ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

The Linux® Networking Architecture: Design and Implementation of Network
Protocols in the Linux Kernel
By Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Miiller, Marc Bechler

Publisher: Prentice Hall
Pub Date: August 01, 2004
ISBN: 0-13-177720-3
Pages: 648

Supplier:Team FLY Start Reading »

lINllX e

e amd Implementation
qf etwork Frofamfr i the Liix Kernel

Klaus Wehrle * Frank Pihlke * Hartmut Ritter
Daniel Maller = Marc Bechler

The most complete book on Linux networking by leading experts.

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

' l The Linux® Networking Architecture: Design and Implementation of
INUX By Klaus Wehrle, Frank Pahlke, Hartmut Ritter, Daniel Miller, Marc Bechler

ﬁ Publisher: Prentice Hall
o Pub Date: August 01, 2004

ISBN: 0-13-177720-3

Pages: 648
. Table of Contents
. Index
Copyright i
Preface Xiii
Organization of this Book Xiv
Additional Sources of Information XV
Conventions Used in this Book XVi
Acknowledgments XVii
Part I: The Linux Kernel 1
Chapter 1. Motivation 3
Section 1.1. The Linux Operating 4
System
Section 1.2. What is Linux? 5
Section 1.3. Reasons for Using Linux 6
Chapter 2. The Kernel Structure 9
Section 2.1. Monolithic Architectures
. 11
and Microkernels
Section 2.2. Activities in the Linux 12
Kernel
Section 2.3. Locking? Atomic
: 17
Operations
Section 2.4. Kernel Modules 23
Section 2.5. Device Drivers 29
Section 2.6. Memory Management in
31
the Kernel
Section 2.7. Timing in the Linux Kernel 35
Section 2.8. The Proc File System 40
Section 2.9. Versioning 43
Part II: Architecture of Network
. 45
Implementation
Chapter 3. The Architecture of
- 47
Communication Systems
Section 3.1. Layer-Based 47
Communication Models
Section 3.2. Services and Protocols 52
Chapter 4. Managing Network Packets in
55
the Kernel
Section 4.1. Socket Buffers 55
Section 4.2. Socket-Buffer Queues 66
Chapter 5. Network Devices 71
Section 5.1. The net_device Interface 73
Section 5.2. Managing Network Devices 82
Section 5.3. Network Drivers 92
Part III: Layer I + II? Medium Access 115
and Logical Link Layer
Chapter 6. Introduction to the Data-Link 117

Laver

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Copyright

An Alan R. Apt Book

Library of Congress Cataloging-in-Publication Data

CIP DATA AVAILABLE.

Vice President and Editorial Director, ECS: Marcia J. Horton
Publisher: Alan Apt

Associate Editor: Toni Dianne Holm

Editorial Assistant: Patrick Lindner

Vice President and Director of Production and Manufacturing, ESM: David W. Riccardi
Executive Managing Editor: Vince O'Brien

Managing Editor: Camille Trentacoste

Production Editor: Irwin Zucker

Director of Creative Services: Paul Belfanti

Creative Director: Carole Anson

Art Director and Cover Manager: Jayne Conte

Managing Editor, AV Management and Production: Patricia Burns
Art Editor: Gregory Dulles

Manufacturing Manager: Trudy Pisciotti

Manufacturing Buyer: Lisa McDowell

Marketing Manager: Pamela Hersperger

Translator: Angelika Shafir

© 2005 Pearson Education, Inc.

Pearson Prentice Hall

Pearson Education, Inc.
Upper Saddle River, NJ 07458

Authorized translation from the German language edition entitled Linux Netzwerkarchitektur: Design
und Implementierung von Netzwerkprotokollen im Linux-Kern published by Addison-Wesley, an imprint
of Pearson Education Deutschland GmbH, Miinchen, ©2002.

All rights reserved. No part of this book may be reproduced in any form or by any means, without
permission in writing from the publisher.

Pearson Prentice Hall® is a trademark of Pearson Education, Inc. Linux® is a registered trademark of
Linus Torvalds.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of the theories and programs to determine their effec
tiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to
these programs or the documentation contained in this book. The author and publisher shall not be
liable in any event for incidental or consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Preface

This book deals with the architecture of the network subsystem in the Linux kernel. The idea for this
book was born at the Institute of Telematics at the University of Karlsruhe, Germany, where the Linux
kernel has been used in many research projects and its network functionality is modified or enhanced,
respectively, in a targeted way. For instance, new services and protocols were developed for the
next-generation Internet, and their behavior was studied. In addition, existing protocols, such as the
TCP transport protocol, were modified to improve their behavior and adapt them to the new situation
in the Internet.

In the course of these research projects, it has been found that the Linux kernel is very suitable for
studying new network functionalities, because it features a stable and extensive implementation of the
TCP/IP protocol family. The freely available source code allows us to modify and enhance the
functionality of protocol instances easily. In addition, the enhancement of the kernel functionality is
very elegantly supported by the principle of the kernel modules. However, many studies and theses in
this field showed that familiarization with the Linux network architecture, which is required before you
can modify the behavior of a protocol instance, demands considerable work and time. Unfortunately,
this is mainly due to the facts that the network subsystem of the Linux kernel is poorly documented and
that there is no material that would explain and summarize the basic concepts.

Although there are a few books that deal with the Linux kernel architecture and introduce its basic
concepts, none of these books includes a full discussion of the network implementation. This situation
may be due to the following two reasons:

+ The network subsystem in the Linux kernel is very complex. As mentioned above, it
implements a large number of protocols, which is probably one good reason for the enormous
success of Linux. Both [BoCe00] and [BBDK+01] mention that the description of all these
protocols and their concepts would actually fill an entire book. Well, you are reading such a
book now, and, as you can see, it has eventually turned out to be quite a large volume,
although it describes only part of the network functionality, in addition to the basic concepts of
the Linux network architecture.

» Operating-system developers normally deal with the classical topics of system architecture?
for example, the management of memories, processes, and devices, or the synchronization of
parallel activities in a system? rather than with the handling of network packets. As you go
along in this book, you will surely notice that it has been written not by system developers, but
by computer-science specialists and communication engineers.

While considering the facts that there was little documentation covering the Linux network architecture
and that students had to familiarize themselves with it over and over again, we had the idea of
creating a simple documentation of the Linux network architecture ourselves. Another wish that
eventually led to the more extensive concept of this book was a stronger discussion of important
communication issues: design and implementation of network protocols in real-world systems.
Networking courses teach students the most important concepts and standards in the field of
telecommunication, but the design and implementation of network functionality (mainly of network
protocols) by use of computer-science concepts has enjoyed little attention in teaching efforts, despite
the fact that this knowledge could have been used often within the scope of studies and theses. The
authors consider the description of the implementation of the Linux network architecture and its
structure, interfaces, and applied concepts a step towards strengthening the informatics component in
networking classes.

The authors hope that this book will help to make the processes and structures of the Linux network
architecture easier to understand, and, above all, that our readers will have fun dealing with it and
perhaps learn a few things about the networking concept and its practical implementation.

The content of this book corresponds to our knowledge of the Linux network architecture. This
knowledge is neither comprehensive nor exhaustive. Nevertheless, we have tried to represent the
processes and structures of the Linux network architecture in a fashion as easily understandable and
detailed as possible. We are thankful for all hints, suggestions for improvement, ideas, and comments,
and we will try to consider them in later editions. Updated information about the Linux network

architecture and this book is available online at http://www.Linux-netzwerkarchitektur.de.

http://www.Linux-netzwerkarchitektur.de
http://www.Linux-netzwerkarchitektur.de
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Organization of this Book

Chapter 1 will deal intensively with the motivation behind Linux in general and the Linux network
architecture in particular; Chapter 2 is an introduction into the basic mechanisms and components of
the Linux kernel. To keep the volume of this book manageable, we will discuss only those components
that are important for understanding the Linux network architecture. With regard to the other
components of the Linux kernel, we refer our readers to other books (e.g., [BBDK+01]).

Chapter 3 is an introduction to the general architecture of communication systems and the
functionality of protocols and protocol instances. It includes an introduction to the popular TCP/IP and
ISO/O0SI layering models.

Chapters 4 and 5 discuss fundamental concepts of the Linux network architecture, including the
representation and management of network packets in the Linux kernel (see Socket Buffers?A
class="docLink" HREF="0131777203_ch04.html#ch04">Chapter 4) and the concept of network devices

(Chapter 5). Network devices form the links between the protocol instances on the higher layers and
hide the particularities of the respective network adapters behind a uniform interface.

Chapter 6 gives an overview of the activity forms in the Linux network architecture and the flow of
transmit and receive processes. In addition, this chapter introduces the interface to the higher-layer
protocol instances.

Chapters 7 through 12 discuss protocols and mechanisms of the data link layer. More specifically, it
describes the SLIP, PPP, and PPP-over-Ethernet protocols and how the ATM and Bluetooth network
technologies are supported in Linux. Finally, we will describe how a Linux computer can be used as a
transparent bridge.

Our discussion of the TCP/IP protocols starts with an overview of the TCP/IP protocol family in Chapter
13. We will begin with a brief history of the Internet, then give an overview of the different protocols
within the TCP/IP protocol family. Chapter 14 will deal with the Internet Protocol and its mechanisms
in detail. In addition, it introduces the IP options and the ICMP protocol. Chapters 15 through 23
discuss the following protocols and mechanisms on the network layer: ARP, routing, multicasting,
traffic control, firewalls, connection tracking, NAT, KIDS, and IPv6.

Chapters 24 and 25 describe the TCP and UDP transport protocols, respectively. We will close our

discussion of the kernel with an explanation of the socket interface, in Chapter 26, then end with a
short overview of the programming of network functionality on the application level.

The appendix includes additional information and introduces tools facilitating your work with the Linux
network architecture. The issues dealt with include the LXR source code browser, debugging work in
the Linux kernel, and tools you can use to manage and monitor the Linux network architecture.

4 Previous Mext ¥

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Additional Sources of Information

This section lists a few useful sources of information where you can find additional information about
the Linux network architecture.

Magazines

The Linux Magazine (http://www.Linux-mag.com) is probably the best-known Linux
magazine. It features articles about all issues that are of interest when you deal with Linux. Of
special interest is the Kernel Corner column, which regularly publishes articles about the
architecture and implementation of components of the Linux kernel? most of them by
developers themselves.

Linux Focus (http://www.linuxfocus.org) is an online magazine publishing articles in many
different languages. It also includes a Kernel Corner.

The Linux Gazette (http://www.linuxgazette.com) is another online magazine dedicated to
Linux.

Useful Links in the World Wide Web

Linux Headquarters: http://www.linuxhg.com
Linux Documentation Project: http://www.linuxdoc.org

Linux Weekly News: http://www.lwn.net

Other Information

Howtos include a lot of information about different Linux issues. Most deal with the
configuration and installation of various Linux functionalities. Especially for the Linux kernel,
there are also a few howto documents? for example, how to use locks in the kernel
[Russ00b], and general information on hacking in the Linux kernel [Russ00c]. Of course, we
should not forget to mention the networking howto, which includes a wealth of tips and
information about configuring the network functionality in Linux [Drak00].

The source code of the current kernels is found at f t p. ker nel . or g. There are also mirrors
of this FTP server, a list of which can be found at http://www.kernel.org/mirrors/.

Information about components and drivers of the Linux kernel are also included directly in the
source code of a kernel version, in the Documentation subdirectory. In addition, the file
Documentation/kernel-docs.txt includes a list of current information about the Linux kernel? for
example, documentation, links, and books. (It's worth taking a look at this file!)

4 Previous Mext ¥

http://www.Linux-mag.com
http://www.linuxfocus.org
http://www.linuxgazette.com
http://www.linuxhq.com
http://www.linuxdoc.org
http://www.lwn.net
http://www.kernel.org/mirrors/
http://www.Linux-mag.com
http://www.linuxfocus.org
http://www.linuxgazette.com
http://www.linuxhq.com
http://www.linuxdoc.org
http://www.lwn.net
http://www.kernel.org/mirrors/
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Conventions Used in this Book

This book uses the following typographical conventions to emphasize various elements of the Linux
kernel, source texts, and other things.

Functions

A gray bar denotes important functions. A bar describes the function name on the left and the file
name (within the kernel's source-code tree) on the right.

When giving a function name in such a place and throughout the body of this book, we normally leave
out the parameters, because they would take up much space and impair the readability and text flow.

In general, when introducing a function, we describe the entire parameter set and give a brief
description. The variable type is normally left out. For example, the description of the function i nt
i p_rcv(struct sk_buff *skb, struct net_device *dev, struct packet type
*pt) from the file net /i pv4/i p_i nput . c is denoted as follows:

i p_rcv() net/ipv4/ip_input.c

Throughout the body of this book, we would then refer to this function as i p_rcv() or
i p_rcv(skb, dev, pt).

Variables, Function Names, Source Text Excerpts, and so on

A sans-serif fontis used for excerpts from the source code, variable and function names, and
other keywords referred to in the text.

Commands, Program Names, and so on

A sans-serif fontis used for the names of programs and command-line tools. Parameters that
should be passed unchanged are also printed in sans- seri f ; those parameters that have to be
replaced by values are printed in sans-serif italic.

Direct input in the command line is often denoted by a leading shell prompt? for example,
Files, Directories, Web Links, and so on

A sans-serif fontis used for files and directories. We generally give the relative path in the kernel
source code for files of the Linux kernel (e.g., net /i vp4/i p_i nput . c). Web links are also printed
in sans-serif font (e.g., http://www.Linux-netzwerkarchitektur.de).

Other Conventions

Italic text denotes emphasis, or an introduction to a key term or concept.

4 Previous Mext ¥

http://www.Linux-netzwerkarchitektur.de
http://www.Linux-netzwerkarchitektur.de
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Acknowledgments

Many people's contributions were indispensable in the creation and production of this book. First and
foremost, we would like to thank all students who studied the structure of the Linux network
architecture in their papers and theses. They contributed enormously to collecting knowledge about
the Linux network architecture at the Institute of Telematics:

Nasieh Abdel-Hag, Paul Burczek, Michael Conrad, Frank Dinies, Paul Hankes Drielsma, Jérome
Freilinger, Carolin Gartner, Stefan Gétz, Karsten Hahn, Artur Hecker, Tobias Hinkel, Michael Hofele,
Verena Kahmann, Vera KieBling, Stefan Klett, Andreas Kramm, Jan Kratt, Eckehardt Luhm, David
Metzler, Ulrich Mohr, Rainer Miiller, Sven Oberldnder, Vincent Oberle, Jan Oetting, Torsten Pastoors,
Christian Pick, Christian Schneider, Steffen Schober, Marcus Scholler, Achim Settelmeier, Uwe Walter,
and Jirgen Walzenbach.

The authors wrote this book mainly for their students.

Much appreciation is due to Professor Gerhard Kriiger, who has always supported our activities, given
us the freedom necessary to write this book, and assisted us with valuable advice. His support also
allowed us to procure a Linux test network, which served as the basis for our research activities at the
Institute of Telematics in the field of services for the next-generation Internet.

Our special thanks go to all the folks at the publishing houses who published the original German
version of this book and the English translation that you are currently reading. Particularly, we would
like to thank our editors, Sylvia Hasselbach and Toni Holm. Their admirable patience helped shepherd
us through this book-writing process. The English translation was done by Angelika Shafir, whom we
would also like to thank in this place. We also thank all the people who read the manuscript, especially
Mark Doll, Sebastian Déweling, Thomas Geulig, Thorsten Sandfuchs, Marcus Schéller, Bernhard
Thurm, Uwe Walter, Anja Wehrle, Kilian Weniger, and Friederike Daenecke.

Last but not least, we gratefully acknowledge the support, encouragement, and patience of our
families and friends.

KARLSRUHE - BERKELEY * BERLIN - BRAUNSCHWEIG

KLAUS WEHRLE * FRANK PAHLKE * HARTMUT RITTER * DANIEL MULLER * MARC BECHLER

4 Prewvious Mext ¢

ABC Amber CHM Converter Trial version

http:/ /'vww.processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Part I: The Linux Kernel

Chapter 1. Motivation

Chapter 2. The Kernel Structure

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 1. Motivation

Digital data transmission and processing form the basis of our today's information society. Within a
short time, the Internet has penetrated all areas of our daily lives, and most of us can surely not
imagine everyday life without it. With its new services, it offers us ways to communicate, fascinating
all social strata, but corporations and organizations also use the possibilities of the Internet as a basis
for internal exchange of information and for communication and handling business with customers and
partners.

The technique of the Internet has been developed during the past twenty years; the actual boom
began with the introduction of the World Wide Web at the beginning of the nineties. Development has
progressed since then; new protocols and standards have been integrated, improving now both the
functionality and the security in the "global net."

As developments in the Internet progressed, so did the technologies of the underlying network: The
first e-mails were sent over telephone lines at 1200 bits/s in the eighties, but we can now
communicate over gigabit or terabit lines. In addition, new technologies for mobile communication are
emerging, such as UMTS and Bluetooth.

All these technologies have one thing in common: They are integral parts of digital communication

systems, allowing spatial communication and interaction of distributed applications and their users.
Modern communication systems decompose these extremely complex tasks into several layers, and
the instances of these layers interact via predefined protocols to supply the desired service.

Telematics! is a field that handles both the development and research of telecommunication systems
(and their basic mechanisms) and the implementation and realization of these systems by using means
of computer science. This means that, in addition to the design of communication systems and
protocols, the implementation of these mechanisms is an important task within the telematics
discipline. Unfortunately, many universities and academic institutions neglect this point. For example,
during coverage of the basics and the current standards with regard to communication protocols in
detail, only very little knowledge is conveyed as to how these principles can be used (e.g., which basic
principles of computer science can be used when implementing communication protocols).

11 Telematics is the subdiscipline of informatics that deals with the design and implementation of
telecommunication systems by use of information technologies.

With this book, the authors? who themselves teach computer-science students? attempt to contribute
to promoting the computer-science component in telematics. Using the Linux operating system as an
example, which the authors employ mainly for research purposes, in addition to the usual office
applications (e-mail, World Wide Web, word processing, etc.), we will introduce the practical
realization of communication systems and communication protocols. Essentially, the structuring of the
network subsystem in the Linux kernel, the structuring of interfaces between network components, and
the applied software methods will be used to show the reader various ways to implement protocols
and network functionality.

In addition to its teaching use, of course, this book is also intended to address all those interested in
the architecture of the network subsystem in the Linux kernel, taking a look behind the scenes at this
poorly documented part of the Linux kernel. The following section discusses the Linux operating system
and the reasons for its use in offices, companies, networks, and research.

A Previous MHext k

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http:/Aww.processtext.com/abechm.html

4 Previous Heaxt

1.1 The Linux Operating System

Linux is a freely available multiuser, multitasking, multiprocessor, and multiplatform UNIX operating
system. Its popularity and the number of users increase continually, making Linux an increasingly
serious factor in the operating-systems market. Thanks to the freely available source code that
everybody can obtain over the Internet and to the fact that everybody can participate in and contribute
to the further development of the Linux system, many developers, all over the world, are constantly
busy further developing this system, removing existing errors, and optimizing the system's
performance.

The fact that most developers do this very time-consuming work for free in their spare time is a sign
of the great fun working with Linux and mainly with the Linux kernel can be. As we progress in this
book, we will try to pass some of this enthusiasm on to our readers. The large number of research
projects at the University of Karlsruhe that have used, enhanced, or modified the Linux network
architecture experienced a high motivation of all participating students. The reason was mainly that
this offered them a way to participate in the "Linux movement."

The development of Linux was initiated by a student by the name of Linus B. Torvalds, in 1991. At that
time, he worked five months on his idea of a hew PC-based UNIX-like operating system, which he
eventually made available for free on the Internet. It was intended to offer more functions than the
Minix system designed by Andrew S. Tanenbaum, which was developed for teaching purposes only
[Tane95]. With his message in the Minix newsgroup (see page 1), he set a movement in motion, the
current result of which is one of the most stable and widely developed UNIX operating systems. Back
then, Linus Torvalds planned only the development of a purely experimental system, but his idea
further developed during the following years, so that Linux is now used successfully by many private
people, corporations, and scientists alike. Mainly, the interoperability with other systems (Apple,
MS-Windows) and the ability to run on many different platforms (Intel x86, MIPS, PA-RISC, IA64,
Alpha, ARM, Sparc, PowerPC, M68, S390) make Linux one of the most popular operating systems.

Not only the extensive functionality of Linux, but also the freely accessible source code of this operating
system, have convinced many private people and companies to use Linux. In addition, the German
government, with its program for the support of open-source software, promotes the use of freely
available programs with freely available source code. The main reason for this is seen not in the low
procurement cost, but in the transparency of the software used. In fact, anyone can view the source
code and investigate its functionality. Above all, anyone can check what? perhaps security-relevant?
functionalities or errors are contained in an application or operating system. Especially with
commercial systems and applications, there are often speculations that they could convey information
about the user or the installed applications to the manufacturer.

You do not have such fears with freely developed software, where such a behavior would be noticed
and published quickly. Normally, several developers work concurrently on an open-source project in a
distributed way over the Internet, monitoring themselves implicitly. After all, free software is not aimed
at maximizing the profit of a company or its shareholders. Its goal is to develop high-quality software
for everybody. Linux is a very good example showing that freely developed software is not just the
hobby of a handful of freaks, but leads to serious and extremely stable applications.

The authors of this book use Linux mainly for research work in the network area. The freely available
source texts allow us to implement and evaluate new theories and protocols in real-world networks.
For example, Linux was used to study various modifications of the TCP transport protocol [WeRWO01,
Ritt01], to develop a framework for the KIDS QoS support [Wehr01b], and to develop the high-resolut
ion UKA-APIC timer [WeRi00].

4 Previous Mext ¥

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

1.2 What is Linux?

Originally, the term Linux described only the operating-system kernel that abstracts from the hardware
of a system, offering applications a uniform interface. Over time, the term Linux has often come to
mean the kernel (the actual Linux) together with the entire system environment, including the following
components:

« the operating-system kernel (currently version 2.0, 2.2, or 2.4);
+ the system programs (compiler, libraries, tools, etc.);

» the graphical user interface (e.g., XFree) and a window manager or an application
environment (KDE, Ghome, FVWM, etc.);

« alarge number of applications from all areas (editors, browsers, office applications, games,
etc.).

Different components not forming part of the kernel originate largely from the GNU project of Free
Software Foundation, which explains why the complete system environment is often called "GNU/Linux
system." A characteristic common to the Linux kernel and GNU programs is that they may all be freely
distributed under the GNU Public License (GPL), provided that the source text is made publicly
available. To the extent that enhancements or modifications have been effected to the programs, then
these are automatically governed by the GNU license (i.e., their source text must also be made freely
available). Since the advent of Linux, this has had the effect that the system has been further
developed free from corporate policy interests and that it has been more strongly oriented to word its
users' needs than are other, commercial operating systems. Anyone can participate in the
development and implement new capabilities, ones based on the freely available source texts. This
means that Linux is always involved in the support of international standards, and no attempt is made
to enforce corporate or proprietary standards to secure a market position.

Errors made during the development of a piece of software are normally removed quickly. In addition,
there is a continual effort to keep the system performing as well as possible. This has become very
clear in the example of the network implementation in the last kernel version: After it had become
known that the performance of Linux in the area of protocol handling on multiprocessor systems
suffers from a few flaws, the network part was extensively rewritten to remove these faults. This
means that Linux is an example that clearly shows the benefits of open-source projects:

» stability,
+ performance, and

s security.

4 Previous Mext ¥

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

1.3 Reasons for Using Linux

The previous section introduced the important properties and objectives of Linux as a free software
project. This section will discuss a number of general properties of the Linux kernel, offering more
reasons for its use:

Linux supports preemptive multitasking: All processes run independently in different protected
memory spaces, so that the failure of one process does not in any way impair the other
processes. When a process claims too much computing time, its processor can be taken and
allocated to another waiting application. Preemptive multitasking is a fundamental requirement
for stable systems.

Multiprocessor: Linux is one of the few operating systems supporting several processors in
SMP (Symmetric MultiProcessing) operation. This means that several processes can be
handled concurrently by different CPUs. Since kernel version 2.0, multiprocessor systems with
Intel and Sparc processors are supported. Version 2.2 and the current Version 2.4 additionally
improved the performance and parallelism in the Linux kernel.

Multiuser: Several users can work concurrently in one system, when they are logged in over
different consoles. In addition, users can work easily on several graphical user interfaces.

Multiplatform: properties of: Linux was originally developed only for the personal computer
(Intel 80386), but it runs on more than ten processor architectures today. The bandwidth of
supported platforms extends from small digital personal assistants over the standard personal
computer to mainframe architectures: Intel x86, MIPS, PA-RISC, IA64, Alpha, ARM, Sparc,
PowerPC, M68, and so on.

Linux is @ UNIX system: It is compatible with the POSIX-1300.1 standard and includes large
parts of the functionality of UNIX System V and BSD. This means that you can use UNIX
standard software under Linux.

21 Portable Operating System Interface based on UniX? POSIX 1300.1 defines a minimum
interface that each UNIX-like operating system must offer.

Rich network functionality: The Linux network architecture makes available an extensive
choice of network protocols and functionalities in the networking area. The development of the
Internet and its services is inseparably linked to UNIX systems. This is why the properties of
the TCP/IP protocol family and its behavior can best be studied and controlled in a UNIX
system. Other PC operating systems would be unsuitable for this, especially those with source
code not publicly available.

Open source: The source code of the entire Linux kernel is freely available and can be used
according to the GNU Public License. A large number of programmers work on the further
development of the Linux kernel all over the world, continually enhancing and improving it.
Linux is distributed over the Internet so that each user can test the kernel and make
improvements or enhancements. The development of Linux in this dimension would not have
been possible without the Internet.

Formerly, users had to put up with defects in software they purchased; Linux now allows
everyone to remove such defects. And it really works. An often heard criticism has been that
the driver support for Linux is one of its major problems. This situation has changed
dramatically during the past years. For instance, all actually available network cards are
supported by Linux. In fact, we can rely to the Linux community to such an extent that there
will soon be a matching driver for each new device.

Efficient network implementation: Meanwhile, the Linux kernel makes available a
well-structured implementation of the network functionality, which will be our main focus of
discussion in the next 27 chapters of this book. The functions can be adapted to the special
requirements of the desired system and meet the specifications of the Internet Engineering
Task Force (IETF), IEE, and ISO better than many other systems.

In the creation of a new kernel, its desired functionality can be individually configured. For
instance, you can enable a large number of optimization options or add specific functionalities

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 2. The Kernel Structure

This chapter deals with the basic architecture of the Linux kernel and its components. It provides an
overview of the most important areas of the kernel, such as the different forms of activity in the
kernel, memory management, device drivers, timers, and modules. Each of these issues will be
discussed briefly in this book, to give you an insight into the tasks and processes of each component.
Detailed information about each of these issues is found in other books and references. A choice of
corresponding sources is given in the bibliography, where we particularly recommend [RuCo01],
[BBDK+01], and [BoCe00].

The goal of this chapter is to describe the framework in which the Linux network architecture
operates. All areas described below offer basic functions required to offer network services in the first
place. This is the reason why knowing them is an essential prerequisite for an understanding of the
implementation of the Linux networking architecture.

Figure 2-1 shows the structure of the Linux kernel. The kernel can be divided into six different
sections, each possessing a clearly defined functionality and offering this functionality to the other
kernel components. This organization is reflected also in the kernel's source code, where each of
these sections is structured in its own subtree.

Figure 2-1. Structure of the Linux kernel according to [RuCo011].

|- Liser space

[View full size image]

Applications, Tools

System calls

¥ Li ¥ ¥ Y Linux-Kernal
- 5 - Hle]-\.-'... .
Process .Mn;mur} . File . | evice Network fe— Components
Tl T 2421 Lt I'I'Idl'lﬂi__'.l.!l'l'lk.‘l'll h__.'&ll'._‘.l'l'l.._" glrlvur:-.
; . Wirtual Files Device access MNetwork ; ; .
Multitasking ; e ‘ - A . =— Funci lity
WITLASKInG MEemory directories terminals Functionality unctions tity
) File system MNetwork Software
En:hlcdulul'_ types protocols Support
architecture- Memory | —— | haracicr
specific MANARET devices - - 3
code Block devs etwor Hardware
Ll HEvicEs drivers Support
4 A A A A
¥ ¥ ¥ Y Y
Hard disk, Various o
CPL RAM D, Floppy terminal 25:.“ ‘l‘ﬂ‘ +— Hardware
disk equipment ple

Here we briefly describe these components.

Process management: This area is responsible for creating and terminating processes and
other activities of the kernel (software interrupts, tasklets, etc.). In addition, this is the area
where interprocess communication (signals, pipes, etc.) takes place. The scheduler is the
main component of process management. It handles all active, waiting, and blocked processes
and takes care that all application processes obtain their fair share of the processor's

computing time.

Memory management: The memory of a computer is one of the most important resources. A
computer's performance strongly depends on the main memory it is equipped with. In
addition, memory management is responsible for allowing each process its own memory

section, which has to be protected against access by other processes.

File systems: In UNIX, the file system assumes a central role. In contrast to other operating
systems (e.g., Windows NT), almost everything is handled over the file-system interface. For

P~ av e e~

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.1 Monolithic Architectures and Microkernels

In contrast to current operating-system developments tending toward a microkernel architecture, the
Linux operating system is based on a monolithic kernel. In microkernel architectures, such as the Mach
kernel [Tane95] or the Windows NT kernel, the operating system kernel represents merely the
absolute necessary minimum of functionality. Good examples are interprocess communication (IPC)
and memory management (MM). Building on the microkernel, the remaining functionality of the
operating system is moved to independent processes or threads, running outside the operating system
kernel. They use a defined interface to communicate with the microkernel, generally via system calls.

In monolithic kernels, to which the Linux kernel belongs, the entire functionality is concentrated in one
(large) kernel. In addition to the basic mechanisms known from microkernels, the Linux operating
system kernel also includes device drivers, file system drivers, most instances of the network
protocols, and much more. (See Figure 2-1.,) Compared to microkernel architectures, the use of a
monolithic kernel has both benefits and drawbacks, as we will see below.

The benefits include the fact that the entire functionality of the operating system is concentrated in the
kernel, allowing the system to work more efficiently. You can access resources directly from within the
kernel, so costly system calls and context changes are needed less frequently. One major drawback is
that the source code for the operating system kernel can quickly become rather complex, even messy,
because no defined interfaces are required within the kernel. In addition, the development of new
drivers can be made more difficult by the lack of an interface definition. For example, if you install a
new device, you have to retranslate the entire kernel to ensure that this device driver can be compiled
with the kernel, a need avoided by microkernel architectures.

That Linux is based on a monolithic operating-system kernel is due to historical reasons. A system that
had not been planned to become such a big project, at the beginning, has continually been developed
further, so that it became impossible, at some point in time, to migrate to a microkernel architecture.
However, since Version 2.0, Linux has made a step towards microkernel architectures. More
specifically, the possibility was created of moving certain functionalities into modules, which are loaded
into the kernel at runtime, from which they can be removed again.

This removed an important drawback of monolithic kernels and opened the way to loading drivers or
other functionalities at runtime. In addition, modularization offers another benefit: Uniform interfaces
are defined. This feature had previously been characteristic only of microkernel architectures. Linux
has a number of such interfaces, allowing the kernel to be dynamically enhanced by a number of
functionalities. This very flexibility and openness of its interfaces is one of the most important benefits
of Linux.

Table 2-1 shows a selection of the most important interfaces, including the pertinent methods used to
register and unregister functionalities.

Table 2-1. Interfaces in the Linux kernel to embed new functionalities.
Functionality Functions for Dynamic Registration
Character devices (un)register_chrdev()

Block devices (un)register_bl kdev()
Binary formats (un)register_binfm ()
File systems (un)register _filesysten()
Serial interfaces (un)register_serial ()

| Network adapters (un)regi ster_netdev()

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.2 Activities in the Linux Kernel

Linux is a multitasking system. This means that several application processes can be active, and
several applications can be used, simultaneously. In multiprocessor systems, which have been
supported since kernel Version 2.0, even several applications or their processes can be processed in
parallel. However, a process is not the only form of activity you can execute in the Linux kernel.

2.2.1 Processes and System Calls

Processes are normally activities that are started to run a specific application, and they are terminated
once the application is through. Creating, controlling, and destroying of processes are tasks handled by
the kernel of an operating system. Processes operate exclusively in the user address space (i.e., in
unprotected mode) of a processor, where they can access only the memory section allocated to them.
An attempt to access memory sections of other processes or the kernel address space leads to an
exception, which has to be dealt with by the kernel.

However, when a process wants to access devices or use a functionality of the operating-system
kernel, it has to use a system call to do this. A system call causes the processor to change to the
protected mode, and access to the kernel address space is a function of the system call. All devices and
memory sections can be accessed in protected mode, but only with methods of the kernel.

The work of processes and system calls can be interrupted by other activities. In such a case, their
current state (contents of CPU registers, MMU registers, etc.) is saved; then it is restored when the
interrupted process or system call resumes its work. Processes and system calls can be stopped
voluntarily or involuntarily. In the first case, they cede processing voluntarily? for example, when they
wait for a system resource (external device, semaphore, etc.) and go to sleep until that resource
becomes available. Involuntary cession of processing is caused by interrupts, which tell the kernel that
an important action has taken place, one that the kernel should be dealing with. This could be a
notification about availability of a previously busy resource.

In addition to normal processes and to processes within a system call, we distinguish between further
forms of activity in the Linux kernel. These forms of activity are of decisive importance for the Linux
network architecture, because the network functionality is handled in the kernel. We will explain the
following forms of activity in more detail in the next sections, when we will be discussing mainly their
tasks within the Linux network architecture:

« Kernel threads;

» interrupts (hardware IRQs);

» software interrupts (soft IRQs);
» tasklets; and

* bottom halves.

When thinking of the different forms of activity in the kernel (except processes in the system call and
kernel threads), an important point will be the parallel execution of the respective form of activity. On
the one hand, this concerns the question of whether the instance of a form of activity can be executed
concurrently on several processors; on the other hand, of whether two different instances of one form
of activity can be executed concurrently on several processors. Table 2-2 shows an overview of these
possibilities.

Table 2-2. Concurrent execution of same activities on several processors.

Same Activity Different Activities

HW IRQ /P> .

Soft IRQ [.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.3 Locking? Atomic Operations

Several different forms of activity can operate and interrupt each other in the Linux kernel. (See

Section 2.2.) In multiprocessor systems, different activities even operate in parallel. This is the
reason why it is very important for the stability of the system that these operations run in parallel
without undesired side effects.

As long as the activities in the Linux kernel operate independently, there will not be any problem. But
as soon as several activities access the same data structures, there can be undesired effects, even in
single-processor systems.

Figure 2-2 shows an example with two activities, A and B, trying to add the structures skb_a and
skb_b to the list queue. At some point, activity A is interrupted by activity B. After some processing of

B, A continues with its operations. Figure 2-3 shows the result of this procedure of the two activities.
Structure skb_b was added to the list correctly.

Figure 2-2, Activity B interrupts activity A in the critical section.
[View full size image]

A B
ekb a-s=next queue-=next;

Jrskb_]:u—vnext = queus->next;
gqueus-=next = skb b;
* queue-next = gkb _a;

Figure 2-3. (Undesired) result of the unprotected operations of activities A and B.

[View full size image]

iquene skb ¢ quene skib_a skb_c
next - next ::> next — next | next
]

nexl

Undesired results can also occur in multiprocessor systems when the two activities A and B run
quasi-in-parallel on different processors, as in the example shown in Figure 2-4,

Figure 2-4, Parallel operations of the activities A and B in the critical section.

[View full size image]
A B

gkkb b-=next = gqueuse-s=next;
gkbh_a--next = gueues--next;

quane - =naxt

akb b,
queue-=next = skb a;

To avoid these problems when several activities operate on a common data structure (the so-called
critical section), then these operations have to be atomic. Atomic means that an operation composed
of several steps is executed as an undividable operation. No other instance can operate on the data
structure concurrently with the atomic operation (i.e., no other activity can access a critical section
that's already busy [Tan95]).

The next four sections introduce mechanisms for atomic execution of operations. These mechanisms
differ mainly in the way they wait for entry into a potentially occupied critical section, which implicitly
depends on the size of the critical section and the expected waiting time.

2.3.1 Bit Operations

Atomic bit operations form the basis for the locking concepts spinlocks and semaphores, described in
+hae fallowina cirithecarctinne | acke are 11ced o nrotect crivical cactinne anAd theav are narma vy

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.4 Kernel Modules

We explained in Section 2.1 that monolithic operating-system kernels, including the Linux kernel,
have the drawback that all functionality of the operating system is accommodated in a large kernel,
making this kernel big and inflexible. To add a new functionality to the operating-system kernel, you
first have to create and install a new kernel. This is a rather cumbersome task and can also be
expensive, because running applications have to be interrupted and the system has to be restarted.
Moreover, using an operating-system kernel that includes all possible kinds of functions, drivers, and
protocols is not recommended either, because the kernel would then become huge and consume an
unnecessary amount of memory. In addition, there are always new functionalities we would like to
integrate into the kernel, or newer versions of existing functionalities, where errors have been
removed. In fact, we can assume that the set of functions of an operating-system kernel will change
over time. For this reason, monolithic kernels have to be continually updated? with the problems
described above.

Linux is based on the monolithic approach, but it has used a different method to solve the problems
noted, since kernel Version 2.0. Note that it does not opt for the microkernel-based approach, which
also has drawbacks. The solution are kernel modules. These modules can be easily added to the
kernel at runtime and they behave as if they had belonged to the monolithic kernel since the system
started. When the functionality of a module is no longer needed, then it can simply be removed and
the memory space it used is freed.

We saw in Figure 2-1 in which components of the kernel we can use modules: device drivers, file
systems, network protocols, and network drivers. The use of modules is actually not limited to these
components. Modules can normally be used on an individual basis. However, adding some functionality
means that you need a corresponding kernel interface to inform the rest of the kernel about the new
components. The interfaces of the Linux network architecture and the possibilities to expand it by new
functionalities are one of the central issues of this book.

When compiled as kernel modules, new functionalities can be added as needed and removed once you
don't need them anymore. (See Section 2.4.1.) This means that the principle of modularization is
very similar to the flexibility of microkernels, the only difference being that Linux modules run in the k
ernel address space, components of microkernel systems in the user address space. More specifically,
the Linux module concept combines the benefits of both operating-system variants. On the one hand, it
avoids the expensive change of address spaces known from the microkernel-based approach; on the
other, it lets you expand the kernel functionality individually at runtime at the same time.

The following sections take a closer look at the structure and management of kernel modules, because
modules are the best and most flexible option to enhance the Linux network architecture.
Unfortunately, a detailed description of kernel modules would go beyond the scope of this book; we
refer mainly to [RuCo01] and [BBDK+01] instead.

2.4.1 Managing Kernel Modules

A kernel module consists of object code, which is loaded into the kernel address space at runtime,
where it can be executed. When the system starts, it is not known which modules with what
functionalities should be loaded, so the module has to make itself known to the respective components
of the kernel. A module should also remove all references to itself when it is removed from the kernel
address space. There are two methods available for these tasks, which each kernel module should
implement? namely, i ni t _modul e() and cl eanup_nodul e() . We will have a closer look at
these methods in Section 2.4.2; first, however we need some general information about the
management of kernel modules outside the kernel.

The following tools are used to manually load a module into the kernel, or remove it from the system:

* insnmod Modul ename. o [argunent s] ? This command tries to load a kernel module into
the kernel address apace. In a successful case, the object code of the module is linked to the
kernel; the module can now access the symbols (functions and data structures) of the kernel.
Calling i nsnod causes the following system calls to run implicitly:

0 sys_create_nodul e() allocates memory space to accommodate the module in
the kernel address space.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.5 Device Drivers

UNIX has its own way of handling physical devices. They are hidden from the user and accessible only
over the file system, without limiting their functionality. For example, an application programmer can
use the simple file operations r ead() and wri t e() to access the driver's hardware, while the

i octl () command can be used to configure properties of a device.

Device drivers in the form of modules can be added or removed in Linux at any time. This offers you a
comfortable tool to develop and test new functionalities. Figure 2-7 shows an excerpt from the / dev
directory, where all devices are listed. In Linux, network adapters are not treated as normal devices

and so they are not listed in the / dev directory. Linux has a separate interface for them. The reasons

are described in [RuCo01]. Chapter 5 will discuss network devices in detail.

Figure 2-7. Excerpt from the / dev directory.

brwrw --- 1 root di sk 3, 0 May 12 19: 23 hda

brwrw--- 1 root di sk 3, 1 May 12 19: 23 hdal
brwrw--- 1 root di sk 3, 2 May 12 19:23 hda2
brwrw--- 1 root di sk 3, 64 May 12 19: 23 hdb

brwrw--- 1 root di sk 3, 65 May 12 19: 23 hdbl
Cr'WrWw--- 1 root uucp 4, 64 May 12 19:23 ttySO
Cr'WrWw--- 1 root uucp 4, 65 May 12 19:23 ttySl
Cr'W-rWr-- 1 root root 10, 1 Sep 13 08: 45 psaux

We can see in Figure 2-7 that the entries for device drivers differ from regular directory entries. Each
entry includes two numbers used to identify the device and its driver.

« The major number identifies the driver of a device. For example, Figure 2-7 shows that the
PS/2 driver has major number 10 and the hard disk driver (hdxx) has major number 3.

The major nhumber can be specified when you register a device driver, but it has to be unique.
For drivers you think you will use less often, it is recommended that you let the kernel assign a
major number. This ensures that the numbers are all unique. See details in [RuCo01].

« The minor number is used to distinguish different devices used by the same driver. In Linux, a
device driver can control more than one device, if the driver is designed as a reentrant driver.
The minor number is then used as an additional number to distinguish the devices that driver
controls. For example, the hard disk driver with major number 3 in Figure 2-7 controls three
hard disks, distinguished by the minor numbers 1, 2, and 65.

Figure 2-7 also shows that the type of each driver is specified at the beginning of each row. Linux
differs between two types of physical devices:

+ Block-oriented devices allow you optional access (i.e., an arbitrary set of blocks can be read or
written consecutively without paying attention to the order in which you access them). To
increase performance, Linux uses a cache memory to access block devices. File system can be
accommodated only in block devices (hard disks, CD-ROMs, etc.), because they are required
for optional or random access. Block devices are marked with a b in the / dev directory.

A block-oriented driver can be registered with the kernel function r egi st er _bl kdev() . If
the function was completed successfully, then the driver can be addressed by the returned
major number. Rel ease_bl kdev() is used to release the device.

+ Character-oriented devices are normally accessed in sequential order. They can be accessed
only outside of a cache. Most devices in a computer are character-oriented (e.g., printer and
sound card). Character-oriented devices are marked with a ¢ in the / dev directory. You can
use r egi st er _chrdev() toregister and r el ease_chrdev() to release
character-oriented devices.

The virtual file / pr oc/ devi ces lists all devices currently known to the kernel. This file is used to find
+he mainr niimhbar of a3 Arivver in the 1icar adAdrace enarcre in race nane hace bhean enecified Anirina fhe

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.6 Memory Management in the Kernel

Memory management is one of the main components in the kernel of any operating system. It supplies
a virtual memory space to processes, often one much larger than the physical memory. This can be
achieved by partitioning memory pages and outsourcing memory pages that are temporarily not
needed to the swap memory on the hard disk. Access to an outsourced page by an application is
intercepted and handled by the kernel. The page is reloaded into the physical memory and the
application can access the memory without even noticing anything about insourcing and outsourcing of
things.

The memory residing in the kernel cannot be outsourced because, if the memory management were
to move the code to the swap memory, it would not be available later on, and the system would be
blocked. For this and, of course, performance reasons, the memory of the kernel cannot be
outsourced. Therefore, we will always distinguish between the kernel address space and the user
address space in the rest of this book.

Virtual memory management is one of the most important and most complex components of an
operating system. [Tan95] offers an overview of the theory of virtual memory management, and
detailed information about its implementation in the Linux kernel is described in [BBDK+01] and [
BoCe00]. Within the Linux network architecture, the structure of the virtual memory management is
less interesting; it is of interest only in regard to whether memory can be reserved and released in an
efficient way, as we will see in the following section. We will also introduce methods to exchange data
between the kernel address space and the user address space. Section 2.6.2 ends with a brief
introduction of the slab cache, representing an efficient management of equalsized memory spaces
(for example, similar to those use for socket buffers).

2.6.1 Selected Memory Management Functions

This section introduces the basic functions of memory management a programmer writing kernel
components or kernel modules needs. First, we will discuss how memory spaces can be reserved and
released in the kernel. Then we will introduce functions used to copy data between the kernel address
space and the user address space.

Reserving and Releasing Memory in the Kernel

kmal | oc() mm/slab.c

kmal | oc(size, priority) attempts to reserve consecutive memory space with a size of si ze
bytes in the kernel's memory. This may mean that some more bytes will be reserved, because the
memory is managed in the kernel in so-called slabs. Slabs are caches, each managing memory spaces
with a specific size. (See / pr oc/ sl abi nf 0.) Letting a slab cache reserve memory space is clearly
better performing than many other methods [Tan95].

The parameter pri ority can be used to specify options. We will briefly describe the most important
options below and refer our readers to [RuCo01] for a detailed explanation of the large number of
options offered by knal | oc() . The abbreviation GFP_ means that the function get _f r ee_pages()
may be used to reserve memory.

* GFP_KERNEL is normally used when the requesting activity can be interrupted during the
reservation. It can also be used for processes that want to reserve memory within a system
call. For activities that must not be interrupted (e.g., interrupt routines), GFP_KERNEL should
not be used.

* GFP_ATOM C is the counterpart of GFP_KERNEL and shows that the memory request should
be atomic (i.e., without interrupting the activity).

* GFP_DMA shows that memory in the DMA-enabled area should be reserved.

* GFP_DMA can be combined with one of the two previous flags.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.7 Timing in the Linux Kernel

In the Linux kernel, clocks "tick" slightly different by than they do in the real world. The time does not
progress continually, but in increments of 10 ms (milliseconds) each, which is called a tick. This means
that the time virtually stands still between any two ticks. The number of ticks since the system started
is recorded in a variable called j i f fi es in the kernel. The timer interrupt increments the j i ffi es
variable at each interrupt. The terms ticks and jiffies are often used interchangeably.

The resolution frequency of the timer interrupt is initialized to the value of the variable HZ (

1
i ncl ude/ asmf par am h), and it increments the j i f f i es variable every #Z 5 [This length of
time is absolutely sufficient for normal applications, because a higher interrupt frequency would only
mean a higher load on the system due to too many unnecessary interruptions [RuCo01]. However,
there are certain situations where a high timer resolution is required, especially to measure smaller
time increments or for running actions at specific points in time [WeRi00]. In networks, you often find
such requirements for protocol instances, for example protocol instances that have to calculate packet
run times or traffic shapers that have to measure minimum time intervals in the microsecond range.

1 HZ depends on the architecture: In Alpha processors, HZ = 1024; HZ = 100 in most other
architectures.

Most of these tasks require clocks with a resolution that is at least in the microsecond range. For

example, to implement a traffic shaper [Tane97], you have to calculate the number of bytes that could

be sent within a specific interval. For example, the j i f f i es time measurement with a resolution of
A

100 Hz is not suitable. With a rate of 2 Mbits/s, an interval of 100 already corresponds to a packet

with a length of 2500 bytes.

To avoid this problem, most modern processors (Pentium, Alpha, etc.) have appropriate registers.
They have been added to those processors mainly to allow system performance measurements and
less for traffic shaping in networks. But, while they are present, their use is quite popular. In the
Pentium processor and its successors (and most of its clones), this is a 64-bit-wide TSC (Time Stamp
Counter) register; its content is incremented by a value of one in each processor clock. The content of
this register shows the number of elapsed clock cycles since system start.

The TSC register is actually nothing more than a hardware variant of j i f f i es, except that its
resolutions is higher by a factor of between 10¢ and 108. This means, for example, that you can
measure intervals with an accuracy of 0.001 ps in a Pentium processor with a clock rate of 1 GHz.

Nevertheless, there is a certain inaccuracy when measuring with the TSC register, because it takes a
few clocks (approx. ten) to read the register. The reason is the main memory access that occurs after
the register value has been read. It can be done only in the bus frequency, which corresponds to a
fraction of the CPU frequency. In addition, there could be effects in the first-level and second-level
cache accesses that can easily lead to false measurements. However, the error caused by the TSC
register is meaningless for normal measurements, because most of them measure only relatively big
time cycles (in the 1-ps range). The command get _cycl es() (defined in <asm ti nex. h>) can be
used to read the content of the TSC register.

2.7.1 Standard Timers

In addition to measuring intervals in the microsecond range, we also need a way to run a function at a
specific point in time to implement a traffic shaper [WeRi00], which sends packets at specific points in
time. The resolution of such a timer should be at least in the 100-pus range. However, due to the fact
that a PC has only one timer component, you can use only this one. As described above, the interrupt
is triggered Hz times per second. In addition to updating j i f f i es, Linux uses the timer interrupt to
run functions at specific points in time (i.e., the timer handler).

A timer queue can be used when a function of the kernel should run at a specific point in time (e.g.,
switching off the floppy motor). At each occurrence of a timer interrupt, the timer interrupt routine
updates the j i f f i es variable and also checks the timer queue for timer handling routines, as may be
present. Each ti mer | i st structure within the timer queue stands for one function (timer handling
routine), which is to run at a specific point in time (expi r es) . The exact process of the timer

IR [S [~ I R SR PR [S <l B PR SRR S . PR BN ol o T o P o B B |

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.8 The Proc File System

All files in the / pr oc directory are virtual files. They do not exist on any memory medium, but are
generated directly by the kernel upon each read access. A proc file is normally a text file showing
information about specific parts of the kernel. For example, the commands | spci or apmshow you
information from the proc files / pr oc/ pci und / pr oc/ apm respectively, and information about the
current devices on the PCI bus or the state of the notebook battery.

The possibilities of the proc file system to display information on the kernel easily in the user mode are
used by many system developers. Files and directories in the / pr oc directory can be easily
implemented. In addition, you can register and unregister dynamically, so that the proc directory is
often used by modules.

The files and directories in the /proc directory are essentially based on the proc_dir_entry

structure, shown in Figure 2-10. Such a structure represents either a directory or a file. The directory
proc is represented by the variable pr oc_r oot . The attributes and methods of the
proc_dir_entry structure have the following meaning:

Figure 2-10. Structure of proc_dir_entry.

struct proc_dir_entry

{
unsi gned short | ow_i no;
unsi gned short nanel en;
const char *nane;
node_t node;
nlink_t nli nk;
uid t ui d;
gidt gi d;
unsi gned | ong si ze;
struct proc_dir_entry *next, *parent, *subdir;
voi d *dat a;
i nt (*get _info)(buffer, start, off, count);
i nt (*read _proc) (buffer, start, off, count,
eof, data);
i nt (*write_proc)(file, buffer, count, data);
i nt (*readlink_proc)(proc_dir_entry, page);
unsi gned int count; /* use count */
i nt deleted; /* delete flag */
b

* low_i no is the file's Inode number. This value is filled automatically by pr oc_r egi st er
when the file is initialized.

* nanel en specifies the length of the file or directory name, nane.

* nane is a pointer to the name of the file (or directory).

* node specifies the file's mode; this value is set to S_DI R for directories.

* nl i nk specifies the number of links to this file (default = 1).

* uid or gi d specifies the user or group ID of the file.

* sj ze specifies the length of the file as shown when the directory is displayed.

* dat a is a pointer that can point to private data.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

2.9 Versioning

The Linux kernel is subject to constant improvement and development, and new versions (releases)
are published regularly. To prevent users from getting confused and to identify stable versions, we
distinguish between so-called hacker and user kernels. The version of a Linux kernel is denoted by a
tuple composed of three letters, x, vy, z:

A hacker kernel is not a kernel version used by malicious people to break into highly classified
computers. The very opposite is the case; in fact, a hacker kernel is the prototype of a Linux
kernel under further development. Normally, new concepts and functions have been added to
such a prototype and some errors of the previous version have been (hopefully) removed.
Hacker kernels are in the testing phase, and faulty behavior or system failure has to be
expected at any time. They mainly serve to integrate and test new drivers and functionalities.

Once a sufficient number of new drivers and technologies have been added to a hacker
kernel, Linus Torvalds will proclaim a so-called feature freeze. This means that no new
functionality can be integrated, and the only change allowed to that prototype is to remove
errors. The objective is a stable user kernel. You can identify a hacker kernel by its odd y
version number (e.g.,2.3.z, where z denotes the consecutive number of the kernel version).
The next version (e.g., 2.3.51), will then have removed some errors of 2.3.50.

User kernels are stable kernel versions, where you can assume that they are normally free
from errors. A user kernel is denoted by an even version number, e.g., 2.2.z. Such versions
are recommended to normal users, because you don't have to fear that the system might c
rash. For example, when version 2.3.51 is very stable and the feature freeze has already been
proclaimed, then the kernel will be declared user kernel 2.4.1. New drivers and properties will
then be added to hacker kernel 2.5.1.

A Previous MHext k

ABC Amber CHM Converter Trial version

http:/ /veww.processtext.com/abocchm.htmil

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Part I1: Architecture of Network
Implementation

Chapter 3. The Architecture of Communication Systems
Chapter 4. Managing Network Packets in the Kernel

Chapter 5. Network Devices

4 F'rexriu:-us] Me:xt P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 3. The Architecture of Communication
Systems

This chapter discusses basic models used to structure communication systems and architectures. The
ISO/O0SI reference model introduced in Section 3.1.1 failed in practice because of its complexity,
especially that of its application-oriented layers. Nevertheless, it still has some fundamental
significance for the logical classification of the functionality of telecommunication systems. Though it
was less successful in proliferating than expected, this model offers the proposed structure of
telecommunication systems in similar form in the field of telematics.

Currently, the technologies and protocols of the Internet (TCP/IP reference model; see Chapter 13)
have made inroads and are considered the de facto standards. The architecture of the Internet can
easily be paralleled to the ISO/OSI reference model, as far as the four lower layers are concerned.
The other layers are application-specific and cannot be compared to the ISO/OSI model.

However, the architecture and protocols of the Internet also represent a platform for open systems
(i.e., no proprietary solutions supported by specific manufacturers are used in the network). In
addition, the development process for hew protocols in the Internet by the Internet Engineering Task
Force (IETF) is open for everyone and is designed so that the best and most appropriate technical
proposals are accepted.

4 Previous] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

3.1 Layer-Based Communication Models

Telecommunication systems bridge the spatial distance between distributed computers. The
implementation of this task is extremely complex for a number of reasons, so it is not recommended to
use a monolithic architecture, which could prove very inflexible and difficult to maintain. This is the
reason why communication systems are normally developed as layered architectures, where each
layer assumes a specific task, offering it in the form of services. The ISO/OSI reference model is
probably the best known example of such a layered architecture.

To solve its task, a layer, N, must use only the services provided by the next lower layer (N ?1). More
specifically, layer N expands the properties of layer N ?1 and abstracts from its weaknesses. For this
purpose, the instance of layer N communicates with the instances of the same layer on other
computers. This means that the entire functionality of the communication system is available in the top
layer. In contrast to a monolithic structure, layering a communication system means a more expensive
implementation, but it offers invaluable benefits, such as the independent development of single partial
components, easy exchange of single instances, better maintainability, and higher flexibility. Figure 3-1
shows the principles of communication in a layered system.

Figure 3-1. Communication in layered systems.
[View full size image]

End system Intermedinte system End system

Application Application
o N N L
anEn | ()
(el ~mmm - S . o] | Lager o+ 1
.m,@*_ _______ (Nprotool __ ___ | ﬁ@ Layer (N)
E@ ________ '5_-_Im_a~z~&~«:>l_____@E Layer (N - 1)
L)])
) L))
.)

Transmission medium Transmission medium

We can deduce two central terms for layer-oriented communication models from the current section,
which will be discussed in more detail in Section 3.2:

» Communication between two instances of the same layer on different computers is governed
by predefined rules. These rules are called protocols.

« The set of functions offered by a layer, N, to its higher-order layer (N + 1), is called its service.
The interface through which this service is offered is called service interface.

This means that an instance is the implementation of a communication protocol and the service
provided within one layer on a computer. The theoretical basis of services and protocols are discussed
in Section 3.2,

3.1.1 The ISO/0SI Reference Model

At the end of the seventies, experts observed increasingly that the interconnection of several computer
networks was difficult (because of vendor-specific properties of these networks), if not impossible, so

it was found hard to ensure interoperability between the large number of networks in place. This
cihiiatinn led o the nronncal +o rraatae 3 1iniform and oFandardized nlatfarm for comni ifer-bhacead

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

3.2 Services and Protocols

Services and protocols were briefly discussed in Section 3.1; they are basic elements of layered
communication systems. This section describes the meaning of these two terms and the functionality
of services and protocols. These two terms serve as a theoretical basis for further explanations in this
book, where we will focus on services and protocols used in real-world systems.

We know from the models described in the previous sections that modern telecommunication systems
consist of several layers. Each layer has different purposes (depending on the reference model) and
offers services to the next higher layer. For example, the IP layer in the TCP/IP reference model offers
the following services: forwarding data units (without guarantees) from a local computer to another
computer, specified by its IP address. This service is used by the transport layer (e.g., by TCP) and
expanded so that a byte stream can be transmitted free from errors and in the correct order.

We can say that a service describes the set of functions offered to the next higher layer. In addition, a
service defines single service elements, used to access the entire range of services. In other words,
the service definition defines the extent and type of service and the interface used to call that service.
The definition of a service refers only to the interaction between two neighboring layers and the
interfaces concerned. The literature describes this often as vertical communication. Exactly how a
layer provides its service is not part of the service definition; it only deals with what an implementation
has to offer the service user at the interface.

To be able to use the services of a layer, the participating systems have to overcome the spatial
separation and coordinate their communication. This is achieved by use of communication protocols,
which run by instances of a layer in the communicating systems. A protocol regulates the behavior of
the distributed instances and defines rules for their coordination. For example, it defines messages to
be exchanged between the instances to regulate distributed handling between these instances. More
specifically, a layer, N, provides its service by distributed algorithms in the respective instances of layer
N and by exchanging protocol messages about their coordination. (See Figure 3-1.) Coordination
between the instances by protocol messages is also called horizontal communication. The service of
the lower layer (N ?1) is used to exchange protocol messages.

The specification of a service describes the behavior of a layer versus the next higher layer (vertical
communication), but says nothing about how a service is implemented. It merely defines the format
and dynamics at the interfaces to the layer that uses the service. A service is rendered by instances of
a layer, which use protocols to coordinate themselves (horizontal communication). The protocol
specification describes the syntactic and dynamic aspects of a protocol. The protocol syntax describes
the format of the protocol data units (PDUs) to be exchanged and the protocol dynamics describe the
behavior of the protocol. The goal of this book is to explain how all of these elements can be designed
and implemented in a communication system. Using Linux as our example operating system, we will
see what the interfaces between the different layers can look like and what design decisions play a
role, mainly from the perspective of efficiency and correctness of the protocols. In addition, we will see
how different protocols use their instances, to show the technologies used to implement network
protocols.

3.2.1 Interplay of Layers, Instances, and Protocols

After our brief introduction to services and protocols in the previous sections, this section describes the
horizontal and vertical processes involved when protocol instances provide a service. The description
of these processes forms the basis for understanding how network protocols work, mainly the
principles of horizontal and vertical communication. The terms introduced earlier will help us better
classify and distinguish structures and parameters involved in the interaction of different layers at the
interfaces.

Instances are the components offering services within a layer. To offer a service, the instances of a
layer communicate (horizontally). This communication is realized by exchanging protocol data units
(PDUs) of layer N. However, data is not exchanged directly between the two instances, but indirectly,
over the next lower layer. This means that the instance of layer N uses the service of layer (N ?1) to
exchange a PDU with its partner instance. Figure 3-4 shows the interplay of layers and the elements
involved.

Figure 3-4. Data units for vertical and horizontal communication.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 4. Managing Network Packets in the
Kernel

One of the most important tasks of the network subsystem of an operating system is to process data
packets according to the protocols used. In the designing of such a system, the multitude and flexibility
of available methods play an important role, in addition to the performance and correctness of these
protocols. Many network protocols differ a lot externally, but, when you implement them within an
operating system, you can see quickly that the algorithms and operations on data packets are similar,
and most of them can be reused. This chapter uses a Linux system as an example to show how data
packets can be realized and what general methods are available to manipulate them.

One main reason for the flexibility and efficiency of the Linux network implementation is the
architecture of the buffers that manage network packets? the so-called socket buffers, or skb for
short. This central structure of the network implementation represents a packet during its entire
processing lifetime in the kernel, representing one of the two basic elements of this network
implementation, in addition to network devices. This means that a socket buffer corresponds to a
sending or received packet.

This chapter introduces buffer management (i.e., the structure of socket buffers) and the operations
used to manage or manipulate them. Beginning with an introduction to the sk_buf f structure, we will
use an example to show how an IP packet is represented in this structure and how it changes along its
way across different protocols and layers. In addition, this chapter introduces functions used to
manage and change the structure.

A Previous MHext k

ABC Amber CHM Converter Trial version

http:/ /veww.processtext.com/abocchm.htmil

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

4.1 Socket Buffers

The network implementation of Linux is designed to be independent of a specific protocol. This applies
both to the network and transport layer protocols (TCIP/IP, IPX/SPX, etc.) and to network adapter
protocols (Ethernet, token ring, etc.). Other protocols can be added to any network layer without a
need for major changes. As mentioned before, socket buffers are data structures used to represent
and manage packets in the Linux kernel.

A socket buffer consists of two parts (shown in Figure 4-1):

» Packet data: This storage location stores data actually transmitted over a network. In the

terminology introduced in Section 3.2.1, this storage location corresponds to the protocol
data unit.

* Management data (struct sk_buff) : While a packet is being processed in the Linux
kernel, the kernel requires additional data that are not necessarily stored in the actual packet.
These mainly implementation-specific data (pointers, timers, etc.). They form part of the
interface control information (ICI) exchanged between protocol instances, in addition to the
parameters passed in function calls.

Figure 4-1. Structure of socket buffers (struct sk_buff) with packet storage locations.

[View full size image]

= Sk_buff head sk_buff
_l—"' nexi = sk_buff —
prev -——
list
stamp _ | mer_device I
div -
h
nh \
Mmac
dst . Packet data storage
—
=1 | MAC header
hl“‘d UDP header
- [upram
end >
da'luruft:l |

The socket buffer is the structure used to address and manage a packet over the entire time this
packet is being processed in the kernel. When an application passes data to a socket, then the socket
creates an appropriate socket buffer structure and stores the payload data address in the variables of
this structure. During its travel across the layers (see Figure 4-2), packet headers of each layer are
inserted in front of the payload. Sufficient space is reserved for packet headers that multiple copying of
the payload behind the packet headers is avoided (in contrast to other operating systems). The
payload is copied only twice: once when it transits from the user address space to the kernel address
space, and a second time when the packet data is passed to the network adapter. The free storage
space in front of the currently valid packet data is called headroom, and the storage space behind the
current packet data is called tailroom in Linux.

Figure 4-2. Changes to the packet buffers across the protocol hierarchy.
[View full size image]

sk_buff sk_buff sk_bufflf

next next next

prev prev prev

head — head = head —
data I data data

Lail —t 1ail 1 Tl ——

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

4.2 Socket-Buffer Queues

When a packet is currently not handled by a protocol instance, it is normally managed in queues. Linux
supports the management of packets in a queue structure (st ruct sk_buff head)andina
number of operations on this structure. The programmer can use these functions to abstract from the
actual implementation of a socket buffer and queues to easily change the underlying implementation of
the queue management.

Figure 4-6 shows that the socket buffers stored in a queue are dual-concatenated in a ring structure.
This dual concatenation allows quick navigation in either of the two directions. The ring structure
facilitates concatenation and prevents the occurrence of NULL pointers.

Figure 4-6. Packet queues in the Linux kernel.

[View full size image]

sk_bofi_head
= nexi —
prev
glen: 3
L sic_buff sk_Beff sk_baff

next - nexi i~ nexi

prev + prey - prey +

head — head — head —
data —t data — data —
tail tail tail

end end end

Packet data Packet data -
- Packet data

A queue header consists of the following skb_queue_head structure:

struct sk _buff head

{
struct sk _buff *next;
struct sk _buff *prev;
_u32 ¢l en;
spi nl ock_t | ock;

h

* next and prev are used to concatenate socket buffers; next points to the first and prev
to the last packet in the queue.

* gl en specifies the current length of the queue in packets.

* | ock is a spinlock (see Section 2.3.2) and can be used for atomic execution of operations
on the queue. When a critical access occurs, if the spinlock is not free, the access will have to
wait until it is released.

4.2.1 Operations on Socket-Buffer Queues

Socket-buffer queues are a powerful tool to arrange packets in Linux. The power of this functionality is
complemented by a large number of methods to manage socket buffers in queues.

Most operations on socket buffers are executed during critical phases, or they can be interrupted by

[T P .S T T 4. T T P | L = T d = Y < Y T D DAY Y T Y . A W - D T DN T |

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 5. Network Devices

Each (tele)communication over a network normally requires a physical medium, which is accessed
over a network adapter (network interface). Together, the network adapter and the medium
eventually allow bridging of the spatial distance, so that data can be exchanged between two or more
communication systems. If we use the ISO/OSI reference model introduced in Section 3.1.1, then
the tasks of a network adapter extend over layers 1 and 2a: They include all tasks dealing with data?
signal? data conversion (and media access in the case of shared media). All higher-order protocol
functions are handled by the protocol instances of the respective operating system.! This interface is
characterized by the following properties:

i1 This view is limited to software-based communication systems on PC basis. More instances are
normally implemented in hardware for dedicated systems.

» interfacing between specialized hardware in the network adapters and software-based
protocols;

« asynchronous input and output point of the protocol stack in the operating system kernel.

In the network architecture of the Linux operating systems, this interface between software-based
protocols and network adapters is implemented by the concept of network devices. A network-device
interface primarily should meet the following requirements:

» Abstract from the technical properties of a network adapter: Network adapters might
implement different layer-1 and layer-2 protocols and are manufactured by different vendors.
This means that their configurations are individual and specific to each network adapter. For
this reason, we need a piece of software for each adapter to communicate with the
hardware: the driver of a network adapter (which is, by the way, also a protocol).

« Provide a uniform interface for access by protocol instances: In a system like Linux, there are
several protocol instances using the services of network adapters. To be consistent with the
principle of layered communication systems (see Section 3.1), these instances should be
implemented independently of a specific type of adapter. This means that network adapters
should have a uniform interface to the higher layers.

In the Linux kernel, these two tasks are handled by the concept of network devices and are often seen
as one single unit. However, it makes sense to distinguish between the two views of network devices
and discuss them separately. For this reason, the following section introduces the network-device
interface visible from the "top," which offers a uniform interface to the higher protocol instances for
physical transmission of data. Later on, Section 5.3 will discuss the "lower" half: the adapter-specific
functions that are the actual network driver. Subsequently, Chapter 6 will introduce an example

describing how a packet is sent and received on the level of network devices interfacing to the higher
protocols.

Not every network device in the Linux kernel represents a physical network adapter. There are
network devices, such as the | oopback network device, that offer a logical network functionality. The

interface of network devices is also often used to bind protocols, such as the point-to-point protocol
(PPP).

Figure 5-1. The structure of a network device interface.

[View full size image]

| higher protocol instances

Network devices

\-e W -Hr.‘. devices

: nel_device .
: ol D @ Abstraction from :
! adapler specifics |

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

5.1 The net_device Interface

In addition to character and block devices, network devices represent the third category of adapters in
the Linux kernel [RuCo01]. This section describes the concept of network devices from the perspective
of higher-layer protocols and their data structures and management.

Network adapters differ significantly from the character and block devices introduced in Section 2.5,
One of their main characteristics is that they have no representation in the device file system / dev/ ,
which means that they cannot be addressed by simple r ead- wr i t e operations. In addition, this is not
possible because network devices work on a packet basis; a behavior comparable to
character-oriented devices can be achieved only by use of complex protocols (e.g., TCP). For example,
there are no such network devices as / dev/ et hO or / dev/ at ml. Network devices are configured
separately by the i f conf i g tool on the application level. More recently, another tool available is i p,
which can be used for extensive configuration of most network functions.

One of the reasons why network devices are so special is that the actions of a network adapter cannot
be bound to a unique process; instead, they run in the kernel and independently of user processes
[RuCo01]. For example, a hard disk is requested to pass a block to the kernel: The action is triggered
by the adapter (in the case of network adapters), and the adapter has to explicitly request the kernel

to pass the packet.

5.1.1 The net_device Structure

struct net_devi ce include/linux/netdevice.h

struct net_device
{
char
unsi gned | ong
base addr;
unsi gned i nt
unsi gned char
unsi gned | ong
struct net_device
i nt

unsi gned | ong

unsi gned short
voi d

struct net_device
unsi gned char

unsi gned char
struct dev_nt_list
i nt

i nt
struct tinmer_|ist

voi d

struct Qdisc
*qdi sc_i ngress;

unsi gned | ong

spi nl ock _t

i nt

spi nl ock_t

atom c_t

1 Nnt

nane[| FNAMVSI Z] ;

rmemend, rmemstart, memend, memstart,

ira;

if _port, dnm;
state;

*next, *next_sched;
i findex, iflink;

trans_start, l|ast_rx;

flags, gflags, ntu, type, hard_header | en;

*priv;

*mast er;

br oadcast [MAX_ADDR LEN], pad;
dev_addr [MAX_ADDR LEN], addr | en;
*nc_|ist;

nc_count, promscuity, allnmulti;

wat chdog_ti neo;
wat chdog_ti ner;

*atal k_ptr, *ip_ptr, *dn_ptr, *ip6_ptr,
*qdi sc, *qdi sc_sl eeping, *qdisc_list,

tx_queue_| en;
xmt | ock;

xmt _| ock _owner;
queue_| ock;
refcnt;

f aat 1ir oc*

*ec_ptr;

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

5.2 Managing Network Devices

Now that we know how a network device can be represented by the net _devi ce structure in the
Linux kernel, this section discusses the management of network devices. First, we will describe how
network devices can be linked, then we will introduce methods that can be used to manage and
manipulate network devices. As was mentioned earlier, this section will look at network devices only
from the "top"? their uniform interface for protocol instances of the higher-order layers.

All network devices in the Linux kernel are connected in a linear list (Figure 5-3). The kernel variable
dev_base represents the entry point to the list of registered network devices, pointing to the first
element in the list, which, in turn, uses next to point to the next element. Each net _devi ce
structure represents one network device.

Figure 5-3. Linking net_device structures.
[View full size image]

ner_cdevice
slale]
- _ | mer_device
next *
nel_device Jis
- name: ethi)
stale Hardwere
i — . local2
- MAC lave : ,
priv e privite driver sircihire
Nemwark laver
Hardware ! s
open
MAC layer stop _Lb adapterZ open()
hard_starl_xmit adapterz stopl()
Network faver adapter? start xmit ()
open
stop '_Lb- adapter openl)
hard_stari_xmit adapter_stop ()
adapter atart xmit()
| locall
| privaie driver struciure

The proc directory (/ pr oc/ net / dev) or the (easier to read) command i f confi g - a can be used
to call the list of currently registered devices. (See Appendix C.1.)

5.2.1 Registering and Unregistering Network Devices

We know from the previous section that network devices are managed in the list dev_base. This list
stores all registered network devices, regardless of whether they are activated. When

regi ster_net devi ce() isused to add a new device to this list, then we first have to create and
initialize a net _devi ce structure for it. This process can be done in two different ways:

» If we specified in the kernel configuration that the driver of a network device should be integ
rated permanently into the kernel, then there is already a net _devi ce structure. A clever
mechanism with preprocessor definitions creates different instances of the net _devi ce
structure during the translation, depending on the kernel configuration, and these instances
are used for the existing network adapters when booting.

For example, to integrate the driver of an Ethernet card into the kernel, eight net _devi ce
structures are created for Ethernet network devices, and these structures are initially not all
ocated to any card.

- TF +ha Ariviar wwine Franclatad ace o arnal madiila Fhoan Fhoe Aeiviar Fealf hace ¥A ~rrosfoa o

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

5.3 Network Drivers

The large number of different protocols in the Linux network architecture leads to considerable
differences in the implementations of drivers for different physical network adapters. As was mentioned
in the section that described the net _devi ce structure, the properties of different network adapters
are hidden at the interface of network devices, which means that they offer a uniform view upwards.

Hiding specific functions (i.e., abstracting from the driver used) is achieved by using function pointers
in the net _devi ce structure. For example, a higher-layer protocol instance uses the method
hard_start_xmit () tosend an IP packet over a network device. Notice, however, that this is
merely a function pointer, hiding the method el 3_start _xmi t () in the case of a 3c509 network
adapter. This method takes the steps required to pass a socket buffer to the 3¢509 adapter. The upper
layers of the Linux network architecture don't know which driver or network adapter is actually used.
The function pointer can be used to abstract from the hardware actually used and its particularities.

The following sections provide an overview of the typical structuring and implementation
characteristics of the functions of a network driver, without discussing adapter-specific properties,
such as manipulating the hardware registers or describing the transmit buffers. In general, these tasks
depend on the hardware, so we will skip them here. Readers interested in these details can use the
large number of network drivers included in the dri ver s/ net directory as examples. We use the
skel et on driver to explain how driver methods work. This is a sample driver used to show usual
processes in driver methods rather than a real driver for a network adapter. For this reason, it is
particularly useful for explaining the implementation characteristics of network drivers.

21 At this point, we would like to thank Donald Becker, who implemented most of the network drivers
for Linux, greatly contributing to the success of Linux. Donald Becker is also the author of the
skel et on driver used here.

Some of the methods listed below are not implemented by some drivers (e.g.,
exanpl e_set _confi g() tochange system resources at runtime); others are essential, such as
exanpl e_hard_start_xmit () tostarta transmission process.

5.3.1 Initializing Network Adapters

Before a network device can be activated, we first have to find the appropriate network adapter;
otherwise, it won't be added to the list of registered network devices. The i ni t () function of the
network driver is responsible for searching for an adapter and initializing its net _devi ce structure
with patching driver information. Because we search for a network adapter, this function is often called
search function.

The argument of the i ni t () method is a pointer to the initializing device dev. The return value of
i nit() isusually 0, but a negative error code (e.g., - ENODEV) when no adapter was found.

net _init()/net_probe() net/core/dev.c

The tasks of the method dev- >i ni t (dev) are explained in the source text of our example driver,
i sa_skel et on. There is an example driver in dri ver s/ net/ pci _skel et on. ¢ for PCI network
adapters, but we will not describe it here.

As was mentioned earlier, the main task of the i ni t () method is to search for a matching network
adapter (i.e., it has to discover the I/O port, especially of the basic address stored in
dev- >base_addr).

We distinguish between two different cases of searching for a network adapter:

» Specifying the basic address: In this case, the previously created net _devi ce structure of
the network device is passed as parameter to the i ni t () method. The caller can use this
structure to specify a basic address for I/O ports in advance. When no matching adapter is

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Part III: Layer I + II? Medium
Access and Logical Link Layer

Chapter 6. Introduction to the Data-Link Layer
Chapter 7. The Serial-Line Internet Protocol (SLIP)
Chapter 8. The Point-to-Point Protocol (PPP)
Chapter 9. PPP over Ethernet

Chapter 10. Asynchronous Transfer Mode? ATM
Chapter 11. Bluetooth in Linux

Chapter 12. Transparent Bridges

4 F'rexriu:-us] Me:xt P]

f—————————.

(

£
=

=

il

Please register to remove this banner.

'.r' E-.-‘--.- _l
-

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 6. Introduction to the Data-Link Layer

In the following chapters, we will leave the hardware area and move on to the world of network

protocols. Chapters 7 through 24 discuss the structure and implementation of network protocols in
the Linux kernel.

The previous chapters introduced the most important basics of the Linux network architecture,
including the general structure of communication systems and protocol instances (Chapter 3),
representation of network packets in the Linux kernel (socket buffers, Chapter 4), and the abstraction
of physical and logical network adapters (network devices, Chapter 5). Before we continue discussing
the structure and implementation of network protocols in detail, this chapter gives a brief introduction
to the structuring of the data-link layer, which represents the connecting layer between network
devices and higher network protocols. Of primary interest is the background where network protocols
run. Another important topic of this chapter is the interplay of different activities (hardware and
software interrupts, tasklets) of the Linux network architecture.

The transition between the different activities in the data-link layer (layers 1 and 2 of the OSI model)
occurs when packets are sent and received; these processes are described in detail in Sections 6.2.1
and 6.2.2, First, we will describe the path a packet takes from its arrival in a network adapter until it
is handled by a protocol instance in the network layer; then we will describe how a packet is sent from
the network layer until it is forwarded to the network adapter.

4 Previous Mext ¥

ABC Amber CHM Converter Trial version

http:/ fwww,processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

6.1 Structure of the Data-Link Layer

Chapter 3 introduced two reference models where the lower layers up to the network layer were
structured in a different way. In the Internet reference model (TCP/IP model) there is only the
data-link layer with the network adapter, and no other instance underneath the Internet protocol
(network layer). In the ISO/OSI basic reference model, there are two different layers (physical layer
and data-link layer), where the data-link layer is expanded by the media-access layer (Layer 2a) when
using local area networks.

This book deals mainly with the protocols of the Internet world, and one assumes that the Internet
reference model would best describe the structure of the Linux network architecture. Interestingly, the
classification of the ISO/OSI reference model matches the structure of communication systems in local
area networks much better. When taking a closer look at the IEEE 802 standards for local area
networks, which are actually always used in the Internet, and their implementation in the Linux kernel,
we can clearly recognize the structuring of the ISO/OSI model.

For this reason, the following discussion assumes a structuring as shown in Figure 6-1:

« The OSI layers 1 (physical layer) and 2a (media-access control layer ?MAC) are implemented
in network adapters.

« The logical-link control (LLC) layer is implemented in the operating system kernel; network
adapters are connected to the operating system kernel by the network devices described in
Chapter 5.

Figure 6-1. Standardization of layers 1 and 2 in IEEE 802 and their implementation in the
Linux network architecture.

[View full size image]

MNetwork layer I"r'l“':HL
b 802.2 Logical Link Control N:i't“'f"‘k
evices
8202.1 -
A Overview Drivers |
<4 | Architecture 2023 8025 80211
Management | |CSMAJ/CD] [Token Ringll (Wirekess LAN MNetwork
1 | | adapters
T ——— T ———— — -

IEEE-802 standard Linux netwaork architeciure

6.1.1 IEEE Standard for Local Area Networks (LANSs)

With its IEEE 802.x standards, the IEEE (Institute of Electrical and Electronics Engineers) found a very
extensive proliferation for local area networks (LANs). The best known LAN technologies are 802.3
(CSMA/CD), 802.5 (Token Ring), and 802.11 (wireless LANs). Figure 6-1 gives a rough overview of
the 802.x standards and classifies them within the ISO/OSI layer model. As mentioned above, the
data-link layer is divided into a logical-link control (LLC) and a media-access control (MAC) layer for
networks with jointly used media. The LLC layer hides all media-specific differences and should
provide a uniform interface for protocols to the higher layers; the MAC layer reflects the differences
between different transmission technologies.

To hide the characteristics of the underlying transmission technology, the LLC layer should offer three
services, regardless of this technology:

» Unreliable datagram service (LLC type 1): This very simple service offers no flow control or
error control, so it doesn't even guarantee that data is transmitted. The removal of errors is
left to the protocols of the higher layers.

F o) L R S (L Y 4 T Bl TR L W o L. L SR PR [PR [P [S

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

6.2 Processes on the Data-Link Layer

As was mentioned in the beginning of this chapter, the data-link layer forms the connecting layer
between drivers or network devices and the higher world of protocol instances. This section gives an
overview of the processes on the data-link layer. We will explain what activity forms play an important
role on this layer and how the transition between them occurs. Section 6.2.1 describes the process
involved when a packet arrives, and Section 6.2.2 discusses how a packet is sent. First, however, we
introduce the activity forms and their tasks in the Linux network architecture.

Figure 6-2 gives an overview of the activity forms in the Linux network architecture. As compared
with earlier kernel versions, Version 2.4 and up introduced significant performance improvements.
Mainly, the use of software interrupts, as compared with the low-performing bottom halves, means a
clear performance increase in multiprocessor systems. As shown in Figure 6-2, we can distinguish
between the following activities:

« Hardware interrupts accept incoming data packets from the network adapters and introduce
them to the Linux network architecture (per Chapter 5). To ensure that the interrupt can
terminate as quickly as possible (see Section 2.2.2), incoming data packets are put
immediately into the incoming queue of the processing CPU, and the hardware interrupt is
terminated. The software interrupt NET_RX_SOFTI RQ is marked for execution to handle
these packets further.

+ The software interrupt NET_RX_SOFTI RQ (for short, NET_RX sof t - | RQ) assumes
subsequent (not time-critical) handling of incoming data packets. This includes mainly the
entire handling of protocol instances on layers 2 through 4 (for packets to be delivered locally)
or on layers 2 and 3 (for packets to be forwarded). This means that most of the protocol
instances introduced in Chapters 7 through 25 run in the context of NET_RX soft-IRQ.

Packets incoming for an application are handled by NET RX soft-IRQ upto the kernel boundary
and then forwarded to the waiting process. At this point, the packet leaves the kernel domain.

Packets to be forwarded are put into the outgoing queue of a network device over the layer-3
protocol used (or by the bridge implementation). If the NET_RX soft-IRQ has not yet used
more than one tick (1/H,) to handle network protocols, then it tries immediately to send the
next packet. If the soft-IRQ was able to send a packet successfully, it will handle it to the point
where it is passed to the network adapter. (See Chapter 5 and Section 6.2.2.)

+ The software interrupt NET_TX_SOFTI RQ (for short, NET_TX soft-IRQ) also sends data
packets, but only provided that it was marked explicitly for this task. This case, among others,
occurs when a packet cannot be sent immediately after it was put in the output queue? for
example, because it has to be delayed for traffic shaping. In such a case, a timer is
responsible for marking the NET_RX soft-IRQ for execution at the target transmission time

(see Section 6.2.2) and transmitting the packet.

This means that the NET_TX soft-IRQ can transmit packets in parallel with other activities in
the kernel. It primarily assumes the transmission of packets that had to be delayed.

» Data packets to be sent by application processes are handled by system calls in the kernel. In
the context of a system call, a packet is handled by the corresponding protocol instances until
it is put into one of the output queues of the sending network device. As with NET_RX
soft-IRQ, this activity tries to pass the next packet to the network adapter immediately after
the previous one.

« Other activities of the kernel (tasklets, timer handling routines, etc.) do various tasks in the
Linux network architecture. However, unlike the tasks of the activities described so far, they
cannot be clearly classified, because they are activated by other activities upon demand. In
general, these activity forms run tasks at a specific time (timer handling routines) or at a less
specified, later time (tasklets).

« Application processes are not activities in the operating-system kernel. Nevertheless, we
mentioned them here within the interplay of activities of the kernel, because some are started

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

6.3 Managing Layer-3 Protocols

The previous section of this chapter described the path of a packet between a network adapter and
the interface to higher protocol instances. This section discusses this interface in more detail. First, we
will explain how new protocols can be added. Because only protocols of the network layer (IP, ARP,
IPv6, IPX) are added to the Linux network architecture over this interface, it is also referred to as the
interface to the network layer or layer-3 protocols in the following discussion.

In the Linux kernel, we distinguish between two types of layer-3 protocols, where the first type is used
mostly for analysis purposes:

« A protocol receives all packets arriving at the interface to the layer-3 protocols.

» A protocol receives only packets with the correct protocol identifier (e.g., 0x0800 for the
Internet Protocol).

Figure 6-5 shows that these two types of protocols are managed in two different data structures. We
can see in this figure that the two types of layer-3 protocols do not differ much. Both types are
managed in a structure of the type packet _t ype and linked in different lists, depending on the
above-mentioned type. The simple linked list, pt ype_al | , stores the protocols that should receive all
incoming socket buffers. The hash table, pt ype_base, manages all normal layer-3 protocols.

Figure 6-5. Managing protocols above network devices.

[View full size image]
packet_type

type: ETH_P_ARP

ptype_base[16] =

Y

dev: NULL
func —— arp rowv()
data: 1
next »| packet_type

packet_type
= lype: ETH P IP

dev: NULL
func
data: 1 —— ip reov()
next
16 i . I
»| packet_type
packet_type packel_tvpe
| ptype_all b— type: ETH_P_ALL type: ETH_P_ALL
dev dev
func func
data data
next > next

A packet _t ype structure is created and placed into the corresponding data structure for each
protocol. The following parameters are required in the packet _t ype structure to define a protocol:

+ type: This field specifies the protocol identifier (i.e., the constants listed in Figure 6-6). If
ETH_P_ALL is stated in this field, then the protocol is added to the list pt ype_al | whenitis

registered, and it receives all packets. Otherwise, it receives only packets with protocol
identifier type.

The identifier of 2 protocol has to be extracted from the nacket data in the receive routine of

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 7. The Serial-Line Internet Protocol
(SLIP)

Section 7.1. Introduction

Section 7.2. Slip Implementation in the Linux Kernel

4 Pre‘uious] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

7.1 Introduction

The packet-oriented IP protocol is used to communicate over the Internet. However, a modem can
transmit only a continuous byte stream. For this reason, to establish a connection from your local PC
over an analog telephone line to the worldwide Internet, we need a protocol that encapsulates
network packets so that they can be transmitted over a modem connection between a local computer
and a point of presence (PoP). The two endpoints of the modem connection can then communicate
over IP. The point of presence itself is directly connected to the Internet and routs IP packets between

the local PC and the Internet. (See Figure 7-1.)

Figure 7-1. Scenario for the use of SLIP.

Continuous
byte stream

T

@ Internet
Serial connection

(e.g..modem)

[P-capable
computer

Dial-in node

Another possible use of such a protocol is for the IP communication of two computers over the serial
V.24 interface, which is available in most PCs. This use lets you build an IP network at little cost (and
very low speed) without the need to install additional interfaces, such as Ethernet cards.

RFC 1055 [Romk88] specifies the SLIP (Serial Line IP) for the V.24 task. SLIP represents an
intermediate layer within the network architecture: At its upward face, packets are taken from or
forwarded to the IP layer; at its downward face, data are sent to or received from a serial interface
driver.

As compared with the more recent PPP protocol (see Chapter 8), SLIP is very simple, but offers a
rather limited functionality:

» SLIP includes no mechanisms for establishment of a controlled connection: As soon as SLIP
has been started on both ends, the connection is implicitly established. For this reason, no
parameters, such as IP address, DNS information, or the SLIP operating mode used, can be
negotiated. These parameters have to be set manually or by use of a script before SLIP is
started.

« SLIP serves exclusively for the transmission of Version-4 IP packets. Other network protocols
(e.g., IP version 6 or X.25) are not supported.

« SLIP has no mechanisms to detect or correct errors; these functions have to be handled by
higher network layers.

+ In contrast to PPP, the payload in transmitted IP packets cannot be compressed. The CSLIP
operating mode (described in the next bullet) allows you to compress the IP packet headers
only.

In addition to the standard operating mode, SLIP supports the following modes:

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

7.2 Slip Implementation in the Linux Kernel

Before we describe the SLIP implementation in the Linux kernel, we will first discuss the concept of
TTY devices and TTY line disciplines, the better to illustrate how SLIP is implemented in Linux.
Subsequently, this section will give an overview of the most important functions of the SLIP
implementation before we describe the steps involved in implementing SLIP in detail.

7.2.1 TTY Devices and Line Disciplines

In Linux, all devices that can act as terminals are grouped under the collective term TTY (Teletype or
Terminal Type). Table 7-2 shows several examples. A TTY device is a character device offering
special functions to control a terminal. This includes, for example, the flag for whether the terminal
should produce an echo and commands to position the cursor and change color.

Table 7-2. Examples of TTY devices.

/dev Entry | Meaning

tty0? tty7 virtual consoles
pty# pseudo-terminals? e.g., xterm window
ttyS# serial interfaces

A TTY device can generally switch between different TTY line disciplines. This means that, in the Linux
kernel, each system call to read (read()) , write (write()), orcontrol (i octl ()) invokesa
routine specific to this line discipline. More specifically, the implementation of a TTY line discipline is
inserted between the TTY device driver (low-level driver), which is in charge for the actual input and
output, and the user process that wants to access the TTY device. (See Figure 7-3.)

Figure 7-3. Interplay between TTY line disciplines and TTY device drivers.
[View full size image]

FENeric Diriver for Ty
TTY driver TTY line discipling device driver
N TTY FPseudo-terminal
S (Swandard) [~ (/devittyp*)
rd -
User ,*, s, T 5
application | fdeviy* |- SLIP ~u| Serial interface
" ~ ¥ (Mdevitys*)
read() . L° :
write() “\ T)
oty read() Al PPE «“read() K_’:'_I.'.fr.rl.'urfif\('r:‘{'n
writel) write() | (/deviconsole)

wetl() 1ot)

One possible use for a TTY line discipline is the automatic conversion of all line ends between UNIX
and Windows computers (LF versus CR/LF). In addition, TTY line disciplines offer an elegant means
whereas serial interfaces can intercept and change all data transmitted over a serial interface without
the need for the TTY line discipline driver to open and close the serial interface or to establish a
modem dialup connection.

To register a new TTY line discipline with the Linux kernel, the driver has to first createa tty_I di sc
structure (declared in <i ncl ude/ |i nux/tty_I di sc. h>) and set the function pointers contained in
it. Subsequently, this data structure is registered by tty_r egi st er _| di sc() with the kernel to
make the new TTY line discipline available for user programs.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 8. The Point-to-Point Protocol (PPP)

Section 8.1.
Section 8.2.
Section 8.3.

Section 8.4.

Introduction

PPP Configuration in Linux

PPP Implementation in the Linux Kernel
Implementing the PPP Daemon

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

8.1 Introduction

The Point-to-Point protocol (PPP) can be used by two computers connected directly (i.e., not over a
local area network) to communicate. PPP is defined in RFC 1661 [Simp94a]. A typical application for
PPP is dialing into the Internet over a modem; see Figure 8-1. In this case, it increasingly replaces the

older SLIP protocol (see Chapter 7), which has proven to be not as flexible as modern applications
demand.

Figure 8-1. Scenario for the use of PPP.

IP packets

dH

Telephone/ISDN

IP-capable Dial-in node

compuler

In contrast to SLIP, PPP is multiprotocol enabled. In addition to IPv4, IPv6, and a large number of other
network protocols, PPP also supports several subprotocols, which handle authentication and
configuration tasks (e.g., negotiating important connection parameters and allocating dynamic IP
addresses).

The architecture of PPP is basically designed for peer-to-peer communication. Nevertheless, in the
case of a dialup connection to the Internet, the point of presence is often called server and the dialing
computer is called client. Though the protocol allows both ends of a connection to expect that the peer
authenticate itself and allocates it a dynamic IP address, this would naturally not make much sense
when dialing into the Internet.

Linux distinguishes between synchronous and asynchronous PPP, depending on whether the underlying
TTY device supports packet-oriented data transmission (synchronous? for example, in ISDN with HDLC
as the layer-2 protocol) or it works with a continuous byte stream (asynchronous? e.g., in a modem
connection).

We will discuss the asynchronous transmission over a serial interface in more detail later, because it
requires more protocol functionality than synchronous PPP. The ISDN subsystem of Linux has its own,
independent PPP implementation, which is not discussed here.

8.1.1 Subprotocols

Figure 8-2 shows the structure of a (synchronous) PPP packet. Synchronous PPP always processes
entire frames of the lower-layer protocol, which is the reason why it is not necessary to specify the

length. Asynchronous PPP additionally requires a frame detection, similar to SLIP. (See Section 7.1.1
.) Section 8.3.5 describes how this frame detection is implemented in PPP.

Figure 8-2. Structure of a PPP packet.

Protocol
Q16 Bit

Payload | Padding

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

8.2 PPP Configuration in Linux

PPP drivers in the Linux kernel have comparatively few configuration options. The reason is that most
settings were moved to pppd, which means that they can be changed at runtime or even set
separately for different devices.

It is important to note that PPP over ISDN requires different settings, which have nothing to do with the
settings discussed in this section, because the ISDN subsystem includes its full PPP implementation.
This applies particularly to the kernel options, but also to the pppd configuration. To be able to use
PPP over ISDN, for example, it is not necessary to activate the "normal" PPP in the configuration of the
Linux kernel.

8.2.1 Kernel Options

The Linux kernel version 2.2 included only one option that could be used to enable or disable the full
PPP support. Version 2.3 introduced three additional setting options (shown in Table 8-2).

Table 8-2. PPP driver options in the Linux kernel.

Option Meaning

CONFI G_PPP Activates the generic PPP.

CONFI G_PPP_ASYNC Activates the asynchronous PPP.

CONFI G_PPP_DEFLATE | Supports payload compression.

CONFI G_PPP_BSDCQOWP | Supports alternative payload compression.

The payload compression by the deflate option is preferred over the BSD compression algorithm,
because it is free from patents and more effective. By the way, the deflate algorithm is also used in

gzip-
8.2.2 pppd? the PPP Daemon

As was mentioned before, most settings are effected by pppd. The configuration files required for
these settings are normally stored in the directory / et ¢/ ppp/ . See also the manpage of pppd, Files
section, for details.

Upon startup, pppd reads first the general configuration file opt i ons and then a device-specific
configuration file (e.g., opt i ons. ppp0). In addition, there is a possibility of adding user-specific
settings in $HOVE/ . pppr ¢ . These files include information about the serial interface to be used,
about whether configuration requests of the peer should be accepted, and about which user name will
be used to log into the peer. The following represent some important entries in the configuration file;
however, they do not represent a full configuration:

Options for pppd over a serial line

[etc/ppp/options

nodem # use the nodemcontrol |ines

crtscts # use hardware flow contro

| ock # create lockfile to ensure exclusive access
defaul troute # set default route to this interface

debug # enabl e connection debugging facilities
user egon

The user name in the last line serves as key for the entry in the pap-secrets and chap-secrets files,

PR L R PR [B ik ol bl i, e = DOAD e FLIAD bl o mml b mm DAt €1 m Lamc o 1 o~ omm e -

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

8.3 PPP Implementation in the Linux Kernel

As mentioned before, the PPP implementation in Linux is divided into four different tasks: three kernel
modules and the pppd user space daemon. During design of this division, care was taken to move as
little functionality as possible into the Linux kernel. For this reason, the kernel modules are rather
simple. pppd includes 13,000 lines of code (2,100 lines alone in mai n. ¢), which means that it is four
times the size of the three kernel modules (ppp_generic.c, ppp_synctty.c,and

ppp_async. c) together. In the following sections, we will first discuss the generic PPP driver and
then the driver for the asynchronous PPP TTY line discipline. The driver for the synchronous PPP line
discipline is relatively simple, so we will not discuss it here.

8.3.1 Functions and Data Structures of the Generic PPP Driver

Figure 8-4 shows the most important data structures of the generic PPP driver. There is a separate
ppp structure with general management information for each PPP device. Some important entries,
particularly the transmit and receive queues, xq and r g, are in a substructure of the type ppp_fil e.
This substructure is also found in the channel structure, which is used to manage single channels in
multilink PPP, which will not be discussed here, for the sake of simplicity.

Figure 8-4. Important data structures of the generic PPP driver.
[View full size image]

Jfile Jile_operations
(fdevippp) (ppp_ file_operations)
{_op —I_> read 9= ppp_read()
s write == ppp_write()
private_data inctl = ppp_ioctl()
Dpel = ppp_openi)
release = ppporelease()
ppp_ file
rep .
* file xq
. rq
dev
nel_device
= name: ,,ppp..*
init e ppponet_init{)
priv
hard_starl_xmil = ppp_start_xmit()

There is a PPP device for each network device, the net _devi ce structure of which refers to the
related ppp structure in the field pri v. In addition, the PPP daemon can send and receive control
packets of subprotocols (see Section 8.1.1) over the device / dev/ ppp. For this purpose, it must
first bind the device / dev/ ppp to a specific PPP device by use of an i oct | () call. This binding
means that a pointer to the ppp structure is entered into the field pri vat e_dat a of the relevant file
structure.

ppp_i nit() drivers/net/ppp_generic.c

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

8.4 Implementing the PPP Daemon

As was mentioned repeatedly in previous sections, the largest part of the implementation effort takes
place in the PPP daemon, pppd. One of the reasons is that it processes all subprotocols to control the
PPP connection. To maintain expandability, utmost care was taken to keep the implementation highly
modular, and it has a clearly defined interface for subprotocol implementations.

8.4.1 Managing Subprotocols

struct protent pppd/ pppd.h

The core of the pppd interface for subprotocols is the pr ot ent structure, which is defined in the file
pppd/ pppd. h. It includes mainly entries for callback functions, which are always called whenever
pppd receives a packet that it allocates to this subprotocol, given the protocol ID:

struct protent {
u_short protocol; /* PPP protocol nunber */
/* Initialization procedure */
void (*init) __ P((int unit));
/* Process a received packet */
void (*input) __ P((int unit, u_char *pkt, int len));
/* Process a received protocol-reject */
void (*protrej) _ P((int unit));
/* Lower |ayer has cone up */
void (*lowerup) _ P((int unit));
/* Lower |ayer has gone down */
void (*lowerdown) _ P((int unit));
/* Open the protocol */
void (*open) __ P((int unit));
/* C ose the protocol */
void (*close) __ P((int unit, char *reason));
/* Print a packet in readable form?*/
int (*printpkt) _ P((u_char *pkt, int len
void (*printer) __ P((void *, char *, ...)),
void *arg));
/* Process a received data packet */
void (*datainput) __ P((int unit, u_char *pkt, int len));
bool enabl ed fl ag; /* 0 iff protocol is disabled */
char *nane; /* Text name of protocol */
char *dat a_nane; /* Text nanme of correspondi ng data protocol */
option_t *options; /* List of command-I|ine options */
/* Check requested options, assign defaults */
void (*check _options) __ P((void));
/* Configure interface for demand-dial */

int (*demand_conf) _ P((int unit));
/* Say whether to bring up link for this pkt */
int (*active_pkt) _ P((u_char *pkt, int len));

b

Each of the protocols known to pppd has exactly one entry in the global list st ruct pr ot ent
protocol s[] .

Figure 8-6 shows a flow diagram representing a simplified procedure of how a connection is estab
lished. The function i ni t () is executed immediately after pppd has started. Shortly after that, the
function check_opt i ons() is run to handle settings, if applicable, using command-line arguments
or options in / et ¢/ ppp/ opti ons.

Figure 8-6. Procedure involved when pppd establishes a connection.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 9. PPP over Ethernet

Section 9.1. Introduction

Section 9.2. PPPOE Specification in RFC 2516
Section 9.3. Implementation in the User Space
Section 9.4. Implementation in the Linux Kernel

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

9.1 Introduction

Chapter 8 introduced the Point-to-Point protocol (PPP). Today, it is most frequently used in access
networks that use ADSL as the access technology.

The ADSL (Asymmetric Digital Subscriber Line) access technology offers high-speed Internet access

for private or commercial customers. From the technical viewpoint, this is a dedicated line (i.e., a
permanent connection). Dedicated lines are normally billed on the basis of transmission volumes. In
contrast, private Internet links are billed on a time basis. To enable ADSL to support time-specific
billing as well, a new protocol, PPPoE, was developed. PPPOE is based on two accepted standards? PPP
and Ethernet.

More specifically, an ADSL modem (NTBBA? Network Termination Point Broad-Band Access), installed
behind a so-called splitter, is connected to the computer over Ethernet. This means that the computer
has to be equipped with an Ethernet network card. This dedicated Ethernet line between the PC of the
home user and the dialup computer of the access network operator is used to establish a PPP
connection, which allows the access network operator to identify the user and bill for the usage time
between the PPP dialup and the termination of that PPP session. This PPP connection can be used to
exchange IP packets.

Figure 9-1 shows the resulting protocol stack. This chapter first introduces the PPPoE (PPP over
Ethernet) protocol described in [MLEC+99]. Then, it introduces the implementation in the user space,
which is used in kernel Versions 2.2 and 2.3. Finally, this chapter discusses the implementation in the
kernel from kernel version 2.4 and up.

Figure 9-1. Protocol stack for the use of PPP over Ethernet.

IP P

PPP PPP

PPPoE PPPoE

Ethernet Ethernet

Ethernet Ethernet AALS AALS

[N}
T
L

Medium Medium x[DSL xDSL
T
Client computer ADSL modem, ADSL modem. Network Access Server

chent side network side

4 Previous Mext ¥

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

9.2 PPPOE Specification in RFC 2516

To be able to transport PPP protocol units over Ethernet, they are inserted as payload in Ethernet
frames. For this purpose, two new ethertype values were defined, which show the receiver that the
Ethernet frame contains PPP payload.

The two different types serve to distinguish between two phases within PPoE: the discovery stage, and
the session stage. A typical discovery stage consists of four steps, which appear as follows (in Figure

9-2): The host sends a PADI (PPPoE Active Discovery Initiation) packet to the Ethernet broadcast
address to find out which access concentrators are available in the Ethernet. One (or several) of these
access concentrators replies by sending a PADO (PPPoE Active Discovery Offer) packet, informing the
host about the Ethernet address where an access concentrator is available, which may specify
additional services. The host selects one from the available access concentrators and requests that
this concentrator establish a connection by sending a PADR (PPPoE Active Discovery Request) packet.
The access concentrator replies by sending a PADS (PPPoE Active Discovery Session Confirmation)
packet.

Figure 9-2. Typical sequence for PPPoE Active Discovery.

Client MNetwork Access
cOom pulur SL‘T\"L‘I’

w\
k/kﬁ—‘/md
WL
y

Y Yi

Subsequently, the discovery stage is left behind and the session stage begins, where PPP payload is
packed transparently in Ethernet frames having ethertype value 0x8864 (in contrast to packets in the
discovery stage, which have ethertype value 0x8863). Figure 9-3 shows what a PPPoE packet looks
like in the session stage. The underlying Ethernet already forms frames, so PPPoE does not require
character stuffing, in contrast to the asynchronous case described in Chapter 8.

Figure 9-3. Protocol data unit of the PPPOE session stage.

Client's Ethernet address I

Access server's Ethernet

Client's Ethernet address address

Access server's Ethernet address

Ethertype = 0 X 8664 Various flags I
Session D Length I

[]

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

9.3 Implementation in the User Space

The kernels of Versions 2.2 and 2.3 do not support PPPoE. Instead, another daemon is started in the
user space, in addition to pppd. This daemon is called pppoed; it processes PPP packets of the
Ethernet card and forwards them to pppd. pppd, and pppoed communicate over a pseudo-terminal,

as shown in Figure 9-4,

Figure 9-4. pppd and pppoed communicate in the user space.

—— >
pppnI:ppdeZ ttypn [| pppoed | eﬂml

There are various implementations in the user space, including the Roaring Penguin implementation
[Roar01], which appears to be the most elaborate. The major drawback of this approach and similar
approaches is that the intermediate pseudo-terminal requires an additional transition between the
kernel and the user space, which reduces the performance considerably. For this reason, we will
consider only the kernel implementation available from kernel Version 2.4 in the following discussion.

4 F'rexriu:-us] Me:xt P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

9.4 Implementation in the Linux Kernel

Together with kernel Version 2.4, PPPoE support was integrated in the pppd daemon, and the kernel
was expanded by a connection between the generic PPP driver and the Ethernet network card.

Figure 9-5 shows the interaction between these components. The PPPOE driver assumes several
functions within the kernel. To the lower layer (i.e., the Ethernet card and the driver software), the
PPPOE driver plays the role of a layer-3 protocol. As we will see later in more detail, incoming Ethernet
packets are allocated to a protocol matching the type identifier in the Ethernet frame (e.g., the IP
protocol or the PPPoE protocol for the ethertype values 0x8863 and 0x8864 mentioned earlier).
Towards the higher-layer generic PPP driver, which was described in the previous chapter, the PPPoE
driver behaves much as does the asynchronous PPP driver. In contrast to that driver, however, the
PPPOE driver does not implement a tty operating mode.

Figure 9-5. Communication between pppd and the PPP and PPPOE drivers.

[View full size image]
Linux kernel External programs Hardware

IP layer I

4

Generic PPP driver PPP daemon | Facket socket
PRpP_generic.c pppd |1

. T
Y ¥ PPPoE socket ¥

. drive cth* driver ¢ etwork
PPPoE drnver . . | eth* driver and network
pppoe.c I adapter

To initiate the PPPoE discovery stage of pppd in the user space, it is additionally necessary to have the
PPPOE driver and pppd communicate directly. Section 9.4.2 discusses this communication in detail.

9.4.1 Changes to the Kernel

The PPPoE driver, which is included in kernel Version 2.4 and higher in experimental form, consists of
the file dri ver s/ net / pppoe. c. In addition, there is a file called dr i ver s/ net / pppox. ¢, which
is intended to harmonize present and future PPP implementations in the kernel. General functions that
previously were used only by the PPPoE implementation were moved to the file pppox. ¢, and other
PPP implementations over other networks should be available in the future.

Functions and Data Structures of the PPPoE Driver

In the first step, the PPPOE driver registers the PPPOE protocol with the kernel. This can be seen in the
following piece of source text:

pppoe_i nit() drivers/net/pppoe.c

{

Use a function fromdrivers/net/pppox.c to register the PPPoE protocol:
int err = register_pppox_proto(PX PROTO CE, &pppoe proto);
if (err==0) {
dev_add_pack(&ppoes_ptype);
/*Add a packet handl er
for incom ng packets of type ETH P_PPP_SES
(PPPOE sessi on packets), which points to pppoe_rcv */
dev_add_pack(&ppoed_ptype);
/*Add a packet handler for incom ng packets of type

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 10. Asynchronous Transfer Mode? ATM

Section 10.1. Introduction
Section 10.2. Implementing ATM in Linux

Section 10.3. Configuration

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

10.1 Introduction

Initially, the Asynchronous Transfer Mode (ATM) was introduced to provide a uniform protocol for the
transmission of voice and data, offering guarantees for the required QoS (Quality of Service) p
arameters (such as data rate and delay) [McSp95]).

In contrast to initial expectations and forecasts, the ATM network technology has not established itself
in end systems, but it is widely used in core networks. First of all, ATM offers a uniform concept to
support QoS (Quality of Service) in networks; QoS was attempted much later in IP-based networks.

The ATM network technology is connection-oriented, which means that a connection has to be
established before data can be transmitted. There are two types of connections: In a Permanent
Virtual Connection (PVC), the connection throughout the network is established by the network
management; a network management station extends the forwarding tables within the forwarding
nodes between two endpoints of an ATM connection so that the ATM cells created by the endpoints
are forwarded to the other endpoint. The second type of ATM connection is a Signaled Virtual
Connection (SVC); in this connection type, the connection is established by the communicating end
systems, which send connection requests and respond to such requests.

In ATM jargon, packets are called cells. In contrast to IP protocol data units, an ATM cell has a fixed
size, 53 bytes: 5 bytes for the packet header, 48 bytes for the payload. The 5-byte packet header
includes forwarding information, as for IP frames, which allocates a cell to a connection. The ATM
network technology uses a hierarchical connection concept, which distinguishes between paths and
channels. Each cell is allocated to exactly one virtual path, and to exactly one virtual channel within
that path, as shown in Figure 10-1. This allocation to a path and a channel is specified in two bit
fields in the cell header: an 8-bit field for the Virtual Path Identifier (VPI), and a 16-bit field for the
Virtual Channel Identifier (VCI).

Figure 10-1. Virtual paths and channels in the ATM network technology.

Path (cells with same VPI)

Channel (cells with same VCI)

Om w—
T —

4 Previous Heaxt

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

10.2 Implementing ATM in Linux

4 Previous Heaxt

Figure 10-2 shows how the ATM support is structured in the Linux kernel. This implementation
comprises two major parts:

+ Extension of the socket interface to support the ATM protocol. We will not further discuss this
part in this chapter, because the socket interface will be described in detail in Chapters 26

and 27.

« General ATM support within the operating system kernel. Various additional functions are
available, depending on whether a connection is a permanent or a signaled virtual connection.
This part will be described in detail below.

« Support of various ATM network cards. Again, this is divided into a general part, which is
independent of the type of hardware used, and a part that includes the driver for the
respective network card and some support functions.

Figure 10-2. Structure of the ATM support in the Linux kernel.

External
Programs

Linux kernel

Hardware

[View full size image]

ATM socket interface
netsocket.c; includenetisock.h

-~
]
Cieneral ATM support
HEY Gy cormmarLe

-~

r

PV C support
netatnypyec

SV support
netaim/pye.c

Signaling dacmon
almsipd

Signaling
netamysignaling.c

ATM addresses
netatnyiaddr.e

Hardware-independent ATM
coordination

o
r

Hardware-independent

5| SlTUCIUTES

ReVatiy raw.c

includelinux/aimdev

-~

Y

Hardware-specific drivers

driversfarm’ 2

Diriver support
ReV iy amm_misc.c

ATM network adapter

The following sections begin with a description of the data transmission over a permanent virtual
channel (PVC). Subsequently, we describe how the signaled virtual channel (SVC) is supported in the

Linux kernel.

10.2.1 Permanent Virtual Channels

An application accesses a permanent virtual channel (PVC) over a socket. A PVC socket can take any
of four states; cl osed, created, connected,and connecti ng (as shown in Figure 10-3).

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

10.3 Configuration

ATM support has been part of the Linux kernel since kernel Version 2.4 and requires no additional
patches; however, configuring of the kernel requires the entry " Pr onpt for devel opnent
and/ or inconplete driver" tobe activated to provide selection of the desired ATM support.

The signaling daemon described above is not part of the Linux kernel; it has to be installed additionally
in the user space. It can be downloaded from [BIAIO1], where you will also find other utilities that
complete the ATM support in Linux. The current development of the ATM support for Linux can be
followed up from the mailing list available at [BIAIO1].

4 Previous] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 11. Bluetooth in Linux

In connection with the enormous proliferation of portable devices such as laptops, PDAs (Personal
Digital Assistants), and mobile phones, it becomes increasingly important to find ways to network
these devices. Wireless technologies appear to be an ideal solution to this problem, because they don't
need a permanently installed infrastructure and facilitate fast establishment and tear-down of
networks (so-called ad-hoc networks). In 1998, a number of manufacturers, including Ericsson, Nokia,
IBM, Toshiba, and Intel, cooperated in the development of a standard for wireless communication over
short distances for consumer electronics. The result of this joint effort is the Bluetooth technology,
which operates in the 2.4 GHz frequency range. The Bluetooth consortium specified the radio interface
and the higher protocol layers (Bluetooth core), plus so-called profiles (Bluetooth profiles), each of
which defines procedures and parameters of the protocol stack for a specific application field (e.g.,
telephones, headsets, and file transfer). This standardization effort was intended to ensure
interoperability of all Bluetooth devices. The Bluetooth specifications are available at [Group01].

The core specifications include the elements shown in Figure 11-1, The three bottom layers are
implemented in the Bluetooth hardware (firmware). The radio interface deals with frequency bands,
signal outputs, transmission channel parameters, and other mobile properties. The baseband
processing includes both additional transmission-specific aspects and media-access aspects (e.g.,
detection of devices in the neighborhood and initialization of synchronous or asynchronous
communication channels).

Figure 11-1. The Bluetooth protocol stack in the Linux kernel.
[View full size image]

Aprilications Apphication 1) |Application 2 Application 3] |Application -1|
PE_INET sockets PF_BLUETOOTH sockets

nethluetootival_uetooth.c

; —

L2CAF sockets HCT sockets
netietooth2eap_corec netlietoothhcl_sock.c

TCHIP

L

Linux kernel

umder
development

REFCOMM
{In user
space)

L2CAP

netfblneiooihi2eap_corec

HCI
net'blietooisymsc

—

H'T
net'blierooiiel_core.c

[

Y
Link Manager I

Audio
<Hardware>

i

[Basehand PHY |

http://sourceforge.net/projects/bluez
http://sourceforge.net/projects/openbt/
http://sourceforge.net/projects/openbt/
http://sourceforge.net/projects/bluez
http://sourcefo
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

11.1 Host Controller Interface (HCI)

The Host Controller Interface (HCI) forms the interface between the software protocol stack and the
Link Manager underneath it, which is implemented in the firmware of a Bluetooth device. Notice that
this is a packet-oriented communication between HCI and the Link Manager rather than a device
driver. The difference is that HCI does not access the register and the memory locations of a Bluetooth
device directly. Instead, it sends command and data packets to the device and receives data packets
and event-message packets from this device. This means that the Host Controller Interface offers a
uniform interface for accessing the hardware.

11.1.1 Command Packets

There is a uniform packet format for command packets sent by HCI to the Link Manager. All packets
are ordered in groups. In the command group (opcode group), we distinguish between individual
commands (opcode commands). Each command packet consists of a 10-bit OCF (Opcode Command
Field) and a 6-bit OGF (Opcode Group Field). There are the following command groups:

« Link control commands serve to establish a connection to other Bluetooth devices and to
control the connection.

« Link policy commands serve to change parameters, which are used by the Link Manager to
manage connections. For example, such commands can cause connections to switch into the
hold mode.

* Host controller and baseband commands allow you to specify additional parameters for the
behavior of the Link Manager (e.qg., to filter event messages or to activate the flow control
discussed further below).

« Information parameters offer a pure read access to values of a Bluetooth device, such as the
size of the transmit buffer, the version number, and the 48-bit Bluetooth device address.

In addition to these groups, there are the following groups: status parameters, testing commands,
Bluetooth logo testing, and vendor-specific debug commands.

The following sections describe how command packets can be sent within the Bluetooth
implementation in the Linux kernel.

hci _send_cnd() net/bluetooth/hci_core.c

This function is used to compose a command packet in the form of an sk_buf f out of the passed
data, the OCF and OGF values, the length, and a pointer to parameters. The function
skb_queue_t ai | then appends this packet to the end of the command queue of the st r uct
hci _dev of the Bluetooth device.

The structure hci _dev is defined in i ncl ude/ net / bl uet oot h/ hci _cor e. h. In addition to the
command queue, it contains queues for transmit data. In addition to a number of other parameters, it
includes four function pointers, to the functions open(), close(), flush(),and send() made
available by the Bluetooth device.

Finally, the function hci _send_cnd() invokes the function hci _sched_cnud() , which marks the
hdev- >cnd_t ask as ready to be executed. This tasklet was assigned to the device by the function
taskl et _i ni t () within the function call hci _register _init() (

net / bl uet oot h/ hci _cor e. ¢) when the HCI support was initialized. In addition, there is a
hdev- >r x_t ask to receive data and another hdev- >t x_t ask to send data. When the tasklet
hdev- >cnd_t ask runs, then the function hci _cnd_t ask() is invoked. This function invokes

hci _send_frame() .

hci _send_frame() net/bluetooth/hci_core.c

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

11.2 L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP) handles tasks on the data-link layer in the
Bluetooth protocol stack. It establishes ACL connections for the next lower layer, but does not transport
pure audio data, which primarily is transported over SCO connections. In particular, the L2CAP
protocol is responsible for multiplexing data streams from higher layers to an ACL connection, because
there must always be at most one ACL connection at a time between two Bluetooth devices. Other
important tasks include the segmenting and reassembling of data packets to be able to send and
receive the much larger packets of the higher-layer protocols despite the small packet sizes of the
baseband layer. L2CAP supports packet sizes of up to 64 Kbytes.

To multiplex several data streams, L2CAP uses the abstraction of the channel. Each channel is
allocated to one specific protocol. There are connection-oriented channels for point-to-point
communication and connectionless channels used for group communication. A simple signaling method
is used to establish an L2CAP connection. The L2CAP protocol can also be accessed directly from the
user space over a socket. This is normally a socket from the PF_BLUETQOTH socket family with

protocol identifier BTPROTO_L2CAP.

Now, when HCI receives an ACL packet, then it is passed to the receive function

| 2cap_recv_franme() . If the channel identifier in the packet header is 0x0001, then it is a signaling
packet. Subsequently, the function | 2cap_si g_channel () is invoked; otherwise, the function

| 2cap_dat a_channel () is invoked.

12cap_si g_channel () net/bluetooth/12cap_core.c

The type of signaling packet is recognized within this function and, depending on the type, an
appropriate handling function is invoked:

switch (cnd. code) {
case L2CAP_CONN _REQ

err = | 2cap_connect _req(conn, &cnd, data);
br eak;
case L2CAP_CONN_RSP:
err = | 2cap_connect _rsp(conn, &cnd, data);
br eak;
case L2CAP_CONF_REQ
err = |2cap_config_req(conn, &cnd, data);
br eak;
case L2CAP_CONF_RSP:
err = | 2cap_config_rsp(conn, &cnd, data);
br eak;
case L2CAP_DI SCONN_REQ
err = | 2cap_di sconnect _req(conn, &cnd, data);
br eak;
case L2CAP_DI SCONN_RSP:
err = | 2cap_di sconnect _rsp(conn, &cnd, data);
br eak;

The following section uses the example of an incoming connection request from a remote
communication partner in the Bluetooth network to describe how the L2CAP protocol implementation
works.

11.2.1 Connection Establishment Phase

When a request to establish a connection arrives from a remote communication partner, then the
signaling code L2CAP_CONN_REQ is detected, and the function | 2cap_connect _req() is invoked.

12cap_connect _req() net/bluetooth/12cap_core.c

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

11.3 Other Protocols

The L2CAP functionality is currently available for BTPROTO_L2CAP sockets only. An interface to higher
protocol layers, such as RFCOMM, or for future developments that will allow you to run TCP/IP directly
over L2CAP, was not available in the Linux kernel implementation at the time of writing. However, the
L2CAP sockets allow you to install these protocols in the user space. The SDP (Service Discovery
Protocol) protocol is not integrated in the Linux kernel either. RFCOMM might be implemented in the
kernel in the future, but this is currently not intended for SDP.

4 Previous] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 12. Transparent Bridges

Section 12.1. Introduction

Section 12.2. Basics

Section 12.3. Configuring a Bridge in Linux
Section 12.4. Implementation

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

12.1 Introduction

Local area networks (LANs) are limited both in their reach and in the number of stations that can be
connected. For example, only a maximum of 30 stations per segment can be connected to Ethernet
based on the 10Base2 standard; and even if you connect fewer than the maximum number of stations,
but use an extremely traffic-intensive application, it can happen that the traffic in a LAN is so high that
the throughput of the entire network drops rapidly.

This degradation is due mainly to the fact that local area networks are broadcast networks? when
station A sends a data frame to station B, then the data packet is concurrently transported to all other
stations. The bandwidth in a local area network is used only by the sending station at that time
(asynchronous time division multiplexing? TDM). The more stations there are in a local area network,
the smaller is the share of each single station. Depending on the network technology, a lot of
additional time might be used to decide which station may send next (Medium Access Control).

For the above reasons, it is meaningful to divide a heavily loaded or very large local area network into
several subnetworks. Similarly, several local area networks can be linked by single coupling elements
to form one large internetwork. In this regard, the parts of the original local area network should not
be split into different subnetworks (as is possible in IP), but should always represent themselves as
one single (sub)network to the network layer. The two networks are connected transparently, for the
network layer.

One coupling element that can link different local area networks to form one single logical LAN is called
a bridge. A bridge connects several local area networks on the data-link layer (layer 2 in the OSI r
eference model) and distributes the traffic over the subnetworks. Stations that communicate often are
generally grouped into one subnetwork. Grouping frequently communicating stations within the same
subnetwork means that the entire network has less load to carry, because these stations can exchange
traffic within their subnetwork regardless of the traffic in other subnetworks.

4 Previous Heaxt

ABC Amber CHM Converter Trial version

http:/ /v, processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

12.2 Basics

As was mentioned above, a bridge is a coupling element that links several local area networks on the
data link layer [BaHK94]. For this purpose, a bridge has two or more network adapters (ports), which
are used to connect to a local area network. In contrast to a repeater, which can merely extend the
distance of a LAN, and which simply forwards packets as it received them, a bridge can evaluate
certain information in a packet and decide whether that packet should be forwarded.

Bridges come in different variants and with various properties, which will be briefly introduced below:

» Local or remote bridges: Local bridges connect two or more neighboring local area networks?
see Figure 12-1. These local area networks are normally linked on the MAC layer.

Remote bridges connect two local area networks physically separated by another network,
normally a Wide Area Network (WAN). This bridge type interconnects local area networks on
the LLC layer. [BaHK94] includes a detailed description of local and remote bridges. This
chapter considers only local bridges.

« Translation or nontranslation bridges: A translation bridge is capable of connecting several
local area networks over different media-access protocols (e.g., Ethernet and token ring).
Linux is limited in supporting this property, because there could be problems during the
transition from one standard to another one. For example, 802.3 supports a limited maximum
frame size of 1,500 bytes, but 802.5 supports a much bigger size. For this reason, we cannot
feed large 802.5 packets into an 802.3 network.

« Source-routing or transparent bridges: Source-routing bridges represent an extension of the
token-ring standard and must be used in token-ring networks only. We will not consider them
any further.

In contrast, transparent bridges can be used in all 802.x networks. They mainly handle the
transparent interconnection of different 802.x LANs, where the participating stations do not
know that there is a bridge in the LAN. In other words, the bridge is not visible to the stations
in the interconnected LANs? it is transparent. The bridge functionality under Linux corresponds
exactly to the type of a transparent bridge.

Figure 12-1. A Linux computer acts as a transparent bridge, connecting several local area
networks.

Linux bridge

Station A Station B

12.2.1 Properties of Transparent Bridges

bridges: In accord with the definition in Section 12.2, a Linux system can be used to implement a local
transparent translation' bridge, which can interconnect different 802.x LANs. Figure 12-1 shows an
example in which the Linux computer acts as a bridge, connecting three LANs of different types: one
Ethernet (IEEE 802.3), one Fast Ethernet (IEEE 802.3u), and one wireless LAN (IEEE 802.11).

.. however, with the limitation that the 802.x networks be compatible, mainly with regard to their
maximum frame lengths. For example, 802.3 and 802.11 can easily be combined, but problems could
arise when you use 802.5 LANSs.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

12.3 Configuring a Bridge in Linux

A bridge interconnects several local area networks on the data-link layer, simulating the behavior of
one large single network to the outside. To connect several local area networks in a Linux system, we
need only install several network adapters in the computer. Linux also allows you to manage several
bridges within one system, which can operate independently of one another. Each bridge instance has
a logical name. One network adapter can always belong to exactly one bridge instance. This allows the
system administrator to build virtual local networks (VLANS), which previously required expensive VLAN
switches.

The following sections introduce options to configure and control Linux bridges.

12.3.1 Configuring the Kernel and the Network Adapter

To be able to use a Linux system as a bridge, the Linux kernel has to contain the bridge functionality.
This is normally not the case, so we have to create a new kernel. When configuring the kernel, you
should select the BRI DG NG option from the Net wor ki ng Opt i ons. You can integrate it into the
kernel either as a module or permanently.

Once you have booted your new kernel (and loaded the module, if applicable), you can use the bridge
functionality. Sometimes, you might incur problems when trying to activate several network adapters.
If this happens, you can specify the boot parameters | i nux et her =0, 0, et hx for each card when
you start the system. If you use the LILO boot loader, you can also have the boot parameter passed
automatically.

If the bridge functionality resides in the loaded kernel and all network adapters are activated, you can
use the brct | tool to create and configure the desired bridge instances. br ct | will be introduced in
the next section.

12.3.2 Using the brct1 Tool to Configure Linux Bridges

You can use the br ct | (Bridge Control) tool to configure a bridge in Linux. This tool is part of the
bri dge-util s package and can be obtained from [Buyt01].

This tool can be used by the administrator to pass control commands to the bridge implementation in
the kernel by using i oct | () commands. This section gives an overview of how you can use this
program. [BoBu01] includes a detailed description of these commands and several examples.

The brct | tool lets you use the following commands to activate and deactivate a bridge. The
commands are passed as parameters when br ct | is called:

* addbr bridge: This command creates a new instance of a bridge with the identifier
bridge.

* addif bridge device: This command adds the network adapter devi ce to bri dge. A
network adapter can always belong to one bridge only.

* del br bridge: This command deletes the instance of the specified bridge.
* delif bridge device: This command deletes the adapter devi ce from bri dge.
The following commands are available in the br ct| tool to change the default parameters of a bridge:

* setaging bridge time: Thiscommand sets the max age parameter to the specified
value. The topology of the LAN internetwork is recalculated when a BPDU with a larger aging
time arrives.

* setbridgeprio bridge prio: This command sets the bridge priority, not to be confused
with the port priority.

+ setfd bridge time: This command sets the bridge forward delay parameter. This value

-~ —~r~ T~ 3

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

12.4 Implementation

The implementation of the bridge functionality discussed here is relatively new. It has been integrated
into the Linux kernel since Version 2.2.14 and 2.3.x and replaces the former and in many ways less
flexible implementation. This version includes several new functions (e.g., the capability of managing
several bridges in one system, and better options to configure the bridge functionality).

In addition, several details of the implementation have changed to provide more efficient handling.
Among other things, the forwarding table is no longer stored in the form of an AVL tree, but in a hash
table. Though AVL trees are data structures with a relatively low search cost, O(log n), hash tables are
generally faster when the collision domain remains as low as possible. This means that a
well-distributed hash table has the cost O(1). We can assume that a Linux bridge has to store several
hundred reachable systems at most, so a hash table is probably the better choice, especially
considering that it is much easier to configure.

The following sections describe in more detail how you can implement the bridge functionality in Linux.
We will first introduce the most important data structures and how they are linked, then discuss the
algorithms and functions.

12.4.1 Architecture of the Bridge Implementation

Figure 12-12 shows the architecture of the bridge implementation in the Linux kernel. The individual
components are divided, by their tasks and over several files. This makes the program text easier to
understand and forces the programmer to define the interfaces between the individual components
well.

Figure 12-12. Integrating the bridge implementation into the Linux network architecture.
[View full size image]

Higher favers

Al

deve br_ fdb.c, br_ifc. br_sip.cbr_sip_ bpdu, ... br_ioctle

J

Bridee
con ﬁgu ration

Forwarding
DataBase

I

br_input.c

L
A
A

br_handle™

stp_pdu

br_send_ten_bpduwl..)
br_send_config_bpdui..)

br_fdb_get(..)

br_forward.c

L

br_handle_frame

ﬂjl:"l.'.t' Ejl!"l.'.-!'

net_rx_action

12.4.2 Building and Linking Important Data Structures

The most important data structures of a Linux bridge include information about the bridges themselves
and information about the network adapters (ports) allocated to them. We want to repeat here that
you can use the new bridge implementation to construct several logically separated bridges in a Linux
system. For example, this allows you to easily configure virtual local area networks (VLANSs) that are
not mutually accessible. In addition to information about the bridge and its ports, you need to store the
forwarding table (filter table) for each bridge.

The forwarding table stores the IDs of each reachable station and the port used to reach that station.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

Part1V:

Chapter 13.

Chapter 14.
Chapter 15.
Chapter 16.
Chapter 17.
Chapter 18.
Chapter 19.
Chapter 20.
Chapter 21.
Chapter 22.
Chapter 23.

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Network Layer

The TCP/IP Protocols

The Internet Protocol V4

Address Resolution Protocol (ARP)

IP Routing

IP Multicast for Group Communication

Using Traffic Control to Support Quality of Service (QoS)
Packet Filters and Firewalls

Connection Tracking

Network Address Translation (NAT)

Extending the Linux Network Architecture Functionality? KIDS

IPv6? Internet Protocol Version 6

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 13. The TCP/IP Protocols

This chapter introduces the TCP/IP protocol suite, which represents the basis of the popular Internet.
Chapter 3 introduced the TCP/IP reference model. The sections in this chapter and the following
chapters begin with an introduction of the tasks of each of these protocols and then describe how they
operate and how they are implemented in Linux.

The history of the Internet and its protocols began in 1961, when Leonard Kleinrock developed
packet-switching theory at MIT. His work was based on the idea of splitting data into many small
packets and sending them to the destination separately, without specifying the exact path. After initial
skepticism, the principle was eventually used in a research project of ARPA (Advanced Research
Projects Agency), a division of the United States Department of Defense. In 1968, ARPA granted a
budget of more than half a million dollars for a heterogeneous network, which was called ARPANET.

In 1969, this experimental network connected the four universities of Los Angeles (UCLA), Santa
Barbara (UCSB), Utah, and the Stanford Research Institute (SRI) and expanded very quickly. Later,
satellite and cellular links were successfully connected to the ARPANET. In one impressive
demonstration, a truck in California was connected with the next university over a radio link and used
the satellite network to access a computer based in London, UK.

This system was used intensively in the years following. On the basis of the knowledge gained from
this system, a second generation of protocols was developed. By 1982, a protocol suite with the two
important protocols, TCP and IP, had been specified. Today, the name TCP/IP is used for the entire
protocol suite. In 1983, TCP/IP became the standard protocol for the ARPANET. The TCP/IP protocols
proved particularly suitable for providing a reliable connection of networks within the continually
growing ARPANET. ARPA was very interested in establishing the new protocols and convinced the
University of California at Berkeley to integrate the TCP/IP protocols into its widely used Berkeley UNIX
operating system. They used the principle of sockets to design applications with network functionality.
This helped the TCP/IP protocols to soon become very popular for the exchange of data between
applications.

In the following years, the ARPANET had grown to a size that made the management of all computers
IP addresses in one single file too expensive. As a consequence, the Domain Name Service (DNS) was
developed and is used to hide IP addresses behind easy-to-remember computer and domain names.
Today, the Internet protocol Version 4 is the most frequently used network-layer protocol. However, it
was not designed for such an enormous proliferation and has already hit its capacity limits, so a new
version had to be developed. The new Internet Protocol Version 6 is also called IPv6 or IPng.

4 Previous Mext ¥

ABC Amber CHM Converter Trial version

http:/ S'www.processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

13.1 The Internet Protocol Suite

Each protocol of the TCP/IP protocol suite handles certain tasks within the TCP/IP protocol stack.
Figure 13-1 gives an overview of the TCP/IP protocol stack and its protocols.

Figure 13-1. The protocols of the TCP/IP protocol stack.

SMTP DNS FTP SSH Application layer

——

TCP UDP | Transport layer

Network layer

Ethernet || Token Ring" PPP Wavelan | Data-link layer

« On the data-link layer in the Internet model, you find network adapters and their drivers. They
allow you to exchange data packets having a specific maximum length within the connected
LAN (Ethernet, token ring,...) or within a WAN (PPP over ISDN, ATM). The previous chapters int
roduced some protocols that also belong to the data-link layer (SLIP, PPP, ATM, Bluetooth,
etc.). All adapters and protocols on this layer have the common property that they represent
only one communication link between two IP routers (i.e., they don't support Internet routing).

» The Address Resolution Protocol (ARP) also resides on the data-link layer. Notice that there
are contradictory opinions in the literature. ARP is used to map globally valid IP addresses to
locally valid MAC addresses. ARP is actually not limited to IP addresses or specific physical
addresses; it was designed for general use. ARP uses the broadcast capability of local area

networks to find addresses. Chapter 15 describes this protocol in detail.

» The Internet Protocol (IP) forms the core of the entire architecture, because it allows all
IP-enabled computers in the interconnected networks to communicate. Each computer in the
Internet has to support the Internet Protocol. IP offers unreliable transport of data packets. IP
uses information from routing protocols (OSPF, BGP, etc.) to forward packets to their
receivers.

« The Internet Control Message Protocol (ICMP) has to be present in each IP-enabled computer;
it handles the transport of error messages of the Internet Protocol. For example, ICMP sends
a message back to the sender of a packet if the packet cannot be forwarded because routing

information is missing or faulty. Section 14.4 deals with ICMP and its implementation in Linux.

« The Internet Group Management Protocol (IGMP) is responsible for managing multicast groups
in local area networks. Multicast provides for efficient sending of data to a specific group of
computers. IGMP allows the computers of a LAN to inform its router that they want to receive

data for a certain group in the future. Chapter 17 discusses multicast in the Internet.

« The Transmission Control Protocol (TCP) is a reliable, connection-oriented and
byte-stream-oriented transport-layer protocol. TCP is primarily responsible for providing a
secured data transport between two applications over the unreliable service of the IP protocol.
TCP is the most frequently used transport protocol in the Internet. It has a large functionality,

and so its implementation is extensive. Chapter 24 discusses the TCP.

« The User Datagram Protocol (UDP) is a very simple transport protocol, providing
connectionless and unreliable transport of data packets between applications in the Internet.
In this context, unreliable does not mean that the data could arrive corrupted at the
destination computer. It means that UDP does not offer any protocol mechanisms to guarantee

Hantk FlaAa AaEa ardll AarriviA =E FlaAa AAackimmstiAarm =E sl WAl Aam AafEs merivrAace =+ FlaAa AAcEimadiAl

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 14. The Internet Protocol V4

The Internet Protocol (IP) is the central element in the TCP/IP protocol stack. It provides the basic
service for all the data traffic in the Internet and other IP-based networks and was specified in RFC
791. The primary task of the Internet Protocol is to hide differences between data transmission layers
and to offer a uniform presentation of different network technologies. For example, the Internet
protocol can run on top of LAN technologies and SLIP (Serial Line IP) or PPP (Point-to-Point Protocol)
over modem or ISDN connections. The uniform presentation of the underlying technology includes an
introduction of the uniform addressing scheme (IP address family) and a mechanism to fragment large
data packets, so that smaller maximum packet sizes can be transported across networks.

In general, each network technology defines a maximum size for data packets? the Maximum
Transmission Unit (MTU). The MTU depends on the hardware used and the transmission technology
and varies between 276 bytes and 9000 bytes. The Internet layer fragments IP datagrams, which are
bigger than the MTU of the network technology used, into smaller packets (fragments). These
fragments of a datagram are then put together into the original IP datagram in the destination
computer. Section 14.2.3 explains how data packets are fragmented and reassembled.

In summary, the Internet Protocol handles the following functions:
« provides an unsecured connectionless datagram service;
+ defines IP datagrams as basic units for data transmission;
» defines the IP addressing scheme;
« routes and forwards IP datagrams across interconnected networks;
» verifes the lifetime of packets;
« fragments and reassembles packets; and

« uses ICMP to output errors.

4 Previous Mext ¥

ABC Amber CHM Converter Trial version

http:/ fwww.processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

14.1 Properties of the Internet Protocol

The Internet Protocol was developed with the idea of maintaining communication between two
systems even when some transmission sections fail. For this reason, the Internet Protocol was
developed on the basis of the principle of datagram switching, to transport IP data units, rather than
on that of circuit-switching, like conventional telephone network.

The following sections describe the protocol mechanisms of the Internet Protocol. Section 14.2 will
then explain how IP is implemented in the Linux kernel.

14.1.1 Routing IP Packets Across Routers

Figure 14-1 shows how the Internet is structured. Rather than being one single network, the Internet
is composed of many smaller local area networks, which are connected by routers. This is the reason
why it is often called the network of networks or global network. Each network connected to the
Internet can be different both in size and in technology. Within one network (e.g., the network of a
university), it is often meaningful to build several subnetworks. These? often independent? networks
and subnetworks are connected by routers and point-to-point lines.

Figure 14-1. The structure of the global Internet.
[View full size image]

Connection to the other
networks of the Internet

[HE Ethemet (IEEE 802.3)

The interconnection of single local area networks offers a way to send data from an arbitrary
computer to any other computer within the internetwork. Before it sends a packet, an Internet
computer checks for whether the destination computer is in the same local area network. If this is not
the case, then the data packet is forwarded to the next router. If both the sender and the receiver are
in the same local area network, then the packet is delivered to the receiver directly over the physical
medium. In either case, the IP layer uses the service of the data-link layer to physically transport the
packet (horizontal communication? see Section 3.2).

Let's assume that, in the first case, the packet has not yet arrived in the destination computer. The
router checks the destination address in the IP packet header and the information in the routing table

to determine how the packet should be forwarded. Next, the packet travels from one router to the next
until it eventually arrives in the destination computer. Chapter 16 discusses routing in IP networks.

14.1.2 The IP Packet Header

Figure 14-2 shows the format of an IP packet. The fields of the IP packet header have the properties
described below.

Figure 14-2. Packet-header format of the Internet Protocol.

IP packet format

0 3 7 15 31
Version| IHL |Codepoint Checksum

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

14.2 Implementing the Internet Protocol

This section explains the architecture of the IP instance in the Linux kernel. We will use the path a
packet takes across the IP layer to introduce the basic properties of the Internet Protocol. We assume
that this is a normal IP packet without special properties, to ensure that our explanations will be clear
and easy to understand. All special functions of the Internet Protocol, such as fragmenting and
reassembling, source routing, multicasting, and so on, will be described in the next chapters.

The objective of this section is to introduce the fundamental operation of the IP implementation in
Linux, to be able to better understand more complex parts later on. This section also serves as an
entry point into the other chapters of this book, because each packet passes the IP layer, where it can
take a particular path (e.g., across a firewall or a tunnel). It is necessary to understand how the
Internet Protocol is implemented in the Linux kernel to understand later chapters.

An IP packet can enter the IP instance in three different places:

» Packets arriving in a computer over a network adapter are stored in the input queue of the
respective CPU, as described in Chapter 6. Once the layer-3 protocol in the data-link layer
has been determined (which is ETH_PROTO | P in this case), the packets are passed to the
i p_rcv() function. The path these packets take will be described in Section 14.2.1.

» The second entry point for IP packets is at the interface to the transport protocols. These are
packets used by TCP, UDP, and other protocols that use the IP protocol. They use the
i p_queue_xmi t () function to pack a transport-layer PDU into an IP packet and send it.
Other functions are available to generate IP packets at the boundary with the transport layer.

These functions and the operation of i p_queue_xmi t () will be described in Section 14.2.2

« With the third option, the IP layer generates IP packets itself, on the Internet Protocol's
initiative. These are mainly new multicast packets, new fragments of a large packet, and ICMP
or IGMP packets that don't include a special payload. Such packets are created by specific meth

ods (e.g., i cnp_send()). (See Section 14.4.)

Once a packet (or socket buffer) has entered the IP layer, there are several options for how it can exit.
We generally distinguish two different roles a computer can assume with regard to the Internet
Protocol, where the first case is a special case of the second:

« End system: A Linux computer is normally configured as an end system? it is used as a
workstation or server, assuming primarily the task of running user applications or providing
application services. Also, a Web server and a network printer are nothing but end systems
(with regard to the IP layer). The basic property of end systems is that they do not forward IP
packets. This means that you can recognize an end system easily by the fact that it has only
one network adapter. Even a system that has several network accesses can be configured as
a host, if packet forwarding is disabled.

» Router: A router passes IP packets arriving in a network adapter to a second network adapter.
This means that a router has several network adapters that forward packets between these
interfaces. When packets arrive in a router, there are generally two options: they can deliver
packets locally (i.e., deliver them to the transport layer) or they can forward them. The first
case is identical with the procedure of packets arriving in an end system, where packets are
always delivered locally. Consequently, a router can be thought of as a generalization of an
end system, with the additional capability of forwarding packets. In contrast to end systems,
generally no applications are started in routers, to ensure that packets can be forwarded as
fast as possible.

Linux lets you enable and disable the packet-forwarding mechanism at runtime, provided that the
forwarding support was integrated when the kernel was created. The directory

/ proc/ sys/ net /i pva4/ includes a virtual file, i p_f or war d. You will see in Appendix B.3 that
there is a way to change system settings from within the pr oc directory. If a 0 is written to this file,
then packet forwarding is disabled. To activate IP packet forwarding, you can use the command echo

"1 S T nracr/ ecvel/ net /i1 nvAlin farward o

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

14.3 IP Options

When a packet is sent to the IP layer, then it normally includes all required information in the packet's
protocol header. However, there could be times when packets require additional information in the
protocol header? for example, for diagnostics purposes, or if a packet's path across the Internet is
specified before it is sent. For these purposes, an Option field with variable length can be added to
each IP packet header. All guidelines for these IP options are described in [Post81c].

14.3.1 Standardized IP Packet Options

Figure 14-9 shows that the IP packet options are appended to the end of an IP header. The length of
the Option field is variable, and the end of a packet header has to be aligned to a 32-bit boundary, so a
n additional padding field of the appropriate length is added (and set to 0 by default). In this case,
"variable" also means that the packet options can be left out, if they are not required. The Option field
can take one or several packet options, where an option can be given in either of two formats:

« One single byte describes only the option type. The length of these options is always exactly
one byte.

« The first byte includes the option type, and the second byte contains the length of this packet
option. The following bytes include the actual data of that option.

Figure 14-9. The IP packet header.

Version IHL TOS Total Length
Identification Flags Fragment Offset
TTL Protocol Header Checksum

Source Address

Destination Address

Oplions (optional) Padding

Data

The byte stating the length of the packet option in the second case includes merely the number of data
bytes. The first two bytes are not counted. The option type in the first byte is composed as follows:

Copy Flag || Option Class || Option Number

The (1-bit) copy flag is required for packet fragmentation. If a packet has to be fragmented, then this
bit states whether this packet option has to appear in all fragments or may be set in the first fragment
only.

The option class is represented by 2 bits. The (5-bit) option number shows the length of a packet
option implicitly (i.e., we can see whether the next byte also belongs to this packet option or already
belongs to the next packet option). Table 14-1 lists all IP packet options defined in RFC 791, including
their lengths and their defined option numbers and option classes. There are four option classes in
total, but only two are currently used. Option class 0 includes packet options for control and
management; option class 2 includes debugging and measurement options. The option classes 1 and 3
are reserved for future IP packet-option classes.

Table 14-1. Defined IP packet options.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

14.4 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) is the error-report mechanism for the IP layer, which

also resides in the network layer. Though ICMP is based on IP, it doesn't make IP more reliable.
Packets can be lost despite the use of ICMP, and IP or ICMP won't notice that packets are lost. The only
purposes of this error-report mechanism are to report errors to other computers and to respond to
such reports. It is mendatory for each IP implementation to implement ICMP. The ICMP

implementation is defined in the following RFC documents:

» RFC 792 [Post81b]: This is the basic definition, describing the packet types and their uses.

« RFC 1122 [Brad89]: Definition of the requirements on terminal equipment (hosts) connected
to the Internet.

+ RFC 1812 [Bake95]: This document describes the requirements for switching computers
(routers) in the Internet.

However, RFC specifications often leave much room for flexible implementation. For some functions, it
is even optional whether you implement them. For this reason, ICMP implementations and even
configurations of the same implementation can differ considerably.

The most popular application of ICMP is error detection or error diagnostics. In more than ninety
percent of all cases, the first information transmitted by a newly installed network adapter over an IP
network will probably be that of the pi ng command, which is fully based on ICMP. This allows you to
check the reachability of other computers easily and without noticeable load on the network. This
procedure is often done in automated form (e.g., to monitor servers). Beyond simply checking the
reachability of computers, the set of different error messages allow a network administrator (or a
network-analysis tool) to obtain a detailed overview of the internal state of an IP network. For
example, poorly selected local routing tables or wrongly set transmit options in individual computers
can be detected. And finally, it is possible to use ICMP to synchronize computer clocks within a
network, in addition to other? partly outdated? functions, which will be briefly discussed in this section.

14.4.1 Functional Principle of ICMP

ICMP sends and receives special IP packets representing error or information messages. Error
messages occur whenever IP packets have not reached their destinations. All other cases create
information messages, which can additionally include a request for reply. Notice that the ICMP
functionality becomes active within the network implementation of the Linux kernel only provided that a
problem situation occurs during another data traffic or when ICMP packets arrive from another
computer. As mentioned earlier, ICMP transmits messages in IP packets. Figure 14-11 shows the
general structure of ICMP messages (gray fields), which are transported in the payload of an IP
packet. It is typical for the IP header of a packet containing an ICMP message that the Type-of-Service
field is set to 0x00, which means that the packet is treated like a regular IP packet without priority.
The protocol type in the IP header for ICMP messages is set to 0x01, as specified in RFC 790
[Post81al.

Figure 14-11. Structure of an IP packet containing an ICMP message.

[View full size image]

Version IHL TOS = Ox00 Total Length
Identification Flags Fragment Offsct
TIL Protocol = 0x01 Header Checksum

Source Address

Destination Address

Options (optional) Padding

Type Code Checksum

T 'RALD Aesibes Ferrersaalales |

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 15. Address Resolution Protocol (ARP)

The conversion of addresses between different protocol layers represents an important task for unique
identification of resources in a computer network. Such a conversion is required at the transition
between two neighbouring layers within a reference model, because each layer uses its own address
types, depending on its functionality (IP, MAC, ATM addresses, etc.). For example, the destination
computer is specified in the form of an IP address if a packet is sent over the Internet Protocol. This
address is valid only within the IP layer. In the data-link layer, both the service used by the Internet
Protocol to transport its data and different LAN technologies (e.g., Ethernet, token ring, ATM), each
with its own address formats, can be used. The network adapters of a LAN are generally identified by
48-bit addresses, so-called MAC addresses. A MAC address identifies a unique network adapter within
a local area network.

To be able to send a packet to the IP instance in the destination computer or to the next router, the
MAC address of the destination station has to be determined in the sending protocol instance. The
problem is now to do a unique resolution of the mapping between a MAC address and an IP address.
What we need is a mapping of network-layer addresses to MAC addresses, because the sending IP
instance has to pass the MAC address of the next station in the form of interface control information
(ICI) to the lower MAC instance. (See Section 3.2.1.) At the advent of the Internet, this mapping was
implemented by static tables that maintained the mapping of IP addresses to MAC addresses in each
computer. However, this method turned out to be inflexible as the ARPANET grew, and it meant an
extremely high cost when changes were necessary. For this reason, RFC 826 introduced the Address
Resolution Protocol (ARP) to convert address formats.

Though the TCP/IP protocol suite has become the leading standard for almost all computer networks,
it is interesting to note that ARP was not designed specifically for mapping between IP and MAC
addresses. ARP is a generic protocol that finds a mapping between ordered pairs (P,A) and arbitrary
physical addresses, where P is a network-layer protocol and A is an address of this protocol P. At the
time at which ARP was developed, different protocols, such as CHAOS and Decnet, had been used in
the network layer. The ARP instance of a system can be extended so that the required addresses can
be resolved for each of the above combinations, which means that no new protocol is necessary. The
most common method to allocate addresses between different layers maps the tuple (Internet
Protocol, IP address) to 48-bit MAC addresses.

4 Previous Hext

ABC Amber CHM Converter Trial version

http:/ fwrww processtext.com,; abcchm html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

15.1 Using the Address Resolution Protocol

As mentioned above, the Address Resolution Protocol (ARP) is a decentralized protocol to resolve
address mappings between layer-3 addresses and layer-2 addresses in local area networks. Figure
15-1 shows how ARP works. When computer A wants to send a packet to router R in the same LAN,
then it needs the layer-2 address, in addition to the IP address, to be able to tell the data link layer
which computer is supposed to get this packet. For this purpose, computer A sends an ARP Request to
all computers connected to the LAN. This request is generally sent in a MAC broadcast message by
using the MAC broadcast address (FF: FF: FF: FF: FF: FF) . The intended computer can see from the
destination IP address in the ARP PDU that this request is for itself, so this computer returns a reply to
the requesting computer, A, including its MAC address. Computer A now learns the MAC address of R
and can instruct its data-link layer to deliver the packet.

Figure 15-1. Example showing how ARP resolves addresses.

[View full size image]
ARP request to MAC FFFFFFFFFFFF

MAL sddress of 1292510011 ?
Reply to 49720 16:08:64:14 {129.25.10.72)

ARP reply to MAC 4972160086414
_____ _Ilh'ply: 12925 1011 (#9:7B21:21:23:900)

Requested by: 129.25.10.72 i*".?£.1il.|ﬁ.ﬂil45|‘@

IPF: 12%,25.10.11
MAC: 49:;78:2L:21:23:90

Computer A: Computer I3 Computer C:
IP: 129.25.10.72 IP: 129,25,10.97 IP: 129.25.10.81
MAC: 45:T2:16:08:64:14 MAC: 49:72:16:08:80:70 MAC: 45:17:92:96.96:96

To avoid having to request the MAC address again for subsequent packets, A stores the MAC address

of R in a local table? the ARP cache. (See Section 15.3.) Computer R can also extract the MAC
address of A from A's request and store that in its own ARP cache. It can be seen from A's request
that A and R will communicate soon, which means that the MAC address of A will be needed. In this
case, we avoid one ARP request, because the mapping will have been previously stored.

15.1.1 The Structure of ARP Protocol Data Units

Figure 15-2 shows how an ARP PDU is structured; this PDU is used for the two protocol data units
defined in the ARP protocol, ARP Request and ARP Reply. The only difference between these two types
is in the Operation field.

Figure 15-2. Format of the ARP Request and ARP Reply PDUs.

[View full size image]
ARP protocol data unit

0 15 3l

Hardware type (layer 2) Protocol type (layer 3)

Address length | Address length

layer 2 (n) layer 3 (m) Operation

Source address (laver 2): n byles

Source address (layer 3): m bytes

Destination address (layer 2): n bytes

Destination address (layer 3): m bytes

Laver-2 header Layer-2 payload Layer-3 trailer

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

15.2 The ARP Command

The ar p command can be used to output the ARP table (ARP cache) of a computer. It can also be
used to manipulate the ARP table (e.g., to create permanent entries or delete entries).

The following options are available for the ar p command:

» Display the ARP table: you can use option -a when running the ar p command to view the ARP
table of a computer:

* root@ux # arp -a

* | P address HWtype HW address

* 129.25.10.97 10Miit/s Ethernet 49:72:16:08:80:70
* 129.25.10.72 10Moit/s Ethernet 49:72:16:08: 64: 14
e 129.25. 10.81 10Moit/s Ethernet 49:17:92:96: 96: 96

The first column shows the IP address of the destination computer; the second column shows
the LAN category (e.g., 10-mbps Ethernet); the last column shows the layer-2 address of the
network adapter.

If the word i nconpl et e appears in an entry in the last column upon repeated calls, then this
means that the network device specified by the entry has failed or is defective.

» Address format: In addition to Ethernet, ARP is also used in other broadcast-enabled LAN
technologies (e.g., AX.25 amateur radio networks and token ring) for address resolution.
These network technologies may use different address formats. ar p shows the address
format used in the second column. Notice that ar p shows only the entries for Ethernet
addresses, by default. To view a list of AX.25 addresses, you have to use the -t option with
the command: arp -a -t ax25.

» Deleting ARP entries: You can use ar p with the option - d conput er to remove the entry of
that computer. This forces a new ARP request upon the next request for the layer-2 address
of the specified computer. Deleting an ARP address mapping can be useful when a computer's
configuration is wrong or when the layer-2 address has changed? for example, when a
network adapter has been replaced.

To avoid this case, ARP entries are automatically declared invalid after a certain period of
time. This period is in the range of a few minutes, so that the replacement of a network
adapter should actually not cause any problem.

» Setting ARP entries: It can sometimes be useful to add an entry manually to the ARP table.
The option -s conput er | ayer-2-addr ess is available for such cases. It can also be
used when ARP requests to a specific computer are not answered, because of faulty or
missing ARP instances. The option -s can also be useful when a second computer in the same
LAN identifies itself erroneously with the same IP address and replies sooner to the ARP
request. The following command adds the computer t ux having layer-2 address
49: 72: 16: 08: 64: 14 to the ARP table: arp - s tux 49: 72: 16: 08: 64: 14.

In contrast to entries determined automatically in the ARP cache, entries created with the
option - s are not removed after a certain period; they remain in the ARP cache until the
computer restarts (static entry).

A Previous MHext k

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

15.3 Implementing the ARP Instance in the Linux Kernel

In theory, ARP would have to run an address resolution for each outgoing IP packet before transmitting
it. However, this would significantly increase the required bandwidth. For this reason, address
mappings are stored in a table? the so-called ARP cache? as the protocol learns them. We have
mentioned the ARP cache several times before. This section describes how the ARP cache and the ARP
instance are implemented in the Linux kernel.

Though the Address Resolution Protocol was designed for relatively generic use, to map addresses for
different layers, it is not used by all layer-3 protocols. For example, the new Internet Protocol (IPv6)
uses the Neighbor Discovery (ND) address resolution to map IPv6 address to layer-2 addresses.
Though the operation of the two protocols (ARP and ND) is similar, they are actually two separate
protocol instances. The Linux kernel designers wanted to utilize the similarity between the two
protocols and implemented a generic support for address resolution protocols in LANs, the socalled
nei ghbour management.

A nei ghbour represents a computer that is reachable over layer-2 services (i.e., directly over the
LAN). Using the nei ghbour interface and the available functions, you can implement special
properties of either of the two protocols (ARP and Neighbour Discovery). The following sections
introduce the nei ghbour interface and discuss the ARP functions. Chapter 23 describes how
Neighbor Discovery is implemented.

15.3.1 Managing Reachable Computers in the ARP Cache

As was mentioned earlier, computers that can be reached directly (over layer 2) are called neighbor
stations in Linux. Figure 15-4 shows that they are represented by instances of the neighbour structure.

Figure 15-4. Structure of the ARP cache and its neighbor elements.
[View full size image]

neigh.table !

arp_tbl neigh_table
- i | Heigh_table
family: AF_INET
conslruclor == arp constructor()
ge_timer —b@—h neigh periodic_timer ()
1 = =
hash_buckets [NEIGH..| [- neighbour - neighbour I
neighbour
. > nexi
neigh_table | net_device
neigh_parms _|)
dev
: neigh timer
Haper O handler ()
neigh_ops
hardware_address
hh_cache
hh_cache nud_stale
> next output
ref_cnt arp_queus sk_buff -
hh_type: ETH_P_IP —
hh_output
hh_data:
0080233212
4972 16 08 64 14 — | neighbour
497821212390 HASHMASK -1

The set of reachable computers is managed in the ARP cache, which is organized in a hash table. The

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 16. IP Routing

Section 16.1. Introduction
Section 16.2. Configuration

Section 16.3. Implementation

4 F'rexriu:-us] Mext P]

| -I Y

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

16.1 Introduction

One of the most important functions of the IP layer (the network layer of the TCP/IP protocol
architecture) is to forward packets between communicating end systems across a number of
intermediate systems. (See Figure 16-1.) The determination of the route that packets will take across
the Internet and the forwarding of packets towards their destination is called routing.

Figure 16-1. Routing within the IP layer in the TCP/IP protocol architecture (protocols in
the other layers are examples).

End system Intermediate system End system
(router)
Transport Tcp TCp

Network IP IP
—

[w
Data link and - o IEEE —_reen
— S

16.1.1 Networks and Routers

As was mentioned in Chapter 14, the Internet represents a network of networks. The physical
subnetworks built by use of different layer-2 transmission technologies, such as Ethernet, can include a
different number of nodes each? for example just two nodes connected over a point-to-point link. The
IP layer interconnects these subnetworks to form a global network having millions of nodes.

Special nodes, which are integrated in all subnetworks that are connected in one place, are used to

link these subnetworks; these nodes are called routers. Figure 16-2 shows an example with five local
area networks, connected through three routers. Router A also connects the network to the rest of the
Internet. The network layer abstracts from lower layers, so it is irrelevant for the communication
implemented over IP that the end systems are connected to different LAN types.

Figure 16-2. Routers interconnect networks.
[View full size image]

Connection to the other
networks of the Internet

MNetwork 2: PPP

Router B Metwork 3:
=i, Ethernet (IEEE 802.3)

Metwork 1.
Token Ring
(IEEE 302.5)

Network 5:
Wirgless LAN (IEEE 802.11)

Routers are used both to link local area networks and to connect local area networks to the Internet.
In addition, networks in the "core" of the Internet, which normally have a much larger geographic
reach, are interconnected and linked to access networks through routers, or even built of direct links
between routers ("two-node networks").

Routers are often especially designed for this purpose? so-called "dedicated routing devices."
However the | intix kernel alen offerce the reatiired fiinctionalitv o let vorir tice a |l intiy eveltem ac a

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

16.2 Configuration

This section describes the options available to configure routing in Linux. First, this concerns the kernel
configuration, which is used, for example, to determine whether advanced features, such as
rule-based routing, should be integrated into the kernel. The options available for this configuration
are described in Section 16.2.1, Second, you can also modify some routing parameters while the
system is running. The setting options available for this in the pr oc file system are discussed in
Section 16.2.2. Third, you have to add entries to routing tables and rule lists. The i p command,
which is described in Section 16.2.3, is a good tool to manage such entries.

16.2.1 Configuring the Kernel

Some routing options can be set when you configure the Linux kernel, before it is compiled. All of them
are in the networking options section and will be described briefly in this section below. In addition to
the name of the preprocessor constant, which is defined when an option is activated, the label shown
in the kernel configurator is given in double quotes. A prerequisite to being able to activate some of
these options is that CONFI G_| NET ("TCP/ | P networking") should be enabled; without that, routing
makes no sense, anyway.

* CONFI G_NETLINK "Kernel /User netlink socket"

Rather than directly influencing the routing mechanism, this option activates the bidirectional
netlink interface between the kernel and the user-address space, which is implemented with
datagram sockets of the new protocol family, PF_NETLI NK, and can be used to communicate
with different kernel areas. The respective area is selected by an identifier, which is given inste
ad of a protocol when you open the socket. Section 26.3.3 describes more details.

In connection with routing, the NETLI NK_ROUTE "protocol identifier" is important, and it can
be used by activating the following option. This option is available only provided that
CONFI G_NETLI NK is active:

0 CONFI G RTNETLI NK "Routing nessages"

Routing rules and routing tables can be modified by using sockets of the PF_ NETLI NK
protocol family and the NETLI NK_ROUTE "protocol." This interface, which will also
be called RT netlink interface below, is used in the ip configuration tool described in

Section 16.2.3. Besides, by reading an RT netlink socket, you can "eavesdrop" on
changes made to routing tables by other processes.

* CONFI G | P_ADVANCED ROUTER "I P: advanced router"

This option has no direct effect; it represents a switch that allows you to select a number of
additional options can be used to obtain much more control over the routing procedure. The
options CONFI G_NETLI NK and CONFI G_RTNETLI NK are activated automatically when you
select CONFI G_| P_ADVANCED ROUTER.

0 CONFIG I P_MILTIPLE TABLES "I P: policy routing”

This option links the file fi b_r ul es. o into the kernel and enables the rule-based

routing described in Section 16.1.6. If this option is disabled, then the kernel creates
only two routing tables, | ocal and nmai n, and searches them in this order.

The following additional options are available in connection with rule-based routing:

0 CONFIG.|IP _ROUTE FWVARK "I P: use netfilter MARK val ue as
routing key"

This option allows you to include the f wrar k, which can be added to certain

packets by using packet filter rules (see Section 19.3.5), in the forwarding
decision (i.e., you can specify different routes for packets with different

memaem) s~ il o N e mwvmemmeml n vvms s memem smmemle ~ Bl n s kem omm) o o " A e L,

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

16.3 Implementation
The following discussion divides the routing implementation in Linux into three functional units:

+ As described in Section 14.2, i p route_i nput () andi p_route_out put () arethe
two functions invoked when IP packets are handled to run routing-specific tasks; they will be
described in Section 16.3.4. These functions are also called "forwarding functions" in the
following discussion.

« Routing rules and routing tables together form the so-called forwarding-information base (FIB).
Whenever necessary, forwarding functions query the forwarding-information base; this action
is also called a forwarding query or FIB request in the following discussion. An FIB request is
initiated by calling the fi b_I ookup() function. The implementation of routing rules is
strongly encapsulated within the FIB, so routing rules and routing tables will be discussed
separately in Sections 16.3.1 and 16.3.2.

» Because consulting the FIB for each single IP packet received or sent would require too much
time, there is an additional routing cache that stores the table entries used the most recently
and allows fast access to these entries. Section 16.3.3 describes how this routing cache is
implemented.

16.3.1 Routing Rules

As we described in Section 16.1.6, rule-based routing uses a set of rules to decide which routing
tables should be searched in which sequence for a suitable entry to forward a packet and whether the
packet may be forwarded at all. The rules are processed successively by ascending priority value until
a decision can be made.

The entire implementation of the rules-processing method, including the data types used, is included in
thefi b_rul es. c file. The rather narrow interface is described by some function prototypes and i
nline functions in a common header file, i p_fi b. h. If rule-based routing was disabled in the kernel
configuration (CONFI G_| P_MULTI PLE_TABLES option; see Section 16.2.1), t hen fib_rul es.c
is not compiled. In this case, the "replacement functionality" (use of the two routing tables | ocal and
mai n, in this sequence) is fully handled by the inline functionsin i p_fi b. h.

Data Structures

The set of rules is represented in the kernel by a linear list of fi b_r ul e structures, sorted in
ascending order by priority value and hooked into the static fi b_r ul es variable. Initially, this list
contains three entries: the fi b_rul e structures default _rule, main_rule,and|ocal rule,
which are statically defined. Figure 16-6 shows this initial state of the rules list. A read-write spinlock
called fi b_rul es_| ock is used to regulate access to the list.

Figure 16-6. List with routing rules (initial state). Optional structure entries are not shown.
[View full size image]

fih_rule Jib_rule
| fib_rules I—I- r_next r_mext
r_clntrel; 2 r_clntref: 2
r_preference: @ r_preference: 32766
r_table: RT TARLE LOCAL r_table: RT TABLE MAIN
r_action: RIN_UNTCAST r_action; RIN_UNICAST
r_dst_len: &
r_src_len; @
r_src: O xd
r_srcmask: 0 x0
= ot 0 0 fib_rule
sl
= > r_next: 0x0
r_dstmask: 0 x0 =
r_cintref: 2
r_sremap; 0 sl
r__preference: 32767
r_flags: 0 — ———
—= = r_table; RT TABLE DEFAULT)

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Chapter 17. IP Multicast for Group
Communication

The history of telecommunication was characterized mainly by two technologies in the past hundred
years (before the Internet era began): telephony, and radio and television broadcasting. These two
technologies cover two fundamentally different communication areas or needs:

+ Individual communication (unicast): Connections between two communication partners, where
the direction of data exchange can be unidirectional (simplex) or bidirectional (duplex).

« Mass communication (broadcast): One station sends data to all stations reachable over a
medium, where data distribution is normally unidirectional.

After these two technologies, the Internet followed as the third communication technology, changing
the telecommunication world. Though the Internet was initially designed for individual communication,
the protocols and mechanisms added at the beginning of the nineties introduced a new communication
form: group communication (multicast). Multicast makes possible an efficient data distribution to
several receivers. By contrast with the mass communication of (radio) broadcasting, where data is
distributed to all participants within one single transmission medium, group communication delivers
data units only to those receivers explicitly interested in this data. In addition, group communication in
the Internet (IP multicast) enables each Internet computer to send data directly to the members of a
multicast group.

Consequently, in the designing of mechanisms and protocols, two specific tasks can be deduced for the
functionality of group communication in Internet systems:

* managing memberships in communication groups; and
» efficient distribution of data packets to all members of a group.

The first task is solved by the Internet Group Management Protocol (IGMP), which has to be supported
by each multicast-capable Internet computer. Section 17.3 introduces IGMP and its implementation in
Linux systems. For the second task, we have to distinguish between end system and forwarding
systems. Section 17.4 will discuss how both types are supported in Linux. As with Internet routing,
group communication also separates clearly between forwarding and routing. There are different
multicast routing algorithms, including the Distance Vector Multicast Routing Protocol (DVMRP), which
will be introduced in Section 17.5.2 as a representative example for these algorithms, using the

nr out ed daemon.

4 Previous Hext

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

17.1 Group Communication

Before we introduce the details of IP multicast in Linux, the following sections give a brief summary of
the three communication forms: unicast, broadcast, and multicast.

17.1.1 Unicast

Unicast is the classic form of communication between two partners? point to point. In the context of
this book, this means that two computers communicate with each other only. When a unicast
communication service is used to transmit data to several receivers, then this has to be done
independently of one another in several transmit processes. This means that the cost for the data

transport increases in proportion to the number of receivers, as shown in Figure 17-1,

Figure 17-1. In unicast communication, the packet is sent to each receiver separately.
[View full size image]

Receiver

Router

o

Houter

Receiver

Receiver Receiver

Naturally, if there is a large number of receivers, this cost leads to an extreme load on the network,
and so this technique is unsuitable for the distribution of large data volumes, such as multimedia data.
Broadcast communication represents a better solution in some cases.

17.1.2 Broadcast

Broadcasting means that all participants in a communication network that can be reached over a
specific medium receive the distributed data packets, regardless of whether they are interested in it.
Examples for broadcast communication include the broadcasting of television and radio broadcasting
programs, and advertisements in the mailboxes of homes.

At first sight, broadcast communication looks expensive. However, a closer look reveals that it is
supported by the network technologies, especially in local area networks (LANSs). In fact, each
communication is a broadcast communication in local area networks, because the local network
technologies (Ethernet, token ring, etc.) are broadcast media, where data packets are distributed to all
stations. When a packet is received, the MAC destination address is checked to see whether the packet
should be further handled by that station. This means that broadcast communication is very easy in
local area networks. In fact, it is sufficient to send a packet to the network, so that all stations can
receive it.

However, as with advertisements in mailboxes, not everybody will want to receive a broadcast packet
they are not interested in. For this reason, though it is simple to broadcast data to a group, this
approach is a burden for stations not interested in this data and reduces their performance. This holds
also true for wide area network (WAN) traffic: Where point-to-point connections prevail, the benefit of t
he simplicity of broadcasting can easily turn into a heavy burden for the networks [Tan97].

17.1.3 Multicast

Multicast communication offers a solution to the problem described in the previous section. It enables

I Y T I T L Y - Y Y Y L Y T T T I D T T T R R T T T T

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

17.2 IP Multicast

IP multicast extends the unicast service of the Internet Protocol to the capability of sending IP packets
to a group of Internet computers. This is realized more effectively than sending single unicast packets
to the members of a group. The sender addresses the members of a group by a group address, the

so-called IP multicast address. (See Section 17.2.1.) Normally, the sender doesn't know who is
currently a member of a group, how many members are subscribed to a group, or where these
members are located. IP multicast is one of the few implementations of the principle of group

communication. Another network technology that also supports group communication is ATM. Figure
17-3 shows the IP multicast scenario in the Internet.

Figure 17-3. IP multicast scenario in the Internet.

[View full size image]

Sender:

all -hosts

Haost [: Haost E:
all-haosts all-hosts

e
Host A: Host B: Haost C:
all-hosts all-hosts all-hosts Host F- Hast G-
A, B, C A, D, E B, C, D

all-hosts all-hosts
E, F

addresses for multicast groups: We basically have to distinguish between multicast communication on
the MAC layer and those on the network layer (Internet Protocol). In local area networks, multicast is
normally supported by the underlying technology. In this case, multicast packets are transmitted over a
broadcast-enabled network, and the connected computers use the group address to decide whether
they want to receive the data. Section 17.4.1 describes in detail how multicast is supported in local
area networks. In contrast, multicast communication on the IP layer (i.e., between the routers in the
Internet) is much harder to implement. One of the most important functions is provided by multicast
routing protocols, which organize the efficient distribution of data.

The separation between multicast in the local domain and in the routed network domain can be seen
not only in how data are forwarded (data path), but also in how groups are managed. Joining and
leaving groups is handled by the Internet Group Management Protocol (IGMP); routers distribute their
group information over multicast routing protocols. An end system tells its local multicast router only
the IP address of the group it wants to join. The router will then have to find out how it can get the
multicast data from the Internet. Joining and leaving of groups for computers in a local area network
are handled by the Internet Group Management Protocol, which will be introduced in Section 17.3,

So-called multicast distribution trees are built to distribute multicast packets between routers across
the entire network. The data packets are then distributed along these trees to the individual receivers
and local area networks. These distribution trees are built by multicast routing protocols (e.g., the
Distance Vector Routing Protocol (DVMRP) and Multicast OSPF (MOSPF)).

As in routing in the Internet, the control path and the data path are also separated here, as can be
clearly seen in the implementation under Linux. The data path (i.e., forwarding and replicating of
multicast packets) is defined by the information in the multicast routing table. The information in the
routing table is procured over the control path, by the multicast routing protocols and IGMP. In addition
to better structuring, another benefit of keeping the two mechanisms separate is that we can use
different routing protocols. In fact, several protocols are currently available in Linux. Section 17.5.2
uses the DVMRP protocol and its implementation in the nr out ed daemon as a representative example.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

17.3 Internet Group Management Protocol (IGMP)

The Internet Group Management Protocol (IGMP) is used to manage group memberships in local area
networks. A multicast router should know all groups having members in the local area network.
Accordingly, the Multicast Routing Protocol subscribes packets for these groups. The router does not
have to know exactly who in the local area network belongs to a group. It is sufficient for the router to
know that there is at least one receiver. The reason is that, when the router transports a packet to the
local area network, all stations subscribed to this group receive it automatically.

To avoid unnecessary data transmissions, the router checks periodically for multicast groups that are
still desired. For this purpose, it sends a membership query to all local computers (i.e., to the all-hosts
group) within a specific time interval (approximately every two minutes). Each computer currently
interested in a group should then return a reply for each of its groups to the router. As was mentioned
earlier, the router is not interested in knowing who exactly is a member of a group; it is interested
only in knowing whether there is at least one member in the LAN. For this reason, and to prevent all
computers from replying at the same time, each computer specifies a random delay time, and it will
reply when this time expires. The first computer to reply sends its message to the router and to all
other local computers of the specified group. Cleverly, it uses the multicast group address for this
message. This means that the other computers learn that the router has been informed, so that they
don't have to reply. The router has to continue forwarding data for this group from the Internet to the
local area network.

Naturally, if a computer wants to join a group, it does not have to wait for a membership query; it can
inform the router immediately about the group it wants to join. Section 17.3.3 describes how exactly
the IGMP protocol works.

In addition to the tasks discussed above, IGMP is used for other things. The following list summarizes
everything the IGMP is used for:

* Query a multicast router for groups desired in a LAN.
« Join and leave a multicast group.

» Exchange membership information with neighboring or higher-layer multicast routers.

17.3.1 Formatting and Transporting IGMP Packets

IGMP messages are transported in the payload field of IP packets, and the number 2 in the Protocol
field of the IP packet header identifies them as IGMP messages. They are always sent with the TTL
value one, which means that they cannot leave the area of a subnetwork and so means that IGMP
manages group memberships only within a subnetwork. To distribute this information beyond these
limits, we have to use multicast routing protocols.

Figure 17-5 shows the format of IGMP packets; it includes the following fields:
« Version: Number of the IGMP version used.
+ Type: Type of the IGMP message.

« Max. Response Time: This field is used differently, depending on the IGMP version. (See
Section 17.3.2.)

e Checksum: Checksum of the IGMP message.

Figure 17-5. The IGMP packet format and its representation in the Linux kernel.
[View full size image]

igmphdr
type 0 3 7 15 31
code ‘n'c-mun['[ype] Max, Il\.|'|_"|'||:1'u'] Checksum
csum Group address
group TGMP packet format

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

17.4 Multicast Data Path in the Linux Kernel

This section describes how multicast data packets are processed in the Linux kernel. To get a good
insight into matters, we will first explain the path a multicast packet takes across the kernel, then
discuss different aspects of the data path. We will begin on the MAC layer, to see how multicasting is
supported in local area networks and to introduce the following IP multicast concepts:

» virtual network devices,
« multicast routing tables, and
» replicating of data packets.

As we introduce the implementation, we will emphasize differences between multicast-capable end
systems and multicast routers.

17.4.1 Multicast Support on the MAC Layer

In general, IEEE-802.x LANs are broadcast-enabled: each data packet is sent to each participant. Each
network adapter looks at the MAC destination address to decide whether it will accept and process a
packet. This process normally is handled by the network adapter and doesn't interfere with the central
processor's work. The central processor is stopped by an interrupt only when the adapter decides that
a packet has to be forwarded to the higher layers. This means that the filtering of packets in the
network adapter take load off the CPU and ensures that it will receive only packets that are actually
addressed to the local computer.

Filtering undesired MAC frames works well in the case of unicast packets, because each adapter
should know its MAC address. However, how can the card know whether the computer is interested in
the data of a group when a multicast packet arrives? In case of doubt, the adapter accepts the packet
and passes it on to the higher-layer protocols, which should know all subscribed groups. The next
question is whether multicast packets use the MAC address at all. The MAC format supports group
addresses, but how are they structured?

There is a clever solution for IP multicast groups to solve the problems described above. On the one
hand, this solution prevents broadcasting of multicast packets; on the other hand, it concurrently filters
IP groups on the MAC layer. The method, described here, is simple, and it relieves the central
processing unit from too many unnecessary interrupts.

IP multicast packets are packed in MAC frames before they are sent to the local area network, and
they contain a MAC group address. The MAC address is selected so that it gives a clue about which

multicast group the packet could belong to. Figure 17-9 shows how this address is structured; it
contains the following elements:

+ The first 25 bits of the MAC address identify the group address for IP multicast.

The first byte (0x01) shows that the address is a group MAC address, where the last bit is

decisive. Notice that the address shown in Figure 17-9 is represented in the network byte
order.

The next 17 bits (0x005E) state that the MAC packet carries an IP multicast packet. The
identifier here would be different for other layer-3 protocols.

« The last 23 bits carry the last 23 bits of the IP multicast address.

Figure 17-9. Mapping an IP multicast group address to an IEEE-802 MAC address.
[View full size image]

28 bits
A
i \
{} 4 3l
0: Unicast MAC address [1110 IP mulsicast adedress
L: Group MAC address

Q X

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

17.5 Multicasting in Today's Internet

Multicasting was a thing unheard of at the advent of the Internet, and neither group addresses nor
protocols to manage groups or multicast routing were available. In fact, the most important
prerequisites to implementing an efficient group communication service were missing. The Internet
was a pure unicast network.

Several proposals in this field were made [Deer91] when the Internet community had started to think
that such a service was necessary, at the beginning of the nineties. Eventually, IP multicast was born
when the Internet Group Management Protocol and the address class D were standardized. In
addition, multicast routing protocols were proposed, so that nothing was actually impeding the
introducing of the new communication form. However, though the Internet had evolved into an
enormous global network during the last twenty years, it was still a unicast network, and gradually
each system connected to the Internet would have had to be extended to IP multicast support. This
change would certainly have taken several years to complete. In addition, the new technology had not
yet been tested extensively. Consequently, a decision was made to build a multicast test network
within the unicast Internet, the so-called MBone (Multicast Backbone On the Internet), rather than
converting to multicast from scratch.

17.5.1 The Multicast Backbone (MBone)

The Internet Engineering Task Force (IETF) ran a pilot transmission session to officially introduce
MBone in March 1992. Since then, more than 10,000 subnetworks have been connected to this
network worldwide. MBone enables the connected multicast-enhanced subnetworks to run IP
multicasting over the existing Internet, even though the Internet itself is not multicast capable.

The solution offered by MBone is relatively simple: It builds a virtual multicast network over the
conventional Internet, which understands only unicasting, and connected systems communicate over
multicast-capable routers (multicast routers). As soon as there is a nonmulticast network between
them, multicast routers bridge this situation by a so-called IP-in-IP tunnel. This tunnel consists of a
unicast connection used to transport multicast traffic. For this purpose, the multicast router packs a
multicast packet into another IP packet at the beginning of the tunnel and sends it as a normal unicast
IP packet over the network to the tunnel output. The multicast router at that end of the tunnel removes
the outer unicast packet and sends the multicast packet to the multicast-capable network.

This method led to the formation of many multicast-capable islands interconnected by tunnels over the
conventional Internet. Figure 17-14 shows an example for the basic MBone architecture. Technically,
MBone is a virtual overlay network on top of the Internet. Similar overlay networks have been built to
study other Internet technologies, including 6Bone (Six-Bone) for IPv6 and QBone to study quality of
service (QoS) mechanisms.

Figure 17-14. MBone consists of multicast islands connected by tunnels.
[View full size image]
[A]GRIR:

MC rowter 3
£l

5
[AlG ltl]IRél-/.‘:C ruh.-r 4

17.5.2 Accessing MBone Over the nr out ed Daemon

A]G]

MC router 1

non-multicast
capable network

The nr out ed daemon is a tool you can use to connect to MBone. It enables you to build tunnels to
other MBone nodes and ensure connectivity. In addition, this daemon enables multicast routing for
multicast packets within or at the boundaries of a multicast network. The standard implementation of
nr out ed in UNIX uses the Distant Vector Multicast Routing Protocol (DVMRP; see Section 17.5.3).

Like all daemons, nr out ed operates in the user-address space and can be started and stopped at

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

17.6 Multicast Transport Protocols

So far, we have actually discussed only unreliable and connectionless multicast transmissions based on
UDP. This type of transmission is generally the most frequently used application of multicast, mainly
because it is much easier to handle. Nevertheless, there are application cases for connection-oriented
and reliable multicast communication, and so extensive interesting research work is undertaken in this
field.

Because the tasks involved in the reliable and connection-oriented transmission of multicast data
correspond mainly to the tasks of a transport protocol and these work on top of the IP Multicast, a
layer-3 service, the protocols developed so far are normally called multicast transport protocols. The
most important tasks of a transport protocol, including connection management, flow control, error
correction, and congestion control, are relatively complex and expensive for unicast communication,
and point-to-multipoint communication adds special problems to this situation. For example, consider
the sender implosion problem, which occurs when many receivers return acknowledgements for
received data packets to the sender, overloading the sender with an enormous data volume.

We will not discuss multicast transport protocols any further at this point, because there is currently no
protocol used as a standard under Linux. We do list a few protocols and research projects here. Some
of these protocols have been implemented and evaluated. However, none of these protocols is e
specially suited for all multicast applications; each one has specific benefits and drawbacks.

+ Real-Time Transport Protocol (RTP)? for real-time and multimedia applications.
» Scalable Reliable Multicast (SRM)? is currently used by the White Board tool.

» Uniform Reliable Group Communication Protocol (URGC)? supports reliable and in-order
communication.

+ Muse? an application-specific protocol for multicast news.
+ Multicast File Transfer Protocol (MFTP)? works much like the File Transfer Protocol (FTP).

» Local Group Concept (LGC)? uses a hierarchy of local groups to prevent sender implosion.

A Previous MHext k

ABC Amber CHM Converter Trial version

http:/ /veww.processtext.com/abocchm.htmil

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Chapter 18.

4 Pre‘uious] Hext P]

Using Traffic Control to Support

Quality of Service (QoS)

Section 18.1.
Section 18.2.
Section 18.3.
Section 18.4.
Section 18.5.
Section 18.6.
Section 18.7.

Introduction

Basic Structure of Traffic Control in Linux
Traffic Control in the Outgoing Direction
Kernel Structures and Interfaces

Ingress Policing

Implementing a Queuing Discipline
Configuration

4 Previous] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

18.1 Introduction

In the Linux world, the term traffic control represents all the possibilities to influence incoming and
outgoing network traffic in one way or another. In this context, we normally distinguish between two
definitions, although it is often difficult to draw a clear line between the two:

» Policing: "Policing" means that data streams are monitored and that packets not admitted by a
specified strategy (policy) are discarded. Within a networked computer, this can happen in
two places: when it is receiving packets from the network (ingress policing) and when it is
sending packets to the network.

« Traffic shaping: "Traffic shaping" refers to a targeted influence on mostly outgoing traffic. This
includes, for example, buffering of outgoing data to stay within a specified rate, setting
priorities for outgoing data streams, and marking packets for specific service classes.

The traffic-control framework developed for the Linux operating system creates a universal
environment, which integrates totally different elements for policing and traffic shaping that can be in
terconnected. These elements can even be dynamically loaded and unloaded as a module during
active operation. We describe this framework in detail below, but limit the discussion of the
implementation of elements in this framework to a single example. Subsequently, we will describe
configuration options in the user space.

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

18.2 Basic Structure of Traffic Control in Linux

Figure 18-1 shows where traffic control is arranged in the Linux kernel. Traffic control in the incoming

direction is handled by the functions from the file net / sch/ sch_i ngr ess. ¢ before incoming

packets are passed to higher protocol layers or forwarded over other network cards within the kernel.
Figure 18-1. Traffic control in the Linux kernel.

[View full size image]

Local delivery Locally created data |
nevipvdfip_inpi.c nevcoreldev.c
netsched/sch_ingress.c »| Forwarding b
‘Traffic control in
incoming direction el
netschedfsch_*.c
netfsched/cls_*.c
netcoreddeve
driverc Traffic control in
outgoing direction

The largest part of traffic control in Linux occurs in outgoing direction. Here, we can use and interlink
different elements for policing and traffic shaping.

4 Previous] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

18.3 Traffic Control in the Outgoing Direction

The traffic-control framework defines three basic elements:

Queuing discipline: Each network device is allocated to a queuing discipline. In general,
packets to be sent are passed to a queuing discipline and sorted within this queue by specific
rules. During a search for packets ready to be sent, these packets can be removed no earlier
than when the queuing discipline has marked them as ready for transmission. The algorithm
used within a queuing discipline remains invisible to the outside. Examples for queuing
disciplines include simple FIFO buffers and token buckets. More elaborate queuing disciplines
can also manage several queues. Queuing disciplines are defined in files with names
beginning with sch_ (in the net / sched directory).

Classes: Queuing disciplines can have several interfaces, and these interfaces are used to
insert packets in the queue management. This allows us to distinguish packets by classes.
Within one single queue discipline, we could allocate packets to different classes (e.g., to
handle them with different priorities). Classes are defined within the queuing discipline (i.e.,
also in files with names beginning with sch_).

Filters: Filters are generally used to allocate outgoing packets to classes within a queuing
discipline. Filters are defined in files with names beginning with ¢l s_.

Much as with a construction kit, single elements can be connected, even recursively: Other queuing
disciplines, with their corresponding classes and filters, can be used within one single queuing
discipline.

Figure 18-2 shows an example for the resulting traffic-control tree. On the outside, we first see only
the enqueue and dequeue functions of the upper queuing discipline. In this example, packets passed
via the function enqueue () are checked one after another by the filter rules and allocated to the
class visited by the filter for the first time. If none of the filter rules matches, then a default filter can
be used to define an allocation system. Behind the classes there are other queuing disciplines. Because
this is a tree, we also speak of the parent of a queuing discipline. For example, the queuing discipline
1:0 is a so-called outer queuing discipline and the parent of the classes 1:1 and 1:2. The queuing
disciplines 2:0 and 3:0 are also called inner queuing disciplines.

Figure 18-2. Example for a tree consisting of queuing disciplines, classes, and filters.

enqueue dequete

Queuing discipline 1:0

Filter Default

Queuing Queuing I

1 dierimlifmne Aie1mline

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

18.4 Kernel Structures and Interfaces

The interfaces available for queuing disciplines and filters are mostly independent of the functionality
available within an element.

18.4.1 Handles

All elements within the traffic-control tree can be addressed by 32-bit identifiers called handl es. For
example, the instances of the queuing disciplines discussed further below are marked with 32-bit
identifiers, divided into a major number and a minor humber. However, these numbers have nothing
to do with the major and minor numbers for device files. These identifiers are unique for each network
device, but they can occur more than once for several network devices.

In contrast, the minor number for a queue discipline is always null, except for input queuing discipline
number ffff:fff1 TC H I NGRESS (ini ncl ude/ | i nux/ pkt _sched. h) and the top queue of
output queuing discipline number ffff: ffff TC_H ROOT. Major numbers are assigned by the user
and are in the range from 0x0001 to 0x7f f f . If the user specifies major number 0, then the kernel
allocates a major number between 0x8000 und Oxf fff .

For classes, the major number corresponds to the associated queuing discipline, while the minor
number specifies the class within that queuing discipline. In this case, the minor number can be in the
range from 0x0 to Oxf f f f . Minor numbers are unique only within all classes of a queuing discipline.

i ncl ude/ | i nux/ pkt _sched. h defines several macros you can use to mask major and minor
numbers.

18.4.2 Queuing Disciplines

The functions supplied by a queuing discipline are defined in the Qdi sc_ops structure in
i ncl ude/ net/ pkt _sched. h:

struct Qdisc_ops {

struct Qi sc_ops *next ;

struct Qdisc_class_ops *cl _ops;

char i d[| FNAMSI Z] ;

i nt priv_size;

i nt (*enqueue) (struct sk_buff *, struct
Qisc *);

struct sk_buff * (*dequeue) (struct Qisc *);

i nt (*requeue) (struct sk _buff *, struct
Qisc *);

i nt (*drop) (struct Qisc *);

i nt (*init) (struct Qisc *, struct rtattr
*arg);

voi d (*reset) (struct Qdisc *);

voi d (*destroy) (struct Qisc *);

i nt (*change) (struct Qisc *, struct rtattr
*arg);

i nt (*dump) (struct Qdisc *, struct sk _buff
*),
b

The first four entries are a link to a list (st ruct Qdi sc_ops *next ;), a reference to the
class-related operations (st ruct Qdi sc_cl ass_ops *cl _ops), which will be described later.
They represent an identifier (char id [| FNAVBI Z]) and values used internally.

The following functions are available externally:

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

18.5 Ingress Policing

The file net / sched/ sch_i ngr ess. ¢ implements a queuing discipline designed for ingress policing.
Its structure is similar to that of other queuing disciplines, and the exported functions are similar to the
functions described in the previous section.

However, rather than buffering packets, this queuing discipline classifies packets to decide whether a
packet will be accepted or discarded. This means that the queuing discipline actually assumes a
firewall or Netfilter functionality. This functionality also reflects in the return values of the enqueue()
function, which are converted to Netfilter return values, as shown in the following excerpt from the
function i ngr ess_enqueue() (net/sched/ sch_i ngress. c):

case TC POLI CE_SHOT:
result = NF_DROP;
br eak;
case TC POLI CE_ RECLASSI FY: /* DSCP remnarking here ? */
case TC POLI CE K
case TC_POLI CE_UNSPEC.
defaul t:
result = NF_ACCEPT;
br eak;

First, the function r egi st er _qdi sc() registers the functions of the queuing discipline with the
network device. Subsequently, the function nf _r egi st er _hook() hooks them into the hook
NF_| P_PRE_ROUTI NG.

Next, additional filters can be appended to this particular queuing discipline. These filters can access
functions from net / sched/ pol i ce. ¢ to check on whether a data stream complies with a token bu
cket.

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

18.6 Implementing a Queuing Discipline

This section describes how we can implement a queuing discipline. We will use the token-bucket filter
as an example, because it represents a fundamental element of many traffic-shaping approaches.

18.6.1 The Token-Bucket Filter

A token-bucket filter is used to control and limit the rate and burst (when a specified data rate is
briefly exceeded) of data streams. Figure 18-4 illustrates the basic idea of a token bucket. In this
model, the determining parameters are the rate, R, at which a token bucket is filled with tokens, and
the maximum number of tokens, B, this token bucket can hold. Each token represents a byte that may
be sent. Subsequently, the token bucket declares a packet to comply with the rate and burst
parameters, if the number of tokens in the token bucket corresponds at least to the length of the
packet in bytes.

Figure 18-4. Model of a token bucket.

Rate R

Maximum number B

- of tokens
loken —_

Packets to be sent Conformity check

| | | | | | = Compliant packet

If a packet is compliant, it may be sent. Subsequently, the number of tokens in the token bucket is
reduced by a number corresponding to the packet length. If a noncompliant packet is deleted
immediately, then the token bucket runs a traffic-policing process. In contrast, if the packet is held
back until sufficient tokens have accumulated in the token bucket, we talk of traffic shaping.

A real-world implementation will realize this model differently, so that the computing cost is less,
though the result is the same. It would not make sense to increment a counter representing the
number of tokens several times per second, even when there is no packet to send. Instead,
computations are made only provided that a packet is ready to be sent and waiting at the input of the
token bucket. In this case, we can compute how many tokens have to be present in the token bucket at
that point in time. To do this computation, we need to know when the last packet was sent and what
the filling level of the token bucket was after that. The current number of available tokens is calculated
from the sum of tokens available after the last transmission, plus the tokens arrived in the meantime
(i.e., plus the interval, multiplied by the rate, R). Notice that the number of available tokens can never
be larger than B. If the number of tokens computed in this way corresponds to at least the length of
the waiting packet, then this packet may be sent. Otherwise, instead of sending the packet, a timer is
started. This timer expires when more packets can be sent as a sufficient number of tokens has
arrived. The timer has to be initialized to an appropriate interval, which can be easily calculated from
the number of tokens still missing and the rate, R, at which the bucket is filled with more tokens.

Such a token-bucket filter is implemented within the traffic-control framework in the file

net / sched/ sch_t bf . c. However, this is an extension (i.e., a dual token bucket). More specifically,
two token buckets are arranged back to back, in a frequently used arrangement, to guarantee a mean
rate and limit bursts. The first token bucket is set to a rate, R, corresponding to the desired mean data
rate, and the second token bucket is set to the peak rate and a significantly smaller number of tokens,

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

18.7 Configuration

This section describes how the traffic-control elements are configured from within the user space. To
configure traffic-control elements, the t ¢ tools are used. This toolset is a command-line configuration
program (available in [Kuzn01] as part of the i pr out e2 package). In addition, the RT netlink
interface is used to pass configuration information to the kernel.

18.7.1 The RT Netlink Interface

The RT netlink interface is fully described in Chapter 26. For the purposes of this section, it is
sufficient to know that the RT netlink interface is used to pass a pointertothe rtat t r (in

i ncl ude/ i nux/rtnetlink.h)structuretotheinit () or change() functions of the
traffic-control framework. The function rt at r _par se (net/core/ rtnetlink. c) can be used to
structure the data passed, and various macros, including RTA_ PAYLQAD und RTA DATA (

i ncl ude/ i nux/rtnetlink.h), can be used to print this information. The t crsg (

i ncl ude/ | i nux/rtnetlink. h) structure defines traffic-control messages that can be sent over
the RT netlink interface from within the user space.

18.7.2 The User Interface

The t ¢ program provides a command-line user interface to configure the Linux traffic control. This
tool is available from [Kuzn01].

The t ¢ tool enables you to set up and configure all elements of the traffic-control framework
discussed here, such as queuing disciplines, filters, and classes. To be able to use the Differentiated
Services support in Linux, we first have to set the entry TC_CONFI G_DI FFSERV=y in the Conf i g file
inthe i prout es/ t ¢ directory. If the kernel version and the version of your t ¢ tool match, then
calling nake in the same directory should enable you to compile successfully.

Depending on the element we want to configure, we now have to select the appropriate element,
together with additional options:

Usage: tc [OPTIONS] OBJECT { COMVAND | help } where OBJECT : =
{ gqdisc | class | filter }
OPTIONS :={ -s[tatistics] | -d[etails] | -r[aw] | -b[atch] file }

A detailed description of all additional options would go beyond the scope and volume of this book. You
can use the hel p command (e.g., t ¢ qdi sc add tbf hel p) to easily obtain information. In
addition, you can find an overview of ongoing work in the field of more comfortable user interfaces in
[Alme01].

4 Previous Mext k

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 19. Packet Filters and Firewalls
Section 19.1. Introduction
Section 19.2. The Ipchains Architecture of Linux 2.2
Section 19.3. The Netfilter Architecture of Linux 2.4

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

19.1 Introduction

Each network packet handled by a Linux computer passes a number of distinctive points within the
network implementation on its way through the Linux kernel before it either is delivered to a local
process or leaves the computer for further routing. Direct access to the packet stream in the kernel
opens up a large number of ways to manipulate packets, which are also suitable for implementing a
security strategy in the network. For example, functions were built into the routing code early in the
course of the Linux development. These functions allow the system administrator to influence how
packets are handled, depending on their source and destination addresses. In addition to the pure
filtering function, which lets you drop certain packets completely, this also includes more complex
manipulations, including address-conversion mechanisms (Network Address Translation? NAT) or the
support of transparent proxies. After its introduction in the form of i pf wadmin Linux Version 1.2, this
packet-filter code later underwent two complete revisions to ensure better manageability, extension of
the control options, and better integration of additional functionality (e.g., NAT). This chapter discusses
the differences between the packet-filter architecture of the current Linux Version 2.4 and that of the
previous Linux Version 2.2.

19.1.1 The Functional Principle of a Firewall

In its original meaning, the term firewall denotes a fire-resistant wall constructed to prevent the
spread of fire. In connection with computer networks, a firewall is a protection mechanism used in a
specific and exactly limited network (e.g., a corporate intranet) at a transition point from a neighboring
network (generally to the Internet) to protect the intranet against dangers from the outside.

A firewall consists normally of two types of components:

» Packet filters are normally implemented in routers and monitor the entire network traffic
flowing through these routers. These routers use a well-defined set of rules (e.g., address
information contained in a packet header) to decide which packets can pass and which will be
dropped.

In the case of IP networks, packet-filter rules normally refer at least to the IP source and
destination addresses, the transport protocol (TCP or UDP), the TCP or UDP source and
destination ports, and some TCP flags (for TCP; particularly the SYN flag, which can be used
to see whether a packet is a connection-establishment request).

+ Application gateways or proxies (e.g., mail relays and HTTP proxies) act as mediators
between the communicating application processes and can implement fine-grained,
application-specific access control.

A complete firewall configuration (see Figure 19-1) normally consists of an inner router with
packet-filtering functionality, which forms the transition to the network to be protected; an outer router
with packet-filtering functionality, which forms the transition to the external network; and a number of
application gateways located in an independent local area network between these routers. This
network within the firewall is normally called a demilitarized zone (DMZ) or screened subnet. If
gateways are available for all required application protocols, then the packet filters can be configured
so that no packets are forwarded directly between the internal and the external networks. Instead,
exclusive communication is between the internal network and the DMZ and between the external
network and the DMZ.

Figure 19-1. Structure of a firewall.
[View full size image]

“Demilitarized zone™
Houter with Router with
packet filter packet filter
& HTTFP proxy

& Mail gateway

| .

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

19.2 The Ipchains Architecture of Linux 2.2

i pchai ns is a packet-filtering architecture consisting of an infrastructure in the Linux kernel and a
user-space program to manage rules lists, like all packet-filtering architectures currently implemented
in Linux. In Linux 2.2, this product is called i pchai ns. (See Figure 19-2.) Section 19.2.1 will
discuss its invocation syntax and how we can define rules.

Figure 19-2. The packet-filtering architecture in Linux 2.2 (i pchai ns) .

Device driver Device driver
(input) (output)

- ~

CRC check

—

(Mther Loopback device

consistency checks

Y

@ chain

Y

Demasquerading § @@

1 Forwarded packets A

Routing Fo 1 chain

—

Incoming packets

Higher layers
Local processes

L |

Outgoing packets

The filtering mechanisms implemented in Linux kernel Version 2.2 divide all data packets into the
following three classes, depending on their source and destination addresses:

1 incoming packets? those addressed to the local computer;

2. packets to be forwarded and leaving the local computer over a different network interface
based on a routing decision;

3. outgoing packets created in the local computer.

For each of these classes, the network stack of the respective protocol includes a prominent position,
and each packet of the corresponding class has to pass it. In each of these positions, there is a hook,
where a linked rules list (chain) is hooked, hence the name i pchai ns.

According to the packet class they are allocated to, the rules lists are called input chain, forward chain,
and output chain. These chains are organized so that they are processed sequentially, beginning from
the first defined rule. If a rule accepts an incoming packet, then this packet is handled according to the
branch destination defined in the rule, where Linux Version 2.2 introduced the support of user-defined
rules lists. This means that, in addition to the linear processing of rules lists, we can also implement
branching. Other possible branch destinations are the following:

+ ACCEPT? completes processing of the rules list and releases the packet for further handling.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

19.3 The Netfilter Architecture of Linux 2.4

Linux Version 2.4 divides the packet-filtering functionality into two large blocks: The so-called netfilter
hooks offer a comfortable way to catch and manipulate processed IP packets at different positions on
their way through the Linux kernel. Building on this background, the i pt abl es module implements
three rules lists to filter incoming, forwarded, and outgoing IP packets. These lists correspond roughly
to the rules lists used by i pchai ns. In addition, similar modules are available for other network prot
ocols (e.g., i p6t abl es for IP Version 6).

19.3.1 Netfilter Hooks in the Linux Kernel

As was mentioned briefly in Section 19.2.2, the netfilter architecture includes a uniform interface,
reducing the cost involved to implement new functions. It is called netfilter hook, which means that it
provides a hook for packet-filter code. This section discusses the components of this architecture and
its implementation in the Linux kernel. Actually, this section supplies brief instructions to facilitate your
writing your own netfilter modules.

Netfilter modules can be loaded into the Linux kernel at runtime, so we need hooks in the actual routing
code to enable dynamic hooking of functions. An integer identifier is allocated to each of these netffilter
hooks. The identifiers of all hooks for each supported protocol are defined in the protocol-specific
header file (<l i nux/ netfilter_ipv4. h>or<linux/netfilter_ipv6.h>). The following five
hooks are defined for IP Version 4 in <l i nux/ netfilter_i pv4. h>:

* NF_IP_PRE_RQOUTI NG (0) : Incoming packets pass this hook in the i p_r cv() function
(see Section 14.2.1) before they are processed by the routing code. Prior to that, only a few
simple consistency checks with regard to the version, length, and checksum fields in the IP
header are done.

Meaningful opportunities to use this hook result whenever incoming packets should be caught
before they are processed? for example, to detect certain types of denial-of-service attacks
that operate on poorly built IP packets, or for address-translation mechanisms (NAT), or for
accounting functions (counting of incoming packets).

* NF_IP_LOCAL_IN (1) :Allincoming packets addressed to the local computer pass this
hook in the function i p_I ocal _del i ver () . At this point, the i pt abl es module hooks the
| NPUT rules list into place to filter incoming data packets. This corresponds to the input rules
listin i pchai ns.

* NF_IP_FORWARD (2) : All incoming packets not addressed to the local computer pass this
hook in the function i p_f orwar d() ? that is, packets to be forwarded and leaving the
computer over a different network interface.

This includes any packet the address of which was modified by NAT. At this point, the
i pt abl es module hooks the FORWARD rules list into place to filter forwarded data packets.
This corresponds to the forward rules list in i pchai ns.

* NF_IP_LOCAL_QUT (3):Alloutgoing packets created in the local computer pass this hook
in the function i p_bui | d_and_send_pkt () . At this point, the i pt abl es module hooks
the QUTPUT rules list into place to filter outgoing data packets. This corresponds to the output
rules listin i pchai ns.

* NF_IP_POST_ROUTI NG (4) : Thishookinthe i p fini sh_out put () function represents
the last chance to access all outgoing (forwarded or locally created) packets before they leave
the computer over a network device. Like the NF_I P_PRE_ROUTI NG hook, this is a good
place to integrate accounting functions.

Figure 19-3 shows data packets traveling through different hooks.

Figure 19-3. The packet filtering architecture of Linux 2.4 (netfilter).
[View full size image]

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 20. Connection Tracking

Section 20.1. Introduction

Section 20.2. Implementation

4 F'rexriu:-us] Mext P]

fr—— e ———

%1
-
I!.

|

B

Vzal
!I Y

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

20.1 Introduction

This chapter discusses the connection-tracking module, which forms the basis for extended

packet-filter functions, particularly for network address translation (NAT? see Chapter 21) in Linux 2
4.

The connection-tracking module manages individual connections (particularly TCP connections, but
also UDP associations) and serves to allocate incoming, outgoing, and forwarded IP packets to existing
connections. A new connection entry is generated as soon as the connection-tracking module registers
a connection-establishment packet. From then on, each packet belonging to this connection is uniquely
assigned to this connection. For example, this enables the NAT implementation to figure out exactly
whether an incoming packet needs a free IP address and port number or one of the addresses and
port numbers previously assigned can be used. The connection is deleted after a certain period of time
has elapsed without traffic (timeout), which depends on the transport protocol used (i.e., TCP, UDP, or
ICMP). Subsequently, the NAT module can reuse the address and port number that have become
available.

The connection-tracking module is not limited to transport protocols; it can basically also support
complex application protocols. For example, a stateful filter and an address-translation mechanism for
active FTP (see Section 19.1.2) can be implemented. For this purpose, the connection-tracking
module has to be able to associate newly established data connections with an existing control
connection.

20.1.1 Using the Connection-Tracking Module

Two functions can be invoked to access connection entries: i p_connt r ack_get () and

i p_conntrack_put().Theip_conntrack_get () function returns a connection entry for an IP
packet passed as an sk_buf f structure and automatically increments the reference counter for this
connection. The i p_connt rack_put () function informs the connection-tracking module that the p
reviously requested connection is no longer needed and decrements the reference counter.

To find a connection entry, we can use a so-called tuple (see Section 20.2.2) instead of an sk_buf f
structure with a complete IP packet. Such a tuple contains only the source and destination addresses
and additional protocol information. The i p_connt rack_f i nd_get () is used for this purpose.

4 Previous Heaxt

ABC Amber CHM Converter Trial version

http:/ /v, processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

20.2 Implementation

The module interface of the connection-tracking module is located in the file
net/ipv4/ netfilter/ip_conntrack_standal one. c. Thefile

net/ipv4/netfilter/ip_conntrack_core. c contains the actual connection-tracking
functionality.

20.2.1 Basic Structure

The connection-tracking module hooks itself into the netfilter hooks NF_| P_PRE_ROUTI NG and
NF_| P_LOCAL_OUT (see Section 19.3.1 and Figure 20-1) with very high priority (the
NF_| P_PRI _CONNTRACK is set to ?00 in <l i nux/ net fi |l t er _i pv4. h>). This means that each

incoming packet is first passed to the connection-tracking module. Subsequently, other modules also
hooked into these hooks, but with lower priority, get their turns.

Figure 20-1. Netfilter hooks used by the connection-tracking module.
[View full size image]

Device driver Device drnver
{imput) (output)

+ 3
CRC check
Consistency checks

Connectisn Tracking

NF_IP_POST _ROUTING

Routing

Forwarded packets

Routing

NE_IP_LOCAL OUT

Connection Tracking I

Higher layers
Local processes

Incoming packets Outgoing packets

20.2.2 Connection Entries

struct ip_conntrack linux/netfilter_ipv4/ip_conntrack.h

A connection entry is represented in the Linux kernel by an i p_connt r ack structure, consisting of
the following fields:

» Astructure of the type nf _connt r ack (defined in <I i nux/ skbuf f . h>), which includes a
reference counter (use) that counts the number of open references to this connection entry.

» Two tuples for forward and reverse direction (t upl ehash[0], tupl ehash[1]),
consisting of address and protocol information, which can be used to reference this entry.

« Astatus field (st at us), containing a bit vector with the following bits:
0 | PS_EXPECTED: The connection was expected.

o0 | PS_SEEN REPLY: Packets have already occurred in both directions.

I ——

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 21. Network Address Translation (NAT)
Section 21.1. Introduction
Section 21.2. Configuring NAT in Linux
Section 21.3. Implementing the NAT Module
Section 21.4. Interfaces to Extend the NAT Module

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

21.1 Introduction

The Network Address Translation (NAT) mechanism deals generally with the translation of IP
addresses. It represents an effective way to encounter the exhaustion of free IP addresses (Version 4)
in view of the explosive growth of the Internet. However, transition to IP Version 6 with its much larger
address space progresses only slowly, because it was found extremely difficult to convert a
decentralized network like the global Internet to a new protocol at one shot. Exactly this is where NAT
comes in useful: For example, it allows all users in a local area network to access the Internet and its
services, even though there is only one single official IP address available, and only private IP
addresses (according to RFC 1918 [RMKG + 96]) are used within the local area network. A router
accessible to the network, used by the users to connect to the global Internet, handles the required
address mapping.

The NAT implementation in Linux 2.4 consists of two parts: connection tracking, and the actual NAT.
Chapter 20 described how the connection-tracking mechanism is implemented.

21.1.1 Important Terminology

One of the most important technical terms in the NAT area is the so-called session flow. A session
flow is a set of IP packets, exchanged between two instances and forming a unit in that they are
treated equally by a NAT router. Such a session flow is directed to the direction the first packet was
sent. For this reason, we speak of original and reverse directions in the following discussion. One good
example is a telnet session: The corresponding TCP connection is initiated by the terminal computer,
so the original direction of the relevant session flow points from the terminal to the server. T
CP/UDP-based session flows can be described uniquely by an {IP source address, source port, IP
destination address, destination port} tuple. Similarly, an ICMP session flow can be identified by an {IP
source address, IP destination address, ICMP type, ICMP ID} tuple.

[SrH099] describes three characteristic requirements that should be met by all NAT variants:
« transparent address allocation;
« transparent routing; and
« correct handling of ICMP packets.

The following sections explain each of these requirements and what they mean.
21.1.2 Transparent Address Allocation

Because we can use NAT to connect networks with different address spaces, these addresses from the
respective address spaces have to be allocated among them. This allocation can be either static or dy
namic. If we use static allocation, the allocations are maintained during the entire operation of a NAT
router. Static allocations simplify the address translation, because no state information about specific
session flows has to be maintained. In dynamic allocation, the allocation is specified at the time that a
session flow is opened. This allocation remains valid until the session is terminated. In some cases,
the allocation rule can be extended beyond the IP addresses to include the transport protocol ports.
(See Section 21.1.6.) In any event, address allocation should be transparent: The mechanisms
should be hidden from the applications in end systems.

21.1.3 Transparent Routing

We use the term "transparent routing" in the following discussion to distinguish the routing
functionality of a NAT router from the functionality of a normal router. Transparent routing differs from
normal routing in that packets are forwarded between two different address spaces by changing the
address information in IP packets and routing to match these modified addresses.

Transparent routing can be divided into three phases: address binding, address translation, and
releasing of the address binding.

+ Address binding: This phase permanently binds two addresses from the two address spaces

to be bound. This should not be confused with the address allocation mentioned above? the
~AAdrace allacation Anlvy Aeatarminac valid bhindinae Thace bindinac will fthen actiiallvy avier anhy

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

21.2 Configuring NAT in Linux

The i pt abl e_nat . o module implements the unidirectional NAPT variant described in Section

21.1.6. Like the Twice NAT variant, it can change the source and destination addresses of a session
flow simultaneously.

To intercept and process packets, NAT uses the infrastructure supplied by the neffilter architecture.
(See Section 19.3.1.) Figure 21-2 shows that it hooks itself into the netfilter hooks

NF_| P_PRE_ROUTI NG NF_I P_POST_ROUTI NG, and NF_I P_LOCAL_QuT for this purpose. The
NAT module is invoked as soon as a packet traverses the appropriate hook, and a pointer to the
sk_buf f structure is passed, together with the packet. For configuration purposes, it is important that
the source address be translated at the NF_I P_POST_ROUTI NG hook while the destination address is
being translated in one of the other two hooks.

Figure 21-2. Netfilter hooks used by the NAT module.
[View full size image]

Device driver Device driver
{imput) (output)

+ 3
CRC check i
Consistency checks

MAT

Connection Tracking

NF_IP_PRE_ROUTING NF_IP_POST_ROUTING

Forwarded packets

witing
| Routing NF_IP_ FORWARD

MNE_IP_LOCAL_IN
Connection Tracking
Higher layers
Incoming packets Local processes Owigoing packeis NAT

The first, preliminary versions of the new netffilter architecture allowed you to configure NAT by using
an independent tool called i pnat ct | . More recently, this functionality was fully integrated in the

i pt abl es tool. i pt abl es can be used to specify rules that control the behavior of the NAT module.
As was described in Section 19.2.1, a rule consists of a set of criteria to select session flows (
matching rule) and a second part specifying how a session flow should be transformed (binding type
or mapping type).

[Routing

NF_IP_LCAL OUT

Criteria identical to packet-filter rules are available to select session flows: the IP source and
destination addresses, the transport protocol, the port numbers, and the protocol-specific flags. The
second part of a NAT rule defines how a session flow should be transformed. To this end, there are
additional branch destinations, which are valid in the nat table only. We can use -j SNAT to activate
the translation of the source address (source NAT) and -j DNAT to translate the destination address (
destination NAT). In addition, we have to use - -t 0- sour ce oOr - -t 0- dest i nat i on to specify a
range of IP addresses and port numbers, if present, for the address-translation process.

The selection criteria of the source NAT rule are applied to the original packet-address information in
the event that both a source NAT and a destination NAT rule apply to the packet, though the
destination address has already been changed by the destination NAT at that point. There are
additional branch destinations (e.g., -j MAS- QUERADE for masquerading in the Linux 2.2 style) for
special cases.

In the example discussed in Section 21.1.6, where source NAT is used to map the internal addresses
from the private address range 192.168.1.0792.168.1.255 to the global address 199.10.42.1, the

R | LI B I B P W Y < | DL <

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

21.3 Implementing the NAT Module

This section first introduces important data structures to manage session flows, allocations, and
address bindings. Subsequently, it will explain the functions used to establish and tear down address
bindings, to actually translate addresses, and to handle ICMP error messages.

21.3.1 Important Data Structures

All session flows are completely managed by the connection-tracking module described in Chapter 20,
A structure of the type i p_connt r ack is stored for each session flow. (See Section 20.2.2.) This
structure includes two data structures of the type i p_connt r ack_t upl e_hash, representing the
forward and reverse directions of a session flow. If a session flow is translated by the NAT module,
then the i p_connt rack_t upl e_hash structure for the reverse direction is adapted so that reply
packets can be allocated to it properly.

In the example discussed in Section 21.1.6, where the internal address 192.168.1.1 is translated into
the global address 199.10.42.1, a connection from port 1200 to port 80 in the WWW server 100.1.1.1
would be represented by the following entries:

e Forward: 192.168.1.1:1200 = 100.1.1.1:80
e Reverse: 100.1.1.1:80 = 199.10.42.1:1200

The connection-tracking module stores a pointer to the relevant data structure of the type

i p_conntrack inthe sk_buf f of each packet. If the NAT module wants to allocate an IP packet to
a session flow, it invokes its own i p_connt r ack_get () function, which returns the matching

i p_conntrack structure.

struct ip_nat_expect linux/netfilter_ipv4/ip_nat_rule.h

The NAT module has an ordered list, nat _expect _I i st , with data structures of the type

i p_nat _expect , to enable protocol-specific NAT modules (e.g., for FTP? see Section 21.1.7) to
decide when a new session flow was expected, so that it requires special handling. Each of these
structures consists essentially of a pointer to a function that actually makes that decision:

struct ip_nat_expect

struct list _head list;
/* Returns 1 (and sets verdict) if it has setup NAT for this
connection */

int (*expect) (struct sk_buff **pskb
unsi gnhed i nt hooknum
struct ip_conntrack *ct,
struct ip_nat_info *info,
struct ip_conntrack *master,
struct ip_nat_info *nasterinfo,
unsi gned int *verdict);

b

struct ip_nat_nulti_range linux/netfilter_ipv4/ip_nat.h

The i p_nat _mul ti _range structure is used mainly to specify the set of addresses available for
address translation. It contains one or several structures of the type i p_nat _r ange, each specifying
a continuous IP address range, and a r angesi ze field that takes the number of contained

i p_nat _range structures:

struct ip_nat_multi_range
{

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

21.4 Interfaces to Extend the NAT Module

The NAT module offers various extension options. These extensions are actually independent modules
that can use the registration functions of the NAT module to register and unregister themselves. The
following extensions are possible:

« Transport protocols (e.g., TCP): To use a new protocol, we have to write two extension
modules? one for connection tracking and one for NAT.

» Helper modules (helpers): To be able to handle application protocols, such as FTP (see
Section 21.1.7), properly, we can register helper modules. Again, this requires one helper
each for connection tracking and NAT.

+ Configuration-tool extensions: In addition, the i pt abl es configuration tool has to be
extended by the corresponding command-line parameters for each new protocol and each
new helper module. We will not discuss this issue any further.

21.4.1 Transport Protocols

The functions i p_nat _protocol register() andip_nat_protocol unregister() canbe
used to register a new transport protocol or to unregister an existing protocol. When registering a new
protocol, we have to pass a pointer to a structure of the type i p_nat _pr ot ocol as a parameter.

struct _i p_nat _protocol linux/netfilter_ipv4/ip_nat_protocol.h

struct _i p_nat _prot ocol

{

struct list_head |ist;

/* Protocol nane */
const char *nane;

/* Protocol nunber. */
unsi gned int protonum

/* Do a packet translation according to the ip_nat_proto_manip
* and manip type. */
void (*mani p_pkt) (struct iphdr *iph, size_t len
const struct ip_conntrack_mani p *manip,
enum i p_nat _nani p_t ype nani ptype);
/* I's the mani pable part of the tuple between mn and max incl? */
int (*in_range)(const struct ip_conntrack tuple *tuple,
enum i p_nat _nmani p_t ype nani ptype,
const union ip_conntrack _mani p_proto *min,
const union ip_conntrack_mani p_proto *max);

/* Alter the per-proto part of the tuple (dependi ng on
mani ptype), to give a unique tuple in the given range if
possible; return false if not. Per-protocol part of tuple
is initialized to the inconm ng packet. */
int (*unique_tuple)(struct ip_conntrack tuple *tuple,
const struct ip_nat_range *range,
enum i p_nat _nmani p_t ype nani ptype,
const struct ip_conntrack *conntrack);
unsigned int (*print)(char *buffer,
const struct ip_conntrack_tuple *match
const struct ip_conntrack_tuple *mask);

unsigned int (*print range)(char *buffer,

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 22. Extending the Linux Network
Architecture Functionality? KIDS

component instances: This chapter deals with the introduction of new, dynamically extendable
functionalities in the Linux network architecture or in the Linux kernel. We will first show the usual
approach to manage dynamically extendable functionalities and the operations generally involved in
this approach.

Subsequently, we will use Linux KIDS, the implementation of a construction system to support network
services, to show how a dynamically extendable functionality can be managed. Another interesting
aspect of Linux KIDS is how its object-oriented concept is implemented in the Linux kernel, considering
that the Linux kernel was not designed with object orientation in mind.

In addition, we will explain how the KIDS components can be embedded into the processes of protocol
instances over existing interfaces, which means that you can use the functionality of Linux KIDS without
having to change the kernel source code. Finally, this chapter describes how you can use a
character-oriented device to configure the KIDS construction system, allowing you to easily configure
this functionality in the kernel.

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

22.1 Managing Dynamically Extendable Functionalities

The Linux network architecture is continually extended by new functions and protocol instances. In
most cases, such an extension can even be dynamic (i.e., at runtime), as we saw in earlier chapters:
network-layer protocols (Section 6.3), transport-layer protocols (Section 14.2.5), and packet filters (
Section 19.3).

All we need to implement such a dynamic extendibility are an appropriate interface and structures that
manage the registered functionality. Functions like r egi st er _functional ity() and

unregi ster_functionality() canbe used to register new functionalities with the kernel or
remove existing functionalities.

These registering and unregistering functions execute all initialization or cleanup steps required. For
example, when removing a functionality, we have to ensure that it is no longer used in any other
location of the kernel. This means that it has to use a reference counter (use counter) and check this
counter (use_count er == 0?) before unregistering a functionality.

The following operations are some of those normally executed in the registration function of an
interface and undone, accordingly, in the unregistering functions:

» storing the new functionality of its management structure in a list, hash table, or another data
structure;

« reserving memory for the required data structures or procuring other resources (IRQ, DMA,
timer, etc.);

» incrementing reference counters;
+ creating entries in the proc directory;
* using print k() to output status messages.

A new functionality (e.g., a new network-layer protocol or a new network device) normally takes many
parameters. It would be difficult the pass all of these parameters individually in the registration
function, mainly because they are required while the functionality is being used, which is normally
outside the registration function. For this reason, a structure to manage the functionality is normally
created. When registering a new functionality, this structure can be entered in a list, hash table, or
similar management structures. This method ensures that we can access these functionalities and
their parameters after the registration. Earlier chapters introduced a large humber of such
management structures, including the net _devi ce structure for network devices and the

packet _type structure for network-layer protocols.

Such a management structure is filled with the parameters required before it is registered.
Subsequently, a pointer to this management structure is passed to the registration function. The
elements of these management structures assume two different tasks:

« Configuration data is set before a functionality is registered and passed as (configuration)
parameter within the structure. In the packet _t ype structure (Chapter 6), for example,
these parameters include the t ype and f unc variables.

» Runtime variables are not explicitly set before a functionality is registered. They are needed
later when the functionality is used (e.g., next to link structures, or a use counter to count
references).

After a registration, of course, we can also use configuration variables as runtime variables, if the
initial value is no longer needed.

After this brief overview of the principles of how to manage functionalities registered dynamically, the
sections following discuss how the KIDS framework is implemented in the Linux kernel 2.4 (Linux
KIDS). This framework relies heavily on the concept of dynamically extendable functionalities, as
shown in our Linux KIDS example further below. Another interesting point is that the components and
their instances are based on the object-oriented concept, and this approach could probably be adopted

Enr Al Ar cAafFiarmrAa mirmatarte m FlaAa Limitivy Larimal ThAa mAavE cAadiAarm lAamdime ianidla mmm o irmbradi i~iAam AF i+~

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

22.2 Structure of the KIDS Construction System

KIDS stands for Karlsruhe Implementation architecture of Differentiated Services and was developed
for the design, evaluation, and use of quality-of-service (QoS) mechanisms in networks [Wehr01b].
KIDS is an abstract model describing the structure and interaction of quality-of-service mechanisms,
and it allows you to define individual QoS behavior in a flexible way. The KIDS framework was
implemented on various platforms, including Linux (kernel Version 2.4) and the OMNeT++ simulation
tool. Though Linux already supports some QoS features (see Chapter 18), KIDS introduces several
important benefits, as we will see in the further course of this chapter. The next two sections will
introduce the general structure of the KIDS framework; however, we will leave out a few details to
keep things short? see [Wehr01a] for details.

22.2.1 Elementary QoS Components

KIDS was designed to create a flexible, extendable, and modular framework for implementing
individual QoS mechanisms. It is based on the use of components that implement the elementary QoS
mechanisms, and so it is easy to combine them to more complex QoS mechanisms. Simple
combination of components and ensuring all potential degrees of freedom and easy extendability were
the most important factors in the design of the KIDS framework.

KIDS can be thought of as a construction kit, similarly to the popular Lego system, consisting of
components that have different interfaces. Components with similar interfaces can be connected
(almost arbitrarily) to form complex constructions (in this case QoS mechanisms).

We can distinguish two different interfaces in the components of the KIDS framework (as seen in
Figure 22-1):

» At a packet interface (), a component, A, uses packet output X to pass a data packet it
received at its input to the successor component, B. By convention, a KIDS component has but
a single input.

« Ata message interface (), component A uses message output X to pass a message to
component B, requesting the latter for a packet.

Figure 22-1. Interactions at the interfaces between two KIDS components.

[View full size image]
Packer inverface Message interface

Muodule A Module B Maodule A Module I}

The numbering is used
to demonstrate the

temporal sequence.
D [Zata packet D Data packet
O Data packet {marked for dropping) ‘O Dequeuing request

<> Enguening acknowledgment O Dequening rejection

By using these two interface types, we can distinguish five component classes, as shown in Figure
22-2. Each QoS mechanism can be assigned to one of these classes:

« Operative components (BHVR) operate on packets: They receive a packet and operate their
algorithm on this packet. The algorithm implemented in a component either changes the
packet (active operative component) or studies its output to forward the packet (passive
operative component).

Examples: Token Bucket, Shaper, Marker, Dropper, Classifier, Random Early Detection (RED).

¢ Queue combponents (O JFLIF) are data structures used bv components to enaueue or deaueue

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

22.3 Using the KIDS Example to Extend the Linux Network
Architecture

Now that we have given a brief overview of the elements in the KIDS framework, this section will
discuss its implementation in the Linux kernel as an example of how the functionality of the Linux
network architecture can be extended. We focus our discussion on the design and management of the
components: how and why they were designed, and how they are introduced to the kernel at runtime.
In addition, we will see how hooks are implemented on the basis of different existing kernel interfaces,
which means that we don't have to change the kernel to be able to use KIDS. Finally, we use the

ki dsd daemon as an example to show how components and hooks are configured and how they
interact between the kernel and the user level.

22.3.1 Components and Their Instances

The KIDS framework offers different types of components that can be used to implement different QoS
mechanisms (e.g., token buckets? see Section 18.6.1). A component can occur more than once
within a component chain, and each of these occurrences can have different parameters. This means
that we should be able to create an arbitrary number of instances from a component, but still try to
keep the memory required by these instances low. This principle reminds us strongly of the
object-orientation concept that lets you create an arbitrary number of object instances from a class.
Although all of these classes exist independently, they have the same behavior, because they use the
same methods.

This means that the component concept of Linux KIDS has an object-oriented character, though it was
written in C, a programming language that doesn't support object orientation. The component concept
of Linux KIDS consists of the following two parts:

« Components are QoS mechanisms implementing a specific behavior. They are managed in the
bhvr _t ype structure of Linux KIDS. This structure contains all properties of a component
(e.g., its behavior in the form of pointers to corresponding methods? shown below). These
methods are used by several instances of that component concurrently, so they have to be
reentrant. Components correspond to the principle of classes in the object-oriented model.

« Component instances are created when we need an instance of a component. To this end, we
create a data structure of the type bhvr . It stores all information about this component
instance? mainly, its individual parameter configuration. The instance should have the
component's behavior, so reference is made to the information stored in the bhvr _t ype
structure of the component. Component instances correspond to objects (or object instances)
in the object-oriented model.

The following discussion introduces how these two structures are built and what the parameters
mean. Subsequently, we will see how components can be registered or unregistered dynamically.

struct bhvr_type kids/kids_bhvr.h

Figure 22-4 shows how components and their instances interact. The bhvr _t ype structure of the
token bucket stores general component information.

Figure 22-4. The bhvr _t ype and bhvr structures manage components and their instances.

hiver_repe: Marker I_»

—marker funci()

[View full size image]

bftvr_tvpe

[bhvr_type_list by>{ name: Token_Bucket bhvr_type: Classifier

class_id: BV _I1}

private_data_size: 32

instances: 2

next

func — token bucket func()

deg_func

| ™ token bucket init ()
| token_bucket dest (]

constructor
destructor

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 23. IPv6? Internet Protocol Version 6
Section 23.1. Introduction
Section 23.2. IPv6 Features

Section 23.3. IPv6 Implementation

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

23.1 Introduction

Several years have passed since RFC 791 for IPv4 was published. During this time, the requirements
on the IP version used in the Internet have changed considerably. For example, the address space for
32-bit IPv4 addresses is almost depleted, in particularly because each mobile device, or even each
household device, is expected to get its own IP address. In addition, the transmission technologies in
fixed networks have so matured that packet errors have virtually been eradicated. These facts were
motivation for further development beyond IPv4 to the protocol for the future Internet, resulting in
IPv6. Since 1998, several standards have been introduced for IPv6, and the bases for these standards
are the following RFCs:

» RFC 2460 [HiDe98a] specifies IPv6.

» RFC 2373 [HiDe98b] describes the architecture for IPv6 addressing.

4 Previous] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

23.2 IPv6 Features

The new IP version was improved in many important points, but this protocol has been used in the real
world only to a limited extent. One of the reasons is that existing applications cannot run directly on
top of IPv6. The most important changes from IPv4 are the following:

» Extended address size: Instead of 32 bits, each IPv6 address contains 128 bits, enabling
several hierarchical levels and addressing a much larger number of nodes. In addition, the
IPv6 address of each node can be configured automatically. The support of multicast routing
has been improved. Moreover, a new address type, the anycast address, was defined, which
allows you to send a packet to an arbitrary node from within a group.

« Simplified header format: Some of the IPv4 packet-header fields are no longer supported, or
are now optional, to reduce the cost involved in processing IPv6 packets.

+ Extension headers: The way IPv6 encodes information is completely different from that in
IPv4, enabling more efficient forwarding, less strict limitations with regard to the length of
options, and more flexibility for new, future packet options.

+ Flow labeling: IPv6 is able to mark packets that belong to a specific stream. This allows the
sender to request special handling of these packets, enabling a much better support of service
qualities, such as priority handling or real-time services.

» Authentication and data protection: IPv6 specifies extensions to support authentication,
integrity, and confidentiality of data.

23.2.1 Addressing

The address space, extended from 232 (IPv4) to 2128 (IPv6) addresses, requires a new address
notation. The preferred and abbreviated notation is the hexadecimal notation (e.g.,

FEDC: BA98: 7654: 3210: FEDC: BA98: 7654: 3120). Each group (i.e., one block between two
colons, or between the beginning/end and a colon) represents 16 bits. Leading zeros can be omitted,
S0 one group can consist of one to four hexadecimal numbers. In addition, it is assumed that many
consecutive blocks consist of zeros, so a compressed notation was introduced: Each address may
contain at most one occurrence of two consecutive colons. In between, as many zeros as necessary
are used to reach the full length of an address. The following examples show this notation (the
meaning of each of these addresses will be discussed further below):

* A '"loopback" address:

e ::1 or 0:0:0:0:0:0:0:1 = 0000: 0000: 0000: 0000: 0000: 0000: 0000: 0001
e A normal address:

e F[83:5::12 or F83:5:0:0:0:0:0:12
e = 0F83: 0005: 0000: 0000: 0000: 0000: 0000: 0012

Alternatively, addresses can be represented in mixed form, composed of the new hexadecimal
notation and the decimal IPv4 notation. The format is then x: x: x: x: x: x: d. d. d. d, where x
represents the hexadecimal groups of IPv6 and d stands for the decimal IPv4 convention. One example
would be 0: 0: 0: 0: 0: FFFF: 129. 13. 64. 5 (or : : FFFF: 129. 13. 64. 5 in the abbreviated form).
How useful this is becomes obvious if you think of embedding IPv4 in IPv6.

As does IPv4, IPv6 supports unicast and multicast addresses. A new form of communication introduced
in IPv6 is anycast. Anycast is a mixture of unicast and multicast: A packet is sent to one computer in a
multicast group, where the network itself decides which computer this is. The "broadcast" address of
IPv4 (255. 255. 255. 255) doesn't exist in IPv6. This functionality, which was used mainly by ARP
(Address Resolution Protocol) to resolve IP addresses, is achieved by use of multicast addresses in
IPv6. ARP is no longer supported in IPv6. It was replaced by Neighbor Discovery, which was integrated
into ICMPvé.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

23.3 IPv6 Implementation

The implementation of IPv6 in the Linux kernel is in the net /i pv6 directory and in the header file

<i ncl ude/ net /i pv6. h>. The code of IPv4 formed the basis for the IPv6 implementation, so that
most things are similar. As in IPv4, packets can reach the IPv6 layer in either of three possible ways.
Figure 23-3 shows how a packet travels across the Linux kernel. Packets received by the network
card are passed by the function i pv6_r cv(sbk, dev, pt) tothe data-link layer, and

i p6_xm t (skb) sends packets created by higher layers or protocols (e.g., UDP or TCP). Finally,
special commands, such as i cnpv6_send(), can be used to create IPv6 packets in the | P layer.

Figure 23-3. IPv6 implementation in the Linux kernel.
[View full size image]

ipb_xmit

EXTENSIONS

Y

[1Ps_LOCAL_OUT |
_— _

ROUTING

IP_FORWARD

e)

ROUTING
4 [IP6_POST_ROUTING |

[1P6_PRE_ROUTING ||

v

23.3.1 Incoming Packets

i pv6_rcv() include/net/ipv6.h

i p6_rcv_finish() net/ipv6/ip6_input.c

The i pv6_rcv() function accepts IPv6 packets incoming from the lower layer. If an incoming packet
is addressed to a different computer, it is dropped immediately by i pv6_rcv(). If an IPv6 packet is
addressed to the local computer, then the first things to do are to check the IPv6 packet header and
the packet length and to use the skb_t ri n() function to correct things, if necessary. If a
packet-header extension of the type Hop-by-Hop Options follows next, this extension is processed by
the function i pv6_par se_hopopt s() . Subsequently, the NETFILTER call NF_| P6_PRE_ROUTI NG
passes the IPv6 packet to the i p6_r cv_fi ni sh() function, which invokes one of these three
functions: i p6_i nput (), ip6_nc_input(), ip6_forward().

23.3.2 Forwarding Packets

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Part V: Layer IV? Transport Layer

Chapter 24. Transmission Control Protocol (TCP)
Chapter 25. User Datagram Protocol (UDP)

Chapter 26. The Concept of Sockets

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 24. Transmission Control Protocol (TCP)

The Transmission Control Protocol (TCP) offers a reliable, byte-oriented, connection-oriented transport
service, in contrast to the unreliable datagram service used by the Internet Protocol (IP). Providing
these abilities makes the TCP transport protocol very complex. A large number of protocol

mechanisms are required to achieve the expected service. This chapter introduces these protocol
mechanisms and describes how they were implemented in the Linux kernel.

The TCP protocol belongs to the transport layer and can be used as an alternative to the User
Datagram Protocol (UDP), which offers a connectionless transport service. (See Chapter 25.) The
transport layer is immediately below the application layer. Consumers using the service of the protocol
are applications, and they reach the services of the TCP protocol instance over the socket interface
introduced in Chapters 26 and 27. To implement the transport service, the TCP layer uses the
Internet Protocol (IP). It provides an unreliable, connectionless datagram service, as described in
Chapter 14,

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

24.1 Overview

The protocol units that exchange TCP instances in this way are called segments, and the protocol units
of the IP protocol instances are called IP packets or datagrams.

24.1.1 Requirements on TCP

The TCP protocol was developed in the beginning of the eighties to run on top of the IP protocol and
provide a byte-oriented, reliable, connection-oriented transport service. The requirements on such a
protocol are as follows [Pete00]:

« to guarantee transmission of byte streams;

» to maintain the transmission order when delivering byte streams;

« congestion: to deliver not more than one single copy of each data unit passed for transmission;
« to transport data for an arbitrary length;

« to support synchronization between sender and receiver;

« to support flow control at the receiver's end; and

» to support several application processes in one system.

To meet these requirements, the TCP protocol provides a reliable, connection-oriented, byte-oriented
full-duplex transport service allowing two applications to set up a connection, to send data in both
directions reliably, and to finally close this connection. Each TCP connection is set up and terminated
gracefully, and all data are delivered before a connection is torn down, provided that the IP protocol
behaves in a service-compliant way. From an application's view, the TCP service can be divided into
the following properties [Pete00, Come00]:

« Connection orientation: TCP provides connection-oriented service where an application must
first request a connection to a destination and then use the connection to transfer data.

» Peer-to-peer communication: Each TCP connection has exactly two endpoints.

+ Complete reliability: TCP guarantees that the data sent across a connection will be delivered
exactly as sent, with no data missing or out of order.

» Full-duplex communication: A TCP connection allows data to flow in either direction and
allows either application program to send data at any time. TCP can buffer outgoing and
incoming data in both directions, making it possible for an application to send data and then to
continue computation while the data is being transferred.

» Byte-stream interface: We say that TCP provides a stream interface in which an application
sends a continuous sequence of octets across a connection. That is, TCP does not provide a
notion of records, and does not guarantee that data will be delivered to the receiving applicatio
n in pieces of the same size in which it was transferred by the sending application.

+ Reliable connection startup: TCP requires that, when two applications create a connection,
both must agree to the new connection; duplicate packets used in previous connections will
not appear to be valid responses or otherwise interfere with the new connection.

» Graceful connection shutdown: An application program can open a connection, send arbitrary
amounts of data, and then request that the connection be shut down. TCP guarantees to
deliver all the data reliably before closing the connection.

24.1.2 The TCP Packet Format

Figure 24-1 shows how a TCP segment is structured. TCP groups data from higher layers and adds a
header, as will be described below:

e The 16-bit SOILIRCF PORT (SRC PORT) field identifiec a nrocece in the cendina end cvetem

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

24.2 Implementing The TCP Protocol Instance

The protocol instance of the Transmission Control Protocol is one of the most complex parts in the
Linux network architecture. The protocol uses a large number of algorithms and features that require
extensive mechanisms to implement them. This section explains how these mechanisms are
implemented and how they interact in the TCP implementation.

First, we will have a look at "normal" receive and transmit processes in the TCP instance, where we
will leave out many details. Too much detail would make it difficult at this point to understand the
entire process in the TCP instance and the features of each of the TCP algorithms.

Section 24.3 discusses connection management? how TCP connections are established and torn
down; Section 24.4 discusses each of the algorithms used to exchange data (e.g., congestion control

and window scaling). Finally, Section 24.5 will introduce the tasks of the TCP protocol instance and
how its timers are managed.

The TCP protocol instance is extremely complex. It consists of a large humber of functions, inline
functions, structures, and macros. In addition, the large number of algorithms used within the TCP
protocol makes its description rather difficult. For this reason, we will begin with a general overview of
the process involved when receiving, and then when sending, a TCP segment. A detailed discussion of
the large number of algorithms used in TCP will follow in Section 24.4. In addition, this section
assumes that data is exchanged over an existing connection. The complex management of TCP
connections is dealt with in Section 24.3.

24.2.1 Handling Incoming TCP Segments

The transport protocol for an incoming packet is selected early, by the time it is needed in the IP layer,
to be able to pass the packet to the appropriate protocol-handling routine in the transport layer. (See

Section 14.2.5.) In the TCP instance, this task is handled by the t cp_v4 rcv() function
(net/ipva/tcp_ipv4.c).

Figure 24-2 shows how packets are processed in the TCP instance, and Figure 24-3 gives an
overview of what happens when the TCP instance receives a segment.

Figure 24-2, Partial representation of how packets are handled in the TCP instance.
[View full size image]

Tep_send_
(delaved)_ac

tep_send_skb

tep_write_
limer

..... tep_re-
transmit_skh

ip_inprilc

ip_local_deliver @

fpp_ontpt.e
-

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

24.3 Connection Management

Being a connection-oriented protocol that supports a number of additional mechanisms, such as packet
transmission in the correct order or urgent data, the TCP protocol is extremely complex. The protocol

machine shown in Figure 24-5 is characterized by a total of twelve states. This complexity calls for
extensive management of the current state of active connections.

Figure 24-5. The TCP state automaton.

Initial state

CLOSED

Application: passive
opening
Send

umeoul: RST

send; ---

Passive
opening

o Receve YN send SYN, ACK

SN Simultancous opening L
Application:
close or

g Limeoul
=

g s Passive close

aE

=2 :

% W ,‘9{\ ! :
. ¢?$ MULOSE_WAIT

ol i d

....Q. B B ...: : :

=y Simultaneous close: Applicatipn: dose!

3 Receive FIN Pl Send|FIN

ERccui\'t:
{ACK

— isend: ---
LAST_ACK 3

- . Send ACK e B
FIN_WAIT_I %, -III I.H.\TM.I

£ E;._“ N .
i Receie ACK i, 5 I'_E:.u..m. ACK
i Send: 1- Send: -4

L d

F[FIN_WAIT_2 i

TIME_WAITH

Receive FIN =]
Send ACK 2 MSL timeout : Active close

MSL: max, segment life

24.3.1 The TCP State Machine

A TCP connection's state is stored in the st at e field of the associated sock structure. The response
to the receipt of packets is different, depending on the state, so this state has to be polled for each

incoming packet. There are three phases: the connection-establishment phase, the data-transmission
phase, and the connection-teardown phase. Section 24.4 describes the protocol mechanisms of the

data-transmission phase in detail. This section discusses the connection-establishment and
connection-teardown phases.

As shown in Section 24.2, t cp_rcv_state_process() (net/ipv4/tcp_input.c) isthe
most important function for connection management, as long as the connection has not yet been
established. Packets in the TI ME_WAI T state are the only packets handled earlier in the
tcp_v4_rcv() function.

tco rcv state nrocess() net/invd/tco input.c

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

24.4 Protocol Mechanisms For Data Exchange

The following subsections introduce several protocol mechanisms of the TCP protocol. However, the
TCP protocol uses a large number of algorithms; a detailed description of all of these mechanisms
would go beyond the scope and volume of this chapter, but we will discuss selected parts of the TCP
instance here.

To begin with, Section 24.4.1 will discuss flow control by use of the sliding-window method. In
addition to flow control, we will have a look at the methods for window scaling, zero-window probing,
and the PAWS mechanism, including the timestamp option. Subsequently, Section 24.4.2 will discuss
methods for detection, handling, and avoidance of congestions: slow-start, congestion-avoidance,
fast-retransmit, and fast-recovery methods. Finally, Section 24.4.3 covers methods for load
avoidance, concentrating on the Nagle algorithm and the transmission of delayed acknowledgements.

The different timers used by a TCP instance and their management will be discussed in Section 24.5.
24.4.1 Flow Control

The TCP protocol uses flow control to regulate the data flow? the data volume exchanged between a
sender and a receiver? on a per-time-unit basis.™! Flow control limits the number of bytes sent in one
communication direction to prevent buffer overflows in the receiving TCP instance and to meet the
service consumer requirements. Reasons to limit the data flow by the receiving TCP instance include
the following:

i1 This section considers flow control in only one direction of a TCP connection and treats the two TCP
instances as a sender and a receiver. In bidirectional data exchange, the flow is controlled separately
for each direction, where each instance assumes both the role of a sender and the role of a receiver.

« The computing performance of the sending TCP instance can be higher than that of the
receiving instance. This means that the sender creates segments faster than the receiving
TCP instance can process them. In such a situation, the receive buffer at the receiver's end o
ver flows, causing segments to be discarded.

» An application removes data from the socket receive buffer at specific intervals, which means
that this buffer empties only occasionally. Examples include applications that output
multimedia contents, receiving contents faster than their playback rate.

Consequently, flow control can be used to prevent the receive buffer of a receiving TCP instance from
overflowing, which would cause additional incoming packets to be dropped. To implement flow control,
the TCP protocol uses the sliding-window mechanism. This mechanism is based on the assignment of
explicit transmit credits by the receiver [Pete00]. We will introduce it in the following section.

The Sliding-Window Mechanism

The sliding-window protocol mechanism is used commonly in transport protocols or
connection-oriented protocols, because it provides for three important tasks:

« The original order of a set of data segmented and sent in several packets can be restored in
the receiver.

« Missing or duplicate packets can be identified by ordering of packets. Together with additional
packet-retransmission methods, this enables us to guarantee reliable data transport.

+ The data flow between two TCP instances can be controlled by assigning transmit credits.
Specifically, it is distinguished between a fixed credit quantity (e.g., in HDLC) and explicit credit
assignment (e.g., in TCP).

The following elements are added to the protocol header (using the TCP protocol as our example) to
handle these tasks:

» All data is numbered consecutively by sequence numbers. The sequence numbers of the first
payload byte in a data packet is carried in the packet header and denotes the sequence
number of this segment. The t p- >snd nxt Vvariableinthe t cp opt structure stores the

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

24.5 Timer Management In TCP

In closing, this section briefly discusses how timers are managed in TCP. Timers are used in different
positions within the TCP protocol to control retransmissions and to limit the hold time for missing
packets.

24.5.1 Data Structures

struct tiner_|ist include/linux/timer.h

struct timer _list {
struct list _head list;
unsi gned | ong expires;
unsi gned | ong dat a;
voi d (*function) (unsigned |ong);
volatile int running;

H

The basis for each timer is the j i f f i es variable. As described in Chapter 2, it is updated by Linux
every 10 ms.

A timer structure includes a function pointers that takes a behavior function when initialized. This
function is invoked when the timer expires. The time at which it expires depends on the expi r es
field. This field takes an offset (in the j i f f i es unit) for the current time (also inthe j i f fi es unit).
The behavior function is invoked when this value is reached.

TCP maintains seven timers for each connection:

* SYNACK timer This timer is used when a TCP instance changes its state from LI STEN to
SYN_RECV. The TCP instance of the server initially waits three seconds for an ACK. If no ACK
arrives within this time, then the connection request is considered outdated.

* Retransnit timer Because the TCP protocol uses only positive acknowledgements, the
sending TCP instance has to see for itself whether a segment was lost. It does this by use of
the ret ransmi t timer, the expiry of which indicates that a segment could have been lost,
causing its retransmission.

The exponential backoff method assumes that retransmissions are caused by a congestion.
When segments are retransmitted, the timer value is increased exponentially so as to be able
to detect segment losses.

Theretransnit timer determines when packets have to be retransmitted during a data
transmission phase. This value depends on the round-trip time and normally is within the range from
200 ms to two minutes.

This timer is also used during the establishment of a connection. It is initialized to three seconds. Upon
expiry of this time, the backoff mechanism is used five times.

* Del ayed ACK timer This timer delays the transmission of ACK packets. The value is smaller
than 200 ms.

* Keepal i ve timer This timer is used to test whether a connection is still up. It is invoked for
the first time after nine hours. Subsequently, nine probes are sent every 75 seconds. If all
probes fail, the connection is reset.

* Probe timer This timer is used to test for a defined time interval, to see whether the zero
window still applies. The value depends on the round-trip time.

* Fi n\Wai t 2 timer The expiry of this timer switches the connection from the FI N_WAI T2 state
into the I OSED state. if no El N backet from the partner arrives.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 25. User Datagram Protocol (UDP)

Section 25.1. Introduction
Section 25.2. Data Structures

Section 25.3. Sending and Receiving UDP Datagrams

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

25.1 Introduction

The User Datagram Protocol (UDP) is described in RFC 768 [Post80] and represents a minimal
transport protocol. It runs on top of the Internet Protocol (IP) and essentially offers the same
functionality as IP itself: an unreliable, connectionless datagram service. In this case, unreliable means
that there are no mechanisms to detect and handle lost or duplicate packets. However, packets can be
optionally protected against bit errors by using a checksum, which covers both the packet header and
the payload of each packet, in contrast to IP. Otherwise, there is only one additional option, compared
to IP: Port numbers can be used to address different applications in a specific end system.

On the one hand, UDP is used for transaction-oriented applications, such as the Domain Name System
(DNS), where only one request and the relevant reply have to be transmitted, so that it is not
worthwhile establishing a connection context, which would mean, for example in TCP, that three
additional messages for the establishment and four messages for the tear-down were required. On
the other hand, UDP is also used where the reliability of a transmission plays a secondary role,
because one is primarily interested in transmitting data easily and quickly. For example, it is normally
not a problem if some packets are lost when audio streams are transmitted in small packets. On the
contrary, an automatic flow and error control with retransmission of lost packets would often be
disturbing to the smooth playback of the stream.

25.1.1 Packet Format

Figure 25-1 shows the format of UDP packets. The header fields are briefly described below.

Figure 25-1. UPD packet format.

0 15 16 31
Source port Destination port
Length Checksum
Payload

» Source port: The source port is the port number used by the sending process, in the range
from 1 to 65535; normally, the receiver of a request sent over UDP will direct its reply to this
port. RFC 768 specifies that giving the source port number is optional, and the field can have
the value zero, if it is not used. However, for UDP over the socket programming interface in
Linux (see Chapters 26 and 27), this is not possible, because a port number different from
zero is automatically assigned to each socket, if the user does not state one.

» Destination port: The destination port is used to address the application in the destination
system that is to receive a UDP packet.

« Length: The length is specified in octets and refers to the entire UDP packet, consisting of
packet header and payload. The smallest possible length is therefore eight octets, and the
largest possible UDP packet can transport 65535 ?8 = 65527 payload octets.

» Checksum: As in TCP, the calculation of the checksum includes a pseudo header, in addition to
the packet header and the payload. The format of this pseudo header is shown in Figure 25-2
. It includes the IP source and destination addresses, the UDP protocol identifier (17), and the
length of the UDP packet. The checksum is computed as a 16-bit ones complement of the one
s-complement sum over the data mentioned above, where a zero octet is appended if the
octet number is uneven. This method can be implemented efficiently for all processor types
(as described in RFCs 1071, 1141, and 1624 [BrBP88, MaKu90, Rijs94]). If the computation
results in the checksum zero, the all-1-bit value is transmitted instead, which is equivalent in
ones-complement arithmetic. A zero in the checksum field means that the sender has not
computed a checksum.

Figure 25-2. Pseudo header format for checksum calculation.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

25.2 Data Structures

The implementation of UDP in the Linux kernel does not require any additional or particularly complex
data structures. This section describes the data structure used to pass payload at the socket interface,
the UDP datagram itself, which is included in the general socket buffer structure, and the data
structure instances used to integrate the protocol into the network architecture.

25.2.1 Passing the Payload
The payload is given for the sendnsg() system call at the socket interface in the form of an msghdr
structure, which is checked by the socket interface and copied into the kernel (except for the actual

payload that initially remains in the user address space). Otherwise, the structure is passed, as is, to
the udp_sendnsg() function for sending UDP packets.

struct nsghdr include/linux/socket.h

struct msghdr {

voi d *neQ_nane;

i nt nmsg_nanel en;
struct iovec *neg_i ov;
__kernel _size_t nmsg_i ovl en;

voi d *nmeg_control;
__kernel _size_t nmsg_control | en;
unsi gned nmsg_fl ags;

H

For sending of UDP packets, nsg_nane is not really a name, but a pointer to a sockaddr _i n
structure (see Section 27.1.1), which contains an IP address and a port number; nsg_nanel en
describes the length of this structure. The nsg_i ov pointer refers to an array of i ovec structures,
which reference the payload. This means that this payload can be present in a series of individual
blocks, where each block is denoted in an i ovec structure by its initial address (i ov_base) and its
length (i ov_len):

struct iovec

voi d *i ov_base;
__kernel _size t i ov_Ien;

The buffer specified by nsg_cont rol and nsg_cont rol | en can be used to pass protocol-specific
control messages. We will not discuss the format of these messages; see detailed information in the
recv() system call manpage.

The nsg_f | ags element can be used to pass different flags both from the user process to the kernel
and in the opposite direction. For example, the kernel evaluates the following flags:

* MBG_DONTROUTE specifies that the destination must be in the local area network and that,
for this reason, the datagram should not be sent over a router to its destination.

* MBG_DONTWAI T prevents the system call from blocking if, for example, there are no data to
be received.

* MBG_ERRQUEUE means that no packet should be fetched, but instead a detailed error
message, which might be available at the socket.

The following flag is an example of flags returned by the kernel to the user process:

* MBG_TRUNC indicates that the buffer space provided for receiving was insufficient, so that

DY o ¥ P DY TR P T (Y T

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

25.3 Sending and Receiving UDP Datagrams

The sending of UDP packets, starting from the system call at the socket interface and running all the
way until the completed packet is added to the output queue of the network interface, is handled in
just one pass, but the receiving of UDP packets requires two separate steps: Once a packet has been
received, udp_rcv() first allocates it to a socket in bottom-half context and places it into that
socket's receive queue. From there, the packet is fetched via system call of a user process, which is
mapped to udp_recvnsg().

Sending UDP Datagrams

udp_sendnsg() net/ipv4/udp.c

The function udp_sendnsg() is invoked over the socket interface whenever a UDP packet has to be
sent: The different kinds of systems calls all lead to this single function's being called. Its parameters

are a sock structure with the state of the sending PF_I NET socket, a pointer to a nsg structure that
specifies the receiver and payload, and the payload length in octets.

First, a locally created udpf akehdr structure takes the destination address and the destination port
from the msg_nane element of the nsg structure. The destination doesn't have to be specified
explicitly only if a default destination address has previously been assigned to this socket via
udp_connect () . In this case, the information from the sock structure is used instead. The source
address and the source port always derive from the sock structure. Additionally, they are stored in an
i pcm_cooki e structure. This structure, which we will not describe here in detail, serves later on to
pass the addresses, the device identifier, and the IP options (if applicable) to the Internet Protocol.

Any control messages in the msg_cont r ol element of the msghdr structure are processed by calling
the function i p_cnmsg_send() , and the results are registered in the i pcm cooki e structure.
Control messages can be used to modify the source address or to pass IP options, which will then also
be registered in the i pcm cooki e structure. If no IP options are specified, then the IP options stored
in the sock structure, if applicable, will be used.

A routing cache entry has to be procured, so it is also necessary to handle the source routing IP
options beforehand; the address of the first intermediate station might need to be used instead of the
destination address.

If the socket had previously obtained a routing cache entry by udp_connect () , and if the
corresponding destination address has not yet been changed in the process of udp_sendnsg() , then
this routing cache entry is now checked. If this check produces a negative result, or if the destination
address was changed, then i p_r out e_out put () is used to procure a new routing cache entry
(which is then stored in the sock structure).

Eventually, the transmission of data is initiated by calling i p_bui | d_xmni t (), where either
udp_get frag() or udp_getfrag_nosuny() is provided as the callback function for getting data,
depending on whether the checksum in the packet header should include the payload.™ The
parameters used here also include the udpf akehdr and i pcmstructures, the routing cache entry,
the flags from the neghdr structure, and the total length of the UDP packet.

1l A checksum is computed if the flag no_check in the sock structure is null, which is the case by
default. This flag can be set via the socket option SO_NO_CHECK on the SOL_SOCKET level.

The following discussion considers only udp_get f r ag() , because udp_get f rag_nosuny()
provides the same functionality, but is simpler for omitting the checksum calculation.

udp_getfrag() net/ipv4/udp.c

For each IP fragment it generates, i p_bui | d_xni t () invokes the callback function
udp_get frag() to getthe required payload. A pointer to the udpf akehdr structure filled by

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 26. The Concept of Sockets

Section 26.1. Introduction
Section 26.2. BSD Sockets

Section 26.3. Protocol-Specific Sockets

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

26.1 Introduction

The abstraction of sockets was introduced (based on the BSD version of UNIX, where this interface
was used for the first time; also called BSD sockets) to facilitate programming of networked
applications. An application can use this uniform interface to send or receive data over a network. This
interface looks alike for all protocols, and the desired protocol is selected to match three parameters:
fanmily, type,and protocol . Chapter 27 gives a complete overview of all available protocol
families (f ami | y). It also discusses how applications can use the socket interface. In contrast, this
chapter gives an overview of the socket implementation in the Linux kernel.

Figure 26-1 gives an overview of how the socket support is integrated into the protocol
implementations in the Linux kernel. The BSD socket interface provides a uniform interface upwards to
the applications; underneath the interface, however, different protocol families are distinguished by
protocol-specific sockets. Currently, one of the most important protocol families, PF | NET (protocol
family internet) will be described in the following section. In addition, PF_PACKET sockets in more
recent Linux versions provide an elegant way to send data packets by directly accessing a network
device. For example, the use of the packet socket was introduced in Chapter 9. Section 26.3.2
describes the packet socket in more detail. In contrast, the Netlink sockets do not serve for data
transmission over a network, but to configure various parts of the Linux network architecture. The part
to be configured is selected over the parameters NETLI NK_* of the socket's pr ot ocol variable, as

shown in Figure 26-1. The third part of this chapter describes the PF_NETLI NK sockets.

Figure 26-1. Structure of the socket support in the Linux kernel.
[View full size image]

‘ RS sockets

PF_PACKET J |PF_NETLINK

‘ PF_INET sockets

sockets sockets *
SOCK SOCK SOCK - * _—
i b pay NETLINK_ROUTE
STREAM [DGRAM| RAW NETLINK SKIP
NETLINK_USERSOCK
Y L i NETLINK _FIREWALL
- MNETLINK_ARPD
Icr uDp NETLINK_ROUTE®
4 NETLINK_IP6 FW
NETLINK_DNRTMSG
Ip NETLINK_TAPBASE
w

Network device

4 Previous Mext k

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

26.2 BSD Sockets

The Linux kernel offers exactly one socket-related system call, and all socket calls of applications are
mapped to this system call. The function asm i nkage | ong sys_socketcal | (int call,
unsi gned | ong *args) isdefined in net/socket.c. Moreover, a number is assigned in

i ncl ude/ asm uni std. h (#define _ NR socketcal |l 102) and added to a table with
system calls in ar ch/ i 386/ ker nel / entry. S. The socket function to be addressed can be stated
in the cal | parameter of a call. The admissible parameters are defined in i ncl ude/ | i nux/ net . h:
SYS_SOCKET, SYS BIND, SYS_CONNECT, SYS LISTEN, SYS ACCEPT,
SYS_GETSOCKNAME, SYS GETPEERNAME, SYS SOCKET- PAI R, SYS _SEND, SYS RECV,
SYS_SENDTO, SYS_RECVFROM SYS_SHUTDOMWN, SYS SETSOCKOPT, SYS GETSOCKOPT,
SYS SENDMBG, SYS RECVMSG. From within libraries in the user space, the sys _socket cal | ()
call with a specific parameter is mapped to an independent function (e.g., sys_socket cal |
(SYS_SOCKET , ...) becomes the call socket(...)).

sys_socketcal | () net/socket.c

The function to be called is selected in the kernel by using a swi t ch command in the function
sys_socket cal | (), and the command copy_f rom user () is used to first copy the function's
arguments into a vector, unsi gned | ong a[6] :

if copy fromuser(a, args, nargs[call]))
return - EFAULT,;
a0=a[0] ;
al=a[1];
switch(call)
{
case SYS_SOCKET:
err = sys_socket (a0, al, a[2]);
br eak;
case SYS_BI ND:
err = sys_bind(a0, (struct sockaddr *)al, a[2]);
br eak;
case SYS_CONNECT:
err = sys_connect (a0, (struct sockaddr *)al, a[2]);
br eak;
case SYS LI STEN:
err = sys_listen (a0, al);
br eak;

The most important structure within the BSD socket support is struct socket. It is defined in
i ncl ude/ l'i nux/ net. h:

struct socket {

socket state st at e;

unsi gned | ong fl ags;

struct proto_ops *ops;

struct inode *i node;

struct fasync_struct *fasync_list; /* Asynchronous wakeup list*/
struct file *file; /* File back pointer for gc*/
struct sock *sk;

wai t _queue_head_t wait;

I T Y

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

26.3 Protocol-Specific Sockets

The central structure of all protocol-specific sockets underneath the BSD sockets is st r uct sock.
This structure was oriented to TCP/UDP and IP in earlier kernel versions. Along with the addition of
other protocols (e.g., ATM), the sock structure was extended, and other entries were partially
removed from the structure. Initially, this created an extremely unclear construction having a number
of entries needed for only a few protocols. Together with the introduction of the three union structures
(net _pinfo, tp_pinfo,andprotinfo), each of which contains a reference to protocol options
of the matching layer, this situation should gradually improve, and the structure should become easier
to understand. The structure is still rather extensive, but we will introduce only the entries of interest
in the following sections.

26.3.1 pr_| NeT Sockets

This section describes the initialization on the level of PF_| NET sockets when an application uses a
socket () call.

i net_create() net/ipv4/af_inet.c

As has been mentioned, this function is invoked by the function sock_cr eat e() to initialize the sock
structure. Initially, the state of the BSD socket is set to SS UNCONNECTED, and then the function
sk_al I oc() , which was described in Chapter 4, allocates a sock structure. The protocol family can
only be PF_| NET at this point, but we still have to distinguish by t ype and pr ot ocol . This is now
done by comparing against the information in a list, st ruct i net _protosw i net sw_array,
which is created by i net _regi st er _protosw() (net/ipv4/af_inet.c) when the kernel sta
rts.

Next, the ops field of the BSD socket structure can be filled. The sk pointer connects the BSD socket to
the new sock structure, and the latter is connected to the BSD socket by the socket pointer. (See
sock_init_data() in net/core/sock. c.)Similarly tothe prot o_ops structure, the prot o
structure supplies the functions of the lower-layer protocols:

struct proto {

voi d (*cl ose) (...);
i nt (*connect) (...);
i nt (*di sconnect) (...);
struct sock* (*accept) (...);
i nt (*ioctl) (...);
i nt (*init) (...);
i nt (*destroy) (...);
voi d (*shut down) (...);
i nt (*set sockopt) (...);
i nt (*get sockopt) (...);
i nt (*sendnsg) (...);
i nt (*recvnsg) (...);
i nt (*bi nd) (...);
i nt (*backl og_rcv) (...);
voi d (*hash) (...);
voi d (*unhash) (...);
i nt (*get _port) (...);
char nane [32];
struct {
i nt inuse;

u8 _ pad[SMP_CACHE BYTES - sizeof (int)];
} stats[NR_CPUS];
s

Consequently, the pr ot o structure represents the interface from the socket layer to the transport

nrafAacAale The kacrlh/y A tivmmlhaeclh7/Y fiin~Hiance conmo A nacikian Aar finAd 2 ~a~~AL cFriicrkiivre im o hach

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Part VI: Layer V? Application Layer

Chapter 27. Network Programming With Sockets

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Chapter 27. Network Programming With Sockets

Section 27.1. Introduction
Section 27.2. Functions of the Socket API

Section 27.3. Examples

4 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

27.1 Introduction

An application programming interface (API) is required to enable application programmers to access
the network functionality implemented in the operating system. One of the most common interfaces to
access transport protocols in the UNIX domain is Berkeley sockets or BSD sockets, which obtained their
names from the UNIX variant Berkeley Software Distribution, where they were implemented for the
first time.

The design of Berkeley sockets (in the following discussion called sockets for short) follows the UNIX
paradigm: Ideally, map all objects that are read or write accessed to files, so that they can be
processed by use of the regular file write and read operations. Sending or receiving in a
communication relationship can be easily mapped to write and read operations. The objects
manipulated by such operations in the context of transport protocols are the endpoints of a
communication relationship; these are represented by sockets.

27.1.1 Socket Addresses

A communication endpoint in the transport layer is described by three parameters in the Internet: the
protocol used, an IP address, and a port number. These parameters therefore have to be allocated to
a socket, before it can be used for communication. In building a communication relationship, we
additionally have to specify the communication partner's endpoint address.

struct sockaddr /usr/include/sys/socket.h

The data structure used to represent socket addresses was kept quite general, because the socket
interface can also support other protocols, in addition to Internet protocols:

typedef unsigned short sa famly t;

struct sockaddr

{
sa_famly_t sa_famly;
char sa_dat a[14] ;

b

The sa_f ami | y element registers the address family (e.g., AF_| NET for the family of Internet
protocols). The exact address format is not yet defined in detail in the general sockaddr structure.
For this reason, there is a more specific variant for Internet addresses, called sockaddr _i n.

struct sockaddr_1n /usr/include/netinet/in.h

struct in_addr {

__u32 s_addr;
b
struct sockaddr_in {
sa famly_t sin_famly; /* Address famly: AF_INET */
unsi gned short int sin_port; /* Port number */
struct in_addr si n_addr; /* Internet address */
/* Pad to size of 'struct sockaddr' . */

unsi gned char sin_zero[sizeof (struct sockaddr) -
sizeof (sa famly t) -
sizeof (uintl6 t) -
si zeof (struct in_addr)];

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

27.2 Functions of the Socket API

This section gives an overview of the most important functions for the socket application programming
interface. The original TCP/IP implementation of the BSD UNIX version, which the socket API is derived
from, used only the six system calls of the input and output interface for file operations to
communicate over networks. Only the next version added the whole number of additional operations
that will be discussed below.

27.2.1 Functions for Connection Management

The functions described in this section serve to manage communication relationships: to create and
delete sockets, to open and close connections, and so on.

int socket (int famly, int type, int protocol)

Berkeley sockets, or sockets for short, are the basis for communication relationships over the socket
interface. A socket represents the endpoint of a communication relationship in an end system and
forms the interface between the network protocols and applications. This means that, in a
communication using the TCP protocol, the two sockets in the two communicating end systems form
the endpoints for this communication. In a multicast communication, more than two sockets normally
participate in a communication.

An application can use the socket () system call to cause the operating system to create a socket,
always the first step in communicating over networks. In the creating of a socket, the required
resources are reserved in the operating system, and the type of communication protocol to be used is
determined (e.g., TCP or UDP).

The result of a socket () system call consists of the socket descriptor? an integer number that
uniquely identifies the socket. This descriptor has to be used in all subsequent system calls to identify
the socket.

The following parameters are passed with the socket () system call:

* int fami |y denotes the protocol family used and thus, mainly, the address type used.
Constants for the following address families (AF_. . .) are defined:

0 AF_UN X: Sockets for interprocess communication in the local computer.

0 AF_| NET: Sockets of the TCP/IP protocol family based on the Internet Protocol
Version 4

0o AF_| NET6: TCP/IP protocol family based on the new Internet Protocol, Version 6.
(See Chapter 23.)

o AF_| PX: IPX protocol family.

* int type denotes the type of the desired communication relationship. Within the TCP/IP
protocol family, we mainly distinguish the following three types:

0 SOCK_STREAM (stream socket) specifies a stream-oriented, reliable, in-order full
duplex connection between two sockets.

0 SOCK DGRAM (datagram socket) specifies a connectionless, unreliable datagram
service, where packets may be transported out of order.

0 SOCK_RAW(raw socket).

* int protocol selectsa protocol for the specified socket type, if several protocols with the
specified type properties are available. In the AF_| NET address family, TCP is always
selected for the SOCK_STREAM socket type, and UDP is always used as the transport protocol
for SOCK DGCRAM

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

27.3 Examples

The source text for a complete small sample application, where a client and a server communicate
over TCP, is included in Appendix G. A much more detailed description of network programming in
UNIX operating systems, including many examples, is found in, for example, [Stev90].

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Part VII: Appendices

Appendix A.
Appendix B.
Appendix C.
Appendix D.
Appendix E.
Appendix F.
Appendix G.
Bibliography

The LXR Source-Code Browser

Debugging in the Linux Kernel

Tools and Commands for Network Operation
Example for a Kernel Module

Example for a Network-Layer Protocol
Example for a Transport Protocol

Example for Communication over Sockets

1 F‘rexriu:-us] Next P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Appendix A. The LXR Source-Code Browser

The Linux kernel in Version 2.4.9 consisted of 9,837 files, totaling to approximately 3,857,319 lines of
source code. Even maodifications from one version to the next comprise several megabytes. This
volume of Linux source code makes it difficult to navigate to the desired place right away.

To facilitate working with the source code of the Linux kernel, the University of Oslo developed the LXR
source-code browser™ (ht t p: // | xr. | i nux. no). This browser is Web-based and represents the
source code of the Linux kernel in HTML (HyperText Markup Language). The benefit of HTML,
compared to normal source code, is the possibility of integrating hyperlinks that let you reference
further information at specific positions, so that navigation between related source-code sections
becomes very easy.

11 LXR is short for Linux Cross (X) Reference.

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://lxr.linux.
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

A.1 Functionality
The LXR source-code browser creates a reference file for existing C/C++ source texts. This reference
file stores links between different parts of the source code. For initializing of the LXR, the source files

are searched for certain keywords, and an index of these keywords is created. The following elements
of a C program are recognized as keywords, and their functions are interpreted accordingly:

« Functions and function prototypes;

» global variables;

* type definitions (t ypedef);

« structure definitions (st r uct);

« variant definitions (uni on);

e enumeration types (enum); and

« preprocessor macros and definitions (#def i ne).

Figure A-1. Browsing the Linux kernel in the LXR source-code browser.

[View full size image]

= Ly’ - hiAgetherare Lo Ml Peirureil loklur e - Searcs Cede Briswser - biaca | Sl B0 D01 D8O E
o Eim Eod yiew Desech (o Hechmarki Tasis Help Debug Qa8
IJ u o J [g et 2 i s runa At o | [F e '::il,n,
=
- Linux Cross Raefersnce |mi!1:mﬁ
i Linux/ ALt
vorsdon: [2.3] [2.4.0 0 o | il
.. i drchibecture: | f286] [als II ..__r -..j I feles] [eexl I ars] 1 |
[LEEY Fiza Last modified (GHT| Desoription
i | Z001-08-27 15:35:53
[_l Z001-02-13 IZ:13:44
® I'J Irivae Z001-03-2% 1%:24:25
i 2001-03-23 19:24:25
f B ingusd I001-08-27 15:36:5%
| Z001-08-27 15:33:46
[_} F001-03-29 19:24: 25
u Z001-03-2 12425
B i 2001-03-23 1%
Bl = 2001-03-29 19:24:2
Bl ne 2001-03-2% 19:24:35
B eorice 2001-03-20 19:24:25
s 8 10637 Lytes S000-09-03 10:15:50 i
0 63 O BB Coowsent: Dorw g1 818 i) -I-i‘ﬂ

Subsequently, all keywords occurring in the source code are stored in an index file.

When a Web browser requests one of the source files, a Web page consisting of the original
source-code file with all keywords emphasized by hyperlinks (see Figure A-2) is created. By clicking
one of the links, another page is generated, which shows all information about this keyword. (See
Figure A-3.) When a function is called, for example, the location (file and line number) of the function
declaration, the actual function itself, and all locations where this function is invoked are displayed.
Hyperlinks offer an easy way to jump to these locations. Figure A-2 uses the i p_rcv() function as
an example, to show how this works.

Figure A-2. Browsing the Linux kernel in the LXR source-code browser, using the i p_rcv()
function as example.

[View full size |mage]

_ Fdw Ed# View Search Go ﬂm«-uu Tasks Hadp nm.—q (47}

http://lxr.sourceforge.org
http://lxr.linux.no
http://lxr.sourceforge.org
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

A.2 Installation

Installing the LXR source-code browser is relatively easy for an experienced Linux user. Problems or
suggestions for improvement can be published in a mailing list. The following components are required
to install the LXR source-code browser:

« The LXR package with the scripts to generate the source-code index and the HTML pages. The
version currently most stable is | xr - 0. 3. It can be downloaded from

http://Ixr.sourceforge.org.

Figure A-4. Information stored for the C structure packet type.

[View full size image]
ienitiier search “packet_type” - http:ierarw. Linus-tietzwerkarchitekiur.de - Source Code Browser - EEIES
. Eitd Edil Wiens Search Go Bookmarks Tasks Help Debug QA

i- Q} 0 @ {3 i_hﬂ;:r!ﬂ??’[H]1fb<rﬂfj:|]ﬁ1?1-.,{|ack|!1_l.fw,-p[} -|1Q.m! Q-:J_;G

|3

Linux Cross Reference | =oupee
. | idantifier

Version: [3.4.3] [2451 woarch | |-
hrchitectore: | 2388 | [plpha] [mEBk | | mips] | Ecgetext search |
Teec] 0 zmaxc 1 [zpaccéd] | Eile aearch |

Identifier b"‘""“"‘-"ﬂ' o get 1t |]
packet_type

Befined as a struck type in
14 = anglude/linus/netdevace by lane 414
Refecsnced {in 37 files toral) din:
= net/BO2SpROIE ¢
¢ Line S0

o Linc Bl
o Lines 103
= r.rt.’EI]IEKp:naP c
& lins 45
© Lline 44
¢ Ling 105
= TiE I:_.f:L]:.x_."aE__';F-'.: [
o Line 222

o Lin]
= ret/25 2 dev. o

& Llips 10
o Line 14
= et yf =25 0. line 1202
L) &3 R B | Oocument: Done (0541 secs) ! bl

» A Web server that can work with CGI (Common Gateway Interface) scripts. We recommend
the Apache Web server (http://www.apache.org).

» Perl is required to run the scripts. Mainly, the possibilities of regular expressions in Perl are
used for the functionality of the LXR source-code browser.

» Glimpse can be used to extend the functionality of the LXR source-code browser. It allows you
to search the entire source code of the Linux kernel for full-text search. This is useful mainly
when one is searching for certain source-code identifiers the LXR parser was unable to
identify. In addition, when you are searching for full text, Glimpse lets you display the
corresponding lines of the source code, thereby simplifying and accelerating your search.

« A Web browser (e.g., Mozilla, Netscape, Konqueror) is needed for navigation through the
pages generated by LXR.

« Finally, you need the source code of the Linux kernel. Notice that you can index several kernel
versions or source texts of other programs concurrently.

Once you have installed the LXR scripts by the attached Makefi | e (read the | NSTALL instruction

LI P D D ¥ P D Y - By T P TR I TR ¥ PR o2 T = D] , L ol TR =] DY Ty T

http://lxr.sourceforge.org
http://www.apache.org
http://lxr.sourceforge.org
http://www.apache.org
http://lxr.linux.no
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Appendix B. Debugging in the Linux Kernel

Debugging is a helpful step when writing reliable software. This is normally not a big problem when
one writes simple applications. There are appropriate tools, such as the gdb debugger and its graphic
variant, ddd, and other useful tools (e.g., st race), to track system calls.

However, the prerequisites are different for debugging an operating-system kernel. Remember that it
is the very task of an operating system to provide a sufficient environment to run applications and to
catch as many exceptions as possible to ensure that the work of other applications is not at risk.
Probably the best known error in programs is a NULL pointer that references the memory position
NULL rather than a valid memory address. When an application wants to access this page or run the
statement at this location, the operating system should catch this error and output a message (i.e.,
segment ation fault or menory protection violation). The faulty application can then be
checked step by step in a debugger to find the faulty places in the source code.

Unfortunately, it's not so easy to check an operating itself for errors. The reason is that, when a NULL
pointer occurs in the system itself, there is no way to stop the computer from crashing. It is often
impossible to find the exact location of an error or even the faulty component. Despite these
circumstances, this chapter introduces several ways to track the process of a component in the kernel
to discover potential sources of error.

In addition to prevent NULL pointer dereferences, it is also important to obtain information about the
functionality of algorithms and kernel components at runtime, to be able to check for correct operation.
In the selecting of an operating system, its correct operation is as important as its stability.

4 Previous Mext k

ABC Amber CHM Converter Trial version

http:/ /'www.processtext.com,/abocchm.html

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

B.1 Log Outputs From the Linux Kernel

One of the most common debugging techniques is the output of certain messages at strategic program
positions? meaningful screen outputs are simply inserted (ideally before and after) at potential
sources of error. This helps us to track the kernel's behavior and how it progresses. Of course, we
could also output variable values and similar useful things.

Though this rather simple but useful fault-tracing variant often helps, there can be cases where an
error in the operating-system kernel causes the entire computer to crash, leaving no way to store or
read log information. These cases often occur when function pointers are wrongly initialized or are
due to accesses beyond array boundaries. Some of these errors can be caught with the well-known
"kernel Coops," but some lead inevitably to a crash.

The following sections introduce several helpful methods to create outputs from the kernel and make
them visible to the programmer or user.

B.1.1 Using printk() to Create Log Outputs

The printf () function is normally used in conventional writing of C programs? and the Linux kernel
is actually not different? to output messages at a text console. pri nt f () is a function of the standard
input/output library (<st di 0. h>) , which is not available in the Linux kernel. For this reason, the
Linux developers simply simulated pri nt f () and integrated it into the kernel as the pri nt k()
function. Other functions borrowed from the standard libraries help the handling of character strings
(lib/string.c):

printk() kernel/printk.c

print k() offers almost the same functionality as pri nt f () and has a similar syntax. A special
property of pri nt k() is the classification of messages to be output, by different debugging levels.
The sysl ogd and kl ogd daemons can be used to store and output kernel messages or send them to
specific addresses.

Altogether, there are eight debugging levels, from KERN DEBUG, which is the lowest level (normal
debugging messages) to KERN_EMERG? the highest level (system unusable). These debugging levels
are defined in <l i nux/ ker nel . h>. Depending on the DEFAULT _CONSOLE_LOGLEVEL variable,
messages are output on the current console. The administrator can use the command sysl ogd -c
to modify the value appropriately.

printk() itself usesthe printf () function to generate the output string. This is the reason why
the syntax of the two functions and parametrizing of the variables to be output are identical.
sprintf() wil be introduced in Section B.2.

B.1.2 The syslogd Daemon

While the operating system is running, there are often situations where programs have to log error
messages or specific information. An application in text mode outputs these messages simply at the
console (st dout or st derr). A popup window is normally created for window-based applications
(X11). The operating system kernel and processes working directly for it, such as daemons or child
processes of the i ni t process, have no direct allocation to a console.

Now, where should error and log messages be output? The standard output (st dout) of these
processes uses the / dev/ consol e console. In the X-Windows system, this is the xconsol e window.

This approach can cause problems in a multiuser environment. On the one hand, messages can be
read by anyone; on the other hand, the person in charge (normally the administrator) might be looking
at something else and not pay attention to the message window. Another problem is that these screen
outputs cannot easily be stored, which means that they are very volatile.

To solve these problems, we use the sys| ogd daemon. Daemons or other system programs outside

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

B.2 Creating Strings in the Kernel

This section introduces several useful functions to create debugging messages. As was mentioned
earlier, they are somewhat similar to the functions provided by standard C libraries.

sprint() lib/vsprintf.c

sprintf(buffer, str,argl,...)isa function very useful for converting certain variable types into
strings. Its functionality is almost identical to that of the spri nt f () function in the C library
<stdi 0. h>. sprintf() alsosupports the formatting options known from pri ntf () .

The character string st r consists of regular characters and control characters, if present. Instead of
control characters that begin with a % sign and end with a type descriptor (¢, s, p, n, o, x, X,
d, i, u), variable values are inserted according to the formatting specification. The nth formatting
specification refers to the nth argument in the st r string. The created string is written to the buf f er,
and the set of written characters (including the closing null byte) is returned as the result.

The formatting options of spri nt f () are as follows: A format specification begins with the % sign
and ends with one of the type descriptors mentioned. Between these two characters, there may be the
following format specifications (in this order):

* Bl ank? No leading plus sign is used for a positive number, but instead a blank. A minus sign
is inserted for negative numbers. This enables positive and negative numbers to appear
aligned (if they have the same length).

« ? ? This argument is inserted left-justified in the string.
« +? Aplus sign is inserted if the argument is positive.

« #? If the octal system (o) was selected as the output form, then a leading null is added to the
argument; Ox or 0X are inserted for the hexadecimal system (x or X).

* mn, max? The numbers ni n and max specify the minimum or maximum length of an
output. mi n or max can be omitted if the respective option is not desired. If ni n begins with a
null, then the output is padded with zeros to the minimum format length.

* h,l,orL? denote that a variable is of short or | ong type.

* type? Aformatting specification ends with the type of variable to be output. The following
types are available:

o c (character)? The character ar g is output.

0 s (string)? The string ar g is output to the first null byte (unless limited by the
maximum format length).

o p (pointer)? The pointer address is output in hexadecimal system.
o o (integer)? The number ar g is output in octal system.
0 X, X(integer)? The number ar g is output in hexadecimal system.

o d,i (integer)? The leading sign for the number ar g should be considered in the
output.

o u (integer)? The number ar g is considered to be an unsigned number.

The formatting options described correspond to the options of pri nt k() , because pri nt k() itself
uses sprint f () toformat an output string. However, spri nt f () is useful not only in connection
with pri nt k() , but also to generate outputs in the pr oc directory.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

B.3 Information in the /proc Directory

As was mentioned earlier, the files in the / pr oc directory serve to make current information about
certain system components available to the user. They are regenerated upon each read access.

The / pr oc directory and its subdirectories include a large number of files that reflect the current
system state. The meaning of each of these files should be known. Some information about the
meaning of file contents and their? partially cryptic? syntax are in the Docunent at i on directory in
the kernel source text.

B.3.1 Entries in the /proc Directory

Initially, a separate subdirectory is created in the / pr oc directory for each process, named by the
process ID. Each such subdirectory includes process-specific information. However, they are of minor
interest for the Linux network architecture, so we will not discuss them any further here. Within the
scope of this book, we are mainly interested in the / proc/ net and / proc/ sys/ net directories,
which contain information about and parameters of protocol instances and network devices, some of
which can even be configured.

The / pr oc directory itself holds the following files of general interest:
* meni nf o shows information about free and occupied memory in the system.

* knsg: During reading of this file, the buffer with the last kernel messages is output and
emptied. These messages are normally read by the kI ogd daemon and further processed by

the sysl ogd daemon. (See Section B.1.2.)

* kcor e returns a copy of the kernel. The file size corresponds to the size of the kernel in main
memory, including the page size. This allows you to debug the kernel at runtime:

root @ux # gdb /usr/src/linux/vminux /proc/kcore

Section B.4 includes more detailed information.

* modul es shows information about the modules currently loaded and their dependencies. The
contents correspond to the output of | snod.

* devi ces holds information about registered device drivers and their major numbers. The file
distinguishes between character-oriented and block-oriented drivers. As was described in
Chapter 5, network drivers represent a separate class of drivers; therefore, they are not
listed in / pr oc/ devi ces.

* interrupts lists all instances (character-oriented, block-oriented, and network devices) that
occupy interrupts. Specifically, the interrupt number, the total number of interrupts (per
processor), and the device name are listed. A look in this file often helps when controlling to
see whether a device's driver works. You can see this by the presence of a device and by an
increasing number of interrupts. Linux supports more than one device's using the same
interrupt. In this case, only the actual number of the corresponding interrupts is shown; they
are not itemized by device.

* ksyns shows the symbols exported by the kernel and their memory addresses in the kernel.
This table is important for supporting kernel modules. (See Section 2.4.)

* dna and i oports show the occupied DMA channels and I/O ports, plus the instances that
reserved them.

* sl abi nf o: This file holds information about the memory caches used in the kernel. (See
Section 2.6.2.) Of interest for the network part are mainly skb_head_cache and the

caches for the TCP transport protocol. To display information about a cache, you have to write
a corresponding entry in the file i sl ab. c.

Erntriac in Flhha Inrac l natr Divactkmm s

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

B.4 Using a Debugger with the Linux Kernel

A debugger is a tool that allows you to stop a program under development during its execution and to
execute it step by step to monitor the program state? the values of variables and the contents of
memory locations? and to modify it, if necessary. A debugger can also be used for development in the
Linux kernel. However, there is no way of stopping or stepwise running, because stopping the kernel
would immediately cause the entire system to become unusable. Reading global variables and other
memory locations is possible while the kernel is running, and it can often be helpful for better
understanding active processes.

Interface Between Kernel and Debugger

Debuggers normally offer a way to edit a so-called core file instead of a running program. Such a file
can be created automatically when a program is terminated by an illegal memory access. It contains a
copy of the memory locations occupied by this program. We can use a debugger, after reading a core
file, to check the program state when the crash happened.

The core file, as interface between the debugger and the program state, can also be used to monitor
the Linux kernel. To this end, the file / pr oc/ kcor e maps the entire main memory of the system to
the format of a core file. So, if we give this file to a debugger as a core file, we can use the debugger
tools to check the current state of the entire system.

Compiler Options

In addition to a core file, a debugger requires a file with the executable program. In case of the Linux
kernel, this file is available under the name v i nux in the directory in which the kernel was
compiled. When compiling a program to be debugged, the compiler should have been instructed to
embed debugging information (e.g., the full names of variables in text form and references to the
relevant places in the source code). If this information is available, the debugger lets you (for
example) query variables by their names.

The C compiler gcc lets you use the - g option to embed debugging information during compilation.
This option has to be entered in a make file at the appropriate position to ensure that it will be used
when the Linux kernel is compiled. If we want to achieve this for the entire kernel, we can add this
option to the definition of the CFLAGS variable in the main make file in the top directory of the
source-code tree. If we want to check only limited kernel areas in the debugger, it is sufficient to add
one EXTRA _CFLAGS = - g line each to the make files in the directories that contain the files for each
of these areas. For example, this would be net /i p4/ Makef i | e if we were to check routing.

gdb and ddd

One of the most popular debuggers in the UNIX world is the gdb debugger, developed under the
auspices of the Free Software Foundation (FSF). gdb offers only a text interface to the user, so it is
universal, but not comfortable to use. More recently, several front ends have been developed to
remove this drawback (e.g., by offering a graphical user interface). Two representatives of this kind
were also developed by FSF: the Data Display Debugger, ddd, and the Grand Unified Debugger (gud)
mode of the enacs text editor. ddd has options for graphic representation of data structures, which
make it suitable particularly to check such data structures in the Linux kernel.

A detailed description of how these tools work would go beyond the scope and volume of this book.
Detailed instructions are included in each of the distribution packages.

Example

Figure B-1 shows an example for the graphic representation of data structures in ddd. This example
uses a fragment from a concrete variant of data structures to represent some of the routing tables
described in Chapter 16.

Figure B-1. Example using ddd: Checking routing-table data structures. (See Chapter 16.)

'View full size imaael

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Appendix C. Tools and Commands for Network
Operation

The sections of this appendix introduce tools and commands to manage, configure, and control the
network functionality in Linux. We will explain the most important operations and their parameters for
each command. More detailed information about the exact syntax of a command and additional options
are described in the respective man pages.

1 F'rexriu:-us] Mext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.1 Using i fconfi g to Manage Network Devices

The command i f conf i g is available in Linux to configure a network device. It serves mainly to
activate, deactivate, and configure a network device and its physical adapters. This tool lets you modify
both protocol-specific parameters (address, subnet mask, etc.) and interface-specific parameters (I/0
port, interrupts, etc.). i f conf i g can also be used to modify the flags of a registered network device (

ARP, PROM SC, etc.).

To be able to use it, a network device has to first be activated in i f conf i g. To this end, the adapter
has to be known to the kernel and be present in the list of network devices. (See Chapter 5.)

Syntax

i fconfig [-a] [-i] [-v] interface [[fam |y] address]
[add address[/prefixlen]] [del address[/prefixlen]]
[tunnel aa.bb.cc.dd] [[-]broadcast [aa.bb.cc.dd]]
[[-]poi ntopoint [aa.bb.cc.dd]]
[netmask aa. bb.cc.dd] [dstaddr aa.bb.cc.dd]
[hw cl ass address][nmetric NN [nmtu NN|
[[-]trailers] [[-]arp] [[-]allmulti] [[-]prom sc]
[multicast] [nmemstart NN] [io_addr NN] [irqg NN
[media type] [up] [down]

* interface denotes the network device to be configured (e.g., et h0, pppl).

+ fam |y denotes the protocol family of the network-layer protocol used. Depending on the
address family, the addresses specified here have different address formats (e.g., i net
(TCP/IPv4 protocols), i net 6 (TCP/IPv6 protocols), ax25 (Packet Radio), ddp (Apple), i px
(Novell)). i net is the default choice, so it does not have to be selected.

» addr ess is the address of the network device in the address format of the address family. IP
addresses are written in the usual dotted decimal notation, a. b. c. d.

Ifi f confi g is started with the name of a network device, then only the configuration of this interface
is output on the console. If you start it without parameters, it lists all currently configured interfaces.
The option -a can be used to additionally display network devices known to the kernel, but not yet
activated.

Example

root@ux # ifconfig
et hO Li nk encap: Et her net HWAddr 00: 90: 27: 44: D9: 89
i net addr:129.13.25.10 Bcast: 129. 13. 25. 255 Mask: 255. 255. 255. 0
UP BROADCAST RUNNI NG MTU: 1500 Metric:1
RX packets: 879876 errors:1 dropped: 0 overruns: 0 franme: 11
TX packets: 706287 errors: 0 dropped: 0 overruns:0 carrier:0
col l'i sions: 45793 t xqueuel en: 100
Interrupt: 11 Base address: 0xe800

Il o Li nk encap: Local Loopback
i net addr:127.0.0.1 Mask: 255.0.0.0
UP LOOPBACK RUNNI NG MTU: 3924 Metric:1
RX packets: 130 errors: 0 dropped: 0 overruns: 0 frame: 0
TX packets: 130 errors: 0 dropped: 0 overruns:0 carrier:0
collisions:0 txqueuelen:0

» The fields MTU and Met ri ¢ show the current values for Maximum Transfer Unit (MTU) and
the metrics of the interface. The metrics can be used by routing protocols to make a choice
when several routes having the same cost lead over two different network devices.

« The flags displayed by i f conf i g correspond more or less to the names of command

PPy T [| [(R SRR PR DL [<R B PR

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.2 Using ;i ng to Test the Reachability

pi ng is the first tool generally used when a computer is not reachable, to check the network
connection. pi ng sends an ECHO REQUEST packet to the specified computer and expects an

ECHO REPLY. (See Section 24.4.) In addition, pi ng outputs statistical values about the connection.
It is also possible to use the IP option record route to track the route of packets.

Syntax

ping [-Ddf LngRrv] [-c nunber] [-I address] [-i tinge]
[-1 nunmber] [-p pattern] [-s size] [-t ttl] [-wtinge]
conput er

pi ng has the following options:

* -c nunber : pi ng sends only nunber packets, then terminates. Normally, pi ng runs
forever until the process is stopped.

* -f runs a so-called flood ping. This means that pi ng sends as many packets as it received
replies, or at least a hundred per second. This option can be used to check the behavior of a
network or end system under high load.

* -] address specifies the network device (by the IP address) that should be used to send
echo packets.

* - tinme specifies the wait time between two sent echo request packets. This value is
normally one second.

* -1 nunber sends nunber packets at maximum speed. Subsequently, pi ng switches into the
normal transmit mode.

« - n prevents the resolution and output of DNS names. IP addresses are written in dotted
decimal notation.

* -p pattern fills sent echo packets with the specified pattern. This allows you to check the
behavior of packets with certain contents.

+ -q is the quiet mode, which outputs statistics only when the program is closed.

« -Renables the IP option record route. (See Section 14.4.) It outputs all routers visited, if
these routers support the record route option.

* -s sj ze sets the ICMP packet to si ze bytes. Normally, an echo packet is of size 56 bytes.
Together with the ICMP header (8 bytes), the size is then 64 bytes.

« -t ttl setsthe value of the Time-To-Live field in the packet header to t t | , which allows you
to limit the reach of an echo request.

 -wtine sets the maximum wait time for a reply to an echo request to t i me seconds. The
normal wait time for an outstanding reply to an echo request is ten seconds.

Example

root @ux # ping www. Li nux- net zwer kar chi t ekt ur. de

Pl NG www. Li nux- net zwer kar chi t ekt ur.de (192.67.198.52): 56 data bytes
64 bytes from 192. 67.198.52: icnp_seq=0 ttl =246 tine=4.589 ns

64 bytes from 192. 67.198.52: icnp_seq=1 ttl =246 tine=3.481 ns

64 bytes from 192. 67.198.52: icnp_seq=2 ttl =246 ti ne=3.271 ns

64 bytes from 192. 67.198.52: icnp_seq=3 ttl =246 tine=3.785 ns

--- www. Li nux- net zwer karchi tektur.de ping statistics ---

4 packets transmtted, 4 packets received, 0% packet |oss

round trip mn/avg/ max = 3.271/3.781/4.589 ns

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.3 Using netstar to View the Network State

net st at is an extensive tool for viewing the network state. For example, you can use net st at to
display the routing table and the state of the socket currently created.

Displaying routing tables

If you start it with the - r option, net st at outputs the routing tables of the kernel. This corresponds
broadly to the result of the r out e command. The option - n is used to output the IP addresses of
computers instead of their DNS names.

root @ux # netstat -nr
Kernel routing table

Desti nation Gat eway Genmask Fl ags MSS W ndow Use

| face
129.13.42.0 0.0.0.0 255.255.255.0 U 0 O 478 et ho
127.0.0.0 0.0.0.0 255.0.0.0 u 0 O 50 lo
0.0.0.0 129.13.42.233 0.0.0.0 UG 0 O 238 ethO

The first column of this output shows the route destination. The column Flags shows the type of
destination (i.e., Gateway (G) or Host (H)), to better explicate the entry in the first column.

If the destination is a gateway (router), the second column shows the IP address of that router (or,
more exactly, the IP address of the adapter where the packet arrives in that router). If the route does
not lead across a gateway, then the second column shows the value 0. 0. 0. 0.

The third column shows the reach of a route. In routes with a (sub)network as the destination, the
entry in the third column corresponds to the network mask; the value 255. 255. 255. 255 is output
for routes to computers (H). The default route has the mask 0. 0. 0. 0.

All entries in the routing table are sorted so that the more special routes (long network masks) are
listed before the more general routes (short network masks). When searching for a matching route,
the kernel takes the bit-by-bit AND of the destination address and the network mask and compares the
result with the route's destination.

The fourth column shows various flags that provide more information about a route. As has been
mentioned, these flags specify the type of destination (gateway or host), among other things:

* G The next hop is a router (gateway). This means that the packet is sent with the router's
MAC address.

e Ushows that the network device is enabled (UP).
e H: The next hop is an end system, addressed directly by its MAC address in the MAC layer.

« D: This entry was created dynamically, either by an ICMP redirect packet or by a routing
protocol.

* M The route was modified by an ICMP redirect.
The last column shows the output interface for a route.
Viewing Interface Statistics

We can start net st at with -i to output current statistics about active network devices. This option
can be used together with the option - a to show inactive network devices in addition to active network
devices. The output from net st at -i looks like an output of the i f conf i g command and uses the
same parameters.

Active Connections and Sockets

net st at supports a number of options we can use to list active and passive sockets. The arguments

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.4 Using .t e for Routing Information

The r out e command serves to set and manage routing information in a computer. The r out e
command knows exactly two options; one to set, and one to delete, static routes. Dynamic routes are
set by routing protocols.

Syntax

route add [-A fam ly] [-net| -host] address [gw gateway] [netnmask nask]
[mes MBS] [dev interface]
route del address

e -Afanily specifies the address family (i net , i net 6, etc.).

* - n shows addresses in dotted decimal notation and does not attempt to resolve them into
DNS names.

» - e specifies the routing table in net st at format.

» - ee shows all information of the routing table.

* - net means that the specified address denotes a (sub)network and not a computer.
* -host shows that the address denotes a computer.

* - F shows the Forwarding Information Base (routing table). The options - e and - ee can be
used to specify a format for the output.

e - Cshows the current routing cache of the kernel.
* del deletes the specified route.
* add adds a route to the routing table.

* addr ess specifies the route destination. This can be a (sub)network or a computer. The
address can be written in dotted decimal notation or as a DNS name.

* net mask nmask is the network mask for the new route.

* gwgat eway specifies a gateway (router). All packets on this route are sent over this router,
which knows the further path. Before it can be used as gateway for some destination, a
computer has to know the route to it; either we must previously have set a static route, or the
destination should be reachable over the default route.

* nmetric metric sets the metrics for this entry in the routing table.

* mss MBS sets the maximum segment size of TCP to MBS bytes. The default value is 536 bytes.

« dev interface specifies that packets on this route should always be output over the
specified network device. If no device is specified, then the kernel attempts to find a network
device to be used from other routes.

» defaul t denotes the default route for all routes that do not have a matching entry in the
routing table.

The output of the r out e command corresponds largely to the output of net st at . (See Section C.3.)
Examples

* root@ux # route add -net 127.0.0.0.

sets the entry for the loopback network device. Because no network mask was specified, the
defarilt network mack for a clace-A network ic acciimed (25 N0 N N)

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.5 Using : cpqunp for Network Analysis

t cpdunp is a high-performing tool for monitoring the packet streams in local area networks. t cpdunp
-i interface can be used to log and output all activities in a LAN. The actions of the local area
network can be fully logged only provided that it is a broadcast-capable medium, such as Ethernet or
token ring, and that the network card supports the promiscuous mode. In switched LANs, we cannot
log packets that are not actually sent to the adapter.

Syntax

t cpdunp [-defInNOpgStvx] [-c <counter>] [-F <file>]
[-i <interface>] [-r <file>] [-s <length>]
[-2 <file>] [<expression>]

If t cpdunp is started without specifying options, it outputs all packets received by the specified
network device. This is normally a large number of packets; hence, the output can become unclear.
For this reason, we can specify a logical <expr essi on> to limit the number of logged packets. This
logical printout helps make the output more clear.

We can use t cpdunp for extremely useful studies. On the other hand, it can be misused by intruders
to eavesdrop on communication in a LAN. For example, an intruder could log and evaluate the
contents of communication connections. The intruder could then easily filter passwords transmitted in
cleartext in Tel net or Rl ogi n sessions. For this reason, t cpdunp can be executed only by
administrators (r oot).

Parameters
* -c count er : The analysis of t cpdunp ends after receipt of count er packets.
* -d expression: The expr essi on is evaluated and output, and the program is terminated.

e -e: The MAC header is output explicitly for each packet (i.e., the MAC sender address, the
MAC destination address, and the protocol type).

« - f disables the DNS name resolution. If computers are not listed in / et ¢/ host s, their IP
addresses will not be resolved.

* -Ffile: The logical expression (see option - d) is read from fi | e, and expressions in the
command line are ignored.

* -i interface specifies the network device for which the packets should be logged. Without
this option, t cpdunp always selects the first element from the internal list of active network
adapters (except the loopback network device).

« -] buffers the output line by line. Without this option, each character is output immediately.

* -n disables the name resolution. IP addresses are not converted into DNS names; similarly
with the allocation of ports.

* - N omits the domain names in addresses (i.e., www instead of
www. | i nuxnet zwer kar chi t ekt ur . de).

» - Odisables the internal optimization of the qualification expression.

* -p means that t cpdunp does not activate the promiscuous mode. However, a network
device may be in this mode for other reasons, so there is no guarantee that the promiscuous
mode is disabled.

* - outputs abbreviated messages and less protocol information.

* -r fil e reads the packets to be checked from the specified file. The file should previously
have been created by t cpdunp, as is achieved by using the option - w.

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.6 USING ¢ aceroute TO TRACE PACKETS

t racer out e can be used to trace the route of IP packets through the Internet. t r acer out e not
only outputs a list with IP nodes (routers or end systems); it also determines the quality of the
connection to each of these nodes by measuring the time to reach these routers.

Syntax

traceroute [-mmaxttl] [-n] [-p port] [-q query] [-r] [-s hostadr]
[-t tos] [-w delay] host [packet size]

You can use t r acer out e to identify the route that packets actually take to the specified computer
(host). Within local area networks, the path is only one hop, because the communication peer itself
can be within this LAN? it is simply the next hop. In contrast, the communication relationships in larger
networks (e.g., in the Internet) use much larger routes (as in the accompanying example).

Another benefit of t r acer out e is that it is suitable for analyzing connection problems. For example,
if a computer in the Internet is not reachable, you can use t r acer out e to list all reachable routers
on the path to this computer. If one of the intermediate systems does not respond, then it is easy to
find the source of error.

To identify a router on the way to the desired destination computer, t r acer out e applies a trick
rather than using the IP option record route. Specifically, it creates IP packets with the destination
address of the specified computer and sends these packets to that computer. The trick is that the TTL
value in the IP packet header is initially set to one. This means that the packet, on its way to the
destination computer, has to be dropped in the first router, because its maximum time to live (TTL)
has expired. According to the IP standard, the router has to return an ICMP message to the sender.
From this ICMP message, the sender learns the IP address of the router and so can identify the first
switching node. This method is repeated? each time with a TTL value larger by one? until the
destination computer is reached.

Example: Connection in a LAN? Directly Connected Station

root @ux # traceroute ww
traceroute to www. Li nux-net zwer karchitektur.de (129.13.42.100),
30 hops max, 40-byte packets
1 www. Li nux- net zwer kar chi t ektur.de (129.13.42.100) 13 ns 9 ns 9 s

Example: Connection in the Internet

root @uc # traceroute ww. tux.org

traceroute to ww. tux.org (207.96.122.8), 30 hops nmax. 40 Byte packets
routerl.linux-netzwerkarchitektur.de (129.13.42.244) 10 ns 20 ns 20 ns
141.3.1.1 (141.3.1.1) 10 ms 10 nms 10 n®

Kar | sruhel . Bel Wie. de (129.143.167.5) 10 ns 10 ns 10 ns

ZR- Karl sruhel . Wn-1P. DFN. DE (188.1.174.1) 10 ns 10 ns 10 ns

ZR- Hannover| . Wn-1P. DFN. DE (188.1.144.177) 30 ns 30 ns 30 n®s

| R-New Yorkl . W n_I P. DFN. DE (188.1.144.86) 280 ns 130 nms 290 ns

df n. nyl . ny. dante. net (212.1.200.65) 260 ns 120 ns 270 ns

* * %

501. ATMB- 0. XR2. NYCA. ALTER. NET (152.63.22.6) 280 nms 270 nms 120 ns

10 192. ATM2-0- 0. BR1. EMR1. ALTER NET (146.188.176.53) 260 ns 280 ns 290 ns
11 UUNET- EWR- 1- PEER cw. net (137.39.23.66) 280 ns 140 nms 130 ns

12 corerouterl.WstO agne.cw. ent (204.70.9.138) 290 ns 130 ns 130 ns

13 cored. Washi ngton. cw. net (204.70.4.105) 280 ns 290 nms 290 ns

14 fe0-1-0.gwW .spg.va.rcn.net (207.172.0.5) 140 nms 300 ns 270 ns

15 gwyn. tux.org (207.96.122.8) 160 ns 270 nms 270 ns

©CoOo~NOULD WNBEF

When t r acer out e doesn't receive a reply from the queried systems, it outputs *. If no connection to
this system can be established, then several * signs appear, and t r acer out e eventually aborts. This
gives one reason to assume that the famous digger cut a cable, or the cleaning person arranged the

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

C.7 Other Tools

In addition to the tools introduced in the previous sections, which have been available since the early
days of Linux, there are several new programs that can be used to check and monitor networks. We
will introduce three of these tools. Detailed information about these tools is found in the relevant
manual pages or URLs.

* bi ng is a tool to identify the bandwidth currently available between two computers. bi ng
uses ICMP packets with different sizes and tries to work out the current bandwidth from
identified packet round trips.

bi ng uses numerous options, which are described in the manual page (man bi ng) . The
following example shows how a 54-kbps modem line can be measured.

root @ux # bing 213.7.6.95 141.25.10.72

Bl NG www. | i nux- net wer kar chi tektur.de (213.7.6.95)
and 1701d. t m uka. de (141.25.10.72)
44 and 108 data bytes

1024 bits in 0.000mns

1024 bits in 20.123nms: 50887bps. 0.01965|I ns per bit

1024 bits in 10.103nms: 101356bps. 0.009866ns per bit

1024 bits in 10.138ms: 101006bps. 0. 009900ms per bit

1024 bits in 10.557ms: 96997bps. 0.010310ns per bit

1024 bits in 19.966nms: 51287bps. 0.019498ns per bit

1024 bits in 19.174ms: 53406bps. 0.018725nms per bit

1024 bits in 19.314nms: 53019bps. 0.01886l ns per bit

1024 bits in 19.510ms: 52486bps. 0.019053nms per bit

-- 213.7.6.95 statistics --

byt es out in dup loss rtt (ms): min avg max
44 51 51 0% 0. 049 0. 053 0.078
108 51 51 0% 0.023 0. 024 0. 025

-- 141.25.10.72 statistics --

byt es out in dup loss rtt (ns): nin avg max
44 51 50 1% 99. 644 112. 260 147.178
108 50 50 0% 119. 154 127.578 199.999

-- estimated link characteristics --
warning: rtt big hostl 0.023nms < rtt snall host2 0.049ms
estimated throughput 52486bps
m ni mum del ay per packet 86.182nms (4523 bhits)

average statistics (experinmental):

packet loss: small 1% big 0% total 0%

warning: rtt big hostl 0.024nms < rtt snmall host2 0.053ms
aver age throughput 66849bps

average del ay per packet 98.793ns (5185 bits)

wei ght ed aver age t hroughput 66188bps

* nt op shows information about the current utilization of connected networks. It logs all
packets received over the network adapters and creates various statistics. Figure C-1 shows
an example of the current distribution of the protocols used. We can see that nt op is
browser-based (i.e., it represents its information in the form of Web pages). There is also a
text-based version, which is similar to the t op tool used to display current processes and their
computing load.

Figure C-1. Using ntop to analyze the network traffic in local area networks.

[View full size image]

o W W TR0 oL TN e peo e ey T & I

http://www.ntop.org
http://www.tux.org
http://www.ethereal.com
http://www.ntop.org
http://www.tux.org
http://www.ethereal.com
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Appendix D. Example for a Kernel Module

/**

* Exanpl e of a kernel nodul e

* Conpi |l e:

* gcc -1/1ib/rmodul es/" unane -r'/build/include -c nodule.c
**/
#i f ndef _KERNEL

#define _KERNEL_

#endi f

#i f ndef MODULE

#def i ne MODULE

#endi f

#i f ndef EXPORT_SYMIAB

#defi ne EXPORT_SYMIAB

#endi f

#i ncl ude <Iinux/nodul e. h>
#i ncl ude <l inux/kernel.h>
#i nclude <linux/init.h>
#i ncl ude <linux/proc_fs. h>
MODULE_AUTHOR(" Test Aut hor (kl aus@.i nux- net zwer kar chi t ektur.de)");
MODULE_DESCRI PTI ON("This is an exanple nodule for the book
Li nux Network Architecture.");

/***/

/* Exanpl e variables for nodul e paraneters */
/***/

unsi gned int variabl el;

unsi gned | ong variable2[3] = {0,1, 2};

/* Exanple function; will be exported as synbol. */
voi d nethodel(int testl, char *test?2)

{
}

EXPORT_SYMBOL (vari abl el);
EXPORT_SYMBOL (vari abl e2);
EXPORT_SYMBOL (et hodel);

/1 do anything

MODULE_PARM (vari abl el, "i");
MODULE_PARM DESC (vari abl el, "Description for the integer");

MODULE_PARM (vari abl e2, "1-31");
MODULE_PARM DESC (vari abl e2, "Description for the array of |ongs");

/***/

/* Function to create the output fromproc files. */

/***/

#i f def CONFI G_PROCC_FS
struct proc_dir_entry *test _dir, *entry;

int test _proc_get_info(char *buf, char **start, off _t offset, int len)
{

len = sprintf(buf, "\n This is a test nodul e\n\n");

len += sprintf(buf+len, " Integer: %\n", variablel);

len += sprintf(buf+len, " Long[0]: %u\n", variable2[0]);

len += sprintf(buf+len, " Long[1]: %u\n", variable2[1]);

len += sprintf(buf+len, " Long[2]: %u\n", variable2[2]);

return |en;

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Appendix E. Example for a Network-Layer
Protocol

/**

* Exanpl e for a network-|ayer protocol

* Conpi | e:

* gcc -1/1ib/rmodul es/" unane -r'/build/include -c file.c
**/

#i f ndef _KERNEL
#define KERNEL
#endi f

#i f ndef MODULE
#def i ne MODULE
#endi f

#i ncl ude <l i nux/ nodul e. h>

#i ncl ude <l i nux/version. h>
#i ncl ude <l i nux/kernel. h>
#include <linux/init.h>

#i ncl ude <l i nux/skbuff. h>

#i ncl ude <linux/in.h>

#i ncl ude <l i nux/ netdevice. h>

MODULE_AUTHOR(" Test Aut hor (fi xme@i nux-netzwer kar chi tektur.de)");
MODULE_DESCRI PTI ON("Modul e with a |l ayer-3 test protocol");

#define TEST_PROTO | D 0x1234
int test_pack_rcv(struct sk _buff *skb, struct net_device *dev, struct
packet _type *pt);

static struct packet_type test_protocol =

{
_constant _htons(TEST_PROTO I D),
NULL,
test _pack_rcv,
(void *) 1,
NULL
b

int test_pack_rcv(struct sk _buff *skb, struct net_device *dev, struct
packet _type *pt)

{
print k(KERN_DEBUG " Test protocol: Packet Received with |ength:
%\ n",
skb->l en);
return skb->len;
}
int init_nodul e(void)
{
dev_add_pack(& est _protocol);
return O;
}

voi d cl eanup_nodul e(voi d)

{
}

dev_renove_pack(& est _protocol);

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Appendix F. Example for a Transport Protocol

/**

* Exanpl e for a transport protoco
* Conpi |l e:
* gcc -1/1ib/modul es/"unane -r'/build/include -c file.c

**/

#i f ndef _KERNEL
#define _KERNEL_
#endi f

#i f ndef MODULE
#def i ne MODULE
#endi f

#i ncl ude <l i nux/ nodul e. h>
#i ncl ude <l i nux/version. h>
#i ncl ude <l i nux/kernel . h>
#include <linux/init.h>

#i ncl ude <l i nux/skbuff. h>
#i ncl ude <linux/in.h>

#i ncl ude <net/protocol.h>

MODULE_AUTHOR(" Test Aut hor (fi xme@i nux- net zwer kar chi tektur.de)");
MODULE_DESCRI PTI ON("Modul e with a |layer-4 test protocol")

int test _proto_rcv(struct sk _buff *skb);

static struct inet_protocol test protocol =

{
&t est_proto_rcv, /* protocol handler */
NULL, /* error control */
NULL, /* next */
| PPROTO_TCP, /* protocol ID */
0, /* copy */
NULL, /* data */
" Test Protocol" /[* name */
b
int test _proto_rcv(struct sk_buff *skb)
{
print k(KERN_DEBUG "Test protocol: Packet Received with |ength:
%\ n",
skb- >l en);
return skb->len
}
int init_nodul e(void)
{
i net _add_protocol (& est_protocol);
return O;
}
voi d cl eanup_nodul e(voi d)
{
i net _del protocol (& est_protocol);
}

4 Previous Mext ¥

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Pre‘uious] Hext P]

Appendix G. Example for Communication over
Sockets

Section G.1. SERVER
Section G.2. CLIENT

4 Pre‘uious] Hext P]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

G.1 SERVER

/***

* Socket exanple: Chat application, server conponent conms.c

*

Conpi l ation: gcc -o comms conms.cC

comms <port>is used to start a server on each end system

and conm c <destination system» <port> is used to start an
arbitrary number of clients.

Al'l messages witten in the client are displayed at the respective
desti nation server

*
*
*
*
*
*
*
**/
#i ncl ude <stdi o. h>

#i ncl ude <sys/types. h>

#i ncl ude <sys/socket. h>

#i ncl ude <netinet/in.h>

#i ncl ude <signal . h>

#i ncl ude <string. h>

/* Macro for easier output of IP addresses with printf() */
#def i ne NI PQUAD(addr) \

((unsigned char *)&addr)[0], \

((unsigned char *)&addr)[1], \

((unsigned char *)&addr)[2], \

((unsi gned char *)&addr)|[3]

#def i ne BUFSI ZE 1024
char buf [BUFSI ZE + 1];

/* Signal handler to accept the SIGCHLD signal when tern nating

* child processes; otherw se, these zonhie processes would renain.
*/

voi d *si ghandl er (i nt dunmy)

wai t (NULL) ;

- Read avail able characters from socket into the buffer
- Search for end-of-line character; if found, or if buffer full
out put nessage, nove the rest forward, and repeat.

/* Function to serve a client:

*

*

*

* - Abort, if error, or connection closed.

*/
voi d serve(int s, struct sockaddr_in *peer)
{
int space, n;
char *p, *q
g = p = buf; space = BUFSI ZE
while (1) {
if ((n =read(s, p, space)) >= 0) break
p += n; space -= n;
while ((q < p) && (*q !="\n")) g+
while ((gq < p) || !space) {
*C]:O;
printf("nessage from%. %d. %d. %d %d: %s\n"
NI PQUAD(peer - >si n_addr.s_addr), ntohs(peer->sin_port),
buf);

if (g <p) g+
memove(buf, g, p - Q9);
n=4q - buf; // Nunber of characters "done"

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

G.2 CLIENT

/***

* Socket exanple: Chat application, client conponent conmc.c

*

* Conpilation: gcc -o commc conmc. C

***/

#i ncl ude <stdio. h>
#i ncl ude <sys/types. h>
#i ncl ude <sys/socket. h>
#i ncl ude <netinet/in.h>
#i ncl ude <string. h>

#defi ne BUFSI ZE 1024
char buf [BUFSI ZE+1] ;

/* Main program

* - Process argunents.

* - Open socket and establish connection to server
* - Read text line by line and send it over this connection
* - Cl ose connection at end of entry (Crl-D).
*/
int main(int argc, char *argv[])
{ .

int s;

struct sockaddr _in addr;

char *p;
if (argc ! = 3) {

fprintf(stderr, "Usage: % <address> <port>\n", argv[0]); exit(1);

}

menset (&addr, 0, sizeof(addr));

addr.sin famly = AF_I NET;

addr.sin_port = htons(atoi(argv[2]));

addr.sin_addr.s_addr = inet_addr(argv[1]);

if ((s = socket (AF_INET, SOCK STREAM 0)) < 0) {
perror("socket"); exit(1);

}

if (connect(s, (struct sockaddr *) &addr, sizeof(addr))) {
perror("connect"); exit(1);
}

buf [BUFSI ZE] = 0;
while (fgets(buf, BUFSIZE, stdin) != NULL) {
if (wite(s, buf, strlen(buf)) == 0) {
perror("wite"); break

}
}
cl ose(s);
exit(0);
}

4 Previous Mext ¥

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

4 Previous Heaxt

Bibliography

[Alme01] Werner Aimesberger. Traffic Control: Next Generation. http://tcng.sourceforge.net.,
(Visited on December 23, 2003.)

[Bake95] Fred Baker. Requirements for IP Version 4 Routers, Internet Engineering Task Force (IETF),
Requests for Comments (RFC) document series, RCF 1812, June 1995.

http://www.fags.org/rfcs/rfc1812.html. (Visited on December 23, 2003.)

[BBDK+01] Michael Beck, Harald Béhme, Mirko Dziadzka, Ulrich Kunitz et al. Linux Kernel Programming.
Boston: Addison-Wesley, 3d ed., 2002.

[BoBu01] Uwe Bohme and Lennert Buytenhenk. Linux BRIDGE-STP-HOWTO.
http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO. (Visited on December 23, 2003.)

[BIAIO1] Mitchell Blank, Werner Almesberger et al. "Project: ATM on Linux: Summary,"
SourceForge.net. http://sourceforge.net/projects/linux-atm. (Visited on January 9, 2003.)

[BoCe00] Daniel P. Bovet and Marco Cesati. Understanding the Linux Kernel. Beijing and Cambridge,
MA: O'Reilly, 2000.

[Brad89] R. Braden. Requirements for Internet Hosts? Communication Layers, Internet Engineering
Task Force (IETF), Requests for Comments (RFC) document series, RCF 1122, October 1989.

http://www.fags.org/rfcs/rfc1122.html. (Visited on December 23, 2003.)

[BrBP88] R. Braden, D. Borman, and C. Partridge. Computing the Internet Checksum, Internet
Engineering Task Force (IETF), Requests for Comments (RFC) document series, RCF 1071, September

1988. http://www.fags.org/rfcs/rfc1071.html. (Visited on December 23, 2003.)

[Buyt01] Lennert Buytenhenk. Linux Bridge Utilities. Sources at http://bridge.sourceforge.net, 2001.
(Visited January 9, 2004.)

[ChBe94] William R. Cheswick and Steven M. Bellovin. Firewalls and Internet Security: Repelling the
Wiley Hacker. Reading, MA: Addison-Wesley, 1994.

[Come00] Douglas E. Comer. Principles, Protocols, and Architecture, vol. 1 of Internetworking with
TCP/IP. Upper Saddle River: Prentice Hall, 4th ed., 2000.

[Deer86] Stephen E. Deering. Host Extensions for IP Multicasting, Internet Engineering Task Force
(IETF), Requests for Comments (RFC) document series, RCF 988, July 1986.

http://www.fags.org/rfcs/rfc988.html. (Visited on December 23, 2003.)

[Deer91] Stephen E. Deering. Multicast Routing in a Datagram Network. PhD dissertation, Stanford
University, Palo Alto, CA, December 1991.

[Drak00] Joshua Drake. Networking Howto. http://www.linuxdoc.org/HOWTO/Net-HOWTO.,
(Visited on December 23, 2003.)

[Fenn97] W. Fenner. Internet Group Management Protocol, Version 2, Internet Engineering Task Force
(IETF), Requests for Comments (RFC) document series, RCF 2236, November 1997.
http://www.fags.org/rfcs/rfc2236.html. (Visited on December 23, 2003.)

[FeSe00] Paul Ferguson and Daniel Senie. Network Ingress Filtering: Defeating Denial of Service
Attacks which Employ IP Source Address Spoofing, Internet Engineering Task Force (IETF), Requests
for Comments (RFC) document series, RCF 2827, May 2000.
http://www.fags.org/rfcs/rfc2827.html. (Visited on December 23, 2003.)

[FLYV93] Vince Fuller, Tony Li, Jessica Yu, and Kannan Varadhan. Classless Inter-Domain Routing
(CIDR): An Address Assignment and Aggregation Strategy, Internet Engineering Task Force (IETF),
Requests for Comments (RFC) document series, RCF 1519, September 1993.
http://www.fags.org/rfcs/rfc1519.html. (Visited on December 23, 2003.)

http://tcng.sourceforge.net
http://www.faqs.org/rfcs/rfc1812.html
http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO
http://sourceforge.net/projects/linux-atm
http://www.faqs.org/rfcs/rfc1122.html
http://www.faqs.org/rfcs/rfc1071.html
http://bridge.sourceforge.net
http://www.faqs.org/rfcs/rfc988.html
http://www.linuxdoc.org/HOWTO/Net-HOWTO
http://www.faqs.org/rfcs/rfc2236.html
http://www.faqs.org/rfcs/rfc2827.html
http://www.faqs.org/rfcs/rfc1519.html
http://www.faqs.org/rfcs/rfc903.html
ftp://ftp.atmforum.com/pub/approved-specs/af-lane-0084.000.pdf
http://www.grennan.com/Firewall-HOWTO.html
http://www.bluetooth.org
http://www.faqs.org/rfcs/rfc1483.html
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org/rfcs/rfc2373.html
http://www.faqs.org/rfcs/rfc2373.html
http://www.faqs.org/rfcs/rfc1323.html
http://www.faqs.org/rfcs/rfc1144.html
http://linux-ip.net/gl/ipcref
http://tcng.sourceforge.net/
http://www.faqs.org/rfcs/rfc1577.html
http://www.faqs.org/rfcs/rfc1928.html
http://www.faqs.org/rfcs/rfc1928.html
http://www.faqs.org/rfcs/rfc1928.html
http://www.faqs.org/rfcs/rfc2453.html
http://www.faqs.org/rfcs/rfc2516.html
http://www.faqs.org/rfcs/rfc896.html
http://www.faqs.org/rfcs/rfc2474.html
http://www.oberle.org/apic_timer.html
http://www.roaringpenguin.com/pppoe/
http://www.faqs.org/rfcs/rfc768.html
http://www.faqs.org/rfcs/rfc790.html
http://www.faqs.org/rfcs/rfc792.html
http://www.faqs.org/rfcs/rfc791.html
http://www.faqs.org/rfcs/rfc1518.html
http://www.faqs.org/rfcs/rfc1700.html
http://www.faqs.org/rfcs/rfc1624.html
http://www.faqs.org/rfcs/rfc1918.html
http://www.roaringpenguin.com/products/rp-pppoe/index.php
http://www.faqs.org/rfcs/rfc1055.html
http://www.oreilly.com/catalog/linuxdrive2/index.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.kernel.org/pub/linux/kernel/people/rusty/kernel-locking/
http://netfilter.gnumonks.org/unreliable-guides/kernel-hacking/lk-hacking-guide.html
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/NAT-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.netfilter.org/documentation/HOWTO/packet-filtering-HOWTO.html
http://www.faqs.org/rfcs/rfc1661.html
http://www.faqs.org/rfcs/rfc1662.html
http://www.faqs.org/rfcs/rfc2663.html
http://www.faqs.org/rfcs/rfc1075.html
http://www.faqs.org/rfcs/rfc1075.html
http://tcng.sourceforge.net
http://www.faqs.org/rfcs/rfc1812.html
http://www.tldp.org/HOWTO/BRIDGE-STP-HOWTO
http://sourceforge.net/projects/linux-atm
http://www.faqs.org/rfcs/rfc1122.html
http://www.faqs.org/rfcs/rfc1071.html
http://bridge.sourceforge.net
http://www.faqs.org/rfcs/rfc988.html
http://www.linuxdoc.org/HOWTO/Net-HOWTO
http://www.faqs.org/rfcs/rfc2236.html
http://www.faqs.org/rfcs/rfc2827.html
http://www.faqs.org/rfcs/rfc1519.html
http://www.faqs.org/rfcs/rfc903.html
ftp://ftp.atmforum.com/pub/approved-specs/af-lane-0084.000.pdf
http://www.grennan.com/Firewall-HOWTO.html
http://www.bluetooth.org
http://www.suse.de/~mha/HyperNews/get/linux-i
http://www.faqs.org/rfcs/rfc1483.html
http://www.faqs.org/rfcs/rfc2460.html
http://www.faqs.org
http://www.faqs.org/rfcs/rfc1323.html
http://www.faqs.org/rfcs/rfc1144.html
http://linux-ip.net/gl/ipcref
http://tcng.sourceforge.net/
http://www.faqs.org/rfcs/rfc1577.html
http://www.faqs.org/rfcs/rfc1928.ht
http://www.faqs.org/rfcs/rfc1928.html
http://www.faqs.org/rfcs/rfc2453.html
http://www.faqs.org/rfcs/rfc2516.html
http://www.faqs.org/rfcs/rfc896.html
http://www.faqs.org/rfcs/rfc2474.html
http://www.oberle.org/apic_timer.html
http://www.roaringpenguin.com/pppoe/
http://www.faqs.org/rfcs/rfc768.html
http://www.faqs.org/rfcs/rfc790.html
http://www.faqs.org/rfcs/rfc792.html
http://www.faqs.org/rfcs/rfc791.html
http://www1.ietf.org/mail-archive
http://www.faqs.org/rfcs/rfc1518.html
http://www.faqs.org/rfcs/rfc1700.html
http://www.faqs.org/rfcs/rfc1624.html
http://www.faqs.org/rfcs/rfc1918.html
http://www.roaringpenguin.com/products/rp-pppoe/index.php
http://www.faqs.org/rfcs/rfc1055.html
http://www.oreilly.com/catalog/linuxdrive2/index.html
http://www.tldp.org/HOWTO/IPCHAINS-HOWTO.html
http://www.kernel.org/pub/linux/kernel/people/rusty/kernel-locking/
http://netfilter.gnumonks.org/unreliable-guides/kernel-hacking/lk-hacking-guide.html
http://www.netfilter.org/documentation/HOWTO/NAT-HO
http://www.netfilter.org/documentation/HOW
http://www.faqs.org/rfcs/rfc1661.html
http://www.faqs.org/rfcs/rfc1662.html
http://www.faqs.org/rfcs/rfc2663.html
http://www.faqs.org/rfcs/rfc1075.htm
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [PT[Q][R][SI[T]
[UT V]I W] [Z]

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K][L] [M] [N][O][P][Q][R][S][T
1TUl [Vl [w] [Z]

? tcp_select_window()
/proc directory

_pppoe_xmit()
10Base?2 standard

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M][N][O][P][Q][R]I[S]I[T]
Ul [VIIW][Z]

Abstract Syntax Notation (ASN.1)
ACCEPT (branch destination)
add_timer()
addbr bridge command
addif bridge device command
Address ranges, for use in private networks
Address Resolution Protocol (ARP)
arp command
ARP instance, implementing in the Linux kernel
ARP PDUs, structure of
creating/managing neighbour instances
defined 2nd
handling unresolved IP packets
arp_constructor()
arp_hash()
arp_solicit()
neigh_alloc()
neigh_connect()
neigh_connected_output()
neigh_create()
neigh_destroy()
neigh_event_send()
neigh_forced_gc()
neigh_periodic_timer()
neigh_resolve_output()
neigh_suspect()
neigh_sync()
neigh_table_init()
neigh_timer_handler()
incoming ARP PDUs
arp_rcv()
arp_send()
neigh_lookup()
neigh_update()
managing reachable computers in the ARP cache
neigh_ops structure
neigh_table structure
neighbour structure
operation of
possible states for neighbour entries
receiving an ARP packet and replying
using
ADSL (Asymmetric Digital Subscriber Line) access technology
Advanced Programmable Interrupt Controller (APIC) [See APIC timer]
Advertised window
alloc_skb()
Apache Web server
APANET
APIC timer:
defined
technical basis for
Application gateways (proxies)

Annlicatinn |Iavar

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K][L][M][N][O][P][Q][R]I[S]I[T]
Ul [VIIW][Z]

Backward learning
Basic Encoding Rules (BER)
Basic NAT
Berkeley sockets [See BSD sockets]
Berkeley Software Distribution
Berkeley UNIX operating system
bhvr structure
bhvr_type structure
Bidirectional NAT
bind_tcf() function
Binding type
bing
Bit operations
Block-oriented devices
Bluetooth
Bluetooth core
Bluetooth in Linux
Logical Link Control and Adaptation Protocol (L2CAP)
Bluetooth profiles
Bluez
Bottom halfs
br_become_designated_port()
br_designated_port_selection()
br_port_state_selection()
br_received_config_bpdu()
br_received_tcn_bpdu()
br_record_config_information()
br_record_config_timeout_values()
br_root_selection()
br_supersedes_port_info()
br_topology_change_acknowledged()
br_topology_change_detection()
br_transmit_config()
brctl tool
addbr bridge command
addif bridge device command
delbr bridge command
delif bridge device command
setaging bridge time command
setbridgeprio bridge prio command
setfd bridge time command
setgcint bridge time command
sethello bridge time command
setmaxage bridge time command
setpathcost bridge port cost command
setportprio bridge port prio command
stp bridge [en]|dis] command
Bridge ID
Bridge Protocol Data Units (BPDUS)
Bridges [See also Transparent bridges]
basics of

configuring in Linux
rhackina Fhe hridae firincrionaling

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1][J] [K][L][M][N][O][P][Q][R]I[S]I[T]
[Ul VI [W][Z]

CBCP (Call Back Configuration Protocol)
CGI (Common Gateway Interface) scripts
Chain
change() function 2nd 3rd
change_bhvr()
CHAOS
CHAP (Challenge Handshake Authentication Protocol)
Character device
Character stuffing 2nd
Character-oriented devices
Chatscript
check_qos()
check_region()
check_tp()
Checksum field, IP packet header
Class A IP addresses
Class B IP addresses
Class C IP addresses
Class D IP addresses
Class E IP addresses
Classes
bind_tcf() function
change() function
delete() function
get() function
graft() function
leaf() function
put() function
qdisc_graft() function
tcf_chain() function
unbind_tcf() function
walk() function
Classical IP
classify() function
cleanup_module()
close()
Code transparency
Codepoint field, IP packet header
Command packets
hci_send_cnd()
hci_send_frame()
Communication over sockets, example for
Communication protocols
Communication system architecture
ISOOSI reference model
layer-based communication models
services and protocols
TCPIP reference model
Computer or host part, IP addresses
Configuration BPDUs
Configuration:
ip_forward_options()
ip_options
ip options build()

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K][L][M][N][O][P][Q][R]I[S]I[T]
Ul [VIIW][Z]

Data Display Debugger (ddd)
Data link layer, ISOOSI reference model
Data packets
hci_low_acl_sent()
hci_sched_acl()
hci_sched_sco()
Data transmission functions
read()
readv()
recv()
recvfrom()
recvmsg()
send()
sendmsg()
sendto()
write()
writev()
Data-link layer 2nd
layer-3 protocols, managing
local area networks (LANs), IEEE standard for
processes on
structure of
Datagrams
Dead loop
death_by_timeout()
Debugger:
compiler options
example
gdb and ddd
interface between kernel and
using with the Linux kernel
Debugging
Decnet
del_timer()
delbr bridge command
delete() function 2nd
delif bridge device command
Demilitarized zone (DMZ)
Dense-mode routing protocols
DENY (branch destination)
dequeue() function
Dequeuing hooks
Designated port
Destination NAT
destroy() function 2nd
destroy_conntrack()
dev->mc_list
dev_add_pack()
dev_alloc()
dev_alloc_name()
dev_alloc_skb()

dev_close()
Aav At ()

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [T] [J] [K] [L] [M][N][O] [P1[Q][R][S][T]
[UT V]I W] [Z]

Egress filtering
End-of-Option-List packet option
enqueue() function
Enqueuing hooks
Ericsson
eth_type_trans()
ether_setup()
ethereal
Event packets
hci_rx_task()
example_set_config()
example_stop()
Exceptions
expect_list

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K][L][M][N][O][P][Q][R]I[S]I[T]
Ul [VIIW][Z]

Fast interrupts
Fast Path
Feature freeze
fib_info structure
fib_lookup()
fib_node structure
fib_rule structure
fib_select_default()
fib_select_multipath()
fib_table structure
fib_validate_source()
File systems 2nd
File Transfer Protocol (FTP)
defined
Filters
change() function
classify() function
delete() function
destroy() function
dump() function
get() function
init() function
put() function
walk() function
find_proto()
fini
Finite state machine (FSM)
Firewalls:
application gateways (proxies)
functional principle of
limits of the firewall principle
packet filters
protocol-specific particularities
quality of a packet-filter architecture
Firmware
Flags, IP packet header
Flooding
fn_zone structure
Forward chain 2nd
Forward delay timer
Forward-delay timer
Forwarding database
Forwarding functions:
bridges:
br_fdb_get()
br_flood()
br_forward()
br_handle_frame()
br_pass_frame_up()
Forwarding packets
ip6_forward()
ip6_forward_finish()

Enanamardina nroacedr ire:

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M][N][O] [P1[Q][R][S][T]
[UT V]I W] [Z]

Garbage collection 2nd 3rd
Garbage collection (GC) timer
GC timer
get() function 2nd
get_tuple()
gethostname()
getpeername()
Glimpse
Global network [See Internet]
GNU Public License (GPL)
GNULinux system
graft() function
Grand Unified Debugger (gud) mode
Group communication [See also IP multicast]
broadcast 2nd
multicast
unicast

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M][N][O][P][Q][R]I[S]I[T]
Ul [VIIW][Z]

Hacker kernels
Hardware interrupts
hash_conntrack()
hci_low_acl_sent()
hci_rx_task()
hci_sched_acl()
hci_sched_sco()
hci_send_cnd()
hci_send_frame()
HDLC (High Level Data Link Control)
Header Prediction
Headroom 2nd 3rd
Hello timer
helpers
High-resolution timers, using APIC for
Hold timer
Hook
Horizontal communication
Host controller and baseband commands
Host Controller Interface (HCI) 2nd
accessing
command packets
hci_send_cnd()
hci_send_frame()
data packets
hci_low_acl_sent()
hci_sched_acl()
hci_sched_sco()
event packets
hci_rx_task()
Host part, IP addresses
hostent Structure
HTML (HyperText Markup Language)
htonl()
htons()
HyperText Transfer Protocol (HTTP)

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [X] [J] (K] [L][M][N][O][P][Q][R]I[S]I[T]
Ul [VIIW][Z]

IBM

ICMP redirect messages
icmp_address()
icmp_address_reply()
icmp_echo()
icmp_error_track()
icmp_rcv()
icmp_redirect()
icmp_reply()

icmp_send() 2nd
icmp_timestamp()
icmp_unit()
icmp_unreach()

IEEE (Institute of Electrical and Electronics Engineers), LAN standards 2nd
ifconfig
igmp_heard_query()
igmp_heard_report()
igmp_rcv()
igmp_send_report()

IHL (Internet Header Length) field, IP packet header
in_aton()

in_ntoa()
inet_add_protocol()
inet_addr()
inet_addr_type()
inet_aton()

inet_create()
inet_del_protocol()
inet_ntoa()

inet_ntop()

inet_pton()

Information parameters
Information Reply message
Information Request or Information Reply message 2nd
Ingress filtering

Ingress policing

init() function 2nd 3rd
init_conntrack()
init_etherdev()
init_netdev()
init_or_cleanup()
init_timer()

Initial Sequence Number (ISN)
Inline procedures, defined
Input chain 2nd

int accept

int bind

int close

int connect

int listen

int socket

Integer operations
Tntal

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][NT[O][P][QI[RI[SI[T]
[Ul VI [W][Z]

Jiffies

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [J] [K] [L] [M] [N][O][P][Q]I[R][S][T]
[Ul VI [W][Z]

keepalive timer
Kernel
atomic operations
device drivers 2nd
file systems
hardware interrupts
managing network packets in
memory management
memory management in
network
proc file system
process management
SLIP implementation in
timing
Kernel module, example for
Kernel modules
managing
passing parameters when loading a module
registering/unregistering module functionality
symbol tables of the kernel and modules
Kernel panic
kfree_skb()
kfree_skbmem()
KIDS QoS support
Kleinrock, Leonard
ksym symbol table
Kuznetsov, Alexey

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][QI[RI[SI[T]
[Ul VI [W][Z]

I2cap_config_req()
|2cap_config_rsq()
|2cap_connect_req()
|2cap_data-channel()
I2cap_sig_channel()
LAN Emulation
Layer-3 protocols, managing
Layer-based communication models
Layered architectures
LCP (Link Control Protocol)
leaf() function
Link control commands
Link Management Protocol (LMP)
Link policy commands
Linux kernel [See Kernel]
creating strings in the kernel
sprint()
string operations
debugging in
Internet Control Message Protocol (ICMP) in
log outputs from
console_print()
printk()
proc directory
Linux KIDS
component instances:
change_bhvr()
create_bhvr()
defined
managing
remove_bhvr()
components
bhvr structure
bhvr_type structure
configuring
defined
operation of
registering/managing
token_bucket_func()
defined
dequeuing components class
dynamically extendable functionalities, managing
elementary QoS components
enqueuing components class
hooks
implementing
message interface
operative components class
packet interface
queue components class
register_functionality()
strategic components class
structure of
unreaister functionality()

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O] [P][Q][R][S][T]
[Ul VI [W][Z]

MAC (Medium Access Control)
Major number
Management data
Mapping type
Masquerading 2nd
Mass communication
Matching rule
Maximum Transfer Unit (MTU)
Maximum Transmission Unit (MTU)
MBone (Multicast Backbone)
accessing over the mrouted daemon
defined
DVMRP routing algorithm
mrouted daemon
data exchange between kernel and
interface between daemon and the kernel
ip_mr_init()
ip_mroute_getsockopt()
ip_mroute_setsockopt()
ipmr_cache_alloc()
ipmr_cache_find()
ipmr_cache_report()
ipmr_cache_resolve()
ipmr_cache_timer()
ipmr_cache_unresolved()
ipmr_get_route()
ipmr_ioctl()
ipmr_mfc_modify()
ipmr_new_tunnel()
mfcctl structure
sioc_sg_req structure
sioc_vif_req structure
vifctl structure
Media-access control (MAC) layer
Medium Access Control (MAC) layer
Memory management
in the kernel
memory caches
selected functions
Message-age timer
mfcctl structure
Microkernels
Microsoft NetMeeting
Minimum spanning tree (MST) methods
Minix newsgroup 2nd
Minor number
Monolithic kernels
MPOA (Multiple Protocols over ATM)
msghdr structure
Multicast addresses
Multicast communication
on the MAC layer vs. on the network layer
Multicast distribution trees
Multicast File Transfer Protocol (MFTP)

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [NT[O][P][Q][R]I[SI[T]
Ul [VIIW][Z]

neigh_alloc()
neigh_connect()
neigh_connected_output()
neigh_create()
neigh_destroy()
neigh_event_send()
neigh_forced_gc()
neigh_lookup()
neigh_ops structure 2nd
neigh_periodic_timer()
neigh_resolve_output()
neigh_suspect()
neigh_sync()
neigh_table structure 2nd
neigh_table_init()
neigh_timer_handler()
neigh_update()
Neighbor Discovery (ND) address resolution
Neighbor solicitation packets
Neighbor stations
neighbour structure
net_device interface
data on the network layer
data on the physical layer
device-driver methods
general fields of a network device
hardware-specific fields
struct net_device
net_do_ioctl()
net_get_stats()
net_init()net_probe()
net_interrupt()
net_open()
net_rx()
net_rx_action()
net_set_multicast_list()
net_start_xmit()
net_timeout()
net_tx()
net_tx_action()
netdev_chain
Netfilter architecture of Linux 2.4
iptables command-line tool
netfilter hooks in the Linux kernel
NF_HOOK()
NF_IP_FORWARD (2)
NF_IP_LOCAL_IN (1)
NF_IP_LOCAL_OUT (3)
NF_IP_POST_ROUTING (4)
NF_IP_PRE_ROUTING (0)
netfilter standard modules

address translation (NAT)
Aactinatinn NAT

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N][O] [P][Q]I[R][S][T]
[Ul VI [W][Z]

OCF (Opcode Command Field)

OGF (Opcode Group Field)

One-shot timers

Open source

Open systems communication (OSI)
open()

Option and padding fields, IP packet header
OSI layers 1 and 2a

Oslo University web site

Outer queuing discipline

Output chain 2nd

owner

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][Q][R]I[SI[T]
Ul [VIIW][Z]

Packet data
Packet filters
Packet header
Packet hooks
Packet mangling
packet_rcv()
packet_sendmsg()
Packets delivered locally
ip6_output()
ip6_output_finish()
ip6_xmit()
PADI (PPPoE Active Discovery Initiation) packet
PADO (PPPoE Active Discovery Offer) packet
PADR (PPPoE Active Discovery Request) packet
PADS (PPPoE Active Discovery Session Confirmation) packet
PADT (PPPoE Active Discovery Terminate) packet
PAP (Password Authentication Protocol)
Periodic-shot timers
Perl
Permanent virtual channels (PVCs)
atm_connect()
atm_connect_vcc()
atm_create()
atm_do_connect()
atm_do_connect_dev()
atm_do_setsockopt()
atm_recvmsg()
atm_release()
atm_release_vcc_sk()
atm_sendmsg()
check_qos()
check_tp()
pvc_bind()
pvc_create()
Permanent Virtual Connection (PVC)
Physical layer
ISO/0SI reference model
PIC 8259A Programmable Interrupt Controller
Piggybacking
ping
pktsched_init()
Point-to-Point Protocol (PPP) [See also PPP over Ethernet]
architecture of
configuration in Linux
automatic callback function
dial-on-demand mode
kernel options
pppd
implementation in Linux
detecting frame boundaries
functions/data structures of the asynchronous PPP driver
functions/data structures of the generic PPP driver

initializatinn

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P1[QI[R][S][T]
[Ul VI [W][Z]

qdisc_graft() function
qdisc_restart()
qdisc_run()
Queuing disciplines:
and classes
and filters
implementing
token-bucket filter
tbf_dequeue()
tbf_enqueue()
tbf_init()
tbf_watchdog()

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][Q][R][SI[T]
Ul [VIIW][Z]

Random reachable time
read() 2nd
Read-write spinlocks
readv()
Real-Time Transport Protocol (RTP)
RealAudio
Reassembling
Record Route option
recv()
recvfrom()
recvmsg()
REDIRECT (branch destination)
register_functionality()
register_netdevice()
register_netdevice_notifier()
register_qdisc()
REJECT (branch destination)
release_region()
Reliable datagram service (LLC type 3)
request_dma()
request_irq()
request_region()
requeue() function
Reseau IP Europe (RIPE)
Reserved IP addresses
reset() function
resolve_normal_ct()
Retransmission timeout (RTO)
Retransmission timer 2nd
Reverse Path Multicasting
Reverse-Path Filtering
RFC 1122
RFC 1812
RFC 792
RFCOMM
Roaring Penguin implementation
Root bridge, defined
Root port, defined
Root-path cost
defined
Round-trip time (RTT)
route command
Routers
Routing
Routing cache 2nd
cache garbage collection
dst_entry structure
initialization
interface to forwarding functions
proc file system
RT netlink interface
rt_check_expire()

H Aaarhaae coallack))

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][Q][R][S][T]
Ul [VIIW][Z]

Scalable Reliable Multicast (SRM)
Scaling factor
Screened subnet
SDP (Service Discovery Protocol) protocol
Secure Copy (SCP)
Security option
Segments
Semaphores 2nd
send()
Sender and destination addresses, IP packet header
Sender implosion problem
sendmsg()
sendto()
Sequence numbers
Serial-Line Internet Protocol (SLIP)
character stuffing
CSLIP operating mode
defined
functionality
modes supported by
packet detection
SLIP implementation in the Linux kernel
activating and deactivating a network device
functions and data structures
general procedure
initializing the driver and establishing a connection
receiving IP packets
tearing down a connection and deinitializing the driver
transmitting IP packets
SLIP6 operating mode
Service
Service access points (SAPs)
Service Data Unit (SDU)
Service interface
Services and protocols
Session layer, ISO/OSI reference model
setaging bridge time command
setbridgeprio bridge prio command
setfd bridge time command
setgcint bridge time command
sethello bridge time command
setmaxage bridge time command
setpathcost bridge port cost command
setportprio bridge port prio command
show command
showbr bridge command
showmacs bridge command
Signaled virtual channels
svc_bind()
Signaled Virtual Connection (SVC)
Simple Mail Transfer Protocol (SMTP), defined
sioc_sg_req structure

cine vif rea otriick ire

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O][P][Q][R]I[SI[T]
Ul [VIIW][Z]

Tailroom 2nd

Tanenbaum, Andrew S.
Tasklets 2nd
tbf_dequeue()
tbf_enqueue()

tbf_init()

tbf_watchdog()

tcf_chain() function

TCN timer

TCP [See Transmission Control Protocol (TCP)]
TCP transport protocol
TCP/IP protocol suite 2nd
TCP/IP reference model
tcp_ack()

tcp_ack_probe()
tcp_ack_snd_check()
tcp_clear_xmit_timer()
tcp_close_state()
tcp_cong_avoid()
tcp_data_snd_check()
tcp_delete_keepalive_timer()
tcp_enter_loss()
tcp_event_data_recv()
tcp_fast_parse_options ()
tcp_fin() 2nd 3rd
tcp_init_xmit_timers()
tcp_keepalive_timer()
tcp_opt Structure
tcp_probe_timer()
tcp_push_pending_frames()
tcp_rcv_established()
tcp_rcv_state_process ()
tcp_rcv_state_process() 2nd
tcp_recalc_ssthresh()
tcp_receive_window()
tcp_reset_keepalive_timer()
tcp_reset_xmit_timer()
tcp_retransmit_skb()
tcp_send_ack()
tcp_send_probe0()
tcp_send_skb()
tcp_sendmsg()

tcp_skb_cb Structure
tcp_snd_test()
tcp_time_wait()
tcp_timewait_kill()
tcp_timewait_state_process()
tcp_transmit_skb()
tcp_tw_hashdance()
tcp_v4_do_rcv()
tcp_v4_init_sock()
tcp_v4_rcv()

rn write walcarninf\

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M][N][O] [P][Q][RI[SI[T]
[UT [VITW][Z]

UDP [See User Datagram Protocol (UDP)]
udp_gerfrag()
udp_mcast_deliver()
udp_rcv()
udp_recvmsg()
udp_sendmsg()
udpfakehdr strcuture
udphdr strcuture
UKA APIC timer, module
UKA-APIC timer 2nd
functionality of
UMTS
unbind_tcf() function
Unicast
Unicast communication
Uniform Reliable Group Communication Protocol (URGC)
UNIX standard software, using under Linux
unregister_functionality()
unregister_netdevice()
Unreliable datagram service (LLC type 1)
User Datagram Protocol (UDP) 2nd 3rd 4th
data structures
defined
integration into network architecture
interface to IP
interface to the application layer
packet format
Checksum field
Destination port field
Length field
Source port field
passing the payload
msghdr structure
receiving UDP datagrams
udp_mcast_deliver()
udp_rcv()
udp_recvmsg()
sending UDP datagrams
udp_getfrag()
udp_sendmsg()
UDP datagrams
udpfakehdr structure
udphdr structure
User kernels

http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N][O] [PT[Q][R][SI[T]
[U] [VI[W] [Z]

Van-Jacobson method

Version field, IP packet header

Vertical communication

vifctl structure

Virtual Channel Identifier (VCI)

Virtual interface (VIF) [See Virtual network device]
Virtual memory management

Virtual network devices

Virtual Path Identifier (VPI)

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N][O] [PI[Q][R][SI[T]
(U] [V][W] [Z]

walk() function 2nd

Web browser

Wide Area Network (WAN)
Wide area network (WAN)
Window scaling

Window update

World Wide Web, success of
write() 2nd

writev()

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

ABC Amber CHM Converter Trial version, http://www.processtext.com/abcchm.html

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N][O] [PI[Q][R][SI[T]
(U] [V][W] [Z]

Zero-window probing
tcp_ack_probe()
tcp_probe_timer()
tcp_send_probe0()
tcp_write_wakeup()
tcp_xmit_probe_skb()

Please register to remove this banner.

http://www.processtext.com/abcchm.html
http://www.processtext.com/abcchm.html

	The Linux Networking Architecture: Design and Implementation of Network Protocols in the Linux Kernel
	Table of Contents
	Copyright
	Preface
	Organization of this Book
	Additional Sources of Information
	Conventions
	Acknowledgments

	Part I: The Linux Kernel
	Chapter 1. Motivation
	1.1 The Linux Operating System
	1.2 What is Linux?
	1.3 Reasons for Using Linux

	Chapter 2. The Kernel Structure
	2.1 Monolithic Architectures and Microkernels
	2.2 Activities in the Linux Kernel
	2.3 Locking--Atomic Operations
	2.4 Kernel Modules
	2.5 Device Drivers
	2.6 Memory Management in the Kernel
	2.7 Timing in the Linux Kernel
	2.8 The Proc File System
	2.9 Versioning

	Part II: Architecture of Network Implementation
	Chapter 3. The Architecture of Communication Systems
	3.1 Layer-Based Communication Models
	3.2 Services and Protocols

	Chapter 4. Managing Network Packets in the Kernel
	4.1 Socket Buffers
	4.2 Socket-Buffer Queues

	Chapter 5. Network Devices
	5.1 The net_device Interface
	5.2 Managing Network Devices
	5.3 Network Drivers

	Part III: Layer I + II--Medium Access and Logical Link Layer
	Chapter 6. Introduction to the Data-Link Layer
	6.1 Structure of the Data-Link Layer
	6.2 Processes on the Data-Link Layer
	6.3 Managing Layer-3 Protocols

	Chapter 7. The Serial-Line Internet Protocol (SLIP)
	7.1 Introduction
	7.2 Slip Implementation in the Linux Kernel

	Chapter 8. The Point-to-Point Protocol (PPP)
	8.1 Introduction
	8.2 PPP Configuration in Linux
	8.3 PPP Implementation in the Linux Kernel
	8.4 Implementing the PPP Daemon

	Chapter 9. PPP over Ethernet
	9.1 Introduction
	9.2 PPPOE Specification in RFC 2516
	9.3 Implementation in the User Space
	9.4 Implementation in the Linux Kernel

	Chapter 10. Asynchronous Transfer Mode--ATM
	10.1 Introduction
	10.2 Implementing ATM in Linux
	10.3 Configuration

	Chapter 11. Bluetooth in Linux
	11.1 Host Controller Interface (HCI)
	11.2 L2CAP
	11.3 Other Protocols

	Chapter 12. Transparent Bridges
	12.1 Introduction
	12.2 Basics
	12.3 Configuring a Bridge in Linux
	12.4 Implementation

	Part IV: Network Layer
	Chapter 13. The TCP/IP Protocols
	13.1 The Internet Protocol Suite

	Chapter 14. The Internet Protocol V4
	14.1.1 Routing IP Packets Across Routers
	14.2 Implementing the Internet Protocol
	14.3 IP Options
	14.4 Internet Control Message Protocol (ICMP)

	Chapter 15. Address Resolution Protocol (ARP)
	15.1 Using the Address Resolution Protocol
	15.2 The ARP Command
	15.3 Implementing the ARP Instance in the Linux Kernel

	Chapter 16. IP Routing
	16.1 Introduction
	16.2 Configuration
	16.3 Implementation

	Chapter 17. IP Multicast for Group Communication
	17.1.1 Unicast
	17.2 IP Multicast
	17.3 Internet Group Management Protocol (IGMP)
	17.4 Multicast Data Path in the Linux Kernel
	17.5 Multicasting in Today's Internet
	17.6 Multicast Transport Protocols

	Chapter 18. Using Traffic Control to Support Quality of Service (QoS)
	18.1 Introduction
	18.2 Basic Structure of Traffic Control in Linux
	18.3 Traffic Control in the Outgoing Direction
	18.4 Kernel Structures and Interfaces
	18.5 Ingress Policing
	18.6 Implementing a Queuing Discipline
	18.7 Configuration

	Chapter 19. Packet Filters and Firewalls
	19.1 Introduction
	19.2 The Ipchains Architecture of Linux 2.2
	19.3 The Netfilter Architecture of Linux 2.4

	Chapter 20. Connection Tracking
	20.1 Introduction
	20.2 Implementation

	Chapter 21. Network Address Translation (NAT)
	21.1 Introduction
	21.2 Configuring NAT in Linux
	21.3 Implementing the NAT Module
	21.4 Interfaces to Extend the NAT Module

	Chapter 22. Extending the Linux Network Architecture Functionality--KIDS
	22.1 Managing Dynamically Extendable Functionalities
	22.2 Structure of the KIDS Construction System
	22.3 Using the KIDS Example to Extend the Linux Network Architecture

	Chapter 23. IPv6--Internet Protocol Version 6
	23.1 Introduction
	23.2 IPv6 Features
	23.3 IPv6 Implementation

	Part V: Layer IV--Transport Layer
	Chapter 24. Transmission Control Protocol (TCP)
	24.1.1 Requirements on TCP
	24.2 Implementing The TCP Protocol Instance
	24.3 Connection Management
	24.4 Protocol Mechanisms For Data Exchange
	24.5 Timer Management In TCP

	Chapter 25. User Datagram Protocol (UDP)
	25.1 Introduction
	25.2 Data Structures
	25.3 Sending and Receiving UDP Datagrams

	Chapter 26. The Concept of Sockets
	26.1 Introduction
	26.2 BSD Sockets
	26.3 Protocol-Specific Sockets

	Part VI: Layer V--Application Layer
	Chapter 27. Network Programming With Sockets
	27.1 Introduction
	27.2 Functions of the Socket API
	27.3 Examples

	Part VII: Appendices
	Appendix A. The LXR Source-Code Browser
	A.1 Functionality
	A.2 Installation

	Appendix B. Debugging in the Linux Kernel
	B.1 Log Outputs From the Linux Kernel
	B.2 Creating Strings in the Kernel
	B.3 Information in the /proc Directory
	B.4 Using a Debugger with the Linux Kernel

	Appendix C. Tools and Commands for Network Operation
	C.1 Using ifconfig to Manage Network Devices
	C.2 Using ping to Test the Reachability
	C.3 Using netstat to View the Network State
	C.4 Using route for Routing Information
	C.5 Using tcpdump for Network Analysis
	C.6 USING traceroute TO TRACE PACKETS
	C.7 Other Tools

	Appendix D. Example for a Kernel Module
	Appendix E. Example for a Network-Layer Protocol
	Appendix F. Example for a Transport Protocol
	Appendix G. Example for Communication over Sockets
	G.1 SERVER
	G.2 CLIENT

	Bibliography
	index
	SYMBOL
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

