The case structure (Figure 11-7, page 461) is a multiple-branch decision mechanism. The path taken through
the structure depends on a match or lack of a match between the test-string and one of the patterns . The case
control structure (tcsh uses switch) has the following syntax:

case test-string in

 pattern-1)

 commands-1

 ;;

 pattern-2)

 commands-2

 ;;

 pattern-3)

 commands-3

 ;;

. . .

esac

Figure 11-7. A case flowchart

The following case structure examines the character that the user enters as the test-string . This value is held
in the variable letter. If the test-string has a value of A, the structure executes the command following the
pattern A. The right parenthesis is part of the case control structure, not part of the pattern . If the test-string
has a value of B or C, the structure executes the command following the matching pattern . The asterisk (*)
indicates any string of characters and serves as a catchall in case there is no match. If no pattern matches the
test-string and if there is no catchall (*) pattern , control passes to the command following the esac
statement, without the case structure taking any action.

$ cat case1

echo -n "Enter A, B, or C: "

read letter

case "$letter" in

 A)

 echo "You entered A"

 ;;

 B)

 echo "You entered B"

 ;;

 C)

 echo "You entered C"

 ;;

 *)

 echo "You did not enter A, B, or C"

 ;;

esac

$ case1

Enter A, B, or C: B

You entered B

The next execution of case1 shows the user entering a lowercase b. Because the test-string b does not match
the uppercase B pattern (or any other pattern in the case statement), the program executes the commands
following the catchall pattern and displays a message:

$ case1

Enter A, B, or C: b

You did not enter A, B, or C

The pattern in the case structure is analogous to an ambiguous file reference. It can include any of the
special characters and strings shown in Table 11-2.

Table 11-2. Patterns

Pattern Function

* Matches any string of characters. Use for the default case.

? Matches any single character.

[...] Defines a character class. Any characters enclosed within brackets
are tried, one at a time, in an attempt to match a single character. A
hyphen between two characters specifies a range of characters.

| Separates alternative choices that satisfy a particular branch of the
case structure.

The next script accepts both uppercase and lowercase letters:

$ cat case2

echo -n "Enter A, B, or C: "

read letter

case "$letter" in

 a|A)

 echo "You entered A"

 ;;

 b|B)

 echo "You entered B"

 ;;

 c|C)

 echo "You entered C"

 ;;

 *)

 echo "You did not enter A, B, or C"

 ;;

esac

$ case2

Enter A, B, or C: b

You entered B

optional

The following example shows how you can use the case structure to create a simple menu. The
command_menu script uses echo to present menu items and prompt the user for a selection.
(The select control structure [page 466] makes it much easier to code a menu.) The case
structure then executes the appropriate utility depending on the user's selection.

$ cat command_menu

#!/bin/bash

menu interface to simple commands

echo -e "\n COMMAND MENU\n"

echo " a. Current date and time"

echo " b. Users currently logged in"

echo " c. Name of the working directory"

echo -e " d. Contents of the working directory\n"

echo -n "Enter a, b, c, or d: "

read answer

echo

case "$answer" in

 a)

 date

 ;;

 b)

 who

 ;;

 c)

 pwd

 ;;

 d)

 ls

 ;;

 *)

 echo "There is no selection: $answer"

 ;;

esac

$ command_menu

 COMMAND MENU

 a. Current date and time

 b. Users currently logged in

 c. Name of the working directory

 d. Contents of the working directory

Enter a, b, c, or d: a

Wed Jan 5 12:31:12 PST 2005

echo –e

The –e option causes echo to interpret \n as a NEWLINE character. If you do not include this
option, echo does not output the extra blank lines that make the menu easy to read but instead
outputs the (literal) two-character sequence \n. The –e option causes echo to interpret several
other backslash-quoted characters (Table 11-3). Remember to quote (i.e., place double
quotation marks around the string) the backslash-quoted character so that the shell does not
interpret it but passes the backslash and the character to echo. See xpg_echo (page 322) for a
way to avoid using the –e option.

Table 11-3. Special characters in echo (must use –e)

Quoted character echo displays

\a Alert (bell)

\b BACKSPACE

\c Suppress trailing NEWLINE

\f FORMFEED

\n NEWLINE

\r RETURN

\t Horizontal TAB

\v Vertical TAB

\\ Backslash

\nnn The character with the ASCII octal code nnn; if nnn is
not valid, echo displays the string literally

You can also use the case control structure to take various actions in a script, depending on how
many arguments the script is called with. The following script, named safedit, uses a case
structure that branches based on the number of command line arguments ($ #). It saves a
backup copy of a file you are editing with vim.

$ cat safedit

#!/bin/bash

UNIX/WORLD, IV:11

PATH=/bin:/usr/bin

script=$(basename $0)

case $# in

 0)

 vim

 exit 0

 ;;

 1)

 if [! -f "$1"]

 then

 vim "$1"

 exit 0

 fi

 if [! -r "$1" -o ! -w "$1"]

 then

 echo "$script: check permissions on $1" 1>&2

 exit 1

 else

 editfile=$1

 fi

 if [! -w "."]

 then

 echo "$script: backup cannot be " \

 "created in the working directory" 1>&2

 exit 1

 fi

 ;;

 *)

 echo "Usage: $script [file-to-edit]" 1>&2

 exit 1

 ;;

esac

tempfile=/tmp/$$.$script

cp $editfile $tempfile

if vim $editfile

 then

 mv $tempfile bak.$(basename $editfile)

 echo "$script: backup file created"

 else

 mv $tempfile editerr

 echo "$script: edit error--copy of " \

 "original file is in editerr" 1>&2

fi

If you call safedit without any arguments, the case structure executes its first branch and calls
vim without a filename argument. Because an existing file is not being edited, safedit does not
create a backup file. (See the :w command on page 153 for an explanation of how to exit from
vim when you have called it without a filename.) If you call safedit with one argument, it runs
the commands in the second branch of the case structure and verifies that the file specified by
$1 does not yet exist or is the name of a file for which the user has read and write permission.
The safedit script also verifies that the user has write permission for the working directory. If
the user calls safedit with more than one argument, the third branch of the case structure
presents a usage message and exits with a status of 1.

Set PATH

In addition to using a case structure for branching based on the number of command line
arguments, the safedit script introduces several other features. First, at the beginning of the
script, the PATH variable is set to search /bin and /usr/bin. Setting PATH in this way ensures
that the commands executed by the script are standard utilities, which are kept in those
directories. By setting PATH inside a script, you can avoid the problems that might occur if
users have set PATH to search their own directories first and have scripts or programs with the
same names as the utilities the script calls. You can also include absolute pathnames within a
script to achieve this end, but this practice can make a script less portable.

Name of the program

In a second safedit feature, the following line creates a variable named script and assigns the
simple filename of the script to it:

script=$(basename $0)

The basename utility sends the simple filename component of its argument to standard output,
which is assigned to the script variable, using command substitution. The $0 holds the
command the script was called with (page 481). No matter which of the following commands
the user calls the script with, the output of basename is the simple filename safedit:

$ /home/alex/bin/safedit memo

$./safedit memo

$ safedit memo

After the script variable is set, it replaces the filename of the script in usage and error
messages. By using a variable that is derived from the command that invoked the script rather
than a filename that is hardcoded into the script, you can create links to the script or rename it,
and the usage and error messages will still provide accurate information.

Naming temporary files

A third significant feature of safedit relates to the use of the $$ variable in the name of a
temporary file. The statement following the esac statement creates and assigns a value to the
tempfile variable. This variable contains the name of a temporary file that is stored in the /tmp
directory, as are many temporary files. The temporary filename begins with the PID number of
the shell and ends with the name of the script. Use of the PID number ensures that the filename
is unique, and safedit will not attempt to overwrite an existing file, as might happen if two
people were using safedit at the same time. The name of the script is appended so that, should
the file be left in /tmp for some reason, you can figure out where it came from.

The PID number is used in front of—rather than after—$script in the filename because of the
14-character limit placed on filenames by some older versions of UNIX. Linux systems do not
have this limitation. Because the PID number ensures the uniqueness of the filename, it is
placed first so that it cannot be truncated. (If the $script component is truncated, the filename is
still unique.) For the same reason, when a backup file is created inside the if control structure a
few lines down in the script, the filename is composed of the string bak. followed by the name
of the file being edited. On an older system, if bak were used as a suffix rather than a prefix
and the original filename were 14 characters long, .bak might be lost and the original file
would be overwritten. The basename utility extracts the simple filename of $editfile before it is
prefixed with bak.

Fourth, safedit uses an unusual test-command in the if structure: vim $editfile. The test-
command calls vim to edit $editfile. When you finish editing the file and exit from vim, vim
returns an exit code. The if control structure uses that exit code to determine which branch to
take. If the editing session completed successfully, vim returns 0 and the statements following
the then statement are executed. If vim does not terminate normally (as would occur if the user
killed [page 693] the vim process), vim returns a nonzero exit status and the script executes
the statements following else.

select

The select control structure (not available in tcsh) is based on the one found in the Korn Shell. It displays a
menu, assigns a value to a variable based on the user's choice of items, and executes a series of commands.
The select control structure has the following syntax:

select varname [in arg . . .]

do

 commands

done

The select structure displays a menu of the arg items. If you omit the keyword in and the list of arguments,
select uses the positional parameters in place of the arg items. The menu is formatted with numbers before
each item. For example, a select structure that begins with

select fruit in apple banana blueberry kiwi orange watermelon STOP

displays the following menu:

1) apple 3) blueberry 5) orange 7) STOP

2) banana 4) kiwi 6) watermelon

The select structure uses the values of the LINES and COLUMNS variables to determine the size of the
display. (LINES has a default value of 24; COLUMNS has a default value of 80.) With COLUMNS set to
20, the menu looks like this:

1) apple

2) banana

3) blueberry

4) kiwi

5) orange

6) watermelon

7) STOP

PS3

After displaying the menu select displays the value of PS3, the special select prompt. The default value of
PS3 is ?# but you typically set PS3 to a more meaningful value. When you enter a valid number (one in the
menu range) in response to the PS3 prompt, select sets varname to the argument corresponding to the
number you entered. If you make an invalid entry, varname is set to null. Either way select stores your
response in the keyword variable REPLY and then executes the commands between do and done. If you
press RETURN without entering a choice, the shell redisplays the menu and the PS3 prompt.

The select structure continues to issue the PS3 prompt and execute the commands until something causes it
to exit—typically a break or exit statement. A break statement exits from the loop and an exit statement

exits from the script.

The following script illustrates the use of select :

$ cat fruit2

#!/bin/bash

PS3="Choose your favorite fruit from these possibilities: "

select FRUIT in apple banana blueberry kiwi orange watermelon STOP

do

 if ["$FRUIT" == ""]; then

 echo -e "Invalid entry.\n"

 continue

 elif [$FRUIT = STOP]; then

 echo "Thanks for playing!"

 break

 fi

echo "You chose $FRUIT as your favorite."

echo -e "That is choice number $REPLY.\n"

done

$ fruit2

1) apple 3) blueberry 5) orange 7) STOP

2) banana 4) kiwi 6) watermelon

Choose your favorite fruit from these possibilities: 3

You chose blueberry as your favorite.

That is choice number 3.

Choose your favorite fruit from these possibilities: 99

Invalid entry.

Choose your favorite fruit from these possibilities: 7

Thanks for playing!

After setting the PS3 prompt and establishing the menu with the select statement, fruit2 executes the

commands between do and done. If the user makes an invalid entry, the shell sets varname ($FRUIT) to a
null value, so fruit2 first tests whether $FRUIT is null. If it is, echo displays an error and continue causes
the shell to redisplay the PS3 prompt. If the entry is valid, the script tests whether the user wants to stop. If
so, echo displays a message and break exits from the select structure (and from the script). If the user
entered a valid response and does not want to stop, the script displays the name and number of the user's
response. (See page 463 for information about the –e option to echo.)

Here Document

A Here document allows you to redirect input to a shell script from within the shell script itself. A Here
document is so called because it is here— immediately accessible in the shell script—instead of there,
perhaps in another file.

The following script, named birthday, contains a Here document. The two less than (<<) symbols in the
first line indicate that a Here document follows. One or more characters that delimit the Here document
follow the less than symbols—this example uses a plus sign. Whereas the opening delimiter must appear
adjacent to the less than symbols, the closing delimiter must be on a line by itself. The shell sends everything
between the two delimiters to the process as standard input. In the example it is as though you had redirected
standard input to grep from a file, except that the file is embedded in the shell script:

$ cat birthday

grep -i "$1" <<+

Alex June 22

Barbara February 3

Darlene May 8

Helen March 13

Jenny January 23

Nancy June 26

+

$ birthday Jenny

Jenny January 23

$ birthday june

Alex June 22

Nancy June 26

When you run birthday, it lists all the Here document lines that contain the argument you called it with. In
this case the first time birthday is run, it displays Jenny's birthday because it is called with an argument of
Jenny. The second run displays all the birthdays in June. The –i argument causes grep's search not to be

case sensitive.

optional

The next script, named bundle,[2] includes a clever use of a Here document. The bundle script
is an elegant example of a script that creates a shell archive (shar) file. The script creates a file
that is itself a shell script containing several other files as well as the code to re-create the
original files:

$ cat bundle

#!/bin/bash

bundle: group files into distribution package

echo "# To unbundle, bash this file"

for i

do

 echo "echo $i 1>&2"

 echo "cat >$i <<'End of $i'"

 cat $i

 echo "End of $i"

done

Just as the shell does not treat special characters that occur in standard input of a shell script as
special, so the shell does not treat the special characters that occur between the delimiters in a
Here document as special.

As the following example shows, the output of bundle is a shell script, which is redirected to a
file named bothfiles. It contains the contents of each file given as an argument to bundle (file1
and file2 in this case) inside a Here document. To extract the original files from bothfiles, you
simply run it as an argument to a bash command. Before each Here document is a cat
command that causes the Here document to be written to a new file when bothfiles is run:

$ cat file1

This is a file.

It contains two lines.

$ cat file2

This is another file.

It contains

three lines.

$ bundle file1 file2 > bothfiles

$ cat bothfiles

To unbundle, bash this file

echo file1 1>&2

cat >file1 <<'End of file1'

This is a file.

It contains two lines.

End of file1

echo file2 1>&2

cat >file2 <<'End of file2'

This is another file.

It contains

three lines.

End of file2

In the next example, file1 and file2 are removed before bothfiles is run. The bothfiles script
echoes the names of the files it creates as it creates them. The ls command then shows that
bothfiles has re-created file1 and file2:

$ rm file1 file2

$ bash bothfiles

file1

file2

$ ls

bothfiles

file1

file2

[2] Thanks to Brian W. Kernighan and Rob Pike, The Unix Programming Environment (Englewood Cliffs, N.J.: Prentice-Hall,
1984), 98. Reprinted with permission.

 < Day Day Up >

 < Day Day Up >

file Descriptors

As discussed on page 260, before a process can read from or write to a file it must open that file. When a
process opens a file, Linux associates a number (called a file descriptor) with the file. Each process has its
own set of open files and its own file descriptors. After opening a file, a process reads from and writes to that
file by referring to its file descriptor. When it no longer needs the file, the process closes the file, freeing the
file descriptor.

A typical Linux process starts with three open files: standard input (file descriptor 0), standard output (file
descriptor 1), and standard error (file descriptor 2). Often those are the only files the process needs. Recall
that you redirect standard output with the symbol > or the symbol 1> and that you redirect standard error
with the symbol 2>. Although you can redirect other file descriptors, because file descriptors other than 0, 1,
and 2 do not have any special conventional meaning, it is rarely useful to do so.

The exception is in programs that you write yourself, in which case you control the meaning of the file
descriptors and can take advantage of redirection.

Opening a file descriptor

The Bourne Again Shell opens files using the exec builtin as follows:

exec n> outfile

exec m< infile

The first line opens outfile for output and holds it open, associating it with file descriptor n. The second line
opens infile for input and holds it open, associating it with file descriptor m.

Duplicating a file descriptor

The <& token duplicates an input file descriptor; use >& to duplicate an output file descriptor. You can
duplicate a file descriptor by making it refer to the same file as another open file descriptor, such as standard
input or output. Use the following format to open or redirect file descriptor n as a duplicate of file descriptor
m:

exec n<&m

Once you have opened a file, you can use it for input and output in two different ways. First, you can use I/O
redirection on any command line, redirecting standard output to a file descriptor with >&n or redirecting

standard input from a file descriptor with <&n. Second, you can use the read (page 487) and echo builtins. If
you invoke other commands, including functions (page 315), they inherit these open files and file
descriptors. When you have finished using a file, you can close it with

exec n<&–

When you invoke the shell function in the next example, named mycp, with two arguments, it copies the file
named by the first argument to the file named by the second argument. If you supply only one argument, the
script copies the file named by the argument to standard output. If you invoke mycp with no arguments, it
copies standard input to standard output.

tip: A function is not a shell script

The mycp example is a shell function; it will not work as you expect if you execute it as a shell
script. (It will work: The function will be created in a very short-lived subshell, which is probably
of little use.) You can enter this function from the keyboard. If you put the function in a file, you
can run it as an argument to the . (dot) builtin (page 259). You can also put the function in a startup
file if you want it to be always available (page 317).

function mycp ()

{

case $# in

 0)

 # zero arguments

 # file descriptor 3 duplicates standard input

 # file descriptor 4 duplicates standard output

 exec 3<&0 4<&1

 ;;

 1)

 # one argument

 # open the file named by the argument for input

 # and associate it with file descriptor 3

 # file descriptor 4 duplicates standard output

 exec 3< $1 4<&1

 ;;

 2)

 # two arguments

 # open the file named by the first argument for input

 # and associate it with file descriptor 3

 # open the file named by the second argument for output

 # and associate it with file descriptor 4

 exec 3< $1 4> $2

 ;;

 *)

 echo "Usage: mycp [source [dest]]"

 return 1

 ;;

esac

call cat with input coming from file descriptor 3

and output going to file descriptor 4

cat <&3 >&4

close file descriptors 3 and 4

exec 3<&- 4<&-

}

The real work of this function is done in the line that begins with cat. The rest of the script arranges for file
descriptors 3 and 4, which are the input and output of the cat command, to be associated with the
appropriate files.

optional

The next program takes two filenames on the command line, sorts both, and sends the output to
temporary files. The program then merges the sorted files to standard output, preceding each line by
a number that indicates which file it came from.

$ cat sortmerg

#!/bin/bash

usage ()

{

if [$# -ne 2]; then

 echo "Usage: $0 file1 file2" 2>&1

 exit 1

 fi

}

Default temporary directory

: ${TEMPDIR:=/tmp}

Check argument count

usage "$@"

Set up temporary files for sorting

file1=$TEMPDIR/$$.file1

file2=$TEMPDIR/$$.file2

Sort

sort $1 > $file1

sort $2 > $file2

Open $file1 and $file2 for reading. Use file descriptors 3 and 4.

exec 3<$file1

exec 4<$file2

Read the first line from each file to figure out how to start.

read Line1 <&3

status1=$?

read Line2 <&4

status2=$?

Strategy: while there is still input left in both files:

Output the line that should come first.

Read a new line from the file that line came from.

while [$status1 -eq 0 -a $status2 -eq 0]

 do

 if [["$Line2" > "$Line1"]]; then

 echo -e "1.\t$Line1"

 read -u3 Line1

 status1=$?

 else

 echo -e "2.\t$Line2"

 read -u4 Line2

 status2=$?

 fi

 done

Now one of the files is at end-of-file.

Read from each file until the end.

First file1:

while [$status1 -eq 0]

 do

 echo -e "1.\t$Line1"

 read Line1 <&3

 status1=$?

 done

Next file2:

while [[$status2 -eq 0]]

 do

 echo -e "2.\t$Line2"

 read Line2 <&4

 status2=$?

 done

Close and remove both input files

exec 3<&- 4<&-

rm -f $file1 $file2

exit 0

 < Day Day Up >

 < Day Day Up >

Parameters And Variables

Shell parameters and variables were introduced on page 277. This section adds to the previous coverage with
a discussion of array variables, global versus local variables, special and positional parameters, and
expanding null and unset variables.

Array Variables

The Bourne Again Shell supports one-dimensional array variables. The subscripts are integers with zero-
based indexing (i.e., the first element of the array has the subscript 0). The following format declares and
assigns values to an array:

name=(element1 element2 ...)

The following example assigns four values to the array NAMES:

$ NAMES=(max helen sam zach)

You reference a single element of an array as follows:

$ echo ${NAMES[2]}

sam

The subscripts [*] and [@] both extract the entire array but work differently when used within double
quotation marks. An @ produces an array that is a duplicate of the original array; an * produces a single
element of an array (or a plain variable) that holds all the elements of the array separated by the first
character in IFS (normally a SPACE). In the following example, the array A is filled with the elements of
the NAMES variable using an *, and B is filled using an @. The declare builtin with the –a option displays
the values of the arrays (and reminds you that bash uses zero-based indexing for arrays):

$ A=("${NAMES[*]}")

$ B=("${NAMES[@]}")

$ declare -a

declare -a A='([0]="max helen sam zach")'

declare -a B='([0]="max" [1]="helen" [2]="sam" [3]="zach")'

...

declare -a NAMES='([0]="max" [1]="helen" [2]="sam" [3]="zach")'

From the output of declare, you can see that NAMES and B have multiple elements. In contrast, A, which
was assigned its value with an * within double quotation marks, has only one element: A has all its elements
enclosed between double quotation marks.

In the next example, echo attempts to display element 1 of array A. Nothing is displayed because A has only
one element and that element has an index of 0. Element 0 of array A holds all four names. Element 1 of B
holds the second item in the array and element 0 holds the first item.

$ echo ${A[1]}

$ echo ${A[0]}

max helen sam zach

$ echo ${B[1]}

helen

$ echo ${B[0]}

max

You can apply the ${#name [*]} operator to array variables, returning the number of elements in the array:

$ echo ${#NAMES[*]}

4

The same operator, when given the index of an element of an array in place of *, returns the length of the
element:

$ echo ${#NAMES[1]}

5

You can use subscripts on the left side of an assignment statement to replace selected elements of the array:

$ NAMES[1]=alex

$ echo ${NAMES[*]}

max alex sam zach

Locality of Variables

By default variables are local to the process in which they are declared. Thus a shell script does not have
access to variables declared in your login shell unless you explicitly make the variables available (global).
Under bash, export makes a variable available to child processes. Under tcsh, setenv (page 356) assigns a
value to a variable and makes it available to child processes. The examples in this section use the bash
syntax but the theory applies to both shells.

Once you use the export builtin with a variable name as an argument, the shell places the value of the
variable in the calling environment of child processes. This call by value gives each child process a copy of
the variable for its own use.

The following extest1 shell script assigns a value of american to the variable named cheese and then
displays its filename (extest1) and the value of cheese. The extest1 script then calls subtest, which attempts
to display the same information. Next subtest declares a cheese variable and displays its value. When
subtest finishes, it returns control to the parent process, which is executing extest1. At this point extest1
again displays the value of the original cheese variable.

$ cat extest1

cheese=american

echo "extest1 1: $cheese"

subtest

echo "extest1 2: $cheese"

$ cat subtest

echo "subtest 1: $cheese"

cheese=swiss

echo "subtest 2: $cheese"

$ extest1

extest1 1: american

subtest 1:

subtest 2: swiss

extest1 2: american

The subtest script never receives the value of cheese from extest1, and extest1 never loses the value. Unlike
in the real world, a child can never affect its parent's attributes. When a process attempts to display the value
of a variable that has not been declared, as is the case with subtest, the process displays nothing; the value of
an undeclared variable is that of a null string.

The following extest2 script is the same as extest1 except that it uses export to make cheese available to the
subtest script:

$ cat extest2

export cheese=american

echo "extest2 1: $cheese"

subtest

echo "extest2 2: $cheese"

$ extest2

extest2 1: american

subtest 1: american

subtest 2: swiss

extest2 2: american

Here the child process inherits the value of cheese as american and, after displaying this value, changes its
copy to swiss. When control is returned to the parent, the parent's copy of cheese retains its original value:
american.

An export builtin can optionally include an assignment:

export cheese=american

The preceding statement is equivalent to the following two statements:

cheese=american

export cheese

Although it is rarely done, you can export a variable before you assign a value to it. You do not need to
export an already-exported variable a second time after you change its value. For example, you do not
usually need to export PATH when you assign a value to it in ~/.bash_profile because it is typically
exported in the /etc/profile global startup file.

Functions

Because functions run in the same environment as the shell that calls them, variables are implicitly shared by
a shell and a function it calls.

$ function nam () {

> echo $myname

> myname=zach

> }

$ myname=sam

$ nam

sam

$ echo $myname

zach

In the preceding example, the myname variable is set to sam in the interactive shell. Then the nam function
is called. It displays the value of myname it has (sam) and sets myname to zach. The final echo shows that,
in the interactive shell, the value of myname has been changed to zach.

Function local variables

Local variables are helpful in a function written for general use. Because the function is called by many
scripts that may be written by different programmers, you need to make sure that the names of the variables
used within the function do not interact with variables of the same name in the programs that call the
function. Local variables eliminate this problem. When used within a function, the typeset builtin declares
a variable to be local to the function it is defined in.

The next example shows the use of a local variable in a function. It uses two variables named count. The
first is declared and assigned a value of 10 in the interactive shell. Its value never changes, as echo verifies
after count_down is run. The other count is declared, using typeset, to be local to the function. Its value,
which is unknown outside the function, ranges from 4 to 1, as the echo command within the function
confirms.

The example shows the function being entered from the keyboard; it is not a shell script. (See the tip "A
function is not a shell script" on page 471).

$ function count_down () {

> typeset count

> count=$1

> while [$count -gt 0]

> do

> echo "$count..."

> ((count=count-1))

> sleep 1

> done

> echo "Blast Off."

> }

$ count=10

$ count_down 4

4...

3...

2...

1...

Blast Off\!

$ echo $count

10

The ((count=count–1)) assignment is enclosed between double parentheses, which cause the shell to
perform an arithmetic evaluation (page 501). Within the double parentheses you can reference shell variables
without the leading dollar sign ($).

Special Parameters

Special parameters enable you to access useful values pertaining to command line arguments and the
execution of shell commands. You reference a shell special parameter by preceding a special character with a
dollar sign ($). As with positional parameters, it is not possible to modify the value of a special parameter by
assignment.

$$: PID Number

The shell stores in the $$ parameter the PID number of the process that is executing it. In the following
interaction, echo displays the value of this variable and the ps utility confirms its value. Both commands
show that the shell has a PID number of 5209:

$ echo $$

5209

$ ps

 PID TTY TIME CMD

 5209 pts/1 00:00:00 bash

 6015 pts/1 00:00:00 ps

Because echo is built into the shell, the shell does not have to create another process when you give an echo
command. However, the results are the same whether echo is a builtin or not, because the shell substitutes
the value of $$ before it forks a new process to run a command. Try using the echo utility (/bin/echo), which
is run by another process, and see what happens. In the following example, the shell substitutes the value of
$$ and passes that value to cp as a prefix for a filename:

$ echo $$

8232

$ cp memo $$.memo

$ ls

8232.memo memo

Incorporating a PID number in a filename is useful for creating unique filenames when the meanings of the
names do not matter; it is often used in shell scripts for creating names of temporary files. When two people
are running the same shell script, these unique filenames keep them from inadvertently sharing the same
temporary file.

The following example demonstrates that the shell creates a new shell process when it runs a shell script.
The id2 script displays the PID number of the process running it (not the process that called it—the
substitution for $$ is performed by the shell that is forked to run id2):

$ cat id2

echo "$0 PID= $$"

$ echo $$

8232

$ id2

./id2 PID= 8362

$ echo $$

8232

The first echo displays the PID number of the interactive shell. Then id2 displays its name ($0) and the PID
of the subshell that it is running in. The last echo shows that the PID number of the interactive shell has not
changed.

$!

The value of the PID number of the last process that you ran in the background is stored in $! (not available
in tcsh). The following example executes sleep as a background task and uses echo to display the value of
$! :

$ sleep 60 &

8376

$ echo $!

8376

$?: Exit Status

When a process stops executing for any reason, it returns an exit status to the parent process. The exit status
is also referred to as a condition code or a return code . The $? ($status under tcsh) variable stores the exit
status of the last command.

By convention a nonzero exit status represents a false value and means that the command failed. A zero is
true and indicates that the command was successful. In the following example, the first ls command
succeeds and the second fails:

$ ls es

es

$ echo $?

0

$ ls xxx

ls: xxx: No such file or directory

$ echo $?

1

You can specify the exit status that a shell script returns by using the exit builtin, followed by a number, to
terminate the script. If you do not use exit with a number to terminate a script, the exit status of the script is
that of the last command the script ran.

$ cat es

echo This program returns an exit status of 7.

exit 7

$ es

This program returns an exit status of 7.

$ echo $?

7

$ echo $?

0

The es shell script displays a message and terminates execution with an exit command that returns an exit
status of 7, the user-defined exit status in this script. The first echo then displays the value of the exit status
of es. The second echo displays the value of the exit status of the first echo. The value is 0 because the first
echo was successful.

Positional Parameters

The positional parameters comprise the command name and command line arguments. They are called
positional because within a shell script, you refer to them by their position on the command line. Only the
set builtin (page 484) allows you to change the values of positional parameters with one exception: You
cannot change the value of the command name from within a script. The tcsh set builtin does not change
the values of positional parameters.

$#: Number of Command Line Arguments

The $# parameter holds the number of arguments on the command line (positional parameters), not counting
the command itself:

$ cat num_args

echo "This script was called with $# arguments."

$ num_args sam max zach

This script was called with 3 arguments.

$0: Name of the Calling Program

The shell stores the name of the command you used to call a program in parameter $0. This parameter is
numbered zero because it appears before the first argument on the command line:

$ cat abc

echo "The command used to run this script is $0"

$ abc

The command used to run this script is ./abc

$ /home/sam/abc

The command used to run this script is /home/sam/abc

The preceding shell script uses echo to verify the name of the script you are executing. You can use the
basename utility and command substitution to extract and display the simple filename of the command:

$ cat abc2

echo "The command used to run this script is $(basename $0)"

$ /home/sam/abc2

The command used to run this script is abc2

$1 – $n: Command Line Arguments

The first argument on the command line is represented by parameter $1, the second argument by $2, and so
on up to $n. For values of n over 9, the number must be enclosed within braces. For example, the twelfth
command line argument is represented by ${12}. The following script displays positional parameters that
hold command line arguments:

$ cat display_5args

echo First 5 arguments are $1 $2 $3 $4 $5

$ display_5args jenny alex helen

First 5 arguments are jenny alex helen

The display_5args script displays the first five command line arguments. The shell assigns a null value to
each parameter that represents an argument that is not present on the command line. Thus the $4 and $5
variables have null values in this example.

$*

The $* variable represents all the command line arguments, as the display_all program demonstrates:

$ cat display_all

echo All arguments are $*

$ display_all a b c d e f g h i j k l m n o p

All arguments are a b c d e f g h i j k l m n o p

Enclose references to positional parameters between double quotation marks. The quotation marks are
particularly important when you are using positional parameters as arguments to commands. Without double
quotation marks, a positional parameter that is not set or that has a null value disappears:

$ cat showargs

echo "$0 was called with $# arguments, the first is :$1:."

$ showargs a b c

./showargs was called with 3 arguments, the first is :a:.

$ echo $xx

$ showargs $xx a b c

./showargs was called with 3 arguments, the first is :a:.

$ showargs "$xx" a b c

./showargs was called with 4 arguments, the first is ::.

The showargs script displays the number of arguments ($#) followed by the value of the first argument
enclosed between colons. The preceding example first calls showargs with three simple arguments. Next the
echo command demonstrates that the $xx variable, which is not set, has a null value. In the final two calls to
showargs, the first argument is $xx. In the first case the command line becomes showargs a b c; the shell
passes showargs three arguments. In the second case the command line becomes showargs "" a b c, which
results in calling showargs with four arguments. The difference in the two calls to showargs illustrates a
subtle potential problem that you should keep in mind when using positional parameters that may not be set
or that may have a null value.

"$*" versus "$@"

The $* and $@ parameters work the same way except when they are enclosed within double quotation
marks. Using "$*" yields a single argument (with SPACEs or the value of IFS [page 288] between the
positional parameters), whereas "$@" produces a list wherein each positional parameter is a separate
argument. This difference typically makes "$@" more useful than "$*" in shell scripts.

The following scripts help to explain the difference between these two special parameters. In the second line
of both scripts, the single quotation marks keep the shell from interpreting the enclosed special characters so
they can be displayed as themselves. The bb1 script shows that set "$*" assigns multiple arguments to the
first command line parameter:

$ cat bb1

set "$*"

echo $# parameters with '"$*"'

echo 1: $1

echo 2: $2

echo 3: $3

$ bb1 a b c

1 parameters with "$*"

1: a b c

2:

3:

The bb2 script shows that set "$@" assigns each argument to a different command line parameter:

$ cat bb2

set "$@"

echo $# parameters with '"$@"'

echo 1: $1

echo 2: $2

echo 3: $3

$

$ bb2 a b c

3 parameters with "$@"

1: a

2: b

3: c

shift: Promotes Command Line Arguments

The shift builtin promotes each command line argument. The first argument (which was $1) is discarded.
The second argument (which was $2) becomes the first argument (now $1), the third becomes the second,
and so on. Because no "unshift" command exists, you cannot bring back arguments that have been discarded.
An optional argument to shift specifies the number of positions to shift (and the number of arguments to
discard); the default is 1.

The following demo_shift script is called with three arguments. Double quotation marks around the
arguments to echo preserve the spacing of the output. The program displays the arguments and shifts them
repeatedly until there are no more arguments left to shift:

$ cat demo_shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

echo "arg1= $1 arg2= $2 arg3= $3"

shift

$ demo_shift alice helen jenny

arg1= alice arg2= helen arg3= jenny

arg1= helen arg2= jenny arg3=

arg1= jenny arg2= arg3=

arg1= arg2= arg3=

Repeatedly using shift is a convenient way to loop over all the command line arguments in shell scripts that
expect an arbitrary number of arguments. See page 442 for a shell script that uses shift.

set: Initializes Command Line Arguments

When you call the set builtin with one or more arguments, it assigns the values of the arguments to the
positional parameters, starting with $1 (not available in tcsh). The following script uses set to assign values
to the positional parameters $1, $2, and $3:

$ cat set_it

set this is it

echo $3 $2 $1

$ set_it

it is this

Combining command substitution (page 329) with the set builtin is a convenient way to get standard output
of a command in a form that can be easily manipulated in a shell script. The following script shows how to
use date and set to provide the date in a useful format. The first command shows the output of date. Then
cat displays the contents of the dateset script. The first command in this script uses command substitution
to set the positional parameters to the output of the date utility. The next command, echo $*, displays all
positional parameters resulting from the previous set. Subsequent commands display the values of
parameters $1, $2, $3, and $4. The final command displays the date in a format you can use in a letter or
report:

$ date

Wed Jan 5 23:39:18 PST 2005

$ cat dateset

set $(date)

echo $*

echo

echo "Argument 1: $1"

echo "Argument 2: $2"

echo "Argument 3: $3"

echo "Argument 6: $6"

echo

echo "$2 $3, $6"

$ dateset

Wed Jan 5 23:39:25 PST 2005

Argument 1: Wed

Argument 2: Jan

Argument 3: 5

Argument 6: 2005

Jan 5, 2005

You can also use the +format argument to date (page 630) to modify the format of its output.

When used without any arguments, set displays a list of the shell variables that are set, including user-
created variables and keyword variables. Under bash, this list is the same as that displayed by declare and
typeset when they are called without any arguments.

The set builtin also accepts options that let you customize the behavior of the shell (not available in tcsh).
For more information refer to "set ±o: Turns Shell Features On and Off" on page 319.

Expanding Null and Unset Variables

The expression ${name} (or just $name if it is not ambiguous) expands to the value of the name variable. If
name is null or not set, bash expands ${name} to a null string. The Bourne Again Shell provides the
following alternatives to accepting the expanded null string as the value of the variable:

Use a default value for the variable.

Use a default value and assign that value to the variable.

Display an error.

You can choose one of these alternatives by using a modifier with the variable name. In addition, you can
use set –o nounset (page 321) to cause bash to display an error and exit from a script whenever an unset
variable is referenced.

: – Uses a Default Value

The :– modifier uses a default value in place of a null or unset variable while allowing a nonnull variable to
represent itself:

${name:–default}

The shell interprets :– as "If name is null or unset, expand default and use the expanded value in place of
name ; else use name ." The following command lists the contents of the directory named by the LIT
variable. If LIT is null or unset, it lists the contents of /home/alex/literature:

$ ls ${LIT:-/home/alex/literature}

The default can itself have variable references that are expanded:

$ ls ${LIT:-$HOME/literature}

:= Assigns a Default Value

The :– modifier does not change the value of a variable. You may want to change the value of a null or unset
variable to its default in a script, however. You can do so with the := modifier:

${name:=default}

The shell expands the expression ${name :=default } in the same manner as it expands ${name :–default } but
also sets the value of name to the expanded value of default . If a script contains a line such as the following
and LIT is unset or null at the time this line is executed, LIT is assigned the value /home/alex/literature:

$ ls ${LIT:=/home/alex/literature}

: builtin

Shell scripts frequently start with the : (colon) builtin followed on the same line by the := expansion modifier
to set any variables that may be null or unset. The : builtin evaluates each token in the remainder of the
command line but does not execute any commands. Without the leading colon (:), the shell evaluates and

attempts to execute the "command" that results from the evaluation.

Use the following syntax to set a default for a null or unset variable in a shell script (there is a SPACE
following the first colon):

: ${name:=default}

When a script needs a directory for temporary files and uses the value of TEMPDIR for the name of this
directory, the following line makes TEMPDIR default to /tmp:

: ${TEMPDIR:=/tmp}

:? Displays An Error Message

Sometimes a script needs the value of a variable but you cannot supply a reasonable default at the time you
write the script. If the variable is null or unset, the :? modifier causes the script to display an error message
and terminate with an exit status of 1:

${name:?message}

You must quote message if it contains SPACEs. If you omit message , the shell displays the default error
message (parameter null or not set). Interactive shells do not exit when you use :? . In the following
command, TESTDIR is not set so the shell displays on standard error the expanded value of the string
following :?. In this case the string includes command substitution for date, with the %T format being
followed by the string error, variable not set.

cd ${TESTDIR:?$(date +%T) error, variable not set.}

bash: TESTDIR: 16:16:14 error, variable not set.

 < Day Day Up >

 < Day Day Up >

Builtin Commands

Builtin commands were introduced in Chapter 5. Commands that are built into a shell do not fork a new
process when you execute them. This section discusses the type, read, exec, trap, kill, and getopts
builtins and concludes with Table 11-6 on page 500, which lists many bash builtins. See Table 9-10 on page
377 for a list of tcsh builtins.

type: Displays Information About a Command

The type builtin (use which under tcsh) provides information about a command:

$ type cat echo who if lt

cat is hashed (/bin/cat)

echo is a shell builtin

who is /usr/bin/who

if is a shell keyword

lt is aliased to 'ls -ltrh | tail'

The preceding output shows the files that would be executed if you gave cat or who as a command. Because
cat has already been called from the current shell, it is in the hash table (page 878) and type reports that cat
is hashed. The output also shows that a call to echo runs the echo builtin, if is a keyword, and lt is an alias.

read: Accepts User Input

When you begin writing shell scripts, you soon realize that one of the most common tasks for user-created
variables is storing information a user enters in response to a prompt. Using read, scripts can accept input
from the user and store that input in variables. See page 361 for information about reading user input under
tcsh. The read builtin reads one line from standard input and assigns the words on the line to one or more
variables:

$ cat read1

echo -n "Go ahead: "

read firstline

echo "You entered: $firstline"

$ read1

Go ahead: This is a line.

You entered: This is a line.

The first line of the read1 script uses echo to prompt you to enter a line of text. The –n option suppresses the
following NEWLINE, allowing you to enter a line of text on the same line as the prompt. The second line
reads the text into the variable firstline. The third line verifies the action of read by displaying the value of
firstline. The variable is quoted (along with the text string) in this example because you, as the script writer,
cannot anticipate which characters the user might enter in response to the prompt. Consider what would
happen if the variable were not quoted and the user entered * in response to the prompt:

$ cat read1_no_quote

echo -n "Go ahead: "

read firstline

echo You entered: $firstline

$ read1_no_quote

Go ahead: *

You entered: read1 read1_no_quote script.1

$ ls

read1 read1_no_quote script.1

The ls command lists the same words as the script, demonstrating that the shell expands the asterisk into a
list of files in the working directory. When the variable $firstline is surrounded by double quotation marks,
the shell does not expand the asterisk. Thus the read1 script behaves correctly:

$ read1

Go ahead: *

You entered: *

If you want the shell to interpret the special meanings of special characters, do not use quotation marks.

REPLY

The read builtin has features that can make it easier to use. When you do not specify a variable to receive
read's input, bash puts the input into the variable named REPLY. You can use the –p option to prompt the

user instead of using a separate echo command. The following read1a script performs exactly the same task
as read1:

$ cat read1a

read -p "Go ahead: "

echo "You entered: $REPLY"

The read2 script prompts for a command line and reads the user's response into the variable cmd. The script
then attempts to execute the command line that results from the expansion of the cmd variable:

$ cat read2

read -p "Enter a command: " cmd

$cmd

echo "Thanks"

In the following example, read2 reads a command line that calls the echo builtin. The shell executes the
command and then displays Thanks. Next read2 reads a command line that executes the who utility:

$ read2

Enter a command: echo Please display this message.

Please display this message.

Thanks

$ read2

Enter a command: who

alex pts/4 Jun 17 07:50 (:0.0)

scott pts/12 Jun 17 11:54 (bravo.example.com)

Thanks

If cmd does not expand into a valid command line, the shell issues an error message:

$ read2

Enter a command: xxx

./read2: line 2: xxx: command not found

Thanks

The read3 script reads values into three variables. The read builtin assigns one word (a sequence of
nonblank characters) to each variable:

$ cat read3

read -p "Enter something: " word1 word2 word3

echo "Word 1 is: $word1"

echo "Word 2 is: $word2"

echo "Word 3 is: $word3"

$ read3

Enter something: this is something

Word 1 is: this

Word 2 is: is

Word 3 is: something

When you enter more words than read has variables, read assigns one word to each variable, with all
leftover words going to the last variable. Both read1 and read2 assigned the first word and all leftover words
to the one variable they each had to work with. In the following example, read accepts five words into three
variables, assigning the first word to the first variable, the second word to the second variable, and the third
through fifth words to the third variable:

$ read3

Enter something: this is something else, really.

Word 1 is: this

Word 2 is: is

Word 3 is: something else, really.

Table 11-4 lists some of the options supported by the read builtin.

Table 11-4. read options

Option Function

–a aname (array) Assigns each word of input to an element of array
aname .

–d delim (delimiter) Uses delim to terminate the input instead of
NEWLINE.

–e (Readline) If input is coming from a keyboard, use the
Readline Library (page 305) to get input.

–n num (number of characters) Reads num characters and returns. As soon as the
user types num characters, read returns; there is no
need to press RETURN.

–p prompt (prompt) Displays prompt on standard error without a
terminating NEWLINE before reading input. Displays
prompt only when input comes from the keyboard.

–s (silent) Does not echo characters.

–un (file descriptor) Uses the integer n as the file descriptor that read
takes its input from.

read –u4 arg1 arg2

is equivalent to

read arg1 arg2 <&4

See "File Descriptors" (page 470) for a discussion
of redirection and file descriptors.

The read builtin returns an exit status of 0 if it successfully reads any data. It has a nonzero exit status when
it reaches the EOF (end of file). The following example runs a while loop from the command line. It takes its
input from the names file and terminates after reading the last line from names.

$ cat names

Alice Jones

Robert Smith

Alice Paulson

John Q. Public

$ while read first rest

> do

> echo $rest, $first

> done < names

Jones, Alice

Smith, Robert

Paulson, Alice

Q. Public, John

$

The placement of the redirection symbol (<) for the while structure is critical. It is important that you place
the redirection symbol at the done statement and not at the call to read.

optional

Each time you redirect input, the shell opens the input file and repositions the read pointer at the
start of the file:

$ read line1 < names; echo $line1; read line2 < names; echo $line2

Alice Jones

Alice Jones

Here each read opens names and starts at the beginning of the names file. In the following
example, names is opened once, as standard input of the subshell created by the parentheses. Each
read then reads successive lines of standard input.

$ (read line1; echo $line1; read line2; echo $line2) < names

Alice Jones

Robert Smith

Another way to get the same effect is to open the input file with exec and hold it open (refer to
"File Descriptors" on page 470):

$ exec 3< names

$ read -u3 line1; echo $line1; read -u3 line2; echo $line2

Alice Jones

Robert Smith

$ exec 3<&-

exec: Executes a Command

The exec builtin (not available in tcsh) has two primary purposes: to run a command without creating a new
process and to redirect a file descriptor—including standard input, output, or error—of a shell script from
within the script (page 470). When the shell executes a command that is not built into the shell, it typically
creates a new process. The new process inherits environment (global or exported) variables from its parent
but does not inherit variables that are not exported by the parent. (For more information refer to "Locality of
Variables" on page 475.) In contrast, exec executes a command in place of (overlays) the current process.

exec versus . (dot)

Insofar as exec runs a command in the environment of the original process, it is similar to the . (dot)
command (page 259). However, unlike the . command, which can run only shell scripts, exec can run both
scripts and compiled programs. Also, whereas the . command returns control to the original script when it
finishes running, exec does not. Finally, the . command gives the new program access to local variables,
whereas exec does not.

exec runs a command

The exec builtin used for running a command has the following syntax:

exec command arguments

exec does not return control

Because the shell does not create a new process when you use exec, the command runs more quickly.

However, because exec does not return control to the original program, it can be used only as the last
command that you want to run in a script. The following script shows that control is not returned to the
script:

$ cat exec_demo

who

exec date

echo "This line is never displayed."

$ exec_demo

jenny pts/7 May 30 7:05 (bravo.example.com)

hls pts/1 May 30 6:59 (:0.0)

Mon May 30 11:42:56 PDT 2005

The next example, a modified version of the out script (page 442), uses exec to execute the final command
the script runs. Because out runs either cat or less and then terminates, the new version, named out2, uses
exec with both cat and less:

$ cat out2

if [$# -eq 0]

 then

 echo "Usage: out2 [-v] filenames" 1>&2

 exit 1

fi

if ["$1" = "-v"]

 then

 shift

 exec less "$@"

 else

 exec cat -- "$@"

fi

exec redirects input and output

The second major use of exec is to redirect a file descriptor—including standard input, output, or
error—from within a script. The next command causes all subsequent input to a script that would have come
from standard input to come from the file named infile:

exec < infile

Similarly the following command redirects standard output and standard error to outfile and errfile,
respectively:

exec > outfile 2> errfile

When you use exec in this manner, the current process is not replaced with a new process, and exec can be
followed by other commands in the script.

/dev/tty

When you redirect the output from a script to a file, you must make sure that the user sees any prompts the
script displays. The /dev/tty device is a pseudonym for the screen the user is working on; you can use this
device to refer to the user's screen without knowing which device it is. (The tty utility displays the name of
the device you are using.) By redirecting the output from a script to /dev/tty, you ensure that prompts and
messages go to the user's terminal, regardless of which terminal the user is logged in on. Messages sent to
/dev/tty are also not diverted if standard output and standard error from the script are redirected.

The to_screen1 script sends output to three places: standard output, standard error, and the user's screen.
When it is run with standard output and standard error redirected, to_screen1 still displays the message sent
to /dev/tty on the user's screen. The out and err files hold the output sent to standard output and standard
error.

$ cat to_screen1

echo "message to standard output"

echo "message to standard error" 1>&2

echo "message to the user" > /dev/tty

$ to_screen1 > out 2> err

message to the user

$ cat out

message to standard output

$ cat err

message to standard error

The following command redirects the output from a script to the user's screen:

exec > /dev/tty

Putting this command at the beginning of the previous script changes where the output goes. In to_screen2,
exec redirects standard output to the user's screen so the > /dev/tty is superfluous. Following the exec
command, all output sent to standard output goes to /dev/tty (the screen). Output to standard error is not
affected.

$ cat to_screen2

exec > /dev/tty

echo "message to standard output"

echo "message to standard error" 1>&2

echo "message to the user" > /dev/tty

$ to_screen2 > out 2> err

message to standard output

message to the user

One disadvantage of using exec to redirect the output to /dev/tty is that all subsequent output is redirected
unless you use exec again in the script.

You can also redirect the input to read (standard input) so that it comes from /dev/tty (the keyboard):

read name < /dev/tty

or

exec < /dev/tty

trap: Catches a Signal

A signal is a report to a process about a condition. Linux uses signals to report interrupts generated by the
user (for example, pressing the interrupt key) as well as bad system calls, broken pipes, illegal instructions,
and other conditions. The TRap builtin (tcsh uses onintr) catches, or traps, one or more signals, allowing
you to direct the actions a script takes when it receives a specified signal.

This discussion covers six signals that are significant when you work with shell scripts. Table 11-5 lists these
signals, the signal numbers that systems often ascribe to them, and the conditions that usually generate each
signal. Give the command kill –l, trap –l, or man 7 signal for a list of signal names.

When it traps a signal, a script takes whatever action you specify: It can remove files or finish any other
processing as needed, display a message, terminate execution immediately, or ignore the signal. If you do not
use trap in a script, any of the six actual signals listed in Table 11-5 (not EXIT, DEBUG, or ERR)
terminates the script. Because a process cannot trap a KILL signal, you can use kill –KILL (or kill –9) as a
last resort to terminate a script or any other process. (See page 497 for more information on kill.)

The TRap command has the following syntax:

trap ['commands'] [signal]

The optional commands part specifies the commands that the shell executes when it catches one of the
signals specified by signal . The signal can be a signal name or number—for example, INT or 2. If
commands is not present, trap resets the trap to its initial condition, which is usually to exit from the script.

The trap builtin does not require single quotation marks around commands as shown in the preceding
syntax, but it is a good practice to use them. The single quotation marks cause shell variables within the
commands to be expanded when the signal occurs, not when the shell evaluates the arguments to TRap. Even
if you do not use any shell variables in the commands , you need to enclose any command that takes
arguments within either single or double quotation marks. Quoting the commands causes the shell to pass to
trap the entire command as a single argument.

After executing the commands , the shell resumes executing the script where it left off. If you want trap to
prevent a script from exiting when it receives a signal but not to run any commands explicitly, you can
specify a null (empty) commands string, as shown in the locktty script (page 458). The following command
traps signal number 15 after which the script continues.

trap '' 15

The following script demonstrates how the TRap builtin can catch the terminal interrupt signal (2). You can
use SIGINT, INT, or 2 to specify this signal. The script returns an exit status of 1:

$ cat inter

#!/bin/bash

trap 'echo PROGRAM INTERRUPTED; exit 1' INT

while true

do

 echo "Program running."

 sleep 1

done

$ inter

Program running.

Program running.

Program running.

CONTROL-C

PROGRAM INTERRUPTED

$

: (null) builtin

The second line of inter sets up a trap for the terminal interrupt signal using INT. When trap catches the
signal, the shell executes the two commands between the single quotation marks in the trap command. The
echo builtin displays the message PROGRAM INTERRUPTED, exit terminates the shell running the
script, and the parent shell displays a prompt. If exit were not there, the shell would return control to the
while loop after displaying the message. The while loop repeats continuously until the script receives a
signal because the true utility always returns a true exit status. In place of true you can use the : (null)
builtin, which is written as a colon and always returns a 0 (true) status.

The trap builtin frequently removes temporary files when a script is terminated prematurely so that the files
are not left to clutter the filesystem. The following shell script, named addbanner, uses two traps to remove
a temporary file when the script terminates normally or owing to a hangup, software interrupt, quit, or
software termination signal:

$ cat addbanner

#!/bin/bash

script=$(basename $0)

if [! -r "$HOME/banner"]

 then

 echo "$script: need readable $HOME/banner file" 1>&2

 exit 1

fi

trap 'exit 1' 1 2 3 15

trap 'rm /tmp/$$.$script 2> /dev/null' 0

for file

do

 if [-r "$file" -a -w "$file"]

 then

 cat $HOME/banner $file > /tmp/$$.$script

 cp /tmp/$$.$script $file

 echo "$script: banner added to $file" 1>&2

 else

 echo "$script: need read and write permission for $file" 1>&2

 fi

done

When called with one or more filename arguments, addbanner loops through the files, adding a header to
the top of each. This script is useful when you use a standard format at the top of your documents, such as a
standard layout for memos, or when you want to add a standard header to shell scripts. The header is kept in a
file named ~/banner. Because addbanner uses the HOME variable, which contains the pathname of the
user's home directory, the script can be used by several users without modification. If Alex had written the
script with /home/alex in place of $HOME and then given the script to Jenny, either she would have had to
change it or addbanner would have used Alex's banner file when Jenny ran it (assuming Jenny had read
permission for the file).

The first trap in addbanner causes it to exit with a status of 1 when it receives a hangup, software interrupt
(terminal interrupt or quit signal), or software termination signal. The second TRap uses a 0 in place of
signal-number, which causes trap to execute its command argument whenever the script exits because it
receives an exit command or reaches its end. Together these traps remove a temporary file whether the
script terminates normally or prematurely. Standard error of the second trap is sent to /dev/null for cases in
which trap attempts to remove a nonexistent temporary file. In those cases rm sends an error message to
standard error; because standard error is redirected, the user does not see this message.

See page 458 for another example that uses TRap.

kill: Aborts a Process

The kill builtin sends a signal to a process or job. The kill command has the following syntax:

kill [– signal] PID

where signal is the signal name or number (for example, INT or 2) and PID is the process identification
number of the process that is to receive the signal. You can specify a job number (page 125) as %n in place
of PID . If you omit signal , kill sends a TERM (software termination, number 15) signal. For more
information on signal names and numbers see Table 11-5 on page 494.

The following command sends the TERM signal to job number 1:

$ kill -TERM %1

Because TERM is the default signal for kill, you can also give this command as kill %1. Give the
command kill –l (lowercase "l") to display a list of signal names.

A program that is interrupted often leaves matters in an unpredictable state: Temporary files may be left
behind (when they are normally removed), and permissions may be changed. A well-written application
traps, or detects, signals and cleans up before exiting. Most carefully written applications trap the INT, QUIT,
and TERM signals.

To terminate a program, first try INT (press CONTROL-C, if the job is in the foreground). Because an
application can be written to ignore these signals, you may need to use the KILL signal, which cannot be
trapped or ignored; it is a "sure kill." Refer to page 693 for more information on kill. See also the related
utility killall (page 695).

getopts: Parses Options

The getopts builtin (not available in tcsh) parses command line arguments, thereby making it easier to
write programs that follow the Linux argument conventions. The syntax for getopts is

getopts optstring varname [arg ...]

where optstring is a list of the valid option letters, varname is the variable that receives the options one at a
time, and arg is the optional list of parameters to be processed. If arg is not present, getopts processes the
command line arguments. If optstring starts with a colon (:), the script takes care of generating error
messages; otherwise, getopts generates error messages.

The getopts builtin uses the OPTIND (option index) and OPTARG (option argument) variables to store
option-related values. When a shell script starts, the value of OPTIND is 1. Each time getopts locates an
argument, it increments OPTIND to the index of the next option to be processed. If the option takes an
argument, bash assigns the value of the argument to OPTARG.

To indicate that an option takes an argument, follow the corresponding letter in optstring with a colon (:).
The option string dxo:lt:r indicates that getopts should search for – d, –x, – o, –l, –t, and –r options and
that the – o and –t options take arguments.

Using getopts as the test-command in a while control structure allows you to loop over the options one at a
time. The getopts builtin checks the option list for options that are in optstring . Each time through the loop,
getopts stores the option letter it finds in varname .

Suppose that you want to write a program that can take three options:

A –b option indicates that the program should ignore whitespace at the start of input lines.1.

A –t option followed by the name of a directory indicates that the program should use that directory for
temporary files. Otherwise, it should use /tmp.

2.

A –u option indicates that the program should translate all its output to uppercase.3.

In addition, the program should ignore all other options and end option processing when it encounters two
hyphens (– –).

The problem is to write the portion of the program that determines which options the user has supplied. The
following solution does not use getopts:

SKIPBLANKS=

TMPDIR=/tmp

CASE=lower

while [["$1" = -*]] # [[=]] does pattern match

do

 case $1 in

 -b) SKIPBLANKS=TRUE ;;

 -t) if [-d "$2"]

 then

 TMPDIR=$2

 shift

 else

 echo "$0: -t takes a directory argument." >&2

 exit 1

 fi ;;

 -u) CASE=upper ;;

 --) break ;; # Stop processing options

 *) echo "$0: Invalid option $1 ignored." >&2 ;;

 esac

 shift

done

This program fragment uses a loop to check and shift arguments while the argument is not – –. As long as
the argument is not two hyphens, the program continues to loop through a case statement that checks for
possible options. The – – case label breaks out of the while loop. The * case label recognizes any option; it
appears as the last case label to catch any unknown options, displays an error message, and allows processing
to continue. On each pass through the loop, the program does a shift to get to the next argument. If an
option takes an argument, the program does an extra shift to get past that argument.

The following program fragment processes the same options, but uses getopts:

SKIPBLANKS=

TMPDIR=/tmp

CASE=lower

while getopts :bt:u arg

do

 case $arg in

 b) SKIPBLANKS=TRUE ;;

 t) if [-d "$OPTARG"]

 then

 TMPDIR=$OPTARG

 else

 echo "$0: $OPTARG is not a directory." >&2

 exit 1

 fi ;;

 u) CASE=upper ;;

 :) echo "$0: Must supply an argument to -$OPTARG." >&2

 exit 1 ;;

 \?) echo "Invalid option -$OPTARG ignored." >&2 ;;

 esac

done

In this version of the code, the while structure evaluates the getopts builtin each time it comes to the top of
the loop. The getopts builtin uses the OPTIND variable to keep track of the index of the argument it is to
process the next time it is called. There is no need to call shift in this example.

In the getopts version of the script the case patterns do not start with a hyphen because the value of arg is
just the option letter (getopts strips off the hyphen). Also, getopts recognizes – – as the end of the options,
so you do not have to specify it explicitly as in the case statement in the first example.

Because you tell getopts which options are valid and which require arguments, it can detect errors in the
command line and handle them in two ways. This example uses a leading colon in optstring to specify that
you check for and handle errors in your code; when getopts finds an invalid option, it sets varname to ? and
OPTARG to the option letter. When it finds an option that is missing an argument, getopts sets varname to
: and OPTARG to the option lacking an argument.

The \? case pattern specifies the action to take when getopts detects an invalid option. The : case pattern
specifies the action to take when getopts detects a missing option argument. In both cases getopts does not
write any error message; it leaves that task to you.

If you omit the leading colon from optstring , both an invalid option and a missing option argument cause
varname to be assigned the string ?. OPTARG is not set and getopts writes its own diagnostic message to
standard error. Generally this method is less desirable because you have less control over what the user sees
when an error is made.

Using getopts will not necessarily make your programs shorter. Its principal advantages are that it provides
a uniform programming interface and it enforces standard option handling.

A Partial List of Builtins

Table 11-6 lists some of the bash builtins. See "Listing bash builtins" on page 133 for instructions on how to
display complete lists of builtins.

 < Day Day Up >

 < Day Day Up >

Expressions

An expression is composed of constants, variables, and operators that can be processed to return a value.
This section covers arithmetic, logical, and conditional expressions as well as operators. Table 11-8 on page
505 lists the bash operators.

Table 11-8. Operators

Type of operator/operator Function

Post

var++

var – –

Postincrement

Postdecrement

Pre

++var

– –var

Preincrement

Predecrement

Unary

– Unary minus

+ Unary plus

Negation

! Boolean NOT (logical negation)

~ Complement (bitwise negation)

Exponentiation

** Exponent

Multiplication,
division,remainder

* Multiplication

/ Division

% Remainder

Addition, subtraction

– Subtraction

+ Addition

Bitwise shifts

<< Left bitwise shift

>> Right bitwise shift

Comparison

<= Less than or equal

>= Greater than or equal

< Less than

> Greater than

Equality, inequality

= = Equality

!= Inequality

Bitwise

& Bitwise AND

^ Bitwise XOR (exclusive OR)

| Bitwise OR

Boolean (logical)

&& Boolean AND

|| Boolean OR

Conditional evaluation

? : Ternary operator

Assignment

=, *=, /=, %=, + =, – =,

<< =, >>=, &=, ^=, |=

Assignment

Comma

, Comma

Arithmetic Evaluation

The Bourne Again Shell can perform arithmetic assignments and evaluate many different types of arithmetic
expressions, all using integers. The shell performs arithmetic assignments in a number of ways. One is with
arguments to the let builtin:

$ let "VALUE=VALUE * 10 + NEW"

In the preceding example, the variables VALUE and NEW contain integer values. Within a let statement

you do not need to use dollar signs ($) in front of variable names. Double quotation marks must enclose a
single argument, or expression, that contains SPACEs. Because most expressions contain SPACEs and need
to be quoted, bash accepts ((expression)) as a synonym for let "expression ", obviating the need for both
quotation marks and dollar signs:

$ ((VALUE=VALUE * 10 + NEW))

You can use either form wherever a command is allowed and can remove the SPACEs if you like. In the
following example, the asterisk (*) does not need to be quoted because the shell does not perform pathname
expansion on the right side of an assignment (page 280):

$ let VALUE=VALUE*10+NEW

Because each argument to let is evaluated as a separate expression, you can assign values to more than one
variable on a single line:

$ let "COUNT = COUNT + 1" VALUE=VALUE*10 +NEW

You need to use commas to separate multiple assignments within a set of double parentheses:

$ ((COUNT = COUNT + 1, VALUE=VALUE*10 +NEW))

tip: Arithmetic evaluation versus arithmetic expansion

Arithmetic evaluation differs from arithmetic expansion. As explained on page 327, arithmetic
expansion uses the syntax $((expression)), evaluates expression , and replaces $((expression)) with
the result. You can use arithmetic expansion to display the value of an expression or to assign that
value to a variable.

Arithmetic evaluation uses the let expression or ((expression)) syntax, evaluates expression , and
returns a status code. You can use arithmetic evaluation to perform a logical comparison or an
assignment.

Logical expressions

You can use the ((expression)) syntax for logical expressions, although that task is frequently left to
[[expression]]. The next example expands the age_check script (page 327) to include logical arithmetic
evaluation in addition to arithmetic expansion:

$ cat age2

#!/bin/bash

echo -n "How old are you? "

read age

if ((30 < age && age < 60)); then

 echo "Wow, in $((60-age)) years, you'll be 60!"

 else

 echo "You are too young or too old to play."

fi

$ age2

How old are you? 25

You are too young or too old to play.

The test-statement for the if structure evaluates two logical comparisons joined by a Boolean AND and
returns 0 (true) if they are both true or 1 (false) otherwise.

Logical Evaluation (Conditional Expressions)

The syntax of a conditional expression is

[[expression]]

where expression is a Boolean (logical) expression. You must precede a variable name with a dollar sign ($)
within expression . The result of executing this builtin, like the test builtin, is a return status. The conditions
allowed within the brackets are almost a superset of those accepted by test (page 794). Where the test
builtin uses –a as a Boolean AND operator, [[expression]] uses &&. Similarly, where test uses –o as a
Boolean OR operator, [[expression]] uses ||.

You can replace the line that tests age in the age2 script (preceding) with the following conditional
expression. You must surround the [[and]] tokens with whitespace or a command terminator, and place
dollar signs before the variables:

if [[30 < $age && $age < 60]]; then

You can also use test's relational operators –gt, –ge, –lt, –le, – eq, and –ne :

if [[30 -lt $age && $age -lt 60]]; then

String comparisons

The test builtin tests whether strings are equal or unequal. The [[expression]] syntax adds comparison
tests for string operators. The > and < operators compare strings for order (for example, "aa" < "bbb"). The
= operator tests for pattern match, not just equality: [[string = pattern]] is true if string matches pattern .
This operator is not symmetrical; the pattern must appear on the right side of the equal sign. For example, [[
artist = a*]] is true (= 0), whereas [[a* = artist]] is false (= 1):

$ [[artist = a*]]

$ echo $?

0

$ [[a* = artist]]

$ echo $?

1

The next example uses a command list that starts with a compound condition. The condition tests that the
directory bin and the file src/myscript.bash exist. If this is true, cp copies src/myscript.bash to
bin/myscript. If the copy succeeds, chmod makes myscript executable. If any of these steps fails, echo
displays a message.

$ [[-d bin && -f src/myscript.bash]] && cp src/myscript.bash \

bin/myscript && chmod +x bin/myscript || echo "Cannot make \

executable version of myscript"

String Pattern Matching

The Bourne Again Shell provides string pattern-matching operators that can manipulate pathnames and other

strings. These operators can delete from strings prefixes or suffixes that match patterns. The four operators
are listed in Table 11-7.

Table 11-7. String operators

Operator Function

Removes minimal matching prefixes

Removes maximal matching prefixes

% Removes minimal matching suffixes

%% Removes maximal matching suffixes

The syntax for these operators is

${varname op pattern}

where op is one of the operators listed in Table 11-7 and pattern is a match pattern similar to that used for
filename generation. These operators are commonly used to manipulate pathnames so as to extract or remove
components or to change suffixes:

$ SOURCEFILE=/usr/local/src/prog.c

$ echo ${SOURCEFILE#/*/}

local/src/prog.c

$ echo ${SOURCEFILE##/*/}

prog.c

$ echo ${SOURCEFILE%/*}

/usr/local/src

$ echo ${SOURCEFILE%%/*}

$ echo ${SOURCEFILE%.c}

/usr/local/src/prog

$ CHOPFIRST=${SOURCEFILE#/*/}

$ echo $CHOPFIRST

local/src/prog.c

$ NEXT=${CHOPFIRST%%/*}

$ echo $NEXT

local

Here the string-length operator, ${#name}, is replaced by the number of characters in the value of name:

$ echo $SOURCEFILE

/usr/local/src/prog.c

$ echo ${#SOURCEFILE}

21

Operators

Arithmetic expansion and arithmetic evaluation use the same syntax, precedence, and associativity of
expressions as the C language. Table 11-8 lists operators in order of decreasing precedence (priority of
evaluation); each group of operators has equal precedence. Within an expression you can use parentheses to
change the order of evaluation.

Pipe

The pipe token has higher precedence than operators. You can use pipes anywhere in a command that you
can use simple commands. For example, the command line

$ cmd1 | cmd2 || cmd3 | cmd4 && cmd5 | cmd6

is interpreted as if you had typed

$ ((cmd1 | cmd2) || (cmd3 | cmd4)) && (cmd5 | cmd6)

tip: Do not rely on rules of precedence: use parentheses

Do not rely on the precedence rules when you use compound commands. Instead, use parentheses
to explicitly state the order in which you want the shell to interpret the commands.

Increment and decrement operators

The postincrement, postdecrement, preincrement, and predecrement operators work with variables. The pre-
operators, which appear in front of the variable name as in ++COUNT and – –VALUE, first change the
value of the variable (++ adds 1; – – subtracts 1) and then provide the result for use in the expression. The
post- operators appear after the variable name as in COUNT++ and VALUE– –; they first provide the
unchanged value of the variable for use in the expression and then change the value of the variable.

$ N=10

$ echo $N

10

$ echo $((--N+3))

12

$ echo $N

9

$ echo $((N++ - 3))

6

$ echo $N

10

Remainder

The remainder operator (%) gives the remainder when its first operand is divided by its second. For
example, the expression $((15%7)) has the value 1.

Boolean

The result of a Boolean operation is either 0 (false) or 1 (true).

The && (AND) and || (OR) Boolean operators are called short-circuiting operators. If the result of using one
of these operators can be decided by looking only at the left operand, the right operand is not evaluated. The
&& operator causes the shell to test the exit status of the command preceding it. If the command succeeded,
bash executes the next command; otherwise, it skips the remaining commands on the command line. You
can use this construct to execute commands conditionally:

$ mkdir bkup && cp -r src bkup

This compound command creates the directory bkup. If mkdir succeeds, the contents of directory src is
copied recursively to bkup.

The || separator also causes bash to test the exit status of the first command but has the opposite effect: The
remaining command(s) are executed only if the first one failed (that is, exited with nonzero status):

$ mkdir bkup || echo "mkdir of bkup failed" >> /tmp/log

The exit status of a command list is the exit status of the last command in the list. You can group lists with
parentheses. For example, you could combine the previous two examples as

$ (mkdir bkup && cp -r src bkup) || echo "mkdir failed" >> /tmp/log

In the absence of parentheses, && and || have equal precedence and are grouped from left to right. The
following examples use the true and false utilities. These utilities do nothing and return true (0) and false
(1) exit statuses, respectively:

$ false; echo $?

1

The $? variable holds the exit status of the preceding command (page 479). The next two commands yield
an exit status of 1 (false):

$ true || false && false

$ echo $?

1

$ (true || false) && false

$ echo $?

1

Similarly the next two commands yield an exit status of 0 (true):

$ false && false || true

$ echo $?

0

$ (false && false) || true

$ echo $?

0

Because || and && have equal precedence, the parentheses in the two preceding pairs of examples do
nothing to change the order of operations.

Because the expression on the right side of a short-circuiting operator may never get executed, you must be
careful with assignment statements in that location. The following example demonstrates what can happen:

$ ((N=10,Z=0))

$ echo $((N || ((Z+=1))))

1

$ echo $Z

0

Because the value of N is nonzero, the result of the || (OR) operation is 1 (true), no matter what the value of
the right side is. As a consequence ((Z+=1)) is never evaluated and Z is not incremented.

Ternary

The ternary operator, ? : , decides which of two expressions should be evaluated, based on the value returned
from a third expression:

expression1 ? expression2 : expression3

If expression1 produces a false (0) value, expression3 is evaluated; otherwise, expression2 is evaluated. The
value of the entire expression is the value of expression2 or expression3 , depending on which one is
evaluated. If expression1 is true, expression3 is not evaluated. If expression1 is false expression2 is not
evaluated:

$ ((N=10,Z=0,COUNT=1))

$ ((T=N>COUNT?++Z:--Z))

$ echo $T

1

$ echo $Z

1

Assignment

The assignment operators, such as + =, are shorthand notations. For example, N+ =3 is the same as
((N=N+3)).

Other bases

The following commands use the syntax base#n to assign base 2 (binary) values. First v1 is assigned a value
of 0101 (5 decimal) and v2 is assigned a value of 0110 (6 decimal). The echo utility verifies the decimal
values.

$ ((v1=2#0101))

$ ((v2=2#0110))

$ echo "$v1 and $v2"

5 and 6

Next the bitwise AND operator (&) selects the bits that are on in both 5 (0101 binary) and 6 (0110 binary).
The result is binary 0100, which is 4 decimal.

$ echo $((v1 & v2))

4

The Boolean AND operator (&&) produces a result of 1 if both of its operands are nonzero and a result of 0
otherwise. The bitwise inclusive OR operator (|) selects the bits that are on in either 0101 or 0110, resulting
in 0111, which is 7 decimal. The Boolean OR operator (| |) produces a result of 1 if either of its operands is
nonzero and a result of 0 otherwise.

$ echo $((v1 && v2))

1

$ echo $((v1 | v2))

7

$ echo $((v1 || v2))

1

Next the bitwise exclusive OR operator (^) selects the bits that are on in either, but not both, of the operands
0101 and 0110, yielding 0011, which is 3 decimal. The Boolean NOT operator (!) produces a result of 1 if its
operand is 0 and a result of 0 otherwise. Because the exclamation point in $((! v1)) is enclosed within
double parentheses, it does not need to be escaped to prevent the shell from interpreting the exclamation
point as a history event. The comparison operators produce a result of 1 if the comparison is true and a result
of 0 otherwise.

$ echo $((v1 ^ v2))

3

$ echo $((! v1))

0

$ echo $((v1 < v2))

1

$ echo $((v1 > v2))

0

 < Day Day Up >

 < Day Day Up >

Shell Programs

The Bourne Again Shell has many features that make it a good programming language. The structures that
bash provides are not a random assortment. Rather, they have been chosen to provide most of the structural
features that are in other procedural languages, such as C or Pascal. A procedural language provides the
ability to

Declare, assign, and manipulate variables and constant data. The Bourne Again Shell provides string
variables, together with powerful string operators, and integer variables, along with a complete set of
arithmetic operators.

Break large problems into small ones by creating subprograms. The Bourne Again Shell allows you to
create functions and call scripts from other scripts. Shell functions can be called recursively; that is, a
Bourne Again Shell function can call itself. You may not need to use recursion often, but it may allow
you to solve some apparently difficult problems with ease.

Execute statements conditionally, using statements such as if.

Execute statements iteratively, using statements such as while and for.

Transfer data to and from the program, communicating with both data files and users.

Programming languages implement these capabilities in different ways but with the same ideas in mind.
When you want to solve a problem by writing a program, you must first figure out a procedure that leads you
to a solution—that is, an algorithm. Typically you can implement the same algorithm in roughly the same
way in different programming languages, using the same kinds of constructs in each language.

Chapter 8 and this chapter have introduced numerous bash features, many of which are useful for interactive
use as well as for shell programming. This section develops two complete shell programs, demonstrating
how to combine some of these features effectively. The programs are presented as problems for you to solve
along with sample solutions.

A Recursive Shell Script

A recursive construct is one that is defined in terms of itself. Alternatively, you might say that a recursive
program is one that can call itself. This may seem circular, but it need not be. To avoid circularity a recursive
definition must have a special case that is not self-referential. Recursive ideas occur in everyday life. For
example, you can define an ancestor as your mother, your father, or one of their ancestors. This definition is
not circular; it specifies unambiguously who your ancestors are: your mother or your father, or your mother's
mother or father or your father's mother or father, and so on.

A number of Linux system utilities can operate recursively. See the –R option to the chmod (page 604),
chown (page 608), and cp (page 616) utilities for examples.

Solve the following problem by using a recursive shell function:

Write a shell function named makepath that, given a pathname, creates all components in that
pathname as directories. For example, the command makepath a/b/c/d should create directories a,
a/b, a/b/c, and a/b/c/d. (The mkdir utility supports a –p option that does exactly this. Solve the
problem without using mkdir –p.)

One algorithm for a recursive solution follows:

Examine the path argument. If it is a null string or if it names an existing directory, do nothing and
return.

1.

If it is a simple path component, create it (using mkdir) and return.2.

Otherwise, call makepath using the path prefix of the original argument. This step eventually creates
all the directories up to the last component, which you can then create with mkdir.

3.

In general, a recursive function must invoke itself with a simpler version of the problem than it was given
until it is finally called with a simple case that does not need to call itself. Following is one possible solution
based on this algorithm:

makepath

this is a function

enter it at the keyboard, do not run it as a shell script

#

function makepath()

{

 if [[${#1} -eq 0 || -d "$1"]]

 then

 return 0 # Do nothing

 fi

 if [["${1%/*}" = "$1"]]

 then

 mkdir $1

 return $?

 fi

 makepath ${1%/*} || return 1

 mkdir $1

 return $?

}

In the test for a simple component (the if statement in the middle of the function), the left expression is the
argument after the shortest suffix that starts with a / character has been stripped away (page 504). If there is
no such character (for example, if $1 is alex), nothing is stripped off and the two sides are equal. If the
argument is a simple filename preceded by a slash, such as /usr, the expression ${1%/*} evaluates to a null
string. To make the function work in this case, you must take two precautions: Put the left expression within
quotation marks and ensure that the recursive function behaves sensibly when it is passed a null string as an
argument. In general, good programs are robust: They should be prepared for borderline, invalid, or
meaningless input and behave appropriately in such cases.

By giving the following command from the shell you are working in, you turn on debugging tracing so that
you can watch the recursion work:

$ set -o xtrace

(Give the same command, but replace the hyphen with a plus sign (+) to turn debugging off.) With
debugging turned on, the shell displays each line in its expanded form as it executes the line. A + precedes
each line of debugging output. In the following example, the first line that starts with + shows the shell
calling makepath. The makepath function is called from the command line with arguments of a/b/c.
Subsequently it calls itself with arguments of a/b and finally a. All the work is done (using mkdir) as each
call to makepath returns.

$ makepath a/b/c

+ makepath a/b/c

+ [[5 -eq 0]]

+ [[-d a/b/c]]

+ [[a/b = \a\/\b\/\c]]

+ makepath a/b

+ [[3 -eq 0]]

+ [[-d a/b]]

+ [[a = \a\/\b]]

+ makepath a

+ [[1 -eq 0]]

+ [[-d a]]

+ [[a = \a]]

+ mkdir a

+ return 0

+ mkdir a/b

+ return 0

+ mkdir a/b/c

+ return 0

The function works its way down the recursive path and back up again.

It is instructive to invoke makepath with an invalid path and see what happens. The following example, run
with debugging turned on, tries to create the path /a/b, which requires that you create directory a in the root
directory. Unless you have permission to write to the root directory, you are not permitted to create this
directory.

$ makepath /a/b

+ makepath /a/b

+ [[4 -eq 0]]

+ [[-d /a/b]]

+ [[/a = \/\a\/\b]]

+ makepath /a

+ [[2 -eq 0]]

+ [[-d /a]]

+ [['' = \/\a]]

+ makepath

+ [[0 -eq 0]]

+ return 0

+ mkdir /a

mkdir: cannot create directory '/a': Permission denied

+ return 1

+ return 1

The recursion stops when makepath is denied permission to create the /a directory. The error return is

passed all the way back, so the original makepath exits with nonzero status.

tip: Use local variables with recursive functions

The preceding example glossed over a potential problem that you may encounter when you use a
recursive function. During the execution of a recursive function, many separate instances of that
function may be active simultaneously. All but one of them are waiting for their child invocation to
complete.

Because functions run in the same environment as the shell that calls them, variables are implicitly
shared by a shell and a function it calls so that all instances of the function share a single copy of
each variable. Sharing variables can give rise to side effects that are rarely what you want. As a
rule, you should use typeset to make all variables of a recursive function be local variables. See
page 477 for more information.

The quiz Shell Script

Solve the following problem using a bash script:

Write a generic multiple-choice quiz program. The program should get its questions from data
files, present them to the user, and keep track of the number of correct and incorrect answers. The
user must be able to exit from the program at any time with a summary of results to that point.

The detailed design of this program and even the detailed description of the problem depend on a number of
choices: How will the program know which subjects are available for quizzes? How will the user choose a
subject? How will the program know when the quiz is over? Should the program present the same questions
(for a given subject) in the same order each time, or should it scramble them?

Of course, you can make many perfectly good choices that implement the specification of the problem. The
following details narrow the problem specification:

Each subject will correspond to a subdirectory of a master quiz directory. This directory will be named
in the environment variable QUIZDIR, whose default will be /usr/games/quiz. For example, you
could have the following directories correspond to the subjects engineering, art, and politics:
/usr/games/quiz/engineering, /usr/games/quiz/art, and /usr/games/quiz/politics.

Each subject can have several questions. Each question is represented by a file in its subject's directory.

The first line of each file that represents a question is the text of the question. If it takes more than one
line, you must escape the NEWLINE with a backslash. (This setup makes it easy to read a single question
with the read builtin.) The second line of the file is an integer that specifies the number of choices. The
next lines are the choices themselves. The last line is the correct answer. Following is a sample

question file:

Who discovered the principle of the lever?

4

Euclid

Archimedes

Thomas Edison

The Lever Brothers

Archimedes

The program presents all the questions in a subject directory. At any point the user can interrupt the
quiz with CONTROL-C, whereupon the program will summarize the results so far and exit. If the user
does not interrupt, the program summarizes the results and exits when it has asked all questions for the
chosen subject.

The program scrambles the questions in a subject before presenting them.

Following is a top-level design for this program:

1. Initialize. This involves a number of steps, such as setting the counts of the number of questions asked
so far and the number of correct and wrong answers to zero. Sets up to trap CONTROL-C.

2. Present the user with a choice of subjects and get the user's response.

3. Change to the corresponding subject directory.

4. Determine the questions to be asked (that is, the filenames in that directory). Arrange them in random
order.

5. Repeatedly present questions and ask for answers until the quiz is over or is interrupted by the user.

6. Present the results and exit.

Clearly some of these steps (such as step 3) are simple, whereas others (such as step 4) are complex and
worthy of analysis on their own. Use shell functions for any complex step, and use the trap builtin to handle
a user interrupt.

Here is a skeleton version of the program with empty shell functions:

function initialize

{

Initializes variables.

}

function choose_subj

{

Writes choice to standard output.

}

function scramble

{

Stores names of question files, scrambled,

in an array variable named questions.

}

function ask

{

Reads a question file, asks the question, and checks the

answer. Returns 1 if the answer was correct, 0 otherwise. If it

encounters an invalid question file, exit with status 2.

}

function summarize

{

Presents the user's score.

}

Main program

initialize # Step 1 in top-level design

subject=$(choose_subj) # Step 2

[[$? -eq 0]] || exit 2 # If no valid choice, exit

cd $subject || exit 2 # Step 3

echo # Skip a line

scramble # Step 4

for ques in ${questions[*]}; do # Step 5

 ask $ques

 result=$?

 ((num_ques=num_ques+1))

 if [[$result == 1]]; then

 ((num_correct += 1))

 fi

 echo # Skip a line between questions

 sleep ${QUIZDELAY:=1}

done

summarize # Step 6

exit 0

To make reading the results a bit easier for the user, a sleep call appears inside the question loop. It delays
$QUIZDELAY seconds (default = 1) between questions.

Now the task is to fill in the missing pieces of the program. In a sense this program is being written
backward. The details (the shell functions) come first in the file but come last in the development process.
This common programming practice is called top-down design. In top-down design you fill in the broad
outline of the program first and supply the details later. In this way you break the problem up into smaller
problems, each of which you can work on independently. Shell functions are a great help in using the top-
down approach.

One way to write the initialize function follows. The cd command causes QUIZDIR to be the working
directory for the rest of the script and defaults to /usr/games/quiz if QUIZDIR is not set.

function initialize ()

{

trap 'summarize ; exit 0' INT # Handle user interrupts

num_ques=0 # Number of questions asked so far

num_correct=0 # Number answered correctly so far

first_time=true # true until first question is asked

cd ${QUIZDIR:=/usr/games/quiz} || exit 2

}

Be prepared for the cd command to fail. The directory may be unsearchable or conceivably another user may
have removed it. The preceding function exits with a status code of 2 if cd fails.

The next function, choose_subj, is a bit more complicated. It displays a menu using a select statement:

function choose_subj ()

{

subjects=($(ls))

PS3="Choose a subject for the quiz from the preceding list: "

select Subject in ${subjects[*]}; do

 if [[-z "$Subject"]]; then

 echo "No subject chosen. Bye." >&2

 exit 1

 fi

 echo $Subject

 return 0

done

}

The function first uses an ls command and command substitution to put a list of subject directories in the
subjects array. Next the select structure (page 466) presents the user with a list of subjects (the directories
found by ls) and assigns the chosen directory name to the Subject variable. Finally the function writes the
name of the subject directory to standard output. The main program uses command substitution to assign this
value to the subject variable [subject=$(choose_subj)].

The scramble function presents a number of difficulties. In this solution it uses an array variable (questions)
to hold the names of the questions. It scrambles the entries in an array using the RANDOM variable (each
time you reference RANDOM it has the value of a [random] integer between 0 and 32767):

function scramble ()

{

typeset -i index quescount

questions=($(ls))

quescount=${#questions[*]} # Number of elements

((index=quescount-1))

while [[$index > 0]]; do

 ((target=RANDOM % index))

 exchange $target $index

 ((index -= 1))

done

}

This function initializes the array variable questions to the list of filenames (questions) in the working
directory. The variable quescount is set to the number of such files. Then the following algorithm is used:
Let the variable index count down from quescount – 1 (the index of the last entry in the array variable). For
each value of index, the function chooses a random value target between 0 and index, inclusive. The
command

((target=RANDOM % index))

produces a random value between 0 and index – 1 by taking the remainder (the % operator) when
$RANDOM is divided by index. The function then exchanges the elements of questions at positions target
and index. It is convenient to do this in another function named exchange:

function exchange ()

{

temp_value=${questions[$1]}

questions[$1]=${questions[$2]}

questions[$2]=$temp_value

}

The ask function also uses the select structure. It reads the question file named in its argument and uses the
contents of that file to present the question, accept the answer, and determine whether the answer is correct.
(See the code that follows.)

The ask function uses file descriptor 3 to read successive lines from the question file, whose name was
passed as an argument and is represented by $1 in the function. It reads the question into the ques variable
and the number of questions into num_opts. The function constructs the variable choices by initializing it to

a null string and successively appending the next choice. Then it sets PS3 to the value of ques and uses a
select structure to prompt the user with ques. The select structure places the user's answer in answer, and
the function then checks it against the correct answer from the file.

The construction of the choices variable is done with an eye toward avoiding a potential problem. Suppose
that one answer has some whitespace in it. Then it might appear as two or more arguments in choices. To
avoid this problem, make sure that choices is an array variable. The select statement does the rest of the
work:

quiz

$ cat quiz

#!/bin/bash

remove the # on the following line to turn on debugging

set -o xtrace

#==================

function initialize ()

{

trap 'summarize ; exit 0' INT # Handle user interrupts

num_ques=0 # Number of questions asked so far

num_correct=0 # Number answered correctly so far

first_time=true # true until first question is asked

cd ${QUIZDIR:=/usr/games/quiz} || exit 2

}

#==================

function choose_subj ()

{

subjects=($(ls))

PS3="Choose a subject for the quiz from the preceding list: "

select Subject in ${subjects[*]}; do

 if [[-z "$Subject"]]; then

 echo "No subject chosen. Bye." >&2

 exit 1

 fi

 echo $Subject

 return 0

done

}

#==================

function exchange ()

{

temp_value=${questions[$1]}

questions[$1]=${questions[$2]}

questions[$2]=$temp_value

}

#==================

function scramble ()

{

typeset -i index quescount

questions=($(ls))

quescount=${#questions[*]} # Number of elements

((index=quescount-1))

while [[$index > 0]]; do

 ((target=RANDOM % index))

 exchange $target $index

 ((index -= 1))

done

}

#==================

function ask ()

{

exec 3<$1

read -u3 ques || exit 2

read -u3 num_opts || exit 2

index=0

choices=()

while ((index < num_opts)) ; do

 read -u3 next_choice || exit 2

 choices=("${choices[@]}" "$next_choice")

 ((index += 1))

done

read -u3 correct_answer || exit 2

exec 3<&-

if [[$first_time = true]]; then

 first_time=false

 echo -e "You may press the interrupt key at any time to quit.\n"

fi

PS3=$ques" " # Make $ques the prompt for select

 # and add some spaces for legibility.

select answer in "${choices[@]}"; do

 if [[-z "$answer"]]; then

 echo Not a valid choice. Please choose again.

 elif [["$answer" = "$correct_answer"]]; then

 echo "Correct!"

 return 1

 else

 echo "No, the answer is $correct_answer."

 return 0

 fi

done

}

#==================

function summarize ()

{

echo # Skip a line

if ((num_ques == 0)); then

 echo "You did not answer any questions"

 exit 0

fi

((percent=num_correct*100/num_ques))

echo "You answered $num_correct questions correctly, out of \

$num_ques total questions."

echo "Your score is $percent percent."

}

#==================

Main program

initialize # Step 1 in top-level design

subject=$(choose_subj) # Step 2

[[$? -eq 0]] || exit 2 # If no valid choice, exit

cd $subject || exit 2 # Step 3

echo # Skip a line

scramble # Step 4

for ques in ${questions[*]}; do # Step 5

 ask $ques

 result=$?

 ((num_ques=num_ques+1))

 if [[$result == 1]]; then

 ((num_correct += 1))

 fi

 echo # Skip a line between questions

 sleep ${QUIZDELAY:=1}

done

summarize # Step 6

exit 0

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The shell is a programming language. Programs written in this language are called shell scripts, or simply
scripts. Shell scripts provide the decision and looping control structures present in high-level programming
languages while allowing easy access to system utilities and user programs. Shell scripts can use functions to
modularize and simplify complex tasks.

Control structures

The control structures that use decisions to select alternatives are if...then, if...then...else, and if...then...elif.
The case control structure provides a multiway branch and can be used when you want to express
alternatives using a simple pattern-matching syntax.

The looping control structures are for...in, for, until, and while. These structures perform one or more tasks
repetitively.

The break and continue control structures alter control within loops: break transfers control out of a loop,
and continue transfers control immediately to the top of a loop.

The Here document allows input to a command in a shell script to come from within the script itself.

File descriptors

The Bourne Again Shell provides the ability to manipulate file descriptors. Coupled with the read and echo
builtins, file descriptors allow shell scripts to have as much control over input and output as programs
written in lower-level languages.

Variables

You assign attributes, such as readonly, to bash variables using the typeset builtin. The Bourne Again Shell
provides operators to perform pattern matching on variables, provide default values for variables, and
evaluate the length of variables. This shell also supports array variables and local variables for functions and
provides built-in integer arithmetic capability, using the let builtin and an expression syntax similar to the C
programming language.

Builtins

Bourne Again Shell builtins include type, read, exec, TRap, kill, and getopts. The type builtin displays
information about a command, including its location; read allows a script to accept user input.

The exec builtin executes a command without creating a new process. The new command overlays the
current process, assuming the same environment and PID number of that process. This builtin executes user
programs and other Linux commands when it is not necessary to return control to the calling process.

The TRap builtin catches a signal sent by Linux to the process running the script and allows you to specify
actions to be taken upon receipt of one or more signals. You can use this builtin to cause a script to ignore
the signal that is sent when the user presses the interrupt key.

The kill builtin allows you to terminate a running program. The getopts builtin parses command line
arguments, making it easier to write programs that follow standard Linux conventions for command line
arguments and options.

Utilities in scripts

In addition to using control structures, builtins, and functions, shell scripts generally call Linux utilities. The
find utility, for instance, is commonplace in shell scripts that search for files in the system hierarchy and can
perform a vast range of tasks, from simple to complex.

A well-written shell script adheres to standard programming practices, such as specifying the shell to execute
the script on the first line of the script, verifying the number and type of arguments that the script is called
with, displaying a standard usage message to report command line errors, and redirecting all informational
messages to standard error.

Expressions

There are two basic types of expressions: arithmetic and logical. Arithmetic expressions allow you to do
arithmetic on constants and variables, yielding a numeric result. Logical (Boolean) expressions compare
expressions or strings, or test conditions to yield a true or false result. As with all decisions within Linux
shell scripts, a true status is represented by the value zero; false, by any nonzero value.

 < Day Day Up >

 < Day Day Up >

Exercises

1. Rewrite the journal script of Chapter 8 (question 5, page 335) by adding commands to verify that
the user has write permission for a file named journal-file in the user's home directory, if such a
file exists. The script should take appropriate actions if journal-file exists and the user does not
have write permission to the file. Verify that the modified script works.

2. The special parameter "$@" is referenced twice in the out script (page 442). Explain what would
be different if the parameter "$*" were used in its place.

3. Write a filter that takes a list of files as input and outputs the basename (page 465) of each file in
the list.

4.

Write a function that takes a single filename as an argument and adds execute permission to
the file for the user.

a.

When might such a function be useful?b.

Revise the script so that it takes one or more filenames as arguments and adds execute
permission for the user for each file argument.

c.

What can you do to make the function available every time you log in?d.

Suppose that, in addition to having the function available on subsequent login sessions, you
want to make the function available now in your current shell. How would you do so?

e.

5. When might it be necessary or advisable to write a shell script instead of a shell function? Give as
many reasons as you can think of.

6. Write a shell script that displays the names of all directory files, but no other types of files, in the
working directory.

7. Write a script to display the time every 15 seconds. Read the date man page and display the time,
using the %r field descriptor. Clear the window (using the clear command) each time before you
display the time.

8. Enter the following script named savefiles, and give yourself execute permission to the file:

$ cat savefiles

#! /bin/bash

echo "Saving files in current directory in file savethem."

exec > savethem

for i in *

 do

 echo "==="

 echo "File: $i"

 echo "==="

 cat "$i"

 done

What error message do you get when you execute this script? Rewrite the script so that the
error does not occur, making sure the output still goes to savethem.

a.

What might be a problem with running this script twice in the same directory? Discuss a
solution to this problem.

b.

9. Read the bash man or info page, try some experiments, and answer the following questions:

How do you export a function?a.

What does the hash builtin do?b.

What happens if the argument to exec is not executable?c.

10. Using the find utility, perform the following tasks:

List all files in the working directory and all subdirectories that have been modified within
the last day.

a.

List all files that you have read access to on the system that are larger than 1 megabyte.b.

Remove all files named core from the directory structure rooted at your home directory.c.

List the inode numbers of all files in the working directory whose filenames end in .c.d.

List all files that you have read access to on the root filesystem that have been modified in the
last 30 days.

e.

11. Write a short script that tells you whether the permissions for two files, whose names are given as
arguments to the script, are identical. If the permissions for the two files are identical, output the
common permission field. Otherwise, output each filename followed by its permission field. (Hint:
Try using the cut utility.)

12. Write a script that takes the name of a directory as an argument and searches the file hierarchy
rooted at that directory for zero-length files. Write the names of all zero-length files to standard
output. If there is no option on the command line, have the script delete the file after displaying its
name, asking the user for confirmation, and receiving positive confirmation. A –f (force) option on
the command line indicates that the script should display the filename but not ask for confirmation
before deleting the file.

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

13. Write a script that takes a colon-separated list of items and outputs the items, one per line, to
standard output (without the colons).

14. Generalize the script written in exercise 13 so that the character separating the list items is given
as an argument to the function. If this argument is absent, the separator should default to a colon.

15. Write a function named funload that takes as its single argument the name of a file containing
other functions. The purpose of funload is to make all functions in the named file available in the
current shell; that is, funload loads the functions from the named file. To locate the file, funload
searches the colon-separated list of directories given by the environment variable FUNPATH.
Assume that the format of FUNPATH is the same as PATH and that searching FUNPATH is
similar to the shell's search of the PATH variable.

16. Rewrite bundle (page 469) so that the script it creates takes an optional list of filenames as
arguments. If one or more filenames are given on the command line, only those files should be re-
created; otherwise, all files in the shell archive should be re-created. For example, suppose that all
files with the filename extension .c are bundled into an archive named srcshell, and you want to
unbundle just the files test1.c and test2.c. The following command will unbundle just these two
files:

$ bash srcshell test1.c test2.c

17. What kind of links will the lnks script (page 445) not find? Why?

18. In principle, recursion is never necessary. It can always be replaced by an iterative construct, such
as while or until. Rewrite makepath (page 511) as a nonrecursive function. Which version do
you prefer? Why?

19. Lists are commonly stored in environment variables by putting a colon (:) between each of the list
elements. (Th e value of the PATH variable is a good example.) You can add an element to such
a list by catenating the new element to the front of the list, as in

PATH=/opt/bin:$PATH

If the element you add is already in the list, you now have two copies of it in the list. Write a shell
function named addenv that takes two arguments: (1) the name of a shell variable and (2) a string
to prepend to the list that is the value of the shell variable only if that string is not already an
element of the list. For example, the call

addenv PATH /opt/bin

would add /opt/bin to PATH only if that pathname is not already in PATH. Be sure that your
solution works even if the shell variable starts out empty. Also make sure that you check the list
elements carefully. If /usr/opt/bin is in PATH but /opt/bin is not, the example just given should
still add /opt/bin to PATH. (Hint: You may find this exercise easier to complete if you first write
a function locate_field that tells you whether a string is an element in the value of a variable.)

20. Write a function that takes a directory name as an argument and writes to standard output the
maximum of the lengths of all filenames in that directory. If the function's argument is not a
directory name, write an error message to standard output and exit with nonzero status.

21. Modify the function you wrote for exercise 20 to descend all subdirectories of the named
directory recursively and to find the maximum length of any filename in that hierarchy.

22. Write a function that lists the number of regular files, directories, block special files, character
special files, FIFOs, and symbolic links in the working directory. Do this in two different ways:

Use the first letter of the output of ls –l to determine a file's type.a.

Use the file type condition tests of the [[expression]] syntax to determine a file's type.b.

23. Modify the quiz program (page 518) so that the choices for a question are randomly arranged.

 < Day Day Up >

 < Day Day Up >

Chapter 12. The gawk Pattern Processing
Language

IN THIS CHAPTER

Syntax 528

Arguments 528

Options 529

Patterns 530

Actions 531

Variables 531

Functions 532

Associative Arrays 534

Control Structures 535

Examples 537

getline: Controlling Input 554

Coprocess: Two-Way I/O 557

Getting Input from a Network 558

Error Messages 559

The gawk (GNU awk) utility is a pattern-scanning and processing language that searches one or more files to
see whether they contain records (usually lines) that match specified patterns. It processes lines by
performing actions, such as writing the record to standard output or incrementing a counter, each time it
finds a match. As opposed to procedural languages, the gawk language is data driven : You describe the data
you want to work with and tell gawk what to do with the data once it finds it.

You can use gawk to generate reports or filter text. It works equally well with numbers and text; when you
mix the two, gawk usually comes up with the right answer. The authors of awk (Alfred V. Aho, Peter J.
Weinberger, and Brian W. Kernighan), on which gawk is based, designed the original utility to be easy to
use. To achieve this end they sacrificed execution speed.

The gawk utility takes many of its constructs from the C programming language. It includes the following
features:

Flexible format

Conditional execution

Looping statements

Numeric variables

String variables

Regular expressions

Relational expressions

C's printf

Coprocess execution

Network data exchange

 < Day Day Up >

 < Day Day Up >

Syntax

A gawk command line has the following syntax:

gawk [options] [program] [file-list]

gawk [options] –f program-file [file-list]

The gawk utility takes its input from files you specify on the command line or from standard input. An
advanced command, getline, gives you more choices about where input comes from and how you read it.
Using a coprocess, gawk can interact with another program or exchange data over a network. Unless you
redirect output from gawk, it goes to standard output.

 < Day Day Up >

 < Day Day Up >

Arguments

In the preceding syntax, program is a gawk program that you include on the command line. The program-
file is the name of the file that holds a gawk program. Putting the program on the command line allows you
to write short gawk programs without having to create a separate program-file . To prevent the shell from
interpreting the gawk commands as shell commands, enclose the program within single quotation marks.
Putting a long or complex program in a file can reduce errors and retyping.

The file-list contains pathnames of the ordinary files that gawk processes. These files are the input files.
When you do not specify a file-list , gawk takes input from standard input or as specified by getline (page
554) or a coprocess (page 557).

 < Day Day Up >

 < Day Day Up >

Options

– –field-separator fs

–F fs

 Uses fs as the value of the input field separator (FS variable).

– –file program-file

 –f program-file

 Reads the gawk program from the file named program-file
instead of the command line. You can specify this option more
than once on a command line.

– –help –W help

 Summarizes how to use gawk.

– –lint –W lint

 Warns about constructs that may not be correct or portable.

– –posix –W posix

 Runs a POSIX-compliant version of gawk. This option
introduces some restrictions; see the gawk man page for details.

– –traditional –W traditional

 Ignores the new GNU features in a gawk program, making the
program conform to UNIX awk.

– –assign var =value

–v var =value

 Assigns value to the variable var. The assignment takes place prior to execution
of the gawk program and is available within the BEGIN pattern (page 531). You
can specify this option more than once on a command line.

 < Day Day Up >

 < Day Day Up >

Notes

The gawk utility is the GNU version of UNIX awk. For convenience many Linux systems provide a link from
/bin/awk to /bin/gawk so that you can run the program using either name.

See page 554 for advanced gawk commands and page 559 for examples of gawk error messages.

 < Day Day Up >

 < Day Day Up >

Language Basics

A gawk program (from the command line or from program-file) consists of one or more lines containing a
pattern and/or action in the following format:

pattern { action }

The pattern selects lines from the input. The gawk utility performs the action on all lines that the pattern
selects. The braces surrounding the action enable gawk to differentiate it from the pattern . If a program line
does not contain a pattern , gawk selects all lines in the input. If a program line does not contain an action ,
gawk copies the selected lines to standard output.

To start, gawk compares the first line of input (from the file-list or standard input) with each pattern in the
program . If a pattern selects the line (if there is a match), gawk takes the action associated with the pattern .
If the line is not selected, gawk takes no action . When gawk has completed its comparisons for the first line
of input, it repeats the process for the next line of input, continuing this process of comparing subsequent
lines of input until it has read all of the input.

If several patterns select the same line, gawk takes the actions associated with each of the patterns in the
order in which they appear in the program . It is possible for gawk to send a single line from the input to
standard output more than once.

Patterns

You can use a regular expression (Appendix A), enclosed within slashes, as a pattern . The ~ operator tests
whether a field or variable matches a regular expression. The !~ operator tests for no match. You can
perform both numeric and string comparisons using the relational operators listed in Table 12-1. You can
combine any of the patterns using the Boolean operators || (OR) or && (AND).

Table 12-1. Relational operators

Relop Meaning

< Less than

<= Less than or equal to

= = Equal to

!= Not equal to

>= Greater than or equal to

> Greater than

BEGIN and END

Two unique patterns , BEGIN and END, execute commands before gawk starts its processing and after it
finishes. The gawk utility executes the actions associated with the BEGIN pattern before, and with the END
pattern after, it processes all the input.

, (comma)

The comma is the range operator. If you separate two patterns with a comma on a single gawk program line,
gawk selects a range of lines, beginning with the first line that matches the first pattern . The last line gawk
selects is the next subsequent line that matches the second pattern . If no line matches the second pattern ,
gawk selects every line through the end of the input. After gawk finds the second pattern , it begins the
process again by looking for the first pattern again.

Actions

The action portion of a gawk command causes gawk to take that action when it matches a pattern . When you
do not specify an action , gawk performs the default action , which is the print command (explicitly
represented as {print}). This action copies the record (normally a line—see "Variables") from the input to
standard output.

When you follow a print command with arguments, gawk displays only the arguments you specify. These
arguments can be variables or string constants. You can send the output from a print command to a file (>),
append it to a file (>>), or send it through a pipe to the input of another program (|). A coprocess (|&) is a
two-way pipe that exchanges data with a program running in the background (page 557).

Unless you separate items in a print command with commas, gawk catenates them. Commas cause gawk to
separate the items with the output field separator (OFS, normally a SPACE—see "Variables").

You can include several actions on one line by separating them with semicolons.

Comments

The gawk utility disregards anything on a program line following a pound sign (#). You can document a gawk
program by preceding comments with this symbol.

Variables

Although you do not need to declare gawk variables prior to their use, you can optionally assign initial values
to them. Unassigned numeric variables are initialized to 0; string variables are initialized to the null string. In
addition to user variables, gawk maintains program variables. You can use both user and program variables
in the pattern and in the action portion of a gawk program. Table 12-2 lists a few program variables.

Table 12-2. Variables

Variable Meaning

$0 The current record (as a single variable)

$1–$n Fields in the current record

FILENAME Name of the current input file (null for standard input)

FS Input field separator (default: SPACE or TAB)

NF Number of fields in the current record

NR Record number of the current record

OFS Output field separator (default: SPACE)

ORS Output record separator (default: NEWLINE)

RS Input record separator (default: NEWLINE)

In addition to initializing variables within a program, you can use the – –assign (–v) option to initialize
variables on the command line. This feature is useful when the value of a variable changes from one run of
gawk to the next.

By default the input and output record separators are NEWLINE characters. Thus gawk takes each line of
input to be a separate record and appends a NEWLINE to the end of each output record. By default the input
field separators are SPACE s and TABs. The default output field separator is a SPACE. You can change the
value of any of the separators at any time by assigning a new value to its associated variable either from
within the program or from the command line by using the – –assign (–v) option.

Functions

Table 12-3 lists a few of the functions that gawk provides for manipulating numbers and strings.

Table 12-3. Functions

Function Meaning

length(str) Returns the number of characters in str; without an
argument, returns the number of characters in the current
record

int(num) Returns the integer portion of num

index(str1,str2) Returns the index of str2 in str1 or 0 if str2 is not present

split(str,arr,del) Places elements of str, delimited by del, in the array arr
[1]...arr [n]; returns the number of elements in the array

sprintf(fmt,args) Formats args according to fmt and returns the formatted
string; mimics the C programming language function of
the same name

substr(str,pos,len) Returns the substring of str that begins at pos and is len
characters long

tolower(str) Returns a copy of str in which all uppercase letters are
replaced with their lowercase counterparts

toupper(str) Returns a copy of str in which all lowercase letters are
replaced with their uppercase counterparts

Arithmetic Operators

The gawk arithmetic operators listed in Table 12-4 are from the C programming language.

Table 12-4. Arithmetic operators

Operator Meaning

* Multiplies the expression preceding the operator by the
expression following it

/ Divides the expression preceding the operator by the
expression following it

% Takes the remainder after dividing the expression
preceding the operator by the expression following it

+ Adds the expression preceding the operator to the
expression following it

– Subtracts the expression following the operator from the
expression preceding it

= Assigns the value of the expression following the operator
to the variable preceding it

++ Increments the variable preceding the operator

– – Decrements the variable preceding the operator

+= Adds the expression following the operator to the variable
preceding it and assigns the result to the variable preceding
the operator

– = Subtracts the expression following the operator from the
variable preceding it and assigns the result to the variable
preceding the operator

*= Multiplies the variable preceding the operator by the
expression following it and assigns the result to the
variable preceding the operator

/= Divides the variable preceding the operator by the
expression following it and assigns the result to the
variable preceding the operator

%= Assigns the remainder, after dividing the variable
preceding the operator by the expression following it, to
the variable preceding the operator

Associative Arrays

An associative array is one of gawk's most powerful features. These arrays use strings as indexes. Using an
associative array, you can mimic a traditional array by using numeric strings as indexes.

You assign a value to an element of an associative array just as you would assign a value to any other gawk
variable. The syntax is

array[string] = value

where array is the name of the array, string is the index of the element of the array you are assigning a value
to, and value is the value you are assigning to that element.

You can use a special for structure with an associative array. The syntax is

for (elem in array) action

where elem is a variable that takes on the value of each element of the array as the for structure loops
through them, array is the name of the array, and action is the action that gawk takes for each element in the

array. You can use the elem variable in this action .

The "Examples" section found later in this chapter contains programs that use associative arrays.

printf

You can use the printf command in place of print to control the format of the output that gawk generates.
The gawk version of printf is similar to that found in the C language. A printf command has the following
syntax:

printf "control-string", arg1, arg2 , ..., argn

The control-string determines how printf formats arg1, arg2, ..., argn . These arguments can be variables or
other expressions. Within the control-string you can use \n to indicate a NEWLINE and \t to indicate a
TAB. The control-string contains conversion specifications, one for each argument. A conversion
specification has the following syntax:

%[–][x[.y]]conv

where – causes printf to left-justify the argument; x is the minimum field width, and .y is the number of
places to the right of a decimal point in a number. The conv indicates the type of numeric conversion and can
be selected from the letters in Table 12-5. Refer to "Examples" later in this chapter for examples of how to
use printf.

Table 12-5. Numeric conversion

conv Type of conversion

d Decimal

e Exponential notation

f Floating-point number

g Use f or e, whichever is shorter

o Unsigned octal

s String of characters

x Unsigned hexadecimal

Control Structures

Control (flow) statements alter the order of execution of commands within a gawk program. This section
details the if...else, while, and for control structures. In addition, the break and continue statements work in
conjunction with the control structures to alter the order of execution of commands. See page 436 for more
information on control structures. You do not need to use braces around commands when you specify a
single, simple command.

if...else

The if...else control structure tests the status returned by the condition and transfers control based on this
status. The syntax of an if...else structure is shown below. The else part is optional.

if (condition)

 {commands }

 [else

 {commands }]

The simple if statement shown here does not use braces:

if ($5 <= 5000) print $0

Next is a gawk program that uses a simple if...else structure. Again, there are no braces.

$ cat if1

BEGIN {

 nam="sam"

 if (nam == "max")

 print "nam is max"

 else

 print "nam is not max, it is", nam

 }

$ gawk -f if1

nam is not max, it is sam

while

The while structure loops through and executes the commands as long as the condition is true. The syntax
of a while structure is

while (condition)

 {commands }

The next gawk program uses a simple while structure to display powers of 2. This example uses braces
because the while loop contains more than one statement.

$ cat while1

BEGIN {

 n = 1

 while (n <= 5)

 {

 print n "^2", 2**n

 n++

 }

 }

$ gawk -f while1

1^2 2

2^2 4

3^2 8

4^2 16

5^2 32

for

The syntax of a for control structure is

for (init; condition; increment)

 {commands }

A for structure starts by executing the init statement, which usually sets a counter to 0 or 1. It then loops
through the commands as long as the condition is true. After each loop it executes the increment statement.
The for1 gawk program does the same thing as the preceding while1 program except that it uses a for
statement, which makes the program simpler:

$ cat for1

BEGIN {

 for (n=1; n <= 5; n++)

 print n "^2", 2**n

 }

$ gawk -f for1

1^2 2

2^2 4

3^2 8

4^2 16

5^2 32

The gawk utility supports an alternative for syntax for working with associative arrays:

for (var in array)

 {commands }

This for structure loops through elements of the associative array named array , assigning the value of the
index of each element of array to var each time through the loop.

END {for (name in manuf) print name, manuf[name]}

break

The break statement transfers control out of a for or while loop, terminating execution of the innermost
loop it appears in.

continue

The continue statement transfers control to the end of a for or while loop, causing execution of the
innermost loop it appears in to continue with the next iteration.

 < Day Day Up >

 < Day Day Up >

Examples

cars data file

Many of the examples in this section work with the cars data file. From left to right the columns in the file contain each car's make,
model, year of manufacture, mileage in thousands of miles, and price. All whitespace in this file is composed of single TAB s (the file
does not contain any SPACEs).

$ cat cars

plym fury 1970 73 2500

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

ford thundbd 2003 15 10500

chevy malibu 2000 50 3500

bmw 325i 1985 115 450

honda accord 2001 30 6000

ford taurus 2004 10 17000

toyota rav4 2002 180 750

chevy impala 1985 85 1550

ford explor 2003 25 9500

Missing pattern

A simple gawk program is

{ print }

This program consists of one program line that is an action . Because the pattern is missing, gawk selects all lines of input. When used
without any arguments the print command displays each selected line in its entirety. This program copies the input to standard output.

$ gawk '{ print }' cars

plym fury 1970 73 2500

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

...

Missing action

The next program has a pattern but no explicit action . The slashes indicate that chevy is a regular expression.

/chevy/

In this case gawk selects from the input all lines that contain the string chevy. When you do not specify an action , gawk assumes that
the action is print. The following example copies to standard output all lines from the input that contain the string chevy:

$ gawk '/chevy/' cars

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

chevy impala 1985 85 1550

Single quotation marks

Although neither gawk nor shell syntax requires single quotation marks on the command line, it is still a good idea to use them because
they can prevent problems. If the gawk program you create on the command line includes SPACE s or special shell characters, you
must quote them. Always enclosing the program in single quotation marks is the easiest way of making sure that you have quoted any
characters that need to be quoted.

Fields

The next example selects all lines from the file (it has no pattern). The braces enclose the action ; you must always use braces to
delimit the action so that gawk can distinguish it from the pattern . This example displays the third field ($3), a SPACE (the output
field separator, indicated by the comma), and the first field ($1) of each selected line:

$ gawk '{print $3, $1}' cars

1970 plym

1999 chevy

1965 ford

1998 volvo

...

The next example, which includes both a pattern and an action , selects all lines that contain the string chevy and displays the third and
first fields from the lines it selects:

$ gawk '/chevy/ {print $3, $1}' cars

1999 chevy

2000 chevy

1985 chevy

Next gawk selects lines that contain a match for the regular expression h. Because there is no explicit action , gawk displays all the lines
it selects:

$ gawk '/h/' cars

chevy malibu 1999 60 3000

ford thundbd 2003 15 10500

chevy malibu 2000 50 3500

honda accord 2001 30 6000

chevy impala 1985 85 1550

~ (matches operator)

The next pattern uses the matches operator (~) to select all lines that contain the letter h in the first field:

$ gawk '$1 ~ /h/' cars

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

honda accord 2001 30 6000

chevy impala 1985 85 1550

The caret (^) in a regular expression forces a match at the beginning of the line (page 830) or, in this case, the beginning of the first
field:

$ gawk '$1 ~ /^h/' cars

honda accord 2001 30 6000

Brackets surround a character-class definition (page 829). In the next example, gawk selects lines that have a second field that begins
with t or m and displays the third and second fields, a dollar sign, and the fifth field. Because there is no comma between the "$" and
the $5, gawk does not put a SPACE between them in the output.

$ gawk '$2 ~ /^[tm]/ {print $3, $2, "$" $5}' cars

1999 malibu $3000

1965 mustang $10000

2003 thundbd $10500

2000 malibu $3500

2004 taurus $17000

Dollar signs

The next example shows three roles a dollar sign can play in a gawk program. A dollar sign followed by a number names a field.
Within a regular expression a dollar sign forces a match at the end of a line or field (5$). Within a string a dollar sign represents itself.

$ gawk '$3 ~ /5$/ {print $3, $1, "$" $5}' cars

1965 ford $10000

1985 bmw $450

1985 chevy $1550

In the next example, the equal-to relational operator (= =) causes gawk to perform a numeric comparison between the third field in each
line and the number 1985. The gawk command takes the default action , print, on each line where the comparison is true.

$ gawk '$3 == 1985' cars

bmw 325i 1985 115 450

chevy impala 1985 85 1550

The next example finds all cars priced at or less than $3,000:

$ gawk '$5 <= 3000' cars

plym fury 1970 73 2500

chevy malibu 1999 60 3000

bmw 325i 1985 115 450

toyota rav4 2002 180 750

chevy impala 1985 85 1550

Textual comparisons

When you use double quotation marks, gawk performs textual comparisons by using the ASCII (or other local) collating sequence as
the basis of the comparison. In the following example, gawk shows that the strings 450 and 750 fall in the range that lies between the
strings 2000 and 9000, which is probably not the intended result:

$ gawk '"2000" <= $5 && $5 < "9000"' cars

plym fury 1970 73 2500

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

bmw 325i 1985 115 450

honda accord 2001 30 6000

toyota rav4 2002 180 750

When you need to perform a numeric comparison, do not use quotation marks. The next example gives the intended result. It is the
same as the previous example except that it omits the double quotation marks.

$ gawk '2000 <= $5 && $5 < 9000' cars

plym fury 1970 73 2500

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

honda accord 2001 30 6000

, (range operator)

The range operator (,) selects a group of lines. The first line it selects is the one specified by the pattern before the comma. The last
line is the one selected by the pattern after the comma. If no line matches the pattern after the comma, gawk selects every line through
the end of the input. The next example selects all lines, starting with the line that contains volvo and concluding with the line that
contains bmw:

$ gawk '/volvo/ , /bmw/' cars

volvo s80 1998 102 9850

ford thundbd 2003 15 10500

chevy malibu 2000 50 3500

bmw 325i 1985 115 450

After the range operator finds its first group of lines, it begins the process again, looking for a line that matches the pattern before the
comma. In the following example, gawk finds three groups of lines that fall between chevy and ford.

Although the fifth line of input contains ford, gawk does not select it because at the time it is processing the fifth line, it is searching
for chevy.

$ gawk '/chevy/ , /ford/' cars

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

chevy malibu 2000 50 3500

bmw 325i 1985 115 450

honda accord 2001 30 6000

ford taurus 2004 10 17000

chevy impala 1985 85 1550

ford explor 2003 25 9500

– –file option

When you are writing a longer gawk program, it is convenient to put the program in a file and reference the file on the command line.
Use the –f or – –file option followed by the name of the file containing the gawk program.

BEGIN

The following gawk program, stored in a file named pr_header, has two actions and uses the BEGIN pattern . The gawk utility
performs the action associated with BEGIN before processing any lines of the data file: It displays a header. The second action ,
{print}, has no pattern part and displays all the lines from the input.

$ cat pr_header

BEGIN {print "Make Model Year Miles Price"}

 {print}

$ gawk -f pr_header cars

Make Model Year Miles Price

plym fury 1970 73 2500

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

...

The next example expands the action associated with the BEGIN pattern . In the previous and following examples, the whitespace in
the headers is composed of single TABs, so that the titles line up with the columns of data.

$ cat pr_header2

BEGIN {

print "Make Model Year Miles Price"

print "--"

}

 {print}

$ gawk -f pr_header2 cars

Make Model Year Miles Price

--

plym fury 1970 73 2500

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

...

length function

When you call the length function without an argument, it returns the number of characters in the current line, including field
separators. The $0 variable always contains the value of the current line. In the next example, gawk prepends the line length to each
line and then a pipe sends the output from gawk to sort (the –n option specifies a numeric sort; page 762) so that the lines of the cars
file appear in order of length:

$ gawk '{print length, $0}' cars | sort -n

21 bmw 325i 1985 115 450

22 plym fury 1970 73 2500

23 volvo s80 1998 102 9850

24 ford explor 2003 25 9500

24 toyota rav4 2002 180 750

25 chevy impala 1985 85 1550

25 chevy malibu 1999 60 3000

25 chevy malibu 2000 50 3500

25 ford taurus 2004 10 17000

25 honda accord 2001 30 6000

26 ford mustang 1965 45 10000

26 ford thundbd 2003 15 10500

The formatting of this report depends on TAB s for horizontal alignment. The three extra characters at the beginning of each line throw
off the format of several lines. A remedy for this situation is covered shortly.

NR (record number)

The NR variable contains the record (line) number of the current line. The following pattern selects all lines that contain more than 24

characters. The action displays the line number of each of the selected lines.

$ gawk 'length > 24 {print NR}' cars

2

3

5

6

8

9

11

You can combine the range operator (,) and the NR variable to display a group of lines of a file based on their line numbers. The next
example displays lines 2 through 4:

$ gawk 'NR == 2 , NR == 4' cars

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

END

The END pattern works in a manner similar to the BEGIN pattern , except that gawk takes the actions associated with it after
processing the last line of input. The following report displays information only after it has processed all the input. The NR variable
retains its value after gawk finishes processing the data file, so that an action associated with an END pattern can use it:

$ gawk 'END {print NR, "cars for sale." }' cars

12 cars for sale.

The next example uses if control structures to expand the abbreviations used in some of the first fields. As long as gawk does not
change a record, it leaves the entire record—including separators—intact. Once it makes a change to a record, gawk changes all
separators in that record to the value of the output field separator. The default output field separator is a SPACE.

$ cat separ_demo

 {

 if ($1 ~ /ply/) $1 = "plymouth"

 if ($1 ~ /chev/) $1 = "chevrolet"

 print

 }

$ gawk -f separ_demo cars

plymouth fury 1970 73 2500

chevrolet malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

ford thundbd 2003 15 10500

chevrolet malibu 2000 50 3500

bmw 325i 1985 115 450

honda accord 2001 30 6000

ford taurus 2004 10 17000

toyota rav4 2002 180 750

chevrolet impala 1985 85 1550

ford explor 2003 25 9500

Stand-alone script

Instead of calling gawk from the command line with the –f option and the name of the program you want to run, you can write a script
that calls gawk with the commands you want to run. The next example is a stand-alone script that runs the same program as the
previous example. The #!/bin/gawk –f command (page 265) runs the gawk utility directly. You need both read and execute permission
to the file holding the script (page 263).

$ chmod u+rx separ_demo2

$ cat separ_demo2

#!/bin/gawk -f

 {

 if ($1 ~ /ply/) $1 = "plymouth"

 if ($1 ~ /chev/) $1 = "chevrolet"

 print

 }

$ separ_demo2 cars

plymouth fury 1970 73 2500

chevrolet malibu 1999 60 3000

ford mustang 1965 45 10000

...

OFS variable

You can change the value of the output field separator by assigning a value to the OFS variable. The following example assigns a TAB
character to OFS, using the backslash escape sequence \t. This fix improves the appearance of the report but does not line up the
columns properly.

$ cat ofs_demo

BEGIN {OFS = "\t"}

 {

 if ($1 ~ /ply/) $1 = "plymouth"

 if ($1 ~ /chev/) $1 = "chevrolet"

 print

 }

$ gawk -f ofs_demo cars

plymouth fury 1970 73 2500

chevrolet malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

ford thundbd 2003 15 10500

chevrolet malibu 2000 50 3500

bmw 325i 1985 115 450

honda accord 2001 30 6000

ford taurus 2004 10 17000

toyota rav4 2002 180 750

chevrolet impala 1985 85 1550

ford explor 2003 25 9500

printf

You can use printf (page 534) to refine the output format. The following example uses a backslash at the end of several program lines
to quote the following NEWLINE. You can use this technique to continue a long line over one or more lines without affecting the
outcome of the program.

$ cat printf_demo

BEGIN {

 print " Miles"

 print "Make Model Year (000) Price"

 print \

 "--"

 }

 {

 if ($1 ~ /ply/) $1 = "plymouth"

 if ($1 ~ /chev/) $1 = "chevrolet"

 printf "%-10s %-8s %2d %5d $ %8.2f\n",\

 $1, $2, $3, $4, $5

 }

$ gawk -f printf_demo cars

 Miles

Make Model Year (000) Price

--

plymouth fury 1970 73 $ 2500.00

chevrolet malibu 1999 60 $ 3000.00

ford mustang 1965 45 $ 10000.00

volvo s80 1998 102 $ 9850.00

ford thundbd 2003 15 $ 10500.00

chevrolet malibu 2000 50 $ 3500.00

bmw 325i 1985 115 $ 450.00

honda accord 2001 30 $ 6000.00

ford taurus 2004 10 $ 17000.00

toyota rav4 2002 180 $ 750.00

chevrolet impala 1985 85 $ 1550.00

ford explor 2003 25 $ 9500.00

Redirecting output

The next example creates two files: one with the lines that contain chevy and one with the lines that contain ford:

$ cat redirect_out

/chevy/ {print > "chevfile"}

/ford/ {print > "fordfile"}

END {print "done."}

$ gawk -f redirect_out cars

done.

$ cat chevfile

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

chevy impala 1985 85 1550

The summary program produces a summary report on all cars and newer cars. Although they are not required, the initializations at the
beginning of the program represent good programming practice; gawk automatically declares and initializes variables as you use them.
After reading all the input data, gawk computes and displays averages.

$ cat summary

BEGIN {

 yearsum = 0 ; costsum = 0

 newcostsum = 0 ; newcount = 0

 }

 {

 yearsum += $3

 costsum += $5

 }

$3 > 2000 {newcostsum += $5 ; newcount ++}

END {

 printf "Average age of cars is %4.1f years\n",\

 2006 - (yearsum/NR)

 printf "Average cost of cars is $%7.2f\n",\

 costsum/NR

 printf "Average cost of newer cars is $%7.2f\n",\

 newcostsum/newcount

 }

$ gawk -f summary cars

Average age of cars is 13.1 years

Average cost of cars is $6216.67

Average cost of newer cars is $8750.00

The following gawk command shows the format of a line from the passwd file that the next example uses:

$ awk '/mark/ {print}' /etc/passwd

mark:x:107:100:ext 112:/home/mark:/bin/tcsh

The next example demonstrates a technique for finding the largest number in a field. Because it works with the passwd file, which
delimits fields with colons (:), the example changes the input field separator (FS) before reading any data. It reads the passwd file and
determines the next available user ID number (field 3). The numbers do not have to be in order in the passwd file for this program to
work.

The pattern ($3 > saveit) causes gawk to select records that contain a user ID number greater than any previous user ID number that it
has processed. Each time it selects a record, gawk assigns the value of the new user ID number to the saveit variable. Then gawk uses
the new value of saveit to test the user IDs of all subsequent records. Finally gawk adds 1 to the value of saveit and displays the result.

$ cat find_uid

BEGIN {FS = ":"

 saveit = 0}

$3 > saveit {saveit = $3}

END {print "Next available UID is " saveit + 1}

$ gawk -f find_uid /etc/passwd

Next available UID is 192

The next example produces another report based on the cars file. This report uses nested if...else control structures to substitute values
based on the contents of the price field. The program has no pattern part; it processes every record.

$ cat price_range

 {

 if ($5 <= 5000) $5 = "inexpensive"

 else if (5000 < $5 && $5 < 10000) $5 = "please ask"

 else if (10000 <= $5) $5 = "expensive"

 #

 printf "%-10s %-8s %2d %5d %-12s\n",\

 $1, $2, $3, $4, $5

 }

$ gawk -f price_range cars

plym fury 1970 73 inexpensive

chevy malibu 1999 60 inexpensive

ford mustang 1965 45 expensive

volvo s80 1998 102 please ask

ford thundbd 2003 15 expensive

chevy malibu 2000 50 inexpensive

bmw 325i 1985 115 inexpensive

honda accord 2001 30 please ask

ford taurus 2004 10 expensive

toyota rav4 2002 180 inexpensive

chevy impala 1985 85 inexpensive

ford explor 2003 25 please ask

Associative arrays

Next the manuf associative array uses the contents of the first field of each record in the cars file as an index. The array is composed
of the elements manuf[plym], manuf[chevy], manuf[ford], and so on. Each new element is initialized to 0 (zero) as it is created. The
C language operator ++ increments the variable that it follows.

The action following the END pattern is the special for structure that loops through the elements of an associative array. A pipe sends
the output through sort to produce an alphabetical list of cars and the quantities in stock. Because it is a shell script and not a gawk
program file, you must have both read and execute permission to the manuf file to execute it as a command. Depending on how the
PATH variable (page 284) is set, you may have to execute the script as ./manuf.

$ cat manuf

gawk ' {manuf[$1]++}

END {for (name in manuf) print name, manuf[name]}

' cars |

sort

$ manuf

bmw 1

chevy 3

ford 4

honda 1

plym 1

toyota 1

volvo 1

The next program, named manuf.sh, is a more general shell script that includes some error checking. This script lists and counts the
contents of a column in a file, with both the column number and the name of the file being specified on the command line.

The first action (the one that starts with {count) uses the shell variable $1 in the middle of the gawk program to specify an array index.
Because of the way the single quotation marks are paired, the $1 that appears to be within single quotation marks is actually not
quoted: The two quoted strings in the gawk program surround, but do not include, the $1. Because the $1 is not quoted, and because

this is a shell script, the shell substitutes the value of the first command line argument in place of $1 (page 481). As a result the $1 is
interpreted before the gawk command is invoked. The leading dollar sign (the one before the first single quotation mark on that line)
causes gawk to interpret what the shell substitutes as a field number.

$ cat manuf.sh

if [$# != 2]

 then

 echo "Usage: manuf.sh field file"

 exit 1

fi

gawk < $2 '

 {count[$'$1']++}

END {for (item in count) printf "%-20s%-20s\n",\

 item, count[item]}' |

sort

$ manuf.sh

Usage: manuf.sh field file

$ manuf.sh 1 cars

bmw 1

chevy 3

ford 4

honda 1

plym 1

toyota 1

volvo 1

$ manuf.sh 3 cars

1965 1

1970 1

1985 2

1998 1

1999 1

2000 1

2001 1

2002 1

2003 2

2004 1

A way around the tricky use of quotation marks that allow parameter expansion within the gawk program is to use the –v option on the
command line to pass the field number to gawk as a variable. This change makes it easier for someone else to read and debug the script.
You call the manuf2.sh script the same way you call manuf.sh:

$ cat manuf2.sh

if [$# != 2]

 then

 echo "Usage: manuf.sh field file"

 exit 1

fi

gawk -v "field=$1" < $2 '

 {count[$field]++}

END {for (item in count) printf "%-20s%-20s\n",\

 item, count[item]}' |

sort

The word_usage script displays a word usage list for a file you specify on the command line. The TR utility (page 804) lists the words
from standard input, one to a line. The sort utility orders the file, with the most frequently used words first. This script sorts groups of
words that are used the same number of times in alphabetical order.

$ cat word_usage

tr -cs 'a-zA-Z' '[\n*]' < $1 |

gawk '

 {count[$1]++}

END {for (item in count) printf "%-15s%3s\n", item, count[item]}' |

sort +1nr +0f -1

$ word_usage textfile

the 42

file 29

fsck 27

system 22

you 22

to 21

it 17

SIZE 14

and 13

MODE 13

...

Following is a similar program in a different format. The style mimics that of a C program and may be easier to read and work with for
more complex gawk programs:

$ cat word_count

tr -cs 'a-zA-Z' '[\n*]' < $1 |

gawk ' {

 count[$1]++

}

END {

 for (item in count)

 {

 if (count[item] > 4)

 {

 printf "%-15s%3s\n", item, count[item]

 }

 }

} ' |

sort +1nr +0f -1

The tail utility displays the last ten lines of output, illustrating that words occurring fewer than five times are not listed:

$ word_count textfile | tail

directories 5

if 5

information 5

INODE 5

more 5

no 5

on 5

response 5

this 5

will 5

The next example shows one way to put a date on a report. The first line of input to the gawk program comes from date. The program
reads this line as record number 1 (NR = = 1), processes it accordingly, and processes all subsequent lines with the action associated
with the next pattern (NR > 1).

$ cat report

if (test $# = 0) then

 echo "You must supply a filename."

 exit 1

fi

(date; cat $1) |

gawk '

NR == 1 {print "Report for", $1, $2, $3 ", " $6}

NR > 1 {print $5 "\t" $1}'

$ report cars

Report for Mon Jan 31, 2005

2500 plym

3000 chevy

10000 ford

9850 volvo

10500 ford

3500 chevy

450 bmw

6000 honda

17000 ford

750 toyota

1550 chevy

9500 ford

The next example sums each of the columns in a file you specify on the command line; it takes its input from the numbers file. The
program performs error checking, reporting on and discarding rows that contain nonnumeric entries. It uses the next command (with
the comment skip bad records) to skip the rest of the commands for the current record if the record contains a nonnumeric entry. At
the end of the program, gawk displays a grand total for the file.

 $ cat numbers

 10 20 30.3 40.5

 20 30 45.7 66.1

 30 xyz 50 70

 40 75 107.2 55.6

 50 20 30.3 40.5

 60 30 45.O 66.1

 70 1134.7 50 70

 80 75 107.2 55.6

 90 176 30.3 40.5

 100 1027.45 45.7 66.1

 110 123 50 57a.5

 120 75 107.2 55.6

$ cat tally

gawk ' BEGIN {

 ORS = ""

 }

NR == 1 { # first record only

 nfields = NF # set nfields to number of

 } # fields in the record (NF)

 {

 if ($0 ~ /[^0-9. \t]/) # check each record to see if it contains

 { # any characters that are not numbers,

 print "\nRecord " NR " skipped:\n\t" # periods, spaces, or TABs

 print $0 "\n"

 next # skip bad records

 }

 else

 {

 for (count = 1; count <= nfields; count++)# for good records loop through fields

 {

 printf "%10.2f", $count > "tally.out"

 sum[count] += $count

 gtotal += $count

 }

 print "\n" > "tally.out"

 }

 }

END { # after processing last record

 for (count = 1; count <= nfields; count++) # print summary

 {

 print " -------" > "tally.out"

 }

 print "\n" > "tally.out"

 for (count = 1; count <= nfields; count++)

 {

 printf "%10.2f", sum[count] > "tally.out"

 }

 print "\n\n Grand Total " gtotal "\n" > "tally.out"

} ' < numbers

 $ tally

 Record 3 skipped:

 30 xyz 50 70

 Record 6 skipped:

 60 30 45.O 66.1

 Record 11 skipped:

 110 123 50 57a.5

 $ cat tally.out

 10.00 20.00 30.30 40.50

 20.00 30.00 45.70 66.10

 40.00 75.00 107.20 55.60

 50.00 20.00 30.30 40.50

 70.00 1134.70 50.00 70.00

 80.00 75.00 107.20 55.60

 90.00 176.00 30.30 40.50

 100.00 1027.45 45.70 66.10

 120.00 75.00 107.20 55.60

 ------- ------- ------- -------

 580.00 2633.15 553.90 490.50

 Grand Total 4257.55

The next example reads the passwd file, listing users who do not have passwords and users who have duplicate user ID numbers. (The
pwck utility performs similar checks.)

 $ cat /etc/passwd

 bill::102:100:ext 123:/home/bill:/bin/bash

 roy:x:104:100:ext 475:/home/roy:/bin/bash

 tom:x:105:100:ext 476:/home/tom:/bin/bash

 lynn:x:166:100:ext 500:/home/lynn:/bin/bash

 mark:x:107:100:ext 112:/home/mark:/bin/bash

 sales:x:108:100:ext 102:/m/market:/bin/bash

 anne:x:109:100:ext 355:/home/anne:/bin/bash

 toni::164:100:ext 357:/home/toni:/bin/bash

 ginny:x:115:100:ext 109:/home/ginny:/bin/bash

 chuck:x:116:100:ext 146:/home/chuck:/bin/bash

 neil:x:164:100:ext 159:/home/neil:/bin/bash

 rmi:x:118:100:ext 178:/home/rmi:/bin/bash

 vern:x:119:100:ext 201:/home/vern:/bin/bash

 bob:x:120:100:ext 227:/home/bob:/bin/bash

 janet:x:122:100:ext 229:/home/janet:/bin/bash

 maggie:x:124:100:ext 244:/home/maggie:/bin/bash

 dan::126:100::/home/dan:/bin/bash

 dave:x:108:100:ext 427:/home/dave:/bin/bash

 mary:x:129:100:ext 303:/home/mary:/bin/bash

$ cat passwd_check

gawk < /etc/passwd ' BEGIN {

 uid[void] = "" # tell gawk that uid is an array

 }

 { # no pattern indicates process all records

 dup = 0 # initialize duplicate flag

 split($0, field, ":") # split into fields delimited by ":"

 if (field[2] == "") # check for null password field

 {

 if (field[5] == "") # check for null info field

 {

 print field[1] " has no password."

 }

 else

 {

 print field[1] " ("field[5]") has no password."

 }

 }

 for (name in uid) # loop through uid array

 {

 if (uid[name] == field[3]) # check for second use of UID

 {

 print field[1] " has the same UID as " name " : UID = " uid[name]

 dup = 1 # set duplicate flag

 }

 }

 if (!dup) # same as if (dup == 0)

 # assign UID and login name to uid array

 {

 uid[field[1]] = field[3]

 }

 }'

 $ passwd_check

 bill (ext 123) has no password.

 toni (ext 357) has no password.

 neil has the same UID as toni : UID = 164

 dan has no password.

 dave has the same UID as sales : UID = 108

The next example shows a complete interactive shell script that uses gawk to generate a report on the cars file based on price ranges:

$ cat list_cars

trap 'rm -f $$.tem > /dev/null;echo $0 aborted.;exit 1' 1 2 15

echo -n "Price range (for example, 5000 7500):"

read lowrange hirange

echo '

 Miles

Make Model Year (000) Price

--' > $$.tem

gawk < cars '

$5 >= '$lowrange' && $5 <= '$hirange' {

 if ($1 ~ /ply/) $1 = "plymouth"

 if ($1 ~ /chev/) $1 = "chevrolet"

 printf "%-10s %-8s %2d %5d $ %8.2f\n", $1, $2, $3, $4,

$5

 }' | sort -n +5 >> $$.tem

cat $$.tem

rm $$.tem

$ list_cars

Price range (for example, 5000 7500):3000 8000

 Miles

Make Model Year (000) Price

--

chevrolet malibu 1999 60 $ 3000.00

chevrolet malibu 2000 50 $ 3500.00

honda accord 2001 30 $ 6000.00

$ list_cars

Price range (for example, 5000 7500):0 2000

 Miles

Make Model Year (000) Price

--

bmw 325i 1985 115 $ 450.00

toyota rav4 2002 180 $ 750.00

chevrolet impala 1985 85 $ 1550.00

$ list_cars

Price range (for example, 5000 7500):15000 100000

 Miles

Make Model Year (000) Price

--

ford taurus 2004 10 $ 17000.00

optional: Advanced Gawk Programming

This section discusses some of the advanced features that the GNU developers added when they rewrote awk to create
gawk. It covers how to control input using the getline statement, how to use a coprocess to exchange information
between gawk and a program running in the background, and how to use a coprocess to exchange data over a network.

getline: CONTROLLING INPUT

The getline statement gives you more control over the data gawk reads than other methods of input do. When you give
a variable name as an argument to getline, it reads data into that variable. The BEGIN block of the g1 program uses
getline to read one line into the variable aa from standard input:

$ cat g1

BEGIN {

 getline aa

 print aa

 }

$ echo aaaa | gawk -f g1

aaaa

The alpha file is used in the next few examples:

$ cat alpha

aaaaaaaaa

bbbbbbbbb

ccccccccc

ddddddddd

Even when g1 is given more than one line of input, it processes only the first line:

$ gawk -f g1 < alpha

aaaaaaaaa

When getline is not given an argument, it reads into $0 and modifies the field variables ($1, $2, . . .):

$ gawk 'BEGIN {getline;print $1}' < alpha

aaaaaaaaa

The g2 program uses a while loop in the BEGIN block to loop over the lines in standard input. The getline statement
reads each line into holdme and print outputs each value of holdme.

$ cat g2

BEGIN {

 while (getline holdme)

 print holdme

 }

$ gawk -f g2 < alpha

aaaaaaaaa

bbbbbbbbb

ccccccccc

ddddddddd

The g3 program demonstrates that gawk automatically reads each line of input into $0 when it has statements in its
body (and not just a BEGIN block). This program outputs the record number (NR), the string $0:, and the value of $0
(the current record) for each line of input.

$ cat g3

 {print NR, "$0:", $0}

$ gawk -f g3 < alpha

1 $0: aaaaaaaaa

2 $0: bbbbbbbbb

3 $0: ccccccccc

4 $0: ddddddddd

Next g4 demonstrates that getline works independently of gawk's automatic reads and $0. When getline reads into a
variable, it does not modify $0 nor does it modify any of the fields in the current record ($1, $2, . . .). The first
statement in g4 is the same as the statement in g3 and outputs the line that gawk has automatically read. The getline
statement reads the next line of input into the variable named aa. The third statement outputs the record number, the
string aa:, and the value of aa. The output from g4 shows that getline processes records independently of gawk's
automatic reads.

$ cat g4

 {

 print NR, "$0:", $0

 getline aa

 print NR, "aa:", aa

 }

$ gawk -f g4 < alpha

1 $0: aaaaaaaaa

2 aa: bbbbbbbbb

3 $0: ccccccccc

4 aa: ddddddddd

The g5 program outputs each line of input except that it skips lines that begin with the letter b. The first print
statement outputs each line that gawk reads automatically. Next the /^b/ pattern selects all lines that begin with b for
special processing. The action uses getline to read the next line of input into the variable hold, outputs the string skip
this line: followed by the value of hold, and outputs the value of $1. The $1 holds the value of the first field of the
record that gawk read automatically, not the record read by getline. The final statement displays a string and the value

of NR, the current record number. Even though getline does not change $0 when it reads into a variable, gawk
increments NR.

$ cat g5

 # print all lines except those read with getline

 {print "line #", NR, $0}

if line begins with "b" process it specially

/^b/ {

 # use getline to read the next line into variable named hold

 getline hold

 # print value of hold

 print "skip this line:", hold

 # $0 is not affected when getline reads into a variable

 # $1 still holds previous value

 print "previous line began with:", $1

 }

 {

 print ">>>> finished processing line #", NR

 print ""

 }

 $ gawk -f g5 < alpha

 line # 1 aaaaaaaaa

 >>>> finished processing line # 1

 line # 2 bbbbbbbbb

 skip this line: ccccccccc

 previous line began with: bbbbbbbbb

 >>>> finished processing line # 3

 line # 4 ddddddddd

 >>>> finished processing line # 4

COPROCESS: TWO-WAY I/O

A coprocess is a process that runs in parallel with another process. Starting with version 3.1, gawk can invoke a
coprocess to exchange information directly with a background process. A coprocess can be useful when you are
working in a client/server environment, setting up an SQL (902) front end/back end, or exchanging data with a remote
system over a network. The gawk syntax identifies a coprocess by preceding the name of the program that starts the
background process with a |& operator.

The coprocess command must be a filter (i.e., it reads from standard input and writes to standard output) and must
flush its output whenever it has a complete line rather than accumulating lines for subsequent output. When a
command is invoked as a coprocess, it is connected via a two-way pipe to a gawk program so that you can read from
and write to the coprocess.

to_upper

When used alone the TR utility (page 804) does not flush its output after each line. The to_upper shell script is a
wrapper for tr that does flush its output; this filter can be run as a coprocess. For each line read, to_upper writes the
line, translated to uppercase, to standard output. Remove the # before set –x if you want to_upper to display
debugging output.

$ cat to_upper

#!/bin/bash

#set -x

while read arg

do

 echo "$arg" | tr '[a-z]' '[A-Z]'

done

$ echo abcdef | to_upper

ABCDEF

The g6 program invokes to_upper as a coprocess. This gawk program reads standard input or a file specified on the
command line, translates the input to uppercase, and writes the translated data to standard output.

$ cat g6

 {

 print $0 |& "to_upper"

 "to_upper" |& getline hold

 print hold

 }

$ gawk -f g6 < alpha

AAAAAAAAA

BBBBBBBBB

CCCCCCCCC

DDDDDDDDD

The g6 program has one compound statement, enclosed within braces, comprising three statements. Because there is no
pattern , gawk executes the compound statement once for each line of input.

In the first statement, print $0 sends the current record to standard output. The |& operator redirects standard output to
the program named to_upper, which is running as a coprocess. The quotation marks around the name of the program
are required. The second statement redirects standard output from to_upper to a getline statement, which copies its
standard input to the variable named hold. The third statement, print hold, sends the contents of the hold variable to
standard output.

GETTING INPUTFROM A NETWORK

Building on the concept of a coprocess, gawk can exchange information with a process on another system via an IP
network connection. When you specify one of the special filenames that begins with /inet/, gawk processes your request
using a network connection. The format of these special filenames is

/inet/protocol/local-port/remote-host/remote-port

where protocol is usually tcp but can be udp, local-port is 0 (zero) if you want gawk to pick a port (otherwise it is the
number of the port you want to use), remote-host is the IP address (page 882) or fully qualified domain name (page
876) of the remote host, and remote-port is the port number on the remote host. Instead of a port number in local-port
and remote-port , you can specify a service name such as http or ftp.

The g7 program reads the cars file from the server at www.sobell.com; the author has set up this file for you to
experiment with. On www.sobell.com the file is located at /CMDREF1/code/chapter_12/cars. The first statement in
g7 assigns the special filename to the server variable. The filename specifies a TCP connection, allows the local
system to select an appropriate port, and connects to www.sobell.com on port 80. You can use http in place of 80 to
specify the standard HTTP port.

The second statement uses a coprocess to send a GET request to the remote server. This request includes the pathname
of the file gawk is requesting. A while loop uses a coprocess to redirect lines from the server to getline. Because getline
has no variable name as an argument, it saves its input in the current record buffer $0. The final print statement sends
each record to standard output. Experiment with this script, replacing the final print statement with gawk statements
that process the file.

$ cat g7

BEGIN {

 # set variable named server

 # to special networking filename

 server = "/inet/tcp/0/www.sobell.com/80"

 # use coprocess to send GET request to remote server

 print "GET /CMDREF1/code/chapter_12/cars" |& server

 # while loop uses coprocess to redirect

 # output from server to getline

 while (server |& getline)

 print $0

 }

$ gawk -f g7

plym fury 1970 73 2500

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

...

 < Day Day Up >

 < Day Day Up >

Error Messages

The following examples show some of the more common causes of gawk error messages (and nonmessages).
These examples are run under bash. When you use gawk with tcsh, the error messages from the shell will be
different.

The first example leaves the single quotation marks off the command line, so the shell interprets $3 and $1
as shell variables. Also, because there are no single quotation marks, the shell passes gawk four arguments
instead of two.

$ gawk {print $3, $1} cars

gawk: cmd. line:2: (END OF FILE)

gawk: cmd. line:2: syntax error

The next command line includes a typo (prinnt) that gawk does not catch. Instead of issuing an error
message, gawk simply does not do anything useful.

$ gawk '$3 >= 83 {prinnt $1}' cars

The next example has no braces around the action :

$ gawk '/chevy/ print $3, $1' cars

gawk: cmd. line:1: /chevy/ print $3, $1

gawk: cmd. line:1: ^ syntax error

There is no problem with the next example; gawk did just what you asked it to do (none of the lines in the
file contains a z).

$ gawk '/z/' cars

The next example shows an improper action for which gawk does not issue an error message:

$ gawk '{$3 " made by " $1}' cars

The following example does not display the heading because there is no backslash after the print command
in the BEGIN block. The backslash is needed to quote the following NEWLINE so that the line can be
continued. Without it, gawk sees two separate statements; the second does nothing.

$ cat print_cars

BEGIN {print

"Model Year Price"}

/chevy/ {printf "%5s\t%4d\t%5d\n", $2, $3, $5}

$ gawk -f print_cars cars

malibu 1999 3000

malibu 2000 3500

impala 1985 1550

You must use double quotation marks, not single ones, to delimit strings.

$ cat print_cars2

BEGIN {OFS='\t'}

$3 ~ /5$/ {print $3, $1, "$" $5}

$ gawk -f print_cars2 cars

gawk: print_cars2:1: BEGIN {OFS='\t'}

gawk: print_cars2:1: ^ invalid char ''' in expression

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The gawk utility is a pattern-scanning and processing language that searches one or more files to see whether
they contain records (usually lines) that match specified patterns. It processes lines by performing actions,
such as writing the record to standard output or incrementing a counter, each time it finds a match.

A gawk program consists of one or more lines containing a pattern and/or action in the following format:

pattern { action }

The pattern selects lines from the input. The gawk utility performs the action on all lines that the pattern
selects. If a program line does not contain a pattern , gawk selects all lines in the input. If a program line does
not contain an action , gawk copies the selected lines to standard output.

A gawk program can use variables, functions, arithmetic operators, associative arrays, control statements, and
C's printf statement. Advanced gawk programming takes advantage of getline statements to fine-tune input,
coprocesses to enable gawk to exchange data with other programs, and network connections to exchange data
with programs running on remote systems on a network.

 < Day Day Up >

 < Day Day Up >

Exercises

1. Write a gawk program that numbers each line in a file and sends its output to standard output.

2. Write a gawk program that displays the number of characters in the first field followed by the
first field and sends its output to standard output.

3. Write a gawk program that uses the cars file (page 537), displays all cars priced at more than
$5000, and sends its output to standard output.

4. Use gawk to determine how many lines in /etc/termcap contain the string vt100. Verify your
answer using grep.

 < Day Day Up >

 < Day Day Up >

Advanced Exercises

5. Experiment with pgawk. What does it do? How can it be useful?

6. Write a gawk program named net_list that reads from the cars file on www.sobell.com (see
"Getting Input from a Network" on page 558) and displays a list of each of the cars' make, model,
and price. Separate the output fields with TABs.

7. Expand the net_list program developed in exercise 6 to use to_upper (page 557) as a coprocess
to display the list of cars with only the make of the cars in uppercase. The model and subsequent
fields on each line should appear as they do in the cars file.

8. How can you get gawk to neatly format—that is "pretty print"—a gawk program file? (Hint: See
the gawk man page.)

 < Day Day Up >

 < Day Day Up >

Chapter 13. The sed Editor

IN THIS CHAPTER

Syntax 564

Arguments 564

Options 564

Editor Basics 565

Addresses 565

Instructions 566

Control Structures 567

The Pattern Space and the Hold Space 568

Examples 568

The sed (stream editor) utility is a batch (noninteractive) editor. It transforms an input stream that can come
from a file or standard input. It is frequently used as a filter in a pipe. Because it makes only one pass
through its input, sed is more efficient than an interactive editor such as ed. This chapter describes GNU
sed.

 < Day Day Up >

 < Day Day Up >

Syntax

A sed command line has the following syntax:

sed [–n] program [file-list]

sed [–n] –f program-file [file-list]

The sed utility takes its input from files you specify on the command line or from standard input. Unless you
direct output from sed elsewhere, it goes to standard output.

 < Day Day Up >

 < Day Day Up >

Arguments

The program is a sed program that is included on the command line. This format allows you to write
simple, short sed programs without creating a separate program-file . The program-file is the pathname of a
file containing a sed program (see "Editor Basics"). The file-list contains pathnames of the ordinary files that
sed processes. These are the input files. When you do not specify a file, sed takes its input from standard
input.

 < Day Day Up >

 < Day Day Up >

Options

– –file program-file

 –f program-file

 Causes sed to read its program from the file named program-file
instead of from the command line. You can use this option more
than once on the command line.

– –in-place[=suffix]

 –i [suffix]

 Edits files in place. Without this option sed sends its output to
standard output. With this option sed replaces the file it is
processing with its output. When you specify a suffix , sed makes
a backup of the original file. This backup has the original
filename with suffix appended. You must include a period in
suffix if you want a period to appear between the original
filename and suffix .

– –help Summarizes how to use sed.

– –quiet or –
–silent

– n Causes sed not to copy lines to standard output except as
specified by the Print (p) instruction or flag.

 < Day Day Up >

 < Day Day Up >

Editor Basics

A sed program consists of one or more lines with the following syntax:

[address [,address]] instruction [argument-list]

The address es are optional. If you omit the address , sed processes all lines from the input. The instruction
is the editing instruction that modifies the text. The address es select the line(s) that the instruction part of
the command operates on. The number and kinds of arguments in the argument-list depend on the
instruction . If you want to put several sed commands on one line you can separate the commands with
semicolons (;).

The sed utility processes input as follows:

Reads one line of input from file-list or standard input.1.

Reads the first instruction from the program or program-file . If the address (es) select the input line,
acts on the input line as the instruction specifies.

2.

Reads the next instruction from the program or program-file . If the address (es) select the input line,
acts on the input line (possibly modified by the previous instruction) as the instruction specifies.

3.

Repeats step 3 until it has executed all instructions in the program or program-file .4.

Starts over again with step 1 if there is another line of input; otherwise, it is finished.5.

Addresses

A line number is an address that selects a line. As a special case, the line number $ represents the last line of
input.

A regular expression (refer to Appendix A) is an address that selects those lines containing a string that the
regular expression matches. Although slashes are often used to delimit these regular expressions, sed
permits you to use any character other than a backslash or NEWLINE for this purpose.

Except as noted, zero, one, or two addresses (either line numbers or regular expressions) can precede an
instruction. If you do not use an address, sed selects all lines, causing the instruction to act on every line of
input. Providing one address causes the instruction to act on each input line that the address selects.
Providing two addresses causes the instruction to act on groups of lines. The first address selects the first line
in the first group. The second address selects the next subsequent line that it matches; this line is the last line
in the first group. If no match for the second address is found, the second address points to the end of the file.
After selecting the last line in a group, sed starts the selection process over again, looking for the next line

that the first address matches. This line is the first line in the next group. The sed utility continues this
process until it has finished going through the entire file.

Instructions

d (delete) The Delete instruction causes sed not to write out the lines it selects and
not to finish processing the lines. After sed executes a Delete instruction, it
reads the next input line and begins over again with the first instruction from the
program or program-file .

n (next) The Next instruction writes out the currently selected line if appropriate,
reads the next input line, and starts processing the new line with the next
instruction from the program or program-file .

a (append) The Append instruction appends one or more lines to the currently
selected line. If you precede an Append instruction with two addresses, it
appends to each line that is selected by the addresses; earlier versions of sed did
not accept Append instructions with two addresses. If you do not precede an
Append instruction with an address, it appends to each input line. An Append
instruction has the following format:

[address [,address]] a\

text\

text\

...

text

You must end each line of appended text, except the last, with a backslash (the backslash quotes the
following NEWLINE). The appended text concludes with a line that does not end with a backslash. The sed
utility always writes out appended text, regardless of whether you use a –n flag on the command line. It even
writes out the text if you delete the line to which you are appending the text.

i (insert) The Insert instruction is identical to the Append instruction except
that it places the new text before the selected line.

c (change) The Change instruction is similar to Append and Insert except that
it changes the selected lines so that they contain the new text. When you
specify an address range, Change replaces the entire range of lines with a
single occurrence of the new text.

s (substitute) The Substitute instruction in sed is similar to that in vim (page
166). It has the following format:

[address [,address]] s/pattern /replacement-string

/[g][p][w file]

 The pattern is a regular expression (refer to Appendix A) that is delimited by
any character other than a SPACE or NEWLINE, traditionally a slash (/).
The replacement-string starts immediately following the second delimiter
and must be terminated by the same delimiter. The final (third) delimiter is
required. The replacement-string can contain an ampersand (&), which sed
replaces with the matched pattern . Unless you use the g flag, the Substitute
instruction replaces only the first occurrence of the pattern on each selected
line.

 The g (global) flag causes the Substitute instruction to replace all
nonoverlapping occurrences of the pattern on the selected lines.

 The p (print) flag causes sed to send all lines on which it makes substitutions
to standard output. This flag overrides the –n option on the command line.

 The w (write) flag is similar to the p flag but it sends its output to the file
specified by file. A single SPACE and the name of the output file must
follow a w flag.

p (print) The Print instruction writes the selected lines to standard output,
writing the lines immediately, and does not reflect the effects of subsequent
instructions. This instruction overrides the –n option on the command line.
(The –n option prevents sed from copying lines to standard output.)

w file (write) This instruction is similar to the Print instruction except that it sends
output to the file specified by file. A single SPACE and the name of the
output file must follow a Write instruction.

r file (read) The Read instruction reads the contents of the specified file and
appends it to the selected line. A single SPACE and the name of the input
file must follow a Read instruction.

q (quit) The Quit instruction causes sed to terminate immediately.

Control Structures

! (NOT) Causes sed to apply the following instruction, located on the same
line, to each of the lines not selected by the address portion of the instruction.
For example, 3!d deletes all lines except line 3 and $!p displays all lines
except the last.

{ } (group instructions) When you enclose a group of instructions within a pair
of braces, a single address (or address pair) selects the lines on which the
group of instructions operates. Use semicolons (;) to separate multiple
commands appearing on a single line.

Branch instructions

The sed info page lists the branch instructions as "Commands for sed gurus" and suggests that if you need
them you might be better off writing your program in awk or Perl.

: label Identifies a location within a sed program. The label is useful as a
target for the b and t branch instructions.

b [label] Unconditionally transfers control (branches) to label . Without label ,
skips the rest of the instructions for the current line of input and reads
the next line of input (page 565).

t [label] Transfers control (branches) to label only if a Substitute instruction has
been successful since the most recent line of input was read (conditional
branch). Without label , skips the rest of the instructions for the current
line of input and reads the next line of input (page 565).

The Pattern Space and the Hold Space

The sed utility has two buffers. The commands reviewed up to this point work with the Pattern space, which
initially holds the line of input that sed just read. The Hold space can hold data while you manipulate data in
the Pattern space; it is a temporary buffer. Until you place data in the Hold space it is empty. This section
discusses commands that move data between the Pattern space and the Hold space.

g Copies the contents of the Hold space to the Pattern space. The original
contents of the Pattern space is lost.

G Appends a NEWLINE and the contents of the Hold space to the Pattern
space.

h Copies the contents of the Pattern space to the Hold space. The original
contents of the Hold space is lost.

H Appends a NEWLINE and the contents of the Pattern space to the Hold
space.

x Exchanges the contents of the Pattern space and the Hold space.

 < Day Day Up >

 < Day Day Up >

Examples

new data file The following examples use the input file new:

$ cat new

Line one.

The second line.

The third.

This is line four.

Five.

This is the sixth sentence.

This is line seven.

Eighth and last.

Unless you instruct it not to, sed sends all lines—selected or not—to standard output. When you use the –n
option on the command line, sed sends only certain lines, such as those selected by a Print (p) instruction, to
standard output.

The following command line displays all the lines in the new file that contain the word line (all lowercase).
In addition, because there is no –n option, sed displays all the lines of input. As a result the lines that contain
the word line are displayed twice.

$ sed '/line/ p' new

Line one.

The second line.

The second line.

The third.

This is line four.

This is line four.

Five.

This is the sixth sentence.

This is line seven.

This is line seven.

Eighth and last.

The command uses the address /line/, a regular expression that is a simple string. The sed utility selects each
of the lines that contains a match for that pattern. The Print (p) instruction displays each of the selected lines.

The following command uses the –n option so that sed displays only the selected lines:

$ sed -n '/line/ p' new

The second line.

This is line four.

This is line seven.

Next sed displays part of a file based on line numbers. The Print instruction selects and displays lines 3
through 6.

$ sed -n '3,6 p' new

The third.

This is line four.

Five.

This is the sixth sentence.

The next command line uses the Quit instruction to cause sed to display only the beginning of a file. In this
case sed displays the first five lines of new just as a head –5 new command would.

$ sed '5 q' new

Line one.

The second line.

The third.

This is line four.

Five.

program-file

When you need to give sed more complex or lengthy instructions, you can use a program-file . The print3_6
program performs the same function as the command line in a previous example. The –f option tells sed that
it should read its program from the file named on the command line.

$ cat print3_6

3,6 p

$ sed -n -f print3_6 new

The third.

This is line four.

Five.

This is the sixth sentence.

Append

The next program selects line 2 and uses an Append instruction to append a NEWLINE and the text
AFTER. to the selected line. Because the command line does not include the –n option, sed copies all the
lines from the input file new.

$ cat append_demo

2 a\

AFTER.

$ sed -f append_demo new

Line one.

The second line.

AFTER.

The third.

This is line four.

Five.

This is the sixth sentence.

This is line seven.

Eighth and last.

Insert

The insert_demo program selects all the lines containing the string This and inserts a NEWLINE and the
text BEFORE. before the selected lines.

$ cat insert_demo

/This/ i\

BEFORE.

$ sed -f insert_demo new

Line one.

The second line.

The third.

BEFORE.

This is line four.

Five.

BEFORE.

This is the sixth sentence.

BEFORE.

This is line seven.

Eighth and last.

Change

The next example demonstrates a Change instruction with an address range. When you specify a range of
lines for a Change instruction, it does not change each line within the range but rather changes the block of
lines to a single occurrence of the new text.

$ cat change_demo

2,4 c\

SED WILL INSERT THESE\

THREE LINES IN PLACE\

OF THE SELECTED LINES.

$ sed -f change_demo new

Line one.

SED WILL INSERT THESE

THREE LINES IN PLACE

OF THE SELECTED LINES.

Five.

This is the sixth sentence.

This is line seven.

Eighth and last.

Substitute

The next example demonstrates a Substitute instruction. The sed utility selects all lines because the
instruction has no address. On each line subs_demo replaces the first occurrence of line with sentence. The
p flag displays each line where a substitution occurs. The command line calls sed with the –n option, so sed
displays only the lines that the program explicitly requests it to display.

$ cat subs_demo

s/line/sentence/p

$ sed -n -f subs_demo new

The second sentence.

This is sentence four.

This is sentence seven.

The next example is similar to the preceding one except that a w flag and filename (temp) at the end of the
Substitute instruction cause sed to create the file named temp. The command line does not include the –n
option, so it displays all lines in addition to writing the changed lines to temp. The cat utility displays the
contents of the file temp. The word Line (starting with an uppercase L) is not changed.

$ cat write_demo1

s/line/sentence/w temp

$ sed -f write_demo1 new

Line one.

The second sentence.

The third.

This is sentence four.

Five.

This is the sixth sentence.

This is sentence seven.

Eighth and last.

$ cat temp

The second sentence.

This is sentence four.

This is sentence seven.

The following bash script changes all occurrences of REPORT to report, FILE to file, and PROCESS to
process in a group of files. Because it is a shell script and not a sed program file, you must have read and
execute permission to the sub file to execute it as a command (page 263). The for structure (page 451) loops
through the list of files supplied on the command line. As it processes each file, the script displays each
filename before processing the file with sed. This program uses multiline embedded sed commands.
Because the NEWLINEs between the commands are quoted (placed between single quotation marks), sed
accepts multiple commands on a single, extended command line (within a shell script). Each Substitute
instruction includes a g (global) flag to take care of the case where a string occurs more than one time on a
line.

$ cat sub

for file

do

 echo $file

 mv $file $$.subhld

 sed 's/REPORT/report/g

 s/FILE/file/g

 s/PROCESS/process/g' $$.subhld > $file

done

rm $$.subhld

$ sub file1 file2 file3

file1

file2

file3

In the next example, a Write instruction copies part of a file to another file (temp2). The line numbers 2 and
4, separated by a comma, select the range of lines sed is to copy. This program does not alter the lines.

$ cat write_demo2

2,4 w temp2

$ sed -n -f write_demo2 new

$ cat temp2

The second line.

The third.

This is line four.

The program write_demo3 is very similar to write_demo2 but precedes the Write instruction with the NOT
operator (!), causing sed to write to the file those lines not selected by the address.

$ cat write_demo3

2,4 !w temp3

$ sed -n -f write_demo3 new

$ cat temp3

Line one.

Five.

This is the sixth sentence.

This is line seven.

Eighth and last.

The following example demonstrates the Next instruction. When it processes the selected line (line 3), sed
immediately starts processing the next line without displaying line 3.

$ cat next_demo1

3 n

p

$ sed -n -f next_demo1 new

Line one.

The second line.

This is line four.

Five.

This is the sixth sentence.

This is line seven.

Eighth and last.

The next example uses a textual address. The sixth line contains the string the, so the Next instruction causes
sed not to display it.

$ cat next_demo2

/the/ n

p

$ sed -n -f next_demo2 new

Line one.

The second line.

The third.

This is line four.

Five.

This is line seven.

Eighth and last.

The next set of examples uses the file compound.in to demonstrate how sed instructions work together.

$ cat compound.in

1. The words on this page...

2. The words on this page...

3. The words on this page...

4. The words on this page...

The following example substitutes the string words with text on lines 1, 2, and 3 and the string text with
TEXT on lines 2, 3, and 4. The example also selects and deletes line 3. The result is text on line 1, TEXT
on line 2, no line 3, and words on line 4. The sed utility made two substitutions on lines 2 and 3: text for
words and TEXT for text. Then sed deleted line 3.

$ cat compound

1,3 s/words/text/

2,4 s/text/TEXT/

3 d

$ sed -f compound compound.in

1. The text on this page...

2. The TEXT on this page...

4. The words on this page...

The ordering of instructions within a sed program is critical. Both Substitute instructions are applied to the
second line in the following example, as in the previous example, but the order in which the substitutions
occur changes the result.

$ cat compound2

2,4 s/text/TEXT/

1,3 s/words/text/

3 d

$ sed -f compound2 compound.in

1. The text on this page...

2. The text on this page...

4. The words on this page...

Next compound3 appends two lines to line 2. The sed utility displays all the lines from the file once
because no –n option appears on the command line. The Print instruction at the end of the program file
displays line 3 an additional time.

$ cat compound3

2 a\

This is line 2a.\

This is line 2b.

3 p

$ sed -f compound3 compound.in

1. The words on this page...

2. The words on this page...

This is line 2a.

This is line 2b.

3. The words on this page...

3. The words on this page...

4. The words on this page...

The next example shows that sed always displays appended text. Here line 2 is deleted but the Append
instruction still displays the two lines that were appended to it. Appended lines are displayed even if you use
the –n option on the command line.

$ cat compound4

2 a\

This is line 2a.\

This is line 2b.

2 d

$ sed -f compound4 compound.in

1. The words on this page...

This is line 2a.

This is line 2b.

3. The words on this page...

4. The words on this page...

The next example uses regular expressions in the addresses. The regular expression in the following
instruction (^.) matches one character at the beginning of every line that is not empty. The replacement
string (between the second and third slashes) contains a backslash escape sequence that represents a TAB
character (\t) followed by an ampersand (&). The ampersand takes on the value of whatever the regular
expression matched.

$ sed 's/^./\t&/' new

 Line one.

 The second line.

 The third.

...

This type of substitution is useful for indenting a file to create a left margin. See Appendix A for more
information on regular expressions.

You can also use the simpler form s/^/\t/ to add TABs to the beginnings of lines. However, in addition to
placing TABs at the beginning of lines with text on them, this instruction places a TAB at the beginning of
every empty line—something the preceding command does not do.

You may want to put the preceding sed instruction into a shell script so that you do not have to remember it
(and retype it) each time you want to indent a file. The chmod utility gives you read and execute permission
to the ind file.

$ cat ind

sed 's/^./\t&/' $*

$ chmod u+rx ind

$ ind new

 Line one.

 The second line.

 The third.

...

Stand-alone script

When you run the preceding shell script, it creates two processes: It calls a shell, which in turn calls sed.
You can eliminate the overhead associated with the shell process by putting the line #!/bin/sed –f (page 265)
at the start of the script, which runs the sed utility directly. You need read and execute permission to the file
holding the script.

$ cat ind2

#!/bin/sed -f

s/^./\t&/

In the following sed program, the regular expression (two SPACEs followed by *$) matches one or more
SPACEs at the end of a line. This program removes trailing SPACEs at the ends of lines, which is useful for
cleaning up files that you created using vim.

$ cat cleanup

sed 's/ *$//' $*

The cleanup2 script runs the same sed command as cleanup but stands alone: It calls sed directly with no
intermediate shell.

$ cat cleanup2

#!/bin/sed -f

s/ *$//

Hold space

The next sed program makes use of the Hold space to exchange pairs of lines in a file.

$ cat s1

h # Copy Pattern space (line just read) to Hold space.

n # Read the next line of input into Pattern space.

p # Output Pattern space.

g # Copy Hold space to Pattern space.

p # Output Pattern space (which now holds the previous line).

$ sed -nf s1 new

The second line.

Line one.

This is line four.

The third.

This is the sixth sentence.

Five.

Eighth and last.

This is line seven.

The commands in the s1 program process pairs of input lines. This program reads a line and stores it; reads
another line and displays it; and then retrieves the stored line and displays it. After processing a pair of lines
the program starts over with the next pair of lines.

The next sed program adds a blank line after each line in the input file (i.e., it double-spaces a file).

$ sed 'G' new

Line one.

The second line.

The third.

This is line four.

$

The G instruction appends a NEWLINE and the contents of the Hold space to the Pattern space. Unless you
put something in the Hold space, it is empty. Thus the G instruction copies a NEWLINE to each line of input
before sed displays the line(s) from the Pattern space.

The s2 sed program reverses the order of the lines in a file just as the tac utility does.

$ cat s2

2,$G # On all but the first line, append a NEWLINE and the

 # contents of the Hold space to the Pattern space.

h # Copy the Pattern space to the Hold space.

$!d # Delete all except the last line.

$ sed -f s2 new

Eighth and last.

This is line seven.

This is the sixth sentence.

Five.

This is line four.

The third.

The second line.

Line one.

This program includes three commands: 2,$G, h, and $!d. To understand this script it is important to
understand how the address of the last command works: The $ is the address of the last line of input and the !
negates the address. The result is an address that selects all except the last line of input. In the same fashion
you could replace the first command with 1!G: Select all except the first line for processing; the results
would be the same.

Here is what happens as s2 processes the new file:

1. The sed utility reads the first line of input (Line one.) into the Pattern space.

The 2,$G does not process the first line of input—because of its address the G instruction starts
processing at the second line.

a.

The h copies Line one. from the Pattern space to the Hold space.b.

The $!d deletes the contents of the Pattern space. Because there is nothing in the Pattern space, sed
does not display anything.

c.

2. The sed utility reads the second line of input (The second line.) into the Pattern space.

The 2,$G adds what is in the Hold space (Line one.) to the Pattern space. The Pattern space now
has The second line.NEWLINELine one.

a.

The h copies what is in the Pattern space to the Hold space.b.

The $!d deletes the second line of input. Because it is deleted, sed does not display it.c.

3. The sed utility reads the third line of input (The third.) into the Pattern space.

The 2,$G adds what is in the Hold space (The second line.NEWLINELine one.) to the Pattern
space. The Pattern space now has The third.NEWLINE The second line.NEWLINELine one.

a.

The h copies what is in the Pattern space to the Hold space.b.

The $!d deletes the contents of the Pattern space. Because there is nothing in the Pattern space, sed
does not display anything.

c.

. . .

8. The sed utility reads the eighth (last) line of input into the Pattern space.

The 2,$G adds what is in the Hold space to the Pattern space. The Pattern space now has all the
lines from new in reverse order.

a.

The h copies what is in the Pattern space to the Hold space. This step is not necessary for the last
line of input but does not alter the program's output.

b.

The $!d does not process the last line of input. Because of its address the d instruction does not
delete the last line.

c.

The sed utility displays the contents of the Pattern space.d.

 < Day Day Up >

 < Day Day Up >

Chapter Summary

The sed (stream editor) utility is a batch (noninteractive) editor. It takes its input from files you specify on
the command line or from standard input. Unless you redirect the output from sed, it goes to standard
output.

A sed program consists of one or more lines with the following syntax:

[address [,address]] instruction [argument-list]

The address es are optional. If you omit the address , sed processes all lines of input. The instruction is the
editing instruction that modifies the text. The address es select the line(s) the instruction part of the
command operates on. The number and kinds of arguments in the argument-list depend on the instruction .

In addition to basic instructions, sed includes some powerful advanced instructions. One set of these
instructions allows sed programs to store data temporarily in a buffer called the Hold space. Other
instructions provide unconditional and conditional branching in sed programs.

 < Day Day Up >

 < Day Day Up >

Exercises

1: Write a sed command that copies a file to standard output, removing all lines that begin with the
word Today.

2: Write a sed command that copies only those lines of a file that begin with the word Today to
standard output.

3: Write a sed command that copies a file to standard output, removing all blank lines (lines with
no characters on them).

4: Write a sed program named ins that copies a file to standard output, changing all occurrences of
cat to dog and preceding each modified line with a line that says following line is modified.

5: Write a sed program named div that copies a file to standard output, copies the first five lines to
a file named first, and copies the rest of the file to a file named last.

6: Write a sed command that copies a file to standard output, replacing a single SPACE as the first
character on a line with a 0 (zero) only if the SPACE is immediately followed by a number
(0–9). For example:

abc abc

 abc abc

 85c 085c

55b 55b

 000 0000

7: How can you use sed to triple-space (i.e., add two blank lines after each line in) a file?

 < Day Day Up >

 < Day Day Up >

Part V: Command Reference

Command Reference
 < Day Day Up >

 < Day Day Up >

Command Reference

The following tables list the utilities covered in this part of the book grouped by function and alphabetically
within function. Although most of these are true utilities (programs that are separate from the shells), some
are built into the shells (shell builtins). The sample utility on page 588 shows the format of the description of
each utility in this part of the book.

 < Day Day Up >

 < Day Day Up >

Utilities That Display and Manipulate Files

aspell Checks a file for spelling errors—page 589

bzip2 Compresses or decompresses files—page 596

cat Joins and displays files—page 599

cmp Compares two files—page 610

comm Compares sorted files—page 612

cp Copies files—page 616

cpio Creates an archive or restores files from an archive—page 619

cut Selects characters or fields from input lines—page 627

dd Converts and copies a file—page 633

diff Displays the differences between two files—page 638

find Finds files based on criteria—page 655

fmt Formats text very simply—page 664

gawk Searches for and processes patterns in a file—page 527

grep Searches for a pattern in files—page 683

gzip Compresses or decompresses files—page 688

head Displays the beginning of a file—page 691

less Displays text files, one screen at a time—page 697

ln Makes a link to a file—page 702

lpr Sends files to printers—page 705

ls Displays information about one or more files—page 708

man Displays documentation for commands—page 721

mkdir Creates a directory—page 724

mv Renames or moves a file—page 732

od Dumps the contents of a file—page 737

paste Joins corresponding lines from files—page 742

pr Paginates files for printing—page 744

rm Removes a file (deletes a link)—page 753

rmdir Removes a directory—page 755

sed Edits a file (not interactively)—page 563

sort Sorts and/or merges files—page 762

split Divides a file into sections—page 771

strings Displays strings of printable characters—page 777

tail Displays the last part (tail) of a file—page 783

tar Stores or retrieves files to/from an archive file—page 786

touch Changes a file's access and/or modification time—page 801

uniq Displays unique lines—page 812

wc Displays the number of lines, words, and bytes—page 816

 < Day Day Up >

 < Day Day Up >

Network Utilities

ftp Transfers files over a network—page 671

rcp Copies one or more files to or from a remote system—page 750

rlogin Logs in on a remote system—page 752

rsh Executes commands on a remote system—page 756

scp Securely copies one or more files to or from a remote system—page
758

ssh Securely executes commands on a remote system—page 773

telnet Connects to a remote system over a network—page 792

 < Day Day Up >

 < Day Day Up >

Utilities That Display and Alter Status

cd Changes to another working directory—page 601

chgrp Changes the group associated with a file—page 603

chmod Changes the access mode (permissions) of a file—page 604

chown Changes the owner of a file and/or the group the file is associated
with—page 608

date Displays or sets the system time and date—page 630

df Displays disk space usage—page 636

du Displays information on disk usage by file—page 644

file Displays the classification of a file—page 653

finger Displays information about users—page 661

kill Terminates a process by PID—page 693

killall Terminates a process by name—page 695

nice Changes the priority of a command—page 734

nohup Runs a command that keeps running after you log out—page 736

ps Displays process status—page 746

sleep Creates a process that sleeps for a specified interval—page 760

stty Displays or sets terminal parameters—page 778

top Dynamically displays process status—page 798

umask Establishes the file-creation permissions mask—page 810

w Displays information about system users—page 814

which Shows where in PATH a command is located—page 817

who Displays information about logged-in users—page 819

 < Day Day Up >

 < Day Day Up >

Utilities That Are Programming Tools

configure Configures source code automatically—page 614

gcc Compiles C and C++ programs—page 678

make Keeps a set of programs current—page 715

 < Day Day Up >

 < Day Day Up >

Miscellaneous Utilities

at Executes commands at a specified time—page 593

cal Displays a calendar—page 598

crontab Maintains crontab files—page 624

echo Displays a message—page 647

expr Evaluates an expression—page 649

fsck Checks and repairs a filesystem—page 666

mkfs Creates a filesystem on a device—page 725

Mtools Uses DOS-style commands on files and directories—page 728

tee Copies standard input to standard output and one or more files—page
791

test Evaluates an expression—page 794

TR Replaces specified characters—page 804

tty Displays the terminal pathname—page 807

tune2fs Changes parameters on an ext2 or ext3 filesystem—page 808

xargs Converts standard input into command lines—page 821

 < Day Day Up >

 < Day Day Up >

Standard Multiplicative Suffixes

Several utilities allow you to use the suffixes listed in Table V-1 following byte counts. You can precede a
multiplicative suffix with a number that is a multiplier. For example, 5K means 5 x 210. The absence of a
multiplier indicates that the multiplicative suffix is to be multiplied by 1. The utilities that allow these
suffixes are marked as such.

Table V-1. Multiplicative suffixes

Suffix Multiplicative value Suffix Multiplicative value

KB 1,000 (103) PB 1015

K 1,024 (210) P 250

MB 1,000,000 (106) EB 1018

M 1,048,576 (220) E 260

GB 1,000,000,000 (109) ZB 1021

G 1,073,741,824 (230) Z 270

TB 1012 YB 1024

T 240 Y 280

 < Day Day Up >

 < Day Day Up >

Common Options

Several GNU utilities share the options listed in Table V-2. The utilities that use these options are marked as
such.

Table V-2. Common command line options

Option Effect

– A single hyphen appearing in place of a filename indicates that
the utility will accept standard input in place of the file.

–– A double hyphen marks the end of the options on a command
line. You can follow this option with an argument that begins
with a hyphen. Without this option the utility assumes that an
argument that begins with a hyphen is an option.

––help Displays a help message for the utility. Some of these messages
are quite long; you can pipe the output through less to display it
one screen at a time. For example, you could give the command ls
––help | less. Alternatively you can pipe the output through grep
if you are looking for specific information. For example, you
could give the following command to get information on the –d
option to ls: ls ––help | grep –––d. See the preceding entry in
this table for information on the double hyphen.

––version Displays version information for the utility.

 < Day Day Up >

 < Day Day Up >

The sample Utility

The following description of the sample utility shows the format that is used to describe the utilities in this part of the book. These
descriptions are similar to the man page descriptions (pages 30 and 721); however, most users find the descriptions in this book easier
to read and understand. These descriptions emphasize the most useful features of the utilities and often leave out the more obscure
features. For information about the less commonly used features, refer to the man and info pages or call the utility with the ––help
option, which works with many utilities.

sample: Very brief description of what the utility does

sample [options] arguments

Following the syntax line is a description of the utility. The syntax line shows how to run the utility from the command line. Options
and arguments enclosed in brackets ([]) are not required. Type words that appear in this italic typeface as is. Words that you must
substitute when you type appear in this bold italic typeface . Words listed as arguments to a command identify single arguments (for
example, source-file) or groups of similar arguments (for example, directory -list).

Arguments

This section describes the arguments that you can use when you run the utility. The argument itself, as shown in the preceding syntax
line, is printed in this bold italic typeface .

Options

This section lists some of the options you can use with the command. Unless otherwise specified, you must precede options with one
or two hyphens. Most commands accept a single hyphen before multiple options (page 109). Options in this section are ordered
alphabetically by short (single-hyphen) options. If an option has only a long version (two hyphens), it is ordered by its long option.
Following are some sample options:

––make-dirs –d This option has a long and a short version. You can
use either option; they are equivalent.

––delimiter=dchar

–d dchar

 This option includes an argument. The argument is set in a bold italic
typeface in both the heading and the description. You substitute another
word (filename, string of characters, or other value) for any arguments you
see in this typeface . Type characters that are in bold type (such as the
––delimiter and –d) as is, letter for letter.

–t (table of contents) This is an example of a simple option preceded by a
single hyphen and not followed with any arguments. It has no long version.
The table of contents appearing in parentheses at the beginning of the
description is a cue, suggestive of what the option letter stands for.

Discussion

This optional section contains a discussion about how to use the utility and any quirks it may have.

Notes

This section contains miscellaneous notes—some important and others merely interesting.

Examples

This section contains examples of how to use the utility. This section is tutorial and is more casual than the preceding sections of the
description.

aspell: Checks a file for spelling errors

aspell check [options]filename

aspell list [options] < filename

aspell config

aspell help

The aspell utility checks the spelling of words in a document against a standard dictionary. You can use aspell interactively: It
displays each misspelled word in context, together with a menu that gives you the choice of accepting the word as is, choosing one of
aspell's suggested replacements for the word, inserting the word into your personal dictionary, or replacing the word with one you
enter. You can also use aspell in batch mode so that it reads from standard input and writes to standard output.

tip: aspell is not like other utilities regarding its input

Unlike many other utilities, aspell does not accept input from standard input when you do not specify a filename on the
command line. Instead, the action specifies where aspell gets its input.

Action

You must choose one and only one action when you run aspell.

check –c Runs aspell as an interactive spelling checker. Input
comes from a single file named on the command line. Refer
to "Discussion" on page 590.

config Displays aspell's configuration, both default and current
values. Send the output through a pipe to less for easier
viewing, or use grep to find the option you are looking for
(for example, aspell config | grep backup).

help –? Displays an extensive page of help. Send the output through
a pipe to less for easier viewing.

list –l Runs aspell in batch mode (noninteractively) with input
coming from standard input and output going to standard
output.

Arguments

The filename is the name of the file you want to check. The aspell utility accepts this argument only when you use the check (–c)
action . With the list (–l) action , input must come from standard input.

Options

The aspell utility has many options. A few of the more commonly used ones are listed in this section; see the manual for a complete
list. Default values of many options are determined when aspell is compiled (see the config action).

You can specify options on the command line, in value of the ASPELL_CONF shell variable, or in your personal configuration file
(~/.aspell.conf). Superuser can create a global configuration file (/etc/aspell.conf). Put one option per line in a configuration file;
separate options with a semicolon (;) in ASPELL_CONF. Options on the command line override those in ASPELL_CONF, which
override those in your personal configuration file, which override those in the global configuration file.

There are two types of options in the following list: Boolean and value. The Boolean options turn a feature on (enable the feature) or
off (disable the feature). Precede a Boolean option with dont– to turn it off. For example, ––ignore-case turns the ignore-case feature
on and ––dont-ignore-case turns it off.

Value options assign a value to a feature. Follow the option with an equal sign and a value—for example, ––ignore=4.

For all options in a configuration file or in the ASPELL_CONF variable, drop the leading hyphens (ignore-case or dont-ignore-
case).

caution: aspell options and leading hyphens

The way you specify options differs depending on whether you are specifying them on the command line, using the
ASPELL_CONF shell variable, or in a configuration file.

On the command line prefix long options with two hyphens (for example, ––ignore-case or ––dont-ignore-case). In
ASPELL_CONF and configuration files, drop the leading hyphens (for example, ignore-case or dont-ignore-case).

––dont-backup Does not create a backup file named filename .bak (default is
––backup when action is check).

––ignore=n Ignores words with n or fewer characters (default is 1).

––ignore-case Ignores the case of letters in words being checked (default is
––dont-ignore-case).

––lang=cc Specifies the two-letter language code (cc). The language code
defaults to the value of LC_MESSAGES (page 291).

––mode=mod Specifies a filter to use. Select mod from url (default), none,
sgml, and others. The modes work as follows: url: skips URLs,
hostnames, and email addresses; none: turns off all filters; sgml:
skips SGML, HTML, XHTML, and XML commands.

––strip-accents Removes accent marks from all the words in the dictionary
before checking words (default is ––dont-strip-accents).

Discussion

The aspell utility has two basic modes of operation: batch and interactive. You specify batch mode by using the list or –l action . In
batch mode aspell takes the document you want to check for spelling errors as standard input and sends the list of potentially
misspelled words to standard output.

You specify interactive mode by using the check or –c action . In interactive mode aspell displays a screen with the potentially
misspelled word in context highlighted in the middle and a menu of choices at the bottom. See "Examples" for an illustation. The
menu includes various commands (Table V-3) as well as some suggestions of similar, correctly spelled words. You either enter one of
the numbers from the menu to select a suggested word to replace the word in question or enter a letter to give a command.

Table V-3. Commands

Command Action

SPACE Takes no action and goes on to next the misspelled word.

n Replaces the misspelled word with suggested word number n.

a Adds the "misspelled" word to your personal dictionary.

b Aborts aspell; does not save changes.

i or I (letter "i") Ignores the misspelled word. I (uppercase "I") ignores all
occurrences of this word; i ignores this occurrence only and is
the same as SPACE.

l (lowercase "l") Shifts the "misspelled" word to lowercase and adds it to your
personal dictionary.

r or R Replaces the misspelled word with the word that you enter at
the bottom of the screen. R replaces all occurrences of this
word; r replaces this occurrence only.

x Saves the file as corrected so far and exits from aspell.

Notes

For more information refer to the /usr/share/doc/aspell directory with manuals in the man-html and man-text subdirectories and to
the aspell home page located at aspell.sourceforge.net.

The aspell utility is not a foolproof way of finding spelling errors. It also does not check for misused, properly spelled words (such as
red instead of read).

Spelling from emacs

You can make it easy to use aspell from emacs by adding the following line to your ~/.emacs file. This line causes emacs' ispell
functions to call aspell:

(setq-default ispell-program-name "aspell")

Spelling from vim

Similarly, you can make it easy to use aspell from vim by adding the following line to your ~/.vimrc file:

map ^T :w!<CR>:!aspell check %<CR>:e! %<CR>

When you enter this line in ~/.vimrc using vim, enter the ^T as CONTROL-V CONTROL-T (page 159). With this line in ~/.vimrc,
CONTROL-T brings up aspell to spell check the file you are editing with vim.

Examples

The following examples use aspell to correct the spelling in the memo.txt file:

$ cat memo.txt

Here's a document for teh aspell utilitey

to check. It obviosly needs proofing

quiet badly.

The first example uses aspell with the check action and no options. The appearance of the screen for the first misspelled word, teh, is
shown. At the bottom of the screen is the menu of commands and suggested words. The numbered words each differ slightly from the
misspelled word:

$ aspell check memo.txt

Here's a document for teh aspell utilitey

to check. It obviosly needs proofing

quiet badly.

==

1) the 6) th

2) Te 7) tea

3) tech 8) tee

4) Th 9) Ted

5) eh 0) tel

i) Ignore I) Ignore all

r) Replace R) Replace all

a) Add l) Add Lower

b) Abort x) Exit

==

?

Enter one of the menu choices in response to the preceding display; aspell will do your bidding and move the highlight to the next
misspelled word (unless you choose to abort or exit).

The next example uses the list action to display a list of misspelled words. The word quiet is not in the list—it is not properly used but
is properly spelled.

$ aspell list < memo.txt

teh

aspell

utilitey

obviosly

The last example also uses the uses the list action . It shows a quick way to check the spelling of a word or two with a single command.
The user gives the aspell list command and then enters seperate temperature into aspell's standard input (the keyboard). After the
user enters RETURN and CONTROL-D (to mark the end of file), aspell writes the misspelled word to standard output (the screen):

$ aspell list

seperate temperatureRETURN

CONTROL-D

seperate

at: Executes commands at a specified time

at [options] time [date | +increment]

atq

atrm job-list

batch [options] [time]

The at and batch utilities execute commands at a specified time. They accept commands from standard input or, with the –f option,

from a file. Commands are executed in the same environment as the at or batch command. Unless redirected, standard output and
standard error from commands are emailed to the user who ran at or batch. A job is the group of commands that is executed by one
call to at. The batch utility differs from at in that it schedules jobs so that they run when the CPU load on the system is low.

The atq utility displays a list of at jobs you have queued; atrm cancels pending at jobs.

Arguments

The time is the time of day that at runs the job. You can specify the time as a one-, two-, or four-digit number. One- and two-digit
numbers specify an hour, and four-digit numbers specify an hour and minute. You can also give the time in the form hh:mm. The at
utility assumes a 24-hour clock unless you place am or pm immediately after the number, in which case it uses a 12-hour clock. You
can also specify time as now, midnight, noon, or teatime (4:00 PM).

The date is the day of the week or day of the month on which you want at to execute the job. When you do not specify a day, at
executes the job today if the hour you specify in time is greater than the current hour. If the hour is less than the current hour, at
executes the job tomorrow.

You specify a day of the week by spelling it out or abbreviating it to three letters. You can also use the words today and tomorrow.
Use the name of a month followed by the number of the day in the month to specify a date. You can follow the month and day number
with a year.

The increment is a number followed by one of the following (plural or singular is allowed): minutes, hours, days, or weeks. The at
utility adds the increment to time . You cannot specify an increment for a date.

When using atrm, job-list is a list of one or more at job numbers. You can list job numbers by running at with the –l option or by
using atq.

Options

The –l and –d options are not for use when you initiate a job with at. You can use them only to determine the status of a job or to
cancel a job.

–c job-list (cat) Displays the environment and commands specified by job-list .

–d job-list (delete) Cancels jobs that you previously submitted with at. The
job-list argument is a list of one or more at job numbers to cancel. If
you do not remember the job number, use the –l option or run atq to
list your jobs and their numbers. Using this option with at is the
same as running atrm.

–f file (file) Specifies that commands come from file instead of standard
input. This option is useful for long lists of commands or
commands that are executed repeatedly.

–l (list) Displays a list of your at jobs. Using this option with at is the
same as running atq.

–m (mail) Sends you email after a job is run, even when nothing is sent
to standard output or standard error. When a job generates output, at
always emails it to you, regardless of this option.

Notes

The shell saves the environment variables and the working directory at the time you submit an at job so that they are available when
at executes commands .

/etc/at.allow and /etc/at.deny

The root user can always use at. The /etc/at.allow and /etc/at.deny files, which should be read0able and writable by root only (mode
600), control which ordinary, local users can use at. When /etc/at.deny exists and is empty, all users can use at. When /etc/at.deny
does not exist, only users listed in /etc/at.allow can use at. Users listed in /etc/at.deny cannot use at unless they are also listed in
/etc/at.allow.

Jobs you submit using at are run by the at daemon (atd). This daemon stores jobs in /var/spool/at and output in /var/spool/at/spool,
both of which should be set to mode 700 and owned by the user named daemon.

Examples

You can use any of the following techniques to paginate and print long_file tomorrow at 2:00 AM. The first example executes the
command directly from the command line; the last two examples use the pr_tonight file, which contains the necessary command, and
execute it using at.

$ at 2am

at> pr long_file | lpr

at>CONTROL-D<EOT>

job 8 at 2005-08-17 02:00

$ cat pr_tonight

#!/bin/bash

pr long_file | lpr

$ at -f pr_tonight 2am

job 9 at 2005-08-17 02:00

$ at 2am < pr_tonight

job 10 at 2005-08-17 02:00

If you execute commands directly from the command line, you must signal the end of the commands by pressing CONTROL-D at the
beginning of a line. After you press CONTROL-D, at displays a line that begins with job followed by the job number and the time at
will execute the job.

If you run atq after the preceding commands, it displays a list of jobs in its queue:

$ atq

8 2005-08-17 02:00 a

9 2005-08-17 02:00 a

10 2005-08-17 02:00 a

The following command removes job number 9 from the queue:

$ atrm 9

$ atq

8 2005-08-17 02:00 a

10 2005-08-17 02:00 a

The next example executes cmdfile at 3:30 PM (1530 hours) one week from today:

$ at -f cmdfile 1530 +1 week

job 12 at 2005-08-23 15:30

Next at executes a job at 7 PM on Thursday. This job uses find to create an intermediate file, redirects the output sent to standard
error, and prints the file.

$ at 7pm Thursday

at> find / -name "core" -print >report.out 2>report.err

at> lpr report.out

at>CONTROL-D<EOT>

job 13 at 2005-08-18 19:00

The final example shows some of the output generated by the –c option when at is queried about the preceding job. Most of the lines
show the environment; only the last few lines execute the commands :

$ at -c 13

#!/bin/sh

atrun uid=500 gid=500

mail mark 0

umask 2

PATH=/usr/kerberos/bin:/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.;

export PATH

PWD=/home/mark/book.examples/99/cp; export PWD

EXINIT=set\ ai\ aw; export EXINIT

LANG=C; export LANG

PS1=\\\$\ ; export PS1

...

cd /home/mark/book\.examples/99/cp || {

 echo 'Execution directory inaccessible' >&2

 exit 1

}

find / -name "core" -print >report.out 2>report.err

lpr report.out

bzip2: Compresses or decompresses files

bzip2 [options] [file-list]

bunzip2 [options] [file-list]

bzcat [options] [file-list]

bzip2recover [file]

The bzip2 utility compresses files; bunzip2 restores files compressed with bzip2; bzcat displays files compressed with bzip2.

Arguments

The file-list is a list of one or more files (no directories) that are to be compressed or decompressed. If file-list is empty or if the special
option – is present, bzip2 reads from standard input. The ––stdout option causes bzip2 to write to standard output.

Options

Accepts the common options described on page 587.

––stdout –c Writes the results of compression or decompression to standard
output.

––decompress –d Decompresses a file compressed with bzip2. This option with
bzip2 is equivalent to the bunzip2 command.

––fast or
––best

–n Sets the block size when compressing a file. The n is a digit
from 1 to 9, where 1 (––fast) generates a block size of 100
kilobytes and 9 (––best) generates a block size of 900
kilobytes. The default level is 9. The options ––fast and ––best
are provided for compatibility with gzip and do not necessarily
yield the fastest or best compression.

––force –f Forces compression even if a file already exists, has multiple
links, or comes directly from a terminal. The option has a
similar effect with bunzip2.

––keep –k Does not delete input files while compressing or
decompressing them.

––quiet –q Suppresses warning messages; does display critical messages.

––test –t Verifies the integrity of a compressed file. Displays nothing if
the file is OK.

––verbose –v For each file being compressed displays the name of the file,
the compression ratio, the percentage of space saved, and the
sizes of the decompressed and compressed files.

Discussion

The bzip2 and bunzip2 utilities work similarly to gzip and gunzip; see the discussion of gzip (page 689) for more information.
Normally bzip2 does not overwrite a file; you must use ––force to overwrite a file during compression or decompression.

Notes

The bzip2 home page is sources.redhat.com/bzip2.

The bzip2 utility does a better job of compressing files than gzip.

Use the ––bzip2 modifier with tar (page 788) to compress archive files with bzip2.

bzcat file-list

Works like cat except that it uses bunzip2 to decompress file-list as it copies files to standard output.

bzip2recover

Attempts to recover a damaged file that was compressed with bzip2.

Examples

In the following example, bzip2 compresses a file and gives the resulting file the same name with a .bz2 filename extension. The –v
option displays statistics about the compression.

$ ls -l

total 728

-rw-r--r-- 1 sam sam 737414 Feb 20 19:05 bigfile

$ bzip2 -v bigfile

 bigfile: 3.926:1, 2.037 bits/byte, 74.53% saved, 737414 in, 187806 out

$ ls -l

total 188

-rw-r--r-- 1 sam sam 187806 Feb 20 19:05 bigfile.bz2

Next touch creates a file with the same name as the original file; bunzip2 refuses to overwrite the file in the process of decompressing
bigfile.bz2. The ––force option enables bunzip2 to overwrite the file.

$ touch bigfile

$ bunzip2 bigfile.bz2

bunzip2: Output file bigfile already exists.

$ bunzip2 --force bigfile.bz2

$ ls -l

total 728

-rw-r--r-- 1 sam sam 737414 Feb 20 19:05 bigfile

cal: Displays a calendar

cal [options] [[month] year]

The cal utility displays a calendar for a month or a year.

Arguments

The arguments specify the month and year for which cal displays a calendar. The month is a decimal integer from 1 to 12 and the
year is a decimal integer. Without any arguments, cal displays a calendar for the current month. When you specify a single argument,
it is taken to be the year.

Options

–j (Julian) Displays a Julian calendar—a calendar that numbers the days
consecutively from January 1 (1) through December 31 (365 or 366).

–m (Monday) Makes Monday the first day of the week. Without this option,
Sunday is the first day of the week.

–y (year) Displays a calendar for the current year.

–3 (three months) Displays the previous, current, and next months.

Notes

Do not abbreviate the year. The year 05 is not the same as 2005.

Examples

The following command displays a calendar for August 2007:

$ cal 8 2007

 August 2007

Su Mo Tu We Th Fr Sa

 1 2 3 4

 5 6 7 8 9 10 11

12 13 14 15 16 17 18

19 20 21 22 23 24 25

26 27 28 29 30 31

Next is a Julian calendar for 1949 with Monday as the first day of the week:

$ cal -jm 1949

 1949

 January February

Mon Tue Wed Thu Fri Sat Sun Mon Tue Wed Thu Fri Sat Sun

 1 2 32 33 34 35 36 37

 3 4 5 6 7 8 9 38 39 40 41 42 43 44

 10 11 12 13 14 15 16 45 46 47 48 49 50 51

 17 18 19 20 21 22 23 52 53 54 55 56 57 58

 24 25 26 27 28 29 30 59

 31 ...

cat: Joins and displays files

cat [options] [file-list]

The cat utility copies files to standard output. You can use cat to display the contents of one or more text files on the screen.

Arguments

The file-list is a list of the pathnames of one or more files that cat processes. If you do not specify an argument or if you specify a
hyphen (–) in place of a filename, cat reads from standard input.

Options

Accepts the common options described on page 587.

––show-all –A Same as –vET.

––number-nonblank

 –b Numbers all lines that are not blank as they are written to
standard output.

 –e (end) Same as –vE.

––show-ends –E Marks the ends of lines with dollar signs.

––number –n (number) Numbers all lines as they are written to standard
output.

––squeeze-blank –s Removes extra blank lines so there are never two or more
blank lines in a row.

 –t (tab) Same as –vT.

––show-tabs –T Marks each TAB with ^I.

––show-nonprinting

–v Displays CONTROL characters with the caret notation (^M) and displays
characters that have the high bit set (META characters) with the M- notation.
This option does not convert TABs and LINEFEEDs. Use ––show-tabs if you
want to display TABs as ^I. LINEFEEDs cannot be displayed as anything but
themselves; otherwise, the line would be too long.

Notes

See page 115 for a discussion of cat, standard input, and standard output.

Use the od utility (page 737) to display the contents of a file that does not contain text (for example, an executable program file).

Use the tac utility to display lines of a text file in reverse order. See the tac info page for more information.

The name cat is derived from one of the functions of this utility, catenate, which means to join together sequentially, or end to end.

caution: Set noclobber to avoid overwriting a file

Despite cat's warning message, the shell destroys the input file (letter) before invoking cat in the following example:

$ cat memo letter > letter

cat: letter: input file is output file

You can prevent overwriting a file in this situation by setting the noclobber variable (pages 119 and 367).

Examples

The following command displays the contents of the memo text file on the terminal:

$ cat memo

...

The next example catenates three text files and redirects the output to the all file:

$ cat page1 letter memo > all

You can use cat to create short text files without using an editor. Enter the following command line, type (or paste) the text you want
in the file, and press CONTROL-D on a line by itself:

$ cat > new_file

...

(text)

...

CONTROL-D

In this case cat takes input from standard input (the keyboard) and the shell redirects standard output (a copy of the input) to the file
you specify. The CONTROL-D signals the EOF (end of file) and causes cat to return control to the shell (page 116).

In the next example, a pipe sends the output from who to standard input of cat. The shell redirects cat's output to the file named
output that, after the commands have finished executing, contains the contents of the header file, the output of who, and footer. The
hyphen on the command line causes cat to read standard input after reading header and before reading footer.

$ who | cat header - footer > output

cd: Changes to another working directory

cd [options] [directory]

The cd builtin makes directory the working directory.

Arguments

The directory is the pathname of the directory you want to be the new working directory. Without an argument, cd makes your home
directory the working directory. Using a hyphen in place of directory changes to the previous working directory.

Notes

The cd command is a bash and tcsh builtin.

See page 82 for a discussion of cd.

Without an argument, cd makes your home directory the working directory; it uses the value of the HOME (bash; page 283) or home
(tcsh, page 362) variable for this purpose.

With an argument of a hyphen, cd makes the previous working directory the working directory. It uses the value of the OLDPWD
(bash) or owd (tcsh) variable for this purpose.

The CDPATH (bash; page 289) or cdpath (tcsh; page 362) variable contains a colon-separated list of directories that cd searches.
Within the list a null directory name (::) or a period (:.:) represents the working directory. If CDPATH or cdpath is not set, cd
searches only the working directory for directory . If this variable is set and directory is not an absolute pathname (does not begin with
a slash), cd searches the directories in the list; if the search fails, cd searches the working directory. See page 289 for a discussion of
CDPATH.

Examples

The following cd command makes Alex's home directory his working directory. The pwd builtin verifies the change:

$ pwd

/home/alex/literature

$ cd

$ pwd

/home/alex

The next command makes the /home/alex/literature directory the working directory:

$ cd /home/alex/literature

$ pwd

/home/alex/literature

Next the cd utility makes a subdirectory of the working directory the new working directory:

$ cd memos

$ pwd

/home/alex/literature/memos

Finally cd uses the . . reference to the parent of the working directory to make the parent the new working directory:

$ cd ..

$ pwd

/home/alex/literature

chgrp: Changes the group associated with a file

chgrp [options] group file-list

chgrp [options] ––reference= rfile file-list

The chgrp utility changes the group associated with one or more files.

Arguments

The group is the name or numeric group ID of the new group. The file-list is a list of the pathnames of the files whose group
association is to be changed. The rfile is the pathname of a file whose group is to become the new group associated with file-list .

Options

––changes –c Displays a message for each file whose group is changed.

––dereference Changes the group IDs of the files symbolic links point to,
not the symbolic links themselves. The default is ––no-
dereference.

––quiet or ––silent –f Prevents the display of warning messages about files
whose permissions prevent you from changing their group
IDs.

––no-dereference

 –h Changes the group IDs of symbolic links, not the files that
the links point to (default).

––recursive –R Recursively descends a directory specified in file-list and
changes the group ID on all files in the directory hierarchy.

––reference=rfile

 Changes the group of the files in file-list to that of rfile .

––verbose –v Displays for each file a message saying whether its group
was retained or changed.

Notes

Only the owner of a file or root can change the group association of a file. Also, unless you are root, you must belong to the specified
group to change the group ID of a file to that group .

See page 608 for information on how chown can change the group associated with, as well as the owner of, a file.

Examples

The following command changes the group that the manuals file is associated with; the new group is pubs.

$ chgrp pubs manuals

chmod: Changes the access mode (permissions) of a file

chmod [options] who operator permission file-list (symbolic)

chmod [options] mode file-list (absolute)

chmod [options] ––reference= rfile file-list (referential)

The chmod utility changes the ways in which a file can be accessed by the owner of the file, the group to which the file belongs, and/or
all other users. Only the owner of a file or Superuser can change the access mode, or permissions, of a file. You can specify the new
access mode absolutely, symbolically, or referentially.

Arguments

Arguments specify which files are to have their modes changed in what ways.

Symbolic

You can specify multiple sets of symbolic modes (who operator permission) by separating each set from the next with a comma.

The chmod utility changes the access permission for the class of users specified by who . The class of users is designated by one or
more of the letters specified in the who column of Table V-4.

Table V-4. Symbolic mode user class specification

who User class Meaning

u User Owner of the file

g Group Group to which the owner belongs

o Other All other users

a All Can be used in place of ugo

Table V-5 lists the symbolic mode operator s.

Table V-5. Symbolic mode operators

operator Meaning

+ Adds permission for the specified user class

– Removes permission for the specified user class

= Sets permission for the specified user class—resets all other permissions
for that user class

The access permission is specified by one or more of the letters listed in Table V-6.

Table V-6. Symbolic mode permissions

permission Meaning

r Sets read permission

w Sets write permission

x Sets execute permission

s Sets user ID or group ID (depending on the who argument) to that of
the owner of the file while the file is being executed (For more
information see page 94.)

t Sets the sticky bit (Only Superuser can set the sticky bit, and it can be
used only with u; see page 903.)

X Makes the file executable only if it is a directory or if another user
class has execute permission

u Sets specified permissions to those of the owner

g Sets specified permissions to those of the group

o Sets specified permissions to those of others

Absolute

You can use an octal number to specify the access mode. Construct the number by ORing the appropriate values from Table V-7. To
OR two octal numbers from this table, just add them. (Refer to Table V-8 for examples.)

Table V-7. Absolute mode specifications

mode Meaning

4000 Sets user ID when the program is executed (page 94)

2000 Sets group ID when the program is executed (page 94)

1000 Sticky bit (page 903)

0400 Owner can read the file

0200 Owner can write to the file

0100 Owner can execute the file

0040 Group can read the file

0020 Group can write to the file

0010 Group can execute the file

0004 Others can read the file

0002 Others can write to the file

0001 Others can execute the file

Table V-8. Examples of absolute mode specifications

Mode Meaning

0777 Owner, group, and others can read, write, and execute file

0755 Owner can read, write, and execute file; group and others can read
and execute file

0711 Owner can read, write, and execute file; group and others can execute
file

0644 Owner can read and write file; group and others can read file

0640 Owner can read and write file, group can read file, and others cannot
access file

Table V-8 lists some typical modes.

Options

––changes –c Displays a message giving the new permissions for each
file whose mode is changed.

––quiet or ––silent –f Prevents the display of warning messages about files
whose permissions prevent chmod from changing the
permissions of the file.

––recursive –R Recursively descends a directory specified in file-list and
changes the permissions on all files in the directory
hierarchy.

––reference=rfile

 Changes the permissions of the files in file-list to that of
rfile .

––verbose –v Displays for each file a message saying that its permissions
were changed (even if they were not changed) and
specifying the permissions. Use ––changes to display
messages only when permissions are actually changed.

Notes

When you are using symbolic arguments, you can omit the permission from the command line only when the operator is =. This
omission takes away all permissions. See the second example in the next section.

Examples

The following examples show how to use the chmod utility to change the permissions of the file named temp. The initial access mode
of temp is shown by ls (see "Discussion" on page 710 for information about the ls display):

$ ls -l temp

-rw-rw-r-- 1 alex pubs 57 Jul 12 16:47 temp

When you do not follow an equal sign with a permission, chmod removes all permissions for the specified user class. The following
command removes all access permissions for the group and all other users so that only the owner has access to the file:

$ chmod go= temp

$ ls -l temp

-rw------- 1 alex pubs 57 Jul 12 16:47 temp

The next command changes the access modes for all users (owner, group, and others) to read and write. Now anyone can read from or
write to the file.

$ chmod a=rw temp

$ ls -l temp

-rw-rw-rw- 1 alex pubs 57 Jul 12 16:47 temp

Using an absolute argument, a=rw becomes 666. The next command performs the same function as the previous one:

$ chmod 666 temp

The next command removes write access permission for other users. As a result members of the pubs group can still read from and
write to the file, but other users can only read from the file:

$ chmod o-w temp

$ ls -l temp

-rw-rw-r-- 1 alex pubs 57 Jul 12 16:47 temp

The following command yields the same result, using an absolute argument:

$ chmod 664 temp

The next command adds execute access permission for all users:

$ chmod a+x temp

$ ls -l temp

-rwxrwxr-x 1 alex pubs 57 Jul 12 16:47 temp

If temp is a shell script or other executable file, all users can now execute it. (You need read and execute access to execute a shell
script but only execute access to execute a binary file.) The absolute command that yields the same result is

$ chmod 775 temp

The final command uses symbolic arguments to achieve the same result as the preceding one. It sets permissions to read, write, and
execute for the owner, and to read and write for the group and other users. A comma separates the sets of symbolic modes.

$ chmod u=rwx,go=rw temp

chown: Changes the owner of a file and/or the group the file is associated with

chown [options] owner file-list

chown [options] owner:group file-list

chown [options] owner: file-list

chown [options] :group file-list

chown [options] ––reference= rfile file-list

The chown utility changes the owner of a file and/or the group the file is associated with. Only root can change the owner of a file.
Only root or the owner of a file who belongs to the new group can change the group a file is associated with.

Arguments

The owner is the username or numeric user ID of the new owner. The file-list is a list of the pathnames of the files whose ownership
and/or group association you want to change. The group is the group name or numeric group ID of the new group that the file is
associated with. Table V-9 shows the ways you can specify the new owner and/or group .

Table V-9. Specifying the new owner and/or group

Argument Meaning

owner The new owner of file-list ; the group is not changed

owner:group The new owner and new group association of file-list

owner: The new owner of file-list ; the group association is changed to that of
the new owner's login group

:group The new group associated with file-list ; the owner is not changed

Options

Accepts the common options described on page 587.

––changes –c Displays a message for each file whose ownership/group is
changed.

––dereference Changes the ownership/group of the files symbolic links
point to, not the symbolic links themselves. The default is
––no-dereference.

––quiet or ––silent –f Prevents chown from displaying error messages when it is
unable to change the ownership/group of a file.

––no-dereference

 –h Changes the ownership/group of symbolic links, not the
files that the links point to (default).

––recursive –R When you include directories in the file-list , this option
descends the directory hierarchy, setting the specified
ownership/group for all files encountered.

––reference=rfile

 Changes the ownership and group association of the files in
the file-list to that of rfile .

––verbose –v Displays for each file a message saying whether its
ownership/group was retained or changed.

Notes

The chown utility clears setuid and setgid bits when it changes the owner of a file.

Examples

The following command changes the owner of the chapter1 file in the manuals directory. The new owner is Jenny:

chown jenny manuals/chapter1

The following command makes Alex the owner of, and Alex's login group the group associated with, all files in the
/home/alex/literature directory and in all its subdirectories:

chown --recursive alex: /home/alex/literature

The next command changes the ownership of the files in literature to alex and the group associated with these files to pubs:

chown alex:pubs /home/alex/literature/*

The final example changes the group association of the files in manuals to pubs without altering their ownership. The owner of the
files, who is executing this command, must belong to the pubs group.

$ chown :pubs manuals/*

cmp: Compares two files

cmp [options] file1 [file2 [skip1 [skip2]]]

The cmp utility displays the differences between two files on a byte-by-byte basis. If the files are the same, cmp is silent. If the files
differ, cmp displays the byte and line number of the first difference.

Arguments

The file1 and file2 are pathnames of the files that cmp compares. If file2 is omitted, cmp uses standard input instead. Using a hyphen (–)
in place of file1 or file2 causes cmp to read standard input instead of that file.

The skip1 and skip2 are decimal numbers indicating the number of bytes to skip in each file before beginning the comparison.

Options

––print–bytes –b Displays more information, including filenames, byte and
line number, as well as octal and ASCII values of the first
differing byte.

––ignore–initial=n

 –i n

 Skips the first n bytes in both files before beginning the
comparison.

––verbose –l (lowercase "l") Instead of stopping at the first byte that
differs, continues comparing the two files and displays
both the location and the value of each byte that differs.
Locations are displayed as decimal byte count offsets
from the beginning of the files; byte values are displayed
in octal. The comparison terminates when an EOF is
encountered on either file.

––silent or ––quite –s Suppresses output from cmp; only sets the exit status (see
"Notes").

Notes

Byte and line numbering start at 1.

The cmp utility does not display a message if the files are identical; it only sets the exit status. This utility returns an exit status of 0 if
the files are the same and 1 if they are different. An exit status greater than 1 means an error occurred.

When you use skip1 (and skip2), the offset values cmp displays are based on the byte where the comparison began. You can use the
standard multiplicative suffixes after skip1 and skip2 ; see Table V-1 on page 586.

Unlike diff (page 638), cmp works with binary as well as ASCII files.

Examples

The examples use the files a and b shown below. These files have two differences. The first difference is that the word lazy in file a is
replaced by lasy in file b. The second difference is more subtle: A TAB character appears just before the NEWLINE character in file
b.

$ cat a

The quick brown fox jumped over the lazy dog.

$ cat b

The quick brown fox jumped over the lasy dog.TAB

The first example uses cmp without any options to compare the two files. The cmp utility reports that the files are different and

identifies the offset from the start of the files where the first difference is found:

$ cmp a b

a b differ: char 39, line 1

You can display the values of the bytes at that location by adding the ––print–chars option:

$ cmp --print-bytes a b

a b differ: char 39, line 1 is 172 z 163 s

The –l option displays all bytes that differ between the two files. Because this option creates a lot of output if the files have many
differences, you may want to redirect the output to a file. The following example shows the two differences between files a and b. The
–b option displays the values for the bytes as well. Where file a has a CONTROL–J (NEWLINE), file b has a CONTROL–I (TAB).
The message saying that it has reached the end of file on file a indicates that file b is longer than file a.

$ cmp -lb a b

39 172 z 163 s

46 12 ^J 11 ^I

cmp: EOF on a

In the next example, the ––ignore–initial option is used to skip over the first difference in the files. The cmp utility now reports on the
second difference. The difference is put at character 7, which is the 46th character in the original file b (7 characters past the ignored
39 characters).

$ cmp --ignore-initial=39 a b

a b differ: char 7, line 1

You can use skip1 and skip2 in place of the ––ignore–initial option used in the preceding example:

$ cmp a b 39 39

a b differ: char 7, line 1

comm: Compares sorted files

comm [options] file1 file2

The comm utility displays a line-by-line comparison of two sorted files. The first of the three columns it displays lists the lines found
only in file1 , the second column lists the lines found only in file2 , and the third lists the lines common to both files.

Arguments

The file1 and file2 are pathnames of the files that comm compares. Using a hyphen (–) in place of file1 or file2 causes comm to read
standard input instead of that file.

Options

You can combine the options.

–1 Does not display column 1 (does not display lines found only in file1).

–2 Does not display column 2 (does not display lines found only in file2).

–3 Does not display column 3 (does not display lines found in both files).

Notes

If the files have not been sorted, comm will not work properly.

Lines in the second column are preceded by one TAB, and those in the third column are preceded by two TABs.

The exit status indicates whether comm completed normally (0) or abnormally (not 0).

Examples

The following examples use two files, c and d, in the working directory. As with all input to comm, the files have already been sorted:

$ cat c

bbbbb

ccccc

ddddd

eeeee

fffff

$ cat d

aaaaa

ddddd

eeeee

ggggg

hhhhh

Refer to sort on page 762 for information on sorting files.

The following example calls comm without any options, so it displays three columns. The first column lists those lines found only in
file c, the second column lists those found in d, and the third lists the lines found in both c and d:

$ comm c d

 aaaaa

bbbbb

ccccc

 ddddd

 eeeee

fffff

 ggggg

 hhhhh

The next example shows the use of options to prevent comm from displaying columns 1 and 2. The result is column 3, a list of the lines
common to files c and d:

$ comm -12 c d

ddddd

eeeee

configure: Configures source code automatically

./configure options

The configure script is part of the GNU Configure and Build System. Software developers who supply source code for their products
face the problem of making it easy for relatively naive users to build and install their software package on a wide variety of machine
architectures, operating systems, and system software. Toward this end many software developers supply a shell script named
configure with their source code.

When you run configure, it determines the capabilities of the local system. The data collected by configure is used to build the
makefiles with which make (page 715) builds the executables and libraries. You can adjust the behavior of configure by specifying
command line options and environment variables.

Options

––disable-feature

Works in the same manner as ––enable -feature except that it disables support for
feature .

––enable-feature

 Replace feature with the name of a feature that can be supported
by the software being configured. For example, configuring the Z
Shell source code with the command configure ––enable-zsh-
mem configures the source code to use the special memory
allocation routines provided with zsh instead of using the system
memory allocation routines. Check the README file supplied
with the software distribution to see the choices available for
feature .

––help Displays a detailed list of all options available for use with
configure. The contents of this list depends on the software
distribution being configured.

––prefix=directory

 By default configure builds makefiles that install software in
the /usr/local directory (when you give the command make
install). To install into a different directory, replace directory
with the pathname of the directory you want to install the
software in.

––with-package Replace package with the name of an optional package that can
be included with the software you are configuring. For example,
if you configure the source code for the Windows emulator wine
with the command configure ––with-dll, the source code is
configured to build a shared library of Windows emulation
support. Check the README file supplied with the software
distribution to see the choices available for package . Also,
configure ––help usually displays the choices available for
package .

Discussion

The GNU Configure and Build System allows software developers to distribute software that can configure itself to be built on a
variety of systems. This system builds a shell script named configure, which prepares the software distribution to be built and
installed on a local system. The configure script searches the local system to find the various dependencies for the software
distribution and constructs the appropriate makefiles. Once you have run configure, you can build the software with a make
command and install the software with a make install command.

The configure script determines which C compiler to use (usually gcc) and specifies a set of flags to pass to that compiler. You can
set the environment variables CC and CFLAGS to override these values with your own choices. (See the "Examples" section.)

Notes

Each package that uses the GNU autoconfiguration utility provides its own custom copy of configure, which the software developer
created using the GNU autoconf utility. Read the README and INSTALL files that are provided with the package you are
installing to obtain detailed information about the available options.

The configure scripts are self-contained and run correctly on a wide variety of systems. You do not need any special system resources
to use configure.

Examples

The simplest way to call configure is to cd to the base directory for the software distribution you want to configure and then run the
following command:

$./configure

The ./ is prepended to the command name to ensure that you are running the configure script that was supplied with the software

distribution. To cause configure to build makefiles that pass the flags –Wall and –O2 to gcc, use the following command from bash:

$ CFLAGS="-Wall -O2" ./configure

If you are using tcsh, use the following command:

tcsh $ env CFLAGS="-Wall -O2" ./configure

cp: Copies files

cp [options] source-file destination-file

cp [options] source-file-list destination-directory

The cp utility copies one or more files. It can either make a copy of a single file (first format) or it can copy one or more files to a
directory (second format). With the ––recursive option, cp can copy directories.

Arguments

The source-file is the pathname of the file that cp makes a copy of. The destination-file is the pathname that cp assigns to the resulting
copy of the file.

The source-file-list is a list of one or more pathnames of files that cp makes copies of. The destination-directory is the pathname of
the directory in which cp places the copied files. With this format, cp gives each of the copied files the same simple filename as its
source-file .

The ––recursive option enables cp to copy directories recursively from the source-file-list into the destination-directory .

Options

Accepts the common options described on page 587.

––archive –a Attempts to preserve as many attributes of source-file as possible.
Same as –dpPR.

––backup –b If copying a file would remove or overwrite an existing file, this
option makes a backup copy of the file that would be overwritten.
The backup copy has the same name as the destination-file with a
tilde (~) appended to it. When you use both ––backup and
––force, cp makes a backup copy when you try to copy a file over
itself.

 –d Copies symbolic links, not the files that links point to. Also
preserves hard links in destination-file s that exist between
corresponding source-file s. This option is equivalent to ––no-
dereference and ––preserve=links.

––force –f When the destination-file exists and cannot be opened for
writing, this option causes cp to try to remove destination-file
before copying source-file . This option is useful when the user
copying a file does not have write permission to an existing
destination-file but has write permission to the directory
containing the destination-file . See also ––backup.

––interactive –i Prompts you whenever cp would overwrite a file. If you respond
with a string that starts with y or Y, cp continues. If you enter
anything else, cp does not copy the file.

––dereference –L Copies the file that a symbolic link points to. See ––no-
dereference.

––preserve –p Creates a destination-file with the same owner, group,
permissions, access date, and modification date as the source-file .

––no-dereference

 –P Copies symbolic links, not the files that the links point to.
Without the –R, –r, or ––recursive option, the default
behavior is to dereference links (copy the files that links
point to, not the links). With one of these options, cp does
not dereference symbolic links (it copies the links, not the
files that the links point to).

––parents Copies a relative pathname to a directory, creating
directories as needed. (See "Examples.")

––preserve=links

 When recursively copying directories, attempts to preserve
hard links in destination-file s that exist between
corresponding source-file s.

––recursive –R or –r

 Recursively copies directory hierarchies including ordinary
files. The ––no-dereference option is implied.

––update –u Copies only when the destination-file does not exist or
when it is older than the source-file .

––verbose –v Displays the name of each file as cp copies it.

Notes

If the destination-file exists before you execute cp, cp overwrites the file, destroying the contents but leaving the access privileges,
owner, and group associated with the file as they were.

If the destination-file does not exist, cp uses the access privileges of the source-file . The user who copies the file becomes the owner
of the destination-file and the user's group becomes the group associated with the destination-file .

With the –p option, cp attempts to set the owner, group, permissions, access date, and modification date to match those of the source-
file.

Unlike ln (page 702), the destination-file that cp creates is independent of its source-file .

Examples

The first command makes a copy of the file letter in the working directory. The name of the copy is letter.sav.

$ cp letter letter.sav

The next command copies all files with filenames ending in .c into the archives directory, which is a subdirectory of the working
directory. Each copied file retains its simple filename but has a new absolute pathname. Because of the ––preserve option, the copied
files in archives have the same owner, group, permissions, access date, and modification date as the source files.

$ cp --preserve *.c archives

The next example copies memo from /home/jenny to the working directory:

$ cp /home/jenny/memo .

The next example uses the ––parents option to copy the file memo/thursday/max to the dir directory as dir/memo/thursday/max.
The find utility shows the newly created directory hierarchy.

$ cp --parents memo/thursday/max dir

$ find dir

dir

dir/memo

dir/memo/thursday

dir/memo/thursday/max

The following command copies the files named memo and letter into another directory. The copies have the same simple filenames as
the source files (memo and letter) but have different absolute pathnames. The absolute pathnames of the copied files are
/home/jenny/memo and /home/jenny/letter.

$ cp memo letter /home/jenny

The final command demonstrates one use of the ––force option. Alex owns the working directory and tries unsuccessfully to copy one
onto a file (me) that he does not have write permission for. Because he has write permission to the directory that holds me, Alex can
remove the file but not write to it. The ––force option unlinks, or removes, me and then copies one to the new file named me.

$ ls -ld

drwxrwxr-x 2 alex alex 4096 Oct 21 22:55 .

$ ls -l

-rw-r--r-- 1 root root 3555 Oct 21 22:54 me

-rw-rw-r-- 1 alex alex 1222 Oct 21 22:55 one

$ cp one me

cp: cannot create regular file 'me': Permission denied

$ cp --force one me

$ ls -l

-rw-r--r-- 1 alex alex 1222 Oct 21 22:58 me

-rw-rw-r-- 1 alex alex 1222 Oct 21 22:55 one

If Alex had used the ––backup option in addition to ––force, cp would have created a backup of me named me~. Refer to "Directory
Access Permissions" on page 94 for more information.

cpio: Creates an archive or restores files from an archive

cpio ––create [options]

cpio ––extract [options] [patterns]

cpio ––pass-through [options] directory

The cpio utility has three modes of operation: Create mode places multiple files into a single archive file, extract mode restores files
from an archive, and pass-through mode copies a directory hierarchy to another location. The archive file used by cpio may be saved
on disk, tape, other removable media, or a remote system.

Create mode reads a list of ordinary or directory filenames from standard input and writes the resulting archive file to standard output.
You can use this mode to create an archive. Extract mode reads the name of an archive from standard input and extracts files from that
archive. You can decide to restore all the files from the archive or only those whose names match specific patterns . Pass-through mode
reads ordinary or directory filenames from standard input and copies the files to another location on the disk.

Arguments

By default cpio in extract mode extracts all files found in the archive. You can choose to extract files selectively by supplying one or
more patterns . If the name of a file in the archive matches one of the patterns , that file is extracted; otherwise, it is ignored. The cpio
patterns are similar to shell wildcards (page 127) except that patterns match slashes (/) and a leading period (.) in a filename.

In pass-through mode you must give the name of the target directory as an argument to cpio.

Options

Major Options

Three options determine the mode in which cpio operates. You must include exactly one of these options whenever you use cpio.

––extract –i Reads the archive from standard input and extracts files. Without
any patterns on the command line, cpio extracts all the files from
the archive. With patterns specified, cpio extracts only files with
names the patterns match. The following example extracts from
the SCSI tape at /dev/st0 only those files whose names end in .c :

$ cpio -i *.c < /dev/st0

The backslash prevents the shell from expanding the * before it
passes the argument to cpio.

––create –o Constructs an archive from the files named on standard input.
These files may be ordinary or directory files, and each must
appear on a separate line. The archive is written to standard output
as it is built. The find utility frequently generates the filenames
that cpio uses. The following command builds an archive of the
entire local system and writes it to the SCSI tape at /dev/st0:

$ find / -depth -print | cpio -o >/dev/st0

The –depth option causes find to search for files in a depth-first
search, reducing the likelihood of permissions problems when you
restore the files from the archive. See the discussion of this option
on page 622.

––pass-through –p Copies files from one place on the system to another. Instead of
constructing an archive file containing the files named on standard
input, cpio copies them into the directory (the last argument given
to cpio). The effect is the same as if you had created an archive
with copy-out mode and then extracted the files with copy-in
mode, but using pass-through mode avoids creating an archive. The
following example copies the files in the working directory and all
subdirectories into /home/alex/code:

$ find . -depth -print | cpio -pdm ~alex/code

Other Options

The remaining options alter the behavior of cpio. These options work with one or more of the preceding major options.

––reset–access–time

 –a Resets the access times of source files after
copying them so that they have the same access
time after copying as they did before.

 –B (block) Sets the block size to 5,120 bytes instead
of the default 512 bytes.

––block–size=n

 Sets the block size used for input and output to n
512-byte blocks.

 –c (compatible) Writes header information in
ASCII so that older (incompatible) cpio utilities
on other systems can read the file. This option is
rarely needed.

––make–directories

–d Creates directories as needed when copying files. For example, you need
this option when you are extracting files from an archive with a file list
generated by find with the –depth option. This option can be used only
with the ––extract and ––pass–through options.

––pattern–file=filename

 –E filename

 Reads patterns from filename , one pattern per
line. You can specify additional patterns on the
command line.

––nonmatching –f Reverses the sense of the test done on patterns
when extracting files from an archive. Files are
extracted from the archive only if they do not
match any of the patterns .

––file=archive –F archive

 Uses archive as the name of the archive file. In
extract mode, reads from archive instead of
standard input. In create mode, writes to archive
instead of standard output. You can use this
option to access a device on another system on a
network; see the ––file option to tar (page 787)
for more information.

––help Displays a list of options.

––link –l When possible, links files instead of copying
them.

––dereference –L Copies the files that symbolic links point to, not
the symbolic links themselves.

––preserve–modification–time

–m Preserves the modification times of files that are extracted from an
archive. Without this option the files show the time they were
extracted. With this option the created files show the time they had
when they were copied into the archive.

––no-absolute-filenames

 In extract mode, creates all filenames relative to
the working directory—even files that were
archived with absolute pathnames.

––rename –r Allows you to rename files as cpio copies them.
When cpio prompts you with the name of a file,
you respond with the new name. The file is then
copied with the new name. If you press RETURN
instead, cpio does not copy the file.

––list –t (table of contents) Displays a table of contents of
the archive. This option works only with the
––extract option, although no files are actually
extracted from the archive. With the ––verbose
option, it displays a detailed table of contents in a
format similar to that used by ls –l.

––unconditional –u Overwrites existing files regardless of their
modification times. Without this option cpio will
not overwrite a more recently modified file with
an older one; it simply displays a warning
message.

––verbose –v Lists files as they are processed. With the ––list
option, it displays a detailed table of contents in a
format similar to that used by ls –l.

Discussion

GNU cpio version 2.5 displays erroneous truncating inode number error messages; you can safely ignore these messages.

Without the ––unconditional option, cpio will not overwrite a more recently modified file with an older file.

You can use both ordinary and directory filenames as input when you create an archive. If the name of an ordinary file appears in the
input list before the name of its parent directory, the ordinary file appears before its parent directory in the archive as well. This order
can lead to an avoidable error: When you extract files from the archive, the child has nowhere to go in the file structure if its parent has
not yet been extracted.

Making sure that files appear after their parent directories in the archive is not always a solution. One problem occurs if the
––preserve–modification–time option is used when extracting files. Because the modification time of a parent directory is updated
whenever a file is created within it, the original modification time of the parent directory is lost when the first file is written to it.

The solution to this potential problem is to ensure that all files appear before their parent directories when creating an archive and to
create directories as needed when extracting files from an archive. When you use this technique, directories are extracted only after all
files have been written to them and their modification times are preserved.

With the –depth option, the find utility generates a list of files with all children appearing in the list before their parent directories. If
you use this list to create an archive, the files are in the proper order. (Refer to the first example in the next section.) When extracting
files from an archive, the ––make–directories option causes cpio to create parent directories as needed and the
––preserve–modification–time option does just what its name says. Using this combination of utilities and options preserves
directory modification times through a create/extract sequence.

This strategy also solves another potential problem. Sometimes a parent directory may not have permissions set so that you can extract
files into it. When cpio automatically creates the directory with ––make–directories, you can be assured of write permission to the
directory. When the directory is extracted from the archive (after all the files are written into the directory), it is extracted with its
original permissions.

Examples

The first example creates an archive of the files in Jenny's home directory, writing the archive to a tape drive supported by the ftape
driver:

$ find /home/jenny -depth -print | cpio -oB >/dev/ftape

The find utility produces the filenames that cpio uses to build the archive. The –depth option causes all entries in a directory to be
listed before listing the directory name itself, making it possible for cpio to preserve the original modification times of directories (see
the preceding "Discussion.") Use the ––make-directories and the ––preserve-modification-time when you extract files from this
archive (see the following examples). The –B option blocks the tape at 5,120 bytes per block.

To check the contents of the archive file and display a detailed listing of the files it contains, use

$ cpio -itv < /dev/ftape

The following command restores the files that formerly were in the memo subdirectory of Jenny's home directory:

$ cpio -idm /home/jenny/memo/* < /dev/ftape

The –d (––make-directories) option ensures that any subdirectories that were in the memo directory are re-created as needed. The –m
(––preserve-modification-time) option preserves the modification times of files and directories. The asterisk in the regular expression
is escaped to keep the shell from expanding it.

The next command is the same as the preceding command except that it uses the ––no-absolute-filenames option to re-create the
memo directory in the working directory, which is named memocopy. The pattern does not start with the slash that represents the root
directory allowing cpio to create the files with relative pathnames.

$ pwd

/home/jenny/memocopy

$ cpio -idm -- no-absolute-filenames home/jenny/memo/* < /dev/ftape

The final example uses the –f option to restore all the files in the archive except those that were formerly in the memo subdirectory:

$ cpio -ivmdf /home/jenny/memo/* < /dev/ftape

The –v option lists the extracted files as cpio processes the archive, verifying that the expected files are extracted.

crontab: Maintains crontab files

crontab [–u user-name] filename

crontab [–u user-name] option

A crontab file associates periodic times (such as 14:00 on Wednesdays) with commands. The cron utility executes each command at
the specified time. When you are working as yourself, the crontab utility installs, removes, lists, and edits your crontab file. Superuser
can work with any user's crontab file.

Arguments

The first format copies the contents of filename (which contains crontab commands) into the crontab file of the user who runs the
command. When the user does not have a crontab file, this process creates a new one; when the user has a crontab file, this process
overwrites the file. When you replace filename with a hyphen (–), crontab reads commands from standard input.

The second format lists, removes, or edits the crontab file, depending on which option you specify.

Options

Choose only one of the –e, –l, or –r options. Superuser can use –u with one of these options.

–e (edit) Runs the text editor specified by the VISUAL or EDITOR shell variable
on the crontab file, enabling you to add, change, or delete entries. Installs the
modified crontab file when you exit from the editor.

–l (list) Displays the contents of the crontab file.

–r (remove) Deletes the crontab file.

–u username

 (user) Works on username 's crontab file. Only Superuser can use this option
and Superuser should always use this option.

Notes

This section covers the versions of cron, crond, crontab, and crontab files that were written by Paul Vixie—hence the term Vixie
cron. These versions differ from an earlier version of Vixie cron as well as from the classic SVR3 syntax. This version is POSIX
compliant.

User crontab files are kept in the /var/spool/cron directory, each named with the username of the user that it belongs to, owned by
root, and associated with the user's primary group.

The system utility named cron reads the crontab files and runs the commands. If a command line in a crontab file does not redirect its
output, output sent to standard output and standard error are mailed to the user unless you set the MAILTO variable within the crontab
file to a different username.

To make the system administrator's job easier, the directories named /etc/cron.hourly, /etc/cron.daily, /etc/cron.weekly, and

/etc/cron.monthly hold crontab files that are run by run-parts, which in turn are run by the /etc/crontab file. Each of these
directories contains files that execute system tasks at the interval named by the directory. Superuser can add files to these directories
instead of adding lines to root's crontab file. A typical /etc/crontab file looks like this:

$ cat /etc/crontab

SHELL=/bin/bash

PATH=/sbin:/bin:/usr/sbin:/usr/bin

MAILTO=root

HOME=/

run-parts

01 * * * * root run-parts /etc/cron.hourly

02 4 * * * root run-parts /etc/cron.daily

22 4 * * 0 root run-parts /etc/cron.weekly

42 4 1 * * root run-parts /etc/cron.monthly

Each entry in a crontab file begins with five fields that specify when the command is to run (minute, hour, day of the month, month,
and day of the week). The cron utility interprets an asterisk appearing in place of a number as a wildcard representing all possible
values. In the day-of-the-week field, you can use either 7 or 0 to represent Sunday.

It is a good practice to start cron jobs a variable number of minutes before or after the hour, half hour, or quarter hour. When you start
them at these times, it becomes less likely that many processes will start at the same time, potentially overloading the system.

When cron starts (usually when the system is booted), it reads all of the crontab files into memory. The cron utility mostly sleeps but
wakes up once a minute, reviews all crontab entries it has stored in memory, and runs whichever ones are due to be run at that time.

/etc/cron.allow /etc/cron.deny

Superuser determines which users can run crontab by creating, editing, and removing the /etc/cron.allow and /etc/cron.deny files.
When you create a cron.deny file with no entries and no cron.allow file exists, everyone can use crontab. When the cron.allow file
exists, only users listed in that file can use crontab, regardless of the presence and contents of cron.deny. Otherwise, you can list in
the cron.allow file those users who should be able to use crontab and in cron.deny those who should not be able to use it. (Listing a
user in cron.deny is not necessary because, if a cron.allow file exists and the user is not listed in it, the user will not be able to use
crontab anyway.)

Examples

The following example uses crontab –l to list the contents of Jenny's crontab file (/var/spool/cron/jenny). All the scripts that Jenny
runs are in her ~/bin directory. The first line sets the MAILTO variable to alex so that Alex gets the output from commands run from
Jenny's crontab file that is not redirected. The sat.job script runs every Saturday (day 6) at 2:05 AM, twice.week runs at 12:02 AM on

Sunday and Thursday (days 0 and 4), and twice.day runs twice a day, every day, at 10 AM and 4 PM.

$ who am i

jenny

$ crontab -l

MAILTO=alex

05 02 * * 6 $HOME/bin/sat.job

00 02 * * 0,4 $HOME/bin/twice.week

05 10,16 * * * $HOME/bin/twice.day

To add an entry to your crontab file, run the crontab utility with the –e (edit) option. Some Linux systems use a version of crontab
that does not support the –e option. If the local system runs such a version, you need to make a copy of your existing crontab file, edit
it, and then resubmit it, as in the example that follows. The –l (list) option displays a copy of your crontab file.

$ crontab -l > newcron

$ vim newcron

...

$ crontab newcron

cut: Selects characters or fields from input lines

cut [options] [file-list]

The cut utility selects characters or fields from lines of input and writes them to standard output. Character and field numbering start
with 1.

Arguments

The file-list is a list of ordinary files. If you do not specify an argument or if you specify a hyphen (–) in place of a filename, cut reads
from standard input.

Options

Accepts the common options described on page 587.

––characters=clist

 –c clist

 Selects the characters given by the column
numbers in clist . The value of clist is one or more
comma-separated column numbers or column
ranges. A range is specified by two column
numbers separated by a hyphen. A range of –n
means columns 1 through n; n– means columns n
through the end of the line.

––delimiter=dchar

 –d dchar

 Specifies dchar as the input field delimiter. Also
specifies dchar as the output field delimiter unless
you use the ––output-delimiter option. The
default delimiter is a TAB character. Quote
characters as necessary to protect them from shell
expansion.

––fields=flist –f flist

 Selects the fields specified in flist. The value of
flist is one or more comma-separated field numbers
or field ranges. A range is specified by two field
numbers separated by a hyphen. A range of –n
means fields 1 through n; n– means fields n
through the last field. The field delimiter is a TAB
character unless you use the ––delimiter option to
change it.

––output-delimiter=ochar

 Specifies ochar as the output field delimiter. The
default delimiter is the TAB character. You can
specify a different delimiter by using the
––delimiter option. Quote characters as necessary
to protect them from shell expansion.

Notes

Although limited in functionality, cut is easy to learn and use and is a good choice when columns and fields can be selected without
using pattern matching. Sometimes cut is used with paste (page 742).

Examples

For the next two examples, assume that an ls –l command produces the following output:

$ ls -l

total 2944

-rwxr-xr-x 1 zach pubs 259 Feb 1 00:12 countout

-rw-rw-r-- 1 zach pubs 9453 Feb 4 23:17 headers

-rw-rw-r-- 1 zach pubs 1474828 Jan 14 14:15 memo

-rw-rw-r-- 1 zach pubs 1474828 Jan 14 14:33 memos_save

-rw-rw-r-- 1 zach pubs 7134 Feb 4 23:18 tmp1

-rw-rw-r-- 1 zach pubs 4770 Feb 4 23:26 tmp2

-rw-rw-r-- 1 zach pubs 13580 Nov 7 08:01 typescript

The following command outputs the permissions of the files in the working directory. The cut utility with the –c option selects
characters 2 through 10 from each input line. The characters in this range are written to standard output.

$ ls -l | cut -c2-10

otal 2944

rwxr-xr-x

rw-rw-r--

rw-rw-r--

rw-rw-r--

rw-rw-r--

rw-rw-r--

rw-rw-r--

The next command outputs the size and name of each file in the working directory. This time the –f option selects the fifth and ninth
fields from the input lines. The –d option tells cut to use SPACEs, not TABs, as delimiters. The TR utility (page 804) with the –s
option changes sequences of more than one SPACE character into a single SPACE; otherwise, cut counts the extra SPACE characters
as separate fields.

$ ls -l | tr -s ' ' ' ' | cut -f5,9 -d' '

259 countout

9453 headers

1474828 memo

1474828 memos_save

7134 tmp1

4770 tmp2

13580 typescript

The last example displays a list of full names as stored in the fifth field of the /etc/passwd file. The –d option specifies that the colon
character be used as the field delimiter.

$ cat /etc/passwd

root:x:0:0:Root:/:/bin/sh

jenny:x:401:50:Jenny Chen:/home/jenny:/bin/zsh

alex:x:402:50:Alex Watson:/home/alex:/bin/bash

scott:x:504:500:Scott Adams:/home/scott:/bin/tcsh

hls:x:505:500:Helen Simpson:/home/hls:/bin/bash

$ cut -d: -f5 /etc/passwd

Root

Jenny Chen

Alex Watson

Scott Adams

Helen Simpson

date: Displays or sets the system time and date

date [options] [+format]

date [options] [newdate]

The date utility displays the time and date known to the system. Superuser can use date to change the system clock.

Arguments

The +format argument specifies the format for the output of date. The format string consisting of field descriptors and text follows a
plus sign (+). The field descriptors are preceded by percent signs, and each one is replaced by its value in the output. Table V-10 lists
some of the field descriptors.

Table V-10. Selected field descriptors

Descriptor Meaning

%a Abbreviated weekday—Sun to Sat

%A Unabbreviated weekday—Sunday to Saturday

%b Abbreviated month—Jan to Dec

%B Unabbreviated month—January to December

%c Date and time in default format used by date

%d Day of the month—01 to 31

%D Date in mm/dd/yy format

%H Hour—00 to 23

%I Hour—00 to 12

%j Julian date (day of the year—001 to 366)

%m Month of the year—01 to 12

%M Minutes—00 to 59

%n NEWLINE character

%P AM or PM

%r Time in AM/PM notation

%s Number of seconds since the beginning of January 1, 1970

%S Seconds— 00 to 60 (the 60 accommodates leap seconds)

%t TAB character

%T Time in HH:MM:SS format

%w Day of the week— 0 to 6 (0 = Sunday)

%y Last two digits of the year—00 to 99

%Y Year in four-digit format (for example, 2005)

%Z Time zone (for example, PDT)

By default date zero fills numeric fields. Place an underscore (_) immediately following the percent sign (%) for a specific field to
cause date to blank fill the field and with a hyphen (–) to cause date not to fill the field—that is, to left justify the field.

The date utility assumes that, in a format string, any character that is not a percent sign, an underscore or a hyphen following the
percent sign, or a field descriptor is ordinary text and copies it to standard output. You can use ordinary text to add punctuation to the
date and to add labels (for example, you can put the word DATE: in front of the date). Surround the format argument with single
quotation marks if it contains SPACE s or other characters that have a special meaning to the shell.

Setting the date

When Superuser specifies newdate , the system changes the system clock to reflect the new date. The newdate argument has the format

nnddhhmm[[cc]yy][.ss]

where nn is the number of the month (01–12), dd is the day of the month (01–31), hh is the hour based on a 24-hour clock (00–23),
and mm is the minutes (00–59). When you change the date, you must specify at least these fields.

The optional cc specifies the first two digits of the year (the value of the century minus 1), and yy specifies the last two digits of the
year. You can specify yy or ccyy following mm. When you do not specify a year, date assumes that the year has not changed.

You can specify the number of seconds past the start of the minute with .ss.

Options

Accepts the common options described on page 587.

––reference=file –r File

 Displays the modification date and time of file in
place of the current date and time.

––utc or ––universal –u Displays or sets the time and date using
Universal Coordinated Time (UTC, page 908;
also called Greenwich Mean Time [GMT]).

Notes

If you set up a locale database, date uses that database to substitute terms appropriate to your locale (page 885).

Examples

The first example shows how to set the date for 2:07:30 PM on August 19 without changing the year:

date 08191407.30

Sat Aug 19 14:07:30 PDT 2005

The next example shows the format argument, which causes date to display the date in a commonly used format:

$ date '+Today is %h %d, %Y'

Today is Aug 19, 2005

dd: Converts and copies a file

dd [arguments]

The dd (device-to-device copy) utility converts and copies a file. The primary use of dd is to copy files to and from such devices as
tape and floppy drives. Often dd can handle the transfer of information to and from other operating systems when other methods fail. A
rich set of arguments gives you precise control over the characteristics of the transfer.

Arguments

Accepts the common options described on page 587.

By default dd copies standard input to standard output.

bs=n (block size) Reads and writes n bytes at a time. This argument
overrides the ibs and obs arguments.

cbs=n (conversion block size) When performing data conversion
during the copy, converts n bytes at a time.

Conv=type[,type…]

 By applying conversion types in the order given on the command
line, converts the data that is being copied. The types must be
separated by commas with no SPACEs. The types of conversions
are shown in Table V-11.

count=numblocks Restricts to numblocks the number of blocks of input that dd
copies. The size of each block is the number of bytes specified
by the ibs argument.

ibs=n (input block size) Reads n bytes at a time.

if=filename (input file) Reads from filename instead of from standard input.
You can use a device name for filename to read from that
device.

obs=n (output block size) Writes n bytes at a time.

of=filename (output file) Writes to filename instead of to standard output.
You can use a device name for filename to write to that device.

seek=numblocks Skips numblocks blocks of output before writing any output.
The size of each block is the number of bytes specified by the
obs argument.

skip=numblocks Skips numblocks blocks of input before starting to copy. The
size of each block is the number of bytes specified by the ibs
argument.

Table V-11. Conversion types

type Meaning

ascii Converts EBCDIC-encoded characters to ASCII, allowing you to
read tapes written on IBM mainframe and similar computers.

block Each time a line of input is read (that is, a sequence of characters
terminated with a NEWLINE character), outputs a block of text
without the NEWLINE. Each output block has the size given by the
obs or bs argument and is created by adding trailing SPACE
characters to the text until it is the proper size.

ebcdic Converts ASCII-encoded characters to EBCDIC, allowing you to
write tapes for use on IBM mainframe and similar computers.

unblock Performs the opposite of the block conversion.

lcase Converts uppercase letters to lowercase while copying data.

noerror If a read error occurs, dd normally terminates. This conversion
allows dd to continue processing data. This conversion is useful
when you are trying to recover data from bad media.

notrunc Does not truncate the output file before writing to it.

ucase Converts lowercase letters to uppercase while copying data.

Notes

You can use the standard multiplicative suffixes to make it easier to specify large block sizes. See Table V-1 on page 586.

Examples

You can use dd to create a file filled with pseudo-random bytes.

$ dd if=/dev/urandom of=randfile2 bs=1 count=100

The preceding command reads from the /dev/urandom file (an interface to the kernel's random number generator) and writes to the
file named randfile. The block size is 1 and the count is 100 so randfile is 100 bytes long. For bytes that are more random, you can
read from /dev/random. See the urandom and random man pages for more information.

Wiping a file

You can use a similar technique to wipe data from a file before deleting it, making it almost impossible to recover data from a deleted
file. You might want to wipe a file for security reasons. Wipe a file several times for added security.

In the following example, ls shows the size of the file named secret; dd, with a block size of 1 and a count corresponding to the
number of bytes in secret, then wipes the file. The conv=notrunc argument ensures that dd writes over the data in the file and not
another place on the disk.

$ ls -l secret

-rw-rw-r-- 1 max max 2494 Feb 6 00:56 secret

$ dd if=/dev/urandom of=secret bs=1 count=2494 conv=notrunc

2494+0 records in

2494+0 records out

$ rm secret

Copying a diskette

You can use dd to make an exact copy of a floppy diskette. First copy the contents of the diskette to a file on the hard drive and then
copy the file from the hard disk to a formatted diskette. This technique works regardless of what is on the floppy diskette. The next
example copies a DOS-formatted diskette. The mount, ls, umount sequences at the beginning and end of the example verify that the
original diskette and the copy hold the same files. You can use the floppy.copy file to make multiple copies of the diskette.

mount -t msdos /dev/fd0H1440 /mnt

ls /mnt

abprint.dat bti.ini setup.ins supfiles.z wbt.z

adbook.z setup.exe setup.pkg telephon.z

umount /mnt

dd if=/dev/fd0 ibs=512 > floppy.copy

2880+0 records in

2880+0 records out

ls -l floppy.copy

-rw-rw-r-- 1 alex speedy 1474560 Oct 11 05:43 floppy.copy

dd if=floppy.copy bs=512 of=/dev/fd0

2880+0 records in

2880+0 records out

mount -t msdos /dev/fd0H1440 /mnt

ls /mnt

abprint.dat bti.ini setup.ins supfiles.z wbt.z

adbook.z setup.exe setup.pkg telephon.z

umount /mnt

df: Displays disk space usage

df [options] [filesystem-list]

The df (disk free) utility reports on the total space and the free space on each mounted device.

Arguments

When you call df without an argument, it reports on the free space on each of the currently mounted devices.

The filesystem-list is an optional list of one or more pathnames that specify the filesystems you want the report to cover. You can refer
to a mounted filesystem by its device pathname or by the pathname of the directory it is mounted on.

Options

––all –a Reports on filesystems with a size of 0 blocks, such as
/dev/proc. Normally df does not report on these
filesystems.

––block-size=sz –B sz

 The sz specifies the units that the report uses (the default is
1-kilobyte blocks). For example, ––block-size=M displays
sizes in 1,048,576-byte units while ––block-size=MB
displays sizes in 1,000,000-byte units. See Table V-1 on
page 586 for a complete list of multiplicative suffixes. See
also the ––human-readable option.

––human-
readable

 –h Displays sizes in K (kilobyte), M (megabyte), and G
(gigabyte) blocks, as is appropriate. Uses powers of 1,024;
use ––si for powers of 1,000.

––inodes –i Reports the number of inodes (page 880) that are used and
free instead of reporting on blocks.

 –k Same as ––block-size=K.

––local –l Displays local filesystems only.

––type=fstype –t fstype

 Reports information only about the filesystems of type
fstype , such as DOS or NFS. Repeat this option to report on
several types of filesystems.

––exclude-
type=fstype

 –x fstype

 Reports information only about the filesystems not of type
fstype .

Examples

In the following example, df displays information about all mounted filesystems on the local system:

$ df

Filesystem 1k-blocks Used Available Use% Mounted on

/dev/hda12 1517920 53264 1387548 4% /

/dev/hda1 15522 4846 9875 33% /boot

/dev/hda8 1011928 110268 850256 11% /free1

/dev/hda9 1011928 30624 929900 3% /free2

/dev/hda10 1130540 78992 994120 7% /free3

/dev/hda5 4032092 1988080 1839188 52% /home

/dev/hda7 1011928 60 960464 0% /tmp

/dev/hda6 2522048 824084 1569848 34% /usr

zach:/c 2096160 1811392 284768 86% /zach_c

zach:/d 2096450 1935097 161353 92% /zach_d

Next df is called with the –l and –h options, generating a human-readable list of local filesystems. The sizes in this listing are given in
terms of megabytes and gigabytes. The NFS mounted filesystems (from zach) are not visible.

$ df -lh

Filesystem Size Used Avail Use% Mounted on

/dev/hda12 1.4G 52M 1.3G 4% /

/dev/hda1 15M 4.7M 9.6M 33% /boot

/dev/hda8 988M 108M 830M 11% /free1

/dev/hda9 988M 30M 908M 3% /free2

/dev/hda10 1.1G 77M 971M 7% /free3

/dev/hda5 3.8G 1.9G 1.8G 52% /home

/dev/hda7 988M 60k 938M 0% /tmp

/dev/hda6 2.4G 805M 1.5G 34% /usr

The next example displays information about the /free2 partition in megabyte units:

$ df -BM /free2

Filesystem 1M-blocks Used Available Use% Mounted on

/dev/hda9 988 30 908 3% /free2

The final example displays information about NFS filesystems in human-readable terms:

$ df -ht nfs

Filesystem Size Used Avail Use% Mounted on

zach:/c 2.0G 1.7G 278M 86% /zach_c

zach:/d 2.0G 1.8G 157M 92% /zach_d

diff: Displays the differences between two files

diff [options] file1 file2

diff [options] file1 directory

diff [options] directory file2

diff [options] directory1 directory2

The diff utility displays line-by-line differences between two files. By default diff displays the differences as instructions you can
use to edit one of the files to make it the same as the other.

Arguments

The file1 and file2 are pathnames of ordinary files that diff works on. When the directory argument is used in place of file2 , diff
looks for a file in directory with the same name as file1 . It works similarly when directory replaces file1 . When you specify two
directory arguments, diff compares the files in directory1 with the files that have the same simple filenames in directory2 .

Options

Accepts the common options described on page 587, with one exception: When one of the arguments is a directory and the other is an
ordinary file, you cannot compare to standard input.

––ignore–space-change

 –b Ignores whitespace (SPACE s and TAB s) at the ends of
lines and considers other strings of whitespace to be equal.

––ignore–blank–lines

 –B Ignores differences that involve only blank lines.

––context[=lines] –C [lines]

 Displays the sections of the two files that differ, including
lines lines (the default is 3) around each line that differs to
show the context. Each line in file1 that is missing from
file2 is preceded by –; each extra line in file2 is preceded by
+; and lines that have different versions in the two files are
marked with !. When lines that differ are within lines lines
of each other, they are grouped together in the output.

––ed –e Creates and sends to standard output a script for the ed
editor, which will edit file1 to make it the same as file2 .
You must add w (write) and q (quit) instructions to the end
of the script if you plan to redirect input to ed from the
script. When you use ––ed, diff displays the changes in
reverse order: Changes to the end of the file are listed before
changes to the top, preventing early changes from affecting
later changes when the script is used as input to ed. For
example, if a line near the top were deleted, subsequent line
numbers in the script would be wrong.

––ignore-case –i Ignores differences in case when comparing files.

––new-file –N When comparing directories, when a file is present in one of
the directories only, considers it to be present and empty in
the other directory.

––show-c-
function

 –p Shows which C function each change affects.

––brief –q Does not display the differences between lines in the files.
Instead, diff reports only that the files differ.

––recursive –r When using diff to compare the files in two directories,
causes the comparisons to extend through subdirectories as
well.

––unified[=lines] –U Lines

 Uses the easier-to-read unified output format. See the
discussion of diff on page 51 for more detail and an
example. The lines is the number of lines of context; the
default is three.

––ignore-all-space

 –w (whitespace) Ignores whitespace when comparing lines.

––width=columns

 –W columns

 Sets the width of the columns that diff uses to display the
output to columns . This option is useful with the ––side-by-
side option. The sdiff utility uses a lowercase w to
perform the same function: –w columns .

––side-by-side –y Displays output in a side-by-side format. This option
generates the same output as sdiff. Use the
––width=columns option with this option.

Notes

The sdiff utility is similar to diff but its output may be easier to read. The diff ––side-by-side option produces the same output as
sdiff. See the "Examples" section and refer to the diff and sdiff man and info pages for more information.

You can use the diff3 utility to compare three files.

Discussion

When you use diff without any options, it produces a series of lines containing Add (a), Delete (d), and Change (c) instructions. Each
of these lines is followed by the lines from the file that you need to add, delete, or change to make the files the same. A less than
symbol (<) precedes lines from file1. A greater than symbol (>) precedes lines from file2. The diff output appears in the format
shown in Table V-12. A pair of line numbers separated by a comma represents a range of lines; a single line number represents a single
line.

Table V-12. diff output

Instruction Meaning (to change file1 to file2)

line1 a line2,line3

> lines from file2

Append lines line2 through line3 from file2 after line1
in file1.

line1,line2 d line3

< lines from file1

Delete line1 through line2 from file1.

line1,line2 c line3,line4

< lines from file1

–––

> lines from file 2

Change line1 through line2 in file1 to line3 through line
4 from file2.

The diff utility assumes that you will convert file1 to file2 . The line numbers to the left of each of the a, c, or d instructions always
pertain to file1; the line numbers to the right of the instructions apply to file2 . To convert file2 to file1 , run diff again, reversing the
order of the arguments.

Examples

The first example shows how diff displays the differences between two short, similar files:

$ cat m

aaaaa

bbbbb

ccccc

$ cat n

aaaaa

ccccc

$ diff m n

2d1

< bbbbb

The difference between files m and n is that the second line of file m (bbbbb) is missing from file n. The first line that diff displays
(2d1) indicates that you need to delete the second line from file1 (m) to make it the same as file2 (n). The next line diff displays starts
with a less than symbol (<), indicating that this line of text is from file1. In this example, you do not need this information—all you
need to know is the line number so that you can delete the line.

The ––side-by-side option and the sdiff utility, both with the output width set to 30 columns (characters), display the same output. In
the output a less than symbol points to the extra line in file m, whereas diff/sdiff leaves a blank line in file n where the extra line
would go to make the files the same.

$ diff --side-by-side --width=30 m n

aaaaa aaaaa

bbbbb <

ccccc ccccc

$ sdiff -w 30 m n

aaaaa aaaaa

bbbbb <

ccccc ccccc

The next example uses the same m file and a new file, p, to show diff issuing an a (append) instruction:

$ cat p

aaaaa

bbbbb

rrrrr

ccccc

$ diff m p

2a3

> rrrrr

In the preceding example, diff issues the instruction 2a3 to indicate that you must append a line to file m, after line 2, to make it the
same as file p. The second line that diff displays indicates that the line is from file p (the line begins with >, indicating file2). In this
example, you need the information on this line; the appended line must contain the text rrrrr.

The next example uses file m again, this time with file r, to show how diff indicates a line that needs to be changed:

$ cat r

aaaaa

 -q

ccccc

$ diff m r

2c2

< bbbbb

> -q

The difference between the two files is in line 2: File m contains bbbbb, and file r contains –q. The diff utility displays 2c2 to
indicate that you need to change line 2. After indicating that a change is needed, diff shows that you must change line 2 in file m
(bbbbb) to line 2 in file r (–q) to make the files the same. The three hyphens indicate the end of the text in file m that needs to be
changed and the start of the text in file r that is to replace it.

Comparing the same files using the side-by-side and width options (–y and –W) yields an easier-to-read result. The pipe symbol (|)
indicates that the line on one side must replace the line on the other side to make the files the same:

$ diff -y -W 30 m r

aaaaa aaaaa

bbbbb | -q

ccccc ccccc

The next examples compare the two files q and v:

$ cat q $ cat v

Monday Monday

Tuesday Wednesday

Wednesday Thursday

Thursday Thursday

Saturday Friday

Sunday Saturday

 Sundae

Running in side-by-side mode diff shows that Tuesday is missing from file v, there is only one Thursday in file q (there are two in
file v), and Friday is missing from file q. The last line is Sunday in file q and Sundae in file v: diff indicates that these lines are
different. You can change file q to be the same as file v by removing Tuesday, adding one Thursday and Friday, and substituting
Sundae from file v for Sunday from file q. Alternatively, you can change file v to be the same as file q by adding Tuesday, removing
one Thursday and Friday, and substituting Sunday from file q for Sundae from file v.

$ diff -y -W 30 q v

Monday Monday

Tuesday <

Wednesday Wednesday

Thursday Thursday

 > Thursday

 > Friday

Saturday Saturday

Sunday | Sundae

Context diff

With the ––context option (called a context diff), diff displays output that tells you how to turn the first file into the second. The top
two lines identify the files and show that q is represented by asterisks, whereas v is represented by hyphens. Following a row of
asterisks that indicates the start of a hunk of text is a row of asterisks with the numbers 1,6 in the middle. This line indicates that the
instructions in the first section tell you what to remove from or change in file q—namely, lines 1 through 6 (that is, all the lines of file
q; in a longer file it would mark the first hunk). The hyphen on the next line means that you need to remove the line with Tuesday.
The line with an exclamation point indicates that you need to replace the line with Sunday with the corresponding line from file v.
The row of hyphens with the numbers 1,7 in the middle indicates that the next section tells you which lines from file v—lines 1
through 7—you need to add or change in file q. You need to add a second line with Thursday and a line with Friday, and you need to
change Sunday in file q to Sundae (from file v).

$ diff --context q v

*** q Mon Aug 22 18:26:45 2005

--- v Mon Aug 22 18:27:55 2005

*** 1,6 ****

 Monday

- Tuesday

 Wednesday

 Thursday

 Saturday

! Sunday

--- 1,7 ----

 Monday

 Wednesday

 Thursday

+ Thursday

+ Friday

 Saturday

! Sundae

du: Displays information on disk usage by file

du [options] [path-list]

The du (disk usage) utility reports how much disk space is occupied by a directory (along with all its subdirectories and files) or a file.
By default du displays the number of 1,024-byte blocks that are occupied by the directory or file.

Arguments

Without any arguments, du displays information about the working directory and its subdirectories. The path-list specifies the
directories and files you want information on.

Options

Without any options, du displays the total storage used for each argument in path-list . For directories du displays this total after
recursively listing the totals for each subdirectory.

––all –a Displays the space used by all ordinary files along with the
total for each directory.

––block-size=sz –B sz

 The sz specifies the units the report uses. For example,
––block-size=M displays sizes in 1,048,576-byte units
while ––block-size=MB displays sizes in 1,000,000-byte
units. See Table V-1 on page 586 for a complete list of
multiplicative suffixes. See also the ––human-readable
option.

––total –c Displays a grand total at the end of the output.

––human-
readable

 –h Displays sizes in K (kilobyte), M (megabyte), and G
(gigabyte) blocks, as appropriate. Uses powers of 1,024;
use ––si for powers of 1,000.

––kilobytes –k Displays sizes in 1-kilobyte blocks.

––dereference –L Includes the sizes of the files symbolic links point to, not
the symbolic links themselves. The default is ––no-
dereference.

––megabytes –m Displays sizes in 1-megabyte blocks.

––no-dereference –P Includes the sizes of symbolic links, not the files that the
links point to (default).

––summarize –s Displays only the total size for each directory or file you
specify on the command line; subdirectory totals are not
displayed.

––one-file-system –x Reports only on files and directories on the same
filesystem as that of the argument being processed.

Examples

In the first example, du displays size information about subdirectories in the working directory. The last line contains the grand total
for the working directory and its subdirectories.

$ du

26 ./Postscript

4 ./RCS

47 ./XIcon

4 ./Printer/RCS

12 ./Printer

105 .

The total (105) is the number of blocks occupied by all plain files and directories under the working directory. All files are counted,
even though du displays only the sizes of directories.

Next using the ––summarize option, du displays the total for each of the directories in /home but not for any subdirectories:

du --summarize /home/*

68 /home/Desktop

1188 /home/doug

100108 /home/dump

62160 /home/ftp

6540 /home/httpd

16 /home/lost+found

1862104 /home/alex

176 /home/max

88 /home/jenny

4 /home/samba

4 /home/tom

Add to the previous example the ––total option and you get the same listing with a grand total at the end:

du --summarize --total /home/*

68 /home/Desktop

...

4 /home/tom

2032456 total

If you do not have read permission for a file or directory that du encounters, du sends a warning to standard error and skips that file or
directory. The following example uses the s (summarize), h (human-readable), and c (total) options:

$ du -shc /usr/*

112M /usr/X11R6

161M /usr/bin

4.0K /usr/dict

4.0K /usr/doc

4.0K /usr/etc

3.9M /usr/games

...

du: cannot change to directory '/usr/lost+found': Permission denied

30M /usr/sbin

du: cannot change to directory '/usr/share/ssl/CA': Permission denied

797M /usr/share

188M /usr/src

2.2G total

The final example displays, in human-readable format, the total size of all the files the user can read in the /usr filesystem. Redirecting
standard error to /dev/null discards all warnings about files and directories that are unreadable.

$ du --human-readable --summarize /usr 2>/dev/null

2.2G /usr

echo: Displays a message

echo [options] message

The echo utility copies its arguments, followed by a NEWLINE, to standard output. The Bourne Again and TC Shells each has an
echo builtin that works similarly to the echo utility.

Arguments

The message consists of one or more arguments, which can include quoted strings, ambiguous file references, and shell variables. A

SPACE separates each argument from the next. The shell recognizes unquoted special characters in the arguments. For example, the
shell expands an asterisk into a list of filenames in the working directory.

Options

You can configure the tcsh echo builtin to treat backslash escape sequences and the –n option in different ways. Refer to echo_style
in the tcsh man page. The typical tcsh configuration recognizes the –n option, enables backslash escape sequences, and ignores the
–e and –E options.

 –e Enables the interpretation of backslash escape sequences such as \n.

 –E Suppresses the interpretation of backslash escape sequences such as
\n (bash and utility default).

––help Gives a short summary of how to use echo. The summary includes a
list of the backslash escape sequences interpreted by echo. This
option works only with the echo utility (/bin/echo) and not with the
echo builtins.

 –n Suppresses the NEWLINE terminating the message.

Notes

You can use echo to send messages to the screen from a shell script. See page 129 for a discussion of how to use echo to display
filenames using wildcard characters.

The echo utility and builtins provide an escape notation to represent certain nonprinting characters in message (Table V-13). You must
use the –e option in order for these backslash escape sequences to work with the echo utility and the bash echo builtin. Typically you
do not need the –e option with the tcsh echo builtin.

Table V-13. Backslash escape sequences

Sequence Meaning

\a Bell

\c Suppress trailing NEWLINE

\n NEWLINE

\t HORIZONTAL TAB

\v VERTICAL TAB

\\ BACKSLASH

Examples

Following are some echo commands. These commands will work with the echo utility (/bin/echo) and the bash and tcsh echo
builtins, except for the last, which may not need the –e option under tcsh.

$ echo "This command displays a string."

This command displays a string.

$ echo -n "This displayed string is not followed by a NEWLINE."

This displayed string is not followed by a NEWLINE.$ echo hi

hi

$ echo -e "This message contains\v a vertical tab."

This message contains

 a vertical tab.

$

The following examples contain messages with the backslash escape sequence \c. In the first example, the shell processes the
arguments before calling echo. When the shell sees the \c, it replaces the \c with the character c. The next three examples show how to
quote the \c so that the shell passes it to echo, which then does not append a NEWLINE to the end of the message. The first four
examples are run under bash and require the –e option. The final example runs under tcsh, which typically does not use this option.

$ echo -e There is a newline after this.\c

There is a newline after this.c

$ echo -e 'There is no newline after this.\c'

There is no newline after this.$

$ echo -e "There is no newline after this.\c"

There is no newline after this.$

$ echo -e There is no newline after this.\\c

There is no newline after this.$

$ tcsh

tcsh $ echo 'There is no newline after this.\c'

There is no newline after this.$

You can use the –n option in place of –e and \c.

expr: Evaluates an expression

expr expression

The expr utility evaluates an expression and sends the result to standard output. It evaluates character strings that represent either
numeric or nonnumeric values. Operators are used with the strings to form expressions.

Arguments

The expression is composed of strings interspersed with operators. Each string and operator constitute a distinct argument that you
must separate from other arguments with a SPACE. You must quote operators that have special meanings to the shell (for example, the
multiplication operator, *).

The following list of expr operators is given in order of decreasing precedence. Each operator within a group of operators has the same
precedence. You can change the order of evaluation by using parentheses.

: (comparison) Compares two strings, starting with the first character in each
string and ending with the last character in the second string. The second string
is a regular expression with an implied caret (^) as its first character. If there is
a match, expr displays the number of characters in the second string. If there is
no match, expr displays a zero.

* (multiplication)

/ (division)

% (remainder)

 Work only on strings that contain the numerals 0 through 9 and optionally a
leading minus sign. Convert strings to integer numbers, perform the specified
arithmetic operation on numbers, and convert the result back to a string before
sending it to standard output.

+ (addition)

– (subtraction)

 Function in the same manner as the preceding group of operators.

< (less than)

<= (less than or equal to)

= or
==

(equal to)

!= (not equal to)

>= (greater than or equal to)

> (greater than)

 Relational operators work on both numeric and nonnumeric arguments. If one
or both of the arguments are nonnumeric, the comparison is nonnumeric, using
the machine collating sequence (typically ASCII). If both arguments are
numeric, the comparison is numeric. The expr utility displays a 1 (one) if the
comparison is true and a 0 (zero) if it is false.

& (AND) Evaluates both of its arguments. If neither is 0 or a null string, expr
displays the value of the first argument. Otherwise, it displays a 0. You must
quote this operator.

| (OR) Evaluates the first argument. If it is neither 0 nor a null string, expr
displays the value of the first argument. Otherwise, it displays the value of the
second argument. You must quote this operator.

Notes

The expr utility returns an exit status of 0 (zero) if the expression evaluates to other than a null string or the number 0, a status of 1 if
the expression is null or 0, and a status of 2 if the expression is invalid.

Although expr and this discussion distinguish between numeric and nonnumeric arguments, all arguments to expr are nonnumeric
(character strings). When applicable, expr attempts to convert an argument to a number (for example, when using the + operator). If a
string contains characters other than 0 through 9 with an optional leading minus sign, expr cannot convert it. Specifically, if a string
contains a plus sign or a decimal point, expr considers it to be nonnumeric. If both arguments are numeric, the comparison is numeric.
If one is nonnumeric, the comparison is lexicographic.

Examples

The following examples show command lines that call expr to evaluate constants. You can also use expr to evaluate variables in a
shell script. The fourth command displays an error message because of the illegal decimal point in 5.3:

$ expr 17 + 40

57

$ expr 10 - 24

-14

$ expr -17 + 20

3

$ expr 5.3 + 4

expr: non-numeric argument

The multiplication (*), division (/), and remainder (%) operators provide additional arithmetic power. You must quote the
multiplication operator (precede it with a backslash) so that the shell will not treat it as a special character (an ambiguous file
reference). You cannot put quotation marks around the entire expression because each string and operator must be a separate
argument.

$ expr 5 * 4

20

$ expr 21 / 7

3

$ expr 23 % 7

2

The next two examples show how parentheses change the order of evaluation. You must quote each parenthesis and surround the
backslash/parenthesis combination with SPACEs:

$ expr 2 * 3 + 4

10

$ expr 2 * \(3 + 4 \)

14

You can use relational operators to determine the relationship between numeric or nonnumeric arguments. The following commands
compare two strings to see if they are equal; expr displays a 0 when the relationship is false and a 1 when it is true.

$ expr fred == sam

0

$ expr sam == sam

1

In the following examples, the relational operators, which must be quoted, establish order between numeric or nonnumeric arguments.
Again, if a relationship is true, expr displays a 1.

$ expr fred \> sam

0

$ expr fred \< sam

1

$ expr 5 \< 7

1

The next command compares 5 with m. When one of the arguments that expr is comparing with a relational operator is nonnumeric,
expr considers the other to be nonnumeric. In this case because m is nonnumeric, expr treats 5 as a nonnumeric argument. The
comparison is between the ASCII (on many systems) values of m and 5. The ASCII value of m is 109 and that of 5 is 53, so expr
evaluates the relationship as true.

$ expr 5 \< m

1

The next example shows the matching operator determining that the four characters in the second string match the first four characters
in the first string. The expr utility displays the number of matching characters (4).

$ expr abcdefghijkl : abcd

4

The & operator displays a 0 if one or both of its arguments are 0 or a null string; otherwise, it displays the first argument:

$ expr '' \& book

0

$ expr magazine \& book

magazine

$ expr 5 \& 0

0

$ expr 5 \& 6

5

The | operator displays the first argument if it is not 0 or a null string; otherwise, it displays the second argument:

$ expr '' \| book

book

$ expr magazine \| book

magazine

$ expr 5 \| 0

5

$ expr 0 \| 5

5

$ expr 5 \| 6

5

file: Displays the classification of a file

file [option] file-list

The file utility classifies files according to their contents.

Arguments

The file-list is a list of the pathnames of one or more files that file classifies. You can specify any kind of file, including ordinary,
directory, and special files, in the file-list .

Options

––files-from=file –f file

 Takes the names of files to be examined from file rather
than from file-list on the command line. The names of the
files must be listed one per line in file.

––mime –i Displays MIME (page 887) type strings.

––help Displays a help message.

––dereference –L Reports on the files that symbolic links point to, not on the
symbolic links themselves. The default is ––no-
dereference.

––uncompress –z (zip) Attempts to classify files within a compressed file.

Notes

The file utility can classify more than 5, 000 file types. Some of the more common file types found on Linux systems, as displayed by
file, are

archive

ascii text

c program text

commands text

core file

cpio archive

data

directory

ELF 32-bit LSB executable

empty

English text

executable

The file utility uses a maximum of three tests in its attempt to classify a file: filesystem, magic number, and language tests. When
file identifies the type of a file, it ceases testing. The filesystem test examines the return from a stat system call to see whether the file
is empty or a special file. The magic number (page 886) test looks for data in particular fixed formats near the beginning of the file.
The language test, if needed, determines whether the file is a text file, what encoding it uses, and what language it is written in. Refer
to the file man page for a more detailed description of how file works. The results of file are not always correct.

Examples

Some examples of file identification follow:

/etc/DIR_COLORS: ASCII English text

/etc/X11: directory

/etc/aliases.db: regular file, no read permission

/etc/anacrontab: ASCII text

/etc/asound.state: ASCII text, with very long lines

/etc/at.deny: empty

/etc/auto.net: Bourne shell script text executable

/etc/grub.conf: symbolic link to '../boot/grub/grub.conf'

/etc/localtime: timezone data

/etc/named.conf: C++ program text

/etc/rpc: ASCII C program text

/etc/vimrc: Composer 669 Module sound data

/usr/bin/GET: perl script text executable

/usr/bin/HtFileType: Bourne shell script text executable

/usr/bin/Maelstrom: setgid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for

GNU/Linux 2.2.5, dynamically linked (uses shared libs), stripped

/usr/bin/X11: symbolic link to '../X11R6/bin'

/usr/bin/[: ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU/Linux 2.2

.5, dynamically linked (uses shared libs), stripped

/usr/bin/at: setuid ELF 32-bit LSB executable, Intel 80386, version 1 (SYSV), for GNU

/Linux 2.2.5, dynamically linked (uses shared libs), stripped

/usr/share/templates/linkHD.desktop: UTF-8 Unicode text

/usr/share/templates/.source/Floppy.desktop: UTF-8 Unicode text

/usr/share/templates/.source/TextFile.txt: very short file (no magic)

/usr/share/autoconf/m4sugar/m4sugar.m4f: ASCII M4 macro language pre-processor text /usr

/share/pygtk/2.0/defs/bonoboui.defs: Lisp/Scheme program text

/usr/share/rhpl/extramodes: C++ program text

/usr/share/apps/konquest/pics/planet1.xpm: X pixmap image text

/usr/share/apps/konquest/pics/konquest-splash.png: PNG image data, 600 x 550, 8-bit

 colormap, non-interlaced

/usr/share/apps/konquest/konquestui.rc: exported SGML document text

/usr/share/apps/templates/text/scripts/demo.php: PHP script text

find: Finds files based on criteria

find [directory-list] [expression]

The find utility selects files that are located in specified directory hierarchies and that meet specified criteria.

Arguments

The directory-list specifies the directories that find is to search. When find searches a directory, it searches all subdirectories to all
levels. When you do not specify a directory-list , find searches the working directory.

The expression contains criteria, as described in the "Criteria" section. The find utility tests each of the files in each of the directories
in the directory-list to see whether it meets the criteria described by the expression . When you do not specify an expression , the
expression defaults to –print.

A SPACE separating two criteria is a Boolean AND operator: The file must meet both criteria to be selected. A –or or –o separating
the criteria is a Boolean OR operator: The file must meet one or the other (or both) of the criteria to be selected.

You can negate any criterion by preceding it with an exclamation point. The find utility evaluates criteria from left to right unless you
group them using parentheses.

Within the expression you must quote special characters so that the shell will not interpret them but rather passes them to find.
Special characters that you may frequently use with find are parentheses, brackets, question marks, and asterisks.

Each element within the expression is a separate argument. You must separate arguments from each other with SPACEs. There must
be a SPACE on both sides of each parenthesis, exclamation point, criterion, or other element.

Criteria

You can use the following criteria within the expression . As used in this list, ±n is a decimal integer that can be expressed as +n (more
than n), –n (fewer than n), or n (exactly n).

–anewer filename

 (accessed newer) The file being evaluated meets this criterion if it was accessed
more recently than filename .

–a time ± n

 (access time) The file being evaluated meets this criterion if it was last accessed ± n
days ago. When you use this option, find changes the access times of directories it
searches.

–depth

 The file being evaluated always meets this action criterion. It causes find to take
action on entries in a directory before it acts on the directory itself. When you use
find to send files to the cpio utility, the –depth criterion enables cpio to preserve
the modification times of directories when you restore files (assuming that you use
the ––preserve–modification–time option to cpio). See the "Discussion" and
"Examples" sections under cpio on pages 621 and 622.

–exec command \;

 The file being evaluated meets this action criterion if the command returns a 0 (zero
[true]) exit status. You must terminate the command with a quoted semicolon. A
pair of braces ({ }) within the command represents the name of the file being
evaluated. You can use the –exec action criterion at the end of a group of other
criteria to execute the command if the preceding criteria are met. Refer to the
following "Discussion" section for more information. See xargs on page 821 for a
more efficient way of doing what this option does.

–follow

 (dereference) When this criterion is specified and find encounters a symbolic link,
find follows the link.

–group name

 The file being evaluated meets this criterion if it is associated with the group named
name . You can use a numeric group ID in place of name .

–inum n

 The file being evaluated meets this criterion if its inode number is n.

–links ± n

 The file being evaluated meets this criterion if it has ±n links.

–mount

 See –xdev.

–mtime ± n

 (modify time) The file being evaluated meets this criterion if it was last modified ±
n days ago.

–name filename

 The file being evaluated meets this criterion the pattern filename matches its name.
The filename can include wildcard characters (*, ?, and []) but these characters
must be quoted.

–newer filename

 The file being evaluated meets this criterion if it was modified more recently than
filename .

–nogroup

 The file being evaluated meets this criterion if it does not belong to a group that is
listed in the /etc/group file.

–nouser

 The file being evaluated meets this criterion if it does not belong to a user who is
listed in the /etc/passwd file (that is, the user ID of the file does not correspond to a
user on the local system).

–ok command \;

 This action criterion is the same as –exec but displays each command to be executed
enclosed in angle brackets and executes the command only if it receives a response
that starts with a y or Y from standard input.

–perm [±]mode

 The file being evaluated meets this criterion if it has the access permissions given by
mode . If mode is preceded by a minus sign (–), the file access permissions must
include all the bits in mode . If mode is preceded by a plus sign (+), the file access
permissions must include at least one of the bits in mode . If no plus or minus sign
precedes mode , the mode of the file must exactly match mode . You may use either a
symbolic or octal representation for mode (see chmod on page 604).

–print

 The file being evaluated always meets this action criterion. When evaluation of the
expression reaches this criterion, find displays the pathname of the file it is
evaluating. If –print is the only criterion in the expression , find displays the names
of all files in the directory-list . If this criterion appears with other criteria, find
displays the name only if the preceding criteria are met. If no action criteria appear
in the expression , –print is assumed. (Refer to the following "Discussion" and
"Notes" sections.)

–size ±n[c|k]

 The file being evaluated meets this criterion if it is the size specified by ±n,
measured in 512-byte blocks. Follow n with the letter c to measure files in
characters or k to measure files in kilobytes.

–type filetype

 The file being evaluated meets this criterion if its file type is specified by filetype .
Select a filetype from the following list:

 b Block special file

 c Character special file

 d Directory file

 f Ordinary file

 l Symbolic link

 p FIFO (named pipe)

 s Socket

–user name

 The file being evaluated meets this criterion if it belongs to the user with the
username name . You can use a numeric user ID in place of name .

–xdev

 The file being evaluated always meets this action criterion. It causes find not to
search directories in filesystems other than the one specified by directory-list . Also
–mount.

Discussion

Assume that x and y are criteria. The following command line never tests whether the file meets criterion y if it does not meet criterion
x. Because the criteria are separated by a SPACE (the Boolean AND operator), once find determines that criterion x is not met, the
file cannot meet the criteria so find does not continue testing. You can read the expression as "(test to see whether) the file meets
criterion x and (SPACE means and) criterion y."

$ find dir x y

The next command line tests the file against criterion y if criterion x is not met. The file can still meet the criteria so find continues
the evaluation. You can read the expression as "(test to see whether) the file meets criterion x or criterion y." If the file meets criterion
x, find does not evaluate criterion y as there is no need to do so.

$ find dir x - or y

Action criteria

Certain "criteria" do not select files but rather cause find to take action. The action is triggered when find evaluates one of these
action criteria. Therefore, the position of an action criterion on the command line—not the result of its evaluation—determines
whether find takes the action.

The –print action criterion causes find to display the pathname of the file it is testing. The following command line displays the
names of all files in the dir directory (and all its subdirectories), regardless of whether they meet the criterion x:

$ find dir -print x

The following command line displays only the names of the files in the dir directory that meet criterion x:

$ find dir x -print

This common use of –print after the testing criteria is the default action criterion. The following command line generates the same
output as the previous one:

$ find dir x

Notes

You can use the –a operator between criteria for clarity. This operator is a Boolean AND operator, just as the SPACE is.

Examples

The simplest find command has no arguments and lists the files in the working directory and all subdirectories:

$ find

...

The following command finds the files in the working directory and subdirectories that have filenames beginning with a. The
command uses a period to designate the working directory. To prevent the shell from interpreting the a* as an ambiguous file
reference, it is enclosed within quotation marks.

$ find . -name 'a*'

The –print criterion is implicit in the preceding command. If you omit the directory-list argument, find searches the working
directory. The next command performs the same function as the preceding one without explicitly specifying the working directory:

$ find -name 'a*'

The following command sends a list of selected filenames to the cpio utility, which writes them to tape. The first part of the command
line ends with a pipe symbol, so the shell expects another command to follow and displays a secondary prompt (>) before accepting
the rest of the command line. You can read this find command as "find, in the root directory and all subdirectories (/), ordinary files
(–type f) that have been modified within the past day (–mtime –1), with the exception of files whose names are suffixed with .o (!
–name '*.o')." (An object file carries a .o suffix and usually does not need to be preserved because it can be re-created from the
corresponding source file.)

$ find / -type f - mtime -1 ! -name '*.o' -print |

> cpio -oB > /dev/ftape

The following command finds, displays the filenames of, and deletes the files in the working directory and subdirectories named core
or junk:

$ find . \(-name core -o -name junk \) -print -exec rm {} \;

...

The parentheses and the semicolon following –exec are quoted so that the shell does not treat them as special characters. SPACE s
separate the quoted parentheses from other elements on the command line. Read this find command as "find, in the working directory
and subdirectories (.), files named core (–name core) or (–o) junk (–name junk) [if a file meets these criteria, continue] and (SPACE
) print the name of the file (–print) and (SPACE) delete the file (–exec rm { })."

The next shell script uses find in conjunction with grep to identify files that contain a particular string. This script enables you to look
for a file when you remember its contents but cannot remember its filename. The finder script locates files in the working directory
and subdirectories that contain the string specified on the command line. The –type f criterion is necessary so that find will pass to
grep only the names of ordinary files, not directory files.

$ cat finder

find . -type f -exec grep -l "$1" {} \;

$ finder "Executive Meeting"

 ./january/memo.0102

 ./april/memo.0415

When called with the string Executive Meeting, finder locates two files containing that string: ./january/memo.0102 and
./april/memo.0415. The period (.) in the pathnames represents the working directory; january and april are subdirectories of the
working directory. The grep utility with the ––recursive option performs the same function as the finder script.

The next command looks in two user directories for files that are larger than 100 blocks (–size +100) and have been accessed only
more than five days ago—that is, have not been accessed within the past five days (–atime +5). This find command then asks whether

you want to delete the file (–ok rm { }). You must respond to each query with y (for yes) or n (for no). The rm command works only if
you have write and execute access permission to the directory.

$ find /home/alex /home/barbara -size +100 -atime +5 -ok rm {} \;

< rm ... /home/alex/notes >? y

< rm ... /home/alex/letter >? n

...

In the next example, /home/alex/memos is a symbolic link to Jenny's directory named /home/jenny/memos. When you use the
–follow option with find, the symbolic link is followed, and the contents of that directory are searched.

$ ls -l /home/alex

lrwxrwxrwx 1 alex pubs 17 Aug 19 17:07 memos -> /home/jenny/memos

-rw-r--r-- 1 alex pubs 5119 Aug 19 17:08 report

$ find /home/alex -print

/home/alex

/home/alex/memos

/home/alex/report

/home/alex/.profile

$ find /home/alex -follow -print

/home/alex

/home/alex/memos

/home/alex/memos/memo.817

/home/alex/memos/memo.710

/home/alex/report

/home/alex/.profile

finger: Displays information about users

finger [options] [user-list]

The finger utility displays the usernames of users, together with their full names, terminal device numbers, times they logged in, and
other information. The options control how much information finger displays, and the user-list specifies which users finger displays
information about. The finger utility can retrieve information from both local and remote systems.

Arguments

Without any arguments, finger provides a short (–s) report on users who are logged in on the local system. When you specify a user-
list, finger provides a long (–l) report on each user in the user-list . Names in the user-list are not case sensitive.

If the name includes an at sign (@), the finger utility interprets the name following the @ as the name of a remote host to contact
over the network. If there is also a name in front of the @ sign, finger provides information on that particular user on the remote
system.

Options

–l (long) Displays detailed information (the default display when user-list is
specified).

–m (match) If a user-list is specified, displays entries only for those users whose
username matches one of the names in user-list . Without this option the user-
list names match usernames and full names.

–p (no plan, project, or pgpkey) Does not display the contents of .plan,
.project, and .pgpkey files for users. Because these files may contain
backslash escape sequences that can change the behavior of the screen, you
may not wish to view them. Normally the long listing displays the contents of
these files if they exist in the user's home directory.

–s (short) Provides a short report for each user (the default display when user-list
is not present).

Discussion

The long report provided by the finger utility includes the user's username, full name, home directory location, and login shell, plus
information about when the user last logged in and how long it has been since the user last typed on the keyboard and read her email.
After extracting this information from various system files, the finger utility displays the contents of the ~/.plan, ~/.project, and
~/.pgpkey in the user's home directory. It is up to each user to create and maintain these files, which usually provide more information
about the user (such as telephone number, postal mail address, schedule, interests, and pgp key).

The short report generated by finger is similar to that provided by the w utility; it includes the user's username, his full name, the
device number of the user's terminal, the amount of time that has elapsed since the user last typed on the terminal keyboard, the time
the user logged in, and the location of the user's terminal. If the user logged in over the network, the name of the remote system is
displayed.

Notes

When you specify a network address, the finger utility queries a standard network service that runs on the remote system. Although
this service is supplied with most Linux systems, some administrators choose not to run it (so as to minimize the load on their systems,
to eliminate possible security risks, or simply to maintain privacy). If you try to use finger to get information on someone at such a
site, the result may be an error message or nothing at all. The remote system determines how much information to share with the local
system and in what format. As a result the report displayed for any given system may differ from the examples shown here. See also
"finger: Lists Users on the System" on page 64.

A file named ~/.nofinger causes finger to deny the existence of the person whose home directory it appears in. For this subterfuge to
work, the finger query must originate from a system other than the local host and the fingerd daemon must be able to see the
.nofinger file (generally the home directory must have its execute bit for other users set).

Examples

The first example displays information on the users logged in on the local system:

$ finger

Login Name Tty Idle Login Time Office Office Phone

alex Alex Watson tty1 13:29 Jun 25 21:03

hls Helen Simpson *pts/1 13:29 Jun 25 21:02 (:0)

jenny Jenny Chen pts/2 Jun 26 07:47 (bravo.example.com)

The asterisk (*) in front of the name of Helen's terminal (TTY) line indicates that she has blocked others from sending messages
directly to her terminal (see mesg on page 68). A long report displays the string messages off for users who have disabled messages.

The next two examples cause finger to contact the remote system named kudos over the network for information:

$ finger @kudos

[kudos]

Login Name Tty Idle Login Time Office Office Phone

alex Alex Watson tty1 23:15 Jun 25 11:22

roy Roy Wong pts/2 Jun 25 11:22

$ finger watson@kudos

[kudos]

Login: alex Name: Alex Watson

Directory: /home/alex Shell: /bin/zsh

On since Sat Jun 25 11:22 (PDT) on tty1, idle 23:22

Last login Sun Jun 26 06:20 (PDT) on ttyp2 from speedy

Mail last read Thu Jun 23 08:10 2005 (PDT)

Plan:

For appointments contact Jenny Chen, x1963.

fmt: Formats text very simply

fmt [option] [file-list]

The fmt utility does simple text formatting by attempting to make all nonblank lines nearly the same length.

Arguments

The fmt utility reads the files in file-list and sends a formatted version of their contents to standard output. If you do not specify a
filename or if you specify a filename of –, fmt reads from standard input.

Options

––split-only –s Splits long lines but does not fill short lines.

––tagged-
paragraph

 –t Indents all but the first line of each paragraph.

––uniform-
spacing

 –u Changes the formatted output so that one SPACE appears
between words and two SPACEs appear between sentences.

––width=n –w n

 Changes the output line width to n characters. Without this
option, fmt keeps output lines close to 75 characters wide.
You can also specify this option as –n.

Notes

The fmt utility works by moving NEWLINE characters. The indention of lines, as well as the spacing between words, is left intact.

This utility is often used to format text while you are using an editor, such as vim. For example, you can format a paragraph with the
vim editor in command mode by positioning the cursor at the top of the paragraph and then entering !}fmt –60. This command
replaces the paragraph with the output generated by feeding it through fmt, specifying a width of 60 characters. Type u immediately if
you want to undo the formatting.

Examples

The following example shows how fmt attempts to make all the lines the same length. The –w 50 option gives a target line length of
50 characters.

$ cat memo

One factor that is important to remember while administering the dietary

intake of Charcharodon carcharias is that there is, at least from

the point of view of the subject,

very little

differentiating the prepared morsels being proffered from your digits.

In other words, don't feed the sharks!

$ fmt -w 50 memo

One factor that is important to remember while

administering the dietary intake of Charcharodon

carcharias is that there is, at least from the

point of view of the subject, very little

differentiating the prepared morsels being

proffered from your digits.

In other words, don't feed the sharks!

The next example demonstrates the ––split-only option. Long lines are broken so that none is longer than 50 characters; this option
prevents fmt from filling short lines.

$ fmt -w 50 --split-only memo

One factor that is important to remember while

administering the dietary

intake of Charcharodon carcharias is that there

is, at least from

the point of view of the subject,

very little

differentiating the prepared morsels being

proffered from your digits.

In other words, don't feed the sharks!

fsck: Checks and repairs a filesystem

fsck [options] [filesystem-list]

The fsck utility verifies the integrity of a filesystem and reports on and optionally repairs problems it finds. It is a front end for
filesystem checkers, each specific to a filesystem type.

Arguments

Without the –A option and with no filesystem-list , fsck checks the filesystems listed in the /etc/fstab file one at a time (serially). With
the –A option and with no filesystem-list , fsck checks all the filesystems listed in the /etc/fstab file in parallel if possible. See the –s
option for a discussion of checking filesystems in parallel.

The filesystem-list specifies the filesystems to be checked. It can either specify the name of the device that holds the filesystem (for
example, /dev/hda2) or, if the filesystem appears in /etc/fstab, specify the mount point (for example, /usr2) for the filesystem. The
filesystem-list can also specify the label for the filesystem from /etc/fstab (for example, LABEL=home).

Options

When you run fsck, you can specify both global options and options specific to the filesystem type that fsck is checking (for example,
ext2, ext3, msdos, reiserfs). Global options must precede type-specific options.

Global Options

–A (all) Process all the filesystems listed in the /etc/fstab file, in parallel if
possible. See the –s option for a discussion of checking filesystems in parallel.
Do not specify a filesystem-list when you use this option; you can specify
filesystem types to be checked with the –t option. Use this option with the –a,
–p, or –n option so that fsck does not attempt to process filesystems in
parallel interactively (in which case you would have no way of responding to
its multiple prompts).

–N (no) Assumes a no response to any questions that arise while processing a
filesystem. This option generates the messages you would normally see but
causes fsck to take no action.

–R (root-skip) With the –A option does not check the root filesystem. Useful
when the system boots, because the root filesystem may be mounted with read-
write access.

–s (serial) Causes fsck to process filesystems one at a time. Without this option,
fsck processes multiple filesystems that reside on separate physical disk drives
in parallel. Parallel processing enables fsck to process multiple filesystems
more quickly. This option is required if you want to process filesystems
interactively. See the –a, –p, or –n option to turn off interactive processing.

–t fstype

 (filesystem type) A comma-separated list that specifies the filesystem type(s)
to process. With the –A option fsck processes all the filesystems in /etc/fstab
that are of type fstype . Common filesystem types are ext2, ext3, msdos, and
reiserfs. You do not typically check remote NFS filesystems.

–T (title) Causes fsck not to display its title.

–V (verbose) Displays more output, including filesystem type-specific commands.

Filesystem Type-Specific Options

The following command lists the filesystem checking utilities available on the local system. Files with the same inode numbers are
linked (page 99).

$ ls -i /sbin/*fsck*

63801 /sbin/dosfsck 63856 /sbin/fsck.cramfs 63801 /sbin/fsck.msdos

63763 /sbin/e2fsck 63763 /sbin/fsck.ext2 63801 /sbin/fsck.vfat

63780 /sbin/fsck 63763 /sbin/fsck.ext3

Review the man page or give the pathname of the filesystem checking utility to determine which options the utility accepts:

$ /sbin/fsck.ext3

Usage: /sbin/fsck.ext3 [-panyrcdfvstDFSV] [-b superblock] [-B blocksize]

 [-I inode_buffer_blocks] [-P process_inode_size]

 [-l|-L bad_blocks_file] [-C fd] [-j ext-journal]

 [-E extended-options] device

Emergency help:

 -p Automatic repair (no questions)

 -n Make no changes to the filesystem

 -y Assume "yes" to all questions

 -c Check for bad blocks and add them to the badblock list

 -f Force checking even if filesystem is marked clean

...

The following options apply to many filesystem types, including ext2 and ext3:

–a (automatic) Same as the –p option; kept for backward compatibility.

–f (force) Forces fsck to check filesystems even if they are clean. A clean
filesystem is one that was just successfully checked with fsck or was
successfully unmounted and has not been mounted since. Clean filesystems
are skipped by fsck, greatly speeding up system booting under normal
conditions. For information on setting up periodic, automatic filesystem
checking on ext2 and ext3 filesystems, see tune2fs on page 808.

–p (preen) Attempts to repair all minor inconsistencies it finds when processing
a filesystem. If any problems are not repaired, fsck terminates with a nonzero
exit status. This option runs fsck in batch mode so that it does not ask
whether to correct each problem it finds. The –p option is commonly used
with the –A option when checking filesystems while booting Linux.

–r (interactive) Asks whether to correct or ignore each problem that is found.
For many filesystem types, this behavior is the default.

–y (yes) Assumes a yes response to any questions that fsck asks while
processing a filesystem. Use this option with caution as it gives fsck free
reign to do what it thinks is best to clean up a filesystem.

Notes

When a filesystem is consistent, fsck displays a report such as the following:

/sbin/fsck -f /dev/hda1

fsck 1.35 (28-Feb-2004)

e2fsck 1.35 (28-Feb-2004)

Pass 1: Checking inodes, blocks, and sizes

Pass 2: Checking directory structure

Pass 3: Checking directory connectivity

Pass 4: Checking reference counts

Pass 5: Checking group summary information

/boot: 71/26104 files (15.5% non-contiguous), 37257/104391 blocks

Interactive mode

You can run fsck either interactively or in batch mode. For many filesystems, unless you use one of the –a, –p, –y, or –n options, fsck
runs in interactive mode. In interactive mode, if fsck finds a problem with a filesystem, it reports the problem and allows you to
choose whether to repair or ignore it. If you repair a problem you may lose some data; however, that is often the most reasonable
alternative.

Although it is technically feasible to repair files that are damaged and that fsck says you should remove, this action is usually not
practical. The best insurance against significant loss of data is frequent backups.

Order of checking

The fsck utility looks at the sixth column in the /etc/fstab file to determine if, and in what order, it should check filesystems. A 0
(zero) in this position indicates that the filesystem should not be checked. A 1 (one) indicates that it should be checked first and is
usually reserved for the root filesystem. A 2 indicates that the filesystem should be checked after those marked with a 1.

fsck is a front end

Similar to mkfs (page 725), fsck is a front end that calls other utilities to handle various types of filesystems. For example, fsck calls
e2fsck to check the widely used ext2 and ext3 filesystems. (Refer to the e2fsck man page for more information.) Other utilities that
fsck calls are typically named fsck.type , where type is the filesystem type. By splitting fsck in this manner, filesystem developers can
provide programs to check their filesystems without affecting the development of other filesystems or changing how system
administrators use fsck.

Boot time

Run fsck on filesystems that are unmounted or mounted readonly. When Linux is booting, the root filesystem is first mounted
readonly to allow it to be processed by fsck. If fsck finds no problems with the root filesystem, it is then remounted (using the
remount option to the mount utility) read-write and fsck is typically run with the –A, –R, and –p options.

lost+found

When it encounters a file that has lost its link to its filename, fsck asks whether to reconnect it. If you choose to reconnect it, the file is
put in a directory named lost+found in the root directory of the filesystem that the file was found in. The reconnected file is given its
inode number as a name. For fsck to restore files in this way, a lost+found directory must be in the root directory of each filesystem.
For example, if a system uses the /, /usr, and /tmp filesystems, you should have these three lost+found directories: /lost+found,
/usr/lost+found, and /tmp/lost+found. Each of the lost+found directories must have unused entries that fsck can use to store the
inode numbers for files that have lost their links. When you create an ext2 and ext3 filesystem using mkfs (page 725), a lost+found
directory with the required unused entries is created automatically. Alternatively, you can use the mklost+found utility to create this
directory in ext2 and ext3 filesystems if needed. On other types of filesystems you can create the unused entries by adding many files
to the directory and then removing them. Try using touch (page 801) to create 500 entries in the lost+found directory and then using
rm to delete them.

Messages

Table V-14 lists fsck's common messages. In general fsck suggests the most logical way of dealing with a problem in the file
structure. Unless you have information that suggests another response, respond to the prompts with yes. Use the system backup tapes
or disks to restore data that is lost as a result of this process.

Table V-14. Common fsck messages

Phase (message) What fsck checks

Phase 1 - Check inodes,
blocks, and sizes

Checks inode information.

Phase 2 - Check directory
structures

Looks for directories that point to bad inodes that fsck
found in Phase 1.

Phase 3 - Check directory
connectivity

Looks for unreferenced directories and a nonexistent or
full lost+found directory.

Phase 4 - Check reference
counts

Checks for unreferenced files, a nonexistent or full
lost+found directory, bad link counts, bad blocks,
duplicated blocks, and incorrect inode counts.

Phase 5 - Check group
summary information

Checks whether the free list and other filesystem
structures are OK. If any problems are found with the
free list, Phase 6 is run.

Phase 6 - Salvage free list If Phase 5 found any problems with the free list, Phase
6 fixes them.

Cleanup

Once it has repaired the filesystem, fsck informs you about the status of the filesystem. The fsck utility displays the following
message after it repairs a filesystem:

*****File System Was Modified*****

On ext2 and ext3 filesystems, fsck displays the following message when it has finished checking a filesystem:

filesys: used /maximum files (percent non-contiguous), used/maximum blocks

This message tells you how many files and disk blocks are in use as well as how many files and disk blocks the filesystem can hold.
The percent non-contiguous tells you how fragmented the disk is.

ftp: Transfers files over a network

ftp [options] [remote-system]

The ftp utility is a user interface to the standard File Transfer Protocol (FTP), which transfers files between systems that can
communicate over a network. To establish an FTP connection, you must have an account (personal, guest, or anonymous) on the
remote system.

security: Use FTP only to download public information

FTP is not a secure protocol. The ftp utility sends your password over the network as cleartext, which is not a secure
practice. You can use scp (page 758) for many FTP functions other than allowing anonymous users to download
information. Because scp uses an encrypted connection, user passwords and data cannot be sniffed.

Arguments

The remote-system is the name or network address of the server, running an ftpd daemon, that you want to exchange files with.

Options

–i (interactive) Turns off prompts during file transfers with mget and mput. See
also prompt.

–n (no automatic login) Disables automatic logins.

–v (verbose) Tells you more about how ftp is working. Displays responses from
the remote-system and reports transfer times and speeds.

Discussion

The ftp utility is interactive. After you start it, ftp prompts you to enter commands to set parameters and transfer files. You can use a
number of commands in response to the ftp> prompt; following are some of the more common ones.

![command] Escapes to (spawns) a shell on the local
system (use CONTROL-D or exit to
return to ftp when you are finished using
the local shell). Follow the exclamation
point with a command to execute that
command only; ftp returns you to the
ftp> prompt when the command
completes executing. Because the shell
that ftp spawns with this command is a
child of the shell that is running ftp, no
changes you make in this shell are
preserved when you return to ftp.
Specifically, when you want to copy files
to a local directory other than the directory
that you started ftp from, you need to use
the ftp lcd command to change the local
working directory: Issuing a cd command
in the spawned shell will not make the
change you desire. See "lcd (local cd)" on
page 676 for an example.

ascii Sets the file transfer type to ASCII. Allows
you to transfer text files from systems that
end lines with a RETURN/LINEFEED
combination and automatically strip off
the RETURN. This type of transfer is
useful when the remote computer is a
DOS or MS Windows machine. The cr
command must be ON for ascii to work.

binary Sets the file transfer type to binary. Allows
you to transfer files that contain non-
ASCII (unprintable) characters correctly.
This option also works for ASCII files that
do not require changes to the ends of lines.

bye Closes the connection to a remote system
and terminates ftp. Same as quit.

cd remote-directory

 Changes to the working directory named
remote-directory on the remote system.

close Closes the connection with the remote
system without exiting from ftp.

cr Toggles RETURN stripping when you
retrieve files in ASCII mode. See ascii.

dir [directory [file]]

 Displays a listing of the directory named
directory from the remote system. When
you do not specify directory , the working
directory is displayed. When you specify
file, the listing is saved on the local system
in a file named file.

get remote-file [local-file]

 Copies remote-file to the local system
under the name local-file . Without local-
file, ftp uses remote-file as the filename
on the local system. The remote-file and
local-file names can be pathnames.

glob Toggles filename expansion for mget and
mput commands and displays the current
state (Globbing on or Globbing off).

help Displays a list of commands recognized by
the ftp utility on the local system.

lcd [local_directory]

 (local change directory) Changes the
working directory on the local system to
local_directory . Without an argument
changes the working directory on the local
system to your home directory (just as cd
does without an argument).

ls [directory [file]] Similar to dir but produces a more concise
listing on some remote computers. When
you specify file, the listing is saved on the
local system in a file named file.

mget remote-file-list

 (multiple get) Unlike the get command,
the mget command allows you to retrieve
multiple files from the remote system. You
can name the remote files literally or use
wildcards (see glob). See also prompt.

mput local-file-list

 (multiple put) The mput command
allows you to copy multiple files from the
local system to the remote system. You
can name the local files literally or use
wildcards (see glob). See also prompt.

open Interactively specifies the name of the
remote system. This command is useful if
you did not specify a remote system on the
command line or if the attempt to connect
to the system failed.

passive Toggles between active (PORT—the
default) and passive (PASV) transfer
modes and displays the transfer mode. See
"Passive versus active connections" under
"Notes."

prompt When using mget or mput to receive or
send multiple files, ftp asks for
verification (by default) before transferring
each file. This command toggles that
behavior and displays the current state
(Interactive mode off or Interactive
mode on).

put local-file [remote-file]

 Copies local-file to the remote system
under the name remote-file . Without
remote-file , ftp uses local-file as the
filename on the remote system. The
remote-file and local-file names can be
pathnames.

pwd Causes ftp to display the pathname of the
remote working directory. Use !pwd to
display the name of the local working
directory.

quit Quits the ftp session. Same as bye.

user [username] If the ftp utility did not log you in
automatically, you can specify your
account name as username . Without
username , ftp prompts you for your
username.

Notes

A Linux system running ftp can exchange files with any of the many operating systems that support the FTP protocol. Many sites
offer archives of free information on an FTP server, although many of these are merely alternatives to an easier-to-access Web site (for
example, ftp://ftp.ibiblio.org/pub/Linux and http://www.ibiblio.org/pub/Linux). Most browsers can connect to and download files from
FTP servers.

The ftp utility makes no assumptions about filesystem naming or structure because you can use ftp to exchange files with non-
UNIX/Linux systems (whose filename conventions may be different).

Anonymous FTP

Many systems—most notably those from which you can download free software—allow you to log in as anonymous. Most systems
that support anonymous logins accept the name ftp as an easier-to-spell and quicker-to-enter synonym for anonymous. An anonymous
user is usually restricted to a portion of a filesystem set aside to hold files that are to be shared with remote users. When you log in as
an anonymous user, the server prompts you to enter a password. Although any password may be accepted, by convention you are
expected to supply your email address. Many systems that permit anonymous access store interesting files in the pub directory.

Passive versus active connections

A client can ask an FTP server to establish either a PASV (passive—the default) or a PORT (active) connection for data transfer. Some
servers are limited to one type of connection. The difference between a passive and an active FTP connection lies in whether the client
or server initiates the data connection. In passive mode, the client initiates the data connection to the server (on port 20 by default); in
active mode, the server initiates the data connection (there is no default port). Neither type of connection is inherently more secure.
Passive connections are more common because a client behind a NAT (page 889) firewall can connect to a passive server and because
it is simpler to program a scalable passive server.

Automatic login

You can store server-specific FTP username and password information so that you do not have to enter it each time you visit an FTP
site. Each line of the ~/.netrc file identifies a server. When you connect to an FTP server, ftp reads ~/.netrc to determine whether you
have an automatic login set up for that server. The format of a line in ~/.netrc is

machine server login username password passwd

where server is the name of the server, username is your username, and passwd is your password on server . Replace machine with

default on the last line of the file to specify a username and password for systems not listed in ~/.netrc. The default line is useful for
logging in on anonymous servers. A sample ~/.netrc file follows:

$ cat ~/.netrc

machine bravo login alex password mypassword

default login anonymous password alex@example.com

Protect the account information in .netrc by making it readable by only the user whose home directory it appears in. Refer to the netrc
man page for more information.

Examples

Following are two ftp sessions wherein Alex transfers files from and to an FTP server named bravo. When Alex gives the command
ftp bravo, the local ftp client connects to the server, which asks for a username and password. Because he is logged in on his local
system as alex, ftp suggests that he log in on bravo as alex. To log in as alex, he could just press RETURN. His username on bravo
is watson, however, so he types watson in response to the Name (bravo:alex): prompt. Alex responds to the Password: prompt with
his normal system password, and the FTP server greets him and informs him that it is Using binary mode to transfer files. With ftp
in binary mode, Alex can transfer ASCII and binary files.

Connect and log in

$ ftp bravo

Connected to bravo.

220 (vsFTPd 1.2.0)

530 Please login with USER and PASS.

530 Please login with USER and PASS.

KERBEROS_V4 rejected as an authentication type

Name (bravo:alex): watson

331 Please specify the password.

Password:

230 Login successful.

Remote system type is UNIX.

Using binary mode to transfer files.

ftp>

After logging in, Alex uses the ftp ls command to display the contents of his remote working directory, which is his home directory
on bravo. Then he cds to the memos directory and displays the files there.

ls and cd

ftp> ls

227 Entering Passive Mode (192,168,0,6,79,105)

150 Here comes the directory listing.

drwxr-xr-x 2 500 500 4096 Oct 10 23:52 expenses

drwxr-xr-x 2 500 500 4096 Oct 10 23:59 memos

drwxrwxr-x 22 500 500 4096 Oct 10 23:32 tech

226 Directory send OK.

ftp> cd memos

250 Directory successfully changed.

ftp> ls

227 Entering Passive Mode (192,168,0,6,114,210)

150 Here comes the directory listing.

-rw-r--r-- 1 500 500 4770 Oct 10 23:58 memo.0514

-rw-r--r-- 1 500 500 7134 Oct 10 23:58 memo.0628

-rw-r--r-- 1 500 500 9453 Oct 10 23:58 memo.0905

-rw-r--r-- 1 500 500 3466 Oct 10 23:59 memo.0921

-rw-r--r-- 1 500 500 1945 Oct 10 23:59 memo.1102

226 Directory send OK.

Next Alex uses the ftp get command to copy memo.1102 from the server to the local system. Binary mode ensures that he will get a
good copy of the file regardless of whether it is binary or ASCII. The server confirms that the file was copied successfully and notes
the size of the file and the time it took to copy. Alex then copies the local file memo.1114 to the remote system. The file is copied into
his remote working directory, memos.

get and put

ftp> get memo.1102

local: memo.1102 remote: memo.1102

227 Entering Passive Mode (192,168,0,6,194,214)

150 Opening BINARY mode data connection for memo.1102 (1945 bytes).

226 File send OK.

1945 bytes received in 7.1e-05 secs (2.7e+04 Kbytes/sec)

ftp> put memo.1114

local: memo.1114 remote: memo.1114

227 Entering Passive Mode (192,168,0,6,174,97)

150 Ok to send data.

226 File receive OK.

1945 bytes sent in 2.8e-05 secs (6.8e+04 Kbytes/sec)

After a while Alex decides he wants to copy all the files in the memo directory on bravo to a new directory on his local system. He
gives an ls command to make sure he is going to copy the right files, but ftp has timed out. Instead of exiting from ftp and giving
another ftp command from the shell, Alex gives ftp an open bravo command to reconnect to the server. After logging in, he uses the
ftp cd command to change directories to memos on the server.

Timeout and open

ftp> ls

421 Timeout.

Passive mode refused.

ftp> open bravo

Connected to bravo (192.168.0.6).

220 (vsFTPd 1.1.3)

...

ftp> cd memos

250 Directory successfully changed.

lcd (local cd)

At this point, Alex realizes he has not created the new directory to hold the files he wants to download. Giving an ftp mkdir

command would create a new directory on the server, but Alex wants a new directory on the local system. He uses an exclamation
point (!) followed by a mkdir memos.hold command to invoke a shell and run mkdir on the local system, creating a directory named
memos.hold in his working directory on the local system. (You can display the name of your working directory on the local system
with !pwd.) Next, because he wants to copy files from the server to the memos.hold directory on his local system, he has to change his
working directory on the local system. Giving the command !cd memos.hold will not accomplish what Alex wants to do because the
exclamation point spawns a new shell on the local system and the cd command would be effective only in the new shell, which is not
the shell that ftp is running under. For this situation, ftp provides the lcd (local cd) command, which changes the working directory
for ftp and reports on the new local working directory.

ftp> !mkdir memos.hold

ftp> lcd memos.hold

Local directory now /home/alex/memos.hold

Alex uses the ftp mget (multiple get) command followed by the asterisk (*) wildcard to copy all the files from the remote memos
directory to the memos.hold directory on the local system. When ftp prompts him for the first file, he realizes that he forgot to turn
off prompts, responds with n, and presses CONTROL-C to stop copying files in response to the second prompt. The server checks
whether he wants to continue with his mget command.

Next Alex gives the ftp prompt command, which toggles the prompt action (turns it off if it is on and turns it on if it is off). Now
when he gives an mget * command, ftp copies all the files without prompting him.

After getting the files he wants, Alex gives a quit command to close the connection with the server, exit from ftp, and return to the
local shell prompt.

mget and prompt

ftp> mget *

mget memo.0514? n

mget memo.0628? CONTROL-C

Continue with mget? n

ftp> prompt

Interactive mode off.

ftp> mget *

local: memo.0514 remote: memo.0514

227 Entering Passive Mode (192,168,0,6,53,55)

150 Opening BINARY mode data connection for memo.0514 (4770 bytes).

226 File send OK.

4770 bytes received in 8.8e-05 secs (5.3e+04 Kbytes/sec)

local: memo.0628 remote: memo.0628

227 Entering Passive Mode (192,168,0,6,65,102)

150 Opening BINARY mode data connection for memo.0628 (7134 bytes).

226 File send OK.

...

150 Opening BINARY mode data connection for memo.1114 (1945 bytes).

226 File send OK.

1945 bytes received in 3.9e-05 secs (4.9e+04 Kbytes/sec)

ftp> quit

221 Goodbye.

gcc: Compiles C and C++ programs

gcc [options] file-list [–larg]

g++ [options] file-list [–larg]

The Linux operating system uses the GNU C compiler, gcc, to preprocess, compile, assemble, and link C language source files. The
same compiler with a different front end, g++, processes C++ source code. The gcc and g++ compilers can also assemble and link
assembly language source files, link object files only, or build object files for use in shared libraries.

These compilers take input from files you specify on the command line. Unless you use the –o option, they store the executable
program in a.out.

The gcc and g++ compilers are part of GCC, the GNU Compiler Collection, which includes front ends for C, C++, Objective C,
Fortran, Java, and Ada as well as libraries for these languages. Go to gcc.gnu.org for more information.

tip: gcc and g++

Although this section specifies the gcc compiler, most of it applies to g++ as well.

Arguments

The file-list is a list of the pathnames of the files that gcc is to process.

Options

Without any options gcc accepts C language source files, assembly language files, object files, and other files described in Table V-15
on page 681. The gcc utility preprocesses, compiles, assembles, and links these files as appropriate, producing an executable file
named a.out. If gcc is used to create object files without linking them to produce an executable file, each object file is named by
adding the extension .o to the basename of the corresponding source file. If gcc is used to create an executable file, it deletes the object
files after linking.

Table V-15. Filename extensions

Extension Type of file

.a Library of object modules

.c C language source file

.C, .cc, or .cxx C++ language source file

.i Preprocessed C language source file

.ii Preprocessed C++ language source file

.o Object file

.s Assembly language source file

.S Assembly language source file that needs preprocessing

Some of the most commonly used options are listed here. When certain filename extensions are associated with an option, you can
assume that the extension is added to the basename of the source file.

–c (compile) Suppresses the linking step of compilation. Compiles and/or
assembles source code files and leaves the object code in files with the extension
.o.

–Dname [=value]

 Usually #define preprocessor directives are given in header, or include, files.
You can use this option to define symbolic names on the command line instead.
For example, –DLinux is equivalent to having the line #define Linux in an
include file, and –DMACH=i586 is the same as #define MACH i586.

–E (everything) On source code files, suppresses all steps of compilation except
preprocessing and writes the result to standard output. By convention the
extension .i is used for preprocessed C source and .ii for preprocessed C++
source.

–fpic

 Causes gcc to produce position-independent code, which is suitable for
installing into a shared library.

–fwritable-strings

 By default the GNU C compiler places string constants into protected memory,
where they cannot be changed. Some (usually older) programs assume that you
can modify string constants. This option changes the behavior of gcc so string
constants can be modified.

–g (gdb) Embeds diagnostic information in the object files. This information is
used by symbolic debuggers, such as gdb (page 412). Although it is necessary
only if you later use a debugger, it is a good practice to include this option as a
matter of course.

–Idirectory

 Looks for include files in directory before looking in the standard locations.
Give this option multiple times to look in more than one directory.

–larg

 (lowercase "l") Searches the directories /lib and /usr/lib for a library file named
libarg.a. If the file is found, gcc then searches this library for any required
functions. Replace arg with the name of the library you want to search. For
example, the –lm option normally links the standard math library libm.a. The
position of this option is significant: It generally needs to go at the end of the
command line but can be repeated multiple times to search different libraries.
Libraries are searched in the order in which they appear on the command line.
The linker uses the library only to resolve undefined symbols from modules that
precede the library option on the command line. You can add other library paths
to search for libarg.a using the –L option.

–Ldirectory

 Adds directory to the list of directories to search for libraries given with the –l
option. Directories that are added to the list with –L are searched before looking
in the standard locations for libraries.

–ofile

 (output) Names the executable program that results from linking file instead of
a.out.

–On

 (optimize) Attempts to improve (optimize) the object code produced by the
compiler. The value of n may be 0, 1, 2, or 3 (or 06 if you are compiling code
for the Linux kernel). The default value of n is 1. Larger values of n result in
better optimization but may increase both the size of the object file and the time
it takes gcc to run. Using –O0 turns off optimization. Many related options
control precisely the types of optimizations attempted by gcc when you use –O.
Refer to the gcc info page for details.

–pedantic

 The C language accepted by the GNU C compiler includes features that are not
part of the ANSI standard for the C language. Using this option forces gcc to
reject these language extensions and accept only standard C programming
language features.

–Q Displays the names of functions as gcc compiles them. Also displays statistics
about each pass.

–S (suppress) Suppresses the assembling and linking steps of compilation on
source code files. The resulting assembly language files have .s filename
extensions.

–traditional

 Causes gcc to accept only C programming language features that existed in the
traditional Kernighan and Ritchie C programming language. This option allows
you to compile correctly older programs written using the traditional C language
that existed before the ANSI standard C language was defined.

–Wall

 Causes gcc to warn you about questionable code in the source code files. Many
related options control warning messages more precisely. See page 408.

Notes

The preceding list of options represents only a small fraction of the full set of options available with the GNU C compiler. See the gcc
info page for a complete list.

See "Programming in C" on page 388 for more information about using the gcc compiler.

Although the –o option is generally used to specify a filename to store object code, this option also allows you to name files resulting
from other compilation steps. In the following example, the –o option causes the assembly language produced by the gcc command to
be stored in the file acode instead of pgm.s, the default:

$ gcc -S -o acode pgm.c

The lint utility found in many UNIX systems is not available on Linux. However, the –Wall option (page 408) performs many of the
same checks and can be used in place of lint.

The conventions used by the C compiler for assigning filename extensions are summarized in Table V-15.

Examples

The first example compiles, assembles, and links a single C program, compute.c. The executable output is put in a.out. The gcc utility
deletes the object file.

$ gcc compute.c

The next example compiles the same program using the C optimizer (–O option). It assembles and links the optimized code. The –o
option causes gcc to put the executable output in compute.

$ gcc -O -o compute compute.c

Next a C source file, an assembly language file, and an object file are compiled, assembled, and linked. The executable output goes in
progo.

$ gcc -o progo procom.c profast.s proout.o

In the next example, gcc searches the standard math library stored in /lib/libm.a when it is linking the himath program and puts the
executable output in a.out:

$ gcc himath.c -lm

In the following example, the C compiler compiles topo.c with options that check the code for questionable source code practices
(–Wall option) and violations of the ANSI C standard (–pedantic option). The –g option embeds debugging support in the executable
file, which is saved in topo with the –o topo option. Full optimization is enabled with the –O3 option.

The warnings produced by the C compiler are sent to standard output. Here the first and last warnings result from the –pedantic
option; the other warnings result from the –Wall option:

$ gcc -Wall -g -O3 -pedantic -o topo topo.c

In file included from topo.c:2:

/usr/include/ctype.h:65: warning: comma at end of enumerator list

topo.c:13: warning: return-type defaults to 'int'

topo.c: In function 'main':

topo.c:14: warning: unused variable 'c'

topo.c: In function 'getline':

topo.c:44: warning: 'c' might be used uninitialized in this function

When compiling programs that use the X11 include files and libraries, you may need to use the –I and –L options to tell gcc where to
locate those include files and libraries. The next example uses those options and instructs gcc to link the program with the basic X11
library:

$ gcc -I/usr/X11R6/include plot.c -L/usr/X11R6/lib -lX11

grep: Searches for a pattern in files

grep [options] pattern [file-list]

The grep utility searches one or more files, line by line, for a pattern , which can be a simple string or another form of a regular
expression. The grep utility takes various actions, specified by options, each time it finds a line that contains a match for the pattern .
This utility takes its input from files you specify on the command line or from standard input.

Arguments

The pattern is a regular expression, as defined in Appendix A. You must quote regular expressions that contain special characters,
SPACE s, or TAB s. An easy way to quote these characters is to enclose the entire expression within single quotation marks.

The file-list is a list of the pathnames of ordinary files that grep searches. With the –r option, file-list may contain directories whose
contents are searched.

Options

Without any options grep sends lines that contain a match for pattern to standard output. When you specify more than one file on the
command line, grep precedes each line that it displays with the name of the file that it came from followed by a colon.

Major Options

You can use only one of the following three options at a time. Normally you do not need to use any, because grep defaults to –G,
which is regular grep.

–E (extended) Interprets pattern as an extended regular expression (page 836).
The command grep –E is the same as egrep. See "Notes" later in this section.

–F (fixed) Interprets pattern as a fixed string of characters. The command grep
–F is the same as fgrep.

–G (grep) Interprets pattern as a basic regular expression. This is the default
major option if none is specified.

Other Options

Accepts the common options described on page 587.

––count –c Displays only the number of lines that contain
a match in each file.

––context=n – C n

 Displays n lines of context around each
matching line.

––file=file –f File

 Reads file, which contains one pattern per line,
and finds lines in the input that match each of
the patterns.

––no-filename –h Does not display the filename at the beginning
of each line when searching through multiple
files.

––ignore-case –i Causes lowercase letters in the pattern to
match uppercase letters in the file, and vice
versa. Use this option when you are searching
for a word that may be at the beginning of a
sentence (that is, may or may not start with an
uppercase letter).

––files-with-
matches

 –l (lowercase "l") Displays only the name of each
file that contains one or more matches. A
filename is displayed only once, even if the file
contains more than one match.

––max-count=n –m n

 Stops reading each file, or standard input, after
displaying n lines containing matches.

––line-number –n Precedes each line by its line number in the
file. The file does not need to contain line
numbers.

––quiet or ––silent –q Does not write anything to standard output;
only sets the exit code.

––recursive –r or –R

 Recursively descends directories in file-list and
processes files within these directories.

––no-messages –s (silent) Does not display an error message if a
file in file-list does not exist or is not readable.

––invert-match –v Causes lines not containing a match to satisfy
the search. When you use this option by itself,
grep displays all lines that do not contain a
match for the pattern .

––word-regexp –w With this option, the pattern must match a
whole word. This option is helpful if you are
searching for a specific word that may also
appear as a substring of another word in the
file.

––line-regexp – x The pattern matches whole lines only.

Notes

The grep utility returns an exit status of 0 if it finds a match, 1 if it does not find a match, and 2 if the file is not accessible or there is a
syntax error.

egrep and fgrep

Two utilities perform functions similar to that of grep. The egrep utility (same as grep –E) allows you to use extended regular
expressions (page 836), which include a different set of special characters than basic regular expressions (page 834). The fgrep utility
(same as grep –F) is fast and compact but processes only simple strings, not regular expressions.

Examples

The following examples assume that the working directory contains three files: testa, testb, and testc:

File testa File testb File testc

aaabb aaaaa AAAAA

bbbcc bbbbb BBBBB

ff-ff ccccc CCCCC

cccdd ddddd DDDDD

dddaa

The grep utility can search for a pattern that is a simple string of characters. The following command line searches testa and displays
each line containing the string bb:

$ grep bb testa

aaabb

bbbcc

The –v option reverses the sense of the test. The following example displays the lines in testa without bb:

$ grep -v bb testa

ff-ff

cccdd

dddaa

The –n option displays the line number of each displayed line:

$ grep -n bb testa

1:aaabb

2:bbbcc

The grep utility can search through more than one file. Here grep searches through each file in the working directory. The name of the
file containing the string precedes each line of output.

$ grep bb *

testa:aaabb

testa:bbbcc

testb:bbbbb

When the search for the string bb is done with the –w option, grep produces no output because none of the files contains the string bb
as a separate word:

$ grep -w bb *

$

The search that grep performs is case sensitive. Because the previous examples specified lowercase bb, grep did not find the
uppercase string BBBBB in testc. The –i option causes both uppercase and lowercase letters to match either case of letter in the
pattern:

$ grep -i bb *

testa:aaabb

testa:bbbcc

testb:bbbbb

testc:BBBBB

$ grep -i BB *

testa:aaabb

testa:bbbcc

testb:bbbbb

testc:BBBBB

The –c option displays the number of lines in each file that contain a match:

$ grep -c bb *

testa:2

testb:1

testc:0

The –f option finds matches for each pattern in a file of patterns. The next example shows gfile, which holds two patterns, one per line,
and grep searching for matches to the patterns in gfile:

$ cat gfile

aaa

bbb

$ grep -f gfile test*

testa:aaabb

testa:bbbcc

testb:aaaaa

testb:bbbbb

The following command line displays from text2 lines that contain a string of characters starting with st, followed by zero or more
characters (.* represents zero or more characters in a regular expression—see Appendix A), and ending in ing:

$ grep 'st.*ing' text2

...

The ̂ regular expression, which matches the beginning of a line, can be used alone to match every line in a file. Together with the –n
option, ̂ can be used to display the lines in a file, preceded by their line numbers:

$ grep -n '^' testa

1:aaabb

2:bbbcc

3:ff-ff

4:cccdd

5:dddaa

The next command line counts the number of times #include statements appear in C source files in the working directory. The –h
option causes grep to suppress the filenames from its output. The input to sort is all lines from *.c that match #include. The output
from sort is an ordered list of lines that contains many duplicates. When uniq with the –c option processes this sorted list, it outputs
repeated lines only once, along with a count of the number of repetitions in its input.

$ grep -h '#include' *.c | sort | uniq -c

9 #include "buff.h"

2 #include "poly.h"

1 #include "screen.h"

6 #include "window.h"

2 #include "x2.h"

2 #include "x3.h"

2 #include <math.h>

3 #include <stdio.h>

The final command calls the vim editor with a list of files in the working directory that contain the string Sampson. The $(…)
command substitution construct (page 329) causes the shell to execute grep in place and supply vim with a list of filenames that you
want to edit:

$ vim $(grep -l 'Sampson' *)

...

The single quotation marks are not necessary in this example, but they are required if the regular expression you are searching for
contains special characters or SPACEs. It is generally a good habit to quote the pattern so that the shell does not interpret special
characters it may contain.

gzip: Compresses or decompresses files

gzip [options] [file-list]

gunzip [options] [file-list]

zcat [file-list]

The gzip utility compresses files; gunzip restores files compressed with gzip; zcat displays files compressed with gzip.

Arguments

The file-list is a list of the names of one or more files that are to be compressed or decompressed. If a directory appears in file-list with
no ––recursive option, gzip/gunzip issues an error message and ignores the directory. With the ––recursive option, gzip/gunzip
recursively compresses/decompresses files within the directory hierarchy.

If file-list is empty or if the special option – is present, gzip reads from standard input. The ––stdout option causes gzip and gunzip
to write to standard output.

The information in this section also applies to gunzip, a link to gzip.

Options

Accepts the common options described on page 587.

––stdout –c Writes the results of compression or decompression to standard
output instead of overwriting the original file.

––decompress
or

––uncompress

–d Decompresses a file compressed with gzip. This option with
gzip is equivalent to the gunzip command.

––fast or
––best

–n Controls the tradeoff between the speed of compression and the
amount of compression. The n is a digit from 1 to 9; level 1 is
the fastest (least) compression and level 9 is the best (slowest
and most) compression. The default level is 6. The options
––fast and ––best are synonyms for –1 and –9, respectively.

––force –f Overwrites an existing output file on
compression/decompression.

––list –l For each compressed file in file-list , displays the file's
compressed and decompressed sizes, the compression ratio,
and the name of the file before compression. Use with
––verbose for additional information.

––quiet –q Suppresses warning messages.

––recursive –r Recursively descends directories in file-list and
compresses/decompresses files within these directories.

––test –t Verifies the integrity of a compressed file. Displays nothing if
the file is OK.

––verbose –v Displays the name of the file, the name of the compressed file,
and the amount of compression as each file is processed.

Discussion

Compressing files reduces disk space requirements and the time needed to transmit files between systems. When gzip compresses a
file, it adds the extension .gz to the filename. For example, compressing the file fname creates the file fname.gz and deletes the
original file. To restore fname, use the command gunzip with the argument fname.gz.

Almost all files become much smaller when compressed with gzip. On rare occasions a file will become larger, but only by a slight
amount. The type of a file and its contents (as well as the –n option) determine how much smaller a file becomes; text files are often
reduced by 60 to 70 percent.

The attributes of a file, such as its owner, permissions, and modification and access times, are left intact when gzip compresses and
gunzip decompresses a file.

If the compressed version of a file already exists, gzip reports that fact and asks for your confirmation before overwriting the existing
file. If a file has multiple links to it, gzip issues an error message and exits. The ––force option overrides the default behavior in both
of these situations.

Notes

For more information refer to "gzip: Compresses a File" on page 58.

In addition to the gzip format, gunzip recognizes several other compression formats, enabling gunzip to decompress files compressed
with compress.

To see an example of a file that becomes larger when compressed with gzip, compare the size of a file that has been compressed once
with the same file compressed with gzip again. Because gzip complains when you give it an argument with the extension .gz, you
need to rename the file before compressing it a second time.

The tar utility with the –z modifier (page 789) calls gzip.

The following related utilities display and manipulate compressed files. None of these utilities changes the files that it works on.

zcat file-list Works like cat except that it uses gunzip to decompress
file-list as it copies files to standard output.

zdiff [options] file1 [file2]

 Works like diff (page 638) except that file1 and file2 are
decompressed with gunzip as needed. The zdiff utility
accepts the same options as diff. If you omit file2 , zdiff
compares file1 with the compressed version of file1 .

zless file-list Works like less except that it uses gunzip to decompress
file-list as it displays files.

Examples

In the first example, gzip compresses two files. Then gunzip decompresses one of the files. When a file is compressed and
decompressed, its size changes but its modification time remains the same:

$ ls -l

total 175

-rw-rw-r-- 1 alex group 33557 Jul 20 17:32 patch-2.0.7

-rw-rw-r-- 1 alex group 143258 Jul 20 17:32 patch-2.0.8

$ gzip *

$ ls -l

total 51

-rw-rw-r-- 1 alex group 9693 Jul 20 17:32 patch-2.0.7.gz

-rw-rw-r-- 1 alex group 40426 Jul 20 17:32 patch-2.0.8.gz

$ gunzip patch-2.0.7.gz

$ ls -l

total 75

-rw-rw-r-- 1 alex group 33557 Jul 20 17:32 patch-2.0.7

-rw-rw-r-- 1 alex group 40426 Jul 20 17:32 patch-2.0.8.gz

In the next example, the files in Jenny's home directory are archived by using the cpio utility (page 619). The archive is compressed
with gzip before it is written to tape:

$ find /home/jenny -depth -print | cpio -oBm | gzip >/dev/ftape

head: Displays the beginning of a file

head [options] [file-list]

The head utility displays the beginning (head) of a file. The utility takes its input from one or more files you specify on the command
line or from standard input.

Arguments

The file-list is a list of the pathnames of the files that head displays. When you specify more than one file, head displays the filename
before displaying the first few lines of each file. When you do not specify a file, head takes its input from standard input.

Options

Accepts the common options described on page 587.

––bytes=n[u] –cn[u]

 Displays the first n bytes (characters) of a file. The
u is an optional unit of measure that can be b (512-
byte blocks), k (kilobyte or 1,024-byte blocks), or
m (megabyte or 1,048,576-byte blocks). If you
include the unit of measure, head counts by this
unit instead of by bytes.

––lines=n –n n

 Displays the first n lines of a file. You can use –n
to specify n lines without using the lines keyword
or the –n option. If you specify a negative value for
n, head displays all but the last n lines of the file.

––quiet –q Suppresses header information when you specify
more than one filename on the command line.

Notes

The head utility displays the first ten lines of a file by default.

Examples

The examples in this section are based on the following file:

$ cat eleven

line one

line two

line three

line four

line five

line six

line seven

line eight

line nine

line ten

line eleven

Without any arguments head displays the first ten lines of a file:

$ head eleven

line one

line two

line three

line four

line five

line six

line seven

line eight

line nine

line ten

The next example displays the first three lines (––lines 3) of the file:

$ head --lines 3 eleven

line one

line two

line three

The following example is equivalent to the preceding one:

$ head -3 eleven

line one

line two

line three

The next example displays the first six characters (––bytes 6) in the file:

$ head --bytes 6 eleven

line o$

The final example displays all but the last seven lines of the file:

$ head --lines=-7 eleven

line one

line two

line three

line four

kill: Terminates a process by PID

kill [option] PID-list

The kill utility terminates one or more processes by sending them signals. By default kill sends a software termination signal (signal
number 15). For kill to work, the process must belong to the user executing kill, with one exception: Superuser can terminate any
process.

Arguments

The PID-list is a list of process identification (PID) numbers of processes that kill is to terminate.

Options

You can specify a signal number or name, preceded by a hyphen, as an option to cause kill to send the signal you specify to the PID-
list.

–l (list) Displays a list of signals. (Do not specify PID-list.)

Notes

See also killall on page 695.

See Table 11-5 on page 494 for a list of signals. The command kill –l displays a complete list of signal numbers and names.

In addition to the kill utility, kill is a builtin in the Bourne Again and TC Shells. The builtins work similarly to the utility described

here. Give the command /bin/kill to use the kill utility and the command kill to use the builtin. It does not usually matter which you
use.

The shell displays the PID number of a background process when you initiate the process. You can also use the ps utility to determine
PID numbers.

If the software termination signal does not terminate a process, try using a KILL signal (signal number 9). A process can choose to
ignore any signal except KILL.

The kill utility/builtin accepts job identifiers in place of the PID-list. Job identifiers consist of a percent sign (%) followed by either a
job number or a string that uniquely identifies the job.

To terminate all processes that the current login process initiated and have the operating system log you out, give the command kill –9
0.

caution: root: do not run kill with arguments of –9 0 or KILL 0

If you run the command kill – 9 0 while you are logged in as Superuser, you will bring the system down.

Examples

The first example shows a command line executing the file compute as a background process and the kill utility terminating it:

$ compute &

[2] 259

$ kill 259

$ RETURN

[2]+ Terminated compute

The next example shows the ps utility determining the PID number of the background process running a program named xprog and
the kill utility terminating xprog with the TERM signal:

$ ps

PID TTY STAT TIME COMMAND

116 1 S 0:00 -tcsh

128 1 S N 0:00 xinit /home/alex/.xinitrc --

137 1 S N 0:01 fvwm

138 p0 S N 0:00 -tcsh

161 p0 S N 0:10 xprog

262 p0 R N 0:00 ps

$ kill -TERM 161

$

killall: Terminates a process by name

killall [option] name-list

The killall utility sends signals to processes executing specified commands. For killall to work, the processes must belong to the
user executing killall, with one exception: Superuser can terminate any process.

Arguments

The name-list is a SPACE-separated list of names of programs that are to receive signals.

Options

You can specify a signal number or name, preceded by a hyphen, as an option before the name-list to cause killall to send the signal
you specify. By default killall sends software termination signals (signal number 15, SIGTERM).

––interactive –i Prompts for confirmation before killing a process.

––list –l Displays a list of signals (but kill –l displays a better list). With
this option killall does not accept a name-list .

––quiet –q Does not display a message if killall fails to terminate a
process.

Notes

See also kill on page 693.

See Table 11-5 on page 494 for a list of signals. The command kill –l displays a complete list of signal numbers and names.

If the software termination signal does not terminate the process, try using a KILL signal (signal number 9). A process can choose to
ignore any signal except KILL.

You can use ps (page 746) to determine the name of the program you want to terminate.

Examples

You can give the following commands to experiment with killall:

$ sleep 60 &

[1] 23274

$ sleep 50 &

[2] 23275

$ sleep 40 &

[3] 23276

$ sleep 120 &

[4] 23277

$ killall sleep

$ RETURN

[1] Terminated sleep 60

[2] Terminated sleep 50

[3]- Terminated sleep 40

[4]+ Terminated sleep 120

If you want to terminate all instances of the Firefox browser, give the following command to determine how Firefox was called:

$ ps -ef | grep -i firefox

max 17517 17512 0 Apr02 ? 00:00:54 /usr/local/firefox/firefox-bin

max 19340 2787 0 00:33 pts/6 00:00:00 grep firefox

The next command, run as root, terminates all instances of the Firefox browser:

killall firefox-bin

less: Displays text files, one screen at a time

less [options] [file-list]

The less utility displays text files, one screen at a time.

Arguments

The file-list is the list of files you want to view. If there is no file-list , less reads from standard input.

Options

Accepts the common options described on page 587.

––clear-screen –c Repaints the screen from the top line down
instead of scrolling.

––quit-at-eof –e (exit) Normally less requires you to enter
q to terminate. This option exits
automatically the second time less reads
the end of file.

––QUIT-AT-EOF –E (exit) Similar to –e, except that less exits
automatically the first time it reads the end
of file.

––quit-if-one-screen

 –F Displays the file and quits if the file can be
displayed on a single screen.

––ignore-case –i Causes a search for a string of lowercase
letters to match both uppercase and
lowercase letters. This option is ignored if
you give a pattern that includes uppercase
letters.

––IGNORE-CASE

 –I Causes a search for a string of letters of
any case to match both uppercase and
lowercase letters, regardless of the case of
the search pattern.

––long-prompt –m Reports the percentage of the file that you
have viewed with each prompt. This
option causes less to display a prompt
that is similar to the prompt used by more.
It does not work when less reads from
standard input because less has no way of
determining how much input there is.

––LINE-NUMBERS

 –N Displays a line number at the start of each
line.

 –Psprompt

 Changes the short prompt string (the
prompt that appears at the bottom of each
screen of output) to prompt . Enclose
prompt in quotation marks if it contains
SPACEs. You can use special symbols in
prompt that less will replace with other
values when it displays the prompt. For
example, less displays the current
filename in place of %f in prompt . See the
less man page for a list of these special
symbols and descriptions of other
prompts. Custom prompts are useful if you
are running less from within another
program and want to give instructions or
information to the person who is using the
program. The default prompt is the name
of the file displayed in reverse video.

––squeeze-blank-lines

 –s Displays multiple, adjacent blank lines as
a single blank line. When you use less to
display text that has been formatted for
printing with blank space at the top and
bottom of each page, this option shortens
these headers and footers to a single line.

––tabs=n –xn

 Sets tab stops n characters apart. The
default is eight characters.

––window=n –[z]n

 Sets the scrolling size to n lines. The
default is the size of the display. Each time
you move forward or backward a page,
you move n lines.

 +command

 Any command you can give less while it
is running can also be given as an option
by preceding it with a plus sign (+) on the
command line. See the "Commands"
section. A command preceded by a plus
sign on the command line is executed as
soon as less starts and applies only to the
first file.

 ++command

 Similar to +command except that
command is applied to every file in file-
list, not just the first.

Notes

The phrase "less is more" explains the origin of this utility. The more utility is the original Berkeley UNIX pager (also available under
Linux). The less utility is similar to more but includes many enhancements. After displaying a screen of text, less displays a prompt
and waits for you to enter a command. You can skip forward and backward in the file, invoke an editor, search for a pattern, or
perform a number of other tasks.

See the v command in the next section for information on how you can edit the file you are viewing with less.

You can set the options to less either from the command line when you call less or by setting the LESS environment variable. For
example, you can use the following command from bash to use less with the –x4 and –s options.

$ export LESS="-x4 -s"

Normally you would set LESS in ~/.bash_profile if you are using bash or in ~/.login if you are using tcsh. Once you have set the
LESS variable, less is invoked with the specified options each time you call it. Any options you give on the command line override
the settings in the LESS variable. The LESS variable is used both when you call less from the command line and when less is
invoked by another program, such as man. To specify less as the pager to use with man and other programs, set the environment
variable PAGER to less. For example, with bash you can add the following line to ~/.bash_profile:

export PAGER=less

Commands

Whenever less pauses, you can enter any of a large number of commands. This section describes some commonly used commands.
Refer to the less man page for the full list of commands. The optional numeric argument n defaults to 1, with the exceptions noted.

You do not need to follow these commands with a RETURN.

nb or nCONTROL-B (backward) Scrolls backward n lines. The default value of n is
the size of the screen.

nd or n CONTROL-
D

(down) Scrolls forward n lines. The default value of n is one-
half the screen size. When you specify n, it becomes the new
default value for this command.

F (forward) Scrolls forward. If the end of the input is reached,
this command waits for more input and then continues
scrolling. This command allows you to use less in a manner
similar to tail –f (page 783), except that less paginates the
output as it appears.

ng (go) Goes to line number n. This command may not work if the
file is read from standard input and you have moved too far
into the file. The default value of n is 1.

h or H (help) Displays a summary of all available commands. The
summary is displayed using less, as the list of commands is
quite long.

nRETURN or nj (jump) Scrolls forward n lines. The default value of n is 1.

q or :q Terminates less.

nu or nCONTROL-U Scrolls backward n lines. The default value of n is one-half the
screen size. When you specify n, it becomes the default value
for this command.

v Brings the current file into an editor with the cursor on the
current line. The less utility uses the editor specified in the
EDITOR environment variable. If EDITOR is not set, less
uses vi (which is typically linked to vim).

nw Scrolls backward like nb, except that the value of n becomes
the new default value for this command.

ny or nk Scrolls backward n lines. The default value of n is 1.

nz Displays the next n lines like nSPACE except that the value of
n, if present, becomes the new default value for the z and
SPACE commands.

nSPACE Displays the next n lines. Pressing SPACE by itself displays the
next screen of text.

/regular-expression

 Skips forward in the file, looking for lines that contain a match
for regular-expression . If you begin regular-expression with
an exclamation point (!), this command looks for lines that do
not contain a match for regular-expression . If regular-
expression begins with an asterisk (*), this command continues
the search through file-list . (A normal search stops at the end of
the current file.) If regular-expression begins with an at sign
(@), this command begins the search at the start of file-list and
continues to the end of file-list .

?regular-expression

 This command is similar to the previous one but searches
backward through the file (and file-list). An asterisk (*) as the
first character in regular-expression causes the search to
continue backward through file-list to the beginning of the first
file. An at sign (@) causes the search to start with the last line
of the last file in file-list and progress toward the first line of
the first file.

{ or (or [If one of these characters appears in the top line of the display,
this command scrolls forward to the matching right brace,
parenthesis, or bracket. For example, typing { causes less to
move the cursor forward to the matching }.

} or) or] Similar to the preceding commands, these commands move the
cursor backward to the matching left brace, parenthesis, or
bracket.

CONTROL-L Redraws the screen. This command is useful if the text on the
screen has become garbled.

[n]:n Skips to the next file in file-list . If n is given, skips to the nth
next file in file-list .

![command line] Executes command line under the shell specified by the
SHELL environment variable, or sh (usually linked to bash)
by default. A percent sign (%) in command line is replaced by
the name of the current file. If you omit command line , less
starts an interactive shell.

Examples

The following example displays the file memo.txt. To see more of the file, the user presses the SPACE bar in response to the less
prompt at the bottom left of the screen:

$ less memo.txt

...

memo.txt SPACE

...

In the next example, the user changes the prompt to a more meaningful message and uses the –N option to display line numbers.
Finally the user instructs less to skip forward to the first line containing the string procedure.

$ less -Ps"Press SPACE to continue, q to quit" -N +/procedure ncut.icn

 28 procedure main(args)

 29 local filelist, arg, fields, delim

 30

 31 filelist:=[]

...

 45 # Check for real field list

 46 #

 47 if /fields then stop("-fFIELD_LIST is required.")

 48

 49 # Process the files and output the fields

Press SPACE to continue, q to quit

ln: Makes a link to a file

ln [options] existing-file [new-link]

ln [options] existing-file-list directory

The ln utility creates hard or symbolic links to one or more files. You can create a symbolic link, but not a hard link, to a directory.

Arguments

In the first format the existing-file is the pathname of the file you want to create a link to. The new-link is the pathname of the new
link. When you are creating a symbolic link, the existing-file can be a directory. If you omit new-link , ln creates a link to existing-file
in the working directory, and uses the same simple filename as existing-file .

In the second format the existing-file-list is a list of the pathnames of the ordinary files you want to create links to. The ln utility

establishes the new links in the directory . The simple filenames of the entries in the directory are the same as the simple filenames of
the files in the existing-file-list .

Options

––backup –b If the ln utility will remove a file, this option makes a backup
by appending ~ to the filename. This option works only with
––force.

––force –f Normally ln does not create the link if new-link already
exists. This option removes new-link before creating the link.
When you use ––force and ––backup together, ln makes a
copy of new-link before removing it.

––interactive –i If new-link already exists, this option prompts you before
removing new-link . If you enter y or yes, ln removes new-
link before creating the link. If you answer n or no, no new
link is made.

––symbolic –s Creates a symbolic link. When you use this option, the
existing-file and new-link may be directories and may reside
on different filesystems. Refer to "Symbolic Links" on page
99.

Notes

For more information refer to "Links" on page 96. The ls utility with the –l option displays the number of hard links to a file (Figure
4-12, page 92).

Hard links

By default ln creates hard links. A hard link to a file is indistinguishable from the original file. All hard links to a file must be in the
same filesystem. For more information refer to "Hard Links" on page 97.

Symbolic links

You can also use ln to create symbolic links. Unlike a hard link, a symbolic link can exist in a different filesystem from the linked-to
file. Also, a symbolic link can point to a directory. For more information refer to "Symbolic Links" on page 99.

If new-link is the name of an existing file, ln does not create the link unless you use the ––force option or answer yes when using the
––interactive option.

Examples

The following command creates a link between memo2 in the /home/zach/literature directory and the working directory. The file
appears as memo2 (the simple filename of the existing file) in the working directory:

$ ln /home/zach/literature/memo2 .

You can omit the period that represents the working directory from the preceding command. When you give a single argument to ln, it
creates a link in the working directory.

The next command creates a link to the same file. This time the file appears as new_memo in the working directory:

$ ln /home/zach/literature/memo2 new_memo

The following command creates a link that causes the file to appear in another user's directory:

$ ln /home/zach/literature/memo2 /home/jenny/new_memo

You must have write and execute access permission to the other user's directory for this command to work. If you own the file, you can
use chmod to give the other user write access permission to the file.

The next command creates a symbolic link to a directory. The ls –ld command shows the link:

$ ln -s /usr/local/bin bin

$ ls -ld bin

lrwxrwxrwx 1 zach zach 14 Feb 10 13:26 bin -> /usr/local/bin

The final example attempts to create a symbolic link named memo1 to the file memo2. Because the file memo1 exists, ln refuses to
make the link. When you use the ––interactive option, ln asks whether you want to replace the existing memo1 file with the symbolic
link. If you enter y or yes, ln creates the link and the old memo1 disappears.

$ ls -l memo?

-rw-rw-r-- 1 zach group 224 Jul 31 14:48 memo1

-rw-rw-r-- 1 zach group 753 Jul 31 14:49 memo2

$ ln --symbolic memo2 memo1

ln: memo1: File exists

$ ln --symbolic --interactive memo2 memo1

ln: replace 'memo1'? y

$ ls -l memo?

lrwxrwxrwx 1 zach group 5 Jul 31 14:49 memo1 -> memo2

-rw-rw-r-- 1 zach group 753 Jul 31 14:49 memo2

You can also use the ––force option to cause ln to overwrite a file.

lpr: Sends files to printers

lpr [options] [file-list]

lpq [options] [job-identifiers]

lprm [options] [job-identifiers]

The lpr utility places one or more files into a print queue, providing orderly access to printers for several users or processes. The
utility can work with printers attached to remote systems. You can use the lprm utility to remove files from the print queues and the
lpq utility to check the status of files in the queues. Refer to "Notes" later in this section.

Arguments

The file-list is a list of one or more filenames for lpr to print. Often these files are text files, but many systems are configured so that
lpr can accept and properly print a variety of file types. Without a file-list , lpr accepts input from standard input.

The job-identifiers is a list of job numbers or user names. If you do not know the job number of a print job, use lpq to display a list of
print jobs.

Options

Some of the following options depend on the type of file being printed as well as on how the system is configured for printing.

–l (lowercase "l") Specifies that lpr should not preprocess (filter) the file being
printed. Use this option when the file is already formatted for the printer.

–Pprinter

 Routes the print jobs to the queue for the printer named printer . If you do not
use this option, print jobs are routed to the default printer for the local
system. The acceptable values for printer are found in the file /etc/printcap
and vary from system to system.

–r (remove) Deletes the files in file-list after calling lpr.

– #n

 Prints n copies of each file. Depending on which shell you are using, you
may need to escape the # with a backslash to pass it to lpr.

Discussion

The lpr utility takes input from files you specify on the command line or from standard input and adds the files to the print queue as
print jobs. The utility assigns a unique identification number to each print job. The lpq utility displays the job numbers of the print
jobs that lpr has set up; you can use the lprm utility to remove a print job from the print queue.

lpq

The lpq utility displays information about jobs in a print queue. When called without any arguments, lpq lists all the print jobs queued
for the default printer. Use lpr's –P printer option with lpq to look at other print queues—even those for printers connected to other
systems. With the –l option lpq displays more information about each job. If you give the username of a user as an argument, lpq
displays only the printer jobs belonging to that user.

lprm

One item displayed by lpq is the job number for each print job in the queue. To remove a job from the print queue, use the job number
as an argument to lprm. Unless you are Superuser, you can remove only your own jobs. Even as Superuser you may not be able to
remove a job from a queue for a remote printer. If you do not give any arguments to lprm, it removes the currently active printer job
(that is, the job that is now printing) from the queue, if you own that job.

Notes

If you normally use a printer other than the system default printer, you can set up lpr to use another printer as your personal default by
assigning the name of this printer to the environment variable PRINTER. For example, if you use bash, you can add the following
line to ~/.bash_profile to set your default printer to the printer named ps:

export PRINTER=ps

LPD and LPR

Traditionally, UNIX had two printing systems: the BSD Line Printer Daemon (LPD) and the System V Line Printer system (LPR).
Linux adopted those systems at first, and both UNIX and Linux have seen modifications to and replacements for these systems. Today
CUPS is the default printing system under many Linux distributions.

CUPS

CUPS (Common UNIX Printing System) is a cross-platform print server built around IPP (Internet Printing Protocol), which is based
on HTTP. CUPS provides a number of printer drivers and can print different types of files, including PostScript files. CUPS provides
System V and BSD command line interfaces and, in addition to IPP, supports LPD/LPR, HTTP, SMB, and JetDirect (socket)
protocols, among others.

This section describes the LPD command line interface that runs under CUPS and also in native mode on older systems.

Examples

The first command sends the file named memo2 to the default printer:

$ lpr memo2

Next a pipe sends the output of ls to the printer named deskjet:

$ ls | lpr -Pdeskjet

The next example paginates and sends the file memo to the printer:

$ pr -h "Today's memo" memo | lpr

The next example shows a number of print jobs queued for the default printer. Alex owns all of these jobs, and the first one is
currently being printed (active). Jobs 635 and 639 were created by sending input to lpr's standard input; job 638 was created by giving
ncut.icn as an argument to the lpr command. The last column gives the size of each print job.

$ lpq

deskjet is ready and printing

Rank Owner Job Files Total Size

active alex 635 (stdin) 38128 bytes

1st alex 638 ncut.icn 3587 bytes

2nd alex 639 (stdin) 3960 bytes

The next command removes job 638 from the default print queue:

$ lprm 638

ls: Displays information about one or more files

ls [options] [file-list]

The ls utility displays information about one or more files. It lists the information alphabetically by filename unless you use an option
to change the order.

Arguments

When you do not provide an argument, ls displays the names of the visible files in the working directory (those files whose filenames
do not begin with a period).

The file-list is a list of one or more pathnames of any ordinary, directory, or device files. It can include ambiguous file references.

When you specify a directory, ls displays the contents of the directory. It displays the name of the directory only when needed to avoid
ambiguity, such as when the listing includes more than one directory. When you specify an ordinary file, ls displays information about
that one file.

Options

The options determine the type of information ls displays, the manner in which it displays the information, and the order in which it is
displayed. When you do not use an option, ls displays a short list that contains only the names of files.

––all –a Includes invisible files (those with filenames that begin with a
period) in the listing. Without this option ls does not list
information about invisible files unless you list the name of an
invisible file in the file-list . When you use this option with a file-
list that includes an appropriate ambiguous file reference, ls
displays information about invisible files. The * ambiguous file
reference does not match a leading period in a filename (see page
129).

––almost-all –A The same as ––all but does not list the . and . . entries.

––escape –b Displays nonprinting characters in a filename, using backslash
escape sequences similar to those used in C language strings. A
partial list is given in Table V-16. Other nonprinting characters
are displayed as a backslash followed by an octal number.

Table V-16. Backslash escape sequences

Sequence Meaning

\b BACKSPACE

\n NEWLINE

\r RETURN

\t HORIZONTAL TAB

\v VERTICAL TAB

\\ BACKSLASH

––color[=when] The ls utility can display various types of files in different
colors but normally does not use colors (the same result as when
you specify when as none). If you do not specify when or if you
specify when as always, ls uses colors. When you specify
when as auto, ls uses colors only when the output goes to a
screen. See "Notes" for more information.

––directory –d Displays the names of directories without displaying their
contents. Without an argument this option displays information
about the working directory. It does not dereference symbolic
links (it lists a link, not the directory it points to).

––format=word By default ls displays files sorted vertically. This option sorts
files based on word : across (–x), separated by commas (–m),
horizontal (–x), long (–l), or single-column (–1).

––classify –F Displays a slash (/) after each directory, an asterisk (*) after
each executable file, and an at sign (@) after a symbolic link.

––human-readable

 –h Displays sizes in K (kilobyte), M (megabyte), and G (gigabyte)
blocks, as appropriate. Works with the –l option only. This
option uses powers of 1,024; use ––si for powers of 1,000.

––inode –i Displays the inode number of each file. With the –l option this
option displays the inode number in column 1 and shifts all
other items one column to the right.

––format=long –l (lowercase "l") Lists more information about each file. Use this
option with –h to make file sizes more readable. See
"Discussion" for more information.

––dereference –L Lists information about the file referenced by a symbolic link
rather than information about the link itself.

 –m Displays a comma-separated list of files that fills the width of
the screen.

––hide-control-chars

 –q Displays nonprinting characters in a filename as question marks.
When output is going to the screen, this is the default behavior.

––reverse –r Displays the list of filenames in reverse sorted order.

––recursive –R Recursively lists subdirectories.

––size –s Displays the number of 1,024-byte blocks allocated to the file.
The size precedes the filename. With the –l option this option
displays the size in column 1 and shifts all other items one
column to the right. You can include the –h option to make the
file sizes easier to read.

––sort=word By default ls displays files in ASCII order. This option sorts the
files based on word : filename extension (–X), none (–U), file
size (–S), access time (–u), or modification time (–t). See
––time for an exception.

––time=word By default ls with the –l option displays the modification time
of a file. Set word to atime to display the access time (or use the
–t option) or to ctime to display the creation time. The list is
sorted by word when you also give the ––sort=time option.

 –x Displays files sorted by lines (the default display is sorted by
columns).

 –X Displays files sorted by filename extension. Files with no
filename extension are listed first.

 –1 (one) Displays files one per line.

Discussion

The ls long listing (––format=long or –l options) displays the seven columns shown in Figure 4-12 on page 92. The first column,
which contains 11 characters, is divided as described in the following paragraphs. The first character describes the type of file, as
shown in Table V-17.

Table V-17. First character in a long ls display

Character Meaning

– Ordinary

b Block device

c Character device

d Directory

p FIFO (named pipe)

l Symbolic link

The next nine characters of the first column represent the access permissions associated with the file. They are divided into three sets
of three characters each.

The first three characters represent the owner's access permissions. If the owner has read access permission to the file, r appears in the
first character position. If the owner is not permitted to read the file, a hyphen appears in this position. The next two positions
represent the owner's write and execute access permissions. If w appears in the second position the owner is permitted to write to the
file; if x appears in the third position the owner is permitted to execute the file. An s in the third position indicates that the file has
setuid permission and execute permission. An S indicates setuid without execute permission. A hyphen indicates that the owner does
not have the access permission associated with the character position.

In a similar manner the second and third sets of three characters represent the access permissions of the group the file is associated
with and of other users. An s in the third position of the second set of characters indicates that the file has setgid permission with
execute permission, and an S indicates setgid without execute permission.

The last character is t if the sticky bit (page 903) is set with execute permission and T if it is set without execute permission. Refer to
chmod on page 604 for information on changing access permissions.

Figure 4-12 on page 92 illustrates the columns described in the following paragraphs.

The second column indicates the number of hard links to the file. Refer to page 96 for more information on links.

The third and fourth columns display the name of the owner of the file and the name of the group the file is associated with.

The fifth column indicates the size of the file in bytes or, if information about a device file is being displayed, the major and minor
device numbers. In the case of a directory, this number is the size of the directory file, not the size of the files that are entries within the
directory. (Use du to display the sum of the sizes of all files in a directory.) Use the –h option to display the size of files in kilobytes,
megabytes, or gigabytes.

The last two columns display the date and time the file was last modified and the filename, respectively.

Notes

Refer to page 127 for examples of using ls with ambiguous file references.

With the ––color option ls displays filenames of various types of files in different colors. By default executable files are green,
directory files are blue, symbolic links are cyan, archives and compressed files are red, and ordinary text files are black. The manner in
which ls colors the various file types is specified in the /etc/DIR_COLORS file. If this file does not exist on the local system, ls will
not color filenames. You can modify /etc/DIR_COLORS to alter the default color/filetype mappings on a systemwide basis. For your
personal use, you can copy /etc/DIR_COLORS to the ~/.dir_colors file in your home directory and modify it. For your login,
~/.dir_colors overrides the systemwide colors established in /etc/DIR_COLORS. Refer to the dir_colors and dircolors man pages
for more information.

Examples

The first command line shows the ls utility with the –x option, which sorts the files horizontally. The ls utility displays an
alphabetical list of the names of the files in the working directory:

$ ls -x

bin c calendar

execute letters shell

The –F option appends a slash (/) to files that are directories, an asterisk to files that are executable, and an at sign (@) after symbolic
links:

$ ls -Fx

bin/ c/ calendar

execute* letters/ shell@

Next the –l (long) option displays a long list. The files are still in alphabetical order:

$ ls -l

total 8

drwxrwxr-x 2 jenny pubs 80 May 20 09:17 bin

drwxrwxr-x 2 jenny pubs 144 Mar 26 11:59 c

-rw-rw-r-- 1 jenny pubs 104 May 28 11:44 calendar

-rwxrw-r-- 1 jenny pubs 85 May 6 08:27 execute

drwxrwxr-x 2 jenny pubs 32 Oct 6 22:56 letters

drwxrwxr-x 16 jenny pubs 1296 Jun 6 17:33 shell

The –a (all) option lists all files, including invisible ones:

$ ls -a

. .profile c execute shell

.. bin calendar letters

Combining the –a and –l options displays a long listing of all files, including invisible files, in the working directory. This list is still in
alphabetical order:

$ ls -al

total 12

drwxrwxr-x 6 jenny pubs 480 Jun 6 17:42 .

drwxrwx--- 26 root root 816 Jun 6 14:45 ..

-rw-rw-r-- 1 jenny pubs 161 Jun 6 17:15 .profile

drwxrwxr-x 2 jenny pubs 80 May 20 09:17 bin

drwxrwxr-x 2 jenny pubs 144 Mar 26 11:59 c

-rw-rw-r-- 1 jenny pubs 104 May 28 11:44 calendar

-rwxrw-r-- 1 jenny pubs 85 May 6 08:27 execute

drwxrwxr-x 2 jenny pubs 32 Oct 6 22:56 letters

drwxrwxr-x 16 jenny pubs 1296 Jun 6 17:33 shell

When you add the –r (reverse) option to the command line, ls produces a list in reverse alphabetical order:

$ ls -ral

total 12

drwxrwxr-x 16 jenny pubs 1296 Jun 6 17:33 shell

drwxrwxr-x 2 jenny pubs 32 Oct 6 22:56 letters

-rwxrw-r-- 1 jenny pubs 85 May 6 08:27 execute

-rw-rw-r-- 1 jenny pubs 104 May 28 11:44 calendar

drwxrwxr-x 2 jenny pubs 144 Mar 26 11:59 c

drwxrwxr-x 2 jenny pubs 80 May 20 09:17 bin

-rw-rw-r-- 1 jenny pubs 161 Jun 6 17:15 .profile

drwxrwx--- 26 root root 816 Jun 6 14:45 ..

drwxrwxr-x 6 jenny pubs 480 Jun 6 17:42 .

Use the –t and –l options to list files so that the most recently modified file appears at the top of the list:

$ ls -tl

total 8

drwxrwxr-x 16 jenny pubs 1296 Jun 6 17:33 shell

-rw-rw-r-- 1 jenny pubs 104 May 28 11:44 calendar

drwxrwxr-x 2 jenny pubs 80 May 20 09:17 bin

-rwxrw-r-- 1 jenny pubs 85 May 6 08:27 execute

drwxrwxr-x 2 jenny pubs 144 Mar 26 11:59 c

drwxrwxr-x 2 jenny pubs 32 Oct 6 22:56 letters

Together the –r and –t options cause the file you modified least recently to appear at the top of the list.

$ ls -trl

total 8

drwxrwxr-x 2 jenny pubs 32 Oct 6 22:56 letters

drwxrwxr-x 2 jenny pubs 144 Mar 26 11:59 c

-rwxrw-r-- 1 jenny pubs 85 May 6 08:27 execute

drwxrwxr-x 2 jenny pubs 80 May 20 09:17 bin

-rw-rw-r-- 1 jenny pubs 104 May 28 11:44 calendar

drwxrwxr-x 16 jenny pubs 1296 Jun 6 17:33 shell

The next example shows ls with a directory filename as an argument. The ls utility lists the contents of the directory in alphabetical

order:

$ ls bin

c e lsdir

To display information about the directory file itself, use the –d (directory) option. This option lists information only about the
directory:

$ ls -dl bin

drwxrwxr-x 2 jenny pubs 80 May 20 09:17 bin

You can use the following command to display a list of all invisible filenames (those starting with a period) in your home directory.
This is a convenient way to list the initialization files in your home directory:

$ ls -d ~/.*

/home/sam/. /home/sam/.gtkrc-kde

/home/sam/.. /home/sam/.history

...

make: Keeps a set of programs current

make [options] [target-files] [arguments]

The GNU make utility keeps a set of executable programs current, based on differences in the modification times of the programs and
the source files that each program is dependent on.

Arguments

The target-files refer to targets on dependency lines in the makefile. When you do not specify a target-file , make updates the target on
the first dependency line in the makefile. Command line arguments of the form name=value set the variable name to value inside the
makefile. See "Discussion" for more information.

Options

If you do not use the –f option, make takes its input from a file named GNUmakefile, makefile, or Makefile (in that order) in the
working directory. In this section, this input file is referred to as makefile. Many users prefer to use the name Makefile because it
shows up earlier in directory listings.

–C directory

 Changes directories to directory before starting.

–d (debug) Displays information about how make decides what to do.

– f file

 (input file) Uses file as input instead of makefile.

–j n

 (jobs) Runs up to n commands at the same time instead of the default of one
command. Running multiple commands simultaneously is especially
effective if you are running Linux on a multiprocessor system. If you omit n,
make does not limit the number of simultaneous jobs.

–k Continues with the next file from the list of target-files instead of quitting
when a construction command fails.

– n (no execution) Displays, but does not execute, the commands that make
would execute to bring the target-files up-to-date.

–s (silent) Does not display the names of the commands being executed.

–t (touch) Updates the modification times of target files but does not execute
any construction commands (page 403). Refer to touch on page 801.

Discussion

The make utility bases its actions on the modification times of the programs and the source files that each program is dependent on.
Each of the executable programs, or target-files , is dependent on one or more prerequisite files. The relationships between target-files
and prerequisites are specified on dependency lines in a makefile. Construction commands follow the dependency line, specifying how
make can update the target-files .

Documentation

Refer to page 399 for more information about make and makefiles. For additional information refer to
www.gnu.org/software/make/manual/make.html and to the make info page.

Although the most common use of make is to build programs from source code, this general-purpose build utility is suitable for a wide
range of applications. Anywhere you can define a set of dependencies to get from one state to another represents an ideal candidate for
using make.

Much of make's power derives from the features you can set up in a makefile. For example, you can define variables using the same
syntax found in the Bourne Again Shell. Always define the variable SHELL in a makefile; set it to the pathname of the shell you want
to use when running construction commands. To define the variable and assign it a value, place the following line near the top of a

makefile:

SHELL=/bin/sh

Assigning the value /bin/sh to SHELL allows you to use a makefile on other computer systems. On Linux systems /bin/sh is
generally linked to /bin/bash. The make utility uses the value of the environment variable SHELL if you do not set SHELL in a
makefile. If SHELL does not hold the path of the shell you intended to use and if you do not set SHELL in a makefile, the
construction commands may fail.

Following is a list of additional features associated with make:

You can run specific construction commands silently by preceding them with an @ sign. For example, the following lines will
display a short help message when you run the command make help:

help:

 @echo "You can make the following:"

 @echo " "

 @echo "libbuf.a -- the buffer library"

 @echo "Bufdisplay -- display any-format buffer"

 @echo "Buf2ppm -- convert buffer to pixmap"

Without the @ signs in the preceding example, make would display each of the echo commands before executing it. This way of
displaying a message works because no file is named help in the working directory. As a result make runs the construction
commands in an attempt to build this file. Because the construction commands display messages but do not build the file help,
you can run make help repeatedly with the same result.

You can cause make to ignore the exit status of a command by preceding the command with a hyphen (–). For example, the
following line allows make to continue regardless of whether the call to /bin/rm is successful (the call to /bin/rm fails if libbuf.a
does not exist):

-/bin/rm libbuf.a

You can use special variables to refer to information that might change from one use of make to the next. Such information might
include the files that need updating, the files that are newer than the target, or the files that match a pattern. For example, you can
use the variable $? in a construction command to identify all prerequisite files that are newer than the target file. This variable
allows you to print any files that have changed since the last time you printed files out:

list: .list

.list: Makefile buf.h xtbuff_ad.h buff.c buf_print.c xtbuff.c

pr $? | lpr

date >.list

The target list depends on the source files that might be printed. The construction command pr $? | lpr prints only those source
files that are newer than the file .list . The line date > .list modifies the .list file so that it is newer than any of the source files.
The next time you run the command make list, only the files that have been changed are printed.

You can include other makefiles as if they were part of the current makefile. The following line causes make to read Make.config
and treat the contents of that file as though it were part of the current makefile, allowing you to put information common to more
than one makefile in a single place:

include Make.config

Notes

The section "make: Keeps a Set of Programs Current" on page 399 provides more information about make.

Examples

The first example causes make to bring the target-file named analysis up-to-date by issuing three cc commands. It uses a makefile
named GNUmakefile, makefile, or Makefile in the working directory.

$ make analysis

cc - c analy.c

cc - c stats.c

cc - o analysis analy.o stats.o

The following example also updates analysis but uses a makefile named analysis.mk in the working directory:

$ make -f analysis.mk analysis

'analysis' is up to date.

The next example lists the commands make would execute to bring the target-file named credit up-to-date. Because of the –n (no-

execution) option, make does not execute the commands.

$ make -n credit

cc - c - O credit.c

cc - c - O accounts.c

cc - c - O terms.c

cc - o credit credit.c accounts.c terms.c

The next example uses the –t option to update the modification time of the target-file named credit. After you use this option, make
thinks that credit is up-to-date.

$ make -t credit

$ make credit

'credit' is up to date.

Next is a simple makefile for building a utility named ff. Because the cc command needed to build ff is complex, using a makefile
allows you to rebuild ff easily, without having to remember and retype the cc command.

$ cat Makefile

Build the ff command from the fastfind.c source

SHELL=/bin/sh

ff:

cc -traditional -O2 -g -DBIG=5120 -o ff fastfind.c myClib.a

$ make ff

cc -traditional -O2 -g -DBIG=5120 -o ff fastfind.c myClib.a

The following example shows a much more sophisticated makefile that uses features not discussed in this section. Refer to the sources
cited under "Documentation" on page 716 for information about these and other advanced features.

$ cat Makefile

###

build and maintain the buffer library

###

SHELL=/bin/sh

###

Flags and libraries for compiling. The XLDLIBS are needed

whenever you build a program using the library. The CCFLAGS

give maximum optimization.

CC=gcc

CCFLAGS=-O2 $(CFLAGS)

XLDLIBS= -lXaw3d -lXt -lXmu -lXext -lX11 -lm

BUFLIB=libbuf.a

###

Miscellaneous

INCLUDES=buf.h

XINCLUDES=xtbuff_ad.h

OBJS=buff.o buf_print.o xtbuff.o

###

Just a 'make' generates a help message

help: Help

 @echo "You can make the following:"

 @echo " "

 @echo " libbuf.a -- the buffer library"

 @echo " bufdisplay -- display any-format buffer"

 @echo " buf2ppm -- convert buffer to pixmap"

###

The main target is the library

libbuf.a: $(OBJS)

 -/bin/rm libbuf.a

 ar rv libbuf.a $(OBJS)

 ranlib libbuf.a

###

Secondary targets -- utilities built from the library

bufdisplay: bufdisplay.c libbuf.a

 $(CC) $(CCFLAGS) bufdisplay.c -o bufdisplay $(BUFLIB) $(XLDLIBS)

buf2ppm: buf2ppm.c libbuf.a

 $(CC) $(CCFLAGS) buf2ppm.c -o buf2ppm $(BUFLIB)

###

Build the individual object units

buff.o:$(INCLUDES) buff.c

 $(CC) -c $(CCFLAGS) buff.c

buf_print.o:$(INCLUDES) buf_print.c

 $(CC) -c $(CCFLAGS) buf_print.c

xtbuff.o: $(INCLUDES) $(XINCLUDES) xtbuff.c

 $(CC) -c $(CCFLAGS) xtbuff.c

The make utility can be used for tasks other than compiling code. As a final example, assume that you have a database that lists IP
addresses and the corresponding hostnames in two columns and that the database dumps these values to a file named hosts.tab. You
need to extract only the hostnames from this file and generate a Web page named hosts.html containing these names. The following
makefile is a simple report writer:

$ cat makefile

#

SHELL=/bin/bash

#

hosts.html: hosts.tab

 @echo "<HTML><BODY>" > hosts.html

 @awk '{print $$2, "
"}' hosts.tab >> hosts.html

 @echo "</BODY></HTML>" >> hosts.html

man: Displays documentation for commands

man [options] [section] command

man –k keyword

The man utility provides online documentation for Linux commands. In addition to user commands, documentation is available for
many other commands and details that relate to Linux. Because many Linux commands come from GNU, the GNU info utility (page
32) frequently provides more complete information.

A one-line header is associated with each manual page. This header consists of a command name, the section of the manual in which
the command is found, and a brief description of what the command does. These headers are stored in a database so that you can
perform quick searches on keywords associated with each man page.

Arguments

The section argument tells man to limit its search to the specified section of the manual (see page 30 for a listing of manual sections).
Without this argument man searches the sections in numerical order and displays the first man page it finds. In the second form of the
man command, the –k option searches for the keyword in the database of man page headers; man displays a list of headers that contain
the keyword . A man –k command performs the same function as apropos (page 62).

Options

–a Displays man pages for all sections of the manual. Without this option man
displays only the first page it finds. Use this option when you are not sure which
section contains the information you are looking for.

–k keyword

 Displays manual page headers that contain the string keyword . You can scan this
list for commands of interest. This option is equivalent to the apropos command
(page 62).

–K keyword

 Searches for keyword in all man pages. This option can take a long time to run.

–M path

 Searches the directories in path for man pages, where path is a colon-separated
list of directories.

–t Formats the page for printing on a PostScript printer. The output goes to
standard output.

Discussion

The manual pages are organized in sections, each pertaining to a separate aspect of the Linux system. Section 1 contains user-callable
commands and is the section most likely to be accessed by users who are not system administrators or programmers. Other sections of
the manual describe system calls, library functions, and commands used by system administrators. See page 30 for a listing of the
manual sections.

Pager

The man utility uses less to display manual pages that fill more than one screen. To change to another pager, set the environment
variable PAGER to the pathname of the pager you want to use. For example, adding the following line to the ~/.bash_profile file
allows a bash user to use more instead of less:

export PAGER=/bin/more

MANPATH

You can tell man where to look for man pages by setting the environment variable MANPATH to a colon-separated list of directories.
For example, bash users can add the following line to ~/.bash_profile to cause man to search the /usr/man, /usr/local/man, and
/usr/X11R6/man directories:

export MANPATH=/usr/man:/usr/local/man:/usr/X11R6/man

You can edit /etc/man.config to further configure man. Refer to the man man page for more information.

Notes

The argument to man is not always a command name. For example, the command man ascii lists the ASCII characters and their
various representations; the command man –k postscript lists man pages that pertain to PostScript.

The man pages are commonly stored in unformatted, compressed form. When you request a man page, it has to be decompressed and
formatted before being displayed. To speed up subsequent requests for that man page, man attempts to save the formatted version of the
page.

Some utilities described in the manual pages have the same name as shell builtin commands. The behavior of the shell builtin may
differ slightly from the behavior of the utility as described in the manual page.

Examples

The following example uses man to display the documentation for the command write, which sends messages to another user's
terminal:

$ man write

WRITE(1) Linux Programmer's Manual WRITE(1)

NAME

 write - send a message to another user

SYNOPSIS

 write user [ttyname]

DESCRIPTION

 Write allows you to communicate with other users, by copy-

 ing lines from your terminal to theirs.

 When you run the write command, the user you are writing

...

The next example displays the man page for another command—the man command itself, a good starting place for someone learning
about the system:

$ man man

man(1) man(1)

NAME

 man - format and display the online manual pages

 manpath - determine users search path for man pages

SYNOPSIS

 man [-acdfFhkKtwW] [--path] [-m system] [-p string] [-C

 config_file] [-M pathlist] [-P pager] [-S section_list]

 [section] name ...

DESCRIPTION

 man formats and displays the online manual pages. If you

 specify section, man only looks in that section of the

...

The next example shows how you can use the man utility to find the man pages that pertain to a certain topic. In this case man –k
displays man page headers containing the string latex. The apropos utility (a shell script stored in /usr/bin/apropos) functions
similarly to man –k.

$ man -k latex

Pod::LaTeX (3pm) - Convert Pod data to formatted Latex

einitex [elatex] (1) - extended TeX

elatex [latex] (1) - structured text formatting and typesetting

etex [elatex] (1) - extended TeX

evirtex [elatex] (1) - extended TeX

lambda [latex] (1) - structured text formatting and typesetting

latex (1) - structured text formatting and typesetting

...

The search for the keyword entered with the –k option is not case sensitive. Although the keyword entered on the command line is all
lowercase, it matches the first header, which contains the string LaTeX (uppercase and lowercase). The 3pm on the first line indicates
that the man page is from Section 3 (Subroutines) of the Linux System Manual and comes from the Perl Programmers Reference
Guide (it is a Perl subroutine; see www.perl.org for more information on the Perl programming language).

mkdir: Creates a directory

mkdir [option] directory-list

The mkdir utility creates one or more directories.

Arguments

The directory-list is a list of one or more pathnames of directories that mkdir creates.

Options

Accepts the common options described on page 587.

––mode=mode –m mode

 Sets the permission to mode . You can represent the mode
absolutely by using an octal number (page 605) or
symbolically (see Table V-4 on page 604).

––parents –p Creates any directories that do not exist in the path to the
directory you wish to create.

––verbose –v Displays the name of each directory created. This option is
helpful when used with the ––parents option.

Notes

You must have permission to write to and search (execute permission) the parent directory of the directory you are creating. The mkdir
utility creates directories that contain the standard invisible entries (. and . .).

Examples

The following command creates the accounts directory as a subdirectory of the working directory and the prospective directory as a
subdirectory of accounts:

$ mkdir --parents accounts/prospective

Without changing working directories, the same user creates another subdirectory within the accounts directory:

$ mkdir accounts/existing

Next the user changes the working directory to the accounts directory and creates one more subdirectory:

$ cd accounts

$ mkdir closed

The last example shows the user creating another subdirectory. This time the ––mode option removes all access permissions for group
and others:

$ mkdir --mode go= accounts/past_due

mkfs: Creates a filesystem on a device

mkfs [options] device

The mkfs utility creates a filesystem on a device such as a floppy diskette or a partition of a hard disk. It acts as a front end for
programs that create filesystems, each specific to a filesystem type.

caution: mkfs destroys all data on a device

Be careful when using mkfs, as it destroys all data on a device.

Arguments

The device is the name of the device that you want to create the filesystem on. If the device name is in /etc/fstab, you can use the
mount point of the device instead of the device name.

Options

When you run mkfs, you can specify both global options and options specific to the filesystem type that mkfs is creating (for example,
ext2, ext3, msdos, reiserfs). Global options must precede type-specific options.

Global Options

–t fstype

 (type) The fstype is the type of filesystem you want to create—for example,
ext2, ext3, msdos, or reiserfs. The default filesystem varies between Linux
distributions.

–V (verbose) Displays more output, including file-specific information.

Filesystem Type-Specific Options

The following options apply to many common filesystem types, including ext2 and ext3. The following command lists the filesystem
creation utilities available on the local system:

$ ls /sbin/mkfs.*

/sbin/mkfs.cramfs /sbin/mkfs.ext3 /sbin/mkfs.vfat

/sbin/mkfs.ext2 /sbin/mkfs.msdos

There is frequently a link to /sbin/mkfs.ext2 at /sbin/mke2fs. Review the man page or give the pathname of the filesystem creation
utility to determine which options the utility accepts.

$ /sbin/mkfs.ext3

Usage: mkfs.ext3 [-c|-t|-l filename] [-b block-size] [-f fragment-size]

 [-i bytes-per-inode] [-j] [-J journal-options] [-N number-of-inodes]

 [-m reserved-blocks-percentage] [-o creator-os] [-g blocks-per-group]

 [-L volume-label] [-M last-mounted-directory] [-O feature[,...]]

 [-r fs-revision] [-R options] [-qvSV] device [blocks-count]

–b size

 (block) Specifies the size of blocks in bytes. On ext2 and ext3 filesystems
valid block sizes are 1,024, 2,048, and 4,096 bytes.

–c (check) Checks for bad blocks on the device before creating a filesystem.
Specify this option twice to perform a slow, destructive, read-write test.

Discussion

Before you can write to and read from a hard disk or floppy diskette in the usual fashion, there must be a filesystem on it. Typically a
hard disk is divided into partitions (page 892), each with a separate filesystem. A floppy diskette normally holds a single filesystem.
Refer to Chapter 4 for more information on filesystems.

Notes

You can use tune2fs (page 808) with the – j option to change an existing ext2 filesystem into a journaling filesystem (page 883) of

type ext3. (See "Examples.") You can also use tune2fs to change how often fsck (page 666) checks a filesystem.

mkfs is a front end

Much like fsck, mkfs is a front end that calls other utilities to handle various types of filesystems. For example, mkfs calls mke2fs
(which is typically linked to mkfs.ext2 and mkfs.ext3) to create the widely used ext2 and ext3 filesystems. Refer to the mke2fs man
page for more information. Other utilities that mkfs calls are typically named mkfs.type , where type is the filesystem type. By splitting
mkfs in this manner, filesystem developers can provide programs to create their filesystems without affecting the development of other
filesystems or changing how system administrators use mkfs.

Examples

In the following example, mkfs creates a filesystem on the device at /dev/hda8. In this case the default filesystem type is ext2.

/sbin/mkfs /dev/hda8

mke2fs 1.35 (28-Feb-2004)

max_blocks 1309867008, rsv_groups = 39974, rsv_gdb = 312

Filesystem label=

OS type: Linux

Block size=4096 (log=2)

Fragment size=4096 (log=2)

640000 inodes, 1279167 blocks

63958 blocks (5.00%) reserved for the super user

First data block=0

Maximum filesystem blocks=1312817152

40 block groups

32768 blocks per group, 32768 fragments per group

16000 inodes per group

Superblock backups stored on blocks:

32768, 98304, 163840, 229376, 294912, 819200, 884736

Writing inode tables: 0/40...39/40...done

inode.i_blocks = 19976, i_size = 4243456

Writing superblocks and filesystem accounting information: done

This filesystem will be automatically checked every 23 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Next the administrator uses tune2fs to convert the ext2 filesystem to an ext3 journaling filesystem:

/sbin/tune2fs -j /dev/hda8

tune2fs 1.35 (28-Feb-2004)

Creating journal inode: done

This filesystem will be automatically checked every 23 mounts or

180 days, whichever comes first. Use tune2fs -c or -i to override.

Mtools: Uses DOS-style commands on files and directories

mcd [directory]

mcopy [options] file-list target

mdel file-list

mdir [–w] directory

mformat [options] device

mtype [options] file-list

These utilities mimic DOS commands and manipulate Linux files or DOS files. The mcopy utility provides an easy way to move files
between a Linux filesystem and a DOS disk. The default drive for all commands is /dev/fd0 or A:.

Utilities

Table V-18 lists some of the utilities in the Mtools collection.

Table V-18. The Mtools collection

Utility Function

mcd Changes the working directory on the DOS disk

mcopy Copies DOS files from one directory to another

mdel Deletes DOS files

mdir Lists contents of DOS directories

mformat Adds DOS formatting information to a disk

mtype Displays the contents of DOS files

Arguments

The directory , used with mcd and mdir, must be the name of a directory on a DOS disk. The file-list , used with mcopy and mtype, is a
SPACE-separated list of filenames. The target , used with mcopy, is the name of a regular file or a directory. If you give mcopy a file-list
with more than one filename, target must be the name of a directory. The device , used with mformat, is the DOS drive letter
containing the disk to be formatted (for example, A:).

Options

mcopy

–n Automatically replaces existing files without asking. Normally mcopy asks for
verification before overwriting a file.

–p (preserve) Preserves the attributes of files when they are copied.

–s (recursive) Copies directories and their contents recursively.

–t (text) Converts DOS text files for use on a Linux system, and vice versa. Lines
in DOS text files are terminated with the character pair RETURN-NEWLINE;
lines in Linux text files end in NEWLINE. This option removes the RETURN
character while copying from a DOS file and adds it when copying from a
Linux file.

mdir

–w (wide) Displays only filenames and fits as many as possible on each line. By
default mdir lists information about each file on a separate line, showing
filename, size, and creation time.

mformat

–f 1440

 Specifies a 1,440K 3.5-inch HD floppy diskette.

–f 2880

 Specifies a 2,880K 3.5-inch ED floppy diskette.

– v vol

 (label) Puts vol as the volume label on the newly formatted DOS disk.

mtype

–t (text) Similar to the –t option for mcopy, this option replaces each
RETURN-NEWLINE character pair in the DOS file with a single
NEWLINE character before displaying the file.

Discussion

Although these utilities mimic their DOS counterparts, they do not attempt to match those tools exactly. In most cases restrictions
imposed by DOS are removed. For example, the asterisk ambiguous file reference (*) matches all filenames (as it does under Linux),
including those filenames that DOS would require *.* to match.

Notes

In this discussion, the term DOS disk refers to either a DOS partition on a hard disk or a DOS floppy diskette.

You can download Mtools from the Mtools home page (mtools.linux.lu) or from rpmfind.net.

If the local kernel is configured to support DOS filesystems, you can mount DOS disks on a Linux filesystem and manipulate the files
using Linux utilities. Although this feature is handy and reduces the need for Mtools, it may not be practical or efficient to mount and
unmount DOS filesystems each time you need to access a DOS file. These tasks can be time-consuming, and some systems are set up
so that regular users cannot mount and unmount filesystems.

Use caution when using Mtools. These utilities may not warn you if you are about to overwrite a file. Using explicit pathnames—not
ambiguous file references—reduces the chance of overwriting a file.

The most common uses of the Mtools utilities are to examine files on DOS floppy diskettes (mdir) and to copy files between a DOS
floppy diskette and the Linux filesystem (mcopy). You can identify DOS disks by using the usual DOS drive letters: A: for the first
floppy drive, C: for the first hard disk, and so on. You can separate filenames in paths by using either the Linux forward slash (/) or the
DOS backslash (\). You need to escape backslashes to prevent the shell from interpreting it before passing the pathname to the utility
you are using.

Each of the Mtools utilities returns an exit code of 0 on success, 1 on complete failure, and 2 on partial failure.

Examples

In the first example, mdir displays the contents of a DOS floppy diskette in /dev/fd0:

$ mdir

 Volume in drive A is DOS UTY

 Directory for A:/

ACAD LIF 419370 5-10-05 1:29p

CADVANCE LIF 40560 2-08-04 10:36a

CHIPTST EXE 2209 4-26-05 4:22p

DISK ID 31 12-27-05 4:49p

GENERIC LIF 20983 2-08-04 10:37a

INSTALL COM 896 7-05-05 10:23a

INSTALL DAT 45277 12-27-05 4:49p

KDINSTAL EXE 110529 8-13-05 10:50a

LOTUS LIF 44099 1-18-05 3:36p

PCAD LIF 17846 5-01-05 3:46p

READID EXE 17261 5-07-05 8:26a

README TXT 9851 4-30-05 10:32a

UTILITY LIF 51069 5-05-05 9:13a

WORD LIF 16817 7-01-05 9:58a

WP LIF 57992 8-29-05 4:22p

 15 File(s) 599040 bytes free

The next example uses mcopy to copy the *.TXT files from the DOS floppy diskette to the working directory on the Linux filesystem.
Because only one file has the extension .TXT, only one file is copied. Because .TXT files are usually text files under DOS, the –t
option strips off the unnecessary RETURN characters at the end of each line. The ambiguous file reference * is escaped on the
command line to prevent the shell from attempting to expand it before passing the argument to mcopy. The mcopy utility locates the file
README.TXT when given the pattern *.txt because DOS does not differentiate between uppercase and lowercase letters in
filenames.

$ mcopy -t a:*.txt .

Copying README.TXT

Finally, the DOS floppy diskette is reformatted using mformat, wiping all data from the diskette. If the diskette has not been low-level
formatted, you need to use fdformat before giving the following commands:

$ mformat a:

A check with mdir shows the floppy diskette is empty after formatting:

$ mdir a:

 Volume in drive A has no label

 Directory for A:/

File "*" not found

mv: Renames or moves a file

mv [options] existing-file new-filename

mv [options] existing-file-list directory

mv [options] existing-directory new-directory

The mv utility, which renames or moves one or more files, has three formats. The first renames a single file with a new filename that
you supply. The second renames one or more files so that they appear in a specified directory. The third renames a directory. The mv
utility physically moves the file if it is not possible to rename it (that is, if you move the file from one filesystem to another).

Arguments

In the first form, the existing-file is a pathname that specifies the ordinary file that you want to rename. The new-filename is the new
pathname of the file.

In the second form, the existing-file-list is a list of the pathnames of the files that you want to rename and the directory specifies the
new parent directory for the files. The files you rename will have the same simple filenames as each of the files in the existing-file-list
but new absolute pathnames.

The third form renames the existing-directory with the new-directory name. This form works only when the new-directory does not
already exist.

Options

Accepts the common options described on page 587.

––backup –b Makes a backup copy (by appending ~ to the filename) of any
file that would be overwritten.

––force –f Causes mv not to prompt you if a move would overwrite an
existing file that you do not have write permission for. You
must have write permission for the directory holding the target
file.

––interactive –i Prompts you for confirmation if mv would overwrite a file. If
your response begins with a y or Y, mv overwrites the file;
otherwise, mv does not move the file.

––update –u If a move would overwrite an existing file, not a directory, this
option causes mv to compare the modification times of the
source and target files. If the target file has a more recent
modification time (the target is newer than the source), mv does
not replace it.

––verbose –v Lists files as they are moved.

Notes

GNU mv is implemented as cp (with the –a option) and rm. When you execute the mv utility, it first copies the existing-file to the new-
file. It then deletes the existing-file . If the new-file already exists, mv may delete it before copying.

As with rm, you must have write and execute access permission to the parent directory of the existing-file , but you do not need read or
write access permission to the file itself. If the move would overwrite a file that you do not have write permission for, mv displays the
file's access permissions and waits for a response. If you enter y or Y, mv overwrites the file; otherwise, it does not move the file. If you
use the –f option, mv does not prompt you for a response but simply overwrites the file.

Although earlier versions of mv could move only ordinary files between filesystems, mv can now move any type of file, including
directories and device files.

Examples

The first command renames letter, a file in the working directory, as letter.1201:

$ mv letter letter.1201

The next command renames the file so that it appears, with the same simple filename, in the user's ~/archives directory:

$ mv letter.1201 ~/archives

The following command moves all files in the working directory whose names begin with memo so they appear in the /p04/backup
directory:

$ mv memo* /p04/backup

Using the –u option prevents mv from replacing a newer file with an older one. After the mv –u command shown below, the newer
file, memo2, has not been overwritten. The mv command without the –u option overwrites the newer file (memo2's modification time
and size have changed to those of memo1).

$ ls -l

-rw-rw-r-- 1 sam sam 22 Mar 25 23:34 memo1

-rw-rw-r-- 1 sam sam 19 Mar 25 23:40 memo2

$ mv -u memo1 memo2

$ ls -l

-rw-rw-r-- 1 sam sam 22 Mar 25 23:34 memo1

-rw-rw-r-- 1 sam sam 19 Mar 25 23:40 memo2

$ mv memo1 memo2

$ ls -l

-rw-rw-r-- 1 sam sam 22 Mar 25 23:34 memo2

nice: Changes the priority of a command

nice [option] [command-line]

The nice utility reports the priority of the shell or alters the priority of a command. An ordinary user can decrease the priority of a
command. Only Superuser can increase the priority of a command. The TC Shell has a nice builtin that has a different syntax. Refer to
"Notes" for more information.

Arguments

The command-line is the command line you want to execute at a different priority. Without any options or arguments, nice displays
the priority of the shell running nice.

Options

Without an option, nice defaults to an adjustment of 10, lowering the priority of the command by 10—typically from 0 to 10. As you
raise the priority value, the command runs at a lower priority.

––adjustment=value

–n value

 Changes the priority by the increment (or decrement) specified by value . The
range of priorities is from –20 (the highest priority) to 19 (the lowest priority).
A positive value lowers the priority, whereas a negative value raises the
priority. Only Superuser can specify a negative value . When you specify a
value outside this range, the priority is set to the limit of the range.

Notes

You can use top's r command (page 799) to change the priority of a running process.

Higher (more positive) priority values mean that the kernel schedules a job less often. Lower (more negative) values cause the job to
be scheduled more often.

When Superuser schedules a job to run at the highest priority, this change can affect the performance of the system for all other jobs,
including the operating system itself. For this reason you should be careful when using nice with negative values.

The TC Shell has a nice builtin. Under tcsh, use the following syntax to change the priority at which command-line is run. The
default priority is 4. You must include the plus sign for positive values.

nice [±value] command line

Examples

The following command executes find in the background at the lowest possible priority. The ps –l command displays the nice value
of the command in the NI column:

nice -n 19 find / -name core -print > corefiles.out &

[1] 2610

ps -l

 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

100 S 0 1099 1097 0 75 0 - 605 wait4 pts/0 00:00:00 bash

100 R 0 2610 1099 0 99 19 - 634 - pts/0 00:00:03 find

100 R 0 2611 1099 0 76 0 - 747 - pts/0 00:00:00 ps

The next command finds very large files and runs at a high priority (–15):

nice -n -15 find / -size +50000k

nohup: Runs a command that keeps running after you log out

nohup command line

The nohup utility executes a command line such that the command keeps running after you log out. In other words, nohup causes a
process to ignore a SIGHUP signal. Depending on how the shell is configured, it may kill your background processes when you log
out. The TC Shell has a nohup builtin. Refer to "Notes" for more information.

Arguments

The command line is the command line you want to execute.

Notes

Accepts the common options described on page 587.

If you do not redirect the output from a command that you execute using nohup, both standard output and standard error are sent to the
file named nohup.out in the working directory. If you do not have write permission for the working directory, nohup sends output to
~/nohup.out.

Unlike the nohup utility, the TC Shell's nohup builtin does not send output to nohup.out. Background jobs started from tcsh continue
to run after you log out.

Examples

The following command executes find in the background, using nohup:

$ nohup find / -name core -print > corefiles.out &

[1] 14235

od: Dumps the contents of a file

od [options] [file-list]

The od (octal dump) utility dumps the contents of a file. The dump is useful for viewing executable (object) files and text files with
embedded nonprinting characters. This utility takes its input from the file you specify on the command line or from standard input.

Arguments

The file-list specifies the pathnames of the files that od displays. When you do not specify a file-list , od reads from standard input.

Options

Accepts the common options described on page 587.

––address–radix=base

 –A base

 Specifies the base used when displaying the offsets shown for
positions in the file. By default offsets are given in octal.
Possible values for base are d (decimal), o (octal), x
(hexadecimal), and n (no offsets printed).

––skip-bytes=n –j n

 Skips n bytes before displaying data.

––read-bytes=n –N n

 Reads a maximum of n bytes and quits.

––strings=n –s n

 Outputs from the file only those bytes that contain runs of n
or more printable ASCII characters that are terminated by a
NULL byte. The default value for n is 3.

––format=type[n]

 –t type[n]

 Specifies the output format to use when displaying data from
a file. You can repeat this option with different format types
to see the file in several different formats. Table V-19 lists the
possible values for type .

 By default od dumps a file as 2-byte octal numbers. You can
specify the number of bytes od uses to compose each number
by specifying a length indicator, n. You can specify a length
indicator for all types except a and c. Table V-21 lists the
possible values of n.

Table V-19. Output formats

type Type of output

a Named character. Displays nonprinting control characters using their
official ASCII names. For example, FORMFEED is displayed as ff.

c ASCII character. Displays nonprinting control characters as
backslash escape sequences (Table V-20) or three-digit octal
numbers.

d Signed decimal.

f Floating point.

o Octal (default).

u Unsigned decimal.

x Hexadecimal.

Table V-21. Length indicators

n Number of bytes to use

Integers (types d, o, u, and x)

C (character) Uses single characters for each decimal value

S (short integer) Uses 2 bytes

I (integer) Uses 4 bytes

L (long) Uses 4 bytes on 32-bit machines and 8 bytes on 64-bit
machines

Floating point (type f)

F (float) Uses 4 bytes

D (double) Uses 8 bytes

L (long double) Typically uses 8 bytes

Table V-20. Output format type c backslash escape sequences

Sequence Meaning

\0 NULL

\a BELL

\b BACKSPACE

\f FORMFEED

\n NEWLINE

\r RETURN

\t HORIZONTAL TAB

\v VERTICAL TAB

Notes

To retain backward compatibility with older, non-POSIX versions of od, the od utility includes the options listed in Table V-22 as
shorthand versions of many of the preceding options.

Table V-22. Shorthand format specifications

Shorthand Equivalent specification

–a –t a

–b –t oC

– c –t c

– d –t u2

–f –t fF

–h –t x2

–i –t d2

– l –t d4

– o –t o2

–x –t x2

Examples

The file ac, used in the following examples, contains all the ASCII characters. In the first example, the bytes in this file are displayed
as named characters. The first column shows the offset of each byte from the start of the file. The offsets are given as octal values.

$ od -t a ac

0000000 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si

0000020 dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us

0000040 sp ! " # $ % & ' () * + , - . /

0000060 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0000100 @ A B C D E F G H I J K L M N O

0000120 P Q R S T U V W X Y Z [\] ^ _

0000140 ` a b c d e f g h i j k l m n o

0000160 p q r s t u v w x y z { | } ~ del

0000200 nul soh stx etx eot enq ack bel bs ht nl vt ff cr so si

0000220 dle dc1 dc2 dc3 dc4 nak syn etb can em sub esc fs gs rs us

0000240 sp ! " # $ % & ' () * + , - . /

0000260 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0000300 @ A B C D E F G H I J K L M N O

0000320 P Q R S T U V W X Y Z [\] ^ _

0000340 ` a b c d e f g h i j k l m n o

0000360 p q r s t u v w x y z { | } ~ del

0000400 nl

0000401

In the next example, the bytes are displayed as octal numbers, ASCII characters, or printing characters preceded by a backslash (refer
to Table V-20 on page 738):

$ od -t c ac

0000000 \0 001 002 003 004 005 006 \a \b \t \n \v \f \r 016 017

0000020 020 021 022 023 024 025 026 027 030 031 032 033 034 035 036 037

0000040 ! " # $ % & ' () * + , - . /

0000060 0 1 2 3 4 5 6 7 8 9 : ; < = > ?

0000100 @ A B C D E F G H I J K L M N O

0000120 P Q R S T U V W X Y Z [\] ^ _

0000140 ` a b c d e f g h i j k l m n o

0000160 p q r s t u v w x y z { | } ~ 177

0000200 200 201 202 203 204 205 206 207 210 211 212 213 214 215 216 217

0000220 220 221 222 223 224 225 226 227 230 231 232 233 234 235 236 237

0000240 240 241 242 243 244 245 246 247 250 251 252 253 254 255 256 257

0000260 260 261 262 263 264 265 266 267 270 271 272 273 274 275 276 277

0000300 300 301 302 303 304 305 306 307 310 311 312 313 314 315 316 317

0000320 320 321 322 323 324 325 326 327 330 331 332 333 334 335 336 337

0000340 340 341 342 343 344 345 346 347 350 351 352 353 354 355 356 357

0000360 360 361 362 363 364 365 366 367 370 371 372 373 374 375 376 377

0000400 \n

0000401

The final example finds in the file /usr/bin/who all strings that are at least three characters long (the default) and terminated by a null
byte. See strings on page 777 for another way of displaying a similar list. The offset positions are given as decimal offsets instead of
octal offsets.

$ $ od -A d --strings /usr/bin/who

...

0015170 Joseph Arceneaux

0015187 Michael Stone

0015201 David MacKenzie

0015217 5.2.1

0015223 who

0015227 too many arguments

0015568 %-8.8s%s %-12s %-12s%s%s %-8s%s

0016840 Warning: -i will be removed in a future release; use -u instead

0016906 write error

0016918 %s: %s

0016925 literal

0016933 shell

0016939 shell-always

0016952 escape

0016959 clocale

0017708 Copyright (C) 2004 Free Software Foundation, Inc.

0018352 memory exhausted

...

paste: Joins corresponding lines from files

paste [option] [file-list]

The paste utility reads lines from the file-list and joins corresponding lines in its output. By default output lines are separated by a
TAB character.

Arguments

The file-list is a list of ordinary files. When you omit the file-list , paste reads from standard input.

Options

Accepts the common options described on page 587.

––delimiter=dlist

 – d dlist

 The dlist is a list of characters to be used to separate output fields. If
dlist contains a single character, paste uses that character instead of
the default TAB character to separate fields. If dlist contains more than
one character, the characters are used in turn to separate output lines
and are then reused from the beginning of the list as necessary.

––serial –s –Processes one file at a time; pastes horizontally. See "Examples."

Notes

A common use of paste is to rearrange the columns of a table. A utility, such as cut, can place the desired columns in separate files,
and then paste can join them in any order.

Examples

The following example uses the files fnames and acctinfo. These files can easily be created by using cut (page 627) and the
/etc/passwd file. The paste command puts the full-name field first, followed by the remaining user account information. A TAB
character separates the two output fields.

$ cat fnames

Jenny Chen

Alex Watson

Scott Adams

Helen Simpson

$ cat acctinfo

jenny:x:401:50:/home/jenny:/bin/zsh

alex:x:402:50:/home/alex:/bin/bash

scott:x:504:500:/home/scott:/bin/tcsh

hls:x:505:500:/home/hls:/bin/bash

$ paste fnames acctinfo

Jenny Chen jenny:x:401:50:/home/jenny:/bin/zsh

Alex Watson alex:x:402:50:/home/alex:/bin/bash

Scott Adams scott:x:504:500:/home/scott:/bin/tcsh

Helen Simpson hls:x:505:500:/home/hls:/bin/bash

The next examples use the files p1, p2, p3, and p4. The last example in this group uses the ––delimiter option to give paste a list of
characters to use to separate output fields:

$ cat p1

1

one

ONE

$ cat p2

2

two

TWO

extra

$ cat p3

3

three

THREE

$ cat p4

4

four

FOUR

$ paste p4 p3 p2 p1

4 3 2 1

four three two one

FOUR THREE TWO ONE

 extra

$ paste --delimiter="+-=" p3 p2 p1 p4

3+2-1=4

three+two-one=four

THREE+TWO-ONE=FOUR

+extra-=

The final example uses the ––serial option to paste the files one at a time:

$ paste --serial p1 p2 p3 p4

1 one ONE

2 two TWO extra

3 three THREE

4 four FOUR

pr: Paginates files for printing

pr [options] [file-list]

The pr utility breaks files into pages, usually in preparation for printing. Each page has a header with the name of the file, date, time,
and page number.

The pr utility takes its input from files you specify on the command line or from standard input. The output from pr goes to standard
output and is frequently redirected by a pipe to a printer.

Arguments

The file-list is a list of the pathnames of text files that you want pr to paginate. When you omit the file-list , pr reads from standard
input.

Options

Accepts the common options described on page 587.

You can embed options within the file-list . An embedded option affects only those files following it on the command line.

––show-control-chars

 –c Displays control characters with a caret (^; for example, ^H).
Displays other nonprinting characters as octal numbers preceded
by a backslash.

––columns=col –col

 Displays output in col columns with a default of one. This option
may truncate lines and cannot be used with the ––merge option.

––double-space –d Double-spaces the output.

––form-feed –f Uses a FORMFEED character to skip to the next page rather than
filling the current page with NEWLINE characters.

––header=head –h head

 Displays head at the top of each page instead of the filename. If
head contains SPACE s, you must enclose it within quotation
marks.

––length=lines –l lines

 Sets the page length to lines lines. The default is 66 lines.

––merge –m Displays all specified files simultaneously in multiple columns.
This option cannot be used with –columns.

––number-lines=[c[num]]

 –n [c[num]]

 Numbers the lines of output. The c is a
character that pr appends to the number to
separate it from the contents of the file (the
default is a TAB). The num specifies the
number of digits in each line number (the
default is 5).

––indent=spaces –o spaces

 Indents the output by spaces characters
(specifies the left margin).

––separator=c –s[c]

 Separates columns with the single character c
(defaults to TAB when you omit c). By default
pr uses TAB s as separation characters to align
columns unless you use the –w option, in
which case nothing separates columns.

––omit-header –t Causes pr not to display its five-line page
header and trailer. The header that pr normally
displays includes the name of the file, the date,
time, and page number. The trailer is five blank
lines.

––width=num –w num

 Sets the page width to num columns. This
option is effective only with multicolumn
output (the ––merge or ––columns option).

––firstpage[:lastpage]

+ firstpage [:lastpage]

 Output begins with the page numbered firstpage
and ends with lastpage . Without lastpage , pr
outputs through the last page of the document. The
short version of this option begins with a plus sign,
not a hyphen.

Notes

When you use the ––columns option to display the output in multiple columns, pr displays the same number of lines in each column
(with the possible exception of the last).

Examples

The first command shows pr paginating a file named memo and sending its output through a pipe to lpr for printing:

$ pr memo | lpr

Now memo is sent to the printer again, this time with a special heading at the top of each page. The job is run in the background.

$ pr -h 'MEMO RE: BOOK' memo | lpr &

[1] 4904

Next pr displays the memo file on the screen, without any header, starting with page 3:

$ pr -t +3 memo

...

ps: Displays process status

ps [options] [process-list]

The ps utility displays status information about processes running on the local system.

Arguments

The process-list is a comma- or SPACE-separated list of PID numbers. When you specify a process-list , ps reports on just the
processes in that list.

Options

The ps utility accepts three types of options, each preceded by a different prefix. You can intermix the options.

Two hyphens: GNU (long) options

One hyphen: UNIX98 (short) options

No hyphens: BSD options

 –A (all) Reports on all processes. Also –e.

 –e (everything) Reports on all processes. Also –A.

 –f (full) Displays a listing with more columns of information.

––forest Displays the process tree.

 –l (long) Produces a long listing showing more information
about each process. See the "Discussion" section for a
description of all the columns that this option displays.

––no-headers Omits the header. This option is useful if you are sending the
output to another program for further processing.

 –u (user-oriented) Adds to the display the username of the user
running the process, the time the process was started, the
percentage of CPU and memory the process is using, and
other information.

––User=username

 Reports on processes being run by username , which can be the
name or UID of a user on the local system.

–w (wide) Without this option ps truncates output lines at the right side
of the screen. This option extends the display so it wraps around one
more line, if needed.

Discussion

Without any options, ps displays the statuses of all active processes that your terminal/screen controls. Table V-23 lists the heading
and content of each of the four columns that ps displays.

Table V-23. Column headings I

Heading Meaning

PID The process identification number.

TTY (terminal) The name of the terminal that controls the process.

TIME The number of hours, minutes, and seconds the process
has been running.

CMD The command line the process was called with. The
command is truncated to fit on one line. Use the –w
option to see more of the command line.

The columns that ps displays depend on your choice of options. Table V-24 lists the headings and contents of the most common
columns.

Table V-24. Column headings II

The column titles differ, depending on the type of option you use. This table shows the
headings for UNIX98 (one-hyphen) options.

Heading Meaning

%CPU The percentage of total CPU time that the process is
using. Owing to the way that Linux handles process
accounting, this figure is approximate, and the total of
%CPU values for all processes may exceed 100%.

%MEM (memory) The percentage of RAM that the process is using.

COMMAND or CMD The command line the process was called with. The
command is truncated to fit on one line. Use the –w
option to see more of the command line. This column is
always displayed last on a line.

F (flags) The flags associated with the process.

PID The process identification number.

PPID (parent PID) The process identification number of the parent process.

PRI (priority) The priority of the process.

RSS (resident set size) The number of blocks of memory that the process is
using.

SIZE or SZ The size, in blocks, of the core image of the process.

STIME or START The date the process started.

STAT or S (status) The status of the process as specified by one or more
letters from the following list:

 < High priority

 D Sleeping and cannot be interrupted

 L Pages locked in memory (real-time and custom
I/O)

 N Low priority

 R Available for execution (in the run queue)

 S Sleeping

 T Either stopped or being traced

 W Has no pages resident in RAM

 X Dead

 Z Zombie process that is waiting for its child
processes to terminate before it terminates

TIME The number of minutes and seconds that the process has
been running.

TTY (terminal) The name of the terminal controlling the process.

USER or UID The username of the user who owns the process.

WCHAN (wait channel) If the process is waiting for an event, the address of the
kernel function that caused the process to wait. It is 0 for
processes that are not waiting or sleeping.

Notes

Use top (page 798) to display process status information dynamically.

Examples

The first example shows ps, without any options, displaying the user's active processes. The first process is the shell (bash), and the
second is the process executing the ps utility.

$ ps

 PID TTY TIME CMD

 2697 pts/0 00:00:02 bash

 3299 pts/0 00:00:00 ps

With the –l (long) option, ps displays more information about the processes:

$ ps -l

 F S UID PID PPID C PRI NI ADDR SZ WCHAN TTY TIME CMD

000 S 500 2697 2696 0 75 0 - 639 wait4 pts/0 00:00:02 bash

000 R 500 3300 2697 0 76 0 - 744 - pts/0 00:00:00 ps

The –u option shows various types of information about the processes, including how much of the local system CPU and memory each
one is using:

$ ps -u

USER PID %CPU %MEM VSZ RSS TTY STAT START TIME COMMAND

alex 2697 0.0 0.5 2556 1460 pts/0 S Jul31 0:02 -bash

alex 3303 0.0 0.2 2476 616 pts/0 R Jul31 0:00 ps -u

The ––forest option causes ps to display what the man page describes as an "ASCII art process tree." Processes that are children of
other processes appear indented under their parents, making the process hierarchy, or tree, easier to see.

$ ps -ef --forest

UID PID PPID C STIME TTY TIME CMD

root 1 0 0 Jul22 ? 00:00:03 init

root 2 1 0 Jul22 ? 00:00:00 [keventd]

...

root 785 1 0 Jul22 ? 00:00:00 /usr/sbin/apmd -p 10 -w 5 -W -P

root 839 1 0 Jul22 ? 00:00:01 /usr/sbin/sshd

root 3305 839 0 Aug01 ? 00:00:00 _ /usr/sbin/sshd

alex 3307 3305 0 Aug01 ? 00:00:00 _ /usr/sbin/sshd

alex 3308 3307 0 Aug01 pts/1 00:00:00 _ -bash

alex 3774 3308 0 Aug01 pts/1 00:00:00 _ ps -ef --forest

...

root 1040 1 0 Jul22 ? 00:00:00 login -- root

root 3351 1040 0 Aug01 tty2 00:00:00 _ -bash

root 3402 3351 0 Aug01 tty2 00:00:00 _ make modules

root 3416 3402 0 Aug01 tty2 00:00:00 _ make -C drivers CFLA

root 3764 3416 0 Aug01 tty2 00:00:00 _ make -C scsi mod

root 3773 3764 0 Aug01 tty2 00:00:00 _ ld -m elf_i3

ps and kill

The next sequence of commands shows how to use ps to determine the PID number of a process running in the background and how
to terminate that process by using the kill command. In this case it is not necessary to use ps because the shell displays the PID
number of the background processes. The ps utility verifies the PID number.

The first command executes find in the background. The shell displays the job and PID numbers of the process, followed by a prompt.

$ find ~ -name memo -print > memo.out &

[1] 3343

Next ps confirms the PID number of the background task. If you did not already know this number, using ps would be the only way to
find it out.

$ ps

 PID TTY TIME CMD

 3308 pts/1 00:00:00 bash

 3343 pts/1 00:00:00 find

 3344 pts/1 00:00:00 ps

Finally kill (page 693) terminates the process:

$ kill 3343

$ RETURN

[1]+ Terminated find ~ -name memo -print >memo.out

$

rcp: Copies one or more files to or from a remote system

rcp [options] source-file destination-file

rcp [options] source-file-list destination-directory

The rcp utility copies one or more ordinary files between two systems that can communicate over a network.

security: rcp is not secure

The rcp utility uses host-based trust, which is not secure, to authorize files to be copied. Use scp (page 758) when it is
available.

Arguments

The source-file, source-file-list , and destination-file are pathnames of the ordinary files, and the destination-directory is the pathname
of a directory file. A pathname that does not contain a colon (:) is the name of a file on the local system. A pathname of the form
name@host :path names a file on the remote system named host . The path is relative to the home directory of the user name (unless
path is an absolute pathname). When you omit the name@ portion of the destination, a relative pathname is relative to the home
directory on the host of the user giving the rcp command.

Like cp, rcp has two modes of operation: The first copies one file to another, and the second copies one or more files to a directory.
The source-file [-list] is a list of the name(s) of the file(s) that rcp will copy; destination-file is the name that rcp assigns to the
resulting copy of the file, or destination-directory is the name of the directory that rcp puts the copied files in. When rcp copies files
to a destination-directory , the files maintain their original simple filenames.

Options

–p (preserve) Sets the modification times and file access permissions of each
copy to match those of the source-file . When you do not use –p, rcp uses the
file-creation mask (umask; see page 810) on the remote system to modify the
access permissions.

–r (recursive) When a file in the source-file-list is a directory, copies the
contents of that directory and any subdirectories into the destination-
directory . You can use this option only when the destination is a directory.

Notes

You must have an account on the remote system to copy files to or from it using rcp. The rcp utility does not prompt for a password

but uses several alternative methods to verify that you have the authority to read or write files on the remote system.

One method requires that the name of the local system be specified in the /etc/hosts.equiv file on the remote system. If the name is
there, rcp allows you to copy files if your usernames are the same on both systems and your account on the remote system has the
necessary permissions to access files there.

Authorization can also be specified on a per-user basis. Using this method the remote user's home directory must contain a file named
~/.rhosts that lists trusted remote systems and users. With this method, your local and remote user names do not have to match but
your local username must appear on the line in the remote ~/.rhosts file that starts with the name of the local system. See "Examples"
for rlogin (page 752) for a sample .rhosts file.

If you use a wildcard (such as *) in a remote pathname, you must quote the wildcard character or pathname so that the wildcard is
interpreted by the shell on the remote system and not by the local shell. As with cp, if the destination-file exists before you execute
rcp, rcp overwrites the file.

Examples

The first example copies the files with filenames ending in .c into the archives directory on the remote system named bravo. Because
a username is not specified, rcp uses the local user's username on the remote system. Because the full pathname of the archives
directory is not specified, rcp assumes that it is a subdirectory of the user's home directory on bravo. Each of the copied files retains
its simple filename.

$ rcp *.c bravo:archives

The next example copies memo from the /home/jenny directory on bravo to the working directory on the local system:

$ rcp bravo:/home/jenny/memo .

Next rcp copies the files named memo.new and letter to Jenny's home directory on the remote system bravo. The absolute pathnames
of the copied files on bravo are /home/jenny/memo.new and /home/jenny/letter:

$ rcp memo.new letter bravo:/home/jenny

The final command copies all the files in Jenny's reports directory on bravo to the oldreports directory on the local system,
preserving the original modification dates and file access permissions on the copies:

$ rcp -p 'bravo:reports/*' oldreports

rlogin: Logs in on a remote system

rlogin [option] remote-system

The rlogin utility establishes a login session on a remote system over a network.

security: rlogin is not secure

The rlogin utility uses host-based trust, which is not secure, to authorize your login. Alternatively, it sends your password
over the network as cleartext, which is not a secure practice. Use ssh (page 773) when it is available.

Arguments

The remote-system is the name of a system that the local system can reach over a network.

Options

–l username (login) Logs you in on the remote system as the user specified by
username .

Notes

If the file named /etc/hosts.equiv located on the remote system specifies the name of the local system, the remote system will not
prompt you to enter your password. Systems that are listed in the /etc/hosts.equiv file are considered as secure as the local system.

An alternative way to specify a trusted relationship is on a per-user basis. Each user's home directory can contain a file named
~/.rhosts that holds a list of trusted remote systems and users. See "Examples" for a sample .rhosts file.

Examples

The following example illustrates the use of rlogin. On the local system, Alex's username is alex; on the remote system bravo, his
username is watson. The remote system prompts Alex to enter a password because he is logging in using a username different from
the one he uses on the local system.

$ who am i

alex tty06 Oct 14 13:26

$ rlogin -l watson bravo

Password:

~/.rhosts file

If the local system is named hurrah, the following .rhosts file on bravo allows the user alex to log in as the user watson without
entering a password:

$ cat /home/watson/.rhosts

hurrah alex

rm: Removes a file (deletes a link)

rm [options] file-list

The rm utility removes hard and/or symbolic links to one or more files. When you remove the last hard link to a file, the file is deleted.

caution: Be careful when you use rm with wildcards

Because you can remove a large number of files with a single command, use rm cautiously, especially when you are working
with ambiguous file references. If you have doubts about the effect of an rm command with an ambiguous file reference, first
use echo with the same file reference and evaluate the list of files the reference generates. Alternatively, you can use the
––interactive option.

Arguments

The file-list is a list of the list of files that rm deletes.

Options

Accepts the common options described on page 587.

––force –f Without asking for your consent, removes files for
which you do not have write access permission. This
option also suppresses informative output if a file
does not exist.

––interactive –i Asks before removing each file. If you use
––recursive with this option, rm also asks you
before examining each directory.

––recursive –r Deletes the contents of the specified directory,
including all its subdirectories, and the directory
itself. Use this option cautiously.

–– verbose –v Displays the name of each file as it is removed.

Notes

To delete a file, you must have execute and write access permission to the parent directory of the file, but you do not need read or write
access permission to the file itself. If you are running rm interactively (that is, if rm's standard input is coming from the keyboard) and
you do not have write access permission to the file, rm displays your access permission and waits for you to respond. If your response
starts with a y or Y, rm deletes the file; otherwise, it takes no action. If standard input is not coming from a keyboard, rm deletes the
file without question.

Refer to page 97 for information on hard links and page 99 for information on symbolic links. Page 101 includes a discussion about
removing links. Refer to the rmdir utility (page 755) if you need to remove an empty directory.

When you want to remove a file that begins with a hyphen, you must prevent rm from interpreting the filename as an option. One way
to do so is to give the special option –– before the name of the file. This option tells rm that no more options follow: Any arguments
that come after it are filenames, even if they look like options.

security: Use shred to remove a file securely

Using rm does not securely delete a file—it is possible to recover a file deleted with rm. Use the shred utility to delete files
more securely. See the example "Wiping a file" on page 634 for another method of deleting files more securely.

Examples

The following commands delete files both in the working directory and in another directory:

$ rm memo

$ rm letter memo1 memo2

$ rm /home/jenny/temp

The next example asks the user before removing each file in the working directory and its subdirectories:

$ rm -ir .

This command is useful for removing filenames that contain special characters, especially SPACEs, TABs, and NEWLINE s. (You
should not create filenames containing these characters on purpose, but it may happen accidentally.)

rmdir: Removes a directory

rmdir directory-list

The rmdir utility deletes empty directories.

Arguments

The directory-list is a list of pathnames of empty directories that rmdir removes.

Options

Accepts the common options described on page 587.

–– ignore-fail-on-non-empty

 Suppresses the message rmdir normally displays when it fails
because a directory is not empty. With the ––parents option,
rmdir does not quit when it finds a directory that is not empty.

–– parents –p Removes a series of empty, nested directories, starting with the
child.

–– verbose –v Displays the names of directories as they are removed.

Notes

Use the rm utility with the –r option if you need to remove directories that are not empty, together with their contents.

Examples

The following command deletes the empty literature directory from the working directory:

$ rmdir literature

The next command removes the letters directory, using an absolute pathname:

$ rmdir /home/jenny/letters

The final command removes the letters, march, and 05 directories, assuming the directories are empty except for other directories
named in the path:

$ rmdir --parents letters/march/05

rsh: Executes commands on a remote system

rsh [option] host [command-line]

The rsh utility runs command-line on host by starting a shell on the remote system. Without a command-line rsh calls rlogin,
which logs you in on the remote system.

security: rsh is not secure

The rsh utility uses host-based trust, which is not secure, to authorize your login. Alternatively, it sends your password over
the network as cleartext, which is not a secure practice. Use ssh (page 773) when it is available.

Arguments

The host is the name of the remote system. The rsh utility runs command-line on the remote system. You must quote special
characters in command-line so that they are not expanded by the local shell prior to passing them to rsh.

Options

–l username (login) Logs you in on the remote system as the user specified by
username .

Notes

If the file named /etc/hosts.equiv located on the remote system specifies the name of the local system, the remote system will not
prompt you to enter your password. Systems that are listed in the /etc/hosts.equiv file are considered as secure as the local system.

An alternative way to specify a trusted relationship is on a per-user basis. Each user's home directory can contain a file named
~/.rhosts that holds a list of trusted remote systems and users. See "Examples" under rlogin (page 752) for a sample .rhosts file.

Examples

In the first example, Alex uses rsh to obtain a listing of the files in his home directory on bravo:

$ rsh bravo ls

cost_of_living

info

preferences

work

Next the output of the previous command is redirected into the file bravo.ls. Because the redirection character (>) is not escaped, it is
interpreted by the local shell, and the file bravo.ls is created on the local system.

$ rsh bravo ls > bravo_ls

$ cat bravo_ls

cost_of_living

info

preferences

work

The next example quotes the redirection character (>) so that the file bravo.ls is created on the remote system (bravo), as shown by ls
run on bravo:

$ rsh bravo ls ">" bravo.ls

$ rsh bravo ls

bravo.ls

cost_of_living

info

preferences

work

In the final example, rsh without command-line logs in on the remote system. Alex has used the –l watson option to log in on bravo
as watson. The /home/watson/.rhosts file must be configured to allow Alex to log in on the account in this manner. See "Examples"
under rlogin (page 752) for a sample .rhosts file.

$ rsh -l watson bravo

Last login: Sat Jul 30 16:13:53 from kudos

$ hostname

bravo

$ exit

rlogin: connection closed.

scp: Securely copies one or more files to or from a remote system

scp [[user@]from-host :]source-file [[user@]to-host :][destination-file]

The scp (secure copy) utility copies an ordinary or directory file from one system to another on a network. This utility uses ssh to
transfer files and the same authentication mechanism as ssh; therefore it provides the same security as ssh. The scp utility asks you
for a password when it is needed.

Arguments

The from-host is the name of the system you are copying files from and the to-host is the system you are copying to. When you do not
specify a host, scp assumes the local system. The user on either system defaults to the user on the local system who is giving the
command; you can specify a different user with user@. The scp utility permits you to copy between two remote systems.

The source-file is the file you are copying, and the destination-file is the resulting copy. You can specify plain or directory files as
relative or absolute pathnames. A relative pathname is relative to the specified or implicit user's home directory. When the source-file
is a directory, you must use the –r option to copy its contents. When the destination-file is a directory, each of the source files

maintains its simple filename.

Options

–p (preserve) Preserves the modification and access times as well as the
permissions of the original file.

–q (quiet) Does not display the progress meter.

–r (recursive) Recursively copies a directory hierarchy.

–v (verbose) Displays debugging messages about the connection and transfer.
This option is useful if things are not going as expected.

Notes

The scp utility is one of the OpenSSH suite of secure network connectivity tools. See "Notes" on page 774 for a discussion of
OpenSSH security. Refer to "Message on initial connection to a server" on page 774 for information about a message you may get
when using scp to connect to a remote system for the first time.

You can copy from or to the local system or between two remote systems. Make sure that you have read permission for the file you are
copying and write permission for the directory you are copying it into.

You must quote a wildcard character (such as *) in a remote pathname so that it is interpreted by the shell on the remote system and
not by the local shell.

As with cp, if the destination-file exists before you run scp, scp overwrites the file.

Examples

The first example copies the files with filenames ending in .c from the working directory on the local system into the ~jenny/archives
directory on bravo. The wildcard character is not quoted so that the local shell will expand it. Because archives is a relative pathname,
scp assumes that it is a subdirectory of Jenny's home directory on bravo. Each of the copied files retains its simple filename.

$ scp *.c jenny@bravo:archives

Next Alex copies the directory structure under ~alex/memos on the system named bravo to ~jenny/alex.memos.bravo on kudos. He
must have the necessary permissions to write to Jenny's home directory on kudos.

$ scp -r bravo:memos jenny@kudos:alex.memos.bravo

Finally Alex copies the files with filenames ending in .c from Jenny's archives directory on bravo to the jenny.c.bravo directory in

his working directory. The wildcard character is quoted to protect it from expansion by the local shell; it will be interpreted by the
remote system, bravo.

$ scp -r 'jenny@bravo:archives/*.c' jenny.c.bravo

It is important to remember that whenever you copy multiple files or directories, the destination—either local or remote—must be an
existing directory and not an ordinary or nonexistent file.

sleep: Creates a process that sleeps for a specified interval

sleep time

sleep time-list

The sleep utility causes the process executing it to go to sleep for the time specified.

Arguments

Traditionally the amount of time that a process sleeps is given as a single integer argument, time , which denotes a number of seconds.
The time does not have to be an integer, however: You can specify a decimal fraction. You can also append a unit specification to
time : s (seconds), m (minutes), h (hours), and d (days).

You can construct a time-list by including several times on the command line: The total time that the process sleeps is the sum of these
times. For example, if you specify 1h 30m 100s, the process will sleep for 91 minutes and 40 seconds.

Examples

You can use sleep from the command line to execute a command after a period of time. The following example executes in the
background a process that reminds you to make a phone call in 20 minutes (1,200 seconds):

$ (sleep 1200; echo "Remember to make call.") &

[1] 4660

Alternatively, you could give the following command to get the same reminder:

$ (sleep 20m; echo "Remember to make call.") &

[2] 4667

You can also use sleep within a shell script to execute a command at regular intervals. The per shell script executes a program named
update every 90 seconds:

$ cat per

#!/bin/bash

while true

do

 update

 sleep 90

done

If you execute a shell script such as per in the background, you can terminate it only by using kill.

The final shell script accepts the name of a file as an argument and waits for that file to appear on the disk. If the file does not exist, the
script sleeps for 1 minute and 45 seconds before checking for the file again:

$ cat wait_for_file

#!/bin/bash

if [$# != 1]; then

 echo "Usage: wait_for_file filename"

 exit 1

fi

while true

do

 if [-f "$1"]; then

 echo "$1 is here now"

 exit 0

 fi

 sleep 1m 45

done

sort: Sorts and/or merges files

sort [options] [file-list]

The sort utility sorts and/or merges one or more text files.

Arguments

The file-list is a list of pathnames of one or more ordinary files that contain the text to be sorted. If the file-list is omitted, sort takes
its input from standard input. Without the –o option sort sends its output to standard output. This utility sorts and merges files unless
you use the –m (merge only) or –c (check only) option.

Options

When you do not specify an option, sort orders the file in the machine collating sequence (usually ASCII). Without a ––key option
sort orders a file based on full lines. Use ––key to specify sort fields within a line. You can follow a ––key option with additional
options without a leading hyphen; see "Discussion" for more information.

–– ignore-leading-blanks

 –b Blanks (TAB and SPACE characters) normally mark the
beginning of fields in the input file. Without this option,
sort considers leading blanks to be part of the field they
precede. This option ignores leading blanks within a field, so
sort does not consider these characters in sort comparisons.

–– check –c Checks whether the file is properly sorted. The sort utility
does not display anything if everything is in order. It displays
a message if the file is not in sorted order and returns an exit
status of 1.

–– dictionary-order

 –d Ignores all characters that are not alphanumeric characters or
blanks. For example, sort does not consider punctuation
with this option.

–– ignore-case –f (fold) Considers all lowercase letters to be uppercase letters.
Use this option when you are sorting a file that contains both
uppercase and lowercase text.

–– ignore-nonprinting

–i Ignores nonprinting characters. This option is overridden by the ––dictionary-
order option.

–– key=start[,stop]

 –k start[,stop]

 Specifies a sort field within a line. Without this
option sort orders a file based on full lines. The
sort field starts at the position on the line specified
by start and ends at stop , or the end of the line if
stop is omitted. The start and stop positions are in
the format f[.c], where f is the field number and c
is the optional character within the field.
Numbering starts with 1. When c is omitted from
start , it defaults to the first character in the field;
when c is omitted from stop , it defaults to the last
character in the field. See "Discussion" for further
explanation of sort fields and "Examples" for
illustrations of their use.

–– merge –m Assumes that multiple input files are each in sorted
order and merges them without verifying that they
are sorted.

–– numeric-sort –n Sorts in arithmetic sequence; does not order lines
or sort fields in the machine collating sequence.
With this option, minus signs and decimal points
take on their arithmetic meaning.

–– output=filename

 –o filename

 Sends output to filename instead of standard output;
filename can be the same as one of the names in the file-
list.

–– reverse –r Reverses the sense of the sort (for example, z precedes a).

–– field-separator=x

 –t x

 Specifies x as the field separator. See "Discussion" for more
information.

–– unique –u Outputs repeated lines only once. When you use this option
with ––check, sort displays a message if the same line
appears more than once in the input file, even if the file is in
sorted order.

Discussion

Without any options sort bases its ordering on full lines.

In the following description, a field is a sequence of characters in a line of input. Without the –– field-separator option, fields are
bounded by the empty string preceding a group of one or more blanks (TAB and SPACE characters). You cannot see the empty string
that delimits the fields; it is an imaginary point between two fields. Fields are also bounded by the beginning and end of the line. The
line shown in Figure 0-1 holds the fields Toni, SPACEBarnett, and SPACESPACESPACESPACE55020. These fields are used to
define sort fields. Sometime fields and sort fields are the same.

Sort field

A sort field is a sequence of characters that sort uses to put lines in order. A sort field can contain all or part of one or more fields
(Figure V-1).

Figure V-1. Fields and sort fields

The –– key option specifies pairs of pointers that define subsections of each line (sort fields) for comparison. See the ––key option
(page 763) for details.

Leading blanks

The –b option causes sort to ignore leading blanks in a sort field. If you do not use this option, sort considers each leading blank to
be a character in the sort field and includes it in the sort comparison.

Options

You can specify options that pertain only to a given sort field by immediately following the stop pointer (or the start pointer if there is
no stop pointer) with one of the options b, d, f, i, n, or r. In this case you must not precede the option with a hyphen.

Multiple sort fields

When you specify more than one sort field, sort examines them in the order you specify them on the command line. If the first sort
field of two lines is the same, sort examines the second sort field. If these are again the same, sort looks at the third field. This
process continues for all the sort fields you specify. If all the sort fields are the same, sort examines the entire line.

Examples

The examples in this section demonstrate some of the features and uses of the sort utility. The examples assume that the list file
shown here is in the working directory:

$ cat list

Tom Winstrom 94201

Janet Dempsey 94111

Alice MacLeod 94114

David Mack 94114

Toni Barnett 95020

Jack Cooper 94072

Richard MacDonald 95510

This file contains a list of names and ZIP codes. Each line of the file contains three fields: the first name field, the last name field, and
the ZIP code field. For the examples to work, make sure the blanks in the file are SPACE s, and not TABs.

The first example demonstrates sort without any options—the only argument is the name of the input file. In this case sort orders the
file on a line-by-line basis. If the first characters on two lines are the same, sort looks at the second characters to determine the proper
order. If the second characters are the same, sort looks at the third characters. This process continues until sort finds a character that
differs between the lines. If the lines are identical, it does not matter which one sort puts first. In this example, sort needs to examine

only the first three characters (at most) of each line. The sort utility displays a list that is in alphabetical order by first name.

$ sort list

Alice MacLeod 94114

David Mack 94114

Jack Cooper 94072

Janet Dempsey 94111

Richard MacDonald 95510

Tom Winstrom 94201

Toni Barnett 95020

You can instruct sort to skip any number of fields and characters on a line before beginning its comparison. Blanks normally mark the
beginning of a field. The next example sorts the same list by last name, the second field. The ––key=2 argument instructs sort to
begin its comparison with the second field, the last name. Because there is no second pointer, the sort field extends to the end of the
line. Now the list is almost in last-name order, but there is a problem with Mac.

$ sort --key=2 list

Toni Barnett 95020

Jack Cooper 94072

Janet Dempsey 94111

Richard MacDonald 95510

Alice MacLeod 94114

David Mack 94114

Tom Winstrom 94201

In the preceding example, MacLeod comes before Mack. After finding that the sort fields of these two lines were the same through
the third letter (Mac), sort put L before k because it arranges lines based on ASCII character codes, in which uppercase letters come
before lowercase ones.

The ––ignore-case option makes sort treat uppercase and lowercase letters as equals and fixes the problem with MacLeod and
Mack:

$ sort --ignore-case --key=2 list

Toni Barnett 95020

Jack Cooper 94072

Janet Dempsey 94111

Richard MacDonald 95510

David Mack 94114

Alice MacLeod 94114

Tom Winstrom 94201

The next example attempts to sort list on the third field, the ZIP code. In this case sort does not put the numbers in order but rather
puts the shortest name first in the sorted list and the longest name last. The ––key=3 argument instructs sort to begin its comparison
with the third field, the ZIP code. A field starts with a blank and includes subsequent blanks. In the case of the list file, the blanks are
SPACEs. The ASCII value of a SPACE character is less than that of any other printable character, so sort puts the ZIP code that is
preceded by the most SPACEs first and the ZIP code that is preceded by the fewest SPACEs last.

$ sort --key=3 list

David Mack 94114

Jack Cooper 94072

Tom Winstrom 94201

Toni Barnett 95020

Janet Dempsey 94111

Alice MacLeod 94114

Richard MacDonald 95510

The –b (––ignore-leading-blanks) option causes sort to ignore leading SPACEs within a field. With this option, the ZIP codes come
out in the proper order. When sort determines that MacLeod and Mack have the same ZIP codes, it compares the entire lines, putting
Alice MacLeod before David Mack (because A comes before D).

$ sort -b --key=3 list

Jack Cooper 94072

Janet Dempsey 94111

Alice MacLeod 94114

David Mack 94114

Tom Winstrom 94201

Toni Barnett 95020

Richard MacDonald 95510

To sort alphabetically by last name when ZIP codes are the same, sort needs to make a second pass that sorts on the last name field.
The next example shows how to make this second pass by specifying a second sort field and uses the –f (––ignore-case) option to keep
the Mack/MacLeod problem from cropping up again:

$ sort -b -f --key=3 --key=2 list

Jack Cooper 94072

Janet Dempsey 94111

David Mack 94114

Alice MacLeod 94114

Tom Winstrom 94201

Toni Barnett 95020

Richard MacDonald 95510

The next example shows a sort command that skips not only fields but also characters. The –k 3.4 option (equivalent to ––key=3.4)
causes sort to start its comparison with the fourth character of the third field. Because the command does not define an end to the sort
field, it defaults to the end of the line. The sort field is the last two digits in the ZIP code.

$ sort -fb -k 3.4 list

Tom Winstrom 94201

Richard MacDonald 95510

Janet Dempsey 94111

Alice MacLeod 94114

David Mack 94114

Toni Barnett 95020

Jack Cooper 94072

The problem of how to sort by last name within the last two digits of the ZIP code is solved by a second pass covering the last-name
field. The f option following the –k 2 affects the second pass, which orders by last name only.

$ sort -b -k 3.4 -k 2f list

Tom Winstrom 94201

Richard MacDonald 95510

Janet Dempsey 94111

David Mack 94114

Alice MacLeod 94114

Toni Barnett 95020

Jack Cooper 94072

The next set of examples uses the cars data file. From left to right the columns in the file contain each car's make, model, year of
manufacture, mileage, and price:

$ cat cars

plym fury 1970 73 2500

chevy malibu 1999 60 3000

ford mustang 1965 45 10000

volvo s80 1998 102 9850

ford thundbd 2003 15 10500

chevy malibu 2000 50 3500

bmw 325i 1985 115 450

honda accord 2001 30 6000

ford taurus 2004 10 17000

toyota rav4 2002 180 750

chevy impala 1985 85 1550

ford explor 2003 25 9500

Without any options sort displays a sorted copy of the file:

$ sort cars

bmw 325i 1985 115 450

chevy impala 1985 85 1550

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

ford explor 2003 25 9500

ford mustang 1965 45 10000

ford taurus 2004 10 17000

ford thundbd 2003 15 10500

honda accord 2001 30 6000

plym fury 1970 73 2500

toyota rav4 2002 180 750

volvo s80 1998 102 9850

The objective of the next example is to sort by manufacturer and by price within manufacturer. Unless you specify otherwise, a sort
field extends to the end of the line. The –k 1 sort field specifier sorts from the beginning of the line. The command line instructs sort
to sort on the entire line and then make a second pass, sorting on the fifth field all lines whose first-pass sort fields were the same (–k
5):

$ sort -k 1 -k 5 cars

bmw 325i 1985 115 450

chevy impala 1985 85 1550

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

ford explor 2003 25 9500

ford mustang 1965 45 10000

ford taurus 2004 10 17000

ford thundbd 2003 15 10500

honda accord 2001 30 6000

plym fury 1970 73 2500

toyota rav4 2002 180 750

volvo s80 1998 102 9850

Because no two lines are the same, sort makes only one pass, sorting on each entire line. (If two lines differed only in the fifth field,
they would be sorted properly on the first pass anyway, so the second pass would be unnecessary.) Look at the lines containing taurus
and thundbd. They are sorted by the second field rather than the fifth, demonstrating that sort never made a second pass and so never
sorted on the fifth field.

The next example forces the first-pass sort to stop at the end of the first field. The –k 1,1 option specifies a start pointer of the first

character of the first field and a stop pointer of the last character of the first field. When you do not specify a character within a start
pointer, it defaults to the first character; when you do not specify a character within a stop pointer, it defaults to the last character. Now
the taurus and thundbd are properly sorted by price. But look at the explor: It is less expensive than the other Fords, but sort has it
positioned as the most expensive. The sort utility put the list in ASCII collating sequence order, not in numeric order: Thus 9500
comes after 10000 because 9 comes after 1.

$ sort -k 1,1 -k 5 cars

bmw 325i 1985 115 450

chevy impala 1985 85 1550

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

ford mustang 1965 45 10000

ford thundbd 2003 15 10500

ford taurus 2004 10 17000

ford explor 2003 25 9500

honda accord 2001 30 6000

plym fury 1970 73 2500

toyota rav4 2002 180 750

volvo s80 1998 102 9850

The –n (numeric) option on the second pass puts the list in the proper order:

$ sort -k 1,1 -k 5n cars

bmw 325i 1985 115 450

chevy impala 1985 85 1550

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

ford explor 2003 25 9500

ford mustang 1965 45 10000

ford thundbd 2003 15 10500

ford taurus 2004 10 17000

honda accord 2001 30 6000

plym fury 1970 73 2500

toyota rav4 2002 180 750

volvo s80 1998 102 9850

The next example again demonstrates that, unless you instruct it otherwise, sort orders a file starting with the field you specify and
continuing to the end of the line. It does not make a second pass unless two of the first sort fields are the same. Because there is no
stop pointer on the first sort field specifier, the sort field for the first pass includes the third field through the end of the line. Although
this example sorts the cars by years, it does not sort the cars by model within manufacturer within years (ford thndbd comes before
ford explor, these lines should be reversed).

$ sort -k 3 -k 1 cars

ford mustang 1965 45 10000

plym fury 1970 73 2500

bmw 325i 1985 115 450

chevy impala 1985 85 1550

volvo s80 1998 102 9850

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

honda accord 2001 30 6000

toyota rav4 2002 180 750

ford thundbd 2003 15 10500

ford explor 2003 25 9500

ford taurus 2004 10 17000

Specifying an end to the sort field for the first pass allows sort to perform its secondary sort properly:

$ sort -k 3,3 -k 1 cars

ford mustang 1965 45 10000

plym fury 1970 73 2500

bmw 325i 1985 115 450

chevy impala 1985 85 1550

volvo s80 1998 102 9850

chevy malibu 1999 60 3000

chevy malibu 2000 50 3500

honda accord 2001 30 6000

toyota rav4 2002 180 750

ford explor 2003 25 9500

ford thundbd 2003 15 10500

ford taurus 2004 10 17000

The next examples demonstrate important sorting techniques: putting a list in alphabetical order, merging uppercase and lowercase
entries, and eliminating duplicates. The unsorted list follows:

$ cat short

Pear

Pear

apple

pear

Apple

Following is a plain sort:

$ sort short

Apple

Pear

Pear

apple

pear

The following folded sort is a good start, but it does not eliminate duplicates:

$ sort -f short

Apple

apple

Pear

Pear

pear

The –u (unique) option eliminates duplicates but without the –f the uppercase entries come first:

$ sort -u short

Apple

Pear

apple

pear

When you attempt to use both –u and –f, some of the entries get lost:

$ sort -uf short

apple

Pear

Two passes is the answer. Both passes are unique sorts, and the first folds lowercase letters onto uppercase ones:

$ sort -u -k 1f -k 1 short

Apple

apple

Pear

pear

split: Divides a file into sections

split [options] [filename [prefix]]

The split utility breaks its input into 1000-line sections named xaa, xab, xac, and so on. The last section may be shorter. Options can
change the sizes of the sections and lengths of the names.

Arguments

The filename is the pathname of the file that split processes. If you do not specify an argument or if you specify a hyphen (–) instead
of the filename , split reads from standard input. The prefix is one or more characters that split uses to prefix the names of the files
it creates. The default prefix is x.

Options

Accepts the common options described on page 587.

––suffix-length=len

 –a len

 Specifies that the filename suffix is len characters long (the
default is 2).

––bytes=n[u] –b n[u]

 Breaks the input into files that are n bytes long. The u is an
optional unit of measure that can be b (512-byte blocks), k
(kilobyte or 1,024-byte blocks), or m (megabyte or
1,048,576-byte blocks). If you include the unit of measure,
split counts by this unit in place of bytes.

––numeric-suffixes

 –d Specifies numeric suffixes instead of alphabetic suffixes.

––lines=num –l num

 Breaks the input into files that are num lines long (the default
is 1,000).

Discussion

By default split names the first file it creates xaa. The x is the default prefix. You can change the prefix with the prefix argument on
the command line. You can change the number of characters in each filename following the prefix with the ––suffix-length option.

Examples

By default split breaks a file into 1,000-line sections with the names xaa, xab, xac, and so on. The wc utility with the –l option shows
the number of lines in each file. The last file, xar, is smaller than the rest.

$ split /etc/termcap

$ wc -l *

 1000 xaa

 1000 xab

 1000 xac

 ...

 1000 xap

 1000 xaq

 103 xar

 17103 total

The next example uses the prefix argument to specify a filename prefix of SEC and uses ––suffix-length to change the number of
letters in the filename suffix to 3:

$ split --suffix-length=3 /etc/termcap SEC

$ ls

SECaaa SECaac SECaae SECaag SECaai SECaak SECaam SECaao SECaaq

SECaab SECaad SECaaf SECaah SECaaj SECaal SECaan SECaap SECaar

ssh: Securely executes commands on a remote system

ssh [option] [user@]host [command-line]

The ssh utility runs command-line on host by starting a shell on the remote system or logs you in on host . The ssh utility, which can
replace rsh and rlogin, provides secure, encrypted communication between two systems on an insecure network.

Arguments

The host is the system that you want to log in or run a command on. Unless you have one of several kinds of authentication
established, ssh prompts you for a username and password for the remote system. When ssh is able to log in automatically, it logs in

as the user running the ssh command or as user if user@ appears on the ssh command line.

The command-line runs on the remote system. Without command-line , ssh logs you in on the remote system. You must quote special
characters in command-line if you do not want them expanded by the local shell.

Options

–f (not foreground) Sends ssh to the background after asking for a password and
before executing command-line . This option is useful when you want to run the
command-line in the background but must supply a password. Its use implies –n.

–l user

 (login) Attempts to log in as user . This option is equivalent to using user@ on
the command line.

–n (null) Redirects standard input to ssh to come from /dev/null. See –f.

–p port

 Connects to port port on the remote host.

–q (quiet) Suppresses warning and diagnostic messages.

–t (tty) Allocates a pseudo-tty to the ssh process on the remote system. Without
this option, when you run a command on a remote system, ssh does not allocate
a tty (terminal) to the process. Instead, ssh attaches standard input and standard
output of the remote process to the ssh session—that is, normally, but not
always, what you want. This option forces ssh to allocate a tty on the remote
system so that programs that require a tty will work.

–v (verbose) Displays debugging messages about the connection and transfer. This
option is useful if things are not going as expected.

–x (X11) Turns off X11 forwarding.

–X (X11) Turns on X11 forwarding. You may not need this option—X11 forwarding
may be turned on in a configuration file.

Notes

OpenSSH

Using public-key encryption, OpenSSH provides two levels of authentication: server and client/user. First, the client (ssh or scp)
verifies that it is connected to the correct server and OpenSSH encrypts communication between the client and server. Second, once a
secure, encrypted connection has been established, OpenSSH confirms that the user is authorized to log in on or copy files from/to the
server. Once the system and user have been verified, OpenSSH allows different services to pass through the connection. These services
include interactive shell sessions (ssh), remote command execution (ssh and scp), X11 client/server connections, and TCP/IP port
tunneling.

Message on initial connection to a server

When you connect to an OpenSSH server for the first time, the OpenSSH client prompts you to confirm that you are connected to the
correct system. This checking can help prevent a person-in-the-middle attack.

The authenticity of host 'grape (192.168.0.3)' can't be established.

RSA key fingerprint is c9:03:c1:9d:c2:91:55:50:e8:19:2b:f4:36:ef:73:78.

Are you sure you want to continue connecting (yes/no)? yes

Warning: Permanently added 'grape,192.168.0.3' (RSA) to the list of known hosts.

Before you respond to the preceding query, verify that you are logging in on the correct system and not an imposter. If you are not sure,
a telephone call to someone who logs in on that system locally can verify that you are on the intended system. When you answer yes
(you must spell it out), the client appends the server's public host key to the user's ~/.ssh/known_hosts file on the local system,
creating the ~/.ssh directory if necessary. So that it can keep track of which line in known_hosts applies to which server, OpenSSH
prepends the name of the server and the server's IP address to the line. Subsequently, when you use OpenSSH to connect to that server,
the client verifies that it is connected to the correct server by comparing this key to the one supplied by the server.

Examples

In the first example, Alex uses ssh to display a list of the files in his home directory on kudos:

$ ssh kudos ls

alex@kudos's password:

Work

code

graphs

reports

Next the output of the previous command is redirected to the file kudos_ls. Because the redirection character (>) is not escaped, it is
interpreted by the local shell, and the file kudos_ls is created on the local system.

$ ssh kudos ls > kudos_ls

alex@kudos's password:

$ cat kudos_ls

Work

code

graphs

reports

The next example quotes the entire command that will run on the remote system. As a result, the local shell does not interpret the
redirection character (>) but rather passes it to the remote shell. The file kudos.ls is created on the remote system (kudos), as shown
by ls run on kudos:

$ ssh kudos "ls > kudos.ls"

alex@kudos's password:

$ ssh kudos ls

alex@kudos's password:

Work

code

graphs

kudos.ls

reports

The next command does not quote the pipe symbol (|). As a result the pipe is interpreted by the local shell, which sends the output of
the remote ls to standard input of less on the local system:

$ ssh kudos ls | less

Next ssh executes a series of commands, connected with pipes, on a remote system. The commands are enclosed within single
quotation marks so that the local shell does not interpret the pipe symbols and all the commands are run on the remote system.

$ ssh kudos 'ps -ef | grep nmbd | grep -v grep | cut -c10-15 |xargs kill -1'

The output of ps is piped through grep, which passes all lines containing the string nmbd to another invocation of grep. The second
grep passes all lines not containing the string grep to cut (page 627). The cut utility extracts the process ID numbers and passes them
to xargs (page 821), which kills the listed processes with a HUP signal (kill –1).

In the following example, ssh without command-line logs in on the remote system. Here Alex has used watson@kudos to log in on

kudos as watson:

$ ssh watson@kudos

watson@kudos's password:

Last login: Sat Sep 17 06:51:59 from bravo

$ hostname

kudos

$ exit

Alex now decides to change the password for his watson login on kudos.

$ ssh watson@kudos passwd

watson@kudos's password:

(current) UNIX password: por

Alex stops as soon as he sees passwd (running on kudos) displaying his password: He knows that something is wrong. For the passwd
to work, it must run with a tty (terminal) so that it can turn off character echo (stty –echo) and thus not display passwords as the user
enters them. The –t option solves the problem by associating a pseudo-tty with the process running passwd on the remote system:

$ ssh -t watson@kudos passwd

watson@kudos's password:

Changing password for watson

(current) UNIX password:

New UNIX password:

Retype new UNIX password:

passwd: all authentication tokens updated successfully

Connection to kudos closed.

$

The –t option is also useful when you are running a program that uses a character-based/pseudographical interface.

The following example uses tar (page 786) to create an archive file of the contents of the working directory hierarchy. The f – option
causes tar to send its output to standard output. A pipe sends the output of tar running on the local system, via ssh, to dd (page 633)

running on the remote system.

$ cat buwd

#! /bin/bash

back up the working directory to the user's

home directory on the remote system specified

by $machine

remote system:

machine=speedy

dir=$(basename $(pwd))

filename=$$.$dir.tar

echo Backing up $(pwd) to your home directory on $machine

tar -cf - . | ssh $machine "dd obs=256k of=$filename"

echo done. Name of file on $machine is $filename

strings: Displays strings of printable characters

strings [options] file-list

The strings utility displays strings of printable characters from object and other nontext files.

Arguments

The file-list is a list of files that strings processes.

Options

––all –a Processes whole files. Without this option
strings processes only the initialized and loaded
parts of an object file.

––bytes=min –min

 Displays strings of characters that are at least min
characters long (the default is 4).

––print-file-name

–f Precedes each string with the name of the file that the string comes from.

Discussion

The strings utility can help you determine the contents of nontext files. One application for strings is determining the owner of files
in a lost+found directory.

Examples

The following example displays the strings of four or more printable characters in the executable file for the man utility. If you did not
know what this file was, these strings could help you determine that it was the man executable.

$ strings /usr/bin/man

...

man: internal error - cannot find message %d

/unsafe/

my_xsprintf called with %s

Error parsing config file

No manual entry for %s

using %s as pager

%s, version %s

found man directory %s

found manpath map %s --> %s

corresponding catdir is %s

Line too long in config file

section: %s

...

stty: Displays or sets terminal parameters

stty [options] [arguments]

Without any arguments, stty displays certain parameters affecting the operation of the terminal/terminal emulator. For a list of some
of these parameters and an explanation of each, see "Arguments." The arguments establish or change parameters.

Options

Accepts the common options described on page 587.

––all –a Reports on all parameters. This option does not accept
arguments.

––file=/dev/device

 –F /dev/device

 Affects device . Without this option stty affects the device
attached to standard input. You can change the characteristics
of a device only if you own its device file or if you are
Superuser.

––save –g Generates a report of the current settings in a format you can
use as arguments to another stty command. This option does
not accept arguments.

Arguments

The arguments to stty specify which terminal parameters stty is to alter. Turn on each of the parameters that is preceded by an
optional hyphen (indicated in the following list as [–]) by specifying the parameter without the hyphen. Turn it off by using the hyphen.
Unless specified otherwise, this section describes the parameters in their on states.

Special Keys and Characteristics

Columns n Sets the line width to n columns.

ek (erase kill) Sets the erase and line kill keys to their default values.
Many systems use DELETE and CONTROL-U as the defaults.

erase x Sets the erase key to x. To specify a control character, precede x with
CONTROL-V (for example, use CONTROL-V CONTROL-H to
indicate CONTROL-H) or use the notation ^h, where ^ is a caret
(SHIFT 6 on most keyboards).

intr x Sets the interrupt key to x. See erase x for conventions.

kill x Sets the line kill key to x. See erase x for conventions.

rows n Sets the number of screen rows to n.

sane Sets the terminal parameters to values that are usually acceptable. The
sane argument is useful when several stty parameters have changed,
making it difficult to use the terminal to run stty to set things right. If
sane does not appear to work, try entering the following characters:

CONTROL-J stty sane CONTROL-J

susp x (suspend) Sets the suspend (terminal stop) key to x. See erase x for
conventions.

werase x (word erase) Sets the word erase key to x. See erase x for
conventions.

Modes of Data Transmission

[–]cooked See raw.

[–]cstopb (stop bits) Selects two stop bits (–cstopb specifies one stop bit).

[–]parenb (parity enable) Enables parity on input and output. When you specify
–parenb, the system does not use or expect a parity bit when
communicating with the terminal.

[–]parodd (parity odd) Selects odd parity (–parodd selects even parity).

[–]raw The normal state is –raw. When the system reads input in its raw form, it
does not interpret the following special characters: erase (usually
DELETE), line kill (usually CONTROL-U), interrupt execution
(CONTROL-C), and EOF (CONTROL-D). In addition, the system does
not use parity bits. Reflecting the humor that is typical of Linux's
heritage, you can specify –raw as cooked.

Treatment of Characters

[–]echo Echoes characters as they are typed (full-duplex operation). If a terminal is
half-duplex and displays two characters for each one it should display, turn
the echo parameter off (–echo). Use –echo when the user is entering
passwords.

[–]echoe (echo erase) The normal setting is echoe, which causes the kernel to echo
the character sequence BACKSPACE SPACE BACKSPACE when you
use the erase key to delete a character. The effect is to move the cursor
backward across the line, removing characters as you delete them.

[–]echoke (echo kill erase) The normal setting is echoke. When you use the kill
character to delete a line while this option is set, all characters back to the
prompt are erased on the current line. When this option is negated, pressing
the kill key moves the cursor to the beginning of the next line.

[–]echoprt (echo print) The normal setting is –echoprt, which causes characters to
disappear as you erase them. When you set echoprt, characters that you
erase are displayed between a backslash (\) and a slash (/). For example, if
you type the word sort and then erase it by pressing BACKSPACE four
times, Linux displays sort\tros/ when echoprt is set. Also, if you use the
kill character to delete the entire line, having echoprt set causes the entire
line to be displayed as if you had BACKSPACEd to the beginning of the
line.

[–]lcase For uppercase-only terminals, translates all uppercase characters into
lowercase as they are entered (also [–]LCASE).

[–]nl Accepts only a NEWLINE character as a line terminator. With –nl in
effect, the system accepts a RETURN character from the terminal as a
NEWLINE but sends a RETURN followed by a NEWLINE to the terminal
in place of a NEWLINE.

[–]tabs Transmits each TAB character to the terminal as a TAB character. When
tabs is turned off (–tabs), the kernel translates each TAB character into the
appropriate number of SPACE s and transmits them to the terminal (also
[–]tab3).

Job Control Parameters

[–]tostop Stops background jobs if they attempt to
send output to the terminal (–tostop
allows background jobs to send output to
the terminal).

Notes

The name stty is an abbreviation for set teletypewriter, or set tty (page 807), the first terminal that UNIX was run on. Today stty is
commonly thought of as set terminal.

The shells retain some control over standard input when you use them interactively. As a consequence a number of the options
available with stty appear to have no effect. For example, the command stty –echo appears to have no effect under tcsh:

tcsh $ stty -echo

tcsh $ date

Fri Feb 18 21:21:14 PST 2005

While stty –echo does work when you are using bash interactively, stty –echoe does not. However, you can still use these options to
affect shell scripts and other utilities.

$ cat testit

#!/bin/bash

stty -echo

echo -n "Enter a value: "

read a

echo

echo "You entered: $a"

stty echo

$ testit

Enter a value:

You entered: 77

In the preceding example, the kernel does not display the user's response to the Enter a value: prompt. The value is retained by the a
variable and is displayed by the echo "You entered: $a" statement.

Examples

The first example shows that stty without any arguments displays several terminal operation parameters. (Your system may display
more or different parameters.) The character following the erase = is the erase key. A ^ preceding a character indicates a CONTROL
key. In the example the erase key is set to CONTROL-H. If stty does not display the erase character, it is set to its default value of
DELETE . If you do not see a kill character, it is set to its default of ^U.

$ stty

speed 38400 baud; line = 0;

erase = ^H;

Next the ek argument returns the erase and line kill keys to their default values:

$ stty ek

The next display verifies the change. The stty utility does not display either the erase character or the line kill character, indicating
that both are set to their default values:

$ stty

speed 38400 baud; line = 0;

The next example sets the erase key to CONTROL-H. The CONTROL-V quotes the CONTROL-H so that the shell does not interpret
it and it is passed to stty:

$ stty erase CONTROL–V CONTROL–H

$ stty

speed 38400 baud; line = 0;

erase = ^H;

Next stty sets the line kill key to CONTROL-X. This time the user entered a caret (^) followed by an x to represent CONTROL-X.
You can use either a lowercase or uppercase letter.

$ stty kill ^X

$ stty

speed 38400 baud; line = 0;

erase = ^H; kill = ^X;

Now stty changes the interrupt key to CONTROL-C:

$ stty intr CONTROL–V CONTROL–C

In the following example, stty turns off TABs so that the appropriate number of SPACEs is sent to the terminal in place of a TAB.
Use this command if a terminal does not automatically expand TABs.

$ stty -tabs

If you log in and everything appears on the terminal in uppercase letters, give the following command and then check the CAPS LOCK
key. If it is set, turn it off:

$ STTY -LCASE

Turn on lcase if you are using a very old terminal that cannot display lowercase characters.

Although no one usually changes the suspend key from its default of CONTROL-Z, you can. Give the following command to change
the suspend key to CONTROL-T:

$ stty susp ^T

tail: Displays the last part (tail) of a file

tail [options] [file-list]

The tail utility displays the last part, or end, of a file.

Arguments

The file-list is a list of pathnames of the files that tail displays. When you specify more than one file, tail displays the filename of
each file before displaying the lines of the file. If you do not specify an argument or if you specify a hyphen (–) instead of a filename,
tail reads from standard input.

Options

Accepts the common options described on page 587.

––bytes=[+]n[u]

 –c [+]n[u]

 Counts by bytes (characters) instead of lines. The n is an integer
that specifies the number of bytes. Thus the command tail –c 5
displays the last five bytes of a file. The u is an optional unit of
measure that can be b (512-byte blocks), k (kilobyte or 1,024-byte
blocks), or m (megabyte or 1,048,576-byte blocks). If you include
the unit of measure, tail counts by this unit instead of by bytes.

If you put a plus sign (+) in front of n, tail counts from the start
of the file instead of the end. The tail utility still displays to the
end of the file, even though it starts counting from the beginning.
Thus tail –c +5 causes tail to display from the fifth character
through the end of the file.

––follow –f After copying the last line of the file, tail enters an endless loop,
waiting and copying additional lines from the file if the file grows.
If you specify multiple files in file-list with this option, tail
includes a new header each time it displays output from a different
file so that you know which file is being added to. This option is
useful for tracking the progress of a process that is running in the
background and sending its output to a file. The tail utility
continues to wait indefinitely, so you must use the interrupt key to
terminate it. See also the –s option.

––lines=[+]n[u] –n [+]n[u]

 Counts by lines (the default). The n is an integer that specifies the
number of lines. The u is an optional unit of measure; see the
––bytes option for an explanation of its use. Although it is not
documented, you can use ±n to specify a number of lines without
using this option.

If you put a plus sign (+) in front of n, tail counts from the start
of the file instead of the end. The tail utility still displays to the
end of the file, even though it starts counting from the beginning.
Thus tail –n +5 causes tail to display from the fifth line through
the last line of the file.

––quiet –q Suppresses header information when you specify multiple files in
file-list .

––sleep-interval=n

–s n

 When used with –f, causes tail to sleep for n seconds between
checks for additional output.

Notes

The tail utility displays the last ten lines of its input by default.

Examples

The examples are based on the eleven file:

$ cat eleven

line one

line two

line three

line four

line five

line six

line seven

line eight

line nine

line ten

line eleven

First tail displays the last ten lines of the eleven file (no options):

$ tail eleven

line two

line three

line four

line five

line six

line seven

line eight

line nine

line ten

line eleven

Next it displays the last three lines (––lines 3) of the file:

$ tail --lines 3 eleven

line nine

line ten

line eleven

The following example displays the file starting at line 8 (+8):

$ tail -n +8 eleven

line eight

line nine

line ten

line eleven

The next example displays the last six characters in the file (––bytes 6). Only five characters are evident (leven); the sixth is a
NEWLINE.

$ tail --bytes 6 eleven

leven

The final example demonstrates the –f option. Here tail tracks the output of a make command, which is being sent to the file
accounts.out:

$ make accounts > accounts.out &

$ tail -f accounts.out

 cc -c trans.c

 cc -c reports.c

...

CONTROL-C

$

In the preceding example, using tail with –f has the same effect as running make in the foreground and letting its output go to the
terminal. However, using tail offers some advantages. First, the output of make is saved in a file. (The output would not be saved if
you let it go to the terminal.) Second, if you decide to do something else while make is running, you can kill tail and the screen will be
free for you to use while make continues in the background. When you are running a large job, such as compiling a large program, you
can use tail with the –f option to check on its progress periodically.

tar: Stores or retrieves files to/from an archive file

tar option [modifiers] [file-list]

The tar (tape archive) utility creates, adds to, lists, and retrieves files from an archive file.

Arguments

The file-list is a list of pathnames of the files that tar archives or extracts.

Options

Use only one of the following options to indicate what type of action you want tar to take. You can alter the action of the option by
following it with one or more modifiers.

––create –c Creates an archive. This option stores the files named in file-list in a
new archive. If the archive already exists, it is destroyed before the
new archive is created. If a file-list argument is a directory, tar
recursively copies the files within the directory into the archive.
Without the ––file option, the archive is sent to standard output.

–– compare –d (diff) Compares an archive with the corresponding disk files and
reports on the differences.

––help Displays a list of options and modifiers, with short descriptions of
each.

––append –r Writes the files named in file-list to the end of the archive. This
option leaves files that are already in the archive intact, so duplicate
copies of files may appear in the archive after tar finishes. When
tar extracts the files, the most recent copy of a file in the archive is
the one that ends up on the disk.

––list –t (table of contents) Without a file-list , this option produces a table
of contents listing all files in an archive. With a file-list , it displays
the name of each file in the file-list each time it occurs in the
archive. You can use this option with the ––verbose option to
display detailed information about each file in an archive.

––update –u Adds the files from file-list if they are not already in the archive or if
they have been modified since they were last written to the archive.
Because of the additional checking required, tar runs more slowly
when you specify this option.

––extract –x Extracts file-list from the archive and writes it to the disk.
Overwrites existing files with the same names. Without a file-list
this option extracts all files from the archive. If the file-list includes
a directory, tar extracts that directory and all the files below it. The
tar utility attempts to keep the owner, modification time, and
access privileges the same as those of the original file. If tar reads
the same file more than once, the last version read will appear on the
disk when tar is finished.

Modifiers

You can specify one or more modifiers following an option. If you use the single-character form of the modifier, a leading hyphen is
not required. In general, it is a good practice to use the hyphen unless you combine the modifier with other single-character modifiers.

If a modifier takes an argument, that modifier must be the last one in a group. For example, the arguments are arranged legally in the
following tar command:

$ tar -cb 10 -f /dev/ftape memos

Conversely, the following tar command generates an error:

$ tar -cbf 10 /dev/ftape memos

tar: f: Invalid blocking factor

Try 'tar --help' for more information.

The error occurs because the –b modifier takes an argument but is not the last modifier in a group.

––blocking-factor=n

 –b n

 Uses n as the blocking factor for creating an archive. Use
this option only when tar is creating an archive directly to
a tape. (When tar reads a tape archive, it automatically
determines the blocking factor.) The value of n is the
number of 512-byte blocks to write as a single block on the
tape.

––directory=dir –C dir

 Changes the working directory to dir before processing.

––checkpoint Displays periodic messages. This option lets you know tar
is running without displaying all the ––verbose messages.

––file=filename –f filename

 Uses filename as the name of the file (device) to hold the
archive. The filename can be the name of an ordinary file
or a device (such as a tape drive). You can use a hyphen (–)
instead of the filename to refer to standard input when
creating an archive and to standard output when extracting
files from an archive. The following two commands are
equivalent ways of creating a compressed archive of the
files under the /home directory on /dev/st0:

$ tar -zcf /dev/st0 /home

$ tar -cf - /home | gzip > /dev/st0

––dereference –h Archives the files that symbolic links point to, not the links
themselves.

––exclude=file Does not process the file named file. If file is a directory, no
files or directories within that directory are processed. The
file can be an ambiguous file reference; quote special
characters as needed.

––ignore-failed-read

 When creating an archive, tar normally quits with a nonzero
exit status if any of the files in file-list is unreadable. This option
causes tar to continue processing, skipping unreadable files.

––bzip –j Uses bzip2 (page 56) to compress/decompress files when
creating an archive and extracting files from an archive.

––one-file-system

–l (lowercase "l") When a directory name appears in file-list while
creating an archive, tar recursively processes the files and
directories below the named directory. With this option tar
stays in the filesystem that contains the named directory and
does not process directories in other filesystems.

––tape–length=n

 –L n

 Asks for a new tape after writing n *1,024 bytes to the current
tape. This feature is useful when you are building archives that
are too big to fit on a single tape.

––touch –m Sets the modification time of extracted files to the time of
extraction. Without this option tar attempts to maintain the
modification time of the original file.

––absolute-paths

 –P The default behavior of tar is to force all pathnames to be
relative paths by stripping leading slashes. This option disables
this feature, so absolute pathnames remain as absolute paths.

––sparse –S Linux allows you to have sparse files—that is, large, mostly
empty files—on disk. The empty sections of sparse files do not
take up any disk space. When tar copies a sparse file out of an
archive, it normally expands the file to its full size. As a result,
when you restore a sparse file from a tar backup, the file takes
up its full space and may no longer fit in the same disk space as
the original. This option causes tar to handle sparse files
efficiently so that they do not take up unnecessary space either in
the archive or when they are extracted.

––verbose –v Lists each file as tar reads or writes it. When combined with the
–t option, –v causes tar to display a more detailed listing of the
files in the archive, showing their ownership, permissions, size,
and other information.

––interactive
or

––confirmation

–w Asks you for confirmation before reading or writing each file.
Respond with y if you want tar to take the action. Any other
response causes tar not to take the action.

––exclude-from=filename

 –X filename

 Similar to the ––exclude option except that filename specifies a
file that contains a list of files to exclude from processing. Each
file listed in filename must appear on a separate line.

––gzip or
––gunzip

–z Causes tar to use gzip to compress an archive while it is being
created and to decompress an archive when extracting files from
it. This option also works to extract files from archives that have
been compressed with the compress utility.

––compress
or––uncompress

–Z Uses compress when creating an archive and uncompress when
extracting files from an archive.

Notes

The ––help option displays all the tar options and modifiers. The info page on tar provides extensive information, including a
tutorial.

You can use ambiguous file references in file-list when you create an archive but not when you extract files from an archive.

The name of a directory file within the file-list references all files and subdirectories within that directory.

The file that tar sends its output to by default is compilation specific; typically it goes to standard output. Use the –f option to specify

a different filename or device to hold the archive.

When you create an archive using a simple filename in file-list , the file appears in the working directory when you extract it. If you use
a relative pathname when you create an archive, the file appears with that relative pathname, starting from the working directory when
you extract it. If you use the –P option and an absolute pathname when you create an archive, tar extracts the file with the same
pathname.

Examples

The following example makes a copy of the /home/alex directory hierarchy on a floppy tape device. The v modifier causes the
command to list the files it writes to the tape. This command erases anything that was already on the tape. The message from tar
explains that the default action is to store all pathnames as relative paths instead of absolute paths, thereby allowing you to extract the
files into a different directory on the disk.

$ tar -cvf /dev/ftape /home/alex

tar: Removing leading '/' from member names.

home/alex/

home/alex/.bash_history

home/alex/.bash_profile

...

In the next example, the same directory is saved on the tape device /dev/st0 with a blocking factor of 100. Without the v modifier, tar
does not display the list of files it is writing to the tape. The command runs in the background and displays any messages after the shell
issues a new prompt.

$ tar -cb 100 -f /dev/st0 /home/alex &

[1] 4298

$ tar: Removing leading '/' from member names.

The next command displays the table of contents of the archive on tape device /dev/ftape:

$ tar -tvf /dev/ftape

drwxrwxrwx alex/group 0 Jun 30 21:39 2004 home/alex/

-rw-r--r-- alex/group 678 Aug 6 14:12 2005 home/alex/.bash_history

-rw-r--r-- alex/group 571 Aug 6 14:06 2005 home/alex/.bash_profile

drwx------ alex/group 0 Nov 6 22:34 2005 home/alex/mail/

-rw------- alex/group 2799 Nov 6 22:34 2005 home/alex/mail/sent-mail

...

In the last example, Alex creates a gzipped tar archive in /tmp/alex.tgz. This approach is a popular way to bundle files that you want
to transfer over a network or otherwise share with others. Ending a filename with .tgz is one convention for identifying gzipped tar
archives. Another convention is to end the filename with .tar.z.

$ tar -czf /tmp/alex.tgz literature

The next command lists the files in the compressed archive alex.tgz:

$ tar -tzvf /tmp/alex.tgz

...

tee: Copies standard input to standard output and one or more files

tee [options] file-list

The tee utility copies standard input to standard output and to one or more files.

Arguments

The file-list is a list of the pathnames of files that receive output from tee.

Options

Without any options, tee overwrites the output files if they exist and responds to interrupts. If a file in file-list does not exist, tee
creates it.

––append –a Appends output to existing files rather than overwriting
them.

––ignore-interrupts

–i Causes tee not to respond to interrupts.

Examples

In the following example, a pipe sends the output from make to tee, which copies it to standard output and the file accounts.out. The
copy that goes to standard output appears on the screen. The cat utility displays the copy that was sent to the file:

$ make accounts | tee accounts.out

 cc -c trans.c

 cc -c reports.c

...

$ cat accounts.out

 cc -c trans.c

 cc -c reports.c

...

Refer to page 787 for a similar example that uses tail –f rather than tee.

telnet: Connects to a remote system over a network

telnet [options] [remote-system]

The telnet utility implements the TELNET protocol to connect to a remote system over a network.

security: telnet is not secure

The telnet utility is not secure. It sends your username and password over the network as cleartext, which is not a secure
practice. Use ssh (page 773) when it is available.

Arguments

The remote-system is the name or IP address of the remote system that telnet connects to. When you do not specify a remote-system ,
telnet works interactively and prompts you to enter one of the commands described in this section.

Options

–e c

 (escape) Changes the escape character from CONTROL-] to the character c.

–K Prevents automatic login.

–l username

 Attempts an automatic login on the remote system using username . If the
remote system understands how to handle automatic login with telnet, you are
prompted for a password.

Discussion

After telnet connects to a remote system, you can put telnet in command mode by typing the escape character (usually CONTROL-
]). A remote system should report the escape character it recognizes. To leave command mode, type RETURN on a line by itself.

In command mode telnet displays the telnet> prompt. You can use the following commands in command mode:

? (help) Displays a list of commands recognized by the telnet utility
on the local system.

close Closes the connection to the remote system. If you specified the
name of a system on the command line when you started telnet,
close has the same effect as quit: The telnet program quits, and
the shell displays a prompt. If you used the open command instead
of specifying a remote system on the command line, close returns
telnet to command mode.

logout Logs you off of the remote system; similar to close.

open remote-computer

 If you did not specify a remote system on the command line or if
the attempt to connect to the system failed, you can specify the
name of a remote system interactively with the open command.

quit Quits the telnet session.

z Suspends the telnet session. When you suspend a session, you
return to the login shell on the local system. To resume the
suspended telnet session, type fg at a shell prompt.

Notes

Many computers, including non-Linux systems, support the TELNET protocol. The telnet utility is a user interface to this protocol
for Linux systems that allows you to connect to many different types of systems. Although you typically use telnet to log in, the
remote computer may offer other services through telnet, such as access to special databases.

Examples

In the following example, the user connects to the remote system named bravo. After running a few commands, the user escapes to
command mode and uses the z command to suspend the telnet session so as to run a few commands on the local system. The user
gives an fg command to the shell to resume using telnet. The logout command on the remote system ends the telnet session, and
the local shell displays a prompt.

kudos% telnet bravo

Trying 192.168.0.55 ...

Connected to bravo.

Escape character is '^]'.

Fedora Core Release 2 (Tettnang)

Kernel 2.6.5-1.358 on an i686

login: watson

Password:

Last login: Wed Jul 31 10:37:16 from kudos

bravo $

...

bravo $CONTROL-]

telnet> z

[1]+ Stopped telnet bravo

kudos $

...

kudos $fg

telnet bravo

bravo$ logout

Connection closed by foreign host.

kudos $

test: Evaluates an expression

test expression

[expression]

The test utility evaluates an expression and returns a condition code indicating that the expression is either true (0) or false (not 0).
You can place brackets ([]) around the expression instead of using the word test (second format).

Arguments

The expression contains one or more criteria (see the following list) that test evaluates. A –a separating two criteria is a Boolean
AND operator: Both criteria must be true for test to return a condition code of true. A –o is a Boolean OR operator. When –o
separates two criteria, one or the other (or both) of the criteria must be true for test to return a condition code of true.

You can negate any criterion by preceding it with an exclamation point (!). You can group criteria with parentheses. If there are no
parentheses, –a takes precedence over –o, and test evaluates operators of equal precedence from left to right.

Within the expression you must quote special characters, such as parentheses, so that the shell does not interpret them but rather passes
them to test.

Because each element, such as a criterion, string, or variable within the expression, is a separate argument, you must separate each
element from other elements with a SPACE. Table V-25 lists the criteria you can use within the expression . Table V-26 lists test's
relational operators.

Table V-25. Criteria

Criterion Meaning

String True if string is not a null string.

–n string True if string has a length greater than zero.

–z string True if string has a length of zero.

string1 = string2 True if string1 is equal to string2 .

string1 != string2 True if string1 is not equal to string2 .

int1 relop int2 True if integer int1 has the specified algebraic relationship
to integer int2 . The relop is a relational operator from Table
V-26. As a special case, – l string , which gives the length of
string , may be used for int1 or int2 .

file1 –ef file2 True if file1 and file2 have the same device and inode
numbers.

file1 –nt file2 True if file1 was modified after file2 (the modification time
of file1 is newer than that of file2).

file1 – ot file2 True if file1 was modified before file2 (the modification
time of file1 is older than that of file2).

–b filename True if the file named filename exists and is a block special
file.

– c filename True if the file named filename exists and is a character
special file.

– d filename True if the file named filename exists and is a directory.

– e filename True if the file named filename exists.

–f filename True if the file named filename exists and is an ordinary file.

– g filename True if the file named filename exists and its setgid bit (page
94) is set.

– G filename True if the file named filename exists and is associated with
the group that is the primary group of the user running the
command (same effective group ID).

– k filename True if the file named filename exists and its sticky bit
(page 903) is set.

– L filename True if the file named filename exists and is a symbolic link.

– O filename True if the file named filename exists and is owned by the
user running the command (same effective user ID).

–p filename True if the file named filename exists and is a named pipe.

– r filename True if the file named filename exists and you have read
permission for it.

–s filename True if the file named filename exists and contains
information (has a size greater than 0 bytes).

–t file-descriptor True if file-descriptor is associated with the
screen/keyboard. The file-descriptor for standard input is 0,
for standard output is 1, and for standard error is 2.

–u filename True if the file named filename exists and its setuid bit (page
94) is set.

–w filename True if the file named filename exists and you have write
permission for it.

–x filename True if the file named filename exists and you have execute
permission for it.

Table V-26. Relational operators

Relop Meaning

– eq Equal to

– ge Greater than or equal to

– gt Greater than

– le Less than or equal to

– lt Less than

– ne Not equal to

Notes

The test command is built into the Bourne Again and TC Shells.

Examples

The following examples demonstrate the use of the test utility in Bourne Again Shell scripts. Although test works from a command
line, it is more commonly employed in shell scripts to test input or verify access to a file.

The first example prompts the user, reads a line of input into a variable, and uses the synonym for test, [], to see whether the user
entered yes:

$ cat user_in

echo -n "Input yes or no: "

read user_input

if ["$user_input" = "yes"]

 then

 echo You input yes.

fi

The next example prompts for a filename and then uses the synonym for test, [], to see whether the user has read access permission
(–r) for the file and (–a) whether the file contains information (–s):

$ cat validate

echo -n "Enter filename: "

read filename

if [-r "$filename" -a -s "$filename"]

 then

 echo File $filename exists and contains information.

 echo You have read access permission to the file.

fi

The –t 1 criterion checks whether the process running test is sending standard output to the screen. If it is, the test utility returns a
value of true (0). The shell stores the exit status of the last command it ran in the $? variable. The following script tests whether its
output is going to a terminal:

$ cat term

test -t 1

echo "This program is (=0) or is not (=1)

sending its output to a terminal:" $?

First term is run with the output going to the terminal:

$ term

This program is (=0) or is not (=1)

sending its output to a terminal: 0

The next example runs term and redirects the output to a file. The contents of the file temp show that test returned 1, indicating that
its output was not going to a terminal.

$ term > temp

$ cat temp

This program is (=0) or is not (=1)

sending its output to a terminal: 1

top: Dynamically displays process status

top [options]

The top utility displays information about the status of the local system including information about current processes.

Options

Although top does not require the use of hyphens with options, it is a good idea to include them for clarity and consistency with other
utilities. You can cause top to run as though you had specified any of the options by giving commands to the utility while it is running.
See "Discussion" for more information.

–d ss.tt

 (delay) Specifies ss.tt as the number of seconds and tenths of seconds of delay
from one display update to the next. The default is 3 seconds.

–i Ignores idle and zombie processes. (A zombie process is one without a parent.)

–n n

 (number) Specifies the number of iterations: top updates the display n times
and exits.

–p n

 (PID) Monitors the process with a PID of n. You can use this option up to 20
times on a command line or specify n as a comma-separated list of up to 20 PID
numbers.

–s (secure) Runs top in secure mode, restricting commands that you can use while
top is running to those that pose less security risk.

–S (sum) Causes top to run in cumulative mode. In cumulative mode, the CPU
times reported for processes include CPU times accumulated by child processes
that are now dead.

Discussion

The first few lines that top displays summarize the status of the local system. You can turn each of these lines on or off with the toggle
switches (interactive command keys) specified in the following descriptions. The first line is the same as the output of the uptime
utility and shows the current time, the amount of time the local system has been running since it was last booted, the number of users
logged in, and the load averages from the last 1, 5, and 15 minutes (toggle l [lowercase "l"]). The second line indicates the number of
processes that are currently running (toggle t). The next three lines report on CPU (also toggle t), memory (toggle m), and swap space
(also toggle m) use.

The rest of the display reports on individual processes, listed in descending order by current CPU usage (the most CPU-intensive
process is listed first). By default top displays the number of processes that fit on the screen.

Table V-27 describes the meanings of the fields displayed for each process.

Table V-27. Field names

Name Meaning

PID Process identification number

USER Username of the owner of the process

PR Priority of the process

NI nice value (see page 734)

VIRT Number of kilobytes of virtual memory used by the process

RES Number of kilobytes of physical (nonswapped) memory used by the
process

SHR Number of kilobytes of shared memory used by the process

S Status of the process (see STAT on page 748)

%CPU Percentage of the total CPU time that the process is using

%MEM Percentage of physical memory that the process is using

TIME[+] Total CPU time used by the process

COMMAND Command line that started the process or name of the program
(toggle with c)

While top is running, you can use the following commands to modify its behavior. Some of these commands are disabled when you
run top in secure mode (–s option).

h (help) Displays a summary of the commands you can use while top is running.

k (kill) Allows you to kill a process. Unless you are Superuser, you can kill only
processes you own. When you use this command, top prompts you for the PID
of the process and the signal to send to the process. You can enter either a
signal number or name. (See Table 11-5 on page 494 for a list of signals.) This
command is disabled in secure mode.

n (number) When you give this command, top asks you to enter the number of
processes you want it to display. If you enter 0 (the default) top shows as many
processes as fit on the screen.

q (quit) Terminates top.

r (renice) Changes the priority of a running process (refer to nice on page 734).
Unless you are Superuser, you can change the priority of only your own
processes and even then only to lower the priority by entering a positive value.
Superuser can enter a negative value, increasing the priority of the process. This
command is disabled in secure mode.

s (seconds) Prompts you for the number of seconds to delay between updates to
the display (3 is the default). You may enter an integer, a fraction, or 0 (for
continuous updates). This command is disabled in secure mode.

S (switch) Switches top back and forth between cumulative mode and regular
mode. See the –S option for details.

W (write) Writes top's current configuration to your personal configuration file
(~/.toprc).

SPACE

 Refreshes the screen.

Notes

The top utility is similar to ps but periodically updates the display, enabling you to watch the behavior of the local system over time.

This utility shows only as much of the command line for each process as fits on a line. If a process is swapped out, top replaces the
command line with the name of the command in parentheses.

The top utility uses the proc filesystem: When proc is not mounted, top does not work.

Requesting continuous updates is almost always a mistake. The display updates too quickly and the system load increases dramatically.

Examples

The following display is the result of a typical execution of top:

top - 23:30:31 up 18 days, 30 min, 6 users, load average: 0.08, 0.07, 0.01

Tasks: 125 total, 1 running, 124 sleeping, 0 stopped, 0 zombie

Cpu(s): 0.9% us, 0.7% sy, 0.0% ni, 98.4% id, 0.0% wa, 0.0% hi, 0.0% si

Mem: 1037272k total, 1023048k used, 14224k free, 126684k buffers

Swap: 2048248k total, 0k used, 2048248k free, 382612k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

 2029 root 15 0 227m 96m 132m S 0.4 9.5 192:12.51 X

 2214 sam 15 0 34728 20m 29m S 0.4 2.0 351:08.69 kdeinit

14314 sam 16 0 22736 12m 18m S 0.2 1.3 0:07.83 gaim

15476 sam 16 0 2760 932 1620 R 0.2 0.1 0:00.93 top

 1 root 16 0 1836 464 1316 S 0.0 0.0 0:06.74 init

 2 root 34 19 0 0 0 S 0.0 0.0 0:00.01 ksoftirqd/0

 3 root 5 -10 0 0 0 S 0.0 0.0 0:00.65 events/0

 4 root 5 -10 0 0 0 S 0.0 0.0 0:00.01 kblockd/0

 6 root 5 -10 0 0 0 S 0.0 0.0 0:00.06 khelper

 5 root 15 0 0 0 0 S 0.0 0.0 0:00.00 khubd

 7 root 15 0 0 0 0 S 0.0 0.0 0:03.36 pdflush

 10 root 11 -10 0 0 0 S 0.0 0.0 0:00.00 aio/0

 9 root 15 0 0 0 0 S 0.0 0.0 0:17.85 kswapd0

touch: Changes a file's access and/or modification time

touch [options] file-list

The touch utility changes the access and/or modification time of a file to the current time or a time you specify.

Arguments

The file-list is a list of the pathnames of the files that touch will update.

Options

Accepts the common options described on page 587. Without any options touch changes the access and modification times to the
current time. When you do not specify the ––no-create option, touch creates files that do not exist.

––time=atime or
––time=access

–a Updates the access time only, leaving the modification time
unchanged.

––no–create –c Does not create files that do not exist.

––date=datestring

 –d datestring

 Updates times with the date specified by datestring . Most
familiar formats are permitted for datestring . Components of
the date and time not included in datestring are assumed to be
the current date and time. This option may not be used with –t.

––time=mtime or ––time=modify

 –m Updates the modification time only, leaving the access time
unchanged.

––reference=file –r file

 Updates times with the times of file.

 –t [[cc] yy]nnddhhmm [.ss]

 Changes times to the date specified by the argument. The nn
is the number of the month (01–12), dd is the day of the month
(01–31), hh is the hour based on a 24-hour clock (00–23), and
mm is the minutes (00–59). You must specify at least these
fields. You can specify the number of seconds past the start of
the minute with .ss.

The optional cc specifies the first two digits of the year (the
value of the century minus 1), and yy specifies the last two
digits of the year. When you do not specify a year, touch
assumes the current year. When you do not specify cc, touch
assumes 20 for yy in the range 0–68 and 19 for yy in the range
69–99.

This option may not be used with –d.

Examples

The first three commands show touch updating an existing file. The ls utility with the –l option displays the modification time of the
file. The last three commands show touch creating a file.

$ ls -l program.c

-rw-r--r-- 1 alex group 5860 Apr 21 09:54 program.c

$ touch program.c

$ ls -l program.c

-rw-r--r-- 1 alex group 5860 Aug 13 19:01 program.c

$ ls -l read.c

ls: read.c: No such file or directory

$ touch read.c

$ ls -l read.c

-rw-rw-r-- 1 alex group 0 Aug 13 19:01 read.c

The next example demonstrates the use of the –a option to change the access time only and the –d option to specify a date for touch to
use instead of the current date and time. The first ls command displays the file modification times; the second ls (with the
––time=atime option) displays file access times. In this case the touch command does not have the intended effect: The access times
of the files cases and excerpts are changed to 7:00 on the current date and three unwanted files are created. Because the date was not
quoted (by surrounding it with double quotation marks), touch assumed that 7:00 went with the –d option and created the pm, Jul,
and 30 files.

$ ls -l

-rw-rw-r-- 1 alex group 45 Nov 30 2005 cases

-rw-rw-rw- 1 alex group 14 Jan 8 2006 excerpts

$ ls -l --time=atime

-rw-rw-r-- 1 alex group 45 Jul 17 19:47 cases

-rw-rw-rw- 1 alex group 14 Jul 17 19:47 excerpts

$ touch -a -d 7:00 pm Jul 30 cases excerpts

$ ls -l

-rw-rw-r-- 1 alex group 0 Aug 11 12:23 30

-rw-rw-r-- 1 alex group 0 Aug 11 12:23 Jul

-rw-rw-r-- 1 alex group 45 Nov 30 2005 cases

-rw-rw-rw- 1 alex group 14 Jan 8 2006 excerpts

-rw-rw-r-- 1 alex group 0 Aug 11 12:23 pm

$ ls -l --time=atime

-rw-rw-r-- 1 alex group 0 Aug 11 07:00 30

-rw-rw-r-- 1 alex group 0 Aug 11 07:00 Jul

-rw-rw-r-- 1 alex group 45 Aug 11 07:00 cases

-rw-rw-rw- 1 alex group 14 Aug 11 07:00 excerpts

-rw-rw-r-- 1 alex group 0 Aug 11 07:00 pm

The final example is the same as the preceding one but correctly encloses the date within double quotation marks. After the touch
command is executed, ls shows that the access times of the files cases and excerpts have been updated as expected:

$ ls -l

-rw-rw-r-- 1 alex group 45 Nov 30 2005 cases

-rw-rw-rw- 1 alex group 14 Jan 8 2006 excerpts

$ ls -l --time=atime

-rw-rw-r-- 1 alex group 45 Jul 17 19:47 cases

-rw-rw-rw- 1 alex group 14 Jul 17 19:47 excerpts

$ touch -a -d "7:00 pm Jul 30" cases excerpts

$ ls -l

-rw-rw-r-- 1 alex group 45 Nov 30 2005 cases

-rw-rw-rw- 1 alex group 14 Jan 8 2006 excerpts

$ ls -l --time=atime

-rw-rw-r-- 1 alex group 45 Jul 30 19:00 cases

-rw-rw-rw- 1 alex group 14 Jul 30 19:00 excerpts

tr: Replaces specified characters

tr [options] string1 [string2]

The tr utility reads standard input and, for each input character, maps it to an alternate character, deletes the character, or leaves the
character alone. This utility reads from standard input and writes to standard output.

Arguments

The tr utility is typically used with two arguments, string1 and string2 . The position of each character in the two strings is important:
Each time tr finds a character from string1 in its input, it replaces that character with the corresponding character from string2 .

With one argument, string1 , and the ––delete option, tr deletes the characters specified in string1 . The option ––squeeze-repeats
replaces multiple sequential occurrences of characters in string1 with single occurrences (for example, abbc becomes abc).

Ranges

A range of characters is similar in function to a character class within a regular expression (page 829). GNU TR does not support
ranges (character classes) enclosed within brackets. You can specify a range of characters by following the character that appears
earlier in the collating sequence with a hyphen and then the character that comes later in the collating sequence. For example, 1–6
expands to 123456. Although the range A–Z expands as you would expect in ASCII, this approach does not work when you use the
EBCDIC collating sequence, as these characters are not sequential in EBCDIC. See "Character Classes" for a solution to this issue.

Character Classes

A TR character class is not the same as described elsewhere in this book. (GNU documentation uses the term list operator for what this
book calls a character class.) You specify a character class as '[:class:]', where class is a character class from Table V-28. You must
specify a character class in string1 unless you are performing case conversion (see "Examples" later in this section) or are using the –d
and –s options together.

Table V-28. Character classes

Class Meaning

alnum Letters and digits

alpha Letters

blank Whitespace

cntrl CONTROL characters

digit Digits

graph Printable characters but not SPACEs

lower Lowercase letters

print Printable characters including SPACEs

punct Punctuation characters

space Horizontal or vertical whitespace

upper Uppercase letters

xdigit Hexadecimal digits

Options

––complement –c Complements string1 , causing TR to match all
characters except those in string1 .

––delete –d Deletes characters that match those specified in
string1 . If you use this option with the ––squeeze-
repeats option, you must specify both string1 and
string2 (see "Notes").

––help Summarizes how to use TR, including the special
symbols you can use in string1 and string2 .

––squeeze-repeats

 –s Replaces multiple sequential occurrences of a
character in string1 with a single occurrence of
the character when you call TR with only one
string argument. If you use both string1 and
string2 , the tr utility first translates the characters
in string1 to those in string2 and then reduces
multiple sequential occurrences of characters in
string2 .

––truncate-set1 –t Truncates string1 so it is the same length as
string2 before processing input.

Notes

When string1 is longer than string2 , the initial portion of string1 (equal in length to string2) is used in the translation. When string1 is
shorter than string2 , tr uses the last character of string1 to extend string1 to the length of string2 . In this case tr departs from the
POSIX standard, which does not define a result.

If you use the ––delete and ––squeeze-repeats options at the same time, tr deletes the characters in string1 and then reduces multiple
sequential occurrences of characters in string2 .

Examples

You can use a hyphen to represent a range of characters in string1 or string2 . The two command lines in the following example
produce the same result:

$ echo abcdef | tr 'abcdef' 'xyzabc'

xyzabc

$ echo abcdef | tr 'a-f' 'x-za-c'

xyzabc

The next example demonstrates a popular method for disguising text, often called ROT13 (rotate 13) because it replaces the first letter
of the alphabet with the thirteenth, the second with the fourteenth, and so forth.

$ echo The punchline of the joke is ... |

> tr 'A-M N-Z a-m n-z' 'N-Z A-M n-z a-m'

Gur chapuyvar bs gur wbxr vf ...

To make the text intelligible again, reverse the order of the arguments to tr:

$ echo Gur chapuyvar bs gur wbxr vf ... |

> tr 'N-Z A-M n-z a-m' 'A-M N-Z a-m n-z'

The punchline of the joke is ...

The ––delete option causes tr to delete selected characters:

$ echo If you can read this, you can spot the missing vowels! |

> tr --delete 'aeiou'

If y cn rd ths, y cn spt th mssng vwls!

In the following example, TR replaces characters and reduces pairs of identical characters to single characters:

$ echo tennessee | tr -s 'tnse' 'srne'

serene

The next example replaces each sequence of nonalphabetic characters (the complement of all the alphabetic characters as specified by

the character class alpha) in the file draft1 with a single NEWLINE character. The output is a list of words, one per line.

$ tr --complement --squeeze-repeats '[:alpha:]' '\n' < draft1

The next example uses character classes to upshift the string hi there:

$ echo hi there | tr '[:lower:]' '[:upper:]'

HI THERE

tty: Displays the terminal pathname

tty [option]

The tty utility displays the pathname of standard input if it is a terminal and displays not a tty if it is not a terminal. The exit status is
0 if standard input is a terminal and 1 if it is not.

Arguments

There are no arguments.

Options

Accepts the common options described on page 587.

––silent or ––quiet –s Causes tty not to print anything. The exit status of
tty is set.

Notes

The term tty is short for teletypewriter, the terminal device on which UNIX was first run. This command appears in UNIX, and Linux
has kept it for the sake of consistency and tradition.

Examples

The following example illustrates the use of tty:

$ tty

/dev/pts/11

$ echo $?

0

$ tty < memo

not a tty

$ echo $?

1

tune2fs: Changes parameters on an ext2 or ext3 filesystem

tune2fs [options] device

The tune2fs utility displays and modifies filesystem parameters on ext2 filesystems and on ext3 filesystems, which are modified ext2
filesystems. This utility can also set up journaling on an ext2 filesystem, turning it into an ext3 filesystem. With typical filesystem
permissions, tune2fs must be run as root.

Arguments

The device is the name of the device, such as /dev/hda8, that holds the filesystem whose parameters you want to display or modify.

Options

–c n

 (count) Sets the maximum number of times the filesystem can be mounted
between filesystem checks to n. Set n to 0 (zero) to disregard this parameter.

–C n

 (count) Sets the number of times the filesystem has been mounted without
being checked to n. This option is useful for staggering filesystem checks
(see "Discussion") and for forcing a check the next time the system boots.

–e behavior

 (error) Specifies what the kernel will do when it detects an error. Set
behavior to continue (continues execution), remount-ro (remounts the
filesystem readonly), or panic (causes a kernel panic). Regardless of how
you set this option, an error will cause fsck to check the filesystem next
time the system boots.

–i n[u]

 (interval) Sets the maximum time between filesystem checks to n time
periods. Without u or with u set to d, the time period is days. Set u to w to
set the time period to weeks; m for months. Set n to 0 (zero) to disregard
this parameter. Because a filesystem check is forced only when the system is
booted the time specified by this option may be exceeded.

–j (journal) Adds an ext3 journal to an ext2 filesystem. For more information
refer to "journaling filesystem" on page 883.

–l (list) Lists information about the filesystem.

–T date

 (time) Sets the time the filesystem was last checked to date . The date is the
time and date in the format yyymmdd [hh[mm]ss]]]. Here mm is the
number of the month (01–12) and dd is the day of the month (01–31). You
must specify at least these fields. The hh is the hour based on a 24-hour
clock (00–23), mm is the minutes (00–59), and .ss is the number of seconds
past the start of the minute. You can also specify date as now.

Discussion

Checking a large filesystem can take a long time. Use the –C and/or –T options to stagger filesystem checks so they do not all happen
at the same time. When all the filesystem checks occur at the same time it can take a long time for the system to boot.

Examples

Following is the output of tune2fs run with the –l option on a typical ext3 filesystem:

/sbin/tune2fs -l /dev/hda2

tune2fs 1.35 (28-Feb-2004)

Filesystem volume name: /p04

Last mounted on: <not available>

Filesystem UUID: 125be803-2f51-53ef-dfcf-292bf7e4ecc4

Filesystem magic number: 0xEF53

Filesystem revision #: 1 (dynamic)

Filesystem features: has_journal filetype needs_recovery

sparse_super

Default mount options: (none)

Filesystem state: clean

Errors behavior: Continue

Filesystem OS type: Linux

Inode count: 2562240

Block count: 5120718

Reserved block count: 256035

Free blocks: 3194303

Free inodes: 2554160

First block: 0

Block size: 4096

Fragment size: 4096

Blocks per group: 32768

Fragments per group: 32768

Inodes per group: 16320

Inode blocks per group: 510

Filesystem created: Sat May 17 15:22:29 2003

Last mount time: Sun Jan 30 23:00:37 2005

Last write time: Sun Jan 30 23:00:37 2005

Mount count: 5

Maximum mount count: 30

Last checked: Thu Dec 2 01:02:46 2004

Check interval: 15552000 (6 months)

Next check after: Tue May 31 02:02:46 2005

Reserved blocks uid: 0 (user root)

Reserved blocks gid: 0 (group root)

First inode: 11

Inode size: 128

Journal inode: 8

Default directory hash: tea

Directory Hash Seed: 81345bv8-740d-4af5-c5bc-12033ed7c121

Journal backup: inode blocks

umask: Establishes the file-creation permissions mask

umask [mask]

The umask builtin specifies a mask that the system uses to set access permissions when you create a file. This builtin works slightly
differently in each of the shells.

Arguments

The mask can be a three-digit octal number (bash and tcsh) or a symbolic value (bash) such as you would use with chmod (page 604).
The mask specifies the permissions that are not allowed.

When mask is an octal number, the digits correspond to the permissions for the owner of the file, members of the group the file is
associated with, and everyone else. Because the mask specifies the permissions that are not allowed, the system subtracts each of these
digits from 7 when you create a file. The resulting three octal numbers specify the access permissions for the file (the numbers you
would use with chmod). A mask that you give as a symbolic value also specifies the permissions that are not allowed. See "Notes."

Without any arguments, umask displays the file-creation permissions mask .

Notes

Most utilities and applications do not attempt to create files with execute permissions, regardless of the value of mask ; they assume
that you do not want an executable file. As a result, when a utility or application such as touch creates a file, the system subtracts each
of the digits in mask from 6. An exception occurs with mkdir, which does assume that you want the execute (access in the case of a
directory) bit set. See "Examples."

The umask program is a builtin in bash and tcsh and generally goes in the initialization file for your shell (~/.bash_profile [bash] or
~/.login [tcsh]).

Under bash the argument g=r,o=r turns on the write bit in the mask for groups and other users (the mask is 0033), causing those bits

to be off in file permissions (744 or 644). Refer to chmod on page 604 for more information about symbolic permissions.

Examples

The following commands set the file-creation permissions mask and display the mask and its effect when you create a file and a
directory. The mask of 022, when subtracted from 777, gives permissions of 644 (rw–r––r––) for a file and 755 (rwxr–xr–x) for a
directory:

$ umask 022

$ umask

022

$ touch afile

$ mkdir adirectory

$ ls -ld afile adirectory

drwxr-xr-x 2 max max 4096 Jul 24 11:25 adirectory

-rw-r--r-- 1 max max 0 Jul 24 11:25 afile

The next example sets the same mask value symbolically:

$ umask g=rx,o=rx

$ umask

022

uniq: Displays unique lines

uniq [options] [input-file] [output-file]

The uniq utility displays its input, removing all but one copy of successive repeated lines. If the file has been sorted (see sort on page
762), uniq ensures that no two lines that it displays are the same.

Arguments

When you do not specify the input-file , uniq reads from standard input. When you do not specify the output-file , uniq writes to
standard output.

Options

Accepts the common options described on page 587. A field is a sequence of characters bounded by SPACE s, TABs, NEWLINEs, or
a combination of these characters.

––count –c Precedes each line with the number of occurrences of the line
in the input file.

––repeated –d Displays one copy of lines that are repeated; does not display
lines that are not repeated.

––skip-fields=nfield

 –f nfield

 Ignores the first nfield blank-separated fields of each line. The
uniq utility bases its comparison on the remainder of the line,
including the leading blanks of the next field on the line (see
the ––skip-chars option).

––ignore-case –i Ignores case when comparing lines.

––skip-chars=nchar

 –s nchar

 Ignores the first nchar characters of each line. If you also use
the ––skip-fields option, uniq ignores the first nfield fields
followed by nchar characters. You can use this option to skip
over leading blanks of a field.

––unique –u Displays only lines that are not repeated.

––check-chars=nchar

–w nchar

 Compares up to nchars characters on a line after honoring the ––skip-fields
and ––skip-chars options. By default uniq compares the entire line.

Examples

These examples assume that the file named test in the working directory contains the following text:

$ cat test

boy took bat home

boy took bat home

girl took bat home

dog brought hat home

dog brought hat home

dog brought hat home

Without any options, uniq displays only one copy of successive repeated lines:

$ uniq test

boy took bat home

girl took bat home

dog brought hat home

The ––count option displays the number of consecutive occurrences of each line in the file:

$ uniq --count test

 2 boy took bat home

 1 girl took bat home

 3 dog brought hat home

The ––repeated option displays only lines that are consecutively repeated in the file.

$ uniq --repeated test

boy took bat home

dog brought hat home

The ––unique option displays only lines that are not consecutively repeated in the file:

$ uniq --unique test

girl took bat home

Next the ––skip-fields option skips the first field in each line, causing the lines that begin with boy and the one that begins with girl to
appear to be consecutive repeated lines. The uniq utility displays only one occurrence of these lines:

$ uniq --skip-fields=1 test

boy took bat home

dog brought hat home

The next example uses both the –f (––skip-fields) and –s (––skip-chars) arguments first to skip two fields and then to skip two
characters. The two characters this command skips include the SPACE that separates the second and third fields and the first character
of the third field. Ignoring these characters, all the lines appear to be consecutive repeated lines containing the string at home. The
uniq utility displays only the first of these lines:

$ uniq -f 2 -s 2 test

boy took bat home

w: Displays information about system users

w [options] [username]

The w utility displays the names of users who are currently logged in, together with their terminal device numbers, the times they
logged in, the commands they are running, and other information.

Options

–f (from) Removes the FROM column. For users who are directly connected,
this field contains a hyphen.

–h (no header) Suppresses the header line.

–s (short) Displays less information: username, terminal device, idle time, and
command.

Arguments

The username restricts the display to information about that user.

Discussion

The first line that w displays is the same as that displayed by uptime. This line includes the time of day, how long the system has been
running (in days, hours, and minutes), how many users are logged in, and how busy the system is (load average). From left to right, the
load averages indicate the number of processes that have been waiting to run in the past 1 minute, 5 minutes, and 15 minutes.

The columns of information that w displays have the following headings:

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

The USER is the username of the user. The TTY is the device name for the line that the user is on. The FROM is the system name
that a remote user is logged in from; it is a hyphen for a local user. The LOGIN@ gives the date and time the user logged in. The
IDLE indicates how many minutes have elapsed since the user last used the keyboard. The JCPU is the CPU time used by all
processes attached to the user's tty, not including completed background jobs. The PCPU is the time used by the process named in the
WHAT column. The WHAT is the command that user is running.

Examples

The first example shows the full list produced by the w utility:

$ w

 10:26am up 1 day, 55 min, 6 users, load average: 0.15, 0.03, 0.01

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

alex tty1 - Fri 9am 20:39m 0.22s 0.01s vim td

alex tty2 - Fri 5pm 17:16m 0.07s 0.07s -bash

root pts/1 - Fri 4pm 14:28m 0.20s 0.07s -bash

jenny pts/2 - Fri 5pm 3:23 0.08s 0.08s /bin/bash

hls pts/3 potato 10:07am 0.00s 0.08s 0.02s w

The next example shows the –s option producing an abbreviated listing:

$ w -s

 10:30am up 1 day, 58 min, 6 users, load average: 0.15, 0.03, 0.01

USER TTY FROM IDLE WHAT

alex tty1 - 20:43m vim td

alex tty2 - 17:19m -bash

root pts/1 - 14:31m -bash

jenny pts/2 - 0.20s vim memo.030125

hls pts/3 potato 0.00s w -s

The final example requests information only about Alex:

$ w alex

 10:35am up 1 day, 1:04, 6 users, load average: 0.06, 0.01, 0.00

USER TTY FROM LOGIN@ IDLE JCPU PCPU WHAT

alex tty1 - Fri 9am 20:48m 0.22s 0.01s vim td

alex tty2 - Fri 5pm 17:25m 0.07s 0.07s -bash

wc: Displays the number of lines, words, and bytes

wc [options] [file-list]

The wc utility displays the number of lines, words, and bytes in its input. When you specify more than one file on the command line,
wc displays totals for each file as well as totals for the group of files.

Arguments

The file-list is a list of the pathnames of one or more files that wc analyzes. When you omit file-list , the wc utility takes its input from
standard input.

Options

Accepts the common options described on page 587.

––bytes –c Displays only the number of bytes in the input.

––lines –l (lowercase "l") Displays only the number of lines (that is,
NEWLINE characters) in the input.

––max-line-length

 –L Displays the length of the longest line in the input.

––chars –m Displays only the number of characters in the input.

––words –w Displays only the number of words in the input.

Notes

A word is a sequence of characters bounded by SPACE s, TAB s, NEWLINE s, or a combination of these characters.

Examples

The following command analyzes the file named memo. The numbers in the output represent the number of lines, words, and bytes in
the file:

$ wc memo

 5 31 146 memo

The next command displays the number of lines and words in three files. The line at the bottom, with the word total in the right
column, contains the sum of each column.

$ wc -lw memo1 memo2 memo3

 10 62 memo1

 12 74 memo2

 12 68 memo3

 34 204 total

which: Shows where in PATH a command is located

which command-list

For each command in command-list , the which utility searches the directories in the PATH variable (page 284) and displays the
absolute pathname of the first file it finds whose simple filename is the same as the command.

Arguments

The command-list is a list of one or more commands (utilities) that which searches for. For each command which searches the
directories listed in the PATH environment variable, in order, and displays the full pathname of the first command (executable file) it
finds. If which does not locate a command, it displays a message.

Options

––all –a Displays all matching executable files in PATH, not just the
first.

––read-alias –i Reads aliases from standard input and reports on matching
aliases in addition to executable files in PATH (turn off with
––skip-alias).

––read-functions

 Reads shell functions from standard input and reports on
matching functions in addition to executable files in PATH (turn
off with ––skip-functions).

––show-dot Displays ./ in place of the absolute pathname when a directory in
PATH starts with a period and a matching executable file is in
that directory (turn off with ––skip-dot).

––show-tilde Displays a tilde (~) in place of the absolute pathname of the
user's home directory where appropriate. This option is ignored
when Superuser runs which.

––tty-only Do not process more options (to the right of this option) if the
process running which is not attached to a terminal.

Notes

Many distributions define an alias for which such as the following:

$alias which

alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot --show-tilde'

If which is not behaving as you would expect, verify that you are not running an alias. The preceding alias causes which to be effective
only when it is run interactively (––tty-only) and to display aliases, display the working directory as a period when appropriate, and
display the name of the user's home directory as a tilde.

The TC Shell includes a which builtin (see the tcsh man page) that works slightly differently from the which utility (/usr/bin/which).
Without any options the which utility does not locate aliases, functions, and shell builtins because these do not appear in PATH. In
contrast the tcsh which builtin locates aliases, functions, and shell builtins.

Examples

The first example quotes the first letter of the command (\which) to prevent the shell from invoking the alias (page 313) for which:

$ \which vim dir which

/usr/bin/vim

/usr/bin/dir

/usr/bin/which

The next example is the same as the first but uses the alias for which (which it displays):

$ which vim dir which

alias which='alias | /usr/bin/which --tty-only --read-alias --show-dot --show-tilde'

/usr/bin/which

/usr/bin/vim

/usr/bin/dir

The final example is the same as the previous one except that it is run from tcsh. The tcsh which builtin is used instead of the which
utility:

tcsh $ which vim dir which

/usr/bin/vim

/usr/bin/dir

which: shell built-in command.

who: Displays information about logged-in users

who [options]

who am i

The who utility displays information about users who are logged in on the local system. This information includes each user's
username, terminal device, login time, and, if applicable, the corresponding remote hostname or X display.

Arguments

When given two arguments (traditionally, am i), who displays information about the user giving the command. If applicable, the
username is preceded by the hostname of the system running who (as in kudos!alex).

Options

Accepts the common options described on page 587.

––all –a Displays a lot of information.

–– boot –b Displays the date and time the system was last booted.

––heading –H Displays a header.

––login –l (lowercase "l") Lists devices waiting for a user to log in.

––count –q (quick) Lists the usernames only, followed by the number of users
logged in on the system.

––message
or ––mesg

–T Appends after each user's username a character that shows whether
that user has messages enabled. A plus (+) means that messages are
enabled, a hyphen (–) means that they are disabled, and a question
mark (?) indicates that who cannot find the device. If messages are
enabled, you can use write to communicate with the user. Refer to
"mesg: Denies or Accepts Messages" on page 68.

––users –u Includes each user's idle time in the display. If the user has typed on
her terminal in the past minute, a period (.) appears in this field. If
no input has occurred for more than a day, the word old appears. In
addition, this option includes the PID number and comment fields.
See "Discussion."

Discussion

The line that who displays has the following syntax:

user [messages] line login-time [idle] [PID] comment

The user is the username of the user. The messages indicates whether messages are enabled or disabled (see the ––message option).
The line is the device name associated with the line the user is logged in on. The login-time is the date and time that the user logged
in. The idle is the length of time since the terminal was last used (the idle time; see the ––idle option). The PID is the process
identification number. The comment is the remote system or X display that the user is logged in from (blank for local users).

Notes

The finger utility (page 661) provides information similar to that given by who.

Examples

The following examples demonstrate the use of the who utility:

$ who

hls tty1 Jul 30 06:01

jenny tty2 Jul 30 06:02

alex ttyp3 Jul 30 14:56 (bravo)

$ who am i

bravo!alex ttyp3 Jul 30 14:56 (bravo)

$ who --heading --users -T

USER LINE TIME IDLE PID COMMENT

hls - tty1 Jul 30 06:01 03:53 1821

jenny + tty2 Jul 30 06:02 14:47 2235

alex + ttyp3 Jul 30 14:56 . 14777 (bravo)

xargs: Converts standard input into command lines

xargs [options] [command]

The xargs utility is a convenient, efficient way to convert standard output of one command into arguments for another command. This
utility reads from standard input, keeps track of the maximum allowable length of a command line, and avoids exceeding that limit by
repeating command as needed. Finally xargs executes the constructed command line.

Arguments

The command is the command line you want xargs to use as a base for the command it constructs. If you omit command , it defaults
to echo. The xargs utility appends to command the arguments it receives from standard input. If any arguments should precede the
arguments from standard input, you must include them as part of command .

Options

––replace[=marker]

–i[marker]

 Allows you to place arguments from standard input anywhere
within command . All occurrences of marker in command for
xargs are replaced by the arguments generated from standard
input of xargs. If you omit marker , it defaults to the string { },
which matches the syntax used in the find command –exec
option. With this option command is executed for each input
line; the ––max-lines option is ignored when you use
––replace.

––max–lines[=num]

–l [num]

 (lowercase "l") Executes command once for every num lines of
input (num defaults to 1).

––max–args=num

 –n num

 Executes command once for every num arguments in the input
line.

––interactive –p Prompts the user prior to each execution of command .

––max–procs=num

–P num

 Allows xargs to run up to maxprocs instances of command
simultaneously. (The default is 1, which runs command s
sequentially.) This option may improve the throughput if you
are running Linux on a multiprocessor system.

––no–run–if–empty

–r Causes xargs not to execute command if standard input is
empty. Ordinarily xargs executes command at least once, even
if standard input includes only blanks.

Discussion

The xargs utility reads arguments to command from standard input, interpreting each whitespace-delimited string as a separate
argument. It then constructs a command line from command and a series of arguments. When the maximum command line length
would be exceeded by adding another argument, xargs runs the command line it has built. If there is more input, xargs repeats the
process of building a command line and running it. This process continues until all input has been read.

Notes

One common use of xargs is as an efficient alternative to the –exec option of find (page 656). If you call find with the –exec option
to run a command, it runs the command once for each file it processes. Each execution of the command creates a new process, which
can drain system resources when you are processing many files. By accumulating as many arguments as possible, xargs can greatly
reduce the number of processes needed. The first example in the "Examples" section shows how to use xargs with find.

The ––replace option changes how xargs handles whitespace in standard input. Without this option xargs treats sequences of blanks,
TABS, and NEWLINES as equivalent. With this option xargs TReats NEWLINE characters in a special way. If it encounters a
NEWLINE in standard input when using the ––replace option, xargs runs command using the argument list that has been built up to
that point.

Examples

To locate and remove all files whose names end in .o from the working directory and its subdirectories, you can use the find –exec
option:

$ find . -name *.o -exec rm --force {} \;

This approach calls the rm utility once for each .o file that find locates. Each invocation of rm requires a new process. If a lot of .o
files exist, a significant amount of time is spent creating, starting, and then cleaning up these processes. You can reduce the number of
processes by allowing xargs to accumulate as many filenames as possible before calling rm:

$ find . -name *.o -print | xargs rm --force

In the next example, the contents of all *.txt files located by find are searched for lines containing the word login. All filenames that
contain login are displayed by grep.

$ find . -name *.txt -print | xargs grep -w -l login

The next example shows how you can use the ––replace option to cause xargs to embed standard input within command instead of
appending it to command . This option also causes command to be executed each time a NEWLINE character is encountered in
standard input; ––max-lines does not override this behavior.

$ cat names

Tom,

Dick,

and Harry

$ xargs echo "Hello, " < names

Hello, Tom, Dick, and Harry

$ xargs --replace echo "Hello {}. Join me for lunch?" <names

Hello Tom,. Join me for lunch?

Hello Dick,. Join me for lunch?

Hello and Harry. Join me for lunch?

The final example uses the same input file as the previous example as well as the ––max-args and ––max-lines options:

$ xargs echo "Hi there" < names

Hi there Tom, Dick, and Harry

$ xargs --max-args=1 echo "Hi there" < names

Hi there Tom,

Hi there Dick,

Hi there and

Hi there Harry

$ xargs --max-lines=2 echo "Hi there" < names

Hi there Tom, Dick,

Hi there and Harry

See page 775 for another example of the use of xargs.

 < Day Day Up >

 < Day Day Up >

Part VI: Appendixes

 APPENDIX A Regular Expressions

 APPENDIX B Help

 APPENDIX C Keeping The System Up-To-Date

 < Day Day Up >

 < Day Day Up >

Appendix A. Regular Expressions

IN THIS APPENDIX

Characters 828

Delimiters 828

Simple Strings 828

Special Characters 828

Rules 831

Bracketing Expressions 832

The Replacement String 833

Extended Regular Expressions 834

A regular expression defines a set of one or more strings of characters. A simple string of characters is a
regular expression that defines one string of characters: itself. A more complex regular expression uses
letters, numbers, and special characters to define many different strings of characters. A regular expression is
said to match any string it defines.

This appendix describes the regular expressions used by ed, vim, emacs, grep, gawk, sed, and other utilities.
The regular expressions used in shell ambiguous file references are different and are described in "Filename
Generation/Pathname Expansion" on page 127.

 < Day Day Up >

 < Day Day Up >

Characters

As used in this appendix, a character is any character except a NEWLINE. Most characters represent
themselves within a regular expression. A special character is one that does not represent itself. If you need
to use a special character to represent itself, you must quote it as explained on page 831.

 < Day Day Up >

 < Day Day Up >

Delimiters

A character called a delimiter usually marks the beginning and end of a regular expression. The delimiter is
always a special character for the regular expression it delimits (that is, it does not represent itself but marks
the beginning and end of the expression). Although vim permits the use of other characters as a delimiter and
grep does not use delimiters at all, the regular expressions in this appendix use a forward slash (/) as a
delimiter. In some unambiguous cases, the second delimiter is not required. For example, you can sometimes
omit the second delimiter when it would be followed immediately by RETURN.

 < Day Day Up >

 < Day Day Up >

Simple Strings

The most basic regular expression is a simple string that contains no special characters except the delimiters.
A simple string matches only itself (Table A-1). In the examples in this appendix, the strings that are
matched are underlined and look like this.

Table A-1. Simple strings

Regular expression Matches Examples

/ring/ ring ring, spring, ringing,
stringing

/Thursday/ Thursday Thursday , Thursday's

/or not/ or not or not, poor nothing

 < Day Day Up >

 < Day Day Up >

Special Characters

You can use special characters within a regular expression to cause the regular expression to match more
than one string. A regular expression that includes a special character always matches the longest possible
string, starting as far toward the beginning (left) of the line as possible.

Periods

A period (.) matches any character (Table A-2).

Table A-2. Period

Regular expression Matches Examples

/ .alk/ All strings consisting of a SPACE
followed by any character followed by
alk

will talk, may balk

/.ing/ All strings consisting of any character
preceding ing

sing song, ping,
before inglenook

Brackets

Brackets ([]) define a character class [1] that matches any single character within the brackets (Table A-3).
If the first character following the left bracket is a caret (^), the brackets define a character class that matches
any single character not within the brackets. You can use a hyphen to indicate a range of characters. Within a
character-class definition, backslashes and asterisks (described in the following sections) lose their special
meanings. A right bracket (appearing as a member of the character class) can appear only as the first
character following the left bracket. A caret is special only if it is the first character following the left
bracket. A dollar sign is special only if it is followed immediately by the right bracket.

[1] GNU documentation calls these List Operators and defines Character Class operators as expressions that match a
predefined group of characters, such as all numbers (see Table V-28 on page 804).

Table A-3. Brackets

Regular expression Matches Examples

/[bB]ill/ Member of the character class b and B
followed by ill

bill, Bill, billed

/t[aeiou].k/ t followed by a lowercase vowel, any
character, and a k

talkative, stink,
teak, tanker

/# [6–9]/ # followed by a SPACE and a member of
the character class 6 through 9

60, # 8:, get # 9

/[^a–zA–Z]/ Any character that is not a letter (ASCII
character set only)

1, 7, @, ., }, Stop!

Asterisks

An asterisk can follow a regular expression that represents a single character (Table A-4). The asterisk
represents zero or more occurrences of a match of the regular expression. An asterisk following a period
matches any string of characters. (A period matches any character, and an asterisk matches zero or more
occurrences of the preceding regular expression.) A character-class definition followed by an asterisk
matches any string of characters that are members of the character class.

Table A-4. Asterisks

Regular expression Matches Examples

/ab*c/ a followed by zero or more b's followed
by a c

ac, abc, abbc,
debbcaabbbc

/ab.*c/ ab followed by zero or more characters
followed by c

abc, abxc, ab45c,
xab 756.345 x cat

/t.*ing/ t followed by zero or more characters
followed by ing

thing, ting, I
thought of going

/[a–zA–Z]*/ A string composed only of letters and
SPACEs

1. any string
without numbers
or punctuation!

/(.*)/ As long a string as possible between (
and)

Get (this) and
(that);

/([^)]*)/ The shortest string possible that starts
with (and ends with)

(this), Get (this
and that)

Carets and Dollar Signs

A regular expression that begins with a caret (^) can match a string only at the beginning of a line. In a
similar manner, a dollar sign ($) at the end of a regular expression matches the end of a line. The caret and
dollar sign are called anchors because they force (anchor) a match to the beginning or end of a line (Table A-
5).

Table A-5. Carets and dollar signs

Regular expression Matches Examples

/^T/ A T at the beginning of a line This line...,

That Time...,

In Time

/^+[0–9]/ A plus sign followed by a digit at
the beginning of a line

+5 +45.72,

+759 Keep this...

/:$/ A colon that ends a line ...below:

Quoting Special Characters

You can quote any special character (but not a digit or a parenthesis) by preceding it with a backslash (Table
A-6). Quoting a special character makes it represent itself.

Table A-6. Quoted special characters

Regular expression Matches Examples

/end \ ./ All strings that contain end
followed by a period

The end., send.,
pretend.mail

/ \\ / A single backslash \

/ */ An asterisk *.c, an asterisk (*)

/ \[5 \] / [5] it was five [5]

/and\ /or / and/or and/or

 < Day Day Up >

 < Day Day Up >

Rules

The following rules govern the application of regular expressions.

Longest Match Possible

A regular expression always matches the longest possible string, starting as far toward the beginning of the
line as possible. For example, given the string

This (rug) is not what it once was (a long time ago), is it?

the expression /Th.*is/ matches

This (rug) is not what it once was (a long time ago), is

and /(.*)/ matches

(rug) is not what it once was (a long time ago)

However, /([^)]*)/ matches

(rug)

Given the string

singing songs, singing more and more

the expression /s.*ing/ matches

singing songs, singing

and /s.*ing song/ matches

singing song

Empty Regular Expressions

Within some utilities, such as vim and less (but not grep), an empty regular expression represents the last
regular expression that you used. For example, suppose you give vim the following Substitute command:

:s/mike/robert/

If you then want to make the same substitution again, you can use the following command:

:s//robert/

Alternatively, you can use the following commands to search for the string mike and then make the
substitution

/mike/

:s//robert/

The empty regular expression (//) represents the last regular expression you used (/mike/).

 < Day Day Up >

 < Day Day Up >

Bracketing Expressions

You can use quoted parentheses, \(and \), to bracket a regular expression. The string that the bracketed
regular expression matches can be recalled, as explained in "Quoted Digit." A regular expression does not
attempt to match quoted parentheses. Thus a regular expression enclosed within quoted parentheses matches
what the same regular expression without the parentheses would match. The expression /\(rexp\)/ matches
what /rexp/ would match; /a\(b*\)c/ matches what /ab*c/ would match.

You can nest quoted parentheses. The bracketed expressions are identified only by the opening \(, so no
ambiguity arises in identifying them. The expression /\([a–z]\([A–Z]*\)x\)/ consists of two bracketed
expressions, one nested within the other. In the string 3 t dMNORx7 l u, the preceding regular expression
matches dMNORx, with the first bracketed expression matching dMNORx and the second matching
MNOR.

 < Day Day Up >

 < Day Day Up >

The Replacement String

The vim and sed editors use regular expressions as search strings within Substitute commands. You can use
the ampersand (&) and quoted digits (\ n) special characters to represent the matched strings within the
corresponding replacement string.

Ampersand

Within a replacement string, an ampersand (&) takes on the value of the string that the search string (regular
expression) matched. For example, the following vim Substitute command surrounds a string of one or more
digits with NN. The ampersand in the replacement string matches whatever string of digits the regular
expression (search string) matched:

:s/[0-9][0-9]*/NN&NN/

Two character-class definitions are required because the regular expression [0–9]* matches zero or more
occurrences of a digit, and any character string constitutes zero or more occurrences of a digit.

Quoted Digit

Within the search string, a bracketed regular expression, \(xxx\), matches what the regular expression would
have matched without the quoted parentheses, xxx. Within the replacement string, a quoted digit, \n,
represents the string that the bracketed regular expression (portion of the search string) beginning with the
nth \(matched. For example, you can take a list of people in the form

last-name, first-name initial

and put it in the form

first-name initial last-name

with the following vim command:

:1,$s/\([^,]*\), \(.*\)/\2 \1/

This command addresses all the lines in the file (1,$). The Substitute command (s) uses a search string and a
replacement string delimited by forward slashes. The first bracketed regular expression within the search
string, \([^,]*\), matches what the same unbracketed regular expression, [^,]*, would match: zero or more
characters not containing a comma (the last-name). Following the first bracketed regular expression are a
comma and a SPACE that match themselves. The second bracketed expression, \(.*\), matches any string of
characters (the first-name and initial).

The replacement string consists of what the second bracketed regular expression matched (\2), followed by a
SPACE and what the first bracketed regular expression matched (\1).

 < Day Day Up >

 < Day Day Up >

Extended Regular Expressions

The three utilities egrep, grep when run with the –E option (similar to egrep), and gawk provide all the
special characters that are included in ordinary regular expressions, except for \ (and \), as well as several
others. The vim editor includes the additional characters as well as \ (and \). Patterns using the extended set
of special characters are called full regular expressions or extended regular expressions.

Two of the additional special characters are the plus sign (+) and the question mark (?). They are similar to
*, which matches zero or more occurrences of the previous character. The plus sign matches one or more
occurrences of the previous character, whereas the question mark matches zero or one occurrence. You can
use any one of the special characters *, +, and ? following parentheses, causing the special character to apply
to the string surrounded by the parentheses. Unlike the parentheses in bracketed regular expressions, these
parentheses are not quoted (Table A-7).

Table A-7. Extended regular expressions

Regular expression Matches Examples

/ab+c/ a followed by one or more b's
followed by a c

yabcw, abbc57

/ab?c/ a followed by zero or one b
followed by c

back, abcdef

/(ab)+c/ One or more occurrences of the
string ab followed by c

zabcd, ababc!

/(ab)?c/ Zero or one occurrence of the
string ab followed by c

xc, abcc

In full regular expressions, the vertical bar (|) special character is a Boolean OR operator. Within vim, you
must quote the vertical bar by preceding it with a backslash to make it special (\|). A vertical bar between
two regular expressions causes a match with strings that match the first expression, the second expression, or
both. You can use the vertical bar with parentheses to separate from the rest of the regular expression the two
expressions that are being ORed (Table A-8).

Table A-8. Full regular expressions

Regular expression Meaning Examples

/ab|ac/ Either ab or ac ab, ac, abac (abac
is two matches of
the regular
expression)

/^Exit|^Quit/ Lines that begin with Exit
or Quit

Exit,

Quit,

No Exit

/(D|N)\. Jones/ D. Jones or N. Jones P.D. Jones, N.
Jones

 < Day Day Up >

 < Day Day Up >

Appendix Summary

A regular expression defines a set of one or more strings of characters. A regular expression is said to match
any string it defines.

In a regular expression, a special character is one that does not represent itself. Table A-9 lists special
characters.

Table A-9. Special characters

Character Meaning

. Matches any single character

* Matches zero or more occurrences of a match of the
preceding character

^ Forces a match to the beginning of a line

$ A match to the end of a line

\ Used to quote special characters

\ < Forces a match to the beginning of a word

\ > Forces a match to the end of a word

Table A-10 lists ways of representing character classes and bracketed regular expressions.

Table A-10. Character classes and bracketed regular expressions

Class Defines

[xyz] Defines a character class that matches x, y, or z

[^ xyz] Defines a character class that matches any character except x,
y, or z

[x–z] Defines a character class that matches any character x
through z inclusive

\ (xyz \) Matches what xyz matches (a bracketed regular expression)

In addition to the preceding special characters and strings (excluding quoted parentheses, except in vim), the
characters given in Table A-11 are special within full, or extended, regular expressions.

Table A-11. Extended regular expressions

Expression Matches

+ Matches one or more occurrences of the preceding character

? Matches zero or one occurrence of the preceding character

(xyz)+ One or more occurrences of what xyz matches

(xyz)? Zero or one occurrence of what xyz matches

(xyz)* Zero or more occurrences of what xyz matches

xyz |abc Either what xyz or what abc matches (use \| in)

(xy |ab)c Either what xyc or what abc matches (use \| in vim)

Table A-12 lists characters that are special within a replacement string in sed and vim.

Table A-12. Replacement strings

String Represents

& Represents what the regular expression (search string)
matched

\n A quoted number, n, represents what the nth bracketed
regular expression in the search string matched

 < Day Day Up >

 < Day Day Up >

Appendix B. Help

IN THIS APPENDIX

Solving a Problem 838

Finding Linux-Related Information 839

Documentation 839

Useful Linux Sites 840

Linux Newsgroups 841

Mailing Lists 841

Words 841

Software 842

Office Suites and Word Processors 844

Specifying a Terminal 844

You need not act as a user or system administrator in isolation. A large community of Linux experts is
willing to assist you in learning about, helping you solve your problems with, and getting the most out of
your Linux system. Before you ask for help, however, make sure you have done everything you can to solve
the problem by yourself. No doubt, someone has experienced the same problem before you and the answer to
your question can be found somewhere on the Internet. Your job is to find it. This appendix lists resources
and describes methods that can help you in that task.

 < Day Day Up >

 < Day Day Up >

Solving A Problem

Following is a list of steps that can help you solve a problem without asking someone else for help.
Depending on your understanding of and experience with the hardware and software involved, these steps
may lead to a solution.

1. Most Linux distributions come with extensive documentation. Read the documentation on the specific
hardware or software you are having a problem with. If it is a GNU product, use info; otherwise, use man
to find local information. For more information refer to "Getting the Facts: Where to Find
Documentation" on page 29.

2. When the problem involves some type of error or other message, use a search engine, such as Google
(www.google.com) or Google Groups (groups.google.com), to look up the message on the Internet. If the
message is long, pick a unique part of the message to search for; 10 to 20 characters should be enough.
Enclose the search string within double quotation marks.

3. Check whether the Linux Documentation Project (www.tldp.org) has a HOWTO or mini-HOWTO on
the subject in question. Search on keywords that relate directly to the product and your problem. Read the
FAQs.

4. See Table B-1 for other sources of documentation.

Table B-1. Documentation

Site About the site URL

freedesktop.org Creates standards for
interoperability
between open source
desktop environments.

freedesktop.org

GNOME GNOME home page. www.gnome.org

GNU Manuals GNU manuals.

GNU manual on info.

www.gnu.org/manual

www.gnu.org/software/texinfo/manual/info

Internet FAQ
Archives

Searchable FAQ
archives.

www.faqs.org

Info Instructions for using
the info utility.

www.gnu.org/software/texinfo/manual/info

Red Hat
Documentation
and Support

This site has a search
engine that looks
through the Red Hat
Knowledgebase to help
answer your questions.
The site also has links
to online
documentation for Red
Hat products and a
section named
Quickhelp that links to
common topics of
interest.

www.redhat.com/apps/support

KDE
Documentation

KDE documentation. kde.org/documentation

KDE News KDE news. dot.kde.org

RFCs Request for Comments;
see RFC (page 898).

www.rfc-editor.org

System
Administrators
Guild (SAGE)

SAGE is a group for
system administrators.

www.sage.org

The Linux
Documentation
Project

All things related to
Linux documentation
(in many languages):
HOWTOs, guides,
FAQs, man pages, and
magazines. This is the
best overall source for
Linux documentation.
Make sure to visit its
Links page.

www.tldp.org

5. Use Google or Google Groups to search on keywords that relate directly to the product and your problem.

6. When all else fails (or perhaps before you try anything else) examine the system logs in /var/log.
Running as Superuser, first look at the end of the messages file using the following command:

tail -20 /var/log/messages

If messages contains nothing useful, run the following command. It displays the names of the log files in
chronological order, with the most recently modified files appearing at the bottom of the list:

$ ls -ltr /var/log

If your problem involves a network connection, review the secure log file (some systems may use a
different name) on the local and remote systems. Also look at messages on the remote system.

7. The /var/spool directory contains subdirectories with useful information: cups holds the print queues,
mail holds the user's mail files, and so on.

If you are unable to solve a problem yourself, a thoughtful question to an appropriate newsgroup (page 841)
or mailing list (page 841) can elicit useful information. When you send or post a question, make sure you
describe the problem and identify the local system carefully. Include the version numbers of the operating
system and any software packages that relate to the problem. Describe your hardware, if appropriate.

The author's home page (www.sobell.com) contains corrections to this book, answers to selected chapter
exercises, and pointers to other Linux sites.

 < Day Day Up >

 < Day Day Up >

Finding Linux-Related Information

Distributions of Linux come with reference pages stored online. You can read these documents by using the
info (page 32) or man (page 30) utilities. You can read man and info pages to get more information about
specific topics while reading this book or to determine which features are available with Linux. You can
search for topics by using apropos (see page 62 or give the command man apropos).

Documentation

Good books are available on various aspects of using and administrating UNIX systems in general and Linux
systems in particular. In addition, you may find the sites listed in Table B-1 useful.[1]

[1] The right-hand columns of most of the tables in this appendix show Internet addresses (URLs). All sites have an implicit
http:// prefix unless ftp:// or https:// is shown. Refer to "URLs (Web addresses)" on page 23.

Useful Linux Sites

Sometimes the sites listed in Table B-2 are so busy that you cannot log in. When this happens, you are
usually given a list of alternative, or mirror, sites to try.

Table B-2. Useful Linux sites

Site About the site URL

GNU GNU Project Web server. www.gnu.org

ibiblio A large library and digital archive.
Formerly Metalab; formerly Sunsite.

www.ibiblio.org

www.ibiblio.org/pub/linux

www.ibiblio.org/pub/historic-
linux

Linux Knowledge
Portal

A configurable site that gathers
information from other sites and
sources and presents it in a well-
organized format. Sources include
KDE News, GNOME News, Slashdot,
and many more. In English and
German.

www.linux-knowledge-
portal.org

Linux Standard
Base (LSB)

A group dedicated to standardizing
Linux.

www.linuxbase.org

Sobell The author's home page contains
useful links, errata for this book, code
for many of the examples in this book,
and answers to selected exercises.

www.sobell.com

USENIX A large, well-established UNIX group.
This site has many links, including a
list of conferences.

www.usenix.org

X.Org The X Window System home. www.x.org

Linux Newsgroups

One of the best ways of getting specific information is through a newsgroup. Frequently you can find the
answer to your question by reading postings to the newsgroup. Try using Google Groups
(groups.google.com) to search through newsgroups to see whether your question has already been asked and
answered. Or open a newsreader program and subscribe to appropriate newsgroups. If necessary, you can
post your question for someone to answer. Before you do so, make sure you are posting to the correct group
and that your question has not been answered. There is an etiquette to posting questions—see
www.catb.org/~esr/faqs/smart-questions.html for a good paper by Eric S. Raymond and Rick Moen titled
"How To Ask Questions the Smart Way."

The newsgroup comp.os.linux.answers provides postings of solutions to common problems and periodic
postings of the most up-to-date versions of the FAQ and HOWTO documents. The comp.os.linux.misc
newsgroup has answers to miscellaneous Linux-related questions.

Mailing Lists

Subscribing to a mailing list allows you to participate in an electronic discussion. With most lists, you can
send and receive email dedicated to a specific topic to and from a group of users. Moderated lists do not tend
to stray as much as unmoderated lists, assuming the list has a good moderator. The disadvantage of a
moderated list is that some discussions may be cut off when they get interesting if the moderator deems that
the discussion has gone on for too long. Mailing lists described as bulletins are strictly unidirectional: You
cannot post information to these lists but can only receive periodic bulletins. If you have the subscription
address for a mailing list but are not sure how to subscribe, put the word help in the body and/or header of
email that you send to the address. You will usually receive instructions via return email. You can also use a
search engine to search for mailing list linux.

Words

Many dictionaries, thesauruses, and glossaries are available online. Table B-3 lists a few of them.

Table B-3. Looking up words

Site About the site URL

Apt Apt installs,
removes, and
updates system
software packages

apt.freshrpms.net

ARTFL
Project:
ROGET'S
Thesaurus

Thesaurus humanities.uchicago.edu/forms_unrest/ROGET.html

BitTorrent BitTorrent
efficiently
distributes large
amounts of static
data

www.bittorrent.com

DICT.org Multiple database
search for words

www.dict.org

Dictionary.com Everything related
to words

www.dictionary.com

DNS Glossary DNS Glossary www.menandmice.com/online_docs_and_faq/glossary/glossarytoc.htm

FOLDOC (The
Free On-Line
Dictionary of
Computing)

Computer terms www.foldoc.org

Merriam-
Webster

English language www.m-w.com

OneLook Multiple-site
word search with
a single query

www.onelook.com

The Jargon
File

An online version
of The New
Hacker's
Dictionary

www.catb.org/~esr/jargon

Webopedia Commercial
technical
dictionary

www.webopedia.com

Wikipedia An open-source
(user-contributed)
encyclopedia
project

wikipedia.org

Wordsmyth Dictionary and
thesaurus

www.wordsmyth.net

Yahoo
Reference

Search multiple
sources at the
same time

education.yahoo.com/reference

yum The yum utility
installs, removes,
and updates
system software
packages

linux.duke.edu/projects/yum

apt.freshrpms.net

Software

There are many ways to learn about interesting software packages and where they are available on the
Internet. Table B-4 lists sites that you can download software from. Another way to learn about software
packages is through a newsgroup (page 841).

Table B-4. Software

Site About the site URL

CVS CVS (Concurrent Versions System) is a
version control system

www.cvshome.org

ddd The ddd utility is a graphical front end for
command line debuggers such as gdb

www.gnu.org/software/ddd

Free Software
Directory

Categorized, searchable lists of free
software

www.gnu.org/directory

savannah.gnu.org

Freshmeat A large index of UNIX and cross-platform
software, themes, and Palm OS software

freshmeat.net

gdb The gdb utility is a command line
debugger

www.gnu.org/software/gdb

GNOME Project Links to all GNOME projects www.gnome.org/projects

IceWALKERS Categorized, searchable lists of free
software

www.icewalkers.com

kdbg The kdbg utility is a graphical user
interface to gdb

freshmeat.net/projects/kdbg

Linux Software
Map

A database of packages written for, ported
to, or compiled for Linux

www.boutell.com/lsm

linuxapps Categorized, searchable list of free
software

www.linuxapps.com

Mtools A collection of utilities to access DOS
floppy diskettes from Linux without
mounting the diskettes

mtools.linux.lu

Network
Calculators

Subnet mask calculator www.subnetmask.info

rpmfind.net Searchable list of rpm files for various
Linux distributions and versions

rpmfind.net/linux/RPM

SourceForge A development Web site with a large
repository of open-source code and
applications

sourceforge.net

strace The strace utility is a system call trace
debugging tool

www.liacs.nl/~wichert/strace

sourceforge.net/projects/strace

Tucows-Linux Commercial, categorized, searchable list of
software

linux.tucows.com

ups The ups utility is a graphical source-level
debugger

ups.sourceforge.net

Office Suites and Word Processors

Several office suites and many word processors are available for Linux. Table B-5 lists a few of them. If you
are exchanging documents with people using Windows, make sure the import from/export to MS Word
functionality covers your needs.

Table B-5. Office suites and word processors

Product
name

What it does URL

AbiWord Word processor (free) www.abisource.com

KOffice Integrated suite of office applications including
the Kword word processing program (free, KDE-
based)

www.koffice.org

OpenOffice An open-source version of StarOffice www.openoffice.org

www.gnome.org/projects/ooo

Xcoral A programmer's multiwindow mouse-based editor
that runs under X (free)

xcoral.free.fr

 < Day Day Up >

 < Day Day Up >

Specifying a Terminal

Because vim, emacs, konsole, and other programs take advantage of features that are specific to various
kinds of terminals and terminal emulators, you must tell these programs the name of the terminal you are
using or the terminal that your terminal emulator is emulating. On many systems your terminal name is set
for you. If your terminal name is not specified or is not specified correctly, your screen will look garbled or,
when you start a program, the program will ask what type of terminal you are using.

Terminal names describe the functional characteristics of your terminal or terminal emulator to programs
that require this information. Although terminal names are referred to as either Terminfo or Termcap names,
the difference relates to the method that each system uses to store the terminal characteristics internally, not
in the manner that you specify the name of a terminal. Terminal names that are often used with Linux
terminal emulators and with graphical monitors while they are run in text mode are ansi, linux, vt100,
vt102, vt220, and xterm.

When you are running a terminal emulator, you can specify the type of terminal you want to emulate. Set the
emulator to either vt100 or vt220, and set TERM to the same value.

When you log in, you may be prompted to identify the type of terminal you are using:

TERM = (vt100)

There are two ways to respond to this prompt. You can press RETURN to set your terminal type to the name
in parentheses. When that name does not describe the terminal you are using, you can enter the correct name
and then press RETURN.

TERM = (vt100) ansi

You may also receive the following prompt:

TERM = (unknown)

This prompt indicates that the system does not know what type of terminal you are using. If you plan to run
programs that require this information, enter the name of the terminal or terminal emulator you are using
before you press RETURN.

TERM

If you do not receive a prompt, you can give the following command to display the value of the TERM
variable and check whether your terminal type has been set:

$ echo $TERM

If the system responds with the wrong name, a blank line, or an error message, set or change the terminal
name. From the Bourne Again Shell (bash), enter a command similar to the following to set the TERM
variable so that the system knows the type of terminal you are using:

export TERM=name

Replace name with the terminal name for the terminal you are using, making sure that you do not put a
SPACE before or after the equal sign. If you always use the same type of terminal, you can place this
command in your ~/.bashrc file (page 257), causing the shell to set the terminal type each time you log in.
For example, give the following command to set your terminal name to vt100:

$ export TERM=vt100

Use the following format under the TC Shell (tcsh).

setenv TERM name

Again replace name with the terminal name for the terminal you are using. Under tcsh you can place this
command in your ~/.login file (page 342). For example, under tcsh you can give this command to set your
terminal name to vt100:

$ setenv TERM vt100

LANG

For some programs to display information correctly you may need to set the LANG variable (page 290).
Frequently you can set this variable to C. Under bash use the command

$ export LANG=C

and under tcsh use

$ setenv LANG C

 < Day Day Up >

 < Day Day Up >

Appendix C. Keeping The System Up-To-Date

IN THIS APPENDIX

yum: Updates and Installs Packages 848

Apt: An Alternative to yum 850

BitTorrent 855

Apt and yum both fill the same role: They install and update software packages. Both utilities compare the
files in a repository (generally on the Internet) with those on the local system and update the files on the local
system according to your instructions. Both utilities automatically install and update any additional files that
a package is dependent on. Apt is slightly faster, especially over slow connections, and it supports a few
more features, such as undoing upgrades. The yum utility is easier to configure and use than Apt. If you are
familiar with Debian systems or find that yum lacks some features you need, try using Apt; otherwise use
yum. The examples in this section are from a Fedora Core system; although the files, input, and output on
your system may look different, how you use the tools and the results will be the same.

Contrasted with Apt and yum, BitTorrent efficiently distributes large amounts of static data, such as
installation ISO images. It does not check files on the local system and does no dependency checking.

 < Day Day Up >

 < Day Day Up >

yum: Updates And Installs Packages

Early releases of Linux did not include a tool for managing updates. The RPM tool could install or upgrade
individual software packages, but it was up to the user to locate the packages and the packages they were
dependent on. When Terra Soft produced its Linux distribution for the PowerPC, the company created the
Yellow Dog Updater to fill this gap. This program has since been ported to other architectures and
distributions. The result, named Yellow Dog Updater, Modified (yum), is included with many Linux
distributions. The yum home page is linux.duke.edu/projects/yum and more information is available at
apt.freshrpms.net.

Configuring yum

The yum utility is designed to be easy to use. The configuration file, /etc/yum.conf, has two parts: The
[main] section contains general settings and the rest of the file holds a list of servers.

The [main] section must be present for yum to function. The cachedir specifies the directory yum uses to
store downloaded packages and logfile specifies where yum keeps its log. The amount of information logged
is specified by debuglevel, with a value of 10 producing the most information.

$ cat /etc/yum.conf

[main]

cachedir=/var/cache/yum

debuglevel=2

logfile=/var/log/yum.log

pkgpolicy=newest

distroverpkg=fedora-release

tolerant=1

exactarch=1

...

The pkgpolicy defines which version of a software package yum installs; always set it to newest to install the
newest version of a package. You can also configure yum to try to install from a specific server, falling back
to other servers on failure and ignoring package versions. The distroverpkg specifies which distribution the
system is running.

With tolerant set to 1, yum automatically corrects simple command line errors, such as attempting to install a
package already on the system. Setting tolerant to 0 turns this feature off. Setting exactarch to 1 causes yum

to update packages only with packages of the same architecture—preventing an i686 package from replacing
an i386 one, for example.

The last sections contain lists of servers holding updates. They are marked with [core], [updates], or other
similar labels. Frequently the last section contains updates that are not ready for release and is commented
out; do not uncomment it unless you are testing unstable packages. Never uncomment this section on
production systems. Each server section contains a name, baseurl, and gpgcheck flag:

$ cat /etc/yum.conf

...

[core]

name=Fedora Linux $releasever - $basearch - core

baseurl=http://ayo.freshrpms.net/fedora/linux/$releasever/$basearch/core

gpgcheck=1

...

The name provides a friendly name for the server. The baseurl indicates the location of the server. Set
gpgcheck to 1 if you want yum to check the gpg signatures of the packages it downloads. Set it to 0
otherwise. These definitions use two variables: yum sets $basearch to the architecture of the system and
$releasever to the version of the release. Refer to the yum.conf man page for more options.

Using yum

Working as root, you can run yum from a command line. Its behavior depends on the options you specify.
The update option updates all installed packages: It downloads package headers for installed packages,
prompts you to proceed, and downloads and installs the updated packages.

yum update

Gathering header information file(s) from server(s)

Server: Fedora Core 3 - i386 - Base

Server: Fedora Core 3 - i386 - Released Updates

Finding updated packages

Downloading needed headers

getting /var/cache/yum/updates-released/headers/pango-0-1.6.07.i386.hdr

pango-0-1.6.0-7.i386.hdr 100% |=========================| 6.5 kB 00:00

...

[update: rhn-applet 2.1.4-3.i386]

Is this ok [y/N]: y

Getting pango-1.6.0-7.i386.rpm

pango-1.6.0-7.i386.rpm 100% |=========================| 341 kB 00:06

...

You can update individual packages by specifying the names of the packages on the command line following
the word update.

To install a new package together with the packages it is dependent on, give the command yum install
followed by the name of the package as shown on the next page.

yum install tcsh

Gathering header information file(s) from server(s)

Server: Fedora Core 3 - i386 - Base

Server: Fedora Core 3 - i386 - Released Updates

Finding updated packages

Downloading needed headers

getting /var/cache/yum/base/headers/tcsh-0-6.13-9.i386.hdr

tcsh-0-6.13-9.i386.hdr 100% |=======================| 3.8 kB 00:00

Resolving dependencies

Dependencies resolved

I will do the following:

[install: tcsh 6.13-9.i386]

Is this ok [y/N]: y

Getting tcsh-6.13-9.i386.rpm

tcsh-6.13-9.i386.rpm 100% |=======================| 443 kB 00:10

Running test transaction:

Test transaction complete, Success!

tcsh 100 % done 1/1

Installed: tcsh 6.13-9.i386

Transaction(s) Complete

You can also use yum to remove packages, using a similar syntax:

yum remove tcsh

Gathering header information file(s) from server(s)

Server: Fedora Core 3 - i386 - Base

Server: Fedora Core 3 - i386 - Released Updates

Finding updated packages

Downloading needed headers

Resolving dependencies

Dependencies resolved

I will do the following:

[erase: tcsh 6.13-9.i386]

Is this ok [y/N]: y

Running test transaction:

Test transaction complete, Success!

Erasing: tcsh 1/1

Erased: tcsh 6.13-9.i386

Transaction(s) Complete

 < Day Day Up >

 < Day Day Up >

APT: An Alternative To yum

The Apt (Advanced Package Tool) utility can help with the issue of dependencies: Apt tries to resolve package
dependencies automatically by looking for the packages that the package you are installing is dependent on. Since
starting life as part of the Debian Linux distribution using Debian's .deb package format, Apt has been ported to
rpm-based distributions. For more information go to apt.freshrpms.net.

The Apt utility uses repositories of rpm files as the basis for its actions. To make things quicker, Apt keeps locally a
list of packages that are held in each of the repositories it uses. Any software you want to install or update must
reside in a repository.

When you give Apt a command to install a package, Apt looks for the package in its local package list. If the
package appears in the list, Apt fetches both that package and any packages that the package you are installing is
dependent on and calls rpm to install the packages. Because Apt uses rpm, it maintains the rpm database.

Using Apt

This section describes how to configure Apt.

INSTALLING AND SETTING UP APT

Once you have downloaded the apt*.rpm file, you must install it (your Apt version number will be different):

rpm -Uvh apt-0.5.15cnc6-1.1.fc3.fr.i386.rpm

Preparing... ###[100%]

 1:apt ###[100%]

Update the local package list

The primary Apt command is apt-get; its arguments determine what the command does. After you install Apt,
give the command apt-get update to update the local package list:

apt-get update

Get:1 http://ayo.freshrpms.net fedora/linux/3/i386 release [1991B]

Fetched 1991B in 0s (4922B/s)

Get:1 http://ayo.freshrpms.net fedora/linux/3/i386/core pkglist [1445kB]

Get:2 http://ayo.freshrpms.net fedora/linux/3/i386/core release [151B]

Get:3 http://ayo.freshrpms.net fedora/linux/3/i386/updates pkglist [251kB]

Get:4 http://ayo.freshrpms.net fedora/linux/3/i386/updates release [157B]

Get:5 http://ayo.freshrpms.net fedora/linux/3/i386/freshrpms pkglist [98kB]

Get:6 http://ayo.freshrpms.net fedora/linux/3/i386/freshrpms release [161B]

Fetched 1847kB in 28s (64.7kB/s)

Reading Package Lists... Done

Building Dependency Tree... Done

Because the available packages change frequently, it is a good idea to create a cron job to update the local package
list automatically. Create the following file to perform this task daily:

$ cat /etc/cron.daily/apt-update

apt-get update

Check the dependency tree

The Apt utility does not tolerate a broken rpm dependency tree. To check the status of the local dependency tree,
run apt-get check:

apt-get check

Reading Package Lists... Done

Building Dependency Tree... Done

The easiest way to fix errors that apt-get reveals is to erase the offending packages and then reinstall them using
Apt.

At the time this book was written, Apt was incompatible with the Ximian Desktop.

Update the system

Two arguments to apt-get cause it upgrade all packages on the system: upgrade upgrades all packages on the
system that do not require new packages to be installed and dist-upgrade upgrades all packages on the system,
installing new packages as needed.

The following command updates all rpm-based packages on the system that depend only on packages that are
already installed:

apt-get upgrade

Reading Package Lists... Done

Building Dependency Tree... Done

The following packages will be upgraded

 bash binutils dia ethereal foomatic gaim gdm ghostscript gimp-print

...

 rhn-applet rsync sed slocate strace vnc-server yum

The following packages have been kept back

 gstreamer-plugins gthumb rhythmbox

57 upgraded, 0 newly installed, 0 removed and 3 not upgraded.

Need to get 59.7MB/87.9MB of archives.

After unpacking 11.8MB of additional disk space will be used.

Do you want to continue? [Y/n]

Enter Y to upgrade the listed packages; otherwise, enter N. Packages that are not upgraded because they depend on
packages that are not already installed are listed as kept back.

Use dist-upgrade to upgrade all packages, including packages that are dependent on packages that are not
installed. This command also installs dependencies.

apt-get dist-upgrade

Reading Package Lists... Done

Building Dependency Tree... Done

Calculating Upgrade... Done

The following packages will be upgraded

 gstreamer-plugins gthumb rhythmbox

The following NEW packages will be installed:

 Hermes flac libexif libid3tag

3 upgraded, 4 newly installed, 0 removed and 0 not upgraded.

Need to get 4510kB of archives.

After unpacking 6527kB of additional disk space will be used.

Do you want to continue? [Y/n]

Adding And Removing Individual Packages

The format of a command to install a specific software package and the packages it is dependent on is

apt-get install package

where package is the name of the package, such as zsh, and not the name of the rpm, which usually includes
version and architecture information (for example, zsh-1.2.i386.rpm).

apt-get install zsh

Reading Package Lists... Done

Building Dependency Tree... Done

The following NEW packages will be installed:

 zsh

0 upgraded, 1 newly installed, 0 removed and 0 not upgraded.

Need to get 1435kB of archives.

After unpacking 2831kB of additional disk space will be used.

Get:1 http://ayo.freshrpms.net fedora/linux/3/i386/core zsh 4.2.0-3 [1435kB]

Fetched 1435kB in 21s (66.0kB/s)

Committing changes...

Preparing... ### [100%]

 1:zsh ### [100%]

Done.

Remove a package the same way you install a package, substituting remove for install:

apt-get remove zsh

Reading Package Lists... Done

Building Dependency Tree... Done

The following packages will be REMOVED:

 zsh

0 upgraded, 0 newly installed, 1 removed and 0 not upgraded.

Need to get 0B of archives.

After unpacking 2831kB disk space will be freed.

Do you want to continue? [Y/n] y

Committing changes...

Preparing... ### [100%]

Done.

To ensure that you can later reinstall a package with the same configuration, the apt-get remove command does
not remove configuration files from the /etc directory hierarchy. Although it is not recommended, you can use the –
–purge option to remove all of these files, including configuration files. Alternatively, you can move these files to
an archive so you can restore them later if necessary.

apt.conf: Configuring Apt

The /etc/apt/apt.conf file contains Apt configuration information and is split into three sections: APT, which
contains global settings for the Apt tools; Acquire, which describes settings related to the package-fetching
mechanism; and RPM, which contains rpm-specific settings. In this file semicolons (;) separate statements and
double forward slashes (//) introduce comments.

APT section

The APT section is shown following:

$ cat /etc/apt/apt.conf

APT {

 Clean-Installed "false";

 Get {

 Assume-Yes "false";

 Download-Only "false";

 Show-Upgraded "true";

 Fix-Broken "false";

 Ignore-Missing "false";

 Compile "false";

 };

};

...

When you set Clean-Installed to TRUE, Apt removes packages that are no longer in the repository.

The options in the Get subsection listed here apply to the apt-get utility (the apt-get utility has command line
arguments with the same names as these options):

Assume-Yes TRUE runs apt-get in batch mode, automatically answering
YES whenever it would otherwise prompt you for input.

Download-Only TRUE retrieves packages from the repository but does not install
them. FALSE retrieves and installs the packages.

Show-Upgraded TRUE displays a list of upgraded packages.

Fix-Broken TRUE attempts to fix dependency tree problems with varying
degrees of success. FALSE quits if it finds a dependency tree
problem.

Ignore-Missing TRUE holds back missing or corrupt packages and continues to
install other packages. FALSE aborts the entire install or upgrade
upon finding a missing or corrupt package.

Compile TRUE compiles and installs source rpm (SRPM) packages that
you ask apt-get to retrieve. FALSE downloads these files
without compiling or installing them.

Acquire section The Acquire section controls options related to fetching
packages.

$ cat /etc/apt/apt.conf

...

Acquire {

Retries "0";

Http {

Proxy ""; // http://user:pass@host:port/

}

};

...

The Retries option specifies the number of times Apt attempts to fetch a package when an attempt fails. The Http

Proxy setting specifies the proxy to use when fetching packages using HTTP. The argument to this option is blank
by default, indicating that Apt should not use a proxy. An example proxy is shown as a comment.

RPM section

Following is the RPM section of apt.conf:

$ cat /etc/apt/apt.conf

...

RPM {

 Ignore { };

 Hold { };

 Allow-Duplicated { "^kernel$"; "^kernel-"; "^kmodule-"; "^gpg-pukey$"

};

 Options { };

 Install-Options "";

 Erase-Options "";

 Source {

 Build-Command "rpmbuild --rebuild";

 };

};

The Ignore and Hold options perform similar functions and contain lists of packages that Apt ignores or holds
(does not upgrade). They are usually blank.

The Allow-Duplicated section lists packages that can have more than one version on the system at one time. In
general you do not want to have multiple versions of the same package on a system. The kernel is an exception: It
is good practice to leave the old kernel installed when you install a new kernel in case you are unable to boot the
new one.

The Options section contains options that are passed to rpm. The Install-Options and Erase-Options sections
contain options that are passed to rpm whenever it is used to install or erase a package.

The Source Build-Command option specifies the command that Apt uses to build a source rpm file.

 < Day Day Up >

 < Day Day Up >

BitTorrent

The BitTorrent protocol implements a hybrid client/server and P2P (page 891) file transfer mechanism. BitTorrent
efficiently distributes large amounts of static data, such as installation ISO images. It can replace protocols such as
anonymous FTP, where client authentication is not required. Each BitTorrent client that downloads a file provides additional
bandwidth for uploading the file, reducing the load on the initial source. In general BitTorrent downloads proceed more
rapidly than FTP downloads.

Unlike protocols such as FTP, BitTorrent groups multiple files into a single package called a torrent. For example, you can
typically download several installation ISO images as a single torrent.

Like other P2P systems, BitTorrent does not use a dedicated server. Instead, the functions of a server are performed by the
tracker, peers, and seeds. The tracker allows clients to communicate with each other. A client—called a peer when it has
downloaded part of the torrent and a seed once it has downloaded the entire torrent—acts as an additional source for the
torrent. As with a P2P network, each peer and seed that downloads a torrent uploads to other clients the sections of the
torrent it already has. There is nothing special about a seed: It can be removed at any time once the torrent is available for
download from other seeds.

The BitTorrent program is available from www.bittorrent.com. After you download and install BitTorrent, the first step in
downloading a torrent using BitTorrent is to locate or acquire a .torrent file. A .torrent file contains the information about
the torrent, such as its size and the location of the tracker. You can use a .torrent file using its URI (908) or you can acquire
it via the Web, an email attachment, or other means. The next step is for the BitTorrent client to connect to the tracker to
learn the locations of other clients that it can download the torrent from.

Once you have downloaded a torrent, it is good manners to allow BitTorrent to continue to run so other clients can upload at
least as much information as you have downloaded.

Prerequisites

If no BitTorrent rpm file exists for your version of Linux, use an rpm file for a similar version. Because BitTorrent is written
in Python and runs on any platform with a Python interpreter, it is not dependent on system architecture. The noarch in the
name of the rpm file stands for no architecture.

To run, BitTorrent requires Python, which is installed as /usr/bin/python on many systems. Python is available in the
python rpm package.

How Bittorrent Works

The official BitTorrent distribution includes three client applications. You can use any of these applications to download
BitTorrent files:

btdownloadheadless.py A text-based client that writes the status to standard output. Good for unattended downloads
where the output is redirected to a file.

btdownloadcurses.py A text-based client that provides a pseudographical interface. Good for attended downloads to
machines not running a GUI.

btdownloadgui.py A graphical client.

In addition to the official clients, several other clients provide extra features. Some of these clients are available on
sourceforge.net.

Using Bittorrent

To use BitTorrent, first locate the .torrent file for the torrent you want to download. You can copy the .torrent file to the
working directory (the first format shown below) or specify it with a – –url option (second format). The simplest BitTorrent
command lines have the following formats:

$ btdownloadheadless.py – –responsefile tfile.torrent [– –saveas savefile]

or

$ btdownloadheadless.py – –url http://domain/tfile.torrent [– –saveas savefile]

where tfile.torrent is the name of, or http://domain/tfile.torrent is the URI for, the .torrent file, and savefile is the location
to save the torrent in. In the case of torrents containing a single file, the file is saved as savefile . For torrents containing
multiple files, the files are saved in a directory named savefile . If you omit the – –saveas argument, the files are saved in the
name specified in the .torrent file. Because each of the btdownload*.py applications takes the same arguments, the
preceding formats work for all three applications.

The next example shows how to download Fedora Core 3 ISO images. These large files take considerable time to download.
To start the download, give the following command. Because the command line is long, it is broken by a backslash (\).
Make sure no character follows the backslash, or else the backslash will not quote the following RETURN and the
command will fail. (The shell supplies the > on the second line.)

$ btdownloadheadless.py --max_upload_rate 8 \

> --url http://torrent.dulug.duke.edu/heidelberg-binary-i386.torrent

The preceding command uses a URI to specify a .torrent file and saves the downloaded files in a directory named
heidelberg (the name of the Fedora release) as specified by the .torrent file.

The – –max_upload_rate 8 option prevents BitTorrent from using more than 8 kilobytes per second of upstream
bandwidth. BitTorrent usually gives higher download rates to clients that upload more, so feel free to increase this value if
you have spare bandwidth. You need to leave enough free upstream bandwidth for the acknowledgment packets from your

download to get through or your download will be very slow. By default the client uploads to a maximum of seven other
clients at once. You can change this value by specifying the – –max_uploads argument, followed by the maximum number
of concurrent uploads you wish to permit. The default value of 7 is usually appropriate for typical broadband connections.

After you give the preceding command, the screen quickly fills with output that looks similar to the following:

saving: heidelberg-binary-i386

percent done: 0.0

time left: finishing in 27:09:04

download to: /home/max/heidelberg-binary-i386

_

upload rate: 0.0 KB/s

share rating: 0.000 (0.0 MB up / 1.2 MB down)

seed status: 30 seen now, plus 1 distributed copies (2:81.5%, 3:23.0%, 4:2.1%)

peer status: 5 seen now

The file size is that of all the files you are downloading: four ISO images and several smaller files. To abort the download,
press CONTROL-C. The download will automatically resume from where it left off when you download the same torrent to
the same location again.

Use the following command to perform the same download as in the previous example, this time throttling the rate and
number of uploads to values sensible for modem users. (The shell supplies the > on the second line, you do not enter it.)

$ btdownloadcurses.py --max_upload_rate 3 --max_uploads 2 \

> --url http://torrent.dulug.duke.edu/heidelberg-binary-i386.torrent

The preceding command displays output similar to the following:

 --

| file: heidelberg-binary-i386 |

| size: 2,467,681,047 (2 GiB) |

| dest: /home/max/heidelberg-binary-i386 |

| progress: __ |

| status: finishing in 6:40:42 (1.0%) |

| dl speed: 285.6 KB/s |

| ul speed: 2.6 KB/s |

| sharing: 0.009 (0.1 MB up / 15.1 MB down) |

| seeds: 29 seen now, plus 0 distributed copies (1:0.8%, 2:0.0%, 3:0.0%) |

| peers: 1 seen now |

| |

 --

 < Day Day Up >

 < Day Day Up >

Glossary

All entries marked with FOLDOC are based on definitions in the Free Online Dictionary of Computing
(www.foldoc.org), Denis Howe, editor. Used with permission.

10.0.0.0

See [private address space]
172.16.0.0

See [private address space]
192.168.0.0

See [private address space]
802.11

A family of specifications developed by IEEE for wireless LAN technology, including 802.11 (1–2
megabits per second), 802.11a (54 megabits per second), 802.11b (11 megabits per second), and
802.11g (20+ megabits per second).

absolute pathname

A pathname that starts with the root directory (/). An absolute pathname locates a file without regard
to the working directory.

access

In computer jargon, a verb meaning to use, read from, or write to. To access a file means to read from
or write to the file.

Access Control List

See [ACL]
access permission

Permission to read from, write to, or execute a file. If you have write access permission to a file, you
can write to the file. Also access privilege .

ACL

Access Control List. A system that performs a function similar to file permissions but with much
finer-grain control.

active window

On a desktop, the window that receives the characters you type on the keyboard. Same as focus,
desktop (page 875).

address mask

See [subnet mask]
alias

A mechanism of a shell that enables you to define new commands.

alphanumeric character

One of the characters, either uppercase or lowercase, from A to Z and 0 to 9, inclusive.

ambiguous file reference

A reference to a file that does not necessarily specify any one file but can be used to specify a group of
files. The shell expands an ambiguous file reference into a list of filenames. Special characters
represent single characters (?), strings of zero or more characters (*), and character classes ([]) within
ambiguous file references. An ambiguous file reference is a type of regular expression (page 897).

angle bracket

A left angle bracket (<) and a right angle bracket (>). The shell uses < to redirect a command's
standard input to come from a file and > to redirect the standard output. The shell uses the characters
<< to signify the start of a Here document and >> to append output to a file.

animate

When referring to a window action, means that the action is slowed down so the user can view it. For
example, when you minimize a window, it can disappear all at once (not animated) or it can slowly
telescope into the panel so you can get a visual feel for what is happening (animated).

anti-aliasing

Adding gray pixels at the edge of a diagonal line to get rid of the jagged appearance and thereby make
the line look smoother. Anti-aliasing sometimes makes type on a screen look better and sometimes
worse; it works best on small and large fonts and is less effective on fonts from 8 to 15 points.
See also [subpixel hinting]

API

Application Program Interface. The interface (calling conventions) by which an application program
accesses an operating system and other services. An API is defined at the source code level and
provides a level of abstraction between the application and the kernel (or other privileged utilities) to
ensure the portability of the code.FOLDOC

append

To add something to the end of something else. To append text to a file means to add the text to the
end of the file. The shell uses >> to append a command's output to a file.

applet

A small program that runs within a larger program. Examples are Java applets that run in a browser
and panel applets that run from a desktop panel.

argument

A number, letter, filename, or another string that gives some information to a command and is passed
to the command when it is called. A command line argument is anything on a command line following
the command name that is passed to the command. An option is a kind of argument.

arithmetic expression

A group of numbers, operators, and parentheses that can be evaluated. When you evaluate an
arithmetic expression, you end up with a number. The Bourne Again Shell uses the expr command to
evaluate arithmetic expressions; the TC Shell uses @; and the Z Shell uses let.

array

An arrangement of elements (numbers or strings of characters) in one or more dimensions. The TC
and Z Shells and gawk can store and process arrays.

ASCII

American Standard Code for Information Interchange. A code that uses seven bits to represent both
graphic (letters, numbers, and punctuation) and control characters. You can represent textual
information, including program source code and English text, in ASCII code. Because ASCII is a
standard, it is frequently used when exchanging information between computers. See the file
/usr/pub/ascii or give the command man ascii to see a list of ASCII codes.

Extensions of the ASCII character set use eight bits. The seven-bit set is common; the eight-bit
extensions are still coming into popular use. The eighth bit is sometimes referred to as the metabit.

ASCII terminal

A text-based terminal. Contrast with graphical display (page 877).

ASP

Application Service Provider. A company that provides applications over the Internet.

asynchronous event

An event that does not occur regularly or synchronously with another event. Linux system signals are
asynchronous; they can occur at any time because they can be initiated by any number of nonregular
events.

attachment

A file that is attached to, but is not part of, a piece of email. Attachments are frequently opened by
programs (including your Internet browser) that are called by your mail program so you may not be
aware that they are not an integral part of an email message.

authentication

The verification of the identity of a person or process. In a communication system, authentication
verifies that a message comes from its stated source. Methods of authentication on a Linux system
include the /etc/passwd and /etc/shadow files, LDAP, Kerberos 5, and SMB authentication.FOLDOC

automatic mounting

A way of demand mounting directories from remote hosts without having them hard configured into

/etc/fstab. Also called automounting .

avoided

An object, such as a panel, that should not normally be covered by another object, such as a window.

back door

A security hole deliberately left in place by the designers or maintainers of a system. The motivation
for creating such holes is not always sinister; some operating systems, for example, come out of the
box with privileged accounts intended for use by field service technicians or the vendor's maintenance
programmers.

Ken Thompson's 1983 Turing Award lecture to the ACM revealed the existence, in early UNIX
versions, of a back door that may be the most fiendishly clever security hack of all time. The C
compiler contained code that would recognize when the login command was being recompiled and
would insert some code recognizing a password chosen by Thompson, giving him entry to the system
whether or not an account had been created for him.

Normally such a back door could be removed by removing it from the source code for the compiler
and recompiling the compiler. But to recompile the compiler, you have to use the compiler, so
Thompson arranged that the compiler would recognize when it was compiling a version of itself . It
would insert into the recompiled compiler the code to insert into the recompiled login the code to
allow Thompson entry, and, of course, the code to recognize itself and do the whole thing again the
next time around. Having done this once, he was then able to recompile the compiler from the original
sources; the hack perpetuated itself invisibly, leaving the back door in place and active but with no
trace in the sources.

Sometimes called a wormhole. Also trap door .FOLDOC

background process

A process that is not run in the foreground. Also called a detached process , a background process is
initiated by a command line that ends with an ampersand (&). You do not have to wait for a
background process to run to completion before giving the shell additional commands. If you have job
control, you can move background processes to the foreground, and vice versa.

basename

The name of a file that, in contrast with a pathname, does not mention any of the directories containing
the file (and therefore does not contain any slashes [/]). For example, hosts is the basename of
/etc/hosts.FOLDOC

baud

The maximum information-carrying capacity of a communication channel in symbols (state transitions
or level transitions) per second. It coincides with bits per second only for two-level modulation with
no framing or stop bits. A symbol is a unique state of the communication channel, distinguishable by
the receiver from all other possible states. For example, it may be one of two voltage levels on a wire
for a direct digital connection, or it might be the phase or frequency of a carrier.FOLDOC

Baud is often mistakenly used as a synonym for bits per second.

baud rate

Transmission speed. Usually used to measure terminal or modem speed. Common baud rates range
from 110 to 38,400 baud.
See also [baud]

Berkeley UNIX

One of the two major versions of the UNIX operating system. Berkeley UNIX was developed at the
University of California at Berkeley by the Computer Systems Research Group and is often referred to
as BSD (Berkeley Software Distribution).

BIND

Berkeley Internet Name Domain. An implementation of a DNS (page 872) server developed and
distributed by the University of California at Berkeley

BIOS

Basic Input/Output System. On PCs, EEPROM -based (page 873) system software that provides the
lowest-level interface to peripheral devices and controls the first stage of the bootstrap (page 864)
process, which loads the operating system. The BIOS can be stored in different types of memory. The
memory must be nonvolatile so that it remembers the system's settings even when the system is turned
off. Also BIOS ROM.

bit

The smallest piece of information a computer can handle. A bit is a binary digit: either 1 or 0 (on or
off).

bit depth

Same as color depth (page 868).

bit-mapped display

A graphical display device in which each pixel on the screen is controlled by an underlying
representation of zeros and ones.

blank character

Either a SPACE or a TAB character, also called whitespace (page 909). In some contexts, NEWLINEs
are considered blank characters.

block

A section of a disk or tape (usually 1,024 bytes long but shorter or longer on some systems) that is
written at one time.

block device

A disk or tape drive. A block device stores information in blocks of characters. A block device is
represented by a block device (block special) file. Contrast with character device (page 866).

block number

Disk and tape blocks are numbered so that Linux can keep track of the data on the device.

blocking factor

The number of logical blocks that make up a physical block on a tape or disk. When you write 1K
logical blocks to a tape with a physical block size of 30K, the blocking factor is 30.

boot

See [bootstrap]
boot loader

A very small program that takes its place in the bootstrap process that brings a computer from off or

reset to a fully functional state.

bootstrap

Derived from "Pull oneself up by one's own bootstraps," the incremental process of loading an
operating system kernel into memory and starting it running without any outside assistance. Frequently
shortened to boot .

Bourne Again Shell

bash. GNU's command interpreter for UNIX, bash is a POSIX-compliant shell with full Bourne Shell
syntax and some C Shell commands built in. The Bourne Again Shell supports emacs-style command
line editing, job control, functions, and online help.FOLDOC

Bourne Shell

sh. This UNIX command processor was developed by Steve Bourne at AT&T Bell Laboratories.

brace

A left brace ({) and a right brace (}). Braces have special meanings to the shell.

bracket

A square bracket (page 902) or an angle bracket (page 860).

branch

In a tree structure, a branch connects nodes, leaves, and the root. The Linux filesystem hierarchy is
often conceptualized as an upside-down tree. The branches connect files and directories. In a source
code control system, such as SCCS or RCS, a branch occurs when a revision is made to a file and is
not included in subsequent revisions to the file.

bridge

Typically a two-port device originally used for extending networks at layer 2 (data link) of the Internet
Protocol model.

broadcast

A transmission to multiple, unspecified recipients. On Ethernet a broadcast packet is a special type of
multicast packet that has a special address indicating that all devices that receive it should process it.
Broadcast traffic exists at several layers of the network stack, including Ethernet and IP. Broadcast
traffic has one source but indeterminate destinations (all hosts on the local network).

broadcast address

The last address on a subnet (usually 255), reserved as shorthand to mean all hosts.

broadcast network

A type of network, such as Ethernet, in which any system can transmit information at any time, and all
systems receive every message.

BSD

See [Berkeley UNIX]
buffer

An area of memory that stores data until it can be used. When you write information to a file on a disk,
Linux stores the information in a disk buffer until there is enough to write to the disk or until the disk
is ready to receive the information.

bug

An unwanted and unintended program property, especially one that causes the program to
malfunction.FOLDOC

builtin (command)

A command that is built into a shell. Each of the three major shells—the Bourne Again, TC, and Z
Shells—has its own set of builtins. Refer to "Builtins" on page 132.

byte

A component in the machine data hierarchy, usually larger than a bit and smaller than a word; now

most often eight bits and the smallest addressable unit of storage. A byte typically holds one
character.FOLDOC

C programming language

A modern systems language that has high-level features for efficient, modular programming as well as
lower-level features that make it suitable for use as a systems programming language. It is machine
independent so that carefully written C programs can be easily transported to run on different
machines. Most of the Linux operating system is written in C, and Linux provides an ideal
environment for programming in C.

C Shell

csh. The C Shell command processor was developed by Bill Joy for BSD UNIX. It was named for the
C programming language because its programming constructs are similar to those of C.
See also [shell]

cable modem

A type of modem that allows you to access the Internet by using your cable television connection.

cache

Holding recently accessed data, a small, fast memory designed to speed up subsequent access to the
same data. Most often applied to processor-memory access but also used for a local copy of data
accessible over a network, from a hard disk, and so on.FOLDOC

calling environment

A list of variables and their values that is made available to a called program. Refer to "Executing a
Command" on page 294.

cascading stylesheet

See [CSS]
cascading windows

An arrangement of windows such that they overlap, generally with at least part of the title bar visible.
Opposite of tiled windows (page 906).

case sensitive

Able to distinguish between uppercase and lowercase characters. Unless you set the ignorecase
parameter, vim performs case-sensitive searches. The grep utility performs case-sensitive searches
unless you use the –i option.

catenate

To join sequentially, or end to end. The Linux cat utility catenates files: It displays them one after the
other. Also concatenate .

chain loading

The technique used by a boot loader to load unsupported operating systems. Used for loading such
operating systems as DOS or Windows, it works by loading another boot loader.

character-based

A program, utility, or interface that works only with ASCII (page 861) characters. This set of
characters includes some simple graphics, such as lines and corners, and can display colored
characters. It cannot display true graphics. Contrast with GUI (page 877).

character-based terminal

A terminal that displays only characters and very limited graphics.
See also [character-based]

character class

In a regular expression, a group of characters that defines which characters can occupy a single
character position. A character-class definition is usually surrounded by square brackets. The character
class defined by [abcr] represents a character position that can be occupied by a, b, c, or r. Also list
operator .

character device

A terminal, printer, or modem. A character device stores or displays characters one at a time. A
character device is represented by a character device (character special) file. Contrast with block
device (page 864).

checksum

A computed value that depends on the contents of a block of data and is transmitted or stored along
with the data to detect corruption of the data. The receiving system recomputes the checksum based on
the received data and compares this value with the one sent with the data. If the two values are the
same, the receiver has some confidence that the data was received correctly.

The checksum may be 8, 16, or 32 bits, or some other size. It is computed by summing the bytes or
words of the data block, ignoring overflow. The checksum may be negated so that the total of the data
words plus the checksum is zero.

Internet packets use a 32-bit checksum.FOLDOC

child process

A process that is created by another process, the parent process. Every process is a child process
except for the first process, which is started when Linux begins execution. When you run a command
from the shell, the shell spawns a child process to run the command.
See also [process]

CIDR

Classless Inter-Domain Routing. A scheme that allocates blocks of Internet addresses in a way that
allows summarization into a smaller number of routing table entries. A CIDR block is a block of
Internet addresses assigned to an ISP by the Internic.FOLDOC

CIFS

Common Internet File System. An Internet filesystem protocol based on SMB (page 901). CIFS runs
on top of TCP/IP, uses DNS, and is optimized to support slower dial-up Internet connections. SMB
and CIFS are used interchangeably.FOLDOC

CIPE

Crypto IP Encapsulation (page 874). This protocol (page 895) tunnels (page 907) IP packets within
encrypted UDP (page 907) packets, is lightweight and simple, and works over dynamic addresses,
NAT (page 889), and SOCKS (page 901) proxies (page 895).

cipher (cypher)

A cryptographic system that uses a key to transpose/substitute characters within a message, the key
itself, or the message.

ciphertext

Text that is encrypted. Contrast with plaintext (page 893).

Classless Inter-Domain Routing

See [CIDR]
cleartext

Text that is not encrypted; also plaintext . Contrast with ciphertext .

CLI

Command line interface.
See also [character-based]

client

A computer or program that requests one or more services from a server.

CODEC

Coder/decoder or compressor/decompressor. A hardware and/or software technology that codes and
decodes data. MPEG is a popular CODEC for computer video.

color depth

The number of bits used to generate a pixel—usually 8, 16, 24, or 32. The color depth is directly
related to the number of colors that can be generated. The number of colors that can be generated is 2
raised to the color-depth power. Thus that a 24-bit video adapter can generate about 16.7 million
colors.

color quality

See [color depth]
combo box

A combination of a list and text entry box. A user can either select an option from a provided list or
enter his own option.

command

What you give the shell in response to a prompt. When you give the shell a command, it executes a
utility, another program, a builtin command, or a shell script. Utilities are often referred to as
commands. When you are using an interactive utility, such as vim or mail, you use commands that are
appropriate to that utility.

command line

A line containing instructions and arguments that executes a command. This term usually refers to a
line that you enter in response to a shell prompt on a character-based terminal or terminal emulator.

command substitution

Replacing a command with its output. The shells perform command substitution when you enclose a
command between $(and) or between a pair of back ticks (''), also called grave accent marks.

component architecture

A notion in object-oriented programming where "components" of a program are completely generic.
Instead of having a specialized set of methods and fields, they have generic methods through which
the component can advertise the functionality it supports to the system into which it is loaded. This
strategy enables completely dynamic loading of objects. JavaBeans is an example of a component
architecture.FOLDOC

concatenate

See [catenate]
condition code

See [exit status]
connection-oriented protocol

A type of transport layer data communication service that allows a host to send data in a continuous
stream to another host. The transport service guarantees that all data will be delivered to the other end
in the same order as sent and without duplication. Communication proceeds through three well-
defined phases: connection establishment, data transfer, and connection release. The most common
example is TCP (page 905).

Also called connection-based protocol and stream-oriented protocol. Contrast with connectionless
protocol and datagram (page 870).FOLDOC

connectionless protocol

The data communication method in which communication occurs between hosts with no previous
setup. Packets sent between two hosts may take different routes. There is no guarantee that packets
will arrive as transmitted or even that they will arrive at the destination at all. UDP (page 907) is a
connectionless protocol. Also called packet switching. Contrast with circuit switching and connection-
oriented protocol .FOLDOC

console

See [system console]
console terminal

See [system console]
control character

A character that is not a graphic character, such as a letter, number, or punctuation mark. Such
characters are called control characters because they frequently act to control a peripheral device.
RETURN and FORMFEED are control characters that control a terminal or printer.

The word CONTROL is shown in this book in THISFONT because it is a key that appears on most terminal
keyboards. Control characters are represented by ASCII codes less than 32 (decimal).
See also [nonprinting character]

control structure

A statement used to change the order of execution of commands in a shell script or other program.
Each shell provides control structures (for example, If and While) as well as other commands that
alter the order of execution (for example, exec). Also control flow commands .

cookie

Data stored on a client system by a server. The client system browser sends the cookie back to the
server each time it accesses that server. For example, a catalog shopping service may store a cookie on
your system when you place your first order. When you return to the site, it knows who you are and
can supply your name and address for subsequent orders. You may consider cookies to be an invasion
of privacy.

CPU

Central processing unit. The part of a computer that controls all the other parts. The CPU includes the
control unit and the arithmetic and logic unit (ALU). The control unit fetches instructions from
memory and decodes them to produce signals that control the other parts of the computer. These
signals can cause data to be transferred between memory and ALU or peripherals to perform input or
output. A CPU that is housed on a single chip is called a microprocessor. Also processor and central

processor .

cracker

An individual who attempts to gain unauthorized access to a computer system. These individuals are
often malicious and have many means at their disposal for breaking into a system. Contrast with
hacker (page 877).FOLDOC

crash

The system suddenly and unexpectedly stops or fails. Derived from the action of the hard disk heads
on the surface of the disk when the air gap between the two collapses.

cryptography

The practice and study of encryption and decryption—encoding data so that only a specific individual
or machine can decode it. A system for encrypting and decrypting data is a cryptosystem. Such
systems usually rely on an algorithm for combining the original data (plaintext) with one or more
keys—numbers or strings of characters known only to the sender and/or recipient. The resulting output
is called ciphertext (page 867).

The security of a cryptosystem usually depends on the secrecy of keys rather than on the supposed
secrecy of an algorithm. Because a strong cryptosystem has a large range of keys, it is not possible to
try all of them. Ciphertext appears random to standard statistical tests and resists known methods for
breaking codes.FOLDOC

.cshrc file

In your home directory, a file that the TC Shell executes each time you invoke a new TC Shell. You
can use this file to establish variables and aliases.

CSS

Cascading stylesheet. Describes how documents are presented on screen and in print. Attaching a
stylesheet to a structured document can affect the way it looks without adding new HTML (or other)
tags and without giving up device independence. Also stylesheet .

current (process, line, character, directory, event, and so on)

The item that is immediately available, working, or being used. The current process controls the

program you are running, the current line or character is the one the cursor is on, and the current
directory is the working directory.

cursor

A small lighted rectangle, underscore, or vertical bar that appears on the terminal screen and indicates
where the next character will appear. Differs from the mouse pointer (page 888).

daemon

A program that is not invoked explicitly but lies dormant, waiting for some condition(s) to occur. The
perpetrator of the condition need not be aware that a daemon is lurking (although often a program will
commit an action only because it knows that it will implicitly invoke a daemon). From the
mythological meaning, later rationalized as the acronym Disk And Execution MONitor.FOLDOC

data structure

A particular format for storing, organizing, working with, and retrieving data. Frequently, data
structures are designed to work with specific algorithms that facilitate these tasks. Common data
structures include trees, files, records, tables, arrays, and so on.

datagram

A self-contained, independent entity of data carrying sufficient information to be routed from the
source to the destination computer without reliance on earlier exchanges between this source and
destination computer and the transporting network. UDP (page 907) uses datagrams; IP (page 882)
uses packets (page 892). Packets are indivisible at the network layer; datagrams are not. FOLDOC

See also [frame]

dataless

A computer, usually a workstation, that uses a local disk to boot a copy of the operating system and
access system files but does not use a local disk to store user files.

dbm

A standard, simple database manager. Implemented as gdbm (GNU database manager), it uses hashes
to speed searching. The most common versions of the dbm database are dbm, ndbm, and gdbm.

DDoS attack

Distributed denial of service attack. A DoS attack (page 873) from many systems that do not belong to
the perpetrator of the attack.

debug

To correct a program by removing its bugs (that is, errors).

default

Something that is selected without being explicitly specified. For example, when used without an
argument, ls displays a list of the files in the working directory by default.

delta

A set of changes made to a file that has been encoded by the Source Code Control System (SCCS).

denial of service

See [DoS attack]
dereference

When speaking of symbolic links, follow the link rather than working with the reference to the link.
For example, the –L or – –dereference option causes ls to list the entry that a symbolic link points to
rather than the symbolic link (the reference) itself.

desktop

A collection of windows, toolbars, icons, and buttons, some or all of which appear on your display. A
desktop comprises one or more workspaces (page 910).

desktop manager

An icon- and menu-based user interface to system services that allows you to run applications and use
the filesystem without using the system's command line interface.

detached process

See [background process]

device

A disk drive, printer, terminal, plotter, or other input/output unit that can be attached to the computer.

device driver

Part of the Linux kernel that controls a device, such as a terminal, disk drive, or printer.

device file

A file that represents a device. Also special file .

device filename

The pathname of a device file. All Linux systems have two kinds of device files: block and character
device files. Linux also has FIFOs (named pipes) and sockets. Device files are traditionally located in
the /dev directory.

device number

See also [major device number]
See also [minor device number]

DHCP

Dynamic Host Configuration Protocol. A protocol that dynamically allocates IP addresses to
computers on a LAN.FOLDOC

directory

Short for directory file . A file that contains a list of other files.

directory hierarchy

A directory, called the root of the directory hierarchy, and all the directory and ordinary files below it
(its children).

directory service

A structured repository of information on people and resources within an organization, facilitating
management and communication.FOLDOC

disk partition

See [partition]
diskless

A computer, usually a workstation, that has no disk and must contact another computer (a server) to
boot a copy of the operating system and access the necessary system files.

distributed computing

A style of computing in which tasks or services are performed by a network of cooperating systems,
some of which may be specialized.

DMZ

Demilitarized zone. A host or small network that is a neutral zone between a LAN and the Internet. It
can serve Web pages and other data to the Internet and allow local systems access to the Internet while
preventing LAN access to unauthorized Internet users. Even if a DMZ is compromised, it holds no
data that is private and none that cannot be easily reproduced.

DNS

Domain Name Service. A distributed service that manages the correspondence of full hostnames
(those that include a domain name) to IP addresses and other system characteristics.

DNS domain name

See [domain name]
document object model

See [DOM]
DOM

Document Object Model. A platform-/language-independent interface that enables a program to
update the content, structure, and style of a document dynamically. The changes can then be made part
of the displayed document. Go to www.w3.org/DOM for more information.

domain name

A name associated with an organization, or part of an organization, to help identify systems uniquely.
Technically, the part of the FQDN (page 876) to the right of the leftmost period. Domain names are
assigned hierarchically. The domain berkeley.edu refers to the University of California at Berkeley, for
example; it is part of the top-level edu (education) domain. Also DNS domain name. Different than
NIS domain name (page 890).

Domain Name Service

See [DNS]
door

An evolving filesystem-based RPC (page 899) mechanism.

DoS attack

Denial of service attack. An attack that attempts to make the target host or network unusable by
flooding it with spurious traffic.

DPMS

Display Power Management Signaling. A standard that can extend the life of CRT monitors and
conserve energy. DPMS supports four modes for a monitor: Normal, Standby (power supply on,
monitor ready to come to display images almost instantly), Suspend (power supply off, monitor takes
up to ten seconds to display an image), and Off.

drag

To move an icon from one position or application to another, usually in the context of a window
manager. The motion part of drag-and-drop.

druid

In role-playing games, a character that represents a magical user. Red Hat uses the term druid at the
ends of names of programs that guide you through a task-driven chain of steps. Other operating
systems call these types of programs wizards .

DSA

Digital Signature Algorithm. A public key cipher used to generate digital signatures.

DSL

Digital Subscriber Line/Loop. Provides high-speed digital communication over a specialized,
conditioned telephone line.
See also [xDSL]

Dynamic Host Configuration Protocol

See [DHCP]
editor

A utility, such as vim or emacs, that creates and modifies text files.

EEPROM

Electrically erasable, programmable, readonly memory. A PROM (page 895) that can be written to.

effective user ID

The user ID that a process appears to have; usually the same as the user ID. For example, while you
are running a setuid program, the effective user ID of the process running the program is that of the
owner of the program.

element

One thing; usually a basic part of a group of things. An element of a numeric array is one of the
numbers stored in the array.

emoticon

See [smiley]
encapsulation

See [tunneling]
environment

See [calling environment]
EOF

End of file.

EPROM

Erasable, programmable, readonly memory. A PROM (page 895) that can be written to by applying a
higher than normal voltage.

escape

See [quote]
Ethernet

A type of LAN (page 884) capable of transfer rates as high as 1,000 megabits per second.

event

An occurrence, or happening, of significance to a task or program—for example, the completion of an
asynchronous input/output operation, such as a keypress or mouse click.FOLDOC

exabyte

260 bytes or about 1018 bytes.
See also [large number]

exit status

The status returned by a process; either successful (usually 0) or unsuccessful (usually 1).

exploit

A security hole or an instance of taking advantage of a security hole.FOLDOC

expression

See also [logical expression]
See also [arithmetic expression]

extranet

A network extension for a subset of users (such as students at a particular school or engineers working

for the same company). An extranet limits access to private information even though it travels on the
public Internet.

failsafe session

A session that allows you to log in on a minimal desktop in case your standard login does not work
well enough to allow you to log in to fix a login problem.

FDDI

Fiber Distributed Data Interface. A type of LAN (page 884) designed to transport data at the rate of 100
million bits per second over fiberoptic cable.

file

A collection of related information referred to with a filename and frequently stored on a disk. Text
files typically contain memos, reports, messages, program source code, lists, or manuscripts. Binary or
executable files contain utilities or programs that you can run. Refer to "Directory and Ordinary Files"
on page 77.

filename

The name of a file. A filename refers to a file.

filename completion

Automatic completion of a filename after you specify a unique prefix.

filename extension

The part of a filename following a period.

filename generation

What occurs when the shell expands ambiguous file references.
See also [ambiguous file reference]

filesystem

A data structure (page 870) that usually resides on part of a disk. All Linux systems have a root
filesystem, and most have at least a few other filesystems. Each filesystem is composed of some
number of blocks, depending on the size of the disk partition that has been assigned to the filesystem.
Each filesystem has a control block, named the superblock, that contains information about the
filesystem. The other blocks in a filesystem are inodes, which contain control information about
individual files, and data blocks, which contain the information in the files.

filling

A variant of maximizing in which window edges are pushed out as far as they can go without
overlapping another window.

filter

A command that can take its input from standard input and send its output to standard output. A filter
transforms the input stream of data and sends it to standard output. A pipe usually connects a filter's
input to standard output of one command, and a second pipe connects the filter's output to standard
input of another command. The grep and sort utilities are commonly used as filters.

firewall

A device for policy-based traffic management used to keep a network secure. A firewall can be
implemented in a single router that filters out unwanted packets, or it can rely on a combination of
routers, proxy servers, and other devices. Firewalls are widely used to give users access to the Internet
in a secure fashion and to separate a company's public WWW server from its internal network. They
are also employed to keep internal network segments more secure.

Recently the term has come to be defined more loosely to include a simple packet filter running on an
endpoint machine.

See also [proxy server]

focus, desktop

On a desktop the window that is active. The window with the desktop focus receives the characters
you type on the keyboard. Same as active window (page 860).

footer

The part of a format that goes at the bottom (or foot) of a page. Contrast with header (page 878).

foreground process

When you run a command in the foreground, the shell waits for the command to finish before giving
you another prompt. You must wait for a foreground process to run to completion before you can give
the shell another command. If you have job control, you can move background processes to the
foreground, and vice versa. Contrast with background process (page 863).
See also [job control]

fork

To create a process. When one process creates another process, it forks a process. Also spawn .

FQDN

Fully qualified domain name. The full name of a system, consisting of its hostname and its domain
name, including the top-level domain. Technically the name that gethostbyname(2) returns for the
host named by gethostname(2). For example, speedy is a hostname and speedy.example.com is an
FQDN. An FQDN is sufficient to determine a unique Internet address for a machine on the
Internet.FOLDOC

frame

A data link layer packet that contains, in addition to data, the header and trailer information required
by the physical medium. Network layer packets are encapsulated to become frames.FOLDOC

See also [datagram]
See also [packet]

free list

In a filesystem, the list of blocks that are available for use. Information about the free list is kept in the
superblock of the filesystem.

free space

The portion of a hard disk that is not within a partition. A new hard disk has no partitions and contains
all free space.

full duplex

The ability to receive and transmit data simultaneously. A network switch (page 890) is typically a
full-duplex device. Contrast with half-duplex (page 877).

fully qualified domain name

See [FQDN]
function

See [shell function]
gateway

A generic term for a computer or a special device connected to more than one dissimilar type of
network to pass data between them. Unlike a router, a gateway often must convert the information into
a different format before passing it on. The historical usage of gateway to designate a router is
deprecated.

GCOS

See [GECOS]
GECOS

General Electric Comprehensive Operating System. For historical reasons, the user information field
in the /etc/passwd file is called the GECOS field. Also GCOS .

giga-

In the binary system, the prefix giga- multiplies by 230 (i.e., 1,073,741,824). Gigabit and gigabyte are
common uses of this prefix. Abbreviated as G.
See also [large number]

glyph

A symbol that communicates a specific piece of information nonverbally. A smiley (page 901) is a
glyph.

GMT

Greenwich Mean Time.
See also [UTC]

graphical display

A bitmapped monitor that can display graphical images. Contrast with ASCII terminal (page 861).

graphical user interface

See [GUI]

group (of users)

A collection of users. Groups are used as a basis for determining file access permissions. If you are not
the owner of a file and you belong to the group the file is assigned to, you are subject to the group
access permissions for the file. A user can simultaneously belong to several groups.

group (of windows)

A way to identify similar windows so they can be displayed and acted on similarly. Typically windows
started by a given application belong to the same group.

group ID

A unique number that identifies a set of users. It is stored in the password and group databases
(/etc/passwd and /etc/group files or their NIS equivalents). The group database associates group IDs
with group names.

GUI

Graphical user interface. A GUI provides a way to interact with a computer system by choosing items
from menus or manipulating pictures drawn on a display screen instead of by typing command lines.
Under Linux, the X Window System provides a graphical display and mouse/keyboard input. GNOME
and KDE are two popular desktop managers that run under X. Contrast with character-based (page
866).

hacker

A person who enjoys exploring the details of programmable systems and learning how to stretch their
capabilities, as opposed to users, who prefer to learn only the minimum necessary. One who programs
enthusiastically (even obsessively) or who enjoys programming rather than just theorizing about
programming.FOLDOC Contrast with cracker (page 869).

half-duplex

A half-duplex device can only receive or transmit at a given moment; it cannot do both. A hub (page
880) is typically a half-duplex device. Contrast with full duplex (page 876).

hard link

A directory entry that contains the filename and inode number for a file. The inode number identifies

the location of control information for the file on the disk, which in turn identifies the location of the
file's contents on the disk. Every file has at least one hard link, which locates the file in a directory.
When you remove the last hard link to a file, you can no longer access the file.
See also [link]
See also [symbolic link]

hash

A string that is generated from another string. When used for security, a hash can prove, almost to a
certainty, that a message has not been tampered with during transmission: The sender generates a hash
of a message, encrypts the message and hash, and sends the encrypted message and hash to the
recipient. The recipient decrypts the message and hash, generates a second hash from the message, and
compares the hash that the sender generated to the new hash. When they are the same, the message has
probably not been tampered with. A hash can also be used to create an index called a hash table . Also
hash value .
See also [one-way hash function]

hash table

An index created from hashes of the items to be indexed. The hash function makes it highly unlikely
that two items will create the same hash. To look up an item in the index, create a hash of the item and
search for the hash. Because the hash is typically shorter than the item, the search is more efficient.

header

When you are formatting a document, the header goes at the top, or head, of a page. In electronic mail
the header identifies who sent the message, when it was sent, what the subject of the message is, and
so forth.

Here document

A shell script that takes its input from the file that contains the script.

hesiod

The name server of project Athena. Hesiod is a name service library that is derived from BIND (page
863) and leverages a DNS infrastructure.

heterogeneous

Consisting of different parts. A heterogeneous network includes systems produced by different
manufacturers and/or running different operating systems.

hexadecimal number

A base 16 number. Hexadecimal (or hex) numbers are composed of the hexadecimal digits 0–9 and
A–F. See Table G-1.

Table G-1. Decimal, octal, and hexadecimal numbers

Decimal Octal Hex Decimal Octal Hex

1 1 1 17 21 11

2 2 2 18 22 12

3 3 3 19 23 13

4 4 4 20 24 14

5 5 5 21 25 15

6 6 6 31 37 1F

7 7 7 32 40 20

8 10 8 33 41 21

9 11 9 64 100 40

10 12 A 96 140 60

11 13 B 100 144 64

12 14 C 128 200 80

13 15 D 254 376 FE

14 16 E 255 377 FF

15 17 F 256 400 100

16 20 10 257 401 101

hidden file

See [invisible file]
hierarchy

An organization with a few things, or thing—one at the top—and with several things below each other
thing. An inverted tree structure. Examples in computing include a file tree where each directory may
contain files or other directories, a hierarchical network, and a class hierarchy in object-oriented
programming.FOLDOC Refer to "The Hierarchical Filesystem" on page 76.

history

A shell mechanism that enables you to modify and reexecute recent commands.

home directory

The directory that is your working directory when you first log in. The pathname of this directory is
stored in the HOME shell variable.

hover

To leave the mouse pointer stationary for a moment over an object. In many cases hovering displays a
tooltip (page 906).

HTML

Hypertext Markup Language. A hypertext (page 880) document format used on the World Wide Web.
Tags, which are embedded in the text, consist of a less than sign (<), a directive, zero or more
parameters, and a greater than sign (>). Matched pairs of directives, such as <TITLE> and </TITLE>,
delimit text that is to appear in a special place or style.FOLDOC For more information on HTML, go to
www.htmlhelp.com/faq/html/all.html.

HTTP

Hypertext Transfer Protocol. The client/server TCP/IP protocol used on the World Wide Web for the
exchange of HTML documents.

hub

A multiport repeater. A hub rebroadcasts all packets it receives on all ports. This term is frequently
used to refer to small hubs and switches, regardless of the device's intelligence. It is a generic term for
a layer 2 shared-media networking device. Today the term hub is sometimes used to refer to small
intelligent devices, although that was not its original meaning. Contrast with network switch (page
890).

hypertext

A collection of documents/nodes containing (usually highlighted or underlined) cross-references or
links, which, with the aid of an interactive browser program, allow the reader to move easily from one
document to another.FOLDOC

Hypertext Markup Language

See [HTML]
Hypertext Transfer Protocol

See [HTTP]
i/o device

Input/output device.
See also [device]

IANA

Internet Assigned Numbers Authority. A group that maintains a database of all permanent, registered
system services (www.iana.org).

ICMP

Internet Control Message Protocol. A type of network packet that carries only messages, no data.

icon

In a GUI, a small picture representing a file, directory, action, program, and so on. When you click an
icon, an action, such as opening a window and starting a program or displaying a directory or Web
site, takes place. From miniature religious statues.FOLDOC

iconify

The process of changing a window into an icon . Contrast with restore (page 897).

ignored window

A state in which a window has no decoration and therefore no buttons or titlebar to control it with.

indentation

See [indention]
indention

The blank space between the margin and the beginning of a line that is set in from the margin.

inode

A data structure (page 870) that contains information about a file. An inode for a file contains the
file's length, the times the file was last accessed and modified, the time the inode was last modified,
owner and group IDs, access privileges, number of links, and pointers to the data blocks that contain
the file itself. Each directory entry associates a filename with an inode. Although a single file may
have several filenames (one for each link), it has only one inode.

input

Information that is fed to a program from a terminal or other file.
See also [standard input]

installation

A computer at a specific location. Some aspects of the Linux system are installation dependent. Also
site.

interactive

A program that allows ongoing dialog with the user. When you give commands in response to shell
prompts, you are using the shell interactively. Also, when you give commands to utilities, such as vim
and mail, you are using the utilities interactively.

interface

The meeting point of two subsystems. When two programs work together, their interface includes
every aspect of either program that the other deals with. The user interface (page 908) of a program
includes every program aspect the user comes into contact with: the syntax and semantics involved in
invoking the program, the input and output of the program, and its error and informational messages.
The shell and each of the utilities and built-in commands have a user interface.

International Organization for Standardization

See [ISO]
internet

A large network that encompasses other, smaller networks.

Internet

The largest internet in the world. The Internet (uppercase "I") is a multilevel hierarchy composed of
backbone networks (ARPANET, NSFnet, MILNET, and others), midlevel networks, and stub
networks. These include commercial (.com or .co), university (.ac or .edu), research (.org or .net), and
military (.mil) networks and span many different physical networks around the world with various
protocols, including the Internet Protocol (IP). Outside the United States, country code domains are
popular (.us, .es, .mx, .de, and so forth), although you will see them used within the United States as
well.

Internet Protocol

See [IP]
Internet Service Provider

See [ISP]
intranet

An inhouse network designed to serve a group of people such as a corporation or school. The general
public on the Internet does not have access to the intranet.

invisible file

A file whose filename starts with a period. These files are called invisible because the ls utility does
not normally list them. Use the –a option of ls to list all files, including invisible ones. The shell does
not expand a leading asterisk (*) in an ambiguous file reference to match the filename of an invisible
file. Also hidden file .

IP

Internet Protocol. The network layer for TCP/IP. IP is a best-effort, packet-switching, connectionless
protocol (page 869) that provides packet routing, fragmentation, and reassembly through the data link
layer. IPv4 is slowly giving way to IPv6 . FOLDOC

IP address

Internet Protocol address. A four-part address associated with a particular network connection for a
system using the Internet Protocol (IP). A system that is attached to multiple networks that use the IP
will have a different IP address for each network interface.

IP multicast

See [multicast]
IP spoofing

A technique used to gain unauthorized access to a computer. The would-be intruder sends messages to
the target machine. These messages contain an IP address indicating that the messages are coming
from a trusted host. The target machine responds to the messages, giving the intruder (privileged)
access to the target.

IPC

Interprocess communication. A method to communicate specific information between programs.

IPv4

IP version 4.
See also [IP]
See also [IPv6]

IPv6

IP version 6. The next generation of Internet Protocol, which provides a much larger address space
(2128 bits versus 232 bits for IPv4) that is designed to accommodate the rapidly growing number of
Internet addressable devices. IPv6 also has built-in autoconfiguration, enhanced security, better
multicast support, and many other features.

ISDN

Integrated Services Digital Network. A set of communications standards that allows a single pair of
digital or standard telephone wires to carry voice, data, and video at a rate of 64 kilobits per second.

ISO

International Organization for Standardization. A voluntary, nontreaty organization founded in 1946. It
is responsible for creating international standards in many areas, including computers and
communications. Its members are the national standards organizations of 89 countries, including the
American National Standards Institute.FOLDOC

ISO9660

The ISO standard defining a filesystem for CD-ROMs.

ISP

Internet service provider. Provides Internet access to its customers.

job control

A facility that enables you to move commands from the foreground to the background and vice versa.
Job control enables you to stop commands temporarily.

journaling filesystem

A filesystem that maintains a noncached log file, or journal, which records all transactions involving
the filesystem. When a transaction is complete, it is marked as complete in the log file.

The log file results in greatly reduced time spent recovering a filesystem after a crash, making it
particularly valuable in systems where high availability is an issue.

JPEG

Joint Photographic Experts Group. This committee designed the standard image-compression
algorithm. JPEG is intended for compressing either full-color or gray-scale digital images of natural,
real-world scenes and does not work as well on nonrealistic images, such as cartoons or line drawings.
Filename extensions: .jpg, .jpeg.FOLDOC

justify

To expand a line of type in the process of formatting text. A justified line has even margins. A line is
justified by increasing the space between words and sometimes between letters on the line.

Kerberos

An MIT-developed security system that authenticates users and machines. It does not provide
authorization to services or databases; it establishes identity at logon, which is used throughout the
session. Once you are authenticated, you can open as many terminals, windows, services, or other
network accesses as you like until your session expires.

kernel

The part of the operating system that allocates machine resources, including memory, disk space, and
CPU (page 869) cycles, to all other programs that run on a computer. The kernel includes the low-
level hardware interfaces (drivers) and manages processes (page 894), the means by which Linux
executes programs. The kernel is the part of the Linux system that Linus Torvalds originally wrote (see
the beginning of Chapter 1).

kernelspace

The part of memory (RAM) where the kernel resides. Code running in kernelspace has full access to
hardware and all other processes in memory. See the KernelAnalysis-HOWTO .

key binding

A keyboard key is said to be bound to the action that results from pressing it. Typically keys are bound
to the letters that appear on the keycaps: When you press A, an A appears on the screen. Key binding
usually refers to what happens when you press a combination of keys, one of which is CONTROL,
ALT, META, or SHIFT, or when you press a series of keys, the first of which is typically ESCAPE.

keyboard

A hardware input device consisting of a number of mechanical buttons (keys) that the user presses to
input characters to a computer. By default a keyboard is connected to standard input of a shell.FOLDOC

kilo-

In the binary system, the prefix kilo- multiplies by 210 (i.e., 1,024). Kilobit and kilobyte are common
uses of this prefix. Abbreviated as k.

Korn Shell

ksh. A command processor, developed by David Korn at AT&T Bell Laboratories, that is compatible
with the Bourne Shell but includes many extensions.
See also [shell]

LAN

Local area network. A network that connects computers within a localized area (such as a single site,
building, or department).

large number

Go to mathworld.wolfram.com/LargeNumber.html for a comprehensive list.

LDAP

Lightweight Directory Access Protocol. A simple protocol for accessing online directory services.
Traditionally LDAP has been used to access information such as email directories; in some cases, it
can be used as an alternative for services such as NIS. Given a name, many mail clients can use LDAP
to discover the corresponding email address.
See also [directory service]

leaf

In a tree structure, the end of a branch that cannot support other branches. When the Linux filesystem
hierarchy is conceptualized as a tree, files that are not directories are leaves.
See also [node]

least privilege, concept of

Mistakes that Superuser makes can be much more devastating than those made by an ordinary user.
When you are working on the computer, especially when you are working as the system administrator,
always perform any task using the least privilege possible. If you can perform a task logged in as an
ordinary user, do so. If you must be logged in as Superuser, do as much as you can as an ordinary user,
log in as su so that you are Superuser, do as much of the task that has to be done as Superuser, and
revert to being an ordinary user as soon as you can.

Because you are more likely to make a mistake when you are rushing, this concept becomes more
important when you have less time to apply it. Also root user or just root.

Lightweight Directory Access Protocol

See [LDAP]
link

A pointer to a file. Two kinds of links exist: hard links and symbolic (soft) links. A hard link
associates a filename with a place on the disk where the contents of the file is located. A symbolic link
associates a filename with the pathname of a hard link to a file.
See also [hard link]
See also [symbolic link]

Linux-PAM

See [PAM]

Linux-Pluggable Authentication Modules

See [PAM]
loadable kernel module

See [loadable module]
loadable module

A portion of the operating system that controls a special device and that can be loaded automatically
into a running kernel as needed to access that device.

local area network

See [LAN]
locale

The language; date, time, and currency formats; character sets; and so forth that pertain to a
geopolitical place or area. For example, en_US specifies English as spoken in the United States and
dollars; en_UK specifies English as spoken in the United Kingdom and pounds. See the locale (5) man
page for more information. Also the locale utility.

log in

To gain access to a computer system by responding correctly to the login: and Password: prompts.
Also log on, login .

log out

To end your session by exiting from your login shell. Also log off .

logical expression

A collection of strings separated by logical operators (>, >=, =, !=, <=, and <) that can be evaluated as
true or false . Also Boolean expression .

.login file

A file in a user's home directory that the TC Shell executes when you log in. You can use this file to
set environment variables and to run commands that you want executed at the beginning of each
session.

login name

The name you enter in response to the login: prompt. Other users use your login name when they send
you mail or write to you. Each login name has a corresponding user ID, which is the numeric identifier
for the user. Both the login name and the user ID are stored in the passwd database (/etc/passwd or
the NIS equivalent).

login shell

The shell that you are using when you log in. The login shell can fork other processes that can run
other shells, utilities, and programs.

logout file

A file in a user's home directory that the TC Shell executes when you log out, assuming that the TC
Shell is your login shell. You can put in the .logout file commands that you want run each time you
log out.

MAC address

Media Access Control address. The unique hardware address of a device connected to a shared
network medium. Each Ethernet adapter has a globally unique MAC address in ROM. MAC addresses
are 6 bytes long, enabling 2566 (about 300 trillion) possible addresses or 65,536 addresses for each
possible IPv4 address.

A MAC address performs the same role for Ethernet that an IP address performs for TCP/IP: It
provides a unique way to identify a host.

machine collating sequence

The sequence in which the computer orders characters. The machine collating sequence affects the
outcome of sorts and other procedures that put lists in alphabetical order. Many computers use ASCII
codes so their machine collating sequences correspond to the ordering of the ASCII codes for
characters.

macro

A single instruction that a program replaces by several (usually more complex) instructions. The C
compiler recognizes macros, which are defined using a #define instruction to the preprocessor.

magic number

A magic number, which occurs in the first 512 bytes of a binary file, is a 1-, 2-, or 4-byte numeric
value or character string that uniquely identifies the type of file (much like a DOS 3-character filename
extension). See /usr/share/magic and the magic man page (5) for more information.

main memory

Random access memory (RAM), an integral part of the computer. Although disk storage is sometimes
referred to as memory, it is never referred to as main memory.

major device number

A number assigned to a class of devices, such as terminals, printers, or disk drives. Using the ls utility
with the –l option to list the contents of the /dev directory displays the major and minor device
numbers of many devices (as major, minor).

MAN

Metropolitan area network. A network that connects computers and LANs (page 884) at multiple sites
in a small regional area, such as a city.

masquerade

To appear to come from one domain or IP address when actually coming from another. Said of a
packet (iptables) or message (sendmail).

MD5

Message Digest 5. A one-way hash function (page 891).

MDA

Mail delivery agent. One of the three components of a mail system; the other two are the MTA and
MUA. An MDA accepts inbound mail from an MTA and delivers it to a local user.

mega-

In the binary system, the prefix mega- multiplies by 220 (i.e., 1,048,576). Megabit and megabyte are
common uses of this prefix. Abbreviated as M.

menu

A list from which the user may select an operation to be performed. This selection is often made with
a mouse or other pointing device under a GUI but may also be controlled from the keyboard. Very
convenient for beginners, menus show which commands are available and facilitate experimenting
with a new program, often reducing the need for user documentation. Experienced users usually prefer
keyboard commands, especially for frequently used operations, because they are faster to use.FOLDOC

merge

To combine two ordered lists so that the resulting list is still in order. The sort utility can merge files.

META key

On the keyboard, a key that is labeled META or ALT. Use this key as you would the SHIFT key. While
holding it down, press another key. The emacs editor makes extensive use of the META key.

metacharacter

A character that has a special meaning to the shell or another program in a particular context.
Metacharacters are used in the ambiguous file references recognized by the shell and in the regular
expressions recognized by several utilities. You must quote a metacharacter if you want to use it
without invoking its special meaning.
See also [regular character]
See also [special character]

metadata

Data about data. In data processing, metadata is definitional data that provides information about, or
documentation of, other data managed within an application or environment.

For example, metadata can document data about data elements or attributes (name, size, data type, and
so on), records or data structures (page 870) (length, fields, columns, and so on), and data itself
(where it is located, how it is associated, who owns it, and so on). Metadata can include descriptive
information about the context, quality and condition, or characteristics of the data.FOLDOC

metropolitan area network

See [MAN]
MIME

Multipurpose Internet Mail Extension. Originally used to describe how specific types of files that were
attached to email were to be handled. Today MIME types describe how a file is to be opened or
worked with, based on its filename extension.

minimize

See [iconify]
minor device number

A number assigned to a specific device within a class of devices.
See also [major device number]

modem

Modulator/demodulator. A peripheral device that modulates digital data into analog data for
transmission over a voice-grade telephone line. Another modem demodulates the data at the other end.

module

See [loadable module]
mount

To make a filesystem accessible to system users. When a filesystem is not mounted, you cannot read
from or write to files it contains.

mount point

A directory that you mount a local or remote filesystem on.

mouse

A device you use to point to a particular location on a display screen, typically so you can choose a
menu item, draw a line, or highlight some text. You control a pointer on the screen by sliding a mouse
around on a flat surface; the position of the pointer moves relative to the movement of the mouse. You
select items by pressing one or more buttons on the mouse.

mouse pointer

In a GUI, a marker that moves in correspondence with the mouse. It is usually a small black X with a

white border or an arrow. Differs from the cursor (page 870).

mouseover

The action of passing the mouse pointer over an icon or other object on the screen.

MTA

Mail transfer agent. One of the three components of a mail system; the other two are the MDA and
MUA. An MTA accepts mail from users and MTAs.

MUA

Mail user agent. One of the three components of a mail system; the other two are the MDA and MTA.
An MUA is an end-user mail program such as Kmail, mutt, or Outlook.

multiboot specification

Specifies an interface between a boot loader and an operating system. With compliant boot loaders and
operating systems, any boot loader should be able to load any operating system. The object of this
specification is to ensure that different operating systems will work on a single machine. For more
information, go to odin-os.sourceforge.net/guides/multiboot.html.

multicast

A multicast packet has one source and multiple destinations. In multicast, source hosts register at a
special address to transmit data. Destination hosts register at the same address to receive data. In
contrast to broadcast (page 865), which is LAN-based, multicast traffic is designed to work across
routed networks on a subscription basis. Multicast reduces network traffic by transmitting a packet one
time, with the router at the end of the path breaking it apart as needed for multiple recipients.

multitasking

A computer system that allows a user to run more than one job at a time. A multitasking system, such
as Linux, allows you to run a job in the background while running a job in the foreground.

multiuser system

A computer system that can be used by more than one person at a time. Linux is a multiuser operating
system. Contrast with single-user system (page 900).

NAT

Network Address Translation. A scheme that enables a LAN to use one set of IP addresses internally
and a different set externally. The internal set is for LAN (private) use. The external set is typically
used on the Internet and is Internet unique. NAT provides some privacy by hiding internal IP addresses
and allows multiple internal addresses to connect to the Internet through a single external IP address.

NBT

NetBIOS over TCP/IP. A protocol that supports NetBIOS services in a TCP/IP environment. Also
NetBT .

NetBIOS

Network Basic Input/Output System. An API (page 861) for writing network-aware applications.

netboot

To boot a computer over the network (as opposed to booting from a local disk).

netiquette

The conventions of etiquette—that is, polite behavior—recognized on Usenet and in mailing lists,
such as not (cross-)posting to inappropriate groups and refraining from commercial advertising outside
the business groups.

The most important rule of netiquette is "Think before you post." If what you intend to post will not
make a positive contribution to the newsgroup and be of interest to several readers, do not post it.
Personal messages to one or two individuals should not be posted to newsgroups; use private email
instead.FOLDOC

netmask

A 32-bit mask (for IPv4), that shows how an Internet address is to be divided into network, subnet,
and host parts. The netmask has ones in the bit positions in the 32-bit address that are to be used for
the network and subnet parts and zeros for the host part. The mask should contain at least the standard
network portion (as determined by the address class). The subnet field should be contiguous with the

network portion.FOLDOC

network address

The network portion (netid) of an IP address. For a class A network, it is the first byte, or segment, of
the IP address; for a class B network, it is the first two bytes; and for a class C network, it is the first
three bytes. In each case the balance of the IP address is the host address (hostid). Assigned network
addresses are globally unique within the Internet. Also network number .

Network Filesystem

See [NFS]
Network Information Service

See [NIS]
network number

See [network address]
network segment

A part of an Ethernet or other network on which all message traffic is common to all nodes; that is, it
is broadcast from one node on the segment and received by all others. This commonality normally
occurs because the segment is a single continuous conductor. Communication between nodes on
different segments is via one or more routers.FOLDOC

network switch

A connecting device in networks. Switches are increasingly replacing shared media hubs in an effort to
increase bandwidth. For example, a 16-port 10BaseT hub shares the total 10 megabits per second
bandwidth with all 16 attached nodes. By replacing the hub with a switch, both sender and receiver
can take advantage of the full 10 megabits per second capacity. Each port on the switch can give full
bandwidth to a single server or client station or to a hub with several stations. Network switch refers to
a device with intelligence. Contrast with hub (page 880).

Network Time Protocol

See [NTP]
NFS

Network Filesystem. A remote filesystem designed by Sun Microsystems, available on computers
from most UNIX system vendors.

NIC

Network interface card (or controller). An adapter circuit board installed in a computer to provide a
physical connection to a network.FOLDOC

NIS

Network Information Service. A distributed service built on a shared database to manage system-
independent information (such as login names and passwords).

NIS domain name

A name that describes a group of systems that share a set of NIS files. Different from domain name
(page 873).

NNTP

Network News Transfer Protocol.

node

In a tree structure, the end of a branch that can support other branches. When the Linux filesystem
hierarchy is conceptualized as a tree, directories are nodes.
See also [leaf]

nonprinting character

Also nonprintable character .
See also [control character]

nonvolatile storage

A storage device whose contents are preserved when its power is off. Also NVS and persistent storage.
Some examples are CD-ROM, paper punch tape, hard disk, ROM (page 898), PROM (page 895),
EPROM (page 874), and EEPROM (page 873). Contrast with RAM (page 896).

NTP

Network Time Protocol. Built on top of TCP/IP, NTP maintains accurate local time by referring to
known accurate clocks on the Internet.

null string

A string that could contain characters but does not. A string of zero length.

octal number

A base 8 number. Octal numbers are composed of the digits 0 –7, inclusive. Refer to Table G-1 on
page 879.

one-way hash function

A one-way function that takes a variable-length message and produces a fixed-length hash. Given the
hash, it is computationally infeasible to find a message with that hash; in fact, you cannot determine
any usable information about a message with that hash. Also message digest function .
See also [hash]

OpenSSH

A free version of the SSH (secure shell) protocol suite that replaces TELNET, rlogin, and more with
secure programs that encrypt all communication—even passwords—over a network.

operating system

A control program for a computer that allocates computer resources, schedules tasks, and provides the
user with a way to access resources.

option

A command line argument that modifies the effects of a command. Options are usually preceded by
hyphens on the command line and traditionally have single-character names (such as –h or –n). Some
commands allow you to group options following a single hyphen (for example, –hn). GNU utilities
frequently have two arguments that do the same thing: a single-character argument and a longer, more
descriptive argument that is preceded by two hyphens (such as – –show-all and – –invert-match).

ordinary file

A file that is used to store a program, text, or other user data.
See also [directory]
See also [device file]

output

Information that a program sends to the terminal or another file.
See also [standard output]

P2P

Peer-to-Peer. A network that does not divide nodes into clients and servers. Each computer on a P2P
network can fulfill the roles of client and server. In the context of a file-sharing network, this ability
means that once a node has downloaded (part of) a file, it can act as a server. BitTorrent implements a
P2P network.

packet

A unit of data sent across a network. Packet is a generic term used to describe a unit of data at any
layer of the OSI protocol stack, but it is most correctly used to describe network or application layer
data units ("application protocol data unit," APDU).FOLDOC

See also [frame]
See also [datagram]

packet filtering

A technique used to block network traffic based on specified criteria, such as the origin, destination, or
type of each packet.
See also [firewall]

packet sniffer

A program or device that monitors packets on a network.
See also [sniff]

pager

A utility that allows you to view a file one screen at a time (for example, less and more).

paging

The process by which virtual memory is maintained by the operating system. The contents of process
memory is moved (paged out) to the swap space (page 904) as needed to make room for other
processes.

PAM

Linux-PAM or Linux-Pluggable Authentication Modules. These modules allow a system administrator
to determine how various applications authenticate users.

parent process

A process that forks other processes.
See also [process]
See also [child process]

partition

A section of a (hard) disk that has a name so you can address it separately from other sections. A disk
partition can hold a filesystem or another structure, such as the swap area. Under DOS and Windows,
partitions (and sometimes whole disks) are labeled C:, D:, and so on. Also disk partition and slice .

passive FTP

Allows FTP to work through a firewall by allowing the flow of data to be initiated and controlled by
the client FTP program instead of the server. Also called PASV FTP because it uses the FTP PASV
command.

passphrase

A string of words and characters that you type in to authenticate yourself. A passphrase differs from a
password only in length. A password is usually short—6 to 10 characters. A passphrase is usually
much longer—up to 100 characters or more. The greater length makes a passphrase harder to guess or
reproduce than a password and therefore more secure.FOLDOC

password

To prevent unauthorized access to a user's account, an arbitrary string of characters chosen by the user
or system administrator and used to authenticate the user when attempting to log in.FOLDOC

See also [passphrase]

PASV FTP

See [passive FTP]
pathname

A list of directories separated by slashes (/) and ending with the name of a file, which can be a
directory. A pathname is used to trace a path through the file structure to locate or identify a file.

pathname, last element of a

The part of a pathname following the final /, or the whole filename if there is no /. A simple filename.
Also basename .

pathname element

One of the filenames that forms a pathname.

peripheral device

See [device]
persistent

Data that is stored on nonvolatile media, such as a hard disk.

physical device

A tangible device, such as a disk drive, that is physically separate from other, similar devices.

PID

Process identification, usually followed by the word number . Linux assigns a unique PID number as
each process is initiated.

pipe

A connection between programs such that standard output of one program is connected to standard
input of the next. Also pipeline .

pixel

The smallest element of a picture, typically a single dot on a display screen.

plaintext

Text that is not encrypted. Also cleartext . Contrast with ciphertext (page 867).

Pluggable Authentication Modules

See [PAM]
point-to-point link

A connection limited to two endpoints, such as the connection between a pair of modems.

port

A logical channel or channel endpoint in a communications system. The TCP (page 905) and UDP
(page 907) transport layer protocols used on Ethernet use port numbers to distinguish between
different logical channels on the same network interface on the same computer.

The /etc/services file (see the beginning of this file for more information) or the NIS (page 890)
services database specifies a unique port number for each application program. The number links
incoming data to the correct service (program). Standard, well-known ports are used by everyone: Port
80 is used for HTTP (Web) traffic. Some protocols, such as TELNET and HTTP (which is a special
form of TELNET), have default ports specified as mentioned earlier but can use other ports as
well.FOLDOC

port forwarding

The process by which a network port on one computer is transparently connected to a port on another
computer. If port X is forwarded from system A to system B, any data sent to port X on system A is
sent to system B automatically. The connection can be between different ports on the two systems.

portmapper

A server that converts TCP/IP port numbers into RPC (page 899) program numbers.

printable character

One of the graphic characters: a letter, number, or punctuation mark. Contrast with a nonprintable, or
control, character. Also printing character .

private address space

IANA (page 880) has reserved three blocks of IP addresses for private internets or LANs:

10.0.0.0 - 10.255.255.255

172.16.0.0 - 172.31.255.255

192.168.0.0 - 192.168.255.255

You can use these addresses without coordinating with anyone outside of your LAN (you do not have to
register the system name or address). Systems using these IP addresses cannot communicate directly with
hosts using the global address space but must go through a gateway. Because private addresses have no
global meaning, routing information is not stored by DNSs and most ISPs reject privately addressed packets.
Make sure that your router is set up not to forward these packets onto the Internet.

privileged port

A port (page 893) with a number less than 1,024. On Linux and other UNIX-like systems, only root
can bind to a privileged port. Any user on Windows 98 and earlier Windows systems can bind to any
port.

procedure

A sequence of instructions for performing a particular task. Most programming languages, including
machine languages, enable a programmer to define procedures that allow the procedure code to be
called from multiple places. Also subroutine .FOLDOC

process

The execution of a command by Linux. See "Processes" on page 292.

.profile file

A startup file in a user's home directory that the Bourne Again Shell executes when you log in. The TC
Shell executes .login instead. You can use the .profile file to run commands, set variables, and define
functions.

program

A sequence of executable computer instructions contained in a file. Linux utilities, applications, and
shell scripts are all programs. Whenever you run a command that is not built into a shell, you are
executing a program.

PROM

Programmable readonly memory. A kind of nonvolatile storage. ROM (page 898) that can be written

to using a PROM programmer.

prompt

A cue from a program, usually displayed on the screen, indicating that it is waiting for input. The shell
displays a prompt, as do some of the interactive utilities, such as mail. By default the Bourne Again
and Z Shells use a dollar sign ($) as a prompt, and the TC Shell uses a percent sign (%).

protocol

A set of formal rules describing how to transmit data, especially across a network. Low-level protocols
define the electrical and physical standards, bit and byte ordering, and transmission, error detection,
and correction of the bit stream. High-level protocols deal with data formatting, including message
syntax, terminal-to-computer dialog, character sets, and sequencing of messages.FOLDOC

proxy

A service that is authorized to act for a system while not being part of that system.
See also [proxy gateway]
See also [proxy server]

proxy gateway

A computer that separates clients (such as browsers) from the Internet, working as a trusted agent that
accesses the Internet on their behalf. A proxy gateway passes a request for data from an Internet
service, such as HTTP from a browser/client, to a remote server. The data that the server returns goes
back through the proxy gateway to the requesting service. A proxy gateway should be transparent to
the user.

A proxy gateway often runs on a firewall (page 875) system and acts as a barrier to malicious users. It
hides the IP addresses of the local computers inside the firewall from Internet users outside the
firewall.

You can configure browsers, such as Mozilla and Netscape, to use a different proxy gateway or to use
no proxy for each URL access method including FTP, netnews, SNMP, HTTPS, and HTTP.
See also [proxy]

proxy server

A proxy gateway that usually includes a cache (page 866) that holds frequently used Web pages so
that the next request for that page is available locally (and therefore more quickly). The terms proxy
server and proxy gateway are frequently interchanged so that the use of cache does not rest exclusively
with the proxy server.
See also [proxy]

Python

A simple, high-level, interpreted, object-oriented, interactive language that bridges the gap between C
and shell programming. Suitable for rapid prototyping or as an extension language for C applications,
Python supports packages, modules, classes, user-defined exceptions, a good C interface, and dynamic
loading of C modules. It has no arbitrary restrictions. For more information, see
www.python.orgFOLDOC

quote

When you quote a character, you take away any special meaning that it has in the current context. You
can quote a character by preceding it with a backslash. When you are interacting with the shell, you
can also quote a character by surrounding it with single quotation marks. For example, the command
echo * or echo '*' displays *. The command echo * displays a list of the files in the working
directory. Also escape .
See also [ambiguous file reference]
See also [metacharacter]
See also [regular character]
See also [regular expression]
See also [special character]

radio button

One of a group of buttons similar to those used to select the station on a radio. Only one button can be
selected at a time.

RAID

Redundant array of inexpensive/independent disks. Two or more (hard) disk drives used in
combination to improve fault tolerance and performance. RAID can be implemented in hardware or
software.

RAM

Random access memory. A kind of volatile storage. A data storage device for which the order of
access to different locations does not affect the speed of access. Contrast with a hard disk or tape
drive, which provides quicker access to sequential data because accessing a nonsequential location
requires physical movement of the storage medium and/or read/write head rather than just electronic
switching. Contrast with nonvolatile storage (page 891).FOLDOC

RAM disk

RAM that is made to look like a floppy diskette or hard disk. A RAM disk is frequently used as part of

the boot (page 864) process.

RAS

Remote access server. In a network, a computer that provides access to remote users via analog
modem or ISDN connections. RAS includes the dial-up protocols and access control (authentication).
It may be a regular file server with remote access software or a proprietary system, such as Shiva's
LANRover. The modems may be internal or external to the device.

RDF

Resource Description Framework. Being developed by W3C (the main standards body for the World
Wide Web), a standard that specifies a mechanism for encoding and transferring metadata (page 887).
RDF does not specify what the metadata should or can be. It can integrate many kinds of applications
and data, using XML as an interchange syntax. Examples of the data that can be integrated include
library catalogs and worldwide directories; syndication and aggregation of news, software, and
content; and collections of music and photographs. Go to www.w3.org/RDF for more information.

redirection

The process of directing standard input for a program to come from a file rather than from the
keyboard. Also, directing standard output or standard error to go to a file rather than to the screen.

reentrant

Code that can have multiple simultaneous, interleaved, or nested invocations that do not interfere with
one another. Noninterference is important for parallel processing, recursive programming, and
interrupt handling.

It is usually easy to arrange for multiple invocations (that is, calls to a subroutine) to share one copy of
the code and any readonly data. For the code to be reentrant, however, each invocation must use its
own copy of any modifiable data (or synchronized access to shared data). This goal is most often
achieved by using a stack and allocating local variables in a new stack frame for each invocation.
Alternatively, the caller may pass in a pointer to a block of memory that that invocation can use
(usually for output), or the code may allocate some memory on a heap, especially if the data must
survive after the routine returns.

Reentrant code is often found in system software, such as operating systems and teleprocessing
monitors. It is also a crucial component of multithreaded programs, where the term thread-safe is
often used instead of reentrant.FOLDOC

regular character

A character that always represents itself in an ambiguous file reference or another type of regular
expression. Contrast with special character .

regular expression

A string—composed of letters, numbers, and special symbols—that defines one or more strings. See
Appendix A.

relative pathname

A pathname that starts from the working directory. Contrast with absolute pathname (page 860).

remote access server

See [RAS]
remote filesystem

A filesystem on a remote computer that has been set up so that you can access (usually over a network)
its files as though they were stored on your local computer's disks. An example of a remote filesystem
is NFS.

remote procedure call

See [RPC]
resolver

The TCP/IP library software that formats requests to be sent to the DNS (page 872) for hostname-to-
Internet address conversion.FOLDOC

Resource Description Framework

See [RDF]
restore

The process of turning an icon into a window. Contrast with iconify (page 880)

return code

See [exit status]
RFC

Request for comments. Begun in 1969, one of a series of numbered Internet informational documents
and standards widely followed by commercial software and freeware in the Internet and UNIX/Linux
communities. Few RFCs are standards but all Internet standards are recorded in RFCs. Perhaps the
single most influential RFC has been RFC 822, the Internet electronic mail format standard.

The RFCs are unusual in that they are floated by technical experts acting on their own initiative and
reviewed by the Internet at large rather than being formally promulgated through an institution such as
ANSI. For this reason they remain known as RFCs, even after they are adopted as standards. The RFC
tradition of pragmatic, experience-driven, after-the-fact standard writing done by individuals or small
working groups has important advantages over the more formal, committee-driven process typical of
ANSI or ISO. For a complete list of RFCs, go to www.rfc-editor.org.FOLDOC

roam

To move a computer between wireless access points (page 910) on a wireless network without the user
or applications being aware of the transition. Moving between access points typically results in some
packet loss, although this loss is transparent to programs that use TCP.

ROM

Readonly memory. A kind of nonvolatile storage. A data storage device that is manufactured with
fixed contents. In general, ROM describes any storage system whose contents cannot be altered, such
as a phonograph record or printed book. When used in reference to electronics and computers, ROM
describes semiconductor integrated circuit memories, of which several types exist, and CD-ROM.

ROM is nonvolatile storage—it retains its contents even after power has been removed. ROM is often
used to hold programs for embedded systems, as these usually have a fixed purpose. ROM is also used
for storage of the BIOS (page 863) in a computer. Contrast with RAM (page 896).FOLDOC

root directory

The ancestor of all directories and the start of all absolute pathnames. The name of the root directory is
/.

root filesystem

The filesystem that is available when the system is brought up in single-user mode. The name of this
filesystem is always /. You cannot unmount or mount the root filesystem. You can remount root to
change its mount options.

root login

Usually the login name of Superuser (page 904).

root (user)

Another name for Superuser (page 904).

rotate

When a file, such as a log file, gets indefinitely larger, you must keep it from taking up too much space
on the disk. Because you may need to refer to the information in the log files in the near future, it is
generally not a good idea to delete the contents of the file until it has aged. Instead you can
periodically save the current log file under a new name and create a new, empty file as the current log
file. You can keep a series of these files, renaming each as a new one is saved. You will then rotate the
files. For example, you might remove xyzlog.4, xyzlog.3 xyzlog.4, xyzlog.2 xyzlog.3,
xyzlog.1 xyzlog.2, xyzlog xyzlog.1, and create a new xyzlog file. By the time you remove
xyzlog.4, it will not contain any information more recent than you want to remove.

router

A device (often a computer) that is connected to more than one similar type of network to pass data
between them.
See also [gateway]

RPC

Remote procedure call. A call to a procedure (page 894) that acts transparently across a network. The
procedure itself is responsible for accessing and using the network. The RPC libraries make sure that
network access is transparent to the application. RPC runs on top of TCP/IP or UDP/IP.

RSA

A public key encryption technology that is based on the lack of an efficient way to factor very large
numbers. Because of this lack, it takes an extraordinary amount of computer processing time and
power to deduce an RSA key. The RSA algorithm is the de facto standard for data sent over the
Internet.

run

To execute a program.

Samba

A free suite of programs that implement the Server Message Block (SMB) protocol.
See also [SMB]

schema

Within a GUI, a pattern that helps you see and interpret the information that is presented in a window,
making it easier to understand new information that is presented using the same schema.

scroll

To move lines on a terminal or window up and down or left and right.

scrollbar

A widget found in graphical user interfaces that controls (scrolls) which part of a document is visible
in the window. A window can have a horizontal scroll bar, a vertical scroll bar (more common), or
both.FOLDOC

server

A powerful centralized computer (or program) designed to provide information to clients (smaller
computers or programs) on request.

session

The lifetime of a process. For a desktop, it is the desktop session manager. For a character-based
terminal, it is the user's login shell process. In KDE, it is launched by kdeinit. A session may also be
the sequence of events between when you start using a program, such as an editor, and when you
finish.

setgid

When you execute a file that has setgid (set group ID) permission, the process executing the file takes
on the privileges of the group the file belongs to. The ls utility shows setgid permission as an s in the
group's executable position.
See also [setuid]

setuid

When you execute a file that has setuid (set user ID) permission, the process executing the file takes
on the privileges of the owner of the file. As an example, if you run a setuid program that removes all
the files in a directory, you can remove files in any of the file owner's directories, even if you do not
normally have permission to do so. When the program is owned by root, you can remove files in any
directory that root can remove files from. The ls utility shows setuid permission as an s in the owner's
executable position.
See also [setgid]

sexillion

In the British system, 1036. In the American system, this number is named undecillion .
See also [large number]

share

A directory and the filesystem hierarchy below it that are shared with another system using SMB (page
901). Also Windows share (page 910).

shared network topology

A network, such as Ethernet, in which each packet may be seen by systems other than its destination
system. Shared means that the network bandwidth is shared by all users.

shell

A Linux system command processor. The three major shells are the Bourne Again Shell (page 864),
the TC Shell (page 905), and the Z Shell (page 911).

shell function

A series of commands that the shell stores for execution at a later time. Shell functions are like shell
scripts but run more quickly because they are stored in the computer's main memory rather than in
files. Also, a shell function is run in the environment of the shell that calls it (unlike a shell script,
which is typically run in a subshell).

shell script

An ASCII file containing shell commands. Also shell program .

signal

A very brief message that the UNIX system can send to a process, apart from the process's standard
input. Refer to "trap: Catches a Signal" on page 493.

simple filename

A single filename containing no slashes (/). A simple filename is the simplest form of pathname. Also
the last element of a pathname. Also basename (page 863).

single-user system

A computer system that only one person can use at a time. Contrast with multiuser system (page 889).

SMB

Server Message Block. Developed in the early 1980s by Intel, Microsoft, and IBM, SMB is a
client/server protocol that is the native method of file and printer sharing for Windows. In addition,
SMB can share serial ports and communications abstractions, such as named pipes and mail slots.
SMB is similar to a remote procedure call (RPC ; page 899) that has been customized for filesystem
access. Also Microsoft Networking .FOLDOC

smiley

A character-based glyph (page 877), typically used in email, that conveys an emotion. The characters
:-) in a message portray a smiley face (look at it sideways). Because it can be difficult to tell when the
writer of an electronic message is saying something in jest or in seriousness, email users often use :-)
to indicate humor. The two original smileys, designed by Scott Fahlman, were :-) and :-(. Also
emoticon, smileys , and smilies . For more information search on smiley on the Internet.

smilies

See [smiley]
SMTP

Simple Mail Transfer Protocol. A protocol used to transfer electronic mail between computers. It is a
server-to-server protocol, so other protocols are used to access the messages. The SMTP dialog usually
happens in the background under the control of a message transport system such as sendmail.FOLDOC

snap (windows)

As you drag a window toward another window or edge of the workspace, it can move suddenly so that
it is adjacent to the other window/edge. Thus the window snaps into position.

sneakernet

Using hand-carried magnetic media to transfer files between machines.

sniff

To monitor packets on a network. A system administrator can legitimately sniff packets and a
malicious user can sniff packets to obtain information such as usernames and passwords.
See also [packet sniffer]

SOCKS

A networking proxy protocol embodied in a SOCKS server, which performs the same functions as a
proxy gateway (page 895) or proxy server (page 895). SOCKS works at the application level,
requiring that an application be modified to work with the SOCKS protocol, whereas a proxy (page
895) makes no demands on the application.

SOCKSv4 does not support authentication or UDP proxy. SOCKSv5 supports a variety of
authentication methods and UDP proxy.

sort

To put in a specified order, usually alphabetic or numeric.

SPACE character

A character that appears as the absence of a visible character. Even though you cannot see it, a SPACE
is a printable character. It is represented by the ASCII code 32 (decimal). A SPACE character is
considered a blank or whitespace (page 909).

spam

Posting irrelevant or inappropriate messages to one or more Usenet newsgroups or mailing lists in
deliberate or accidental violation of netiquette (page 889). Also, sending large amounts of unsolicited
email indiscriminately. This email usually promotes a product or service. Spam is the electronic
equivalent of junk mail. From the Monty Python "Spam" song.FOLDOC

sparse file

A file that is large but takes up little disk space. The data in a sparse file is not dense (thus its name).
Examples of sparse files are core files, dbm files, and /etc/utmp (/var/adm/utmp).

spawn

See [fork]
special character

A character that has a special meaning when it occurs in an ambiguous file reference or another type of
regular expression, unless it is quoted. The special characters most commonly used with the shell are *
and ?. Also metacharacter (page 887) and wildcard .

special file

See [device file]
spinner

In a GUI, a type of text box (page 905) that holds a number you can change by typing over it or using
the up and down arrows at the end of the box.

spoofing

See [IP spoofing]
spool

To place items in a queue, each waiting its turn for some action. Often used when speaking about
printers. Also used to describe the queue.

SQL

Structured Query Language. A language that provides a user interface to relational database
management systems (RDBMS). SQL, the de facto standard, is also an ISO and ANSI standard and is
often embedded in other programming languages.FOLDOC

square bracket

A left square bracket ([) or a right square bracket (]). These special characters define character
classes in ambiguous file references and other regular expressions.

SSH Communications Security

The company that created the original SSH (secure shell) protocol suite (www.ssh.com). Linux uses
OpenSSH.
See also [OpenSSH]

standard error

A file to which a program can send output. Usually only error messages are sent to this file. Unless
you instruct the shell otherwise, it directs this output to the screen (that is, to the device file that
represents the screen).

standard input

A file from which a program can receive input. Unless you instruct the shell otherwise, it directs this
input so that it comes from the keyboard (that is, from the device file that represents the keyboard).

standard output

A file to which a program can send output. Unless you instruct the shell otherwise, it directs this
output to the screen (that is, to the device file that represents the screen).

startup file

A file that the login shell runs when you log in. The Bourne Again and Z Shells run .profile, and the
TC Shell runs .login. The TC Shell also runs .cshrc whenever a new TC Shell or a subshell is
invoked. The Z Shell runs an analogous file whose name is identified by the ENV variable.

status line

The bottom (usually the twenty-fourth) line of the terminal. The vim editor uses the status line to
display information about what is happening during an editing session.

sticky bit

An access permission bit that causes an executable program to remain on the swap area of the disk. It
takes less time to load a program that has its sticky bit set than one that does not. Only Superuser can
set the sticky bit. If the sticky bit is set on a directory that is publicly writable, only the owner of a file
in that directory can remove the file.

streaming tape

A tape that moves at a constant speed past the read/write heads rather than speeding up and slowing
down, which can slow the process of writing to or reading from the tape. A proper blocking factor
helps ensure that the tape device will be kept streaming.

streams

See [connection-oriented protocol]
string

A sequence of characters.

stylesheet

See [CSS]
subdirectory

A directory that is located within another directory. Every directory except the root directory is a
subdirectory.

subnet

Subnetwork. A portion of a network, which may be a physically independent network segment, that
shares a network address with other portions of the network and is distinguished by a subnet number.
A subnet is to a network as a network is to an internet.FOLDOC

subnet address

The subnet portion of an IP address. In a subnetted network, the host portion of an IP address is split
into a subnet portion and a host portion using a subnet mask (also address mask).
See also [subnet number]

subnet mask

A bit mask used to identify which bits in an IP address correspond to the network address and subnet
portions of the address. Called a subnet mask because the network portion of the address is determined
by the number of bits that are set in the mask. The subnet mask has ones in positions corresponding to
the network and subnet numbers and zeros in the host number positions. Also address mask .

subnet number

The subnet portion of an IP address. In a subnetted network, the host portion of an IP address is split
into a subnet portion and a host portion using a subnet mask (also address mask).
See also [subnet address]

subpixel hinting

Similar to anti-aliasing (page 861) but takes advantage of colors to do the a nti-aliasing. Particularly
useful on LCD screens.

subroutine

See [procedure]
subshell

A shell that is forked as a duplicate of its parent shell. When you run an executable file that contains a
shell script by using its filename on the command line, the shell forks a subshell to run the script.
Also, commands surrounded with parentheses are run in a subshell.

superblock

A block that contains control information for a filesystem. The superblock contains housekeeping
information, such as the number of inodes in the filesystem and free list information.

superserver

The extended Internet services daemon.

Superuser

A privileged user having access to anything any other system user has access to and more. The system
administrator must be able to become Superuser to establish new accounts, change passwords, and
perform other administrative tasks. The login name of Superuser is usually root. Also root or root
user .

swap

The operating system moving a process from main memory to a disk, or vice versa. Swapping a
process to the disk allows another process to begin or continue execution.

swap space

An area of a disk (that is, a swap file) used to store the portion of a process's memory that has been
paged out. Under a virtual memory system, the amount of swap space—rather than the amount of
physical memory—determines the maximum size of a single process and the maximum total size of all
active processes. Also swap area or swapping area .FOLDOC

switch

See [network switch]
symbolic link

A directory entry that points to the pathname of another file. In most cases a symbolic link to a file can
be used in the same ways a hard link can be used. Unlike a hard link, a symbolic link can span
filesystems and can connect to a directory.

system administrator

The person responsible for the upkeep of the system. The system administrator has the ability to log in
as Superuser.
See also [Superuser]

system console

The main system terminal, usually directly connected to the computer and the one that receives system
error messages. Also console and console terminal .

system mode

The designation for the state of the system while it is doing system work. Some examples are making
system calls, running NFS and autofs, processing network traffic, and performing kernel operations on
behalf of the system. Contrast with user mode (page 908).

System V

One of the two major versions of the UNIX system.

TC Shell

tcsh. An enhanced but completely compatible version of the BSD UNIX C shell, csh.

TCP

Transmission Control Protocol. The most common transport layer protocol used on the Internet. This
connection-oriented protocol is built on top of IP (page 882) and is nearly always seen in the
combination TCP/IP (TCP over IP). TCP adds reliable communication, sequencing, and flow control
and provides full-duplex, process-to-process connections. UDP (page 907), although connectionless, is
the other protocol that runs on top of IP.FOLDOC

tera-

In the binary system, the prefix tera- multiplies by 240 (1,099,511,627,776). Terabyte is a common use
of this prefix. Abbreviated as T.
See also [large number]

termcap

Terminal capability. The /etc/termcap file contains a list of various types of terminals and their
characteristics. System V replaced the function of this file with the terminfo system.

terminal

Differentiated from a workstation (page 910) by its lack of intelligence, a terminal connects to a
computer that runs Linux. A workstation runs Linux on itself.

terminfo

Terminal information. The /usr/lib/terminfo directory contains many subdirectories, each containing
several files. Each of those files is named for and holds a summary of the functional characteristics of
a particular terminal. Visually oriented text-based programs, such as vim, use these files. An
alternative to the termcap file.

text box

In a GUI, a box you can type in.

theme

Defined as an implicit or recurrent idea, theme is used in a GUI to describe a look that is consistent for
all elements of a desktop. Go to themes.freshmeat.net for examples.

thicknet

A type of coaxial cable (thick) used for an Ethernet network. Devices are attached to thicknet by
tapping the cable at fixed points.

thinnet

A type of coaxial cable (thin) used for an Ethernet network. Thinnet cable is smaller in diameter and
more flexible than thicknet cable. Each device is typically attached to two separate cable segments by
using a T-shaped connector; one segment leads to the device ahead of it on the network and one to the
device that follows it.

thread-safe

See [reentrant]
thumb

The movable button in the scrollbar that positions the image in the window. The size of the thumb
reflects the amount of information in the buffer. Also bubble .

TIFF

Tagged Image File Format. A file format used for still-image bitmaps, stored in tagged fields.
Application programs can use the tags to accept or ignore fields, depending on their capabilities.FOLDOC

tiled windows

An arrangement of windows such that no window overlaps another. The opposite of cascading
windows (page 866).

time to live

See [TTL]
toggle

To switch between one of two positions. For example, the ftp glob command toggles the glob feature:
Give the command once, and it turns the feature on or off; give the command again, and it sets the
feature back to its original state.

token

A basic, grammatically indivisible unit of a language, such as a keyword, operator, or identifier.FOLDOC

token ring

A type of LAN (page 884) in which computers are attached to a ring of cable. A token packet circulates
continuously around the ring. A computer can transmit information only when it holds the token.

tooltip

A minicontext help system that you activate by allowing your mouse pointer to hover (page 879) over
a button, icon, or applet (such as those on a panel).

transient window

A dialog or other window that is displayed for only a short time.

Transmission Control Protocol

See [TCP]
Trojan horse

A program that does something destructive or disruptive to your system. Its action is not documented,
and the system administrator would not approve of it if she were aware of it.

The term Trojan horse was coined by MIT-hacker-turned-NSA-spook Dan Edwards. It refers to a
malicious security-breaking program that is disguised as something benign, such as a directory lister,
archive utility, game, or (in one notorious 1990 case on the Mac) a program to find and destroy
viruses. Similar to back door (page 862).FOLDOC

TTL

Time to live.

All DNS records specify how long they are good for—usually up to a week at most. This time is
called the record's time to live . When a DNS server or an application stores this record in cache
(page 866), it decrements the TTL value and removes the record from cache when the value
reaches zero. A DNS server passes a cached record to another server with the current
(decremented) TTL guaranteeing the proper TTL, no matter how many servers the record passes

1.

2.

through.

In the IP header, a field that indicates how many more hops the packet should be allowed to
make before being discarded or returned.

2.

TTY

Teletypewriter. The terminal device that UNIX was first run from. Today TTY refers to the screen (or
window, in the case of a terminal emulator), keyboard, and mouse that are connected to a computer.
This term appears in UNIX, and Linux has kept the term for the sake of consistency and tradition.

tunneling

Encapsulation of protocol A within packets carried by protocol B, such that A treats B as though it
were a data link layer. Tunneling is used to transfer data between administrative domains that use a
protocol not supported by the internet connecting those domains. It can also be used to encrypt data
sent over a public internet, as when you use ssh to tunnel a protocol over the Internet.FOLDOC

See also [VPN]

UDP

User Datagram Protocol. The Internet standard transport layer protocol that provides simple but
unreliable datagram services. UDP is a connectionless protocol (page 869) that, like TCP (page 905),
is layered on top of IP (page 882).

Unlike TCP , UDP neither guarantees delivery nor requires a connection. As a result it is lightweight
and efficient, but the application program must handle all error processing and retransmission. UDP is
often used for sending time-sensitive data that is not particularly sensitive to minor loss, such as audio
and video data.FOLDOC

UID

User ID. A number that the passwd database associates with a login name.

undecillion

In the American system, 1036. In the British system, this number is named sexillion .
See also [large number]

unicast

A packet sent from one host to another host. Unicast means one source and one destination.

unmanaged window

See [ignored window]
URI

Uniform Resource Identifier. The generic set of all names and addresses that are short strings referring
to objects (typically on the Internet). The most common kinds of URIs are URLs .FOLDOC

URL

Uniform (was Universal) Resource Locator. A standard way of specifying the location of an object,
typically a Web page, on the Internet. URLs are a subset of URIs .

usage message

A message displayed by a command when you call the command using incorrect command line
arguments.

User Datagram Protocol

See [UDP]
User ID

See [UID]
user interface

See [interface]
user mode

The designation for the state of the system while it is doing user work, such as running a user program
(but not the system calls made by the program). Contrast with system mode (page 905).

userspace

The part of memory (RAM) where applications reside. Code running in userspace cannot access
hardware directly and cannot access memory allocated to other applications. Also userland . See the
KernelAnalysis-HOWTO .

UTC

Coordinated Universal Time. UTC is the equivalent to the mean solar time at the prime meridian (0

degrees longitude). Also called Zulu time (Z stands for longitude zero) and GMT (Greenwich Mean
Time).

utility

A program included as a standard part of Linux. You typically invoke a utility either by giving a
command in response to a shell prompt or by calling it from within a shell script. Utilities are often
referred to as commands. Contrast with builtin (command) (page 865).

variable

A name and an associated value. The shell allows you to create variables and use them in shell scripts.
Also, the shell inherits several variables when it is invoked, and it maintains those and other variables
while it is running. Some shell variables establish characteristics of the shell environment; others have
values that reflect different aspects of your ongoing interaction with the shell.

viewport

Same as workspace (page 910).

virtual console

Additional consoles, or displays, that you can view on the system, or physical, console.

virus

A cracker (page 869) program that searches out other programs and "infects" them by embedding a
copy of itself in them, so that they become Trojan horses (page 906). When these programs are
executed, the embedded virus is executed as well, propagating the "infection," usually without the
user's knowledge. By analogy with biological viruses.FOLDOC

VLAN

Virtual LAN. A logical grouping of two or more nodes that are not necessarily on the same physical
network segment but that share the same network number. A VLAN is often associated with switched
Ethernet.FOLDOC

VPN

Virtual Private Network. A private network that exists on a public network, such as the Internet. A
VPN is a less expensive substitute for company-owned/leased lines and uses encryption to ensure
privacy. A nice side effect is that you can send non-Internet protocols, such as Appletalk, IPX, or
NetBIOS, over the VPN connection by tunneling (page 907) them through the VPN IP stream.

W2K

Windows 2000 Professional or Server.

W3C

World Wide Web Consortium (www.w3.org).

WAN

Wide area network. A network that interconnects LANs (page 884) and MANs (page 886), spanning a
large geographic area (typically states or countries).

WAP

See [wireless access point]
Web ring

A collection of Web sites that provide information on a single topic or group of related topics. Each
home page that is part of the Web ring has a series of links that let you go from site to site.

whitespace

A collective name for SPACEs and/or TABs and occasionally NEWLINEs. Also white space .

wide area network

See [WAN]
widget

The basic objects of a graphical user interface. Buttons, text fields, and scrollbars are examples of
widgets.

wild card

See [metacharacter]
Wi-Fi

Wireless Fidelity. A generic term that refers to any type of 802.11 (page 860) wireless network.

window

On a display screen, a region that runs or is controlled by a particular program.

window manager

A program that controls how windows appear on a display screen and how you manipulate them.

Windows share

See [share]
WINS

Windows Internet Naming Service. The service responsible for mapping NetBIOS names to IP
addresses. WINS has the same relationship to NetBIOS names that DNS has to Internet domain
names.

WINS server

The program responsible for handling WINS requests. This program caches name information about
hosts on a local network and resolves them to IP addresses.

wireless access point

A bridge or router between wired and wireless networks. Wireless access points typically support
some form of access control to prevent unauthorized clients from connecting to the network. Also
WAP .

word

A sequence of one or more nonblank characters separated from other words by TABs, SPACEs, or
NEWLINEs. Used to refer to individual command line arguments. In vim, a word is similar to a word
in the English language—a string of one or more characters bounded by a punctuation mark, a

numeral, a TAB, a SPACE, or a NEWLINE.

Work buffer

A location where vim stores text while it is being edited. The information in the Work buffer is not
written to the file on the disk until you give the editor a command to write it.

working directory

The directory that you are associated with at any given time. The relative pathnames you use are
relative to the working directory. Also current directory .

workspace

A subdivision of a desktop (page 871) that occupies the entire display.

workstation

A small computer, typically designed to fit in an office and be used by one person and usually
equipped with a bit-mapped graphical display, keyboard, and mouse. Differentiated from a terminal
(page 905) by its intelligence. A workstation runs Linux on itself while a terminal connects to a
computer that runs Linux.

worm

A program that propagates itself over a network, reproducing itself as it goes. Today the term has
negative connotations, as it is assumed that only crackers (page 869) write worms. Compare to virus
(page 909) and Trojan horse (page 906). From Tapeworm in John Brunner's novel, The Shockwave
Rider , Ballantine Books, 1990 (via XEROX PARC).FOLDOC

WYSIWYG

What You See Is What You Get. A graphical application, such as a word processor, whose display is
similar to its printed output.

X terminal

A graphics terminal designed to run the X Window System.

X Window System

A design and set of tools for writing flexible, portable windowing applications, created jointly by
researchers at MIT and several leading computer manufacturers.

XDMCP

X Display Manager Control Protocol. XDMCP allows the login server to accept requests from
network displays. XDMCP is built into many X terminals.

xDSL

Different types of DSL (page 873) are identified by a prefix—for example, ADSL, HDSL, SDSL, and
VDSL.

Xinerama

An extension to XFree86 release 6 version 4.0 (X4.0). Xinerama allows window managers and
applications to use two or more physical displays as one large virtual display. Refer to Xinerama-
HOWTO .

XML

Extensible Markup Language. A universal format for structured documents and data on the Web.
Developed by W3C (page 909), XML is a pared-down version of SGML.

See www.w3.org/XML and www.w3.org/XML/1999/XML-in-10-points.

XSM

X Session Manager. This program allows you to create a session that includes certain applications.
While the session is running, you can perform a checkpoint (saves the application state) or a shutdown
(saves the state and exits from the session). When you log back in, you can load your session so that
everything in your session is running just as it was when you logged off.

Z Shell

zsh. A shell (page 900) that incorporates many of the features of the Bourne Again Shell (page 864),

Korn Shell (page 884), and TC Shell (page 905), as well as many original features.

Zulu time

See [UTC]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

! Boolean operator 2nd 3rd 4th

! variable

!! to reexecute the previous event

!$ last word of the previous event

comment 2nd

variable

#! to choose a script shell 2nd

#define C preprocessor directive 2nd 3rd

#include C preprocessor directive

#Note

 Only variables that must always appear with a leading dollar sign are indexed with a leading dollar sign. Other variables

are indexed without a leading dollar sign.[#zzz]

$ in regular expressions

$ in variable name

$! variable

$# variable 2nd 3rd

$#argv variable

$$ variable 2nd 3rd 4th 5th

$(...) [See Command, substitution]

$* variable 2nd

$, use with variables[$]

$0 variable

$< variable

$? variable 2nd

$@ variable 2nd 3rd

${}, expand variable

% job & builtin

% job builtin

% job number 2nd

& background 2nd 3rd 4th 5th 6th

& background process

& bitwise operator 2nd

& Boolean operator

& in replacement string 2nd

&& Boolean operator 2nd 3rd 4th 5th 6th 7th

((...)) [See Arithmetic evaluation]

() command grouping

() in shell functions

* in regular expressions

* special character

*/ C comment

+ in full regular expressions

-a Boolean operator 2nd 3rd

-o Boolean operator 2nd

-or Boolean operator

. (dot) builtin 2nd 3rd 4th

. / to execute a file in the working directory 2nd

. directory 2nd

. in regular expressions

.. directory 2nd

.a filename extension 2nd 3rd

.aspell.conf file

.bash_history file

.bash_login file

.bash_logout file

.bash_profile file 2nd

.bashrc file 2nd

.bz2 filename extension 2nd 3rd

.c filename extension 2nd 3rd 4th

.C filename extension

.c filename extension

.C filename extension

.c++ filename extension

.cc filename extension 2nd

.cpp filename extension

.cshrc file 2nd 3rd

.cxx filename extension 2nd

.dir_colors file

.emacs file 2nd 3rd 4th

.f filename extension

.gif filename extension

.gz filename extension 2nd

.h filename extension 2nd

.history file 2nd

.html filename extension

.i filename extension 2nd

.ii filename extension 2nd

.inputrc file

.jpeg filename extension 2nd

.jpg filename extension 2nd

.l filename extension

.login file 2nd 3rd

.logout file 2nd

.netrc file

.nofinger file

.o filename extension 2nd 3rd 4th 5th

.pdf filename extension

.pgpkey file

.plan file 2nd

.profile file 2nd

.project file 2nd

.ps filename extension

.rhosts file 2nd 3rd 4th

.s filename extension 2nd 3rd

.S filename extension

.s filename extension

.sh filename extension

.so filename extension 2nd

.tar.bz2 filename extension

.tar.gz filename extension

.tar.Z filename extension 2nd

.tcshrc file 2nd

.tgz filename extension

.tiff filename extension

.toprc file

.torrent file

.txt filename extension 2nd

.tz filename extension

.vimrc file 2nd

.y filename extension

.Z filename extension 2nd

/ directory (root) 2nd

/* C comment

/bin directory

/boot directory

/dev 2nd 3rd

 null file 2nd 3rd

 random file

 tty file

 urandom file

/etc

 aspell.conf file

 at.allow file

 at.deny file

 bashrc file

 cron.allow file

 cron.daily directory

 cron.deny file

 cron.hourly directory

 cron.monthly directory

 cron.weekly directory

 crontab file

 csh.cshrc file

 csh.login file

 csh.logout file 2nd

 DIR_COLORS file

 group file

 hosts.equiv file 2nd 3rd

 issue file

 man.config file

 motd file

 opt directory

 passwd file 2nd 3rd 4th 5th 6th 7th 8th 9th

 printcap file

 profile file

 termcap file

 yum.conf file

/home directory

/lib 2nd

 gcc and

 modules directory

/mnt directory

/opt directory

/proc contents

/root directory

/sbin directory

/tmp directory 2nd 3rd 4th

/usr

 bin

 X11 directory

 doc directory

 games directory

 include

 C preprocessor

 X11 directory

 info directory

 lib

 directory

 gcc 2nd

 shared libraries

 terminfo directory

 X11

 local directory

 man directory

 pub/ascii file

 sbin directory

 share

 magic file

 src directory

 X11R6 directory 2nd

/var

 log 2nd

 lastlog file

 messages file 2nd

 secure file

 wtmp file

 spool

 at

 at:spool directory

 cron directory

 mail directory

0< redirect standard input

1> redirect standard output

2> redirect standard error

802.11

:(null) builtin 2nd

:= assign default value

:= substitute default value

:? display error message

< redirect standard input 2nd

<$nopage><Z> ...<Z> <I> [See Command, substitution]

<& duplicate input file descriptor

<< here document

> redirect standard output 2nd 3rd 4th 5th

>& duplicate output file descriptor 2nd

>& redirect standard output and standard error

>> append standard output 2nd

? in full regular expressions

? special character

@ builtin 2nd 3rd 4th

@ variable

@ vim

[[...]] [See also Conditional expression]

[[...]] builtin

[_] builtin [See test builtin]

[_] character class 2nd

[Completion:aaa] [See also Word, completion[Completion]

[gcc:aaa] [See also C programming language[gcc]

[Substitution:aaa] [See also Expansion[Substitution]]

\

 (null) builtin

^ bitwise operator

^ in regular expressions

^ quick substitution character

{ expansion

{ in a shell function

| bitwise operator

|| Boolean operator 2nd

} expansion

} in a shell function

~ (tilde) expansion 2nd 3rd

~ home directory 2nd [See also Home directory]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

a filename extension 2nd 3rd

a.out file 2nd 3rd

Abort execution

Absolute filename

Absolute pathname 2nd 3rd

Access

Access Control List [See ACL]

Access permission

 change using chmod 2nd

 defined 2nd

 description of

 directory

 display using ls

 execute 2nd

 group

 other

 owner

 read

 write

ACL 2nd

Active window

add command (cvs)

addbanner shell script

Address

 IP

 MAC

 network

 space, private

Address mask

Administrator, system [See System, System;administrator]

Algorithm

Alias

 bash

 defined

 double versus single quotation marks

 quotation marks

 recursion

 recursive plunge

 single versus double quotation marks

 special

alias builtin 2nd 3rd

alloc builtin

Alphanumeric character

ALT key

Ambiguous file reference 2nd 3rd

American National Standards Institute

AND Boolean operator 2nd

Angle bracket

Animate

Anonymous FTP

ANSI

ANSI C

ansi terminal name

Anti-aliasing 2nd

API

Append

 defined

 standard output 2nd 3rd

append standard output 2nd

Applet

Application programmer

apropos utility 2nd 3rd 4th

Apt

 apt-get check command

 apt-get dist-upgrade command

 apt-get install command

 apt-get remove command

 apt-get update command

 apt-get upgrade command

 checking the dependency tree

 configuring

 update the local package list

 using

apt.conf file

apt.freshrpms.net 2nd

Archive

 library, using

 pack using tar

 shell

 unpack using tar

Argument 2nd

 command line

 defined

 display

 testing

argv variable

Arithmetic

 bash

 expansion 2nd

 expression

Arithmetic evaluation

 example 2nd 3rd

Array

 argv

 defined

 numeric variables

 string variables

ASCII

 codes and emacs

 defined

 EBCDIC conversion

 man page

 terminal

ascii file

ASP

aspell utility 2nd

aspell.conf file

aspell.sourceforge.net

ASPELL_CONF variable

Assembly language 2nd

Associative array

Asterisk special character

at directory

at utility

AT&T Bell Laboratories 2nd 3rd 4th

at.allow file

at.deny file

atd daemon

atq utility

atrm utility

Attachment

 defined

 mail

Authentication

 defined

 OpenSSH

autoconf utility

autocorrect variable

autolist variable 2nd

autologout variable

Automatic mounting

Avoided

awk [See gawk]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

B language

Back door 2nd

Back tick 2nd 3rd 4th

Background

 command grouping

 defined

 foreground, versus

 job control 2nd

 PID stored in $!

 process 2nd

 running a command in

 symbol (&)

BACKSLASH escape character 2nd 3rd

BACKSLASH in replacement strings

BACKSPACE key

 changing

 function

badtabs.c program

Basename

basename utility 2nd 3rd

bash

 -x option

 <& duplicate input file descriptor 2nd

 >& duplicate output file descriptor 2nd

 alias

 arguments

 arithmetic

 arithmetic evaluation

 example 2nd 3rd

 operators

 arithmetic expansion

 operators

 array variables

 attribute

 array

 export

 function

 integer 2nd

 readonly 2nd

 background

 builtin

 _ [See also Builtin]

 exec

 getopts

 kill

 typeset

 close file

 command

 process

 substitution

 command line, order of expansion

 conditional expression

 example 2nd

 control structure [See Control, Filesystem;structure]

 defined

 directory stack manipulation

 editing previous commands 2nd

 emacs command line editor

 event number

 expand null variable

 expand unset variable

 expression

 features

 file descriptor

 globbing

 history mechanism 2nd

 makepath shell script

 menu

 open file 2nd

 operator

 bitwise

 remainder

 short-circuiting

 ternary

 options [See bash, bash;features]

 overlay

 pathname completion

 process substitution

 program structures

 programming

 prompt 2nd

 PS3 prompt

 quick substitution

 quiz shell script

 quotation mark removal

 recursion

 redirection operators

 reexecuting events 2nd

 REPLY keyword variable

 signal names 2nd

 special characters

 standard error

 standard input

 standard output

 startup files

 string pattern matching 2nd

 substitution, quick

 symbolic link

 tcsh, features shared with

 ternary operator

 tilde substitution

 variable

 _ [See also Variable]

 array

 assign default value

 COLUMNS

 display error message

 expansion

 LINES

 modifier

 OPTARG

 OPTIND

 PS3

 REPLY 2nd

 substitute default value 2nd

 vi command line editor

BASH_ENV variable

batch utility

Baud

Baud rate

BCPL language

Bell Laboratories [See AT&T Bell Laboratories]

Berkeley UNIX 2nd 3rd

bg builtin 2nd 3rd 4th

bin directory

Binary file

Binary files, fixing broken

BIND

bind builtin

Binding, key

bindkey builtin

BIOS defined

birthday shell script

bison utility

Bit

Bit bucket

Bit depth

Bit-mapped display

BitTorrent 2nd

 peer

 prerequisites

 seed

 torrent

 tracker

 using

Bitwise operator

 & 2nd

 ^

 |

Blank character 2nd 3rd 4th

Block

 defined

 device

 number

 special file

Blocking factor

Boolean operator

 ! 2nd 3rd 4th

 &

 && 2nd 3rd 4th 5th 6th 7th 8th

 -a 2nd 3rd

 -o 2nd

 -or

 NOT

 SPACE 2nd

 | |

 ||

Boot

 bootstrap

 defined

 loader

 netboot

Bootstrap

Bourne Again Shell [See bash]

Bourne Shell (original) 2nd 3rd

Bourne, Steve[Bourne] 2nd

Brace

 around a variable

 defined

 expansion

 shell functions

Bracket

 character class

 filename expansion

Branch

break control structure 2nd

break shell keyword

breaksw shell keyword 2nd

Bridge, network

Broadcast

 address

 defined 2nd

BSD [See Berkeley UNIX]

Buffer

 defined

 Numbered, vim

 Work, vim

Bug

Builtin 2nd 3rd 4th

 % job

 % job &

 . (dot) 2nd 3rd

 : (null) 2nd

 @ 2nd 3rd 4th

 [[...]]

 [_] [See test builtin]

 \

 (null)

 alias 2nd 3rd

 alloc

 bash, list of 2nd

 bg 2nd 3rd 4th

 bind

 bindkey

 builtins

 cd 2nd 3rd 4th 5th 6th 7th 8th 9th

 chdir 2nd

 command

 command editing using fc

 declare 2nd

 defined 2nd

 dirs 2nd 3rd 4th

 echo 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

 eval 2nd 3rd

 exec 2nd 3rd 4th 5th 6th 7th

 execution of

 exit 2nd 3rd 4th 5th 6th 7th

 export 2nd 3rd 4th 5th 6th

 fc

 fg 2nd 3rd 4th

 filetest 2nd

 getopts 2nd

 glob

 hashstat

 history 2nd 3rd 4th

 jobs 2nd 3rd 4th 5th 6th

 kill 2nd 3rd 4th 5th 6th 7th 8th

 let 2nd

 limit

 locale

 log 2nd

 login

 logout 2nd 3rd

 ls-F 2nd

 nice 2nd

 nohup

 notify

 null 2nd

 onintr 2nd

 popd 2nd 3rd

 printenv

 pushd 2nd 3rd

 pwd 2nd 3rd 4th 5th

 read 2nd 3rd 4th 5th 6th

 readonly 2nd 3rd 4th

 rehash

 repeat

 sched

 set 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 setenv 2nd 3rd

 shift 2nd 3rd 4th

 source 2nd

 stop

 suspend

 tcsh

 test 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

 time 2nd

 times

 tput 2nd

 trap 2nd 3rd

 type 2nd

 typeset

 ulimit

 umask 2nd

 unalias 2nd 3rd 4th

 unhash

 unlimit

 unset 2nd 3rd 4th 5th 6th

 unsetenv 2nd

 utility, versus

 wait 2nd

 where

 which 2nd

builtins builtin

bundle shell script

bunzip2 utility 2nd

Byte

bz2 filename extension 2nd 3rd

bzcat utility 2nd

bzip2 utility 2nd 3rd

bzip2recover utility 2nd

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

C [See C programming language[C]]

c filename extension 2nd 3rd 4th

C filename extension

c filename extension

C filename extension

C programming language 2nd 3rd

 #include preprocessor directive

 a.out file

 archived library

 assembler

 badtabs.c program

 comments

 compiler

 phase

 using

 warning options

 debugging

 defined

 expression

 function prototype

 functions

 getchar macro

 header file 2nd

 include file 2nd

 library

 libc.so

 libm.so

 link editor

 macro expansion

 main function

 object file 2nd

 operator

 optimizer 2nd

 portability

 preprocessor 2nd 3rd 4th

 preprocessor directives

 programming

 putchar macro

 sample program

 shared library

 statically linked library

 stdio.h header file

 symbolic debugger

 tabs.c program

c++ filename extension

C++ programming language

C89 programming language

Cable modem

Cache

cal utility

Call by value

Calling environment

Calling program, name of

Cambridge culture

Caret in regular expressions

Cascading windows

case control structure 2nd

Case-sensitive

 defined

 filename

 password

cat utility 2nd 3rd 4th 5th 6th 7th

Catenate 2nd 3rd 4th

cc [See gcc or C programming language[cc]]

cc filename extension 2nd

cd builtin 2nd 3rd 4th 5th 6th 7th 8th 9th

CDPATH variable

cdpath variable 2nd

CDPATH variable

cdpath variable

Chain loading

Change

 access permission using chmod

 directories using cd

 filename using mv

 password using passwd

Character

 alphanumeric

 class 2nd 3rd

 device

 escaping

 list [See Character, Character;class]

 quoting

 special file

character class 2nd

Character-based

 defined

 terminal

chdir builtin

checkout command (cvs) 2nd

Checksum

chgrp utility

Child

 directory 2nd

 process 2nd 3rd 4th

chkargs shell script 2nd

chmod utility 2nd 3rd

chmod() system call

chown utility

chown() system call

chsh utility

CIDR

CIFS

CIPE

Cipher

Ciphertext

Class, character

Classless Inter-Domain Routing [See CIDR]

Clean filesystem

cleanup shell script

Clear screen

Cleartext

CLI

Client

Clones, vi

Close files, bash

close() system call

cmp utility

Code, reentrant

CODEC

Collating sequence, machine

Colon (

) builtin

Color depth

Color quality

COLUMNS variable

Combo box

Comer, Doug

comm utility

Command

 ; separator

 argument

 builtin 2nd 3rd 4th

 completion

 control flow [See Control, Filesystem;structure]

 control structure [See Control, Filesystem;structure]

 defined 2nd

 editing previous

 execution of

 grouping 2nd

 Mode, vim

 name

 NEWLINE separator

 option

 process

 reexecuting previous

 repeating

 separation

 separator 2nd

 substitution 2nd 3rd 4th 5th 6th 7th

 summary

 syntax

 terminator

 usage message 2nd 3rd 4th 5th

Command line

 argument 2nd

 defined 2nd

 editing

 execution

 expansion 2nd 3rd

 interface

 option

 parse 2nd

 processing 2nd

 syntax

 token 2nd

 whitespace

 word 2nd

command_menu shell script 2nd

Comments

 C programs

 makefile

 shell scripts

commit command (cvs)

Common UNIX Printing System [See CUPS]

Communication

 interprocess

 write

comp.os.linux.answers newsgroup

comp.os.linux.misc newsgroup

Compare files using diff

Compiling a C program

Completion

 command

 pathname 2nd

 Readline Library

 variable

Component architecture

Compress

 bunzip2

 bzcat

 bzip2 2nd 3rd 4th

 bzip2recover 2nd

 compress 2nd 3rd 4th 5th 6th

 gunzip

 gzip 2nd

 uncompress

 unzip 2nd

 zcat 2nd

 zip 2nd

compress utility 2nd 3rd 4th

Computer Systems Research Group, Berkeley

Computer, diskless[Computer]

Computing, distributed

Concatenate [See Catenate]

Concurrent Versions System [See Utility;cvs]

Condition code [See Exit, status]

Conditional expression

 example 2nd

configure utility 2nd

Connection-oriented protocol

Connectionless, protocol

Console

 system

 terminal 2nd

 virtual 2nd

Context, diff

continue control structure 2nd

continue shell keyword

Control

 character

 characters, printer

 flow [See Control, Filesystem;structure]

 job

 structure 2nd

 break 2nd

 case 2nd

 continue 2nd

 defined

 do 2nd 3rd 4th

 done 2nd 3rd 4th

 elif 2nd

 elif versus fi

 else

 esac

 fi 2nd 3rd

 fi versus elif

 for 2nd 3rd

 for...in 2nd 3rd

 foreach

 goto

 if 2nd 3rd 4th 5th

 if...then

 if...then...elif 2nd

 if...then...else 2nd

 in

 select

 shell keyword:break

 shell keyword:breaksw 2nd

 shell keyword:case

 shell keyword:continue

 shell keyword:default

 shell keyword:else

 shell keyword:endsw

 shell keyword:switch

 shell keyword:then

 shell keyword:while

 shell scripts

 switch

 then 2nd 3rd

 two-way branch

 until 2nd

 while 2nd 3rd 4th 5th 6th

CONTROL key

CONTROL-C key 2nd

CONTROL-D key 2nd 3rd 4th

CONTROL-H key 2nd 3rd 4th 5th 6th

CONTROL-L key 2nd 3rd

CONTROL-M key

CONTROL-Q key

CONTROL-R key

CONTROL-U key 2nd 3rd 4th 5th

CONTROL-V key

CONTROL-W key 2nd 3rd 4th

CONTROL-X key

CONTROL-Z key 2nd

Conventions

 file naming

 used in this book

Convert file to/from Windows format

Cookie

Coordinated Universal Time [See UTC]

Copy

 directory, shell script

 file using cp 2nd

 floppy diskette using dd

Copyleft

Core

 dump

 memory

core file 2nd

Correct

 typing mistakes, how to

 vim typing mistakes

correct variable

count shell script

cp utility 2nd 3rd 4th

cp versus ln

cpdir shell script

cpio utility 2nd 3rd

cpp filename extension

CPU

Cracker

Crash

creat() system call

Create

 directory using mkdir

 file using vim

Creation date, file, display using ls

cron directory

cron utility 2nd

cron, Vixie[cron]

cron.allow file

cron.daily directory

cron.deny file

cron.hourly directory

cron.monthly directory

cron.weekly directory

crontab file 2nd

crontab utility

Cryptography

csh 2nd

csh.cshrc file

csh.login file

csh.logout file 2nd

CSRG

CSS 2nd

CUPS

Current

Current directory [See Working directory]

Cursor

cut utility 2nd 3rd

cvs command

 add

 checkout 2nd

 commit

 export

 import

 log

 release

 remove

 rtag

 update

cvs utility 2nd

CVSROOT variable

cwd variable 2nd

cxx filename extension 2nd

Cypher [See Cipher]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Daemon

 atd

 defined

 ftpd

 lpd

 syslogd

Data

 sink

 structure

Database

 dbm

 gdbm

 group

 Linux Software Map

 locale

 locate

 man page header

 ndbm

 NIS

 passwd 2nd 3rd

 services

 slocate

 SQL

 system services

 terminfo

 whatis

Datagram, network

Dataless system

date utility 2nd 3rd 4th

Date, display[Date]

dbm database

dd utility

ddd utility 2nd

DDoS attack

Debug

Debugger

 ddd

 graphical symbolic

 option

 shell script

 symbolic

 ups

 xxgdb

declare builtin 2nd

Decrement operator 2nd

Default

default shell keyword

Delete

 directory using rmdir

 file using rm

 key

 line

 link using rm

 word

Delete key

Delimiter, regular expression

Delta, SCCS

Denial of Service [See DOS and DDoS attack]

Dependency line (make)

Dereference

Descriptor, file

Descriptor, file, duplicate

Design, top-down

Desktop

 defined

 manager

Detached process [See Background, process]

dev directory

developer.apple.com/darwin

Device

 block

 character

 defined

 driver 2nd

 file 2nd

 filename

 independence

 independent input and output

 null

 number

 major

 minor

 physical

df utility

DHCP

dickey.his.com/vile/vile.html

Die, process

diff utility 2nd

diff, context[diff]

diff3 utility

DIR_COLORS file

dircolors utility

Directory 2nd 3rd

 / (root) 2nd

 /bin

 /boot

 /dev 2nd 3rd

 /etc

 cron.daily

 cron.hourly

 cron.monthly

 cron.weekly

 opt

 X11

 /home

 /lib

 gcc, and 2nd

 modules

 /mnt

 /opt

 /proc

 /root

 /sbin

 /tmp 2nd 3rd

 /usr

 bin

 bin:X11

 doc

 games

 include

 include:X11

 info

 lib

 lib:gcc, and 2nd

 lib:linking, and

 lib:shared

 lib:terminfo

 lib:X11

 man

 share

 src

 X11R6 2nd

 /var

 log 2nd

 spool:at

 spool:at:spool

 spool:cron

 spool:problem solving

 access permission

 at

 bin 2nd

 change using cd

 child 2nd

 copy, shell script

 create using mkdir

 cron

 cron.daily

 cron.hourly

 cron.monthly

 cron.weekly

 current [See Directory, Directory;working]

 defined 2nd 3rd 4th

 delete using rmdir

 dev 2nd

 doc

 empty

 erase using rmdir

 file 2nd

 games

 hierarchy

 home 2nd 3rd 4th

 versus working

 include 2nd

 info

 lib 2nd 3rd 4th 5th 6th

 link

 list using ls

 listing

 local

 log 2nd

 lost+found 2nd 3rd

 make using mkdir

 man

 modules

 move using mv

 opt 2nd

 parent 2nd

 pathname 2nd

 proc

 remove using rmdir

 rename using mv

 root 2nd 3rd 4th

 sbin 2nd

 service

 share

 spool

 spool, problem solving

 src

 stack manipulation 2nd 3rd

 standard

 terminfo

 tmp

 working

 change using cd

 defined

 home, versus

 relative pathnames

 significance of

 with

 X11 2nd 3rd 4th

 X11R6 2nd

 ~ (home) [See Home directory]

dirs builtin 2nd 3rd 4th

dirstack variable

Disk

 free space

 partition

 usage

Diskless defined

Display

 date using date

 end of a file using tail

 file in reverse order using tac

 file using cat

 graphical

 invisible filename

 machine name

 ordered file using sort

 sorted file using sort

 system load using w 2nd

 text using echo

 top of a file using head

 uptime using w

 user list

 using finger

 using w

 using who

Distributed computing

Distribution, Linux

DMZ

DNS

do control structure 2nd 3rd 4th

doc directory

Document Object Model [See DOM]

Documentation

 finding

 system 2nd

Dollar sign

 regular expression, in

 variables, use with 2nd

DOM

Domain name

done control structure 2nd 3rd 4th

Door

DOS

 convert files

 filename

 filename extension

 Mtools

DoS attack

dos2unix utility

Double versus single quotation marks

DPMS

Drag

Driver, device

Druid

DSA

DSL

du utility 2nd 3rd

dunique variable

Duplex, full and half

Duplicate lines, getting rid of using uniq

Dynamic library [See Shared, library]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

e2fsck utility

EBCDIC

echo builtin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

echo utility

echo variable

ed editor 2nd 3rd

Editor

 command line

 defined

 ed 2nd 3rd

 emacs

 ex 2nd 3rd

 Readline Library

 vim

EDITOR variable 2nd

Edwards, Dan

EEPROM

Effective user ID

egrep utility 2nd 3rd

Electronic mail [See Mail]

Electronic message, sending using write

Element

elif control structure 2nd

else control structure

else shell keyword

elvis utility

elvis.the-little-red-haired-girl.org

emacs

 compilation buffer

 Tab Stops buffer

 acronyms

 ALT key

 aspell

 Auto Fill Mode

 background shell commands

 backup

 buffer

 bufferwide replacement

 bufferwide search

 current

 saving and retrieving

 state

 working with

 C Mode

 case conversion

 comments

 CONTROL key

 current buffer

 cursor

 customizing

 cut text

 delete

 Dired mode

 Echo Area

 edit commands

 editing at the cursor

 erase text

 escape character

 ESCAPE key 2nd

 expressions, working with

 FIFO

 files

 fill

 foreground shell commands

 function, defining

 global commands

 GUD mode

 help

 human-language modes

 incremental search

 indention

 insert text

 interactive replacement

 key

 notation

 remap

 sequences and commands

 use

 keymaps

 keystroke notation

 kill

 Kill Ring 2nd 3rd

 kill text

 language-sensitive editing

 Lisp system, internal

 mail

 major modes 2nd

 Mark

 Mark Ring

 META key 2nd 3rd

 Minibuffer

 Mode Line 2nd

 move by

 characters

 lines

 paragraphs

 sentences

 window position

 words

 move cursor

 multilevel backups

 nonincremental search

 numeric argument

 online help

 paragraphs, working with

 paste text

 Point 2nd

 Region

 regular expression search

 remap keys

 repetition count

 replacement 2nd

 resources

 retrieving buffer

 Rmail mode

 save

 buffer

 file

 scrolling through buffer

 search

 bufferwide

 incremental

 nonincremental

 regular expression

 types of

 sentences, working with

 shell commands 2nd

 Shell mode 2nd

 SHIFT key

 smart completion

 special characters

 special-purpose modes

 spell checking

 start

 stop

 subshell

 TAB key

 Text Mode

 textual units

 Tramp mode

 unconditional replacement

 undo changes

 VC mode

 vi simulation

 vi, versus[emacs

 vi]

 VIP mode

 visiting a file 2nd

 window

 adjust

 create by splitting

 delete

 manipulate

 other window

 working with

 words, working with

 X Window System and

 yank text

Email [See Mail]

Emoticon

Empty regular expression

Emulation, terminal

Emulator, operating system

Encryption, RSA

End of file [See EOF]

endsw shell keyword

Enter text using vim

ENV variable

Environment

 calling

 defined

 exec

 export 2nd 3rd

 setenv

 unsetenv

 variable

EOF 2nd 3rd

Epoch, defined

EPROM

Erase key 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

Erase word key

Error

 correcting

 message

 cannot execute

 conditional

 name of calling script

 not found

 redirecting to standard error

 standard error [See Standard, error]

 usage 2nd 3rd 4th 5th

 shell script

 standard [See bash;Standard error]

 usage message 2nd 3rd 4th 5th

esac control structure

Escape a character 2nd

Escape an end of line

escape character 2nd 3rd

Ethernet network

eval builtin 2nd 3rd

Event

 defined

 history

 modifying previous

 number 2nd 3rd

 reexecuting

 text

 words within

Evolution utility

ex editor 2nd

Exabyte

Exclamation point

exec builtin 2nd 3rd 4th 5th 6th 7th

exec() system call 2nd 3rd

Execute

 access 2nd 3rd

 command 2nd

 permission

 shell script

Exit

 shell, from a

 status 2nd

exit builtin 2nd 3rd 4th 5th 6th 7th

exit() system call

exmh utility

Expansion

 arithmetic 2nd

 brace 2nd

 command line 2nd

 filename

 macro

 null variable

 order of 2nd

 parameter

 pathname 2nd 3rd 4th

 quotation marks, double

 tilde 2nd

 unset variable

 variable

Exploit

export builtin 2nd 3rd 4th 5th 6th

export command (cvs)

Export, variable[Export]

expr utility

Expression

 arithmetic

 defined

 logical

ext2 filesystem

ext3 filesystem

Extended regular expression 2nd

Extensible Markup Language [See XML]

Extension, filename [See Filename, Filename;extension]

Extranet

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

f filename extension

fabrice.bellard.free.fr/qemu

Fahlman, Scott

Failsafe session

Family tree

fc builtin

FCEDIT variable

FDDI network

fdformat utility

Features, bash [See bash, bash;features]

fg builtin 2nd 3rd 4th

fgrep utility 2nd

FHS 2nd 3rd

fi control structure 2nd 3rd

Fiber Distributed Data Interface [See FDDI network]

FIFO special file 2nd 3rd

fignore variable

File

 .aspell.conf

 .bash_history

 .bash_login

 .bash_logout

 .bash_profile 2nd

 .bashrc 2nd

 .cshrc 2nd

 .dir_colors file

 .emacs 2nd 3rd 4th

 .history 2nd

 .inputrc

 .login 2nd 3rd

 .logout 2nd

 .netrc

 .nofinger

 .pgpkey

 .plan 2nd

 .profile 2nd

 .project 2nd

 .rhosts 2nd 3rd 4th

 .tcshrc 2nd

 .toprc

 .torrent

 .vimrc 2nd

 /dev

 null 2nd 3rd

 random

 tty

 urandom

 /etc

 aspell.conf

 at.allow

 at.deny

 cron.allow

 cron.deny

 crontab

 csh.cshrc

 csh.login

 csh.logout 2nd

 DIR_COLORS

 hosts.equiv 2nd 3rd

 issue

 man.config

 motd

 passwd 2nd 3rd 4th 5th 6th 7th

 printcap

 profile

 termcap

 yum.conf

 /usr

 include

 local

 pub:ascii

 sbin

 share:magic

 /var

 log:lastlog

 log:messages 2nd

 log:secure

 log:wtmp

 a.out 2nd

 access permission 2nd

 ambiguous reference

 apt.conf

 archive using tar

 ascii

 aspell.conf

 at.allow

 at.deny

 bashrc

 binary, fixing broken

 block special 2nd

 character special 2nd

 close (bash)

 copy using cp

 core 2nd

 create using cat

 creation date, display using ls

 cron.allow

 cron.deny

 crontab 2nd

 csh.cshrc

 csh.login

 csh.logout 2nd

 defined 2nd

 descriptor 2nd

 duplicate

 device 2nd

 DIR_COLORS

 directory 2nd 3rd

 display

 beginning of using head

 end of using tail

 using cat

 empty, creating an

 execute permission

 FIFO special 2nd

 GNUmakefile

 group, display using ls

 header 2nd

 hierarchical structure

 hosts.equiv 2nd 3rd

 identifying using file

 include

 issue

 lastlog

 link

 list

 log

 magic

 Makefile

 makefile

 Makefile

 makefile 2nd

 Makefile

 makefile

 Makefile

 man.config

 messages 2nd

 motd 2nd

 move using mv

 name [See Filename]

 named pipe 2nd

 null 2nd 3rd

 object 2nd

 open, bash

 order using sort

 ordinary 2nd 3rd

 owner

 display using ls

 pack archive using tar

 passwd 2nd 3rd 4th 5th 6th 7th

 pathname 2nd

 permission 2nd

 pointer to

 printcap

 profile

 random

 reference, ambiguous 2nd

 remove using rm

 rename using mv

 rotate

 secure

 size, display using ls

 sort using sort

 sparse 2nd

 special 2nd 3rd

 standard

 startup 2nd 3rd 4th

 stdio.h C header

 structure

 swap

 tar

 temporary, name of 2nd

 termcap

 terminal

 text

 torrent

 tty

 type of, discover using ls

 typescript

 urandom

 window

 wtmp

 yum.conf

file utility 2nd

filec variable

Filename 2nd

 /

 absolute

 ambiguous reference [See File, File;ambiguous reference]

 case

 case-sensitive

 change using mv

 characters in

 choice of

 completion

 conventions

 defined 2nd

 device

 DOS

 extension

 a 2nd 3rd

 bz2 2nd 3rd

 c 2nd 3rd 4th

 C

 c

 C

 c++

 cc 2nd

 cpp

 cxx 2nd

 defined

 DOS

 emacs and

 f

 gif

 gz 2nd 3rd

 h 2nd

 html

 i 2nd

 ii 2nd

 jpeg 2nd

 jpg 2nd

 l

 list of 2nd

 ls and

 o 2nd 3rd 4th 5th

 pdf

 ps

 remove a

 s 2nd 3rd

 S

 s

 sh

 shared object

 so 2nd

 tar.bz2

 tar.gz

 tar.Z 2nd

 tgz

 tiff

 torrent

 txt 2nd

 tz

 y

 Z 2nd

 generation 2nd 3rd

 invisible 2nd 3rd

 length 2nd 3rd

 period, leading

 quoting

 reference, ambiguous [See File, File;ambiguous reference]

 root directory

 simple 2nd 3rd 4th

 substitution

 temporary file 2nd

 typeface

 unique 2nd

 Windows

Filesystem

 clean

 defined 2nd

 ext2 2nd 3rd

 ext3 2nd 3rd

 filename length

 free list

 Hierarchy Standard, Linux 2nd

 journaling 2nd

 organize

 root

 Standard, Linux 2nd

 structure 2nd

 use

filetest builtin 2nd

Filling

FILO stack

Filter 2nd 3rd

Find

 command name using apropos

 string using grep

find utility

 inode 2nd

find_uid shell script

finder shell script

finger utility 2nd 3rd 4th

Firewall

First in last out stack

flex utility

Floppy diskette, copy using dd

fmt utility

Focus, desktop

Folder [See Directory]

Font, anti-aliasing 2nd

Footer

for control structure 2nd 3rd

for...in control structure 2nd 3rd

foreach control structure

Foreground

 background versus

 defined

 process

Fork

 child

 defined

 process

fork system call

fork() system call 2nd 3rd 4th 5th

FQDN

Frame, network

Free

 list, filesystem

 space

 space, disk

 Standards Group

fsck utility

FSG

FSSTND 2nd

FTP

 active connection

 anonymous

 automatic login

 passive connection 2nd

 PASV connection

 PORT connection

 pub directory

 tutorial

ftp.gnu.org/pub/gnu/make/make-3.80.tar.gz

ftp.ibiblio.org/pub/Linux

ftpd daemon

Full

 duplex 2nd

 regular expressions

 egrep

 pipe

 plus sign

 question mark

 summary

Fully qualified domain name [See FQDN]

Function

 C language 2nd

 defined

 prototype

 shell 2nd

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

g++ utility

games directory

Gateway

gawk 2nd

 format

 operator 2nd

 printf function

 shell script, in a

 sprintf function

gcc

 history

 home page

 using

 warning options

gcc.gnu.org

gdb utility 2nd 3rd

gdbm database

GECOS

Generate filenames

Generic operating system

getchar C macro

getopts builtin 2nd

getty utility

gid variable

gif filename extension

Giga-

glob builtin

Global variable 2nd

Globbing 2nd 3rd 4th

Glyph

GMT [See UTC[GMT]]

GNU

 Compiler Collection

 emacs

 gcc

 compiler 2nd

 home page

 gdb utility

 General Public License

 manuals

 usage message

GNUmakefile file

goto control structure

GPL [See GNU, GNU;General Public License]

gprof utility

Graphical display

Grave accent [See Back tick]

Greenwich Mean Time [See UTC]

grep utility 2nd 3rd 4th 5th 6th 7th 8th 9th

Group

 access

 changing

 commands 2nd

 ID 2nd 3rd 4th

 name of, display using ls

 users

 windows

group database

groups.google.com 2nd

GUI

 combo box

 defined

 radio button

 scrollbar

 spinner

 text box

 thumb

 wysiwyg

 X Window System

gunzip utility 2nd

gz filename extension 2nd

gzip utility 2nd

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

h filename extension 2nd

Hacker

Half-duplex 2nd

Hard link

 create using ln

 defined 2nd

 number of using ls

 remove using rm

Hardcoded filename in shell scripts

Hash

 defined

 one-way

 table

hashstat builtin

head utility

Header

 document

 file 2nd

Help

 apropos utility

 documentation

 emacs

 error messages

 getting

 GNU manuals

 HOWTOs

 info pages

 Internet, from the

 Linux Documentation Project 2nd

 man pages

Here document 2nd

here document

Here document

Hesiod

Heterogeneous

Hexadecimal number

Hidden file [See Invisible filename]

Hierarchical file structure

Hierarchy

histfile variable 2nd 3rd

HISTFILESIZE variable

histlit variable 2nd

History

 C Shell mechanism, classic

 defined

 event

 editing

 number

 previous:!$ last word of

 previous:modifying

 reexecuting

 text

 words within

 mechanism 2nd

 vi, of

 viewing

 word designator

history builtin 2nd 3rd 4th

history variable 2nd 3rd

HISTSIZE variable

Home directory 2nd

 .aspell.conf

 .bash_history file

 .bash_login file

 .bash_logout file

 .bash_profile file 2nd

 .bashrc file 2nd

 .cshrc file

 .dir_colors file

 .history file 2nd

 .inputrc file

 .login file 2nd 3rd

 .logout file 2nd

 .netrc

 .nofinger file

 .pgpkey file

 .plan file

 .profile file 2nd

 .project file

 .rhosts

 .tcshrc file 2nd

 .toprc file

 .vimrc file 2nd

 defined 2nd

 invisible file

 startup file

 working directory, versus

 ~, shorthand for 2nd

HOME variable 2nd

home variable

HOME variable 2nd

hostname utility

hosts.equiv file 2nd 3rd

Hover

HOWTO documents, finding

HTML

html filename extension

HTTP

Hub

Humor 2nd 3rd 4th

hunk (diff)

Hypertext

 defined

 Markup Language [See HTML]

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

i filename extension 2nd

I/O device [See Device]

IANA

ICMP packet

Icon

Iconify

if control structure 2nd 3rd 4th 5th

if the character is a -, it is

if...then control structure

if...then...elif control structure 2nd

if...then...else control structure 2nd

IFS variable

Ignored window

ignoreeof variable 2nd

ii filename extension 2nd

Implied dependency, make

import command, cvs

in control structure

in regular expressions 2nd

in replacement strings

Include directive

include directory 2nd

Include file

Incorrect login

Increment operator

indent shell script

Indentation [See Indention]

Indention

Indirect pointer

Infinite recursion, alias

info directory

info utility

 manual

 using

init utility

Inode

 defined

 display using ls

 explained

 filesystem

 links shell script

Input

 defined

 Mode, vim

 standard [See Standard, input]

Input/output device [See Device]

input_line variable

INPUTRC variable

Installation, computer

Integrated Services Digital Network [See ISDN]

Interactive

Interface

 command line

 defined

 user 2nd

Internal Field Separator [See IFS variable]

International Organization for Standardization [See ISO]

Internet

 Assigned Numbers Authority [See IANA]

 defined

 mirror site

 netiquette

 Printing Protocol [See IPP protocol]

 Protocol [See IP and TCP]

 service provider [See ISP]

 URI

 URL

internet (small i)

Interprocess communication 2nd

Interrupt handling

Interrupt key 2nd 3rd 4th 5th

Intranet

Invisible filename

 defined 2nd

 display

 not displayed with ?

IP

 address

 defined

 multicast [See Multicast]

 spoofing

IPC

IPP protocol

iptables, masquerade

IPv6

is_regfile shell script

ISDN

ISO

 defined

 ISO9660 filesystem

ISP

ispell [See Utility;aspell]

issue file

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Job

 control 2nd 3rd

 bg builtin

 defined

 fg builtin 2nd

 how to use

 jobs builtin 2nd

 notify builtin

 stop builtin

 defined

 number 2nd

 stop foreground

jobs builtin 2nd 3rd 4th 5th 6th

Journaling filesystem 2nd

Joy, Bill

JPEG

jpeg filename extension 2nd

jpg filename extension 2nd

Justify

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

K&R 2nd

kdbg utility

KDE

 desktop

 kdbg utility

Kerberos

Kernel

 defined

 device driver

 module [See also Loadable module]

 programming interface

 responsibilities 2nd

 system calls

kernelspace

Kernighan & Ritchie [See K&R]

Key

 BACKSPACE

 binding

 binding, emacs

 CONTROL

 CONTROL-C 2nd

 CONTROL-D 2nd 3rd 4th

 CONTROL-H 2nd 3rd 4th 5th 6th

 CONTROL-L 2nd 3rd

 CONTROL-M

 CONTROL-Q

 CONTROL-R

 CONTROL-U 2nd 3rd 4th

 CONTROL-V 2nd

 CONTROL-W 2nd 3rd 4th 5th

 CONTROL-X 2nd

 CONTROL-Z 2nd

 CONTROL_U 2nd

 Delete

 erase 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

 interrupt 2nd 3rd 4th

 kill 2nd 3rd 4th

 line kill 2nd 3rd 4th

 META 2nd

 NEWLINE 2nd

 notation

 RETURN 2nd 3rd 4th

 SPACE bar

 suspend 2nd 3rd 4th 5th 6th 7th 8th 9th

 TAB

 typeface

 word erase 2nd

Keyboard

 defined

Keystroke notation

Keyword

 searching for using apropos

 variable 2nd

kill builtin 2nd 3rd 4th 5th 6th 7th 8th

Kill key 2nd 3rd 4th

Kill line key 2nd 3rd 4th

kill utility

kill() system call

kilo-

Knowledgebase, Red Hat

Korn Shell [See ksh]

Korn, David[Korn] 2nd

ksh

 defined

 history

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

l filename extension

LAN

 defined

Language

 -sensitive editor, emacs[Language

 sensitive]

 procedural

Large number

LASONSEMICOLON command separator

Last Line mode, vim

lastlog file

ld utility

ld-linux library

ld-linux.so utility

LD_LIBRARY_PATH variable 2nd

LD_RUN_PATH variable

LDAP

ldd utility 2nd

Leaf

Least privilege

Length of filename

less utility 2nd 3rd 4th 5th

LESS variable

let builtin 2nd

lib directory 2nd 3rd 4th 5th 6th

libattr library

libc library

libc.so library

libm.a library

libm.so library

Library

 archived

 dynamic [See Shared, library]

 ld-linux

 libacl

 libattr

 libc

 libc.so

 libm.so

 shared 2nd

 statically linked

Lightweight Directory Access Protocol [See LDAP]

limit builtin

Line kill key 2nd 3rd 4th 5th 6th 7th 8th

Line Printer Daemon [See lpd daemon]

LINES variable

Link

 create using ln

 defined 2nd

 delete using rm

 hard 2nd 3rd 4th

 hard versus symbolic

 number of, display using ls

 point-to-point

 remove using rm

 soft [See Link, symbolic]

 symbolic

 bash and

 create using ln 2nd

 defined

 display using find

 follow using find

 mark using ls

 versus hard 2nd

 symlink [See Link, symbolic]

links shell script

lint utility

Linux

 distribution

 documentation

 Documentation Project 2nd

 Filesystem Hierarchy Standard 2nd

 Filesystem Standard 2nd

 manual

 newsgroup

 PAM [See PAM]

 Pluggable Authentication Modules [See PAM]

 Standard Base

Linux Software Map database

linux terminal name

linux.duke.edu/projects/yum

Lisp programming language

List operator

List server

listjobs variable

listlinks variable

Listserv

llibacl library

ln utility 2nd

 versus cp

Load average 2nd

Load, system, display using w[Load]

Loadable module

Local

 area network [See LAN]

 variable 2nd 3rd 4th

local file

Locale

locale builtin

locale database

locate database

locate utility

lock utility

locktty shell script 2nd

Log

 files

 out

log builtin 2nd

log command (cvs)

log directory 2nd

Logical

 expression

 operator [See Boolean operator]

Login

 defined

 incorrect

 name

 problems

 procedure

 prompt

 remote 2nd

 root

 shell 2nd 3rd 4th

login builtin

login utility

loginsh variable

Logout

logout builtin 2nd 3rd

lost+found directory 2nd 3rd

lpd daemon

lpq utility 2nd

LPR line printer system

lpr utility 2nd 3rd 4th

lprm utility 2nd

ls utility 2nd 3rd 4th 5th 6th 7th 8th

ls-F builtin 2nd

LSB

lseek() system call

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

MAC address

Machine

 collating sequence 2nd

 independence

 name, display

Macro

 C preprocessor 2nd

 defined

 expansion

 make

magic file

Magic number 2nd

Mail

 attachment

 list server

 mailbox

 MDA

 MTA

 MUA

 network addresses

mail utility

MAIL variable

mail variable

Mailbox

MAILCHECK variable

MAILPATH variable

MAILTO variable

main function

Main memory

Mainframe computer

Major device number 2nd

make utility 2nd 3rd 4th 5th 6th 7th

Makefile file

makefile file 2nd 3rd

Makefile file

makefile file

Makefile file

makefile file

makefile, discussion[makefile]

makewhatis utility

MAN

man directory

man page header database

man utility 2nd 3rd 4th

man.config file

MANPATH variable

Manuals

 GNU 2nd

 man

 reference, finding

 system, about

Masquerading

Massachusetts Institute of Technology [See MIT]

McCarthy, John M

mcd utility

mcopy utility

MD5 encryption

MDA

mdel utility

mdir utility

Mega-

Memory, main

Menu

 defined

 shell script

Merge

mesg utility

Message

 deny using mesg

 Digest 5 [See MD5 encryption]

 of the day [See motd file]

 send using write

 usage 2nd 3rd 4th 5th 6th 7th

messages file 2nd

META key 2nd

Metabit

Metacharacter 2nd

Metadata

mformat utility

Microprocessor

MIME

 defined

 type, displayed by file

mingetty utility

mini-HOWTO documents, finding

Minicomputer

Minimize window

MINIX

Minor device number 2nd

Mirror site

Mistake, correct typing

MIT

 lisp culture

mkdir utility 2nd 3rd 4th 5th

mke2fs utility

mkfs utility

mkfs.ext2 utility

mkfs.ext3 utility

mklost+found utility

Modeless editor

Modem

 cable

 defined

Module [See Loadable module]

modules directory

more utility 2nd 3rd

motd file 2nd

Mount

 automatic

 defined

 point

Mouse

 pointer

 pointer, hover

 window manager

Mouseover

Move

 directory using mkdir

 file using mv

MS Windows [See Windows]

MTA

Mtools utility

mtools.linux.lu

mtype utility

MUA

Multiboot specification

Multicast

Multitasking 2nd 3rd

Multithreaded program

Multiuser

 defined

 Linux design 2nd

mv utility 2nd 3rd

mxgdb utility

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Name

 command

 login

 variable 2nd

Named pipe 2nd 3rd

NAT

NBT

ndbm database

NetBIOS

Netboot

Netiquette

Netmask

Network

 address

 defined

 mail

 space, private

 Address Translation [See NAT]

 boot

 broadcast

 address

 defined

 datagram

 Ethernet

 extranet

 FDDI

 frame

 gateway

 hub 2nd

 ICMP packet

 Information Service [See NIS]

 multicast

 netmask

 number [See Network, address]

 packet

 packet filtering

 packet sniffer

 port forwarding

 private address space

 privileged port

 router

 segment

 sniff

 subnet

 address

 defined

 mask

 number

 switch

 Time Protocol [See NTP]

 token ring

 topology, shared

 tunneling 2nd

 UDP

 unicast

 VPN

 Wi-Fi

 wide area [See WAN]

 wireless access point

NEWLINE key 2nd

Newsgroup

 comp.os.linux.answers

 comp.os.linux.misc

 list of

NFS

NIC

nice builtin 2nd

nice utility

nice() system call

NIS

 database

 defined

 domain name

NNTP

No news is good news

noarch

nobeep variable

noclobber variable 2nd 3rd

Node

noglob variable

nohup builtin

nohup utility 2nd

nonomatch variable

Nonprinting character 2nd

Nonvolatile storage

Normal mode, vim [See vim, vim;Command mode]

NOT Boolean operator

notify builtin

notify variable

NTP

Null

 builtin (

)

 builtin (\

)

 device

 string 2nd

null file 2nd 3rd

Number

 block

 device

 major

 minor

 giga-

 hexadecimal

 job

 kilo-

 large

 magic 2nd

 mega-

 octal

 sexillion

 tera-

 undecillion

Numbered Buffers, vim

Numeric variable 2nd 3rd 4th

 array

nvi utility

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

o filename extension 2nd 3rd 4th 5th

Object file 2nd

Octal number

od utility

OLDPWD variable

onintr builtin 2nd

Online documentation

Open file

open() system call

OpenSSH

 authentication

 defined

 initial connection to

 public-key encryption

Operating system

 defined

 generic

 proprietary

Operator

 bash

 in expressions

 redirection

 bitwise

 & 2nd

 ^

 |

 Boolean

 ! 2nd 3rd 4th

 &

 && 2nd 3rd 4th 5th 6th 7th 8th

 -a 2nd 3rd

 -o 2nd

 -or

 NOT

 SPACE 2nd

 | |

 ||

 decrement 2nd

 increment

 logical [See Operator, Operator;Boolean]

 postdecrement 2nd

 postincrement 2nd

 predecrement

 preincrement

 relational

 short-circuiting

 table of

opt directory 2nd

OPTARG variable

Optimizer, C compiler 2nd

OPTIND variable

Option

 bash [See bash, bash;features]

 combining

 defined 2nd

OR operator

Order file using sort

Order of expansion, command line

Ordinary file 2nd

Organize a filesystem

Other access

out shell script

Output

 append [See Append, Terminal;standard output]

 defined

 redirect

 standard [See Standard, output]

Overlay a shell

owd variable

Owner

 access

 file, name of, display using ls 2nd

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

P2P

Pack archive file using tar

Packet

 defined

 filtering

 sniffer

Page break

Pager 2nd 3rd

PAGER variable 2nd

Paging

PAM

Parameter

 expansion

 positional 2nd

 shell

 special

 substitution

 vim

Parent

 directory 2nd

 process 2nd 3rd 4th

Parentheses

 grouping commands

 shell functions

Parse 2nd

Partition, disk

PASC

Passive FTP

Passphrase

passwd database 2nd 3rd

passwd file 2nd 3rd 4th 5th 6th 7th

passwd utility

passwd_check shell script

Password

 change

 criteria

 defined

 security

paste utility

PASV FTP [See Passive FTP]

PATH variable

path variable

PATH variable

 builtin and

 find executables using which

 inherited

 tcsh

 usage

Path, search[Path]

Pathname

 absolute 2nd 3rd

 completion 2nd 3rd

 defined 2nd

 element

 expansion 2nd 3rd 4th

 last element of

 relative 2nd 3rd 4th

 using

 ~ (tilde) in a

pdf filename extension

Peer, BitTorrent

Performance, system

Period, leading in a filename

Peripheral device [See Device]

Permission

 access

 change using chmod

 control of

 directory

 display using ls

 execute

 read

 types of

 execute

 file access

 read

 setgid

 setuid

Persistent

Philosophy, UNIX 2nd

Physical device

PID

 $! variable, and

 $$ variable 2nd

 background process and 2nd

 defined

 determining using ps

 fg

 kill, using with 2nd

 number 1

 temporary file, use in name of

Pipe

 command separator

 defined 2nd

 end of line, at

 filter 2nd

 introduction

 named 2nd

 noclobber and

 standard error, and

 symbol

 syntax exception

Pipeline [See Pipe]

Pixel

Plaintext

plan file [See .plan file]

Plus sign

Point-to-point link

Pointer to a file

popd builtin 2nd 3rd

Port

 defined

 forwarding

Portability 2nd

Portmapper

Position-independent code

Positional parameter 2nd 3rd 4th

POSIX standards 2nd

Postdecrement operator 2nd

Postincrement operator 2nd

Postscript, brace expansion

PPID [See Parent, process]

pr utility

Preamble, brace expansion

Predecrement operator

Preincrement operator

Preprocessor directive

 #define 2nd 3rd

 #include

 defined

 macro 2nd

 symbolic constant 2nd

Prerequisites

 BitTorrent

 make

Print, IPP protocol

Printable character

printcap file

printenv builtin

Printer

 control characters

 lpr and

 page break 2nd

 skip to top of page

 top of form

 using

PRINTER variable

Printing

 a file [See Printer, info utility;using]

 CUPS

Private address space

Privilege, least

Privileged port

Problems, login

proc filesystem

Procedural language

Procedure

Process

 background 2nd 3rd

 child 2nd 3rd 4th

 defined 2nd 3rd

 die 2nd

 foreground

 fork 2nd

 ID [See PID]

 parent 2nd 3rd

 parent-child relationship

 PID, display using ps

 sleep 2nd

 spawn [See Fork]

 spontaneous

 start

 structure

 substitution

 wake up 2nd 3rd

Processing a command line

procmail utility

profile file

Program

 badtabs.c

 defined

 keeping current

 stop

 structures

 tabs.c

 terminate

Programmer

 applications

 systems

Programming tools

PROM

Prompt

 $

 %

 bash 2nd

 defined

 job control and

 login

 PS2

 PS3

 representation

 secondary

 shell 2nd

 tcsh 2nd

 variable

prompt variable

prompt2 variable

prompt3 variable

Proprietary operating system

Protected memory

Protocol

 connection-oriented

 connectionless

 defined

 IPP

 TELNET

Proxy

 defined

 gateway

 server

ps filename extension

ps utility 2nd 3rd 4th 5th

PS1 variable 2nd

PS2 variable 2nd

PS3 variable

PS4 variable

pstree utility

pub directory

Public License, GNU [See GNU, GNU;General Public License]

Public-key encryption, OpenSSH

pushd builtin 2nd 3rd

pushdsilent variable

pushdtohome variable

putchar C macro

pwck utility

pwd builtin 2nd 3rd 4th 5th

pwd utility

PWD variable

Python

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Question mark

Quick substitution

Quotation mark

 double 2nd 3rd 4th

 removal

 single 2nd 3rd

 single versus double 2nd

 usage message

Quoting

 characters 2nd

 defined

 shell variables

 special characters

 variables

 whitespace

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Radio button

RAID

RAM

 defined

 disk

Random access memory [See RAM]

Random bytes, generating

random file

Random number generator 2nd

RANDOM variable

RAS 2nd

rcp utility

RDF

Read

 access 2nd

 user input

read builtin 2nd 3rd 4th 5th 6th

read() system call 2nd

Readline Library 2nd

 completion

readonly builtin 2nd 3rd 4th

Readonly memory [See ROM]

Readonly variable

Recursion

 defined

 example

 infinite, alias 2nd

Recursive plunge [See Recursion, infinite, alias]

Red Hat

 Knowledgebase

Redirect

 operators, bash

 output

 standard

 error 2nd 3rd

 input 2nd

 output 2nd 3rd 4th 5th 6th 7th

 output and append

 output and error

 output of background job

 output using tee

redirect standard input

redirect standard output

Redirection 2nd 3rd

Reentrant code 2nd

Reexecuting commands 2nd

Refresh screen

Regular character

Regular expression

 ... bracket expression

 ampersand 2nd

 anchor

 asterisk

 bracket

 bracketing

 caret

 character class

 defined

 delimiter

 dollar sign

 empty

 extended 2nd

 full

 gawk

 grep

 list operator

 longest match

 period

 quoted digit

 quoting parentheses

 quoting special characters

 replacement string

 rules of use

 simple string

 special character 2nd 3rd

 special character, quoting

 square bracket

 summary

 vim

rehash builtin

Relational operator

Relative pathname 2nd 3rd 4th

release command (cvs)

Release, CVS[Release]

Religious statue, miniature [See Icon]

Remainder operator

Remote

 Access Server [See RAS]

 login

 procedure call [See RPC]

Remove

 directory using rmdir

 file using rm

 link using rm

 variable

remove command

Rename

 directory using mv

 file using mv 2nd

rename shell script

repeat builtin

Repeating a command

Replacement string 2nd 3rd 4th 5th

REPLY variable 2nd

Request for Comments [See RFC]

Resolver

Resource Description Framework [See RDF]

Restore

Return code [See Exit, status]

RETURN key 2nd 3rd 4th

Reverse single quotation mark [See Back tick]

RFC 2nd

RFS

Ritchie, Dennis

rlogin utility

rm utility 2nd 3rd 4th 5th

rmdir utility 2nd

rmstar variable

Roam

ROM

Root

 directory 2nd 3rd 4th

 filesystem

root (user)

root login

ROT13

Rotate file

Router

RPC

rpmfind.net

RSA encryption

rsh utility

rtag command (cvs)

Run

 background command

 defined

 shell script

run-parts utility

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s filename extension 2nd 3rd

S filename extension

s filename extension

safedit shell script

Samba

 defined

 NBT

 NetBIOS

 share

 SMB

 Windows share

 WINS

savehist variable 2nd 3rd

sbin directory

sched builtin

Scheduling jobs

Schema

scp utility

Screen, refresh

script utility

Script, shell [See Shell script]

Scroll

Scrollbar

sdiff utility

Search

 keyword using apropos

 path

 string using grep

 string using vi 2nd

Secondary prompt

secure file

Security

 access permission 2nd 3rd

 ACL 2nd

 authentication

 back door 2nd

 checksum

 cipher

 ciphertext

 cleartext

 cookie

 cracker

 cryptography

 cypher [See Security, cipher]

 DDoS attack

 DoS attack

 Kerberos

 Linux features

 locktty script

 password

 PATH variable

 RSA

 setgid

 setuid 2nd

 shred utility

 Trojan horse

 virus

 wiping a file

 worm 2nd

sed utility 2nd 3rd

Seed, BitTorrent

Segment, network

select control structure

sendmail, masquerade

Separating commands

Server

 defined

 mail list 2nd

 Message Block Protocol [See Samba]

Service, directory

services database

Session

 defined

 failsafe

set builtin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

Set group ID [See Setgid]

setenv builtin 2nd 3rd

Setgid

 defined

 display using ls

 permission

 root, files belonging to the group

Setuid

 defined

 ls display of

 root, files owned by

Sexillion

sh filename extension

sh Shell 2nd 3rd

shar shell script

Share

share directory

Shared

 library

 creating

 gcc

 using

 network topology

 object, filename extension

Shell

 archive

 arithmetic (bash)

 calling program, name of

 command

 grouping 2nd

 separation

 substitution 2nd

 comment

 comparing strings

 control structure

 break

 case 2nd

 continue

 do 2nd 3rd 4th

 done 2nd 3rd 4th

 elif 2nd

 else

 esac

 fi 2nd

 for 2nd 3rd

 for...in 2nd

 goto

 if 2nd 3rd 4th

 if...then

 if...then...elif 2nd

 if...then...else 2nd

 in

 switch

 then 2nd 3rd

 until 2nd

 while 2nd 3rd 4th 5th

 defined

 environment variable 2nd

 exit from

 features

 function 2nd

 identifying

 job control

 keyword

 break

 breaksw 2nd

 case

 continue

 default

 else

 endsw

 switch

 then

 variable

 while

 login 2nd 3rd

 name of the calling program

 options [See Shell, bash;features]

 parameter

 positional

 special

 prompt 2nd 3rd 4th

 readonly variable

 sh 2nd 3rd

 sleep

 strings, comparing

 user-created variable

 variable [See Shell variable]

Shell script 2nd 3rd

 # comment

 #! shell to use

 /dev/tty for a terminal

 addbanner

 bash

 birthday

 bundle

 chkargs 2nd

 cleanup

 command_menu 2nd

 comment

 count

 cpdir

 create

 debug

 defined

 double quotation marks 2nd

 error message 2nd

 executing 2nd

 find_uid

 finder

 Here document

 indent

 infinite loop

 invocation

 is_regfile

 links

 locktty 2nd

 makepath

 menu

 out

 passwd_check

 PATH usage

 quiz

 quote in 2nd 3rd 4th

 read user input

 recursion

 rename

 running

 safedit

 shar

 specifying a shell

 spell_check 2nd

 temporary filename 2nd

 usage message 2nd 3rd 4th 5th

 user input

 whos 2nd 3rd

 whoson

 word_count

 word_usage

shell variable

SHELL variable

Shell variable

 $!

 $# 2nd 3rd 4th

 $#argv

 $$ 2nd 3rd 4th 5th

 $* 2nd 3rd

 $0

 $<

 $? 2nd

 $@ 2nd 3rd

 argv

 ASPELL_CONF

 autocorrect

 autolist 2nd

 autologout

 BASH_ENV

 CDPATH

 cdpath 2nd

 CDPATH

 cdpath

 COLUMNS

 correct

 CVSROOT

 cwd 2nd

 dirstack

 dunique

 echo

 EDITOR 2nd

 ENV

 FCEDIT

 fignore

 filec

 gid

 histfile 2nd 3rd

 HISTFILESIZE

 histlit 2nd

 history 2nd 3rd

 HISTSIZE

 HOME 2nd

 home

 HOME 2nd

 IFS

 ignoreeof 2nd

 input_line

 INPUTRC

 keyword

 LD_LIBRARY_PATH 2nd

 LD_RUN_PATH

 LESS

 LINES

 listjobs

 listlinks

 loginsh

 MAIL

 mail

 MAILCHECK

 MAILPATH

 MAILTO

 MANPATH

 naming

 nobeep

 noclobber 2nd 3rd

 noglob

 nonomatch

 notify

 OLDPWD

 OPTARG

 OPTIND

 owd

 PAGER 2nd

 PATH

 path

 PATH

 builtins do not use

 example

 find executables using which

 keyword shell variable

 tcsh

 positional parameter

 PRINTER

 prompt

 prompt2

 prompt3

 PS1 2nd

 PS2 2nd

 PS3

 PS4

 pushdsilent

 pushdtohome

 PWD

 quoting

 RANDOM

 readonly

 REPLY 2nd

 rmstar

 savehist 2nd 3rd

 shell

 SHELL

 shlvl

 status

 switches

 tcsh 2nd 3rd

 TERM 2nd

 time

 tperiod 2nd

 user

 verbose

 version

 VIMINIT

 visiblebell

 VISUAL

 watch

 who

shift builtin 2nd 3rd 4th

shlvl variable

Short-circuiting operator

Shortcut [See Link]

shred utility

Signal

 defined 2nd

 hang up

 kill

 list of

 names 2nd

 quit

 software termination

 TERM

 terminal interrupt

Simple filename 2nd 3rd 4th

Single quotation mark 2nd

Single versus double quotation marks

Single-user system

Size of file, display using ls

Skip to top of page

sleep system call

sleep utility 2nd

Sleep, shell[Sleep]

Slice [See Disk;Partition, disk]

slocate database

slocate utility

SMB [See Samba]

Smiley

Smilies, plural of smiley

SMTP

Snap, window

Sneakernet

Sniff

so filename extension 2nd

SOCKS

Soft link [See Symbolic, link]

Software termination signal

Sort

sort utility 2nd 3rd 4th 5th 6th

source builtin 2nd

Source code management

Source repository

sources.redhat.com/bzip2 2nd

SPACE 2nd

SPACE Boolean operator 2nd

Spam defined

Sparse file 2nd

Spawn [See Fork]

Special

 aliases

 character

 *

 ?

 [_]

 defined 2nd

 filename generation

 Here document

 pathname expansion

 quoting 2nd

 regular expressions

 standard input

 file, device file

 parameters, shell 2nd

spell_check shell script 2nd

Spelling correction [See aspell utility]

Spinner

splint utility

split utility

Splitting, word

Spontaneous process

Spoofing, IP

Spool

spool directory 2nd

SQL

Square bracket

 defined

 test

src directory

ssh utility

Stack

 defined

 directory, manipulation 2nd

 FILO

Stallman, Richard 2nd 3rd 4th 5th 6th

Standard

 directories and files

 error 2nd 3rd

 defined 2nd

 exec

 file descriptor 2nd

 redirect

 shell script

 trap

 input

 defined 2nd

 exec

 file descriptor 2nd

 redirect

 special character

 output

 append

 defined 2nd

 exec

 file descriptor 2nd

 redirect 2nd 3rd

Standards

 FHS

 Free Standards Group

 FSG

 FSSTND

 Linux Filesystem Hierarchy Standard

 Linux Standard Base

 LSB

 option handling

Start

 emacs

 vim

Startup file

 .bash_login file

 .bash_logout file

 .bash_profile file

 .bashrc file 2nd

 .cshrc

 .cshrc file

 .emacs 2nd 3rd 4th

 .history file 2nd

 .inputrc file

 .login file 2nd 3rd

 .logout file 2nd

 .profile file 2nd

 .tcshrc file 2nd

 .vimrc file 2nd

 /etc

 bashrc file

 csh.cshrc file

 csh.login file

 csh.logout file

 profile file

 bash

 BASH_ENV variable

 defined

 ENV variable

 listing

 source to execute

 tcsh

 vim

 VIMINIT variable

stat() system call 2nd

Statically linked library

Status

 exit

 line

 vim

status variable

stdio.h C header file

Steele, Guy

Sticky bit 2nd

stop builtin

Stopping a job using the suspend key

Stopping a program

strace utility

Streaming tape

Streams [See Connection-oriented protocol]

String

 comparing

 defined

 double quotation marks

 finding using grep

 pattern matching (bash)

 variable

 array

strings utility

Stroustrup, Bjarne

Structure, data

Structured Query Language [See SQL]

stty utility 2nd

Stylesheet [See CSS]

Subdirectory 2nd

Subnet

 address

 defined

 mask

 number

Subpixel hinting

Subroutine [See Procedure]

Subshell 2nd 3rd 4th 5th

Substitution

 command 2nd

 parameter

Superblock

Supercomputers

Superuser

 defined

 explained

 password, changing a user's

 powers

 priority

suspend builtin

Suspend key 2nd 3rd 4th 5th 6th 7th 8th 9th

SVID [See System, System;V Interface Definition]

Swap

 defined

 file, vim

 space

Switch [See Network, switch[Switch]]

switch control structure

sylpheed utility

sylpheed.good-day.net

Symbol table

Symbolic

 constant

 debugger

 link 2nd 3rd 4th 5th

 creating using ln

 defined 2nd

 deleting using rm

 tcsh

symlink [See Symbolic, link]

Syntax, command line

syslogd daemon

System

 administration

 cron utility

 pwck utility

 tune2fs utility

 administrator

 defined

 powers

 Superuser

 call 2nd 3rd

 bad, trapping

 C, from

 chmod()

 chown()

 close()

 creat()

 defined 2nd

 exec() 2nd 3rd

 exit()

 filesystem operations

 fork

 fork() 2nd 3rd 4th 5th

 getpid()

 kill()

 lseek()

 manual section

 nice()

 open()

 process control

 read() 2nd

 sleep()

 stat() 2nd

 tracing with strace

 unlink()

 wait()

 write() 2nd

 console 2nd

 dataless

 load average

 mode

 performance

 programmer

 single-user

 V Interface Definition

 V UNIX

system services database

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

TAB key

Table, hash

tabs.c program 2nd

tac utility 2nd

tail utility 2nd 3rd 4th

Tanenbaum, Andrew

Tape, streaming

tar file

tar utility 2nd 3rd

tar.bz2 filename extension

tar.gz filename extension

tar.Z filename extension 2nd

Target file, make

TC Shell [See tcsh]

tcl.sourceforge.net

TCP

tcsh

 alias

 arithmetic expression

 array of variables 2nd

 builtins

 control structure

 defined

 directory stack manipulation 2nd

 environment

 event number

 expression operator

 features shared with bash

 filename substitution

 globbing

 hash mechanism 2nd

 history mechanism

 job control 2nd 3rd 4th 5th

 leaving

 nice builtin

 nohup builtin

 numeric variable 2nd

 positional parameters

 prompt 2nd

 quoting variables

 redirect, separate stdout from stderr

 shell variable

 special aliases

 startup file 2nd

 string variables

 switch variables

 variable array

 variables

 word completion

tcsh variable

tee utility 2nd

Teletypewriter 2nd

TELNET protocol

telnet utility 2nd

Temporary file 2nd

Tera-

TERM signal

TERM variable 2nd

Termcap 2nd

termcap file

Terminal

 ASCII

 character-based

 console 2nd

 defined

 emulator, telnet

 file

 interrupt signal

 name

 ansi

 linux

 vt100

 vt102

 vt220

 xterm

 specifying

 standard input

 standard output

 X

Terminate a program

Terminfo 2nd

terminfo database

terminfo directory

Ternary operator 2nd

test builtin 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

test utility 2nd

Text

 box

 echo

 file

tgz filename extension

Theme

then control structure 2nd 3rd 4th

Thicknet

Thinnet

Thompson, Ken 2nd

Thread

 reentrant code

 safe [See Reentrant code]

Thumb

tiff filename extension

Tilde expansion 2nd 3rd 4th

Tiled windows

time builtin 2nd 3rd

Time to live [See TTL]

time variable

TkCVS utility

tldp.org/FAQ/Threads-FAQ

tmp directory

Toggle

Token 2nd

Token ring network

Tooltip

Top of form

top utility

Top-down design

torrent file

torrent filename extension

Torrent, BitTorrent[Torrent]

Torvalds, Linus 2nd 3rd 4th 5th

touch utility 2nd 3rd

tperiod variable 2nd

tput builtin 2nd

tr utility 2nd 3rd 4th 5th

Tracker, BitTorrent

Transient window

Transmission Control Protocol [See TCP]

trap builtin 2nd 3rd

Tree structure

Trojan horse 2nd

true utility

TTL

TTY [See Teletypewriter]

tty file

tty utility 2nd

tune2fs utility 2nd

Tunneling

Tutorial

 FTP

 Getting started with emacs

 Using vim to create and edit a file

txt filename extension 2nd

type builtin 2nd

Type of file, display using ls

Typeface conventions

typescript file

typeset builtin 2nd

Typographical error, correcting

tz filename extension

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

UDP

UID

 chown

 defined

 effective

 find

ulimit builtin

umask builtin 2nd 3rd

unalias builtin 2nd 3rd 4th

uncompress utility

Undecillion

Undeclared variable

unhash builtin

Unicast packet

uniq utility 2nd

Unique filename 2nd

Universal Coordinated Time [See UTC]

UNIX

 Berkeley [See Berkeley UNIX]

 Bourne Shell

 BSD [See Berkeley UNIX]

 System V 2nd

 System V Interface Definition [See System, System;V Interface Definition]

unix2dos utility

unlimit builtin

unlink() system call

Unmanaged window

Unpack archive file using tar

unset builtin 2nd 3rd 4th 5th 6th

unsetenv builtin 2nd

until control structure 2nd

unzip utility

update command (cvs)

updatedb utility

ups utility 2nd

ups.sourceforge.net

uptime utility 2nd

Uptime, display using w[Uptime]

urandom file

URI

URL

Usage message 2nd 3rd 4th 5th 6th 7th

User

 created variable 2nd

 Datagram Protocol [See UDP]

 finger

 ID [See UID]

 interface 2nd

 mode

 variables, special forms

 w

 who

user variable

Userspace

UTC 2nd

Utility

 [_] [See test builtin]

 apropos 2nd 3rd 4th

 Apt [See Apt]

 aspell 2nd

 at

 atq

 atrm

 autoconf

 awk [See gawk]

 basename 2nd 3rd

 batch

 bison

 BitTorrent [See BitTorrent]

 builtin versus

 bunzip2 2nd

 bzcat 2nd

 bzip2 2nd 3rd

 bzip2recover 2nd

 cal

 cat 2nd 3rd 4th 5th 6th 7th

 chgrp

 chmod 2nd 3rd

 chown

 chsh

 cmp

 comm

 compress 2nd 3rd 4th

 configure 2nd

 cp 2nd 3rd 4th

 cpio 2nd 3rd

 cron 2nd

 crontab

 cut 2nd 3rd

 cvs 2nd

 date 2nd 3rd 4th

 dd

 ddd 2nd

 defined

 df

 diff 2nd

 diff3

 dircolors

 dos2unix

 du 2nd 3rd

 e2fsck

 echo

 ed 2nd

 egrep 2nd 3rd

 elvis

 emacs

 Evolution

 ex 2nd

 exmh

 expr

 fdformat

 fgrep 2nd

 file 2nd

 find 2nd 3rd

 find using whereis

 find using which

 finger 2nd 3rd 4th

 flex

 fmt

 fsck

 g++

 gawk 2nd 3rd

 gcc 2nd

 gcc (GNU)

 gdb 2nd 3rd

 getty

 gprof

 grep 2nd 3rd 4th 5th 6th 7th 8th 9th

 gunzip 2nd

 gzip 2nd

 head

 hostname

 info 2nd 3rd

 init

 ispell [See aspell utility]

 kdbg

 kill

 ld

 ld-linux.so

 ldd 2nd

 less 2nd 3rd 4th 5th

 lint

 ln 2nd

 locate

 lock

 login

 lpq 2nd

 lpr 2nd 3rd 4th

 lprm 2nd

 ls 2nd 3rd 4th 5th 6th 7th 8th

 mail

 make 2nd 3rd 4th 5th 6th 7th

 makewhatis

 man 2nd 3rd 4th

 mcd

 mcopy

 mdel

 mdir

 mesg

 mformat

 mingetty

 mkdir 2nd 3rd 4th 5th

 mke2fs

 mkfs

 mkfs.ext2

 mkfs.ext3

 mklost+found

 more 2nd 3rd

 Mtools

 mtype

 mv 2nd 3rd

 mxgdb

 names, typeface

 nice

 nohup 2nd

 nvi

 od

 option

 passwd

 paste

 pr

 procmail

 ps 2nd 3rd 4th 5th

 pstree

 pwck

 pwd

 rcp

 rlogin

 rm 2nd 3rd 4th 5th

 rmdir 2nd

 rsh

 run-parts

 scp

 script

 sdiff

 sed 2nd 3rd

 shred

 sleep 2nd

 slocate

 sort 2nd 3rd 4th 5th 6th

 splint

 split

 ssh

 strace

 strings

 stty 2nd

 sylpheed

 tac 2nd

 tail 2nd 3rd 4th

 tar 2nd 3rd

 tee 2nd

 telnet 2nd

 test 2nd 3rd 4th 5th 6th 7th

 TkCVS

 top

 touch 2nd 3rd

 tr 2nd 3rd 4th 5th

 true

 tty 2nd

 tune2fs 2nd

 typeset

 uncompress

 uniq 2nd

 unix2dos

 unzip

 updatedb

 ups 2nd

 uptime 2nd

 vi

 view

 vim

 vimtutor

 w 2nd

 watch

 wc 2nd

 whatis

 whereis

 which 2nd

 who 2nd 3rd 4th 5th 6th

 write 2nd 3rd

 xargs 2nd

 Xinerama

 xxgdb 2nd

 yum [See yum]

 zcat 2nd 3rd

 zdiff

 zip

 zless

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Variable

 array

 array of numeric

 braces

 C Shell

 completion

 default value, assign

 defined

 display error message

 environment 2nd

 expansion 2nd

 exported

 global 2nd

 keyword

 local 2nd 3rd

 modifiers

 name, tcsh

 naming 2nd

 numeric

 quoting

 readonly

 remove

 shell

 substitute default value

 substitution 2nd 3rd

 tcsh

 undeclared

 user created 2nd

verbose variable

version variable

vi

 aaa] [See also vim[vi]]

 bash command line editor

 clones

 emacs versus

 safedit script

 simulation in emacs

vi utility

view utility

Viewport [See Workspace]

vim 2nd

 $

 (key

) key

 *

 - key

 . command 2nd

 . special character

 .bash_profile file

 .login file

 .vimrc startup file 2nd

 / key

 >

 ? key

 @ symbol

 []

 ^

 a command

 A command

 abnormal termination

 active links

 address

 advanced commands

 any character indicator

 Append command 2nd

 aspell

 automatic matching

 autowrite

 b key

 B key

 beginning-of-line indicator

 beginning-of-word indicator

 blank-delimited word

 break a line in two

 Buffer

 General-Purpose 2nd

 Named

 C command

 c command

 Case command

 case sensitivity 2nd

 cc command

 Change command 2nd

 change text

 character

 character-class definition

 command 2nd

 Command mode 2nd

 compatibility, vi

 CONTROL-B key

 CONTROL-D key

 CONTROL-F key

 CONTROL-G key 2nd

 CONTROL-T key

 CONTROL-U key

 CONTROL-V key

 CONTROL-W key

 copy text

 correct a mistake 2nd 3rd

 correct text

 crash recovery

 create a file

 current character

 cursor movement [See vim, vim;move the cursor]

 d command 2nd

 dd command 2nd

 Delete character command

 delete characters

 Delete command 2nd

 delete text 2nd

 DOWN ARROW key

 edit a file

 edit another file

 end a session 2nd

 end-of-line indicator

 end-of-word indicator

 enter text

 erase key

 ESCAPE key

 exit from

 exit, emergency 2nd

 f command

 File command

 file size

 formatting using fmt

 G key

 General-Purpose buffer 2nd

 getting started

 Goto command

 h key

 H key

 history

 home page

 i command

 I command

 incremental search

 indention 2nd

 Input mode 2nd 3rd 4th

 Insert command 2nd

 insert text 2nd 3rd 4th

 invisible characters

 J command

 j key

 Join command

 k key

 l key

 L key

 Last Line mode 2nd 3rd 4th 5th 6th 7th

 LEFT ARROW key

 line

 kill key

 length

 number 2nd

 wrap 2nd

 links, active

 m command

 M key

 marker

 matching, automatic

 mistake, correct

 modes

 move text

 move the cursor 2nd

 by characters

 by lines

 by paragraphs

 by sentences

 by words

 to a specific character

 within the screen

 N command

 n command

 Named buffer

 Normal mode [See vim, vim;Command mode]

 number, line

 o command

 O command

 open a line

 Open command 2nd

 overwrite text

 p command

 P command

 page break

 PAGE DOWN key

 PAGE UP key

 paragraph

 parameter

 autoindent

 autowrite

 compatible

 flash

 ignorecase

 incsearch

 list

 magic

 noautoindent

 noautowrite

 nocompatible

 noflash

 noignorecase

 noincsearch

 nolist

 nomagic

 nonumber

 noreport

 noshiftwidth

 noshowmatch

 noshowmode

 nowrapscan

 number

 report

 set 2nd

 shell 2nd

 shiftwidth

 showmatch

 showmode

 wrapmargin 2nd

 wrapscan

 Put command

 q command

 quit 2nd

 Quit command

 Quote command

 r command

 R command

 r command 2nd

 Read command 2nd

 recover text

 redraw the screen

 regular expression

 Repeat command

 Repeat Factor 2nd 3rd

 replace

 Replace command 2nd

 replace string

 replace text

 replacement string

 report on changes

 RETURN key 2nd

 RIGHT ARROW key

 S command

 s command 2nd

 screen

 scroll

 search

 and replace

 command

 incremental

 string 2nd

 wrapscan parameter

 sentence

 set

 marker

 parameter

 shell

 showmatch 2nd

 SPACE bar

 special characters 2nd 3rd 4th

 spell checking

 start over

 starting 2nd

 startup file

 Status command

 status line

 Substitute command 2nd 3rd

 substitute text

 substitution

 summary

 terminal specification

 tilde symbol

 Transpose command (~)

 u command 2nd

 U command

 u command

 undo changes 2nd

 Undo command 2nd

 Unit of Measure 2nd 3rd

 UP ARROW key

 vi compatibility

 view different parts of the Work buffer

 view utility

 VIMINIT variable

 w command 2nd

 w key

 W key

 word

 Work buffer 2nd 3rd

 Write address

 Write command 2nd

 x command 2nd

 y command

 Yank command 2nd

 yy command

 ZZ command 2nd

 { key

 } key

 ~ command

 ~ symbol

VIMINIT variable

vimtutor utility

Virtual

 console 2nd

 private network [See VPN]

Virus

visiblebell variable

Visiting a file, emacs 2nd

VISUAL variable

Vixie cron

VLAN

VPN

vt100 terminal

vt102 terminal

vt220 terminal

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

w utility 2nd

W2K

W3C

wait builtin 2nd

wait() system call 2nd

Wake up, process

WAN 2nd

WAP

watch utility

watch variable

wc utility 2nd

Web ring

whatis database

whatis utility

where builtin

whereis utility

which builtin 2nd

which utility 2nd

while control structure 2nd 3rd 4th 5th 6th 7th

Whitespace

 command line

 defined 2nd

 quoting

who am i

who utility 2nd 3rd 4th 5th 6th

who variable

whos shell script 2nd 3rd

whoson shell script

Wi-Fi

Wide area network [See WAN]

Widget

Wildcard 2nd 3rd [See also Metacharacter]

Window

 cascading

 defined

 file

 ignored

 manager 2nd 3rd

 minimize

 scrollbar

 share [See Samba, share]

 snap

 thumb

 tiled

 transient

 unmanaged

Windows

 convert files

 filename limitation 2nd

 privileged port

WINS

Wiping a file

Word

 completion

 defined 2nd 3rd 4th

 deleting

 designator

 erase key 2nd

 parse a command line

 splitting (bash)

word_count shell script

word_usage shell script

Work buffer, vim 2nd 3rd 4th

Working directory

 change using cd

 defined 2nd

 execute a file in

 PATH

 relative pathnames and

 significance of

 versus home directory

Workspace

Workstation 2nd

World Wide Web Consortium

Worm 2nd

Write access

write utility 2nd 3rd

write() system call 2nd

wtmp file

www.bittorrent.com

www.bostic.com/vi

www.catb.org/~esr/faqs/smart-questions.html

www.cs.purdue.edu/research/xinu.html

www.cs.vu.nl/~ast/minix.html

www.cvshome.org

www.foldoc.org 2nd 3rd

www.freebsd.org

www.freestandards.org

www.gnome.org

www.gnu.org 2nd

www.gnu.org/licenses/licenses.html

www.gnu.org/manual

www.gnu.org/philosophy/free-sw.html

www.gnu.org/software/bash

www.gnu.org/software/ddd

www.gnu.org/software/emacs 2nd

www.gnu.org/software/gcc/gcc.html

www.gnu.org/software/make/manual/make.html

www.gnu.org/software/texinfo/manual/info-stnd

www.google.com 2nd

www.gzip.org/zlib

www.ibiblio.org/pub/Linux

www.ibm.com/linux

www.kde.org

www.liacs.nl/~wichert/strace

www.linuxbase.org

www.netbsd.org

www.opengroup.org/austin/papers/posix_faq.html

www.pasc.org

www.pathname.com/fhs

www.perl.org

www.procmail.org

www.sobell.com 2nd 3rd 4th 5th 6th 7th 8th

www.splint.org

www.stallman.org

www.tcsh.org

www.tldp.org 2nd 3rd 4th

www.tldp.org/links

www.twobarleycorns.net/tkcvs.html

www.vim.org 2nd 3rd

www.winehq.com

wysiwyg

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

X terminal

X Window System

 defined

 emacs

 Xinerama

X11 directory 2nd 3rd 4th

X11R6 directory 2nd

xargs utility 2nd

XDMCP

xDSL

Xinerama

XINU

XML

XSM

xterm terminal name

xxgdb utility 2nd

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

y filename extension

yum

 configuration file

 install option

 remove option

 update option

 using

yum.conf file

 < Day Day Up >

 < Day Day Up >

Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Z filename extension 2nd

Z Shell

zcat utility 2nd 3rd

zdiff utility

zip utility

zless utility

zsh shell

Zulu time [See UTC]

 < Day Day Up >

	A Practical Guide to Linux Commands, Editors, and Shell Programming
	Table of Contents
	Copyright
	Praise for Mark Sobell's Books
	Preface
	Command line interface (CLI)
	Linux distributions
	Overlap
	Audience
	Benefits
	Features Of This Book
	Contents
	Supplements
	Thanks

	Chapter 1. Welcome to Linux
	Free beer
	The Gnu-Linux Connection
	The Heritage of Linux: Unix
	What is so good about linux?
	Overview of Linux
	Additional Features of Linux
	Chapter Summary
	Exercises

	Part I: The Linux Operating System
	Chapter 2. Getting Started
	Conventions Used in This Book
	Logging In
	Working with the Shell
	Curbing Your Power: Superuser Access
	Getting the Facts: Where to Find Documentation
	More About Logging In
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 3. Command Line Utilities
	Special Characters
	Basic Utilities
	Working with Files
	| (Pipe): Communicates Between Processes
	Four More Utilities
	Compressing and Archiving Files
	Locating Commands
	Obtaining User and System Information
	Communicating with Other Users
	Email
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 4. The Linux Filesystem
	The Hierarchical Filesystem
	Directory and Ordinary Files
	Working with Directories
	touch
	Access peremissions
	Links
	Chapter summary
	Exercises
	ADVANCED EXERCISES

	Chapter 5. The Shell
	The Command Line
	Standard Input and Standard Output
	Running a Program in the Background
	Filename Generation/Pathname Expansion
	Builtins
	Chapter Summary
	Exercises
	Advanced Exercises

	Part II: The Editors
	Chapter 6. The vim Editor
	History
	Tutorial: Creating and Editing a File with vim
	The compatible Parameter
	Introduction to vim Features
	Command Mode: Moving the Cursor
	Input Mode
	Command Mode: Deleting and Changing Text
	Searching and Substituting
	Miscellaneous Commands
	Yank, Put, and Delete Commands
	Reading and Writing Files
	Setting Parameters
	Advanced Editing Techniques
	Units of Measure
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 7. The emacs Editor
	History
	Tutorial: Getting Started with emacs
	Basic Editing Commands
	Online Help
	Advanced Editing
	Language-Sensitive Editing
	More Information
	Chapter Summary
	Exercises
	Advanced Exercises

	Part III: THE SHELLS
	Chapter 8. The Bourne Again Shell
	Background
	Shell Basics
	Parameters and Variables
	Processes
	History
	Aliases
	Functions
	Controlling bash Features and Options
	Processing The Command Line
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 9. The Tc Shell
	Assignment statement

	Part IV: Programming Tools
	Chapter 10. Programming Tools
	Programming In C
	Using Shared Libraries
	make: Keeps a Set of Programs Current
	Debugging C Programs
	Threads
	System Calls
	Source Code Management
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 11. Programming The Bourne Again Shell
	Control Structures
	file Descriptors
	Parameters And Variables
	Builtin Commands
	Expressions
	Shell Programs
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 12. The gawk Pattern Processing Language
	Syntax
	Arguments
	Options
	Notes
	Language Basics
	Examples
	Error Messages
	Chapter Summary
	Exercises
	Advanced Exercises

	Chapter 13. The sed Editor
	Syntax
	Arguments
	Options
	Editor Basics
	Examples
	Chapter Summary
	Exercises

	Part V: Command Reference
	Command Reference
	Utilities That Display and Manipulate Files
	Network Utilities
	Utilities That Display and Alter Status
	Utilities That Are Programming Tools
	Miscellaneous Utilities
	Standard Multiplicative Suffixes
	Common Options
	The sample Utility

	Part VI: Appendixes
	Appendix A. Regular Expressions
	Characters
	Delimiters
	Simple Strings
	Special Characters
	Rules
	Bracketing Expressions
	The Replacement String
	Extended Regular Expressions
	Appendix Summary

	Appendix B. Help
	Solving A Problem
	Finding Linux-Related Information
	Specifying a Terminal

	Appendix C. Keeping The System Up-To-Date
	yum: Updates And Installs Packages
	APT: An Alternative To yum
	BitTorrent

	Glossary
	Index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

