Download at wowebook. 1nfag

- Table of Contents
- Index

- Reviews

- Reader Reviews
- Errata

Building Embedded Linux Systems

By Karim Yaghmour

Publisher: O'Reilly

Pub Date: April 2003
ISBN: 0-596-00222-X
Pages: 416
Slots: 1

Building Embedded Linux Systems shows you how to design and build your own embedded systems
using Linux® as the kernel and freely available open source tools as the framework. Written by an active
member of the open source community, the book is structured to gradually introduce readers to the
intricacies of embedded Linux, with detailed information and examples in each chapter that culminate in
describing how Linux is actually put on an embedded device.

http://www.wowebook.info

Download at wowebook. 1nfag

Team Lo |
LINUX

Table of Contents
Index

Reviews

Reader Reviews
Errata

Building Embedded Linux Systems

By Karim Yaghmour

Publisher: O'Reilly

Pub Date: April 2003
ISBN: 0-596-00222-X
Pages: 416
Slots: 1

Copyright

Dedication

Preface
Audience of This Book
Scope and Background Information
Organization of the Material
Hardware Used in This Book
Software Versions
Book Web Site
Typographical Conventions
Contact Information
Acknowledgments

Chapter 1. Introduction
Section 1.1. Definitions
Section 1.2. Real Life and Embedded Linux Systems
Section 1.3. Example Multicomponent System
Section 1.4. Design and Implementation Methodology

Chapter 2. Basic Concepts
Section 2.1. Types of Hosts
Section 2.2. Types of Host/Target Development Setups
Section 2.3. Types of Host/Target Debug Setups
Section 2.4. Generic Architecture of an Embedded Linux System
Section 2.5. System Startup
Section 2.6. Types of Boot Configurations
Section 2.7. System Memory Layout

Chapter 3. Hardware Support

eneviovs I et

http://www.wowebook.info

Download at wowebook. 1nfag

Section 3.1. Processor Architectures
Section 3.2. Buses and Interfaces
Section 3.3. 1/0

Section 3.4. Storage

Section 3.5. General Purpose Networking
Section 3.6. Industrial Grade Networking
Section 3.7. System Monitoring

Chapter 4. Development Tools
Section 4.1. Using a Practical Project Workspace
Section 4.2. GNU Cross-Platform Development Toolchain
Section 4.3. C Library Alternatives
Section 4.4. Java
Section 4.5. Perl
Section 4.6. Python
Section 4.7. Ada
Section 4.8. Other Programming Languages
Section 4.9. Integrated Development Environments
Section 4.10. Terminal Emulators

Chapter 5. Kernel Considerations
Section 5.1. Selecting a Kernel
Section 5.2. Configuring the Kernel
Section 5.3. Compiling the Kernel
Section 5.4. Installing the Kernel
Section 5.5. In the Field

Chapter 6. Root Filesystem Content
Section 6.1. Basic Root Filesystem Structure
Section 6.2. Libraries
Section 6.3. Kernel Modules
Section 6.4. Kernel Images
Section 6.5. Device Files
Section 6.6. Main System Applications
Section 6.7. Custom Applications
Section 6.8. System Initialization

Chapter 7. Storage Device Manipulation
Section 7.1. MTD-Supported Devices
Section 7.2. Disk Devices
Section 7.3. To Swap or Not to Swap

Chapter 8. Root Filesystem Setup
Section 8.1. Selecting a Filesystem
Section 8.2. Using an NFS-Mounted Root Filesystem to Write a Filesystem Image to Flash
Section 8.3. CRAMFS
Section 8.4. JFFS2
Section 8.5. Disk Filesystem over NFTL
Section 8.6. Disk Filesystem over RAM Disk
Section 8.7. Mounting Directories on TMPFS
Section 8.8. Live Updates

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 9. Setting Up the Bootloader
Section 9.1. Bootloaders Galore
Section 9.2. Server Setup for Network Boot
Section 9.3. Using LILO with Disk and CompactFlash Devices
Section 9.4. Using GRUB with DiskOnChip Devices
Section 9.5. U-Boot

Chapter 10. Setting Up Networking Services
Section 10.1. The Internet Super-Server
Section 10.2. Remote Administration with SNMP
Section 10.3. Network Login Through Telnet
Section 10.4. Secure Communication with SSH
Section 10.5. Serving Web Content Through HTTP
Section 10.6. Dynamic Configuration Through DHCP

Chapter 11. Debugging Tools
Section 11.1. Debugging Applications with gdb
Section 11.2. Tracing
Section 11.3. Performance Analysis
Section 11.4. Memory Debugging
Section 11.5. A Word on Hardware Tools

Appendix A. Worksheet
Section A.1. Project Identification
Section A.2. Hardware Summary
Section A.3. Development Tools
Section A.4. Kernel
Section A.5. Root filesystem
Section A.6. Storage Device Organization
Section A.7. Bootloader Configuration and Use
Section A.8. Networking services
Section A.9. Custom Project Software
Section A.10. Debug Notes
Section A.11. Additional Notes
Section A.12. Embedded Linux Systems Worksheet

Appendix B. Resources
Section B.1. Online
Section B.2. Books
Section B.3. Publications
Section B.4. Organizations
Section B.5. Linux and Open-Source-Oriented Hardware Projects

Appendix C. Important Licenses and Notices
Section C.1. Exclusion of User-Space Applications from Kernel's GPL
Section C.2. Notices on Binary Kernel Modules
Section C.3. Legal Clarifications About the Kernel by Linus Torvalds

Colophon
Index

(Team Lio |

eneviovs I et

http://www.wowebook.info

Download at wowebook. 1nfag

Copyright © 2003 O'Reilly & Associates, Inc.
Printed in the United States of America.
Published by O'Reilly & Associates, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O'Reilly & Associates books may be purchased for educational, business, or sales promotional use.
Online editions are also available for most titles (http://safari.oreilly.com). For more information, contact
our corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Nutshell Handbook, the Nutshell Handbook logo, and the O'Reilly logo are registered trademarks of
O'Reilly & Associates, Inc. The association between the image of a windmill and the topic of embedded
Linux systems is a trademark of O'Reilly & Associates, Inc.

While every precaution has been taken in the preparation of this book, the publisher and author assume
no responsibility for errors or omissions, or for damages resulting from the use of the information
contained herein.

http://safari.oreilly.com
http://www.wowebook.info

(Team Lio |

Dedication

Download at wowebook. 1nfag

eneviovs I et

To Mom, whose courage and determination are an everyday guiding light, and to Dad, whose
foresight and engineering spirit are an everlasting source of inspiration.

—Karim Yaghmour

(Team Lio |

eneviovs I et

http://www.wowebook.info

Download at wowebook. 1nfag

Preface

When | first suggested using Linux in an embedded system back in 1997 while working for a hardware
manufacturer, my suggestion was met with a certain degree of skepticism and surprise. Today, the use
of Linux in embedded systems is no laughing matter. Indeed, many industry giants and government
agencies are increasingly relying on Linux for their embedded software needs.

The widespread interest and enthusiasm generated by Linux's successful use in a number of embedded
applications has led to the creation of a plethora of articles, web sites, companies, and documents all
pertaining to "embedded Linux." Yet, beyond the flashy announcements, the magazine atrticles, and the
hundreds of projects and products that claim to ease Linux's use in embedded systems, professional
developers seeking a useful guide are still looking for answers to fundamental questions regarding the
basic methods and techniques required to build embedded systems based on the Linux kernel.

Much of the documentation currently available relies heavily on the use of a number of prepackaged,
ready-to-use cross-platform development tools and target binaries. Yet other documents cover only one
very precise aspect of running Linux on an embedded target.

This book is a radical departure from the existing documentation in that it makes no assumptions as to
the tools you have at hand or the scope of your project, other than your desire to use Linux. All that is
required for this book is an Internet connection to download the necessary packages, browse specific
online documentation, and benefit from other developers' experiences, as well as share your own,
through project mailing lists. You still need a development host and documentation regarding your
target's hardware, but the explanations | outline do not require the purchasing of any product or service
from any vendor.

Besides giving the greatest degree of freedom and control over your design, this approach is closest to
that followed by the pioneers who have spearheaded the way for Linux's use in embedded systems. In
essence, these pioneers have pulled on Linux to fit their applications by stripping it down and
customizing it to their purposes. Linux's penetration of the embedded world contrasts, therefore, with the
approach followed by many software vendors to push their products into new fields of applications. As an
embedded system developer, you are likely to find Linux much easier to pull towards your design than to
adapt the products being pushed by vendors to that same design.

This book's approach is to allow you to pull Linux towards your design by providing all the details and
discussing many of the corner cases encountered in using Linux in embedded systems. Though it is not
possible to claim that all embedded designs are covered by this book, the resources provided here allow
you to easily obtain the rest of the information required for you to customize and use Linux in your
embedded system.

In writing this book, my intent has been to bring the embedded system developers who use open source
and free software in their designs closer to the developers who create and maintain these open source
and free software packages. Though alot of mainstream embedded system developers, many of whom
are high-caliber programmers, rely on third-party offerings for their embedded Linux needs, there is a
clear opportunity for them to contribute to the open source and free software projects on which they rely.
Ultimately, this sort of dynamic will ensure that Linux continues to be the best operating system choice
for embedded systems.

http://www.wowebook.info

Download at wowebook. 1nfag

Audience of This Book

This book is intended first and foremost for the experienced embedded system designer who wishes to
use Linux in a future or current project. Such a reader is expected to be familiar with all the techniques
and technologies used in developing embedded systems, such as cross-compiling, BDM or JTAG
debugging, and the implications of dealing with immature or incomplete hardware. If you are such a
reader, you may want to skip some of the background material about embedded system development
presented early in some sections. There are, however, many early sections (particularly in Chapter 2)
that you will need to read, because they cover the special implications of using the Linux kernel in an
embedded system.

This book is also intended for the beginning embedded system developer who would like to become
familiar with the tools and techniques used in developing embedded systems based on Linux. This book
is not an introduction to embedded systems, however, and you may need to research some of the issues
discussed here in an introductory text book. Appendix B contains a list of books and other resources to
help you.

If you are a power user or a system administrator already familiar with Linux, this book should help you
produce highly customized Linux installations. If you find that distributions install too many packages for
your liking, for example, and would like to build your own custom distribution from scratch, many parts of
this book should come in handy, particularly Chapter 6.

Finally, this book should be helpful to a programmer or a Linux enthusiast who wants to understand how
Linux systems are built and operated. Though the material in this book does not cover how general-
purpose distributions are created, many of the techniques covered here apply, to a certain extent, as
much to general purpose distributions as they do to creating customized embedded Linux installations.

http://www.wowebook.info

Download at wowebook. 1nfag

Scope and Background Information

To make the best of Linux's capabilities in embedded systems, you need background in all the following
topics, which in many books are treated distinctly:

Embedded systems

You need to be familiar with the development, programming, and debugging of embedded
systems in general, from both the software and hardware perspectives.
Unix system administration

You need to be able to tend to various system administration tasks such as hardware
configuration, system setup, maintenance, and using shell scripts to automate tasks.
Linux device drivers

You need to know how to develop and debug various kinds of Linux device drivers.
Linux kernel internals

You need to understand as much as possible how the kernel operates.
GNU software development tools

You need to be able to make efficient use of the GNU tools. This includes understanding many of
the options and utilities often considered to be "arcane.”

In this book, | assume that you are familiar with at least the basic concepts of each topic. On the other
hand, you don't need to know how to create Linux device drivers to read this book, for example, or know
everything about embedded system development. As you read through this book and progress in your
use of Linux in embedded systems, you are likely to feel the need to obtain more information regarding
certain aspects of Linux's use. In addition to the references to other books scattered through this book,
take a look at Appendix B for a list of books you may find useful for getting more information regarding
the topics listed above.

Though this book discusses only the use of Linux in embedded systems, part of this discussion can
certainly be useful to developers who intend to use one of the BSD variants in their embedded system.
Many of the explanations included here will, however, need to be reinterpreted in light of the differences
between BSD and Linux.

http://www.wowebook.info

Download at wowebook. 1nfag

Organization of the Material

There are three major parts to this book. The first part is composed of Chapter 1 through Chapter 3.
These chapters cover the preliminary background required for building any sort of embedded Linux
system. Though they describe no hands-on procedures, they are essential to understand many aspects
of building embedded Linux systems.

The second part spans Chapter 4 through Chapter 9. These important chapters lay out the essential
steps involved in building any embedded Linux system. Regardless of your systems' purpose or
functionality, these chapters are required reading.

The final part of the book is made up of Chapter 10 and Chapter 11, and covers material that, though
very important, is not essential to building embedded Linux systems.

Chapter 1 gives an in-depth introduction to the world of embedded Linux. It lays out basic definitions and
then introduces real-life issues about embedded Linux systems, including a discussion of open source
and free software licenses from the embedded perspective. The chapter then introduces the example
system used in other parts of this book and the implementation method used throughout the book.

Chapter 2 outlines the basic concepts that are common to building all embedded Linux systems.

Chapter 3 provides a thorough review of the embedded hardware supported by Linux, and gives links to
web sites where the drivers and subsystems implementing this support can be found. This chapter
discusses processor architectures, buses and interfaces, 1/0, storage, general purpose networking,
industrial grade networking, and system monitoring.

Chapter 4 covers the installation and use of the various development tools used in building embedded
Linux systems. This includes, most notably, how to build and install the GNU toolchain components from
scratch. It also includes sections discussing Java, Perl, and Python, along with a section about the
various terminal emulators that can be used to interact with an embedded target.

Chapter 5 discusses the selection, configuration, cross-compiling, installation, and use of the Linux
kernel in an embedded system.

Chapter 6 explains how to build a root filesystem using the components introduced earlier in the book,
including the installation of the C library and the creation of the appropriate /dev entries. More
importantly, this chapter covers the installation and use of BusyBox, TinyLogin, Embutils, and System V
init.

Chapter 7 covers the intricacies of manipulating and setting up storage devices for embedded Linux
systems. The chapter's emphasis is on solid-state storage devices, such as native flash and DiskOnChip
devices, and the MTD subsystem.

Chapter 8 explains how to set up the root filesystem created in Chapter 6 for the embedded system's
storage device. This includes the creation of JFFS2 and CRAMFS filesystem images, and the use of
disk-style filesystems over NFTL.

Chapter 9 discusses the various bootloaders available for use in each embedded Linux architecture.
Special emphasis is put on the use of GRUB with DiskOnChip devices, and U-Boot. Network booting
using BOOTP/DHCP, TFTP, and NFS is also covered.

Chapter 10 focuses on the configuration, installation, and use of software packages that offer networking
services, such as SNMP, SSH, and HTTP.

Chapter 11 covers the main debugging issues encountered in developing software for embedded Linux
systems. This includes the use of gdb in a cross-platform development environment, tracing,

http://www.wowebook.info

Download at wowebook. 1nfag

performance analysis, and memory debugging.

Appendix A introduces a worksheet that can be used in conjunction with this book to provide a complete
specification of an embedded Linux system.

Appendix B provides resources you may find useful when building embedded Linux systems.

Appendix C includes important postings by Linus Torvalds and other kernel developers regarding the
kernel's licensing and the issue of non-GPL binary kernel modules.

Though Chapter 7 through Chapter 9 are independent, note that their content is highly interrelated.
Setting up the target's storage device as discussed in Chapter 7, for example, requires a basic
knowledge about the target filesystem organization as discussed in Chapter 8, and vice versa. So, too,
does setting up storage devices require a basic knowledge of bootloader set up and operation as
discussed in Chapter 9, and vice versa. | therefore recommend that you read Chapter 7 through Chapter
9 in one breath a first time before carrying out the instructions of any of these chapters. When setting up
your target thereafter, you will nevertheless follow the same sequence of operations outlined in these
chapters.

http://www.wowebook.info

Download at wowebook. 1nfag

Hardware Used in This Book

As we'll see in Chapter 3, Linux supports a very wide range of hardware. For this book, I've used a few
embedded systems to test the various procedures. Table P-1 contains the complete list of systems |
used.

Some of these systems, such as the iPAQ or the Dreamcast, are commercial products available in the
mainstream market. | included these intentionally, to demonstrate that any willing reader can find the
materials to support learning how to build embedded Linux systems. Sega Dreamcast consoles, for
instance, are available for less than $50 on eBay. Though they boot using a specially formatted CD-
ROM, they are one of the cheapest ways for learning cross-platform development with Linux. You can, of
course, still use an old x86 PC for experimenting, but you are likely to miss much of the fun given the
resemblance between such systems and most development hosts.

Table P-1. Target systems used throughout this book

Architecture System type Processpseoerdclock Rs’ﬁl\e/l Storagtisieze and
PPC ig,&g'gopf”ems 80 MHz 16 MB | 8 MB flash

SuperH Sega Dreamcast 200 MHz 16 MB CD-ROM (see text)
ARM Compagq iPAQ 3600 206 MHz 32 MB 16 MB flash

x86 Kontron Teknor VIPer 806 100 MHz 40 MB 32 MB CompactFlash
x86 COTSI Pentium 100 MHz 8 MB 32 MB DiskOnChip

[1] Commercial Off-The-Shelf.

Apart from running on a slew of embedded systems, Linux also runs on a wide variety of workstations.
Throughout this book, | used the hosts presented in Table P-2. Though the Apple PowerBook served as
my main development host for the book, | had to use an x86 host for some aspects of building x86-
based embedded targets, because some software components cannot be cross-compiled for an x86
target on a non-x86 host. Both GRUB and LILO, for example, have to be built on an x86 host. | can
report, nevertheless, that | wrote this entire book on a PowerBook host running the Yellow Dog Linux
distribution. This is yet another sign that Linux changes the computing world's landscape by providing
one standard operating environment across a very fragmented world of hardware.

Table P-2. Host systems used throughout this book

Architecture System type Processor clock speed RAM size Storage size
PPC Apple PowerBook 400 MHz 128 MB > GB hard disk
x86 Pentium II 350 MHz 128 MB > GB hard disk

To illustrate the range of target architectures on which Linux can be used, | varied the target hardware |
used in the examples between chapters. Table P-3 lists the target architecture used in each chapter.

http://www.wowebook.info

Download at wowebook. 1nfag

Though each chapter is based on a different architecture, the commands given in each chapter apply
readily to other architectures as well. If, for instance, an example in a chapter relies on the arm-linux-gcc
command, which is the gcc compiler for ARM, the same example would work for a PPC target by using
the powerpc-linux-gcc command instead. Whenever more than one architecture is listed for a chapter,
the main architecture discussed is the first one listed. The example commands in Chapter 5, for
instance, are mainly centered around the ARM, but there are also a few references to PPC commands.

Though Table P-3 lists the target being used in example for each chapter, it provides no indication as to
the host being used, because it makes no difference to the discussion. Instead, unless specific
instructions are given to the contrary, the host's architecture is always different from the target's. In
Chapter 4, for example, | used a PPC host to build tools for an x86 target. The same instructions could,
nevertheless, be carried out on a SPARC or an S/390 with little or no modification. Note that most of the
content of the early chapters is architecture independent, so there is no need to provide any architecture-
specific commands.

Table P-3. Main target architectures used for commands examples

Chapter Target architectures
Chapter 1 N/A
Chapter 2 N/A
Chapter 3 N/A
Chapter 4 x86
Chapter 5 ARM, PPC
Chapter 6 PPC
Chapter 7 x86, PPC
Chapter 8 ARM
Chapter 9 PPC, x86
Chapter 10 ARM
Chapter 11 PPC

http://www.wowebook.info

Download at wowebook. 1nfag

Software Versions

The central software on which an embedded Linux system depends, of course, is the Linux kernel. This
book concentrates on Version 2.4 of the Linux kernel, and on Release 2.4.18 in particular. Changes
within 2.4 will probably have only a benign effect on the information in the book. Thatis, new releases will
probably support more hardware than Chapter 3 lists. But the essential tasks described in this book are
unlikely to change in 2.4. As the kernel evolves past Version 2.4, however, some of the steps described
in this book are likely to require updating.

In addition, this book discusses the configuration, installation, and use of over 40 different open source
and free software packages. Each package is maintained independently and is developed at a different
pace. Because these packages change over time, it is likely that the package versions covered in this
book may be outdated by the time you read it. In an effort to minimize the effect of software updates on
the text, | have kept the text as version independent as possible. The overall structure of the book and
the internal structure of each chapter, for example, are unlikely to vary regardless of the various software
changes. Also, many packages covered by this book have been around for quite some time, so they are
unlikely to change in any substantial way. For instance, the commands to install, set up, and use the
different components of the GNU development toolchain, which is used throughout this book, have been
relatively constant for a number of years, and are unlikely to change in any substantial way in the future.
This statement applies equally to most other software packages discussed.

http://www.wowebook.info

Download at wowebook. 1nfag

Book Web Site

Given that many of the software packages discussed in this book are in continuous development that
may cause some of the explanations included here to change, | set up a web site for providing updates
and links related to this book:

http://www.embeddedtux.org/

The worksheet presented in Appendix A, for example, is available for download in both PDF and
OpenOffice formats from the book's web site.

http://www.embeddedtux.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Typographical Conventions

The following is a list of typographical conventions used in this book:
Const ant wi dth

Is used to show the contents of code files or the output from commands, and to indicate source

code keywords that appear in code.
Const ant wi dth bol d

Is used to indicate user input.
Italic

Is used for file and directory names, program and command hames, command-line options, URLs,
and for emphasizing new terms.

This icon indicates a tip, suggestion, or general note.

4 I
K™ x
= Iy

T

This icon indicates a warning or caution.

=

http://www.wowebook.info

Download at wowebook. 1nfag

Contact Information

Please address comments and questions concerning this book to the publisher:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/belinuxsys/
To comment or ask technical questions about this book, send email to:
bookquestions@ oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://mww.oreilly.com

http://www.oreilly.com/catalog/belinuxsys/
http://www.oreilly.com
http://www.wowebook.info

Download at wowebook. 1nfag

Acknowledgments

E quindi uscimmo a riveder le stelle.l? It is with these words that Dante ends Inferno, the first part of his
Devine Comedy. Though it would be misleading to suggest that writing this book wasn't enjoyable,
Dante's narrative clearly expresses the feeling of finishing a first iteration of the book you now hold in
your hands. In particular, | have to admit that it has been a challenging task to pick up the bits and pieces
of information available on the use of Linux in embedded systems, to complete this information in as
much as possible, and put everything back together in a single straightforward manuscript that provides
a practical method for building embedded Linux systems. Fortunately, | was aided in this task by very
competent and willing people.

[21 "And from there we emerged to see the stars once more."

First and foremost, | would like to thank Andy Oram, my editor. Much like Virgil assisted Dante in his
venture, Andy shepherded me throughout the various stages of writing this book. Among many other
things, he patiently corrected my non-idiomatic phrases, made sure that my text actually conveyed the
meaning | meant for it to convey, and relentlessly pointed out the sections where | wasn't providing
enough detail. The text you are about to read is all the much better, as it has profited from Andy's input.
By the same token, | would like to thank Ellen Siever with whom | initially started working on this book.
Though our collaboration ended earlier than | wished it had, many of the ideas that have made their way
into this final version of the book have profited from her constructive feedback.

| have been extremely fortunate to have an outstanding team of reviewers go over this book, and am
very greatful for the many hours they poured into reading, correcting, and pointing out problems with
various aspects of this book. The review team was made up of Erik Andersen, Wolfgang Denk, Bill
Gatliff, Russell King, Paul Kinzelman, Alessandro Rubini, David Schleef, and David Woodhouse. I'd like
to especially thank Alessandro for his dogged pursuit of perfection. Any remaining errors you may find in
the following pages are without a doubt all mine.

Writing about the use of Linux in embedded systems requires having access to a slew of different
hardware. Given that embedded hardware is often expensive, | would like to thank all the companies and
individuals who have stepped forward to provide me with the appropriate equipment. In particular, | would
like to thank Stéphane Martin of Kontron for providing a Teknor VIPer 806 board, Wolfgang Denk of
DENX Software Engineering for providing a TQ components TQM860L PPC board, and Steve
Papacharalambous and Stuart Hughes of Zee2 for providing a uCdimm system.

I have found much of the incentive and thrust for writing this book from being a very satisfied open
source and free software user and contributor who has profited time and again from the knowledge and
the work produced by other members of this community. For this, | have many people to thank. Primarily,
I'd like to thank Michel Dagenais for his trust, his guidance, and for giving me the chance to freely
explore uncharted terrain. My work on developing the Linux Trace Toolkit, as part of my masters degree
with Michel, got me more and more involved in the open source and free software community. As part of
this involvement, | have met a lot of remarkable individuals whose insight and help | greatly appreciate.
Lots of thanks to Jacques Gélinas, Richard Stallman, Jim Norton, Steve Papacharalambous, Stuart
Hughes, Paolo Mantegazza, Pierre Cloutier, David Schleef, Wolfgang Denk, Philippe Gerum, Loic
Dachary, Daniel Phillips, and Alessandro Rubini.

Last, but certainly not least, | owe a debt of gratitude to Sonia for her exceptional patience as | spent
countless hours testing, writing, testing some more, and writing even more. Her support and care has
made this endeavour all the more easy to carry out. La main invisible qui a écrit les espaces entre les
lignes est la sienne et je lui en suis profondément reconnaissant.(!

Bl "The invisible hand that wrote the spaces between each line is hers, and | am profoundly grateful to her for this."

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 1. Introduction

Since its first public release in 1991, Linux has been put to ever wider uses. Initially confined to a loosely
tied group of developers and enthusiasts on the Internet, it eventually matured into a solid Unix-like
operating system for workstations, servers, and clusters. Its growth and popularity accelerated the work
started by the Free Software Foundation (FSF) and fueled what would later be known as the open source
movement. All the while, it attracted media and business interest, which contributed to establishing
Linux's presence as a legitimate and viable choice for an operating system.

Yet, oddly enough, it is through an often ignored segment of computerized devices that Linux is poised to
become the preferred operating system. That segment is embedded systems, and the bulk of the
computer systems found in our modern day lives belong to it. Embedded systems are everywhere in our
lives, from mobile phones to medical equipment, including air navigation systems, automated bank
tellers, MP3 players, printers, cars, and a slew of other devices about which we are often unaware. Every
time you look around and can identify a device as containing a microprocessor, you've most likely found
another embedded system.

If you are reading this book, you probably have a basic idea why one would want to run an embedded
system using Linux. Whether because of its flexibility, its robustness, its price tag, the community
developing it, or the large number of vendors supporting it, there are many reasons for choosing to build
an embedded system with Linux and many ways to carry out the task. This chapter provides the
background for the material presented in the rest of the book by discussing definitions, real-life issues,
generic embedded Linux systems architecture, examples, and methodology.

http://www.wowebook.info

Download at wowebook. 1nfag

1.1 Definitions

The words "Linux," "embedded Linux," and "real-time Linux" are often used with little reference to what is
being designated. Sometimes, the designations may mean something very precise. Other times, a broad
range or category of applications is meant. Let us look at these terms and what they mean in different
situations.

1.1.1 What Is Linux?

Linux is interchangeably used in reference to the Linux kernel, a Linux system, or a Linux distribution.
The broadness of the term plays in favor of the adoption of Linux, in the large sense, when presented to
a nontechnical crowd, but can be bothersome when providing technical explanations. If, for instance, |
say: "Linux provides TCP/IP networking.” Do | mean the TCP/IP stack in the kernel or the TCP/IP utilities
provided in a Linux distribution that are also part of an installed Linux system, or both? This vagueness
actually became ammunition for the proponents of the "GNU/Linux" moniker, who pointed out that Linux
was the kernel, but that the system was mainly built on GNU software.

Strictly speaking, Linux refers to the kernel maintained by Linus Torvalds and distributed under the same
name through the main repository and various mirror sites. This codebase includes only the kernel and
no utilities whatsoever. The kernel provides the core system facilities. It may not be the first software to
run on the system, as a bootloader may have preceded it, but once itis running, it is never swapped out
or removed from control until the system is shut down. In effect, it controls all hardware and provides
higher-level abstractions such as processes, sockets, and files to the different software running on the
system.

As the kernel is constantly updated, a numbering scheme is used to identify a certain release. This
numbering scheme uses three numbers separated by dots to identify the releases. The first two numbers
designate the version, and the third designates the release. Linux 2.4.20, for instance, is version number
2.4, release number 20. Odd version numbers, such as 2.5, desighate development kernels, while even
version numbers, such as 2.4, designate stable kernels. Usually, you should use a kernel from the latest
stable series for your embedded system.

This is the simple explanation. The truth is that far from the "official" releases, there are many modified
Linux kernels that you may find all over the Internet that carry additional version information. 2.4.18-
rmk3-hh24, for instance, is a modified kernel distributed by the Familiar project. Itis based on 2.4.18, but
contains an extra "-rmk3-hh24" version number controlled by the Familiar development team. These
extra version numbers, and the kernel itself, will be discussed in more detail in Chapter 5.

Linux can also be used to designate a hardware system running the Linux kernel and various utilities
running on the kernel. If a friend mentions that his development team is using Linux in their latest
product, he probably means more than the kernel. A Linux system certainly includes the kernel, but most
likely includes a number of other software components that are usually run with the Linux kernel. Often,
these will be composed of a subset of the GNU software such as the C library and binary utilities. It may
also include the X window system or a real-time addition such as RTAI.

A Linux system may be custom built, as you'll see later, or can be based on an already available
distribution. Your friend's development team probably custom built their own system. Conversely, when a
user says she runs Linux on the desktop, she most likely means that she installed one of the various
distributions, such as Red Hat or Debian. The user's Linux system is as much a Linux system as that of
your friend's, but apart from the kernel, their systems most likely have very different purposes, are built
from very different software packages, and run very different applications.

Finally, Linux may also designate a Linux distribution. Red Hat, Mandrake, SUSE, Debian, Slackware,
Caldera, MontaVista, Embedix, BlueCat, PeeWeeLinux, and others are all Linux distributions. They may

http://www.wowebook.info

Download at wowebook. 1nfag

vary in purpose, size, and price, but they share a common purpose: to provide the user with a
shrinkwrapped set of files and an installation procedure to get the kernel and various overlaid software
installed on a certain type of hardware for a certain purpose. Most of us are familiar with Linux
distributions through CD-ROMSs, but there are distributions that are no more than a set of files you
retrieve from a web site, untar, and install according to the documentation. The difference between
mainstream, user-oriented distributions and these distributions is the automated installation procedure in
the mainstream ones.

Starting with the next chapter and in the rest of this book, | will avoid referring to the word "Linux" on its
own. Instead, | will refer directly to the object of discussion. Rather than talking about the "Linux kernel," |
will refer to the "kernel." Rather than talking about the "Linux system," | will refer to the "system." Rather
than talking about a "Linux distribution," | will refer to a "distribution." In all these circumstances, "Linux"
is implied but avoided to eliminate any possible confusion. | will continue, however, to use the term
"Linux," where appropriate, to designate the broad range of software and resources surrounding the
kernel.

1.1.2 What Is Embedded Linux?

Again, we could start with the three designations Linux suggests: a kernel, a system, and a distribution.
Yet, we would have to take the kernel off the list right away, as there is no such thing as an embedded
version of the kernel distributed by Linus. This doesn't mean the kernel can't be embedded. It only
means you do not need a special kernel to create an embedded system. Often, you can use one of the
official kernel releases to build your system. Sometimes, you may want to use a modified kernel
distributed by a third party, one that has been specifically tailored for a special hardware configuration or
for support of a certain type of application. The kernels provided with the various embedded distributions,
for example, often include some optimizations not found in the main kernel tree and are patched for
support for some debugging tools such as kernel debuggers. Mainly, though, a kernel used in an
embedded system differs from a kernel used on a workstation or a server by its build configuration.
Chapter 5 covers the build process.

An embedded Linux system simply designates an embedded system based on the Linux kemel and
does not imply the use of any specific library or user tools with this kernel.

An embedded Linux distribution may include: a development framework for embedded linux systems,
various software applications tailored for usage in an embedded system, or both.

Development framework distributions include various development tools that facilitate the development
of embedded systems. This may include special source browsers, cross-compilers, debuggers, project
management software, boot image builders, and so on. These distributions are meant to be installed on
the development host.

Tailored embedded distributions provide a set of applications to be used within the target embedded
system. This might include special libraries, execu, and configuration files to be used on the target. A
method may also be provided to simplify the generation of root filesystems for the target system.

Because this book discusses embedded Linux systems, there is no need to keep repeating "embedded
Linux" in every name. Hence, | will refer to the host used for developing the embedded Linux system as
the "host system," or "host," for short. The target, which will be the embedded Linux system will be
referred to as the "target system," or "target," for short. Distributions providing development frameworks
will be referred to as "development distributions."[1] Distributions providing tailored software packages will
be referred to as "target distributions."

(11 it would be tempting to call these "host distributions,” but as you'll see later, some developers choose to develop directly on their target,
hence the preference for "development distributions."

1.1.3 What Is Real-Time Linux?

http://www.wowebook.info

Download at wowebook. 1nfag

Initially, real-time Linux designated the RTLinux project released in 1996 by Michael Barabanov under
Victor Yodaiken's supervision. The goal of the project was to provide deterministic response times under
a Linux environment.

Nonetheless, today there are many more projects that provide one form or another of real-time
responsiveness under Linux. RTAI, Kurt, and Linux/RK all provide real-time performance under Linux.
Some projects' enhancements are obtained by inserting a secondary kernel under the Linux kernel.
Others enhance the Linux kernel's response times by means of a patch.

The adjective "real-time" is used in conjunction with Linux to describe a number of different things.
Mainly, it is used to say that the system or one of its components is supposed to have fixed response
times, but if you use a strict definition of "real-time," you may find that what is being offered isn't
necessarily "real-time." | will discuss "real-time" issues and further define the meaning of this adjective in
Section 1.2.1.2.

http://www.wowebook.info

Download at wowebook. 1nfag

1.2 Real Life and Embedded Linux Systems

What types of embedded systems are built with Linux? Why do people choose Linux? What issues are
specific to the use of Linux in embedded systems? How many people actually use Linux in their
embedded systems? How do they use it? All these questions and many more come to mind when
pondering the use of Linux in an embedded system. Finding satisfactory answers to the fundamental
guestions is an important part of building the system. This isn't just a general statement. These answers
will help you convince management, assist you in marketing your product, and most of all, enable you to
evaluate whether your initial expectations have been met.

1.2.1 Types of Embedded Linux Systems

We could use the traditional segments of embedded systems such as aerospace, automotive systems,
consumer electronics, telecom, and so on to outline the types of embedded Linux systems, but this
would provide no additional information in regard to the systems being designated, because embedded
Linux systems may be structured alike regardless of the market segment. Rather, let's classify
embedded systems by criteria that will provide actual information about the structure of the system: size,
time constraints, networkability, and degree of user interaction.

1.2.1.1 Size

The size of an embedded linux system is determined by a number of different factors. First, there is
physical size. Some systems can be fairly large, like the ones built out of clusters, while others are fairly
small, like the Linux watch built by IBM. Most importantly, there are the size attributes of the various
electronic components of the system, such as the speed of the CPU, the size of the RAM, and the size
of the permanent storage.

In terms of size, | will use three broad categories of systems: small, medium, and large. Small systems
are characterized by a low-powered CPU with a minimum of 2 MB of ROM and 4 MB of RAM. This isn't
to say Linux won't run in smaller memory spaces, but it will take you some effort to do so. If you plan to
run Linux in a smaller space than this, think about starting your work from one of the various distributions
that put Linux on a single floppy. If you come from an embedded systems background, you may find that
you could do much more using something other than Linux in such a small system. Remember to factor
in the speed at which you could deploy Linux, though.

Medium-sized systems are characterized by a medium-powered CPU with around 32 MB or ROM and 64
MB of RAM. Most consumer-oriented devices built with Linux belong to this category. This includes
various PDAs, MP3 players, entertainment systems, and network appliances. Some of these devices
may include secondary storage in the form of solid-state drives, CompactFlash, or even conventional
hard drives. These types of devices have sufficient horsepower and storage to handle a variety of small
tasks or can serve a single purpose that requires a lot of resources.

Large systems are characterized by a powerful CPU or collection of CPUs combined with large amounts
of RAM and permanent storage. Usually, these systems are used in environments that require large
amounts of calculations to carry out certain tasks. Large telecom switches and flight simulators are prime
examples of such systems. Typically, such systems are not bound by costs or resources. Their design
requirements are primarily based on functionality while cost, size, and complexity remain secondary
issues.

In case you were wondering, Linux doesn't run on any processor below 32 bits. This rules out quite a
number of processors traditionally used in embedded systems. Actually, according to traditional
embedded system standards, all systems running Linux would be classified as large systems. This is

http://www.wowebook.info

Download at wowebook. 1nfag

very true when compared to an 8051 with 4K of memory. Keep in mind, though, current trends:
processors are getting faster, RAM is getting cheaper and larger, systems are as integrated as ever, and
prices are going down. With growing processing demands and increasing system requirements, the
types of systems Linux runs on are quickly becoming the standard. In some cases, however, it remains
that an 8-bit microcontroller might be the best choice.

16-Bit Linux?

Strictly speaking, the above statement regarding Linux's inability to run on any processor
below 32 bits is not entirely true. There have been Linux ports to a number of odd processors.
The Embeddable Linux Kernel Subset (ELKS) project found at http://elks.sourceforge.net/, for
example, aims at running Linux on 16-bit processors such as the Intel 8086 and 286.
Nevertheless, it remains that the vast majority of development done on the kernel and on
user-space applications is 32-hit-centric. Hence, if you choose to use Linux on a processor
lower than 32 bits, you will be on your own.

1.2.1.2 Time constraints

There are two types of time constraints for embedded systems: stringent and mild. Stringent time
constraints require that the system react in a predefined time frame. Otherwise, catastrophic events
happen. Take for instance a factory where workers have to handle materials being cut by large
equipment. As a safety precaution, optical detectors are placed around the blades to detect the presence
of the specially colored gloves used by the workers. When the system is alerted that a worker's hand is
in danger, it must stop the blades immediately. It can't wait for some file to get swapped or for some task
to relinquish the CPU. This system has stringent time requirements; it is a hard real-time system.

Streaming audio systems would also qualify as having stringent requirements, because any transient
lagging is usually perceived as bothersome by the users. Yet, this later example would mostly qualify as
a soft real-time system because the failure of the application to perform in a timely fashion all the time
isn't catastrophic as it would be for a hard real-time system. In other words, although infrequent failures
will be tolerated, the system should be designed to have stringent time requirements.

Mild time constraints vary a lot in requirements, but they generally apply to systems where timely
responsiveness isn't necessarily critical. If an automated teller takes 10 more seconds to complete a
transaction, it's generally not problematic. The same is true for a PDA that takes a certain number of
seconds to start an application. The extra time may make the system seem slow, but it won't affect the
end result.

1.2.1.3 Netw orkability

Networkability defines whether a system can be connected to a network. Nowadays, we can expect
everything to be accessible through the network, even the refrigerator. This, in turn, places special
requirements on the systems being built. One factor pushing people to choose Linux as an embedded
OS is its proven networking capabilities. Falling prices and standardization of networking components
are accelerating this trend. Most Linux devices have one form or another of network capability. You can
attach a wireless network card in the Linux distribution built for the Compaq iPAQ, for instance, simply by
inserting the adapter in the PCMCIA jacket. Networking issues will be discussed in detail in Chapter 10.

1.2.1.4 User interaction

The degree of user interaction varies greatly from one system to another. Some systems, such as PDAS,
are centered around user interaction, while others, such as industrial process control systems, might only

http://elks.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

have LEDs and buttons for interaction. Some other systems, have no user interface whatsoever. For
example, some components of an autopilot system in a plane might take care of wing control but have
no direct interaction with the human pilots.

1.2.2 Examples

The best way to get an idea of what an embedded Linux system might do is to look at examples of such
systems. Trouble is, if you try to look for example embedded systems whose details are publicly
available on the Internet, you will mostly find consumer devices. Very few examples of Linuxin
aerospace, industrial control, telecom, or automotive systems are publicly detailed. Yet, itisn't as if Linux
wasn't used in those types of applications. Rather, in contrast to consumer devices, the builders of such
devices see little advantage in advertising their designs. For all they know, they may be providing critical
information to competitors who may decide to switch to Linux to catch up with them. Consumer device
builders, on the other hand, leverage the "hype" factor into promoting their consumer products. And
given the different market dynamics between consumer products and industrial products, they can afford
to play to the crowd.

Surprisingly (or maybe not so surprising after all), some of the best examples of Linux in critical systems
are provided in the pages of Linux Journal magazine. Digging back a few years, | was able to uncover a
treasure of non-consumer-oriented embedded applications based on Linux. This, combined with the
consumer devices detailed on the Internet and the statistics we shall see below, provide a fair image of
Linux's capabilities and future as an embedded operating system. Table 1-1 contains a summary of the
example embedded Linux systems discussed below. The first column is a brief description of the system.
The second column details the type of the embedded system. The next four columns characterize the
system based on the criteria outlined in the previous section.

Table 1-1. Example embedded Linux systems' characteristics

Description Type Size Tlme_ Netw orkability Dggree Of. user
constraints interaction

Accelerator control Industrial Medium | Stringent Yes Low
processcontrol

Co_mputer-alded Aerospace Large | Stringent No High

training system

Ericsson "blip" Networking Small Mild Yes Very low

SCADA Industrial Medium | Stringent No Very low

protocolconverter processcontrol

Sharp Zaurus Consum_er Medium | Mild Yes Very high
electronics

Space vehicle control | Aerospace Large | Stringent Yes High

1.2.2.1 Accelerator control

The accelerator control system was built at the European Synchrotron Radiation Facility and is described
in issue 66 of Linux Journal. The accelerator equipment is built of many hardware and software
components that control all the aspects of experimentation. While not all software was transferred to
Linux, some interesting parts have been. This includes the serial line and stepper motor controllers.
Many instances of these devices are employed to control various aspects of the system. Serial lines, for
instances, control vacuum devices, power supplies, and programmable logic controllers (PLCs). Stepper

http://www.wowebook.info

Download at wowebook. 1nfag

motors, on the other hand, are used in positioning goniometers, slits, and translation stages. Serial lines
are controlled via serial boards running on PC/104.

The PC/104 single board computer (SBC) controlling the serial boards has a Pentium 90 MHz with 20
MB of RAM and a 24 MB solid-state hard disk. A standard workstation distribution, SUSE 5.3, was
trimmed down to fit in the limited permanent storage space. Some stepper motor controllers run on a
similar configuration, while others run on VME boards that have 8 to 32 MB of memory and load the
operating system from a Unix-type server using BOOTP/TFTP. These boards run a modified version of
Richard Hirst's Linux for 680x0-based VME boards. All the equipment is network accessible and
controllable through a TCP/IP network. Here, Linux, in the broad sense, was chosen because it is
configurable, stable, free, and well supported, contains support for many standards, and its source code
is accessible.

1.2.2.2 Computer-aided training system

The computer-aided training system (CATS) was built at CAE Electronics and is described in issue 64 of
Linux Journal. Unlike full flight simulators, which include visual, sound, and motion simulation, CATS
provides only a visual representation of the various aircraft panels. A CATS isn't a cheap version of a
flight simulator. Instead, it complements a flight simulator by providing entry-level training. Conventional
CAE CATS were built on IBM RS/6000 workstations running AIX. A port to Linux was prompted by the
low cost of powerful x86 systems and the portability of Linux itself.

The CATS come in three different versions: one-, three-, and seven-screen systems. Development and
testing was done on a workstation equipped with a Pentium Il 350 MHz processor, 128 MB of RAM, and
Evolution4 graphic cards from Color Graphics Systems, which provide for control of four displays each.
Xi Graphics' AcceleratedX X server was used to control the Evolution4 and provide adequate
multiheaded display. A single-screen version could still run easily on a Linux system equipped with the
standard XFree86 X server.

Because of customer requirements, the system was provided on a bootable CD-ROM to avoid local
installation. Hence, the complete CATS is run from the CD-ROM using a RAM filesystem. The end
system has been found to be reliable, predictable, dependable, stable, and in excess of performance
requirements. Work on prototype flight simulators running Linux began in April 2000. Having had very
positive results, most full flight simulators currently shipped run Linux.

1.2.2.3 Ericsson "blip"

The Ericsson "blip" is a commercial product. Details of the product can be found on Ericsson's blip web
site at http://www.ericsson.com/about/blipnet/ and on LinuxDevices.com. "blip" stands for "Bluetooth
Local Infotainment Point" and enables Bluetooth devices to access local information. This product can be
used either in public places to provide services or at home for accessing or synchronizing with local
information.

The blip houses an Atmel AT91F40816 ARM7TDMI paced at 22.5 MHz with 2 MB of RAM, 1 MB of
system flash, and 1 MB of user flash. The Atmel chip runs the uClinux distribution, with kernel 2.0.38
modified for MMU-less ARM, provided by Lineo along with uClibc, the miniature C library, and talks via a
serial link to a standalone Bluetooth chip. Access to the device is provided by a proprietary Bluetooth
stack, an Ethernet interface, and a serial port. Custom applications can be developed for the blip using
an SDK provided by Ericsson and built using customized GNU software. Linux was chosen, because it
provided an open and inexpensive development environment both for the host and the target, hence
encouraging and stimulating the development of third-party software.

1.2.2.4 SCADA protocol converter

The System Control and Data Acquisition (SCADA) protocol converter is detailed in issue 77 of Linux

http://www.ericsson.com/about/blipnet/
http://www.wowebook.info

Download at wowebook. 1nfag

Journal. Here, an existing Digital Control System (DCS) controlling a turbocompressor in an oil extraction
plant had to be integrated into a SCADA system to facilitate management of the plant. Converting the
complete DCS for better integration would have been expensive, hence the choice was made to build a
conversion gateway that interfaced between the existing DCS and the SCADA system.

Linux was chosen because it is easy to tailor, itis well documented, it can run from RAM, and
development can be done directly on the target system. An 8 MB DiskOnChip (DOC) from M-Systems
provides a solid-state drive for the application. To avoid patching the kernel with the binary drivers
provided by M-Systems, the DOC's format is left in its shipped configuration as a DOS filesystem.[2l The
kernel and root filesystem are compressed and placed in the DOC along with DOS. Upon bootup, the
batch files invoke Loadlin to load Linux and the root filesystem. The system files are therefore read-only
and the system is operated using a RAM root filesystem. The root filesystem was built using Red Hat 6.1
following the BootDisk HOWTO instructions. The system is an industrial PC with 32 MB of RAM.

(2] Though this project used M-Systems' binary drivers, there are GPL'd drivers for the DOC, as we'll see in Chapter 7.

1.2.2.5 Sharp Zaurus

The Sharp Zaurus is a commercial product sold by Sharp Electronics. Details on the Zaurus can be
found on its web site at http://www.myzaurus.com/ and on LinuxDevices.com. The Zaurus is a Personal
Digital Assistant (PDA) completely based on Linux. As such, it comes equipped with all the usual PDA
applications, such as contacts, to do list, schedule, notes, calculator, email, etc.

The original Zaurus, the SL-5500, was built around an Intel StrongARM 206 MHz processor with 64 MB
of RAM and 16 MB of flash. A newer version, the SL-5600, is built around an Intel XScale 400 MHz
processor with 32 MB of RAM and 64 MB of flash. The system is based on Lineo's Embedix embedded
Linux distribution and uses QT's Palmtop GUI. Independent development of the Zaurus software is
encouraged by Sharp who maintains a developer web site at http://developer.sharpsec.com/.

1.2.2.6 Space vehicle control

The space vehicle control was built at the European Space Agency (ESA) and is detailed in issue 59 of
Linux Journal. The Automatic Transfer Vehicle (ATV) is an unmanned space vehicle used in the
refueling and reboosting of the International Space Station (ISS). The docking process between the ATV
and the ISS requires the ATV to catch up to the ISS and dock with precision. This process is governed
by complex mathematical equations. Given this complexity, monitoring systems are needed to ensure
that all operations proceed as planned. This is the role of the Ground Operator Assistant System
(GOAS) and the Remote ATV Control at ISS (RACSI).

The GOAS runs on the ground and provides monitoring and intervention capabilities. It used to run on a
Sun UltraSPARC 5-based workstation with 64 MB of RAM and 300 MB of disk space. It was ported to a
Pentium 233 MHz system with 48 MB of RAM running Linux.

The RACSI runs on the ISS and provides temporary mission interruption and collision avoidance. It runs
on an IBM ThinkPad with 64 MB of RAM and uses 40 MB of the available disk space. The system runs
the Slackware 3.0 distribution. Moo-Tiff libraries are used to provide Motif-like widgets.

Linux was chosen, because it provides the reliability, portability, performance, and affordability needed by
space applications. Despite these benefits, the ESA finally decided to run the RACSI and GOAS on
Solaris, using the same equipment, for operational reasons.

As these examples show, Linux can be put to use in many fields in many ways, using different hardware
and software configurations. The fastest way to build an embedded system with Linux is often to look at
similar projects that have used Linux in their systems. There are many more examples of embedded
systems based on Linux that | have not discussed. A search through the various resources listed in
Appendix B may vield fruitful leads. Keep in mind, though, that copying other projects may involve

http://www.myzaurus.com/
http://developer.sharpsec.com/
http://www.wowebook.info

Download at wowebook. 1nfag

copying other people's mistakes. In that case, the best way to guard yourself from chasing down other
people's problems is to ensure that you have an understanding of all the aspects of the system or, at
least, have a pointer where you can find more information regarding the gray areas of your system.

1.2.3 Survey Findings

Since Linux started being used as an embedded operating system, many surveys have been published
providing information regarding various aspects of Linux's use in this way. Though the complete results
of many of the surveys are part of commercial reports, which are relatively expensive, there are a few
interesting facts that have been publicized. Let's look at the findings of some of these surveys.

In 2000, Embedded Systems Programming (ESP) magazine conducted a survey on 547 subscribers.
The survey found that, though none considered itin 1998 and 1999, 38% of readers were considering
using Linux as the operating system for their next design. This is especially interesting, as Linux came in
only second to VxWorks, WindRiver's flagship product. The survey also found that, though none were
using it in 1998 and 1999, 12% of respondents were already using Linux in their embedded systems in
2000.

As part of reporting on embedded Linux, LinuxDevices.com set up a web-based survey in 2000 and 2001
that site visitors could fill to provide information regarding their use of Linux in embedded systems. Both
years, a few hundred respondents participated in the survey. Though there were no control mechanisms
to screen respondents, the results match those of other more formal surveys. Both surveys contained a
lot of information. For the sake of simplicity, | will only mention the surveys' most important findings.

In 2000, the LinuxDevices.com survey found that most developers considering the use of Linuxin
embedded systems were planning to use an x86, ARM, or PPC target with a custom board. The survey
shows that most developers plan to boot Linux from a DiskOnChip or from a native flash device, and that
the main peripherals included in the system would be Ethernet and data acquisition cards. The most
important reasons developers have for choosing Linux are the superiority of open source software over
proprietary offerings, the fact that source availability facilitates understanding the operating system, and
the elimination of the dependency on a single operating system vendor. Developers reported using Red
Hat, Debian, and MontaVista as their main embedded Linux distributions.

In 2001, the LinuxDevices.com survey found that developers plan to use Linux in embedded systems
mostly based on x86, ARM, and PPC systems with custom boards. As in the previous survey, most
developers plan to boot their system from some form of flash storage. In contrast with the previous
survey, this survey provides insight regarding the amount of RAM and persistent storage developers
intend to use. The majority of developers seem to want to use Linux with system having more than 8 MB
of RAM and 8 MB of persistent storage. In this survey, developers justify their choice of Linux based on
source code availability, Linux's reliability and robustness, and its high modularity and configurability.
Developers reported that Red Hat and Debian were their main embedded Linux distributions. Combined
with the 2000 survey, the results of the 2001 LinuxDevices.com survey confirm a steady interest in Linux.

Another organization that has produced reports on Linux's use in embedded systems is the Venture
Development Corporation (VDC). Though mainly aimed at companies selling products to embedded
Linux developers, the VDC's reports published in 2001 and 2002 provide some interesting facts. First,
the 2001 report states that the market for embedded Linux development tools products was worth $20
million in 2000 and would be worth $306 million by 2005. The 2001 report also finds that the leading
vendors are Lineo, MontaVista, and Red Hat. The report finds that the key reasons developers have for
selecting Linux are source code availability and the absence of royalties.

The 2002 VDC report included a web-based survey of 11,000 developers. This survey finds that the
Linux distributions currently used by developers are Red Hat, Roll-Your-Own, and non-commercial
distributions. Developers' key reasons for choosing Linux are source code availability, reduced licensing,
reliability, and open source development community support. Interestingly, the report also lists the most
important factors inhibiting Linux's use in embedded applications. The most important factor is real-time
limitations, followed by doubts about availability and quality of support, and fragmentation concerns. In

http://www.wowebook.info

Download at wowebook. 1nfag

addition, the report states that respondents consult the open source community for support with technical
issues regarding Linux, and that most are satisfied with the answers they get.

The Evans Data Corporation (EDC) has also conducted surveys in 2001 and 2002 regarding Linux's use
in embedded systems. The 2001 survey conducted on 500 developers found that Linux is fourth in the
list of operating systems currently used in embedded systems, and that Linux was expected to be the
most used embedded operating system in the following year. In 2002, the survey conducted on 444
developers found that Linux was still fourth in the list of operating systems currently used in embedded
systems, and that Linux is as likely to be used as Windows as the operating system of choice for future
designs.

While these results are partial and though it is too early to predict Linux's full impact on the embedded
world, itis clear that there is great interest in embedded Linux and that this interest is growing. Moreover,
the results show that the interest for Linux isn't purely amateuristic. Rather, Linux is being considered for
and used in professional applications and is being preferred to a lot of the traditional embedded OSes.
Also, contrary to popular belief and widespread FUD (fear, uncertainty, and doubt) Linux isn't interesting
only because it's free. The fact that its source code is available, is highly reliable, and can easily be
tailored to the task are other important reasons, if not more important. Interestingly, the Debian
distribution is one of the favorite embedded distributions, even though no vendor is pushing this
distribution on the market.

1.2.4 Reasons for Choosing Linux

Apart from the reasons polled by the various surveys mentioned above, there are various motivations for
choosing Linux over a traditional embedded OS.

1.2.4.1 Quality and reliability of code

Quality and reliability are subjective measures of the level of confidence in the code. Although an exact
definition of quality code would be hard to obtain, there are properties common programmers come to
expect from such code:

Modularity and structure

Each separate functionality should be found in a separate module, and the file layout of the project
should reflect this. Within each module, complex functionality is subdivided in an adequate
number of independent functions.

Ease of fixing

The code should be (more or less) easy to fix for whoever understands its internals.
Extensibility

Adding features to the code should be fairly straightforward. In case structural or logical
modifications are needed, they should be easy to identify.
Configurability

It should be possible to select which features from the code should be part of the final application.
This selection should be easy to carry out.

The properties expected from reliable code are:
Predictability
Upon execution, the program's behavior is supposed to be within a defined framework and should

not become erratic.
Error recovery

http://www.wowebook.info

Download at wowebook. 1nfag

In case a problematic situation occurs, it is expected that the program will take steps to recover
from the problem and alert the proper authorities, usually the system administrator, with a
meaningful diagnostic message.

Longevity

The program will run unassisted for long periods of time and will conserve its integrity regardless
of the situations it encounters.

Most programmers agree that the Linux kernel and most projects used in a Linux system fit this
description of quality and reliability of their codebase. The reason is the open source development model
(see note below), which invites many parties to contribute to projects, identify existing problems, debate
possible solutions, and fix problems effectively. You can expect to run Linux for years unattended without
problems, and people have effectively done so. You can also select which system components you want
to install and which you would like to avoid. With the kernel, too, you can select which features you would
like during build configuration. As a testament to the quality of the code making up the various Linux
components, you can follow the various mailing lists and see how quickly problems are pointed out by
the individuals maintaining the various components of the software or how quickly features are added.
Few other OSes provide this level of quality and reliability.

- Strictly speaking, there is no such thing as the "open source" development model,
. or even "free software" development model. "Open source" and "free software"
“! 4. correspond to a set of licenses under which various software packages can be

* distributed. Nevertheless, it remains that software packages distributed under
"open source” and "free software" licenses very often follow a similar development
model. This development model has been explained by Eric Raymond in his
seminal book, The Cathedral and the Bazaar (O'Reilly).

1.2.4.2 Availability of code

Code availability relates to the fact that Linux's source code and all build tools are available without any
access restrictions. The most important Linux components, including the kernel itself, are distributed
under the GNU General Public License (GPL). Access to these components' source code is therefore
compulsory. Other components are distributed under similar licenses. Some of these licenses, such as
the BSD license, for instance, permit redistribution of binaries without the original source code or the
redistribution of binaries based on modified sources without requiring publication of the modifications.
Nonetheless, the code for the majority of projects that contribute to the makeup of Linux is readily
available without restrictions.

When source access problems arise, the open source and free software community seeks to replace the
"faulty" software with an open source version providing similar capabilities. This contrasts with traditional
embedded OSes, where the source code isn't available or must be purchased for very large sums of
money. The advantages of having the code available are the possibility of fixing the code without exterior
help and the capability of digging into the code to understand its operation. Fixes for security
weaknesses and performance bottlenecks, for example, are often very quickly available once the
problem has been publicized. With traditional embedded OSes you have to contact the vendor, alert
them of the problem, and await a fix. Most of the time, people simply find workarounds instead of waiting
for fixes. For sufficiently large projects, managers even resort to purchasing access to the code to
alleviate outside dependencies.

1.2.4.3 Hardware support

Broad hardware support means that Linux supports different types of hardware platforms and devices.
Although a number of vendors still do not provide Linux drivers, considerable progress has been made
and more is expected. Because a large number of drivers are maintained by the Linux community itself,
you can confidently use hardware components without fear that the vendor may one day discontinue that

http://www.wowebook.info

Download at wowebook. 1nfag

product line. Broad hardware support also means that Linux runs on dozens of different hardware
architectures, at the time of this writing. Again, no other OS provides this level of portability. Given a CPU
and a platform, you can reasonably expect that Linux runs on it or that someone else has gone through a
similar porting process and can assist you in your efforts. You can also expect that the software you write
on one architecture be easily ported to another architecture Linux runs on. There are even device drivers
that run on different hardware architectures transparently.

1.2.4.4 Communication protocol and software standards

Linux also provides broad communication protocol and software standards support as we'll see
throughout this book. This makes it easy to integrate Linux within existing frameworks and to port legacy
software to Linux. You can easily integrate a Linux system within an existing Windows network and
expect it to serve clients through Samba, while clients see little difference between it and an NT server.
You can also use a Linux box to practice amateur radio by building this feature into the kernel. Likewise,
Linux is a Unix clone, and you can easily port traditional Unix programs to it. In fact, most applications
currently bundled with the various distributions were first built and run on commercial Unixes and were
later ported to Linux. This includes all the software provided by the FSF. Most traditional embedded
OSes are, in this regard, very limited and often provide support only for a limited subset of the protocols
and software standards available.

1.2.4.5 Available tools

The variety of tools existing for Linux make it very versatile. If you think of an application you need,
chances are others felt the need for this application before you. It is also likely that someone took the
time to write the tool and made it available on the Internet. This is what Linus Torvalds did, after all. You
can visit Freshmeat (http://www.freshmeat.net) and SourceForge (http://www.sourceforge.net) and
browse around to see the variety of tools available.

1.2.4.6 Community support

Community support is perhaps one of the biggest strengths of Linux. This is where the spirit of the free
software and open source community can most be felt. As with application needs, it is likely that
someone has encountered the same problems as you in similar circumstances. Often, this person will
gladly share his solution with you, provided you ask. The development and support mailing lists are the
best place to find this community support, and the level of expertise found there often surpasses what
can be found over expensive support phone calls with proprietary OS vendors. Usually, when you call a
technical support line, you never get to talk to the engineers who built the software you are using. With
Linux, an email to the appropriate mailing list will often get you straight to the person who wrote the
software. Pointing out a bug and obtaining a fix or suggestions is thereafter a rapid process. As many
programmers experience, seldom is a justified plea for help ignored, provided the sender takes the care
to search through the archives to ensure that her question hasn't already been answered.

1.2.4.7 Licensing

Licensing enables programmers to do with Linux what they could only dream of doing with proprietary
software. In essence, you can use, modify, and redistribute the software with only the restriction of
providing the same rights to your recepients. This, though, is a simplification of the various licenses used
with Linux (GPL, LGPL, BSD, MPL, etc.) and does not imply that you lose control of the copyrights and
patents embodied in the software you generate. These considerations will be discussed in Section 1.2.6.
Nonetheless, the degree of liberty available is quite large.

1.2.4.8 Vendor independence

http://www.freshmeat.net
http://www.sourceforge.net
http://www.wowebook.info

Download at wowebook. 1nfag

Vendor independence, as was demonstrated by the polls presented earlier, means that you do not need
to rely on any sole vendor to get Linux or to use it. Furthermore, if you are displeased with a vendor, you
can switch, because the licenses under which Linux is distributed provide you the same rights as the
vendors. Some vendors, though, provide additional software in their distributions that isn't open source,
and you might not be able to receive service for this type of software from other vendors. Such issues
must be taken in account when choosing any distribution. Mostly, though, you can do with Linux as you
would do with a car. Since the hood isn't welded shut, as with proprietary software, you can decide to get
service from a mechanic other than the one provided by the dealership where you purchased it.

1.2.4.9 Cost

The cost of Linux is a result of open source licensing and is different from what can be found with
traditional embedded OSes. There are three components of software cost in building a traditional
embedded system: initial development setup, additional tools, and runtime royalties. The initial
development setup cost comprises the purchase of development licenses from the OS vendor. Often,
these licenses are purchased for a given number of "seats," one for each developer. In addition, you may
find the tools provided with this basic development package to be insufficient and may want to purchase
additional tools from the vendor. This is another cost. Finally, when you deploy your system, the vendor
will ask for a per-unit royalty. This may be minimal or large, depending on the type of device you produce
and the quantities produced. Some mobile phone manufacturers, for instance, choose to implement their
own OSes to avoid paying any royalties. This makes sense for them, given the number of units sold and
the associated profit margins.

With Linux, this cost model is turned on its head. All development tools and OS components are
available free of charge, and the licenses under which they are distributed prevent the collection of any
royalties on these core components. Most developers, though, may not want to go chasing down the
various software tools and components and figure out which versions are compatible and which aren't.
Most developers prefer to use a packaged distribution. This involves purchasing the distribution or may
involve a simple download. In this scenario, vendors provide support for their distribution for a fee and
offer services for porting their distributions to new architectures and developing new drivers for a fee.
This is where their money is made. They may also charge for additional proprietary software packaged
with their distribution. Compared to the traditional embedded software cost model, though, this is
relatively inexpensive, depending on the distribution you choose.

1.2.5 Players of the Embedded Linux Scene

Unlike proprietary OSes, Linux is not controlled by a single authority who dictates its future, its
philosophy, and its adoption of one technology or another. These issues and others are taken care of by
a broad ensemble of players with different but complementary vocations and goals.

1.2.5.1 Free software and open source community

The free software and open source community is the basis of all Linux development and is the most
important player in the embedded Linux arena. It is made up of all the developers who enhance,
maintain, and support the various software components that make up a Linux system. There is no
central authority within this group. Rather, there is a loosely tied group of independent individuals, each
with his specialty. These folks can be found discussing technical issues on the mailing lists concerning
them or at gatherings such as the Ottawa Linux Symposium. It would be hard to characterize these
individuals as a homogeneous group, because they come from different backgrounds and have different
affiliations. Mostly, though, they care a great deal about the technical quality of the software they
produce. The quality and reliability of Linux, as discussed eatrlier, are a result of this level of care.

Your author is actually part of the free software community and has made a number of contributions.

http://www.wowebook.info

Download at wowebook. 1nfag

Besides maintaining a presence on some mailing lists and participating in the advancement of free
software in various ways, | wrote and maintain the Linux Trace Toolkit, which is a set of components for
the tracing of the Linux kemel. | have also contributed to other free software and open source projects,
including RTAI and Adeos.

Throughout this book, | will describe quite a few components that are used in Linux systems. Each
maintainer of or contributor to the components | will describe is a player in the free software and open
source community.

1.2.5.2 Industry

Having recognized the potential of Linux in the embedded market, many companies have moved to
embrace and promote Linux in this area. Industry players are important because they are the ones
pushing Linux as an end-user product. Often, they are the first to receive feedback from those end users.
Although postings on the various mailing lists can tell the developer how the software is being used, not
all users participate in those mailing lists. Vendors must therefore strike an equilibrium between assisting
their users and helping in the development of the various projects making up Linux without falling in the
trap of wanting to divert development to their own ends. In this regard, many vendors have successfully
positioned themselves in the embedded Linux market. Here are some of them.

i The vendors listed here are mentioned for discussion purposes only. Your author
as has not evaluated the services provided by any of these vendors for the purposes
*. &+ of this book, and this list should therefore not be interpreted as any form of
* endorsement.
Red Hat

This Linux distribution is one of the most widely used, if not the most widely used. Other
distributions have been inspired by this distribution or, at least, had to take it into consideration.
Red Hat was one of the first Linux distributions and, as such, has an established nhame as a leader
that has contributed time and again back to the community it took from. Through its acquisition of
Cygnus, it procured some of the key developers of the GNU development toolchain. This adds to
the list of key Linux contributors already working for Red Hat. Cygnus had already been providing
these tools in a shrinkwrapped package to many embedded system developers. Red Hat
continued on this trajectory. Although it does not sell an embedded distribution different from its
standard distribution, it provides a development package for developing embedded Linux systems
using its distribution. Red Hat maintains a web site about the projects it contributes to at
http://sources.redhat.com/.

MontaVista

Founded by Jim Ready, an embedded industry veteran, MontaVista has positioned itself as a
leader in the embedded Linux market through its products, services, and promotion of Linux in
industrial applications. Its main product is MontaVista Linux, which is available in two versions:
Professional and Carrier Grade. MontaVista has contributed to some open source projects
including the kernel, ViewML, Microwindows, and LTT. Although MontaVista does not maintain a
web site for the projects it contributes to, copies of some of its contributions can be found at
http://www.mvista.com/developer/sourceforge.html.

LynuxWorks

This used to be known as Lynx Real-Time Systems and is one of the traditional embedded OS
vendors. Contrary to other traditional embedded OS providers, Lynx decided to embrace Linux
early and changed its hame to reflect its decision. This, combined with the later acquisition of
BSDi by WindRiverl3l and QNX's decision to make its OS available for free to download, were
signs that open source in general, and Linux in particular, are making serious inroads in the
embedded arena. That said, LynuxWorks still develops, distributes, and supports Lynx. In fact,
LynuxWorks promotes a twofold solution. According to LynuxWorks, programmers needing hard
real-time performance should continue to use Lynx while those wanting open source solutions

http://sources.redhat.com/
http://www.mvista.com/developer/sourceforge.html
http://www.wowebook.info

Download at wowebook. 1nfag

should use BlueCat, their embedded Linux distribution. LynuxWorks has even modified Lynx to
enable unmodified Linux binaries to run as-is. The fact that LynuxWorks was already a successful
embedded OS vendor and that it adopted Linux early confirms the importance of the move
towards open source OSes in the embedded market.

B windRiver has since changed its mind and its relationship with BSD seems to be a matter of the past.

There are also many small players who provide a variety of services around open source and free
software. In fact, many open source and free software contributions are made by individuals who are
either independent or work for small-size vendors. As such, the services provided by such small players
are often on a par or sometimes surpass those provided by larger players. Here are some individuals
and small companies who provide embedded Linux services and are active contributors to the open
source and free software community: Alessandro Rubini, Bill Gatliff, CodePoet Consulting, DENX
Software Engineering, Opersys, Pengutronix, System Design & Consulting Services, and Zee2.

1.2.5.3 Organizations

There are currently three organizational bodies aimed at promoting and encouraging the adoption of
Linux in embedded applications: the Embedded Linux Consortium (ELC), Emblix, the Japan Embedded
Linux Consortium, and the TV Linux alliance. The ELC was founded by 23 companies as a nonprofit
vendor-neutral association and now includes more than 100 member companies. Its current goals
include the creation of an embedded Linux platform specification inspired by the Linux Standard Base
and the Single Unix Specification. It remains unclear whether the ELC's specification will gain any
acceptance from the very open source and free software developers that maintain the software the ELC
is trying to standardize, given that the drafting of the standard is not open to the public, which is contrary
to the open source and free software traditions. Emblix was founded by 24 Japanese companies with
similar aims as the ELC but with particular emphasis on the Japanese market. The TV Linux alliance is a
consortium that includes cable, satellite, and telecom technology suppliers and operators who would like
to support Linux in set-top boxes and interactive TV applications.

These efforts are noteworthy, but there are other organizational bodies that influence Linux's
advancement, in the broad sense, although they do not address embedded systems particularly.

First and foremost, the Free Software Foundation (FSF), launched in 1984 by Richard Stallman, is the
maintainer of the GNU project from which most components of a Linux system are based. It is also the
central authority on the GPL and LGPL, the licenses most software in a Linux system fall under. Since its
foundation, the FSF has promoted the usage of free softwarel# in all aspects of computing. The FSF has
taken note of the recentrise in the use of GNU and GPL software in embedded systems and is moving
to ensure that user and developer rights are preserved.

[4] "Free" as in "free speech," not "free beer." As Richard Stallman notes, the confusion is due to the English language, which makes no
difference between what may be differentiated in other languages such as French as "libre" and "gratuit.” In effect, "free software" is
translated to "logiciel libre" in French.

The OpenGroup maintains the Single Unix Specification (SUS), which describes what should be found in
a Unix system. There is also the Linux Standard Base (LSB) effort, which aims at developing and
promoting "a set of standards that will increase compatibility among Linux distributions and enable
software applications to run on any compliant Linux system," as stated on the LSB web site at
http://www.linuxbase.org/. In addition, the Filesystem Hierarchy Standard (FHS) maintained by the
Filesystem Hierarchy Standard Group specifies the content of a Linux root tree. The Free Standards
Group (FSG) maintains the Linux Development Platform Specification (LDPS), which specifies the
configuration of a development platform to enable applications developed on conforming platforms to run
on most distributions available. Finally, there is the Real-Time Linux Foundation, which aims at
promoting and standardizing real-time enhancements and programming in Linux.

1.2.5.4 Resources

http://www.linuxbase.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Most developers connect to the embedded Linux world through various resource sites and publications.
It is through these sites and publications that the Linux development community, industry, and
organizations publicize their work and learn about the work of the other players. In essence, the resource
sites and publications are the meeting place for all the people concerned with embedded Linux. A list of
resources can be found in Appendix B, but there are two resources that stand out, LinuxDevices.com
and Linux Journal.

LinuxDevices.com was founded on Halloween day!®! 1999 by Rick Lehrbaum. It has since been acquired
by ZDNet and, later still, been purchased by a company owned by Rick. To this day, Rick continues to
maintain the site. LinuxDevices.com features news items, articles, polls, forums, and many other links
pertaining to embedded Linux. Many key announcements regarding embedded Linux are made on this
site. The site contains an archive of actively maintained articles regarding embedded Linux. Though its
vocation is clearly commercial, | definitely recommend taking a peek at the site once in a while to keep
yourself up to date with the latest in embedded Linux. Among other things, LinuxDevices.com was
instrumental in launching the Embedded Linux Consortium.

[5] The date was selected purposely in symbolic commemoration of the infamous Halloween Documents uncovered by Eric Raymond. If you
are not familiar with these documents and their meaning, have a look at http:/Avww.opensource.org/halloween/.

As part of the growing interest in the use of Linux in embedded systems, the Embedded Linux Journal
(ELJ) was launched by Specialized System Consultants, owners of Linux Journal (LJ), in January 2001
with the aim of serving the embedded Linux community, but was later discontinued. Though ELJ is no
longer published as a separate magazine, LJ now contains an "embedded" section every month, which
contains articles that otherwise would have been published in ELJ.

1.2.6 Copyright and Patent Issues

You may ask: what about using Linux in my design? Isn't Linux distributed under this weird license that
may endanger the copyrights and patents of my company? What are all those licenses anyway? Is there
more than one license to take care of? Are we allowed to distribute binary-only kernel modules? What
about all these articles | read in the press, some even calling Linux's license a "virus"?

These questions and many more have probably crossed your mind. You probably even discussed some
of these issues with some of your coworkers. The issues can be confusing and can come back to haunt
you if they aren't dealt with properly. 1 don't say this to scare you. The issues are real, but there are
known ways to use Linux without any fear of any sort of licensing contamination. With all the
explanations provided below, it would be important to keep in mind that this isn't legal counsel and | am
not a lawyer. If you have any doubts about your specific project, consult your attorney.

OK, now that I've given you ample warning, let us look at what is commonly accepted thought on Linux's
licensing and how it applies to Linux systems in general, including embedded systems.

1.2.6.1 Textbook GPL

For most components making up a Linux system, there are two licenses involved, the GPL and the
LGPL, introduced earlier. Both licenses are available from the FSF's web site at
http://www.gnu.org/licenses/, and should be included with any package distributed under the terms of
these licenses.[8l The GPL is mainly used for applications, while the LGPL is mainly used for libraries.
The kernel, the binary utilities, the gcc compiler, and the gdb debugger are all licensed under the GPL.
The C library and the GTK widget toolkit, on the other hand, are licensed under the LGPL.

[6] The licenses are often stored in a file called COPYING, for the GPL, and a file called COPYING.LIB, for the LGPL. Copies of these files
are likely to have been installed somewhere on your disk by your distribution.

Some programs may be licensed under BSD, Mozilla, or another license, but the GPL and LGPL are the
main licenses used. Regardless of the license being used, common sense should prevail. Make sure you
know the licenses under which the components you use fall and understand their implications.

http://www.opensource.org/halloween/
http://www.gnu.org/licenses/
http://www.wowebook.info

Download at wowebook. 1nfag

The GPL provides rights and imposes obligations very different from what may be found in typical
software licenses. In essence, the GPL is meant to provide a higher degree of freedom to developers
and users, enabling them to use, modify, and distribute software with few restrictions. It also makes
provisions to ensure that these rights are not abrogated or hijacked in any fashion. To do so, the GPL
stipulates the following:

e You may make as many copies of the program as you like, as long as you keep the license and
copyright intact.

e Software licensed under the GPL comes with no warranty whatsoever, unless it is offered by the
distributor.

¢ You can charge for the act of copying and for warranty protection.

e You can distribute binary copies of the program, as long as you accompany them with the source
code used to create the binaries, often referred to as the "original" source code.[”]

[71 The specific wording of the GPL to designate this code is the following: "The source code for a work means the preferred form of
the work for making modifications to it." Delivering binaries of an obfuscated version of the original source code to try circumventing
the GPL is a trick that has been tried before, and it doesn't work.

e You cannot place further restrictions on your recipients than what is provided by the GPL and the
software's original authors.

e You can modify the program and redistribute your modifications, as long as you provide the same
rights you received to your recipients. In effect, any code that modifies or includes GPL code, or
any portion of a GPL'd program, cannot be distributed outside your organization under any license
other than the GPL. This is the clause some PR folks refer to as being "virus"-like. Keep in mind,
though, that this restriction concerns source code only. Packaging the unmodified software for the
purpose of running it, as we'll see below, is not subject to this provision.

As you can see, the GPL protects authors' copyrights while providing freedom of use. This is fairly well
accepted. The application of the modification and distribution clauses, on the other hand, generates a fair
amount of confusion. To clear this confusion, two issues must be focused on: running GPL software and
modifying GPL software. Running the software is usually the reason why the original authors wrote it.
The authors of gcc, for example, wrote it to compile software with. As such, the software compiled by an
unmodified gcc is not covered by the GPL, since the person compiling the program is only running gcc.
In fact, you can compile proprietary software with gcc, and people have been doing this for years, without
any fear of GPL "contamination." Modifying the software, in contrast, creates a derived work that is
based on the original software, and is therefore subject to the licensing of that original software. If you
take the gcc compiler and modify it to compile a new programming language of your vintage, for
example, your new compiler is a derived work and all modifications you make cannot be distributed
outside your organization under the terms of any license other than the GPL.

Most anti-GPL speeches or writings play on the confusion between running and modifying GPL software,
to give the audience an impression that any software in contact with GPL software is under threat of GPL
"contamination." This is not the case.

There is a clear difference between running and modifying software. As a developer, you can safeguard
yourself from any trouble by asking yourself whether you are simply running the software as it is
supposed to be run or if you are modifying the software for your own ends. As a developer, you should
be fairly capable of making out the difference.

Note that the copyright law makes no difference between static and dynamic linking. Even if your
proprietary application is integrated to the GPL software during runtime through dynamic linking, that
doesn't exclude it from falling under the GPL. A derived work combining GPL software and non-GPL
software through any form of linking still cannot be distributed under any license other than the GPL. If
you package gcc as a dynamic linking library and write your new compiler using this library, you will still

http://www.wowebook.info

Download at wowebook. 1nfag

be restricted from distributing your new compiler under any license other than the GPL.

Whereas the GPL doesn' allow you to include parts of the program in your own program unless your
program is distributed under the terms of the GPL, the LGPL allows you to use unmodified portions of the
LGPL program in your program without any problem. If you modify the LGPL program, though, you fall
under the same restrictions as the GPL and cannot distribute your modifications outside your
organization under any license other than the LGPL. Linking a proprietary application, statically or
dynamically, with the C library, which is distributed under the LGPL, is perfectly acceptable. If you modify
the C library, on the other hand, you are prohibited from distributing all modifications under any license
other than the LGPL.

- Note that when you distribute a proprietary application that is linked against LGPL
as software, you must allow for this LGPL software to be replaced. If you are
. 4+ dynamically linking against a library, for example, this is fairly simple, because the

recipient of your software need only modify the library to which your application is
linked at startup. If you are statically linking against LGPL software, however, you
must also provide your recipient with the object code of your application before it
was linked so that she may be able to substitute the LGPL software.

Much like the running versus modifying GPL software discussion above, there is a clear difference
between linking against LGPL software and modifying LGPL software. You are free to distribute your
software under any license when it is linked against an LGPL library. You are not allowed to distribute
any modifications to an LGPL library under any license other than LGPL.

1.2.6.2 Pending issues

Up to now, I've discussed only textbook application of the GPL and LGPL. Some areas of application
are, unfortunately, less clearly defined. What about applications that run using the Linux kernel? Aren't
they being linked, in a way, to the kernel's own code? And what about binary kernel modules, which are
even more deeply integrated to the kernel? Do they fall under the GPL? What about including GPL
software in my embedded system?

I'll start with the last question. Including a GPL application in your embedded system is actually a
textbook case of the GPL. Remember that you are allowed to redistribute binary copies of any GPL
software as long as your recipients receive the original source code. Distributing GPL software in an
embedded system is a form of binary distribution and is allowed, granted you respect the other
provisions of the GPL regarding running and modifying GPL software.

Some proprietary software vendors have tried to cast doubts about the use of GPL software in
embedded systems by claiming that the level of coupling found in embedded systems makes it hard to
differentiate between applications and, hence, between what falls under GPL and what doesn't. This is
untrue. As we shall see in Chapter 6 and Chapter 8, there are known ways to package embedded Linux
systems that uphold modularity and the separation of software components.

To avoid any confusion regarding the use of user applications with the Linux kernel, Linus Torvalds has
added a preamble to the GPL license found with the kernel's source code. This preamble has been
reproduced verbatim in Appendix C and stipulates that user applications running on the kernel are not
subject to the GPL. This means that you can run any sort of application on the Linux kernel without any
fear of GPL "contamination.” A great number of vendors provide user applications that run on Linux while
remaining proprietary, including Oracle, IBM, and Adobe.

The area where things are completely unclear is binary-only kernel modules. Modules are software
components that can be dynamically loaded and unloaded to add functionality to the kernel. While they
are mainly used for device drivers, they can and have been used for other purposes. Many components
of the kernel can actually be built as loadable modules to reduce the kernelimage's size. When needed,
the various modules can be loaded during runtime.

http://www.wowebook.info

Download at wowebook. 1nfag

Although this was intended as a facilitating and customizing architecture, many vendors and projects
have come to use modules to provide capabilities to the kernel while retaining control over the source
code or distributing it under licenses different from the GPL. Some hardware manufacturers, for
instance, provide closed-source binary-only module drivers to their users. This enables the use of the
hardware with Linux without requiring the vendor to provide details regarding the operation of their
device.

The problem is that once a module is loaded in the kernel, it effectively becomes part of its address
space and is highly coupled to it because of the functions it invokes and the services it provides to the
kernel. Because the kernel is itself under the GPL, many contend that modules cannot be distributed
under any other license than the GPL because the resulting kernel is a derived work. Others contend that
binary-only modules are allowed as long as they use the standard services exported to modules by the
kemnel. For modules already under the GPL, this issue is moot, but for non-GPL modules, this is a
serious issue. Linus has said more than once that he allows binary-only modules as long as it can be
shown that the functionality implemented is not Linux specific, as you can see in some of his postings
included in Appendix C. Others, however, including Alan Cox, have come to question his ability to allow
or disallow such modules, because not all the code in the kernel is copyrighted by him. Others, still,
contend that because binary modules have been tolerated for so long, they are part of standard practice.

There is also the case of binary-only modules that use no kernel API whatsoever. The RTAI and RTLinux
real-time tasks inserted in the kernel are prime examples. Although it could be argued that these
modules are a class of their own and should be treated differently, they are still linked into kernel space
and fall under the same rules as ordinary modules, whichever you think them to be.

At the time of this writing, there is no clear, definitive, accepted status for binary-only modules, though
they are widely used and accepted as legitimate. Linus' latest public statements on the matter, made
during a kernel mailing list debate on the Linux Security Module infrastructure (reproduced verbatim in
Appendix C), seem to point to the fact that the use of binary-only modules is an increasingly risky
decision. In fact, the use of binary-only modules is likely to remain a legally dubious practice for the
foreseeable future. If you think you need to resort to binary-only proprietary kernel modules for your
system, | suggest you follow Alan Cox's advice and seek legal counsel beforehand. Actually, | also
suggest you reconsider and use GPL modules instead. This would avoid you many headaches.

1.2.6.3 RTLinux patent

Perhaps one of the most restrictive and controversial licenses you will encounter in deploying Linux in an
embedded system is the license to the RTLinux patent held by Victor Yodaiken, the RTLinux project
leader. The patent covers the addition of real-time support to general purpose operating systems as
implemented by RTLinux.

Although many have guestioned the patent's viability, given prior art, and Victor's handling of the issue, it
remains that both the patent and the license are currently legally valid, at least in the United States, and
have to be accounted for. The U.S. Patent Number for the RTLinux patent is 5,995,745, and you can
obtain a copy of it through the appropriate channels. The patent license that governs the use of the
patented method is available on the Web at http://www.fsmlabs.com/about/patent/.

The license lists a number of requirements for gratis use of the patented method. Notably, the license
stipulates that there are two approved uses of the patented process. The firstinvolves using software
licensed under the terms of the GPL, and the second involves using an umodified version of the "Open
RTLinux" as distributed by FSMLabs, Victor Yodaiken's company. The traditional way in which these
requirements have been read by real-time Linux developers is that anyone distributing non-GPL real-time
applications needs to purchase a license from FSMLabs. Not so says Eben Moglen, the FSF's chief legal
counsel. In a letter that was sent to the RTAI community, the original of which is available at
http://www.aero.polimi.it/~rtai/documentation/articles/moglen.html, Moglen makes the following
statement: "No application in a running RTLinux or RTAI system does any of the things the patent
claims. No applications program is therefore potentially infringing, and no applications program is
covered, or needs to be covered, by the license."

http://www.fsmlabs.com/about/patent/
http://www.aero.polimi.it/~rtai/documentation/articles/moglen.html
http://www.wowebook.info

Download at wowebook. 1nfag

Though Moglen's authoritative statement is clear on the matter, it remains that FSMLabs' continued
refusal to provide explanations regarding the patent's reach has left a cloud of uncertainty regarding all
real-time extensions using the patented process.

It follows from this that the only way to stay away from this mess is to avoid using the patented process
altogether. In other words, another method than that covered by the patent must be used to obtain
deterministic response times from Linux. Fortunately such a method exists.

Basing myself entirely on scientific articles on nanokernel research published more than one year earlier
than the preliminary patent application, | wrote a white paper describing how to implement a Linux-based
nanokernel to enable multiple OSes to share the same hardware. The white paper, entitled "Adaptive
Domain Environment for Operating Systems," was published in February 2001 and is available from
http://www.opersys.com/adeos/ along with other papers on other possible uses of this method. Given
that your author started working on this book soon after the paper's publication, there was little
development effort being put on the project, and the idea lay dormant for over a year.

The situation changed in late April 2002 when Philippe Gerum, a very talented free software developer,
picked up the project and decided to push it forward. By early June, we were sufficiently satisfied with the
project's status to make the first public release of the Adeos nanokernel. The release made on June 3,
2002, was endorsed by several free software organizations throughout the world, including Eurolinux
(http://www.eurolinux.org/) and April (http://www.april.org/), as a patent-free method for allowing real-time
kernels to coexist with general purpose kernels. Though, as with any other patent, such endorsements
do not constitute any guarantee against patent infringement claims, the consensus within the open
source and free software community is that the Adeos nanokernel and its applications are indeed patent
free. For my part, | encourage you to make your own verifications, as you should do for any patent.
Among other things, review the original white paper and, most importantly, the scientific articles
mentioned therein.

Already, Adeos is being used by developers around the world for allowing different types of kernels to
coexist. RTAI, for instance, which previously used the patented process to take control from Linux, and
was therefore subject to the patent license, has already been ported to Adeos. Though at the time of this
writing Adeos runs on single processor and SMP x86 systems only, ports to other architectures should
be relatively straightforward, given the nanokernel's simplicity. If you are interested in contributing to
Adeos, by porting it to other architectures for example, or if you would just like to use it or get more
information, visit the project's web site at http://www.adeos.org/.

1.2.7 Using Distributions

Wouldn't it be simpler and faster to use a distribution instead of setting up your own development
environment and building the whole target system from scratch? What's the best distribution?
Unfortunately, there are no straightforward answers to these questions. There are, however, some
aspects of distribution use that might help you find answers to these and similar questions.

1.2.7.1To use or not to use

First and foremost, you should be aware that it isn't necessary to use any form of distribution to build an
embedded Linux system. In fact, all the necessary software packages are readily available for download
on the Internet. Itis these same packages that distribution providers download and package for you to
use. This approach provides you with the highest level of control and understanding over the packages
you use and their interactions. Apart from this being the most thorough approach and the one used within
this book, it is also the most time-consuming, as you have to take the time to find matching package
versions and then set up each package one by one while ensuring that you meet package interaction
requirements.

Hence, if you need a high degree of control over the content of your system, the "do it yourself' method

http://www.opersys.com/adeos/
http://www.eurolinux.org/
http://www.april.org/
http://www.adeos.org/
http://www.wowebook.info

Download at wowebook. 1nfag

may be best. If, however, like most people, you need the project ready yesterday or if you do not want to
have to maintain your own packages, you should seriously consider using both a development and a
target distribution. In that case, you will need to choose the development and target distributions most
appropriate for you.

1.2.7.2 How to choose a distribution

There are a number of criteria to help in the choice of a distribution, some of which have already been
mentioned in Section 1.2.3. Depending on your project, you may also have other criteria not discussed
here. In any case, if you choose commercial distributions, make sure you have clear answers to your
guestions from the distribution vendor when you evaluate his product. As in any situation, if you ask
broad questions, you will get broad answers. Use detailed questions and expect detailed answers.
Unclear answers to precise questions are usually a sign that something is amiss. If, however, you
choose an open source distribution,[®l make sure you have as much information as possible about it. The
difference between choosing an open source distribution and a commercial distribution is the way you
obtain answers to your questions about the distribution. Whereas the commercial distribution vendor will
provide you with answers to your questions about his product, you may have to look for the answers to
those same questions about an open source distribution on your own.

[8] An open source distribution is a distribution that is maintained by the open source community, such as Debian. Inherently, such
distributions do not contain any proprietary software.

An initial factor in the choice of a development or target distribution is the license or licenses involved.
Some commercial distributions are partly open source and distribute value-added packages under
conventional software licenses prohibiting copying and imposing royalties. Make sure the distribution
clearly states the licenses governing the usage of the value-added software and their applicability. If
unsure, ask. Don't leave licensing issues unclear.

Before evaluating a distribution, make yourself a shopping list of packages you would like to find in it.
The distribution may have something better to offer, but at least you know if it fits your basic
requirements. A development distribution should include items covered in Section 1.4.2, whereas a
target distribution should automate and/or facilitate, to a certain degree, items covered in Section 1.4.1
and Section 1.4.4. Of course, no distribution can take away issues discussed in Section 1.4.3, since only
the system developers know what type of programming is required for the system to fit its intended
purpose.

One thing that distinguishes commercial distributions from open source distributions is the support
provided by the vendor. Whereas the vendor supplying a commercial distribution almost always provides
support for her own distribution, the open source community supplying an open source distribution does
not necessarily provide the same level of support that would be expected from a commercial vendor.
This, however, does not preclude some vendors from providing commercial support for open source
distributions. Through serving different customers with different needs in the embedded field, the various
vendors build a unique knowledge about the distributions they support and the problems clients might
encounter during their use, and are therefore best placed to help you efficiently. Mainly, though, these
vendors are the ones who keep up with the latest and greatest in Linux and are therefore the best source
of information regarding possible bugs and interoperability problems that may show up.

Reputation can also come into play when choosing a distribution, but it has to be used wisely, as a lot of
information circulating may be presented as fact while being mere interpretation. If you've heard
something about one distribution or another, take the time to verify the validity of the information. In the
case of a commercial distribution, contact the vendor. Chances are he knows where this information
comes from and, most importantly, the rational explanation for it. This verification process, though, isn't
specific to embedded Linux distributions. What is specific to embedded Linux distributions is the
reputation commercial distributions build when their vendors contribute to the open source community. A
vendor that contributes back by providing more open source software or by financing development
shows that he is in contact with the open source community and has therefore a privileged position in
understanding how the changes and developments of the various open source projects will affect his
future products and ultimately his clients. In short, this is a critical link and a testament to the vendor's

http://www.wowebook.info

Download at wowebook. 1nfag

understanding of the dynamics involved in the development of the software he provides you. In the case
of open source distributions, this criterion is already met, as the distribution itself is an open source
contribution.

Another precious tool commercial distributions might have to offer is documentation. In this day and age
where everything is ever-changing, up-to-date and accurate documentation is a rare commodity. The
documentation for the majority of open source projects is often out of date, if available at all. Linus
Torvalds' words ring true here. "Use the source, Luke," he says, meaning that if you need to understand
the software you should read the source code. Yet not everyone can invest the amount of time
necessary to achieve this level of mastery, hence the need for appropriate documentation. Because the
open source developers prefer to invest time in writing more code than in writing documentation, itis up
to the distribution vendors to provide appropriately packaged documentation with their distributions.
When evaluating a distribution, make sure to know the type and extent of accompanying documentation.
Although there is less documentation for open source distributions, in comparison with commercial
distributions, some open source distributions are remarkably well documented.

Given the complexity of some aspects of development and target setup, the installation of a development
and/or target distribution can be hard. In this regard, you may be looking for easy-to-install distributions.
Although this is legitimate, keep in mind that once you've installed the distributions, you should not need
to reinstall them afterward. Notice also that installation does not really apply for a target distribution, as it
was defined earlier, because target distributions are used to facilitate the generation of target setups and
don't have what is conventionally known as an "installation” process. The three things you should look for
in the installation process of a distribution are clear explanations (whether textually during the installation,
in a manual, or both), configurability, and automation. Configurability is a measure of how much control
you have over the packages being installed, while automation is the ability to automate the process using
files containing the selected configuration options.

With some CPU models and boards being broadly adopted for embedded systems development,
commercial distribution vendors have come to provide prepackaged development and/or target
distributions specifically tailored for those popular CPU models and boards. If you are intending to use a
specific CPU model or board, you may want to look for a distribution that is already tested for your setup.

1.2.7.3 What to avoid doing with a distribution

There is one main course of action to avoid when using a distribution: using the distribution in a way that
makes you dependent solely on this same distribution for all future development. Remember that one of
the main reasons to use Linux is that you aren't subject to anyone's will and market decisions. If your
development relies solely on proprietary tools and methods of the distribution you chose, you are in risk
of being locked into continuous use of that same distribution for all future development. This does not
mean, though, that you shouldn't use commercial distributions with value-added software the likes of
which cannot be found on other distributions. It only means that you should have a backup plan to
achieve the same results with different tools from different distributions, just in case.

http://www.wowebook.info

Download at wowebook. 1nfag

1.3 Example Multicomponent System

To present and discuss the material throughout the book, this section will examine an example
embedded Linux system. This embedded system is composed of many interdependent components,
each of which is an individual embedded system. The complete system has a set of fixed functionalities,
as seen by its users, but the individual components may vary in composition and implementation. Hence,
the example provides us with fertile ground for discussing various solutions, their trade-offs, and their
details. Overall, the system covers most types of embedded systems available, from the very small to the
very large, including many degrees of user interaction and networking and covering various timing
requirements.

1.3.1 General Architecture

The embedded system used as the basis of the examples in this book is an industrial process control
system. Itis composed of networked computers all running Linux. Figure 1-1 presents the general
architecture of the example system.

Figure 1-1. Example embedded Linux system architecture

| "
Embedded system

[iata acquisition Contral

| A | System Qutside pefwak

AN ement

Lserinterface ¥1 Lser interface #n

Internally, the system is made up of four different types of machines, each fulfilling a different purpose:
data acquisition (DAQ), control, system management (SYSM), and user interface (Ul). The components
interconnect using the most common interface and protocol available, TCP/IP over Ethernet. In this
setup, the acquisition and control modules sit on a dedicated Ethernet link, while the user interface
modules sit on another link. In addition to being the interface between the two links, the system control
module provides an interface to the "outside world," which may be a corporate intranet, through a third
link.

The process being controlled here could be part of a factory, treatment facility, or something completely
different, but this is of no importance to the main design being discussed, because all process control
systems have similar architectures. To control a process, the system needs to know at all times the
current state of the different components of the process. This is what data acquisition is for. Having
acquired the data, the system can determine how to keep the process under control. The location where
the analysis is conducted may vary, but all control commands will go out through the control module.
Because some aspects of the process being controlled often need human interaction and/or monitoring,
there has to be a way for the workers involved to observe and modify the process. This is provided by the
various user interfaces. To glue all this together and provide a central data repository and management
interface, the system control module is placed at the center of all the components while providing a
single access point into the system from the outside world.

1.3.2 Requirements of Each Component

http://www.wowebook.info

Download at wowebook. 1nfag

Each component has its own set of requirements to fit in the grand scheme of things and is, therefore,
built differently. Here is a detailed discussion of each component.

1.3.2.1 Data acquisition module

The first components of process measurement are transducers. Transducers are devices that convert a
physical phenomenon into an electrical signhal. Thermocouples, strain gauges, accelerometers, and
linear variable differential transformers (LVDTSs) are all transducers that measure temperature,
mechanical variations, acceleration, and displacement, respectively. The transducers are usually placed
directly within the area where the process is taking place. If a furnace boils a liquid of which the
temperature needs to be monitored, a thermocouple would be placed within the receptacle containing the
liquid.

The electrical signals output by transducers often go through various stages of signal conditioning, which
may include amplification, attenuation, filtering, and isolation, before eventually being fed to a DAQ
device. The DAQ device, often a DAQ card installed in a computer, samples the analog values, converts
them to digital values, and stores these values in a sample buffer. Various software components can
then use these values to plot curves, detect certain conditions, or modify certain control parameters in
reaction to the signal, such as in a feedback loop.

As DAQ is a vast domain discussed by a number of books, it is not the purpose of this chapter to discuss
DAQ in full. Rather, we will assume that all signal retrieval and conditioning is already done. Also, rather
than limiting the discussion to one DAQ card in particular, we will assume a DAQ card for which a driver
exists complying with the API provided by Comedi, a software package for data acquisition and control,
which | will cover later.

Hence, the DAQ module is an industrial computer containing a DAQ card controlled via Comedi to
retrieve data about the process. The computer runs a medium-sized embedded system with stringent
time constraints and no user interface, while being connected to the rest of the system using Ethernet.!!

(9] Though they are not used in this example, off-the-shelf Ethernet-enabled DAQ devices are readily available.

In a typical setup, the DAQ module stores the data retrieved in a local buffer. Analysis may be conducted
on this data on site or it may be transferred to the SYSM module for analysis. In any case, important data
is forwarded to the SYSM module for backup and display by the various Uls. When analysis is conducted
onsite, the DAQ module will signal the SYSM module if it detects an anomaly or critical situation.
Conversely, the DAQ module will carry out the DAQ commands sent by the SYSM module. These
commands may dictate sample rate, analysis parameters, or even what the module should do with
acquired data once analysis is over. For the SYSM module to be aware of the DAQ module's operations,
the DAQ module will forward status and errors to the SYSM module whenever necessary or whenever it
is asked to do so.

The DAQ module typically boots off a CompactFlash or a native flash device and uses a RAM disk or
CRAMFS. This lets the module be replaced easily in case of hardware failure. Software configuration
involves a kernel built for preemption running on either a PC-type system or a system based on the
PowerPC architecture. The DAQ provides no outside services such as FTP, HTTP, or NFS. Instead, it
runs custom daemons that communicate with the SYSM module to carry out the proper behavior of the
overall system. Because it is not a multiuser system and no user ever interacts with it directly, the DAQ
module has only minimal support for user tools. This may involve the BusyBox package. The IP address
used by the DAQ is fixed and determined at design time. Hence, the SYSM module can easily check
whether the DAQ module is alive and operational.

1.3.2.2 Control module

Conventional process control involves programmable logic controllers (PLCs) and similar systems that
are expensive, run their own particular OSes, and have special configuration procedures. With the

http://www.wowebook.info

Download at wowebook. 1nfag

advent of inexpensive modern hardware on the consumer market, itis becoming more common to see
mainstream hardware such as PCs used in process control. Even industrial hardware has seen its price
falling because of the use of mainstream technology.

Here too, process control is a vast domain and | do not intend to cover it in full. Instead, we assume that
the hardware being controlled is modeled by a state machine. The overlaying software receives feedback
to its control commands based on the current state of the controlled hardware as modeled by the state
machine.

The control module is an industrial computer with an interface to the hardware being controlled. The
computer runs a medium-sized embedded system with stringent time-constraints and no user interface,
much like the DAQ module, while being connected to the rest of the system using an Ethernet link.

The control module's main task is to issue commands to the hardware it controls, while monitoring the
progression of the hardware's behavior in reaction to the commands. Typically, these commands
originate from the SYSM module, which is the central decision maker, and that will make decisions
according to the data it gets from the DAQ module. Because the commands provided by the SYSM
module may involve many hardware operations, the control module will coordinate the hardware to
obtain the final result requested by the SYSM. Once operations are complete, whenever any special
situation occurs or whenever it is requested, the control module will send the SYSM module a status
report on the current hardware operations.

The control module can boot off a CompactFlash or a CFl flash device and use a RAM disk or CRAMFS,
much like the DAQ module. It is based on a PowerPC board, which runs a kernel configured for
preemption along with a real-time kernel, such as RTAIl or RTLinux, since hard real-time response times
are necessary to control complex hardware. Hardware control will therefore be carried out by custom,
hard real-time drivers. Here too, no outside networking services are provided. Custom daemons
communicate with the SYSM to coordinate system behavior. Because the control module is not a
multiuser system and has no direct user interaction, only minimal user tools will be available. BusyBox
may be used. The control module also uses a fixed IP address for the same reason as the DAQ module.

1.3.2.3 System management module

The SYSM module manages and coordinates the interactions between the different components of the
system, while providing a point of entry into the system to the outside world, as mentioned earlier. It is a
large embedded system with stringent time constraints and no user interface. It contains three network
adapters: one for DAQ and control, one for user interfaces, and one for the outside network. Each
networking interface has its set of rules and services.

Onlink A, the SYSM module retrieves data from the DAQ module, stores all or parts of it, and forwards
pertinent data to the various Uls for display. The stored data can be backed up for future reference and
may form the base of a quality control procedure. The data can be backed up either by means of
conventional backup or using a database that has a backup procedure. As said earlier, the SYSM
module may carry out analysis on acquired data if this isn't done on the DAQ module. Whether the
analysis is done locally or on the DAQ module, the SYSM module will issue commands to the control
module according to that analysis and according to the current state of the controlled process. The
SYSM module runs custom daemons and utilities that complement the daemons present on the DAQ
module and control module to communicate with them appropriately. As with the other elements on link
A, the SYSM module has a fixed IP address so the DAQ and control modules can identify it easily.

To the outside network, the SYSM module provides HTTP and SSH services. The HTTP service enables
authorized users on the outside network to configure or monitor various aspects of the complete system
through the use of web pages and forms. The SSH services make it possible for the embedded system's
manufacturer to log into the system from a remote site for troubleshooting and upgrades. The availability
of an SSH server on such a large system reduces maintenance cost for both the manufacturer and the
client.

One of the configurable options of the SYSM module is the way errors are reported to the outside world.

http://www.wowebook.info

Download at wowebook. 1nfag

This indicates to the SYSM what it should do with an error it cannot handle, such as the failure of the
DAQ or control module. The standard procedure may be to signal an alarm on a loudspeaker, or it may
involve using SNMP to signal the system operator or simply sending a critical display request to the
appropriate Ul module. The link to the outside world is another configurable option. The SYSM module
may either have a fixed IP address or retrieve its IP address using DHCP or BOOTP.

On link B, the SYSM module offers DHCP services so the Uls can dynamically allocate their addresses.
Once Uls are up and have registered themselves with the SYSM, it will forward them the data they are
registered to display, along with the current system state, and will react to value changes made in a Ul
according to the system's state. In the course of system operation, workers can modify the amount of
data displayed according to their needs, and the SYSM module will react accordingly by starting or
ceasing to forward certain data to the Uls.

As the SYSM module is a large embedded system, it will boot off a hard disk and use the full features
made available to a conventional workstation or server including swapping. The server may be an a Sun,
a PowerPC, an ARM, or a conventional PC. It makes little difference which type of architecture is actually
used for the SYSM module, since most of its functionality is fairly high level. Because it needs to serve
many different applications in parallel while answering rapidly to incoming traffic, the SYSM module runs
a kernel configured for preemption. Also, as it serves as a central point for management, it is a multiuser
system with an extensive user toolset. The root filesystem on the SYSM module will look similar to the
one found on common workstations and servers. In fact, we may even install a conventional server
distribution on the SYSM module and configure it to our needs.

1.3.2.4 User interface modules

The user interface modules enable workers to interact with the ongoing process by viewing values that
reflect the current status and modifying variables that control the process. The user interfaces are
typically small embedded systems with mild time constraints. They too are network enabled, but in
various ways. In contrast to the previous system components covered earlier, user interface modules
can have various incarnations. Some can be fixed and attached close to a sensitive post of process
control. Others can be portable and may be used by workers to walk around the processing plant and
enter or retrieve various data. After all, some aspects of the controlled process may not be automated
and may need to be entered by hand into the system.

The values displayed by the various Uls are retrieved from the SYSM module by communication with the
appropriate custom daemons running on it. As Uls may receive critical events to display immediately,
custom daemons run on the Ul devices awaiting critical events sent from the SYSM module. The user
can choose which variables she wants to view, or the data set may be prefixed, all depending on the
purpose and the type of worker using the Ul. In any case, some messages, such as critical events, will
be displayed regardless of the configuration. Some Uls may display only limited data sets, while others
may display detailed information regarding the ongoing process. On some Ul modules, it is possible to
engage in emergency procedures to handle a critical situation.

As Ul modules are small, they typically boot from native flash or through the network. In the later case,
the SYSM module has to be configured to accommodate remote boot. Whether remote boot is used or
not, the Ul modules all obtain their IP addresses via DHCP. Portable Ul modules are typically based on
ARM, MIPS, or m68k architectures and run standard kernels. As the Ul modules are used to interact with
the user in an automated fashion, only minimal user tools are necessary, although extensive graphical
utilities and libraries are required to accommodate the display and the interaction with the user. Since we
assume that anyone on the premises has access to the Ul modules, we do not implement any form of
authentication on the Ul devices, and hence all Ul modules are not multi-user systems. This, though,
could change depending on system requirements.

1.3.3 Variations in Requirements

The description of the various modules given above is only a basic scheme by which to implement the

http://www.wowebook.info

Download at wowebook. 1nfag

system. Many variations can be made to the different components and the architecture of the system.
Here is a list of such variations in no particular order:

e Depending on the physical conditions where the system is deployed, it may be necessary to
constantly verify the connectivity of the various system components. This would be achieved by a
keepalive signal transmitted from the modules to the SYSM module or using watchdogs.

e Using TCP/IP over Ethernet on link A may pose some problems if reactions to some critical
conditions need to be carried out in a deterministic time frame. If a certain chemical reaction being
observed by the DAQ module shows signs of imminent disaster, the SYSM module may need to be
notified before the chemical reaction goes out of control. In those cases, it may be a good idea to
use RTNet, which provides hard real-time UDP over Ethernet.[’0] This would necessitate running a
real-time kernel on the SYSM module.

(101 Though UDP does not delay packet transfers as TCP does, the standard T CP/IP stack in Linux is not hard real time. RTNet
provides hard real-time network communication by providing a UDP stack directly on top of RTAIl or RTLinux.

e Ethernet is not fit for all environments. Some other protocols are known to be more reliable in
industrial environments. If need be, the designers may wish to replace Ethernet with one of the
known industrial networking interfaces, such as RS485, DeviceNet, ARCnet, Modbus, Profibus, or
Interbus.

e For compactness and speed, designers may wish to implement the DAQ, control, and SYSM
modules in a single physical device, such as a CompactPCI chassis with a separate card for each
module.

e For management purposes, it may be simpler to implement the Ul modules as X terminals. In this
configuration, the Ul modules would act only as display and input terminals. All computational load
would be carried out on the SYSM module, which would be the X application host.

o |f the system is not very large and the process being controlled is relatively small, it may make
sense to combine the DAQ, control, and SYSM modules into a single sufficiently powerful
computer.

¢ If one network link isn't sufficient for the traffic generated by the DAQ module, it may make sense
to add another link that would be dedicated to data transfers only.

e Since itis more and more frequent to keep process data for quality assurance purposes, the SYSM
module may run a database. This database would store information regarding the various
operations of the system along with data recorded by the DAQ module.

Other variations are also possible, depending on the system's requirements.

http://www.wowebook.info

Download at wowebook. 1nfag

1.4 Design and Implementation Methodology

Designing and implementing an embedded Linux system can be carried out in a defined manner. The
process includes many tasks, some of which may be carried out in parallel, hence reducing overall
development time. Some tasks can even be omitted, if a distribution is being used. Regardless of the
actual tools or methodology you use, Chapter 2 is required reading for all tasks involved in building an
embedded Linux system.

While designing and implementing your embedded Linux system, use the worksheet provided in
Appendix A to record your system's characteristics. It includes a section to fully describe each aspect of
your embedded system. This worksheet will help your team keep track of the system's components and
will help future maintainers understand how the system was originally built. In fact, a properly completed
worksheet should be sufficient for people outside your team to rebuild the entire system without any
assistance.

Given that the details of the tasks involved in building embedded Linux systems sometimes change with
the updating of the software packages involved, visit this book's web site (http://www.embeddedtux.org/)
from time to time for updates.

1.4.1 Creating a Target Linux System

A target Linux system is created by configuring and bundling together the appropriate system
components. Programming and development aspects are a separate subject, and are discussed later in
this chapter.

There are four main steps to creating a target Linux system:

Determine system components

Configure and build the kernel

Build root filesystem

Set up boot software and configuration

Determining system components is like making a shopping list before you go to the grocery store. Itis
easy to go without a shopping list and wonder at all the choices you have, as many do with Linux. This
may result in "featurism,” whereby your system will have lots and lots of features but won't necessarily
fulfill its primary purpose. Hence, before you go looking at all the latest Linux gizmos available, sit down
and write a list of what you need. | find this approach helps in focusing development and avoids
distractions such as: "Look honey, they actually have salami ice cream." This doesn't mean that you
shouldn't change your list if you see something pertinent. Itis just a warning about the quantity of
software available for Linux and the inherent abundance of choices.

Chapter 3 discusses the hardware components that can be found as part of an embedded Linux system.
This should provide you with enough background and maybe even ideas of what hardware you can find
in an embedded Linux system. As Linux and surrounding software are ever evolving targets, use this and
further research on the Net to find out which design requirements are met by Linux. In turn, this will
provide you with a list of items you need to develop to complete your system. This step of development is
the only one that cannot be paralleled with other tasks. Determining system requirements and Linux's
compliance to these requirements has to be completed before any other step.

Because of the ever evolving nature of Linux, you may feel the need to get the latest and greatest pieces
of software for your design. Avoid doing this, as new software often needs testing and may require other

http://www.embeddedtux.org/
http://www.wowebook.info

Download at wowebook. 1nfag

software to be upgraded because of the dependencies involved between packages. Hence, you may find
yourself locked in a frantic race to keep up with the plethora of updates. Instead, fix the bugs with the
current software you have and keep track of other advances so that the next generation projects you
design can profit from these advances. If you have an important reason to upgrade a software
component, carefully analyze the consequences of such an upgrade on the rest of your system before
actually carrying out the upgrade. You may also want to test the upgrade on a test system before
applying it to your main system.

Having determined which features are pertinent to your design, you can select a kernel version and
relevant configuration. Chapter 5 covers the configuration and build process of the kernel. Unlike other
pieces of software, you may want to keep updating your kernel to the latest stable version throughout
your project's development up until the beta stage. Though keeping the kernel version stable throughout
the development cycle may seem simple, you may find yourself trying to fix bugs that have been fixed in
more recent kernels. Keeping yourself up to date with recent kernel developments, as we discuss in
Chapter 5, will help you decide whether updating to the most recent kernel is best for you. Also, you may
want to try newer kernels and roll back to older ones if you encounter any serious problems. Note that
using kernels that are too old may cut you off from community support, since contributors can rarely
afford keep answering questions about old bugs.

Regardless of whether you decide to follow kernel updates, | suggest you keep the kernel configuration
constant throughout the project. This will avoid completed parts from breaking in the course of
development. This involves studying the configuration options closely, though, in light of system
requirements. Although this task can be conducted in parallel with other tasks, it is important that
developers involved in the project be aware of the possible configuration options and agree with the
options chosen.

Once configuration is determined, it is time to build the kernel. Building the kernel involves many steps
and generates more than just a kernelimage. Although the generated components are not necessary for
some of the other development aspects of the project, the other project components tend to become
more and more dependent on the availability of the kernel components as the project advances. Itis
therefore preferable to have the kernel components fully configured and built as early as possible, and
kept up to date throughout the project.

In parallel to handling the kernel issues, you can start building the root filesystem of the embedded
system, as explained in Chapter 6. The root filesystem of an embedded Linux system is similar to the
one you find on a workstation or server running Linux, except that it contains only the minimal set of
applications, libraries, and related files needed to run the system. Note that you should not have to
remove any of the components you previously chose at this stage to obtain a properly sized root
filesystem. In fact, if you have to do so, you probably did not determine system components adequately.
Remember that this earlier stage should include an analysis of all system requirements, including the
root filesystem size. You should therefore have as accurate as possible an estimate of the size of each
component you selected during the first step of creating the target system.

If you are unable to predetermine the complete list of components you will need in your embedded
system and would rather build your target root filesystem iteratively by adding the tools and libraries you
need as you go along, then do so, but do not treat the result as your final root filesystem. Instead, use the
iterative method to explore the building of root filesystems and then apply your experience into building a
clean root filesystem for your target system. The reason behind this is that the trial and error nature of
the iterative method makes its completion time nondeterministic. The structured approach may require
more forethought, but its results are known and can be the basis for additional planning.

Setting up and configuring the storage devices and the bootloader software are the remaining tasks in
creating a target Linux system. Chapters Chapter 7, Chapter 8, and Chapter 9 discuss these issues in
full. It is during these steps that the different components of the target system come together: the
bootloader, the root filesystem, and the kernel. As booting is highly dependent on the architecture,
different bootloaders are involved. Within a single architecture there are also variations in the degree of
debugging and monitoring provided by the bootloaders. The methodology to package and boot a system
is fairly similar among the different architectures, but varies according to the permanent storage device
from which the system is booted and the bootloader used. Booting a system from native flash, for

http://www.wowebook.info

Download at wowebook. 1nfag

instance, is different from booting a system from a DiskOnChip or CompactFlash device, and is even
more different from booting from a network server.

1.4.2 Setting Up and Using Development Tools

Software development for embedded systems is different from software development for the workstation
or server environments. Mainly, the target environment is often dissimilar to the host on which the
development is conducted. Hence the need for a host/target setup whereby the developer develops his
software on the host and downloads it onto the target for testing. There are two aspects to this setup:
development and debugging. Such a setup, however, does not preclude you from using Linux's
multiarchitecture advantage to test your target's applications on your host with little or no modification.
Though not all applications can be tested in this way, testing target applications on the host will generally
save you a lot of time.

Embedded development is discussed in Chapter 4. Prior to testing any code on the target system, itis
necessary to establish a hostftarget connection. This will be the umbilical cord by which the developer
will be able to interact with the target system to verify whether the applications he develops function as
prescribed. As the applications cannot typically run on bare hardware, there will have to be a functional
embedded Linux system on the target hardware already. Since it is often impossible to wait for the final
target setup to be completed to test target applications, you can use a development target setup. The
latter will be packaged much more loosely and will not have to respect the size requirements imposed on
the final package. Hence, the development root filesystem may include many more applications and
libraries than will be found in the final root filesystem. This also allows different and larger types of
permanent storage devices during development.

Obtaining such a setup necessitates compiling the target applications and libraries. This is achieved by
configuring or building the various compiler and binary utilities for cross-development. Using these
utilities, you can build applications for the target and therefore build the development target setup used
for further development. With this done, you can use various Integrated Development Environments
(IDEs) to ease development of the project components and other tools such as CVS to coordinate work
among developers.

Given the horsepower found on some embedded systems, some developers even choose to carry out all
development directly on the target system. In this setup, the compiler and related tools all run on the
target. This, in effect, combines host and target in a single machine and resembles conventional
workstation application development. The main advantage of such a configuration is that you avoid the
hassle of setting up a host/target environment.

Whatever development setup you choose, you will need to debug and poke at your software in many
ways. You can do this with the debugging tools covered in Chapter 11. For simple debugging operations,
you may choose to use ad hoc methods such as printing values using printf(). Some problems require
more insight into the runtime operations of the software being debugged; this may be provided by
symbolic debugging. gdb is the most common general-purpose debugger for Linux, but symbolic
debugging on embedded systems may be more elaborate. It could involve such things as remote serial
debugging, kernel debugging, and BDM and JTAG debugging tools. But even symbolic debugging may
be inadequate in some situations. When system calls made by an application are problematic or when
synchronization problems need to be solved, it is better to use tracing tools such as strace and LTT. For
performance problems, there are other tools more adapted to the task, such as gprof and gcov. When all
else fails, you may even need to understand kernel crashes.

1.4.3 Developing for the Embedded

One of the main advantages of using Linux as an embedded OS is that the code developed for Linux
should run identically on an embedded target as on a workstation, right? Well, not quite. Although it is
true that you can expect your Linux workstation code to build and run the same on an embedded Linux

http://www.wowebook.info

Download at wowebook. 1nfag

system, embedded system operations and requirements differ greatly from workstation or server
environments. Whereas you can expect errors to kill an application on a workstation, for instance,
leaving the responsibility to the user to restart the application, you can't afford to have this sort of
behavior in an embedded system. Neither can you allow applications to gobble up resources without end
or behave in an untimely manner.[11] Therefore, even though the APIs and OS used may be identical,
there are fundamental differences in programming philosophies.

(11 Normal Linux workstation and server applications should not gobble up resources either. In fact, the most important applications used
on Linux servers are noteworthy for their stability, which is one reason Linux is so successful as a server operating system.

1.4.4 Networking

Networking enables an embedded system to interact with and be accessible to the outside world. In an
embedded Linux environment, you have to choose networking hardware, networking protocols, and the
services to offer while accounting for network security. Chapter 10 covers the setup and use of
networking services such as HTTP, Telnet, SSH, and/or SNMP. One interesting aspectin a network-
enabled embedded system is the possibility of remote updating, whereby it is possible to update the
system via a network link without on-site intervention. This is covered in Chapter 8.

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 2. Basic Concepts

As we saw in the previous chapter, there is a rich variety of embedded Linux systems. There are
nevertheless a few key characteristics that apply uniformly to most embedded Linux systems. The
purpose of this chapter is to present to you the basic concepts and issues that you are likely to encounter
when developing any sort of embedded Linux system.

Many of the subjects introduced here are discussed in far greater detail in other chapters. They are
introduced here to give you a better sense of how the entire system comes together.

The chapter starts by discussing the types of hosts most commonly used for developing embedded
Linux systems, the types of host/target development setups, and the types of host/target debug setups.
These sections are meant to help you select the best environment for developing embedded Linux
systems or, if the environment is already specified and can't be changed, understand how your particular
setup will influence the rest of your development effort. The chapter then presents details of the structure
commonly found in most embedded Linux systems. | present the generic architecture of an embedded
Linux system, | explain the system startup, the types of boot configurations, and the typical system
memory layout.

http://www.wowebook.info

Download at wowebook. 1nfag

2.1 Types of Hosts

In Chapter 3, | cover the hardware most commonly found in embedded Linux targets. Each possible
target system can be developed by a wide variety of hosts. In the following, | discuss the types of hosts
most commonly used, their particulars, and how easy it is to develop embedded Linux systems using
them.

2.1.1 Linux Workstation

This is the most common type of development host for embedded Linux systems. It is also the one |
recommend, because developing embedded Linux systems requires that you become quite familiar with
Linux and there is no better way of doing this than using it for your everyday work.

A standard PC is your most likely Linux workstation. Do not forget, nonetheless, that Linux runs on a
variety of hardware and that you are not limited to using a PC. |, for example, regularly use an Apple
PowerBook running Linux for my embedded work. It lacks an RS232 serial port, but this is easily fixed by
adding a USB serial dongle.

You may use any of the standard Linux distributions such as Debian, Mandrake, Red Hat, SUSE, or
Yellow Dog on your host. In fact, | assume you are running a common distribution throughout this book.
As | said in Chapter 1, you do not need an embedded Linux distribution to develop embedded Linux
systems. This book provides you with all the necessary information to build your own development
environment.

o Though I've made an effort to keep the text host-distribution independent, the
instructions in this book are slightly tilted towards Red Hat-type distributions. You
#: may therefore need to make minor modifications to a few commands, depending
' onthe distribution installed on your host. Wherever possible, distribution-
dependent commands are presented as such.

Of course, the latest and fastest hardware is every engineer's dream. Having the fastest machine around
will certainly help you in your work, but you can still use a relatively mild-powered machine with
appropriate RAM for this type of development. Remember that Linux is very good at making the best of
the available hardware. |, for instance, often use a Pentium Il 350MHz system with 128 MB of RAM for
development.

What you will need in large quantity, however, is storage space, both disk space and RAM. In addition to
the space used by your distribution, you should plan for 2 to 3 GB of disk space, if not more, for your
development environment and project workspace. An uncompressed kernel source tree, for example,
which is one of the many components you will have in your project workspace, uses more than 100 MB
of space before compilation. After compilation, this grows even further. If you are experimenting with
three or four kernels at the same time, you can therefore easily use up to 500 MB of disk space for
kermnel work alone.

As for RAM, some of the GNU toolchain compilation steps require large amounts of it, especially during
the build of the C library. | recommend 128 MB of RAM and 128 MB of swap space for the host.

2.1.2 Unix Workstation

Depending on your circumstances, you may be required to use a traditional Unix workstation. Solaris
workstations, for instance, are very common among telecommunication solutions developers. Although

http://www.wowebook.info

Download at wowebook. 1nfag

the use of such workstations is much less common than the use of Linux workstations for developing
embedded Linux systems, it is still feasible.

Because Linux itself is very much like Unix, most of what applies to Linux also applies to Unix. This is
especially true when it comes to the GNU development toolchain, since the main GNU tools such as the
compiler, the C library, and the binary utilities (more commonly known as binutils) were developed and
used on traditional Unix systems even before Linux existed.

Therefore, the descriptions that follow in the rest of this book should also work fine on any Unix
workstation. | say "should" because there may be slight differences that you may have to resolve on your
own. The recommendations | gave above for a Linux workstation in regards to storage space apply to
Unix workstations as well.

2.1.3 Windows (2000, NT, 98, etc.) Workstation

Almost a decade ago, embedded system development shifted towards Windows workstations. Many
developers have since become used to working on this platform and many new developers have been
initiated to embedded systems development on it. For these and other reasons some developers would
like to continue using Windows workstations for, ironically, developing embedded Linux systems.

At first glance, it would seem that the main problem with this platform is the availability and use of the
GNU development toolchain. This is not a problem, because Red Hat provides the Cygwin environment,
which is the Windows-compatible GNU toolchain, and some people have used it to build cross-platform
tools for Linux. Mumit Khan has detailed the procedure to build a cross-platform development toolchain
for an i386 Linux target on a Windows host at http://www.nanotech.wisc.edu/~khan/software/gnu-
win32/cygwin-to-linux-cross-howto.txt. Although attempts to use this procedure for other Linux targets
have not been "officially" reported, there are no obvious reasons for it to fail.

If you really need to continue using a Windows workstation and would like to have an easy way of
working in a Linux environment to develop a Linux target, you may want to use emulation and
virtualization software such as VMWare or Connectix. In this case, you can run Linux in a virtual
environment while your main workstation is still Windows.

Remember, however, that by continuing to use Windows for your everyday work, you are not getting to
know Linux's intricacies. You may, therefore, find it difficult to understand some of the problems you
encounter on your Linux target. Also, you may need to get the latest in workstation power and space
requirements to get an adequate work environment.

http://www.nanotech.wisc.edu/~khan/software/gnu-
http://www.wowebook.info

Download at wowebook. 1nfag

2.2 Types of Host/Target Development Setups

Three different host/target architectures are available for the development of embedded Linux systems:
the linked setup, the removable storage setup, and the standalone setup. Your actual setup may belong
to more than one category or may even change categories over time, depending on your requirements
and development methodology.

2.2.1 Linked Setup

In this setup, the target and the host are permanently linked together using a physical cable. This link is
typically a serial cable or an Ethernet link. The main property of this setup is that no physical hardware
storage device is being transferred between the target and the host. All transfers occur via the link.
Figure 2-1 illustrates this setup.

Figure 2-1. Host/target linked setup

Host Target
*Boatloader
*Lrass-platform —_L -
develapmment Kernef

: *Rioot
environment
filesystem

As illustrated, the host contains the cross-platform development environment, which we will discuss in
Chapter 4, while the target contains an appropriate bootloader, a functional kernel, and a minimal root
filesystem.

Alternatively, the target can use remote components to facilitate development. The kernel could, for
instance, be available via Trivial File Transfer Protocol (TFTP). The root filesystem could also be NFS-
mounted instead of being on a storage media in the target. Using an NFS-mounted root filesystem is
actually perfect during development, because it avoids having to constantly copy program modifications
between the host and the target, as we'll see in Section 2.6.

The linked setup is the most common. Obviously, the physical link can also be used for debugging
purposes. Itis, however, more common to have another link for debugging purposes, as we shall see in
Section 2.3. Many embedded systems, for instance, provide both Ethernet and RS232 link capabilities. In
such a setup, the Ethernet link is used for downloading the executable, the kernel, the root filesystem,
and other large items that benefit from rapid data transfers between the host and the target, while the
RS232 link is used for debugging.

2.2.2 Removable Storage Setup

In this setup, there are no direct physical links between the host and the target. Instead, a storage device
is written by the host, is then transferred into the target, and is used to boot the device. Figure 2-2
illustrates this setup.

Figure 2-2. Host/target removable storage setup

http://www.wowebook.info

Download at wowebook. 1nfag

Host B "y g L Target
*Crorss-pllatfarm -
development *Bontloader
environment
*Secondary boothoader
*Kemel
*Eoot filesystem

As with the previous setup, the host contains the cross-platform development environment. The target,
however, contains only a minimal bootloader. The rest of the components are stored on a removable
storage media, such as a CompactFlash IDE device or any other type of drive, which is programmed on
the host and loaded by the target's minimal bootloader upon startup.

It is possible, in fact, that the target may not contain any form of persistent storage at all. Instead of a
fixed flash chip, for instance, the target could contain a socket where a flash chip could be easily inserted
and removed. The chip would be programmed by a flash programmer on the host and inserted into the
socket in the target for normal operation.

This setup is mostly popular during the initial phases of embedded system development. You may find it
more practical to move on to a linked setup once the initial development phase is over, so you can avoid
the need to physically transfer a storage device between the target and the host every time a change has
to be made to the kernel or the root filesystem.

2.2.3 Standalone Setup

Here, the target is a self-contained development system and includes all the required software to boot,
operate, and develop additional software. In essence, this setup is similar to an actual workstation,
except the underlying hardware is not a conventional workstation but rather the embedded system itself.
Figure 2-3 illustrates this setup.

Figure 2-3. Host/target standalone setup

Tanget

*Bootloader
*Kernzl

*Full roat
filesystem
*Native
development
SFViomment

Contrary to the other setups, this setup does not require any cross-platform development environment,
since all development tools run in their native environment. Furthermore, it does not require any transfer
between the target and the host, because all the required storage is local to the target.

This type of setup is quite popular with developers building high-end PC-based embedded systems, such
as high-availability systems, since they can use standard off-the-shelf Linux distributions on the
embedded system. Once development is done, they then work at trimming down the distribution and
customizing it for their purposes. Although this gets developers around having to build their own root
filesystems and configure the systems' startup, it requires that they know the particular distribution they
are using inside out. If you are interested in this approach, you may want to take a look at Running Linux
and, if you plan to use Red Hat, Learning Red Hat Linux, both published by O'Reilly.

http://www.wowebook.info

Download at wowebook. 1nfag

2.3 Types of Host/Target Debug Setups

There are basically three types of interfaces that developers use to link a target to a host for debugging:
a serial line, a networking interface, and special debugging hardware. Each debugging interface has its
own benefits and applications. We will discuss the detailed use of some of these interfaces in Chapter
11. This section briefly reviews the benefits and characteristics of each type.

Using a serial link is the simplest way to debug a target from a host, because serial hardware is simple
and is often found, in some form or another, in embedded systems. There are two potential problems in
using a serial link, however. First, the speed of most serial links is rather limited. Second, if there's only
one serial port in the embedded system or if the serial link is the embedded system's only external
interface, it becomes impossible to debug the system and interact with it using a terminal emulator at the
same time. The absence of terminal interaction is not a problem in some cases, however. When
debugging the startup of the kernel using a remote kernel debugger, for example, no terminal emulator is
required, since no shell actually runs on the target until the kernel has finished booting.

The use of a networking interface, such as TCP/IP over Ethernet, provides much higher bandwidth than
a serial link. Moreover, the target and the host can use many networking connections over the same
physical network link. Hence, you can continue to interact with the target while debugging applications on
it. You can also debug over a networking link while interacting with the target using a terminal emulator
over the embedded system's serial port. However, the use of a networking interface implies the presence
of a networking stack. Since the networking stack is found in the Linux kernel, a networking link cannot
be used to debug the kernel itself. In contrast, kernel debugging can be and is often carried out over a
serial link.

Both the use of a serial link and the use of a networking interface requires that some minimal software
be taking care of the most primitive I/O hardware available on the target. In some cases, such as when
porting Linux to a new board or when debugging the kernel itself, this assumption does not hold. In those
case, it is necessary to use a debugging interface that provides direct hardware control over the
software. There are several ways to achieve this, but most are quite expensive.

Currently, the preferred way to obtain direct control over hardware for debugging purposes is to use a
BDM or JTAG interface. These interfaces rely on special BDM or JTAG functionality embedded in the
CPU's silicon. By connecting a special debugger to the JTAG or BDM pins of the CPU, you can take
complete control of its behavior. For this reason, JTAG and BDM are often used when bringing up new
embedded boards or debugging the Linux kernel on such boards.

Though the BDM and JTAG debuggers are much less expensive and much less complicated, in terms of
their technical operation, than In-Circuit Emulators (ICEs), they still require the purchase of special
hardware and software.[!l Often, this software and hardware is still relatively expensive because CPU
manufacturers are not keen to share the detailed information regarding the use of the JTAG and BDM
interfaces included in their products. Obtaining this information often involves establishing a trust
relationship with the manufacturer and signing stringent NDAs.

[1] Have a look at some of the books listed in Appendix B if you are not familiar with the various hardware tools commonly used for
debugging embedded systems, including ICEs.

Though it would probably be too expensive to equip each member of an engineering team with her own
BDM or JTAG debugger, | highly recommend that you have at least one such debugger available
throughout your project for debugging the very difficult problems that a serial or networking debugger
cannot deal with appropriately. When selecting such a debugger, however, you may want to evaluate its
compatibility with the GNU development toolchain. Some BDM and JTAG debuggers, for instance,
require the use of specially modified gdb debuggers. A good BDM or JTAG debugger should be able to
deal with the standard GNU development toolchain, and the binary files generated using it, transparently.

http://www.wowebook.info

Download at wowebook. 1nfag

2.4 Generic Architecture of an Embedded Linux System

Since Linux systems are made up of many components, let us take a look at the overall architecture of a
generic Linux system. This will enable us to set each component in context and will help you understand
the interaction between them and how to best take advantage of their assembly. Figure 2-4 presents the
architecture of a generic Linux system with all the components involved. Although the figure abstracts to
a high degree the content of the kernel and the other components, the abstractions presented are
sufficient for the discussion. Notice that there is little difference in the following description between an
embedded system and a workstation or server system, since Linux systems are all structured the same
at this level of abstraction. In the rest of the book, however, emphasis will be on the details of the
application of this architecture in embedded systems.

Figure 2-4. Architecture of ageneric Linux system

Applications
Libraries

Linerx kerrel

High-level abstractions

File- Netwark
systems pratoools
Lowe-level interfaces
Hardvrare

There are some broad characteristics expected from the hardware to run a Linux system. First, Linux
requires at least a 32-bit CPU containing a memory management unit (MMU).[2l Second, a sufficient
amount of RAM must be available to accommodate the system. Third, minimal I/O capabilities are
required if any development is to be carried out on the target with reasonable debugging facilities. This is
also very important for any later troubleshooting in the field. Finally, the kernel must be able to load
and/or access a root filesystem through some form of permanent or networked storage. See Section
1.2.1 for a discussion of typical system configurations.

[21 As we'll see below, a specially modified version of Linux called uClinux does run on some CPUs that aren't equipped with MMUs. The
development of applications for Linux on such processors differs, however, sufficiently from standard Linux application development to
require a separate discussion. | will therefore not cover the use of Linux on MMU-less architectures.

Immediately above the hardware sits the kernel. The kernel is the core component of the operating
system. Its purpose is to manage the hardware in a coherent manner while providing familiar high-level
abstractions to user-level software. As with other Unix-like kernels, Linux drives devices, manages I/O
accesses, controls process scheduling, enforces memory sharing, handles the distribution of signals,
and tends to other administrative tasks. It is expected that applications using the APIs provided by a
kernel will be portable among the various architectures supported by this kernel with little or no changes.
This is usually the case with Linux, as can be seen by the body of applications uniformly available on all
architectures supported by Linux.

Within the kernel, two broad categories of layered services provide the functionality required by
applications. The low-level interfaces are specific to the hardware configuration on which the kernel runs
and provide for the direct control of hardware resources using a hardware-independent API. That is,
handling registers or memory pages will be done differently on a PowerPC system and on an ARM
system, but will be accessible using a common API to higher-level components of the kernel, albeit with
some rare exceptions. Typically, low-level services will handle CPU-specific operations, architecture-

http://www.wowebook.info

Download at wowebook. 1nfag

specific memory operations, and basic interfaces to devices.

Above the low-level services provided by the kernel, higher-level components provide the abstractions
common to all Unix systems, including processes, files, sockets, and signals. Since the low-level APIs
provided by the kernel are common among different architectures, the code implementing the higher-
level abstractions is almost constant regardless of the underlying architecture. There are some rare
exceptions, as stated above, where the higher-level kernel code will include special cases or different
functions for certain architectures.

Between these two levels of abstraction, the kernel sometimes needs what could be called interpretation
components to understand and interact with structured data coming from or going to certain devices.
Filesystem types and networking protocols are prime examples of sources of structured data the kernel
needs to understand and interact with to provide access to data going to and coming from these sources.

Disk devices have been and still are the main storage media for computerized data. Yet disk devices,
and all other storage devices for that matter, themselves contain little structure. Their content may be
addressable by referencing the appropriate sector of a cylinder on a certain disk, but this level of
organization is quite insufficient to accommodate the ever changing content of files and directories. File-
level access is achieved using a special organization of the data on the disk where file and directory
information is stored in a particular fashion so that it can be recognized when it is read again. This is
what filesystems are all about. Through the evolution of OSes in time, however, many different
incompatible filesystems have seen the light of day. To accommodate these existing filesystems and the
new ones being developed, the kerel has a number of filesystem engines that can recognize a
particular disk structure and retrieve or add files and directories from this structure. The engines all
provide the same API to the upper layers of the kernel so that accesses to the various filesystems are
identical even though accesses to the lower-layer services vary according to the structure of the
filesystem. The API provided to the virtual filesystem layer of the kernel by, for instance, the FAT
filesystem and the ext2 filesystem is identical, but the operations both will conduct on the block device
driver will differ according to the respective structures used by FAT and ext2 to store data on disk.

During its normal operation, the kernel requires at least one properly structured filesystem, the root
filesystem. It is from this filesystem that the kernel loads the first application to run on the system. It also
relies on this filesystem for future operations such as module loading and providing each process with a
working directory. The root filesystem may either be stored and operated on from a real hardware
storage device or loaded into RAM during system startup and operated on from there. As we'll see later,
the former is becoming much more popular than the latter with the advent of facilities such as the JFFS2
filesystem.

You'd expect that right above the kernel we would find the applications and utiliies making up and
running on the OS. Yet the services exported by the kernel are often unfit to be used directly by
applications. Instead, applications rely on libraries to provide familiar APls and abstract services that
interact with the kernel on the application's behalf to obtain the desired functionality. The main library
used by most Linux applications is the GNU C library. For embedded Linux systems, substitutes to this
library can be used, as we'll see later, to compensate for the GNU C library's main deficiency, its size.
Other than the C library, libraries such as Qt, XML, or MD5 provide various utility and functionality APIs
serving all sorts of purposes.

Libraries are typically linked dynamically with applications. That is, they are not part of the application's
binary, but are rather loaded into the application's memory space during application startup. This allows
many applications to use the same instance of a library instead of each having its own copy. The C
library found on a the system's filesystem, for instance, is loaded only once in the system RAM, and this
same copy is shared among all applications using this library. But note that in some situations in
embedded systems, static linking, whereby libraries are part of the application's binary, is preferred to
dynamic linking. When only part of a library is used by one or two applications, for example, static linking
will help avoid having to store the entire library on the embedded system's storage device.

http://www.wowebook.info

Download at wowebook. 1nfag

2.5 System Startup

Three main software components participate in system startup: the bootloader, the kernel, and the init
process. The bootloader is the first software to run upon startup and is highly dependent on the target's
hardware. As we'll see in Chapter 9, there are many bootloaders available for Linux. The bootloader will
conduct low-level hardware initialization and thereafter jump to the kernel's startup code.

The early kernel startup code differs greatly between architectures and will conduct initialization of its
own before setting up a proper environment for the running of C code. Once this is done, the kernel
jumps to the architecture-independent start_kernel() function, which initializes the high-level kernel
functionality, mounts the root filesystem, and starts the init process.

I will not cover the details of the kernel's internal startup and initialization, because they have already
been covered in detail in Chapter 16 of Linux Device Drivers (O'Reilly). Also, Appendix A of
Understanding the Linux Kernel (O'Reilly) provides a lengthy description of the startup of PC-based
systems from the initial power-on to the execution of the init process. That discussion covers the kernel's
internal startup for the x86.

The rest of the system startup is conducted in user space by the init program found on the root
filesystem. We will discuss the setup and configuration of the init process in Chapter 6.

http://www.wowebook.info

Download at wowebook. 1nfag

2.6 Types of Boot Configurations

The type of boot configuration chosen for a system greatly influences the selection of a bootloader, its
configuration, and the type of software and hardware found in the host. A network boot configuration, for
example, requires that the host provide some types of network services to the target. In designing your
system, you first need to identify the boot configurations you are likely to use during development and in
the final product. Then, you need to choose a bootloader or a set of bootloaders that will cater to the
different types of boot setups you are likely to use. Not all bootloaders, for example, can boot kernels
from disk devices. In the following, | will cover the possible boot configurations. Let us start,
nevertheless, by reviewing some boot basics.

All CPUs fetch their first instruction from an address preassigned by their manufacturer. Any system built
using a CPU has one form or another of solid state storage device at that location. Traditionally, the
storage device was a masked ROM, but flash chips are increasingly the norm today.!3l The software on
this storage device is responsible for bootstrapping the system. The level of sophistication of the boot
software and the extent to which it is subsequently used as part of the system's operation greatly
depends on the type of system involved.

[3] Masked ROMs continue to be used when devices are produced in very large quantities. Consumer gaming devices such as consoles, for
example, often use masked ROMs.

On most workstations and servers, the boot software is responsible only for loading the operating system
from disk and for providing basic hardware configuration options to the operator. In contrast, there are
very few agreed upon purposes, if any, for boot software in embedded systems because of the diversity
in purposes of embedded applications. Sometimes, the boot software will be the very software that runs
throughout the system's lifetime. The boot software may also be a simple monitor that loads the rest of
the system software. Such monitors can then provide enhanced debugging and upgrading facilities. The
boot software may even load additional bootloaders, as is often the case with x86 PCs.

Embedded Linux systems are as diverse as their non-Linux counterparts. Embedded Linux systems are
characterized, nevertheless, by the requirement to load a Linux kernel and its designated root filesystem.
How these are loaded and operated, as we'll see, largely depends on the system's requirements and,
sometimes, on the state of its development, as described in Section 2.2.

There are three different setups used to bootstrap an embedded Linux system: the solid state storage
media setup, the disk setup, and the network setup. Each setup has its own typical configurations and
uses. The following subsections discuss each setup in detail.

We will discuss the setup and configuration of specific bootloaders for each applicable setup described
below in Chapter 9.

2.6.1 Solid State Storage Media

In this setup, a solid state storage device holds the initial bootloader, its configuration parameters, the
kernel, and the root filesystem. Though the development of an embedded Linux system may use other
boot setups, depending on the development stage, most production systems contain a solid state
storage media to hold all the system's components. Figure 2-5 shows the most common layout of a solid
state storage device with all the system components.

Figure 2-5. Typical solid state storage device layout

http://www.wowebook.info

Download at wowebook. 1nfag

Boot parameters

Harnel Root filasystem

EBootloader

No memory addresses are shown in Figure 2-5, because the ranges vary greatly. Intuitively, you may
think that addresses are lower on the left and grow towards the right. However, there are cases where it
is the inverse and the bootloader is at the top of the storage device address range instead of the bottom.
For this reason, many flash devices are provided in both top-boot and bottom-boot configurations.
Depending on the configuration, the flash region where the bootloader is found often has special
protection mechanisms to avoid damage to the bootloader if a memory write goes astray. In top-boot
flash devices, this protected region is located at the top of the device's address range, and in bottom-
boot flash devices, itis located in the bottom of the device's address range.

Although Figure 2-5 shows the storage device separated into four different parts, it may contain fewer
parts. The boot parameters may be contained within the space reserved for the bootloader. The kernel
may also be on the root filesystem. This, however, requires that the bootloader be able to read the root
filesystem. Also, the kernel and the root filesystem could be packaged as a single image that is
uncompressed in RAM before being used. Depending on the capabilities provided by your bootloader,
there may even be other possible configurations, each with its advantages and disadvantages. Usually, a
setup can be categorized using the following criteria: flash memory use, RAM use, ease of upgrading,
and bootup time.

Boot storage media are initially programmed using a device programmer or the CPU's integrated debug

capabilities, such as JTAG or BDM. Once the device is initially programmed, it can be reprogrammed by
the system designer using the bootloader, if it provides this capability, or using Linux's MTD subsystem.

The system may also contain software that enables the user to easily update the storage device. We will
discuss the programming of solid state storage media in Chapter 7.

2.6.2 Disk

This is the setup you are probably most familiar with because of its widespread use in workstations and
servers. Here, the kernel and the root filesystem are located on a disk device. The initial bootloader
either loads a secondary bootloader off the disk or fetches the kernel itself directly from the disk. One of
the filesystems on the disk is then used as the root filesystem.

During development, this setup is particularly attractive if you would like to have a large number of kernel
and root filesystem configurations for testing. If you plan to develop your embedded system using a
customized mainstream distribution, for instance, this setup is helpful. If you are using a hard disk or a
device mimicking a hard disk, such as CompactFlash, in your production system, this boot setup is
probably the best choice.

Because this scheme is well known and well documented, we will only discuss it briefly in Chapter 9.

2.6.3 Network

In this setup, either the root filesystem or both the kernel and the root filesystem are loaded via a network
link. In the first case, the kernel resides on a solid state storage media or a disk, and the root filesystem
is mounted via NFS. In the second case, only the bootloader resides on a local storage media. The
kernel is then downloaded via TFTP, and the root filesystem is mounted via NFS. To automate the
location of the TFTP server, the bootloader may also use BOOTP/DHCP. In that case, the target does
not need any preset IP addresses to find either the TFTP server or the NFS server.

This setup is ideal in early stages of development, because it enables the developer to share data and

http://www.wowebook.info

Download at wowebook. 1nfag

software rapidly between his workstation and the target without having to reprogram the target. Software
updates can then be compiled on the host and tested immediately on the target. In contrast, few
production systems use this setup, because it requires the presence of a server. In the case of the
control system described in Chapter 1, nevertheless, this setup actually can be used for some of the
devices, because the SYSM module already provides network services.

Obviously, this setup involves configuring the server to provide the appropriate network services. We will
discuss the configuration of these network services in Chapter 9.

http://www.wowebook.info

Download at wowebook. 1nfag

2.7 System Memory Layout

To best use the available resources, itis important to understand the system's memory layout, and the
differences between the physical address space and the kernel's virtual address space.[*l Most
importantly, many hardware peripherals are accessible within the system's physical address space, but
have restricted access or are completely "invisible" in the virtual address space.

[4] What | call here "virtual address" is known in x86 jargon as "logical address" and can have other names on other architectures.

To best illustrate the difference between virtual and physical address spaces, let's take a closer look at
one component of the example system. The user interface modules, for instance, can be easily
implemented on the StrongARM-based iPAQ PDA. Figure 2-6 illustrates the physical and virtual memory
maps of an iIPAQ running the Familiar distribution. Note that the regions illustrated are not necessarily
proportional to their actual size in memory. If they were, many of them would be too small to be visible.

Figure 2-6. Physical and virtual memory maps for the Compaq iPAQ

(11— F LI — _—
Fitysical memory map Virteral memary map

(nFFFFFFFF (FFFF FFFF

o200 0000

Kemel
CreC 000 D000 O (000 Q000
Swstam FAM
LD and DM registers OwB000 0000 User-space stack l‘
Memary and DoeER0 0000
expansion registers
System control CocB GO0 e B000 D000
module registers
Peripheral contral Cocd000 DO
maodule registers
Coed{0H0 0000
Cocd S0 D00 >
P40 inkarmal registers O 4000 0000 Uh;;u a0 0000
PCMCIA CruD DD
sockets
ot 10 DOy
SRR] | LR I (o000 QOO
st iesam 1 o 2000 Application text 0000000
.-5}'5rsm flash

The physical map of a system is usually available with the technical literature accompanying your
hardware. In the case of the iPAQ, the StrongARM manual, the SA-1110 Developer's manual, is
available from Intel's web site.

The physical map is important, because it provides you with information on how to configure the kernel
and how to develop custom drivers. During the kernel's configuration, for instance, you may need to
specify the location of the flash devices in your system. During development, you may also need to write
a driver for a memory-mapped peripheral. You will also need to provide your bootloader with information
regarding the components it has to load. For these reasons, itis good practice to take the time to
establish your system's physical memory map before starting software development.

On the iPAQ, the flash storage is divided in two. The first part contains the bootloader and starts at the
lowest memory address available. Given the bootloader's size, this region is rather small. The rest of the
flash storage space is occupied by the system's root filesystem, which in the case of Familiar, is a JFFS2
filesystem. In this case, the kernel is actually on the root filesystem. This is possible, because the

http://www.wowebook.info

Download at wowebook. 1nfag

bootloader has enough understanding of JFFS2 to find the kernel on the filesystem.

Upon startup, the bootloader reads the kernel from the root filesystem into the system's RAM and jumps
to the kernel's start routines. From there on, the rest of the system startup is carried out by Linux.

Once Linux is running,® the programs use virtual addresses. In contrast to the physical memory map,
the layout of the virtual memory map is of secondary importance for kernel configuration or device driver
development. For device driver development, for instance, it is sufficient to know that some information is
located in kernel space and some other information is located in user space, and that appropriate
functions must be used to properly exchange data between the two.

(51 | assume that you are using MMU-equipped hardware. This discussion does not hold if you are using a Linux variant for MMU-less
processors.

The virtual memory layout is mostly important in helping you understand and debug your applications. As
you can see in Figure 2-6, the kernel occupies a quarter of the virtual address space starting from
address 0xC0000000. This region is also known as "kernel space." The rest of the address space is
occupied by application-specific text, data, and library mappings. This is also known as "user space."
Whereas the kernel is always located above the 0xC0000000 mark for all applications, applications'
memory maps may differ even on the same system.

To reconstruct a process' vitual memory map, you need to look at the maps file in the process' PID entry
in the /proc filesystem. For more details on how to get this information, see the Chapter 20 in
Understanding the Linux Kernel (O'Reilly).

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 3. Hardware Support

Having covered the basics of embedded Linux systems, including generic system architecture, we will
now discuss the embedded hardware supported by Linux. | will first cover the processor architectures
supported by Linux that are commonly used in embedded systems. Next, | will cover the various
hardware components involved, such as buses, I/O, storage, general-purpose networking, industrial-
grade networking, and system monitoring. Although | include many different components, | have omitted
components not typically used in embedded configurations.

Note that the following discussion does not attempt to analyze the pros and cons of one hardware
component or another. Use it, rather, as a starting point for your research in either identifying the
components to include in your system or judging the amount of effort needed to get Linux to run on the
hardware you have already chosen.

Also, the following does not cover the software made available by the various hardware vendors to
support their hardware. It covers only hardware supported by the open source and free software
communities. Some vendors may provide closed-source drivers for their hardware. If you intend to use
such hardware, keep in mind that you will have no support from the open source and free software
development community. You will have to refer to the vendor for any problems related or caused by the
closed-source drivers. Open source and free software developers have repeatedly refused to help
anyone that has problems when using closed-source drivers.

http://www.wowebook.info

Download at wowebook. 1nfag

3.1 Processor Architectures

Linux runs on alarge number of architectures, but not all these architectures are actually used in
embedded configurations, as | said above. The following discussion looks at each architecture in terms
of the support provided by Linux to the CPUs belonging to that architecture and the boards built around
those CPUs. It also covers the intricacies of Linux's support and any possible caveats. | will not cover the
MMU-less architectures supported by uClinux, however. Though the code maintained by this project has
been integrated late in the 2.5 development series, it remains that the development of the uClinux branch
and the surrounding software has its own particularities. If you are interested in an MMU-less
architecture to run Linux, you are invited to take a closer look at the uClinux project web site at
http://www.uclinux.org/. uClinux currently supports Motorola MMU-less 68K processors, MMU-less ARM,
Intel's 1960, Axis' Etrax, and other such processors.

3.1.1 x86

The x86 family starts with the 386 introduced by Intelin 1985 and goes on to include all the descendants
of this processor, including the 486 and the Pentium family, along with compatible processors by other
vendors such as AMD and National Semiconductor. Intel remains, though, the main reference in regards
to the x86 family and is still the largest distributor of processors of this family. Lately, a new trend is to
group traditional PC functionality with a CPU core from one of the 386 family processors to form a
System-on-Chip (SoC). National Semiconductor's Geode family and ZF Micro Devices' ZFx86 are part of
this SoC trend.

Although the x86 is the most popular and most publicized platform to run Linux, it represents a small
fraction of the traditional embedded systems market. In most cases, designers prefer ARM, MIPS, and
PowerPC processors to the i386 for reasons of complexity and overall cost.

That said, the i386 remains the most widely used and tested Linux platform. Thus, it profits from the
largest base of software available for Linux. Many applications and add-ons start their lives on the i386
before being ported to the other architectures supported by Linux. The kernel itself was in fact written for
the i386 first before being ported to any other architecture.

Since most, if not all, i386 embedded systems are very similar, or identical to the workstation and server
counterparts in terms of functionality and programmability, the kernel makes little or no difference
between the various x86 CPUs and related boards. When needed, a few #ifdef statements are used to
accommodate the peculiarities of a certain CPU or board, but these are rare.

The i386-based PC architecture is the most widely documented architecture around. There are many
different books and online documents in many languages discussing the intricacies of this architecture.
This is in addition to the documents available from the various processor vendors, some of which are
very complete. To get an idea of the scope of the existing documentation, try searching for "pc
architecture” in the book section of Amazon.com. It would be hard to recommend a single source of
information regarding the i386 and PC architecture. Intel Architecture Software Developer's Manual,
Volume 1: Basic Architecture, Volume 2: Instruction Set Reference, and Volume 3: System Programming
Guide published by Intel are traditionally rich sources of information about how to program the i386s,
albeit limited to Intel's products. The availability of these documents may vary. At some point, hardcopies
were not available from Intel's literature center. During that time, however, the documents were available
in PDF format online. At the time of this writing, the manuals are available in hardcopy from Intel's
literature center.

Regarding the PC architecture itself, a source I've found useful over time is a package of DOS
shareware called HelpP C,[1l which contains a number of documents describing the intricacies and
operations of various components of the PC architecture. Another useful manual with similar information
is The PC Handbook by John Choisser and John Foster (Annabooks). Note that your particular setup's

http://www.uclinux.org/
http://www.wowebook.info

Download at wowebook. 1nfag

technical configuration may differ slightly from the information provided by the various sources. Refer to
your hardware's documentation for exact information.

[11 A search on the web for "HelpPC" should rapidly point you to an appropriate URL where you can download the package. Although the
document files included with the shareware have a special format allowing them to be read by the DOS HelpPC dtility, these documents are
plain text files that can be read with any usual editor in Linux.

3.1.2 ARM

The ARM, which stands for Advanced RISC Machine, is a family of processors maintained and promoted
by ARM Holdings Ltd. Contrary to other chip manufacturers such as IBM, Motorola, and Intel, ARM
Holdings does not manufacture its own processors. Instead, ARM designs the CPU cores for its
customers based on the ARM core, charges customers licensing fees on the design, and lets them
manufacture the chip wherever they see fit. This offers various advantages to the parties involved, but it
does create a certain confusion to the developer approaching this architecture for the first time, as there
does not seem to be a central producer of ARM chips on the market. There is, though, one unifying
characteristic that is important to remember: all ARM processors share the same ARM instruction set,
which makes all variants fully software compatible. This doesn't mean that all ARM CPUs and boards
can be programmed and set up in the same way, only that the assembly language and resulting binary
codes are identical for all ARM processors. Currently, ARM CPUs are manufactured by Intel, Toshiba,
Samsung, and many others. The ARM architecture is very popular in many fields of application and there
are hundreds of vendors providing products and services around it.

At the time of this writing, Linux supports 10 distinct ARM CPUs, 16 different platforms, and more than
200 related boards. Given the quantity and variety of information involved, | refer you to the complete and
up-to-date list of ARM systems supported and their details at
http://www.arm.linux.org.uk/developer/machines/. Suffice it to say that Linux supports most mainstream
CPUs and boards, such as Intel's SA1110 StrongARM CPUs and Assabet development boards. In case
you need it, there is a method to add support for new hardware. Generally, for any information regarding
the Linux ARM port, consult the project's web site at http://www.arm.linux.org.uk/.

In addition to the kemel port to the ARM, many projects have geared up for ARM support. First, hard
real-time support is available from the RTAI project and a StrongARM RTLinux port is available at
http://Amww.imec.be/rtlinux/. In addition, Java support is available from the Blackdown project.l? There is
however no kernel debugger, since most developers who need to debug the kemel on an ARM system
use a JTAG debugger.

(2] The Blackdown project is the main Java implementation for Linux and is located at http:/Avww.blackdown.org/. When evaluating the level
of Java support provided for the other architectures, itis the level of support provided by the Java run-time environment packages available
from the Blackdown project that will be my main reference. There may be commercial Java solutions other than the Blackdown project for
any of the architectures discussed, but they are not considered here as they aren't open source. A more in-depth discussion of Linux's Java
support is carried out in Chapter 4.

For any information regarding the ARM architecture and its instruction set, consult the ARM Architecture
Reference Manual edited by David Seal (Addison Wesley), and Steve Furber's ARM System-on-Chip
Architecture (Addison Wesley). Contrary to other vendors, ARM does not provide free manuals for its
chips. These are the only reference manuals currently available for the ARM. Although the ARM
Architecture Reference Manual isn't as mature as technical documentation provided by other processor
vendors, it is sufficient for the task. Because individual chip manufacturers are responsible for
developing the chips, they provide specific information such as timing and mechanical data regarding
their own products. Intel, for example, provides online access to manuals for its StrongARM
implementation.

3.1.3 IBM/Motorola PowerPC

The PowerPC architecture is the result of a collaboration between IBM, Motorola, and Apple. It inherited
ideas from work done by the three firms, especially IBM's Performance Optimization With Enhanced

http://www.arm.linux.org.uk/developer/machines/
http://www.arm.linux.org.uk/
http://www.imec.be/rtlinux/
http://www.blackdown.org/
http://www.wowebook.info

Download at wowebook. 1nfag

RISC (POWER) architecture, which still exists. The PowerPC is mostly known for its use in Apple's
Macs, but there are other PowerP C-based workstations from IBM and other vendors as well as
PowerPC-based embedded systems. The popular TiVo system, for instance, is based on an embedded
PowerPC processor.

Along with the i386 and the ARM, the PowerPC (PPC) is a very well supported architecture in Linux. This
level of support can be partly seen by looking at the large number of PPC CPUs and systems on which
Linux runs.

To provide compatibility with the various PPC hardware, each type of PPC architecture has its own low-
level functions grouped in files designated by architecture. There are such files, for example, for CHRP,
Gemini, and PReP machines. Their names reflect the architectures, such as chrp_pci.c or gemini_pci.c.
In a similar fashion, the kernel accounts for the embedded versions of the PPC, such as IBM's 4xx series
and Motorola's 8xx series.

In addition, a great number of applications that run on the i386 are available for the PPC. Both RTLinux
and RTAI, for instance, support the PPC. There is also support for Java, and OpenOffice has been
ported to the PPC. The PPC Linux community is active in many areas of development ranging from
workstation to embedded systems. The main PPC Linux site is http://penguinppc.org/. This site is
maintained by community members and is not affiliated with any particular vendor. It contains valuable
documentation and links and should be considered the starting point for any Linux development on the
PPC. There is also http://www.linuxppc.org/, which is affiliated with the LinuxPPC distribution. This site
was the initial home of the efforts to port Linux to to the PPC. While I'm discussing distributions, it is
worth noting that there are a number that support the PPC, some exclusively. LinuxPPC and Yellow Dog
Linux, for example, provide Linux only for PPC machines. There are also traditional mainstream
distributions that provide support for the PPC as part of their support for other architectures. These
include Mandrake, Debian, and SuSE.

If you intend to use the PPC in your embedded application and want to be in touch with other folks using
this architecture in their systems, be sure to subscribe to the very active linuxppc-embedded list. Most
problems are recurring, so there is probably someone on that list that has had your problem before. If
not, many people will be interested to see your problem solved, as they may encounter it, too. The list is
hosted on linuxppc.org, which hosts many other PP C-related lists.

Early on, the companies behind the PPC agreed upon a standard system architecture for developing
boards based on the chip. This was initially provided through the PowerPC Reference Platform (PReP),
which was eventually replaced by the Common Hardware Reference Platform (CHRP). Documentation
on CHRP is available in the book entitled PowerPC Microprocessor Common Hardware Reference
Platform: A System Architecture guide (Morgan Kaufmann Publishers), available online at
http://www.rs6000.ibm.com/resource/technology/chrp/. Documentation on the 32-bit versions of the
PowerPC is available from both IBM and Motorola through a manual entitled PowerPC Microprocessor
Family: Programming Environments for 32-bit Microprocessors. This manual is available online in the
technical documentation sections of both companies' web sites and in hardcopy for free from Motorola
through the literature center section of its web site.

3.1.4 MIPS

The MIPS is the brain child of John Hennessey, mostly known by computer science students all over the
world for his books on computer architecture written with David Patterson, and is the result of the
Stanford Microprocessor without Interlocked Pipeline Stages project (MIPS). MIPS is famed for having
been the basis of the workstations and servers sold by SGI and of gaming consoles such as Nintendo's
64-bit system and Sony Playstations 1 and 2. But it is also found in many embedded systems. Much like
the ARM, the company steering MIPS, MIPS Technologies Inc., licenses CPU cores to third parties.
Unlike the ARM, however, there are many instruction set implementations, which differ from each other
to various degrees. 32-bit MIPS implementations are available from IDT, Toshiba, Alchemy, and LSI. 64-
bit implementations are available from IDT, LSI, NEC, QED, SandCraft, and Toshiba.

http://penguinppc.org/
http://www.linuxppc.org/
http://www.rs6000.ibm.com/resource/technology/chrp/
http://www.wowebook.info

Download at wowebook. 1nfag

The initial port of Linux to MIPS was mainly done to support MIPS-based workstations. Eventually, the
port also came to include development boards and embedded systems based on MIPS. To
accommodate the various CPUs and systems built around them, the layout of the MIPS portion of the
kernel is divided into directories based on the type of system the kernel will run on. Similarly, kernel
configuration for a given MIPS system is mainly influenced by the type of board being used. The actual
type of MIPS chip on the board is much less important.

Looking around, you will find that support for Linux on MIPS is limited when compared to other
architectures such as the i386 or the PowerPC. In fact, few of the main distributions have actually been
ported to MIPS. When available, commercial vendor support for MIPS is mostly limited to embedded
architectures. Nevertheless, there is a Debian port to both big endian and little endian MIP S, and a port
of Red Hat 7.1 is also available. Also, many PDA and development board manufacturers actively support
Linux ports on their MIPS-based hardware. As with some other ports, MIPS lacks proper Java support.
Hard real-time support is however available for some MIPS boards from the RTAI project.

In addition to conventional MIPS-based machines, an entirely different set of processors is based on
NEC's VR chips for the purpose of running WindowsCE. A number of developers were interested in
having Linux running on these devices, and hence started new projects for the purpose. These projects
have advanced rapidly and have come to occupy a large portion of the Linux-on-MIPS development.

For more information regarding the MIPS port of Linux in general, take a look at the official home of the
Linux MIPS port at http://www.linux-mips.org/. The web site contains a list of supported systems,
documentation, links, and other useful resources. For information on the VR and other PDA-related
efforts on MIPS, check out the Linux VR page at http://linux-vr.org/. If you're looking into working with
Linux on MIPS, | suggest you take a look at both sites. There are also commercial embedded
distributions that provide extensive support for some MIPS boards. Depending on the board you choose
and your development model, that may be a practical way to get Linux up and running on a MIPS
system.

Because MIPS is divided into multiple platforms, you will need to refer to the data provided by your
system's manufacturer to evaluate and/or implement Linux support. One general resource that is
recommended on MIPS Technologies Inc.'s own web site is See MIPS run by Dominic Sweetman
(Morgan Kaufmann Publishers). You can also get PDFs on MIPS's web site. MIPS provides 32- and 64-
bit editions of their MIPS Architecture for Programmers three volume series, made up of Volume I
Introduction to the MIPS Architecture, Volume II: The MIPS instruction set, and Volume Ill: The MIPS
Privileged Resource Architecture.

3.1.5 Hitachi SuperH

In an effort to enhance its 8- and 16-bit H8 line of microcontrollers, Hitachi introduced the SuperH line of
processors. These manipulate 32-bit data internally and offer various external bus widths. Later, Hitachi
formed SuperH Inc. with STMicroelectronics (formerly SGS-Thomson Microelectronics). SuperH Inc.
licenses and heads the SuperH much the same way ARM Holdings Ltd. steers the ARM and MIPS
Technologies Inc. steers the MIPS. The early implementations of the SuperH, such as the SH-1, SH-2,
and their variants, did not have an MMU. Starting with the SH-3, however, all SuperH processors include
an MMU. The SuperH is used within Hitachi's own products, in many consumer-oriented embedded
systems such as PDAs, and the Sega Saturmn and Dreamcast game consoles.

As the early SuperH (SH) processors did not include MMUs, they are not supported by Linux. Currently,
both the SH-3 and SH-4 are supported by Linux. However, not all SH-3 and SH-4 systems are supported
by Linux, as there are many variations with various capabilities. Linux supports the 7707, 7708, and 7709
SH-3 processors and the 7750, 7751, and ST40 SH-4 processors. Accordingly, Linux supports a number
of systems that use these processors, including the Sega Dreamcast. Although discontinued, this system
is a great platform to practice with to become familiar with non-i386 embedded Linux systems. An SH-5
port is also in the works, though it is not yet part of the main kernel tree. For more information on this
port, visit the project's web site at http://www.superh-software.com/linux/.

http://www.linux-mips.org/
http://linux-vr.org/
http://www.superh-software.com/linux/
http://www.wowebook.info

Download at wowebook. 1nfag

Support for the SH outside the kernel is rather limited for the moment. There is no support for Java, for
instance, although the architecture has a kernel debugger. There is also an RTLinux port to the SH-4
created by Masahiro Abe of A&D Co. Ltd., but this port is not part of the main Open RTLinux distributed
by FSMLabs. The port can be found at ftp://ftp.aandd.co.jp/pub/linuxsh/rtlinux/current/. There are no SH
distributions either. There are, however, many developers actively working to increase the level of
support provided for this architecture by Linux, including a Debian port. Accordingly, there are a number
of web sites that host Linux SH-related documentation, resources, and software. The two main ones are
http://linuxsh.sourceforge.net/ and http://mww.m17n.org/linux-sh/.

As there is no standard SH architecture, you will need to refer to your hardware's documentation for
details about the layout and functionality of the hardware. There are, nonetheless, manuals that describe
the operations and instruction set of the various processors. The SH-3's operation is described in Hitachi
SuperH RISC engine SH-3/SH-3E/SH3-DSP Programming Manual, and the SH-4's operation is
described in SuperH RISC engine SH-4 Programming Manual. Both resources are available through
Hitachi's web site.

3.1.6 Motorola 68000

The Motorola 68000 family is known in Linux jargon as m68k and has been supported in its MMU-
equipped varieties for quite some time, and in its MMU-less varieties starting with the 2.5 development
series. The m68k came in second only to the x86 as a popular 1980s architecture. Apart from being
used in many popular mainstream systems by Atari, Apple, and Amiga, and in popular workstation
systems by HP, Sun, and Apollo, the m68k was also a platform of choice for embedded systems
development. Recently, though, interest has drifted away from the m68k to newer architectures such as
ARM, MIPS, SH, and PowerPC for embedded systems design.

Linux supports many systems based on the m68k, starting with the mainstream and workstation systems
already mentioned and including VME systems from Motorola and BVM. Because these systems are
completely different from each other, the kernel tree is built to accommodate the variations and facilitate
the addition of other m68k-based systems. Each system has its own set of specific modules to interface
with the hardware. An example of this is the interrupt vector tables and related handling functions. Each
system has a different way of dealing with these, and the kernel source reflects this difference by having
a different set of functions to deal with interrupt setup and handling for each type of system.

Since the MMU versions of the m68k are seldom used nowadays in new, cutting-edge designs, they lag
behind in terms of software support. There is, for instance, no hard real-time support and no Java
support. Nor is the processor architecture listed among supported architectures for other user-level
applications such as OpenOffice. For up-to-date information regarding the port, the supported hardware,
and related resources, refer to the m68k Linux port homepage at http://www.linux-m68k.org/. One
distribution that has done a lot work for the m68k is Debian. Check out their documentation and mailing
lists if you plan to deploy an m68k-based embedded Linux system.

Since there is no standard m68k-based platform such as the PC for the i386, there is no single reference
covering all m68k-based systems. There are, however, many textbooks and online resources that
discuss the traditional use of the m68k and its programming. Motorola provides the 68000 Family
Programmer's Reference Manual and the M68000 8-/16-/32-Bit Microprocessors User's Manual free
through its literature center. Other, more elaborate, texts that include examples and applications can be
found by looking for "68000" on any online bookstore.

http://linuxsh.sourceforge.net/
http://www.m17n.org/linux-sh/
http://www.linux-m68k.org/
http://www.wowebook.info

Download at wowebook. 1nfag

3.2 Buses and Interfaces

The buses and interfaces are the fabric that connects the CPU to the peripherals that are part of the
system. Each bus and interface has its own intricacies, and the level of support provided by Linux to the
different buses and interfaces varies accordingly. The following is a rundown of the buses and interfaces
found in embedded systems and a discussion of their support by Linux. Linux supports many other
buses, such as SBus, NuBus, TurboChannel, and MCA, but these are workstation or server-centric.

3.2.11SA

The Industry Standard Architecture (ISA) bus was designed for and occupied the core of PC-AT
architecture. It was odd even for its time, as it did not provide many of the facilities other buses offered,
including ease of mapping into normal processor physical address space. Its simplicity, however, favored
the proliferation of many devices for the PC, which, in turn, favored the use of PCs in embedded
applications.

ISA devices are mostly accessed through the 1/O port programming already available in the x86's
instruction set. Therefore, the kernel does not need to do any work to enable device drivers to use the
bus. Instead, the various device drivers access the appropriate I/O ports directly using the in/out
assembly functions. Although the kernel provides support for Plug and Play (PNP) devices, this capability
is of little use for embedded applications. Instead, embedded systems that do need to support hardware
variations will be based on buses that support runtime hardware addition and removal, such as
CompactPCl, PCMCIA, and USB. The kernel also supports Extended ISA (EISA) devices, but this bus
has not been very popular and has been superseded by the PCI bus.

Information regarding the ISA bus can be found in many places. The PC Handbook and HelpPC
mentioned above are good quick references for port numbers and their operation. ISA System
Architecture by Anderson and Shanley (Addison Wesley) is an in-depth explanation of the operation of
the ISA bus and related hardware. Also, Linux Device Drivers by Rubini and Corbet (O'Reilly) contains
details about ISA programming in Linux.

3.2.2 PCI

The Peripheral Component Interconnect (PCI) bus, managed by the PCI Special Interest Group (PCI-
SIG), is arguably the most popular bus currently available. Designed as a replacement for ISA, it is used
in combination with many different architectures, including the PPC and the MIPS, to build different types
of systems, including embedded devices.

Unlike ISA, PCI requires software support to enable it to be used by device drivers. The first part of this
support is required to initialize and configure the PCI devices upon bootup. On PC systems, this is
traditionally done by the BIOS. However, the kernel is capable of carrying out this task itself. If the BIOS
has carried out the initialization, the kernel will browse the BIOS's table to retrieve the PCI information. In
both cases, the kernel provides device drivers with an API to access information regarding the devices
on the PCI bus and act on these devices. There are also a number of user tools for manipulating PCI
devices. In short, the level of support for PCI in Linux is fairly complete and mature.

The Linux Device Drivers book mentioned above provides very good insight about PCI development in
Linux and how the PCI bus operates in general. The PCI System Architecture book by Shanely and
Anderson (Addison Wesley) gives in-depth information on the PCI bus for software developers. Of
course, you can always get the official PCI specification from the PCI-SIG. Official specifications,
however, tend to make for very dry reading material. Finally, there is the Linux PCI-HOWTO, available
from the Linux Documentation Project (LDP) at http://www.tldp.org/, which discusses the caveats of

http://www.tldp.org/
http://www.wowebook.info

Download at wowebook. 1nfag

using certain PCI devices with Linux and the support provided to PCI devices by Linux in general.

3.2.3 PCMCIA

Personal Computer Memory Card International Association (PCMCIA) is both the common name of a
bus and the name of the organization that promotes and maintains related standards. Since the
publication of the initial standard, which supported only 16-bit cards, other standards have been
published, including the 32-bit CardBus and the USB CardBay specifications. When part of an
embedded system, PCMCIA renders it flexible and easy to extend. On the iPAQ, for instance, it enables
users to connect to a LAN using a wireless networking card. In other systems, it makes large permanent
storage space available through the use of CompactFlash cards.

The extent of Linux support for PCMCIA can be confusing. First and foremost, there is the main Linux
PCMCIA project, which is hosted on SourceForge at http://pcmcia-cs.sourceforge.net/ and is maintained
by David Hinds. The package made available by this project supports a large number of cards, listed at
http://pcmcia-cs.sourceforge.net/ftp/SUPPORTED.CARDS. Linux support for PCMCIA is quite mature
for the i386 architecture and available in part for the PP C, but unfortunately, it's still in its infancy for other
chips at the time of this writing. Apart from the package maintained by Hinds, the official kernel contains
support for a portion of the PCMCIA cards supported by the Hinds' package. The developers' intent is to
have the official kernel become the main source for PCMCIA support. Until then, the best choice is to
use Hinds' distribution for production systems. It includes the necessary system tools to configure the
automatic loading and unloading of the appropriate PCMCIA device drivers when a card is inserted or
removed from a PCMCIA slot.

Apart from the official PC Card Standard available from the PCMCIA association itself, there are a
number of books on PCMCIA. However, before investigating those works, you should read the Linux
PCMCIA Programmer's Guide written by Hinds and available on the PCMCIA project's web site. This
guide includes references to books that provide more information regarding PCMCIA.

3.2.4 PC/104

Although simple, the ISA bus is not well adapted to the rugged environments where embedded systems
are deployed. The PC/104 form factor was introduced to address the shortcomings of ISA's mechanical
specification. PC/104 provides a bus whose electrical signals are identical to those of the ISA bus, but
with a different mechanical specification that is more adapted to embedded system development by
providing ease of extensibility and ruggedness. Instead of using slots where cards are inserted, as in a
regular ISA setup, PC/104 specifies the use of pin connectors. When PCI became popular, the PC/104+
specification was introduced to provide a PCl-sighal-compatible bus as an addition to the PC/104
specification. Both PC/104 and PC/104+ are managed by the PC/104 Consortium, which includes more
than a 100 member companies.

The PC/104 is identical to ISA and the PC/104+ is identical to both ISA and PCI from the signal
perspective and, therefore, from the software's perspective. Therefore, Linux requires no special
functionality to support these buses. However, this does not mean that Linux supports all PC/104 and
PC/104+ devices. As with any other ISA or PCI device, you should seek exact information about Linux
compatibility with the PC/104 device you are evaluating.

3.2.5VME

The VME! bus is largely based on Motorola's VERSA backplane bus, which was developed specifically
for the 68000 in 1979. At the time, VERSA was competing with buses such as Multibus, STD, S-100, and
Q-bus, although it is rarely used today. Striving to provide a new bus that would be microprocessor
independent, Motorola, Mostek, and Signetics agreed that the three companies would support a new
bus. This came to be the VME bus based on the VERSA's electrical signals and the Eurocard

http://pcmcia-cs.sourceforge.net/
http://pcmcia-cs.sourceforge.net/ftp/SUPPORTED.CARDS
http://www.wowebook.info

Download at wowebook. 1nfag

mechanical form factor. In the Eurocard form factor, VME boards are loaded vertically into a VME
chassis and connected to its backplane using pin connectors, unlike common computer boards that use
edge connectors inserted into slots. Since its introduction, the VME bus has become widely adopted as
the preferred bus for building powerful and rugged computers. One factor that has helped the VME bus'
popularity is that it is an open standard that isn't controlled by any single organization.

(3] Although "officially" the letters VME mean nothing, it has been revealed by an engineer taking part in the discussions between the three
companies that it is short for "VERSA Module Eurocard."

As the VME bus can accommodate multiple VME boards, each with its own CPU and OS, no central OS
controls the bus. Instead, arbitration is used to permit a board to become bus master momentarily to
conduct its operations. The job of Linux on a VME board is therefore to interact properly with its VME
hardware interface to obtain the appropriate functionality.

There are currently two active Linux VME projects. The first aims at providing Motorola 68K-based
boards with Linux support and can be found at http://www.sleepie.demon.co.uk/linuxvme/. Although the
work of this project has since largely been integrated into the main kernel tree, the project's site is still the
main resource for recent developments and news. The second project aims at providing Linux support
for all VME boards, regardless of their CPU. It is called the VMELinux Project and can be found at
http://www.vmelinux.org/. In each case, support is provided for each board individually. The supported
boards are listed on each project's web site. So, when assessing whether your VME board is supported
by Linux, you should look for support for the exact model you have. If the board you've chosen isn't
supported yet, support for other board models will help provide you with examples on how to implement
support for your VME board in Linux.

In addition to these two projects, a couple of software and hardware vendors provide Linux support for
additional VME hardware within their own distributions. The kernel maintained by DENX Software
Engineering and available from their web site using CVS, for example, provides support for various PPC-
based boards not supported by the VMEL.inux project.

From the Linux perspective, the Linux VME HOWTO is available on the LDP's web site. The VMEbus
International Trade Association (VITA) web site contains a number of recommended publications
regarding the VME bus in general and the related standards. Missing from this list, though of interest, is
John Black's The Systems Engineer's Handbook: A guide to building VMEbus and VXIbus systems.

3.2.6 CompactPCI

The CompactPCI specification was initiated by Ziatech and was developed by members of the PCI
Industrial Computer Manufacturer's Group (PICMG), which oversees the specification and promotes the
use of CompactPCIl. The CompactPClI specification provides an open and versatile platform for high-
performance, high-availability applications. Its success is largely based on the technical choices made by
its designers. First, they chose to reuse the Eurocard form-factor popularized by VME. Second, they
chose to make the bus PCIl-compatible, hence enabling CompactPCl board manufacturers to reuse low-
cost PCI chips already available in the mainstream market.

Technically, the CompactPCI bus is electrically identical to the PCI bus. Instead of using slot
connections, as found in most workstations and servers, pin connectors are used to connect the
vertically loaded CompactPCl boards to the CompactPCI backplane, much like VME. As with PCI,
CompactPCI requires a single bus master,[“ in contrast with VME, which could tolerate multiple bus
masters, as explained earlier. Consequently, CompactPCI requires the permanent presence of a board
in the system slot. Itis this board that arbitrates the CompactPCI backplane, just as a PCI chipset would
arbitrate a PCI bus in a workstation or a server.

[4] The term "bus master" can mean different things in different contexts. In this particular instance, "bus master" designates the device that

sets up and configures the PCI bus. There can be only one such device on a PCI bus, though more than one device on a PCl bus may
actually be able to access the memory regions exported by other PCI devices.

In addition, the CompactP Cl specification allows for the implementation of the Hot Swap specification,

http://www.sleepie.demon.co.uk/linuxvme/
http://www.vmelinux.org/
http://www.wowebook.info

Download at wowebook. 1nfag

which describes methods and procedures for runtime insertion and removal of CompactPCI boards. This
specification defines three levels of hot swapping. Each level implies a set of hardware and software
capabilities. Here are the available levels and their requirements:

Basic hot swap

This hot swap level involves console intervention by the system operator. When a new card is
inserted, she must manually inform the OS to power it up and then configure and inform the
software of its presence. To remove a card, she must tell the OS that the board is about to be
removed. The OS must then stop the tasks that are interacting with the board and inform the
board to shut down.

Full hot swap

In contrast to basic hot swap, full hot swap does not require console intervention by the operator.
Instead, the operator flips a microswitch attached to the card injector/ejector to notify the OS of the
impending removal. The OS then performs the necessary operations to isolate the board and tell it
to shut down. Finally, the OS lights an LED to notify the operator that the board can now be
removed. On insertion, the OS carries out the inverse operations when it receives the appropriate
insertion signal.

High Availability

In this level, CompactPCI boards are under complete software control. A hot swap controller
software manages the state of all the boards in the system and can selectively reverse these
individual boards according to the system's state. If a board fails, for example, the controller can
shut it down and power up a duplicate board that is present within the same chassis for this very
purpose. This hot swap level is called "High Availability,” because it is mostly useful in what are
known as high-availability applications,® such as telecommunications, where downtime must be
minimal.

(5] To avoid any confusion, | will refer to this hot swap level as "High Availability hot swap level" and will continue to use the "high-
availability" adjective to refer to applications and systems who need to provide a high level of availability, regardless of whether
they use CompactPCl or implement the "High Availability hot swap level."

Linux accommodates the basic CompactPCI specification, through the PCI support it already provides.
Support for dynamic insertion and removal of devices in Linux also exists in different forms. Primarily,
Version 2.4 of the kernel includes the required kernel functionality. The associated user tools are
available through the Linux Hotplugging project at http://linux-hotplug.sourceforge.net/.

That said, this level of support is insufficient to accommodate all the complexities of CompactPCI
systems. In addition, there are few drivers within the main kernel tree for mainstream CompactPCI
boards, although CompactPCI board manufacturers may provide Linux drivers. This caveat has led to
the emergence of a number of commercial solutions that provide high-availability Linux solutions on
CompactPCl, including Availix's HA Cluster and MontaVista's High Availability Framework. The ongoing
High-Availability Linux Project, found at http://linux-ha.org/, aims at providing the open source
components needed to build high-availability solutions using Linux. The projectisn't restricted to a
specific hardware configuration and is, therefore, not centered around CompactPCI.

In the future, we may see more open source software accommodating the various complexities of
CompactPCl-based systems, both in terms of hot swap capabilities and in terms of software support for
communication, resource monitoring, cluster management, and other software components found in
high-availability systems. For now, however, if you want to use Linux for a CompactPClI-based high-
availability application, you may need to work with one of the existing commercial solutions to obtain all
the features described by the CompactPCI specification.

Documentation regarding Linux's hotplug capabilities, including how to write hotplug-aware drivers and
how to configure the hotplug management tools, is available through the Linux Hotplugging project web
site. The web site also includes a number of links to relevant information. Information regarding
CompactPCI specifications can be purchased from PICMG.

http://linux-hotplug.sourceforge.net/
http://linux-ha.org/
http://www.wowebook.info

Download at wowebook. 1nfag

3.2.7 Parallel Port

Although not a bus in the traditional sense, the parallel port found in many computers can be used to
connect a wide range of peripherals, including hard drives, scanners, and even network adapters. Linux
support for parallel port devices is extensive, both in terms of the drivers found in the kernel and the ones
provided by supporting projects. There is no central authority or project, however, that directs Linux's
support for parallel port devices, since the parallel portis a ubiquitous component of computer systems.
Instead, there are good resources that describe which devices are supported. These include the
Hardware Compatibility HOWTO found at the LDP and the Linux Parallel Port Home Page found at
http://mww.torque.net/linux-pp.html. It is worth noting that Linux supports the IEEE1284 standard that
defines how parallel port communication with external devices is carried out.

As the parallel port can be used for many purposes besides attaching external devices, | will discuss
parallel port programming when explaining the use of the parallel port as in an IO interface in Section
3.3.

3.2.8 SCSI

The Small Computer Systems Interface (SCSI) was introduced by Shugart Associates and eventually
evolved into a series of standards developed and maintained by a series of standard bodies, including
ANSI, ITIC, NCITS, and T10. Although mainly thought of as a high-throughput interface for hard drives
for high-end workstations and servers, SCSI is a general interface that can be used to connect various
hardware peripherals. Only a small segment of embedded systems ever use SCSI devices, though.
These systems are typically high-end embedded systems such as the CompactPCl-based high-
availability systems discussed earlier. In those cases, a CompactPCl SCSI controller inserted in the
CompactPCI backplane provides an interface to the SCSI devices.

If you consider using SCSI in an embedded system, note that although Linux supports a wide range of
SCSI controllers and devices, many prominent kernel developers believe that the kernel's SCSI code
requires major work or even a complete rewrite. This doesn't mean that you shouldn't use SCSI devices
with Linux. Itis only a warning so that you plan your project's future updates in light of such possible
modifications to the kernel's SCSI layer. At the time of this writing, work on the SCSI code has not yet
started. It is expected that such work would be undertaken during the 2.5 development series of the
kermnel. For now, the SCSI hardware supported by Linux can be found in the Hardware Compatibility
HOWTO from the LDP. As with the parallel port, there is no single reference point containing all
information regarding Linux's support for SCSI, since the SCSI interface is an established technology
with a very large user base.

Discussion of the kernel's SCSI device drivers architecture can be found at http://www.torque.net/sg/, at
http://www.andante.org/scsi.html, and in the Linux 2.4 SCSI subsystem HOWTO from the LDP.
Information regarding SCSI programming in Linux is available in the Linux SCSI Programming HOWTO
from LDP. This should be the starting point for the development of any SCSI driver for Linux, along with
the Linux Device Drivers book by O'Reilly. For a broad discussion about SCSI, The Book of SCSI: I/O
For The Millennium by Gary Field and Peter Ridge (No Starch Press) is a good start. As with other
standards, there are always official standards documents provided by the standard bodies, but again,
such documentation often makes for dry reading material.

3.29 USB

The Universal Serial Bus (USB) was developed and is maintained by a group of companies forming the
USB Implementers Forum (USB-IF). Initially developed to replace such fragmented and slow connection
interfaces as the parallel and serial ports traditionally used to connect peripherals to PCs, USB has
rapidly established itself as the interface of choice for peripherals by providing inexpensive ease of use
and high-speed throughput. Although mainly a mainstream device-oriented bus, USB is increasingly
appearing in hardware used in embedded systems, such as SBCs and SoCs from several

http://www.torque.net/linux-pp.html
http://www.torque.net/sg/
http://www.andante.org/scsi.html
http://www.wowebook.info

Download at wowebook. 1nfag

manufacturers.

USB devices are connected in a tree-like fashion. The root is called the root hub and is usually the main
board to which all USB devices and nonroot hubs are connected. The root hub is in charge of all the
devices connected to it, directly or through secondary hubs. A limitation of this is that computers cannot
be linked in any form of networking using direct USB cabling.[®!

(6] Some manufacturers actually provide some form of host-to-host link via USB, but the standard was not intended to accommodate this
type of setup. There are also USB network adapters, including Ethernet adapters, that can be used to connect the computers to a common
network.

Support within Linux for behaving as a USB root hub!” is quite mature and extensive, comparing
positively to the commercial OSes that support USB. Although most hardware vendors don't ship Linux
drivers with their USB peripherals, many have helped Linux developers create USB drivers by providing
hardware specifications. Also, as with other hardware components, many Linux drivers have been
developed in spite of their manufacturers' unwillingness to provide the relevant specifications. The main
component of Linux's support for USB is provided by the USB stack in the kernel. The kernel also
includes drivers for the USB devices supported by Linux. User tools are also available to manage USB
devices. The user tools and the complete list of supported devices is available through the Linux USB
project web site at http://www.linux-usb.org/.

[71 Whereby Linux is responsible for all USB devices connected to it.

Support within Linux for behaving as a USB devicel® is limited in comparison to its support for behaving
as a USB root hub. While some systems running Linux, such as the iPAQ, can already behave as
devices, there is no general agreed-upon framework yet for adding USB device capabilities to the Linux
kernel.

[8] Whereby Linux is just another USB device connected to a USB root hub, which may or may not be running Linux.

Development of USB drivers is covered by the Programming Guide for Linux USB Device Drivers by
Detlef Fliegl, available through the Linux USB project web site. The Linux Device Drivers book also
provides guidelines on how to write Linux USB drivers. There are a number of books that discuss USB,
which you can find by looking at the various online bookstores. However, the consensus among
developers and online book critics seems to indicate that the best place to start, as well as the best
reference, is the original USB specification available online from the USB-IF.

3.2.10 IEEE1394 (FireWire)

FireWire is a trademark owned by Apple for a technology they designed in the late 80s/early 90s. They
later submitted their work to the IEEE and it formed the basis of what eventually became |IEEE standard
1394. Much like USB, IEEE1394 enables devices to be connected using simple and inexpensive
hardware interfaces. Because of their similarities, IEEE1394 and USB are often considered together. In
terms of speed, however, itis clear that IEEE1394's architecture is much more capable than USB of
accommodating throughput-demanding devices, such as digital cameras and external hard drives.
Recent updates to the USB standard have reduced the gap, but IEEE1394 still has a clear advantage in
regards to currently existing high-throughput devices and future capabilities. Although only a small
number of embedded systems actually use IEEE1394, it is likely that the need for such a technology will
increase with the demand in throughput.

In contrast to USB, IEEE1394 connections do not require a root node. Rather, connections can be made
either in a daisy-chain fashion or using an IEEE1394 hub. Also, unlike SCSI, connections do not need
any termination. It is also possible to connect two or more computers directly using an IEEE1394, which
isn't possible with USB. To take advantage of this capability, there is even an RFC specifying how to
implement IP over IEEE1394. This provides an inexpensive and high-speed network connection for
IEEE1394-enabled computers.

Linux's support for IEEE1394 isn't as extensive as that provided by some commercial OSes, butit is

http://www.linux-usb.org/
http://www.wowebook.info

Download at wowebook. 1nfag

mature enough to enable the practical, every day use of quite a number of IEEE1394 hardware devices.
The kernel sources contain the code required to support IEEE1394, but the most up-to-date code for the
IEEE 1394 subsystem and the relevant user utilities can be found at the IEEE1394 for Linux project web
site at http://www.linux1394.org/. The list of supported devices can be found in the compatibility section
of the web site. The number and types of devices supported by Linux's IEEE1394 can only increase in
the future.

Support for running an IP network over IEEE1394 in Linux is currently in its infancy. In due time, this may
become a very efficient way of debugging embedded Linux systems because of the quantity of data that
can be exchanged between the host and the target.

Documentation on how to use the IEEE1394 subsystem under Linux with supported hardware can be
found on the IEEE1394 for Linux project web site. The web site also includes links to documentation
regarding the various specifications surrounding IEEE1394. The main standard itself is available from
the IEEE and is therefore expensive for a single individual to purchase. Although the standard will be a
must for any extensive work on IEEE1394, the FireWire System Architecture book by Don Anderson
(Addison Wesley) is a good place to start.

3.2.11 GPIB

The General-Purpose Interface Bus (GPIB) takes its roots in HP's HP-IB bus, which was born at the end
of the 1960s and is still being used in engineering and scientific applications. In the process of maturing,
GPIB became the IEEE488 standard and was revised as late as 1992. Many devices that are used for
data acquisition and analysis are, in fact, equipped with a GPIB interface. With the advent of mainstream
hardware in this field of application, many GPIB hardware adapters have been made available for such
mainstream hardware and for PCs in particular.

GPIB devices are connected together using a shielded cable that may have stackable connectors at both
ends. Connectors are "stackable" in the sense that a connector on one end of a cable has the
appropriate hardware interface to allow for another connector to be attached to it, which itself allows
another connector to be attached. If, for instance, a cable is used to connect a computer to device A, the
connector attached to A can be used to attach the connector of another cable going from A to device B.

Though the kernel itself does not contain drivers for any GPIB adapter, there is a Linux GPIB project.
The project has had a troubled history, however. It started as part of the Linux Lab Project(® found at
http://mww.linux-lab.org/. After some initial development and a few releases, which are still available at
ftp://ftp.lip.fu-berlin.de/LINUX-LAB/IEEE488/, development stopped. The package remained
unmaintained for a number of years, until Frank Mori Hess recently restarted the projectin a new
location, http://linux-gpib.sourceforge.net/, and updated the package to the 2.4.x kernel series. The
package currently provides kernel drivers, a user-space library compatible with National Instrument's
own GPIB library, and language bindings for Perl and Python. The package supports hardware from HP,
Keithley, National Instruments, and other manufacturers. The complete list of supported hardware is
included in the devices.txt file found in the package's sources and on the project's web site.

(9] The Linux Lab Projectis actually much more broad than GPIB. Its aim, as stated on their site, is to provide a comprehensive set of GPL
software tools for all "Linux users dealing with automation, process control, engineering and scientific stuff.”

Using this package, GPIB buses are visible from user space as /dev/gpib0, /dev/gpibl, and so on.
Programming the bus to interface with the attached devices involves knowing their GPIB addresses. The
/etc/gpib.conf file makes it easier to configure the addresses used by the attached devices. The file must
be tailored to match your configuration. The installation and the operation of the package components
are documented along with the GPIB library functions in the Linux-GPIB User's Guide included with the
package.

3.2.12 12C

http://www.linux1394.org/
http://www.linux-lab.org/
http://linux-gpib.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

Initially introduced by Philips to enable communication between components inside TV sets, the Inter-
Integrated Circuit (12C) bus can be found in many embedded devices of all sizes and purposes. As with
other similar small-scale buses such as SPI0 and MicroWire, I2C is a simple serial bus that enables the
exchange of limited amounts of data among the IC components of an embedded system. There is a
broad range of 12C-capable devices on the market, including LCD drivers, EEPROMSs, DSPs, and so on.
Because of its simplicity and its hardware requirements, 12C can be implemented either in software or in
hardware.

(10 Though there is some SPI support in Linux, it is limited to a few boards. There is, in fact, no framework providing architecture-
independent SPI support.

Connecting devices using I2C requires only two wires, one with a clock signal, serial clock (SCL), and the
other with the actual data, serial data (SDA). All devices on an I2C bus are connected using the same
wire pair. The device initiating a transaction on the bus becomes the bus master and communicates with
slaves using an addressing scheme. Although 12C supports multiple masters, most implementations
have only one master.

The main kemel tree includes support for 12C, a number of devices that use 12C, and the related System
Management Bus (SMBus). Due to the heavy use of I2C by hardware monitoring sensor devices, the 12C
support pages are hosted on the Linux hardware monitoring project web site at http://mww2.Im-
sensors.nu/~Im78/. The site includes a number of links, documentation, and the most recent 12C
development code. Most importantly, it contains a list of the I2C devices supported along with the
appropriate driver to use for each device.

Apart from the documentation included with the kernel about I2C and the links and documentation
available on the hardware sensors web site, information regarding the bus and related specification can
be obtained from Philips' web site at http://www.semiconductors.philips.com/buses/i2c/. Also of interest
in understanding the bus, the protocol, and its applications is the 12C FAQ maintained by Vincent Himpe,
found at http://www.ping.be/~ping0751/i2cfaqg/i2cfaq.htm.

http://www2.lm-
http://www.semiconductors.philips.com/buses/i2c/
http://www.ping.be/~ping0751/i2cfaq/i2cfaq.htm
http://www.wowebook.info

Download at wowebook. 1nfag

3.31/0

Input and output (I/O) are central to the role of any computerized device. As with other OSes, Linux
supports a wide range of I/O devices. The following does not pretend to be a complete run-down of all of
them. For such a compilation, you may want to read through the Hardware Compatibility HOWTO
available from LDP. Instead, the following concentrates on the way the different types of I/O devices are
supported by Linux, either by the kernel or by user applications.

Some of the 1/0 devices discussed are supported in two forms by the kernel, first by a native driver that
handles the device's direct connection to the system, and second through the USB layer to which the
device may be attached. There are, for instance, PS/2 keyboards and parallel port printers and there are
USB keyboards and USB printers. Because USB has already been discussed earlier, and in-depth
discussion of Linux's USB stack would require a lengthy text of its own, | will cover only the support
provided by Linux to the devices directly attached to the system. Note, however, that USB drivers for
similar devices tend to rely on the infrastructure already available in Linux to support the native devices.
A USB serial adapter driver, for example, relies on the same facilities as the traditional serial driver, in
addition to the USB stack.

3.3.1 Serial Port

The serial portis arguably every embedded system developer's best friend (or her worst enemy,
depending on her past experience with this ubiquitous interface). Many embedded systems are
developed and debugged using an RS232 serial link between the host and the target. Sometimes, PCBs
are laid out to accommodate a serial port, but only development versions of the boards ever include the
actual connector, while production systems are shipped without it. The simplicity of the RS232 interface
has encouraged its wide-spread use and adoption, even though its bandwidth is rather limited compared
to other means of transmission. Note that there are other serial interfaces besides RS232, some of
which are less noise-sensitive and therefore more adapted to industrial environments. The hardware
serial protocol, however, isn't as important as the actual programming interface provided by the serial
device's hardware.

Since RS232 is a hardware interface, the kernel doesn't need to support RS232 itself. Rather, the kernel
includes drivers to the chips that actually enact RS232 communication, Universal Asynchronous
Receiver-Transmitters (UARTS). UARTSs vary from one architecture to another, although some UARTS,
such as the 16550, are used on more than one architecture.

The main serial (UART) driver in the kernel is drivers/char/serial.c. Some architectures, such as the SH,
have other serial drivers to accommodate their hardware. Some architecture-independent peripheral
cards also provide serial interfaces. As with other Unix systems, nonetheless, serial devices in Linux are
uniformly accessed as terminal devices, regardless of the underlying hardware and related drivers. The
corresponding device entries start with /dev/ttySO and can go up to /dev/ttyS191. In most cases,
however, there are only a handful of serial device entries in a system's /dev directory.

Serial port basics, setup, and configuration are discussed in the Serial HOWTO available from LDP.
Programming the serial port in Linux is discussed in the Serial Programming HOWTO from LDP. Since
serial port programming is actually terminal programming, any good reference on Unix systems
programming would be a good start. Worthy of note is Richard Stevens' Advanced Programming in the
UNIX Environment, which is one of the most widely recognized works on the subject of Unix systems
programming, including terminal I/O.

3.3.2 Parallel Port

http://www.wowebook.info

Download at wowebook. 1nfag

In comparison to the serial port, the parallel port is seldom an important part of an embedded system.
Unless the embedded system is actually a PC-style SBC, the parallel port is, in fact, rarely even part of
the system's hardware. In some cases, a parallel port is used because the embedded system has to
drive a printer or some sort of external device, but with the advent of USB and IEEE1394, this use is
bound to diminish.

One area of embedded systems development where the parallel port fits quite nicely, however, is simple
multibit 1/O0. When debugging, for instance, you can easily attach a set of LEDs to the parallel ports' pins
and use those LEDs to indicate a position in the code. The trick is to insert a set of parallel port output
commands in different portions of the code and to use the LEDs to identify the last position reached prior
to machine lockup. This is possible, because the parallel ports' hardware keeps the last value output to it
unchanged regardless of the state of the rest of the system. The Linux Device Drivers book provides a
more detailed description of how to use the parallel port as a simple I/O interface and how to setup an
LED array to display the parallel port's output.

Linux supports parallel port 1/0 through a set of three layers. At the middle level is the architecture-
independent parport driver. This driver provides a central management facility for the parallel port
resources. This middle-level driver is not visible from user space and is not accessible as an entry in the
/dev directory. Low-level drivers that control the actual hardware register their presence with this driver to
make their services accessible to higher-level drivers. The latter may provide a number of different
functions. Both low- and middle-level drivers are found in the drivers/parport directory of the kernel
sources.

The most common high-level driver is the line printer driver, which enables user applications to use a
printer directly attached to the system's parallel port. The first line printer device is visible in user space
as /dev/Ip0, the second as /dev/lpl, and so on. Some other high-level drivers use the parallel port as an
extension bus to access an external device attached to the system, as discussed in Section 3.2.7. They
all use the parallel port middle-level driver and are visible, in one way or another, as entries in /dev.
Finally, the parallel port itself is accessible natively from user space via the user-space parallel port
driver, which is seen as /dev/parportX, where X is the number of the parallel port. This latter driver is in
the drivers/char/ppdev.c file in the kernel sources.

Apart from the usual PC architecture references mentioned earlier and the device drivers book, Linux
parallel port subsystem and API| are documented in The Linux 2.4 Parallel Port Subsystem document
available from http://people.redhat.com/twaugh/parport/ and in the Documentation directory of the kernel
sources.

3.3.3 Modem

Embedded systems that use a modem to call a data center are quite common. Alarm systems, bank
machines, and remote-monitoring hardware are all examples of embedded systems that need to
communicate with a central system to fulfill their primary purposes. The goals are different, but all these
systems use conventional modems to interface with the POTS (plain old telephone system) to access a
remote host.

Modems in Linux are seen as serial ports, which is very much the same way they are seen across a
variety of OSes, including Unix. As such, they are accessible through the appropriate serial device /dev
entry and are controlled by the same driver as the native serial UARTS, regardless of whether they are
internal or external. This support, however, applies only to real modems.

Recently, a sort of modem called a WinModem has appeared in the PC market. WinModems contain
only the bare minimal hardware that make up a modem and are capable of providing real modem
services only because of software that runs on the OS. As the name implies, these modems are mainly
targeted to systems running Windows. They work fine with that OS, because their vendors provide the
appropriate drivers. With Linux, however, they do not work, because they don't contain real modem
hardware and the kernel can't use its serial driver to operate them.

http://people.redhat.com/twaugh/parport/
http://www.wowebook.info

Download at wowebook. 1nfag

To provide support for these types of (handicapped) devices, a number of projects have sprung up to
develop the necessary software packages. A central authority on these projects is the Linmodems web
site at http://www.linmodems.org/. The site provides documentation, news, and links to the various
WinModem support projects. At the time of this writing, however, there is no body of code that provides
uniform support for the various WinModems.

Real modem setup and operation is described in the Modem HOWTO from the LDP. Linmodem setup
and operation is described in the Linmodem HOWTO from the LDP. Since modems are serial ports, the
documentation mentioned above regarding serial ports also applies to modems.

3.3.4 Data Acquisition

As described in Section 1.3.2.1, DAQ is at the basis of any process automation system. Any modern
factory or scientific lab is filled with DAQ equipment linked, in one way or another, to computers running
data analysis software. Typically, as described earlier, the events occurring in the real world are
measured by means of transducers, which convert a physical phenomenon into an electrical value.
These values are then sampled using DAQ hardware and are thereafter accessible to software.

There is no standard interface in Unix, or any other OS for that matter, for interfacing with data
acquisition hardware.[*1l Comedi, the Linux control and measurement device interface, is the main
package for interfacing with DAQ hardware. Comedi is found at http://www.comedi.org/ and contains
device drivers for a great number of DAQ boards. The complete list of boards supported is found in the
Supported hardware section of the web site.

(11 DAQ hardware may actually take a number of forms. It can be an Ethernet-enabled device, a PCI card, or use some other type of
connection. However, most DAQ devices used with workstations connect through some standard interface such as ISA, PCI, or PCMCIA.

Along with providing drivers for DAQ hardware, the Comedi project includes Comedilib, a user-space
library that provides a unified API to interface with all DAQ hardware, regardless of model or
manufacturer. This is very useful, because it allows you to develop the analysis software independently
of the underlying hardware, and avoid being locked in to a particular vendor.

Similarly, Kcomedilib, a kernel module providing an API similar to Comedilib, enables other kernel
modules, which could be real-time tasks, to have access to the DAQ hardware.

No discussion about DAQ would be complete without covering some of the most well-known commercial
(proprietary) packages used along with DAQ, such as LabVIEW, Matlab, and Simulink. Given the
popularity of Linux in this field, all three packages have been made available for Linux by their respective
vendors. Note, however, that there are a number of packages in development that aim at providing open
source replacements for these packages. Scilab and Octave, for instance, are Matlab replacements
found at http://www-rocqg.inria.fr/scilab/ and http://iwww.octave.org/, respectively.

Documentation regarding the installation and configuration of Comedi can be found on the project's web
site along with examples. The site also includes a number of useful links to other Linux DAQ-related
sites. Documentation regarding the closed-source packages can be found on their vendors' web sites.

Although | haven't covered them, some DAQ hardware vendors do provide drivers for their hardware,
either in open source form or under a proprietary license. When evaluating whether to use such drivers,
it is important to ponder future vendor support so you don' find yourself trapped with dead and
unmaintained code. Even when source is available under an open source or free software license, be
sure to evaluate its quality to ensure that you can actually maintain it if the vendor decides to drop its
support.

3.3.5 Process Control

As with DAQ, process control is at the basis of any process automation system. As | said in Section

http://www.linmodems.org/
http://www.comedi.org/
http://www-rocq.inria.fr/scilab/
http://www.octave.org/
http://www.wowebook.info

Download at wowebook. 1nfag

1.3.2.2, there are many ways to control a process, the most common being the use of PLCs. More
recently, mainstream hardware such as PCs have been used for process automation and control.

Linux can be used for control in many ways. First, you can use serial or parallel ports to drive external
hardware such as step motors. This involves serial and parallel port programming, which | covered
earlier. There is no standard software package to interface with externally controlled hardware in this
manner, such packages or APIs are specific to the application being designed.

Examples of serial or parallel ports for control are readily available both in print and online. Sometimes
these examples are oriented towards the PC running DOS or Windows. In that case, they need to be
adapted to Linux and the facilities it provides. If you need such a port, you will find the Linux Device
Drivers book to be helpful.

Second, external processes can be controlled using specialized boards attached to the computer
through a peripheral bus. In this case, you need a driver specific to the board being used. The Comedi
package mentioned earlier provides support for some control boards. Also, control board manufacturers
are becoming increasingly aware of the demand for Linux drivers for their hardware and are providing
them accordingly.

Last, there is an effort underway to let a standard Linux system replace traditional PLCs. The project,
Machine Automation Tools LinuxPLC (MAT LPLC), located at http://mat.sourceforge.net/, provides PLC
language interpreters, hardware drivers, a PLC module synchronization library, example modules, and a
GUI interface to visualize the controlled process. Building a PLC using LPLC consists of programming
independent modules, either in C or an interpreted language such as "ladder logic," that are
synchronized through LPLC facilities such as shared memory. Because each module is an independent
process, you can add and remove control modules with ease.

The LPLC team provides information regarding the use and programming of their package on their
project's web site. Although the project is still in its early stages, the development team lists practical
examples showing the package's usability in real scenarios.

3.3.6 Home Automation

As with DAQ and process control, home automation is a vast domain. | will not attempt to cover the
basics of home automation or the required background, because other authors have documented them.
If you are new to home automation or would like to have more information about this field, you can find
an extensive list of links and reference material in Dan Hoehnen's Home Automation Index located at
http://mww.homeautomationindex.com/.

One technology often used in home automation is X10 Power Line Carrier (PLC)!12] developed in the
1970s by Pico Electronics in Scotland. Although other protocols have been put forward by
manufacturers, X10 remains the dominant protocol in home automation.

[12] X10 PLC should not be confused with the PLCs used in process automation. These are actual control devices unrelated to the X10 PLC
hardware protocol.

Pico later formed X10 corporation as a joint venture with BSR. To this day, X10 corporation still sells X10
technology components. In the meantime however, the original X10 patent expired in 1997. Hence, many
manufacturers currently provide X10-compatible equipment. The X10 PLC protocol enables transmitters
and receivers to communicate using short RF bursts over power line wiring. There is therefore no need
for additional wiring, because all communication occurs on the house's existing electrical wiring.

Unlike other fields in which Linux is used, there is no central open source home automation project for
Linux. Instead, there are a number of active projects being developed independently. Furthermore, there
is no particular home automation driver within the kernel. The required software components are all part
of the various packages distributed by the home automation projects.

The following is a list of Linux-compatible open source home automation projects:

http://mat.sourceforge.net/
http://www.homeautomationindex.com/
http://www.wowebook.info

Download at wowebook. 1nfag

MisterHouse

MisterHouse is a complete home automation solution. Itincludes a user interface and X10
interface software, can be controlled using a variety of voice recognition packages, and can
interface with voice synthesis software. MisterHouse is entirely written in Perl and can therefore be
used with a number of OSes, including Linux. MisterHouse is available for download under the
terms of the GPL from the project's web site with complete documentation at
http://misterhouse.sourceforge.net/.

ALICE

The Automation Light Interface Control Environment (ALICE) provides a user interface and

software to interact with X10 devices. ALICE is written in Java and runs on any appropriate JVM,

including the Linux JVM available from the Blackdown project. ALICE is distributed under the

terms of the GPL with documentation from the project's web site at http://jhome.sourceforge.net/.
HEY U!

HEYU! is a command-line utility that enables the control of X10 devices. Itis available from the
project's web site at http://heyu.tanj.com/heyu/. HEYU! is distributed under a special license
similar to other open source licenses. You will find the exact wording of the license in the source
files' headers.

Neil Cherry has put together an impressive repertoire of resources and links about home automation and
Linux home automation projects. His Linux Home Automation web site is located at
http://mywebpages.comcast.net/ncherry/. Neil also maintains the Linux Home Automation project at
http://linuxha.sourceforge.net/. It provides a number of links and documentation related to Linux home
automation.

3.3.7 Keyboard

Most embedded systems are not equipped with keyboards. Some may have a limited input interface, but
keyboards are usually considered a luxury found only on traditional workstation and server
configurations. In fact, the idea that an embedded system may have a keyboard would be viewed as
awkward by most traditional embedded system designers. Nonetheless, recent breeds of web-enabled
and consumer-oriented embedded systems have some form of keyboard attached to them.

As with other Unix-like systems, communication with the user in Linux is done by means of a terminal, in
the Unix tty sense, where a keyboard is used for input and a console for output. This is of course a
simplification of the very complex world of Unix terminal 1/0O, but it will suffice for the current discussion.
Hence, all keyboard input is considered by the kernel as input to a terminal. The conversion from the
actual data inputted by the user to actual terminal input may involve many different layers of kernel
drivers, but all keyboard input is eventually fed to the terminal I/O driver.

In a PC, for instance, keyboard input is processed sequentially by the code found in the following files of
the drivers/char directory of the kernel sources: pc_keyb.c, keyboard.c, and tty_io.c. The last file in the
sequence is the terminal 1/O driver. For systems based on other architectures, the Input layer
mechanism is usually used. This mechanism specifies a standard way for input devices such as
keyboards, mice, and joysticks to interface with the system. In the case of USB keyboards, for instance,
the input processing sequence is the following, starting from the drivers directory of the kernel:
usb/usbkbd.c, input/keybdev.c, char/keyboard.c, and again, char/tty _io.c.

There are other ways to provide input to a terminal, apart from the use of a physically connected
keyboard. Terminal input is also possible through remote-logging, serial-linking between computers, and
in the case of PDAs, hand-writing recognition software. In each case, accessing the character input
programmatically requires terminal /O programming.

3.3.8 Mouse

http://misterhouse.sourceforge.net/
http://jhome.sourceforge.net/
http://heyu.tanj.com/heyu/
http://mywebpages.comcast.net/ncherry/
http://linuxha.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

Embedded systems that have a user interface often offer some form of touch-based interaction. Whether
it be a bank terminal or a PDA, the input generated by the user's touch of a screen area is treated the
same way as input from a conventional workstation mouse. In this sense, many embedded systems
have a "mouse." In fact, there are many more embedded systems that provide a mouse-like pointer
interface than there are that provide a keyboard interface.

Since traditional Unix terminals do not account for mouse input, information about the pointer device's
input doesn't follow the same path as data about keyboard activity. Instead, the pointer device is seen on
most Linux systems as /dev/mouse, which itself is often a symbolic link to the actual pointer device. The
device can be polled and read to obtain information regarding the pointer device's movements and
events. Although the name of the entry in /dev where the pointer is found is usually constant, the format
of the data retrieved from the device varies according to the type of device. There are, in fact, many
mouse protocols that define different input formats. Note that the protocol used by a mouse is not directly
tied to its manufacturer or even the type of physical connection used to link it to the system. This is why
the configuration of the X server, for example, requires the user to specify a protocol for the mouse
device. The kernel, on the other hand, has drivers that manage the actual physical link between the
mouse and the system.

Any programming that involves a pointer device would require an understanding of the protocol used by
the device. Fortunately, a number of libraries and environments already have this level of decoding
implemented, and easy-to-use APIs are provided to obtain and react to pointer input.

3.3.9 Display

Blinking lights, LEDs, and alpha-numeric LCDs are the traditional visual apparel of embedded systems.
With the growing incursion of embedded devices in many facets of our daily lives, including service
automation, there is a push to replace such traditional display methods with visually rich interfaces. In
other areas of embedded systems deployment, such as factory automation or avionics, visually rich
interfaces have been the norm for quite a while.

As | mentioned above, traditional Unix systems provide output in the form of terminal consoles. This,
however, is too rudimentary of an interface for today's demands. If nothing else, consoles can output
only text. Other more elaborate interfaces are needed when building graphic interfaces, which may
include some form of windowing system.

With Linux there are many ways to control and program a display. Some of these involve kernel support,
but most rely mainly on code running in user space, hence favoring system stability and facilitating
modularity. The most common way to provide a graphical interface with Linux is, of course, the X
Window System, but there are other packages that may be preferable in certain circumstances.

3.3.10 Sound

Beep, Beep, Beep... that's what Sputnik emitted and that's pretty similar to what most embedded
systems still sound like. Even the very graphic-rich avionics and factory automation systems don't have
more sound output, except maybe in terms of decibel. Sound-rich embedded systems are, however,
becoming more and more popular with the proliferation of consumer and service-oriented devices.

Unix, however, was never designed to accommodate sound. Over the years, a number of schemes
appeared to provide sound support. In Linux, the main sound device is usually /dev/dsp. Other audio-
hardware related devices are also available for other sound capabilities such as /dev/mixer and
/dev/sequencer.

Contrary to many other parts of developmentin Linux, audio is an area that has yet to mature. There are
two independent projects that provide both support for sound hardware and an API to program the
hardware.

http://www.wowebook.info

Download at wowebook. 1nfag

The first, and oldest, is the Open Sound System (OSS) introduced by Hannu Savolainen. Most sound
card drivers found in kernel releases prior to 2.5 are based on the OSS architecture and API put forth by
Hannu. Over the years, these APIs changed and have been "cleaned up" by Alan Cox. Nonetheless,
many consider them to be ill-adapted for modern audio hardware. The OSS drivers and API are actually
a publicly available subset of a commercial product from Hannu's company, 4Front Technologies, which
has broader support for hardware and a richer API. Documentation regarding OSS programming can be
found at http://www.opensound.com/pguide/.

The second audio project is the Advanced Linux Sound Architecture (ALSA). ALSA's aims are to provide
a completely modularized sound driver package and offer a superior environment to OSS, both in terms
of the API and in terms of management infrastructure. In terms of hardware support, the ALSA project
supports hardware not supported by the OSS. Since the ALSA project and all its components have
always been open source, all documentation and source is available online at the project's web site,
http://mww.alsa-project.org/.

It was expected that the ALSA project would at some point replace the OSS contentin the kernel.
Starting with Linux 2.5, ALSA has indeed been integrated in the kernel, although the OSS drivers have
been kept for the time being. As with other areas of Linux support, audio support varies with the target
architecture. The more mainstream the architecture, the better the support.

3.3.11 Printer

As with many mainstream peripherals, printers don't use usually grace embedded systems. There are,
however, exceptions. An embedded web server that supports printing is an example of an embedded
system that needs an OS with printer support. Traditional embedded system developers would usually
consider "embedded web server' to be an oxymoron, but devices that provide these types of packaged
services are more and more common and involve development methods similar to those of more
constrained embedded devices.

Conventional Unix printer support is rather outdated in comparison to the support provided by many
other OSes. Linux's printer support is, unfortunately, largely based on other Unix printing systems. There
are, nonetheless, a number of projects that aim at facilitating and modernizing printing services in Linux
and Unix in general.

To understand how document printing and printer support is implemented in Linux, let us review the
steps a document generally goes through, starting from the user's print request to the actual printing of
the document by the printer:

1. A user submits a document for printing. This may be done either at the command line or via a
menu in a graphical application; there is little difference between them in Linux. Usually, printable
output of Unix programs is in PostScript (PS) format and is sent as such to the printer. As not all
printers available on the market are PS capable, PS output has to be converted to a format
understandable by the actual printer being used. This conversion is done at a later stage, if
necessary.

2. The document, along with the user's print options, is stored in a queue dedicated to a single printer.
This queue may be either local, if the printer is directly attached to the system, or remote, if the
printer is attached to a server on the network. In both cases, the process is transparent to the user.

3. A spooling system takes care of the print queue and queues the document for printing whenever
the printer becomes available. It is at this stage that the conversion of the document from PS or
another format to the actual format recognized by the printer takes place. The conversion is done
using a set of filters, each taking care of the conversion of one type of format to another. The most
important of these is the PS-to-printer filter, which is specific to each type of printer.

Depending on the print-management software being used, these steps may vary slightly. There are

http://www.opensound.com/pguide/
http://www.alsa-project.org/
http://www.wowebook.info

Download at wowebook. 1nfag

currently five different print-management packages available for Linux: LPD, PDQ, LPRng, CUPS, and
PPR. LPD is the traditional package found on most distributions. The other packages are making inroads
and are slowly replacing LPD. Whichever package is used, however, the final conversion from PS to
printer format is usually done by GhostScript,[13] a very important package that enables the viewing and
manipulation of PS files. Once this conversion is done, the output is finally fed to the actual printer
device, whether it be a parallel port printer or a USB printer.

[13] GhostScript has a large memory footprint and may not be suitable for some small-sized embedded Linux systems.

Keep in mind that all the work is done in user space. The kernel drivers get involved only at the very end
to feed the filtered output to the actual printer.

If you intend to add printer support to your embedded system, | suggest you read up on Unix printer
management from any of the good conventional Unix or Linux systems management books available.
Running Linux by Welsh, Dalheimer, and Kaufman (O'Reilly) provides a good description of how printer
setup is done in Linux when using LPD. For bleeding edge information regarding Linux printing, take a
look at http://www.linuxprinting.org/, the main resource on the subject. On that same web site, you will
find the Printing HOWTO, which contains extensive information about the different print-management
packages, their operation, and relevant links.

http://www.linuxprinting.org/
http://www.wowebook.info

Download at wowebook. 1nfag

3.4 Storage

All embedded systems require at least one form of persistent storage to start even the earliest stages of
the boot process. Most systems, including embedded Linux systems, continue to use this same initial
storage device for the rest of their operation, either to execute code or to access data. In comparison to
traditional embedded software, however, Linux's use imposes greater requirements on the embedded
system's storage hardware, both in terms of size and organization.

The size requirements were discussed in Chapter 1, and an overview of the typical storage device
configurations was provided in Chapter 2. We will discuss the actual organization further in Chapter 7
and Chapter 8. For the moment, let us take a look at the persistent storage devices supported by Linux.
In particular, we'll discuss the level of support provided for these devices and their typical use with Linux.

3.4.1 Memory Technology Devices

In Linux terminology, memory technology devices (MTDs) include all memory devices, such as
conventional ROM, RAM, flash, and M-Systems' DiskOnChip (DOC). As explained by Michael Barr in
Programming Embedded Systems in C and C++ (O'Reilly), such devices have their own capabilities,
particularities, and limitations. Hence, to program and use an MTD device in their systems, embedded
system developers traditionally use tools and methods specific to that type of device.

To avoid, as much as possible, having different tools for different technologies and to provide common
capabilities among the various technologies, the Linux kernel includes the MTD subsystem. This
provides a unified and uniform layer that enables a seamless combination of low-level MTD chip drivers
with higher-level interfaces called user modules, as seenin Figure 3-1. These "user modules" should not
be confused with kernel modules or any sort of user-land software abstraction. The term "MTD user
module" refers to software modules within the kernel that enable access to the low-level MTD chip
drivers by providing recognizable interfaces and abstractions to the higher levels of the kernel or, in
some cases, to user space.

Figure 3-1. The MTD subsystem

Keme | wirual filesystem |ayer

Disk-style filesystem

- fiiad -aindy
FFaz JFFS (har devica Block device Bododevice MFTL FTL

Pernory Technology Dewices "glue logic”

T o4
MTD chip drivers

DiskinChig IEDEC-compliang Uncached EAN, BOK, and
flash flash systern RAM absent chips Lo S
CR-comphiant Hoer-DiskinChip {1k non-cH Viriual devices f'?l'f festing
flash REND flash flash arrd evalligtion

Memaory devices hardware

MTD chip drivers register with the MTD subsystem by providing a set of predefined callbacks and

http://www.wowebook.info

Download at wowebook. 1nfag

propertiesin the nt d_i nf o structure to the add_mtd_device() function. The callbacks an MTD driver has
to provide are called by the MTD subsystem to carry out operations such as erase, read, write, and sync.
The following is a list of MTD chip drivers already available:

DiskOnChip

These are the drivers for M-Systems' DOC technology. Currently, Linux supports the DOC 1000,
DOC 2000, and DOC Millennium.
Common Flash Interface (CFlI)

CFlis a specification developed by Intel, AMD, and other flash manufacturers. All CFI-compliant
flash components have their configuration and parameters stored directly on the chip. Hence, the
software interfaces for their detection, configuration, and use are standardized. The kernel
includes code to detect and support CFI chips.

As the CFI specification allows for different commands to be made available by different chips, the
kernel also includes support for two types of command sets implemented by two different chip
families, Intel/Sharp and AMD/Fujitsu.

JEDEC

The JEDEC Solid State Technology Association (http://www.jedec.org/) is a standardization body.
Among its standards are a set of standards for flash chips. It is also responsible for handing out
identification numbers for such devices. Although the JEDEC flash standard is rendered obsolete
by CFI, some chips still feature JEDEC compliance. The MTD subsystem supports the probing
and configuration of such devices.

Non-DOC NAND flash

The most popular form of packaging for NAND flash is M-Systems' DOC devices. There are,
however, other types of NAND flash chips on the market. The MTD subsystem supports a number
of such devices using a separate driver from the DOC drivers. For a complete list of the devices
supported by this driver, look in the include/linux/mtd/nand-ids.h file in the kernel sources.

Old non-CFl flash

Some flash chips are not CFl compliant, and some aren't even JEDEC compliant. The MTD
subsystem therefore provides drivers that manipulate such devices according to their
manufacturers' specifications. The devices supported in this fashion are non-CFI AMD-compatible
flash chips, pre-CFI Sharp chips, and non-CFl JEDEC devices. Keep in mind, however, that these
drivers are not updated as frequently as the drivers for more commonly used devices such DOC
or CFl memory devices.

RAM, ROM, and absent chips

The MTD subsystem provides drivers to access conventional RAM and ROM chips, mapped in a

system's physical address space, as MTD devices. Since some of these chips may be connected

to the system using a socket or some similar connector that lets you remove the chip, the MTD

subsystem also provides a driver that can be used to preserve the registration order of the MTD

device nodes in case one of the devices is removed and is therefore absent from the system.
Uncached RAM

If there is any system RAM that your CPU cannot cache, you can use this memory as an MTD
device during normal system operation. Of course, the information stored on such a medium will
be lost when the system's power is turned off.

Virtual devices for testing and evaluation

When adding or testing MTD support for your board's devices, you may sometimes want to test
the operation of the user modules independently from the chip drivers. To this end, the MTD
subsystem contains two MTD drivers that emulate real MTD hardware: a driver that emulates an
MTD device using memory from the system's virtual address space, and another that emulates an
MTD device using a normal block device.

http://www.jedec.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Since there is no universally agreed upon physical address location for MTD devices, the MTD
subsystem requires customized mapping drivers’4! to be able to see and manage the MTD devices
present in a given system. As some systems and development boards have known MTD device
configurations, the kernel contains a number of specific mapping drivers for a variety of such systems. It
also contains a generic driver for accessing CFl flash chips on systems that have no specific mapping
driver. If there are no appropriate mapping drivers for your system's memory devices, you may need to
create a new one using existing ones as examples. The existing mapping drivers are found in the
drivers/mtd/maps/ directory of the kernel sources.

(24 A mapping driver is a special kind of MTD driver whose main task is to provide MTD chip drivers with the physical location of the MTD
devices in the system and a set of functions for accessing these physical devices.

As with other kernel device drivers, an MTD chip driver can manage many instances of the same device.
If you have two identical AMD CFI-compliant flash chips in your system, for instance, they might be
managed as separate MTD devices by a single instance of the CFI driver, depending on their setup.[2%]
To further facilitate customization of the storage space available in MTD devices, the MTD subsystem
also allows for memory devices to be divided into multiple partitions. Much like hard disk partitions, each
MTD partition is then accessible as a separate MTD device and can store data in formats entirely
different from those of other partitions on the same device. In practice, as we saw in Chapter 2, memory
devices are often divided in many partitions, each serving a specific purpose.

[15] |dentical chips placed on system buses are often arranged to appear as a single large chip.

Once the MTD chip drivers are properly configured for a system's memory devices, the storage space
available on each MTD device can be managed by an MTD user module. The user module enforces a
storage format on the MTD devices it manages, and it provides, as | said above, interfaces and
abstractions recognized by higher-level kernel components. It is important to note that MTD user
modules are not fully interoperable with all MTD drivers. In fact, certain MTD user modules may not be
usable with certain MTD drivers because of technical or even legal limitations. At the time of this writing,
for example, development is still under way to enable the JFFS2 user module to be used with NAND
flash devices. Until recently, it was impossible to use the JFFS2 user module with any form of NAND
flash, including DOC devices, because JFFS2 did not deal with NAND flash chip particularities. Work is
underway to fix the situation, however, and JFFS2 may actually be usable with NAND devices by the
time you read this. The following list describes the existing MTD user modules and their characteristics:

JFFS2

JFFS2 is a successor and a complete rewrite by Red Hat of the JFFS discussed below. As its
name implies, the Journalling Flash File System Version 2 (JFFS2) implements a journalling
filesystem on the MTD device it manages. In contrast with other memory device storage schemes,
it does not attempt to provide a translation layer that enables the use of a traditional filesystem
with the device. Instead, it implements a log-structured filesystem directly on the MTD device. The
filesystem structure itself is recreated in RAM at mount time by JFFS2 through a scan of the MTD
device's log content.

In addition to its log-structured filesystem, JFFS2 implements wear leveling and data compression
on the MTD device it manages, while providing power down reliability.

Power down reliability is crucial to embedded systems, because they may lose power at any time.
The system must then gracefully restart and be capable of restoring a filesystem's content without
requiring outside intervention. If your Linux, or even Windows, workstation has ever lost power
accidently, you probably had to wait for the system to check the filesystems' integrity upon
rebooting and may have even been prompted to perform some checks manually. Usually, this is a
situation that is not acceptable for an embedded system. JFFS2 avoids these problems; it can
gracefully recuperate regardless of power failures. Note, however, that it does not guarantee
rollback of interrupted filesystem operations. If an application had called write() to overwrite old
data with new data, for example, itis possible that the old data may have been patrtially overwritten
and that the new data was not completely committed. Both data sets are then lost. Your system
should be built to check on startup for this type of failure.

http://www.wowebook.info

NFTL

JFFS

FTL

Download at wowebook. 1nfag

Wear leveling is necessary, because flash devices have a limited number of erases per block,
which is often 100,000 but may differ between manufacturers. Once this limit is reached, the
block's correct operation is not guaranteed by the manufacturer. To avoid using some blocks more
than others and thereby shortening the life of the device, JFFS2 implements an algorithm that
ensures uniform usage of all the blocks on the flash device, hence leveling the wear of its blocks.

Because flash hardware is usually more expensive and slower than RAM hardware, it is desirable
to compress the data stored on flash devices and then decompress it to RAM before using it. This
is precisely what JFFS2 does. For this reason, eXecute In Place (XIP)!16]is not possible with
JFFS2.

(18] XIP is the ability to execute code directly from ROM without copying it to RAM.

JFFS2 has been widely adopted as the filesystem of choice for MTD devices. The Familiar project,
http://familiar.handhelds.org/, for instance, uses JFFS2 to manage the flash available in Compad's
iPAQ.

As | said earlier, though JFFS2 cannot currently be used with NAND devices, including DOC
devices, this is under construction and may be available by the time your read this. Meanwhile,
JFFS2 can be used with other types of MTD devices and is even sometimes used with
CompactFlash devices, which actually behave as IDE hard drives connected to the system's IDE
interface.

The NAND Flash Translation Layer (NFTL) implements a virtual block device on NAND flash
chips. As seen in Figure 3-1, a disk-style filesystem, such as FAT or ext2, must then be used to
store and retrieve data from an NFTL-managed MTD device.

It is important to note that M-Systems holds patents on the algorithms implemented by NFTL and,
as such, permits the use of these algorithms only with licensed DOC devices. Though NFTL is
itself reliable in case of power failure, you would need to use a journalling filesystem over NFTL to
make your system's storage power-failure proof. An embedded system that crashes while running
ext2 over NFTL, for example, would require a filesystem integrity check on startup, much like a
normal Linux workstation.

The Journalling Flash File System (JFFS) was originally developed by Axis Communications AB in
Sweden and was aimed at embedded systems as a crash/power down-safe filesystem. Though
JFFS has reportedly been used with NAND devices—a feature likely to be available in JFFS2 by
the time you read this—it has largely been replaced by JFFS2.

The Flash Translation Layer implements a virtual block device on NOR flash chips. As with NFTL,
a "real" filesystem must then be used to manage the data on the FTL-handled device.

FTL, too, is subject to patents. In the U.S., it may be used only on PCMCIA hardware. Instead of
using FTL on NOR flash chips, you may want to go with JFFS2 directly, as it is not hampered by
any patents and is a better fit for the task.

Char device

This user module enables character device-like access to MTD devices. Using it, each MTD
device can be directly manipulated as a character device, in the Unix sense. It is mostly useful for
the initial setup of an MTD device. As we'll see in Chapter 7, there is a specific way in which
reading and writing to this char device must be done for the data involved to be valid. Before
writing to the char device, for example, it usually must be erased first.

Caching block device

This user module provides a block device interface to MTD devices. The usual workstation and
server filesystems can then be used on these devices. Although this is of little use for production

http://familiar.handhelds.org/
http://www.wowebook.info

Download at wowebook. 1nfag

embedded systems, which require features such as those provided by JFFS2, this module is
mainly useful for writing data to flash partitions without having to explicitly erase the content of the
partition beforehand. It may also be used for setting up systems whose filesystems will be
mounted read-only in the field.

This module is called the "caching" block device user module, because it works by caching blocks
in RAM, modifying them as requested, erasing the proper MTD device block, and then rewriting
the modified block. There is, of course, no power failure reliability to be found here.

Read-only block device

The read-only block device user module provides the exact same capabilities as the caching block
device user module, except that no RAM caching is implemented. All filesystem content is
therefore read-only.

As you can see, the MTD subsystem is quite rich and elaborate. Even though its use is complicated by
the rules that govern the proper matching of MTD user modules with MTD chip drivers, it is fairly flexible
and is effective in providing a uniform and unified access to memory devices. The Memory Technology
Device Subsystem project web site is found at http://www.linux-mtd.infradead.org/ and contains
documentation regarding the programming API for implementing MTD user modules and MTD chip
drivers. It also contains information regarding the MTD mailing list and a fairly elaborate MTD-JFFS-
HOWTO by Vipin Malik.

In Chapter 7, we will continue our discussion of the MTD subsystem and will detail the setup and
configuration instructions for using MTD devices in your embedded system.

3.4.2 ATA-ATAPI (IDE)

The AT Attachment (ATA)!X’] was developed in 1986 by three companies: Imprimis, Western Digital, and
Compag. It was initially used only by Compagq but eventually became quite popular when Conner
Peripherals began providing its IDE drives through retail stores. By 1994, ATA was an ANSI standard.
Different versions of the standard have since been developed allowing faster transfer rates and
enhanced capabilities. Along the way, the ATA Packet Interface (ATAPI) was developed by CD-ROM
manufacturers with the help of Western Digital and Oak Technology. ATAPI allows for CD-ROM and
tape devices to be accessible through the ATA interface using SCSI-like command packets. Today ATA
and ATAPI are developed and maintained by ANSI, NCITS, and T13.

[17] Although it is often referred to as "IDE," which stands for Integrated Drive Electronics, "ATA" is the real name of this interface.

Although only a fraction of traditional embedded systems ever need a permanent storage media
providing as much storage space as an IDE hard disk can, many embedded systems use a very popular
ATA-compliant flash device, CompactFlash. Contrary to the flash devices discussed in Section 3.4.1, the
CompactFlash's storage space can be accessed only using the ATA interface. Hence, from the
software's perspective, and indeed from the hardware's perspective, it is indistinguishable from a small-
sized IDE drive. Note that CompactFlash cards can also be accessed through CompactFlash-to-
PCMCIA adapters. We will discuss the use of CompactFlash devices with Linux further in Chapter 7.
Meanwhile, keep in mind that not all CompactFlash devices have the proper characteristics for use in
embedded systems. In particular, some CompactFlash devices do not tolerate power failure, and may be
permanently damaged following such a failure.

In embedded Linux systems, IDE and most other types of disks are usually set up as in a workstation or
server. Typically, the disk holds the OS bootloader, the root filesystem, and possibly a swap partition. In
contrast to most workstations and servers, however, not all embedded system monitors and bootloaders
are ATA-capable. In fact, as we'll see in Chapter 9, most bootloaders are not ATA/IDE-capable. If you
want to use an IDE disk in your system and an ATA-capable monitor or bootloader is not present in your
system's flash, you need to have the kernel present in flash or in ROM with the boot monitor so that it
may be accessible at system startup. You then have to configure your boot monitor to use this kernel on
startup in order to have access to the IDE disk. In this case, you can still configure your root filesystem

http://www.linux-mtd.infradead.org/
http://www.wowebook.info

Download at wowebook. 1nfag

and swap partition to be on the IDE disk.

Linux's support for the ATA interface is quite extensive and mature. The ATA subsystem, located in the
drivers/ide directory of the kernel sources, includes support, and sometimes bug fixes, for many
chipsets. This support spans many architectures. In addition, the kernel supports PCMCIA IDE devices
and provides a SCSI-emulation driver for use with ATAPI devices. The latter can be used in conjunction
with a SCSI driver to control an ATAPI device for which there is still no existing ATAPI native driver.
Though it is no longer necessary since the 2.5 kernel development series, this functionality was mostly
useful to users with workstations equipped with CD-RW drives, since the tools available to operate these
devices in Linux used to require that the underlying hardware be SCSI.

Given the importance of ATA/IDE support, most modifications and updates posted to the kernel mailing
list are directly integrated into the kernel. This contrasts with other subsystems where maintainers
provide a separate up-to-date version through the subsystem's project web site, while the kernel contains
a stable version that is updated every so often when the maintainers send a patch or, more commonly, a
set of patches to Linus. There are, however, ATA/IDE-related tools, primarily hdparm and fdisk,
maintained outside the kernel, mainly because they are user tools and are not required for the kernel's
normal operation. hdparm gets and sets IDE hard disk parameters using the ioctl() commands
supported by ATA/IDE drivers in the kernel. fdisk is used to view and modify disk patrtitions. If you have
ever installed Linux on a workstation, you are probably already familiar with fdisk. Note that this utility is
not limited to IDE hard disks and can be used with SCSI disks, too.

The main starting point for information on Linux's ATA/IDE capabilities is the Linux ATA Development
Project web site located at http://www.linux-ide.org/. In addition to providing access to the ATA-related
user tools, it provides links to many resources relevant to ATA. Also of importance is the ide.txt file
located in the Documentation directory of the kernel sources, which contains information on the kernel's
support for IDE devices and how to configure the kernel to properly access such devices.

Several non-Linux-specific ATA/IDE resources are available both online and in print. PC Hardware in a
Nutshell by Robert Bruce Thompson and Barbara Fritchman Thompson (O'Reilly) contains a full chapter
on IDE and SCSI hard disk interfaces, including a comparison of these interfaces. Although the
discussion centers on high-level issues, itis a good introduction to the world of ATA/IDE and may be
helpful in choosing a hard disk interface. For a more in-depth discussion, you may want to have a look at
the Enhanced IDE FAQ, available from http://www.faqgs.org/, which contains tips and tricks resulting from
the cumulative knowledge available on the comp.sys.ibm.pc.hardware.storage newsgroup. Finally, if you
really want to know all the ins and outs of the ATA interface, purchase the relevant standards documents
from ANSI. Before you do so, however, be sure to read the relevant portions of the kernel's sources, as
they too often contain hard-to-find information.

3.4.3 SCSI

As described in the Section 3.2.8 subsection of Section 3.2, the use of SCSI storage devices in
embedded Linux systems is limited. When used, these devices are set up and configured in much the
same way they would be used in a server. You may therefore follow the instructions and
recommendations provided in any appropriate system administration book or online manual. The
documentation and resources mentioned in the earlier Section 3.2.8 are, of course, still recommended.
As an introduction to SCSI storage devices, PC Hardware in a Nutshell (O'Reilly) contains a brief
discussion of SCSI storage devices and a comparison with ATA/IDE.

http://www.linux-ide.org/
http://www.faqs.org/
http://www.wowebook.info

Download at wowebook. 1nfag

3.5 General Purpose Networking

An increasing number of embedded systems are attached to general purpose networks. These devices,
although more constrained than other computerized systems in many ways, are often expected to
provide the very same network services found in many modern servers. Fortunately, Linux lends itself
quite well to general purpose networks, since itis itself often used in mainstream servers.

The following discussion covers the networking hardware most commonly found in embedded systems.
Linux supports a much wider range of networking hardware than | will discuss, but many of these
networking interfaces are not typically used in embedded systems and are therefore omitted. Also, as
many of these networking interfaces have been extensively covered elsewhere, | will limit the discussion
to the topics relevant to embedded Linux systems and will refer you to other sources for further
information.

Network services will be discussed further in Chapter 10.

3.5.1 Ethernet

Initially developed at Xerox's PARC research center in Palo Alto, California, Ethernet is currently the
most pervasive, best documented, and least expensive type of networking available. Its speed has kept
up with the competition, growing geometrically over the decades. Given Ethernet's popularity and the
increasing demand for embedded systems to be network enabled, many embedded development boards
and production systems have been shipping with Ethernet hardware.

Linux supports a slew of 10 and 100 Megabit Ethernet devices and chips. It also supports a few Gigabit
Ethernet devices. The kernel build configuration menu is probably the best place to start to see whether
your particular hardware is supported, since it contains the latest drivers list.[18] The Ethernet HOWTO,
available from the LDP, also contains a list of supported hardware, and a lot of information regarding the
use of Ethernet with Linux. Finally, Donald Becker, who wrote quite a few Linux Ethernet drivers,
maintains a web site with information regarding Linux's network drivers at http://www.scyld.com/network/.

[18] You may also want to use this list as the basis of your hardware design, as | suggested earlier.

A number of resources discuss the use and internals of Ethernet. Charles Spurgeon's Ethernet: The
Definitive Guide (O'Reilly) is a good starting point. Charles also maintains a web site containing Ethernet
resources at http://wwwhost.ots.utexas.edu/ethernet/. One of these resources is the Ethernet FAQ based
on postings made on the comp.dcom.lans.ethernet newsgroup. If you need to write your own Ethernet
driver for your hardware, you will find the Linux Device Drivers book useful.

3.5.2 IrDA

The Infrared Data Association (IrDA) was established in 1993 by 50 companies with the mandate to
create and promote a standard for low-cost interoperable infrared data interconnections. The first IrDA
specification was released in 1994 and continues to be maintained and developed by the association
from which the specification takes its name. Today, IrDA hardware and software can be found in many
consumer devices, including PDAs, cellular phones, printers, and digital cameras, to hame a few. In
comparison to other wireless schemes, such as Bluetooth, IrDA is inexpensive. This, in turn, favors its
widespread adoption.

There are two main types of protocols within the IrDA specification: mandatory and optional. A device
must at least implement the mandatory protocols in order to be able to interoperate properly with other
IrDA devices. The mandatory protocols are the physical signaling layer (IrPHY), the link access protocol
(IrLAP), and the link management protocol (IrLMP). The last protocol also includes the Information

http://www.scyld.com/network/
http://wwwhost.ots.utexas.edu/ethernet/
http://www.wowebook.info

Download at wowebook. 1nfag

Access Service (IAS), which provides service discovery capabilities.

IrDA devices can exchange data at rates of up to 4 Mbps within a one meter range. Unlike other wireless
technologies, IrDA requires directional pointing of the devices involved in a communication. An obvious
advantage of such a scheme is the increased security resulting from the requirement that IrDA users
keep their devices pointing in each other's direction during the whole connection time.[19]

(191 Any “intruder" would have to be in direct view of the users involved in the communication.

Linux supports all the mandatory IrDA protocols and many of the optional protocols. Figure 3-2 presents
the architecture of Linux's IrDA subsystem.

Figure 3-2. Linux IrDA subsystem architecture

Applications
TCPAP
T PPp
[PCORM [rLAK IrHET Open0BEX

TinyTP iy

IrLMP

IrLAF
(n-oard Bus-attached 1533

IrTTY IrPart i firirmin Dongle
Sarial
o bes
IrPHY

IrPHY is the actual physical infrared device through which the data is transferred. It is usually located on
the side of the device itis part of. In a PDA, for instance, it is often located on the top side of the device
so the user can view the PDA's screen while pointing his IrDA port to that of another user's PDA or any
other IrDA-enabled device.

The IrDA standard categorizes IrPHY devices according to their speed. There are currently three speed
categories: serial infrared (SIR) at up to 115.2 Kbps, medium speed infrared (MIR) at up to 1.152 Mbps,
and fast infrared (FIR) at 4.0 Mbps. In the future, very fast infrared (VFIR) at 16 Mbps should be part of
the standard as well.

The Linux kernel includes the following drivers for SIR and FIR devices:

IFTTY
IFTTY provides support for 16550-UART-compatible IrDA ports. This driver uses the kernel's serial
driver and provides speeds of up to 115200 bps.

IrPORT

IPORT is a half-duplex serial port driver that is meant to eventually replace IrTTY.
Serial Dongles

http://www.wowebook.info

Download at wowebook. 1nfag

To provide IrDA support for a system that doesn't have an IrDA port built into it, an IrDA dongle
can be attached to the system's serial port. The kernel build configuration menu contains the
complete list of serial dongles supported by Linux.

On-board and bus-attached devices

The kernel supports a number of chips found in on-board and bus-attached IrDA devices. The
kernel build configuration menu contains the complete list of chips supported by Linux.
USB dongle

Like serial dongles, USB dongles provide a removable IrDA interface. Instead of SIR throughput
rates, however, they provide FIR rates.

The IrDA stack operates on top of the device drivers to provide IrDA functionality in Linux. Most
components of this stack are implemented as specified in the IrDA standard, but some components
implemented are not part of the standard. These are the stack layers implemented in the kernel:

IrLAP

IrTLAP is the link access protocol layer of the IrDA specification. It provides and maintains a reliable
link between IrDA devices. In addition to the normal connection-oriented protocol, Linux supports
connectionless exchanges using the Ultra protocol.

IrLMP

IrLMP is the link management protocol layer of the IrDA specification. It provides for and manages
multiple connections over IrLAP.
TinyTP

Tiny Transport Protocol (TinyTP) implements flow control over IrLMP connections.
IAP

The Information Access Protocol (IAP) is Linux's equivalent to the IrDA's Information Access
Service (IAS). As with IAS, IAP provides service discovery capabilities.
IrCOMM

IrCOMM is an emulation layer that provides IrDA connection capabilities to legacy applications that
usually communicate through common serial and parallel port devices. Since these types of
functionalities are accessed through TTYs, applications use the kernel's TTY layer to access
IrCOMM. Note that IrCOMM does not rely on TinyTP.

IrLAN

The IrDA specifies IF(LAN to enable LAN-like connections between IrDA devices. IrLAN acts as a
network device from the point of view of upper layer protocols. Itis, for instance, possible to
establish a TCP/IP network on top of an IrDA link using IFLAN.

INET

IPNET is also meant to enable LAN-like connections between IrDA devices. Instead of
implementing a full network device, as with IFLAN, IrNET acts as a very thin layer over which PPP
can be used to provide a full network device. Note, however, that IrNET is not part of the official
IrDA standard. Microsoft first introduced IrNET as part of their Windows 2000 IrDA stack,
replacing ICOMM and IrLAN. The Linux implementation is based on the same concepts found in
Microsoft's IINET and can interoperate with it.

OpenOBEX

The IrDA standard specifies IrOBEX as an HTTP-like service for the exchange of objects.
OpenOBEX is the IrOBEX implementation for Linux. It consists of a user-space library that can be
found at: http://sourceforge.net/projects/openobex/.

In conjunction with the stack layers, you will need user-space tools to operate Linux's IrDA capabilities.
These tools are part of the IrDA Utils package. This package and many other IrDA-related resources are
available through the Linux-IrDA Project web site at http://irda.sourceforge.net/.

http://sourceforge.net/projects/openobex/
http://irda.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

For further information regarding Linux's IrDA stack and related tools and projects, you may want to take
a look at the Infrared HOWTO available from the LDP. Also, Jean Tourrilhes, a major contributor to the
Linux-IrDA project, maintains a number of very interesting Linux-IrDA pages at
http://www.hpl.hp.com/personal/Jean_Tourrilhes/. Unlike other such standards, all the IrDA standards
are readily available for download directly from the association's web site at http://www.irda.org/.

3.5.3 IEEE 802.11 (Wireless)

The 802.11 working group was set up by the IEEE 802 committee in 1990. The first 802.11 standard was
published in 1997 and has been maintained and updated since then by the same group. The standard
provides for wireless communication between computers using the 2.4 GHz (802.11b) and 5 GHz
(802.11a) frequencies. Today, 802.11 is the wireless equivalent of Ethernet in terms of widespread
adoption and mainstream support.

Although many traditional embedded devices were equipped with some form or another of wireless
technology, recent embedded systems with 802.11 support are mostly user-oriented devices such as
PDAs. Connecting such devices to an 802.11 network is akin to connecting a laptop or workstation to
this type of network. Hence, you may use reference material discussing the latter and apply it to your
802.11-enabled embedded device with little effort.

Linux has extensive support for 802.11b hardware. For a complete list of all the supported 802.11
hardware and related drivers and tools, I refer you to Jean Tourrilhes' Linux Wireless LAN HOWTO
found at his web site, http://www.hpl.hp.com/personal/Jean_Tourrilhes/. Support for on-board or non-
PCMCIA bus-attached devices is included with the kernel and can be selected during kernel build
configuration. Support for PCMCIA 802.11 cards, on the other hand, is part of David Hinds' PCMCIA
package mentioned earlier in Section 3.2.3.

Since most 802.11 devices' operation is similar to that of Ethernet devices, the kernel does not need any
additional subsystem to support them. Instead, most of the same tools usually used for Ethernet devices
can be used for 802.11 devices once the appropriate device driver has been loaded and initialized.
Nonetheless, there are tools required to address the particularities of 802.11, such as setting
identification and encryption keys, and monitoring signal strength and link quality. These tools are
available through the Wireless Tools for Linux section of Jean's web site.

In addition to Jean's web site, the Wireless HOWTO available from the LDP provides some background
information on the use of wireless devices with Linux. If you intend to make extensive use of 802.11
devices, you may want to take a look at Matthew Gast's 802.11 Wireless Networks: The Definitive Guide
(O'Reilly). It contains a thorough discussion of the technology and its use with Linux. You can also obtain
copies of the actual standard from the IEEE. At the time of this writing, they were freely available for
download in PDF from the IEEE's web site. Jean's web site contains the appropriate link, but you should
note that the availability of these documents is subject to change, as is stated on the IEEE's web site.

3.5.4 Bluetooth

Bluetooth was developed by Ericsson with help from Intel and was introduced in 1994. A Bluetooth SIG
was formed by Ericsson, IBM, Intel, Nokia, and Toshiba. Today, the SIG has more than 1,900 member
companies. Today, a wide range of devices such as PDAs and cell phones, are already Bluetooth-
enabled with more on the way.

Bluetooth operates on the 2.4 GHz band and uses spread spectrum frequency hopping to provide
wireless connectivity to devices within the same piconet.[20] Some have called it a "cable replacement”
and others have called it "wireless USB." In essence, it enables seamless wireless communication
between devices. Hence, Bluetooth devices do not need any configuration to become part of a piconet.
Rather, devices automatically detect each other and advertise their services so that the other devices in
the piconet can in turn use these services.

http://www.hpl.hp.com/personal/Jean_Tourrilhes/
http://www.irda.org/
http://www.hpl.hp.com/personal/Jean_Tourrilhes/
http://www.wowebook.info

Download at wowebook. 1nfag

[20] pPiconets are wireless networks comprising Bluetooth devices. Since Bluetooth devices can belong to more than one piconet, piconets
can overlap.

Linux has a few Bluetooth stacks. The four main ones are: BlueZ, OpenBT, Affix, and BlueDrekar. BlueZ
was originally written by Qualcomm and is now an open source project available under the terms of the
GPL from the project's web site at http://bluez.sourceforge.net/. In the following, | will mainly discuss
Bluez, as it is the Bluetooth stack included in the mainstream kernel tree.

OpenBT was developed and is still maintained by Axis Communications AB. Itis available for download
from the project's web site at http://developer.axis.com/software/bluetooth/. OpenBT has better
documentation and source code comments than BlueZ. But OpenBT is structured as a serial abstraction
(i.e., itis accessible through /dev/ttyBTO, /dev/ttyBT1, etc.) whereas BlueZ is structured as a network
protocol—accessible using the AF_BLUETOOTH socket type—which in many regards, is more
appropriate for Bluetooth, since it is itself a protocoal.

Affix was developed and continues to be maintained by Nokia. It is available from its SourceForge web
site at http://affix.sourceforge.net/. Both user-space utilities and the kernel patch are available for
download under the terms of the GPL. The README available from the project's web site is fairly rich
and so is the packages' documentation. Like BlueZ, it is structured as a networking protocol—accessible
using the AF_AFFIX socket type.

Finally, the BlueDrekar stack was developed and is distributed by IBM through the project's web site at
http://mww.alphaworks.ibm.com/tech/bluedrekar/. Although BlueDrekar can be freely downloaded, it is
not an open source project, and | will therefore not discuss it further.

Figure 3-3 presents the architecture of the BlueZ stack. If you are familiar with Bluetooth, you will notice
that BlueZ does not support Telephony Control protocol Specification Binary (TCS-bin) or OBEX.[21]
Although Linux supports IrDA OBEX, the existing Linux implementation, OpenOBEX, cannot, at the time
of this writing, operate with OpenBT and can only function in a preliminary way with BlueZ. This is
because OpenBT doesn't implement OBEX and BlueZ's support for OBEX is in its early stages.
Nevertheless, OpenOBEX can be used with Affix, since it implements OBEX.

[21] This is the same OBEX found in the IrDA standard. Instead of inventing a new protocol, the Bluetooth standard simply uses the IrDA
OBEX specification for the implementation of an HTT P-like binary exchange service.

Figure 3-3. Linux BlueZ Bluetooth subsystem architecture

Applications
TOR/ P
FFP
RECOMMd S0Pd
L2CAP
HT o
HCI-USE HCI-UART AR

Blugtaath hardware

The Host Controller Interface (HCI) is the lowest layer of the Bluetooth stack and is responsible for
interfacing with the actual Bluetooth hardware. BlueZ currently supports the following types of HCI
adapters:

http://bluez.sourceforge.net/
http://developer.axis.com/software/bluetooth/
http://affix.sourceforge.net/
http://www.alphaworks.ibm.com/tech/bluedrekar/
http://www.wowebook.info

Download at wowebook. 1nfag

HCI-USB

These are USB-attached Bluetooth devices. Do not confuse this with the "USB Bluetooth" support
found in the USB support submenu of the kernel build configuration menu. The latter requires
OpenBT, not BlueZ.

HCI-UART

These are Bluetooth devices attached to the serial interface.
HCI-VHCI

VHCI stands for Virtual HCI. Consequently, VHCI acts as a virtual Bluetooth device that can be
used for testing and development.

The HCI core is immediately above the HCI hardware device drivers and enables them to interoperate
with the higher levels of the protocol stack. BlueZ comprises the following stack layers:

L2CAP

The Logical Link Control and Adaptation Protocol (L2CAP) is responsible for link multiplexing,
packet segmentation and reassembly, and quality of service.
RFCOMMd

The Bluetooth standard specifies the RFCOMM protocol to provide serial communication between
Bluetooth devices. BlueZ implements RFCOMM as a daemon, RFCOMMd, which uses pseudo-
TTYs for communication. PPP can then be used on top of RFCOMMd to enable TCP/IP
networking between Bluetooth devices.

SDPd

The Service Discovery Protocol (SDP) lets a device discover services provided by other Bluetooth-
enabled devices and the advertisement of the services offered by a device. SDP is implemented
as adaemon, SDPd, in BlueZ.

In addition to the protocol stack, you will need the user-space tools available from BlueZ's project web
site. In addition to RFCOMMd and SDPd, these tools include 12ping for L2CAP pinging and hcidump for
HCI packet analysis.

Here are some relevant resources:
e Further information on the operation of the BlueZ stack can be found in the BlueZ HOWTO from
the project's web site.

e Information on OpenBT and its use is available on the project's SourceForge workspace at
http://sourceforge.net/projects/openbt/.

o Delbert Matlock maintains a list of Linux Bluetooth resources at http://delbert.matlock.com/linux-
bluetooth.htm, which you may find useful if you are considering the use of Bluetooth with Linux.

e Prentice Hall publishes two popular Bluetooth books—Bluetooth Revealed: The Insider's Guide to
an Open Specification for Global Wireless Communications by Brent Miller and Chatschik Bisdikian
and Bluetooth: Connect Without Cables by Jennifer Bray and Charles Sturman.

You may also be interested in becoming a Bluetooth SIG member. The Bluetooth SIG's web site is
located at http://www.bluetooth.org/. You can obtain the official Bluetooth standard from the official
Bluetooth web site at http://www.bluetooth.com/.

http://sourceforge.net/projects/openbt/
http://delbert.matlock.com/linux-
http://www.bluetooth.org/
http://www.bluetooth.com/
http://www.wowebook.info

Download at wowebook. 1nfag

3.6 Industrial Grade Networking

As with other computerized applications, industrial control and automation rely increasingly on
computerized networks. General-purpose networking or connectivity solutions such as plain Ethernet or
Token Ring are, however, ill-adapted to the harsh and demanding environment of industrial applications.
Common Ethernet, for instance, is too vulnerable to EMI (Electromagnetic Interference) and RFI (Radio
Frequency Interference) to be used in most industrial environments.

Therefore, quite a few specialized, industrial-grade networking solutions have been developed over time.
In addition to being more adapted to industrial environments, these industrial networks, commonly known
as fieldbuses, contribute to reducing wiring, increasing modularity, providing diagnostics capabilities,
enabling self-configuration, and facilitating the setup of enterprise-wide information systems.

In the following sections, | will cover the industrial networks supported by Linux and briefly discuss the
other industrial networks that have little or no Linux support. If you are new to fieldbuses, you may want
to take a look at Rob Hulsebos' Fieldbus Pages located at http://ourworld-top.cs.com/rahulsebos/. The
web site includes a large collection of links and references to all sorts of fieldbus systems.

3.6.1 CAN

The Controller Area Network (CAN) is not only the most common fieldbus, but probably one of the most
pervasive forms of networking ever used. CAN was introduced in 1986 by Robert Bosch Gmbh. as a
serial bus system for the automotive industry and has since been put to use in many other industries.
CAN's development received early contributions from engineers at Mercedes-Benz and Intel, which
provided the first CAN chip, the 82526. Today, more than 100 million new CAN devices are sold every
year. Application fields range from upper-class cars, such as Mercedes, to factory automation networks.

CAN specifies a hardware interface and a communication mechanism. It is a multi-master serial
networking protocol with error detection capabilities, where message identification is done through
content rather than through the receiver node or the transmitter node. CAN is managed and promoted by
the CAN in Automation (CiA) group and is subject to 1SO standard 11898 published in 1993.

Since CAN is a low-level protocol, akin to Ethernet, many higher-level protocols have been put forward to
complete it. Four such protocols are J1939, DeviceNet, Smart Distributed System (SDS), and CANopen.
J1939 was introduced and continues to be maintained by the Society of Automotive Engineers (SAE),
and is very popular in the automotive industry. DeviceNet is another popular CAN-based higher-level
protocol and is managed by the Open DeviceNet Vendor Association (ODVA). SDS was put forth by
Honeywell and continues to be promoted and managed by the same company. CANopen was introduced
and is managed by the same group that maintains CAN, the CiA. SDS has not been as popular as
DeviceNet and J1939, because it was never standardized, while J1939, DeviceNet, and CANopen were.

Although there is no formal support for CAN within the kernel, many open source projects provide
support for CAN hardware in Linux. The following are the most important ones:

Linux CAN-bus Driver Project

This is the main open source CAN-support project. The project provides a kernel module that
supports many CAN boards based on the Intel 82527 and the Philips sjal000. The project is
located at http://home.wanadoo.nl/arnaud/. The project's web site provides documentation, a
HOWTO, and links to CAN-related sites.

Alessandro Rubini's Ocan driver

This is a driver for CAN boards based on the Intel 82587. It is maintained by Alessandro Rubini,
one of the authors of Linux Device Drivers (O'Reilly). The driver is available at

http://ourworld-top.cs.com/rahulsebos/
http://home.wanadoo.nl/arnaud/
http://www.wowebook.info

Download at wowebook. 1nfag

http://mww. linux.it/~rubini/softwaref#ocan under the terms of the GPL and is remarkably well
documented.
candlinux

candlinux used to be maintained by the Linux Lab Project. It is now available from
http://www.port.de/engl/canprod/sw_linux.html. The package includes a driver for the Philips
82c200-based boards and application examples.

CanFestival

CanFestival provides CAN and CANopen capabilities within Linux for the ADLINK PCI 7841 board.
The software for the board can be used both in standard Linux mode and in real time using the
RTLinux framework. The package and its documentation are available from
http://perso.wanadoo.fr/ledouard.tisserant/CanFestival/.

ss5136dn Linux Driver

This package provides both CAN and DeviceNet capabilities within Linux for the SST 5136-DN
family of CAN bus/DeviceNet interface boards. The package at
http://home.att.net/~marksu/dn5136man.html includes rich documentation and a user-space
library.

For more information on CAN, CAN-related hardware, and CANopen, consult the CiA's web site at
http://mww.can-cia.org/. The CiA provides its specifications online. SAE provides subscription-based
access to the J1939 standard through its web site at http://www.sae.org/products/j1939.htm. Information
on DeviceNet can be found on the ODVA's web site at http://www.odva.org/. The DeviceNet specification
is available in printed form from the ODVA for a fee that covers reproduction costs and provides a life
time unlimited royalty-free license to develop DeviceNet products. If you are interested in SDS, you can
find more information about it, including specifications, on Honeywell's web site at
http://content.honeywell.com/sensing/prodinfo/sds/.

3.6.2 ARCnet

The Attached Resource Computer NETwork (ARCnet) was introduced by Datapoint Corporation in 1977
as a general purpose network, much like Ethernet. Today, ARCnet is seldom used in office LANs
anymore, but itis still popular as an industrial fieldbus. ARCnet is now an ANSI standard and is managed
and promoted by the ARCnet Trade Association (ATA).

ARCnetis a token-based network that can use either a star topology or a bus topology. An ARCnet NIC
(Network Interface Card) can be compatible with one of the two topologies, but not both. Apart from its
low cost, ARCnet has many advantages compared to standard office networks, including deterministic
performance, automatic reconfiguration, multi-master capability, and immunity to noise. Also, ARCnet
guarantees the safe arrival of packets and guarantees notification in case of transmission failure.

Support for ARCnet has been part of the Linux kernel for quite some time now. Since ARCnet NICs have
almost identical programming interfaces, there is no need for a broad range of device drivers. Instead,
the kernel includes drivers for the two standard ARCnet chipsets, COM90xx and COM20020. In addition
to the drivers, the kernel includes three different protocols to be used with ARCnet hardware. The first
and most common protocol conforms to RFC1201 and enables the transmission of IP traffic over
ARCnet networks. When a system is configured with the RFC1201 protocol, for instance, the kernel's
own TCP/IP stack can be used to provide TCP/IP networking on ARCnet hardware. The second protocol
conforms to RFC1051, which was replaced by RFC1201 already mentioned. This protocol is provided to
enable interaction with old networks. Finally, the kernel provides an Ethernet-encapsulation protocol,
which enables ARCnet networks to transport Ethernet packets.

Information regarding the Linux ARCnet drivers is available from the ARCnet for Linux project web site at
http://mww.worldvisions.ca/~apenwarr/arcnet/. The site includes the Linux-ARCnet HOWTO, which
provides extensive discussion on the use of ARCnet with Linux. The HOWTO includes jumper settings
information and card diagrams for many ARCnet NICs. It also includes cabling instructions for ARCnet

http://www.linux.it/~rubini/software/#ocan
http://www.port.de/engl/canprod/sw_linux.html
http://perso.wanadoo.fr/edouard.tisserant/CanFestival/
http://home.att.net/~marksu/dn5136man.html
http://www.can-cia.org/
http://www.sae.org/products/j1939.htm
http://www.odva.org/
http://content.honeywell.com/sensing/prodinfo/sds/
http://www.worldvisions.ca/~apenwarr/arcnet/
http://www.wowebook.info

Download at wowebook. 1nfag

networks. A text copy of this HOWTO is included in the kernel's sources in the Documentation directory.

The ATA's web site, found at http://www.arcnet.com/ contains more information about ARCnet, including
forms for ordering the ANSI standard and other manuals.

3.6.3 Modbus

The Modbus Protocol was introduced by Modicon in 1978 as a simple way to transfer control data
between controllers and sensors using RS232 in a master-slave fashion. Modicon was later acquired by
Schneider Electric, which owns the Modbus trademark and continues to steer the development of the
protocol and its descendants.

Since Modbus specifies a messaging structure, it is independent of the underlying physical layer. There
are two formats used to transmit information with Modbus, ASCII, and RTU. The first sends each byte as
two ASCII characters, while the second sends each byte as two 4-bit hexadecimal characters. Modbus is
usually implemented on top of a serial interface such as RS232, RS422, or RS485. In addition to
Modbus, Schneider specifies the Modbus TCP/IP protocol, which uses TCP/IP and Ethernet to transmit
Modbus messages.

Two open source projects provide Modbus capabilities to Linux:
jModbus

This project aims at providing a Java implementation of Modbus RTU, Modbus ASCII, and
Modbus TCP/IP. It is housed at http://jmodbus.sourceforge.net/ and is distributed with
documentation and examples under a BSD-style license.

MAT LinuxPLC

This is the same automation project | mentioned earlier in Section 3.3.5. The MAT project now
contains code in its CVS repository implementing Modbus RTU and Modbus TCP/IP. Although the
source code is commented, there is little other documentation.

For more information about Modbus, read the Modbus specifications, available at
http://www.modbus.org/.

3.6.4 A Word on the Other Industrial Networks

There are, of course, many other industrial networks, most of which are not supported by Linux. There is,
for instance, currently no support for ControlNet, Seriplex, AS-Interface, or Sercos in Linux. Still other
fieldbuses have some form of support in Linux, but will require a certain amount of further work before
we can classify them as having Linux support. The following is a list of such fieldbuses:

Interbus

A driver is available for kernel Versions 2.0 and 2.2 for the Phoenix Contact Interbus board. The
driver is available from http://www.santel.lu/projects/wallace/interbus.html and comes with
documentation and examples.

LonWorks

A driver is available for kernel Version 2.2 for Easylon interfaces. The driver is released for
evaluation purposes and comes with little documentation or examples. It is available from
http://www.gesytec.de/englisch/support/linux_readme.htm.

In addition, there is a driver for Applicom cards in the Linux kernel. Though the driver was mainly used
for Profibus by its author, Applicom cards can handle many protocols. When used, the card is seen as a
character device in /dev.

http://www.arcnet.com/
http://jmodbus.sourceforge.net/
http://www.modbus.org/
http://www.santel.lu/projects/wallace/interbus.html
http://www.gesytec.de/englisch/support/linux_readme.htm
http://www.wowebook.info

Download at wowebook. 1nfag

Also, Hilscher Gmbh. provides a device driver for its CIF boards and a user-level framework that enables
the development of fieldbus-independent applications. The framework and device driver is distributed
under the terms of the GPL with extensive documentation and is available from Hilscher's web site at
http://www.hilscher.com/device_drivers_linux.htm. The device driver included in the package can be
accessed from user space using the unified framework API. This, in turn, enables control applications to
be developed independently from the underlying fieldbus technology. Although only Hilscher's hardware
driver is currently part of the package, the approach used by Hilscher and the framework it provides may

be useful in helping Linux provide wide and uniform support to industrial network technologies in the
future.

http://www.hilscher.com/device_drivers_linux.htm
http://www.wowebook.info

Download at wowebook. 1nfag

3.7 System Monitoring

Both hardware and software are prone to failing, sometimes drastically. Although the occurrence of
failures can be reduced through careful design and runtime testing, they are sometimes unavoidable. It is
the task of the embedded system designer to plan for such a possibility and to provide means of
recovery. Often, failure detection and recovery is done by means of system monitoring hardware and
software such as watchdogs.

Linux supports two types of system monitoring facilities: watchdog timers and hardware health
monitoring. There are both hardware and software implementations of watchdog timers, whereas health
monitors always require appropriate hardware. Watchdog timers depend on periodic reinitialization so as
not to reboot the system. If the system hangs, the timer eventually expires and causes a reboot.
Hardware health monitors provide information regarding the system's physical state. This information
can in turn be used to carry out appropriate actions to signal or solve actual physical problems such as
overheating or voltage irregularities.

The kernel includes drivers for many watchdog timers. The complete list of supported watchdog devices
can be found in the kernel build configuration menu in the Watchdog Cards submenu. The list includes
drivers for watchdog timer peripheral cards, a software watchdog, and drivers for watchdog timers found
in some CPUs such as the MachZ and the SuperH. Although you may want to use the software
watchdog to avoid the cost of a real hardware watchdog, note that the software watchdog may fail to
reboot the system in some circumstances. Timer watchdogs are seen as /dev/watchdog in Linux and
have to be written to periodically to avoid system reboot. This updating task is traditionally carried out by
the watchdog daemon available from ftp://metalab.unc.edu/pub/linux/system/daemons/iwatchdog/. In an
actual embedded system, however, you may want to have the main application carry out the update
instead of using the watchdog daemon, since the latter may have no way of knowing whether the main
application has stopped functioning properly.

In addition to the software watchdog available in the Linux kernel, RTAI provides an elaborate software
watchdog with configurable policies. The main purpose of the RTAI watchdog is to protect the system
against programming errors in RTAI applications. Hence, misbehaving tasks cannot hang the system.
Upon detecting the offending task, the RTAI watchdog can apply a number of remedies to it including
suspending it, killing it, and stretching its period. The RTAIl watchdog and appropriate documentation are
part of the mainstream RTAI distribution.

Finally, Linux supports quite a few hardware monitoring devices through the "Hardware Monitoring by
Im_sensors" project found at http://www2.Im-sensors.nu/~Im78/. The project's web site contains a
complete list of supported devices along with extensive documentation on the installation and operation
of the software. The Im_sensors package available from the project's web site includes both the device
drivers and user-level utilities to interface with the drivers. These utilities include sensord, a daemon that
can log sensor values and alert the system through the ALERT syslog level when an alarm condition
occurs. The site also provides links to external projects and resources related to Im_sensors.

http://www2.lm-sensors.nu/~lm78/
http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 4. Development Tools

Much like mainstream software developers, embedded system developers need compilers, linkers,
interpreters, integrated development environments, and other such development tools. The embedded
developer's tools are different, however, in that they typically run on one platform while building
applications for another. This is why these tools are often called cross-platform development tools, or
cross-development tools, for short.

This chapter discusses the setup, configuration, and use of cross-platform development tools. First, | will
discuss how to use a practical project workspace. | will then discuss the GNU cross-platform
development toolchain, the C library alternatives, Java, Perl, Python, Ada, other programming
languages, integrated development environments, and terminal emulation programs.

http://www.wowebook.info

Download at wowebook. 1nfag

4.1 Using a Practical Project Workspace

In the course of developing and customizing software for your target, you will need to organize various
software packages and project components in a comprehensive and easy-to-use directory structure.
Table 4-1 shows a suggested directory layout you may find useful. Feel free to modify this structure to fit
your needs and requirements. When deciding where to place components, always try to find the most
intuitive layout. Also, try to keep your own code in a directory completely separated from all the packages
you will download from the Net. This will minimize any confusion regarding the source's ownership and

licensing status.

Table 4-1. Suggested project directory layout

Directory Content

bootldr The bootloader or bootloaders for your target

build-tools | The packages and directories needed to build the cross-platform development toolchain

debug The debugging tools and all related packages

doc All the documentation you will need for your project

images The binary images of the bootloader, the kernel, and the root filesystem ready to be used
on the target

kernel The different kernel versions you are evaluating for your target

project Your own source code for this project

rootfs The root filesystem as seen by the target's kernel at runtime

sysapps | The system applications required for your target

tmp A temporary directory to experiment and store transient files

tools The complete cross-platform development toolchain and C library

Of course, each of these directories contains many subdirectories. We will populate these directories as
we continue through the rest of the book.

The location of your project workspace is up to you, but | strongly encourage you not to use a system-

wide entry such as /usr or /usr/local. Instead, use an entry in your home directory or a directory within the
/home directory shared by all the members of your group. If you really want to have a system-wide entry,

you may want to consider using an entry in the /opt directory. For the example embedded control system,
I have the following layout in my home directory:

$Is -1 ~/control -project

total 4

dr Wxr - Xr - X 13 karim kari m 1024 NMar 28 22:38 control -nodul e
dr Wxr - Xr - X 13 karim karim 1024 Mar 28 22:38 daqg-nodul e

dr Wxr - Xr - X 13 karim karim 1024 Mar 28 22:38 sysngnt-nodul e
dr Wxr - xr - X 13 karim kari m 1024 Mar 28 22:38 user-interface

Since they all run on different targets, each control system component has a separate entry in the
control-project directory in my home directory. Each entry has its own project workspace as described

http://www.wowebook.info

Download at wowebook. 1nfag

above. Here is the dag-module workspace for example:

$1ls -1 ~/control -project/dag-nodul e

total 11

dr WXr - Xr - x 2 karim karim 1024 NMar 28 22:38 bootl dr
dr Wxr - Xr - x 2 karim karim 1024 Nar 28 22:38 build-tools
dr wxr - Xr - X 2 karim karim 1024 Nar 28 22:38 debug
dr Wxr - Xr - x 2 karim karim 1024 Mar 28 22:38 doc

dr Wxr - Xr - X 2 karim karim 1024 Mar 28 22:38 i mages
dr WXr - Xr - x 2 karim karim 1024 Mar 28 22:38 kernel
dr Wxr - Xr - X 2 karim karim 1024 Mar 28 22:38 project
dr Wxr - Xr - x 2 karim karim 1024 Mar 28 22:38 rootfs
dr wxr - Xr - X 2 karim karim 1024 Mar 28 22:38 sysapps
dr Wxr - Xr - X 2 karim karim 1024 Nar 28 22:38 tnmp

dr Wxr - Xr - x 2 karim karim 1024 NMar 28 22:38 tools

Because you may need to provide the paths of these directories to some of the utilities you will build and
use, you may find it useful to create a short script that sets appropriate environment variables. Here is
such a script called develdaq for the DAQ module:

export PRQJECT=dag- nodul e
export PRIROOTI=/hone/ kar i ni control - proj ect/ ${ PRQIECT}
cd $PRIROCOT

In addition to setting environment variables, this script moves you to the directory containing the project.
You can remove the cd command if you would prefer not to be moved to the project directory right away.
To execute this script in the current shell so that the environment variables are immediately visible,
type:[1

[1] Allcommands used in this book assume the use of the sh or bash shell, because these are the shells most commonly used. If you use
another shell, such as csh, you may need to modify some of the commands accordingly.

$. devel daq

Future explanations will rely on the existence of the PROJECT and PRJROOT environment variables.

Since the distribution on your workstation has already installed many of the same

packages you will be building for your target, it is very important to clearly
separate the two types of software. To ensure such separation, | strongly
encourage you not to carry out any of the instructions provided in the rest of this
book while being logged in as root, unless | provide explicit instructions otherwise.
Among other things, this will avoid any possible destruction of the native GNU
toolchain installed on your system and, most importantly, the C library most of
your applications rely on. Therefore, instead of logging in as root, log in using a
normal user account with no particular privileges.

(eam Lib | [ercvious [l o)

http://www.wowebook.info

Download at wowebook. 1nfag

4.2 GNU Cross-Platform Development Toolchain

The toolchain we need to put together to cross-develop applications for any target includes the binary utili
as Id, gas, and ar, the C compiler, gcc, and the C library, glibc. The rest of the discussion in the later chaj
on the cross-platform development toolchain we will put together here.

You can download the components of the GNU toolchain from the FSF's FTP site at ftp:/ftp.gnu.org/gnu/
its mirrors. The binutils package is in the binutils directory, the gcc package is in the gcc directory, and th
package is in the glibc directory along with glibc-linuxthreads. If you are using a glibc version older than 2.
also need to download the glibc-crypt package, also from the glibc directory. This part of the library used t
distributed separately, because U.S. cryptography export laws made itillegal to download this package to
computer outside the U.S. from the FSF's site, or any other U.S. site, for that matter. Since Version 2.2, h
glibc-crypt has been integrated as part of the main glibc package and there is no need to download this pi
separately anymore.[? Following the project directory layout suggested earlier, download the packages int
${PRIROOT}/build-tools directory.

[2] The following email from the glibc developer mailing list covers the folding of glibc-cryptinto the main glibc package and conformance to |
laws: http://sources.redhat.com/ml/libc-alpha/2000-02/msg00104.html. This email, and the ensuing thread, refer to the "BXA" abbreviation. T
Bureau of Industry and Security of the U.S. Department of Commerce (http:/Mww.bxa.doc.gov/). Itis known as the BXA, because it was forn
Bureau of Export Administration.

Note that all the targets discussed in Chapter 3 are supported by the GNU toolchain.

4.2.1 GNU Toolchain Basics

Configuring and building an appropriate GNU toolchain is a complex and delicate operation that requires .
understanding of the dependencies between the different software packages and their respective roles. T
knowledge is required, because the GNU toolchain components are developed and released independen
one another.

4.2.1.1 Component versions

The first step in building the toolchain is selecting the component versions we will use. This involves sele(
binutils version, a gcc version, and a glibc version. Because these packages are maintained and releasec
independently from one another, not all versions of one package will build properly when combined with d
versions of the other packages. You can try using the latest versions of each package, but this combinatic
guaranteed to work either.

To select the appropriate versions, you have to test a combination tailored to your host and target. Of cou
may find it easier to ask around and see whether someone somewhere tested a certain combination of ve
that setup and reports that her combination works correctly. You may also have to try such combinations
setup on your own if you do not find a known functional version combination. In that case, start with the m
stable versions of each package and replace them one by one with older ones if they fail to build.

o In some cases, the version with the highest version number may not have had the time t
as be tested enough to be considered "stable." At the time glibc 2.3 was released, for
. 4s example, it may have been a better choice to keep using glibc 2.2.5 until 2.3.1 became
* available.

At the time of this writing, for instance, the latest version of binutils is 2.13.2.1, the latest version of gcc is
the latest version of glibc is 2.3.1. Most often, binutils will build successfully and you will not need to chan
Hence, let us assume that gcc 3.2.1 fails to build although all the appropriate configuration flags have bee

http://sources.redhat.com/ml/libc-alpha/2000-02/msg00104.html
http://www.bxa.doc.gov/
http://www.wowebook.info

Download at wowebook. 1nfag

provided. In that case, | would revert to gcc 3.2. If that failed, | would try 3.1.1 and so on. It is the same thi
glibc. Version 2.3.1 of glibc may fail to build. In that case, | would revert to 2.3 and later to 2.2.5, if necess

You must understand, however, that you cannot go back like this indefinitely, because the most recent pa
versions expect the other packages to provide certain capabilities. You may, therefore, have to go back tc
versions of packages that you successfully built if the other packages down the line fail to build. Using the
versions, for example, if | had to go back to glibc 2.1.3, it might be appropriate to change back to gcc 2.9¢
binutils 2.10 although the most recent gcc and most recent binutils may have compiled perfectly.

You may also need to apply patches to some versions to get them to properly compile for your target. The
sites and mailing lists provided for each processor architecture in Chapter 3 are the best place to find suc
and package versions suggestions. Another place to look for patches is in the Debian source packages. E
package contains the patches required for all the architectures supported by that package.

Table 4-2 provides a list of known functional version combinations. For each hostftarget combination, knc
compatible versions are provided for binutils, gcc, and glibc. The last column indicates whether the tools r
patching.

Table 4-2. Known functional package version combinations

Host Target Kernel binutils gce glibc
i386 PPC 2.10.1 2.95.3 2.2.1
PPC i386 2.10.1 2.95.3 2.2.3
PPC i386 2.13.21 3.21 2.3.1
i386 ARM 2.4.1-rmk1 2.10.1 2.95.3 2.1.3
PPC ARM 2.10.1 2.95.3 2.2.3
i386 MIPS 2.8.1 eges-1.1.2 2.0.6
i386 SuperH 2.11.2 3.01 2.2.4
Sparc (Solaris) PPC 2.4.0 2.10.1 2.95.2 2.1.3

[B] See "The -Dinhibit_libc hack" subsection in the "Building the Toolchain" section of "The GNU toolchain” chapter in AlephOne's "Guide to /
Developers" (http:/Mww.aleph1.co.uk/armlinux/book/bookl.html) for further information on the modifications to be made to gcc to make it bt
successfully.

[4] See Ralf Bachle's MIPS HOWTO (http://howto.linux-mips.org/) for further information on the patches to apply.

[5] see Bill Gatliff's "Running Linux on the Sega Dreamcast” (http:/Aww.linuxdevices.com/articles/AT7466555948 html) for further informatic
patches to apply.

Some of the combinations presented were on the Net as part of cross-platform development toolchain se
have kept the kernel version when the original explanation provided one. The kernel version, however, do
really matter for the build of the toolchain. Any recent kernel—Version 2.2.x or 2.4.x—known to work for y
can be used for the toolchain build. | strongly recommend using the actual kernel you will be using in your
however, to avoid any future conflicts. | will discuss kernel selection in Chapter 5.

Although it is not specifically mentioned in the table, there is one glibc add-on that we will need for the too
glibc-linuxthreads. The package's versions closely follow glibc's numbering scheme. Hence, the linuxthrei
version matching glibc 2.2.3 is linuxthreads Version 2.2.3. Although | recommend getting the linuxthreads
you should be able to build glibc without it. Note that glibc 2.1.x, for instance, does not build properly withc
linuxthreads. If you are using glibc 2.1.x, remember that you will also need to download the glibc-crypt adc
intend to use DES encryption.

http://www.aleph1.co.uk/armlinux/book/book1.html
http://howto.linux-mips.org/
http://www.linuxdevices.com/articles/AT7466555948.html
http://www.wowebook.info

Download at wowebook. 1nfag

By no means is Table 4-2 complete. There are many other combinations that will work just as well. Feel fi
newer versions than the ones presented. Use the same technique discussed earlier by starting with the la
versions and decrementing versions as needed. At worst, you will have to revert to setups presented abo

Whenever you discover a new version combination that compiles successfully, make sure you test the re:
toolchain to ensure that it is indeed functional. Some version combinations may compile successfully and
when used. Version 2.2.3 of glibc, for example, builds successfully for a PPC target on an x86 host using
2.95.3. The resulting library is, nevertheless, broken and will cause a core dump when used on the target.
particular setup, we can obtain a functional C library by reverting to glibc 2.2.1.

There are also cases where a version combination was found to work properly on certain processors with
processor family while failing to work on other processors of the same family. Versions of glibc earlier tha
example, worked fine for most PPC processors except those that were part of the MPC8xx series. The pr
was that glibc assumed 32-byte cache lines for all PPC processors, while the processors in the MPC8xx ¢
have 16-byte cache lines. Version 2.2 fixed this problem by assuming 16-byte cache lines for all PPC pro

The following sections describe the building of the GNU toolchain for a PPC host and an i386 target using
2.10.1, gcc 2.95.3, and dlibc 2.2.3. This was the second entry in Table 4-2.

4.2.1.2 Build requirements

To build a cross-platform development toolchain, you will need a functional native toolchain. Most mainstt
distributions provide this toolchain as part of their packages. If it was not installed on your workstation or i
chose not to install it to save space, you will need to install it at this point using the procedure appropriate
distribution. With a Red Hat distribution, for instance, you will need to install the appropriate RPM packag

You will also need a valid set of kernel headers for your host. These headers must usually be located in tt
/usr/include/linux, /usr/include/asm, and /ustr/include/asm-generic directories, and should be the headers |
compile the native glibc installed on your system. In older distributions, and in some installations still, thes
directories are actually symbolic links to directories within the /usr/src/linux directory. In turn, this directory
symbolic link to the actual kernel installed by your distribution. If your distribution uses the older setup, an
have updated your kernel or modified the content of the /usr/src/linux directory, you will need to make sur
{ustr/src/linux symbolic link is set appropriately so that the symbolic links in /usr/include point to the kernel
used to build your native glibc, and that was installed by your distribution. In recent distributions, however,
content of /usr/include/linux, /usr/include/asm, and /usr/include/asm-generic is independent of the content
{usr/src/linux, and no kernel update should result in such problems.

4.2.1.3 Build overview

With the appropriate tools in place, let us take alook at the procedure used to build the toolchain. These
five main steps:

1. Kernel headers setup

2. Binary uitilities setup

3. Bootstrap compiler setup

4. C library setup

5. Full compiler setup

The first thing that you probably noticed, looking at these steps, is that the compiler seems to be built twic
normal and required, because some languages supported by gcc, such as C++, require glibc support. He
first compiler is built with support for C only, and a full compiler is built once the C library is available.

http://www.wowebook.info

Download at wowebook. 1nfag

Although | placed the kernel headers setup as the first step, the headers will not be used until the C librar
Hence, you could alter the steps and set up the kernel headers right before the C library setup. Given the
workspace directory layout we are using, however, you will find the original ordering of the steps given ab
more appropriate.

Obviously, each step involves many iterations of its own. Nonetheless, the steps remain similar in many v
toolchain build steps involve carrying out the following actions:

1. Unpack the package.

2. Configure the package for cross-platform development.
3. Build the package.

4. Install the package.

Some toolchain builds differ slightly from this sequence. The kernel headers setup, for instance, does not
that we build the kernel or install it. Actually, we will save much of the discussions about configuring, build
installing the kernel for Chapter 5. Also, since the compiler will have already been unpacked for the boots
compiler's setup, the full compiler setup does not require unpacking the gcc package again.

4.2.1.4 Workspace setup

According to the workspace directory layout | suggested earlier, the toolchain will be built in the ${PRJRO
tools directory, while the components built will be installed in the ${PRIJROOT}/tools directory. To this end
to define some additional environment variables. They ease the build process and are based on the envir
variables already defined. Using the same example project as before, here is the new develdaq script witl
variables:

export PRQJECT=dag- nodul e

export PRIROOI=/hone/ kar i ni control - proj ect/ ${ PRQJECT}
export TARGET=i 386-1i nux

export PREFI X=${PRJROCT}/tool s

export TARGET_PREFI X=${ PREFI X} / ${ TARGET}

export PATH=${ PREFI X}/ bi n: ${ PATH}

cd $PRIROOT

The TARGET variable defines the type of target for which your toolchain will be built. Table 4-3 provides sol
other possible values for TARGET. Notice that the target definition does not depend on the type of host. A ti
defined by its own hardware and the operating system used on it, which is Linux in this case. Also, note tt
TARGET needs to be modified in case we change targets. Of course, if we had already compiled the compl
toolchain for a different target, we would need to rebuild it after changing the value of TARGET. For a more
list of TARGET values, look at the manual included in the glibc sources.

Table 4-3. Example values for TARGET

http://www.wowebook.info

Download at wowebook. 1nfag

Actual target Value of TARGET
PowerPC power pc- | i nux
ARM arm i nux
MIPS (big endian) m ps-1inux
MIPS (little endian) m psel -1 i nux
SuperH 4 sh4-1inux

The PREFI X variable provides the component configuration scripts with a pointer to the directory where we
like the target utilities to be installed. Conversely, TARGET_PREFI X is used for the installation of target-depe
header files and libraries. To have access to the newly installed utilities, we also need to modify the PATH"
point to the directory where the binaries will be installed.

Some people prefer to set PREFI X to /usr/local. This results in the tools and libraries being installed within
/usr/local directory where they can be accessed by any user. | find this approach not to be useful for most
situations, however, because even projects using the same target architecture may require different toolc
configurations.

If you need to set up atoolchain for an entire development team, instead of sharing tools and libraries via
/usr/local directory, | suggest that a developer build the toolchain within an entry shared by all project mer
the /nome directory, as | said earlier. In a case in which no entry in the /home directory is shared among g
members, a developer may build the toolchain within an entry in her workstation's /opt directory and then
resulting ${PRIJROOT}tools directory with her colleagues. This may be done using any of the traditional <
mechanisms available, such as NFS, or using a tar-gzipped archive available on an FTP server. Each de
using the package will have to place it in a filesystem hierarchy identical to the one used to build the toolc
the tools to operate adequately. In a case in which the toolchain was built within the /opt directory, this me
placing the toolchain in the /opt directory.

If you choose to set PREFI X to /ust/local, you will also have to issue the commands shown below while be
logged-in as root, with all the risks this entails. You could also set the permission bits of the /usr/local dire
allow yourself or your user group to issue the commands without requiring root privileges.

Notice that TARGET PREFI X is set to ${PREFIX}Y${TARGET}, which is a target-dependent directory. If you
PREFI X to /usr/local, successive installations of development toolchains for different targets will result in tr
and header files of the latest installation being placed in different directories from the libraries and header
previous toolchain installations.

Regardless of the value you give to PREFI X, setting TARGET PREFI X to ${PREFIXY${TARGET} is the confi
the GNU toolchain utilities expect to find during their configuration and installation. Hence, | strongly sugg
you use this value for TARGET PREFI X. The following explanations may require changes if you modify
TARGET_PREFI X's value.

Again, you can remove the cd command from the script if you would prefer not to move directly to the pro
directory.

4.2.1.5 Preparing the build-tools directory

At this point, you should have the different packages required for building the toolchain in the build-tools c
As with other packages, a new directory will be created when you extract the files from the package archi
new directory will contain the complete source code necessary to build the packages and all appropriate |
Although it is possible to build the package within this source directory, | highly recommend that you build
package in a directory separate from its source directory, as is suggested in the FSF's installation manua

Building a package in a directory different from the one holding its source may seem awkward if you are L
simply typing configure; make; make install, but | will shortly explain how this is done. First, though, we ne

http://www.wowebook.info

Download at wowebook. 1nfag

create the directories that will hold the packages being built. Create one directory for each toolchain comg
Four directories are therefore needed: one for the binutils, one for the bootstrap C compiler, one for the C
and one for the complete compiler. We can use the following commands to create the necessary entries:

$ cd ${PRIROOT}/buil d-t ool s
$ nkdir build-binutils build-boot-gcc buil d-glibc buil d-gcc

We can now look at the content of the build-tools directory with the packages and the build directories (tht
in this example is truncated to fit the page):

$1s -l

total 35151

SrPWr--1-- 1 karim karim 7284401 Apr 4 17:33 binutils-2.10.1.tar.qg:
dr WXr Wxr - X 2 karim karim 1024 Apr 4 17:33 build-binutils

dr WXr Wxr - X 2 karim karim 1024 Apr 4 17:33 buil d-boot-gcc

dr Wxr wWxr - x 2 karim karim 1024 Apr 4 17:33 build-gcc

dr WXr Wxr - X 2 karim karim 1024 Apr 4 17:33 build-gli bc

SFWr--1-- 1 karim karim 12911721 Apr 4 17:33 gcc-2.95. 3. tar. gz
STWr--1-- 1 karim karim 15431745 Apr 4 17:33 glibc-2.2.3. tar.gz
SFWF--1-- 1 karim karim 215313 Apr 4 17:33 glibc-1linuxt hreads-2.

Everything is nhow almost ready for building the actual toolchain.

4.2.1.6 Resources

Before proceeding to the actual building of the toolchain, let us look at some resources you may find usef
you run into problems during the build process.

First and foremost, each package comes with its own documentation. Although you will find the binutils p:
be the leanest in terms of installation documentation, itis also the least likely to cause any problems. The
glibc packages, however, are amply documented. Within the gcc package, you will find an FAQ file and a
directory containing instructions on how to configure and install gcc. This includes an extensive explanatic
build configuration options. Similarly, the glibc package contains an FAQ and INSTALL files. The INSTAL
covers the build configuration options and the installation process, and provides recommendations for cot
tool versions.

In addition, you may want to try using a general search engine such as Google to look for reports by other
developers who may have already encountered and solved problems similar to yours. Often, using a gene
search engine will be the most effective way to solve a GNU toolchain build problem.

On the matter of cross-compiling, there are two CrossGCC FAQs available: the Scott Howard FAQ and tt
Gatliff FAQ. The Scott Howard CrossGCC FAQ is available at http://www.sthoward.com/CrossGCC/. This
rather outdated, however. The Bill Gatliff CrossGCC FAQ is available at http://crossgcc.hillgatliff.com/.

Though the Scott Howard FAQ is outdated, and though itisn't limited to Linux and attempts to provide gel
explanations for all the platforms the GNU toolchain can be built for, it does provide pieces of information
be hard to find otherwise. It covers, for instance, what is known as Canadian Crosses, 8 a technique for b
cross-platform development tools for development on another platform. An example of this would be builc
platform development tools for an ARM target and an i386 host on a PPC workstation.

(6] In reference to the fact that Canada had three national parties at the time a name was needed for this procedure.

As with the Scott Howard FAQ, the Bill Gatliff FAQ is not limited to Linux. In addition to the FAQ, Bill Gatli
maintains a CrossGCC Wiki site, which provides information on a variety of cross-platform development i
including tutorials, links to relevant articles, and explanations about GNU toolchain internals. Since this is
site, you can register to modify and contribute to the site yourself. The Wiki site is accessed through the s
as the Bill Gatliff FAQ.

http://www.sthoward.com/CrossGCC/
http://crossgcc.billgatliff.com/
http://www.wowebook.info

Download at wowebook. 1nfag

Both FAQs provide scripts to automate the building of the toolchain. Similar scripts are also available fron
other sites. You may be interested in taking a look at these scripts, but | will not rely on any scripts for my
explanations as | would rather you fully understand all the steps involved.

Finally, there is a crosgcc mailing list hosted by Red Hat at http://sources.redhat.com/ml/crossgcc/. You w
mailing list quite useful if you ever get stuck, because many on this list have a great deal of experience wi
process of building cross-platform development toolchains. Often, just searching or browsing the archive
you locate immediate answers to your questions.

4.2.1.7 Aword on prebuilt cross-platform toolchains

A lot of prebuilt cross-platform toolchains are available either online or commercially. Since | do not know
process by which each was built, | cannot offer any advice regarding those packages. You may still choos
such packages out of convenience instead of carrying out the procedure explained here. In that case, ma
you have documentation as to how these packages were configured and built. Most importantly, make su
know what package versions were used, what patches were applied, if any, and where to get the patches
applied in case you need them.

4.2.2 Kernel Headers Setup

As | said earlier, the setup of the kernel headers is the first step in building the toolchain. In this case, we
kernel Version 2.4.18, but we could have used any other version appropriate for our target. We will discus
selection further in Chapter 5.

Having selected a kernel, the first thing you need to do is download a copy of that kernel into the directory
you have chosen to store kernels. In the case of the workspace hierarchy | suggested earlier, this would k
${PRJIROOT}kernel. You can obtain all the Linux kemels from the main kernel repository at http://mamw.ke
or any other mirror site, such as the national mirrors.[”] There are other sites that provide kernels more ad
certain targets, and | will cover these in Chapter 5.

[7] In some counftries, there are local national mirrors, which may be preferable for you to use instead of the main U.S. site. These mirrors' Ul
usually in the http:/Avww.counTry.kernel.org/ form. http:/Mww.it.kernel.org/ and http:/Aww.cz kernel.org/ are two such mirrors.

For some time now, each version of the kernel has been available both as a tar-gzipped file (with the .tar.:
extension) and as a tar-bzip2'd file (with the .tar.bz2 extension). Both contain the same kernel, except tha
bzip2'd files are smaller and require less download time than tar-gzipped files.

With the kernel now in your kernel directory, you can extract it using the appropriate command. In our cas
one the following commands, depending on the file we downloaded:

$ tar xvzf linux-2.4.18.tar.gz
or:
$ tar xvjf linux-2.4.18.tar.bz2

Some older versions of tar do not support the j option and you may need to use bzip2 -d or bunzip2 to dec
the archive before using tar.

For all kernels up to 2.4.18, the tar command creates a directory called linux that contains the extracted fi
the archive. Starting with 2.4.19, however, the kernel extracts immediately into a directory that has the vel
number appended to its name. Hence, Linux 2.4.19 extracts directly into the linux-2.4.19 directory. This a
accidently overwriting an older kernel with a new one. If you are using a kernel that is older than 2.4.19, |
recommend that you rename the directory right away to avoid any accidental overwriting:

$ nv linux linux-2.4.18

http://sources.redhat.com/ml/crossgcc/
http://www.kernel.org/
http://www
http://www.it.kernel.org/
http://www.cz.kernel.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Overwriting a kernel version with another because the directory of the previous version wasn't renamed i
common and often costly mistake, so itis really important that you rename the directory as soon as you e
kernel from the archive, if need be.

With the kernel now extracted, we proceed to configuring it:

$ cd linux-2.4.18
$ nmake ARCH=i 386 CROSS COWPI LE=i 386-1i nux- nenuconfig

This will display a menu in your console where you will be able to select your kernel's configuration. Inste
menuconfig, you can specify config or xconfig. The former requires that you provide an answer for every
configuration option one by one at the command line. The latter provides an X Window dialog, which is of
considered the most intuitive way to configure the kernel. Beware of xconfig, however, as it may fail to set
configuration options and forget to generate some headers required by the procedure | am describing. Th
config may also result in some headers not being created. You can check whether the kernel configuratio
successfully created the appropriate headers by verifying whether the include/linux/version.h file exists in
sources after you finish the configuration process. If it is absent, the instructions outlined below will fail at
instance where kernel headers are required; usually during the compilation of glibc.

As you probably noticed, the values of ARCH and CROSS COMPI LE depend on your target's architecture type
been a PPC target and an i386 host, we would have used ARCH=ppc and CROSS COMPI LE=power pc-| i nux-
trailing hyphen in the CROSS COMPI LE=power pc- | i nux- variable is not an accident.) Strictly speaking, itis
necessary to set CROSs_COMPI LE for all kernel make targets. The various configuration targets | just cover
usually need it, for example. In fact, itis only necessary when code is actually being cross-compiled as a
the kernel Makefile rules. Nevertheless, | will continue to specify it for all kernel make targets throughout t
even when it isn't essential, to highlight its importance. You are free to set it only when needed in your act
to-day work.

I will cover the intricacies of kernel configuration in Chapter 5. If you are not familiar with kernel configurat
may want to have a peek at that chapter first. The most important configuration options we need to set at
are the processor and system type. Although it is preferable to fully configure the kernel before proceedin
setting the processor and system type is usually enough to generate the appropriate headers for the toolc

With the kernel now configured, exit the menu by selecting the Exit item with your right arrow. The configt
utility then asks you if you want to save the configuration and, upon confirmation, proceeds to write the ke
configuration and creates the appropriate files and links.

We can now create the include directory required for the toolchain and copy the kernel headers to it:

$ nkdir -p ${ TARGET_PREFI X}/i ncl ude

$ cp -r include/linux/ ${TARGET_PREFI X}/incl ude

$ cp -r include/asmi 386/ ${TARGET_PREFI X}/incl ude/ asm
$ cp -r include/asm generi c/ ${TARGET _PREFI X} /i ncl ude

Keep in mind that we are using a PPC host and an i386 target. Hence, the asm-i386 directory in the path
the directory containing the target-specific headers, not the host-specific ones. If this were a PPC target, 1
example, we would have to replace asm-i386 with asm-ppc.

Note that you will not need to rebuild the toolchain every time you reconfigure the kernel. The toolchain ne
valid set of headers for your target, which is provided by the procedure given earlier. You may later choos
reconfigure your kernel or use another one entirely without impacting your toolchain, unless you change tt
processor or system type.

4.2.3 Binutils Setup

The binutils package includes the utilities most often used to manipulate binary object files. The two most
utilities within the package are the GNU assembler, as, and the linker, Id. Table 4-4 contains the complete

http://www.wowebook.info

Download at wowebook. 1nfag

utilities found in the binutils package.

Table 4-4. Utilities found in the binutils package

Utility Use
as The GNU assembler
Id The GNU linker
gasp The GNU assembler pre-processor
ar Creates and manipulates archive content
nm Lists the symbols in an object file
objcopy | Copies and translates object files
objdump | Displays information about the content of object files
ranlib Generates an index to the content of an archive
readelf Displays information about an ELF format object file
size Lists the sizes of sections within an object file
strings Prints the strings of printable characters in object files
strip Strips symbols from object files
c++ilt Converts low-level mangled assembly labels resulting from overloaded c++ functions into the
level names
addr2line Converts addresses into line numbers within original source files

Note that although as supports many processor architectures, it does not necessarily recognize the same
the other assemblers available for a given architecture. The syntax recognized by as is actually a machint
independent syntax inspired by BSD 4.2 assembly language.

The first step in setting up the binutils package is to extract its source code from the archive we download

$ cd ${PRIROOT}/ buil d-t ool s
$ tar xvzf binutils-2.10.1.tar.gz

This will create a directory called binutils-2.10.1 with the package's content. We can now move to the buil
for the second part of the build process, the configuration of the package for cross-platform development:

$ cd build-binutils
$../binutils-2.10.1/configure --target=3TARGET --prefix=${PREFI X}
Confi guring for a powerpc-unknown-I|i nux-gnu host.

O eat ed

"Makefile" in /hone/karinfcontrol-project/daqg-modul e/ buil d-

Configuring intl...

creating
checki ng
checki ng
checki ng
checki ng
checki ng
checki ng

cache ../ config.cache
for a BSD conpatible install... /usr/bin/install -c
how to run the C preprocessor... gcc -E

whet her nmake sets ${MAKE}... yes
for gcc... gcc

whet her the C conpiler (gcc -g

-2 wor ks. .. yes
whet her the C conpiler (gcc -g - -

)
) is across-c ...

http://www.wowebook.info

Download at wowebook. 1nfag

checking whether we are using G\U C... yes
checking whet her gcc accepts -g... yes
checking for ranlib... ranlib

checking for POSI Xized I SC... no

checking for ANSI C header files... yes

What I've shown is only part of the output from the configure script. It will actually continue printing similar
messages on the console until it has prepared each utility in the package for compilation. This may take ¢
two to complete, but it is a relatively short operation.

During its run, configure checks for the availability of certain resources on the host and creates approprial
Makefiles for each tool in the package. Since the command is not being issued in the directory containing
binutils source code, the result of the configure command will be found in the directory where it was issue
build-binutils directory.

We control the creation of the Makefiles by passing the appropriate options to configure. The - -target opt
enables us to specify the target for which the binutils are being built. Since we had already specified the n
the target in the TARGET environment variable, we provide this variable as is. The - -prefix option enables

provide the configuration script with the directory within which it should install files and directories. The dir
- -prefix is the same as the one we specified earlier in the PREFI X environment variables.

With the Makefiles now ready, we can build the actual utilities:
$ make

The actual build of the binutils may take anywhere between 10 and 30 minutes, depending on your hardw
a 400 MHz PowerBook host, it takes at most 15 minutes to build the binutils for the i386 target used here.
see some warnings during the build but they can be ignored, unless you're one of the binutils developers.

With the package now built, we can install the binutils:
$ make install

The binutils have now been installed inside the directory pointed to by PREFI X. You can check to see that
been installed properly by listing the appropriate directory:

$ I's ${ PREFI X}/ bi n

i 386-1inux-addr2line i386-linux-Id i 386-11i nux-readel f
i 386-1inux-ar i 386- 1 i nux- nm i 386-11i nux-si ze

i 386-1inux-as i 386- i nux- obj copy i 386-1i nux-strings
i 386-1inux-c++filt i 386- 1 i nux- obj dunp i 386-1inux-strip

i 386-1i nux- gasp i 386-linux-ranlib

Notice that the name of each utility is prepended by the value of TARG=T we set earlier. Had the target bee
powerpc-linux, for instance, the names of the utilities would have been prepended with powerpc-linux-. W
building an application for a target, we can therefore use the appropriate tools by prepending the name of

type.

A copy of some of the utilities without the prepended target name will also be installed in the
${PREFIX}${TARGETY}bin directory. Since this directory will later be used to install target binaries by the
build process, we will need to move the host binaries to a more appropriate directory. For now, we will lea
as is and address this issue later.

4.2.4 Bootstrap Compiler Setup

In contrast to the binutils package, the gcc package contains only one utility, the GNU compiler, along witl

http://www.wowebook.info

Download at wowebook. 1nfag

components such as runtime libraries. At this stage, we will build the bootstrap compiler, which will suppo
C language. Later, once the C library has been compiled, we will recompile gcc with full C++ support.

Again, we start by extracting the gcc package from the archive we downloaded earlier:

$ cd ${PRIROOT}/ buil d-t ool s
$ tar xvzf gcc-2.95.3.tar. gz

This will create a directory called gcc-2.95.3 with the package's content. We can now proceed to the conf
of the build in the directory we had prepared for the bootstrap compiler:

$ cd buil d-boot-gcc
$../gcc-2.95.3/configure --target=8$TARCET - - prefix=${ PREFI X} \
> --wi thout -headers --with-newlib --enable-languages=c

This will print output similar to that printed by the binutils configuration utility we discussed earlier. Here to
configure checks for the availability of resources and builds appropriate Makefiles.

The - -target and - -prefix options given to configure have the same purpose as with binutils, to specify the
and the installation directory, respectively. In addition, we use options that are required for building a boot
compiler.

Since this is a cross-compiler and there are no system header files for the target yet—they will be availab
glibc is built—we need to use the - -without-headers option. We also need to use the - -with-newlib option
configuration utility not to use glibc, since it has not yet been compiled for the target. This option, howevet
force usto use newlib as the C library for the target. It is just there to enable gcc to properly compile, and
free to choose any C library at a later time.

The - -enable-languages option tells the configuration script which programming languages we expect the
compiler to support. Since this is a bootstrap compiler, we need only include support for C.

Depending on your particular setup, you may want to use additional options for your target. For a complet
the options recognized by configure, see the installation documentation provided with the gcc package.

With the Makefiles ready, we can now build the compiler:
$ make all -gcc

The compile time for the bootstrap compiler is comparable to that of the binutils. Here, too, you may see \
during the compilation, and you can safely ignore them.

With the compilation complete, we can now install gcc:
$ make install-gcc

The bootstrap compiler is now installed alongside the binutils, and you can see it by relisting the content ¢
${PREFIX}/bin. The name of the compiler, like the utilities, is prepended with the name of the target and i
i386-linux-gcc in our example.

4.25 C Library Setup

The glibc package is made up of a number of libraries and is the most delicate and lengthy package build
cross-platform development toolchain. It is an extremely important software component on which most, if
applications available or being developed for your target will rely. Note that although the glibc package is «
called the C library—a confusion maintained within GNU's own documentation—glibc actually generates t
libraries, one of which is the actual C library, libc. We will discuss the complete list of libraries generated t
Chapter 6. Until then, | will continue to use "C library" and "glibc" interchangeably.

http://www.wowebook.info

Download at wowebook. 1nfag

Using gcc 3.2 and Above

The instructions provided in the previous section will fail to work with gcc 3.2 and the subsequent 3.2.1
release existing at the time of this writing, because the - -without-headers configuration option is
broken and has not yet been fixed. To solve the problem, we must install appropriate glibc headers
before attempting to compile the bootstrap compiler. This sidebar provides the commands used to
install the headers, but does not explain the various command options in detail, since they are already
covered by the previous and next sections. Here, we are using binutils 2.13.2.1, gcc 3.2.1, and glibc
2.3.1. Note that a native gcc 3.2 must be available on the host for the following procedure to work.

First, we must extract the glibc package and its add-ons, as we would do when setting up the C library:

$ cd ${PRIROOT}/ buil d-t ool s
$ tar xvzf glibc-2.3.1.tar.gz
$ tar -xvzf glibc-linuxthreads-2.3.1l.tar.gz --directory=glibc-2.3.1

Next, we must configure glibc and install its headers:

$ nkdir build-gli bc-headers

$ cd build-glibc-headers

$../glibc-2. 3.1/ configure --host=3TARGET --prefix="/usr" \
> --enabl e- add- ons --wit h-header s=${ TARGET PREFI X} /i ncl ude

$ make cross-conpiling=yes install _root=%${ TARGET PREFI X} \

> prefix="" install-headers

Because we are not setting CC to point to an existing cross-compiler, we must set the cross-
conpi | i ng variable to yes so that the glibc build scripts do not attempt to build parts of the library
natively. Installing the headers is achieved by using the i nst al | - header s Makefile target.

Next, we create a dummy stubs.h file required for gcc to build (a version of this file will be generated
properly during the installation of the cross-compiled glibc):

$ nkdir -p ${ TARGET_PREFI X}/i ncl ude/ gnu
$ touch ${ TARGET_PREFI X}/i ncl ude/ gnu/ stubs. h

Finally, we can build the bootstrap gcc compiler:

cd ${ PRIJIROOT}/ buil d-t ool s/ buil d-boot -gcc

../lgcc-3.2. 1/ configure --target=3$TARCET --prefix=${PREFI X} \
--di sabl e-shared --with-headers=${ TARGET_PREFI X}/i ncl ude \
--with-newib --enabl e-languages=c

make all -gcc

BV Ve

In addition to the options we used in the previous section, we are also using the - -disable-shared
configuration option to avoid the build scripts from trying to create the shared gcc library. If this option
is not used, gcc 3.2 fails to build.

Once the bootstrap compiler is installed, the steps for building and installing the rest of the GNU
toolchain are the same as those described in this chapter.

As with the previous packages, we start by extracting the C library from the archive we downloaded earlie

$ cd ${PRIROOT}/ buil d-t ool s
$ tar xvzf glibc-2.2.3. tar.gz

http://www.wowebook.info

Download at wowebook. 1nfag

This will create a directory called glibc-2.2.3 with the package's content. In addition to extracting the C libt
extract the linuxthreads package in the glibc directory for the reasons stated earlier in the chapter:

$ tar -xvzf glibc-linuxthreads-2.2.3.tar.gz --directory=glibc-2.2.3
We can now proceed to preparing the build of the C library in the build-glibc directory:

cd build-glibc

CC=i 386- linux-gcc ../ glibc-2.2.3/ configure --host =3TARGET \
--prefix="/usr" --enabl e-add-ons \

--wi t h- header s=${ TARGET_PREFI X} /i ncl ude

V V &8 &

Notice that this configuration command is somewhat different from the previous ones. First, we precede t
configure with CC=i386-linux-gcc. The effect of this command is to set the CC environment variable to i 3¢
gce. Therefore, the compiler used to build the C library will be the bootstrap cross-compiler we have justt
we now use the - -host option instead of the - -target option, since the library runs on our target and not or
system.[8 In other words, the host from the point of view of the library is our target, contrary to the tools w
earlier, which all run on our build system.

[8] Practically speaking, the build system is our development host.

Although we still use the - -prefix option, its purpose here is to indicate to the configuration script the locat
library components once on the target's root filesystem. This location is then hardcoded into the glibc con
during their compilation and used at runtime. As is explained in the INSTALL file in the glibc source direct
systems expect to have some glibc components installed in /lib and others in /ust/lib. By setting - -prefix t
configuration script recognizes this setup and the relevant directory paths are properly hardcoded in the g
components. As a result, the dynamic linker, for example, will expect to find shared libraries in /lib, which
appropriate location for these libraries in any Linux system, as we shall see in Chapter 6. We will not, how
the build script install the libraries into the build system's /usr directory. Rather, as we shall see later in thi:
we will override the install directory when issuing the make install command.

We also instruct the configuration script to use the add-on we downloaded with the - -enable-add-ons opti
we are using linuxthreads only, we could have given the exact list of add-ons we want to be configured by
- -enable-add-ons=linuxthreads option. If you are using glibc 2.1.x and had applied the glibc-crypt add-on,
would need to use the - -enable-add-ons=linuxthreads,crypt option instead. The full command | provided
which doesn'tinclude the full list of add-ons, will work fine nonetheless with most glibc versions.

Finally, we tell the configuration script where to find the kernel headers we set up earlier using the - -with-
option. If this option was omitted, the headers found through /usr/include would be used to build glibc and
would be inappropriate, since they are the build system's headers, not the target's.

During the actual build of the library, three sets of libraries are built: a shared set, a static set, and a static
profiling information. If you do not intend to use the profiling version of the library, you may instruct the col
script not to include it as part of the build process by using the - -disable-profile option. The same applies
shared set, which can be disabled using the - -disable-shared option. If you do not intend to have many a|
on your target and plan to link all your applications statically, you may want to use this option. Be careful,

as your target may eventually need the shared library. You can safely leave its build enabled and still link
applications statically. At least then you will be able to change your mind about how to link your applicatiol
having to rebuild the C library.

Another option that has an effect on static versus dynamic linking is - -enable-static-nss. This option gene
libraries which enable the static linking of the Name Service Switch (NSS) components. In brief, the NSS
glibc allows some of the library components to be customizable to the local configuration. This involves th
the /etc/nsswitch.conf file to specify which /lib/libnss_NsS SERvI CE library is loaded at runtime. Because t
is specifically designed to load libraries dynamically, it doesn't allow true static linking unless it is forced tc
if you plan to statically link applications that use NSS, add the - -enable-static-nss option to the configurat
script's command line. The web servers discussed in Chapter 10, for example, use NSS and will either nc
properly on the target or will simply fail to build if you instruct the linker to statically link them against a glik
doesn' allow static NSS linking. Look at the glibc manual for a complete discussion of NSS.

http://www.wowebook.info

Download at wowebook. 1nfag

If you are compiling glibc for a target that lacks an FPU, you may also want to use the - -without-fp option
FPU emulation into the C library. In some cases, you may also need to add the -msoft-float option to the (
used to build the library. In the case of the PPC, at least, the C flags are appropriately set (since glibc 2.3
whenever - -without-fp is used to configure glibc.

If you have chosen not to download the linuxthreads package, or the crypt package if you were using glibc
you may try to compile the C library by removing the - -enable-add-ons option and adding the - -disable-s:
checks option. Otherwise, the configuration script will complain about the missing linuxthreads. Note, how
although glibc may build successfully without linuxthreads, it is possible that the full compiler's build will fa
including C++ support later.

With the configuration script done, we can now compile glibc:
$ nmake

The C library is a very large package and its compilation may take several hours, depending on your hard
the PowerBook system mentioned earlier, the build takes approximately an hour. Regardless of your platf
is a good time to relax, grab a snack, or get some fresh air. One thing you may want to avoid is compiling
library in the background while trying to use your computer for other purposes in the meantime. As | said «
compilation of some of the C library's components uses up a lot of memory, and if the compiler fails beca
lack of available memory, you may have to restart the build of the library from scratch using make clean f
make. Some parts of the build may not be restarted gracefully if you just retype make.

Once the C library is built, we can now install it:
$ nake install_root=${ TARGET PREFI X} prefix="" install

In contrast to the installation of the other packages, the installation of the C library will take some time. It\
as much time as the compilation, but it may take between 5 and 10 minutes, again depending on your hal

Notice that the installation command differs from the conventional make install. We setthe i nstal | _root
to specify the directory where we want the library's components to be installed. This ensures that the libra
headers are installed in the target-dependent directory we had assigned to TARGET PREFI X earlier, not in
system’s /usr directory. Also, since the use of the - -prefix option sets the prefi x variable's value and sinc
value of prefix is appendedtoinstal | root's value to provide the final installation directory of the libran
components, we reset the value of prefi x so that all glibc components are installed directly in the
${TARGET_PREFIX} directory. Hence, the glibc components that would have been installed in
${TARGET_PREFIX}Yusr/lib are installed in ${TARGET_PREFIX}/lib instead.

If you are building tools for a target that is of the same architecture as your host (compiling for a PPC targ
PPC host, for instance), you may want to set the cross-conpi | i ng variable to yes as part of the make ins
command. Because the library's configure script will have detected that the architectures are identical dur
build configuration, the Makefile assumes that you are not cross-compiling and the installation of the C lib
as aresult of the Makefile using a different set of rules.

There is one last step we must carry out to finalize glibc's installation: the configuration of the libc.so file. 1
used during the linking of applications to the C library and is actually a link script. It contains references tc
various libraries needed for the real linking. The installation carried out by our make install above assume
library is being installed on a root filesystem and hence uses absolute pathnames in the libc.so link script
reference the libraries. Since we have installed the C library in a nonstandard directory, we must modify tt
script so that the linker will use the appropriate libraries. Along with the other components of the C library,
script has been installed in the ${TARGET_PREFIXYlib directory.

In its original form, libc.so looks like this:

/* GNU | d script
Use the shared library, but sone functions are only in
the static library, so try that secondarily. */

GROUP (/lib/libc.so.6 /lib/libc_nonshared. a)

http://www.wowebook.info

Download at wowebook. 1nfag

This is actually quite similar, if not identical, to the libc.so that has already been installed by your distributi
native C library in /usr/lib/. Since you may need your target's default script sometime, | suggest you make
before modifying it:

$ cd ${ TARCGET PREFIX}/Iib
$cp ./libc.so ./libc.so.orig

You can now edit the file and remove all absolute path references. In essence, you will need to remove /li
the library filenames. The new libc.so now looks like this:

/* GNU I d script
Use the shared library, but sone functions are only in
the static library, so try that secondarily. */

GROUP (libc.so.6 |ibc _nonshared. a)

By removing the references to an absolute path, we are now forcing the linker to use the libraries found w
same directory as the libc.so script, which are the appropriate ones for your target, instead of the native o
on your host.

4.2.6 Full Compiler Setup

We are now ready to install the full compiler for your target with both C and C++ support. Since we had al
extracted the compiler from its archive in Section 4.2.4, we will not need to repeat this step. Overall, the b
full compiler is much simpler than the build of the bootstrap compiler.

From the build-tools/build-gcc directory enter:

$ cd ${ PRIROOT}/ buil d-t ool s/ buil d-gcc
$../gcc-2.95.3/configure --target=8$TARCET - - prefix=${ PREFI X} \
> --enabl e- | anguages=c, c++

The options we use here have the same meaning as when building the bootstrap compiler. Notice, howe\
there are fewer options and that we now add support for C++ in addition to C. If you had set TARGET PREF
something other than ${PREFIX}/${TARGET} as we did earlier, you will need to use the - -with-headers a
libs options to tell the configuration script where to find the headers and libraries installed by glibc.

With the full compiler properly configured, we can now build it:
$ make all

This build will take slightly longer than the build of the bootstrap compiler. Again, you may see warnings tt
can ignore. Notice that we didn't use al | - gcc as with the bootstrap compiler, but rather al | . This will resu
build of all the rest of the components included with the gcc package, including the C++ runtime libraries.

If you didn't properly configure the libc.so link script file as previously explained, the build will fail during th
compilation of the runtime libraries. Also, if you didn't install the linuxthreads package during the C library
compilation may fail under some versions of gcc. Version 2.95.3 of gcc, for instance, will fail to build withc
linuxthreads.

With the full compiler now built, we can install it:
$ make install

This will install the full compiler over the bootstrap compiler we had previously installed. Notice that we dic
install - gcc aswe had done earlier for the bootstrap compiler, but rather i nst al | . Again, this is becaust
now installing both gcc and its support components.

http://www.wowebook.info

Download at wowebook. 1nfag

4.2.7 Finalizing the Toolchain Setup

The full cross-platform development toolchain is now set up and almost ready to be used. | have only a cc
final observations left.

First, let's take a look at what has been installed in the tools directory and how we will be using itin the ful
4-5 provides the list of first-level subdirectories found in the tools directory.

Table 4-5. Contents of the ${PRJROOT}/tools directory

Directory Content

bin The cross-development utilities.

i386-linux | Target-specific files.

include Headers for cross-development tools.

info The gcc info files.

lib Libraries for cross-development tools.

man The manual pages for cross-development tools.

share The files shared among cross-development tools and libraries. This directory is empty.

The two most important directories are bin and i386-linux. The first contains all the tools within the cross-
development toolchain that we will use on the host to develop applications for the target. The second cont
the software components to be used on the target. Mainly, it contains the header files and runtime librarie
target. Table 4-6 provides a list of the first-level subdirectories found in i386-linux.

Table 4-6. Contents of the ${PRJROOT}/tools/i386-linux directory

Directory Content

bin glibc-related target binaries and scripts.

etc Files that should be placed in the target's /etc directory. Only contains the rpc file.

include The headers used to build applications for the target.

info The glibc info files.

lib The target's /lib directory.

libexec Binary helpers. This directory only contains pt_chown, which you will not need for most targe
shin The target's /sbin directory.

share Subdirectories and files related to internationalization.

sys- Would have been used by the gcc configuration script to copy the target's headers had glibc
include installed the main target headers in the include directory.

Within the i386-linux directory, the two most important directories are include and lib. The first contains th
files that will be used to build any application for the target. The second contains the runtime libraries for t

http://www.wowebook.info

Download at wowebook. 1nfag

Notice that this last directory contains a lot of large libraries. By itself, the directory weighs in at around 80
embedded systems do not have this quantity of storage available. As we will see in Section 4.3, there are
libraries that can be used instead of glibc. Also, we will see in Chapter 6 ways to minimize the number an
the libraries you choose to use.

As | said earlier, a copy of some of the host utilities without the prepended target name have been installe
${PREFIX}${TARGETY}bin directory. Since this directory now contains target binaries installed by the C li
build process, | highly suggest that you move the host binaries out of this directory and into another direct
appropriate for host binaries. The utilities affected by this are as, ar, gcc, Id, nm, ranlib, and strip. You cat
that these are indeed host binaries using the file command:

$ cd ${PREFI X}/ ${ TARGET}/ bin
$ file as ar gcc Id nmranlib strip

as: ELF 32-bit MSB executabl e, Power PC or cisco 4500, version 1..
ar : ELF 32-bit MSB executabl e, Power PC or cisco 4500, version 1..
gcc: ELF 32-bit NMSB executabl e, Power PC or cisco 4500, version 1..
| d: ELF 32-bit MSB executabl e, Power PC or cisco 4500, version 1..
nm ELF 32-bit MSB executabl e, Power PC or cisco 4500, version 1..
ranli b: ELF 32-bit MSB executable, Power PC or cisco 4500, version 1..
strip: ELF 32-bit MSB executable, Power PC or cisco 4500, version 1..

We must choose an appropriate directory in which to put these binaries and create symbolic links to the r:
binaries, because some GNU utilities, including gcc, expect to find some of the other GNU utilities in
${PREFIX}${TARGETY}bin and will use the host's utilities if they can't find the target's binaries there. Natt
will result in failed compilations, since the wrong system's tools are used. The compiler has a default seatr
uses to look for binaries. We can view this path using one of the compiler's own options (some lines wrap
shell will take care of line wrapping):

$ i386-1linux-gcc -print-search-dirs

install: /hone/ karinicontrol-proj ect/dag-nodul e/t ool s/lib/gcc-1ib/i386-1inux/.
prograns: /hone/karim control-project/daqg-nmodul e/tools/lib/gcc-1ib/i386-1inuxi
./ home/ kari micontrol - project/daqg- nodul e/ tools/lib/gcc-1ib/i386-1inux/:/usr/lil
i 386-1inux/2.95.3/:/usr/lib/gcc/i386-1inux/:/home/karim control-project/daqg-m
tool s/i386-1inux/bin/i386-1inux/2.95.3/:/hone/ karim control-project/ dag-nodul «
i 386- | i nux/ bi n/

libraries: /home/karimcontrol -project/daqg-nodul e/tools/lib/gcc-1ib/i386-1inu
3/ :/usr/libl/gcc/i386-1inux/2. 95. 3/:/hone/karim control-project/daqg-nmodul e/t ool
[inux/lib/i386-1inux/2.95. 3/:/home/karim control-project/daqg-nodul e/ tool s/ i 38l
i b/

The first entry on the prograns line, ${PREFIX}/Iib/gcc-lib/i386-linux/2.95.3, is a directory containing gcc li
and utilities. By placing the binaries in this directory, you can make the cross-compiler use them instead ¢
native tools:

$ nv as ar gcc Id nmranlib strip\
> ${PREFI X} /lib/gcc-1ib/i386-1inux/2.95. 3

Meanwhile, the native toolchain will continue to operate normally. We can also create symbolic links to thi
relocated binaries just in case an application still looks for the utilities only in ${PREFIX}/${TARGET}/bin.

applications will not look exclusively in this directory, however, and you can almost always skip this step. (
requiring these symbolic links is when you need to recompile components of the GNU cross-platform dev
toolchain for your target. Nonetheless, because these are symboalic links to host binaries instead of the hc
binaries themselves, it is easier to tell them apart from the target binaries in case you need to copy the cc
the ${PREFIX}/${TARGETY}/bin directory to your target's root filesystem. The following script makes the lir

$ for file in as ar gcc Id nmranlib strip

http://www.wowebook.info

Download at wowebook. 1nfag

> do
>1ln -s ${PREFI X}/1ib/gcc-1ib/i386-1inux/2. 95 3/%file .
> done

Regardless of the type of host or the gcc version you use, a directory similar to ${P REFIX}/lib/gcc-lib/i386
linux/2.95.3 will be created during the building of the cross-platform development toolchain. As you can s¢
directory path is made up of the target type and the gcc version. Your patrticular directory should be locate
${PREFIXYlib/gcc-lib/${TARGET}/GCC_ VERSI ON, where GCC_VERS| ON is the version of gcc you are using in
cross-platform development toolchain.

Finally, to save disk space, you may choose to get rid of the content of the ${PRJROOT}/build-tools direc
you have completed the installation of the toolchain components. This may be very tempting, as the build
now occupies around 600 MB of disk space. | advise you to think this through carefully, nonetheless, and
to use the rm -rf command. An unforeseen problem may require that you delve into this directory again at
time. If you insist upon reclaiming the space occupied by the build directory, a compromise may be to wai
or two and see if you ever need to come back to it.

4.2.8 Using the Toolchain

You now have a fully functional cross-development toolchain, which you can use very much as you would
GNU toolchain, save for the additional target name prepended to every command you are used to. Instea
invoking gcc and objdump for your target, you will need to invoke i386-linux-gcc and i386-linux-objdump.

The following is a Makefile for the control daemon on the DAQ module that provides a good example of t
development toolchain's use:

Tool nanes
CRCSS_COMWPI LE = ${ TARCET} -

AS = $(CROSS_COWPI LE) as

AR = $(CROSS_CQOWPI LE) ar

cC = $(CROSS_COVPI LE) gcc
CPP = $(CO -E

LD = $(CROSS_COWPI LE) | d

Y, = $(CROSS_COVPI LE) nm
BJCOPY = $(CROSS_COWVPI LE) obj copy
OBJDUMP = $(CROSS_COVPI LE) obj dunp
RANLI B = $(CROSS_COVPI LE)ranl i b
READELF = $(CROSS_COVPI LE) r eadel f
Sl ZE = $(CROSS_OOWPI LE) si ze
STR NGS = $(CROSS_COVPI LE) stri ngs
STRI P = $(CROSS _COWPI LE)strip

export AS AR CC CPP LD NM OBJCCPY OBJDUVP RANLI B READELF SIZE STRINGS \
STR P

Build settings

CFLAGS = -02 -wal |
HEADER OPS =

LDFLAGS =

Installation variables

EXEC NAMVE = conmand- daenon

| NSTALL i nstall

I NSTALL_DI R ${ PRIROOT}/ root fs/ bi n

http://www.wowebook.info

Download at wowebook. 1nfag

Files needed for the build
oBJS = daenon.o

Make rul es
al | : daenon

$(CO $(CFLAGS) $(HEADER CPS) -c $<

daenon: ${OBJS}
$(CC) -0 $(EXEC_NAVE) ${OBJS} $(LDFLAGS)

install: daenon
test -d $(INSTALL DIR) || $(INSTALL) -d -m 755 $(| NSTALL_DI R)
$(1 NSTALL) -m 755 $(EXEC NAVE) $(INSTALL D R)

cl ean:
rm-f *.0 $(EXEC _NAME) core

di stcl ean:
rm-f *~
rm-f *.o0 $(EXEC_NAME) core

The first part of the Makefile specifies the names of the toolchain utilities we are using to build the prograt
name of every utility is prepended with the target's name. Hence, the value of cC will be i386-linux-gcc, the
compiler we built earlier. In addition to defining the name of the utilities, we also export these values so th
subsequent Makefiles called by this Makefile will use the same names. Such a build architecture is quite ¢
in large projects with one main directory containing many subdirectories.

The second part of the Makefile defines the build settings. CFL AGS provides the flags to be used during the
any C file.

As we saw in the previous section, the compiler is already using the correct path to the target's libraries. 1
flags variable, LDFLAGS, is therefore empty. If the compiler wasn't pointing to the correct libraries or was us
host's libraries (which shouldn't happen if you followed the instructions | provided above), we would have
compiler which libraries to use by setting the link flags as follows:

LDFLAGS = -nostdlib -L${ TARGET_PREFI X}/1ib

If you wish to link your application statically, you need to add the -static option to LDFLAGS. This generates
executable that does not rely on any shared library. But given that the standard GNU C library is rather lat
will resultin a very large binary. A simple program that uses printf() to print "Hello World!", for example, i
12 KB in size when linked dynamically and around 350 KB when linked statically and stripped.

The variables in the installation section indicate what, where, and how to install the resulting binary. In this
binary is being installed in the /bin directory of the target's root filesystem.

In the case of the control daemon, we currently only have one file to build. Hence, the program's compilat
requires this single file. If, however, you had used the -nostdlib option in LDFLAGS, which you should not nc
need to do, you would also need to change the section describing the files required for the build and the r
generating the binary:

STARTUP_FI LES

${ TARGET_PREFI X}/ lib/crt1.0 \

${ TARGET _PREFI X}/ lib/crti.o \

${ PREFI X}/ 1i b/ gcc-1i b/ ${ TARGET}/2.95. 3/ crt begin.o
${PREFI X}/1ib/gcc-1ibl/${ TARGET}/2.95.3/crtend.o \
${ TARCGET_PREFI X}/ lib/crtn.o

END_FI LES

http://www.wowebook.info

Download at wowebook. 1nfag

LI BS = -lc
oBJS daenon. o
LI NKED FILES = ${STARTUP_FILES} ${0BJS} 3${LIBS} ${END FILES}

déérmn: ${ OBIS}
$(CC) -0 $(EXEC NAVE) ${LINKED FILES} $(LDFLAGS)

Here, we add five object files to the one we are generating from our own C file, crtl.o, crti.o, crtbegin.o, c
and crtn.o. These are special startup, initialization, constructor, destructor, and finalization files, respectiv:
are usually automatically linked to your applications. It is through these files that your application's main()
is called, for example. Since we told the compiler not to use standard linking in this case, we need to expl
mention the files. If you do not explicitly mention them while having disabled standard linking, the linker w
complain about the missing st art symbol and fail. The order in which the object files are provided to the
is important because the GNU linker, which is automatically invoked by the compiler to link the object files
pass linker.

The make rules themselves are very much the same ones you would find in a standard, native Makefile. |
theinstal |l rule to automate the install process. You may choose notto have such a rule, but to copy the
executable manually to the proper directory.

With the Makefile and the source file in your local directory, all you need to do is type make to build your
for your target. If you want to build your program for native execution on your host to test your application,
example, you could use the following command line;

$ make CROSS_COWPI LE=""

http://www.wowebook.info

Download at wowebook. 1nfag

4.3 C Library Alternatives

Given the constraints and limitations of embedded systems, the size of the standard GNU C library
makes it an unlikely candidate for use on our target. Instead, we need to look for a C library that will have
sufficient functionality while being relatively small.

Over time, a number of libraries have been implemented with these priorities in mind. In the following, we
will discuss the two most important C library alternatives, uClibc and diet libc. For each library, | will
provide background information, instructions on how to build the library for your target, and instructions
on how to build your applications using the library.

4.3.1 uClibc

The uClibc library originates from the uClinux project, which provides a Linux that runs on MMU-less
processors. The library, however, has since become a project of its own and supports a number of
processors that may or may not have an MMU or an FPU. At the time of this writing, uClibc supports all
the processor architectures discussed in depth in Chapter 3. uClibc can be used as a shared library on
all these architectures, because it includes a native shared library loader for each architecture. If a
shared library loader were not implemented in uClibc for a certain architecture, glibc's shared library
loader would have to be used instead for uClibc to be used as a shared library.

Although it does not rely on the GNU C library, uClibc provides most of the same functionality. Itis, of
course, not as complete as the GNU library and does not attempt to comply with all the standards with
which the GNU library complies. Functions and function features that are seldom used, for instance, are
omitted from uClibc. Nevertheless, most applications that can be compiled against the GNU C library will
also compile and run using uClibc. To this end, uClibc developers focus on maintaining compatibility with
C89, C99, and SUSV3.I9 They regularly use extensive test suites to ensure that uClibc conforms to these
standards.

[Single UNIX Specification Version 3.

uClibc is available for download as a tar-gzipped or tar-bzip2'd archive or by using CVS from the project's
web site at http://uclibc.org/. Itis distributed under the terms of the LGPL. An FAQ is available on the
project's web site, and you can subscribe to the uClibc mailing list or browse the mailing list archive if you
need help. In the following description, we will be using Version 0.9.16 of uClibc, but the explanation
should apply to subsequent versions as well. Versions earlier than 0.9.16 depended on a different
configuration system and are not covered by the following discussion.

4.3.1.1 Library setup

The first step in the setup is to download uClibc and extract it in our ${PRJROOT}/build-tools directory. In
contrast to the GNU toolchain components, we will be using the package's own directory for the build
instead of a separate directory. This is mainly because uClibc does not support building in a directory
other than its own. The rest of the build process, however, is similar to that of the other tools, with the
main steps being configuration, building, and installation.

After extracting the package, we move into the uClibc directory for the setup:
$ cd ${PRIROOT}/ buil d-tool s/udi bc-0.9. 16
For its configuration, uClibc relies on a file named .config that should be located in the package's root

directory. To facilitate configuration, uClibc includes a configuration system that automatically generates
a .config file based on the settings we choose, much like the kernel configuration utility we will discuss in

http://uclibc.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 5.[10]

(101 The uClibc configuration system is actually based on Roman Zippel's kernel configuration system, which was included in the 2.5
development series.

The configuration system can be operated in various ways, as can be seen by looking at the INSTALL
file included in the package's directory. The simplest way to configure uClibc is to use the curses-based
terminal configuration menu:

$ make CROSS=i 386-1i nux- menuconfig

This command displays a menu that can be navigated using the arrow, Enter, and Esc keys. The main
menu includes a set of submenus, which allow us to configure different aspects of uClibc. At the main
menu level, the configuration system enables us to load and save configuration files. If we press Esc at
this level, we are prompted to choose between saving the configuration to the .config file or discarding it.

In the command above, we set CROSS to i386-linux-, since our cross-platform tools are prepended by this
string, as | explained earlier. We could also edit the Rules.mak file and set CROSS to ${ TARGET} - instead
of specifying CrOss= for each uClibc Makefile target.

The main configuration menu includes the following submenus:

e Target Architecture Features and Options
e General Library Settings

e Networking Support

e String and Stdio Support

e Library Installation Options

uClibc hacking options

Through its submenus, the configuration system allows us to configure many options. Fortunately, we
can obtain information regarding each option using the "?" key. When this key is pressed, the
configuration system displays a paragraph explaining how this option is used and provides its default
values. There are two types of options: paths for tools and directories needed for building, installing, and
operating uClibc, and options for selecting the functionality to be included in uClibc.

We begin by setting the tool and directory paths in the "Target Architecture Features and Options" and
"Library Installation Options” submenus. Table 4-7 lists the values we must setin those submenus to
have uClibc compile and install in accordance with our workspace. For each option, the name of the
variable used internally by uClibc's configuration system is given in parentheses. Knowing this name is
important for understanding the content of the .config file, for example.

Table 4-7. uClibc tool and directory path settings

http://www.wowebook.info

Download at wowebook. 1nfag

Option Setting
Linux kernel header location (KERNEL SOURCE) g{z I;gROO'I’}/kernel/lmux—
Shared library loader path (SHARED LI B LOADER PATH) /lib
uClibc development environment directory (DEVEL_PREFI X) ${PRIROOT}/tools/uclibc

uClibc development environment system directory

(SYSTEM DEVEL_PREFI X) $(DEVEL_PREFIX)

uClibc development environment tool directory (DEVEL _TOO. PREFI X) | $(DEVEL_PREFIX)/usr

Notice that we use ${PRJIROOT}/tools instead of ${PREFIX}, although the former is the value we gave to
the PREFI X environment variable in our script. This is because uClibc's use of the PREFI X variable in its
build Makefiles and related scripts differs from our use. Mainly, it uses this variable to install everything in
an alternate location, whereas we use it to point to the main install location.

KERNEL_SOURCE should point to the sources of the kernel you will be using on your target. If you don't set
this properly, your applications may not work at all, because uClibc doesn't attempt to provide binary
compatibility across kernel versions.

SHARED LI B LOADER PATH s the directory where shared libraries will be located on your target. All the
binaries you link with uClibc will have this value hardcoded. If you later change the location of your
shared libraries, you will need to rebuild uClibc. We have set the directory to /lib, since this is the
traditional location of shared libraries.

DEVEL PREFI X is the directory where uClibc will be installed. As with the other tools, we want it to be
under ${PRIROOT}1tools. SYSTEM DEVEL_PREFI X and DEVEL_TOOL_PREF| X are other installation variables
that are used to control the installation of some of the uClibc binaries and are mostly useful for users who
want to build RPM or dpkg packages. For our setup, we can set SYSTEM DEVEL PREFI X to the same value
as DEVEL_PREFI X, and DEVEL_TOOL_PREFI X to $(DEVEL_PREFIX)/usr. This results in all uClibc binaries
prepended with the target name, such as i386-uclibc-gcc, to be installed in ${PRJROOT}tools/uclibc/bin,
and all uClibc binaries not prepended with the target name, such as gcc, to be installed in
${PRIROOT}1tools/uclibc/usr/bin. As we shall see later, we only need to add
${PRIROOT}/tools/uclibc/bin to our path to use uClibc.

Let us now take a look at the options found in each configuration submenu. As | said earlier, you can use
the "?" key to obtain more information about each option from the configuration system. Because some
options depend on the settings of other options, some of the options listed below may not be displayed in
your configuration. While most options are either enabled or disabled, some are string fields, such as the
paths we discussed earlier, which must be filled.

The "Target Architecture Features and Options" submenu includes the following options:

Target Processor Type.

e Target CPU has a memory management unit (MMU) (UCL| BC_HAS MvU).
e Enable floating (UCLI BC HAS FLOATS).

e Target CPU has a floating point unit (FPU) (HAS_FPU).

e Enable full C99 math library support (DO C99 MATH).

e Compiler Warnings (WARNI NGS). This is a string field that allows you to set the compiler flags used
for reporting warnings.

e Linux kernel header location (KERNEL_SOURCE). This is the kernel path we discussed earlier.

http://www.wowebook.info

Download at wowebook. 1nfag

The "General Library Settings" submenu includes the following options:

Generate Position Independent Code (PIC) (DorI ©).

Enable support for shared libraries (HAVE SHARED).

Compile native shared library loader (BUl LD UCLI BC_LDSO).

Native shared library loader “ldd' support (LDSO DD SUPPORT).

POSIX Threading Support (UCLI BC HAS THREADS).

Large File Support (UCL| BC HAS LFS).

Malloc Implementation. This is a submenu that allows us to choose between two malloc
implementations, malloc and malloc-930716.

Shadow Password Support (HAS_SHADOW).

Regular Expression Support (UCLI BC_HAS REGEX).

Supports only Unix 98 PTYs (UNI XPTY_ONLY).

Assume that /dev/pts is a devpts or devfs filesystem (ASSUVE_DEVPTS).

The "Networking Support" submenu includes the following options:

e [P Version 6 Support (UCLI BC_HAS | PV6).
e Remote Procedure Call (RPC) support (UCLI BC HAS RPC).
e Full RPC support (UCLI BC_HAS FULL_RPC).

The "String and Stdio support" submenu includes the following options:

e Wide Character Support (UCLI BC_HAS WCHAR).

e Locale Support (UCLI BC HAS LOCALE).

e Use the old vfprintf implementation (USE_OLD VFPRI NTF).
We already covered all the options in the "Library Installation Options" submenu earlier in this section.
Here they are nevertheless for completeness:

e Shared library loader path (SHARED LI B LOADER PATH).

e uClibc development environment directory (DEVEL_PREFI X).

¢ uClibc development environment system directory (SYSTEM DEVEL PREFI X).

e uClibc development environment tool directory (DEVEL_TOOL_PREFI X).
Though you should not normally need to enter the "uClibc hacking options" submenu, here are the

options itincludes:

¢ Build uClibc with debugging symbols (DODEBUG).

http://www.wowebook.info

Download at wowebook. 1nfag

e Build uClibc with runtime assertion testing (DOASSERTS).
¢ Build the shared library loader with debugging support (SUPPORT LD DEBUG).
e Build the shared library loader with early debugging support (SUPPORT_LD DEBUG EARLY).

For our DAQ module, we left the options to their default values. For most targets, you should not need to
change the options either. Remember that you can always revert to the defaults by removing the .config
file from the uClibc's directory.

With uClibc now configured, we can compile it:
$ make CROSS=i 386-1i nux-

The compilation takes approximately 10 minutes in our setup. As with the GNU toolchain, you may see
warnings during the build that you can safely ignore.

With the build complete, we can install uClibc:
$ make CROSS=i 386-1i nux- PREFI X="" install

Given the values we set above, this will install all the uClibc components in the ${PRJROOT}/tools/uclibc
directory. If we had already installed uClibc, the installation procedure will fail while trying to copy files to
the ${PRIROOT}/tools/uclibc directory. In such a case, we should erase the content of that directory
before issuing the make install command.

4.3.1.2 Usage

We are now ready to link our applications with uClibc instead of the GNU C library. To facilitate this
linking, a couple of utilities have been installed by uClibc in ${PRIJROOT}/tools/uclibc/bin. Mainly, uClibc
installed an alternate compiler and alternate linker, i386-uclibc-gcc and i386-uclibc-Id. Instead of using
the i386-linux- prefix, the utilities and symboalic links installed by uClibc have the i386-uclibc- prefix.
Actually, the uClibc compiler and linker are wrappers that end up calling the GNU utilities we built earlier
while ensuring that your application is properly built and linked with uClibc.

The first step in using these tilities is to amend our path:
$ export PATH=${ PREFI X}/ ucli bc/bi n: ${ PATH}

You will also want to modify your development environment script to automate this path change. In the
case of develdaq, here is the new line for the path:

export PATH=${ PREFI X} / bi n: ${ PREFI X}/ ucl i bc/ bi n: ${ PATH}
Using the same Makefile as earlier, we can compile the control daemon as follows:
$ make CROSS COWPI LE=i 386- ucl i bc-

Since uClibc is a shared library by default on the x86, this will result in a dynamically linked binary. We
could still compile our application statically, however:

$ make CROSS_COWPI LE=i 386- ucl i bc- LDFLAGS="-static"

The same "Hello World!" program we used earlier is only 2 KB in size when linked with the shared uClibc
and 18 KB when linked statically with it. This is a big difference with the figures | gave above for the
same program when it was linked with glibc.

http://www.wowebook.info

Download at wowebook. 1nfag

4.3.2 Diet libc

The diet libc project was started and is still maintained by Felix von Leitner with aims similar to uClibc. In
contrast with uClibc, however, diet libc did not grow from previous work on libraries but was written from
scratch with an emphasis on minimizing size and optimizing performance. Hence, diet libc compares
quite favorably to glibc in terms of footprint and in terms of code speed. In comparison to uClibc, though,
| have not noticed any substantial difference.

Diet libc does not support all the processor architectures discussed in Chapter 3. It supports the ARM,
the MIPS, the x86, and the PPC. Also, the authors of diet libc favor static linking over dynamic linking.
So, although diet libc can be used as a shared library on some platforms, it is mostly intended to be used
as a static library.

One of the most important issues to keep in mind while evaluating diet libc is its licensing. In contrast to
most other libraries, including uClibc, which are usually licensed under the LGPL, diet libc is licensed
under the terms of the GPL. As | explained in Chapter 1, this means that by linking your code to diet libc,
the resulting binary becomes a derived work and you can distribute it only under the terms of the GPL. A
commercial license is available from the package's main author if you wish to distribute non-GPL code
linked with diet libc.[*1] If, however, you would prefer not to have to deal with such licensing issues, you
may want to use uClibc instead.

[11 It is not clear whether this license covers the contributions made to diet libc by developers other than the main author.

Diet libc is available for download both as a tar-bzip2'd archive or using CVS from the project's web site
at http://www.fefe.de/dietlibc/.[121 The package comes with an FAQ and installation instructions. In the
following, we will be using Version 0.21 of diet libc, but my explanations should also apply to previous
and subseguent versions.

[12] Notice the final /". If you omit this slash, the web server will be unable to locate the web page.

4.3.2.1 Library setup

As with uClibc, the first step to setting up diet libc is to download it into our ${PRJROOT}/build-tools
directory. Here too, we will build the library within the package's source directory and not in another
directory as was the case for the GNU toolchain. Also, there is no configuration required for diet libc.
Instead, we can proceed with the build stage immediately.

Once the package is extracted, we move into the diet libc directory for the setup:
$ cd ${PRIROOT}/ buil d-tool s/dietlibc-0.21

Before building the package for our target, we will build it for our host. This is necessary to create the diet
utility, which is required to build diet libc for the target and later to build applications against diet libc:

$ make

In our setup, this creates a bin-ppc directory containing a PPC diet libc. We can now compile diet libc for
our target:

$ make ARCH=i 386 CROSS=i 386-1 i nux-

“You will see even more warnings than with the other packages, but you can ignore them. Here, we must
tell the Makefile both the architecture for which diet libc is built and the prefix of the cross-platform
development tools.

With the package now built, we can install it:

$ make ARCH=i 386 DESTD R=${PREFI X}/ dietlibc prefix="" install

http://www.fefe.de/dietlibc/
http://www.wowebook.info

Download at wowebook. 1nfag

This installs diet libc components in ${P REFIX}/dietlibc. Again, as when building the package for our
target, we provide the Makefile with the architecture. We also specify the install destination using the
DESTDI R variable and reset the Makefile's internal pref i x variable, which is different from the capital
PREFI X environment variable.

Diet libc has now been installed in the proper directory. There is, however, one correction we need to
make to diet libc's installation. By installing the x86 version of diet libc, we installed the x86 version of the
diet utility in ${PREFIX}/dietlibc/bin. Since we intend to compile our applications on the host, we need to
overwrite this with the native diet utility we built earlier:

$ cp bin-ppc/diet ${PREFI X}/dietlibc/bin
4.3.2.2 Usage

As with uClibc, using diet libc involves modifying the path and using the wrapper provided by diet libc to
link our applications. In contrast to uClibc, however, instead of substituting the cross-development tools
with tools specific to the library, we only need to prepend the calls we make to the tools with the diet libc
wrapper.

First, we must change our path to include the directory containing the diet libc binary:
$ export PATH=${PREFI X} /di etlibc/bi n: ${ PATH}

Again, you will also want to change your development environment script. For example, the path line in
our develdaq script becomes:

export PATH=${ PREFI X}/ bi n: ${PREFI X}/ di et | i bc/ bi n: ${ PATH}

Notice that | assume that you won't be using both uClibc and diet libc at the same time. Hence, the path
line has only diet libc added to it. If you would like to have both diet libc and uClibc on your system during
development, you need to add both paths.

To compile the control daemon with diet libc, we use the following command line:
$ nmake CROSS COWPI LE="di et i386-1inux-"
Since diet libc is mainly a static library, this will result in a statically linked binary by default and you don't

need to add LDFLAGS="- st ati c" to the command line. Using the same "Hello World!" program as earlier,
| obtain a 24 KB binary when linked with diet libc.

http://www.wowebook.info

Download at wowebook. 1nfag

4.4 Java

Since its introduction by Sun in 1995, Java™ has become one of the most important programming
languages around. Today, it is found in every category of computerized systems, including embedded
systems. Although still not as popular as C in the embedded programming world, it is nonetheless being
used in an ever-increasing number of designs.

I will not attempt to introduce you to Java or any of the technology surrounding it. Instead, | refer you to
the plethora of books on the matter, including many by O'Reilly. There is, nonetheless, one basic issue
we need to review before continuing. Essentially, any discussion on Java involves a discussion of three
different items: the Java programming language, the Java Virtual Machine (JVM), and the Java Runtime
Environment (JRE), which is made up of the various Java classes.

There are many packages, both free and proprietary, that provide Java functionality in Linux. In our
discussion, we will concentrate on the freely available packages. Specifically, we will discuss the
Blackdown project, the open source virtual machines, and the GNU Compiler for the Java programming
language. | will not cover the installation or the use of these tools as there is little difference between
installing and using them on a Linux workstation and in an embedded Linux system. | will, nonetheless,
refer you to the appropriate documentation for such instructions.

4.4.1 The Blackdown Project

The Blackdown project (http://www.blackdown.org/) is the group that ports Sun's Java tools to Linux. This
effort is entirely based on Sun's own Java source code and provides Linux ports of Sun's tools, including
the Java Development Kit (JDK) and the JRE. This is the JDK and JRE most often used in Linux
workstations and servers.

This project has enjoyed a privileged, and sometimes troubled, relationship with Sun. Since this project is
entirely based on Sun source code and this code is not available as open source,[13!it is entirely
dependent on Sun's goodwill to help the Linux community.

(131 The source code for Sun's Java tools is available under the terms of the Sun Community Source License (SCSL). The SCSL is not one
the licenses approved by the Open Source Initiative (OSI). See http://opensource.org/licenses/ for the complete list of approved licenses.

Actually, the Blackdown project does not distribute any source code. Instead, it distributes prebuilt
binaries for the various processor architectures to which its developers have ported Sun's Java tools. As
the project's FAQ points out, you heed to contact Sun to get access to the source code.

According to the licensing agreements between Sun and Blackdown, you are allowed to download the
JDK for your own use, but you cannot distribute it without entering into an agreement with Sun. You can,
however, download the JRE and distribute it as-is with few limitations.

Before releasing new versions of their work, the Blackdown team must meet the requirements of Sun's
compatibility tests. Hence, consecutive Blackdown releases do not necessarily support all the
architectures of the previous releases. Release 1.3.0-FCS, for instance, supports the PPC and the x86,
while 1.3.1-rc1 supports only the ARM. The complete list of Blackdown releases and supported platforms
is available from the project's status page at http://www.blackdown.org/java-linux/ports.html.

To run the JDK or the JRE, you will need gdlibc, at the very least, and the X Window System with its
libraries if you wish to use the AWT classes. Given the constraints of most embedded systems, only
those with very large amounts of storage and processing power will be able to accommodate this type of
application.

For more information regarding the Blackdown project, the tools it provides, how to install them, how to
operate them, and the licensing involved, see the Blackdown FAQ at http://www.blackdown.org/java-

http://www.blackdown.org/
http://opensource.org/licenses/
http://www.blackdown.org/java-linux/ports.html
http://www.blackdown.org/java-
http://www.wowebook.info

Download at wowebook. 1nfag

linux/docs/support/fag-releasel/.

4.4.2 Open Source Virtual Machines

Given Blackdown's hurdles and its dependence on Sun, a number of projects have been started to
provide open source, fully functional JVMs, without using any of Sun's source code. The most noteworthy
one is Kaffe.

Since there isn't any consensus on the feasibility of using any of the various open source VMs as the
main JVM in an embedded Linux project, | will only mention the VMs briefly and will not provide any
information regarding their use. You are invited to look at each VM and follow the efforts of the individual
teams.

The Kaffe Java Virtual Machine (http://www.kaffe.org/) is based on a product sold commercially by
Transvirtual Inc., KaffePro VM, and is a clean-room implementation of the JVM.[14] Although no new
releases of the project have been made since July 2000 and although this VM is not 100% compatible
with Sun's VM, according to the project's web site, itis still the main open source alternative to Sun's VM.

[14] Thatis, it was written from scratch without using any of Sun's Java source code.

There are other projects that may eventually become more important, such as Japhar
(http://www.japhar.org/), Kissme (http://kissme.sourceforge.net/), Aegis (http://aegisvm.sourceforge.net/),
and Sable VM (http://www.sablevm.org/). For a complete list of open source VM projects, see the list
provided by yet another open source VM project, the joeq VM (http://joeq.sourceforge.net/), at
http://joeq.sourceforge.net/other_os_java.htm. See each project's respective web site and

documentation for information on how to install and operate the VM.

4.4.3 The GNU Java Compiler

As part of the GNU project, the GNU Compiler for the Java programming language (gcj) is an extension
to gcc that can handle both Java source code and Java bytecode. In particular, gcj can compile either
Java source code or Java bytecode into native machine code. In addition, it can also compile Java
source into Java bytecode. It is often referred to as an ahead-of-time (AOT) compiler, because it can
compile Java source code directly into native code, in contrast with popular just-in-time (JIT) compilers
that convert Java bytecode into native code at runtime. gcj does, nevertheless, include a Java interpreter
equivalent to the JDK's java command.

GNU gcj is afairly active project, and most core Java class libraries are already available as part of the
gcj runtime libraries. Although most windowing components, such as AWT, are still under development,
the compiler and its runtime environment can already be used to compile and run most command-line
applications.

As with other GNU projects, gcj is fairly well documented. A good starting place is the project's web site
at http://gcc.gnu.org/javal. In the documentation section of the web site, you will find a compile HOWTO,
a general FAQ, and instructions on how to debug Java applications with gdb. You should be able to use
the compile HOWTO in conjunction with my earlier instructions regarding the GNU toolchain to build gcj
for your target.

http://www.kaffe.org/
http://www.japhar.org/
http://kissme.sourceforge.net/
http://aegisvm.sourceforge.net/
http://www.sablevm.org/
http://joeq.sourceforge.net/
http://joeq.sourceforge.net/other_os_java.htm
http://gcc.gnu.org/java/
http://www.wowebook.info

Download at wowebook. 1nfag

4.5 Perl

Perlwas introduced by Larry Wall in 1987. This programming language has since become a world of its
own. If you are interested in Perl, have a look at Wall, Christiansen, and Orwant's Programming Perl or
Schwartz's Learning Perl (both published by O'Reilly). Briefly, Perl is an interpreted language whose
compiler, tools, and libraries are all available as open source under the terms of the Perl Artistic License
and the GNU GPL from the Comprehensive Perl Archive Network (CPAN) at http://www.cpan.org/. Since
there is only one Perl toolset, you will not need to evaluate different toolsets to figure out which one best
suits your needs.

The main component you will need to run Perl programs on your target is a properly compiled Perl
interpreter for your target. Unfortunately, at the time of this writing, Perl is not well adapted to cross-
compilation. Efforts are, however, underway to solve the underlying issues. According to Jarkko
Hietaniemi, the 5.8 release manager, Perl 5.8.0, should be able to cross-compile itself. For the time
being, the 5.7 development branch includes two build options for cross-compiling small versions of the
full Perl package: microperl and miniperl. Note that both options are part of the same package and you
do not need to download any other package than the one provided by CPAN.

4.5.1 Microperl

The microperl build option was implemented by Simon Cozens based on an idea by llya Zakhareivh. It is
the absolute bare minimum build of Perl with no outside dependencies other than ANSI C and the make
utility. Unlike the other builds, microperl does not require that you run the Configure script, which
performs a great deal of tests on the installation machine before generating the appropriate files for the
package's build. Instead, default configuration files are provided with the bare minimum settings that
allow the core Perl interpreter to build properly. None of the language's core features are missing from
this interpreter. Of course it does not support all the features of the full interpreter, but it is sufficient to
run basic Perl applications. Since this code is considered "experimental,” for the moment, you will need
to evaluate most of microperl's capabilities on your own.

I have successfully built a microperl for my DAQ module using the toolchain set up earlier, uClibc, and
Perl 5.7.3. The resulting interpreter was able to adequately execute all Perl programs that did not have
any outside references. It failed, however, to run programs that used any of the standard Perl modules.

To build microperl for your target, you must first download a Perl version from CPAN and extract it into
the ${PRIROOT}/sysapps directory. Place the package in the sysapps directory, because it will run only
on the target and will not be used to build any of the other software packages for your target. With the
package extracted, we move into its directory for the build. Here, we cannot use a different build
directory, as we did for the GNU toolchain, because Perl does not support this build method.

$ cd ${PRIROOT}/sysapps/perl-5.7.3

Since microperl is a minimal build of Perl, we do not need to configure anything. We can build the
package by using the appropriate Makefile and instructing it to use the uClibc compiler wrapper instead
of the standard gcc compiler:

$ make -f Makefile.m cro CC=i 386-uclibc-gcc

This will generate a microperl binary in the package's root directory. This binary does not require any
other Perl components and can be copied directly to the /bin directory of your target's root filesystem,
${PRIROOT}/rooftfs.

When dynamically linked with either glibc or uClibc and stripped, the microperl binary is around 900 KB
in size. When statically linked and stripped, the binary is 1.2 MB in size with glibc, and 930 KB with

http://www.cpan.org/
http://www.wowebook.info

Download at wowebook. 1nfag

uClibc. As you can see, uClibc is the better choice in this case for size reasons.

For more information on how microperl is built, have a look at the Makefile.micro Makefile and the
uconfig.sh script. As work continues on microperl, it is expected that more documentation will become
available.

4.5.2 Miniperl

Miniperl is less minimalistic than microperl and provides most of what you would expect from the
standard Perl interpreter. The main component it lacks is the DynalLoader XS module, which allows Perl
subroutines to call C functions. Itis therefore incapable of loading XS modules dynamically. This is a
minor issue, however, given the type of system miniperl will be running on.

As with the main Perl build, miniperl requires that you run the Configure script to determine the system's
capabilities. Since the system for which Perl must be built is your target, the script requires you to
provide it with information regarding the means it should use to communicate with that target. This
includes a hosthame, a remote username, and a target-mapped directory. It will then use this information
to run its tests on your target to generate the proper build files.

The main caveat concerning this method is its reliance on the existence of a direct network link between
the host and the target. In essence, if your target does not have some form of networking, you will be
unable to build miniperl for it.

I will not provide the details of the build and installation methodology for miniperl, as it is already very well
explained in the INSTALL file provided with the 5.7.3 Perl package under the "Cross-compilation"
heading.

Cross-Compiling the Impossible

As we've just seen with Perl, not all packages cross-compile easily. As a matter of fact, there
is a great number of packages that have not been designed to allow cross-compilation. This
book mentions a few of these, but certainly can't list them all.

Beside trying to modify build scripts and using compilation tricks to force packages to compile
for another architecture, sometimes the only realistic solution is to actually build the package
on the target where it is supposed to run. At first, this may seem unfeasible for most
embedded systems because of these systems' typically limited storage space. As we shallin
Chapter 9, however, it is possible to mount a system's root filesystem on an server using
NFS. By using an NFS-mounted root filesystem, the target can access as much storage
space as the server allows it to.

In such a setup, itis therefore possible to cross-compile the gcc compiler itself for the target,
and then use this compiler to natively compile any package directly on the target in exactly
the same way the package's build scripts expect to operate. Once the package has been
compiled, the resulting binaries and libraries can thereafter be copied to a small root
filesystem tailored for the target's internal storage device, and used in the field like any other
target application. Obviously, there is no need to package the cross-compiled gcc with the
rest of the system in the field.

http://www.wowebook.info

Download at wowebook. 1nfag

4.6 Python

Python was introduced to the public by Guido van Rossum in 1991. It has since gathered many followers
and, as with Perl, is a world of its own. If you are interested in Python, read Mark Lutz's Programming
Python or Lutz, Ascher, and Willison's Learning Python (both published by O'Reilly). Python is routinely
compared to Perl, since it often serves the same purposes, but because this is the subject of yet another
holy war, 1 will not go any further. Instead, feel free to browse the main Python web site at
http://www.python.org/ for more information on the world of Python. The Python package, which includes
the Python interpreter and the Python libraries, is available from that web site under the terms of a
composite license called the Python license, which is an approved open source license.

As with Perl, you will need a properly configured interpreter to run Python code on your target. Although
the main Python distribution does not support cross-compiling, a patch has been developed to this effect
by Klaus Reimer and is available from http://www.ailis .de/~k/patches/python-cross-compile.diff. Klaus
also provides a very well written Python cross-compiling HOWTO at

http://www.ailis .de/~k/knowledge/crosscompiling/python.php.

You can follow Klaus' instructions to build Python for your target while using the appropriate names for
your target instead of the arm-linux used in the instructions. To follow the same project workspace
organization that we established earlier, download and extract the Python package in the
${PRIROOT}/sysapps directory. Also, instead of building Python directly in its source directory, you can
use a build-python directory, as we did with the GNU tools, since Python supports this build method. In
addition, use the - -prefix=${PREFIX}/${TARGET}/usr option instead of the values provided by the
HOWTO. All the Python material will thereby be installed in the ${PREFIX}${TARGET}/usr directory.
This directory can then be customized and copied onto the target's root filesystem.

There are a couple of observations to be made about the resulting package. First, you will not be able to
build Python with diet libc. You will need to build Python against glibc or uClibc. This means that glibc or
uClibc will have to be on your target's root filesystem. When storage space on your target is limited, |
suggest you use uClibc instead of glibc. Also, if you want to build Python against uClibc, you need to
patch Python using the patch posted by Manuel Novoa on August 27, 2002 on the uClibc mailing list
following the announcement of uClibc 0.9.15.

Second, Python has installed many libraries in the ${PREFIX}Y${TARGET}/ustr/lib/python2.2 directory,
and many of those are large. You may want to trim down the content of this directory by deleting the
components you are unlikely to use. By itself, the dynamically linked and stripped Python interpreter is
725 KB in size.

Nevertheless, Python's size and dependencies have not stopped developers from using it. The team
developing the iPAQ's Familiar distribution, for instance, includes it as part of their standard packages.

Finally, as Klaus explains, you may see some warnings and failures during the build. This is because
some libraries and applications are missing on your target. The Tkinter interface to libtk.a and libtcl.a will
fail to build, for instance, unless you had cross-compiled and installed Tcl/Tk for your target. This doesn't
mean the Python build has failed. Rather, it is an indication that one of the Python components has not
built successfully. You will still be able to install and use the Python interpreter and the modules that built
properly on your target.

http://www.python.org/
http://www.ailis.de/~k/patches/python-cross-compile.diff
http://www.ailis.de/~k/knowledge/crosscompiling/python.php
http://www.wowebook.info

Download at wowebook. 1nfag

4.7 Ada

Ada was sponsored by the U.S. Department of Defense (DoD). During the 1970s, the DoD realized that
it had a huge software maintenance problem on its hands. Thus, it started work on a hew programming
language that met its stringent requirements of code maintainability and reliability. Ada was first
standardized by ANSI in 1983 and was later updated in 1995 with the release of the Ada95 standard.

Work on a gcc-based Ada compiler was started at New York University and resulted in gnat, the GNU
Ada compiler.[*>I Work on gnat continued at Ada Core Technologies Inc. (ACT), which maintained it for
some time before it was eventually integrated into the main gcc source tree. Every so often, ACT used to
release a GPL copy of its most recent work and made it available, along with some prebuilt binaries, at
ftp://cs.nyu.edu/pub/gnat/. Their latest release, gnat 3.14p, required gcc 2.8.1 to build. To be precise,
gnat's source was provided with a patch that had to be applied to the gcc sources, and an ada directory
that had to be copied into gcc's source directory.

[15] Remarkably, gnat is entirely written in Ada.

Unfortunately, this led to all sorts of problems. For instance, gcc 2.8.1 was fairly outdated and most gcc
versions found in recent distributions failed to build it properly. Hence, if you wanted to use the 3.14p
release, you first had to install an old compiler on your system and use it to build gnat. Obviously, this
wasn't an endearing prospect.

More recently, ACT's work on gnat has been integrated into the gcc CVS and is now part of gcc 3.2.
Though you still need a gnat binary to build the Ada compiler, the integration of gnat into mainstream gcc
is likely to simplify the use of Ada in embedded Linux systems in the future.

Apart from the ongoing effort to integrate gnat into mainstream gcc, there are two online projects you
may find helpful if you are interested in Ada programming in Linux. First, The Big Online Book of Linux
Ada Programming is a collective work started by Ken Burtch with the main goal of providing a complete
online reference manual for Ada programming in Linux. The manual is available at
http://www.pegasoft.calhomes/book.html and has a couple of mirrors.

Second, the Ada for GNU/Linux Team (ALT) provides a number of ACT-independent binary packages,
RPMs, and patches at http://www.gnuada.org/alt.html. The group also provides a number of links to
packages providing Ada interfaces and bindings to popular libraries, such as GTK, XML, and X11.

Great Software from 30 Years Ago...

I was reminded of the DoD's software troubles a couple of years ago while attending the 2000
Usenix's annual technical conference. As this was the 25th annual technical conference, both
Dennis Ritchie and Ken Thompson were in attendance, a rare occurrence.

Their attendance was highlighted by Evi Nemeth during the initial conference orientation
session where she pointed out the enduring value of their work. As part of her explanation,
she was emphasizing the longevity of their ideas and said: "Unix has been around for 30
years. Do you know of any software that has been used for 30 years?"

At that point, the rhetorical question drew an unexpected answer from the crowd with an
attendee quipping: "uhh, lady, | work for the Air Force..."

http://www.pegasoft.ca/homes/book.html
http://www.gnuada.org/alt.html
http://www.wowebook.info

Download at wowebook. 1nfag

4.8 Other Programming Languages

There are, of course, many more programming languages supported in Linux. Whether you are looking
for programming in Forth, Lisp, or FORTRAN, a short search on the Net with your favorite search engine
should yield rapid results. A good starting point is the "Other Languages" section in Chapter 13 of
Running Linux (O'Reilly).

The cross-compiling and cross-development capabilities of the various language tools will need to be
evaluated on a tool-to-tool basis, since few compilers and interpreters lend themselves well to cross-
platform development.

http://www.wowebook.info

Download at wowebook. 1nfag

4.9 Integrated Development Environments

Many integrated development environments (IDEs) are available for Linux. Most of these IDEs are
usually used to develop native applications. Nevertheless, they can be customized for cross-
development by setting the appropriate compiler names in the IDE's configuration. Table 4-8 provides a
list of open source IDESs, their locations, and the list of embedded Linux-relevant programming
languages they support.

Table 4-8. Open source IDEs

IDE Location Supported languages
Anjuta http://anjuta.sourceforge.net/ Ada, bash, C, C++, Java, make, Perl, Python
Eclipse http://mww.eclipse.org/ C, C++, Java
Glimmer http://glimmer.sourceforge.net/ Qggazzz?nﬁy C++, Java, make, Perl, Python,
KDevelop http://www.kdevelop.org/ C, C++, Java

SourceNavigator | http://sources.redhat.com/sourcenav/ C, C++, Java, Python

| am reluctant to recommend any particular IDE, because the choice is very much a personal one. |
personally prefer XEmacs and the command line to any IDE. Others, still, prefer plain-old vi. You may
want to look at the screenshots sections of each project to get an initial appreciation for it. Ultimately,
however, you may wish to download the IDEs and try them to make up your mind.

In terms of popularity, KDevelop is probably the most popular IDE of the list. Although it is very much
oriented towards native development of user applications, it can be customized for cross-development.
Anjuta is a very active project, and its interface resembles that of many popular Windows IDEs.
SourceNavigator is an IDE made available by Red Hat under the terms of the GPL, and is part of Red
Hat's GNUPro product. Glimmer is a Ghome-based IDE with capabilities similar to the other IDEs.
Eclipse is an ambitious project to create an IDE framework that can easily be extended using plug-ins. It
was initiated and is still backed by many companies, including IBM, HP, Red Hat, and SuSE.

For more information regarding these projects, visit their web sites and have a look at their
documentation.

http://anjuta.sourceforge.net/
http://www.eclipse.org/
http://glimmer.sourceforge.net/
http://www.kdevelop.org/
http://sources.redhat.com/sourcenav/
http://www.wowebook.info

Download at wowebook. 1nfag

4.10 Terminal Emulators

The most common way to communicate with an embedded system is to use a terminal emulation
program on the host to communicate through an RS232 serial port with the target. Although there are a
few terminal emulation programs available for Linux, not all are fit for all uses. There are known problems
between minicom and U-Boot, for instance, during file transfers over the serial port. Hence, | recommend
that you try more than one terminal application to communicate with your target. If nothing else, you are
likely to discover one that best fits your personal preferences. Also, see your bootloader's documentation
for any warnings regarding any terminal emulator.

Three main terminal emulators are available in Linux: minicom, cu, and kermit. The following sections
cover the setup and configuration of these tools, but not their use. Refer to each package's
documentation for the latter.

4.10.1 Accessing the Serial Port

Before you can use any terminal emulator, you must ensure that you have the appropriate access rights
to use the serial port on your host. In particular, you need read and write access to the serial port device,
which is /dev/ttySO in most cases, and read and write access to the /var/lock directory. Access to
/dev/ttySO0 is required to be able to talk to the serial port. Access to /var/lock is required to be able to lock
access to the serial port. If you do not have these rights, any terminal emulator you use will complain at
startup.[16]

[16] The actual changes required for your distribution may differ from those discussed in this section. Refer to your distribution's
documentation in case of doubt.

The default permission bits and group settings for /dev/ttyS0 vary between distributions, and sometimes
between releases of the same distribution. On Red Hat 6.2, for example, it used to be accessible in read
and write mode to the root user only:

$1s -al /dev/ttyS0O
Crw------ 1 root tty 4, 64 May 5 1998 /dev/ttySO

As with /dev/ttyS0, the permission bits and group settings for /var/lock largely depend on the distribution.
For the same Red Hat 6.2, /var/lock was accessible to the root user and any member of the uucp group:

$1ls -1d /var/lock
dr WxXr wWxr - X 5 root uucp 1024 Qct 2 17:14 /var/ |l ock

Though Red Hat 6.2 is outdated, and your distribution is likely to have different values, this setup is a
perfect example to illustrate the modifications required to allow proper access to the serial port. In this
case, to use a terminal emulator on the serial port as a hormal user, you must be part of both the tty
and uucp groups, and access rights to /dev/ttySO must be changed to allow read and write access to
members of the owning group. In some distributions, the access rights to /dev/ttyS0O will be set properly,
but /var/lock will belong to the r oot group. In that case, you may want to change the group setting,
unless you want to allow normal users in the r oot group, which | do not recommend.

Going back to Red Hat 6.2, use chmod to change the rights on /dev/ttySO:

$ su

Passwor d:

chnod 660 /dev/ttyS0

ls -al /dev/ttyS0O

Cr W I W--- 1 root tty 4, 64 May 5 1998 /dev/ttySO

http://www.wowebook.info

Download at wowebook. 1nfag

Then, edit the /etc/group file using vigrl”l and add your username to the uucp and t t y lines:

(171 This command is tailored for the editing of the /etc/group file. It sets the appropriate locks to ensure that only one user is accessing the
file at any ime. See the manpage for more information.

tty:x:5: karim

uucp: x: 14: uucp, karim

Finally, log out from root user mode, log out from your own account, and log back in to your account:

exit

$id

ui d=501(karinm gid=501(kari m groups=501(karim
$ exit

Teoti huacan | ogin: karim

Passwor d:

$id

ui d=501(karim gid=501(karin) groups=501(karim,5(tty), 14(uucp)

As you can see, you need to first log out and then log back in for the changes to take effect. Opening a
new terminal window in your GUI may have similar effects, depending on the GUI your are using and the
way it starts new terminal windows. Even if it works, however, only the new terminal window will be part
of the appropriate groups, but any other window opened before the changes will still be excluded. For
this reason, itis preferable to exit your GUI, completely log out, and then log back in.

For more information on the setup of the serial interface, have a look at the Serial HOWTO available
from the LDP and Chapter 4 of the Linux Network Administrator's Guide (O'Reilly).

4.10.2 Minicom

Minicom is the most commonly used terminal emulator for Linux. Most documentation online or in print
about embedded Linux assumes that you are using minicom. However, as | said above, there are known
file transfer problems between minicom and at least one bootloader. Minicom is a GPL clone of the Telix
DOS program and provides ANSI and VT102 terminals. Its project web site is currently located at
http://mww.netsonic.fi/~walker/minicom.html. Minicom is likely to have been installed by your distribution.
You can verify this by using rpm -g minicom if you are using a Red Hat-based distribution.

Minicom is started by using the minicom command:
$ m ni com
The utility starts in full-screen mode and displays the following on the top of the screen:

VWl come to mnicom1.83.0

OPTIONS: H story Buffer, F-key Macros, Search H story Buffer, 118n
Conpi l ed on Mar 7 2000, 06:12:31.

Press CTRL-A Z for help on special keys

To enter commands to minicom, press Ctrl-A and then the letter of the desired function. As stated by
minicom's welcome message, use Ctrl-A Z to get help from minicom. Refer to the package's manpage
for more details about its use.

http://www.netsonic.fi/~walker/minicom.html
http://www.wowebook.info

Download at wowebook. 1nfag

4.10.3 UUCP cu

Unix to Unix CoPy (UUCP) used to be one of the most popular ways to link Unix systems. Though UUCP
is rarely used today, the cu command part of the UUCP package can be used to call up other systems.
The connection used to communicate to the other system can take many forms. In our case, we are
mostly interested in establishing a terminal connection over a serial line to our target.

To this end, we must add the appropriate entries to the configuration files used by UUCP. In particular,
this means adding a port entry in /etc/uucp/port and a remote system definition to /etc/uucp/sys. As the
UUCP info page states, "a port is a particular hardware connection on your computer,” whereas a system
definition describes the system to connect to and the port used to connect to it.

Though UUCP is available from the GNU FTP site under the terms of the GPL, it is usually already
installed on your system. On a Red Hat-based system, use rpm -q uucp to verify that it is installed.

Here is an example /etc/uucp/port:

[etc/uucp/port - UUCP ports

[dev/ttySO

port ttyS0O # Port nane

type direct # Direct connection to other system
device /[dev/ttySO # Port devi ce node

hardf l ow f al se # No hardware flow contr ol

speed 115200 # Line speed

This entry states that there is a port called t t y SO that uses direct 115200 bps connections without
hardware flow control to connect to remote systems through /dev/ttyS0. The name of the portin this
case, t t y S0, is used only to identify this port definition for the rest of UUCP utilities and configuration
files. If you've used UUCP before to connect using a traditional modem, you will notice that this entry
resembles modem definitions. Unlike modem definitions, however, there is no need to provide a carri er
field to specify whether a carrier should be expected. Setting the connection type to di r ect makes
carrier defaultto fal se.

Here is an example /etc/uucp/sys file that complements the /etc/uucp/port file listed earlier:

[et c/uucp/sys - name UUCP nei ghbors

system target

system tar get # Renot e syst em nane

port ttySO # Port name

time any # Access Is possible at any tine

Basically, this definition states that the system called t ar get can be called up at any time using port
ttyS0.

We can now use cu to connect to the target:

$ cu target
Connect ed.

Once in a cu session, you can issue instructions using the ~ character followed by another character
specifying the actual command. For a complete list of commands, use ~2.

For more information on how to configure and customize UUCP for your system, have a look at Chapter
16 in the Linux Network Administrator's Guide (O'Reilly), the UUCP HOWTO available from the LDP,
and the UUCP info page.

http://www.wowebook.info

Download at wowebook. 1nfag

4.10.4 C-Kermit

C-Kermit is one of the packages maintained as part of Columbia University's Kermit project
(http://mww.columbia.edu/kermit/). C-Kermit provides a unified interface for network operations across a
wide range of platforms. Although it features many capabilities, terminal emulation is the package's
capability we are most interested in.

Though you are free to download C-Kermit for personal and internal use, C-Kermit is not open source
software and its licensing makes it difficult for commercial distributions to include it.[!8] C-Kermit is
available for download from http://www.columbia.edu/kermit/ckermit.html. Follow the documentation in
the ckuins .txt file included with the package to compile and install C-Kermit. In contrast with most other
tools we discuss in this book, C-Kermit should be installed system wide, not locally to your project
workspace. Once installed, C-Kermit is started using the kermit command.

(18] Although the license was changed lately to simplify inclusion in commercial distributions such as Red Hat, C-Kermit has yet to be
included in most mainstream distributions.

In terms of usability, kermit compares quite favorably to both minicom and cu. Despite its lack of user
menus, as provided by minicom, kermit's interactive command language provides a very intuitive and
powerful way of interacting with the terminal emulator. When you initiate a file transfer from the target's
bootloader, for example, the bootloader starts waiting for the file. You can then switch to kermit's
interactive command line on the host using Ctrl-\ C and send the actual file using the send command.
Among other things, the interactive command line provides Tab filename completion similar to that
provided by most shells in Linux. Also, the interactive command line is capable of recognizing
commands using the shortest unique character string part of a command name. The set receive
command, for example, can be shortened to set rec.

To use the kermit command, you must have a .kermrc configuration file in your home directory. This file
is run by kermit at startup. Here is an example .kermrc file that | use on my workstation:

Li ne properti es

set nmodemt ype none ; Direct connecti on
set |ine /dev/ttySO ; Device file

set speed 115200 ; Li ne speed

set carrier-watch off ; No carrier expected
set handshake none ; No handshaki ng

set flow-control none ; No flow control

; Communi cation properties

robust ; Most robust transfer settings nmacro
set receive packet-length 1000 ; Max pack len renote system should use
set send packet -1 ength 1000 ; Max pack len local systemshoul d use
set wi ndow 10 ; Nor of packets to send until ack

;. File transfer properties
set file type binary ; Al files transferred are binary
set file nanes literal ; Don't nodify filenanes during xfers

For more information about each of the settings above, try the help command provided by kermit's
interactive command line. For more information regarding the robust macro, for example, use help
robust. In this case, robust must be used before set receive, since robust sets the maximum packet
length to be used by the remote system to 90 bytes, while we want it set to 1000 bytes.

Once the configuration file is created, you can start kermit:

$ kermt -c
Connecting to /dev/ttyS0, speed 115200

http://www.columbia.edu/kermit/
http://www.columbia.edu/kermit/ckermit.html
http://www.wowebook.info

Download at wowebook. 1nfag

Escape character: CQrl-\ (ASCII 28, FS): enabled
Type the escape character foll owed by C to get back,
or followed by ? to see other options.

If you are looking for more information about the use of C-Kermit and intend to use it more extensively,
think about purchasing the Using C-Kermit book by Frank Da Cruz and Christine Gianone (Digital Press).
Apart from providing information regarding the use of C-Kermit, sales of the book help fund the project.
Though the book covers Version 6.0, supplements for Versions 7.0 and 8.0 are freely available from the
project's web site.

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 5. Kernel Considerations

The kernel is the central software component of all Linux systems. Its capabilities very much dictate the
capabilities of the entire system. If the kernel you use fails to support one of your target's hardware
components, for instance, this component will be useless as long as this specific kernel runs on your
target.

Many books and online documentation already discuss the kernel's internals, its programming, its setup,
and its use in user systems at length. I will not, therefore, cover these issues here. If you are interested in
such issues, have a look at Running Linux, Linux Device Drivers, and Understanding the Linux Kernel by
O'Reilly. These books cover the kernel's setup and use, its programming, and its internals, respectively.
You may also want to take a look at the Linux Kernel HOWTO available from the LDP.

Our discussion will be limited to issues about the preparation of a Linux kernel for use in an embedded
system. Specifically, we will discuss kernel selection, configuration, compilation, and installation. Each
step will get us closer to the goal of obtaining a functional kernel with its related modules for our target
system. Our discussion will end with coverage of the aspects of the kernel's operation that are specific to
embedded systems.

http://www.wowebook.info

Download at wowebook. 1nfag

5.1 Selecting a Kernel

Though there is only one main repository for the kernel, http://www.kernel.org/, the versions available
from that site aren't always appropriate for all the architectures supported by Linux. In fact, these
versions will often not even build for, much less run on, some of the most popular architectures in
embedded Linux systems. This is primarily because the development of Linux for these architectures
isn't synchronized with the main kernel releases.

To have a working kernel for your target, you need to obtain one of the versions made available by the
development team in charge of your target's underlying processor architecture. Since each architecture
is maintained by a different team, the site of choice for a kernel varies accordingly. Table 5-1 provides a
list of locations where you will find the most appropriate kernel for your architecture, along with the
means of download available from that site.

Table 5-1. Most appropriate kernel location for each processor architecture

Processor architecture Most appropriate kernel location Available download means
x86 http://www.kernel.org/ ftp, http, rsync
ARM http://www.arm.linux.org.uk/developer/ ftp, rsync
PowerPC http://penguinppc.org/ ftp, http, rsync, bitkeeper
MIPS http://www. linux-mips.org/ Cvs
SuperH http://linuxsh.sourceforge.net/ Cvs
M68k http://www.linux-m68Kk.org/ ftp, http

As you can see, most of these sites are the same ones | recommended for each architecture in Chapter
3. That said, these are not the only kernel locations for each target. Other locations may also provide
versions for your target. To begin with, some of these sites have mirrors that provide the same content.
Then there are the kernels provided by various individuals, companies, and organizations. Exercise
caution if you intend to use the latter type of kernel, as these kernels may not be supported by the
community!] and you may be forced to rely on the provider's support, if available, in case of problems.

(11 This lack of support from the community won't necessarily be due to lack of code availability (which shouldn't happen since Linuxis
distributed under the terms of the GPL), but most likely because the modifications to the kernel's functionality made by that provider are
understood only by her. It may also be that the kernel modifications are not considered mature enough, or even desirable, by the community
to warrant inclusion in the main kernel tree.

Once you have found the download site that is most appropriate for you, you will need to select a kernel
version from that site. This is a difficult decision, as some versions have broken features, even if the
same features were fully functional in older versions. The best way to find this sort of information is to
stay in touch with the community maintaining the kernel for your architecture. This doesn't mean sending
any emails or contacting anyone, but it involves subscribing to the appropriate mailing lists and keeping
watch of the important notices on that list and on the port's main web site.

Some of these sites, such as the ARM site, don't necessarily distribute full kernels. Rather, they
distribute patches to the official kernel. To obtain the appropriate kernel for your architecture, you must
then download the kernel from the main repository and apply to it the appropriate patch provided by your
port's site.

http://www.kernel.org/
http://www.kernel.org/
http://www.arm.linux.org.uk/developer/
http://penguinppc.org/
http://www.linux-mips.org/
http://linuxsh.sourceforge.net/
http://www.linux-m68k.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Kernel Version Variations

The versions distributed by the alternative repositories often use variations on the kernel's
versioning scheme to identify their work. Russell King, the maintainer of the ARM tree,
distributes his kernels with the -rmk extension. Other developers base their work on Russell's
work and add their own extensions. Nicolas Pitre, another ARM Linux developer, adds the -np
extension to his kernels, and the maintainers of the handhelds.org Familiar distribution add
the -hh extension to their kernels. Hence, kernel 2.4.20-rmk3-hh24, which | mentioned in
Chapter 1, is handhelds.org's Release 24 of Russell's Release 3, which is itself based on
Marcelo Tosatti's 2.4.20.

(Though Linus Torvalds is the usual maintainer of Linux releases, Linus passed the
maintenance of the 2.4.x series on to Marcelo so he could concentrate on the 2.5.x
development series.)

For our ARM-based user interfaces, we download plain 2.4.18 from http://www.kernel.org/ and the
2.4.18-rmk5 patch from the official ARM Linux site, http://www.arm.linux.org.uk/. By applying the rmk5
patch to the vanilla 2.4.18, we obtain the 2.4.18-rmk5 kernel, which contains all the features required for
ARM-based systems.

Most of the time, the latest known-to-be-functional version is the best one to use. So if 2.4.17 and 2.4.18
are known to work on your target, 2.4.18 should be the preferable one. There are cases, however, in
which this doesn't hold true. Most folks who follow the kernel's development are aware, for example, that
Versions 2.4.10 to 2.4.15, inclusive, are to be avoided, because they were part of a period during which a
lot of changes were being integrated into the kernel and are therefore sometimes unstable. Again, this is
the sort of information you can obtain by keeping in touch with the appropriate mailing lists and web sites.

If you find it too time consuming to subscribe to your port's mailing list or to the main kernel mailing list,
you owe it to yourself to at least visit your port's web site once a week and read the Kernel Traffic
(http://kt.zork.net’/kernel-traffic/) weekly newsletter. Kernel Traffic provides a summary of the most
important discussions that occurred on the main kernel mailing list during the past week.

Once you have found the appropriate kernel version for your target, download it into the
${PRJIROOT}/kernel directory, extract it, and rename it if necessary, as we have done in the previous
chapter in Section 4.2.2. Renaming the kernel directory will avoid the mistake of overwriting it while
extracting another kernel you might download in the future.

Whichever version you choose, do not refrain from trying a couple of different kernel versions for your
target. In addition to the recommendations and bug reports seen on the Net, your evaluation of different
versions will provide you with insight on your hardware's interaction with the kernel.

You may also want to try some of the various patches made available by some developers. Extra kernel
functionality is often available as an independent patch before it is integrated into the mainstream kernel.
Robert Love's kernel preemption patch, for instance, was maintained as a separate patch before it was
integrated by Linus into the 2.5 development series. We will discuss a few kernel patches in Chapter 11.
Have a look at Running Linux (O'Reilly) if you are not familiar with patches.

http://www.kernel.org/
http://www.arm.linux.org.uk/
http://kt.zork.net/kernel-traffic/
http://www.wowebook.info

Download at wowebook. 1nfag

5.2 Configuring the Kernel

Configuration is the initial step in the build of a kernel for your target. There are many ways to configure
the kernel, and there are many options from which to choose .

Regardless of the configuration method you use or the actual configuration options you choose, the
kermnel will generate a .config file at the end of the configuration and will generate a number of symbolic
links and file headers that will be used by the rest of the build.

We will limit our discussion to the aspects of kernel configuration that differ in embedded systems. You
can consult the various references | mentioned earlier if you are not familiar with kernel configuration.

5.2.1 Configuration Options

It is during configuration that you will be able to select the options you want to see included in the kernel.
Depending on your target, the option menus available will change, as will their content. Some options,
however, will be available no matter which embedded architecture you choose. The following is the list of
main menu options available to all embedded Linux architectures:

e Code maturity level options

e Loadable module support

e General setup

¢ Memory technology devices

e Block devices

e Networking options

e ATA/IDE/MFM/RLL support

e SCSI support

e Network device support

e Input core support

e Character devices

e Filesystems

e Console drivers

e Sound

e Kernel hacking

I will not give the details of each option, since the kernel configuration menu provides help capabilities
you can refer to as you perform the configuration. Notice, however, that we discussed many of these
options in Chapter 3.

One of the most important option menus is the one in which you choose the exact instance of the
processor architecture that best fits your target. The name of this menu, however, varies according to

http://www.wowebook.info

Download at wowebook. 1nfag

your architecture. Table 5-2 provides the system and processor selection option menu name, along with
the correct kernel architecture name for each. When issuing make commands, we need to set the ARCH
variable to the architecture name recognized by the kernel Makefiles.

Table 5-2. System and processor selection option and kernel architecture name according to
processor architecture

Processor architecture | System and processor selection option Kernel architecture name
x86 Processor type and features i386

ARM System type arm

PPC Platform support ppc

MIPS Machine selection/CPU selection mips or mips64

SH Processor type and features sh

M68k Platform-dependent support m68k

(2] Depending on the CPU.

Some options are available only for certain architectures. Table 5-3 lists these options and indicates their
availability for each architecture, as displayed by the kernel's configuration menus.

Table 5-3. Hardware support options for each architecture

Option x86 ARM PPC MIPS SH M68k
Parallel port X X X
support
IEEE 1394 X X X X
support
IrDA support X X X X
USB support X X X X
Bluetooth support | X X X

Some architectures have their own specific configuration option menus. The following is a list of such
menus for the ARM architecture:

e Acorn-specific block devices

e Synchronous serial interfaces

e Multimedia capabilities port drivers

Here is the list of menus specific to the PPC:

e MPC8xx CPM options

http://www.wowebook.info

Download at wowebook. 1nfag

e MPC8260 communication options

The fact that an option is available in your architecture's configuration menu does not automatically mean
that this feature is supported for your target. Indeed, the configuration menus may allow you to enable
many kernel features that have never been tested for your target. There is no VGA console, for instance,
on ARM systems. The configuration menu of the kernel, however, will allow you to enable support for the
VGA console. In this case, the actual kernel build will fail if you enable support for this option. In other
cases, the selected feature, or even the entire kernel, will not be functional. To avoid these types of
problems, make sure the options you choose are supported for your target. Most of the time, as in the
case of the VGA console, itis a matter of common sense. When the choice doesn't seem as evident,
visiting the appropriate project web site, such as the ones provided in Chapter 3, will help you determine
whether the feature is supported for your target.

In some cases, the fact that an option is not displayed in your architecture's configuration menu doesn't
mean that this feature can't actually be used on your target. Many of the features listed in Table 5-3,
such as Bluetooth, are mostly architecture independent, and should run on any architecture without a
problem. They aren't listed in the configuration menus of certain architectures, because they've either not
been tested on those architectures, or the maintainers of those ports or the maintainers of the feature
haven't been asked to add the feature in the architecture's main config.in file.[3l Again, the resources
listed in Chapter 3 are a good start for finding out about which unlisted features are possibly supported
on your target.

(3] config.in files control the options displayed in the configuration menus.

5.2.2 Configuration Methods

The kernel supports four main configuration methods:
make config

Provides a command-line interface where you are asked about each option one by one. If a .config
configuration file is already present, it uses that file to set the default values of the options it asks
you to set.

make oldconfig

Feeds config with a an existing .config configuration file, and prompts you to configure only those
options you had not previously configured. This contrasts with make config, which asks you about
all options, even those you may have previously configured.

make menuconfig

Displays a curses-based terminal configuration menu. If a .config file is present, it uses it to set
default values, as with make config.
make xconfig

Displays a Tk-based X Window configuration menu. If a .config file is present, it uses it to set
default values, as with make config and make menuconfig.

Any of these can be used to configure the kernel. They all generate a .config file in the root directory of
the kernel sources. (This is the file that contains the full detail of the options you choose.)

Few developers actually use the make config command to configure the kernel. Instead, most use make
menuconfig. You can also use make xconfig. Keep in mind, however, that make xconfig may have some
broken menus in some architectures; as is the case for the PowerPC, for instance.

To view the kernel configuration menu, type the appropriate command at the command line with the
proper parameters. For our ARM-based user interface modules, we use the following command line:

$ make ARCH=ar m CROSS COWPI LE=ar m| i nux- nenuconfig

http://www.wowebook.info

Download at wowebook. 1nfag

We then proceed to choose the configuration options appropriate to our target. Many features and
drivers are available as modules and we can choose here whether to have them built in the kernel or
whether to build them as modules. Once we are done configuring the kernel, we use the Escape key or
select the Exit item to quit the configuration menu. We are then prompted by the configuration utility to
confirm that we want to save the configuration. By choosing Yes, we save the kernel's configuration and
create a .config file. In addition to creating the .config file, a few header files and symbolic links are
created. If we choose No, the configuration is not saved and any existing configuration is left unmodified.

Apart from the main configuration options, some architectures, such as the PPC and the ARM, can be
configured using custom tailored configurations for the various boards implemented using the
architecture. In those cases, the defaults provided with the kernel will be used to generate the .config file.
For example, here is how | configure the kernel for the TQM860L PowerPC board | have:

$ make ARCH=ppc CROSS COWPI LE=power pc- | i nux- TQVB60L_config
$ nmake ARCH=ppc CROSS_COWPI LE=power pc- | i nux- ol dconfig

5.2.3 Managing Multiple Configurations

It is often desirable to test different configurations using the same kernel sources. By changing the
kernel's configuration, however, we destroy the previous configuration, because all the configuration files
are overwritten by the kernel's configuration utilities. To save a configuration for future use, we need to
save the .config files created by the kernel's configuration. These files can later be reused to restore a
previous kernel configuration.

The easiest way to back up and retrieve configurations is to use the kernel's own configuration
procedures. The menus displayed by both the nenuconf i g and xconfi g Makefile targets allow you to
save and restore configurations. In each case, you need to provide an appropriate filename.

You can also save the .config files by hand. In that case, you need to copy the configuration file created
by the kernel configuration utilities to an alternative location for future use. To use a saved configuration,
you will need to copy the previously saved .config file back into the kernel's root directory and then use
the make command with the ol dconfi g Makefile target to configure the kernel using the newly copied
.config. As with the nenuconf i g Makefile target, the ol dconfi g Makefile target creates a few headers
files and symbolic links.

Whether you copy the files manually or use the menus provided by the various utilities, store the
configurations in an intuitive location and use a meaningful naming scheme for saving your
configurations. Using our project layout, | suggest that you store all your configurations in the
${PRJIROOT} kernel directory so that the configuration files may live independently from the actual kernel
sources while still remaining with the other kernel-related material. To identify each configuration file,
prepend each filename with the kernel version it relates to and a small descriptive comment or a date or
both. Leave the .config extension as-is, nevertheless, to identify the file as a kernel configuration file.

In the case of the 2.4.18 kernel we are using, for instance, | tried a configuration where | disabled serial
port support. | called the corresponding configuration file 2.4.18-no-serial.config. | also maintain the latest
known "best" configuration as 2.4.18.config. Feel free to adopt the naming convention that is most
intuitive for you, but you may want to avoid generic names such as 2.4.18-testl.config.

5.2.4 Using the EXTRAVERSION Variable

If you are using multiple variants of the same kernel version, you will find the EXTRAVERSI ON variable to
be quite useful in identifying each instance. The EXTRAVERSI ON variable is appended to the kernel's
version number to provide the kernel being built with its final name. The rmk5 patch we applied on our
plain 2.4.18, for example, sets EXTRAVERSI ON to -rmk5 and the resulting version for that kernel is 2.4.18-
rmk5.

http://www.wowebook.info

Download at wowebook. 1nfag

The final version number is also used to name the directory where the modules built for the kernel are
stored. Hence, modules built for two kernels based on the same initial version but with different
EXTRAVERSI ONs will be stored in two different directories, whereas modules built for two kernels based on
the same initial version but that have no EXTRAVERSI ON will be stored in the same directory.

You can also use this variable to identify variants based on the same kernel version. To do so, edit the
Makefile in the main kernel directory and set EXTRAVERS| ON to your desired value. You will find it useful to
rename the directory containing this modified source code using this same value. If, for example, the
EXTRAVERSI ON of a 2.4.18 kernel is set to - not or - di f T, the parent directory should be named 2.4.18-
motor-diff. The naming of the backup .config files should also reflect the use of EXTRAVERSI ON. The
configuration file for the kernel with disabled serial support should therefore be called 2.4.18-motor-diff-
no-serial.config in this case.

http://www.wowebook.info

Download at wowebook. 1nfag

5.3 Compiling the Kernel

Compiling the kernel involves a number of steps: building the kernel dependencies, building the kernel
image, and building the kernel modules. Each step uses a separate make command and is described
separately in this section. However, you could also carry out all these steps using a single command line.

5.3.1 Building Dependencies

Most files in the kernel's sources depend on a number of header files. To build the kernel adequately, the
kernel's Makefiles need to know about these dependencies. For each subdirectory in the kernel tree, a
hidden .depend file is created during the dependencies build. This contains the list of header files that
each file in the directory depends on. As with other software that relies on make, only the files that
depend on a header that changed since the last build will need to be recompiled when a kernel is rebuilt.

From the kernel source's root directory, the following command builds the kernel's dependencies:
$ nmake ARCH=arm CROSS _COWPI LE=ar mt| i nux- clean dep

As in the configuration of the kernel earlier, we set the ARCH and CROSS COMPI LE variables. As | explained
in Chapter 4, CROSS _COMPI LE is only required when source code is actually compiled, and could be
omitted here. On the other hand, we will need to set at least the ARCH variable for every make command
we issue because we are cross-compiling the kernel. Even when issuing make clean or make distclean,
we will need to set this variable. Otherwise, the kernel's Makefiles assume that the operations are to be
carried out for the kernel code related to the host's architecture.

The ARCH variable indicates the architecture for which this kernel is built. This variable is used by the
kernel Makefiles to choose which architecture-dependent directory is going to be used. When compiling
the kemnel for your target, you must set this variable to your target's architecture.

The CrOss cowvpl LE variable is used by the kernel's Makefiles to construct the names of the tools used in
the kemnel's build. The name of the C compiler, for instance, is the result of the concatenation of the
value of cross cowvpl LE and the letters "gec”. In the case of our ARM target, the C compiler's final name
is arm-linux-gcc, which is the actual name of the compiler we built for this target using the instructions in
Chapter 4. This also explains why the trailing hyphen on the previous command line is important. Without
this hyphen, the Makefile would try to use the arm-linuxgcc compiler, which doesn't exist.

The building of the dependencies is relatively short. On my PowerBook, this takes two minutes. There
are usually no errors possible at this stage. If you do see errors, the kernel you have probably suffers
from fundamental problems.

5.3.2 Building the Kernel

With the dependencies built, we can now compile the kernel image:
$ make ARCH=arm CROSS_COWPI LE=ar m| i nux- zl nage

The zI mage target instructs the Makefile to build a kernel image that is compressed using the gzip
algorithm.[¥l There are, nevertheless, other ways to build a kermnel image. The vni i nux target instructs the
Makefile to build only the uncompressed image. Note that this image is generated even when a
compressed image is requested.

(4] Though z1 nage is a valid Makefile target for all the architectures we discussed in depth in Chapter 3, there are other Linux architectures
for which it isn't valid.

http://www.wowebook.info

Download at wowebook. 1nfag

On the x86, there is also the bz| nage target. The "bzImage" name stands for "big zimage," and has
nothing to do with the bzip2 compression utility. In fact, both the bzl nage and zI mage Makefile targets
rely on the gzip algorithm. The difference between the two Makefile targets is that the compressed kernel
images generated using z! mage cannot be larger than 512 KB, while those generated using bz| nage are
not bound by this limit. If you want more information regarding the differences between zI nage and

bzl mage, have a look at the Documentation/i386/boot.txt file included in the kernel sources.

If you chose any options not supported by your architecture during the kernel configuration or if some
kernel option is broken, your build will fail at this stage. If all goes well, this should take a few minutes
longer than the dependency build. On my hardware configuration, it takes five minutes.

Verifying the Cross-Development Toolchain

Notice that the kernel build is the first real test for the cross-development tools we built in the
previous chapter. If the tools you built earlier compile a functional kernel successfully, all the
other software should build perfectly. Of course, you will need to download the kernel you
built to your target to verify its functionality, but the fact that it builds properly is already a
positive sign.

5.3.3 Building the Modules

With the kernel image properly built, we can now build the kernel modules:

$ make ARCH=ar m CROSS COWPI LE=ar m| i nux- nodul es

The duration of this stage depends largely on the number of kernel options you chose to build as
modules instead of having linked as part of the main kernel image. This stage is seldom longer than the
build of the kernel image. As with the kernel image, if your configuration is inadequate for your target or if
a feature is broken, this stage of the build may fail.

With both the kernel image and the kernel modules now built, we are ready to install them for our target.
Before we do so, note that if you needed to clean up the kernel's sources and return them to their initial
state prior to any configuration, dependency building, or compilation, you could use the following
command:

$ make ARCH=arm CROSS COWPI LE=ar m | i nux- di stclean
Be sure to backup your kernel configuration file prior to using this command, since make distclean

erases all the files generated during the previous stages, including the .config file, all object files, and the
kernel images.

http://www.wowebook.info

Download at wowebook. 1nfag

5.4 Installing the Kernel

Ultimately, the kernel we generated and its modules will have to be copied to your target to be used. | will
cover the actual copying of the kernel and its modules in Chapter 6 and Chapter 9. Meanwhile, we will
discuss how to manage multiple kernel images and their corresponding module installations. The
configuration of the target's boot layout and its root filesystem depend on the technigues we discuss
below.

5.4.1 Managing Multiple Kernel Images

In addition to using separate directories for different kernel versions, you will find it useful to have access
to multiple kermnel images to test on your target. Since these images may be built using the same
sources, we need to copy them out of the kernel source and into a directory where they can be properly
identified. In our setup, the repository for these images is the ${PRIJROOT}/images directory.

For each kernel configuration, we will need to copy four files: the uncompressed kernel image, the
compressed kernel image, the kernel symbol map, and the configuration file. The last three are found
within the kernel sources' root directory and are called vmlinux, System.map, and .config, respectively.
The compressed kernel image file is found in the arch/YOUR_ARCHboot directory, where YOUR _ARCH is the
name of your target's architecture, and is called zlmage or bzimage, depending on the Makefile target
you used earlier. For our ARM-based target, the compressed kernel image is arch/arm/boot/zlmage.

Some architectures, such as the PPC, have many boot directories. In those cases, the kernelimage to
use is not necessarily the one located at arch/YOUR_ARCHboot/zimage. In the case of the TQM board
mentioned above, for example, the compressed kernel image that should be used is
arch/ppc/imagesivmlinux.gz. Have a look at the arch/YoUR_ArRCHMakefile for a full description of all the
Makefile boot image targets for your architecture. In the case of the PPC, the type of boot image
generated depends on the processor model for which the kernel is compiled.

To identify the four files needed, we use a naming scheme similar to that of the kernel's version. In the
case of the kernel generated using 2.4.18-rmk5 sources, for instance, we copy the files as follows:

$ cp arch/ arm boot/zl mage ${PRIRCOT}/i mages/ zl mage- 2. 4. 18-rnk5
$ cp System map ${PRIROCOT} /i mages/ Syst em map- 2. 4. 18-r k5

$ cp vminux ${PRIROOT}/images/vn i nux-2.4.18-rnmk5

$ cp .config ${PRIROOT}/i mages/ 2. 4. 18-rnk5. confi g

You could also include the configuration name in the filenames. So in the case of the kernel without
serial support, for instance, we could name the four kernel files zimage-2.4.18-rmk5-no-serial,
System.map-2.4.18-rmk5-no-serial, vmlinux-2.4.18-rmk5-no-serial, and 2.4.18-rmk5-no-serial.config.

5.4.2 Installing Kernel Modules

The kernel Makefile includes the nodul es_i nst al | target for installing the kernel modules. By default,
the modules are installed in the /lib/modules directory. Since we are in a cross-development
environment, however, we need to instruct the Makefile to install the modules in another directory.

As the kernel modules need to be used with the corresponding kernel image, we will install the modules
in a directory with a name similar to that of the kernel image. So in the case of the 2.4.18-rmk5 kernel we
are using, we install the modules in the ${PRIJROOT}/images/modules-2.4.18-rmk5 directory. The
content of this directory will later be copied to the target's root filesystem for use with the corresponding
kemnel on the target. To install the modules in that directory, we use:

http://www.wowebook.info

Download at wowebook. 1nfag

$ make ARCH=arm CROSS COWPI LE=ar m| i nux- \
> | NSTALL_MCD PATH=${ PRIROOT}/ i mages/ nodul es-2. 4. 18- rnk5 \
> nodul es_i nstal |

The | NSTALL_MOD PATH variable is prepended to the /lib/modules path, so the modules are therefore
installed in the ${PRIJROOT}/ images/modules-2.4.18-rmk5/lib/modules directory.

Once it is done copying the modules, the kernel tries to build the module dependencies needed for the
module utilities during runtime. Since depmod, the utility that builds the module dependencies, is not
designed to deal with cross-compiled modules, it will fail.

To build the module dependencies for your modules, you will need to use another module dependency
builder provided with the BusyBox package. We will discuss BusyBox at length in Chapter 6. For now,
download a copy of the BusyBox archive from http://www.busybox.net/ into your ${PRJROOT}/sysapps
directory and extract it there.[> From the BusyBox directory, copy the scripts/depmod.pl Perl script into
the ${PREFIX}/bin directory.

[51 Download BusyBox Version 0.60.5 or later.
We can now build the module dependencies for the target:

$ depnod. pl \

> -k ./vminux -F ./System nap \

> -b ${PRIROOT} /i mages/ nodul es-2. 4. 18-rnk5/ i b/ nodul es >\

> ${PRIRCOT}/ i mages/ modul es-2. 4. 18-r nk5/ | i b/ modul es/ 2. 4. 18- r mk5/ nodul es. dep

The -k option is used to specify the uncompressed kernel image, the -F option is used to specify the
system map, and the -b option is used to specify the base directory containing the modules for which we
need to build dependencies. Because the tool's output goes to the standard output, we redirectit to the
actual dependency file, which is always called modules.dep.

http://www.busybox.net/
http://www.wowebook.info

Download at wowebook. 1nfag

5.5 In the Field

Let's take a look at the kernel's operation once it's installed on your target and ready to run. Because the
algorithms and underlying source code is the same for embedded and regular systems, the kernel will
behave almost exactly the same as it would on a workstation or a server. For this reason, the other
books and online material on the subject, such as Linux Device Drivers and Understanding the Linux
Kernel from O'Reilly, are much more appropriate for finding in-depth explanations of the kernel. There
are, nevertheless, aspects particular to embedded Linux systems or that warrant particular emphasis.

5.5.1 Dealing with Kernel Failure

The Linux kernel is a very stable and mature piece of software. This, however, does not mean that it or
the hardware it relies on never fail. Linux Device Drivers covers issues such as oops messages and
system hangs. In addition to keeping these issues in mind during your design, you should think about the
most common form of kernel failure: kernel panic.

When a fatal error occurs and is caught by the kernel, it will stop all processing and emit a kernel panic
message. There are many reasons a kernel panic can occur. One of the most frequent is when you
forget to specify to the kernel the location of its root filesystem. In that case, the kernel will boot normally
and will panic upon trying to mount its root filesystem.

The only means of recovery in case of a kernel panic is a complete system reboot. For this reason, the
kernel accepts a boot parameter that indicates the number of seconds it should wait after a kernel panic
to reboot. If you would like the kernel to reboot one second after a kernel panic, for instance, you would
pass the following sequence as part of the kernel's boot parameters: pani c=1.

Depending on your setup, however, a simple reboot may not be sufficient. In the case of our control
module, for instance, a simple reboot may even be dangerous, since the chemical or mechanical
process being controlled may get out of hand. For this reason, we need to change the kernel's panic
function to notify a human operator who could then use emergency manual procedures to control the
process. Of course, the actual panic behavior of your system depends on the type of application your
system is used for.

The code for the kernel's panic function, panic(), is in the kernel/panic.c file in the kermnel's sources. The
first observation to be made is that the panic function's default output goes to the console.[® Since your
system may not even have a terminal, you may want to modify this function according to your particular
hardware. An alternative to the terminal, for example, would be to write the actual error string in a special
section of flash memory that is specifically set aside for this purpose. At the next reboot, you would be
able to retrieve the text information from that flash section and attempt to solve the problem.

[6] The console is the main terminal to which all system messages are sent.

Whether you are interested in the actual text message or not, you can register your own panic function
with the kernel. This function will be called by the kernel's panic function in the event of a kernel panic
and can be used to carry out such things as signaling an emergency.

The list that holds the functions called by the kernel's own panic function is pani c_notifier_list. The
notifier_chain_register function is used to add an item to this list. Conversely, notifier_chain_unregister is
used to remove an item from this list.

The location of your own panic function has little importance, but the registration of this function must be
done during system initialization. In our case, we add a mypanic.c file in the kernel/ directory of the kernel
sources and modify that directory's Makefile accordingly. Here is the mypanic.c for our control module:

http://www.wowebook.info

Download at wowebook. 1nfag

#i ncl ude <l i nux/ kernel . h>
#i nclude <l inux/init. h>
#i ncl ude <l inux/notifier.h>

static int ny_pani c_event(struct notifier_block *,
unsi gned | ong,
void *);

static struct notifier_block my pani c_bl ock = {

notifier_call: ny _pani c_event,
next: NULL,
priority: I NT_MAX

1

int _ _init register_ny_panic(voi d)

{
pri nt k(" Registering buzzer notifier \n");
notifier_chain_regi ster(&panic_notifier_I|ist,

&ny_pani c¢_bl ock);

return O;

}

void ring_big_buzzer(voi d)

{

}

static int ny_pani c_event(struct notifier_block *this,
unsi gned | ong event,

void *ptr)
{
ring_bi g _buzzer();
return NOTIFY_DONE,
}

nmodul e i nit(register_ny_panic);

The nodul e_i nit(register_ny _pani ¢); statement ensures that the register_my_panic function is called
during the kernel's initialization without requiring any modification of the kernel's startup functions. The
registration function adds ny_pani c¢_bl ock to the list of other blocks in the panic natifier list. The

not i fier bl ock structure has three fields. The first field is the function to be called, the second is a
pointer to the next notifier block, and the third is the priority of this block. In our case, we want to have the
highest possible priority. Hence the use of | NT_vaXx.

In case of kernel panic, my_panic_event is called as part of the kernel's notification of all panic functions.
In turn, this function calls on ring_big_buzzer, which contains code to start a loud alarm to attract the
human operator's attention to the imminent problem.

Ceam it | enevious [l vesr

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 6. Root Filesystem Content

One of the last operations conducted by the Linux kernel during system startup is mounting the root
filesystem. The root filesystem has been an essential component of all Unix systems from the start. The
root filesystem's current organization is a bit idiosyncratic and contains some redundancy because of
how it grew over time and was influenced by Unix developments. | will not attempt to cover the reasons
for the current structure and underlying conventions. Instead, | will explain how to organize the various
components to adhere to the accepted standards and, thereby, obtain a functional root filesystem. In the
process, we will use many of the components we built earlier, such as the kernel modules and the C
library.

First, we will discuss the basic root filesystem structure. Then, we will discuss how and where to install
the system libraries, the kernel modules, kernel images, device nodes, main system applications, and
custom applications. Finally, we will discuss how to configure the system initialization scripts. At the end
of this chapter, you will have a fully functional root filesystem for your target. In the next chapters, we will
discuss how you can place this root filesystem on an actual filesystem type on a storage device for use in
your target.

http://www.wowebook.info

Download at wowebook. 1nfag

6.1 Basic Root Filesystem Structure

The top-level directories in the root filesystem each have a specific use and purpose. Many of these are
meaningful only in multiuser systems in which a system administrator is in charge of many servers
and/or workstations used by different users. In most embedded Linux systems, where there are no users
and no administrators, the rules to build a root filesystem can be loosely interpreted. This doesn't mean
that all rules can be violated, but it does mean that breaking some rules will have little to no effect on the
system's proper operation. Interestingly, even mainstream commercial distributions for workstations and
servers do not always adhere to the established rules for root filesystems.

The "official" rules to build a root filesystem are contained in the Filesystem Hierarchy Standard (FHS)
introduced in Chapter 1. The document is less than 30 pages long and is fairly easy to read. If you are
looking for answers or clarifications regarding the root filesystem, the FHS is probably the best place to
start. Table 6-1 provides the complete list of root filesystem top-level directories and their content as
specified by the FHS.

Table 6-1. Root filesystem top-level directories

Directory Content

bin Essential user command binaries

boot Static files used by the bootloader

dev Devices and other special files

etc System configuration files, including startup files

home User home directories, including entries for services such as FTP

lib Essential libraries, such as the C library, and kernel modules

mnt Mount point for temporarily mounted filesystems

opt Add-on software packages

proc Virtual filesystem for kernel and process information

root Root user's home directory

shin Essential system administration binaries

tmp Temporary files

usr _Secondary hierarchy containing most applications and documents useful to most users,
including the X server

var Variable data stored by daemons and utilities

If you are using Linux for your day-to-day work, you are already familiar with some of these directories.
Nevertheless, let's take a closer look at the content of a typical root filesystem for use in an embedded
Linux system.

First, all the directories that pertain to providing a multiuser extensible environment, such as /home, /mnt,
/opt, and /root, can be omitted. We could trim the root filesystem even further by removing /tmp and /var,
but these omissions may jeopardize the operation of certain programs. | do not encourage such a
minimalistic approach.

http://www.wowebook.info

Download at wowebook. 1nfag

ol This discussion does not revolve around size issues, but rather functionality. In
o fact, omitting a directory entry changes little to the resulting root filesystem's size.
w? #: The reason | state that /nome can be omitted, for example, is that even if it were

" present in an embedded Linux system, it would be empty, because its content, as
prescribed by the FHS, is useful only in workstation and server setups.

Depending on your bootloader and its configuration, you may not need to have a /boot directory. This will
depend on whether your bootloader can retrieve kernel images from your root filesystem before your
kemel is booted. You will be able to decide whether you should use a /boot directory and how to use it for
your target after you read Chapter 9. Of course, you can redesign the root filesystem at any later time if
need be.

The remaining directories, /bin, /dev, /etc, /lib, /proc, /sbin, and /usr, are essential.

At the extreme, you could omit /proc, which is useful only for mounting the virtual filesystem that has the
same name. However, it would then become very hard to understand what is happening on your target if
you needed to analyze it in the field. If you are very tight for space, you can configure your kernel without
/proc suppon, but | encourage you to enable it whenever possible.

Two of the root directories, /usr and /var, have a predefined hierarchy of their own, much like that of the
root directory. We will briefly discuss these hierarchies as we populate both directories in the steps
below.

Confusing Similarities

One of the most confusing aspects of the root filesystem is the apparent similarity in purpose
of some directories. In particular, newcomers often ask what difference there is between the
various directories containing binaries and the various directories containing libraries.

There are four main directories for binaries on the root filesystem: /bin, /sbin, /usr/bin, and
{usr/sbin. The directory in which a binary is placed largely depends on its role in the system.
Binaries that are essential to both users and system administrators are in /bin. Binaries that
are essential to system administration, but will never be used by ordinary users, are located in
/sbin. In contrast, most nonessential user binaries are located in /usr/bin and most
nonessential system administration tools are in /usr/shin.

As for the location of libraries, the rationale is similar. The libraries required to boot the
system and run the most essential commands are located in /lib, while /usr/lib contains all the
other libraries. Often, packages will create subdirectories in /ust/lib to contain their own
libraries. The Perl 5.x packages, for instance, have a /ust/lib/perl5 directory that contains all
the Perl-related libraries and modules.

A look on your Linux workstation's own root filesystem in these directories will show you
actual examples of the application of these criteria by your distribution's designers.

To work on the root filesystem, let's move into the directory we created for this purpose:
$ cd ${PRIROOT}/r oot fs
We now create the core root filesystem directories required for our system:

$ nkdir bin dev etc lib proc sbin tnp usr var
$ chnod 1777 tnp

http://www.wowebook.info

Download at wowebook. 1nfag

Notice that we did not create /boot. We will come back to it later and create it if it becomes necessary.
Also, note that we changed the permissions for the /tmp directory to turn the "sticky bit* on. This bit in the
directory permissions field will ensure that files created in the /tmp directory can be deleted only by the
user that created them. Though most embedded Linux systems are single-user systems, as | said
above, there are cases in which embedded applications must not run with root privileges, hence the need
to follow some basic rules about root filesystem permission bits. The OpenSSH package we discuss in
Chapter 10, for example, is such an application.

We can proceed with the creation of the /usr hierarchy:

$ nkdir usr/bin usr/lib usr/shin

On a fully featured root filesystem, the /usr directory usually contains many more entries. A simple
demonstration of this is easily conducted by typing Is -al /usr on your workstation. You will find directories
such as man, src, and local. The FHS contains a section addressing the layout of this directory in detail.
For the purposes of most embedded Linux systems, nonetheless, the three directories we created will
suffice.

The last entries to create are in the /var directory:

$ nkdir var/lib var/lock var/log var/run var/tnp
$ chnod 1777 var/tnp

Here, too, this directory usually contains many more entries. Directories such as cache, mail, and spool
are useful for a workstation or a server, but few embedded systems need those directories. The
directories we created are the bare minimum required for the normal operation of most applications
found in an embedded Linux system. Of course, if you need functionality such as web page serving or
printing, then you may want to add some of the additional directories required by the applications
providing this functionality. See the FHS and the documentation provided with your application to find out
your actual requirements.

With the root filesystem skeleton now ready, let's place the various software components in their
appropriate locations.

Running Linux with a Different root Filesystem
Structure

As | said in the previous discussion, the rules for building a root filesystem are found in the
FHS. Although most Linux applications and distributions depend on these rules, they are not
enforced by the Linux kernel itself. In fact, the kernel source code makes very few
assumptions regarding the structure of the root filesystem. It follows from this that you could
build an embedded Linux system with a very different root filesystem structure. You would
then have to modify the defaults of most software packages to make them comply with your
new structure. Some have taken an even more extreme approach by building embedded
Linux systems without any root filesystem at all. Needless to say, | don't encourage you to go
down this path. The root filesystem rules | outlined above are recognized and agreed upon by
all open source and free software developers. By building your embedded Linux system using
other rules, you would be cutting yourself off from most open source and free software
packages and their developers.

http://www.wowebook.info

Download at wowebook. 1nfag

6.2 Libraries

In Chapter 4 we discussed how to build, install, and use the GNU C library and its alternatives for applicat
development. Here, we will discuss how to install those same libraries on the target's root filesystem so tF
they can be used at runtime by the applications we develop. We will not discuss diet libc, because it is me
used as a static library.

6.2.1 glibc

As | said earlier, the glibc package contains a number of libraries. You can see the entire list of libraries
installed during the package's build process by looking at your ${TARGET_PREFIXYIib directory. This
directory contains mainly four types of files:

Actual shared libraries

These files' names are formatted as libL| BRARY NAVE-GLI BC VERSI ON.S0, where LI BRARY NAME is tt
name of the library and G.1 BC VERSI ON is the version of the glibc package you are using. The nama
the math library for glibc 2.2.3 is libm-2.2.3.s0.

Major revision version symbolic links

Major revision versions do not follow the same numbering as the actual glibc version. The major
revision version for the actual shared C library in glibc 2.2.3, libc-2.2.3.s0, is 6. In contrast, the maij:
revision version for libdl-2.2.3.s0 is 2. The names of the symbolic links for the major revision versio
are formatted as libLI BRARY NAVE.SO.VAJCOR REVI SI ON VERSI ON, where VAJOR REVI S| ON VERS| ON i€
major revision version of the library. For the actual C library, for instance, the symbolic link is libc.s
For libdl, it is libdl.so.2. Once a program has been linked to a library, it will refer to this symbolic link
startup, the loader will therefore look for this file before loading the program.
Version-independent symbolic links to the major revision version symbolic links

The role of these links is to provide a universal entry for all the programs that need to link with a
particular library, regardless of the actual major revision or the version of glibc involved. These sy
links are typically formatted as libLI BRARY NAME.so. For example, libm.so points to libm.so0.6, which
points to the actual shared library, libm-2.2.3.s0. The only exception to this is libc.so, which, as | sa
Chapter 4, is a link script. The version-independent symbolic link is the one used when linking
programs.

Static library archives

These archives are used by applications that choose to link statically with a library. The names of tl
archives are formatted as libL| BRARY NAME.a. The static archive for libdl, for instance, is libdl.a.

You will also find some other types of files in ${TARGET_PREFIXYlib, such as crti.o and crtl.o, but you w
not need to copy these to your target's root filesystem.

Out of the four types of files described above, we will need only two for each library: the actual shared libr
and the major revision version symbolic links. The two other file types are needed only when linking
executables and are not required for the runtime operation of our applications.

In addition to the library files, we will need to copy the dynamic linker and its symbolic link. The dynamic li
itself follows the naming convention of the various glibc libraries, and is usually called Id-GLI BC VERSI ON.€
what is probably one of the most bizarre aspects of the GNU toolchain, however, the name of the symboli
link to the dynamic linker depends on the architecture for which the toolchain has been built. If the toolche
built for the i386, the ARM, the SuperH, or the m68k, the symbolic link to the dynamic linker is usually call
ld-linux.so.vAJ CR _REVI SI ON_VERSI ON. If the toolchain is built for the MIPS or the PowerPC, the symbolic li
the dynamic linker is usually called Id.so.VAJ OR_REVI SI ON_VERSI ON.

http://www.wowebook.info

Download at wowebook. 1nfag

Before we actually copy any glibc component to the target's root filesystem, however, we need to select tt
glibc components required for our applications. Table 6-2 provides the description of all the components i
glibclll and provides inclusion guidelines for each component. In addition to my guidelines, you will need t
evaluate which components your programs need, depending on their linking.

[1] See the glibc manual for a complete description of the facilities provided.

Table 6-2. Library components in glibc and root filesystem inclusion guidelines

Library Content Inclusion guidelines
component
Id Dynamic linker.[2 Compulsory.
Fixup routines to get applications with broken
: locale features to run. Overrides application
libBrokenLocale defaults through preloading. (Need to use Rarely used.
LD_PRELOAD).
libSegFauit Ro_utlnes for catching segmentation faults and Rarely used.
doing backtraces.
libanl Asynchronous name lookup routines. Rarely used.
libc Main C library routines. Compulsory.
. . Required for most applications invo
libcrypt Cryptography routines. in authentication.
. Routines for loading shared objects Required for applications that use
libdl . .
dynamically. functions such as dlopen().
libm Math routines. Required for math functions.
libmemusage Routines for heap and stack memory profiling. | Rarely used.
libnsl NIS network services library routines. Rarely used.

libnss_compat

Name Switch Service (NSS) compatibility
routines for NIS.

Loaded automatically by the glibc
NSS.[El

libnss_dns NSS routines for DNS. Loaded automatically by the glibc N
libnss_files NSS routines for file lookups. Loaded automatically by the glibc N
libnss_hesiod NSS routines for Hesiod name service. Loaded automatically by the glibc N
libnss_nis NSS routines for NIS. Loaded automatically by the glibc N

libnss_nisplus

NSS routines for NIS plus.

Loaded automatically by the glibc N

libpcprofile Program counter profiling routines. Rarely used.

libpthread Posix 1003.1c threads routines for Linux. Required for threads programming.
libresolv Name resolver routines. Required for name resolution.

librt Asynchronous I/O routines. Rarely used.

http://www.wowebook.info

Download at wowebook. 1nfag

Loaded automatically by gdb when
. . . debugging threaded applications.
libthread_db Thread debugging routines. Never actually linked to by any
application.
libutil Login routines, part of user accounting Required for terminal connection
database. management.

(2] This library component is actually not a library itself. Instead, Id.so is an executable invoked by the ELF binary format loader to load the
dynamically linked libraries into an application's memory space.

[3] See Chapter 4 for details.

Apart from keeping track of which libraries you link your applications with, you can usually use the Idd
command to find out the list of dynamic libraries that an application depends on. In a cross-platform
development environment, however, your host's [dd command will fail when provided with target binaries.
could still use the cross-platform readelf command we installed in Chapter 4 to identify the dynamic librari
that your application depends on. Here is an example showing how the BusyBox utility's dependencies ca
retrieved using readelf:

$ power pc-linux-readelf -a ${PRIROOT}/ root fs/ bin/busybox | \
> grep "Shared library"
0x00000001 (NEEDED) Shared library: [libc.so.0]

Ideally, however, if you installed uClibc, you should use the cross-platform capable Idd-like command inst
by uClibc. For our control module target, which is based on a PowerPC board, the command's name is
powerpc-uclibc-Idd. This way, you can build the list of libraries your target binaries depend on. Here are tt
dependencies of the BusyBox utility, for example (one line has been wrapped to fit the page):

$ power pc-ucl i bc-1dd ${ PRIROOT}/ root f s/ bi n/ busybox
libc.so.0 => /home/ karim control -project/control -nmodul e/t ool s/ ucli bc/ |
libc.so0.0
[1'ib/1d-udibc.so.0 =>/lib/Id-uClibc.so.0

Having determined the library components we need, we can copy them and the relevant symbolic links to
/lib directory of the target's root filesystem. Here is a set of commands that copy the essential glibc
components:

cd ${ TARGET_PREFI X}/l ib

for file in libc libcrypt libdl I'ibm\
libpthread li bresolv Iibutil

do

cp $file-*.so ${PRIROOT}/ rootfs/lib

cp -d $file.so.[*0-9] ${PRIRCOT}/rootfs/lib
done

cp -d I d*.so* ${PRIJROOT}/rootfs/lib

©“ VvV VVYVYV®HEH

The first cp command copies the actual shared libraries, the second one copies the major revision versiol
symbolic links, and the third one copies the dynamic linker and its symbolic link. All three commands are
based on the rules outlined earlier in this section regarding the naming conventions of the different files in
${TARGET_PREFIX}lib. The -d option is used with the second and third cp commands to preserve the
symbolic links as-is. Otherwise, the files pointed to by the symbolic links are copied in their entirety.

Of course, you can remove the libraries that are not used by your applications from the list in the set of
commands above. If you would rather have the complete set of libraries included in glibc on your root
filesystem, use the following commands:

$ cd ${ TARGET_PREFIX}/1ib
$ cp *-*.so ${PRIROCOT}/ rootfs/lib

http://www.wowebook.info

Download at wowebook. 1nfag

$cp -d *.so0.[*0-9] ${PRIRQOT}/rootfs/lib
$ cp libSegFault.so |ibmenusage. so |ibpcprocfile.so \
> ${PRIRQOT}/rootfs/lib

If you have applications that use the glibc NSS, don't forget to copy the libnss_SErvI CE libraries you need
your target's root filesystem. libnss_files and libnss_dns are the ones most often used. You will also need
copy the sample nsswitch.conf provided with glibc to your target's /etc directory and customize it to your
setup:[

[4] Have a look at Linux Network Administrator's Guide (O'Reilly) for details about the customization of the nsswitch.conf file.

$ cp H{PRIROOT}/ buil d-tool s/glibc-2.2. 1/ nss/nsswitch. conf \
> ${PRIROOT}/rootfs/etc

Whether you copy all or part of the glibc libraries, you will notice that some of these libraries are large. To
reduce the size of the libraries installed, we can use the cross-platform strip utility we built earlier. Be care
not to strip the original libraries, since you would have to install them all over again. Strip the libraries only
after you copy them to the root filesystem:

$ power pc-linux-strip ${PRIROOT}/rootfs/lib/*.so

On my control module, the ${PRIJROOT}/rootfs/lib directory with all the glibc libraries weighs around 10 M
before stripping. By stripping all the libraries, the directory is reduced to 2.5 MB.

The glibc components have now been installed on the target's root filesystem and are ready to be used at
runtime by our applications.

6.2.2 uClibc

As with glibc, uClibc contains a number of libraries. You can see the entire list by looking at your
${PREFIX}/uclibc/lib directory. This directory contains the same four different types of files as the glibc
directory.

Because uClibc is meant to be a glibc replacement, the names of the uClibc components and their use is
identical to the glibc components. Hence, you can use Table 6-2 for uClibc components. Note, however, |
not all glibc components are implemented by uClibc. uClibc implements only Id, libc, libcrypt, libdl, libm,
libpthread, libresolv, and libutil. Use the same method as described for glibc to identify the uClibc compor
you will need on your target.

Having determined the list of components we need, we can now copy them and their relevant symboalic lin
to the /lib directory of our target's root filesystem. The following set of commands copies the essential uCl
components:

$ cd ${PREFI X}/uclibc/lib

$ for file in libudibc Id-uClibc I'ibc Iibdl \
> |ibcrypt libmlibresolv libutil

> do

> cp $file-*.so ${PRIROCOT}/ rootfs/lib

>cp -d $file.so.[*0-9] ${PRIRCOT}/rootfs/lib
> done

The commands are likely to report that two files haven't been found:

cp: libudibc.so.[*0-9]: No such file or directory
cp: libc-*.so: No such file or directory

This is not a problem, since these files don't exist. The set of commands above is meant to be easy to tyg
but you could add conditional statements around the cp commands if you prefer not to see any errors.

http://www.wowebook.info

Download at wowebook. 1nfag

As with glibc, you can modify the list of libraries you copy according to your requirements. Note that, in
contrast to glibc, you will not save much space by copying only a select few uClibc components. For my
control module, for instance, the root filesystem's /lib directory weighs around 300 KB when all the uClibc
components are copied. The following commands copy all uClibc's components to your target's root
filesystem:

$ cd ${PREFIX}/uclibc/lib
$ cp *-*.so0 ${PRIRCOT}/rootfs/lib
$ cp -d *.s0.[*0-9] ${PRIROOT}/rootfs/lib

There is no need to strip uClibc components, since they were already stripped by uClibc's own build scrip
You can verify this using the file command.

http://www.wowebook.info

Download at wowebook. 1nfag

6.3 Kernel Modules

In Chapter 5, we built the kernel modules and installed them in a temporary directory,
${PRIROOT}images. We are now ready to copy these modules to their final destination in the target's
/lib directory.

Since you may have compiled many kernels to test for your target, you will need to select which set of

kernel modules to copy to the root filesystem. In the case of my control module, for example, | chose a
2.4.18 kernel for my target. The following command copies that kernel's entire modules directory to the
root filesystem:

$ cp -a ${PRIROOTI}/i mages/ nodul es-2. 4. 18/ * ${ PRIROOT}/ rootfs

We the use cp's -a option here to copy the files and directories in archive mode. This has the effect of
preserving file attributes and links, and copying directories recursively. Note that there is no need to
explicitly append the /lib/modules path to ${PRIJROOT}/rootfs in the above command because of the way
we installed the modules in the ${PRIJROOT}/images/modules-2.4.18 directory in Chapter 5.

That's it; the kernel modules are now ready for use on your target. You may also want to add a
/etc/modules.conf file to automate the loading of the modules during system operation. See Chapter 11
in Linux Device Drivers for more details regarding module management and the use of the
/etc/modules.conf file.

http://www.wowebook.info

Download at wowebook. 1nfag

6.4 Kernel Images

As | said earlier, the presence of the actual kernel image on your root filesystem largely depends on your
bootloader's capabilities. If you anticipate that your bootloader's setup will provide for booting a kernel
from the root filesystem, you may copy the kernel image to your target's root filesystem at this time:

$ nkdir ${PRIROOT}/r oot f s/ boot
$ cd ${ PRIROOT}/i nmages
$ cp zl mage-2.4.18 ${PRIROOT} /rootf s/ boot

In addition to the kernel image, you may want to make it a standard practice to copy the configuration file
used to create the kernel so that you may be able to service units for which the original project
workspace may be lost:

$ cp 2.4.18.confi g ${PRIROOT}/rootf s/ boot

Because we are discussing the actual bootloader setup in Chapter 9, there is nothing more to be done
here about the kernel's setup for now. We will continue the kernel image's setup later.

http://www.wowebook.info

Download at wowebook. 1nfag

6.5 Device Files

Following Unix tradition, every objectin a Linux system is visible as a file, including devices.[® All the
device files (a.k.a. device "nodes") in a Linux root filesystem are located in the /dev directory. Most
workstation and server distributions come packaged with a /dev directory containing more than 2,000
entries to account for all the possible system variations. Because embedded Linux systems are custom
built, there is no need to fill the target's /dev directory with as many entries as a Linux workstation or
server. Only the entries required for the system's proper operation should be created.

[5] The notable exception to this is networking interfaces, such as Ethernet cards, for which there are no device files.

Identifying which entries you need can be difficult if you don't have the required information. If you
choose to use devfs instead of creating fixed static device entries, you will avoid having to look for the
device information. Devfs has not been widely adopted, however, and static device entries are still the
norm.

The official source of information for static device major and minor numbers is the
Documentation/devices.txt file in the kernel sources. You can consult this file whenever you are uncertain
about the name or numbering of a certain device.

Table 6-3 lists the most basic entries you will need in your /dev directory. Depending on your particular
setup, you will probably need to add a few extra entries. In some cases, you may even need to use
entries other than the ones listed below. On some systems, for example, the first serial port is not ttySO.
Such is the case of SuperH-based systems, for instance, where the first serial port is ttySCO (major
number: 204, minor number: 8), and StrongARM-based systems where the first serial port is ttySAO
(major number: 204, minor number: 5).

Table 6-3. Basic /dev entries

Filename Description Type Major Minor Perm'ission
number number bits
mem Physical memory access char |1 1 600
null Null device char |1 3 666
zero Null byte source char |1 5 666
random glgr?éjgtirrministic random number char 1 8 644
ttyO Current virtual console char 4 0 600
ttyl First virtual console char 4 1 600
ttySO First UART serial port char 4 64 600
tty Current TTY device char 5 0 666
console | System console char |5 1 600

Chapter 6 of Running Linux explains how to create device files. Essentially, you will need to use the
mknod command for each entry to be created. In contrast to most other commands we have used up
until now, you will need to be logged in as root to use this command. Remember to log out from the root
user mode once you are done creating the device files.

http://www.wowebook.info

Download at wowebook. 1nfag

Here is a simple example showing the creation of the first few entries in Table 6-3:

$ cd ${PRIROOT}/r oot f s/ dev

$ su-m

Passwor d:

nknod -m 600 memc 1 1

nknod -m 666 null ¢ 1 3
nknod -m 666 zero ¢ 1 5
nknod -m 644 randomc 1 8

exit
In addition to the basic device files, there are a few compulsory symbolic links that have to be part of

your /dev directory. Table 6-4 provides a description of these symboalic links. As with other symboalic links,
you can use the In -s command to create these links.

Table 6-4. Compulsory /dev symbolic links

Link name Target
fd /proc/self/fd
stdin fd/0
stdout fd/1
stderr fd/2

We have now prepared a basic /dev directory for our target. We will come back to this directory later to
create some additional entries for some types of storage devices. You can consult Linux Device Drivers
for a more complete discussion about device files and device drivers in general.

Automated Creation of /dev Entries

The creation tools of some filesystems, such as JFFS2 and CRAMFS, have been extended
by Erik Andersen to allow the creation of /dev entries on the fly using a device table file. With
such a file, it is no longer necessary to log in as root and use the mknod command to create
entries in your target's root filesystem. Instead, the file creation tool parses the device table
file and creates the entries while it builds the rest of the filesystem without requiring root login.
Support for JFFS2 device table files is already part of the MTD tools package, which includes
the mkfs.jffs2 command. Support for CRAMFS device table files is available in the form of a
patch to be applied to the CRAMFS source package. The patch and the latest CRAMFS
filesystem creation code are available at http://sourceforge.net/projects/cramfs/. 1 will not
detail the use of device table files, since they can only be used with a very limited number of
Linux filesystems at the time of this writing. Their format and their use are, however, fairly well
explained in the device_table.txt file provided in both the MTD tools package and the
CRAMEFS patch. We will, nevertheless, discuss the MTD tools in Chapter 7 and the JFFS2
and CRAMFS filesystems in Chapter 8.

http://sourceforge.net/projects/cramfs/
http://www.wowebook.info

Download at wowebook. 1nfag

6.6 Main System Applications

Beyond the kernel's functionality and the root filesystem's structure, Linux inherits Unix's very rich
command set. The problem is that a standard workstation or server distribution comes equipped with
thousands of command binaries, each providing its own set of capabilities. Obviously, developers cannot
be expected to cross-compile such a large amount of binaries one by one, nor do most embedded
systems require such a large body of binaries.

There are, therefore, two possibilities: either we choose a few select standard commands, or we try to
group as many commands as possible into a very few trimmed-down applications that implement the
essential overall functionality. In the following, we will start by discussing the first approach. | do not favor
this approach, however, because it is tedious at best. Instead, | will mostly focus on the second approach
and the various projects that implement it. In particular, we will discuss BusyBox, TinyLogin, and
Embutils, which are the main packages used for this purpose.

6.6.1 Complete Standard Applications

If you would like to selectively include some of the standard applications found in mainstream
distributions, your best bet is to start with the Linux From Scratch project located at
http://mww.linuxfromscratch.org/. This project aims at providing explanations and links to packages to
help you build your own custom distributions. The Linux From Scratch book available through the
project's web site is its main documentation. It includes instructions and links to build each application
one by one. For each package, the instructions provide build-time and disk-space estimates.

Alternatively, you can download applications off the Net one by one and follow the instructions of each
package for compiling and cross-compiling. Because few packages include full cross-compilation
instructions, you may need to look in the packages' Makefiles to determine the appropriate build flags or
make the proper modifications for the packages to cross-compile adequately.

6.6.2 BusyBox

The BusyBox project was initiated by Bruce Perensin 1996 to help build install disks for the Debian
distribution. Since 1999, the project has been maintained by Erik Andersen, the maintainer of uClibc, first
as part of Lineo's open source efforts and currently as a vendor-independent project. During this time,
the BusyBox project has grown extensively and is now one of the corner stones of many embedded
Linux systems. It is included in most embedded Linux distributions and has a very active user
community. The projects current location is http://www.busybox.net/. The project's web site includes
documentation, links, and a mailing list archive. The BusyBox package is available under the terms of
the GNU GPL from this same web site.

Enthusiasm for BusyBox stems from the functionality it provides while still remaining a very small-sized
application. BusyBox implements many commands. Here are a few: ar, cat, chgrp, chmod, chown,
chroot, cp, cpio, date, dd, df, dmesg, dos2unix, du, echo, env, expr, find, grep, gunzip, gzip, halt, id,
ifconfig, init, insmod, kill, killall, In, Is, Ismod, md5sum, mkdir, mknod, modprobe, more, mount, mv, ping,
ps, pwd, reboat, renice, rm, rmdir, rmmod, route, rpm2cpio, sed, stty, swapon, sync, syslogd, tail, tar,
telnet, tftp, touch, traceroute, umount, uname, uuencode, vi, wc, which, and whoami.

Although BusyBox does not support all the options provided by the commands it replaces, the subset it
provides is sufficient for most typical uses. See the docs directory of the BusyBox distribution for the
documentation in a number of different formats.

BusyBox supports all the architectures covered in Chapter 3. It can be linked both statically and

http://www.linuxfromscratch.org/
http://www.busybox.net/
http://www.wowebook.info

Download at wowebook. 1nfag

dynamically to either glibc or uClibc. You can also modify the BusyBox default build configuration to
remove support for the commands you are unlikely to use.

6.6.2.1 Setup

First, you need to download a copy of the BusyBox package from the project's web site and into your
${PRIROOT}/sysapps directory. For my control module, | will be using BusyBox 0.60.5.

Once the package is extracted, we can move into its directory for the rest of the setup:
$ cd ${ PRIROOT}/ sysapps/ busybox- 0. 60.5

Although the CVS version includes a terminal-based menu utility for configuring options, such as the one
| described for uClibc in Chapter 4, the main stable version, such as the one I'm using, has to be
configured by editing the appropriate file. The main file for configuring options is Config.h. This file
contains C-language #def i ne statements for each option. By commenting out an option's #def i ne using
/1 (slash slash) you effectively disable this option.

There are two types of options that can be configured: command support options and feature support
options. Disabling or enabling a command support option removes or adds the corresponding command.
Changing the #define BB _MKNODlineto//#define BB MKNOD disables support for the mknod command
in BusyBox. Feature support options have a similar behavior. Features, however, are not necessarily
related to a particular command. Consequently, every #define BB FEATURE . .. line is preceded with a
comment line describing the feature.

Make sure you verify the command support options selected by default. Some important commands,
such as ifconfig, insmod, and ping, are disabled by default.

In addition to the configuration file, the main Makefile contains a few flags to control the way BusyBox is
built. Most of these flags are used during the development of BusyBox for debugging purposes and are
disabled in the standard distribution. The only flag you may be interested in modifying is the DOSTATI C
flag. When setto t r ue, the resulting BusyBox binary is statically linked with the C library. The default
value of DOSTATI Cis f al se, causing the binary to be dynamically linked. You can change this either by
modifying the Makefile or by adding DOSTATI C=t r ue as part of the make command.

Once BusyBox is configured, we can compile and install it. When linking with glibc, use the following
command:

$ make TARGET_ARCH=ppc CROSS=power pc-I|inux- \
> PREFI X=${ PRIROOT}/rootfs all install

The TARGET_ARCH variable is used by the Makefile to determine whether some architecture-dependent
optimizations can be carried out. CROSS is used, as in other circumstances, to specify the prefix of the
cross-platform development tools. Finally, PREFI X is set to the root filesystem base directory. The
Makefile will install all BusyBox's components within this directory.

To build BusyBox with uClibc instead of the GNU C library, use the following command:

$ make TARGET ARCH=ppc CROSS=powerpc-uclibc- \
> PREFI X=${ PRIROOT}/rootfs all install

BusyBox has now been installed on your target's root filesystem and is ready to be used.

6.6.2.2 Usage

To understand how best to use BusyBox, let's first take a look at the components installed on the target's
root filesystem by BusyBox's build process. As expected, only one executable was installed,

http://www.wowebook.info

Download at wowebook. 1nfag

/bin/busybox. This is the single binary with support for all the commands configured using Config.h. This
binary is never called directly, however. Instead, symboalic links bearing the original commands' hames
have been created to /bin/busybox. Such symbolic links have been created in all the directories in which
the original commands would be found, including /bin, /sbin, /usr/bin, and /usr/sbin.

When you type a command during the system's normal operation, the busybox command is invoked via
the symbolic link. In turn, busybox determines the actual command you were invoking using the name
being used to run it. /bin/ls, for instance, points to /bin/busybox. When you type Is, the busybox
command is called and it determines that you were trying to use the Is command, because Is is the first
argument on the command line [®]

[6] As any other application, busybox's main() function is passed the command line used to invoke it.

Although this scheme is simple and effective, it means you can't use arbitrary names for symboalic links.
Creating a symbolic link called /bin/dir to either /bin/ls or /bin/busybox will not work, since busybox does
not recognize the dir command.

Note that, though symbolic links are the usual way of linking commands to /bin/busybox, BusyBox can
also be instructed to create hard links instead of symbolic ones during its installation. Its behavior at
runtime is the same, however, regardless of the type of links being used.

The documentation on the project's web site, which is also provided with the package, describes all the

options available for each command supported. In most cases, the options supported by BusyBox have
the same function as the options provided by the original commands. For instance, Using the -al options
to BusyBox's Is will have the same effect as using the same options with the original Is.

When using one of the shells provided in BusyBox, such as ash, lash, or msh, you will find it convenient
to use a/etc/profile file to define a few global variables for all shell users. Here is a sample /etc/profile file
for a single-user target:

Set path
PATH=/ bi n: / sbin:/usr/ bin:/usr/ sbin
export PATH

In addition to setting the path, you could setthe LD LI BRARY_PATH environment variable, which is used
during the startup of each application to locate the libraries it depends on. Though the default location for
libraries is /lib, your system may have libraries located in other directories. If that is the case, you can
force the dynamic linker to look for the other libraries by adding the appropriate directory paths to

LD LI BRARY_PATH. As with the PATH environment variable, you can add more directories to the library
path by separating each directory path with a colon.

Note that on a workstation or a server LD_L| BRARY_PATHwould actually be used only as a temporary
holding place for new library paths. Instead, the /etc/ld.so.conf is the file to edit to permanently add
another library path. This file is then used by the Idconfig command to generate /etc/ld.so.cache, which is
itself read by the dynamic linker to find libraries for dynamically linked applications. Though Idconfig was
generated when we compiled glibc in Chapter 4, itis a target binary and cannot be run on the host to
generate a target Id.so.cache.

6.6.3 TinyLogin

Much like BusyBox, TinyLogin is a collection of many login utilities into a single binary. TinyLogin is often
used in conjunction with BusyBox, although it can be used alone. Both packages are maintained by the
same developers and are therefore easy to use together. Because of their common use together, the
project developers have integrated all of TinyLogin's functionality into the BusyBox CVS, and once the
CVS development version is released as a stable version, it will be possible to rely on a single package
instead of two. There are, however, advantages to continue using the TinyLogin functionality separately
from BusyBox. Mainly, many of the commands implemented in TinyLogin must run with root privileges,
which in turn requires that the TinyLogin binary file belong to the root user and have its "set user"

http://www.wowebook.info

Download at wowebook. 1nfag

permission bit enabled—a configuration commonly known as "setuid root." Since TinyLogin uses
symbolic links in the same way BusyBox does, a single binary containing the functionality of both
packages would also result in having commands such as Is and cat run as root, which increases the
likeliness that a programming error in one command could be exploited to gain root privileges. Though
BusyBox drops its root privileges when unnecessary, and though it can be configured to check a
configuration file for those commands requiring root privileges, it remains that using separate packages
is the safest setup.

The TinyLogin project's web site is located at http://tinylogin.busybox.net/. It contains documentation, a
mailing list archive, links to other sites, and pointers to download the TinyLogin package both using FTP
or CVS. For my control module, | will be using TinyLogin 1.2.

As with BusyBox, TinyLogin supports all the architectures we discussed in depth in Chapter 3 and can be
linked either statically or dynamically with glibc or uClibc. TinyLogin can effectively replace the following
commands: addgroup, adduser, delgroup, deluser, getty, login, passwd, su, sulogin, and vlock.

6.6.3.1 Setup

The first step in installing TinyLogin is to download the package and extract it into your
${PRIROOT}/sysapps directory. Once this is done, we can move into the package's directory for the rest
of the setup:

$ cd ${PRIROOT}/sysapps/tinyl ogi n-1.2

The configuration of TinyLogin is done much the same as with BusyBox, by editing the Config.h
configuration file and commenting out the unwanted command support options and feature options.
TinyLogin also has a Makefile with similar options to BusyBox. The same rules explained above for
BusyBox's Config.h file and Makefile also apply to TinyLogin.

Apart from the other options you need to configure, pay special attention to the USE_SYSTEM PWD_GRP and
USE_SYSTEM SHADOWoptions in the Makefile. The explanations above the statements in the Makefile
provide a good idea about the effect of these options. Mainly, USE_sSYSTEM PWD_GRP should be set to

fal se unless you plan to use glibc's NSS libraries with a properly configured /etc/nsswitch.conf file. If you
set this option to f al se, TinyLogin will directly use the /etc/passwd and /etc/group files instead of using
the password and group functions provided by glibc.

Similarly, if you set USE_SYSTEM SHADOWtO f al se, TinyLogin will use its own shadow functions for
accessing shadow passwords. Traditionally, /etc/passwd could be read by anyone in the system and this
in turn became a security risk as more and more programs for cracking passwords were available.
Hence, the use of so-called shadow passwords became the norm. When in use, the password fields in
letc/passwd only contain filler characters and the real encrypted passwords are stored in /etc/shadow,
which can be read only by a process running with root privileges. Note that if you had configured uClibc
without shadow password support, setting USE_SYSTEM SHADOWtO t rue and linking with uClibc will result
in a failed build.

As with BusyBox, you can set DOSTATI C to t r ue if you would like TinyLogin to be built statically.

Once you have completed TinyLogin's configuration, you are ready to build the package. (Instead of
compiling and installing the package in the same step, as we did for BusyBox, you will first compile and
then install for the reasons explained below.)

To compile TinyLogin with glibc, use the following command:

$ make CROSS=powerpc-Ili nux- \
> PREFI X=${ PRIROOT}/r oot fs all

To compile TinyLogin with uClibc, use the following command:

http://tinylogin.busybox.net/
http://www.wowebook.info

Download at wowebook. 1nfag

$ make CROSS=powerpc-uclibc- \
> PREFI X=${ PRIROOT}/r oot fs all

Once the package has been built, you can now install the package. Because the installation process
must setuid the TinyLogin binary, the installation command must be done while logged in as root:

$ su -m

Passwor d:

make PREFI X=${PRIRQOT}/rootfs install
exit

TinyLogin has now been installed in the target's root filesystem and is ready to be used.

6.6.3.2 Usage

The TinyLogin installation copied only one binary to the root filesystem, /bin/tinylogin. As with BusyBox,
symbolic links were created with the original commands' names in the appropriate binary directories.

You will need to create appropriate group, password, and shadow password files (/etc/group,
/etc/passwd, and /etc/shadow, respectively) for use by the various TinyLogin commands. Unfortunately,
the TinyLogin package does not provide a means to create these files prior to having TinyLogin running
on the target. Hence, you will have to copy existing files and edit them manually for use on your target's
root filesystem. A simple alternative is to use those files that are part of your workstation setup and keep
only those entries for users who will exist on your target as well. Usually, this ends up being only the root
user.

The group and password files on your workstation can be copied as-is to your target's /etc directory. You
can then edit your target's copies by hand and remove the entries that will not be used on your target.
The shadow password file requires a little more care, however, since you may not want to reveal your
own workstation's passwords to the users of your embedded system. To create valid entries in your
target's shadow file, the simplest method is to create phony users on your workstation, set those users'
passwords, and then copy the resulting entries. Here's the entry for a phony "tmp" user | added to my
workstation:

t mp: $1$3cdOSELT $XVRLOKI L7vMSf LYbRCWAf/:11880: 0: 99999: 7: -1: -1: 0

| set this user's password to "root" for convenience. | then copied this entry as-is to my target's shadow
file and edited the username appropriately:

root: $1$3cdCSELf $XWRLoOKI L7vMSf LYDRCWAT/: 11880: 0: 99999: 7:-1:-1:0
There is now a user known as "root" with the password "root" on my target.

Remember that the password file contains the name of the shell used for each user. Since the command
name for the shell provided by BusyBox is sh, and since the default on most workstations is bash, you
need to change this to the shell on your target. Here is the password file entry for the root user for the
same system:

root: x:0:0:root:/root:/bin/sh
By default, TinyLogin will set the path of each user as follows:
PATH=/ bi n: / usr/ bin

If you would like to change this, you can either create a global /etc/profile file, as | explained earlier, or a
.profile file in each user's home directory. You will find the following .profile file useful for the root user:

PATH=/ bi n: / sbin:/usr/ bin:/usr/ sbin

http://www.wowebook.info

Download at wowebook. 1nfag

export PATH

For more information on the creation and manipulation of group, password, or shadow password files,
and system administration in general, see the Linux System Administrator's Guide from the LDP,
Running Linux from O'Reilly, and the Linux From Scratch book | mentioned earlier.

6.6.4 embutils

embutils is a set of miniaturized and optimized replacements for mainstream Unix commands. embutils
was written and is maintained by Felix von Leitner, the author of diet libc, with goals very similar to those
of diet libc. Currently, embutils supports four of the architectures discussed in Chapter 3, the ARM, the
i386, the PPC, and the MIPS. embutils is available from http://www.fefe.de/embutils/.[7)

[7] As with diet libc, the last slash ("/") is important.

Although embutils groups some of the commands in a single binary, its main approach is to provide one
small binary for each command. embuitils provides the following commands: arch, basename, cat,
chmgrp, chmod, chown, chroot, chvt, clear, cp, dd, df, dirmame, dmesg, domainname, du, echo, env,
false, head, hostname, id, install, kill, In, Is, md5sum, mesg, mkdir, mkfifo, mknod, mv, pwd, rm, rmdir,
sleep, sleep2, soscp, sosIn, soslns, sosmv, sosrm, sync, tail, tar, tee, touch, tr, true, tty, uname, uniq,
wc, which, whoami, write, and yes.

As with BusyBox, not all the options provided by the full commands are supported, but the subset
provided is sufficient for most system operations. In contrast to BusyBox, however, embutils can only be
statically linked with diet libc. It can't be linked to any other library. Because diet libc is already very small,
the resulting command binaries are reasonably small. In terms of overall size, nevertheless, BusyBox
and embutils are fairly similar.

6.6.4.1 Setup

Before we start the setup, you will need to have diet libc installed on your host system as | described in
Chapter 4. Now download embutils and extract it in your ${PRIJROOT}/sysapps directory. For my control
module, for example, | use embutils 0.15. You can then move into the package's directory for the rest of
the setup:

$ cd ${ PRIROOT}/ sysapps/enmbutils-0.15

There is no configuration capability for embutils. You can, therefore, build the package right away:
$ make ARCH=ppc CROSS=powerpc-li nux- all

You can then install embuitils:

$ make ARCH=ppc DESTD R=${ PRIROOT}/rootfs prefix="" install

The options and variables used in the build and installation of embutils have the same meaning as those
used for diet libc.

6.6.4.2 Usage
The embutils installation procedure has copied quite a few statically linked binaries to your target root

filesystem's /bin directory. In contrast to BusyBox, this is the only directory where binaries have been
installed.

A BusyBox-like all-in-one binary has also been installed, allinone. This binary reacts the same way as

http://www.fefe.de/embutils/
http://www.wowebook.info

Download at wowebook. 1nfag

BusyBox when proper symbolic links are created to it. Note that unlike BusyBox, you need to create
these symbolic links manually, since they are not created automatically by the installation scripts.
allinone provides the following commands: arch, basename, chvt, clear, dmesg, dirname, domainname,
echo, env, false, hostname, pwd, sleep, sync, tee, true, tty, uname, which, whoami, and yes.

http://www.wowebook.info

Download at wowebook. 1nfag

6.7 Custom Applications

There are many places in the root filesystem where you can put your own application, depending on the
number and types of components it has. Usually, it is preferable to follow the FHS's guidelines to place
your software.

If your application consists of a relatively small number of binaries, placing them in /bin is probably the
best choice. This is the actual installation path used for the control daemon in Chapter 4.

If your application consists of a complex set of binaries, and possibly datafiles, consider adding an entry
in the root filesystem for your project. You may either call this new directory project or name it after your
own project. In the case of my control module, this directory could be control-module.

The custom directory can contain a hierarchy of its own that you can customize to best suit your needs.
You may have to set the PATH environment variable on your target to include the custom directory if your
binaries are placed there.

Note that the addition of a custom entry in the root filesystem is contrary to the FHS. This is a minor
violation to the standard, however, since your filesystem is custom built for your target and is unlikely to
become a distribution of its own.

http://www.wowebook.info

Download at wowebook. 1nfag

6.8 System Initialization

System initialization is yet another particularity of Unix systems. As explained in Chapter 2, the kernel's
last initialization action is to start the init program. This program is in charge of finalizing system startup
by spawning various applications and starting some key software components. In most Linux systems,
init mimics System V init and is configured much the same way. In embedded Linux systems, the
flexibility of System V init is overkill since such systems are rarely run as multiuser systems.

There is no actual requirement for you to have a standard init program, such as System V init, on your
root filesystem. The kernel itself doesn't really care. All it needs is an application it can start once it's
done initializing the system. For instance, you can add an i ni t =PATH_TO_YOUR | NI T boot parameter to
tell the kernel to use your init, which could be your main application. There are, however, drawbacks to
this approach, since your application will be the one and only application the kernel ever starts. Your
application would then be responsible for starting other applications on the system. Furthermore, if your
application unexpectedly dies, its exit will cause a kernel panic followed by a system reboot; as would an
unexpected exit of System V init. Though this may be the desired behavior in some cases, in most
cases, the system is most likely rendered useless. For these reasons, it is usually much safer and useful
to actually have areal init on your root filesystem.

In the following subsections, | will cover the standard init package found in most Linux distributions, the
BusyBox init, and Minit, a miniature init provided by the author of embutils and diet libc.

As with other issues in Unix, init is a broad subject. There are quite a few documents that discuss Linux
init at length. Chapter 5 of Running Linux describes the mainstream workstation and server init setups.
Alessandro Rubini wrote a very interesting piece about init that goes into the nuances of the various
initialization schemes. His article is available at http://www.linux.it/kerneldocs/init/.

6.8.1 Standard System V init

The standard init package found in most Linux distributions is written by Miguel van Soorenburg and is
available at ftp://ftp.cistron.nl/pub/people/miquels/sysvinit/. By using this package, you get the same
flexibility to configure your target's startup as you would in configuring the startup of a workstation or a
server. However, the extra functionality and flexibility requires additional space. Also, it requires that you
keep track of the development of yet another software package. The package includes the following
commands: halt, init, killall5, last, mesg, runlevel, shutdown, sulogin, utmpdump, and wall.

The package can be cross-compiled easily. First, download the package and uncompress it into your
${PRIROOT}/sysapps directory. For my control module, | used sysvinit Version 2.84. Then, move into
the package's source directory and build it:

$ cd ${PRIROOT}/ sysapps/sysvi nit-2. 84/ src
$ make CC=powerpc-Ili nux-gcc

Replace the value of cC to match the cross-compiler for your target. With the package now built, we can
install it on the target's root filesystem:

$ make BIN ONNER="$(id -un)" BIN_ GROUP="$(id -gn)" \
> ROOT=${ PRJRCOT}/ rootfs install

This command will install all the binaries in the target's root filesystem but will fail afterward, since the
Makefile tries to install the manpages on the root filesystem as well. You can modify the Makefile to avoid
this, but you can also ignore the failure.

The command just shown set the Bl N_O/MER and BI N_GROUP variables to be that of your own current

http://www.linux.it/kerneldocs/init/
http://www.wowebook.info

Download at wowebook. 1nfag

user. By default, the Makefile attempts to install the various components and set their ownership to the
root user. Since you aren't logged in as root, the Makefile would fail. The ownership of the binaries
matters little on the target, since it isn't a multiuser system. If it were, however, you need to log in as root
and then run the install command. Be very careful, in any case, to appropriately set the value of ROOT to
point to your target's root filesystem. Otherwise, you may end up overwriting your workstation's init with a
target binary. Alternatively, to avoid having to log in as root, you could still run the install command using
your normal user privileges and then use the chown command as root to change the privileges on each
file installed. This, however, involves going through the Makefile to find each file installed and its
destination.

With init installed on your target's root filesystem, you will need to add the appropriate /etc/inittab file and
fill the /etc/rc.d directory with the appropriate files. In essence, /etc/inittab will define the runlevels for your
system, and the files in /etc/rc.d will define which services run on each runlevel. Table 6-5 lists init's
seven runlevels and their typical use in a workstation and server distribution.

Table 6-5. System V init runlevels

Runlevel Description

System is halted

Only one user on system, no need for login

Multiuser mode without NFS, command-line login

Full multiuser mode, command-line login

Unused

X11, graphical user interface login

o g MW |DN | =]|O

Reboot the system

Each runlevel corresponds to a certain set of applications. When entering runlevel 5 on a workstation, for
example, init starts X11 and the user is prompted to enter his username and password using a graphical
login. When switching between runlevels, the services started in the previous runlevel are shut down and
the services of the new runlevel are started. In this scheme, runlevels 0 and 6 have a special meaning.
Particularly, they are used for stopping the system safely. This may involve, for example, unmounting all
the filesystems except the root filesystem and remounting the root filesystem read-only so that no
filesystem corruption occurs.

On most workstations, the default runlevel at system startup is 5. For an embedded system, it can be set
to 1, if no access control is necessary. The system's runlevel can be changed after system startup either
using init or telinit, which is a symbolic link to init. In both cases, the newly issued init command
communicates with the original init through the /dev/initctl fifo. To this end, we need to create a
corresponding entry in our target's root filesystem:

$ nknod -m 600 ${ PRIROCOT}/rootfs/dev/initctl p

For more information on the format of /etc/inittab and the files found in /etc/rc.d, refer to the resources
provided above.

6.8.2 BusyBox init

Among the commands it supports by default, BusyBox provides init-like capabilities. As with the original
mainstream init, BusyBox can handle the system's startup. BusyBox init is particularly well adapted to

http://www.wowebook.info

Download at wowebook. 1nfag

embedded systems, because it provides most of the init functionality an embedded system typically
needs without dragging the weight of the extra features found in System V init. Also, because BusyBox is
a single package, there is no need to keep track of an additional software package when developing or
maintaining your system. There are cases, however, where BusyBox init may not be sufficient for your
system. BusyBox init, for example, does not provide runlevel support.

Since | already described how to obtain, configure, and build BusyBox, | will limit this discussion to the
setup of the init configuration files.

Because /sbin/init is a symbolic link to /bin/busybox, BusyBox is the first application to run on the target
system. BusyBox identifies that the command being invoked is init and immediately jumps to the init
routine.

The init routine of BusyBox carries out the following main tasks in order:

1. Sets up signal handlers for init.

2. Initializes the console(s).

3. Parses the inittab file, /etc/inittab.
4. Runs the system initialization script. /etc/init.d/rcS is the default for BusyBox.
5. Runs all the inittab commands that block (action type: wai t).

6. Runs all the inittab commands that run only once (action type: once).

Once it has done this, the init routine loops forever carrying out the following tasks:

1. Runs all the inittab commands that have to be respawned (action type: r es pawn).
2. Runs all the inittab commands that have to be asked for first (action type: askfirst).

During console initialization, BusyBox determines whether the system was configured to run the console
on a serial port (by passing consol e=t t ySO as a kernel boot parameter, for instance). If so, BusyBox
versions prior to 0.60.4 used to disable all virtual terminals. Since 0.60.4, however, BusyBox continues
through its initialization without disabling virtual terminals. If in fact there are no virtual terminals, its
attempts to start shells on some virtual terminals later will fail anyway, so there is no need to disable
virtual terminals outright.

After having initialized the console, BusyBox checks for the existence of an /etc/inittab file. If no such file
exists, BusyBox uses a default inittab configuration. Mainly, it sets up default actions for system reboaot,
system halt, and init restart. Also, it sets up actions to start shells on the first four virtual consoles,
/dev/ttyl through /dev/tty4. BusyBox will complain if you haven't created these device entries.

If an /etc/inittab file is found, itis parsed and the commands it contains are recorded inside internal
structures to be carried out at the appropriate time. The format of the inittab file as recognized by
BusyBox is well explained in the documentation included in the BusyBox package. The documentation
provided in the BusyBox package includes an elaborate example inittab file.

Each line in the inittab file follows this format:
id:runlevel :action: process

Although this format resembles that of traditional System V init, take note that the meaning of i d is
different in BusyBox init. Mainly, the i d is used to specify the controlling tty for the process to be started.
You can safely leave this entry empty if the process to be started isn't an interactive shell. Interactive
shells, such as BusyBox's sh, should always have a controlling tty. BusyBox's sh will actually complain if

http://www.wowebook.info

Download at wowebook. 1nfag

it has no controlling tty. BusyBox completely ignores the runl evel field, so you can leave it blank. The
process field specifies the path of the program to run, along with its command-line options. The act i on
field is one of eight recognized actions to be applied to process as described in Table 6-6.

Table 6-6. Types of inittab actions recognized by BusyBox init

Action Effect

sysinit Provide init with the path to the initialization script.

r es pawn Restart the process every time it terminates.
Similar to r es pawn, but is mainly useful for reducing the number of terminal applications

askfirst running on the system. It prompts init to display "Please press Enter to activate this
console." at the console and wait for the user to press Enter before restarting the
process.

wai t Tell init that it has to wait for the process to complete before continuing.

once Run process only once without waiting for them.

ctrialtdel Run process when the Ctrl-Alt-Delete key combination is pressed.

shut down Run process when the system is shutting down.

restart Run process when init restarts. Usually, the process to be run here is init itself.

The following is a simple inittab file for my control module:

c.sysinit:/etc/init.d/rcS

. respawn: / shin/getty 115200 ttySO
c:respawn:/ control -nmodul e/ bin/init
c.restart:/sbin/init

> shutdown: / bi n/unount -a -r

This inittab file does the following:

1. Sets /etc/init.d/rcS as the system initialization file.

N

o > o

Starts a login session on the serial port at 115200 bps.
Starts the control module's custom software initialization script.
Sets /shin/init as the program to execute if init restarts.

Tells init to run the umount command to unmount all filesystems it can at system shutdown and set

the others as read-only to preserve the filesystems.

The i d is left blank in this case, because it doesn't matter to the normal operation of the commands.
runl evel is also left blank, since its completely ignored by BusyBox.

As shown earlier, however, none of these actions will take place until init runs the system initialization
script. This script can be quite elaborate and can actually call other scripts. Use this script to set all the
basic settings and initialize the various components of the system that need special handling.
Particularly, this is a good place to:

http://www.wowebook.info

Download at wowebook. 1nfag

Remount the root filesystem in read-write mode.

Mount additional filesystems.

Initialize and start networking interfaces.

Start system daemons.
Here is the initialization script for my control module:

#! / bi n/ sh

Renount the root filesystemin read-wite (requires /etc/fstab)
mount -n -0 renmount,rw/

Mouunt /proc filesystem
mount /proc

Start the network i nterface
/sbin/ifconfig ethO 192. 168.172.10

The above initialization script depends on the existence of an /etc/fstab file in the target's root filesystem.
I will not discuss the content and use of this file as it is already discussed in depth in Running Linux.
Nevertheless, here's the /etc/fstab file | use for my control module during development:

/etc/fstab

device directory t ype options
#

/ dev/ nfs / nfs defaul ts
none / proc proc defaul ts

In this case, | mount the target's root filesystem on NFS to simplify development. We will discuss
filesystem types in Chapter 8 and NFS mounting in Chapter 9.

6.8.3 Minit

Minit is part of the miniaturized tools developed by Felix von Leitner, such as diet libc and embutils. Minit
is available from http://www.fefe.de/minit/.[8] As with the other tools distributed by Felix, Minit requires a
properly configured diet libc.

8] As with the other tools available from fefe.de, the last slash (/") is important.

Minit's initialization procedure is a complete departure from the traditional System V init. Instead of using
a /etc/inittab, for instance, Minit relies on the existence of a properly built /etc/minit directory. Firdtjof
Busse wrote a description of how Minit operates at http://www.fbunet.de/minit.shtml. Firdof also
provides pointers to example /etc/minit directories.

Unfortunately, as of Version 0.8, Minitis not yet as mature as the other tools provided by Felix. Its
Makefile, for instance, is unable to deal with installing the various components in a root filesystem other
than the host's own. For the time being, Minit is not appropriate for an embedded system, but it may be
worth considering sometime in the near future.

http://www.fefe.de/minit/
http://www.fbunet.de/minit.shtml
http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 7. Storage Device Manipulation

The storage devices used in embedded systems are often quite different from those used in workstations
and servers. Embedded systems tend to use solid-state storage devices such as flash chips and flash
disks. As with any other Linux system, these devices must be properly set up and configured to be used
by the kernel. Because these storage devices differ greatly from typical workstation and server disks, the
tools to manipulate them (for partitioning, copying files, and erasing, for instance) are also different.
These tools are the subject of this chapter.

In this chapter, we will discuss the manipulation of embedded storage devices for use with Linux. We will
start with our primary topic: the manipulation of devices supported by the MTD subsystem. | will also
briefly cover the manipulation of disk devices. If you intend to use a conventional disk device as part of
your system, however, | recommend that you look at one of the books that discusses Linux system
maintenance, such as O'Reilly's Running Linux, for more extensive coverage. The last section of this
chapter will cover the use of swap in embedded systems.

http://www.wowebook.info

Download at wowebook. 1nfag

7.1 MTD-Supported Devices

As we saw earlier in Section 3.4.1, the MTD subsystem is rich and elaborate. To use it on your target, yot
need a properly configured kernel and the MTD tools available from the project's web site. We will discus:
the issues below.

As with other kernel subsystems, the development of the MTD subsystem and the MTD tools is independ
mainline kernel. Hence, the latest kernel often does not include the latest code in the MTD CVS repositor
can, nevertheless, retrieve the latest code and use it instead of the MTD code already included in the kert
have selected.

Because the MTD code in the kernel releases is not in sync with the MTD development, however, you car
sometimes encounter problems. | was unable, for instance, to get vanilla Linux 2.4.18 to boot from a Disk
(DOC) 2000, because there is a bug in the default MTD code in that kernel. To fix the problem, | had to m
modify the MTD code according to instructions found in the MTD mailing list archive. For this reason, you
the MTD mailing list and its archive helpful.

In the following sections, we will start by discussing the usage basics of the MTD subsystem. This will co\
such as configuring the kernel, installing the required utilities, and creating appropriate entries in /dev. The
discussion will then focus on the use of the MTD subsystem with the two solid state storage devices most
commonly used in embedded Linux systems: native CFl-compliant flash and DOC devices.

7.1.1 MTD Usage Basics

Having already covered the detailed architecture of the MTD subsystem, we can now concentrate on the .
practical use of its components. First, we will discuss the /dev entries required for MTD abstractions. Seci
will discuss the basic MTD kernel configuration options. Third, we will discuss the tools available to manip
MTD storage devices in Linux. Finally, we will describe how to install these tools both on the host and on 1
target.

7.1.1.1 MTD /dev entries

There are five types of MTD /dev entries and seven corresponding MTD user modules.[!! In practice, mar
user modules share the same /dev entries and each /dev entry can serve as an interface to many MTD ut
modules. Table 7-1 describes each type of MTD /dev entry and the corresponding MTD user modules, an
7-2 provides the minor number ranges and describes the naming scheme used for each device type.

[1] See Section 3.4.1 for the definition of MTD "user modules."

Table 7-1. MTD /dev entries, corresponding MTD user modules, and relevant device major nun

http://www.wowebook.info

Download at wowebook. 1nfag

/dev entry Accessible MTD user module Devicetype @ Majorr
mtdN char device char 90
mtdrN char device char 90
mtdblockN | block device, read-only block device, JFFS, and JFFS2 block 31
nfiLN NFTL block 93
ftiLN FTL block 44
Table 7-2. MTD /dev entries, minor numbers, and naming schemes

/dev entry Minor number range Naming scheme
mtd 0 to 32 perincrements | _ .00 /0

of 2
mtdri 1to 33 perincrements | _ (minor- 1) / 2

of 2
mtdblocky O fo 16 perincrements _ . o

of 1

= 121 N=mi - - *Ni
AL N 0 to 255 per sets of 16 L se_t, N = minor - (set - 1) x 16; N is not appended to entry nam
value is zero.

ftlLN 0 to 255 per sets of 16 Same as NFTL.

[2] As with other partitionable block device entries in /dev, device sets are identified by letters. The first setis "a," the second set is "b," the th

and so on.

The use of each type of MTD /dev entry is as follows:

mtdN

Each entry is a separate MTD device or partition. Remember that each MTD patrtition acts as a sef
MTD device.

mtdrN

Each entry is the read-only equivalent of the matching /dev/mtdn entry.

mtdblockN

Each entry is the block device equivalent of the matching /dev/mtdN entry.

nftiLN

Each set is a separate NFTL device, and each entry in a set is a patrtition on that device. The first e
set is the entire device. /dev/nftlb, for instance, is the second NFTL device in its entirety, while /dev.

the third partition on the second NFTL device.

ftILN

Same as NFTL.

As we'll see later, you don't need to create all these entries manually on your host. You will, however, nee
create some of these entries manually on your target's root filesystem to use the corresponding MTD use
Also, note that the naming scheme described above differs slightly from the one described in the devices.
mentioned earlier. The naming scheme presented here is the one used in practice.

http://www.wowebook.info

Download at wowebook. 1nfag

7.1.1.2 Configuring the kernel

As | mentioned in Chapter 5, the configuration of the MTD subsystem is part of the main menu of the kert
configuration options. Whether you are configuring the kernel using the curses-based terminal configurati
or through the Tk-based X Window configuration menu, you will need to enter the "Memory Technology C
(MTD)" submenu to configure the MTD subsystem for your kernel.

The MTD submenu contains a list of configuration options that you can choose to build as part of the kerr
as separate modules, or disable completely. Here are the main options you can configure in the MTD suk

Memory Technology Device (MTD) support, CONFI G MTD

Enable this option if you want to include core MTD subsystem support. If you disable this option, th
will not have any MTD support. When this option is set to be built as a module, the resulting functic
found in the module called mtdcore.o.

MTD partitioning support, CONFI G_MTD_PARTI Tl ONS

Enable this option if you want to be able to divide your MTD devices into separate partitions. If you
this as a module, the module's filename is mtdpart.o. Note that MTD partitioning does not apply to |
devices. These devices are partitioned using conventional disk partitioning tools.

Direct char device access to MTD devices, CONFI G MTD_CHAR

This is the configuration option for the char device MTD user module that is visible as /dev/imtdN al
/dev/mtdrN. If you configure this as a module, the module's filename is mtdchar.o.
Caching block device access to MTD devices, CONFI G MTD_BLQOCK

This is the configuration option for the read-write block device MTD user module that is visible as
/dev/imtdblockN. If you configure this as a module, the module's filename is mtdblock.o.
Read-only block device access to MTD devices, CONFI G MTD_BLOCK RO

This is the configuration option for the read-only block device MTD user module that is visible using
same /dev entries as the read-write block device. If you configure the read-only block device user r
a module, the module's filename is mtdblock_ro.o.

FTL (Flash Translation Layer) support, CONFI G FTL

Set this option if you would like to include the FTL user module in your kernel. When configured as
module, the module's filename is ftl.o. The FTL user module is accessible through the /dev/ftILN de¢
entries.

NFTL (NAND Flash Translation Layer) support, CONFI G _NFTL

Set this option if you would like to include the NFTL user module in your kernel. When configured a
module, the module's filename is nftl.o. The NFTL user module is accessible through the /dev/nftlL
entries.

Write support for NFTL (BETA), CONFI G NFTL_RW

You must enable this option if you want to be able to write to your NFTL-formatted devices. This wi
influence the way the NFTL user module is built and is not a separate user module in itself.

Notice that only one of the two block device MTD user modules can be built in the kerne
""@ although both can be configured as modules (mtdblock.o and mtdblock_ro.0). In other
words, if you set the read-write block device user module to be built into the kernel—not
a module—you will not be able to configure the read-only block device user module, eith
built-in or as a module. As we saw earlier, both block device MTD user modules use the
same /dev entry, and cannot therefore be active simultaneously.

The preceding listis primarily made up of the user modules | described earlier. The remaining MTD user
JFFS and JFFS2, are not configured as part of the MTD subsystem configuration. Rather, they are config

http://www.wowebook.info

Download at wowebook. 1nfag

within the "File systems" submenu. Nevertheless, you will need to enable MTD support to enable support
JFFS or JFFS2.

The MTD submenu also contains four submenus to configure support for the actual MTD hardware devic
Here are the submenus found in the MTD submenu and their descriptions:

RAM/ROM/Flash chip drivers

Contains configuration options for CFI-Compliant flash, JEDEC-compliant flash, old non-CFl flash,
ROM, and absent chips.
Mapping drivers for chip access

Contains configuration options for mapping drivers. Includes one generic mapping driver that can k
configured by providing the physical start address of the device and its size in hexadecimal notatior
bus width in octets. This submenu also contains one entry for each board for which there is an exis
mapping driver included in the kernel.

Self-contained MTD device drivers

Contains configuration options for uncached system RAM, virtual memory test driver, block device
emulation driver, and DOC devices.
NAND Flash Device Drivers

Contains configuration options for non-DOC NAND flash devices.

Before configuring your kernel's MTD subsystem, make sure you have read the MTD subsystem discussi
Chapter 3, since many of the options described here were amply covered in my earlier discussion.

When configuring the kernel for your host, you will find it useful to configure all the MTD subsystem optior
modules, since you will be able to test different device setup combinations. For your target, however, you
to compile all the options required to support your solid state storage device as part of your kernel rather 1
modules. Otherwise, your target will not be able to mount its root filesystem from its solid state storage de
you forget to configure your target's kernel so that it can mount its root filesystem from the MTD device, y:
kernel will panic during startup and complain about its inability to mount its root filesystem with a message
to the following:

Kernel panic: VFS. unable to nount root fs on ...
7.1.1.3 The MTD utilities

Because the MTD subsystem's functionality is different from that of other kernel subsystems, a special se
utilities is required to interact with it. We will see in the next sections how to obtain and install these utilitie
now, let's take a look at the available tools and their purposes.

The MTD utilities are powerful tools. Make sure you understand exactly the operations
#@ being performed by a tool before using it. Also, make sure you understand the
particularities of the device on which you are using the tools. DOC devices, for example,
require careful manipulation. You can easily damage your DOC device if you do not use
the MTD tools appropriately.

Within the MTD tool set, there are different categories of tools, each serving a different MTD subsystem
component. Here are the different tool categories and the tools they contain:

Generic tools

These are the tools that can be used with all types of MTD devices:

einfo devi ce

http://www.wowebook.info

Download at wowebook. 1nfag

Provides information regarding a device's erase regions.
erase devi ce start_address number _of _bl ocks

Erases a certain number of blocks from a device starting at a given address.
eraseall [opt i ons] devi ce

Erases the entire device.
unlock devi ce

Unlocks!3 all the sectors of a device.

[3] Some devices can be protected from accidental writes using write "locks." Once a device, or some portion of it, is locke

be written to until itis unlocked.
lock devi ce of f set nunmber _of bl ocks

Locks a certain number of blocks on a device.
fcp [options] fil enanme fl ash_device

Copies a file to a flash_device.
doc_loadbios device firmware file

Writes a bootloader to the device's boot region. Though this command is usually used with [

devices only, itis not DOC specific.
mtd_debug operati on [operation_par anet er s]

Provides useful MTD debugging operations.
Filesystem creation tools

These tools create the filesystems that are later used by the corresponding MTD user modules:

mkfs.jffs2 [opt i ons] -r di r ectory -0 out put_file

Builds a JFFS2 filesystem image from a directory.
mkfs.jffs [opt i ons] -d directory -0 out put_file

Builds a JFFS filesystem image from a directory.
jffs2reader i nage [opt i ons] pat h

Lists the content of a path in the JFFS2 filesystem image.
NFTL tools

These tools interact with NFTL partitions:
nftl_format devi ce [start_address [size]]

Formats a device for use with the NFTL user module.
nfildump devi ce [out put _file]

Dumps the content of an NFTL partition to a file.
FTL tools

These tools interact with FTL partitions:
ftl_format [opt i ons] devi ce

Formats an FTL device.
ftl_check [opt i ons] devi ce

Checks and provides information regarding an FTL device.
NAND chip tools

http://www.wowebook.info

Download at wowebook. 1nfag

These tools are provided for manipulating NAND chips:

nandwrite device i nput file start address

Writes the content of a file to a NAND chip.
nandtest devi ce

Tests NAND chips, including those in DOC devices.
nanddump devi ce out put _fil e [of f set] [number _of byt es]

Dumps the content of a NAND chip to afile.

Most of these tools are used on /dev/mtdN devices, which are the char device interfaces to the various M’
devices. | will describe the typical uses of the mostimportant MTD tools over the next few chapters, covel
actual MTD hardware in this chapter, preparation of the root filesystem in Chapter 8, and the boot setup it
9.

7.1.1.4 Installing the MTD utilities for the host

The MTD utilities are maintained as part of the MTD development CVS. You can retrieve the latest tool ve
using CVS. You can also download a CVS snapshot from ftp://ftp.uk.linux.org/pub/people/dwmw2/mtd/cv:
my DAQ module, | am using the snapshot dated 2002-07-31.

Download the snapshot of your choice to your ${PRIJROOT}/build-tools directory and extract it. You can tl
to this directory and prepare to compile the tools:

$ cd ${PRIROCOT}/buil d-tool s/ntd/ util
$ automake --foreign; autoconf
$./configure --with-kernel=/usr/src/linux

When issuing the configure command, you must provide the path to the kernel that will be used to compil
tools. Since you are building the tools for your host, you need to provide the path to your host's kernel sot
default, these should be located at /usr/src/linux.

As in other build scenarios, configure builds the Makefile required to compile the tools. You can now com|
tools:

$ make cl ean
$ make

Make sure you issue the make clean command, as there are files in the utiliies source code that need to
deleted to allow symboalic links with the same names to be created to files in the kernel sources.

If the build process fails while compiling compr.c because of an undefined KERN WARNI NG symbol, you will
edit the Makefile.am file and replace the following lines:

conpr.o: conpr.c
$(COWI LE) $(CFLAGS) $(INCLUDES) -Dprintk=printf \
-DKERN NOTICE= -Cc -0 $@$<

with:

conpr.o: conpr.c
$(COWI LE) $(CFLAGS) $(INCLUDES) -Dprintk=printf \
- DKERN_WARNI NG= -DKERN_NOTICE= -c -0 $@$<

Once you have completed the modification, you will need to restart the build from the start, as already des
after having issued a make distclean command.

http://www.wowebook.info

Download at wowebook. 1nfag

With the utilities built, you can now install them in your tools directory:
$ make prefix=${PREFI X} install

This will install the utilities in ${PREFIX}/sbin. You will need to add this directory to your path, if it's not alre
of it. See my earlier explanation in Chapter 4 about installing uClibc's utilities for a complete description o
add a new directory to your development path.

Now that the utilities have been installed, you need to create the MTD device entries in your host's /dev di
The MAKEDEYV script found in the util directory takes care of the device creation. Have a look inside this 1
are interested in the devices being created. MAKEDEYV mainly creates the /dev entries | covered earlier in
7.1.1.1. Because MAKEDEYV uses the mknod command, you will need to run it as root:

./ MAKEDEV

Although you may later want to update your MTD tool set, you should not need to use MAKEDEYV again. I
MTD devices are accessible on the host because you are using the removable storage setup or the stanc
setup we discussed in Chapter 2, you are ready to manipulate your MTD devices immediately. If you are
linked setup or want to use the MTD utilities on your target in a removable storage setup, read the next se
instructions on how to build the MTD utilities for your target.

7.1.1.5 Installing the MTD utilities for the target

To install the MTD utilities for your target, you need to first download and install zlib. Earlier, when you ins
MTD utilities on your host, you didn't need to install zlib, because zlib is part of most mainstream distributi
is available at http://www.gzip.org/zlib/. For my DAQ module, | used zlib 1.1.4.

Download zlib and extract it in your ${PRIJROOT}/build-tools directory. You can then move to the library's
to prepare its compilation:

$ cd ${PRIROOT}/ buil d-tool s/zlib-1.1.4
$ COC=i 386- | i nux-gcc LDSHARED="i 386-1inux-1d -shared" \
> ./configure --shared

By default, the zlib build process generates a static library. To build zlib as a shared library, you must set
L DSHARED variable and provide the - -shared option when invoking configure. With the Makefile created, yt
compile and install the library:

$ make
$ make prefix=${ TARGET _PREFI X} i nst all

As with the other target libraries we installed earlier, we install zlib in ${TARGET_PREFIX}/lib. Once the li
installed, you can install it on your target's root filesystem:

$ cd ${ TARGET PREFIX}/Iib
$ cp -d libz.so* ${PRIROOT}/rootfs/lib

You are now ready to build the MTD utilities. Download the MTD snapshot into your ${PRJROOT}/sysapp
extract it. Now move into the utilities directory and build the toals:

cd ${ PRIROOT}/sysapps/ m d/ uti |

aut omake --foreign; autoconf

CC=i 386- | i nux-gcc ./configure \

--wi t h- kernel =${ PRIROOT}/ ker nel /1i nux- 2. 4. 18
make cl ean

make

B PH YV A BB

http://www.gzip.org/zlib/
http://www.wowebook.info

Download at wowebook. 1nfag

In this case, the kernel path points to your target's kernel. As in the previous section, if the build process f
compiling compr.c because of an undefined KERN WARNI NG symbol, you will need to edit the Makefile.am f
the appropriate changes, and restart the build from the beginning after issuing make distclean.

With the utilities built, you can now install them in your target's root filesystem:
$ nake prefix=${PRIJROOT}/rootfs install

This will install the utilities in ${PRIJROOT}/rootfs/sbin. We will not run the MAKEDEYV script here, becaus
well adapted to creating device entries other than on the root filesystem of the system on which it runs. If
to use the script as is, you would have to copy it to your target's root filesystem and then run it once you h
target running. This, however, would waste filesystem resources on the target, since the script creates en
all the MTD devices you can possibly have in a system. We will see in the following sections how to creat
devices needed on the target's root filesystem.

How NOR and NAND Flash Work

Flash devices, including NOR flash devices such as CFl flash chips and NAND flash devices such as
the DOC, are not like disk storage devices. They cannot be written to and read from arbitrarily. To
understand how to operate flash chips properly, we must first look at how they operate internally.
Flash devices are generally divided into erase blocks. Initially, an empty block will have all its bits set
to 1. Writing to this block amounts to clearing bits to 0. Once all the bits in a block are cleared (set to
0), the only possible way to erase this block is to set all of its bits to 1 simultaneously. With NOR flash
devices, bits can be set to 0 individually in an erase block until the entire block is full of 0s. NAND
flash devices, on the other hand, have their erase blocks divided further into pages, of 512 bytes
typically, which can only be written to a certain number of times—typically less than 10 times—before
their content becomes undefined. Pages can then only be reused once the blocks they are part of are
erased in their entirety.

7.1.2 Native CFIl Flash

Most recent small-to-medium-sized non-x86 embedded Linux systems are equipped with some form of C
Setting up CFI flash to be used with Linux is relatively easy. In this section, we will discuss the set up and
manipulation of CFI devices in Linux. We will not discuss the use of filesystems on such devices, howeve
these will be covered in the next chapter. The order to the subsections below tries to follow the actual stej
involved in using CFI flash devices with Linux as much as possible. You can, nevertheless, use these inst

selectively according to your current manipulation.

7.1.2.1 Kernel configuration

You will need to enable kernel support for the following options to use your CFlI flash device:

Memory Technology Device (MTD) support

e MTD partitioning support, if you would like to partition your flash device
e Direct char device access to MTD devices

e Caching block device access to MTD devices

e Inthe "RAM/ROM/Flash chip drivers" submenu, Detect flash chips by Common Flash Interface (CF

¢ Inthe "Mapping drivers for chip access" submenu, the CFI flash device mapping driver for your part

http://www.wowebook.info

Download at wowebook. 1nfag

board

You may also choose to enable other options, but these are the bare minimum. Also, remember to set the
to "y" instead of "m" if you intend to have the kernel mount its root filesystem from the CFI device.

7.1.2.2 Partitioning

Unlike disk or DOC devices, CFI flash cannot generally be partitioned using tools such as fdisk or pdisk, |
partition information is not usually stored on CFl flash devices. Instead, the device's partitions are hardcou
mapping driver and are registered with the MTD subsystem during the driver's initialization. The actual de
not contain any partition information whatsoever. You will, therefore, have to edit the mapping driver's C s
code to modify the partitions.

Take TQM8xxL PPC boards, for instance, which are good candidates for my control module. Such board:
contain up to two 4 MB flash banks. Each 32 bit-wide memory addressable flash bank is made of two 16 |
flash chips. To define the partitions on these boards, the boards' mapping driver contains the following str
initializations:

static struct ntd _partition tqnmBxxl _partitions[] = {

{
name: "ppcboot ", /* PPCBoot Firmnare */
of f set: 0x00000000,
size: 0x00040000, /* 256 KB */

s

{
nane: "kernel ", /* default kernel image */

of f set: 0x00040000,
size: 0x 00000000,

},
{
name: "user",
of f set: 0x00100000,
size: 0x 00100000,
s
{
nane: "initrd",
of f set: 0x00200000,
size: 0x00200000,
}
s
static struct nmtd _partition tqmBxxl fs partitions[] ={
{
name: "cranfs",
of f set: 0x00000000,
size: 0x 00200000,
},
{
name: "jffs2",
of f set: 0x00200000,
size: 0x00200000,
}

}s

In this case, t qnBxx| _parti ti ons defines four partitions for the first 4 MB flash bank, and

http://www.wowebook.info

Download at wowebook. 1nfag

tgmBxxl _fs_partiti ons definestwo partitions for the second 4 MB flash bank. Three attributes are defin
each partition: name, of f set, and si ze.

A partition's name is an arbitrary string meant only to facilitate human usability. This name is not used by €
MTD subsystem or the MTD utilities to enforce any sort of structure on said partition. The of f set is used
provide the MTD subsystem with the start address of the partition, while the si ze is self-explanatory. Noti
each partition on a device starts where the previous one ended; no padding is necessary. Table 7-3 prese¢
actual physical memory address ranges for these partitions on a TQM860L board where the two 4 MB ba
mapped consecutively starting at address 0x40000000.

Table 7-3. Flash device partition physical memory mapping for TQM860L board

Device Start address End address Partition ne
0 0x40000000 0x40040000 ppcboot
0 0x40040000 0x40100000 kernel
0 0x40100000 0x40200000 user
0 0x40200000 0x40400000 initrd
1 0x40400000 0x40600000 cramfs
1 0x40600000 0x40800000 jffs2

During the registration of this device's mapping, the kernel displays the following message:

TOM flash bank 0: Using static image partition definition
Creating 4 MID partitions on "TQWxxL Bank 0":

0x00000000- 0x00040000 : "ppcboot"
0x00040000- 0x00100000 : "kernel"
0x00100000- 0x00200000 : "user™
0x00200000- 0x00400000 : "initrd"

TOM flash bank 1:

Usi ng static file systempartition definition

Creating 2 MID partitions on "TQWxxL Bank 1":
0x00000000- 0x00200000 :
0x00200000- 0x00400000 :

‘cr anf s"
"jffs2"

You can also see the partitions by looking at /proc/mtd. Here is its content for my control module:

cat /proc/md

dev: size erasesi ze nane

nt dO: 00040000 00020000 "ppchoot™
m d1l: 000c0000 00020000 "kernel™
mt d2: 00100000 00020000 "user"

mt d3: 00200000 00020000 "initrd"
m d4: 00200000 00020000 "cr anf s"
nt d5: 00200000 00020000 "jffs2"

Notice that the partitions are on erase size boundaries. Because flash chips are erased by block, not by b
size of the erase blocks must be taken in account when creating partitions. In this case, erase blocks are
in size, and all partitions are aligned on 128 KB (0x20000) boundaries.

http://www.wowebook.info

Download at wowebook. 1nfag

Another Way to Provide MTD Partition Information

For some time now, the MTD subsystem has been able to accept partition information as part of the
kernel boot options for the ARM architecture. This capability is used by the iPAQ Familiar distribution
to provide the iPAQ's kernel with the partition information for the device's CFl flash chips.

Lately, a generalized form of this capability for all the architectures has been integrated into the main
MTD source code CVS repository. Though these changes had not yet made their way into the main
kemnel tree at the time of this writing, they will eventually be integrated and, therefore, enable the
passing of the patrtition information at the kernel boot options on all architectures supported by Linux.

Here is an example boot option line used to provide the kernel with the same partition information
provided in the previous section for the TQM8xxL board (the line appears wrapped on the page, but
must be written as a single line):

nt dpart s=0: 256k (ppcboot) ro, 768k(kernel), In(user), -(i nitrd); 1: 2n(crants), -
(jffs2)

7.1.2.3 Required /dev entries

You need to create /dev entries for the char device and block device MTD user modules to access your C
device. Create as many entries for each type of user module as you have patrtitions on your device. For €
the following commands create root filesystem entries for the six partitions of my TQM860L board:

$ cd ${PRIROOT}/r oot f s/ dev

$ su-m

Passwor d:

for i in $(seq 0 5)

do

nknod ntd$i c 90 $(expr $i + $i)
nknod mtdbl ock$i b 31 $i

done

exit

¥V VVYV

Here are the resulting entries:

$Is -al md*

CrW-rWr-- 1 root r oot 90, 0 Aug 23 17:19 nt dO
Cr\W-rWr-- 1 root r oot 90, 2 Aug 23 17:20 nidl
Cr W I Wr-- 1 root r oot 90, 4 Aug 23 17:20 ntd2
CrW-rWr-- 1 root r oot 90, 6 Aug 23 17:20 m d3
CrW-rWr-- 1 root r oot 90, 8 Aug 23 17:20 ntd4
CrW I Wr-- 1 root r oot 90, 10 Aug 23 17:20 mtd5
brwrwr-- 1 root r oot 31, 0 Aug 23 17:17 nt dbl ockO
brwrwr-- 1 root r oot 31, 1 Aug 23 17:17 m dbl ockl
brwrwr-- 1 root r oot 31, 2 Aug 23 17:17 nt dbl ock2
brwrwr-- 1 root r oot 31, 3 Aug 23 17:17 nt dbl ock3
brwrwr-- 1 root r oot 31, 4 Aug 23 17:17 ntdbl ock4
brwrwr-- 1 root r oot 31, 5 Aug 23 17:17 nt dbl ock5

7.1.2.4 Erasing

Before you can write to a CFl flash device, you need to erase its content. This can be done using one of t

http://www.wowebook.info

Download at wowebook. 1nfag

erase commands available as part of the MTD utilities, erase and eraseall.
Before updating the initial RAM disk on my control module, for example, | need to erase the "initrd" partitic

eraseall /dev/mtd3
Er ased 2048 Kibyte @0 -- 100% conpl ete.

7.1.2.5 Writing and reading

Whereas flash filesystems such as JFFS2 take advantage of the capability of continuing to set bitsto 0 in
block to allow transparent read and write access, you cannot usually use user-level tools to write to an M1
more than once. If you want to update the content of an MTD device or partition using its raw char /dev er
example, you must usually erase this device or partition before you can write new data to it.

Writing to a raw flash device can be done using traditional filesystem commands such as cat and dd. Afte
the "initrd" partition on my control module, for example, | use the following command to write a new initial
disk image to the designated partition:

cat /tnp/initrd.bin > /dev/ nd3

In this case, my target's root filesystem is mounted via NFS, and | am running the MTD commands on my
could have also used the dd command instead of cat. Nevertheless, the end result is the same in this cas

Reading from a CFl MTD partition is no different from reading from any other device. The following comrr
my control module, for instance, will copy the binary image of the bootloader partition to afile:

dd if=/dev/ md0 of =/t np/ ppcboot.i ny

Since the bootloader image itself may not fill the entire partition, the ppcboot.img file may contain some e:
unrelated data in addition to the bootloader image.

7.1.3 DiskOnChip

DOC devices are quite popular in x86-based embedded Linux systems, and the MTD subsystem goes a |
in providing support for them. | use it, for example, in my DAQ module. It remains that the DOC is a pecu
that requires an attentive master. The reasons for such a statement will become evident shortly.

7.1.3.1 Preliminary manipulations

Unlike most other devices found in embedded Linux systems, you will need to equip yourself with, at the \
a bootable DOS diskette loaded with M-Systems' DOS DOC tools to make proper use of any DOC device
are two basic reasons for this:

o Like all NAND flash devices, DOC devices can contain a certain number of manufacturing defects t
in bad blocks. Before a DOC device is shipped from the factory, a Bad Block Table (BBT) is written
Although this table is not write-protected, it is essential to the operation of all software that reads an:
to a DOC. As such, M-Systems' DOC software is capable of reading this table and storing it to a file
however, does not currently have any utility to retrieve this table.

e The NFTL driver included in most 2.4.x kernels (up to 2.4.19 at least) is unable to deal with some ve
the M-Systems' DOC firmware. Versions 5.0 and later are the most likely to cause problems. Hence
may need to replace your DOC's current firmware with an older version, using M-Systems' tools, for
operate with your device properly. Currently, the firmware provided with Version 4.2 of M-Systems' 1
tools works fine with all kernels.

http://www.wowebook.info

Download at wowebook. 1nfag

In addition, there are two ways to install a bootloader on the DOC and format it for NFTL. The first, which
recommended by the MTD maintainer, is to use M-Systems' dformat DOS utility. The second, which gives
greatest degree of control over your DOC device from within Linux, is to use the doc_loadbios and nftl_fo
MTD utilities. We will discuss both methods in the following sections.

M-Systems' DOS DOC tools and related documentation are available from the company's web site at
http://www.m-sys.com/. If you plan to use the Linux method to install a bootloader on the DOC and format
need both Version 4.2 and Version 5.0 or later of M-Systems' tools. If you plan to use the DOS method, y
need Version 5.0 or later of the M-Systems tools. At the time of this writing, the latest version is 5.1.2. The
example below is based on a 32 MB DOC 2000 device. The output of the various tools will depend on the
device you are using, but should closely resemble the output presented here.

Start by preparing a DOS diskette with the latest tools. Once you have prepared the DOS diskette, boot tt
containing your DOC device with that diskette. Now, use the tools as follows:[“

[4] See M-Systems' manuals for a full explanation of the tools' semantics and usage.

1. Using Version 5.0 or later of the DOC tools, make a copy of the BBT:

A \>df ormat /w n:dO00 /nofornmat /| og: docbbt. t xt
DFORMAT Version 5.1.0.25 for DCS
Copyright (C M Systens, 1992-2002

D skOnChi p 2000 found in 0xd00OO.
32M nmedi a, 16K unit

(04

The dformat command is usually used to format the DOC for use with DOS. In this case, we it
dformat not to format the device by using the /noformat option. In addition, we instruct it to rec
BBT of the device starting at segment 0xD0OO0O0®! to the docbbt.txt file. Once dformat finishes re
the BBT, store a copy of docbbt.txt in a safe repository, since you may have to restore it if you
the entire DOC device in Linux. Have a look at M-Systems' dformat documentation for informe
how to restore a lost BBT.

[5] "Real-mode" addresses on the PC are represented using a segment and offset couple in the following way: segnent :of fset . It's us
to provide just the segment whenever the offsetis null. In this case, for example, segment 0xDOOO starts at address 0xD0O000, asis
dformat in its output.

Note that your DOC device may be free of bad blocks. In that case, the docbbt.txt will be empt
you will not need to worry about restoring the BBT if you erase the device completely.

If you are using the DOS method to install a bootloader and format the DOC, you are done wit
preliminary manipulations and should proceed immediately to the next section, Section 7.1.3.Z

2. Using Version 5.0 or later of the DOC tools, check the firmware version:

A \>di nfo /exb

DI NF O- utility
Version 5.1.1.1.0, Last Update: 17 Jun 2002
Copyright (©Q MSystens, 1992 - 2001

Physi cal Address: 0xDO0000

http://www.m-sys.com/
http://www.wowebook.info

3.

Download at wowebook. 1nfag

D skOnChip Type :

Fl ash Type
For mat Type

TrueFFS versi on

Dri ver Version
Sectors

Heads
Cylinders

Boot Area Size

Logi cal Sectors :

Phy. UnitSize
Physi cal Size
Unit Size
Medi a Size

Chi p Si ze

No O Chips
Interleavi ng

EXB | NFO

Ver si on
Copyri ght
RunTinme ID
Exb Fl ags

D skOnChi p 2000

Toshi ba TC58128

NFTL

5.1

DCs

4

16

1001

49152 Byt es

64064

16384 Byt es

33554432 (32 MB)
16384 Byt es

33554432 Bytes (32 MB)
16777216 Bytes (16 MB)
2

1

4.2

SPL_Di skOnChip (c) M Systens
0xC3

No Fl ags Found

The dinfo command displays a lot of information. You can identify the version of the firmware
looking at the Ver si on line in the EXB | NFO section. In this case, the firmware version is 4.2. D
confused by the TrueFFS versi on line in the GENERAL | NFO section. This is not the firmware ve

If your firmware is Version 5.0 or later, update the firmware version using Version 4.2 of the DOC to

A\ >df or mat

/W n:dOOO0 /s: doc42. exb

DFORMAT Version 3.3.9 for DiskOnChip 2000 (V4. 2)

Copyright (O M Systens,

Driver

VWARNI NG Al |

1992- 2000

not | oaded - using direct access

Medi um physical size is
Boot - i mage size is 48 KBytes

Fi ni shed 32768 KBytes
Witing Boot-Inage
conplete. Formatted size i s 32032 KBytes.

For mat

Pl ease reboot to | et

data on D skOnChi p 2000(R) will be destroyed. Continue ?

32768 KBytes

D skOnChi p 2000(R) install itself.

Once you have formatted the chip with Version 4.2 of the firmware, | recommend that you pow
your system. Shut the system off and then put it back on. A simple reboot may work to get the
installed properly, but a full power-cycle is necessary on some systems.

You are now ready to use your DOC device with Linux.

http://www.wowebook.info

Download at wowebook. 1nfag

7.1.3.2 Kernel configuration

At the time of this writing, if you are using the DOS method to install a bootloader and format the DOC, yc
to patch your kernel with the latest MTD code from the MTD CVS repository to proceed. See the MTD prc
web site (http://www.linux-mtd.infradead.org/) for information on how to retrieve the code from the CVS re

You will need to enable kernel support for the following options to use your DOC device:

Memory Technology Device (MTD) support

MTD partitioning support, if you would like to partition your flash device

Direct char device access to MTD devices

NFTL (NAND Flash Translation Layer) support

Write support for NFTL (BETA)

In the "Self-contained MTD device drivers" submenu, M-Systems Disk-On-Chip 2000 and Millenniut

As with CFI flash, you may choose to select other options. If you compile the options just listed as module
DOC support will be separated in three files, docecc.o, doc2000.0, and docprobe.o. Issuing a modprobe
command should load all three modules automatically. Whether it is part of the kernel or loaded as a moc
DOC probe driver will analyze potential memory addresses for DOC devices. For each memory address i

analyzes, the probe driver outputs a message regarding its findings. Here is an example of output from th
driver on my DAQ module:

Possi ble D skOnChi p with unknown Chi pIl D FF found at 0xc8000

Possi bl e D skOnChi p with unknown Chi pl D FF found at 0Oxce000

D skOnChi p 2000 found at address 0xDO0O00O

Fl ash chip found: Manufacturer ID: 98, Chip ID: 73 (Toshi ba TH58V128DC)
2 flash chi ps found. Total D skOnChip size: 32 MB

Possi ble D skOnChi p with unknown Chi pl D FF found at 0xd2000

Possi bl e D skOnChi p with unknown Chi pl D FF found at 0xd4000

M-Systems' DOC Driver

M-Systems provides a DOC driver for Linux as part of their Linux tools packages. This driver,
however, is not under the GPL and you can use it only as a loadable kernel module. Distributing a
kernel with this driver built in is a violation of the GPL. Hence, if you want to boot from a DOC with a
kernel that uses M-Systems' driver, you need to use an init RAM disk to load the binary driver. Also,
postings on the MTD mailing list suggest that the driver uses a lot of system resources and can
sometimes cause data loss on the serial port. For these reasons, | recommend that you avoid using
M-Systems' Linux DOC driver. Instead, use the GPL MTD drivers, as | describe here.

7.1.3.3 Required /dev entries

You need to create /dev entries for the char device and the NFTL MTD user modules in order to access y
device. Create as many char device entries and sets of NFTL entries as you have DOC devices in your s!
For each NFTL set, create as many entries as you will create partitions on your device. For my DAQ mod

instance, | have one DOC device with only one main patrtition. | use the following commands to create the
entries:

http://www.linux-mtd.infradead.org/
http://www.wowebook.info

Download at wowebook. 1nfag

$ cd ${ PRIROOT}/ r oot f s/ dev
$ su -m

Passwor d:

nknod ntdO ¢ 90 O

nknod nftla b 93 0

nknod nftlal b 93 1

exit

Here are the resulting entries:

$1Is -al md* nftl*

Cr'W-rWr-- 1 root r oot 90, 0 Aug 29 12:48 nt dO
brwrwr-- 1 root r oot 93, 0 Aug 29 12:48 nftla
brwrwr-- 1 root root 93, 1 Aug 29 12:48 nftlal

7.1.3.4 Erasing

Erasing a DOC device is done in very much the same way as other MTD devices, using the erase and er:
commands. Before using any such command on a DOC device, make sure you have a copy of the BBT,
an erase of the device will wipe out the BBT it contains.

To erase the entire DOC device in my DAQ modules, for instance, | use the following command on my D,
module:

eraseall /dev/ntdO
Er ased 32768 Ki byte @0 -- 100% conpl ete.

Typically, you will need to erase a DOC device only if you want to erase the bootloader and the current foi
the device. If you installed a Linux bootloader, for example, and would like to revert back to M-Systems' S
will need to use the eraseall command before you can install M-Systems' SPL with M-Systems' tools. Wh
you erase the entire device, however, you need to use M-Systems' tools to restore the BBT.

7.1.3.5 Installing bootloader image

If your target does not boot from its DOC device, you can skip this step. Otherwise, you need to build the
bootloader, as | describe in Chapter 9, before going any further. First, nonetheless, let's see how a systen
from the DOC.

During system startup on x86 systems, the BIOS scans the memory for BIOS extensions. When such an
extension is found, it is executed by the BIOS. DOC devices contain a ROM program called the Initial Prc
Loader (IPL) that takes advantage of this characteristic to install another program called the Secondary P
Loader (SPL) that acts as a bootloader during system startup. By default, the SPL is provided by M-Syste
firmware. To boot Linux from a DOC device, however, the SPL must be replaced with a bootloader able t
recognize the format used by Linux on a DOC. We will discuss the various DOC-capable Linux bootloade
Chapter 9. For now, let us take a look at how we can install our own SPL on a DOC.

Here is the command | use to install the GRUB bootloader image, grub_firmware, on the DOC in Linux:

doc_| oadbi os /dev/ mdO grub firnware

Perform ng Flash Erase of | ength 16384 at offset O
Performng Flash Erase of | ength 16384 at offset 16384
Perform ng Flash Erase of | ength 16384 at offset 32768
Perform ng Flash Erase of | ength 16384 at offset 49152
Performng Flash Erase of | ength 16384 at offset 65536

I
I
I
I
I
Perform ng Flash Erase of | ength 16384 at offset 81920

http://www.wowebook.info

Download at wowebook. 1nfag

Witing the firmware of length 92752 at 0... Done.
Here is the command | use to install the GRUB bootloader image on the DOC in DOS:

A\ >df ormat /w n:dO0OO /bdkfO:grub firmare

DFORMAT Version 5.1.0.25 for DCS

Copyright (G M Systens, 1992-2002

WARNI NG Al data on DiskOnChip will be destroyed. Continue ? (Y Ny

D skOnChi p 2000 found in 0xd00OO.
32M nmedi a, 16K unit

Formatti ng 2042
Witing file to BDK O 92752
(04

Pl ease reboot to let DskOnhChip install itself.

As with updating the firmware version earlier, you need to power-cycle your system after using doc_loadb
dformat for the firmware to be installed properly. That said, do not use doc_loadbios or dformat before ree
explanations pertaining to its use with a bootloader in Chapter 9.

7.1.3.6 NFTL formatting

Currently, the only way to use DOC devices in Linux is to format them for NFTL. Once we formata DOC «
NFTL, we can use conventional block device tools and filesystems in conjunction with the device.

If you would like to boot from the DOC, read the sections in Chapter 9 regarding x86 bootloaders before ¢
out any further operations on your DOC.

If you used the dformat utility earlier to install GRUB on the DOC, your DOC is already formatted for NFTI
used doc_loadbios in Linux, you must use the nfil_format command to format the device for NFTL.

The following MTD command formats the entire DOC device for NFTL:

nftl _format /dev/mtdO

$ld: chO7.xm,v 1.3 2003/05/01 21:52:06 nmadd Exp nadd $

Phase 1. Checki ng and erasi ng Erase Zones from 0x00000000 to 0x02000000
Checki ng Zone #2047 @ Ox1ffc000

Phase 2.a Witing NFTL Medi a Header and Bad Unit Table

Phase 2. b Witing Spare NFTL Medi a Header and Spare Bad Unit Tabl e

Phase 3. Witing Unit Control Information to each Erase Unit

This command takes some time to go through the various zones on the DOC. Should nftl_format encount
blocks on the DOC, it outputs the following message:

Ski ppi ng bad zone (factory nmar ked) #BLOCK _NUM @ Ox ADDRESS

The BLOCK_NuMand ADDR values output by nfil_format should match the values found in the docbbt.txt file
generated earlier.

http://www.wowebook.info

Download at wowebook. 1nfag

For the nftl_format command to operate properly, it needs to have total control and
”@ exclusive access over the raw DOC device it is formatting. Total control is guaranteed b
the fact that the commands provided earlier use the /dev/mtdx device entries. Because
these entries are handled by the char device MTD user module, there is no conversion
layer between the operations conducted on these devices and the actual hardware.
Hence, any operation carried out by nftl_format has a direct effect on the hardware.

Exclusive access to the raw DOC device is a little trickier, however, because of the NFT
driver. Basically, once the NFTL driver recognizes a DOC device, it assumes that it has
total control over the device. Hence, no other software, including nftl_format, should
attempt to manipulate a DOC device while the NFTL driver controls it. There are a few
ways to avoid this type of conflict, depending on the configuration of the kernel you are
using.

If the NFTL driver was configured as a module, unload the module before running
nfil_format. You can reload it once nftl_format is done formatting the device. If the NFTL
driver was built in, you can either use another kernel or build one, if need be, that doesn’
have the NFTL driver built in. If you want to continue to use the same kernel that has the
NFTL driver builtin, you can use the eraseall command to erase the device entirely. The
next time your restart your system after the erase, the built-in NFTL driver will not
recognize the DOC and will, therefore, not interfere with nftl_format's operations. Finally,
you are carrying out these instructions for the first time, the NFTL driver should not be al
to recognize any format on the DOC device at this stage and should, therefore, not caus
any problems.

If you have installed a Linux bootloader on the DOC using doc_loadbios, you need to skip the region whel
bootloader was written and start formatting at its end. To do so, you need to provide an offset to nfil_form.
is the command | use to format my DOC for NFTL in the case where | had already installed GRUB as the

nftl _format /dev/nmdO 98304

$1d: chO7.xm,v 1.3 2003/05/01 21:52:06 nmadd Exp nadd $

Phase 1. Checki ng and erasi ng Erase Zones from 0x00018000 to 0x02000000
Checki ng Zone #2047 @ Ox1ffc000

Phase 2.a Witing NFTL Medi a Header and Bad Unit Table

Phase 2. b Witing Spare NFTL Medi a Header and Spare Bad Unit Tabl e

Phase 3. Witing Unit Control Information to each Erase Unit

The 98304 offset is determined by the output of the doc_loadbios command shown earlier. The last erase
message output by the command reported erasing 16384 bytes at offset 81920. 98304 is therefore the fir
address following the last region erased for the bootloader.

With the DOC device formatted for NFTL, reboot the system as a precautionary step. When the NFTL dri
activated, either at kernel startup or when loading the nftl.o module, it should output a message similar to
following:

NFTL driver: nftlcore.c $Revision: 1.3 $, nftl nount.c $Revision:...
Cannot calculate an NFTL georretry to mat ch size of OxfeaO.
Using C 1018 H 16 S:4 (= = Oxfe80 sects)

If the NFTL driver can see a DOC device but is unable to recognize its format, it will output this message

Could not find valid boot record
Coul d not mount NFTL device

Although this message is normal if you have not yet used nftl_format on the DOC device, itis a sign that ¢
occurred if you already used nftl_format on the DOC.

http://www.wowebook.info

Download at wowebook. 1nfag

The error message may be followed by a message similar to:
Sorry, we don't support UnitS zeFact or 0x06

or:

Sorry, we don't support UnitSi zeFactor of != 1 yet.

There are many reasons why you may encounter these messages. None of them are your fault if you hav
followed the instructions above, as well as those in Chapter 9. As a first resort, you can try using different
and GRUB versions. For example, | had such messages when | tried using a November 2002 CVS versic
GRUB with the DOC on my DAQ module. For some reason, the firmware image generated by that versio
GRUB confused the NFTL driver in 2.4.18. To solve the problem and have the NFTL driver recognize my
formatted device, | used GRUB 0.92 instead of the latest CVS version. You may encounter a similar error
used dformat to install GRUB on the DOC but forgot to patch your kernel to use the latest MTD code frorr
CVS.

Whenever you encounter such a message, review your manipulations and make sure you have faithfully 1
the steps we discussed. If itis not a manipulation error, you can choose to dig deeper and use your hacki
to figure out the problem on your own. It is often a good idea, nevertheless, to search the MTD mailing lis
and to consult with the MTD mailing list, because others may have encountered a similar problem and me
already solved it. When sending a message to the MTD mailing list, or any other mailing list for that matte
be as verbose as possible. It is very frustrating for mailing list subscribers to receive pleas for help that he
or no detail. Specifically, provide the versions of all the software components involved, explain the exact <
followed, and provide the output of all the tools you used.

7.1.3.7 Partitioning

With the DOC device formatted for NFTL, you can now partition the device using fdisk. Here is the transc
fdisk session in which | create one partition on my NFTL device:

fdisk /dev/nftl a

Device contains neither a valid DOS partition table, nor Sun or S ...
Buil ding a new DOS di skl abel. Changes will remain in nenory only,
until you decide to write them After that, of course, the previous
content won't be recover abl e.

Command (mfor help): p

D sk /dev/nftla: 16 heads, 4 sectors, 1018 cylinders
Units = cylinders of 64 * 512 bytes

Devi ce Boot Start End Bl ocks Id System

Command (m for help): d
Partition nunber (1-4): 1

Command (m for help): n
e ext ended
p primary partition (1-4)
p
Partition nunber (1-4): 1
First cylinder (1-1018, default 1):
Using default value 1
Last cylinder or +size or +sizeMor +sizeK (1-1018, default 1018):

http://www.wowebook.info

Download at wowebook. 1nfag

Using default value 1018
Command (mfor help): p

D sk /dev/nftla: 16 heads, 4 sectors, 1018 cylinders
Units = cylinders of 64 * 512 bytes

Devi ce Boot Start End Bl ocks Id System
/[dev/nftlal 1 1018 32574 83 Linux

Command (m for help): w
The partition tabl e has been altered!

Calling ioctl() to re-read partition table.

WARNI NG |If you have created or nodi fied any DCS 6. X
partitions, please see the fdi sk manual page for additi onal
i nformation.

Synci ng di sks.

Note that we delete the first partition before creating it again. This is because the use of dformat to install
bootloader and format the DOC also results in the creation of a single FAT partition spanning the entire d
you had used the Linux doc_loadbios, fdisk will display the following error message regarding the patrtitior
deletion, which you can ignore:

VWarni ng: partition 1 has enpty type

Also, note that instead of using a single partition on the DOC, or any other storage device for that matter,
could delete all partitions and store your filesystem on the entire device.

See Chapter 3 in Running Linux for a full description of how to use fdisk. With the DOC partitioning done,
manipulate the newly created partitions like any conventional disk partition. Among other things, you can f
and mount the NFTL partitions. We will discuss these issues in detail in Chapter 8.

Team LiB m MEXT k

http://www.wowebook.info

Download at wowebook. 1nfag

7.2 Disk Devices

Manipulating disk devices!® for use in embedded Linux devices is similar to what you do in Linux
workstations or servers. In the following, we will concentrate on only those aspects that differ from
conventional disk manipulations. | encourage you to consult other documents discussing Linux system
maintenance in general, such as Running Linux, to get the rest of the details.

(61 | use the term "disk devices" here to designate all devices that, in one way or another, appear as magnetic disk devices to the Linux
kernel. Hence, this includes CompactFlash devices, which appear as ATA (IDE) disks.

7.2.1 CompactFlash

A CompactFlash (CF) card is accessible in Linux in two ways: either as an IDE disk, when plugged in a
CF-to-IDE or a CF-to-PCMCIA adapter, or as a SCSI disk, when accessed through a USB CF reader. In
practice, it is often convenientto use a USB reader to program the CF card on the host while using a CF-
to-IDE or a CF-to-PCMCIA adapter in the target to access the device. Hence, the CF card is visible as a
SCSI disk on the host, while being seen by the target as an IDE disk. The fact that the same CF card can
be accessed through two very different kernel disk subsystems can be problematic, however, as we'll
see during the configuration of LILO for a CF card in Chapter 9. Of course, there would be no problem if
a CF device would always be accessed through the same disk subsystem.

To access the CF card through a USB CF reader on the host, you must have kernel support for USB
storage devices. Most distributions are shipped with USB device support built as modules. Therefore, all
you have to do is load the appropriate USB modules and SCSI disk drivers on your host:

nodpr obe usb-st orage
nodpr obe uhci
nodpr obe sd_nod

Though the uhci module is used in this example, some systems, such as Apple's systems, require usb-
ohci instead. Once the modules are loaded, you can now look at the appropriate entries in /proc to see
your CF reader. For example, this is how the SanDisk SDDR-31 reader | have on my PC host is seen by
the SCSI subsystem:

cat /proc/scsi/ scsi
At tached devices:
Host: scsiO Channel: 00 Id: 00 Lun: 00
Vendor : SanD sk Moddel : | mageMate |1 Rev: 1.30
Type: Di rect - Access ANSI SCSI revision: 02
cat /proc/scsi/ usb-storage-0/0
Host scsi0: usb-storage
Vendor: SanD sk Corporation
Product: |nmageMate ConpactFlash USB
Serial Nunber: None
Protocol: Transparent SCSI
Transport: Bul k
QJI D 078100020000000000000000
Att ached: Yes

In this case, because the reader is the first device on the SCSI bus, it can be accessed as /dev/sda.
Therefore, | can partition, format, and mount the CF card the same way | would partition, format, and
mount a conventional SCSI disk:

http://www.wowebook.info

Download at wowebook. 1nfag

fdisk /dev/ sda

nkdir /mnt/ cf
nke2f s /dev/sdal
nount -t ext2 /dev/sdal /mmt/cf

The partitions you put on the CF card and the use of the various partitions depends largely on your
target. If your target is an x86 PC derivative, you can use a single patrtition. If your targetis PPC using
the U-Boot bootloader, you need to have a few small partitions to hold kernel images and one large
partition to hold your root filesystem. This is because U-Boot can read CF device partitions and the data
on those partitions, but it does not recognize any filesystem organization. Hence, kernel images must be
written to raw partitions to be loadable by U-Boot. We will discuss example uses of CF cards as boot
devices in Chapter 9.

7.2.2 Floppy Disk

If you intend to use a floppy disk as your main storage device for your embedded Linux project, have a
look at the "Putting them together: Making the diskette(s)" section of Tom Fawcett's Linux Bootdisk
HOWTO, available from the LDP. Tom explains in detail how to create a bootable floppy using either
LILO or the kernel alone. Although you do not need to read other sections of the HOWTO, the
instructions assume that you have created a RAM disk image containing your root filesystem. See
Chapter 8 for an explanation of how to create this RAM disk image.

We will not discuss the use of floppy disks in embedded Linux systems any further, because they are
very seldom used in production systems and because the Linux Bootdisk HOWTO already covers the
issues involved quite well.

7.2.3 Hard Disk

When configuring a hard disk for use in an embedded Linux system, the most convenient setup to
bootstrap the target is to attach the hard disk destined for the target to the host's own disk interface. In
this way, the target's hard disk can be manipulated directly on the host.

If the host already has one IDE disk thatis seen as hda, for example, the target's IDE disk may be seen
as hdb or hdc, depending on the host's setup. We can then format and mount this drive as we would any
other hard disk. The only difference, however, is that the target's disk, seen on the host as a secondary
disk such as hdb or hdc, will very likely be seen as hda on the target. This poses certain problems when
configuring bootloaders. We will discuss these issues further in Chapter 9.

http://www.wowebook.info

Download at wowebook. 1nfag

7.3 To Swap or Not to Swap

Swapping is an essential component of most Linux workstation and server installatations. It enables the
system to address more memory than is physically available by emulating the additional memory on a
storage device. Most embedded storage devices, such as flash and DOC devices, however, are ill-
adapted to this use, because they have limited erase and write cycles. Since your application has little
control over the kernel's use of swapping, it is therefore possible to accelerate the wear on the storage
device used for swapping. Hence, | encourage you to find alternatives to swapping. Try reducing your
applications’ memory usage and having only the minimal set of binaries required for your system's
proper behavior loaded at any time.

Of course, if your storage device is a real hard disk—not a CF card—then swapping is a viable option.
The use of swap may, however, result in slower response times.

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 8. Root Filesystem Setup

Having built the root filesystem and prepared the target's storage device, we are now ready to set up the
root filesystem as it will be used on the target. First, we need to select a filesystem type for the root
filesystem. Then, we need to convert the root filesystem's content to the selected filesystem format or
install the root filesystem on a device formatted for the selected filesystem type.

This chapter begins by discussing the basic filesystem selection criteria. This is followed by a section
describing how to use NFS to transfer filesystem images to the target's flash, a technique we use often in
this chapter. We then concentrate on the setup of root filesystems for use on CRAMFS, JFFS2, NFTL,
and RAM disks, respectively. Finally, we discuss the use of TMPFS for mounting certain directories, and
how to update an embedded system's root filesystem dynamically. At the end of this chapter, the only
issue remaining to getting a fully functional embedded system will be the setup and configuration of the
bootloader. | will cover these issues in the next chapter.

http://www.wowebook.info

Download at wowebook. 1nfag

8.1 Selecting a Filesystem

Selecting a filesystem type for your root filesystem is a delicate process. The final decision is often a
compromise between the filesystem's capabilities and the target's purpose. It is, for example, useless to
choose a filesystem that provides persistent write storage, such as JFFS2, if the target never needs to
permanently store any data. For such atarget, a filesystem with no persistent storage, such as
CRAMEFS, is a much better choice.

Furthermore, you may want to consider using many filesystems for the same system. A system that
needs read and write access to temporary files only, for instance, could have most of its root filesystem
mounted on CRAMFS while having its /var/tmp directory mounted on TMPFS or a RAM disk, and its /tmp
being a symbolic link to /var/tmp.

8.1.1 Characterizing Filesystems

To select the best filesystem or best combination of filesystems for a certain application, we need to
have a minimum set of characteristics that can be used to compare filesystems. Table 8-1 summarizes
the characteristics of the filesystems typically used in embedded Linux systems. For each filesystem
type, these are the questions used to characterize it:

Write

Can the filesystem be written to?
Persistent

Does the filesystem preserve modifications across reboots?
Power down reliability

Can a modified filesystem recover from a power failure?
Compression

Is the content of the mounted filesystem compressed?
Lives in RAM

Is the filesystem's content first extracted from the storage device into RAM before being mounted?

Table 8-1. Filesystem characteristics

Filesystem Write Persistent | Power down reliability | Compression | Lives in RAM
CRAMFS No N/A N/A Yes No
JFFS2 Yes | Yes Yes Yes No
JFFS Yes Yes Yesl! No No
Ext2 over NFTL Yes | Yes No No No
Ext3 over NFTL Yes Yes Yes No No
Ext2 over RAM disk | Yes No No No Yes

[1] Extensive testing conducted by Vipin Malik shows that JFFS's power down reliability can fail. Such problems do not exist with JFFS2,

http://www.wowebook.info

Download at wowebook. 1nfag

however. See his article on JFFS and JFFS2 for the complete details: http:/Mww.embeddedlinuxworks.com/articles/fjffs_guide.html.

As | said above, a system needs a write-capable filesystem only if it needs to update data found on that
filesystem. Similarly, a system requires persistent writes only if the updated data needs to be preserved
upon reboots. A system that does not provide write capability does not require persistent storage or
power down reliability, since none of the data it stores is ever modified.

Compression, on the other hand, is a desired characteristic of most filesystems, because it can lower the
cost or increase the yield of storage in embedded systems. In some embedded systems, however, the
increased cost, in CPU cycles, of compression and decompression may be undesirable.

While most filesystems are mounted directly from their storage device, filesystems mounted on RAM
disks must first be extracted from their storage device into RAM before they can be mounted. Because
the original filesystem image on the storage device is never accessed directly, most filesystem images
created for use with RAM disks are usually compressed before being placed on a storage device. We will
discuss the creation of such compressed filesystem images for use with RAM disks in Section 8.6.

Finally, no filesystem can be replaced while it is currently mounted. If a system's root filesystem is
mounted from a JFFS2-formatted MTD partition, for example, the content of the MTD partition holding
this filesystem cannot be overwritten with a new root filesystem. The only case where such a
replacement is possible is when a filesystem is first copied into RAM before being mounted, as is the
case of RAM disks. In that case, the actual media where the filesystem is stored is not accessed once
the filesystem is mounted and can, therefore, be written over safely. As we shall see in Section 8.8,
filesystems that are mounted in read and write mode from their original storage device can still be
updated in various ways.

As you will have noticed, Linux supports a great deal many more filesystems than | cover in Table 8-1.

But most of these filesystems are not well adapted for embedded Linux systems. In addition, although |
mention JFFS in the table above, we will not discuss it below, since it has been largely superseded by

JFFS2.

8.1.2 Guidelines for Filesystem Selection

Now that we have established a basic set of features for characterizing filesystems, let's review some
general guidelines for selecting a filesystem configuration for your MTD-compatible storage device.

ROMEFS...Not for ROMs

You will notice a "ROM file system support” item in the "File systems" submenu of the kernel
configuration menu. This filesystem is actually not intended for use with any form of physical
ROM. Instead, it is mainly intended for use on disks for installation and troubleshooting
purposes. ROMFS operates on block devices only, and does not interface with Linux's MTD
subsystem in any way. As the project's web site states, if you wantto use ROMFS with a real
ROM, you must first write a device driver for this ROM that makes it appear as a block
device. See http://romfs.sourceforge.net/ for further information on ROMFS.

If your system has a very small amount of flash but a relatively generous amount of RAM, a RAM disk is
probably your best choice, because the filesystem living on a RAM disk is compressed in its entirety on
the storage device. The compression ratio on the storage device obtained by using a filesystem on a
RAM disk is actually much higher than what can be achieved with a natively compressed filesystem,
such as CRAMFS or JFFS2, because such filesystems must still keep their metadata,? among other
things, uncompressed. The RAM disk's edge in regards to on-storage-device compression are, however,
offset by a higher RAM usage, since the entire filesystem lives uncompressed in RAM. Also, a RAM disk
isn't appropriate if you need persistent data storage. Nevertheless, if your persistent data storage needs

http://www.embeddedlinuxworks.com/articles/jffs_guide.html
http://romfs.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

are limited, you can use a RAM disk for most of your root filesystem and mount only the data directories
from a persistent filesystem such as JFFS2, as hinted to earlier. Also, using a RAM disk is often the
easiest way to obtain a self-hosting target (which is a target that doesn't require a host to obtain its kernel
or mount its root filesystem). x86 systems such as my DAQ module, for example, are the most likely to
be shipped with RAM disks, since the prices for the components of such systems, including RAM, are
low compared to other architectures. Note that although RAM can be cheap, it does consume more
power than flash. Using large amounts of RAM for a RAM disk may, therefore, not be a viable option on
some systems.

[2] This is the data stored by the filesystem to locate files and directories and maintain the filesystem structure in general.

If your system has slightly more flash, or if you would rather save as much RAM as possible for the
actual application running on your target and can spare a few extra CPU cycles for runtime
decompression, CRAMFS is a very good candidate, granted the filesystem's limitations we discuss in
Section 8.3 aren't a show stopper. Though CRAMFS's compression ratio is lower than a RAM disk,
because of the reasons | outlined earlier, its capabilities are usually quite sufficient for most embedded
applications that do not require persistent storage. As with RAM disks, nevertheless, you can mount the
portion of the root filesystem that doesn't change at runtime on CRAMFS and the rest on a persistent
filesystem such as JFFS2.

CRAMFS will not be a viable option, however, if your target must be able to be upgraded in the field. For
example, the iPAQ Familiar distribution project switched from CRAMFS to JFFS2 precisely because
users were unable to update their iPAQs without reprogramming their devices' flash. On the other hand,
as another example, CRAMFS is a good candidate for my control module, because actual control
procedures don't change very often in most industrial control applications.

If you need to be able to change any portion of your filesystem at any time, JFFS2 is the best candidate.
Though JFFS2 doesn't achieve compression ratios as high as CRAMFS, since JFFS2 has to maintain
space for garbage collection and metadata structures that allow filesystem writing, JFFS2 does provide
power-down reliability and wear-leveling, which are very important characteristics for devices that rely on
flash storage, as we discussed in Chapter 3. My user interface modules, for example, would be
completely based on JFFS2 to ease updating and extend the lifetime of the devices' flash. At the time of
this writing, however, JFFS2 is not a viable option if you are using a NAND flash device such as the
DiskOnChip (DOC), as | explained in Chapter 3.

If you are using a DOC device and need to be able to change any portion of your filesystem at any time,
using a disk filesystem over NFTL is your only available option at the time of this writing. Most embedded
x86 devices that are equipped with DOC devices have to use this configuration. My DAQ module, for
instance, can be configured to store some of its samples locally from time to time to a disk filesystem
mounted over NFTL.

-t Strictly speaking, there is no such thing as a "disk filesystem." | use this term here

o and in the rest of the book, however, to contrast filesystems typically used on

w 4. block devices, such as ext2 and reiserfs, from filesystems typically used on MTD
* devices, such as JFFS2.

Whether you are using CRAMFS, JFFS2, or a disk filesystem over NFTL, you may want to consider
mounting some directories on TMPFS. Though the content of this filesystem is not saved to persistent
storage, it does allow you to use part of the RAM to store temporary files such as those typically found in
your root filesystem's /tmp directory. If you are using a CRAMFS-based root filesystem, this allows you to
have a directory, or a couple of directories, where you can both read and write files. If you are using
either JFFS2 or a disk filesystem over NFTL, this allows you to avoid wearing out the storage device by
manipulating data from RAM.

Obviously, these are guidelines only, and each system likely imposes additional limitations that you have
to take into account. Nonetheless, these guidelines represent the typical design trade-offs when building
embedded Linux systems and they should give you a basic idea of how to choose your final setup. In the

http://www.wowebook.info

Download at wowebook. 1nfag

rest of this chapter, | will discuss the actual setup of the filesystems we discussed earlier and further
detail their use.

8.1.3 Filesystems for Disk Devices

If you are using a conventional disk as your main storage device for your system, such as one that
connects to the system using an IDE or SCSl interface, | suggest you take a closer look at the various
filesystems currently used in desktop and server Linux installations. In particular, you will find journalling
filesystems such as ext3 and reiserfs to be quite well adapted to environments that need power down
reliability such as embedded systems. Because the use of these filesystems is already amply covered
elsewhere and embedded systems use them no differently from their workstation or server
counterparts, 3l I will not discuss their use any further. | refer you to classic texts on the use of Linux on
servers and workstations for further details on such filesystems. IBM developerWorks' long series of
articles by Daniel Robbins about Linux filesystems is of special interest here. In his series, Daniel
provides in-depth discussion of the main journalling filesystems for Linux, including ext3, reiserfs, JFS,
and XFS. See IBM's developerWorks site for Daniel's articles:
http://mww.ibm.com/developerworks/linux/. You may also be interested by Derek Vadala's Managing
RAID on Linux (O'Reilly).

B3] As we discussed in Chapter 1, embedded Linux systems large enough to house actual physical hard disks have the equivalent
processing power and RAM resources to deal with such storage.

For a workstation- and server-oriented discussion of filesystems, see Chapter 6 of Running Linux.

http://www.ibm.com/developerworks/linux/
http://www.wowebook.info

Download at wowebook. 1nfag

8.2 Using an NFS-Mounted Root Filesystem to Write a Filesystem
Image to Flash

Though we will discuss the setup and configuration of the NFS server on the host for providing a root
filesystem to a target in detail in Chapter 9, let's take a look at how this configuration can be useful at this
stage.

The use of an NFS-mounted root filesystem during early development stages simplifies the development
process by allowing quick modification of the files used by the target. Later, the target needs to have a
filesystem stored in its flash in order to be self-hosting. Though some bootloaders can be used to copy
images to flash, it is also possible to use the MTD utilities running on the target to copy files available on
the NFS-mounted root filesystem to flash. To do so, copy the designated filesystem image to the
directory containing the NFS-mounted target root filesystem, boot the target, and use MTD commands
on the target to copy the filesystem image to flash.

To copy an initial RAM disk image to your target's flash, for example, first configure your target to mount
its root filesystem from a directory exported by your host using NFS. On your host, copy the filesystem
image to the directory exported to your target. Though the filesystem image is not physically on your
target, it will be visible on its root filesystem once the kernel mounts it using NFS at startup. Now, boot
your target and use the MTD utilities on your target to copy the filesystem image from the NFS-mounted
root filesystem to the appropriate flash device entry in your target's /dev directory.

http://www.wowebook.info

Download at wowebook. 1nfag

8.3 CRAMFS

CRAMFS was written by Linus Torvalds as a filesystem with a bare minimum feature set. It is a very
simple, and sometimes simplistic, compressed and read-only filesystem aimed at embedded systems.
Apart from the characteristics summarized in Table 8-1, CRAMFS has the following limitations:

The maximum size a file can have is 16 MB.

e There are no current (.) or parent (..) directory entries.

e The UID field for files is 16 bits wide and the GID field is 8 hits wide. Normal filesystems usually
support either 16- or 32-bit UIDs and GIDs. On CRAMFS, GIDs are truncated to the lower 8 bits. In
other words, the maximum GID usable in a root filesystem built on CRAMFS is 255.14

[4] See Chapter 5 in Running Linux for a discussion about UIDs and GIDs.

o All file timestamps are setto epoch (00:00:00 GMT, January 1, 1970). The timestamps may be
updated at runtime, but the updated values will last only as long as the inode is cached in memory.
Once the file is reloaded, its timestamp will revert to epoch.

¢ CRAMFS images can be read only by kernels using 4096-byte page sizes (The value of
PAGE CACHE S| ZE must be 4096).

« All files, whether they are linked or not, have a link count® of 1. Even when multiple filesystem
entries point to the same file, that file has a link count of only 1. This is fine for most operations,
however, since no files can actually be deleted from CRAMFS.

[5] As in other Unix systems, named links can be created toward files with most Linux filesystems. Typically, filesystems maintain a
count of the number of links toward a file, and when this count reaches 0 the file is deleted.

The truncated GIDs are not problematic if your target's root filesystem does not contain a group with a
GID above 255. If your target is a single-user system, you don't need to worry about this limitation. If your
system must support a multiuser environment, make sure the GIDs of all files and directories are below
255. Otherwise, any GID above 255 will wrap around to a number below 255 and, possibly, create a
security risk. If you absolutely need a filesystem that can support at least 16-bit GIDs, you may want to
consider using a disk filesystem over a RAM disk. It provides compression on the storage media, like
CRAMFS, and also allows read and write access, instead of read-only access in the case of CRAMFS.

In addition to CRAMFS's limitations, the tools provided for creating CRAMFS filesystem images used to
be subject to the host's byte ordering. Hence, you needed to use a host that had the same byte ordering
as your target to create a CRAMFS image. The only way to bypass this limitation was to follow the
technique | describe in Section 8.2. In essence, you had to mount the target's root filesystem on NFS,
create the CRAMFS image for the target on the NFS-mounted filesystem, and write the created
CRAMFS image to flash. Though, at the time of this writing, this limitation still applies to the CRAMFS
creation tools found in the kernel sources, there is a patch that can be applied to the latest version of the
CRAMFS tools to obtain filesystem creation tools that are independent of the host's byte ordering. The
latest CRAMFS tools package is found at http://sourceforge.net/projects/cramfs/, and the byte swapping
patch is in the "Patches" section of the site.

If your system can function with CRAMFS's limitations, it is probably a serious candidate for your project.
If you are interested in CRAMFS but chaff at its limitations, you may want to ask around for modified
versions of CRAMFS. As the host byte ordering problem mentioned above shows, there are people who
have modified CRAMFS to bypass some of its limitations. Some reports on the linuxppc-embedded
mailing list mentioned in Chapter 3, for example, suggest that some people have modified CRAMFS to
avoid the page size issues. Although such modifications are not part of the CRAMFS code found from
the mainstream kernel sources, you may find them useful. Have a look at the "Patches" section of the

http://sourceforge.net/projects/cramfs/
http://www.wowebook.info

Download at wowebook. 1nfag

site provided above for a list of commonly available CRAMFS patches.

To create a CRAMFS image of your root filesystem, you first need to create and install the CRAMFS
tools, cramfsck and mkcramfs. Both of these utilities are part of the package distributed by the project
site and are found in the kernel's sources in the scripts/cramfs directory. To build the utilities from the
kernel's sources, move to the scripts/cramfs directory and issue the make command:

$ cd ${ PRIROOT}/ kernel/linux-2.4.18/scripts/cranfs
$ make

Now, copy the tools to an appropriate directory:
$ cp cranfsck nkcranfs ${PREFI X}/ bi n/
You can now create a CRAMFS image of your target's root filesystem:

$ cd ${ PRIROOT}
$ nkcranfs rootfs/ i mages/cranfs.inyg
bi n
boot
dev
etc
lib
i nuxrc
proc
sbi n
tnp
usr
"bin':
addgroup

"boot ':
boot. b

"shin':

chr oot
D rectory data: 6484 bytes
166.67% (+15 bytes) addgr oup
-31.46% (-2196 byt es) all i none
-40.27% (-240 bytes) arch
185.71% (+13 bytes) ash

-49.60% (-3700 byt es) wal |

-49.54% (-695 bytes) i nclude

Everythi ng: 3560 kil obyt es

Super bl ock: 76 bytes

CRC. f18594b6

warni ng: gids truncated to 8 bits. (This may be a security concern.)

In this case, rootfs/ contains 7840 KB while the CRAMFS image's size is 3560 KB, a compression ratio
of approximately 50%. This ratio is consistent with CRAMFS's typical yields.

With the filesystem image ready, we can now write it to our storage device:

$ su -m
Passwor d:
cat rootfs/cranfs.ing > /dev/md4

http://www.wowebook.info

Download at wowebook. 1nfag

exit

Of course the commands above assume that the storage device is accessible on the host. If that is not
the case, use an NFS-mounted root filesystem first, as | describe in Section 8.2. To verify the content of
a CRAMFS filesystem, use the cramfsck utility built earlier.

http://www.wowebook.info

Download at wowebook. 1nfag

8.4 JFFS2

| have already described JFFS2's features in Chapter 3. One caveat | have not covered yet is JFFS2's
behavior when full. Because of its architecture, JFFS2 implements garbage collection on MTD blocks.
This scheme works fine in most cases. When the filesystem approaches its limits, however, JFFS2
spends an increasing amount of time garbage collecting. Furthermore, as the filesystem reaches its
limits, the system is unable to truncate or move files and the access to files is slowed down. If you are
using JFFS2, make sure your application's data does not grow to fill the entire filesystem. In other words,
make sure your applications check for available filesystem space before writing to it in order to avoid
severe slowdown and system crashes. Also, try running benchmarks on your target to determine the
threshold at which JFFS2 starts misbehaving.

With that in mind, let us now concentrate on the creation and installation of a JFFS2 filesystem image.
Mainly, we will use the mkfs.jffs2 utility installed in the previous chapter as part of the MTD utilities
installation.

The creation of a JFFS2 image is fairly simple:

$ cd ${ PRIROOT}
$ nkfs.jffs2 -r rootfs/ -o images/rootfs-jffs2.ing

We use the -r option to specify the location of the directory containing the root filesystem, and the -0
option to specify the name of the output file where the filesystem image should be stored. In addition to
these options, we could use -l or -b to create little endian or big endian images, respectively. The JFFS2
compression ratio is much smaller than CRAMFS. For a root filesystem containing 7840 KB, for
example, the resulting JFFS2 image is 6850 KB in size. The compression ratio is a little above 10%.

Once you create the JFFS2 image, you can write it to its designated MTD device. If this device is
accessible on the host, you can carry out the appropriate commands directly on the host. Otherwise,
follow the instructions in Section 8.2: boot your target with an NFS-mounted root filesystem, place the
JFFS2 image on that filesystem, and issue the commands on the target to write the image to the
designated MTD device. Regardless of your setup, you first need to erase the MTD device where the
image will be placed:

eraseall /dev/ntd5
Er ased 8192 Kibyte @0 -- 100% conpl ete.

Obviously, the space available on the MTD storage device must be equal to or larger than the JFFS2
image you are placing on it. With the MTD device erased, copy the JFFS2 image to the MTD partition:

cat inmages/rootfs-jffs2.ing > /dev/ntd5
Now, mount the copied filesystem to take a look at it:

nmount -t jffs2 /dev/nmtdblock5 /mt
nount

/dev/ mtdbl ock5 on /mt type jffs2 (rw

1s mt
bi n etc i nuxrc sbin usr
dev [ib proc t np var

unount mmt

Unlike disk filesystems, JFFS2 cannot be mounted on loopback using a mount -o loop ... command to
view its content. Instead, it must be mounted from a real MTD device as done above. If you have no real

http://www.wowebook.info

Download at wowebook. 1nfag

MTD device on your host, such as CFl flash, you could use the virtual memory MTD device presented in
Chapter 3. You could also use the jffs2reader command introduced in the previous chapter to view the
image's content.

If your target had previously been using an NFS-mounted root filesystem, you are now ready to boot it
using the JFFS2 filesystem as its root filesystem.

http://www.wowebook.info

Download at wowebook. 1nfag

(eam Lio| [orcvions W et

8.5 Disk Filesystem over NFTL

We have already discussed the installation and use of NFTL with DOC devices in the previous chapter.
We are now ready to discuss the use of a disk filesystem over the block device emulated by NFTL. The
most widely used disk filesystem with NFTL is ext2. We will, therefore, concentrate on discussing that
particular case. Note, however, that ext2 over NFTL does not provide power down reliability. For that, you
should use a journalling filesystem, such as ext3, XFS, JFS, or reiserfs, with NFTL. The instructions that
follow can be easily modified for any of the existing disk filesystems, including journalling filesystems.

First, create a filesystem on the designated NFTL partition for the selected filesystem type:

nke2fs /dev/nftlal
nke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/ 08/ 09
Fi | esyst em | abel =
CS type: Linux
Bl ock si ze=1024 (| og=0)
Fr agnent si ze=1024 (| og=0)
8160 inodes, 32574 bl ocks
1628 bl ocks (5.00% reserved for the super user
Fi rst data bl ock=1
4 bl ock groups
8192 bl ocks per group, 8192 fragnents per group
2040 i nodes per group
Super bl ock backups stored on bl ocks:
8193, 24577

Witing inode tables: done
Witing superbl ocks and fil esystem accounti ng informati on: done

Now, mount the partition and copy the root filesystem to it:

nkdir /mt/ doc
mount -t ext2 /dev/nftlal / mt/doc
cp -a rootfs/* /mt/doc

Here, | assume you are issuing these commands from your project's ${PRJROOT} directory. | also
assume that the DOC device is accessible on your host as /dev/nftla, and that you want to create an ext2
filesystem on the first partition of that device. If the DOC device is not accessible on your host, use an
NFS-mounted root filesystem as | describe in Section 8.2 to copy the content of the root filesystem onto
your DOC device.

Ceam it | enevious [l vesr

http://www.wowebook.info

Download at wowebook. 1nfag

8.6 Disk Filesystem over RAM Disk

RAM disks, as their name indicates, live in RAM and act like block devices. The kernel supports having
many RAM disks active in the same time. Because they act like block devices, any disk filesystem can
be used with them. Since their content lasts only as long as the system isn't rebooted, RAM disks are
usually populated using compressed images of disk filesystems, such as ext2, known as compressed
RAM disk images. One instance where the use of such compressed RAM disk images is particularly
attractive for embedded Linux systems is during system initialization. Mainly, the kernel is capable of
extracting an initial RAM disk (initrd) image from a storage device for use as its root filesystem. At
startup, the kernel verifies whether its boot options indicate the presence of an initird. If so, it extracts the
filesystem image, whether it be compressed or not, from the designated storage media into a RAM disk,
and mounts it as its root filesystem. The initrd mechanism is, in fact, the simplest method to provide a
kernel with its root filesystem. In this section, we will discuss the creation of a compressed RAM disk
image for use as an initrd. | will explain how this image can actually be used as an initrd in Chapter 9.

For our purposes, we will create an ext2-based RAM disk image for use in our target. Although ext2 is
the filesystem most commonly used with RAM disks, other disk filesystems can also be used, as | hinted
to above. Some developers, for instance, report using CRAMFS instead.

Note that although we are creating a filesystem image for use on a RAM disk in the following procedures,
all the operations are carried out on your host's disk. Hence, none of the following steps involve using an
actual RAM disk on the host.

First, create a blank filesystem image for the root filesystem:

$ cd ${ PRIROOT}

$ nkdir tnp/initrd

$ dd if=/dev/ zero of =images/initrd.inmg bs=1k count=8192
8192+0 records in

8192+0 records out

The dd command creates a 8192 KB filesystem image and initializes it using /dev/zero. By initializing the
filesystem in this way, we will achieve a maximum compression ratio for the unused portions of the
filesystem later when we use gzip to compress the entire image. In comparison, if we were to reuse an
existing image of the same size as the one we need, such as an image created previously following this
section's instructions, instead of using the dd command as shown above, the image's compression
would yield a lower compression ratio given that it already contains non-uniform data. Practically, this
means that you should never try updating an existing filesystem image. Instead, always create a fresh
filesystem image using your target's updated root filesystem directory, ${PRIJROOT}/rooffs.

With the filesystem image initialized, create a filesystem on it and mount it:

$ su-m

Passwor d:

[sbin/nke2fs -F -v -nmD i nages/initrd.ing
nmke2fs 1.18, 11-Nov-1999 for EXT2 FS 0.5b, 95/ 08/ 09
Fi | esyst em | abel =

S type: Li nux

Bl ock si ze=1024 (| og=0)

Fragment si ze=1024 (| og=0)

2048 i nodes, 8192 bl ocks

O blocks (0.00% reserved for the super user
Fi rst data bl ock=1

1 bl ock group

http://www.wowebook.info

Download at wowebook. 1nfag

8192 bl ocks per group, 8192 fragnents per group
2048 i nodes per group

Witing inode tables: done
Witing superbl ocks and fil esystem accounti ng informati on: done
mount -o loop images/initrd.ing tnp/initrd

We use the -F option with mke2fs to force it to run on a file. Otherwise, mke2fs complains that
images/initrd.img is not a block device. The -v option specifies that the command should be verbose, and
the -mO option specifies that no blocks should be reserved for the super user on the filesystem. Whereas
reserving blocks for the super user makes sense for a filesystem created for use in a workstation or
server, it isn't very useful in embedded systems, since they are usually built as single-user systems.

Now, copy the root filesystem to the RAM disk and unmount it:

cp -av rootfs/* tnp/initrd

rootfs/bin ->tnp/initrd/bin

rootf s/ bin/ busybox -> tnp/initrd/ bin/busybox
rootfs/bin/ash -> tnp/initrd/ bin/ash
rootfs/bin/cat -> tnp/initrd/ bin/cat
rootfs/bin/chgrp ->tnp/initrd/bin/chgrp
rootfs/bin/chnod -> tnp/initrd/bin/chnod

umount tnp/initrd
exit

After issuing the first command, you will see the complete list of all the files in your root filesystem with
their complete path as shown in the example. The images/initrd.img file now contains the complete root
filesystem for your target. The final step is to compress this filesystem to obtain a compressed RAM disk:

$ gzip -9 <inmges/initrd.inmg > inages/initrd.bin

$ Is -al inages/initrd*

STW WA - - 1 karim karim 3101646 Aug 16 14:47 images/initrd.bin
STW P WA - - 1 karim karim 8388608 Aug 16 14:46 inmages/initrd.ing

The filesystem is compressed using the gzip command. The -9 option tells the command to use the
highest compression algorithm available. In this case, the compression ratio is above 60%, which is
superior to both CRAMFS and JFFS2. This gain is, however, subject to the caveat | mentioned earlier in
Section 8.1 regarding the fact that RAM disks live in RAM.

You can place the RAM disk image created here, images/initrd.bin, on the appropriate device on your
target and configure your bootloader accordingly. As | said earlier, we will discuss the use of RAM disks
as initrds in Chapter 9.

Init RAMFS

At the time of this writing, though initrds are still commonly used, the initrd mechanism is
increasingly showing its age, and kernel developers intend to replace itin the 2.5 series with
init RAMFS (initramfs). In the future, each kernel is likely to have an initramfs image that
would contain much of the initialization code currently hardcoded in the kernel. In that case,
the definitive root filesystem would be mounted by the last procedure running on the initramfs
using the pi vot _root () system call once initialization is complete. Until initramfs becomes
ready for mainstream use, initrds remain the standard way for providing a kernel with a root
filesystem at boot time.

http://www.wowebook.info

Download at wowebook. 1nfag

http://www.wowebook.info

Download at wowebook. 1nfag

8.7 Mounting Directories on TMPFS

TMPFS is a virtual memory-based filesystem that can grow and shrink according to its content. Although
its content is not saved across reboots, it is quite useful for storing temporary files. Hence, instead of
mounting all the directories from a single filesystem, you can choose to mount directories that do not
require permanent storage, such as /tmp, on TMPFS. Because content stored on TMPFS is not saved
across reboots, however, essential directories such as /ust, /etc, or /bin cannot be stored on TMPFS. To
use TMPFS, enable the "Virtual memory file system support (former shm fs)" item in the "File systems"
submenu in the kernel configuration menu.

With kernel support for TMPFS enabled, you can mount a 4 MB TMPFS filesystem on /tmp, for example:
nmount -t tnpfs none /tnp -0 size=4m

Alternatively, you can add a line in your /etc/fstab file and modify your /etc/init.d/rcS file to mount TMPFS
at boot time. If you do not provide a size limit, the filesystem will grow according to its content.

In contrast with most other mount commands, TMPFS does not require a device or file to be mounted,
hence the use of none as the device. The name of the device for TMPFS is actually ignored by mount,
and replacing none by any other name would have no effect on the command.

If you would like more information regarding TMPFS, take a look at part three of the IBM
developerWorks filesystem series mentioned earlier, Using the virtual memory (VM) filesystem and bind
mounts.

http://www.wowebook.info

Download at wowebook. 1nfag

8.8 Live Updates

As we saw earlier in this chapter, no filesystem can be replaced in its entirety while being mounted from
the storage media where it is being stored. Hence, we need to look for ways to update a filesystem's
content while it is mounted. There are quite a few ways to do this, each with their own advantages and
disadvantages. In this section we will discuss three such methods, the rsync utility, package
management tools, and ad-hoc scripts.

8.8.1 The rsync Utility

rsync is a remote updating utility that allows you to synchronize a local directory tree with a remote
server. It relies on the rsync algorithm to transfer only the differences between the local and remote files.
It can preserve file permissions, file ownership, symbolic links, access times, and device entries. rsync
can use either rsh or ssh to communicate with the remote server. Given its features, rsync is a good
candidate for updating network-enabled embedded systems. rsync is available from its project web site,
along documentation and a mailing list, at http://samba.anu.edu.au/rsync/. In addition to the
documentation available from the project's site, there is a very good introductory tutorial by Michael
Holve available at http://everythinglinux.org/rsync/.

To use rsync, you must have the rsync daemon running on a server and an rsync client running in the
embedded system. | will not cover the installation of an rsync server nor the detailed use of the rsync
client, since they are already well covered by the tutorial mentioned earlier and the rest of the rsync
documentation. | will, nevertheless, explain how to cross-compile, and install rsync for use on your target.

To begin, download and extract a copy of the rsync package to your ${PRJROOT}/sysapps directory. For
my Ul module, for example, | used rsync 2.5.6. With the package extracted, move to its directory for the
rest of the manipulations:

$ cd ${PRIROOT}/sysapps/rsync-2. 5. 6/
Now, configure and compile the package:

$ CC=ar m| i nux-gcc CPPFLAGS="-DHAVE_CETTI MECFDAY_TZzZ=1" ./ configure \
> --host =$TARCET - - pr ef i x=${ TARGET_PREFI X}
$ make

Replace arm-linux-gcc with arm-uclibc-gcc to compile against uClibc instead of glibc. Here we must set
CPPFLAGS to define HAVE GETTI MEOFDAY _TZ to 1, otherwise, the compilation fails because the configure
script is unable to correctly determine the number of arguments used for gettimeofday() on the target.

With the compilation complete, install the rsync binary on your target's root filesystem and strip it:

$ cp rsync ${ PRIROOT}/r oot fs/ bin
$ armlinux-strip ${PRIROOT}/ rootfs/bi n/rsync

The stripped binary is 185 KB in size when dynamically linked with either uClibc or glibc, 270 KB when
statically linked with uClibc, and 655 KB when statically linked with glibc.

The same binary can be used both on the command line and as a daemon. The - -daemon option
instructs rsync to run as a daemon. In our case, we will be using rsync on the command line only. To use
rsync, you need to have either rsh or ssh installed on your target. rsh is available as part of the netkit-rsh
package from ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/. ssh is available as part of the OpenSSH
package, which we will discuss in depth in Chapter 10. Though that discussion concentrates on the use
of the SSH daemon generated by OpenSSH (sshd), the SSH client (ssh) is also generated during the

http://samba.anu.edu.au/rsync/
http://everythinglinux.org/rsync/
http://www.wowebook.info

Download at wowebook. 1nfag

compilation of the OpenSSH package. In the following, | will assume that you are using ssh, not rsh,
since it provides a secure transfer channel. The downside to using ssh, however, is that the dynamically
linked and stripped SSH client is above 1.1 MB in size, and is even larger when linked statically. rsh, on
the other hand, is only 8 KB when dynamically linked and stripped.

Once rsync is installed on your target, you can use a command such as the following on your target to
update its root filesystem:

rsync -e "ssh - root" -r -1 -p -t -D-v --progress \
> 192.168.172.50:/ home/ kari micontrol -project/user-interface/rootfs/* /
root @92.168.172.50's password:
receiving file list ... done

bi n/

dev/

et c/

i b/

shi n/

t mp/

usr/bin/

usr/shin/

bi n/ busybox

750756 (100%

bi n/tinylogin

39528 (100%

etc/inittab

377 (100%

etc/profile

58 (100%

lib/l1d-2.2.1. s0

111160 (100%

lib/libc-2.2.1. so

1242208 (1009

sbin/ nftl _fornmat

8288 (100%

sbin/ nftldunp

7308 (100%

sbi n/ unl ock

3648 (100%

bi n/

dev/

et c/

lib/

sbi n/

wote 32540 bytes read 2144597 bytes 150147. 38 byt es/ sec
total size is 3478029 speedup is 1.60

This command copies the content of my Ul module project workspace rootfs directory from my host,
whose IP address is 192.168.172.50, to my target's root directory. For this command to run successfully,
my host must be running both sshd and the rsync daemon.

The options you need are:
-e

Passes to rsync the name of the application to use to connect to the remote server. (In this case,

http://www.wowebook.info

Download at wowebook. 1nfag

we use ssh -l root to connect as root to the server. You could replace r oot with whichever
username is most appropriate. If no username is provided, ssh tries to connect using the same
username as the session's owner.)

Recursively copies directories.

Preserves symboalic links.

P

Preserves file permissions.
-t

Preserves timestamps.
-D

Preserves device nodes.
-v

Provides verbose output.
--progress

Reports transfer progress.

While running, rsync provides a list of each file or directory copied, and maintains a counter displaying
the percentage of the transfer already completed. When done, rsync will have replicated the remote
directory locally, and the target's root filesystem will be synchronized with the up-to-date directory on the
server.

If you would like to check which files would be updated, without carrying out the actual update, you can
use the -n option to do a "dry run" of rsync:

rsync -e "ssh - root" -r -1 -p -t -D-v --progress -n \

> 192.168.172.50:/ home/ kari micontrol -project/user-interface/rootfs/* /
root @92. 168. 172.50' s password:

receiving file list ... done

bi n/ busybox

bi n/tinylogin

etc/inittab

etc/profile

lib/l1d-2.2.1. so0

lib/libc-2.2.1. s0

sbin/ nftl _f ormat

sbin/ nftldunp

sbi n/ unl ock

wote 176 bytes read 5198 bytes 716.53 bytes/sec
total size is 3478029 speedup is 647.20

For more information on the use of rsync, both as a client and a server, have a look at the command's
manpage and the documentation available from the project's web site.

8.8.2 Package Management Tools

Updating simultaneously all the software packages that make up a root filesystem, as we have done in
the previous section using rsync, is not always possible or desirable. Sometimes, the best approach is to

http://www.wowebook.info

Download at wowebook. 1nfag

upgrade each package separately using a package management system such as those commonly used
in workstation and server distributions. If you are using Linux on your workstation, for example, you are
probably already familiar with one of the two main package management systems used with Linux, the
RPM Package Manager (RPM) or the Debian package (dpkg), whichever your distribution is based on.
Because of these systems' good track records at helping users and system administrators keep their
systems up to date and in perfect working condition, it may be tempting to try to cross-compile the tools
that power these systems for use in an embedded system. Both systems are, however, demanding in
terms of system resources, and are not well adapted for direct use in embedded systems.

Fortunately, there are tools aimed at embedded systems that can deal with packages in a way that
enables us to obtain much of the functionality provided by more powerful packaging tools without
requiring as much system resources. Two such tools are BusyBox's dpkg command and the Itsy
Package Management System (iPKG). The dpkg BusyBox command allows us to install dpkg packages
in an embedded system. Much like other BusyBox commands, it can be optionally configured as part of
the busybox binary. iPKG is the package management system used by the Familiar distribution |
mentioned earlier in this book. It is available from its project web site at

http://mww.handhelds .org/z/wikifiPKG, along with usage documentation. iPKG relies on its own package
format, but can also handle dpkg packages.

Instructions on how to build iPKG packages are available at
http://www.handhelds.org/z/wiki/Buildinglpkgs. For instructions on how to build dpkg packages, have a
look at the Debian New Maintainers' Guide and the Dpkg Internals Manual both available from
http://www.debian.org/doc/devel-manuals. The use of the BusyBox dpkg command is explained in the
BusyBox documentation, and the use of the ipkg tool part of the iPKG package management system is
explained on the project's web site.

8.8.3 Ad Hoc Scripts

If, for some reason, the tools discussed earlier are not adapted to the task of updating an embedded
system's root filesystem, we can still update it using more basic file-handling utilities. In essence, we can
either copy each file using the cp command or patch sets of files using the patch command, or use a
combination of both. Either way, we need to have a method to package the modifications on the host,
and a method to apply the modification packages on the target. The simplest way to create and apply
modification packages is to use shell scripts.

diff and patch

Although the diff and patch pair can be used to patch entire directory hierarchies, these tools
deal with symbolic links as if they were ordinary files and end up copying the content of the
linked file instead of creating a symbolic link. Hence, the patch created by diff -aurN oldrootfs/
rootfs/ is useless. Plans for modifying the utilities to deal appropriately with symbolic links are
part of both packages' future projects.

In creating such scripts, we need to make sure that the dependencies between files are respected. If, for
example, we are updating a library, we must make sure that the binaries on the filesystem that depend
on that library will still be functional with the new library version. For example, the binary format used by
uClibc has changed between Versions 0.9.14 and 0.9.15. Hence, any application linked with uClibc
Version 0.9.14 and earlier must be updated if uClibc is updated to 0.9.15 or later. Although such changes
are infrequent, they must be carefully considered. In general, any update involving libraries must be
carefully carried out to avoid rendering the system unusable. For further information on the correct way to
update libraries, see the "Upgrading Libraries" subsection of Chapter 7 in Running Linux.

8.8.3.1 Installing the patch utility

http://www.handhelds.org/z/wiki/iPKG
http://www.handhelds.org/z/wiki/BuildingIpkgs
http://www.debian.org/doc/devel-manuals
http://www.wowebook.info

Download at wowebook. 1nfag

The first step in creating update scripts is having the appropriate tools available both on the host and the
target. Since diff and patch are most likely already installed on your host, let's see how patch can be
installed for the target.

To install patch on your target's root filesystem, start by downloading the GNU patch utility from the GNU
project's FTP site at ftp://ftp.gnu.org/gnu/patch/. For my Ul module, for example, | used patch 2.5.4. With
the package downloaded, extract it in your ${PRIJROOT}/sysapps directory.

Now, create a build directory for the utility:

$ cd ${PRIROOT}/ sysapps
$ nkdir build-patch
$ cd build-patch

Configure, build, and install the package:

$ CC=armuclibc-gcc ../ patch-2.5.4/configure --host =3TARGET \
> --prefix=${ TARGET_PREFI X}

$ nake LDFLAGS="-static"

$ make install

Notice that we are using uClibc and are linking the command statically. We could have also used glibc or
diet libc. Regardless of the library being used, linking patch statically ensures that it will not fail to run on
your target during an update because of a missing or an incomplete library installation.

The patch utility has been installed in ${TARGET_PREFIX}/bin. You can copy it from that directory to
your root filesystem's /bin directory for use on your target. Once in your target's root filesystem, use the
appropriate strip command to reduce the size of the utility. For example, here is how I install patch for my
Ul module:

$ cp ${ TARGET_PREFI X}/ bin/ pat ch ${PRIRQOT} /rootf s/ bin

$ cd ${PRIROOT}/r oot fs/ bin

$ Is -al patch

- T VWX WXT - X 1 karim karim 252094 Sep 5 16:23 patch
$ armlinux-strip patch

$ Is -al patch

- T VWX WXT - X 1 karim karim 113916 Sep 5 16:23 patch

8.8.3.2 Scripts for performing updates

Using the target update guidelines discussed earlier, here is a basic shell script that can be used on the
host to create a package for updating the target's root filesystem:

#!' / bi n/ sh

Fil e: createupdate

Par aneter $1: directory containing original root filesystem

Par aneter $2: directory containing updated root filesystem

Par aneter $3: directory where patches and updates are to be stored
Par ameter $4: updated udibc library version

HOHF O HH*

Dff the /etc directories
diff -urN $1l/etc $2/etc > $3/etc. diff

Copy BusyBox and Ti nyLogi n
cp $2/bi n/ busybox $2/ bin/ti nyl ogi n $3/

http://www.wowebook.info

Download at wowebook. 1nfag

Copy udi bc conponents
cp $2/1i b/ *3$4* $3

The script makes a few assumptions. First, it assumes that neither /etc nor any of its subdirectories
contain symboalic links. Though this is true in most cases, we can still exclude any such symbolic links
explicitly using the -x or -X options. Also, the script updates BusyBox, TinyLogin, and uClibc. You need to
add the appropriate cp and diff commands for your setup.

The script can be used as follows:

$ cd ${ PRIROOT}
$ nkdir tnp/rootfsupdate
$ creat eupdat e ol drootfs/ rootfs/ tnp/rootfsupdate/ 0.9.14

In this case, oldrootfs contains the root filesystem as found on the target, rootfs contains the latest
version of the root filesystem, tmp/rootfsupdate contains the files and patches used to update the target,
and the new uClibc version is 0.9.14.

The following script updates the target using the update directory created above:

#1/bi n/sh

File: applyupdate

Paraneter $1. absol ute path of dir contai ning patches and updat es
Paraneter $2: old udi bc version

Paraneter $3: new udi bc version

Patch /etc
patch -pl < $1/etc.diff

Copy BusyBox and Ti nyLogi n
cp $1/busybox $1/tinylogin /bin/

Copy updated ud i bc conponents
cp $1/*$3* /lib

Update uClibc synbolic Iinks

In -sf libudibc-$3.s0 /lib/libc.so.0

for file in ld-udibc libcrypt Iibdl libmlibpthread |ibresolv Iibuti
do

In -sf $file-$3.s0 /lib/$file.so.0

done

Renove ol d uClibc conmponents
rm-rf /1ib/*$2*

This scriptis a little longer than the script used to create the update. The added complexity is due to the
care taken in replacing the C library components. Notice that we use In -sf instead of deleting the links
and then using In -s. This is very important because deleting the links outright would render the system
unusable. You would then have to shut down the target and reprogram its storage device using the
appropriate means.

To run the script, copy the rootfsupdate directory to your target's /tmp directory and run the script:

appl yupdate /tnp/rootfsupdate 0.9.13 0.9.14

http://www.wowebook.info

Download at wowebook. 1nfag

You can run the update script on your host to test it before using it on your actual target. Here are the
steps involved:
1. From the ${PRJROOT} directory, copy the old root filesystem (possibly oldrootfs) to tmp.

2. Modify the script to remove absolute references to /. Replace, for example, references to /etc with
references to etc.

3. Run the script on the copied filesystem.

4. Verify manually that everything has been updated adequately.

Copying an Entire Directory Tree Without GNU cp

When building an embedded Linux system, you will often need to copy entire directories from
one location to another as efficiently as possible while keeping files, directories, and symbolic
links intact. | have already done this a few times in the course of my earlier explanations and
have repeatedly used the cp -a command to accomplish this. Although the -a option has been
part of GNU cp for some time, it may not be installed on your system if you are not using
Linux. If, for some reason, GNU cp is not available on your system, you can still obtain the
same result as cp -a using a command thatis a combination of cd and tar. Let's take a closer
look at this command and how it works. This is how the command looks in its generalized
form:

$ (cd SRCDR & tar cf - .) | (cd DEST DR && tar xvf -)

This command has two parts. The one on the left of the | character changes directories to
SRC_DI Rand initiates a tar in that directory. Specifically, tar is told to create a tar archive of
the content of the directory from which it runs and to dump the resulting archive to the
standard output. In simple uses of tar for archiving, the command is followed by a greater-
than sign (>) and the name of either a tape device or a disk file. Here we aren't actually
saving the output; we're just using tar as a convenient way to put the files into a stream and
put it elsewhere.

On Unix command shells, the | is used to create a pipe between the output of the command
on the left and the input of the command on the right. Hence, the archive dumped on the
standard output by the command on the left is fed as the standard input for the command on
the right. In turn, the command on the right of | changes to the DEST_DI R and initiates a tar in
that directory. Contrary to the first tar, this one extracts the content found on its standard input
into the directory from which it is executed.

The net effect of this command is that the files and directories found in the SRC_Di R directory
are copied as-is to the DEST DI R directory. The content of DEST DI R is thereafter identical to
that of SRC DI R.

Though this command is of little use if your system already has GNU cp, you may find it
helpful on systems that don't have GNU cp. If you are using a standard Linux workstation or
server distribution, cp -a remains the better option for copying entire directory trees.

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 9. Setting Up the Bootloader

Though the bootloader runs for a very short time during the system's startup and is mainly responsible
for loading the kernel, it is a very important system component. Setting up a bootloader is, to some
extent, a task common to all Linux systems. It is a special task, nevertheless, for embedded Linux
systems, because the bootloaders used in such systems are either completely different from those used
in common systems or, even when they are the same, are configured and operated in very different
ways.

Chapter 7 discussed the manipulation of embedded storage devices, and Chapter 8 explained how to
set up aroot filesystem for use in an embedded target. We are now ready to set up the bootloader along
with the other components created earlier so we may obtain a bootable and functional embedded
system. Because hardware architectures differ greatly among each other and because boards based on
the same architecture differ greatly among themselves, the selection, set up, and configuration of a
bootloader depend largely on the hardware you are using.

There is a slew of bootloaders available for Linux, thousands upon thousands of embedded boards, and
many possible boot configurations for a same board. It is, therefore, inconceivable to cover all the
possible combinations within a single chapter. Nor is it possible to give an in-depth discussion of the use
of each of the bootloaders covered. Many existing bootloaders for Linux either already have an entire
book describing their use or need one to be written for them.

Also, the number and quality of bootloaders vary greatly between architectures. Some architectures,
such as the PPC and the x86, have well known, established bootloaders providing support for a range of
hardware. Other architectures have few or no standard bootloaders and mainly rely on the use of
bootloaders provided by the hardware manufacturer. If you are using a bootloader provided by the
manufacturer, make sure you have all the binaries and documentation. If possible, obtain the source
code too so you can reprogram your target freely.

This chapter will concentrate on the bootloader/boot setup combinations most commonly used in
embedded systems to load Linux. Although GRUB can be installed and used on hard disks, for example,
its most common use in embedded Linux systems is to load Linux from DOC devices. Hence, the GRUB
section will cover only GRUB's use to load Linux from DOC devices.

First, we start by looking at the plethora of embedded bootloaders available for use with Linux. We then
discuss how to set up and configure a server to provide BOOTP/DHCP and NFS services for targets that
use these services to obtain a kernel image and mount their root filesystem, respectively. This is followed
by in-depth discussions of the use of LILO with disk devices, the use of GRUB with DOC devices, and
the use of U-Boot.

At the end of this chapter, you will either have installed all the components we created earlier, configured
your target with the appropriate bootloader, and be ready to boot your system, or you will know where to
get the rest of the information you need to achieve this.

http://www.wowebook.info

Download at wowebook. 1nfag

9.1 Bootloaders Galore

As | said above, many bootloaders can be used with Linux on various hardware. In this section, | will
introduce the most popular and most versatile open source bootloaders for each architecture. Some
architectures, such as the MIPS and the m68k, have no standard bootloaders at all. If your targetis
based on an MIPS or m68k processor, refer to the documentation provided by the manufacturer for
instructions on how to set up and boot your hardware.

Also, some publications make a distinction between "bootloader" and "monitor." In those cases, the
bootloader is just the component that boots a device and launches the main software, whereas a monitor
provides, in addition to booting capabilities, a command-line interface that can be used for debugging,
reading/writing memory, flash reprogramming, configuring, etc. In this chapter, | will refer to both types of
software as "bootloaders," while explicitly mentioning a bootloader's monitor capabilites when available.

In comparing bootloaders, keep in mind that the availability and extent of monitor capabilities are
important during development. Once development is over, however, these capabilities may become a
liability, because the priority is to ensure that the user cannot inadvertently enter the monitor mode.
Some bootloaders, such as U-Boot for example, can be reconfigured to allow or disallow access to
monitor features. Your production hardware may also be built to prevent physical access to the serial
port.

Table 9-1 presents the open source bootloaders that can be used with Linux and the architectures they
support. For each bootloader, the table also indicates whether the bootloader provides monitor
capabilities, and provides a short description of the bootloader. Use this table as a starting point for
identifying which bootloader is best for your embedded system.

Table 9-1. Linux-capable open source bootloaders and the architectures they support

Architectures

Bootloader Monitor Description x86 ARM PowerPC MIPS SuperH m68k

LILO No T_he main disk bootloader for X
Linux

GRUB No GNU's successor to LILO X
Loads Linux from ROM

ROLO No without a BIOS X

Loadlin No Loads Linux from DOS X
ROMable loader for booting

Etherboot No systems through Ethernet X
cards

. Linux-based

LinuxBIOS No BIOSreplacement X

Compag's Yes Versatile loader mainly X

bootldr intended for Compaq iPAQ

blob No Loader from the LART X

hardware project

http://www.wowebook.info

Download at wowebook. 1nfag

PMON Yes Loader used in Agenda VR3 X
sh-boot No Mal_n loader of the LinuxSH X
project
Universal loader based on
U-Boot Yes PPCBoot and ARMBoot XX X
RedBoot Yes eCos-based loader X X X X X X

In addition to the above table, there are a few observations to be made regarding the various bootloaders
available for each architecture:

Xx86

There are two main bootloaders used for the x86: LILO and GRUB. LILO is the mainstream
bootloader for most x86 workstation and server distributions. On Red Hat's distribution, however,
GRUB has replaced LILO. There are other, less known bootloaders, such as Rolo and EtherBoot,
which you may be interested in using under certain circumstances.

As you can see, few x86 bootloaders currently provide monitor capabilities. The most glaring
limitation of x86 bootloaders is that most require an x86-based host for your development. The
Makefiles of LILO and GRUB, for example, are not built to allow cross-compilation. Moreover, it is
difficult to install either LILO or GRUB from a non-x86 host on storage media designated for an
x86 target. Hence, even if you carry out all your development on a non-x86 host, you may need to
use an x86 host to compile and install the x86 bootloader you select.

ARM

Though U-Boot aims at becoming the standard ARM bootloader, there is no standard bootloader
for ARM-based systems at the time of this writing. There are, nevertheless, a couple of ARM
bootloaders as shown in Table 9-1, each supporting a different set of hardware. There are also
many other bootloaders that can be used to boot Linux on an ARM system. Some of these
bootloaders are outdated or haven't been updated for a long time, others are particular to one type
of board or are not available under an open source license.

PowerPC

The main bootloader found in most PPC systems is U-Boot (formerly known as PPCBoot.)
MIPS

There is no standard bootloader for MIPS-based embedded Linux systems. Though PMON may
be useful as an initial codebase, you will most probably need to port it to your target before using
it. At the time of this writing, efforts are underway to add MIP S support to U-Boot.

SuperH

Though sh-boot is the main bootloader for SH-based embedded Linux systems, you may find
other bootloaders, such as RedBoot, better adapted to your system.
M68k

Though RedBoot supports some m68k-based systems, there is no standard bootloader for m68k-
based embedded Linux systems.

Now that I've introduced the various bootloaders and outlined the bootloader support for each
architecture, let's take a closer look at each bootloader.

9.11LILO

The Linux LOader (LILO) was introduced by Werner Almesberger very early in Linux's history. Now,
LILO is maintained by John Coffman and the latest releases are available from

http://www.wowebook.info

Download at wowebook. 1nfag

http://brun.dyndns.org/pub/linux/lilo/. LILO is a very well documented bootloader. The LILO package, for
instance, includes a user manual and an internals manual. The LILO mini-HOWTO available from the
LDP completes this documentation by answering some of the most common questions about LILO's use.
In addition, Running Linux contains a "Using LILO" section in Chapter 5.

9.1.2 GRUB

The GRand Unified Bootloader (GRUB) is the main bootloader for the GNU project. GRUB was originally
written by Erich Boleyn in the course of finding an appropriate bootloader for what would later be known
as GNU Mach. Eric's work was later picked up by Gordon Matzigkeit and Okuji Yoshinori, who currently
continue to maintain and develop GRUB. The GRUB project's web site is located at
http://www.gnu.org/software/grub/. There, you will find the GRUB manual, which discusses the package's
use extensively. One aspect of GRUB's capabilities you may find helpful during development is its ability
to boot over the network using TFTP, and BOOTP or DHCP. Though GRUB's code can be retrieved
using CVS, the latest stable releases are tar-gzipped and made available for download through the
project's web site.

9.1.3 ROLO

The ROmable LOader (ROLO) was written and is being maintained by Robert Kaiser from Sysgo Gmbh.
as part of Sysgo's ELinos distribution. ROLO can boot Linux directly from ROM without requiring any
BIOS. ROLO is available from ftp://ftp.elinos.com/pub/elinos/rolo/. Though the package contains little
documentation, Vipin Malik has written a thorough article on the use of ROLO in an embedded system at
http://www.embeddedlinuxworks.com/articles/rolo_guide.html.

9.1.4 loadlin

loadlin is a DOS utility to load Linux maintained by Hans Lermen at http://elserv.ffm.fgan.de/~lermen/.
Though you should avoid building your system in a way that requires DOS to be loaded first, there are
cases where such a utility can be very handy. One case where it can be useful, for example, is if you
want to use M-Systems's DOS tools to boot from a DOC device. In that case, you can write an
autoexec.bat file that uses the loadlin utility to load Linux. As we will see below, however, you can boot
Linux directly from a DOC device using GRUB.

9.1.5 EtherBoot

Many NICs are shipped with a socket for inserting ROM chips. When present and properly signed, these
ROM chips are recognized as BIOS extensions and executed during startup. EtherBoot uses this
capability to support the booting of diskless systems through the network. EtherBoot has been used in
many environments, including X-terminals, routers, and clusters. It is available with complete
documentation from http://etherboot.sourceforge.net/. The web site provides links to manufacturers who
sell EPROMSs preloaded with EtherBoot.

9.1.6 LinuxBIOS

LinuxBIOS is a complete BIOS replacement that boots Linux from ROM at startup. LinuxBIOS was
developed as part of clustering research conducted at the Los Alamos National Laboratory and has
gathered support from many hardware manufacturers. The LinuxBIOS package and documentation are
available at http://www.linuxbios.org/.

http://brun.dyndns.org/pub/linux/lilo/
http://www.gnu.org/software/grub/
http://www.embeddedlinuxworks.com/articles/rolo_guide.html
http://elserv.ffm.fgan.de/~lermen/
http://etherboot.sourceforge.net/
http://www.linuxbios.org/
http://www.wowebook.info

Download at wowebook. 1nfag

9.1.7 Compaq's bootldr

Though initially developed for the Compaq iPAQ only, Compad's bootldr currently supports Intel's
Assabet and HP's Jornada 720. Though it is limited in the range of hardware it supports, bootldr provides
a very rich command set and is capable of loading kernels directly from JFFS2 MTD partitions. Bootldr is
part of the software collection maintained by http://www.handhelds.org/ and is available for download
from ftp://ftp.handhelds.org/bootldr/.

9.1.8 blob

blob was introduced as the bootloader for the LART hardware project.l! Since its introduction, blob has
been ported to many other ARM-based systems, including Intel's Assabet and Brutus, Shannon, and
Nesa boards. Unlike ARMBoot and Compad's bootldr, blob does not provide monitor capabilities, though
it can be used to reprogram the flash and can load kernels directly from JFFS2 MTD partitions. blob is
available from the LART web site along with documentation at http://www.lart.tudelft.nl/lartware/blob/.

[1] See LART description in Appendix B.

9.1.9 PMON

The Prom Monitor (PMON) was written by Phil Bunce to support LS| LOGIC's MIPS boards. It is
distributed under a very simplistic license, which stipulates that PMON comes with no warranty and that
you are free to redistribute it without any restriction. Though Phil's PMON has not been updated since
1999, it is still available at http://www.carmel.com/pmon/. Others have nevertheless used PMON for
more recent projects. It was ported to the now discontinued Agenda VR3 Linux PDA by Bradely
LaRonde. That version is available from the AGOS SourceForge workspace at
http://agos.sourceforge.net/ and information on its use is available from the Agenda Wiki site at
http://agendawiki.com/. It remains that there is no central authority or roadmap for PMON, and few
boards are actually supported. As | said earlier, you may find the PMON codebase a good starting point,
but you will most probably need to port it to your system to use it.

9.1.10 sh-Boot

sh-boot is developed as part of the Linux SH project on SourceForge. Unfortunately, sh-boot has not
been updated for a while, so you may need to evaluate its usability for your system. Also, sh-bootis a
simple bootloader and does not provide any monitor capabilities. The bootloader is available using CVS
through the Linux SH project site at http://linuxsh.sourceforge.net/.

9.1.11 U-Boot

Though there are quite a few other bootloaders, "Das U-Boot," the universal bootloader, is arguably the
richest, most flexible, and most actively developed open source bootloader available. It is currently
maintained by Wolfgang Denk of DENX Software Engineering, and is contributed to by a wide range of
developers. U-Boot is based on the PPCBoot and ARMBoot projects. PPCBoot was itself based on
8xxrom sources, and ARMBoot was an ARM port of PPCBoot done by Sysgo Gmbh. At the time of this
writing, U-Boot supports around 100 different PPC-based boards, more than a dozen ARM-based
boards, and a handful of x86-based boards. U-Boot's success in scaling to a wide range of hardware has
prompted developers to continue porting it to even more new boards and architectures.

Among other things, U-Boot is capable of booting a kernel through TFTP, from an IDE or SCSI disk, and
from a DOC. Also, it includes read-only support for JFFS2. Besides having an extensive command set
and quite a few capabilities, itis also fairly well documented. The README included with the package

http://www.handhelds.org/
http://www.lart.tudelft.nl/lartware/blob/
http://www.carmel.com/pmon/
http://agos.sourceforge.net/
http://agendawiki.com/
http://linuxsh.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

provides an in-depth discussion of the use of U-Boot. The doc directory in the package's source includes
any extra instructions required for certain boards. In addition to the instructions found in the package,
Wolfgang wrote the DENX PPCBoot and Linux Guide, available at http://www.denx.de/re/DPLG.html,
which provides many practical examples of the use of PPCBoot with Linux on a TQM8xxL board. Though
the discussion assumes that you are using PPCBoot and DENX's Embedded Linux Development Kit
(ELDK) distribution,[? the sections relating to the use of PPCBoot apply with litle or no changes to U-
Boot, and are helpful regardless of whether you use any distribution.

[21 The ELDK is an open source development and target distribution.

The U-Boot project workspace is located at http://sourceforge.net/projects/u-boot. The U-Boot package
is available from that site. If you intend to use U-Boot often, you will find it useful to subscribe to the very
active U-Boot users mailing list at that site. Though there is no on-site documentation for U-Boot at the
time of this writing, you can still rely on the documentation and background provided by the two projects
on which U-Boot is based, PPCBoot and ARMBoot. PPCBoot's web site is located at
http://ppcboot.sourceforge.net/, and ARMBoot's project web site is located at
http://armboot.sourceforge.net/. We will explore U-Boot's use later in this chapter.

9.1.12 RedBoot

RedBoot is supposed to be a next generation bootloader from Red Hat, replacing CygMon and GDB
stubs with a firmware supporting a very wide range of hardware. Although Red Hat has stopped active
development of eCos, the OS on which RedBoot is based, eCos has now been relicensed under the
GPL and continues to be maintained by some of the Red Hat core eCos developers. eCos' future, and
RedBoot's as well, is therefore in the hands of those developers.

Desypite its dependency on eCos,[8l RedBoot remains a very powerful bootloader. It is, for instance, the
only open source bootloader that currently supports all the architectures presented in depth in Chapter 3
and a wide range of boards based on these architectures. Also, the RedBoot package is fairly well
documented, including a RedBoot User's Guide that provides actual examples of its use on more than a
dozen different systems. RedBoot's web site is located at http://sources.redhat.com/redboot/ and its
sources are available with the rest of the eCos sources using CVS. Lately, eCosCentric Ltd., the
company formed by the core eCos developers from Red Hat, has been providing CVS snapshots at
http://www.ecoscentric.com/snapshots/.

[3] RedBoot is part of the eCos source code tree and requires some of the code provided by that OS to provide its own services. Hence,
RedBoot's development is tied to, but not entirely dependent on, eCos' development. Some platforms supported by RedBoot, for example,
aren't supported by eCos.

http://www.denx.de/re/DPLG.html
http://sourceforge.net/projects/u-boot
http://ppcboot.sourceforge.net/
http://armboot.sourceforge.net/
http://sources.redhat.com/redboot/
http://www.ecoscentric.com/snapshots/
http://www.wowebook.info

Download at wowebook. 1nfag

9.2 Server Setup for Network Boot

As we saw in Chapter 2, setting up a target for network boot is ideal during the early stages of
development, because you can gradually modify the kernel and the root filesystem without having to upde
the target's storage devices every time you make a modification. Though not all bootloaders can use this
setup to boot, | recommend that you use such a setup whenever possible.

As | said earlier, the simplest way to boot your target from the network is to use BOOTP/DHCP, TFTP, ar
NFS. BOOTP/DHCP is the standard way to provide a network host with basic boot information, including
the location of other servers such as TFTP and NFS. TFTP is the simplest network protocol for
downloading remote files. In the case of an embedded Linux system, it is used by the target to obtain a
kernel image from the TFTP server. Finally, NFS is the standard and simplest protocol for sharing entire
directory trees between a client and a server. In the case of an embedded Linux system, it is used by the
target to mount its root filesystem from the NFS server. NFS cannot be used for any earlier activity,
because it requires a booted Linux kernel to operate. Together, these three protocols provide a very
efficient host/target development setup.

To enable network booting of the target, you must set up the development host's network services so that
the target can access the components it needs. In particular, you need to set up a host to respond to
BOOTP/DHCP requests, provide a kernel using a TFTP server, and enable NFS mounts. The subsection
below discuss each issue separately.

9.2.1 Setting Up the DHCP Daemon

Unlike other network services, DHCP is not dependent on the internet super-server. Instead, the DHCP
daemon is a service of its own, and you need to start it manually. First, you need to make sure that the
DHCP server is installed on your system. Though you can download it from http://www.isc.org/, the DHCF
server is part of most mainstream distributions.

If you are using an RPM-based distribution, use the following command to check for the presence of the
DHCP daemon:

$ rpm-q dhcp
dhcp- 2. 0-5

In this case, DHCP 2.0-5 is already installed. Ifit is not already installed on your system, use the
appropriate tools for your distribution to install the DHCP server. Note that most distributions include two
DHCP packages, a client and a server. The package containing the client is usually called dhcpc-VERSI O

There is an additional "c" after "dhcp" to identify the client package.

To operate properly, the kernel on which the DHCP server runs has to be configured with the

CONFI G_PACKET and CONFI G FI LTER options. The kernels shipped by default in most distributions almost
always have these enabled. If you are in the habit of building your own kernels for your workstation, as |
often do, watch out for those options when configuring the kernel. If the kernel wasn't built properly, the

DHCP daemon will output the following message when it tries to start:

socket: Protocol not available - nmake sure CONFI G PACKET and CONFI G FILTER ar «
defined in your kernel configuration!
exiti ng.

With the package installed and the kernel properly configured, create or edit the /etc/dhcpd.conf file and
add an entry for your target. For example, here is the /etc/dhcpd.conf file for my control module:

subnet 192. 168. 172.0 net mask 255. 255. 255.0 {

http://www.isc.org/
http://www.wowebook.info

Download at wowebook. 1nfag

option routers 192. 168.172.50;
opt i on subnet - mask 255. 255. 255. 0;

host ctrl-nod {
har dwar e et her net 00: DO: 93: 00: 05: E3;
fi xed-address 192.168. 172. 10;
option host-nane "ctrl-nmod";
next-server 192.168. 172. 50;
filenanme "/ home/kari mivmlinux-2.4.18.ing";
option root-path "/hore/ karim ctrl-rootfs";

}

Essentially, this entry states that the host and target are on the 192.168.172.0 network, that the TFTP
server is located at 192.168.172.50, and that the address allocated to the target when it issues its DHCP
BOOTP request is 192.168.172.10. The har dware et her net field uniquely identifies the target through its
MAC address, which is 00:D0:93:00:05:E3 for my control module. The fi xed- addr ess field tells the DHC
server which IP address should be allocated to the designated MAC address. The opt i on host - nane fiel
gives the hosthame to the target so that it can use it internally. The next - sever tells the target where the
TFTP serveris located. The fi | enane field is the filenamel of the image that has to be loaded by the
target. According to RFC 2131, which specifies DHCP, the filename is limited to 128 bytes. Finally, the
option root-path field provides the path to the target's root filesystem on the NFS server. If your target
does not need to load its root filesystem from an NFS server, you can omit this last field. Because the hos
is the only network link to the target in this case, opt i on r out er s points to the host's address. If the targe
was linked to an entire network with a real router, opt i on r out er s should point to that network's default
router.

[4] For the example to fit in the printed page's width, | avoid using the complete /home/karim/control-project/control-module/... path. Use the
actual complete path for your own development.

The example configuration provided above should be easy to adapt to your own target. If you need more
information regarding the configuration of the DHCP server, have a look at the manpage for dhcpd.conf
and the sample configuration file installed by your distribution, if one is present.

Note that if you are using a version of the DHCP daemon later than 3.0b2pl11, such as the one shipped
with Red Hat 8.0, you will need to add the following line to your dhcpd.conf file:

ddns- updat e-styl e ad- hoc;

With the DHCP server configured for the target, you are almost ready to start the DHCP server. Before yc
do so, however, you need to make sure the /var/state/dhcp/dhcpd.leases file exists. If it doesn't, create it
using the touch command. If the file isn't created, the DHCP daemon will refuse to start.

Finally, start the DHCP server. On distributions based on Red Hat, enter:

[etc/init.d/dhcpd start

9.2.2 Setting Up the TFTP Daemon

The first step in setting up the TFTP daemon is to make sure the TFTP package is installed. Though the
latest version of the TFTP daemon is available for download as part of the NetKit package at
ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/, TFTP was most likely already installed on your system a:
part of your distribution or is available to be installed from your distribution's CDs.

If you are using an RPM-based distribution, use the following command to check for the presence of the
TFTP daemon:

$rpm-q tftp

http://www.wowebook.info

Download at wowebook. 1nfag

tftp-0.16-5

In this case, TFTP 0.16-5 is already installed. If itis not available on your system, install the TFTP packac
using the appropriate tool for your distribution. Alternatively, if your system doesn't rely on a package
manager or if some components have been installed without a package manager, you can also check for
the presence of the actual TFTP daemon binary using the whereis command.

Once the package is installed, enable the TFTP service by modifying the appropriate internet super-serve
configuration file. In brief, the internet super-server listens on designated ports on behalf of the various
network services. When a request for certain service is received, the super-server spawns the appropriati
daemon and hands it the request. Hence, only the minimal number of daemons run at all times. TFTP is
one of the daemons normally handled by the super-server.

To enable the TFTP service in a system based on the inetd super-server, edit /etc/inetd.conf, uncommen
the line for the TFTP service by removing the # character at the beginning, and send a sI GHUP signal to tr
inetd process so that it rereads its configuration file. To enable the TFTP service in a system based on th
xinetd super-server, edit /etc/xinetd.d/tftp and comment the line containing di sabl e = yes by adding a #
character at the beginning. As with inetd, you must send a S| GHUP to xinetd.

Finally, you must provide the TFTP server with a list of directories containing files that should be made
available to TFTP clients. In a system based on the inetd super-server, append the list of directories to the
TFTP line in /etc/inetd.conf. In a system based on the xinetd super-server, edit the /etc/xinetd.d/tftp file ar
append the list of directories to the ser ver _args = line. The default directory for TFTP is /tftpboot. You
may choose to modify this to match your setup. Whichever directory you choose, make sure its access
permissions include read and execute for the "other" permission.

For example, hereis a TFTP line in /etc/inetd.conf for a host using the inetd super-server:
tftp dgram udp wai t root /usr/sbin/tcpd in.tftpd /hone/ karin
In this case, images are placed in the /home/karim directory, which has the following permissions:

$ s -1d /home/karim
dr wxr - xr - x 4 karim kari m 4096 Aug 29 16: 13 karim

Here is a modified /etc/xinetd.d/tftp file from a Red Hat-based installation providing the same functionality
for a host using the xinetd super-server:

service tftp

{
socket type = dgram
pr ot ocol = udp
wai t = yes
user = root
server = fusr/shin/in.tftpd
server_args = /homne/ kari m
di sabl e = yes
per _source = 11
cps = 100 2
}

Regardless of the super-server in use on a host, the TFTP service is usually disabled by default. Hence,
even if you use the default /tftpboot, you will need to modify the super-server's configuration files to enabl
TFTP.

9.2.3 Mounting a Root Filesystem on an NFS Server

http://www.wowebook.info

Download at wowebook. 1nfag

As | explained in Chapter 2, while a bootloader and kernel must be stored locally or retrieved to local
storage through one of the methods shown eatrlier, the target's kernel can mount its root filesystem from ¢
remote NFS server. To this end, the NFS server must be properly installed and configured. Chapter 6
showed how to build your target's root filesystem. Though Chapter 8 showed how to prepare this filesyste
for use in the target, the root filesystem we created in Chapter 6 does not need any special preparation fo
use by the NFS server.

The NFS server daemon is available in two flavors: as a standalone user application or as a part of the
kemnel. Besides being faster, the latter is also the standard way most distributions are configured. In
addition to the NFS server itself, you need to have the NFS utilities installed. Usually, there is an nfs-utils
package as part of your distribution. Use the following command to identify whether nfs-utils is installed:

$ rpm-q nfs-utils
nfs-util s-0.3.1-13

With the nfs-utils installed, you need to make sure that the appropriate configuration files are present and
that the corresponding services are started.

The main file we need to configure for the NFS server is /etc/exports. Entries in this file describe the
directories each host or set of hosts can access. As an example, here is the entry in my /etc/exports for n
control module:

/[horme/karim/ctrl-rootfs 192.168.172. 10(r w, no_r oot _squash)

This entry states that the machine with address 192.168.172.10 has read and write (r w) access to the
/home/karim/ctrl-rootfs directory, which is the path to the root filesystem we built for the target in Chapter |
In addition, the no_r oot _squash argument indicates that the server should allow the remote system to
access the directory with its root privileges. These are very powerful rights that we are granting to the
target. If we have total control over access to the device, as is the case in most development setups, ther
is obviously no security risk. If, however, the target's location is less secure or if it is directly connected to
the Internet, for example, you may prefer to use the default r oot _squash instead. In that case, the target
will not be able to write to most of its own root filesystem, though it will still be able to read and write to all
directories and files that are readable and writable by anybody. In practical terms, however, the target's
operation will be very limited.

Because offering the NFS service also involves the risk of network abuse, itis often pertinent to use somt
minimal protection mechanisms to avoid intrusions. One simple way to do this is to customize the
/etc/hosts.deny and /etc/hosts.allow files to restrict access to network services. For example, here is the
/etc/hosts.deny file for my Red Hat-based host:

#
hosts. deny
#

portmap: ALL
| ockd: ALL
mount d: ALL
rquot ad: ALL
statd: ALL

and here is my /etc/hosts.allow file:

#
hosts. al | ow
#

portmap: 192.168.172. 10
| ockd: 192.168.172. 10

http://www.wowebook.info

Download at wowebook. 1nfag

nount d: 192.168.172.10
rquot ad: 192.168.172. 10
statd: 192.168. 172. 10

The rules specified in this files restrict access to the various file-sharing services. Together, these files
indicate that only the machine with address 192.168.172.10 can use the NFS services. This is fine in the
case of my setup, since | don't want to share my workstation with anyone else. Even if you do not
customize /etc/hosts.deny and /etc/hosts.allow, | encourage you to take security issues to heart and use
whichever means necessary, such as backups, to protect your work.

Once the configuration files are created, you can start the portmapper service, which is required by the
NFS server:

[etc/init.d/portmap start
Finally, you can start the NFS server itself:
/etc/init.d/nfs start

If you would like more information on the configuration of remote boot using NFS, see the two Diskless ro
NFS HOWTOs on the issue at the LDP. Also, you may be interested by the NFS HOWTO, also atthe LD

http://www.wowebook.info

Download at wowebook. 1nfag

9.3 Using LILO with Disk and CompactFlash Devices

Because there is already ample documentation on the installation, configuration, and use of LILO, | will
cover only its specific use in embedded PC-like systems. Specifically, | will provide the instructions to
use on the host to install LILO on a storage device meantto be used in the target.

The installation of LILO on a target's storage device requires the use of the removable storage setup as
explained in Chapter 2. In this scenario, the target's storage device is removed from the target and
connected to the host's own hardware to be programmed. Hence, the target's storage device is
controlled by the host's operating system like any other host device. The target's storage device is
therefore seen as an extra storage device for the host. It can be seen, for example, as a secondary IDE
disk (/dev/hdb) or as a primary SCSI disk (/dev/sda). Regardless of the way it is seen by the host's
kemel, LILO needs to be used in a specific way to install itself on this secondary storage and not on the
host's boot media, as is the defaullt.

As we discussed in Chapter 8, CF devices are quite peculiar in this regard, because they can be seen on
the host as a SCSI disk (/dev/sdxX) when accessed through a USB CF reader, while being seen on the
target as an IDE disk (/dev/hdx) when accessed through a CF-to-IDE or CF-to-PCMCIA adapter. The
configuration file example | provide below takes care of this issue by using the appropriate BIOS and
kernel flags so that the disk seen as a SCSI disk on the host can boot normally as an IDE disk once put
back in the target.

In the following, | assume that the storage device where LILO will be installed is accessible on your host,
and that you are using LILO Version 22.3 or later. If you are using an earlier version, an important
command will fail, as | will explain shortly. Follow these steps to install LILO on a secondary IDE or SCSI
storage device on your host:

1. Create appropriate /dev entries in your target's root filesystem for the storage device where LILO is
to be installed. This is not the storage device as it will be accessed once in your target. Rather, this
is the storage device entry used by the host to access the designated storage device. If, for
example, you want to install LILO on /dev/sda (usually the first SCSI hard disk in your system),
there must be a/dev/sda entry on your target's root filesystem. Itis very likely that this entry does
not correspond to a valid device on your target. Indeed, itis possible that the disk accessed as
/dev/sda on the host may be accessed as /dev/hda once on the target. Nevertheless, you must
create the /dev/sda entry in your target's root filesystem for LILO to use when running on the host.
The reasons for this will soon become evident. For more information on the relationship between
/dev entries and the actual physical storage devices, see Chapter 3 of Running Linux.

2. Create a LILO configuration file on your target root filesystem. To avoid damaging your host's
configuration when installing LILO on the target's storage device, put your LILO configuration in
letc/target.lilo.conf on your target's root filesystem instead of the usual /etc/lilo.conf. Hence, if you
accidentally issue a LILO command that modifies your host, the tool will complain about a missing
file and no damage will be done to your host.

Here is a sample /etc/target.lilo.conf to boot my DAQ module from a CF card:

boot = / dev/sda
di sk = / dev/ sda
bi os = 0x80

i mge = /boot/bzlnmage-2. 4.18
root = /dev/sdal
append = "root=/dev/hdal"
| abel = Linux

http://www.wowebook.info

Download at wowebook. 1nfag

read-only

In this case, the CF card is accessed through a USB CF reader and is visible on my hostas a
SCSI disk through /dev/sda. On the target, however, it will be accessed through a CF-to-IDE
adapter and will be visible as an IDE drive through /dev/hda. If you use a normal LILO
configuration file to configure LILO, it would guess the BIOS ID of the disk it is operating on,
and would use that ID at startup to make access requests to the BIOS. Since, in this case, it
is operating on a SCSI disk, it would assume a SCSI BIOS ID and would make access
requests for such a disk. Since no such disk exists on the target, the BIOS would return an
error and LILO would fail to boot. The trick in the configuration file above lies in the bi os =
0x80 line. This informs LILO that itis booting from the disk with BIOS ID 0x80, which is the
first IDE drive in the system. Because of the confusion between SCSI and IDE, | must also
append ar oot =/ dev/ hdal option to the kernel's boot parameters. Otherwise, the kernel
would fail to find its root filesystem and crash while trying to mount it.[%!

(5] Normally, you shouldn't need to append ar oot = option to the kernel's boot parameters if you already have ar oot line in your
image description. In this case, however, the software involved takes for granted that disks cannot change types, and fails to
configure the boot process properly without the double declaration.

Alternatively, if you want to install LILO on /dev/hdb, replace the /dev/sda entries above with
/dev/hdb. In this case, you won't need to append the root=/dev/hdal option to the kernel's
boot instructions, because the disk appears as IDE both on the host and the target.

When LILO is run with the configuration file above, it opens the host's /dev/sda device and
installs itself there. Because this configuration file is located in
${PRIROOT}/rootfs/etcitarget.lilo.conf instead of /etc/lilo.conf, special options must be used
with LILO to provide it with the location of this alternative configuration file. | will present the
complete LILO command line to use in this configuration shortly.

For a complete discussion of how LILO is installed on an alternative storage device, see the
Installing hdc to Boot as hda and Using bi os= section in the LILO mini-HOWTO provided by
the LDP.

If necessary, partition the storage device using fdisk.

Create filesystems on the storage device for the filesystem types you selected using the
appropriate filesystem creation tools. For an ext2 filesystem, for example, use mke2fs.

Mount the root filesystem partition on an appropriate directory in /mnt.

. Copy the root filesystem to its designated partition using cp -a. The root filesystem must contain
the kemel image referenced by the /et c/target. il o.conf file created earlier, /boot/bzimage-
2.4.18 in this case.

Install LILO on the storage device. For my DAQ module's storage device, for example, which is
mounted as /mnt/cf on my host, | use the following command:

1lilo -r /mt/cf -C etc/target.lil o.conf

Warni ng: etc/target.lilo.conf should be owned by root
VWarni ng: LBA32 addressing assuned

Added Li nux *

This command instructs lilo to use the chroot() system call to change its root directory to
/mnt/cf directory and to use the etcitarget.lilo.conf configuration file found in that directory.
The command programs the devices specified in the target.lilo.conf configuration file. The
/dev entries specified in the configuration file are located starting from the root directory entry,
/mnt/cf. If /dev/sda must be programmed, for example, LILO attempts to open and program
/mnt/cf/dev/sda.

http://www.wowebook.info

Download at wowebook. 1nfag

If you had forgotten to create the /dev entries specified in target.lilo.conf on your target's root
filesystem, this command will fail. It will also fail if there is no /tmp directory on your target's
root filesystem. Furthermore, if you are using a LILO version earlier than 22.3, the command
will report the following error and fail:

Fatal : open /boot/ boot.b: No such file or directory

This error message is due to the fact that, prior to Version 22.3, LILO's components were
separated across different files, some of which were .b files. Since 22.3, all .b files are part of
the lilo binary.

8. Unmount the root filesystem partition.

You can now remove the storage device from your host, either by shutting down the host and removing
the hard disk or by removing the CF card from the CF reader, instaling it in your target, and booting it.

A Word on Using LILO with DiskOnChip Devices

To boot from a DOC device, LILO must be patched, since it doesn't support the DOC by
default. Both the Linux tools package provided by M-Systems and the MTD package provide
a patch for LILO. In light of the common experience of many individuals on the MTD mailing
list and the fact that GRUB is the bootloader receiving most of the MTD development team's
attention, however, | strongly recommend that you use GRUB instead of LILO for booting
from a DOC device. If you still would like to use LILO, look at the relevant entries in the MTD
mailing list archive or, if you fail to find what you need in the archive, ask the mailing list for
guidance.

http://www.wowebook.info

Download at wowebook. 1nfag

9.4 Using GRUB with DiskOnChip Devices

Since the use of GRUB with conventional disk devices is already amply covered in the GRUB manual,
we will mainly concentrate on the installation and use of GRUB with DOC devices. Before | start covering
the details of how to compile and use GRUB with a DOC device, | must warn you that an improper
configuration of GRUB for your DOC can render your system unbootable. Let's see why this happens
and how it can be avoided.

As | explained in Chapter 7 when describing the use of the doc_loadbios command, DOC devices
contain a ROM program called the IPL that is detected as a BIOS extension at startup and is executed
by the BIOS. When it runs, this IPL installs another program, the SPL. To boot from a DOC device using
GRUB, the SPL must be replaced by a version of GRUB specifically tailored to boot from a DOC.

Since there may be other BIOS extensions in the system, the SPL loaded by the IPL cannot boot the
system right away. Instead, it must install a Terminate and Stay Resident (TSR) program that will lay
dormant until the BIOS is ready to boot the system. In the case of GRUB, the GRUB SPL replaces the
BIOS's bootstrap interrupt, INT 19h, with a custom interrupt handler that will execute the rest of the
GRUB code to finish booting from the DOC device. Hence, the other BIOS extensions get to run and
GRUB is called only when the system is ready to be booted.

The problem with this scheme, however, is that the default bootstrap handler installed by the BIOS never
gets a chance to run, and any boot configuration option you may have selected in your BIOS—such as
booting from disk or floppy first—will be completely ignored by GRUB when its handler is invoked. This is
fine if the configuration file on the DOC is correct. At worst, you would then boot using the DOC, change
the configuration file in Linux, or completely remove GRUB from the DOC to set the system as you
desire.

If you make any mistakes in the GRUB configuration file that result in boot failure, however, you will be
unable to restart your system normally without finding a way to disable the replacement of the bootstrap
interrupt handler at startup. There are four known ways to do this:

e You can physically remove the DOC from the system before starting it. The problem with this
choice is that your only way to reprogram the DOC thereafter, if you do not have access to a
hardware DOC programer, is to insert the DOC after the system has been started. In other words,
you would have to connect the DOC to a live electronic circuit. Needless to say, neither the DOC
nor the electronic circuits interfacing with it have been designed for this sort of manipulation. Also, |
neither encourage you to try this nor take any responsibility if you are crazy enough to do it.
However, a few courageous people on the MTD mailing list have reported that they successfully
inserted their DOC in a running system in this way to reprogram it.

e If jumpers are available for configuring the address region to which the DOC device is mapped, you
can try removing the jumpers completely and starting the system. In some cases, such as when
using the ISA DOC evaluation board provided by M-Systems, this will result in the BIOS not
recognizing the IPL and, hence, not running it. In other cases, however, this may resultin a system
hang. If this trick works for you, you will be able to boot the system using the BIOS's configuration.
However, to access the DOC again once the system is running, you will have to insert the jumper
while the system is powered on. Again, though this is reported to work, the hardware was not
designed for this, | don't encourage you to do it, and | take no responsibility whatsoever for any
possible outcome.

e The configuration of GRUB allows it to use the ROM BASIC interrupt, INT 18h, instead of the
bootstrap interrupt. Lately, in addition to being the ROM BASIC interrupt, INT 18h is sometimes
used for network boot. When configured to use this interrupt, GRUB would kick in only if the BIOS
configuration is set to network boot or if there are no boot devices setin the BIOS. This approach
has a few drawbacks. First, it requires changing the BIOS configuration every time you want to

http://www.wowebook.info

Download at wowebook. 1nfag

switch from booting from the DOC to booting from a hard disk. This can be time-consuming during
development. In addition, the use of INT 18h by recent BIOSes is not standardized, as the case of
the BIOSes using it to provide network boot demonstrates.

e Having seen the above choices while writing this book, your author decided to find a "cleaner" way
of doing things. Hence, | set out digging in some of my old DOS and BIOS hacking books and
came up with a solution that's both elegant and simple. Basically, instead of replacing the default
bootstrap interrupt handler outright, my modified GRUB SPL makes a copy of the original handler,
replaces it with the GRUB bootstrap handler, and lets the BIOS continue looking for other
extensions in the system. When GRUB's bootstrap handler is invoked, it then checks whether the
user is holding down the Ctrl key. If so, the original bootstrap handler is restored, and the BIOS is
left to continue the bootstrap using the boot configuration chosen by the user. If the Ctrl key isn't
held down, GRUB continues its normal procedure to load whatever is on the DOC. As you can see,
this solution does not involve any dangerous hardware manipulations; save, maybe, for people
suffering from carpal tunnel syndrome.

For obvious reasons, | strongly encourage you to use the last solution. This enhancement is, however,
fairly recent at the time of this writing and you will only find it starting with GRUB patch grub-2002-10-08-
doc.patch, which is available in the MTD CVS. | will explain how this option is enabled during GRUB's
configuration in the next section.

Having covered the dangers of using GRUB to boot from a DOC, let's discuss the building, installation,
and use of GRUB with a DOC.

9.4.1 Configuring and Building GRUB for the DOC

As | said earlier, you will need an x86 host to build GRUB. The following instructions assume that you are
using such an x86 host. GRUB will fail to build or will create unusable binaries on any other type of host.

To start, download GRUB into your ${PRJROOT}/bootldr directory and extract it there. Then copy the
GRUB patch from the ${PRIJROOT}/sysapps/mtd/patches directory to the GRUB directory in
${PRIROOT}/bootldr. In the case of my DAQ module, for example, | used GRUB 0.92 and the grub-
2002-02-19-doc.patch patch. Now apply the patch to GRUB:

$ cd ${ PRIROOT}/ boot | dr / gr ub- 0. 92
$ patch -p0 < grub-2002-02-19-doc. patch

Because this patch was originally meant for GRUB 0.90, there were some warnings and one failure when
applying it to 0.92. The failure in this case was in ChangelLog and can therefore be ignored.

If you want to use the Ctrl key method discussed in the previous section to avoid having to hotplug your
DOC, use the grub-2002-10-08-doc.patch patch or a later version against a GRUB version retrieved from
the CVS repository. Because the CVS repository is constantly changing, however, this patch may not
apply cleanly to the latest CVS contents. To get the patch to apply as cleanly as possible and have the
resulting source tree compile, for example, | had to retrieve the GRUB sources from the CVS repository
as they were on October 10, 2002 and then manually edit a couple of files in the source code. To retrieve
the code as it was on the date | mentioned, | used the following command:

$ cvs -z3 -d: pserver:anoncvs@ubver si ons. gnu. org:/cvsroot/grub \
> co -D'10/ 10/ 02" grub

With the code patched, you are ready to build GRUB. First, create the Makefile using the automake
tools:

$ aclocal && autonake && autoconf

Now, configure GRUB to build for the DOC:

http://www.wowebook.info

Download at wowebook. 1nfag

./ configure --enabl e-di skonchi p-2000 \

- -enabl e- di skonchi p-ctrl bypass \

--enabl e- ext 2fs \

--disable-ffs --disabl e-xfs --disable-jfs --disabl e-vstafs \
--disabl e-rei serfs --disable-m nix --disable-fat

V VV V&

This command line disables GRUB's support for all filesystems except ext2 and enables support for the
DOC 2000 device. It also enables the Ctrl key bypass method | described in the previous section using
the - -enable-diskonchip-ctrlbypass option. There are a few other configuration options relevant to the
DOC. If you are using DOC Millennium, for example, you may want to use the - -enable-diskonchip-
mil256 or - -enable-diskonchip-mil512 option, depending on whether your DOC Millennium is using 256-
or 512-byte page sizes. You can also use the - -enable-diskonchip-biosnetboot option to boot GRUB on
the network boot interrupt instead of the bootstrap interrupt as described earlier. For a complete
description of the options available for configuring GRUB for the DOC, have alook at the
README_DiskOnChip created in the GRUB package directory when the DOC patch was applied earlier.

Once the configuration is done, you can build GRUB:
$ make

Once the compilation is done, the stagel/grub_firmware file will contain the GRUB image to be written to
the DOC. Copy this file to ${PRIROOT}/images/grub_firmware-0.92 for future use:

$ cp stagel/grub _firmware ${PRIRCOT}/i mages/ grub_fi rmwvare-0. 92

9.4.2 Installing GRUB on a DOC

| have already covered the installation of the GRUB bootloader image in Section 7.1.3.5. Follow the
instructions given in that section to install the GRUB image created here on your DOC device.

9.4.3 Configuring GRUB to Boot from a DOC

As with LILO, GRUB uses a configuration file to determine the boot media and kernel it has to boot.
Unlike LILO, however, you do not need to run the GRUB binary to parse and update its configuration.
Instead, the GRUB configuration file, menu.lst, is placed as-is in the /boot/grub directory of the target's
root filesystem and is read by GRUB at startup. To configure GRUB to boot from a DOC, this is the file
that we must create.

As an example, here is a simple menu.lst file for booting from a DOC device:

ti neout 5
default O

title D skOnChi p 2000 Boot
kernel (dcO,0)/ boot/bzlmage-2.4.18 root=/dev/nftl al

title HD Boot
kernel ('hdO, 0)/ boot/bzl mage-2. 4. 18 r oot =/ dev/ hdal

This file states that there are two boot possibilities. The first, which is also the default, involves booting

kermnel /boot/bzimage-2.4.18 from the first partition of the first DOC, dc0. The second involves booting a
kernel by the same name as the previous item from the first partition of the first hard disk, hdo. For each
configuration, the r oot = option indicates the device where the booting kernel will find its root filesystem.

This configuration is useful during development, since it allows you to choose between booting from the
DOC and from your hard disk. On a production system, you probably want to remove the entry for the

http://www.wowebook.info

Download at wowebook. 1nfag

hard disk and set the timeout to zero so that booting from the DOC becomes the only possible option.

You can further modify GRUB's configuration and allow for a number of boot options. Look at GRUB's
manual for a complete description of the configuration file format.

http://www.wowebook.info

Download at wowebook. 1nfag

9.5 U-Boot

As | said earlier, U-Boot is a richly documented bootloader. The README file included with the package,
example, covers the use of U-Boot extensively. Among other things, it discusses the package's source cc
layout, the available build options, U-Boot's command set, and the typical environment variables used in |
In the following, | will cover the essential aspects of U-Boot and provide practical examples of its use. An
depth discussion of U-Boot would, however, require a book of its own. For this reason, | encourage you tc
copy of the README provided with U-Boot and have a look at the other documentation written by the proj
maintainer.

9.5.1 Compiling and Installing

Start by downloading and extracting the latest version of U-Boot in your ${PRJROOT}/bootldr directory. A
writing, the latest U-Boot version is 0.2.0. Once extracted, move to the package's directory:

$ cd ${PRIROOT}/ boot | dr / u- boot-0.2. 0

Physical RAM and Flash Location

The board used in the following explanations has 16 MB of RAM and 8 MB of flash. The RAM is
mapped from address 0x0000000 to address OxO0FFFFFF, and the flash is mapped from address
0x40000000 to address 0x407FFFFF. The documentation provided with U-Boot discusses its use of
the physical memory of targets.

Before you can build U-Boot, you need to configure it for your target. The package includes a number of
configurations for quite a few boards. So, a configuration may very well exist for your target already. Look
README file to see if your board is supported. For each supported board, U-Boot's Makefile includes a

BOARD NANME confi g target, which is used to configure U-Boot's build for the desighated board. The config

target for the TQM860L board | use for my control module, for example, is TQv860L_confi g. Once you ha
determined the proper Makefile target to use, configure U-Boot's build process:

$ make TQWB60OL confi g
Now, build U-Boot:
$ make CROSS_COWPI LE=power pc- | i nux-

In addition to generating bootloader images, the build process will compile a few tools to be used on the
conditioning binary images before downloading them off to the target to a running U-Boot. Table 9-2 lists
generated during U-Boot's compilation.

Table 9-2. Files generated during U-Boot's compilation

http://www.wowebook.info

Download at wowebook. 1nfag

Filename Description

System.map The symbol map

u-boot U-Boot in ELF binary format

u-boot.bin U-Boot raw binary image that can be written to the boot storage device

u-boot.srec | U-Boot image in Motorola's S-Record format

You can now download the U-Boot image onto your target's boot storage device using the appropriate
procedure. If you already have U-Boot, or one its ancestors (PPCBoot or ARMBoot) installed on your targ
can use the installed copy to update U-Boot to a new version, as we shall see in Section 9.5.10. If you hay
another bootloader installed, follow the procedures described in that bootloader's documentation for upda
bootloaders. Finally, if you have no bootloader whatsoever installed on your target, you need to use a hart
programming device, such as a flash programmer or a BDM debugger, to copy U-Boot to your target.

Whichever method you use to copy the actual bootloader image to your target, make a copy of the releva
bootloader images to your ${PRIJROOT}/images directory. For my control module for example, | copy the
as follows:

$ cp System map ${PRIROCT}/i mages/ u-boot. Syst em map-0. 2.0
$ cp u-boot.bin ${PRIROOCT}/i mages/ u-boot.bin-0.2.0
$ cp u-boot.srec ${PRIRCOT}/i mages/ u-boot. srec-0.2.0

If you intend to debug U-Boot itself, copy the ELF binary also:
$ cp u-boot ${PRIRCOT}/inmages/u-boot-0.2.0
Finally, install the host tool generated by the U-Boot build:

$ cp tool s/ nki mage ${PREFI X}/ bi n

9.5.2 Booting with U-Boot

Once U-Boot is properly installed on your target, you can boot it while being connected to the target throu:
serial line and using a terminal emulator to interface with the target. As | said in Chapter 4, not all termina
emulators interact cleanly with all bootloaders. In the case of U-Boot, avoid using minicom for file transfer:
problems may occur during such transfers.

Here is a sample boot output for my control module:

U Boot 0.2.0 (Jan 27 2003 - 20:20:21)

CPU: XPC360xxZPnnD3 at 80 MHz: 4 kB |- Cache 4 kB D-Cache FEC present
Board: TQVWBG60LDBOA3-T80. 201

DRAM 16 MB

FLASH: 8 MB

I n: seri al
Qut: seri al
Err: seri al
Net : SCC ETHERNET, FEC ETHERNET

PCMCI A No Card found
Ht any key to stop autoboot: 5

As you can see, U-Boot prints version information and then provides some detail regarding the hardware
running on. As soon as it boots, a five second timer starts ticking at the last output line. If you do not pres:
during those five seconds, U-Boot boots its default configuration. By pressing a key, you get a prompt:

http://www.wowebook.info

Download at wowebook. 1nfag

=>

One of the first things you probably want to try is obtaining help from U-Boot:

=> help
askenv - get environnent variables fromstdin
autoscr - run script fromnmenory

base - print or set address of fset

bdinfo - print Board Info structure

bootm - boot application imge frommenory

boot p - boot inmage via network usi ng Boot Pf TFTP protoco
boot d - boot default, i.e., run 'bootcnd'

cnm - menory conpare

coninfo - print console devices and informations

cp - menory copy

crc32 - checksum cal cul ation

date - get/set/reset date & tine

dhcp - invoke DHCP client to obtain I P/boot parans

di skboot - boot from | DE device

echo - echo args to console

er ase - erase FLASH nenory

flinfo - print FLASH nenory i nfornation

go - start application at address 'addr'

hel p - print online help

ide - | DE sub- system

imnfo - print header information for application i mage
| oadb - load binary file over serial line (kermt node)
| oads - load S-Record file over serial |ine

| oop - infinite loop on address range

nd - menory display

nmm - menory nodi fy (auto-incrementi ng)

nt est - sinpl e RAM test

nw - menory write (fill)

nm - menory nodi fy (constant address)

printenv- print environnent variables
protect - enable or disable FLASH wite protection
rarpboot - boot inage via network usi ng RARP/ TFTP prot ocol

reset - Perform RESET of the CPU

run - run conmmands i n an envi ronnent variabl e

saveenv - save environnent variables to persistent storage
setenv - set environnent vari abl es

sl eep - delay execution for sone tinme

tftpboot- boot image via network using TFTP protocol
and env vari abl es i paddr and serverip

version - print nonitor version

? - alias for ' help

As you can see, U-Boot has a lot of commands. Fortunately, U-Boot also provides per-command help:
=> help cp
cp[.b, .w, .I] source target count

- copy nenory

When U-Boot appends the [. b, .w, .I1] expression to a command, this means that you need to append
the indicated strings to the command to invoke the desired version of the command. In the case of cp, for

http://www.wowebook.info

Download at wowebook. 1nfag

example, there are three versions, cp.b, cp.w, and cp.l, for copying bytes, words, and longs, respectively.

U-Boot is strictin its argument parsing. It expects most values to be provided in hexadecimal form. In the
the cp command, for example, this means that the source address, the target address, and the byte coun
be provided in hexadecimal values. You don't need to prepend or append those values with any sort of sp
characters, such as "0x" or "h". If your source address is 0x40000000, for example, simply type 40000000

U-Boot accepts any unique subset of characters that starts a command name. If you wantto use the eras
command, for example, you can type just the first three letters, era, since erase is the only command to s
those three first letters. On the other hand, you can't type lo and expect U-Boot to understand it, since the
three commands that start with those letters: loadb, loads, and loop.

9.5.3 Using U-Boot's Environment Variables

Once U-Boot is up and running, you can configure it by setting the appropriate environment variables. Th
U-Boot environment variables is very similar to the use of environment variables in Unix shells, such as b
view the current values of the environment variables on your target, use the printenv command. Here is a
of the environment variables found on my control module:

=> printenv

boot del ay=5
baudr at e=115200

| oads_echo=1

serial #= ...

et haddr=00: DO: 93: 00: 05: E3
net mask=255. 255. 255. 0

i paddr=192. 168. 172. 10
serverip=192.168.172. 50
cl ocks_i n_nmhz=1

st di n=seri al

st dout =seri a
stderr=seri a

Envi ronnent size: 791/16380 bytes

Each environment variable has a different meaning. Some environment variables, such as boot del ay, se
ori paddr, have predetermined uses that are recognized by U-Boot itself. See the README file for a com
discussion of U-Boot's environment variables and their meanings.

As with Unix shells, you can add environment variables in U-Boot. To do so, you must use the setenv cor
Here is an example session where | add a few environment variables to my control module (the third com
must be entered as a single line, even though it appears broken on the page):

=> setenv rootpath /hone/karinfctrl-rootfs

=> setenv kernel addr 40100000

=> setenv nfscnd setenv bootargs root=/dev/nfs rw nfsroot=\$(serverip):\$(rool
i p=\$(ipaddr):\$(serverip):\$(gat enayi p):\$(netmask) :\$(hostnane) :: of f pani
boot m \ $(ker nel _addr)

=> setenv bootcnd run nfscnd

In this case, | set U-Boot to boot from the kernel found at 0x40100000 and to mount its root filesystem us
NFS. Notice that | used the\ character to tell U-Boot that the character following \ should not be interpret
special character. This is how the nf scnd looks like, for example, after U-Boot has read it:

=> printenv nfscnd
nf s2cnd=set env bootar gs root=/dev/nfs rw nf sroot=%(serveri p): $(root pat h)

http://www.wowebook.info

Download at wowebook. 1nfag

i p=$(i paddr):$(serverip):$(gatewnayip): $(net nask): $(host nane): : of f pani c=1; boot
$(ker nel _addr)

The setenv command adds the environment variables to the current session only. Hence, if you reset the
system, any environment variable you set only with setenv will be lost. For the environment variables to st
reboots, they must be saved to flash. This is done using the saveenv command:

=> saveenv
Saving Envi ronent to Fl ash. .
Un-Protected 1 sectors
Er asi ng Fl ash. ..

done
Er ased 1 sectors
Witing to Flash... done
Protected 1 sectors

Be careful when using saveenv, since it will save all the environment variables currently defined, even thc
may have been using temporarily. Before using saveenv, use printenv to take a look at the currently defin
environment variables to make sure you are saving only the necessary variables. If you want to delete a v
simply use setenv on the variable without providing any values. Here's an example:

=> setenv RAMDI sk _addr 40500000

=> printenv RAMD sk_addr

RAMDI sk_addr =40500000

=> setenv RAMDI sk_addr

=> printenv RAMD sk_addr

Error: "RAMDI sk_addr" not defi ned

Note that the = character is not treated as a special character by setenv. In fact, it is seen as another chai
the string making up the environment variable, as we saw earlier in this section. The following command,
example, is flawed (notice the extra = displayed by printenv in comparison to the same printenv shown in
previous capture):

=> setenv RAMDI sk_addr = 40500000
=> printenv RAMD sk_addr
RAMD sk_addr= = 40500000

9.5.4 Creating Boot Scripts

U-Boot environment variables can be used to create boot scripts. Such boot scripts are actually environm
variables containing a set of U-Boot command sequences. By using a combination of the run command a
. (semicolon) operator, you can make U-Boot run boot scripts. The environment variables | set in the pre\
section, for instance, are actually part of a boot script, nf scnd.

The key to the way the script | provided in the previous section works is the boot cnd environment variable
variable is recognized by U-Boot as the script to run automatically when the system is booted. | set this ve
as run nf scnd. In other words, U-Boot should run the nf scnd script to boot the system. In turn, this envirc
variable is a set of commands of its own. First, it sets the boot ar gs environment variable, which U-Boot p
to the kernel as its boot parameters, and then uses the bootm command to boot the kernel located at
$(kernel _addr). The semicolon separates commands. The use of the $(VAR _NAME) operator tells U-Boot
replace the entire string with the value of the VAR NAME environment variable. Hence, when nf scnd runs,
$(kernel _addr) is replaced by 40100000, which is the value | set earlier. In the same way, $(r oot path) i
replaced by / hone/ karinictrl-rootfs, and the rest of the environment variables included in nf scnd are
replaced by their respective values.

Though it would have been possible to set boot cnd to contain the entire boot script instead of using run r
it would have been much harder then to specify alternative boot scripts at the boot command line. By usin

http://www.wowebook.info

Download at wowebook. 1nfag

run command in the boot cnd script, multiple boot scripts can coexist within U-Boot's environment variable
can then change the system's default boot using:

=> setenv bootcnd run OTHER BOOT SCR PT

Or you can run boot scripts directly from the command line without changing the value of the boot cnd
environment variable:

=> run OTHER BOOT_SCRI PT

Scripts are a very useful feature of U-Boot and you should use them whenever you need to automate a ce
task in U-Boot.

9.5.5 Preparing Binary Images

Since the raw flash is not structured like a filesystem and does not contain any sort of file headers, binary
downloaded to the target must carry headers for U-Boot to recognize their content and understand how tc
them. The mkimage utility we installed earlier was packaged with U-Boot for this purpose. It adds the info
U-Boot needs to binary images while attaching a checksum for verification purposes.

e While the use of image headers is not a technical requirement for a bootloader, such
a headers are very convenient both during development and in the field. Hence, their use
‘. 4. by U-Boot.

To see the typical use of mkimage, type the command without any parameters:

$ nki mage
Usage: nkimage -l inage
-1 = =>1list inage header infornmati on
nmkimage -A arch -Oos -T type -C conp -a addr -e ep -n nane
-d data file[:data file...] i1 nage

-A = => set architecture to 'arch

-O= => set operating systemto 'os'
-T = => set image type to 'type'

-C = => set conpression type 'conp'

-a = => set |oad address to 'addr' (hex)
-e = => set entry point to 'ep' (hex)
-n = => set inage nane to 'nane'

-d = => use i mage data from' dat afil e’
-x = => set XIP (execute in place)

For example here is how | create a U-Boot image of the 2.4.18 kernel | compiled for my control module:

$ cd ${PRIROOT}/i nmages

$ nkimage -n '2.4.18 Control Mdule' \

> -Appc -Olinux -T kernel -C gzip -a 00000000 -e 00000000 \
> -d vminux-2.4.18.gz vminux-2.4.18.ing

| mage Name: 2.4.18 Control Modul e

Cr eat ed: Wed Feb 5 14:19:08 2003
| mge Type: Power PC Li nux Kernel 1 mage (gzip conpressed)
Data Size: 530790 Bytes = 518.35 kB = 0.51 MB

Load Address: 0x00000000
Entry Point: 0x00000000

http://www.wowebook.info

Download at wowebook. 1nfag

The command takes quite a few flags, but their meaning is easily understood by looking at the usage mes
provided by mkimage. Note that the name of the image, provided in the -n option, cannot be more than 3:
characters. Any excess characters will be ignored by mkimage. The rest of the command line tells mkima
this is a gzipped PPC Linux kernel image that should be loaded at address 0x00000000 and started from
same address. The image being provided in input is vmlinux-2.4.18.gz and the U-Boot-formatted image w
output to vmlinux-2.4.18.img.

RAM disk images can be processed in a similar fashion:

$ nkinmage -n ' RAM di sk' \

> -Appc -Olinux -T ramdisk -C gzip \
> -d initrd.bin initrd. boot

| mge Nare: RAM di sk

Cr eat ed: Wed Feb 5 14:20:35 2003
| mage Type: Power PC Li nux RAMD sk | nmage (gzi p conpressed)
Data Size: 470488 Bytes = 459.46 kB = 0.45 MB

Load Address: 0x00000000
Entry Point: 0x00000000

In this case, the number of parameters is shorter, since we don't need to specify start and load addresses
that the image type has changed to r andi sk.

We can also create a mul ti -type image that combines both the kernel image and a RAM disk. In that cas
files included are listed sequentially using a colon separator:

$ nkimage -n '2.4.18 Qrl and Initrd \

> -Appc -Olinux -T multi -C gzip -a 00000000 -e 00000000 \
> -d vnminux-2.4.18.gz:initrd. bin \

> vminux-2.4.18-initrd.ing

| mage Nane: 2.4.18 Crl and Initrd

Cr eat ed: Wed Feb 5 14:23:29 2003
| mage Type: Power PC Li nux Multi-File | nage (gzi p conpressed)
Data Size: 1001292 Bytes = 977.82 kB = 0.95 MB

Load Address: 0x00000000

Entry Point: 0x00000000

Contents:
| mage O: 530790 Bytes = 518 kB
| mge 1: 470488 Byt es 459 kB

0 MB
0 MB

Once you have prepared an image with mkimage, itis ready to be used by U-Boot and can be downloade
target. As we'll see below, U-Boot can receive binary images in a number of different ways. One way is to
images formatted in Motorola's S-Record format. If you intend to use this format, you need to further proc
images generated by mkimage by converting them to the S-Record format. Here is an example conversic
mul ti -type image generated above:

$ power pc-linux-objcopy -1 binary -O srec \
> vminux-2.4.18-initrd.ing vminux-2.4.18-initrd.srec

9.5.6 Booting Using BOOTP/DHCP, TFTP, and NFS

If you have properly configured a server to provide the target with DHCP, TFTP, and NFS services, as |
explained earlier, you can boot your target remotely. Back from U-Boot's prompt on my control module, he
how | boot my target remotely, for example:

=> bootp
BOOTP br oadcast 1
DHCP cli ent bound to address 192. 168.172. 10

http://www.wowebook.info

Download at wowebook. 1nfag

ARP broadcast 1

TFTP fromserver 192. 168.172.50; our |P address is 192.168.172.10
Fi l enane '/ hone/karinm/vmlinux-2.4.18.ing".

Load address: 0x100000

Loadi NQ: #HHHHHHIHHHEHHHE R R R

done

Bytes transferred = 530854 (819a6 hex)

The bootp command issues a request that is answered by the DHCP server. Using the DHCP server's ar

U-Boot contacts the TFTP server and obtains the vmlinux-2.4.18.img image file, which it places at addres
0x00100000 in RAM. You can verify the image's header information using the iminfo command:

=> im 00100000

Checking I nmage at 00100000 ...
| mage Nane: 2.4.18 Control Modul e

Cr eat ed: 2003-02-05 19:19:08 UTC
| mage Type: Power PC Li nux Kernel |mage (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK

As you can see, the information printed out by iminfo on the target is very similar to that printed out on the
by mkinfo. The oK string reported for the checksum means that the image has been downloaded properly
that we can boot it:

=> boot m 00100000
Booti ng image at 00100000 . ..
| mage Nane: 2.4.18 Control Module

Cr eat ed: 2003-02-05 19:19:08 UTC
| mge Type: Power PC Li nux Kernel Image (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK
Unconpressing Kernel Image ... K
Li nux version 2.4.18 (kari m@leoti huacan) (gcc version 2.95.3 20010315
On node O total pages: 4096
zone(0): 4096 pages.
zone(1): O pages.
zone(2): O pages.
Kernel command line: root=/dev/nfs rw nfsroot=
Decrenenter Frequency: 5000000
Calibrating delay loop... 79.66 BogoM PS

VFS: Cannot open root device "" or 02:00

Pl ease append a correct "root=" boot option

Kernel panic: VFS: Unabl e to nmount root fs on 02: 00
<0>Rebooti ng i n 180 seconds..

In this case, the kernel panics because it is unable to find any root filesystem. To solve this problem, we r
use the environment variables to create a boot script for passing appropriate boot options to the kernel. T
following commands create a new boot script, boot pnf s, and modify the special boot cnd script, as we did
Section 9.5.3, in order for the system to boot using BOOTP/DHCP, TFTP, and NFS:

http://www.wowebook.info

Download at wowebook. 1nfag

=> setenv boot pnfs bootp\; setenv kernel addr 00100000\; run nfscnd
=> printenv bootpnfs

boot pnf s=boot p; setenv kernel addr 00100000; run nfscnd

=> setenv boot cnd run bootpnfs

=> printenv bootcnd

boot cmd=run boot pnfs

In this case, the boot pnf s script automatically executes the bootp instruction we used earlier in this sectic
obtain a kernel from the TFTP server. It then uses the nf scnd script we created in Section 9.5.3 to boot tF
kernel. The value of ker nel _addr is changed so that the nf scnd script would use the kemnel loaded using
not the one located at 40100000.

If you use the boot command now, U-Boot will boot entirely from the network. It will download the kernel tl
TFTP and mount its root filesystem on NFS. If you would like to save the environment variables we just s
the saveenv command before rebooting the system, otherwise, you will have set the same variables agail
next reboot.

9.5.7 Downloading Binary Images to Flash

Booting from the network is fine for early development and testing. For production use, the target must he
kemel stored in flash. As we will see shortly, there a few ways to copy a kernel from the host to the target
store it to flash. Before you can copy any kernel image, however, you must first choose a flash region to <
and erase the flash region for the incoming kernel. In the case of my control module, | store the default ke
between 0x40100000 and 0x401FFFFF. Hence, from U-Boot's prompt, | erase this region:

=> er ase 40100000 401FFFFF

Er ase Fl ash from 0x40100000 to Ox401fffff
o done

Er ased 8 sectors

The simplest way to install a kernel in the target's flash is to first download it into RAM and then copy it to
flash. You can use the tftpboot command to download a kernel from the host to RAM:

=> tftpboot 00100000 /hore/ karim vm inux-2.4.18.i ny

ARP broadcast 1

TFTP fromserver 192. 168.172.50; our |P address is 192. 168.172. 10
Fi l enane '/ hone/karinm/ vmlinux-2.4.18.ing".

Load address: 0x100000

Loadi nQ: ###AHHHHHR I B B R R

done

Bytes transferred = 530854 (819a6 hex)

When tftpboot is run, it adds the i | esi ze environment variable to the existing environment variables anc
to the size of the file downloaded:

=> printenv filesize
filesize=819a6

You can use this environment variable in subsequent commands to avoid typing in the file size by hand. C
forget to erase this environment variable before saving the environment variables, or it, too, will be saved.

In addition to tftpboot, you can use the loadb command to download images to the target:

=> | oadb 00100000
Ready for binary (kermt) download ...

http://www.wowebook.info

Download at wowebook. 1nfag

At this point, U-Boot suspends and you must use the terminal emulator on the host to send the image file
target. In this case, U-Boot expects to download the data according to the kermit binary protocol, and you
therefore use kermit to download a binary image to U-Boot. Once the transfer is done, U-Boot will output:

Total S ze
Start Addr

0x000819a6 = 530854 Bytes
0x00100000

Here, too, U-Boot will set the i | esi ze environment variable to the size of the file downloaded. As we did
you may want to use the iminfo command to verify that the image has been properly downloaded.

Once the image is in RAM, you can copy it to flash:

=> cp. b 00100000 40100000 $(filesize)
Copy to Flash... done
=> im 40100000

Checking Inage at 40100000 ...
| mge Nane: 2.4.18 Control Module

Cr eat ed: 2003-02-05 19:19:08 UTC
| mge Type: Power PC Li nux Kernel Image (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK

Alternatively, instead of downloading the image to RAM first using tfptboot or loadb and then writing it to fl
you can download the image directly to flash using loads. In this case, the host sends the image to the tar
S-Record format. In comparison to the two previous methods, however, downloading an S-Record file is
extremely slow. In most cases, itis preferable to use tftpboot or loadb instead.!6]

(6] The loadb command and, by default, the tftpboot command can't be used to download directly to flash. Though U-Boot can be configured
time to allow direct flash download using tftpboot, direct flash download using loadb is not supported.

To download S-Record files, you will need to use the cu terminal emulator to transfer them to the target, t
the other terminal emulators don't interact properly with U-Boot when downloading this sort of file. When
connected through cu, use the following commands:

=> | oads 40100000

Ready for S-Record downl oad ...
~>vm i nux-2.4.18.srec
12345678910 11 12 13 14

...176 33177 33178 33179 33180 33181
[file transfer compl ete]
[connect ed]

First Load Addr = 0x40100000
Last Load Addr = 0x401819A5
Total Size = 0Ox000819A6 = 530854 Bytes
Start Addr = 0x00000000

The ~> string shown here is actually part of the input you have to type. It is actually the cu command used
initiate a file download.

As before, you can verify the image once it's in memory:

=> im 40100000

http://www.wowebook.info

Download at wowebook. 1nfag

Checking I nmage at 40100000 ..
| mge Nane: 2.4.18 Control Module

Cr eat ed: 2003-02-05 19:19:08 UTC
| mage Type: Power PC Li nux Kernel |mage (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK

Every time you want to load a new image to flash, you have to start back at the erase command shown in
beginning of this section.

9.5.8 Booting Using a RAM Disk

The first step in booting from a RAM disk is to download the RAM disk from the host and install it on the ti
flash. Many of the commands are the same as those shown and explained in previous sections. Here is h
this for my control module:

=> tftpboot 00100000 /hone/ karinminitrd.boot

ARP broadcast 1

TFTP fromserver 192. 168.172.50; our |P address is 192.168.172.10
Fil ename '/ hone/kariminitrd. boot"'.

Load address: 0x100000

Loadi NQ: #HHHHHEHAHHHH HHHE R R R R

done

Bytes transferred = 470552 (72el8 hex)

=> im 00100000

Checking Inmage at 00100000 ..
| mge Nane: RAM di sk

Cr eat ed: 2003-02-05 19:20:35 UTC
| mge Type: Power PC Li nux RAMD sk | nage (gzi p conpressed)
Data Size: 470488 Bytes = 459.5 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK
=> printenv filesize
filesize=72el8
= im 40200000

Checking I mage at 40200000 ..
Bad Magi ¢ Nunber
=> er ase 40200000 402FFFFF
Er ase Fl ash from 0x40200000 to Ox402fffff
s done
Er ased 8 sectors
=> cp. b 00100000 40200000 $(filesize)
Copy to Flash... done
=> im 40200000

Checking I mage at 40200000 ..
| mge Nane: RAM di sk
Cr eat ed: 2003-02-05 19:20:35 UTC
| mage Type: Power PC Li nux RAMD sk | nage (gzi p conpressed)

http://www.wowebook.info

Download at wowebook. 1nfag

Data Size: 470488 Bytes = 459.5 kB
Load Address: 00000000

Entry Point: 00000000

Verifying Checksum ... OK

Since | had already installed a kernel, | can boot the kernel available in flash with the RAM disk | just inste

=> boot m 40100000 40200000
Booti ng image at 40100000 . ..
| mage Nane: 2.4.18 Control Module

O eat ed: 2003-02-05 19:19:08 UTC
| mage Type: Power PC Li nux Kernel |1mage (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK
Unconpressing Kernel Image ... K

Loadi ng RAMDI sk | nage at 40200000 ...
| mge Nane: RAM di sk

Cr eat ed: 2003-02-05 19:20:35 UTC
| mage Type: Power PC Li nux RAMD sk | nage (gzi p conpressed)
Data Size: 470488 Bytes = 459.5 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK
Loadi ng Randi sk to 00f2c000, end 00f9edd8 ... K
Li nux version 2.4.18 (kari m@eoti huacan) (gcc version 2.95.3 20010
On node O total pages: 4096
zone(0): 4096 pages.
zone(1l): O pages.
zone(2): 0 pages.
Kernel command |ine
Decrenenter Frequency: 5000000
Calibrating delay loop... 79.66 BogoM PS

RAMDI SK driver initialized: 16 RAMdi sks of 4096K si ze 1024 bl ocksize
RAMDI SK: Conpressed i nage found at block 0O

VFS: Mounted root (ext2 fil esystem.

Here, too, we can use environment variables to automate the booting process. Also, instead of using sep.
images for the kernel and the RAM disk, we could use a single image containing both, such as the one w
created in Section 9.5.5. As | said earlier, U-Boot is a very flexible bootloader with many possible configut
Though we cannot hope to cover all its possibilities here, feel free to experiment with U-Boot to obtain the
that suits you best.

9.5.9 Booting from CompactFlash Devices

Before booting a kernel from a CF card using U-Boot, you heed to properly partition and populate the CF
Use pdisk or fdisk to partition the CF device, depending on your host. Since U-Boot does not recognize al
filesystem, you will need to create a few small partitions to hold raw binary images and one large partition
your root filesystem, as | explained in Chapter 7.

http://www.wowebook.info

Download at wowebook. 1nfag

For my control module, for example, | used a 32 MB CF card on which | created three partitions using fdis
2 MB partitions to hold one stable kernel and one experimental kernel, and one 30 MB patrtition to hold my
filesystem. To copy the kernels to their respective patrtitions, | used the dd command:

dd if=vminux-2.4.18.ing of =/dev/ sdal

1036+1 records in

1036+1 r ecords out

dd if=vminux-2.4.18-preenpt.ing of=/dev/sda2
1040+1 records in

1040+1 r ecords out

| formatted /dev/sda3 using mke2fs, mounted it on /mnt/cf, and copied the root filesystem to it using the
technigues described in the previous chapter.

After | inserted the CF card in the PCMCIA port using a CF-to-PCMCIA adapter, here was the output of U
at startup:

U Boot 0.2.0 (Jan 27 2003 - 20:20:21)

CPU XPC860xxZPnnD3 at 80 MHz: 4 kB I-Cache 4 kB D-Cache FEC pr esent
Board: TQVWB60LDBOA3-T80. 201

DRAM 16 MB

FLASH: 8 MB

In: seri al
Qut : seri al
Err: seri al

Net : SCC ETHERNET, FEC ETHERNET
PCMC A: 3.3V card found: SunD sk SDP 5/3 0.6
Fi xed D sk Card
IDE interface
[silicon] [unique] [single] [sleep] [standby] [idle] [|ow power]
Bus 0: OK
Device 0: Mdel: SanD sk SDCFB-32 Firm vde 1.10 Ser#: 163194D0310
Type: Renpvable Hard D sk
Capacity: 30.6 MB = 0.0 &B (62720 x 512)
Ht any key to stop autoboot: 5

U-Boot identifies the storage device at startup. U-Boot provides a wide range of ide commands for manipi
IDE storage devices. You can see these commands by typing the help command:

=> help ide

ide reset - reset IDE controller

ide info - show available IDE devices

ide device [dev] - show or set current device

ide part [dev] - print partition table of one or all |DE devices

ide read addr blk# cnt
ide write addr blk# cnt - read/wite "cnt' blocks starting at block bl k#
to/from nenory address " addr'

We can further use U-Boot's command line to get more information regarding the device:
=> jde part
Partition Map for IDE device 0 -- Partition Type: DOS

Partition Start Sect or Num Sect or s Ty pe

http://www.wowebook.info

Download at wowebook. 1nfag

1 62 4154 83
2 4216 4154 83
3 8370 54312 83

This command reads the partition table of the CF device and prints it out. In this case, the partition printec
U-Boot fits the description provided earlier.

Loading a kernel image from one of the patrtitions on the CF device is done using the diskboot command.
command takes two arguments: the address where the kernel is to be loaded and a patrtition identifier. Th
is a concatenation of the device number and the partition number on that device separated by a colon. Th
how I load the kernel image found on partition 1 of device 0 to address 0x00400000:

=> di skboot 00400000 O:1

Loadi ng from I DE device 0, partition 1. Name: hdal
Type: U Boot
| mage Nane: 2.4.18 Control Module

O eat ed: 2003-02-05 19:19:08 UTC
| mage Type: Power PC Li nux Kernel Image (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
=> jm 00400000

Checking I nmage at 00400000 ...
| mge Nane: 2.4.18 Control Module

O eat ed: 2003-02-05 19:19:08 UTC
| mage Type: Power PC Li nux Kernel |mage (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000
Verifying Checksum ... OK

Once the kernel is loaded, you can use the bootm command to boot that kernel. This can also be automa
setting the aut ost ar t environment variable to yes. In that case, diskboot will automatically boot the kerne
loads:

=> setenv autostart yes
=> di sk 00400000 O:1

Loadi ng from|DE device 0, partition 1. Nane: hdal
Type: U Boot
| mage Narme: 2.4.18 Control Module

Cr eat ed: 2003-02-05 19:19:08 UTC
| mge Type: Power PC Li nux Kernel Image (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000

Entry Point: 00000000
Aut omati ¢ boot of inmage at addr 0x00400000 ...
Booti ng i mage at 00400000 . ..

| mge Nane: 2.4.18 Control Module

Cr eat ed: 2003-02-05 19:19:08 UTC
| mage Type: Power PC Li nux Kernel |mage (gzip conpressed)
Data Size: 530790 Bytes = 518. 3 kB

Load Address: 00000000
Entry Point: 00000000

http://www.wowebook.info

Download at wowebook. 1nfag

Verifying Checksum ... OK

Unconpressing Kernel Image ... K
Li nux version 2.4.18 (karim@leoti huacan) (gcc version 2.95.3
On node O total pages: 4096

As we did in Section 9.5.3 and Section 9.5.6, you can script the bootup from the CF device by setting the
appropriate U-Boot environment variables. Also, if you wish, you can write to the disk directly from U-Boot
the ide write command. Have a look at the help output and the documentation for more information regarc
use of U-Boot's IDE capabilities.

9.5.10 Updating U-Boot

U-Boot is like any other open source project; it continues to evolve over time as contributions are made al
fixes are integrated to the codebase. Consequently, you may feel the need to update your target's firmwail
version. Fortunately, because U-Boot runs from RAM, it can be used to update itself. Essentially, we have
download a new version to the target, erase the old firmware version, and copy the new version over it.

There are obvious dangers to this operation, because a mistake or a power failure will
”@ render the target unbootable. Hence, utmost caution must be used when carrying out the
following steps. Make sure you have a copy of the original bootloader you are about to
replace so that you can at least fall back to a known working version. Also, seriously
consider avoiding the replacement of your firmware if you have no hardware means to
reprogram the target's flash if the upgrade fails. If you do not have access to a BDM
debugger or a flash programmer, for example, there is a great risk that you will be left
with a broken system if one of the following steps fails. Dealing with buggy software is
one thing; ending up with unusable hardware is another.

Once you have taken the necessary precautions, download the U-Boot image into RAM using TFTP:

=> tftp 00100000 / home/kari ml u-boot. bin-0.2.0

ARP broadcast 1

TFTP fromserver 192. 168.172.50; our |P address is 192.168.172.10
Fi l ename '/ hone/kari nf u- boot.bin-0.2.0".

Load address: 0x100000

Loadi NQ: #H#HHHHIHHHEHHE TR

done

Bytes transferred = 166532 (28a84 hex)

If you do not have a TFTP server set up, you can also use the terminal emulator to send the image:

=> | oadb 00100000
Ready for binary (kermt) download ...

Start Addr = 0x00100000

Unlike other images we have downloaded to the target, you cannot use the imi command to check the im.
since the U-Boot image downloaded was not packaged on the host using the mkimage command. You ce
however, use crc32 before and after copying the image to flash to verify proper copying.

Now, unprotect the flash region where U-Boot is located so you can erase it (in this case, U-Boot occupie
flash region from 0x40000000 to Ox4003FFFF):

=> protect off 40000000 4003FFFF
Un-Protected 5 sectors

http://www.wowebook.info

Download at wowebook. 1nfag

Erase the previous bootloader image:

=> er ase 40000000 4003FFFF

Er ase Fl ash from 0x40000000 to Ox4003ffff
done

Er ased 5 sectors

Copy the new bootloader to its final destination:

=> cp.b 00100000 40000000 $(filesize)
Copy to Flash... done

Erasethefi| esi ze environment variable set during the download:
=> setenv filesize
Save the environment variables:

=> saveenv
Saving Environent to Flash..
Un-Protected 1 sectors
Er asi ng Fl ash. ..
done
Er ased 1 sectors
Witing to Flash... done
Protected 1 sectors

At this stage, the new bootloader image has been installed and is ready to be used. Until you issue the re:
command, however, you can still use the old U-Boot currently running to fix any problems that may have
occurred during the update. Once you are satisfied that every step of the update has gone through cleanl
can go ahead and restart the system:

=> reset

U Boot 0.2.0 (Jan 27 2003 - 20:20:21)

CPU XPC860xxZPnnD3 at 80 MHz: 4 kB |I-Cache 4 kB D-Cache FEC present
Board: TQWB60LDBOA3-T80. 201

DRAM 16 MB

FLASH.: 8 MB

In: seri al
Qut: seri al
Err: seri al
Net : SCC ETHERNET, FEC ETHERNET

PCMCI A No Card found
Ht any key to stop autoboot: 5

If you can see the U-Boot boot message again, U-Boot has been successfully updated. Otherwise, there
been a problem with the replacement of the firmware and you need to reprogram the flash device using tt
appropriate hardware tools.

Sometimes, kernel images that used to boot with the older bootloader version will fail to boot with newer

versions. When upgrading from a PPCBoot version prior to 1.0.5 to Version 1.0.5 or later, for example, ke
prior to 2.4.5-pre5 may fail to boot. In that case, the reason behind the problem is in the way U-Boot pass
clock speed to the kernel. Prior to kernel 2.4.5-pre5, kernels expected to receive the speed in MHz, while
kernels expect to receive the speed in Hz. To this end, PPCBoot 1.0.5 passes the clock speed to kernels

http://www.wowebook.info

Download at wowebook. 1nfag

Kernels that expect to receive it in MHz, however, fail to boot. In practice, the boot process will start as it \
normally, but the system will freeze right after U-Boot finishes uncompressing the images for startup. You
therefore, see something like:

Entry Point: 00000000
Verifying Checksum ... OK
Unconpressing Kernel Image ... K

Nothing will be output after that, and there will be no responses to any input from the terminal. To solve th
problem, you need to tell the newer version of U-Boot to keep passing the clock speed in MHz to the olde
kernels. This is done by setting the cl ocks_i n_nhz environment variable to 1:

=> setenv clocks in nmhz 1
=> saveenv

Though this sort of problem does not occur for every upgrade, changes in the kernel sometimes require
significant changes to the tools that interface with it. Given that such problems are difficult to figure out if \
not involved in the actual development of each project, | strongly encourage you to keep in touch with the
the U-Boot users by subscribing to the U-Boot users mailing list from the project's web site and to read
announcements of new versions carefully.

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 10. Setting Up Networking Services

Increasingly, embedded system designers are called upon to include networking capabilities in their
products. An embedded system may, for example, include a web server to enable web-based
configuration. It may also enable remote login for maintenance and upgrading purposes. Because the
Linux kernel, and the networking software that run on it, are often the preferred software for running
networking services that require high reliability and high availability, you will find Linux particularly well
suited for networking applications.

In this chapter, we will discuss the setup and configuration of the networking services most commonly
found in embedded Linux systems. This discussion will include instructions on how to cross-compile
each networking package and how to modify the target's root filesystem to run the services provided by
each package. In particular, | will cover the use of the internet super-server (inetd), remote administration
with SNMP, network login through Telnet, secure communications with SSH, serving web content
through HTTP, and dynamic configuration through DHCP.

There are, of course, many other networking services that can run on top of Linux. Though | couldn't
realistically cover all of them in a single chapter, the explanations included here should provide you with
some hints as to how to install and use other networking packages. Also, | will not cover the setup,
configuration, and use of actual networking hardware. If you need information regarding these issues,
have alook at Running Linux and Linux Network Administrator's Guide, both published by O'Reilly. | will
not provide in-depth coverage, either, of the configuration and use of the various networking packages,
since many already have entire books dedicated to them. For more information regarding Linux
networking in general, look at books such as the ones mentioned earlier that discuss the issue from the
perspective of a server or a workstation.

This chapter builds on the material presented in Chapter 6. The operations presented here are done as
part of building the target's root filesystem described in Chapter 6. Though these operations are
supplemental, we discuss them here because they are not essential to the creation of the target's root
filesystem.

http://www.wowebook.info

Download at wowebook. 1nfag

10.1 The Internet Super-Server

As in most other Unix systems, networking services are implemented as daemons in Linux. Each
networking daemon responds to requests on a particular port. The Telnet service, for example, operates
on port 23. For networking services to function properly, some process must be alive and listening on
each corresponding port. Instead of starting all the networking daemons so that each would listen to its
own port, however, most systems make use of an internet "super-server.” This super-server is a special
daemon that listens to the ports of all the enabled networking services. When a request comes in from a
particular port, the corresponding networking daemon is started, and the request is passed on to it for
service.

There are two main benefits to this scheme. First, only the minimal set of needed daemons is active at
all imes, and therefore, no system resources are wasted. Second, there is a centralized mechanism for
managing and monitoring network services.

Though many networking services can be managed by the internet super-server, some services such as
an HTTP server or an SNMP agent are almost always set up to have direct control of their ports for
reasons of scalability and reliability. In fact, the daemons providing such services will not require an
internet super-server to operate properly. For each networking service discussed in the following
sections, we will consider whether the service depends on the super-server.

There are two main internet super-servers available for Linux, inetd and xinetd. Though inetd used to be
the standard super-server for most Linux distributions, it is gradually being replaced by xinetd, which
contains more features. But because inetd contains fewer features than xinetd, itis also smaller and may
be better for an embedded Linux system.

10.1.1 inetd

inetd is part of one of the netkit packages available from ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/.
Netkit is a set of packages that provide various networking capabilities. inetd is part of the netkit-base
package, which also contains ping. Like other netkit packages, netkit-base is distributed under the terms
of a BSD license. In this section and throughout this chapter, | will use an ARM-based system as my
system management (SYSM) modulell] to present the operations you need to carry out.

[1] See Section 1.3 for details about the components in my example system.

First, download netkit-base and extract it into your ${PRIJROOT}/sysapps directory. For my SYSM
module, | used netkit-base Version 0.17. Now, move to the directory where netkit-base was extracted:

$ cd ${PRIROOT}/sysapps/ netkit-base-0. 17

Before you begin configuring netkit-base, you need to modify the configure script to prevent it from trying
to run test programs on your host. Because you are instructing it to use the compiler you built for the
target, the test programs it compiles will be fit only for your target. Hence, these test programs will fail to
run on the host, and the configure script fails to complete if it is not modified. To avoid these problems,
edit the configure script and comment all the lines that attempt to execute the compiled binary by adding
a # symbol at the beginning of each line. The actual test programs configure tries to run are all called _
_conftest. Here is an example commented line:

./ _ _conftest || exit 1;
To build, inetd requires either glibc or uClibc. To link it against uClibc, however, you need to make sure

that RPC support was enabled in uClibc. If uClibc was built with RPC disabled, which is the default, you
must reinstall uClibc.

http://www.wowebook.info

Download at wowebook. 1nfag

Once the configure script has been properly edited, configure and compile netkit-base:

$ CC=arml inux-gcc ./configure --prefix=${ TARGET PREFI X}
$ make

Netkit-base builds quite rapidly. The binary generated is 24 KB in size when linked dynamically with glibc
and stripped. When linked statically with glibc and stripped, the size of the binary is around 460 KB. With
uClibc, the stripped binary is 24 KB when linked dynamically and 85 KB when linked statically.
Regardless of the actual link method you choose, the resulting inetd binary is much smaller than the
xinetd binary, as we shall see in the next section.

- The file sizes provided throughout this chapter correspond to my own setup and
you are likely to obtain slightly different sizes. Use the numbers provided here as
#: anindication only, because your actual binaries are likely to have different sizes
* from mine. ARM code, for instance, and RISC code in general, is usually larger
than x86 code.

In contrast with other packages we've built in other chapters, don't use make install, because the
Makefiles were not properly built for cross-platform development. Among other things, they attempt to
use the host's strip command to strip the binaries of their symbol tables.

To install inetd, copy the inetd binary and the sample configuration file manually to your target's root
filesystem:

$ cp inetd/inetd ${PRIRQOT}/r oot fs/ usr/sbhin
$ cp etc.sanplel/inetd. conf ${PRIROOT}/rootfs/etc

Edit the inetd.conf file according to your own setup. In addition to inetd.conf, the etc.sample directory
contains other file samples that may be used in your target's /etc directory, such as resolv.conf and
services. For my SYSM module, for example, here's the inetd.conf entry for the Telnet daemon
discussed in Section 10.3:

telnet stream tcp nowait r oot /usr/shbin/tel netd

Once inetd is copied and configured, edit your target's /etc/inittab file to add a line for inetd. Here is an
example line for my SYSM module that uses BusyBox's init:

c:respawn: / usr/sbhin/inetd -i

The -i option instructs inetd not to start as a daemon. Hence, init can respawn inetd if it dies for some
unexpected reason.?

(21 The super-server is not normally subject to crashing. The reliance on init is therefore just an extra precaution.

Because netkit-base also includes ping, you will find a ping binary in the ping directory. You don't need to
use this binary if you are already using BusyBox, however, since BusyBox includes a ping command.

For more information regarding the use of inetd, have a look at the man pages included in the netkit-
base package under the inetd directory.

10.1.2 xinetd

xinetd is preferable to inetd on some systems, because it allows some secure authorization, provides
extensive logging abilities, and can prevent denial-of-access attacks, among other things. Though the
FAQ available from the xinetd project web site contains a complete list of advantages over inetd, suffice
it to say that you should use the xinetd super-server if your embedded system is designed to provide

http://www.wowebook.info

Download at wowebook. 1nfag

extensive networking services or live in a hostile networking environment such as the Internet.

xinetd is distributed at http://www.xinetd.org/ under a BSD-like license. For my SYSM module, | used
xinetd Version 2.3.9. Download and extract the xinetd package into your ${PRJROQOT}/sysapps
directory, and move into the package's directory for the rest of the manipulations:

$ cd ${PRIROOT}/sysapps/xi netd-2.3.9

As with inetd, xinetd can't be compiled with uClibc if it lacks certain features. In particular, xinetd will fail
to build with uClibc if it doesn't support RPC and C99. In addition to the C library, xinetd depends on the
math library (libm) and the cryptography library (libcrypt).

Configure, compile, and install xinetd:

$ CC=arml inux-gcc ./configure --host=$TARCGET -- prefix=${ TARGET_PREFI X}
$ make
$ make install

xinetd builds quite rapidly. The stripped dynamically linked binary itself is quite large, being 130 KB in
size with either uClibc or glibc. When statically linked and stripped, the binary's size is 615 KB with glibc
and 210 KB with uClibc. The xinetd package installs its components in the ${TARGET_PREFIX}
directory. The build also installs manpages. The xinetd binary itself is installed in ${TARGET_PREFIX}.
Copy it from that directory to your target's root filesystem and strip it:

$ cp ${ TARGET_PREFI X}/ sbhi n/ xi net d ${PRJROOT}/ rootfs/usr/sbin
$ armlinux-strip ${PRIROOT}/ rootfs/usr/sbin/xinetd

A sample configuration file is provided with xinetd, xinetd/sample.conf. Use this sample as the basis for
configuring your target. Copy it to your target's root filesystem and edit it according to your needs:

$ cp xi netd/sanpl e.conf ${PRIROOT}/ rootfs/ etc/xi netd. conf
Here is the entry in my SYSM module's xinetd.conf for the Telnet daemon discussed in Section 10.3:

servi ce tel net

{
socket type = stream
wai t = no
user = root
ser ver = /usr/shbin/tel netd
bi nd = 127.0.0.1
log on failure += USERI D
}

Finally, edit your target's /etc/inittab file to add a line for xinetd. As for inetd, | had to add a line for xinetd
in my SYSM module's inittab:

;. once:/ usr/sbin/xinetd
Unlike inetd, xinetd can be started only as a daemon. Therefore, it cannot be respawned by init if it dies.

For more information regarding the use and configuration of xinetd, look at the manpages included in the
xinetd directory of the xinetd package. The project's web site also includes an FAQ and a mailing list.

http://www.xinetd.org/
http://www.wowebook.info

Download at wowebook. 1nfag

10.2 Remote Administration with SNMP

The Simple Network Management Protocol (SNMP) allows the remote management of devices on
TCP/IP networks. Though networking equipment, such as routers and switches, is the most likely to be
SNMP-enabled, almost any device that connects to a TCP/IP network can be equipped with an SNMP
agent.3l An SNMP agent allows you to monitor the target remotely and automatically. In other words, you
don't need to have an operator stand by the system and make sure it's still alive and watch over its
current performance. The SNMP agent allows you to automatically query the device for its status using
an SNMP manager¥l application running on a separate system. The agent running in your target can
also be configured to send SNMP traps to the SNMP manager to inform it of software or hardware
failure. If your target is part of a complex network or if you need to be able to constantly monitor its status
remotely, you should think about including an SNMP agentin it.

B3] Basically, an agent is the SNMP software component that runs in the networked device to enable it to be managed remotely.

[41 A manager is an SNMP software component that runs on a normal workstation or server and that is responsible for monitoring remote
systems running SNMP agents.

There are quite a few SNMP agents and packages that enable interaction with SNMP-enabled devices,
many of them are quite expensive. In the open source world, Net-SNMP is the standard package for
building and managing SNMP-enabled systems. Net-SNMP is distributed at http://net-
snmp.sourceforge.net/ under a composite license that is similar to the BSD license. [

[5] See the COPYING file in the Net-SNMP package for the complete details about the license.

The Net-SNMP package is relatively large and contains many software components. For most targets,
however, we will be interested only in the SNMP agent, since this is the software component that will
allow our device to be remotely managed. Start by downloading and extracting the Net-SNMP package
to your ${PRIROOT}/sysapps directory. For my SYSM module, for example, | used Net-SNMP Version
5.0.6. Now, move to the package's directory for the rest of the manipulations:

$ cd ${ PRIROCOT}/sysapps/ net-snnp-5. 0.6

The Net-SNMP package can be compiled with both uClibc and glibc. There are a few requirements when
using uClibc, however, as we'll see. In addition to the C library, Net-SNMP depends on the shared object
dynamic loading library (libdl) and the math library (libm).

To configure Net-SNMP for building with glibc enter:
$ CC=arml inux-gcc ./configure --host=$TARCGET --with-endi anness=little

To link Net-SNMP against uClibc, uClibc must be configured with IPv6 support. If it isn't, you can add the
—disable-ipv6 option to Net-SNMP's configuration command line to disable IPv6 support within Net-
SNMP. Also, you will need to fix the agent/mibgroup/ucd-snmp/disk.c file so that it compiles properly with
uClibc. Edit the file and look for the following declaration:

#i f HAVE_FSTAB H
endfsent();
#endi f

Replace that declaration with the following one:

#1 f ! defined HAVE GETMNTENT && defined HAVE FSTAB H
endfsent();
#endi f

Finally, issue the configure command using arm-uclibc-gcc instead of arm-linux-gcc.

http://net-
http://www.wowebook.info

Download at wowebook. 1nfag

Note that we avoid using the - -prefix option when configuring Net-SNMP. If we used it, the resulting
SNMP agent would always look for its files in the directory provided in the option. Instead, we want the
SNMP agent to take its configuration from the default /usr/local/share/snmp directory. To control the
directory where the SNMP components are installed, we will set the values of prefi x and exec_prefi x
when issuing the make install command.

During its execution, the configuration script will prompt you for certain information regarding the
functionality of the SNMP agent, including the SNMP version to use, the contact information for the
device, and the system's location. The instructions provided by the configuration script are usually
sufficient to understand the purpose of the information requested. If you need more information
regarding the configuration process of the Net-SNMP agent, look at the Essential SNMP book by
Douglas Mauro and Kevin Schmidt (O'Reilly).

Once the configuration script has completed, build and install the Net-SNMP components:

$ make
$ make prefix=${ TARGET PREFI X} exec_prefix=${ TARGET PREFI X} install

The values we provide for the prefi x and exec_prefi x variables determine the main directory where the
Net-SNMP components are installed. By avoiding the use of the - -prefix option during the configuration
earlier and by setting the prefi x and exec_prefi x variables here, we ensure that the SNMP agent runs
from the target's /ust/local/share/snmp directory even though its components are initially installed in the
${TARGET_PREFIX} directory on the host. If you forgetto setexec_prefi x, the installation will fail,
because the scripts will try to install components into your host's /usr directory.

The SNMP agent built by Net-SNMP is a very large binary. If you compile it against glibc and strip it, it
will measure 650 KB when linked dynamically and 1.1 MB when linked statically. If you compile it against
uClibc and strip it, it will measure 625 KB when linked dynamically and 680 KB when linked statically.
Because the figures for the unstripped binaries all exceed 1.7 MB, | strongly encourage you to strip the
agent binary.

The complete build and installation will take around 10 minutes, depending on your hardware, because
Net-SNMP is quite a large package. In addition to copying binaries, the installation copies manpages and
headers into the ${TARGET_PREFIX} directory. The SNMP daemon (snmpd), which is the actual SNMP
agent, is installed in ${TARGET_PREFIX}/sbin. The other SNMP utilities, such as snmpget, are installed
in ${TARGET_PREFIX}/bin. The SNMP trap daemon is also installed in ${TARGET_PREFIX}/sbin (this
daemon is used to monitor incoming traps). The MIB information required by the SNMP daemon is
installed in ${TARGET_PREFIX}/share/snmp.

With all the Net-SNMP components installed in your development workspace on the host, copy the
SNMP daemon to your target's root filesystem:

$ cp ${ TARGET_PREFI X}/ sbi n/snnpd ${ PRIROOT}/r oot fs/ usr/sbin

Copy the relevant components found in ${TARGET_PREFIX}/share/snmp to the /usr/local/share/snmp
directory of your target's root filesystem:

$ nkdir -p ${PRIROOT}/r oot fs/usr/local /share
$ cp -r ${ TARGET PREFI X}/share/ snnp ${ PRIRCOT}/r oot fs/ usr/local /share

The SNMP MIB information weighs in at around 1.3 MB. Added with the stripped binary, this brings the
minimum cost of the total SNMP package to a little over 2 MB in storage. This is a fairly large package
for most embedded Linux systems.

To run properly, the SNMP agent requires a configuration file. An EXAMPLE.conf example configuration
has been created during the build of the Net-SNMP package in the package's root directory. Customize
that file and copy it to your ${PRJROOT}/rootfs/ust/local/share/snmp directory:

http://www.wowebook.info

Download at wowebook. 1nfag

$ cp EXAWPLE. conf ${ PRIROOT}/ rootfs/usr/local /share/snnp/ snnpd. conf

Finally, edit your target's /etc/inittab file to add a line for snmpd. Here is the line | add for snmpd in my
SYSM module's inittab:

;. respawn: / usr/ sbi n/snnpd -f

The -f option instructs snmpd not to fork from the calling shell. In other words, snmpd will not become a
daemon and init will respawn it if it dies.

For more information regarding SNMP, including the configuration and use of Net-SNMP, look at the
Essential SNMP book mentioned earlier. The Net-SNMP project's web site contains quite a few

resources, including an FAQ, various documents, and a mailing list. The manpages installed by Net-
SNMP are also informative.

http://www.wowebook.info

Download at wowebook. 1nfag

10.3 Network Login Through Telnet

The Telnet protocol is one of the simplest ways to log in to a remote network host. Consequently, it's the
easiest way to access your target system once itis connected to a network. To enable remote login, your
target must run a Telnet daemon. There are two main Telnet daemons available for use in embedded
Linux systems, telnetd, which is part of the netkit packages mentioned earlier, and utelnetd, which is
maintained by Robert Schwebel of Pengutronix. In terms of size, the binary generated by the utelnetd
package is clearly smaller than the one generated by the netkit Telnet package. In addition, utelnetd
does not require an internet super-server, while telnetd does. If your system has very limited resources
and does not include other network services managed by an internet super-server, use utelnetd.

Though Telnet is a convenient, lightweight communications mechanism for managing your device on a
dedicated network, it's not a secure protocol and is, therefore, not fit for use on the Internet. If you need
to remotely log in a device that resides on the Internet, use SSH instead. We will discuss SSH in detail in
Section 10.4.

10.3.1 netkit-telnetd

As with other netkit packages, netkit-telnet, which contains telnetd, is distributed at
ftp://ftp.uk.linux.org/pub/linux/Networking/netkit/ under a BSD license. For my SYSM module, | used
netkit-telnet Version 0.17.

Download and extract the netkit-telnet package into your ${PRIJROOT}/sysapps directory and move to
the package's directory for the rest of the manipulations:

$ cd ${PRIROOT}/sysapps/netkit-telnet-0.17

As in the case of the netkit-base package described earlier, the configure script included in netkit-telnet
package attempts to run some test programs. Because these test programs are compiled using the
target's compiler, they will fail. To avoid this, edit the configure script and comment out all the lines that
attempt to execute test binaries. As earlier, here is an example commented line:

./_ _conftest || exit 1;

Once the script has been modified, you are ready to configure and compile the Telnet daemon. To link
with glibc, type:

$ CC=arml inux-gcc ./configure --prefix=${ TARGET PREFI X}
$ touch ${ TARGET PREFI X}/i ncl ude/terntap. h
$ make -C tel netd

To build with uClibc, type:

$ CC=ar muclibc-gcc ./configure --prefix=${TARGET_PREFI X}
$ touch ${PREFIX}/uclibc/include/terntap.h
$ make -C tel netd

As you can see, we compile only telnetd. The package also includes the telnet client, but the Makefile for
that client doesn't allow cross-compilation. Even if it did, you'll find it better to use the miniature telnet
client included in BusyBox. We used touch to create a termcap.h file in the appropriate header directory
because telnetd's source files include this header file. We don't need the termcap library, however. The
build process requires only the termcap header file to be present, and the file can be empty.

The complete build process for telnetd is fairly short. The resulting binary is quite small. When built with

http://www.wowebook.info

Download at wowebook. 1nfag

uClibc and stripped, the binary is 30 KB if linked dynamically and 65 KB if linked statically. When built
with glibc and stripped, the binary is 30 KB if linked dynamically and 430 KB if linked statically.

Don't use make install, because the Makefile was not properly built for cross-platform development and
attempts to use the host's strip command instead of the version we built earlier for the target.

Instead, copy the telnetd binary by hand to your target's root filesystem:
$ cp telnetd/ telnetd ${ PRIROOT}/ rootfs/usr/sbin

You need to have a properly configured copy of either the inetd or xinetd internet super-server that allows
Telnet connections to your target. Alternatively, you could edit your target's /etc/inittab to start the Telnet
daemon using the -debug option so that it doesn't need to rely on any super-server. However, telnetd
wasn't meant to be used this way.

In addition to the C library, telnetd depends on the login routines library (libutil). Hence, do not forget to
copy this library to your target's /lib directory if you link telnetd dynamically.

For further information regarding the use of telnetd, have a look at the manpage included in the telnetd
directory of the netkit-telnet package, or the manpage installed on your host for your workstation's native
telnetd.

10.3.2 utelnetd

The utelnetd package is distributed at http://www.pengutronix.de/software/utelnetd_en.html under the
terms of the GPL. utelnetd depends on the C library and can be built using uClibc. For my SYSM
module, | used utelnetd 0.1.3.

Download and extract the utelnetd package into your ${PRIJROOT}/sysapps directory and move to that
package's directory for the rest of the installation:

$ cd ${PRIROOT}/utel netd-0.1. 3

utelnetd does not require any configuration before compilation. To compile the package against glibc,
type:

$ CC=ar m| i nux-gcc make

The compilation time is very short, since the entire daemon is contained in a single source file. The
resulting utelnetd binary is around 10 KB in size when linked dynamically with either glibc or uClibc and
stripped. When linked statically, the binary is 375 KB if linked against glibc and stripped, and 25 KB if
linked against uClibc and stripped.

There are no configuration files required for utelnetd. All you need is to copy the binary to your target's
root filesystem and modify the system's initialization to start a copy of utelnetd at startup. Unlike telnetd,
utelnetd is standalone and doesn't rely on an internet super-server such as inetd or xinetd. First, copy the
file to your target's root filesystem:

$ cp utelnetd ${PRIROOT}/r oot fs/ usr/shin

Now, edit your target's /etc/inittab file to start utelnetd at startup. As an example, here is the line | add for
utelnetd in my SYSM module's /etc/inittab:

.. respawn: / usr/ shi n/utel netd

Though there is little documentation on the use of utelnetd, the package is simple enough that a quick
glance at the source code should provide you with all the information you need.

http://www.pengutronix.de/software/utelnetd_en.html
http://www.wowebook.info

Download at wowebook. 1nfag

http://www.wowebook.info

Download at wowebook. 1nfag

10.4 Secure Communication with SSH

Though you can easily communicate with your target using Telnet, itis a very insecure protocol and its
vulnerabilities are widely documented. The user password, for instance, is transmitted in clear text from
the client to the server. It would therefore be rather unprudent, and in most cases downright dangerous,
to include a Telnet daemon in your product in the hopes of being able to remotely fix problems once the
product is at the client's site. Instead, it would be much preferable to use a protocol that relies on strong
encryption and other mechanisms to ensure the communication's confidentiality. The best way to do this
currently is to use the SSH protocol and related tool suite. SSH uses public-key cryptography to
guarantee end-to-end communication encryption while being fairly easy to use and deploy.

Because SSH is an IETF standard, there are a few competing implementations, some of which are
proprietary commercial products. The main open source implementation is OpenSSH. Although there
are other open source implementations, they are either very difficult to cross-compile or have
dependencies that make them impractical for use in embedded Linux systems. | will therefore devote
most of this section to discussing OpenSSH. We will briefly review the other open source
implementations, because they may eventually become usable in embedded Linux systems.

An embedded system that can be accessed through SSH runs the same SSH server software usually
run on a traditional server. Our discussion will therefore concentrate on the compilation of the SSH
server for the target, and its setup, configuration, and use on the target. | will not cover aspects of how to
set up and use any of the other SSH components.

If you are seriously considering using an SSH package in your target, | suggest you take a look at SSH,
The Secure Shell: The Definitive Guide by Daniel Barrett and Richard Silverman (O'Reilly). It provides
the in-depth coverage | cannot undertake here.

10.4.1 OpenSSH

OpenSSH is developed and maintained as part of the OpenBSD project. It is available from
http://www.openssh.org/ under a composite BSD license (see the LICENSE file for the complete details)
along with ample documentation and quite a few other resources. To use OpenSSH in your target, you
also need two libraries: OpenSSL and zlib. OpenSSL is an open source implementation of the Secure
Socket Layer (SSL) protocol and is available from http://www.openssl.org/ under a BSD-like license. The
zlib compression library is the same as the one we discussed earlier in Section 7.1. Before building and
installing OpenSSH, you must first build and install both these libraries in your host's cross-platform
development framework. In addition, OpenSSH, OpenSSL, and zlib need to exist natively on your host. If
you intend to link OpenSSH with uClibc, uClibc must be installed natively on your host. Before you go
any further, make sure that the required components are properly installed on your workstation, since
they are needed for compiling OpenSSH for the target.

For my example SYSM module, | used OpenSSH 3.5p1, OpenSSL 0.9.6g, and zlib 1.1.4. Because
vulnerabilities are found from time to time in some of these packages, it is important to keep track of the
versions you are using and to have upgrade plans, in case serious vulnerabilities are found in one of the
versions you are using.

http://www.openssh.org/
http://www.openssl.org/
http://www.wowebook.info

Download at wowebook. 1nfag

The OpenSSH package is hostile to cross-compilation. Among many other things,
*@ its configuration script attempts to run test samples it builds using the compiler
specified with cc=. Because the applications built using the cross-compiler can't
run on the host, the script stops and emits an error. As you'll see, we need to
resort to a number of tricks to force the package's configuration scripts and
Makefiles to build the software. The headers and libraries installed natively on the
host are used extensively, for example, in fooling the package into compiling for
the target. Though the instructions that follow try to be as complete as possible,
you may need to put some effort into figuring out a few modifications for your own

setup.
- In the following, | discuss both OpenSSL and OpenSSH. Because the names of
s both packages differ by only one letter, it is easy to confuse the names while

“! 4. reading the text. Pay close attention to the last letter of each package name to
* avoid any confusion.

We will discuss how to build and install OpenSSL shortly. First, however, refer to Section 7.1 for
instructions on how to build zlib. In contrast to these earlier instructions, you need to build zlib as a static
library instead of a shared library. To do so, don't set the value of LDSHARED and don't use the - -shared
option, as we did earlier, on the configure command line.

In the rest of this section, | willassume that you are building OpenSSH against glibc. If you would rather
use uClibc, replace all references to ${TARGET_PREFIX} with references to ${PREFIX}/uclibc and all
references to arm-linux-gcc with references to arm-uclibc-gcc. If you had not enabled shadow password
support and C99 support when installing uClibc, you will need to reinstall uClibc with support for these
features enabled. Also, you will need to install zlib in uClibc's directory. To do so, set the value of prefi x
to ${PREFIX}uclibc instead of ${TARGET_PREFIX} when issuing the make install command for zlib.

With zlib properly built and installed, download and extract OpenSSL in your ${PRJROOT}/build-tools
directory. Move to the package's directory to configure, compile, and install it:

$./config --prefix=${TARGET_PREFI X} conpi ler:arnmlinux-gcc
$ nmake
$ make install

Here, the compiler is specified using the compiler: option instead of setting the value of cC. Once
completed, all the components installed are found under the ${TARGET_PREFIX} directory. The
compilation takes around 10 minutes on my hardware setup.

Once OpenSSL is installed, download and extract OpenSSH into your ${PRJROOT}/sysapps directory.
Now move to OpenSSH's directory to proceed:

$ cd ${ PRIROOT}/ sysapps/ openssh- 3. 5pl

To trick OpenSSH's configure script into successfully creating useful Makefiles, we need to pretend that
we are actually configuring it for the host. We then use the Makefiles created by configure to build
OpenSSH for the target. For this scheme to succeed, we must use a few fake file links. Mainly, we need
to:

1. Create a symbolic link to the host's C compiler bearing the same name as the C compiler we
generated for the target.
2. Create a symboilic link to the host's native OpenSSL headers.

3. Create a symbolic link to the host's native OpenSSL libraries.

http://www.wowebook.info

Download at wowebook. 1nfag

On my development host, for example, the native OpenSSL headers and libraries are located in the
lusr/local/ssl directory, and the C compiler is located in /usr/bin. Here are the preliminary steps | use for
preparing the build of OpenSSH for my SYSM module:

$ export PATH=./: $PATH

$ which gcc

/usr/ bin/gcc

$In -s fusr/bin/gcc ./armlinux-gcc

$In -s Jusr/local/ssl/include ./fake-incl ude
$1In -s /usr/local/ssl/lib ./fake-1ib

I modified the PATH to force configure to start looking in the current directory first for all binaries. This
enables me to trick it into using a compiler called arm-linux-gcc when this is really the host's own
compiler. | can now run the configure script itself using the fake links:

$ CC=ar m| inux-gcc CFLAGS=-1./fake-include LDFLAGS=-L./fake-lib \
> ./configure --host=$TARGET

The line above generates Makefiles that build dynamically linked binaries. To link the binaries statically,
change the value of LDFLAGSt0"- L. /fake-lib -static".

The script's output resembles the output of other configure scripts we've seen before. At the end,
however, it prints a summary of the configuration it has found:

OpenSSH has been configured with the fol | owi ng options:

User binaries:

System binari es:
Configuration files
Askpass program

Manual pages:

PID fil e:

Privil ege separation chroot pat h:
sshd default user PATH
Manpage fornat:

PAM suppor t:

Ker beroslV support:
KerberosV support:

Smar tcard support:

AFS support:

S/ KEY support:

TCP Wappers support:
MD5 password support:

| P address in $D SPLAY hack:
Use | Pv4 by default hack:
Translate v4 in v6 hack:
BSD Auth support:

Random number source:

Host :

Conpi |l er:

Compi l er fl ags:

Pr epr ocessor fl ags:
Li nker fl ags:

Li braries:

arm | inux-gcc

-L./fake-lib
-l util

-1./fake-i ncl ude -wall

-1z -1nsl

fusr/local /bin
[usr/local /sbhin
lusr/local /etc
[usr/local /li bexec/ ssh-askpass
[usr /1 ocal / man/ manX
/var/run

/var [enpty
fusr/bin:/bin:/usr/sbin:/sbhin:...
doc

no

no

no

no

no

no

no

no

no

no

yes

no

QpenSSL i nternal ONLY

arm unknown- | i nux-gnu

-Whointer-arith -Wo-un...

-lcrypto -lcrypt

This output indicates that the SSH software expects to operate through the root /usr and /var directories,

http://www.wowebook.info

Download at wowebook. 1nfag

which is fine since it will be running as root on the target. The most important parts, however, are the
Conpi | er and the various flags fields at the bottom. In the output shown, the compiler name is the right
one, and the include and library paths point to the fake entries | created earlier. Hence, | have succeeded
in fooling configure into creating Makefiles that use filenames that | can control. To finish the trick, | can
now remove the fake links | created earlier and create appropriate ones for my target:

$ rmarmlinux-gcc fake-include fake-lib
$ In -s ${ TARGET_PREFI X}/i ncl ude ./ fake-include
$In -s ${TARCET_PREFI X}/1ib ./fake-lib

By removing the arm-linux-gcc file link, | am forcing the Makefiles to use the arm-linux-gcc command
found in the PATH, which is the actual cross-compiler | built earlier for my target. Similarly, the library and
header file path links | just created will force the Makefiles to use my target's actual libraries and header
files. All is set now for building OpenSSH.

Before you issue the make command, you may need to hand-tweak some header files if the C library
version you are using for your target is not the same as the one used on your host or if the sizes of the
various C types on the target differ from those on the host. In my case, for example, | had to edit
defines.h and config.h. In defines.h, | had to add an #i f 0 and #endi f around the definitions of _
_ss_fam |y. Inconfig.h, | had to do the same with the #defi ne of HAVE GETGROUPLI ST. You will probably
need to modify those files in your own way to get OpenSSH to compile. If you get errors at link time
about missing symboals, this probably means you have to edit config.h and comment out the appropriate
HAVE definition. Note that any modification to config.h will be lost if you run the configure script again.

With the headers having been properly modified, everything is ready for building OpenSSH:
$ nake

The complete compilation takes less than five minutes on my hardware. The resulting SSH
daemon—uwhich is the binary we are most interested in for our target, as | said earlier—is fairly large.
When compiled against glibc and stripped, the binary is around 1 MB in size if linked dynamically and 1.4
MB if linked statically. When compiled with uClibc and stripped, the binary is around 1 MB when linked
dynamically and 1.1 MB when linked statically.

Copy the SSH daemon to your target's root filesystem and strip it:

$ cp ./sshd ${PRIRCOT}/ rootfs/usr/sbhin
$ armlinux-strip ${PRIROOT}/ rootfs/usr/shin/sshd

To run the daemon, you need a configuration file and a set of private and public keys. An example
configuration file is already provided as part of the OpenSSH package, sshd_config. Copy this file to your
target's root filesystem and customize it according to your needs:

$ nkdir -p ${ PRIROOT}/rootfs/ usr/local /etc
$ cp sshd_config ${PRIROOT}/root fs/ usr/local/etc

Also, you need to generate the keys for your target. There are three types of keys to generate, RSA1,
RSA, and DSA, and each has a private and a public component. All keys will be located in the same
directory as the daemon's configuration file, in the target's /ust/local/etc/ directory. Using your host's
native OpenSSH tools, create the keys for your target:

$ ssh-keygen -t rsal -f ${PRIROOT}/rootfs/usr/local/etc/ssh_host_key
$ ssh-keygen -t rsa -f ${PRIROOT}/rootfs/usr/local/etc/ssh_host _rsa_key
$ ssh-keygen -t dsa -f ${PRIRQOOT}/rootfs/usr/local/etc/ssh_host dsa key

In addition, create /var entries on your target's root filesystem for OpenSSH:

$ nkdir -p ${PRIRCOT}/r oot fs/var/run ${PRIROOT}/ rootfs/var/enpty
$ su -m

http://www.wowebook.info

Download at wowebook. 1nfag

Passwor d:

chown root:root ${PRIROOT}/rootfs/var/run ${PRIROOT}/rootfs/var/enpty
chnod 755 ${PRIROOT}/ rootfs/var/enpty

exit

Finally, you need to have a "privilege separation” user on your target. This user isolates the connection to
the outside world from the brain of the SSH daemon. Thus, if the connection is compromised, the remote
party does not obtain root access to the system. To add the privilege separation user, first edit your
target's /etc/group file and add the following line:

sshd: x: 255:

Replace the 255 value with a group ID that is still available on your target. If you are using CRAMFS,
remember that this number must be below 256. Now, edit your target's /etc/passwd file and add the
privilege separation user:

sshd: x: 501: 255: sshd privsep:/var/ enpty:/ bin/fal se
Also, edit your target's /etc/shadow file and add an entry for the privilege separation user:
sshd: *:11880: 0: 99999: 7:-1:-1: 0

Furthermore, you need to copy all the libraries sshd depends on to your target's root filesystem, if you
had used dynamic linking. Use arm-uclibc-ldd to find the complete list of dependencies.

As with the earlier networking packages, edit your target's /etc/inittab file to start the sshd process:
.. respawn: / usr/ shi n/sshd -D

The - Dflag is used to tell sshd not to fork from the shell and become a daemon. Hence, init can respawn
it if it dies. This, however, is not a common occurrence, and any failure of sshd should be considered a
serious bug and be properly investigated.

For further information on how to configure and operate OpenSSH, see the SSH, The Secure Shell: The
Definitive Guide book mentioned earlier.

10.4.2 A Word on Other SSH Implementations

Apart from OpenSSH, there are a few other open source SSH implementations; most notably LSH and
FreSSH. At the time of this writing, however, neither is fit for use in production embedded Linux systems.

LSH, for example, depends on packages that have their own dependencies. In particular, it depends on
the GNU MP library, zlib, and liboop. The first two dependencies are tolerable. The problem is that liboop
depends on glib, which in turn requires pkg-config. Moreover, the glib package doesn't lend itself well to
cross-compiling. If you are using a host of the same architecture as the target, you may to consider
compiling LSH statically and then using it on your target. If, as in most cases, your target isn't of the
same architecture as your host, LSH isn't a practical choice at this time.

FreSSH, on the other hand, is a relatively new package that isn't as mature as the other open source
SSH packages. Among other things, it lacks a configure script and requires extensive Makefile
modifications to build. In addition, it can be built only against glibc. The compilation against uClibc
requires a number of source code modifications. When compiled against glibc, the resulting SSH
daemon's size is around 850 KB, which is very close to the size of the SSH daemon generated by
OpenSSH.

http://www.wowebook.info

Download at wowebook. 1nfag

10.5 Serving Web Content Through HTTP

One of the biggest trends in network-enabling embedded systems is the inclusion of a web (HTTP)
server. The added HTTP server can then be used for enabling remote administration or remote data
viewing. In the case of my SYSM module, for example, the HTTP server enables my users to configure
and monitor various aspects of the control system.

Though the open source Apache HTTP server is the most widely used HTTP server in the world, itis not
necessarily fit for embedded systems. Mainly, it is very difficult to cross-compile and tends to be rather
large in terms of required storage space. There are, nevertheless, other open source HTTP servers that
are much more adapted to embedded systems. In particular, Boa and thttpd are small, lightweight, fast
servers and are a perfect fit for embedded Linux systems.

There does not seem to be a clear set of characteristics to help in choosing between Boa and thttpd. The
only really notable difference is that Boa is distributed under the terms of the GPL while thttpd is
distributed under the terms of a BSD-like license. The size of the resulting binaries are, however, quite
comparable. Both packages also support CGI scripting. Therefore, | suggest you have a look at both to
decide which one you prefer.

10.5.1 Boa

Boa is available from http://mww.boa.org/ and is distributed under the terms of the GPL. Boa requires
only a C library and can be compiled both against glibc and uClibc. For my SYSM module, | used Boa
0.94.13.

Download and extract Boa in your ${PRJROOT}/sysapps directory. With the package extracted, move to
the appropriate directory:

$ cd ${PRIROOT}/sysapps/ boa-0.94.13/src
Configure and compile Boa:

$ ac_cv_func_setvbuf _reversed=no CC=armli nux-gcc ./configure \
> --host =$TARGET
$ make

The command line above generates a dynamically linked binary. If you would rather have a statically
linked binary when compiling with uClibc, add LDFLAGS="-st ati c" to the make command line. To
statically link against glibc, use the following make command line instead:

$ make \
> LDFLAGS="-static -W --start-group -lc -lInss files -lnss_dns \
> -lresolv -W --end-group”

http://www.boa.org/
http://www.wowebook.info

Download at wowebook. 1nfag

If you are trying to statically link Boa against glibc but you didn't use the - -enable-
"'@ static-nss option when configuring the build of the library, the command line
above will fail because of missing files.

If you try to avoid this error by using only LDFLAGS="- st at i ¢" with a glibc not built
for enabling static NSS linking, the resulting binary will not function properly on the
target, as | said in Chapter 4. Mainly, the binary attempts to load its dynamic NSS
libraries from ${TARGET_PREFIX} on the target. Since this directory doesn't
exist, Boa always fails to find the libraries it needs and stops. Though it may
complain about a different sort of problem, such as an unknown user, you can
see the files it tries to open using strace.

To avoid these problems altogether, you must recompile glibc with the - -enable-
static-nss option. Once the library is recompiled and installed, you will be able to
link a real static binary that includes the appropriate NSS libraries.

Note that you won't encounter this type of problem with uClibc, since it doesn't
implement glibc-style NSS.

The compilation time is short. When linked against uClibc and stripped, the resulting binary is 60 KB in
size when linked dynamically and 90 KB when linked statically. When linked against glibc and stripped,
the resulting binary is 60 KB in size when linked dynamically and 520 KB when linked statically.

Once the binary is ready, copy it to your target's root filesystem and strip it

$ cp boa ${PRIROOT}/rootfs/usr/shbin
$ armlinux-strip ${PRIROOT}/ rootfs/usr/shin/boa

For Boato run, it needs a boa/ subdirectory in the target's /etc directory and a configuration file in that
same directory. Create Boa's directory and copy the sample configuration file to it:

$ nkdir -p ${PRIRQOT}/r oot fs/ etc/boa
$ cp ../boa.conf ${PRIRQOT}/r oot fs/etc/boa

At runtime, Boa will need a user account to run. This user account is specified in the boa.conf file. Edit
this file and your target's /etc/passwd and /etc/groups files to add a user for Boa to use. Boa also needs
a /var/log/boa directory on your target's root filesystem to log accesses and errors:

$ nkdir -p ${PRIRQOT}/r oot fs/ var/l og/ boa

e Remember that log files can be a problem in an embedded system if their growth
is not restricted. Having a script that runs periodically to reinitialize such files, for
45 example, is a simple way to ensure they don't use up the available storage space.

When running, Boa finds its web content from the target's /var/www directory. This is where you should
put any HTML files, including index.html. Create the directory and copy your content to it:

$ nkdir -p ${ PRIROOT}/r oot f s/ var / www
$ cp ... ${PRIROOT}/ r oot f s/ var / www

Finally, add a line in your target's /etc/inittab for Boa. On my SYSM module, for example, here is the line |
add for Boa:

;. respawn: / usr/ shi n/ boa

For more information on how to use Boa, see the documentation included in the Boa package and on the

http://www.wowebook.info

Download at wowebook. 1nfag

project's web site.

10.5.2 thttpd

thttpd is available from http://www.acme.com/software/thttpd/ and is distributed under a BSD-like license.
In addition to the C library, thttpd also depends on the cryptography library (libcrypt). Download and
extract thttpd in your ${PRJIJROOT}/sysapps directory. For my SYSM module, for example, | used thttpd
2.23betal. Move to the package's directory for the rest of the instructions:

$ cd ${PRIROOT}/sysapps/thttpd-2.23bet al
Now, configure and compile thttpd:

$ CC=arml inux-gcc ./configure --host=$TARGET
$ make

This command line generates a dynamically linked binary. As with Boa, to generate a statically linked
binary with uClibc, add LDFLAGS="- st ati ¢" to the make command line. To statically link against glibc,
you must use a make command similar to that used for Boa:

$ make \
> LIBS="-static -W --start-group -lc -Inss _files -1nss_dns \
> -lcrypt -lresolv -W --end-group”

As with Boa, if you are trying to statically link thttpd against a version of glibc that
H@ wasn't built to enable static NSS linking, the command line above will fail. Even if
bypassed using LDFLAGS="-st at i c", the resulting binary will not function properly
on the target. See the note in the previous section for details.

As with Boa, the compilation ends quickly. When linked against uClibc and stripped, the resulting binary
is 70 KB in size when linked dynamically and 115 KB when linked statically. When linked against glibc
and stripped, the resulting binary is 70 KB when linked dynamically and 550 KB when linked statically.

Copy the resulting binary to the target's root filesystem and strip it:

$ cp thttpd ${PRIROCOT}/ rootfs/usr/shin
$ armlinux-strip ${PRIROOT}/ rootfs/usr/sbin/thttpd

Unlike Boa, you can configure thttpd either by using a configuration file or by passing the appropriate
command-line options. Use the -C option to provide a configuration file to thttpd. An example
configuration file is provided in contrib/redhat-rpm/thttpd.conf. If you wish to use a configuration file, edit
this file to fit your target's configuration after having copied it to your target's root filesystem:

$ cp contrib/redhat-rpmthttpd. conf ${PRIROOT}/r oot fs/etc

Like Boa, thttpd operates with a special user account. By default, it uses the nobody account. Create this
account using procedures outlined earlier, or set thitpd to use an account of your choice. The
configuration file copied earlier specifies the use of the ht t pd user. It also identifies the target's
/home/httpd/html directory as the location for source HTML files:

$ nkdir -p ${PRIROOT}/r oot fs/ home/ htt pd/ ht m
Finally, edit your target's /etc/inittab file. Here is the line | add for thttpd in my SYSM module's inittab:

c:respawn: /usr/shin/thttpd -C /etc/thttpd. conf

http://www.acme.com/software/thttpd/
http://www.wowebook.info

Download at wowebook. 1nfag

For more information on how to install and run thttpd, see the manpage included in the package and the
project's web site.

10.5.3 A Word on Apache

Apache is available from http://www.apache.org/ and is distributed under the Apache license. [l As | said
earlier, Apache does not lend itself well to cross-compiling. If you are not deterred by this warning and
would still be interested in attempting to cross-compile Apache, have a look at the procedure outlined by
David McCreedy in his posting to the Apache development mailing list: http://hypermail.linklord.com/new-
httpd/2000/May/0175.html. If you succeed, you'll probably want to take peek at Apache: The Definitive
Guide by Ben Laurie and Peter Laurie (O'Reilly) for more information regarding the configuration and use
of Apache.

[6] This license is BSD-like. See the LICENSE file included with the package for the complete licensing details.

http://www.apache.org/
http://hypermail.linklord.com/new-
http://www.wowebook.info

Download at wowebook. 1nfag

10.6 Dynamic Configuration Through DHCP

The Dynamic Host Configuration Protocol (DHCP) allows for the automatic network configuration of
hosts. Automatic configuration usually involves assigning IP addresses but can include other
configuration parameters, as we saw in Chapter 9. On a network that uses DHCP, there are two sorts of
entities: clients that request a configuration and servers that provide the clients with functional
configurations.

An embedded Linux system can easily be used as a DHCP server. In my example system, for instance,
the SYSM module can provide dynamic configurations to the Ul modules. Conversely, an embedded
Linux system may need to obtain its own configuration from a DHCP server. My Ul modules, for
example, may obtain their configurations from the SYSM module.

The standard DHCP package used in most Linux distributions is the one distributed by the Internet
Software Consortium (ISC). Although the package may seem to be a good candidate for use in
embedded Linux systems because of its widespread use and the fact that it includes both the client and
the server, its Makefiles and configuration scripts do not allow cross-compilation in any way.

There is, nevertheless, another open source package that provides both a DHCP server and a DHCP
client, and that can be used in an embedded Linux system: udhcp. The udhcp project is maintained as
part of the BusyBox project, and its web site is located at http://udhcp.busybox.net/. The package is
available from that web site and is distributed under the terms of the GPL. udhcp depends only on the C
library and can be compiled both with glibc and uClibc.

Begin by downloading and extracting the udhcp package in your ${PRJROOT}/sysapps directory. For my
SYSM module, for example, | used udhcp 0.9.8. Move to the package's directory for the rest of the
operations:

$ cd ${ PRIROOT}/ sysapps/ udhcp-0. 9.8

There is no configuration needed with this package. Hence, compiling the package is all that needs to be
done:

$ make CROSS_COWPI LE=ar mucli bc-

Here, too, the compilation time is short. If you want to build statically, add LDFLAGS="-st ati c¢" to the
make command line. Also set CROSS COMPI LE to ar m- | i nux- if you would prefer to build with glibc
instead of uClibc. When linked against glibc and stripped,[”! the server and the client are around 16 KB in
size when linked dynamically. The clientis 375 KB in size and the server 450 KB in size when linked
statically against glibc and stripped. Note that udhcp uses glibc's NSS and will require Makefile
modifications in order to pass the link options at the end of the compile lines, not in the middle as it does
by default. You will also need to set LDFLAGS to values similar as the ones we used earlier to build Boa
and thttpd statically against glibc. When linked against uClibc and stripped, the server and the client are
around 15 KB in size when linked dynamically and 40 KB in size when linked statically.

[7] The udhcp Makefile automatically strips the binaries once they are built.
If you are using the server in your system, copy it to your target's /usr/sbin directory:
$ cp udhcpd ${PRIROOT}/ rootfs/usr/shin
If you are using the client, copy it to your target's /shin directory:
$ cp udhcpc ${PRIROOT}/ rootfs/shin

Both server and client need configuration files and runtime files to store information regarding lease

http://udhcp.busybox.net/
http://www.wowebook.info

Download at wowebook. 1nfag

status.

For the server, create a /var/lib/misc directory and a lease file, and copy the sample configuration file to
your target's root filesystem:

$ nkdir -p ${PRIROOT}/rootfs/var/lib/msc
$ touch ${PRIRQOOT}/rootfs/var/li b/ m sc/udhcpd. | eases
$ cp sanpl es/ udhcpd. conf ${PRIJROOT}/rootfs/etc

If you forget to create the lease file, the server will refuse to start.

For the client, create a /etc/udhcpc directory and a /usr/share/udhcpc directory, and copy one of the
sample configuration files to /usr/share/udhcpc/default.script:

$ nkdir -p ${PRIRQOOT}/r oot fs/ etc/udhcpc

$ nkdir -p ${PRIROOT}/r oot fs/ usr/share/ udhcpc

$ cp sanpl es/ sanpl e. renew \

> ${PRIROOT}/rootfs/usr/ share/ udhcpc/def aul t.scri pt

Also, edit your target's /etc/inittab file to start the daemon you need. For instance, here is the line for the
DHCP server 1 use in my SYSM module:

;. respawn: / usr/ sbi n/ udhcpd

For a complete discussion on the configuration and use of udhcpd and udhcpc, read the manpages
included with the package and look at the project's web site.

(eam Lio| [orcvions W et

http://www.wowebook.info

Download at wowebook. 1nfag

Chapter 11. Debugging Tools

In the previous chapters, we've discussed how to set up, configure, and use various preexisting free and
open source software components. Now that you are ready to work with your system, you'll need some
powerful debugging tools.

In this chapter, we discuss the installation and use of the main software debugging tools used in the
development of embedded Linux systems. This discussion covers debugging applications with gdb,
tracing applications and system behavior, performance analysis, and memory debugging. In addition, |
briefly review some of the hardware tools often used in developing embedded Linux systems. Because
the particular operating system on the target makes little difference in the way the hardware debugging
tools are used, we do not discuss how to use them. | will, nevertheless, suggest ways that you can use
hardware tools to facilitate debugging the software running in your embedded Linux system.

To best use the tools discussed in this chapter, | strongly recommend the use of an NFS-mounted root
filesystem for your target. Among other things, this enables you to rapidly update your software once
you've identified and corrected a bug. In turn, this speeds up debugging, because you can continue
debugging the updated software much sooner than if you had to transfer the updated binary manually to
your target first. In essence, an NFS-mounted root filesystem simplifies the updating and debugging
process and, therefore, reduces development time. In addition, NFS allows for performance data
generated on the target to be available immediately on the host.

Though | cover the most important free and open source debugging tools in this chapter, | do not cover
all the debugging tools available in Linux. The material covered in this chapter should, nevertheless, help
you make the best use of any additional Linux debugging tools you may find on the Web or in your
distribution. Among the debugging tools | do not discuss are all the tools used for kernel debugging. If
you need to debug a kernel, have a look at Chapter 4 of Linux Device Drivers.

http://www.wowebook.info

Download at wowebook. 1nfag

11.1 Debugging Applications with gdb

The GNU debugger (gdb) is the symbolic debugger of the GNU project and is arguably the most importan
debugging tool for any Linux system. It has been around for over 10 years, and many non-Linux embedde
systems already use it in conjunction with what is known as gdb stubs to debug a target remotely. [1]
Because the Linux kernel implements the ptrace() system call, however, you don't need gdb stubs to
debug embedded applications remotely. Instead, a gdb server is provided with the gdb package. This
server is a very small application that runs on the target and executes the commands it receives from the
gdb debugger running on the host. Hence, any application can be debugged on the target without having
the gdb debugger actually running on the target. This is very important, because as we shall see, the
actual gdb binary is fairly large.

[11 gdb stubs are a set of hooks and handlers placed in a target's firmware or operating system kernel in order to allow interaction with a
remote debugger. The gdb manual explains the use of gdb stubs.

This section discusses the installation and use of gdb in a host/target configuration, not the actual use of
gdb to debug an application. To learn how to set breakpoints, view variables, and view backtraces, for
example, read one of the various books or manuals that discuss the use of gdb. In particular, have a look
at Chapter 14 of Running Linux (O'Reilly) and the gdb manual available both within the gdb package and
online at http://www.gnu.org/manual/.

11.1.1 Building and Installing gdb Components

The gdb package is available from ftp://ftp.gnu.org/gnu/gdb/ under the terms of the GPL. Download and
extract the gdb package in your ${PRJROOT}/debug directory. For my control module, for example, | use
gdb Version 5.2.1. As with the other GNU toolset components | described in Chapter 4, itis preferable no
to use the package's directory to build the actual debugger. Instead, create a build directory, move toit,
and build gdb:

$ nkdir ${PRIROOT}/debug/ buil d-gdb

$ cd ${ PRIROOT}/ debug/ bui | d- gdb

$../9gdb-5.2. 1/configure --target=3TARCET --prefix=%${ PREFI X}
$ make

$ make install

These commands build the gdb debugger for handling target applications. As with other GNU toolset
components, the name of the binary depends on the target. For my control module, for example, the
debugger is powerpc-linux-gdb. This binary and the other debugger files are installed within the $SPREFIX
directory. The build process proper takes from 5 to 10 minutes on my hardware, and the binary generatec
is fairly large. For a PPC target, for example, the stripped binary is 4 MB in size when linked dynamically.
This is why the gdb binary can't be used as-is on the target and the gdb server is used instead.

At the time of this writing, the gdb built for the target cannot handle target core files.
Instead, the faulty program must be run on the target using the gdb server to catch
the error as it happens natively. There has been discussion regarding adding cross-
platform core file reading capabilities to gdb on the gdb mailing lists, and a few
patches are already available. Support for reading cross-platform core files in gdb
may therefore be available by the time your read this.

.
--.
L
wh
N

iy

The gdb server wasn't built earlier because it has to be cross-compiled for the target using the appropriatt
tools. To do so, create a directory to build the gdb server, move to it, and build the gdb server:

http://www.gnu.org/manual/
http://www.wowebook.info

Download at wowebook. 1nfag

nkdi r ${ PRIROOT}/ debug/ buil d- gdbserver

cd ${ PRIROOT}/ debug/ bui | d-gdbserver

chnmod +x ../gdb-5. 2.1/ gdb/gdbserver/ configure

CC=power pc- li nux-gcc ../ gdb-5. 2.1/ gdb/ gdbserver/configure \
--host =$TARCET - - pr ef i x=${ TARGET_PREFI X}

nmake

make install

BV B R

The gdb server binary, gdbserver, has now been installed in your ${TARGET_PREFIX}/bin directory. The
dynamically linked gdbserver is 25 KB in size when stripped. Compared to gdb, the size of gdbserver is
much more palatable.

Once built, copy gdbserver to your target's root filesystem:
$ cp ${ TARGET_PREFI X}/ bi n/ gdbser ver ${ PRIROOT}/r oot fs/ usr/bi n

There are no additional steps required to configure the use of the gdb server on your target. | will cover its
use in the next section.

Debugging Information, Symbol Tables, and strip

Most modern Linux binaries are in the ELF format. As with binaries of other formats, ELF binaries contair
a number of sections, each with a different name and role. The actual executable code for the binary is
usually inthe . t ext section. There are also other sections such as . dat a for initialized data and . bss for
uninitialized data. Debugging information is usually in the . st ab and . st abstr sections. These sections
are formatted according to the Stabs (short for symbol table) debug format and contain information such
as line numbers, paths to source files, paths to include files, variables declarations, types declarations,
and so on.

Both objdump and readelf can be used to view the sections of an ELF binary. Here is a sample output
generated by running readelf on the unstripped gdbserver binary:

$ power pc-linux-readelf -S gdbserver

L (Iink order),

o0 (os specific),

p (processor

O (extra C5 processing required)
speci fic) x (unknown)

When the strip command is used, the sections containing the debugging information, . st ab and
. st abstr, are removed from the binary along with . synt ab and . st r t ab, while the rest of the sections,

There are 32 section headers, starting at offset Oxlaca4:

Secti on Headers:
[Nr] Namre Type Addr Of Si ze ES Flg Lk Inf A
[12] . text PRCGBI TS 10000b48 000b48 003008 00 AX 0 0 4
[17] . data PRCGBI TS 10015470 005470 000914 00 WA 0 0 4
[25] . bss NCBI TS 10016114 005e54 00236¢c 00 WA 0 01
[26] .stab PRCGBI TS 00000000 005e54 00798c Oc 27 0 4
[27] . stabstr STRTAB 00000000 00d7e0 00did5 00 0 01
[28] . commrent PRCGBI TS 00000000 01a9b5 0001ee 00 0 01
[29] .shstrtab STRTAB 00000000 0Olaba3 0000ff 00 0 01
[30] .symtab SYMI'AB 00000000 01bla4 000f 40 10 31 6e 4
[31] .strtab STRTAB 00000000 01c0Oe4 000d19 00 0 01

Key to Flags: W(write), A (alloc), X (execute), M(merge), S (strings)

http://www.wowebook.info

Download at wowebook. 1nfag

except . shstrtab, remain unchanged. The only section that changes is the section header string table,
.shstrtab, which shrinks in size since there are fewer sections in the binary. Here is the output generate
by running readelf on the stripped gdbserver binary:

$ power pc-linux-readel f -S gdbserver
There are 28 secti on headers, starting at offset 0x6134:
Secti on Headers:

[Nr] Nane Type Addr aof Si ze ES Flg Lk Inf Al
[12] . text PROGBI TS 10000b48 000b48 003008 00 AX O 04
[17] .data PROGBI TS 10015470 005470 000914 00 WA O 04
[25] . bss NCBI TS 10016114 005e54 00236c 00 WA O 01
[26] . commrent PROGBI TS 00000000 005e54 0001ee 00 0 01
[27] .shstrtab STRTAB 00000000 006042 0000f0 00 0 01

Key to Flags: W(write), A (alloc), X (execute), M(nmerge), S (strings)
I (info), L (link order), O (extra OS5 processing required)
o (os specific), p (processor specific) x (unknown)

For more information on binary formats, including ELF, have a look at John Levine's Linkers & Loaders
(Morgan Kaufmann). For information on the Stabs format, have a look at the The "stabs" debug format
manual provided in the gdb/doc directory of the gdb package and available online at
http://sources.redhat.com/gdb/current/onlinedocs/stabs.html.

11.1.2 Using the gdb Components to Debug Target Applications

Before you can debug an application using gdb, you need to compile your application using the appropria
flags. Mainly, you need to add the -g option to the gcc command line. This option adds the debugging
information to the object files generated by the compiler. To add even more debugging information, use ti
-ggdb option. The information added by both debugging options is thereafter found in the application's
binary. Though this addition results in a larger binary, you can still use a stripped binary on your target,
granted you have the original unstripped version with the debugging information on your host. To do so,
build your application on your host with complete debugging symbols. Copy the resulting binary to your
target's root filesystem and use strip to reduce the size of the binary you just copied by removing all
symbolic information, including debugging information. On the target, use the stripped binary with
gdbserver. On the host, use the original unstripped binary with gdb. Though the two gdb components are
using different binary images, the target gdb running on the host is able to find and use the appropriate
debug symbols for your application, because it has access to the unstripped binary.

Here are the relevant portions of my command daemon's Makefile that changed (see Chapter 4 for the
original Makefile):

DEBUG = -g

CFLAGS -02 -val | $(DEBUG)

Though gcc allows us to use both the -g and -O options in the same time, it is often preferable not to use
the -O option when generating a binary for debugging, because the optimized binary may contain some
subtle differences when compared to your application's original source code. For instance, some unused
variables may not be incorporated into the binary, and the sequence of instructions actually executed in tf
binary may differ in order from those contained in your original source code.

There are two ways for the gdb server running on the target to communicate with the gdb debugger
running on the host: using a crossover serial link or a TCP/IP connection. Though these communication
interfaces differ in many respects, the syntax of the commands you need to issue is very similar. Starting

http://sources.redhat.com/gdb/current/onlinedocs/stabs.html
http://www.wowebook.info

Download at wowebook. 1nfag

debug session using a gdb server involves two steps: starting the gdb server on the target and connecting
to it from the gdb debugger on the host.

Once you are ready to debug your application, start the gdb server on your target with the means of
communication and your application name as parameters. If your target has a configured TCP/IP interfac
available, you can start the gdb server and configure it to run over TCP/IP:

gdbserver 192.168. 172.50: 2345 conmmand- daenon

In this example, the host's IP address!? is 192.168.172.50 and the port number used locally to listen to gc
connections is 2345. Note that the protocol used by gdb to communicate between the host and the target
doesn't include any form of authentication or security. Hence, | don't recommend that you debug
applications in this way over the public Internet. If you need to debug applications in this way, you may
want to consider using SSH port forwarding to encrypt the gdb session. The book SSH, The Secure Shell
The Definitive Guide (O'Reilly) explains how to implement SSH port forwarding.

[2] At the time of this writing, this field is actually ignored by gdbserver.

As | said earlier, the command-daemon being passed to gdbserver can be a stripped copy of the original
command-daemon built on the host.

If you are using a serial link to debug your target, use the following command line on your target:
gdbserver /dev/ttyS0 comrmand- daenon
In this example, the target's serial link to the host is the first serial port, /dev/ttySO.

Once the gdb server is started on the target, you can connect to it from the gdb debugger on the host usir
the target remote command. If you are connected to the target using a TCP/IP network, use the following
command:

$ power pc- i nux-gdb command- daenon

(gdb) target renote 192. 168.172. 10: 2345
Rernot e debuggi ng using 192. 168. 172. 10: 2345
0x10000074 in _start ()

In this case, the target is located at IP 192.168.172.10 and the port number specified is the same one we
used above to start the gdb server on the target. Unlike the gdb server on the target, the command-
daemon used here has to be the unstripped copy of the binary. Otherwise, gdb will be of little use to try
debugging the application.

If the program exits on the target or is restarted, you do not need to restart gdb on the host. Instead, you
need to issue the target remote command anew once gdbserver is restarted on the target.

If your host is connected to your target through a serial link, use the following command:

$ power pc- | i nux-gdb prognane
(gdb) target renote /dev/ttyS0
Rernot e debuggi ng using /dev/ttyS0O
0x10000074 in _start ()

Though both the target and the host are using /dev/ttyS0 to link to each other in this example, this is only
coincidence. The target and the host can use different serial ports to link to each other. The device being
specified for each is the local serial port where the serial cable is connected.

With the target and the host connected, you can now set breakpoints and do anything you would normally
do in a symbolic debugger.

There are a few gdb commands that are you are likely to find particularly useful when debugging an
embedded target such as we are doing here. Here are some of these commands and summaries of their

http://www.wowebook.info

Download at wowebook. 1nfag

purposes:
file

Sets the filename of the binary being debugged. Debug symbols are loaded from that file.
dir

Adds a directory to the search path for the application’'s source code files.
target

Sets the parameters for connecting to the remote target, as we did earlier. This is actually not a
single command but rather a complete set of commands. Use help target for more details.
set remotebaud

Sets the speed of the serial port when debugging remote applications through a serial cable.
set solib-absolute-prefix

Sets the path for finding the shared libraries used with the binary being debugged.

The last command is likely to be the most useful when your binaries are linked dynamically. Whereas the
binary running on your target finds its shared libraries starting from / (the root directory), the gdb running ¢
the host doesn't know how to locate these shared libraries. You need to use the following command to tel
gdb where to find the correct target libraries on the host:

(gdb) set soli b-absol ute-prefix ../../tool s/powerpc-1inux/

Unlike the normal shell, the gdb command line doesn't recognize environment variables such as
${ TARGET_PREFI| X} . Hence, the complete path must be provided. In this case, the path is provided relative
to the directory where gdb is running, but we could use an absolute path, too.

If you want to have gdb execute a number of commands each time it starts, you may want to use a .gdbin
file. For an explanation on the use of such files, have a look at the "Command files" subsection in the
"Canned Sequences of Commands" section of the gdb manual.

To getinformation regarding the use of the various debugger commands, you can use the help commanc
within the gdb environment, or look in the gdb manual.

11.1.3 Interfacing with a Graphical Frontend

Many developers find it difficult or counter-intuitive to debug using the plain gdb command line. Fortunatel
for these developers, there are quite a few graphical interfaces that hide much of gdb's complexity by
providing user-friendly mechanisms for setting breakpoints, viewing variables, and tending to other
common debugging tasks. Examples include DDD (http://www.gnu.org/software/ddd/), KDevelop and otht
IDEs we discussed in Chapter 4. Much like your host's debugger, the cross-platform gdb we built earlier fi
your target can very likely be used by your favorite debugging interface. Each frontend has its own way fo
allowing the name of the debugger binary to be specified. Have a look at your frontend's documentation fc
this information. In the case of my control module, | would need to configure the frontend to use the
powerpc-linux-gdb debugger.

http://www.gnu.org/software/ddd/
http://www.wowebook.info

Download at wowebook. 1nfag

11.2 Tracing

Symbolic debugging is fine for finding and correcting program errors. However, symbolic debugging
offers little help in finding any sort of problem that involves an application's interaction with other
applications or with the kernel. These sorts of behavioral problems necessitate the tracing of the actual
interactions between your application and other software components.

The simplest form of tracing involves monitoring the interactions between a single application and the
Linux kernel. This allows you to easily observe any problems that result from the passing of parameters
or the wrong sequence of system calls.

Observing a single process in isolation is, however, not sufficient in all circumstances. If you are
attempting to debug interprocess synchronization problems or time-sensitive issues, for example, you
will need a system-wide tracing mechanism that provides you with the exact sequence and timing of
events that occur throughout the system. For instance, in trying to understand why the Mars Pathfinder
constantly rebooted while on Mars, the Jet Propulsion Laboratory engineers resorted to a system tracing
tool for the VxWorks operating system.[3l

31 For a very informative and entertaining account on what happened to the Mars Pathfinder on Mars, read Glenn Reeves' account at
http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html. Glenn was the lead developer for the Mars Pathfinder
software.

Fortunately, both single-process tracing and system tracing are available in Linux. The following sections
discuss each one.

11.2.1 Single Process Tracing

The main tool for tracing a single process is strace. strace uses the ptrace() system call to intercept all
system calls made by an application. Hence, it can extract all the system call information and display itin
a human-readable format for you to analyze. Because strace is a widely used Linux tool, | do not explain
how to use it, but just explain how to install it for your target. If you would like to have more details on the
usage of strace, see Chapter 14 of Running Linux.

strace is available from http://mww.liacs.nl/~wichert/strace/ under a BSD license. For my control module |
used strace Version 4.4. Download the package and extract it in your ${PRIJROOT}/debug directory.
Move to the package's directory, then configure and build strace:

$ cd ${PRIROOT}/debug/strace- 4.4
$ CC=power pc- | inux-gcc ./configure --host=$TARGET
$ make

If you wish to statically link against uClibc, add LDFLAGS="-st ati c" to the make command line. Given
that strace uses NSS, you need to use a special command line if you wish to link it statically to glibc, as
we did for other packages in Chapter 10:

$ make \
> LDLIBS="-static -W --start-group -Ic -Inss _files -Inss_dns \
> -lresolv -W --end-group"

When linked against glibc and stripped, strace is 145 KB in size if linked dynamically and 605 KB if linked
statically. When linked against uClibc and stripped, strace is 140 KB in size if linked dynamically and 170
KB when linked statically.

Once the binary is compiled, copy it to your target's root filesystem:

http://research.microsoft.com/~mbj/Mars_Pathfinder/Authoritative_Account.html
http://www.liacs.nl/~wichert/strace/
http://www.wowebook.info

Download at wowebook. 1nfag

$ cp strace ${PRIROOT}/ rootfs/usr/sbhin

There are no additional steps required to configure strace for use on the target. In addition, the use of
strace on the target is identical to that of its use on a normal Linux workstation. See the web page listed
earlier or the manpage included with the package if you need more information regarding the use of
strace.

11.2.2 System Tracing

The main system tracing utility for Linux is the Linux Trace Toolkit (LTT), which was introduced and
continues to be maintained by this book's author. In contrast with other tracing utilities such as strace,
LTT does not use the ptrace() mechanism to intercept applications' behavior. Instead, a kernel patch is
provided with LTT that instruments key kernel subsystems. The data generated by this instrumentation is
then collected by the trace subsystem and forwarded to a trace daemon to be written to disk. The entire
process has very little impact on the system's behavior and performance. Extensive tests have shown
that the tracing infrastructure has marginal impact when not in use and an impact lower than 2.5% under
some of the most stressful conditions.

In addition to reconstructing the system's behavior using the data generated during a trace run, the user
utilities provided with LTT allow you to extract performance data regarding the system's behavior during
the trace interval. Here's a summary of some of the tasks LTT can be used for:

e Debugging interprocess synchronization problems

e Understanding the interaction between your application, the other applications in the system, and
the kernel

e Measuring the time it takes for the kernel to service your application's requests

e Measuring the time your application spent waiting because other processes had a higher priority
e Measuring the time it takes for an interrupt's effects to propagate throughout the system

e Understanding the exact reaction the system has to outside input

To achieve this, LTT's operation is subdivided into four software components:

e The kernel instrumentation that generates the events being traced

e The tracing subsystem that collects the data generated by the kernel instrumentation into a single
buffer

e The trace daemon that writes the tracing subsystem's buffers to disk

e The visualization tool that post-processes the system trace and displays it in a human-readable
form

The first two software components are implemented as a kernel patch and the last two are separate
user-space tools. While the first three software components must run on the target, the last one, the
visualization tool, can run on the host. In LTT Versions 0.9.5a and eatrlier, the tracing subsystem was
accessed from user space as a device through the appropriate /dev entries. Starting in the development
series leading to 0.9.6, however, this abstraction has been dropped following the recommendations of
the kernel developers. Hence, though the following refers to the tracing subsystem as a device, newer
versions of LTT will not use this abstraction and therefore will not require the creation of any /dev entries
on your target's root filesystem.

http://www.wowebook.info

Download at wowebook. 1nfag

Given that LTT can detect and handle traces that have different byte ordering, traces can be generated
and read on entirely different systems. The traces generated on my PPC-based control module, for
example, can be read transparently on an x86 host.

In addition to tracing a predefined set of events, LTT enables you to create and log your own custom
events from both user space and kernel space. Have a look at the Examples directory included in the
package for practical examples of such custom events. Also, if your target is an x86-or PPC-based
system, you can use the DProbes package provided by IBM to add trace points to binaries, including the
kernel, without recompiling. DProbes is available under the terms of the GPL from IBM's web site at
http://oss.software.ibm.com/developer/opensource/linux/projects/dprobes/.

LTT is available under the terms of the GPL from Opersys's web site at http://www.opersys.com/LTT/.
The project's web site includes links to in-depth documentation and a mailing list for LTT users. The
current stable release is 0.9.5a, which supports the i386, PPC, and SH architectures. The 0.9.6 release
currently in development adds support for the MIPS and the ARM architectures.

11.2.2.1 Preliminary manipulations

Download the LTT package, extract it in your ${PRIJROOT}/debug directory, and move to the package's
directory for the rest of the installation:

$ cd ${ PRIROOT}/ debug
$ tar xvzf TraceTool kit-0.9.5a.tgz
$ cd ${ PRIROOT}/ debug/ TraceTool kit-0.9.5

The same online manual that provides detailed instructions on the use of LTT is included with the
package under the Help directory.

11.2.2.2 Patching the kernel

For the kernel to generate the tracing information, it needs to be patched. There are kernel patches
included with every LTT package in the Patches directory. Since the kernel changes with time, however,
it is often necessary to update the kernel patches. The patches for the latest kernels are usually available
from http://www.opersys.com/ftp/pub/LT T/ExtraPatches/. For my control module, for example, | used
patch-ltt-linux-2.4.19-vanilla-020916-1.14. If you are using a different kernel, try adapting this patch to
your kernel version. Unfortunately, it isn't feasible to create a patch for all kernel versions every time a
new version of LTT is released. The task of using LTT would be much simpler if the patch was included
as part of the main kernel tree, something your author has been trying to convince the kernel developers
of doing for some time now. In the case of my control module, | had to fix the patched kernel because of
failed hunks.

Given that the binary format of the traces changes over time, LTT versions cannot read data generated
by any random trace patch version. The - 1. 14 version appended to the patch name identifies the trace
format version generated by this patch. LTT 0.9.5a can read trace data written by patches that use
format Version 1.14. It cannot, however, read any another format. If you try opening a trace of a format
that is incompatible with the visualization tool, it will display an error and exit. In the future, the LTT
developers plan to maodify the tools and the trace format to avoid this limitation.

Once you've downloaded the selected patch, move it to the kernel's directory and patch the kernel:

$ nv patch-1tt-linux-2.4.19-vanilla-020916-1. 14 \

> ${PRIRCOT}/ kernel /1l inux-2.4.18

$ cd ${PRIROOT}/ kernel /linux-2.4.18

$ patch -pl < patch-Itt-linux-2.4.19-vanilla-020916-1. 14

You can then configure your kernel as you did earlier. In the main configuration menu, go in the "Kermnel

http://oss.software.ibm.com/developer/opensource/linux/projects/dprobes/
http://www.opersys.com/LTT/
http://www.opersys.com/ftp/pub/LTT/ExtraPatches/
http://www.wowebook.info

Download at wowebook. 1nfag

tracing” submenu and select the "Kernel events tracing support” as built-in. In the patches released prior
to LTT 0.9.6pre2, such as the one | am using for my control module, you could also select tracing as a
module and load the trace driver dynamically. However, this option has disappeared following the
recommendations of the kernel developers to make the tracing infrastructure a kernel subsystem instead
of a device.

Proceed on to building and installing the kernel on your target using the techniques covered in earlier
chapters.

Though you may be tempted to return to a kernel without LTT once you're done developing the system, |
suggest you keep the traceable kernel, since you never know when a bug may occur in the field. The
Mars Pathfinder example | provided earlier is a case in point. For the Pathfinder, the JPL engineers
applied the test what you fly and fly what you test philosophy, as explained in the paper | mentioned in
the earlier footnote about the Mars Pathfinder problem. Note that the overall maximum system
performance cost of tracing is lower than 0.5% when the trace daemon isn't running.

11.2.2.3 Building the trace daemon

As | explained earlier, the trace daemon is responsible for writing the trace data to permanent storage.
Though this is a disk on most workstations, it is preferable to use an NFS-mounted filesystem to dump
the trace data. You could certainly dump it to your target's MTD device, if it has one, but this will almost
certainly result in increased wear, given that traces tend to be fairly large.

Return to the package's directory within the ${PRJROOT}/debug directory, and build the trace daemon:

cd ${ PRIROOT}/debug/ TraceTool kit-0.9.5

./ configure --prefix=%${PREFI X}

make -C LibUser Trace CC=powerpc-I| inux-gcc User Trace. o

nmake -C LibUser Trace CC=powerpc-Ilinux-gcc LDFLAGS="-static"
make -C Daenon CC=powerpc-linux-gcc LDFLAGS="-static"

@ PP H B

By setting the value of LDFLAGS to - st at i ¢, we are generating a binary that is statically linked with
LibUserTrace. This won't weigh down the target, since this library is very small. In addition, this will avoid
us the trouble of having to keep track of an extra library for the target. The trace daemon binary we
generated is, nevertheless, still dynamically linked to the C library. If you want it statically linked with the
C library, use the following command instead:

$ nake -C Daenon CC=powerpc-|inux-gcc LDFLAGS="-all -static"

The binary generated is fairly small. When linked against glibc and stripped, the trace daemon is 18 KB
in size when linked dynamically and 350 KB when linked statically. When linked against uClibc and
stripped, the trace daemon is 16 KB in size when linked dynamically and 37 KB when linked statically.

Once built, copy the daemon and the basic trace helper scripts to the target's root filesystem:

$ cp tracedaenon Scripts/trace Scripts/tracecore Scripts/traceu \
> ${ PRIRQOT}/rootf s/ usr/ shin

The trace helper scripts simplify the use of the trace daemon binary, which usually requires a fairly long
command line to use adequately. Look atthe LTT documentation for an explanation of the use of each
helper script. My experience is that the trace script is the easiest way to start the trace daemon.

At the time of this writing, you need to create the appropriate device entries for the trace device on the
target's root filesystem for the trace daemon to interface properly with the kernel's tracing components.
Because the device obtains its major number at load time, make sure the major number you use for
creating the device is accurate. The simplest way of doing this is to load all drivers in the exact order they
will usually be loaded in and then cat the /proc/devices file to get the list of device major numbers. See
Linux Device Drivers for complete details about major number allocation. Alternatively, you can try using

http://www.wowebook.info

Download at wowebook. 1nfag

the createdev.sh script included in the LTT package. For my control module, the major number allocated
to the trace device is 254:14

[4] | obtain this number by looking at the /proc/devices file on my target after having loaded the trace driver.

$ su -m

Passwor d:

nknod ${ PRIROOT}/r oot fs/ dev/tracer ¢ 254 0
nknod ${PRIROOT}/r oot fs/dev/tracerU c 254 1
exit

As | said earlier, if you are using a version of LTT that is newer that 0.9.5a, you may not need to create
these entries. Refer to your package's documentation for more information.

11.2.2.4 Installing the visualization tool

The visualization tool runs on the host and is responsible for displaying the trace data in an intuitive way.
It can operate both as a command-line utility, dumping the binary trace data in a textual format, or as a
GTK-based graphical utility, displaying the trace as a trace graph, as a set of statistics, and as a raw text
dump of the trace. The graphical interface is most certainly the simplest way to analyze a trace, though
you may want to use the command-line textual dump if you want to run a script to analyze the textual
output. If you plan to use the graphical interface, GTK must be installed on your system. Most
distributions install GTK by default. If itisn't installed, use your distribution's package manager to install it.

We've already moved to the LTT package's directory and have configured it in the previous section. All
that is leftis to build and install the host components:

$ make -C LibLTT install
$ make -C Visuali zer install

The visualizer binary, tracevisualizer, has been installed in the ${P REFIX}/bin directory, while helper
scripts have been installed in ${PREFIX}/sbin. As with the trace daemon, the helper scripts let you avoid
typing long command lines to start the trace visualizer.

11.2.2.5 Tracing the target and visualizing its behavior

You are now ready to trace your target. As | said earlier, to reduce wear, avoid using your target's solid-
state storage device for recording the traces. Instead, either write the traces to an NFS-mounted
filesystem or, if you would prefer to reduce polluting the traces with NFS-generated network traffic, use a
TMPFS mounted directory to store the traces and copy them to your host after tracing is over.

Here is a simple command for tracing the target for 30 seconds:

trace 30 outt

The out t name specified here is the prefix the command should use for the names of the output files.
This command will generate two files: outt.trace, which contains the raw binary trace, and outt.proc,
which contains a snapshot of the system's state at trace start. Both these files are necessary for
reconstructing the system's behavior on the host using the visualization tool. If those files are stored
locally on your target, copy them to your host using your favorite protocol.

It is possible that your system may be generating more events than the trace infrastructure can handle.
In that case, the daemon will inform you upon exit that it lost events. You can then change the size of the
buffers being used or the event set being traced to obtain all the data you need. Look at the
documentation included in the package for more information on the parameters accepted by the trace
daemon.

http://www.wowebook.info

Download at wowebook. 1nfag

Once you've copied the files containing the trace to the host, you can view the trace using:

$ traceview outt

This command opens a window that looks like Figure 11-1.
Figure 11-1. Example LTT trace graph

LRl Trace Misealger _outtbocs |

Film Tooks Oplions Help I

FREPR R PRHECEEEERME)

Event Gragh | Process analysis |Haw I'al:a|

sz . .
00000

=

busyhos (27)
tracedasmon (20 B i tg

rpciod 7]
kupdabed (8)
bdfsEn (3]
ksrwnipid ()
ksofired_CPUD ()
keventd ()

et (1) :;B':_..
Eamel (0)

7
| — s 5 J =
[| Start: 1,517,576,994,751 684 | Spanc 222

In this case, the graph shows the interaction between the BusyBox shell and another BusyBox child. On
the left side of the visualizer display, you see a list of all the processes that were active during the trace.
The Linux kernel is always the bottom entry in that list. On the right side of the display, you see a graph
that characterizes the behavior of the system. In that graph, horizontal lines illustrate the passage of
time, while vertical lines illustrate a state transition. The graph portion displayed here shows that the
system is running kernel code in the beginning. Near the start, the kernel returns control to the sh
application, which continues running for a short period of time before making the wait4() system call. At
that point, control is transferred back to the kernel, which runs for a while before initiating a scheduling
change to the task with PID 21. This task starts executing, but an exception occurs, which results in a
control transfer to the kernel again.

The graph continues in both directions, and you can scroll left or right to see what happened before or
after this trace segment. You can also zoom in and out, depending on your needs.

Using this sort of graph, you can easily identify your applications' interaction with the rest of the system,

as | explained earlier. You can also view the same set of events in their raw form by selecting the "Raw
Trace" thumbnail, as seen in Figure 11-2.

Figure 11-2. Example LTT raw event list

http://www.wowebook.info

Download at wowebook. 1nfag

5 Trace Visuslzer - owtltrace
File Toos Oplions Help I

S| B w5] # o T[EMela]aE L]

Event Gragh | Process analysis Raw Trace

cPU-10]Event | Time| PID{intry Lengt] Evert Description [~
1 Syacall et 1.517.37€,354,751 821 13 7

i} Syicall enlry 1.517 376,994, 751 870 13 12 SY¥SCALL : f_sigackan; IP ; D1000 .
a Syscall et 1.517,376,354, 751 032 i3 7

a Syacall anry 1.517,37E, 394,751 928 13 12 SYSCALL : waitd; IF : 01 000TF44

0 Frocass 1,517 97K 554,751 545 13 16 WAITT FID -1

0 Sched changs 1,517,37E,394, z 13 B 21; OUT : 13; STATE: |

i Trap arery 1,517,376, 554, 752 151 # 13 TRAP - IP : el OO0 7434

0 Trap et 1.517.37E, 354,752,100 Eal 7

a Trap eriry 1,517,37€,994, 752,138 & 13 TRAP ;1P : 21 J003008

0 Trap i 1,517,376, 554,752,187 2 r

a Trap enery 1,517,376,394,752 247 & 13 TRAP . IP - 2l J00743C

a Trap et 1577376 254, TE2 295) 7

2 Tra eni 1517 37E 994 752 342 2 13 TRAP : - IP ; 213005400 i

[| Stert: 1,517,576,934,751 684 | Spanc 222

If you would prefer not to use the graphic tool at all, you can use the tracevisualizer on the command line.
In that case, the tracevisualizer command takes the two input files and generates a text file containing
the raw event list. This listis the same as the one displayed in the "Raw Trace" thumbnail of the graphic
interface. To dump the content of the trace in text, type:

$ tracevisualizer outt.trace outt.proc outt.data

The first two parameters of this command, outt.trace and outt.proc, are the input files | described earlier,
and the last parameter, outt.data, is the output file to where the trace's content is dumped in text. You
can also use one of the facilitating scripts such as tracedump or traceanalyze. We discuss LTT's
analysis capabilities and the "Process analysis" thumbnail later in this chapter.

Team LiB m MEXT W

http://www.wowebook.info

Download at wowebook. 1nfag

11.3 Performance Analysis

Obtaining in-depth data regarding various aspects of your target's performance is crucial for making the
best use out of the target's capabilities. Though | can't cover all aspects of performance analysis, | will
cover the most important ones. In the following sections, we will discuss process profiling, code
coverage, system profiling, kernel profiling, and measuring interrupt latency.

11.3.1 Process Profiling

Process profiling is a mechanism that helps understanding the intricate behavior of a process. Among
other things, this involves obtaining information regarding the time spent in each function and how much
of that time the function spent on behalf of each of its callers, and how much time it spent in each of the
children it called.

A single process in Linux is usually profiled using a combination of special compiler options and the
gprof utility. Basically, source files are compiled with a compiler option that results in profiling data to be
collected at runtime and written to file upon the application's exit. The data generated is then analyzed by
gprof, which displays the call graph profile data. Though I will not cover the actual use of gprof and the
interpretation of its output, since it is already covered in the GNU gprof manual, | will cover its cross-
platform usage specifics.

First, you must modify your applications’ Makefiles to add the appropriate compiler and linker options.
Here are the portions of the Makefile provided in Chapter 4 that must be changed to build a program that
will generate profiling data:

CFLAGS = -Wall -pg
LDFLAGS = -pg

Note that the -pg option is used both for the compiler flags and for the linker flags. The -pg compiler
option tells the compiler to include the code for generating the performance data. The -pg linker option
tells the linker to link the binary with gcrtl.o instead of crtl.o. The former is a special version of the latter
that is necessary for profiling. Note also that we aren't using the -O2 compiler optimization option. This is
to make sure that the application generated executes in exactly the same way as we specified in the
source file. We can then measure the performance of our own algorithms instead of measuring those
optimized by the compiler.

Once your application has been recompiled, copy it to your target and run it. The program must run for
quite a while to generate meaningful results. Provide your application with as wide a range of input as
possible to exercise as much of its code as possible. Upon the application's exit, a gmon.out output file is
generated with the profiling data. This file is cross-platform readable and you can therefore use your
host's gprof to analyze it. After having copied the gmon.out file back to your application's source
directory, use gprof to retrieve the call graph profile data:

$ gprof comrand-daenon
This command prints the call graph profile data to the standard output. Redirect this output using the >

operator to a file if you like. You don't need to specify the gmon.out file specifically, it is automatically
loaded. For more information regarding the use of gprof, see the GNU gprof manual.

11.3.2 Code Coverage

http://www.wowebook.info

Download at wowebook. 1nfag

In addition to identifying the time spent in the different parts of your application, it is interesting to count
how many times each statement in your application is being executed. This sort of coverage analysis can
bring to light code that is never called or code that is called so often that it merits special attention.

The most common way to perform coverage analysis is to use a combination of compiler options and the
gcov utility. This functionality relies on the gcc library, libgcc, which is compiled at the same time as the
gcc compiler.

Unfortunately, however, gcc versions earlier than 3.0 don't allow the coverage functions to be compiled
into libgcc when they detect that a cross-compiler is being built. In the case of the compiler built in
Chapter 4, for example, the libgcc doesn't include the appropriate code to generate data about code
coverage. lt is therefore impossible to analyze the coverage of a program built against unmodified gcc
sources.

To build the code needed for coverage analysis in versions of gcc later than 3.0, just configure them with
the - -with-headers= option.

To circumvent the same problem in gcc versions earlier than 3.0, edit the gcc-2.95.3/gcc/libgec2.c file, or
the equivalent file for your compiler version, and disable the following definition:

/* In a cross-conpilation situation, default to inhibiting conpil ati on
of routines that use libc. */

#i f defi ned(CROSS_COVPI LE) && !defined(inhibit _|ibc)
#define inhibit |ibc
#endi f

To disable the definition, add #i f 0 and #endi f around the code so that it looks like this:

/* gcc nmaekes the assunption that we don't have glibc for the target,
which is wong in the case of enbedded Linux. */
#if 0

/* In a cross-conpilation situation, default to inhibiting conpil ati on
of routines that use libc. */

#i f defi ned(CROSS _COVPI LE) && !defined(inhibit |ibc)
#define inhibit |ibc
#endi f

#endi f /* #if O */

Now recompile and reinstall gcc as we did in Chapter 4. You don't need to rebuild the bootstrap compiler,
since we've already built and installed glibc. Build only the final compiler.

Next, modify your applications’ Makefiles to use the appropriate compiler options. Here are the portions
of the Makefile provided in Chapter 4 that must be changed to build a program that will generate code
coverage data:

CFLAGS = -Wall -fprofile-arcs -ftest-coverage

As we did before when compiling the application to generate profiling data, omit the -O optimization
options to obtain the code coverage data that corresponds exactly to your source code.

For each source file compiled, you should now have a .bb and .bbg file in the source directory. Copy the
program to your target and run it as you would normally. When you run the program, a .da file will be
generated for each source file. Unfortunately, however, the .da files are generated using the absolute
path to the original source files. Hence, you must create a copy of this path on your target's root

http://www.wowebook.info

Download at wowebook. 1nfag

filesystem. Though you may not run the binary from that directory, this is where the .da files for your
application will be placed. My command daemon, for example, is located in /fhome/karim/control-
project/control-module/project/command-daemon on my host. | had to create that complete path on my
target's root filesystem so that the daemon's .da files would be properly created. The -p option of mkdir
was quite useful in this case.

Once the program is done executing, copy the .da files back to your host and run gcov:

$ gcov daenon.c
71.08% of 837 source lines executed in fil e daenmon. c
Cr eat i ng daenon. c. gcov.

The .gcov file generated contains the coverage information in a human-readable form. The .dafiles are
architecture-independent, so there's no problem in using the host's gcov to process them. For more
information regarding the use of gcov or the output it generates, look at the gcov section of the gcc
manual.

11.3.3 System Profiling

Every Linux system has many processes competing for system resources. Being able to quantify the
impact each process has on the system's load is important in trying to build a balanced and responsive
system. There are a few basic ways in Linux to guantify the effect the processes have on the system.
This section discusses two of these: extracting information from /proc and using LTT.

11.3.3.1 Basic /proc figures

The /proc filesystem contains virtual entries where the kernel provides information regarding its own
internal data structures and the system in general. Some of this information, such as process times, is
based on samples collected by the kernel at each clock tick. The traditional package for extracting
information from the /proc directory is procps, which includes utilities like ps and top. There are currently
two procps packages maintained independently. The firstis maintained by Rik van Riel and is available
from http://surriel.com/procps/. The second is maintained by Albert Cahalan and is available from
http://procps.sourceforge.net/. Though there is an ongoing debate as to which is the "official" procps,
both packages contain Makefiles that are not cross-platform development friendly, and neither is
therefore fit for use in embedded systems. Instead, use the ps replacement found in BusyBox. Though it
doesn't output process statistics as the ps in procps does, it does provide you with basic information
regarding the software running on your target:

ps

PID Ud Vnti ze Stat Conmmand
10 820 S init
20 S [kevent d]
30 S [kswapd]
4 0 S [krecl ai nd]
50 S [bdf | ush]
6 0 S [kupdat ed]
70 S [mt dbl ockd]
80 S [rpci od]

16 O 816 S -sh

17 0 816 R ps aux

If you find this information insufficient, you can browse /proc manually to retrieve the information you
need regarding each process.

http://surriel.com/procps/
http://procps.sourceforge.net/
http://www.wowebook.info

Download at wowebook. 1nfag

11.3.3.2 Complete profileusing LTT

Because LTT records crucial system information, it can extract very detailed information regarding the
system's behavior. Unlike the information found in /proc, the statistics generated by LTT are not
sampled. Rather, they are based on an exact accounting of the time spent by processes inside the
kermel. LTT provides two types of statistics: per-process statistics and system statistics. Both are
provided in the "Process analysis" thumbnail.

The per-process statistics are display by LTT when you select a process in the process tree displayed in

the "Process analysis" thumbnail. Figure 11-3 illustrates the data that can be extracted for a single
process.

Figure 11-3. Single process statistics

[l Trace Visuslzer - outt.trace
File Teoaols Cwtions Help I
- =] = p
BlS| &l «[5] #f o] I[Ew]s] o]l L@
Evend Grapn Frocass anakysis | R —.,;.E.e.l
S The &A1 Mighly (05 Proceds characheriatlcs 3 [
il (1) thumbar of aumtes celle: a7
3 ks oF trapei]
kavantd (2) Quardlby of duka remd foem Filess @
FpoCiod :I'] Juartity of oaks writken to files; 12
Tir Weel PG peocdds Sook! 0,057, 859) Gu08 ¥
Tire runnaregs 0,004, 180 =5 0,128 X
fracedzamon (20} Tim: waikira S0~ 100 1) e 000 Tr G,00 ¥
wa0Mingd _CFUD (3) Suster onll acometing (nome, o tives called. total bies spest in sgscelld 1
sswapd (4 "E"""""“"""“""":"\'"--“-----------------------------_...._---
§ Farpi 1 R0 A
acfush (5) ki 1 0L 2 (5
ety 2 [in LR)
EUpHERE (F) i 2 VaEa
neantat] 4 [s e
salitdr 3 @, 34d . 384
rt_nigeokion; ? []
i r 12 [=]
ikl in 0 e O3 —
I
=7 i

[| Start 1,617, 376,954 761,008 | Span: 226

Among other things, the data tells you how much time your task was scheduled by the kernel ("Time
running”) versus how much time was spent running actual application code ("Time executing process
code"). In this case, the task wasn't waiting for any 1/O. But if it did, the "Time waiting for I/O" line would
give you a measure of how much time was spent waiting. The times and percentages given depend on
the time spent tracing. In this case, tracing lasted 10 seconds.

LTT also provides information regarding the system calls made by an application. In particular, it gives
you the number of times each system call was made and the total time the kernel took to service all
these calls.

The system-wide statistics are displayed by LTT when you select the topmost process entry in the

process tree, which is called "The All Mighty (0)." Figure 11-4 illustrates the system data extracted by
LTT.

Figure 11-4. Overall system statistics

http://www.wowebook.info

Download at wowebook. 1nfag

[Bl Trace Visualizer - outl irace
File Tools Oplions Help
= | sy | | e | v | i (3
= 4 5 2 L 2 T T
Event Graph Frocass anahesis |Haw—ra|:e|
[Hatn trace charaeckeristics f
inik (1) Trace sbart LiFe! 1,517,376, 993, 044 165
L Traoe snd timed 1617, 377,003 030 438
keventd (2) Traes chirskisnt 9 @G, 271
mpcihod (F) Suaten jdls: 9ESLA6E =y ME.EE X
shi(13) Hurer of coourrence:s of somes ey ewvents §
I a4 (20) S SSSSSsssssssssssssssssossseensesnnssnnnes
! B.L'E'daﬂl:ﬂﬂ L _D'I Ewventst THeT
kzpflirgd_CPUD (3) Schedul ing charges: a8
. Kernel timos blost 499
kswapd (4) Susten omll entries: 2
bdiush (3 Sustem oall exitst 245
Trap sftoles) 1150
kupdatad (E) Trap exits: 1155
IFD emtrisss E
TRO sl Lt 9E
Botbor halwei; 103
Lrer scoiriesl 3
Fags allocakiors) ag
Fage freest [T
Frackess Duts 9
Packezs Int 1
)
-1 I

| [Start: 1,517,376,994 751,884 [Span: 199

The system statistics start with a few numbers regarding the trace itself. In this case, the trace lasted
almost 10 seconds and the system was idle for over 98% of that time. Next, the number of times a few
key events have happened are provided. On 7467 events, LTT says that 1180 were traps and 96 were
interrupts (with 96 IRQ entries and 96 IRQ exits.) This sort of information can help you pinpoint actual
problems with the system's overall behavior. The screen also displays a cumulative summary of the
system calls made by the various applications running on the system.

As with the actual trace information, the statistics displayed in the "Process analysis" thumbnail can be
dumped in text form to file from the command line. Look at the LTT documentation for more information
on how this is done.

11.3.4 Kernel Profiling

Sometimes the applications are not the root of performance degradation, but are rather suffering from
the kernel's own performance problems. In that case, itis hecessary to use the right tools to identify the
reasons for the kernel's behavior.

There are quite a few tools for measuring the kernel's performance. The most famous is probably
LMbench (http://www.bitmover.com/Imbench/). LMbench, however, requires a C compiler and the Perl
interpreter. It is therefore not well adapted for use in embedded systems. Another tool for measuring
kernel performance is kernprof (http://oss.sgi.com/projects/kernprof/). Though it can generate output that
can be fed to gprof, itinvolves the use of a kernel patch and works only for x86, ia64, sparc64, and
mips64. As you can see, most embedded architectures are not supported by kernprof.

There remains the sample-based profiling functionality built into the kernel. This profiling system works
by sampling the instruction pointer on every timer interrupt. It then increments a counter according to the
instruction pointer. Over a long period of time, it is expected that the functions where the kernel spends
the greatest amount of time will have a higher number of hits than other functions. Though this is a crude
kemel profiling method, it is the best one available at this time for most embedded Linux systems.

To activate kernel profiling, you must use the profi | e= boot parameter. The number you provide as a
parameter sets the number of bits by which the instruction pointer is shifted to the right before being
used as an index into the sample table. The smaller the number, the higher the precision of the samples,
but the more memory is necessary for the sample table. The value most often used is 2.

The sampling activity itself doesn't slow the kernel down, because it only occurs at each clock tick and
because the counter to increment is easily obtained from the value of the instruction pointer at the time of
the timer interrupt.

http://www.bitmover.com/lmbench/
http://oss.sgi.com/projects/kernprof/
http://www.wowebook.info

Download at wowebook. 1nfag

Once you've booted a kernel to which you passed the profi | e= parameter, you will find a new entry in
your target's /proc directory, /proc/profile. The kernel's sample table is exported to this /proc entry.

To read the profile samples available from /proc/profile, you must use the readprofile utility available as
an independent package from http://sourceforge.net/projects/minilop/ or as part of the util-linux package
from http://www.kernel.org/pub/linux/utils/util-linux/. In the following explanations, | will cover the
independent package only since util-linux includes a lot more utilities than just readprofile. Download the
readprofile package and extractitin your ${PRIJROOT}/debug directory. Move to the package's directory
and compile the utility:

$ cd ${PRIROOT}/debug/readprofil e-3.0
$ nmake CC=powerpc-uclibc-gcc

To compile the utility statically, add LDFLAGS="- st at i ¢c" to the make command line. The binary generated
is fairly small. When statically linked with uClibc and stripped, for example, it is 30 KB in size.

Once readprofile is built, copy it to your target's /usr/bin:
$ cp readprofile ${PRIROOT}/r oot fs/ usr/bin

For readprofile to operate adequately, you must also copy the appropriate System.map kernel map file to
your target's root filesystem:

$ cp ${PRIROOT}/i mages/ System map-2.4. 18 ${PRIROOT} /rootf s/ etc

With your target root filesystem ready, change the kernel boot parameters and add the profi | e=2 boot
parameter. After the system boots, you can run readprofile;

readprofile -m/etc/System map-2. 4.18 > profil e. out

The profile.out file now contains the profiling information in text form. At any time, you can erase the
sample table collected on your target by writing to your target's /proc/profile:[5]

[5] There is nothing in particular that needs to be part of that write. Just the action of writing erases the profiling information.
echo > /proc/profile
When done profiling, copy the profile.out file back to your host and have a look at its contents:

$ cat profile.out

30 _save flags ptr_end 0. 3000
10 _ _sti 0. 1250
8 flush_page to_ram 0. 1053
7 clear page 0.1750
3 copy_page 0. 0500
1 nBxx_nask_and_ack 0.0179
2 i opa 0. 0263
1 map_page 0. 0089
1 do_xprt_transmt 0. 0010
1 rpc_add wai t_queue 0. 0035
1 _ _rpc_sleep_on 0. 0016
1 r pc_wake_up_next 0. 0068
1 _rpc_execute 0. 0013
2 rpci od_down 0. 0043
15 exit _devpts fs 0. 2885

73678 total 0. 0618 0. 04%

http://sourceforge.net/projects/minilop/
http://www.kernel.org/pub/linux/utils/util-linux/
http://www.wowebook.info

Download at wowebook. 1nfag

The left column indicates the number of samples taken at that location, followed by the name of the
function where the sample was taken. The third column is a number that provides an approximation of
the function's load, which is calculated as a ratio between the number of ticks that occurred in the
function and the function's length. See the readprofile manpage included with the package for in-depth
details about the utility's output.

11.3.5 Measuring Interrupt Latency

One of the most important metrics for real-time embedded systems is the time it takes for them to
respond to outside events. Such systems, as | explained in Chapter 1, can cause catastrophic results if
they do not respond in time.

There are a few known ad-hoc techniques for measuring a system's response time to interrupts (more
commonly known as interrupt latency). These measurement techniques can be roughly divided into two
categories:

Self-contained

In this case, the system itself triggers the interrupts. To use this technigue, you must connect one
of your system's output pins to an interrupt-generating input pin. In the case of a PC-based
system, this is easily achieved by connecting the appropriate parallel port pins together, as is
detailed in the Linux Device Drivers book. For other types of systems, this may involve using more
elaborate setups.

Induced

Using this technique, the interrupts are triggered by an outside source, such as a frequency
generator, by connecting it to an interrupt-generating input pin on the target.

In the case of the self-contained method, you must write a small software driver that initiates and handles
the interrupt. To initiate the interrupt, the driver does two things:

1. Record the current time. This is often done using the do_gettimeofday() kernel function, which
provides microsecond resolution. Alternatively, to obtain greater accuracy, you can also read the
machine's hardware cycles using the get_cycles() function. On Pentium-class x86 systems, for
example, this function will return the content of the TSC register. On the ARM, however, it will
always return 0.

2. Toggle the output bit to trigger the interrupt. In the case of a PC-based system, for example, this is
just a matter of writing the appropriate byte to the parallel port's data register.

The driver's interrupt handler, on the other hand, must do the following:

1. Record the current time.
2. Toggle the output pin.

By subtracting the time at which the interrupt was triggered from the time at which the interrupt handler is
invoked, you get a figure that is very close to the actual interrupt latency. The reason this figure is not the
actual interrupt latency is that you are partly measuring the time it takes for do_gettimeofday() and other
software to run. Have your driver repeat the operation a number of times to quantify the variationsin
interrupt latency.

To get a better measure of the interrupt latency using the self-contained method, plug an oscilloscope on
the output pin toggled by your driver and observe the time it takes for it to be toggled. This number
should be slightly smaller than that obtained using do_gettimeofday(), because the execution of the first

http://www.wowebook.info

Download at wowebook. 1nfag

call to this function is not included in the oscilloscope output. To get an even better measure of the
interrupt latency, remove the calls to do_gettimeofday() completely and use only the oscilloscope to
measure the time between bit toggles.

Though the self-contained method is fine for simple measurements on systems that can actually trigger
and handle interrupts simultaneously in this fashion, the induced method is usually the most trusted way
to measure interrupt latency, and is closest to the way in which interrupts are actually delivered to the
system. If you have a driver that has high latency and contains code that changes the interrupt mask, for
example, the interrupt driver for the self-contained method may have to wait until the high latency driver
finishes before it can even trigger interrupts. Since the delay for triggering interrupts isn't measured, the
self-contained method may fail to measure the worst-case impact of the high latency driver. The induced
method, however, would not fail, since the interrupt's trigger source does not depend on the system
being measured.

The software driver for the induced method is much simpler to write than that for the self-contained
method. Basically, your driver has to implement an interrupt handler to toggle the state of one of the
system's output pins. By plotting the system's response along with the square wave generated by the
frequency generator, you can measure the exact time it takes for the system to respond to interrupts.
Instead of an oscilloscope, you could use a simple counter circuit that counts the difference between the
interrupt trigger and the target's response. The circuit would be reset by the interrupt trigger and would
stop counting when receiving the target's response. You could also use another system whose only task
is to measure the time difference between the interrupt trigger and the target's response.

However efficient the self-contained and the induced methods or any of their variants may be, Linux is
not a real-time operating system. Hence, though you may observe steady interrupt latencies when the
system is idle, Linux's response time will vary greatly whenever its processing load increases. Simply
increase your target's processing load by typing Is -R / on your target while conducting interrupt latency
tests and look at the flickering oscilloscope output to observe this effect.

One approach you may want to try is to measure interrupt latency while the system is at its peak load.
This yields the maximum interrupt latency on your target. This latency may, however, be unacceptable
for your application. If you need to have absolute bare-minimum bounded interrupt latency, you may want
to consider using one of the real-time derivatives mentioned in Chapter 1.

http://www.wowebook.info

Download at wowebook. 1nfag

11.4 Memory Debugging

Unlike desktop Linux systems, embedded Linux systems cannot afford to let applications eat up memory
generate dumps because of illegal memory references. Among other things, there is no user to stop the ¢
applications and restart them. In developing applications for your embedded Linux system, you can emplc
debugging libraries to ensure their correct behavior in terms of memory use. The following sections discu:
libraries, Electric Fence and MEMWATCH.

Though both libraries are worth linking to your applications during development, production systems shou
either library. First, both libraries substitute the C library's memory allocation functions with their own vers
functions, which are optimized for debugging, not performance. Secondly, both libraries are distributed un
of the GPL. Hence, though you can use MEMWATCH and Electric Fence internally to test your applicatio
distribute them as part of your applications outside your organization if your applications aren't also distrik
terms of the GPL.

11.4.1 Electric Fence

Electric Fence is a library that replaces the C library's memory allocation functions, such as malloc() and
equivalent functions that implement limit testing. It is, therefore, very effective at detecting out-of-bounds |
references. In essence, linking with the Electric Fence library will cause your applications to fault and durr
any out-of-bounds reference. By running your application within gdb, you can identify the faulty instruction

Electric Fence was written and continues to be maintained by Bruce Perens. It is available from
http://perens.com/FreeSoftware/. Download the package and extractitin your ${PRJROOT}/debug direct
control module, for example, | used Electric Fence 2.1.

Move to the package's directory for the rest of the installation:
$ cd ${PRIROOT}/debug/El ectri cFence-2. 1

Before you can compile Electric Fence for your target, you must edit the page.c source file and comment
following code segment by adding #i f 0 and #endi f around it:

#if (!'defined(sgi) && !defined(_ Al X))

extern int Sys_nerr;
extern char * sys errlist[];
#endi f

If you do not maodify the code in this way, Electric Fence fails to compile. With the code changed, compile
Electric Fence for your target:

$ nmake CC=powerpc-1li nux-gcc AR=powerpc-Iinux-ar

$ nmake LIB INSTALL DI R=${ TARGET PREFI X}/1i b \

> MAN_I NSTALL_DI R=${ TARGET PREFI X}/ man i nst al |

The Electric Fence library, libefence.a, which contains the memory allocation replacement functions, has
installed in ${TARGET_PREFIXYIib. To link your applications with Electric Fence, you must add the -lefer
your linker's command line. Here are the modifications | made to my command module's Makefile:
CFLAGS = -g -\Wall

LDFLAGS = -l efence

The -g option is necessary if you want gdb to be able to print out the line causing the problem. The Electri

http://perens.com/FreeSoftware/
http://www.wowebook.info

Download at wowebook. 1nfag

library adds about 30 KB to your binary when compiled in and stripped. Once built, copy the binary to youl
execution as you would usually.

By running the program on the target, you get something similar to:

command- daenon

El ectric Fence 2.0.5 Copyright (C 1987-1998 Bruce Perens.
Segnmentation fault (core dunped)

Since you can't copy the core file back to the host for analysis, because it was generated on a system of ¢
architecture, start the gdb server on the target and connect to it from the host using the target gdb. As an
here's how | start my command daemon on the target for Electric Fence debugging:

gdbserver 192.168. 172.50: 2345 comand- daenon
And on the host | do:

$ power pc- i nux-gcc conmmand- daenon

(gdb) target renote 192. 168.172.10: 2345
Rernot e debuggi ng using 192. 168. 172. 10: 2345
0x10000074 in _start ()

(gdb) conti nue

Conti nui ng.

Pr ogram recei ved signal SIGSEGV, Segnentation fault.
0x10000384 in main (argc=2, argv=0x7ffff794) at daenon. c: 126
126 i nput _buf[i nput i ndex] = val ue_read;

In this case, the illegal reference was caused by an out-of-bounds write to an array at line 126 of file daen
more information on the use of Electric Fence, look at the ample manpage included in the package.

11.4.2 MEMWATCH

MEMWATCH replaces the usual memory allocation functions, such as malloc() and free(), with versions
track of allocations. It is very effective at detecting memory leaks such as when you forget to free a memc
when you try to free a memory region more than once. This is especially important in embedded systems
no one to monitor the device to check that the various applications aren't using up all the memory over tin
MEMWATCH isn't as efficient as Electric Fence, however, to detect pointers that go astray. It was unable
to detect the faulty array write presented in the previous section.

MEMWATCH is available from its project site at http://www.linkdata.se/sourcecode.html. Download the pz
extract it in your ${PRIJROOT}/debug directory. MEMWATCH consists of a header and a C file, which mu
with your application. To use MEMWATCH, start by copying both files to your application's source directo

$ cd ${ PRIROOT}/ debug/ menwat ch- 2. 69
$ cp nemwat ch. ¢ menwat ch. h ${ PRIROOT}/ proj ect / comand- daenon

Modify the Makefile to add the new C file as part of the objects to compile and link. For my command dae
example, | used the following Makefile modifications:

CFLAGS

-02 -val | - DMEMMTCH - DMWYV STDI O

BJS daenon. o nemnat ch. o

You must also add the MEMWATCH header to your source files:

http://www.linkdata.se/sourcecode.html
http://www.wowebook.info

Download at wowebook. 1nfag

#i f def MEMMTCH
#i ncl ude "nmenmnatch. h"
#endi f /* #ifdef MEMAMTCH */

You can now cross-compile as you would usually. There are no special installation instructions for MEMW
memwatch.c and memwatch.h files add about 30 KB to your binary once built and stripped.

When the program runs, it generates a report on the behavior of the program, which it puts in the memwa
the directory where the binary runs. Here's an excerpt of the memwatch.log generated by running my con
daemon:

= == == == == == == MEMMTCH 2.69 Copyright (C) 1992-1999 Johan Lindh =
unfreed: <3> daenon.c(220), 60 bytes at 0x10023fe4 {FE FE FE ...

Merory usage statistics (gl obal):
N) umber of all ocations nade: 12

L) ar gest nenory usage : 1600
T)otal of all alloc() calls: 4570
Uynfreed bytes total s . 60

The unf reed: line tells you which line in your source code allocated memory that was never freed later. In
bytes are allocated at line 220 of daemon.c and are never freed. The T)otal of all alloc() calls:lir
the total quantity of memory allocated throughout your program's execution. In this case, the program allc
bytes in total.

Look atthe FAQ, README, and USING files included in the package for more information on the use of |
and the output it provides.

Team LiB m HEXT ¥

http://www.wowebook.info

Download at wowebook. 1nfag

11.5 A Word on Hardware Tools

Throughout this chapter we have mainly concentrated on software tools for debugging embedded Linux
software. In addition to these, there are a slew of hardware tools and helpers for debugging embedded
software. As | said earlier in this chapter, the use of a particular operating system for the target makes
little difference to the way you would normally use such hardware tools. Though hardware tools are
sometimes more effective than software tools to debug software problems, one caveat of hardware tools
is that they are almost always expensive. A good 100 Mhz oscilloscope, for example, costs no less than
a thousand dollars. Let us, nevertheless, review some of the hardware tools you may use in debugging
an embedded target running Linux.

— Although brand-new hardware tools tend to be expensive, renting your tools or
as buying secondhand ones can save you a lot of money. There are actually
. 4+ companies that specialize in renting and refurbishing hardware tools.

The most basic tool that can assist you in your development is most likely an oscilloscope. As we saw in
Section 11.3.5, it can be used to measure interrupt latency. It can, however, be put to many other uses
both for observing your target's interaction with the outside world and for monitoring internal signals on
your board's circuitry.

Though an oscilloscope is quite effective at monitoring a relatively short number of signals, itis not
adapted for analyzing the type of transfers that occur on many wires simultaneously, such as on a
system's memory or I/O bus. To analyze such traffic, you must use a logic analyzer. This allows you to
view the various values being transmitted over a bus. On an address bus, for example, the logic analyzer
will enable you to see the actual addresses transiting on the wires. This tool will also enable you to
identify glitches and anomalies.

If the problem isn't at a signal level, but is rather caused by faulty or immature operating system
software, you need to use either an In-Circuit Emulator (ICE), or a BDM or JTAG debugger. The former
relies on intercepting the processor's interaction with the rest of the system, while the latter rely on
functionality encoded in the processor's silicon and exported via a few special pins, as described in
Chapter 2. For many reasons, ICEs have been gradually replaced by BDM or JTAG debuggers. Both,
however, allow you to debug the operating system kernel using hardware-enforced capabilities. You can,
for instance, debug a crashing Linux kernel using such tools. As a matter of fact, the Linux kernelis
usually ported to new architectures with the help of BDM and JTAG debuggers. If you are building your
embedded system from scratch, you should seriously consider having a BDM or JTAG interface
available for developers so that they can attach a BDM or JTAG debugger, even though it may be
expensive. Most commercial embedded boards are already equipped with the appropriate connectors.

There is at least one open source BDM debugger available complete with gdb patches and hardware
schematics. The project is called BDM4GDB and its web site is located at
http://bdm4gdb.sourceforge.net/. This project supports only the MPC 860, 850, and 823 PowerPC
processors, however. Though this is quite a feat in itself, BDM4GDB is not a universal BDM debugger.

The LART project (http://www.lart.tudelft.nl/) provides a JTAG dongle for programming the flash of its
StrongARM-based system. This dongle's schematics and the required software are available from
http://www.lart.tudelft.nl/projects/jtag/. Though this dongle can be used to reprogram the flash device, it
cannot be used to debug the system. For that, you still need a real JTAG debugger.

If you are not familiar with the subject of debugging embedded systems with hardware tools, | encourage
you to look at Arnold Berger's Embedded Systems Design (CMP Books), and Jack Ganssle's The Art of
Designing Embedded Systems (Newnes). If you are actively involved in designing or changing your
target's hardware, you are likely to be interested by John Catsoulis' Designing Embedded Hardware

http://bdm4gdb.sourceforge.net/
http://www.lart.tudelft.nl/
http://www.lart.tudelft.nl/projects/jtag/
http://www.wowebook.info

(O'Reilly).

Download at wowebook. 1nfag

http://www.wowebook.info

Download at wowebook. 1nfag

Appendix A. Worksheet

Though embedded Linux systems differ greatly, the method outlined in this book should readily apply to
building any sort of embedded Linux system. It follows from this that it is possible to lay out a set of rules
for specifying the particularities of each embedded Linux system. The worksheet presented in this
appendix does just that. Once completed, any developer can use a worksheet in conjunction with the
explanations in this book to recreate an embedded Linux system without any assistance from the original
designers. During development, the worksheet can be used by members of the development team to
obtain detailed information regarding each component of the system.

The worksheet contains one section for detailing each aspect of an embedded Linux system. Each
section contains a set of attributes pertaining to the aspect of the embedded Linux system it describes.
The sections are:

Project identification

e Hardware summary

e Development tools

e Kernel

e Root filesystem

e Storage device organization
e Bootloader configuration and use
e Networking services

e Custom project software

e Debug notes

e Additional notes

Most sections include a "Main contact"” field. This field should be used to specify the name of the person
responsible for this particular aspect of the embedded system during development. The person in charge
of a certain aspect of the system is expected to be aware of the various caveats and keep up to date with
the recent developments of the relevant open source and free software packages. The person
responsible for the kernel, for example, should ideally be subscribed to the Linux kernel mailing list and
the kernel development list for the architecture the system is based on.

Though the worksheet attempts to be as exhaustive as possible, you may need to modify it and extend it
for your project's purposes. The number of entries for listing some system components, such as the
"Peripherals” list in the "Hardware summary" section for example, may be insufficient to describe your
system. Feel free to add more pages to leave more space for detailing your system's characteristics.

A copy of the blank worksheet is available for download in PDF and OpenOffice format from the book's
web site at http://www.embeddedtux.org/. Alternatively, you can photocopy the worksheet included in this
appendix. Avoid writing directly in this book, however, as you may want to make changes to your
worksheet and use the book across different projects.

The rest of this chapter describes each section of the worksheet in detail. Though the meaning of most
fields should be apparent, some fields may require some explanation. Whenever appropriate, references
the relevant chapters are provided.

http://www.embeddedtux.org/
http://www.wowebook.info

Download at wowebook. 1nfag

http://www.wowebook.info

Download at wowebook. 1nfag

A.l1 Project Identification

This section contains high-level information regarding your embedded system. Most of the information
required for this section can be found in Chapter 1. Table A-1 describes each field in the "Project
identification" section.

Table A-1. Description of "Project identification" fields

Field Description
Name The name of the project.
Internal 1D Z%eazil;rgtti):r:.or string uniquely identifying this project in your
Project leader The main person in charge of the project.
Start date The date at which the project started.

Expected completion date The date at which the project is expected to be finished.

Project description A high-level description of your project.
Type of system The type of the system as presented in Chapter 1.
Size One of: small, medium, or large. See Chapter 1 for the complete

description of each embedded Linux system type.

One of: mild or stringent. See Chapter 1 for the discussion regarding

Time constraints each type of time constraint.

A qualitative measure of how elaborate the system's user interface is.

Degree of user interaction o & Chapter 1 for examples.

Are networking services

offered or used? One of: yes or no.

http://www.wowebook.info

Download at wowebook. 1nfag

A.2 Hardware Summary

This section contains detailed information regarding your hardware from the software perspective. The
information required for this section is most likely found in your embedded system's specifications, which
are available either from your hardware department or from your board and processor vendors. This
hardware information is crucial for many aspects of building the embedded Linux system. Table A-2
describes each field in the "Hardware summary" section. As | said earlier, feel free to extend the number
of entries related to "Peripherals" so there's one for each of your system's peripherals.

Table A-2. Description of "Hardware summary" fields

Field Description

Processor family | One of the processor families discussed in Chapter 3.

The processor model within a processor family. If the processor is part of the

Processor model PowerPC family, for example, its model could be 450, 750, 860, etc.

Manufacturers usually have board families or types that have similar characteristics.

Board type You can leave this field empty if there is no such characteristic for your board.
Board model The model or part number for your board.
RAM size The size of system RAM.

RAM start and
end addr

ROM/Flash size | The size of system ROM or flash.

The location of the RAM in the physical address space.

ROM/Flash start
and end addr

ROM/Flash
model

The location of the ROM/Flash in the physical address space.

The ROM or flash chip model.

Processor

The address from which the processor fetches its first instruction.
startup address

Disk storage Fill this field if you are using an IDE or SCSI device or a device that acts as one,
type such as a CompactFlash device.

Disk storage size The storage space available on the disk device.

Peripherals: The kind of peripheral device: Ethernet controller, video controller, CAN interface,
Type etc.

Peripherals: The model or part number for the peripheral chip.

Model

Perlpher_als: A description of the peripheral's characteristics.

Description

Peripherals:

The physical address space window used to access the peripheral.

Mem location

http://www.wowebook.info

Download at wowebook. 1nfag

Some peripherals have unique IDs. If the peripheral is an Ethernet device, for
example, write the device's MAC address, if there's only one such device being
produced, or the MAC address range used for the production run, if there are many
units produced.

Peripherals: ID

http://www.wowebook.info

Download at wowebook. 1nfag

A.3 Development Tools

This section describes the developments tools used for building the embedded system and how these
tools are themselves created. Most of the information in this section pertains to the setup of the
development tools as described in Chapter 4. You should record this information as you build the tools
so you don't lose the information. Table A-3 describes each field in the "Development tools" section.
Many of the fields are identical for all development tools.

Table A-3. Description of "Development tools" fields

Field

Description

Host type

The type of host used for development. See Chapter 2 for the types of
hosts that can be used for embedded Linux development.

Tool: version

The official version of the tool as downloaded from its project's web site.

Tool: Special build flags

Any build flags used to build the tool that are not listed in Chapter 4.

Tool: Special
configuration flags

Any configuration flags used to configure the tool that are not listed in
Chapter 4.

Tool: Configuration
summary

A summary of the way the tool's build was configured. This applies to
uClibc only, as discussed in Chapter 4.

Tool: Patches/Changes

A description of the patches or changes applied to the toal.

Editor/IDE

The editor or IDE used by the members of the development team for this
project.

Terminal emulator

The terminal emulator used by the members of the development team for
this project.

Notes

Any additional notes regarding the setup and use of the development tools.

http://www.wowebook.info

Download at wowebook. 1nfag

A.4 Kernel

This section contains complete details regarding the kernel used in the embedded system. This
information is to be used in conjunction with the explanations provided in Chapter 5. Table A-4 describes
each field in the "Kernel" section.

Table A-4. Description of "Kernel" fields

Field Description

The official kernel version as obtained from the primary download site for

Version your architecture.
Download location The URL from which you obtained the kernel.
Patches: Description A description of the patch you applied.

Patches: Download

I) The URL from which you obtained the patch.
ocation

The complete path on your internal servers or repository to the

Configuration file location configuration file used to build the system's kernel.

A detailed list of the most important configuration options enabled for the

Configuration summary system's kernel

Kernel failure handler A description of the kernel panic handler implemented for your system. See
description Section 5.5 for details.

http://www.wowebook.info

Download at wowebook. 1nfag

A.5 Root filesystem

This section contains complete details of the target's root filesystem. This information is to be used in
conjunction with the explanations provided in Chapter 6. Table A-5 describes each field in the "Root
filesystem" section. The "/dev device entries” part of this section lists the /dev entries created in addition
to those discussed in Chapter 6. The "System applications" part of this section lists the system
applications used to provide basic Unix services, such as BusyBox, TinyLogin, and Embutils. The
"System initialization" part of this section lists the services started by init and the fashion in which they

are started.
Table A-5. Description of "Root filesystem" fields
Field Description
C library The C library used in the embedded system: glibc, uClibc, or diet libc.

C library components

The C library components copied to the target's /lib directory as discussed
in Chapter 6.

/dev device entries: Name

The name of the entry.

/dev device entries: Major
nbr

The device major number for this entry.

/dev device entries: Minor
nbr

The device minor number for this entry.

/dev device entries: Used
by

The applications that use this entry.

System applications:
Package

The name of the system application package.

System applications:
Version

The package version

System applications: Build
config

A summary of the package's configuration. For BusyBox, for example, list
the configuration changes to the configuration default.

System applications:
Config file location

The complete path on your internal servers or repository to the
configuration file used to build this package.

System initialization:
Service

The service or binary being started.

System initialization: Type
of activation

The type of init activation. Examples include: askfirst, wait, and once. See
Chapter 6 for the complete list.

http://www.wowebook.info

Download at wowebook. 1nfag

A.6 Storage Device Organization

This section describes the content of the system's storage device. The primary storage device is
expected to be a ROM or flash storage chip, whereas the secondary storage device is either a disk or
additional solid-state storage devices. The contents of this section should be used in conjunction with the
explanations in Chapter 7 and Chapter 8. Table A-6 describes each field in the "Storage device

organization" section.

Table A-6. Description of "Storage device organization" fields

Field

Description

Development setup

The setup used for transferring software components from the host to the target
as described in Chapter 2.

Storage devicel
content: Component

The type of component stored. This can be a bootloader, a kernel, boot
parameters, or any sort of filesystem, including a root filesystem.

Storage device
content: Size

The storage size allocated to this component.

Storage device
content: Location

The location of the component within the storage device. In the case of a solid-
state storage device, such as ROM or flash, this is the physical start and end
addresses. In the case of a disk storage device, this is the start and end sectors.

Storage device
content:
Dependency

The other components that load or use this component. A root filesystem, for
example, depends on a kernel, and a kernel depends on a bootloader.

Storage device
content: Format

The format in which the component is stored. For a filesystem, for instance, this
is the filesystem type, such as ext2 or JFFS2.

(1] Though the entries listed here are generic, the are many possible types of storage devices, as | said earlier.

http://www.wowebook.info

Download at wowebook. 1nfag

A.7 Bootloader Configuration and Use

This section contains detailed information on the bootloader's configuration and use. This information is
to be used in conjunction with the explanations in Chapter 9. Table A-7 describes each field in the
"Bootloader configuration and use" section.

Table A-7. Description of "Bootloader configuration and use" fields

Field Description
Package The bootloader used in the system.
Version The package version.

Build configuration

A description of the build configuration.

Setup procedure

The manner in which the bootloader is installed in the target's storage device.
This can include both software and hardware manipulations.

Boot options:
Option

One of the boot options configured into the bootloader.

Boot options:
Description

A description of the result of selecting this boot option.

Default boot option

The boot option activated if no other option is selected.

Security

The security procedure for locking and unlocking the bootloader to avoid user
tampering.

http://www.wowebook.info

Download at wowebook. 1nfag

A.8 Networking services

This section provides details regarding the networking services offered by the embedded system. This
information is to be used in conjunction with the explanations provided in Chapter 10. Table A-8
describes each field in the "Networking services" section.

Table A-8. Description of "Networking services" fields

Field Description
Main network service The main network service provided by the system.
Service The networking service being offered
Package The package used to offer the networking service.
Version The package version.
Configuration summary A summary of the package's configuration.

http://www.wowebook.info

Download at wowebook. 1nfag

A.9 Custom Project Software

This section provides information regarding your custom software project. This information can be
obtained only by analyzing your own software. This isn't meant to be a complete description of such
software. It is expected that your team has its own internal documentation regarding the project's
architecture and internals. This worksheet section is really just a summary meant to provide a bird's eye
view of how your custom software interacts with the rest of the system. Table A-9 describes each field in
the "Custom project software" section.

Table A-9. Description of "Custom project software” fields

Field

Description

Main source repository

The main repository where your project's source code is stored.

Code maintainer

The main person in charge of the project's source code.

Location in target root
filesystem

The complete path to the final location of the project's components on your
target's root filesystem.

Binary size

The total size of all binaries in your project.

Data size

The total maximum size occupied by your project's data.

Dependencies

The other software packages on which your project depends. The C library
is likely to be one of the dependencies listed here.

Initialization procedure

The way in which the software is started by the other system components. If
your software is launched by init, say it here.

http://www.wowebook.info

Download at wowebook. 1nfag

A.10 Debug Notes

This section contains information about debugging your project. The information in this section is to be
used in conjunction with the explanations provided in Chapter 11. Debugging is a creative process, and it
is done differently by each developer. This worksheet section is, therefore, only meant to be a summary.
It is very likely that your team will need to maintain its own up-to-date bug list during project development.
Table A-10 describes each field in the "Debug notes" section.

Table A-10. Description of "Debug notes" fields

Field

Description

Tools used

The detailed list of tools used to debug the system.

Summary of major

A summary of the most important bugs found in your system.

bugs found
Svstem's Every system has its weaknesses. Listing these explicitly will help you, and others
frggilities that work on this system, keep an eye out for problems that may be caused by

these fragilities.

http://www.wowebook.info

Download at wowebook. 1nfag

A.11 Additional Notes

Use this worksheet section to add any additional details about your embedded system you think would
be helpful for anyone that works on the project or that may need to understand how the project
components are assembled. Depending on your actual system, you may also prefer to create an
additional worksheet section to enter details about other aspects of your embedded system not covered
by the current version of the worksheet.

http://www.wowebook.info

Download at wowebook. 1nfag

A.12 Embedded Linux Systems Worksheet

Project identification

Name:
Internal 1D:

Project leader:

Start date:
Expected completion date:

Project description:

Type of system: Size:
Time constraints: Depree of user interaction:
Are networking services offered or used?:

Hardware summary

Processor family: Main contact:

Processor model:

Board type:
Board model;
RAM size: Start addr: End addr:
ROM/Flash size: Start addr: End addr:
ROM/TFlash model: Processor startup address:
Disk storage type: Disk storage size:
Peripherals
Type Muodel Descriprion Mem location in

Stari:

Enad:

Start:

End:

Stari:

End:

http://www.wowebook.info

Download at wowebook. 1nfag

Development tools

Host type: [main contact:

hinutils version:
Special build Aags:
Patches / Changes:

Patch location / Change description:

pee version:
Special configuration flags:
Patches / Changes:

Paich location / Change description:

glily version:
Special configuration flags:
Patches / Changes:

Paich location / Change description:

uClibe version;

Configuration summary:

Patches / Changes:

Patch location / Change description:

diet libe version:

Special build flaps:

Paitches / Changes:

Paich location / Change description:

LEditor f IDE:

Terminal emulator:

MNotes:

http://www.wowebook.info

Download at wowebook. 1nfag

Kernel
Version: I Main contact:
Download location:
FPatches
Descripiion Download location

Configuration file location:

Configuration summary:

Kernel failure handler description:

http://www.wowebook.info

Download at wowebook. 1nfag

Root filesystem

C library:

C library componenis:

I Main conlact:

f dev device entries

Name Major nbr Minor nbr Lised by
System applications
Fackage Version Build config Config file location

Sysiem inifinlization

Service Type of activation

http://www.wowebook.info

Download at wowebook. 1nfag

Storage device organization

Development setup:

I MMain contact:

Componeni

Size Location Dependency Formai

Primary storage device conient

Start:
End:
Start:
Eml:

Start:
Fod :
Start:
Brwed

Start:
Emnd:

Start:
Eml:

Start:
Emd:

Secondary storage device content

Componeni

Size Location Pependency Formai

Start:

Tl :

Start:

Eomd

Start:
End:

Stari:
Emwil

Start:
Fad:

Start:
Emnil:

Start:
Emid:

http://www.wowebook.info

Download at wowebook. 1nfag

Bootloader configuration and use

Package: I Main contact:

Version:

Build configuration:

Setup procedure:

Boot oplions

ption Dweseription
Default boot option:
Security:
Networking services
Main network service: IMain contact:
Service Fackage Version Configuration summary

http://www.wowebook.info

Download at wowebook. 1nfag

Custom project software

Main source repository:

Code maintainer:

Location in target root filesystem:
Binary size:
Data size:

Dependencies:

Initialization procedure:

Debug notes

Tools used:

Summary of major bugs found:

System's fragilities;

http://www.wowebook.info

Download at wowebook. 1nfag

Additional notes

http://www.wowebook.info

(Team Lio |

Download at wowebook. 1nfag

Appendix B. Resources

eneviovs I et

This book refers to external material when appropriate. The following references point to material that
parallels this book or is in the periphery of the issues discussed.

eam e |

ereviovs I et

http://www.wowebook.info

Download at wowebook. 1nfag

B.1 Online

With the ever-increasing popularity of "embedded Linux," many sites have been created to help potential
users and adopters. Here is a list of such sites in alphabetical order:

All Linux Devices (http://alllinuxdevices.com/)

Contains links to stories and news items related to embedded Linux. Maintained as part of
Internet.com'’s Linux resources.
Embedded-Linux.de (http://embedded-linux.de/)

German-language site providing updates about the releases of some of the main open source
packages used in embedded Linux systems, such as BusyBox and uClibc.
LinuxAutomation (http://www.linux-automation.de/)

Contains a well-organized set of links to various resources related to the use of Linux in
automation applications. Though the site's main page is in German, alink is provided to an
English version of the same site. Maintained by Robert Schwebel.

LinuxDevices.com (http://mmw.linuxdevices.com/)

Contains lots of industry-related news items. Also contains articles about open source and free
software community developments, but clearly has a commercial perspective. This site provides
many introductory guides and is frequently updated. Likely the most visible embedded Linux site
around.

Linux Documentation Project (http://wwmw.tldp.org/)

The main repository for HOWTOs, FAQs, and other guides about open source and free software
packages. Probably one of the most important Linux resources given the breadth and depth of
issues covered by its documents. This site is community maintained.

SiliconPenguin.com (http://www.siliconpenguin.com/)

Contains a collection of links to embedded Linux-related material.
uCdot (http://www.ucdot.org/)

A news and community site for uClinux users.

Though this list includes sites that specialize in providing information about embedded Linux, there are
many other sites that provide general Linux information which you may find useful. Consult Running
Linux for such sites.

http://alllinuxdevices.com/
http://embedded-linux.de/
http://www.linux-automation.de/
http://www.linuxdevices.com/
http://www.tldp.org/
http://www.siliconpenguin.com/
http://www.ucdot.org/
http://www.wowebook.info

Download at wowebook. 1nfag

B.2 Books

There are quite a few books out there about Linux and about embedded systems in general. Here are a
few titles that you may find useful:

Advanced Programming in the UNIX Environment, by Richard Stevens (Addison Wesley)

Considered by many as the most important Unix programming book available. If you need to
understand how to think and program in the Unix mindset, this is the book you need. Stevens'
books are, in general, highly recommended.

The Art of Designing Embedded Systems, by Jack Ganssle (Newnes Press)

This book's style is different from most other technical books in that it uses a mix of technical
explanations and practical advice about real-life issues. It captures the essence of the experiences
most embedded system designers have in their day-to-day work. Jack Ganssle has regular
columns in Embedded Systems Programming magazine and is a frequent speaker at embedded
systems conferences.

Embedded Systems Design, by Arnold S. Berger (CMP Books)

An introductory text to embedded system design from both the hardware and the software
perspective. If you are not familiar with the process of developing embedded systems, you will find
this book helpful.

Linux Device Drivers, by Alessandro Rubini and Jonathan Corbet (O'Reilly)

The classic text book for understanding how Linux device drivers are developed. Written by two
respected members of the open source and free software community. A must read for any Linux
device driver developer.

Running Linux, by Matt Welsh, Lar Kaufman, Terry Dawson, and Matthias Kalle Dalheimer (O'Reilly)

This book provides you with all that you need to learn how to install and use Linux without
requiring any prior knowledge of either Linux or Unix. I've owned a copy of this book's first edition
and have come back to it every time | forgot how something was done in Linux. A terrific book that
covers much of the background material required to make the best out of the use of Linuxin
embedded systems.

Programming Embedded Systems in C and C++, by Michael Barr (O'Reilly)

This introductory book covers the basics of embedded software development and offers insight
into many of the software tricks used in developing embedded systems.
Understanding the Linux Kernel, by Daniel Bovet and Marco Cesati (O'Reilly)

There have been a number of books on the Linux kernel's internals over the years. This one is
particularily well researched and structured, and has been updated to cover the current stable
version of Linux, 2.4.

http://www.wowebook.info

Download at wowebook. 1nfag

B.3 Publications

Though there aren't any embedded Linux-centric publications at the time of this writing, there are many
publications that discuss the use of Linux in embedded systems as part of the other issues they cover:

Embedded Systems Programming (http://www.embedded.com/mag.html)

The main magazine for embedded software programmers. Contains many very interesting and in-
depth articles about specific issues. Subscription to this magazine is free for qualified readers. |
strongly encourage you to take the time to subscribe to this publication.

Linux Journal (http://www.linuxjournal.com/)

The oldest of the Linux publications and the most well-established. The publishers of Linux Journal
also started an Embedded Linux Journal publication that specialized in covering the use of Linux
in embedded systems, but it was later discontinued. Instead, there is a regular "Embedded"
section in every Linux Journal issue.

Linux Magazine (http://www.linuxmagazine.com/)

Another well-established Linux publication. Covers various aspects of Linux's use in a range of
applications.
Linux Magazine France (http://www.linuxmag-france.org/)

A French-language publication that provides thorough articles about various open source and free
software packages. Atrticles often provide a lot of programming examples and tips on how to use
and configure various commands and services.

http://www.embedded.com/mag.html
http://www.linuxjournal.com/
http://www.linuxmagazine.com/
http://www.linuxmag-france.org/
http://www.wowebook.info

Download at wowebook. 1nfag

B.4 Organizations

As discussed in Chapter 1, there are a number of organizations who's activities are relevant to the use of
Linux in embedded systems:

Embedded Linux Consortium (http://www.embedded-linux.org/)
Emblix (http://mww.emblix.org/)

Filesystem Hierarchy Standard Group (http://mww.pathname.com/fhs/)
Free Software Foundation (http://www.fsf.org/)

Free Standards Group (http://www.freestandards.org/)

Linux Standard Base (http://www.linuxbase.org/)

OpenGroup (http://www.opengroup.org/)

Real-Time Linux Foundation (http://mwww.realtimelinuxfoundation.org/)

TV Linux Alliance (http://mwww.tvlinuxalliance.org/)

http://www.embedded-linux.org/
http://www.emblix.org/
http://www.pathname.com/fhs/
http://www.fsf.org/
http://www.freestandards.org/
http://www.linuxbase.org/
http://www.opengroup.org/
http://www.realtimelinuxfoundation.org/
http://www.tvlinuxalliance.org/
http://www.wowebook.info

Download at wowebook. 1nfag

B.5 Linux and Open-Source-Oriented Hardware Projects

FreelO (http://www.freeio.org/)

FreelO (Free Hardware Resources for the Free Software Community) is an effort to develop and
distribute hardware schematics and designs under the terms of the GNU GPL. The web site
already hosts a number of hardware designs along with the relevant Linux drivers.

LART (http://mww.lart.tudelft.nl/)

This project's goal is to develop a StrongARM-based embedded board that runs Linux. The board
schematics and lots of extension modules and software are available from the project's web site.
MyLinux (http://www.azpower.com/mylinux/)

This project aims to develop a SuperH-based PDA-like embedded system that runs Linux. The
project's details along with pictures are available from the project's web site.
Opencores.ORG (http://www.opencores.org/)

A collection of projects that develop Intellectual Property (IP) cores and distribute them under the
terms of the GNU GPL. Quite a few building blocks are already available.
Simputer (http://www.simputer.org/)

An effort to develop an inexpensive reference hardware platform that runs Linux.
TuxScreen (http://www.tuxscreen.net/)

Originally a Philips product, TuxScreen is a StrongARM-based platform that includes a phone set,
a screen, and a full keyboard. Though no more units are available for purchase, the site includes
schematics that may be useful to other projects.

uClinux boards (http://www.uclinux.org/)

One of the first hardware projects specifically aimed at building an embedded system capable of
running Linux. The MMU-less port of Linux originates from this project.

http://www.freeio.org/
http://www.lart.tudelft.nl/
http://www.azpower.com/mylinux/
http://www.opencores.org/
http://www.simputer.org/
http://www.tuxscreen.net/
http://www.uclinux.org/
http://www.wowebook.info

Download at wowebook. 1nfag

Appendix C. Important Licenses and Notices

The use and distribution of open source and free software is subject to a few well-known and widely
advertised licenses, as we discussed in Chapter 1. There are, nevertheless, some issues surrounding
Linux's licensing that keep resurfacing and seem to cause confusion. These uncertainties revolve around
the fact that the Linux kernel is itself distributed under the terms of the GNU GPL.

Over time, Linus Torvalds and other kernel developers have helped shed some light on the limits and
reaches of the kernel's licensing. This appendix presents some of the messages published by Linus and
other kernel developers regarding three aspects of the kernel's licensing: the use of non-GPL
applications, the use of binary-only modules, and the general licensing issues surrounding the kernel's
source code.

http://www.wowebook.info

Download at wowebook. 1nfag

(eam Lio| [orcvions W et

C.1 Exclusion of User-Space Applications from Kernel's GPL

To avoid any confusion regarding the status of applications running on top of the Linux kernel, Linus
Torvalds added the following preamble to the kernel's license:

NOTE! This copyright does *not* cover user prograns that use kernel
services by nornmal systemcalls - this is nerely consi dered nornmal use
of the kernel, and does *not* fall under the heading of "derived work".
Al so note that the GPL bel ow is copyrighted by the Free Software
Foundation, but the instance of code that it refers to (the Linux
kernel) is copyrighted by ne and ot hers who actually wote it.

Al so note that the only valid version of the GPL as far as the kernel
is concerned is this_license (ie v2), unless explicitly otherwise
st at ed.

Li nus Tor val ds

(eam Lio| [orcvions W et

http://www.wowebook.info

Download at wowebook. 1nfag

(eam Lio| [orcvions W et

C.2 Notices on Binary Kernel Modules

Recurring controversy has erupted over loadable kernel modules not distributed under the terms of the
GPL. Many companies already ship such binary modules and many industry players contend that such
modules are permitted. Yet many Linux kernel developers have come out rather strongly against this
practice. Here are some messages sent to the Linux kernel mailing list by Linus Torvalds and Alan Cox tt
provide some insight as to the use of binary modules.

C.2.1 First Posting by Linus in Kernel Interface Thread

Fr om torval ds@r ansnet a. com (Li nus Tor val ds)
Subject: Re: Kernel interface changes (was Re: cdrecord problens on
Dat e: 1999- 02-05 7:13:23

In article <36bab0c7. 394438@mail . cl oud9. net >,

John Alvord <jalvo@l oud9. net> wote:

>On Thu, 4 Feb 1999 22:37:06 -0500 (EST), "Theodore Y. Ts' 0"
><tyt so@v T. EDU> wr ot e:

>>

>>And as a result, 1've seen nore than a few M T users decide to give up
>>on Linux and nove over to NetBSD. | think this is bad, and |I'm hopi ng
>>we can take just a little bit nore care in the 2.2 series than we did in
>>the 2.0 series. Is that really too nuch to ask?

Yes. | think it is. | will strive for binary conpatibility for

nmodul es, but | _expect_that it will be broken. [It's just too easy to

have to nake changes that break binary-only nodul es, and | have t oo
little incentive totry to avoid it.

If people feel thisis a problem | see a few alternati ves:

- don't use stuff with binary-only nodules. Just say no.

- work hard at naking a source-version of the thing avail able (it
doesn't have to be under the GPL if it's a nodule, but it has to be
avail abl e as source so that it can be reconpil ed).

- don't upgrade

- drop Linux

>| suggest we treat binary conpatibility probl enms as bugs whi ch need to
>pbe resolved during the 2.2 lifetinme. Even with all care, some changes
>will occur because of mstakes... if we cure them there will be

> imted impact to users.

It's often not mstakes. Things sonetinmes have to change, and I
personal |y do not care for binary-only nodul es enough to even care. |If
peopl e want to use Linux, they have to live with this. 1In 2. 2.x, the
basics may be stable enough that maybe t he binary nodul e i nterface won't
actually change. | don't know. That would be good, but if it is not to
be, then it is not to be.

I _allow_binary-only nodules. | allow thembecause | think that
sonetimes | cannot norally require people to nake sources available to

http://www.wowebook.info

Download at wowebook. info

projects |li ke AFS where those sources existed before Li nux. HOAEVER
that does not nean that | have to _like_AFS as a binary-only nodul e.

Quite frankly, | hope AFS dies a slow and painful death w th people
m grating to better alternatives (coda, whatever). O that sonebody
makes an AFS client available in source form either as a clone or
through the original people.

As it is, what has AFS done for me |l atel y? Nothing. So why shoul d |
care?

Li nus

C.2.2 Second Posting by Linus in Kernel Interface Thread

Fr om torval ds@r ansnet a. com (Li nus Tor val ds)
Subject: Re: Kernel interface changes (was Re: cdrecord problens on
Dat e: 1999- 02- 07 8:15:24

In article <79g5buspdl@al | adiumtransnet a. conp,
H Peter Anvin <hpa@ransmneta. con> wrote:
>

>* Linus Torval ds has no interest whatsoever in developing such a
> plug-in ABI. Soneone else is welcone to do it.

No, it's even nore than that.
I _refuse_ to even consider tying ny hands over sone bi nary-only nodul e.

Hannu Savol ainen tried to add some | ayering to nake the sound nodul es
nmore "portable" among Li nux kernel versions, and | disliked it for two
reasons:

- extra layers decrease readability, and soneti mes nake for performance
probl ens. The readability thing is actually the larger beef | had
with this: | just don't want to see drivers start using sone strange
wr apper format that has absolutely nothing to do with how they work.

- 1 _want_ people to expect that interfaces change. | _want_ people to
know that bi nary-only nodul es cannot be used fromrelease to release.
I want people to be really really REALLY aware of the fact that when
they use a binary-only nodule, they tie their hands.

Note that the second point is nmainly psychological, but it's by far the
nost inportant one.

Basically, | want people to know that when they use binary-only nodul es,
it's THEIR problem | want people to know that in their bones, and |
want it shouted out fromthe rooftops. | want people to wake up in a
cold sweat every once in a while if they use binary-only nodul es.

Why? Because |'ma prick, and | want people to suffer? No

Because | _know_that | wll eventually nmake changes that break nodul es.

http://www.wowebook.info

Download at wowebook. 1nfag

And | want people to expect them and | never EVER want to see an ensil
in ny mail box that says "Damn you, Linus, | used this binary nodule for
over two years, and it worked perfectly across 150 kernel rel eases, and
Li nux-5.6.71 broke it, and you had better fix your kernel".

See?

| refuse to be at the nmercy of any binary-only nodule. And that's why I
refuse to care about them- not because of any really technical reasons,
not because |'ma cal lous bastard, but because | refuse to tie ny hands
behind my back and hear sonebody say "Bend Over, Boy, Because You Have
It Coming To You"

I all ow binary-only nodules, but | want people to know that they are
_only_ever expected to work on the one version of the kernel that they
were conpil ed for. Anything else is just a very nice unexpected bonus if
it happens to work.

And THAT, ny friend, is why when somebody conplai ns about AFS, | tell
themto go screw t hensel ves, and not come conplaining to me but conplain
to the AFS boys and girls. And why |I'mnot very interested i n changing
that .

Li nus

C.2.3 Post by Alan Cox in Kernel Hooks Thread

This is a response to a posting by Theodore Ts'O.

Fr om Al an Cox <al an@ xor guk. ukuu. or g. uk>
Subject: Re: [ANNOUNCE] Ceneralised Kernel Hooks Interface (GKH)
Dat e: 2000- 11- 09 14: 26: 33

> Actually, he's been quite specific. I1t's ok to have binary nodul es as
> |ong as they conformto the interface defined in /proc/ksyns.

What is conpletely unclear is if he has the authority to say that gi ven that
there is code from ot her peopl e including the FSF nerged into the tree.

I"ve taken to telling folks who ask about binary nodules to talk to their |eg:
departnent. The whole question is sinply to conplicated for anyone else to
wor k on.

Al an

C.2.4 First Post by Linus in Security Hooks License Thread

Fr om Li nus Torvalds <torval ds@ransnet a. con®
Subject: Re: [PATCH nmake LSM register functi ons GPLonly exports
Dat e: 2002- 10- 17 17:08: 19

Note that if this fight ends up being a major issue, I'"mjust going to
renove LSM and let the security vendors do their own thing. So far

http://www.wowebook.info

Download at wowebook. info

- 1 have not seen a lot of actual usage of the hooks

- seen a nunber of people who still worry that the hooks degrade
performance in critical areas

- the worry that people use it for non-GPL'd nodul es i s apparently real,
considering Oispin's reply.

I will re-iterate ny stance on the GPL and kernel nodul es
There is NOTHING in the kernel license that all ows nodul es to be
non- GPL' d.

The only_ thing that all ows for non-GPL nodules is copyright | aw, and
in particular the "derived work" issue. A vendor who distributes non- GPL
nmodules is _not_ protected by the nodule interface per se, and should
feel very confident that they can show in a court of law that the code
is not derived.

The nodul e interface has NEVER been documented or nmeant to be a GPL
barrier. The COPYING clearly states that the systemcall layer is such a
barrier, so if you do your work in user |l and you re not in any way

behol den to the GPL. The nodul e interfaces are not systemcalls: there
are systemcalls used to _install_them but the actual interfaces are
not .

The origi nal binary-only nodul es were for things that were pre-existing
wor ks of code, ie drivers and filesystens ported from ot her operating
systens, which thus could clearly be argued to not be derived works, and
the original limted export table also acted sonewhat as a barrier to
show a | evel of distance

In short, Crispin: I'mgoing to apply the patch, and if you as a copyri ght
hol der of that file disagree, | will sinply renove all of he LSM code from
the kernel. | think it's very clear that a LSM nodul e i s a derived work,

and t hus copyright law and the GPL are not in any way uncl ear about it.

If people think they can avoid the GPL by using function pointers, they
are WRONG And they have al ways been wong

Li nus

C.2.5 Second Post by Linus in Security Hooks License Thread

Fr om Li nus Torvalds <torval ds@ransnet a. con®
Subject: Re: [PATCH nmake LSM register functi ons GPLonly exports
Dat e: 2002- 10- 17 17: 25: 12

On Thu, 17 Cct 2002, Linus Torval ds wot e:

>

> |f people think they can avoid the GPL by using function pointers, they
> are WRONG. And t hey have al ways been wrong.

Side note: it should be noted that | egally the GPLONLY note i s nothi ng but
a strong hint and has nothing to do with the license (and only nmatters
for the _enforcenent_ of said license). The fact is:

http://www.wowebook.info

Download at wowebook. 1nfag

- the kernel copyright requires the G°L for deri ved works anyway.

- if a conmpany feels confident that they can prove in court that their
nodul e i s not a derived work, the GPL doesn't natter _anyway_,
since a copyright license at that point is nmeaningless and woul dn't
cover the work regardl ess of whether we say it is GPLONLY or not.

(I n other words: for provably non-derived works, whatever kerne
i cense we choose is totally irrelevant)

So the GPLONLY is really a big red warning flag: "Danger, WII| Robinson"

It doesn't

have any real legal effect on the nmeaning of the |icense

itself, except in the sense that it's another way to informusers about
the copyright license (think of it as a "click through" issue - GPLONLY
forces you to "click through" the fact that the kernel is under the GPL
and t hus derived works have to be too).

Gearly "click through" _has_ been consi dered a | egally neani ngful thing,

in that it
It doesn't
whet her it

(Team Lio |

voi ds the argunent that sonebody wasn't aware of the |icense.
change what you can or cannot do, but it has sonme neaning for
coul d be wilful infringement or just honest m stake.

Li nus

eneviovs I et

http://www.wowebook.info

Download at wowebook. 1nfag

(eam Lio| [orcvions W et

C.3 Legal Clarifications About the Kernel by Linus Torvalds

This is a fairly long explanation by Linus Torvalds regarding the kernel's licensing and how this licensing
applies to foreign code:

Feel free to post/add this. | wote it sonme tinme ago for a corporate

| awyer who wondered what the "GPL exception” was. Nanmes and conpani es
renoved not because | think they are ashamed, but because | don't want
peopl e to read too nuch into them

Li nus

Date: Fri, 19 Oct 2001 13:16:45 -0700 (PDT)

From Linus Torval ds <torval ds@r ansneta. conp

To: XXXX XXXXXX <XXXXX@XXX. XXXX. Comp

Subject: Re: GPL, Richard Stallman, and the Li nux kernel

[This is not, of course, a legal docunment, but if you want to forward it
to anybody el se, feel free to do so. And if you want to argue | egal
poi nts wi th me or point sonehting out, I'malways interested. To a
poi nt ;-]

On Fri, 19 Cct 2001, XxXXX XXXXXX w ote:
>

> |'ve been exchanging e-nmail with Richard Stallman for a couple of
> weeks about the finer points of the GPL.

feel your pain.

|'ve have spent time pouring through mailing Iist archives, usenet,
and web search engines to find out what's al ready been covered about
your statenent of allow ng dynamcally |oaded kernel nodules w th
proprietary code to co-exist with the Linux kernel. So far |'ve
been unable to find anything beyond vague statements attributed to
you. |If these i ssues are addressed sonmewhere already, please refer
ne.

V VVVVVYV

Vell, it really boils down to the equivalent of " _all_ derived nodul es
have to be GPL'd". An external nodul e doesn't really change the GPL in
that respect.

There are (mainly historical) exanpl es of UN X device drivers and sone
UNI X fil esystens that were pre-existing pieces of work, and which had
fairly well -defined and clear interfaces and that | personally could not
really consider any kind of "derived work” at all, and that were thus
acceptable. The cl earest exanple of this is probably the AFS (the Andrew
Fi l esysten), but there have been various device drivers ported from SCO
t oo.

> | ssue #1

http://www.wowebook.info

Download at wowebook. info

Qurrently the GPL version 2 license is the only |icense covering the
Linux kernel. | cannot find any alternative |icense explaining the
| oadabl e kernel nodul e exception which nakes your position difficult
to legally analyze

There is a note at the top of www kernel. org/pub/linux/kernel/COPYI NG,
but that states "user prograns” which would clearly not apply to
ker nel nodul es.

VVVVVVVYVYVYVYV

Could you clarify in witing what the exception precisely states?

Well, there really is no exception. However, copyright [aw obviously
hi nges on the definition of "derived work", and as such anything can
al ways be argued on t hat point.

| personally consider anything a "derived work" that needs special hooks
in the kernel to function with Linux (ie it is _not_acceptable to make a
smal | pi ece of GPL-code as a hook for the |l arger piece), as that obviously
implies that the bigger nodul e needs "help" from the nmain kernel

Smlarly, | consider anything that has intimate know edge about Kker nel
internals to be a derived work.

What is left in the gray area tends to be clearly separate nodul es: code
that had a life outside Linux fromthe begi nning, and that do something
self-contai nted that doesn't really have any i npact on the rest of the
kernel. A device driver that was originally witten for somet hing el se
and t hat doesn't need any but the standard UNI X read/wite ki nd of
interfaces, for exanple.

| ssue #2

>
>

> |'ve found statenents attributed to you that you think only 10% of

> the code in the current kernel was witten by you. By not being the
> sol e copyright holder of the Linux kernel, a stated exception to

> the GPL seens invalid unless all kernel copyright hol ders agreed on
> this exception. How does the exception cover GPL'd kernel code not
> witten by you? Has everyone contributing to the kernel forfeited

> their copyright to you or agreed with the exception?

VWl |, see above about the | ack of exception, and about the fundanent al
gray area in _any_ copyright issue. The "derived work" issue is obviously
a gray area, and | know lawyers don't |i ke them GCrazy people (even
judges) have, as we know, clai ned that even obvious spoofs of a work that
contain nothing of the original work itself, can be ruled to be "derived".

| don't hold views that extreme, but at the sane time | do consider a
nodul e written for Linux and using kernel infrastructures to get its work
done, even if not actually copying any existing Linux code, to be a
derived work by default. You d have to have a strong case to _not _

consi der your code a derived work. .

> | ssue #3

http://www.wowebook.info

Download at wowebook. info

> = = = = = = = =

> This issue is related to issue #1. Exactly what is covered by the

> exception? For exanple, all code shipped with the Li nux kernel

> archive and typically installed under /usr/src/linux, all code under

> fusr/src/linux except /usr/src/linux/drivers, or just the code in

> the /usr/src/linux/ kernel directory?

See above, and I think you' |l see ny point.

The "user program' exception is not an exception at all, for exanple, it's

just a nore clearly stated limtation on the "derived work™ issue. |If you
use standard UNI X systemcalls (with accept ed Linux extensions), your
pr ogram obvi ously doesn't "derive" fromthe kernel itself.

Whenever you link into the kernel, either directly or through a nodul e,
the case is just a _|lot_ nore nuddy. But as stated, by default it's
obviously derived - the very fact that you _need_ to do sonething as
fundanental as |inking agai nst the kernel very nmuch argues that your
nmodul e i s not a stand-al one thing, regardl ess of where the nodul e source
code itself has come from

> |ssue #4

> = = = = = = = =

> This |l ast issue is not so nuch a issue for the Linux kernel

> exception, but a request for comment.

>

> Richard and | both agree that a "plug-in" and a "dynamcally
> | oaded kernel nodul e" are effectively the sane under the GPL.
Agr eed.

The Linux kernel nodules had (a long time ago), a nore limted interface,
and not very many functi ons were actually exported. So five or six years
ago, we could believably claimthat "if you only use these N interfaces
that are exported fromthe standard kernel, you' ve kind of inplicitly
proven t hat you do not need the kernel infrastructure".

That was never really documented either (nore of a guideline for ne and

ot hers when we | ooked at the "derived work” issue), and as nodul es were
nore- and-nore used not for external stuff, but just for dynam c | oadi ng of
standard |i nux nodules that were distributed as part of the kernel anyway,
the "limted interfaces" argument is no |longer a very good guideline for
"deri ved work"

So these days, we export many internal interfaces, not because we don't
think that they would "taint" the linker, but sinply because it's useful
to do dynamic run-time | oading of nodules even wi th standard kerne
nmodul es that _are_ supposed to know a | ot about kernel internals, and are
obvi ously "derived works"..

> However we di sagree that a plug-in for a G°PL'd programfalls
> under the GPL as asserted in the GPL FAQ found in the answer:
> http://ww. gnu.org/licenses/ gpl -faq. ht M #GLAndPI ugi ns.

http://www.wowebook.info

Download at wowebook. info

I think you really just disagree on what is derived, and what is not.

R chard is very extreme: _anything_ that links is derived, regardl ess of
what the argunents against it are. |'mless extrenme, and | bet you're even
less so (at least you mght |like to argue so).

My assertion is that plug-ins are witten to an interface, not a
program Since interfaces are not G°L'd, a plug-in cannot be GPL'd
until the plug-in and programare placed together and run. That is
done by the end user, not the plug-in creator.

V V. V V

| agree, but al so disrespectfully di sagree ;)

It's an issue of what a "plug-in" is - is it a way for the programto
internally load nore nodules as it needs them or is it _meant_to be a
public, published interface.

For exanple, the "systemcall" interface could be considered a "plug-in
interface", and runni ng a user node program under Linux could easily be
construed as running a "plung-in" for the Linux kernel. No?

And there, | obviously absolutely agree with you 100% the interface is
publi shed, and it's _meant_ for external and i ndependent users. It's an
interface that we go to great lengths to preserve as well as we can, and
it's an interface that is designed to be independent of kernel versions.

But maybe sonmebody wote his programwith the intention to dynam cally

| oad "actors" as they were needed, as a way to maintain a good nodul arity,
and to try to keep the problem spaces well-defined. In that case, the
"plug-in" may technically follow all the sane rul es as the system call
interface, even though the aut hor doesn't intend it that way.

So | think it's to a large degree a natter of intent, but it could
arguably al so be considered a nmatter of stability and docunentati on (ie
"require reconpilation of the plug-in between version changes" would tend
to inply that it's an internal interface, while "docunented binary
conpatibility across many releases"” inplies a nore stable external
interface, and less of a derived wor k)

Does that neke sense to you?

| asked Richard to coment on several scenarios involving plug-ins
explai n whether or not they were in violation of the GPL. So far he
as only addressed one and has effectively adnitted a hole. This is
the one | asked that he's responded to:
[A] non-GPL'd plug-in witer wites a plug-in for a non-GPL'd
program Another author wites a G°PL'd program maki ng the
first author's plug-ins conpatible with his program Are now
the plug-in author's plug-ins now retroacti vely required to be
GPL' d?

H s response:
No, because the plug-in was not witten to extend this program

VVVVVVVVVVVYVYVYV

I find it suspicious that whether or not the GPL woul d apply to the

http://www.wowebook.info

Download at wowebook. info

> plug-in depends on the m ndset of the author.

The above makes no sense if you think of it as a "plug in" issue, but it
makes sense if you think of it as a "derived work" issue, along with
taking "intent" into account.

I know | awers tend to not like the notion of "intent", because it brings
in another whol e range of gray areas, but it's obviously a legal reality.

&k, enough blathering fromnme. I'd just like to finish off with a few
conments, just to clarify my personal stand:

- 1" mobviously not the only copyright hol der of Linux, and | did so on
purpose for several reasons. One reason is just because | hate the
paper wor k and other cr*p that goes al ong wi th copyri ght assignnments

Another is that | don't nmuch |ike copyright assignnents at all: the
author is the author, and he nmay be bound by ny requirenent for GPL,
but that doesn't mean that he should give his copyright to ne.

A third reason, and the nost relevant reason here, is that | want
peopl e to know_that | cannot control the sources. | can wite you a
note to say that "for use XXX, | do not consider nodule YYY to be a
derived work of ny kernel", but that would not really matter that nuch
Any other Linux copyright holder mght still sue you.

This third reason is what nmakes peopl e who ot herwi se m ght not trust ne
reali ze that | cannot screw peopl e over. | am bound by the same
agreenent that | require of everybody el se, and the only speci al status
| really have is a totally non-legal issue: people trust ne.

(Yes, | realize that | probably would end up having nore | egal status
than nost, even apart fromthe fact that | still amthe [argest single
copyright holder, if only because of appear ances)

- 1 don't really care about copyright law itself. What | care about is ny
own norals. Wiether |'d ever sue sonebody or not (and quite frankly,

it's the last thing | ever want to do - if | never end up talking to
|awyers in a professional context, I'Il be perfectly happy. No
di srespect intended) will be entirely up to whether | consider what

peopl e do to nme "nmoral" or not. Which is why intent matters to ne a
ot - both the intent of the person/corporation doign the infringenent
and the intent of me and others in issues |ike the nodul e export
interface.

Another way of putting this: | don't care about "legal |oophol es" and
wor d- wrangl i ng.

- Finally: | don'"t trust the FSF. | like the GPL a lot - although not
necessarily as a | egal piece of paper, but nore as an i ntent. Wi ch
explains why, if you ve |ooked at the Linux COPYI NG fil e, you nay have
noticed the explicit comment about "only this_ particular version of
the GPL covers the kernel by default".

http://www.wowebook.info

Download at wowebook. info

That's because | agree with the GPL as-is, but | do not agree with the
FSF on many other matters. | don't |i ke software patents nuch, for
exanple, but | do not want the code | wite to be used as a weapon
agai nst conpani es that have them The FSF has |ong been di scussing and
is drafting the "next generation® GPL, and they general |y suggest that
peopl e using the GPL should say "v2 or at your choice any |later

versi on".

Li nux doesn't do that. The Linux kernel is v2 O\NLY, apart froma few
files where the author put in the FSF extension (and see above about
copyright assignments why | would never renpve such an ext ensi on).

The "v2 only" issue m ght change sone day, but only after all docunented
copyright holders agree on it, and only after we' ve seen what the FSF
suggests. From what |'ve seen so far fromthe FSF drafts, we're not likely
to change our v2-only stance, but there mght of course be | egal reasons
why we'd have to do sonething like it (i e sonmebody chal enging the GPLv2
in court, and part of it to be found unenforceable or simlar would

obvi ously mean that we'd have to reconsi der the |icense).

Li nus

PS. Historically, binary-only nodul es have not worked well under Linux,
quite regardl ess of any copyright issues. The kernel just devel ops too
quickly for binary nodul es to work well, and nobody really supports them
Conpanies like RedHat etc tend to refuse to have anything to do with

bi nary nodul es, because if sonething goes wrong there i s nothing they can
do about it. So | just wanted to let you know that the legal issue is
just the beginning. Even though you probably don't personally care ;)

Ceam it | enevious [l vesr

http://www.wowebook.info

Download at wowebook. 1nfag

Colophon

Our look is the result of reader comments, our own experimentation, and feedback from distribution
channels. Distinctive covers complement our distinctive approach to technical topics, breathing
personality and life into potentially dry subjects.

Linley Dolby was the production editor and copyeditor for Building Embedded Linux Systems. Claire
Cloutier, Phil Dangler, Matt Hutchinson, and Darren Kelly provided quality control. Derek Di Matteo and
Jamie Peppard provided production assistance. Lucie Haskins wrote the index.

The image on the cover of Building Embedded Linux Systems is a windmill. Emma Colby designed the
cover of this book, based on a series design by Hanna Dyer and Edie Freedman. The cover image is a
19th-century engraving from the Dover Pictorial Archive. Emma Colby produced the cover layout with
QuarkXPress 4.1 using Adobe's ITC Garamond font.

Bret Kerr designed the interior layout, based on a series design by David Futato. The chapter opening
images are from the Dover Pictorial Archive, Marvels of the New West: A Vivid Portrayal of the
Stupendous Marvels in the Vast Wonderland West of the Missouri River, by William Thayer (The Henry
Bill Publishing Co., 1888), and The Pioneer History of America: A Popular Account of the Heroes and
Adventures, by Augustus Lynch Mason, A.M. (The Jones Brothers Publishing Company, 1884). This
book was converted by Joe Wizda to FrameMaker 5.5.6 with a format conversion tool created by Erik
Ray, Jason Mclintosh, Neil Walls, and Mike Sierra that uses Perl and XML technologies. The text font is
Linotype Birka; the heading font is Adobe Myriad Condensed; and the code font is LucasFont's TheSans
Mono Condensed. The illustrations that appear in the book were produced by Robert Romano and
Jessamyn Read using Macromedia FreeHand 9 and Adobe Photoshop 6. The tip and warning icons
were drawn by Christopher Bing.

The online edition of this book was created by the Safari production group (John Chodacki, Becki
Maisch, and Madeleine Newell) using a set of Frame-to-XML conversion and cleanup tools written and
maintained by Erik Ray, Benn Salter, John Chodacki, and Jeff Liggett.

http://www.wowebook.info

(Team Lio |

Download at wowebook. 1nfag

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V] [W] [X] [Y] [Z]

(Team LiB |

http://www.wowebook.info

Download at wowebook. 1nfag

[[erevicus]
[SYMBOL] [A] [B] [C] [] [E] [F] [G] [H] [1] 171 [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] (W [X] [Y] [Z]

\ (backward slash)
: (colon)

- (hyphen)

| (pipe)

; (semicolon) 2nd
\ (slash) 2nd 3rd
~> string

\lib directory

[eravious|

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[sYmBoL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [7] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] V] [WI [X] [¥] [Z]

accelerator control 2nd
access rights 2nd
ad hoc scripts
Ada Core Technologies Inc. (ACT)
Ada for GNU/Linux Team (ALT)
Ada programming language
add_mtd_device() function
addr2line utility
Adeos nanokernel
Advanced RISC Machine [See ARM]
Aegis project
AF_BLUETOOTH socket type
Affix stack
agents 2nd
ahead-of-time (AOT) compiler
ALERT syslog level
ALICE (Automation Light Interface Control Environment) project
allinone binary (embutils)
ALSA (Advanced Linux Sound Architecture)
Anjuta (I1DE)
Apache servers 2nd
APIs
DAQ hardware interfaces
filesystem access
low-level services
Open Sound System
parallel ports
PCI bus
portability
Apple [See also PowerPC][See also PowerPC]
FireWire trademark
applications [See also system applications][See also system applications]
coverage analysis
debugging with gdb
dynamically linking libraries
GNU C library usage
GPL and
linking proprietary
linking to C library
linking to uClibc library
linking with diet libc
root filesystem and 2nd
root privileges and
worksheet 2nd
ar utility 2nd
ARCH variable (make command) 2nd 3rd
architecture, embedded Linux system 2nd
ARCnet (Attached Resource Computer NETwork) 2nd 3rd
ARM (Advanced RISC Machine) processor
architecture overview 2nd
bootloader comparison
diet libc support
embedded system survey
embutils
GNU toolchain

http://www.wowebook.info

Download at wowebook. 1nfag

kernel considerations 2nd 3rd 4th

U-Boot and
Ul modules and
ARMBoot project

as (GNU assembler) utility 2nd 3rd

ASCII

Modbus messaging format
ATA (ARCnet Trade Association)

ATA (AT Attachment)

ATA-ATAPI (IDE) hardware support

ATAPI (ATA Packet Interface)

Attached Resource Computer NETwork (ARCnet) 2nd 3rd
ATV (Automatic Transfer Vehicle)

authentication
authorization, secure

eam e |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicus]
[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [11 [31 [KT [L] [M] [N] [O] [P] [QT [R1 [S1 [T] [UT V] [W] [X] [Y] [Z]

.bb files

.bbg files

BBT (Bad Block Table) 2nd 3rd
BDM debugger 2nd 3rd 4th
BDM4GDB project
\bin directory 2nd 3rd 4th
BIN_GROUP variable (make command)
BIN_OWNER variable (make command)
binaries
downloading to flash
sections for debugging
strip command
U-Boot
binutils (binary utilities)
gcc cautions
GPL license
resources
setting up
Unix systems and
version considerations 2nd
BIOS
interrupt handlers and
LILO and
ROM chips and
system startup process
TSR program and
Blackdown project 2nd 3rd 4th
blob bootloader 2nd
block devices 2nd
BlueCat (LynuxWorks)
BlueDrekar stack
Bluetooth
Ericsson blip and
hardware support
kernel support options
unlisted features
BlueZ stack 2nd 3rd
Boa
book resources 2nd
boot configuration
\boot directory
boot scripts 2nd
bootable DOS diskette 2nd
booting
basics of
BOOTP/DHCP, TFTP, NFS
CF devices
diskless systems
from DOC
hard disks and
network boot 2nd
RAM disk
from ROM
system reboot 2nd
U-Boot and

http://www.wowebook.info

Download at wowebook. 1nfag

bootldr bootloader 2nd
bootloaders [See also specific bootloaders][See also specific bootloaders]2nd [See also specific bootloaders][See
also specific bootloaders]
ATA-IDE limitations
boot configurations
comparison
DOS method installation
example 2nd
GRUB and DOC devices
importance of
installing 2nd
LILO with disk and CF devices
minicom constraints
mounting filesystem
partitions and
server setup for network boot
setting up 2nd
SPL as
system startup component
worksheet
bootm command
BOOTP
booting with
GRUB network boot
network boot 2nd 3rd
SYSM module and
bootp command
BSD license
inetd
strace
thttpd
xinetd
.bss section (ELF binary)
build process
binutils setup
bootstrap compiler setup 2nd
C library setup
compiling kernel image
configuring kernel
dependencies and 2nd
finalizing setup
kernel headers setup
overview 2nd
resources
uClibc library
build-binutils directory
build-glibc directory
build-tools directory 2nd 3rd
bus master
buses
CompactPCI support
GPIB support 2nd
I<Superscript>=2<Default Para Font=C support 2nd
ISA support
Linux support
PC/104 support 2nd
PCI support 2nd
PCMCIA support

http://www.wowebook.info

Download at wowebook. 1nfag

support overview
VME support 2nd
BusyBox
dpkg command
embutils and
features
init program
module dependencies
ping command
ps replacement
readelf command
setup
shells 2nd 3rd
udhcp project
usage
byte ordering 2nd
bzlmage file

eam e |

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

C library [See diet libc glibc uClibc]
c+-+filt utility
C-Kermit terminal emulator 2nd
C99 support 2nd
caching block device 2nd 3rd
CAN (Controller Area Network)
CAN in Automation (CiA) group 2nd 3rd
can4linux project
Canadian Crosses technique
CanFestival project
CANopen protocol 2nd
cat command 2nd
CATS (computer-aided training system)
CC environment variable
CF (CompactFlash)

booting from

control module and

DAQ module and

features 2nd

JFSS2 user module and

LILO and

popularity of
CFI (Common Flash Interface)

control module and

functionality

kernel configuration

mapping drivers

MTD support 2nd

partitioning

writing and reading 2nd
CFLAGS variable (make command) 2nd
CGI scripting
char devices 2nd 3rd
chroot() system call
CHRP (Common Hardware Reference Platform)
CiA (CAN in Automation) group 2nd 3rd
clocks_in_mhz environment variable
code [See applications software]
COM20020 chipset
COM90xx chipset
Comedi package 2nd
Comedilib library
command line

IDEs

kermit 2nd

viewing kernel configuration menu
command-daemon (gdb server and)
Common Flash Interface [See CFI]
Common Hardware Reference Platform (CHRP)
communication protocols [See specific protocols]
CompactFlash [See CF]
CompactPClI bus
CompaqgOs bootldr 2nd

compilation [See also cross-compilation Makefiles][See also cross-compilation Makefiles]

ahead-of-time compilers

http://www.wowebook.info

Download at wowebook. 1nfag

C library cautions

diet libc

Electric Fence cautions

just-in-time compilers

kernel considerations

linuxthreads package and

MTD utilities

Perl cautions

rsync utility

setting up compilers 2nd 3rd

_start symbol

telnetd

TinyLogin

U-Boot

uClibc library setup

udhcp

warnings during
Comprehensive Perl Archive Network (CPAN) 2nd
compression

filesystems 2nd 3rd 4th 5th

gzip command 2nd

JFFS2 2nd

kernel configuration
computer-aided training system (CATS)
.config file

backing up

generated by kernel

kernel configuration 2nd

multiple images

naming recommendations

saving manually
CONFIG_FILTER option
CONFIG_FTL option
CONFIG_MTD option
CONFIG_MTD_BLOCK option
CONFIG_MTD_BLOCK_RO option
CONFIG_MTD_CHAR option
CONFIG_MTD_PARTITIONS option
CONFIG_NFTL option
CONFIG_NFTL_RW option
CONFIG_PACKET option
configurability 2nd 3rd
configuration [See also boot configuration dynamic configuration kernel configuration][See also boot configuration
dynamic configuration kernel configuration]

add-ons

backing up

cautions enabling options

FreSSH constraints

full compiler setup

glibc

GRUB to boot from DOC 2nd

kernel-supported methods 2nd

libc.so file

LILO recommendations

managing multiple

microperl

miniperl

netkit-base and modifications

http://www.wowebook.info

Downlload at

wowebook. 1nfo

OpenSSH

processor and system type

rsync utility

saving/restoring

scripts for 2nd

setting up

uClibc

unlisted features
control daemon

DAQ module example

diet libc

uClibc
control module

booting from RAM disk

compacting

CRAMFS and

embedded systems 2nd 3rd 4th

gdb package 2nd

project workspace

SYSM module and
Controller Area Network (CAN)
copyright issues
cpcommand 2nd 3rd 4th
CPAN (Comprehensive Perl Archive Network) 2nd
CRAMEFS filesystem

automatic creation \dev entries

compression 2nd

features

link count and

OpenSSH and

RAM disks

selection guidelines
cramfsck tool
crc32 command
CROSS variable (make command)
cross-compilation

Apache and 2nd

considerations

DHCP package and

gdb server

libgcc constraints

LILO and GRUB

OpenSSH constraints

Perl and

Python

System V init program
cross-compiling variable (make install command)
CROSS_COMPILE variable (make command) 2nd 3rd
cryptography
cu terminal emulator 2nd 3rd 4th
CUPS print management package
CVs

coordinating development

gnat and

GRUB code

retrieving code from

sh-boot and
Cygnus [See Red Hat]

http://www.wowebook.info

Download at wowebook. 1nfag

Cygwin environment (Red Hat)

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[sYmBoL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [7] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] [WI [X] [¥] [Z]

.da files 2nd
daemons [See also specific daemons][See also specific daemons]
LTT build
networking services as
respawning cautions
Xinetd as
DAQ (data acquisition)
booting from CF card
compacting
control daemon
disk filesystem over NFTL
embedded system component 2nd
erasing DOC devices
GPIB interface and
hardware support 2nd
probe driver output
project workspace
SYSM module and
.data section (ELF binary)
databases, system module and 2nd
DCS (Digital Control System)
dd command 2nd 3rd 4th
DDD (IDE)
Debian 2nd 3rd
debugging
ad hoc methods
BDM and JTAG interfaces
filesystem recommendations
gdb tool
hardware tools 2nd
memory debugging
multibit 1/0 and
networking interface 2nd
performance analysis
serial lines 2nd
tracing
U-Boot ELF binary and
virtual memory layout
worksheet
denial-of-access attacks
.depend files
depmod utility
design methodology
DESTDIR variable (make command)
\dev directory 2nd 3rd 4th 5th
\dev entries
CFI flash devices and
DOC
LILO 2nd
MTD subsystem 2nd
worksheet
DEVEL_PREFIX variable (uClibc)
DEVEL_TOOL_PREFIX variable (uClibc)
development [See also GNU toolchain][See also GNU toolchain]
Ada

http://www.wowebook.info

Downl oad

at

wowebook. 1nfo

bootloaders and
diet libc library
differences for embedded systems
GNU Java Compiler 2nd
IDEs 2nd
Java
Linux costs
memory debugging cautions
open source virtual machines
Perl
project workspace
Python
setting up host/target systems
terminal emulators
tool setup 2nd
uClibc
worksheet
development (framework) distributions
device drivers
CFI flash and
CIF boards
DAQ vendor caveats
Ethernet
ISA bus
mapping
PCI and
SCSI interface
self-contained MTD
DeviceNet protocol 2nd
dformat DOS utility 2nd 3rd 4th 5th
DHCP (Dynamic Host Configuration Protocol)
booting with
functionality
GRUB network boot
network boot 2nd 3rd
setting up daemon
SYSM module and
Ul modules and
diet libc
embutils
features
minit
patch utility
Python constraints
diff command 2nd
Digital Control System (DCS)
dinfo command 2nd
dir command (gdb)
directories
binutils
cautioning overwriting kernels
confusing similarities
copying without GNU cp
downloading kernels into
GNU toolchain
mounting on TMPFS 2nd 3rd
organizing for project
renaming kernel directory

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

root filesystem 2nd

setup recommendations

sharing directory trees

storage requirements

tools directory contents

uClibc library settings

version numbers and 2nd
disk devices

embedded systems

LILO and

worksheet
disk filesystem

definition of

GIDs and

over NFTL 2nd 3rd

over RAM disk
diskboot command 2nd
diskless systems, booting
DiskOnChip [See DOC]
distributions

criteria for choosing

defined

Linux workstations

PowerPC support

survey findings

target systems

things to avoid

using
do_gettimeofday() function 2nd
DOC (DiskOnChip)

cautions using MTD utilities

embedded system survey

features

functionality

GRUB and

JFFS2 and 2nd

LILO cautions

memory device

MTD chip driver

U-Boot and
doc_loadbios utility (MTD) 2nd 3rd 4th
docbbt.txt file 2nd
documentation [See resources]
DOS installation

DOC and 2nd 3rd

GRUB bootloader image

loadlin utility 2nd
DOSTATIC flag 2nd
dpkg (Debian package)
drivers [See device drivers]
DSA keys
dynamic configuration
Dynamic Host Configuration Protocol
dynamic linking

Boa 2nd

BusyBox

copyright laws and

gdb command

[See DHCP]

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

glibc package

glibc setup option 2nd
libraries

Python

rsync

shared libraries

thttpd

uClibc library

udhcp

xinetd

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [V] [V] [W] [X] [Y] [Z]

Eclipse (IDE)
eCos operating system

EDC (Evans Data Corporation)

einfo utility (MTD)

EISA (Extended ISA) devices

ELC (Embedded Linux Consortium) 2nd 3rd
ELDK (Embedded Linux Development Kit) 2nd
Electric Fence library 2nd

Electromagnetic Interference (EMI)

ELF binary 2nd 3rd

ELJ (Embedded LInux Journal)

ELKS (Embeddable Lin

ux Kernel Subset) project

Embeddable Linux Kernel Subset (ELKS) project

embedded Linux 2nd

Embedded Linux Consortium (ELC) 2nd 3rd
embedded Linux distribution

Embedded Linux Journ

embedded systems [See also host systems target systems][See also host systems target systems]

al (ELJ)

booting requirements

defined

development worksheet

examples
generic architecture
log file cleanup

multicomponent example
networking and 2nd

size determination
survey findings
time constraints 2n
ubiquity of
Embedded Systems Pr

2nd

d

ogramming (ESP) magazine

Emblix (Japan Embedded Linux Consortium) 2nd

embutils 2nd

EMI (Electromagnetic Interference)

encryption 2nd
environment variables
automating booting
CC
filesize 2nd 3rd
gdb constraints
LD_LIBRARY_PATH
PATH 2nd
PREFIX 2nd
saving for U-Boot
setting with script

TARGET 2nd
U-BootOs 2nd
EPROMs

erase blocks 2nd 3rd
erase command 2nd

process

2nd 3rd

3rd 4th

eraseall command 2nd 3rd 4th 5th

erasing
DOC devices

DOC install considerations

MTD devices

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

U-Boot bootloader image
Ericsson blip 2nd
error messages
bad blocks
kernel panic
partition deletion
SYSM module and
unrecognizable format
\etc directory
EtherBoot bootloader 2nd
Ethernet
802.11 as equivalent
ARCnet and
considerations using
EMI and RFI vulnerability
hardware support
linked setup
Modbus protocol and
Eurolinux
Evans Data Corporation (EDC)
exec_prefix variable (make command)
eXecute In Place (XIP)
ext2 filesystem
data access
NFTL and 2nd
power-down reliability
RAM disks
ext3 journalling filesystem 2nd
Extended ISA (EISA) devices
EXTRAVERSION variable 2nd

eam e |

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [9] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [V] [V] [W] [X] [Y] [Z]

Familiar distribution 2nd 3rd
fast infrared (FIR)
FAT filesystem 2nd 3rd
fcp utility (MTD)
fdisk utility 2nd 3rd 4th
FHS (Filesystem Hierarchy Standard) 2nd 3rd
fieldbuses
file command 2nd
files
copying
dependency considerations
header files 2nd
log file recommendations
maps file
patching
transfer constraints 2nd
filesize environment variable 2nd 3rd
Filesystem Hierarchy Standard Group 2nd

filesystems [See also journalling filesystems root filesystem][See also journalling filesystems root filesystem]

compression 2nd 3rd 4th 5th
creating image for RAM disk
kernel functions
MTD utilities
selection guidelines
updating while mounted
writing images to flash
FIR (fast infrared)
FireWire [See IEEE1394 standard]
firmware 2nd 3rd
flash chips 2nd 3rd 4th
flash devices [See also specific models][See also specific models]
blob and
bootstrapping and
downloading binary images
erase blocks
filesystems and
hardware worksheet
JFFS2 and
JTAG dongles
RAM location and
system memory layout
writing filesystem image
Flash Translation Layer (FTL) 2nd 3rd
floppy disks
foreign code, licensing clarifications
free software community [See open source]
Free Software Foundation (FSF) 2nd 3rd
Free Standards Group (FSG) 2nd
free() function 2nd
FreelO (Free Hardware Resources for the Free Software Community)
Freshmeat web site
FreSSH package
FTL (Flash Translation Layer) 2nd 3rd
ftl_check utility (MTD)
ftl_format utility (MTD)

http://www.wowebook.info

Download at wowebook. 1nfag

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

garbage collection
gasp utility (binutils)
gcc (GNU C compiler)

binary utility cautions
code coverage recommendations
cross-compilation and

debugging options
extracting

gcc component
gdb and

gnat constraints
GPL license
installing
resources

setting up 2nd
versions 2nd 3rd

gcj [See GNU Java Compiler]

gcov utility 2nd 3rd
gdb (GNU debugger)

BDM and JTAG debuggers
building/installing components
debugging applications

Electric Fence

GPL license

popularity of
gdb stubs
.gdbinit file

General-Purpose Interface Bus (GPIB) 2nd 3rd

get_cycles() function
gettimeofday()
GhostScript package
GID field

gjc (GNU Java Compiler) 2nd

glib package

glibc (GNU C library)
alternatives
applications and
Boa 2nd
build considerations
BusyBox and

compilation cautions

components in
delicacy of build

FPU emulation option

FreSSH

GNU toolchain version combinations

inetd support

JDK and JRE

kernel headers and
LGPL license

library build options
linking options 2nd
linuxthreads 2nd
microperl and
Net-SNMP and 2nd

http://www.wowebook.info

Download at wowebook. 1nfag

OpenSSH

package download

patch utility

Python considerations

resources

root filesystem

rsync utility

setting up

shell script updating

strace and

telnetd 2nd

thttpd

TinyLogin 2nd

trace daemon and

udhcp and

Unix systems and

utelnetd 2nd

version considerations 2nd 3rd 4th

worksheet

Xinetd support
glibc-encrypt
glibc-linuxthreads
Glimmer (IDE)
gnat (GNU Ada) compiler
GNU C library [See C library]
GNU GPL (General Public License)

"contamination” 2nd

binary kernel modules

Boa and

BusyBox package

diet libc licensing

FSF and 2nd

kernel license exclusion

licensing

Linux code availability

M-Systems DOC driver

RTLinux patent and

udhcp project

utelnetd
GNU toolchain [See also build process][See also build process]

BDM/JTAG debuggers and

binutils setup

build overview 2nd

build-tools directory

C library setup

component versions

Cygwin environment

finalizing setup

gcc setup 2nd 3rd 4th

kernel headers setup

memory for compilation

overview

resources

sharing tools

Unix systems and

using

workspace setup
GNUPro product (Red Hat)

http://www.wowebook.info

Download at wowebook. 1nfag

GOAS (Ground Operator Assistant System)
GPIB (General-Purpose Interface Bus) 2nd 3rd
GPL [See GNU GPL]
gprof utility 2nd 3rd 4th
graphical interface (X Window System)
GRUB (GRand Unified Bootloader)
bootloader image
comparison
cross-compilation
DOC devices and
features
version considerations
GTK widget toolkit 2nd
gzip command 2nd 3rd

(Team LiB |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[sYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] [WI [X] [¥] [Z]

hard real-time system 2nd
hardware support
ARM processor 2nd
buses and interfaces
debugging tools 2nd 3rd
IBM/Motorola PowerPC 2nd
industrial grade networking
input/output
kernel configuration options
kernprof and
Linux and 2nd 3rd
MIPS processor
Motorola 68000
networking
open source projects 2nd
processor architectures
storage
SuperH
U-Boot
Xx86 processor 2nd
HCI (Host Controller Interface) 2nd
hcidump tool (BlueZz)
hdparm utility
header files 2nd
help command
HelpPC shareware
hexadecimal format
HEYU! project
high-availability
Hitachi SuperH [See SuperH processor]
home automation 2nd
\home directory
Host Controller Interface (HCl) 2nd
host systems
automatic network configuration
byte ordering considerations 2nd
debug setups 2nd
defined
development setups
GNU toolchain 2nd
installing MTD utilities
testing connections
types of
Hot Swap specification (CompactPCl)
HTTP
SYSM module and
web content and

[eavious|

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[sYmBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] 7] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] [WI [X] [¥] [Z]

I<Superscript>2<Default Para Font>C (Inter-Integrated Circuit) bus 2nd
1/0 (input/output)
generic requirements
hardware support
logic analyzers
i386 platform
embutils
GNU toolchain
hardware support
PCMCIA support
target build example
i386-linux directory
IAP (Information Access Protocol)
IAS (Information Access Service)
IBM/Motorola PowerPC [See PowerPC]
ICE (In-Circuit Emulator) 2nd
ide commands 2nd
IDE drives [See ATA-ATAPI]
CF cards and
CompactFlash devices as
LILO and 2nd
U-Boot and
IDEs (integrated development environments)
availability
listed
using
worksheet
IEEE 1284 standard
IEEE 1394 (Firewire) standard 2nd 3rd 4th
IEEE 488 (GPIB) standard
IEEE 802.11 (wireless) standard 2nd
IETF standard
iminfo command 2nd 3rd
implementation methodology
In-Circuit Emulator (ICE) 2nd
include directory 2nd
index.html files
Industry Standard Architecture (ISA) 2nd
inetd super-server 2nd 3rd
info directory
Infrared Data Association [See IrDA]
init program
BusyBox init
kernel and
Minit 2nd
respawning cautions
standard System V init 2nd
start_kernel() function
system startup component
Initial Program Loader (IPL) 2nd
initialization [See system initialization]
initramfs (init RAMFS)
initrd mechanism 2nd
INSTALL_MOD_PATH variable (make command)
install_root variable (make install command)

http://www.wowebook.info

Download at wowebook. 1nfag

installation [See also DOS installation][See also DOS installation]
bootloader image 2nd
C library
checking for binutils
distribution considerations
DOS method for DOC
embutils
full compiler
gcc
gdb
GRUB on DOC
inetd
kernel considerations
MTD utilities
patch utility
rsync utility
strace tool
U-Boot
uClibc library
udhcp 2nd
visualization tool
INT 18h
INT 19h
Intel [See x86 processors]
Interbus fieldbus
interfaces
Ada
CompactFlash access via
DAQ hardware
hardware support
International Space Station (ISS)
Internet Software Consortium (1SC)
internet super-servers
DHCP and
enabling TFTP service
inetd
special daemon
xinetd 2nd
interpreters
microperl
miniperl
Perl
Python
interrupt handlers 2nd 3rd
interrupt latency 2nd
intrusions, NFS service and
IP addresses
automatic configuration and
control module and
DAQ modules and
SYSM module and 2nd
Ul modules and
iIPKG (Itsy Package Management System)
IPL (Initial Program Loader) 2nd
IrCOMM layer
IrDA (Infrared Data Association)
Bluetooth and
hardware support

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

kernel support options
IrLAN
ITLAP (link access protocol) 2nd
Ir'LMP (link management protocol) 2nd
IrNET
IrOBEX
IrPHY (physical signaling layer)
IrPORT driver (IrDA)
IrTTY driver (IrDA)
ISA (Industry Standard Architecture) 2nd
ISC (Internet Software Consortium)
1SO 11898 standard (CAN)
ISS (International Space Station)
Itsy Package Management System (iPKG)

(Team LiB |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[symBoL] [A] [B] [C] [D] [E] [F] [6] [H] [1] (3] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] V] [WI [X] [¥] [Z]

J1939 protocol
Japhar project
Java Development Kit (JDK) 2nd
Java programming language
ALICE project
background
Blackdown project
Motorola 68000 processors and
PowerPC support
SuperH processors and
Java Runtime Environment (JRE) 2nd 3rd
Java Virtual Machine (JVM) 2nd
JDK (Java Development Kit) 2nd
JEDEC Solid State Technology Association
JFFS (MTD)
JFFS2 filesystem
automatic creation \dev entries
blob and
compression 2nd
DOC and 2nd
erase blocks and
features 2nd 3rd
MTD support
selection guidelines
storage support
U-Boot and
jffs2reader utility (MTD)
JFS journalling filesystem
jModbus project
joeq VM project
journalling filesystems
documentation
JFFS2 and
NFTL and 2nd
power-down reliability and
Journalling Flash File System (JFFS) user module
JRE (Java Runtime Environment) 2nd 3rd
JTAG debugger 2nd 3rd 4th
just-in-time (JIT) compilers
JVM (Java Virtual Machine) 2nd

[eRevious|

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

Kcomedilib

KDevelop (IDE) 2nd
keepalive signals
kermit utility 2nd 3rd

.kermrc configuration file
KERN_WARNING symbol 2nd

kernel
ALSA integration
Applicom cards

architecture name selection

ARCnet support
ATA/IDE support

binary modules notices

blob and

bootstrapping requirements

building 2nd

CFI specification support

compiling
dealing with failure

debugging 2nd 3rd 4th

display support
DOC driver
documentation

embedded Linux and

failure to boot after
filesystem engines
functions of

updates

generic requirements

GNU toolchain and
GPL 2nd

I<Superscript=2<Default Para Font>C

1/0 device support
importance of
initrd images
installing 2nd 3rd
Kcomedilib

layered services
legal clarifications
LTT and 2nd 3rd

4th

MontaVista contributions
Motorola 68000 processors

MTD and 2nd 3rd
OS functions
pointer devices and
\proc filesystem
RAM and 2nd
renaming directory

root filesystem requirements

SCSI layer

secondary kernels under

selecting 2nd

system startup component 2nd

TrueFFS tools
USB and
version variations

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

virtual address space
watchdog timers
worksheet
kernel configuration
building and 2nd
CFI flash
considerations
DOC
kernel selection and
MIPS
MTD subsystem
rebuilding toolchain and
kernel headers
build requirement
configuring
setup 2nd
kernel panic
code location
example
MTD and
premature exit and
reasons for
sample process
system reboot and
kernel profiling
Kernel Traffic newsletter
KERNEL_SOURCE variable (uClibc)
kernprof tool
keyboards 2nd
keys 2nd
Kissme project
Kurt project

(eam 1o |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[symBoL] [A] [B] [C] [D] [E] [F] [6] [H] [1] 3] K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] [WI [X] [¥] [Z]

L2CAP (Logical Link Control and Adaptation Protocol)
12ping tool (BlueZz)
LART project 2nd 3rd
Id utility 2nd 3rd 4th
LD_LIBRARY_PATH environment variable 2nd
ldd command
LDFLAGS option (make command)
linking option 2nd
Makefile example
static linking
strace
udhcp
LDPS (Linux Development Platform Specification)
LDSHARED variable (configure)
LGPL 2nd
\lib directory 2nd
libc.so file 2nd
libcrypt (cryptography library) 2nd 3rd
libdl (dynamic loading library) 2nd
libgce (gec library) 2nd
libm (math library) 2nd 3rd
libraries [See also system libraries][See also system libraries]
file dependencies and
installing on root filesystem
LGPL and
linking of
location of shared
stripping
libutil (login routines library) 2nd
licensing [See also BSD license GNU GPL][See also BSD license GNU GPL]
Apache
Blackdown project
C-Kermit
diet libc and
distribution considerations
exclusion of user-space applications 2nd
GPL and LGPL
inetd
kernel
Linux and
Net-SNMP
OpenSSH
thttpd
xinetd
LILO (LInux LOader) bootloader 2nd 3rd
linear variable differential transformers (LVDTS)
Lineo survey findings
linking [See also dynamic linking static linking][See also dynamic linking static linking]
applications to C library
considerations for libraries
diet libc with applications
miniperl and
proprietary applications and
uClibc library and applications
Linux 2nd

http://www.wowebook.info

Downlload at

wowebook. 1nfo

Linux Development Platform Specification (LDPS)
Linux distributions [See distributions]
Linux From Scratch project
Linux Journal
accelerator control example
CATS example
resource
SCADA protocol converter example
space vehicle control example
Linux kernel [See kernel]
Linux Standard Base (LSB) 2nd
Linux systems [See systems]
Linux Trace Toolkit [See LTT]
Linux workstations 2nd
Linux/RK project
LinuxBIOS bootloader 2nd
LinuxDevices.com 2nd
LinuxPPC support
linuxthreads package
compiler cautions
compiling glibc without
configuring
library setup
live updates
Im_sensors package
LMbench tool
loadb command
loadlin utility (DOS) 2nd
loads command
lock utility (MTD)
log files
logic analyzers
logical address [See virtual address]
Logical Link Control and Adaptation Protocol (L2CAP)
LonWorks fieldbus
loopback constraints
LPD print management package
LPRNng print management package
LSB (Linux Standard Base) 2nd
LSH (SSH implementation)
LTT (Linux Trace Toolkit)
authorship
building trace daemon
features
MontaVista contributions
patching the kernel 2nd
tracing target
visualization tool
LVDTs (linear variable differential transformers)
LynuxWorks

eam Lo |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[symBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] 3] K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] V] [WI [X] [¥] [Z]

M-Systems 2nd 3rd 4th [See also DOC loadlin utility][See also DOC loadlin utility]
M68k processors
appropriate kernel location
architecture overview
bootloader availability
bootloader comparison
kernel architecture name
RedBoot
Ul modules and
Machine Automation Tools LinuxPLC (MAT LPLC) 2nd
main() function
make clean command 2nd
make command [See also LDFLAGS option][See also LDFLAGS option]
ARCH variable 2nd 3rd 4th 5th
CFLAGS variable 2nd
CROSS variable
CROSS_COMPILE variable 2nd 3rd
DESTDIR variable
INSTALL_MOD_PATH variable
OpenSSH considerations 2nd
prefix and exec_prefix variables
PREFIX variable 2nd 3rd
static linking 2nd
TARGET_ARCH variable
make config command 2nd
make distclean command
make install command
C library assumptions
inetd cautions
install-root variable
telnetd cautions
make menuconfig command 2nd 3rd
make oldconfig command 2nd
make xconfig command 2nd
MAKEDEYV script (MTD) 2nd 3rd
Makefiles [See also compilation][See also compilation]
building compiler
building dependencies
BusyBox configuration
controlling creation of
DHCP and cross-compilation
diet libc compilation
example
gcc modifications for code coverage
installing MTD utilities
modifying for process profiling
modules_install target
System V init program
vmlinux target
zlmage target
malloc() function 2nd
man directory
mapping drivers 2nd 3rd
maps file
MAT LPLC (Machine Automation Tools LinuxPLC) 2nd

http://www.wowebook.info

Downlload at

wowebook. 1nfo

measuring interrupt latency
medium speed infrared (MIR)
memory [See also RAM][See also RAM]
C library compilation and
debugging
kernel functions
layout considerations
Linux workstations
memory devices
physical memory map
swapping
memory management unit [See MMU]
memory technology device [See MTD]
Memory Technology Device Subsystem project
MEMWATCH library
messaging (Modbus formats)
metadata, compression and
microperl build option 2nd
Microwindows
mild time constraints
minicom terminal emulator 2nd 3rd 4th
miniperl build option 2nd 3rd 4th
Minit program 2nd 3rd
MIPS processor
architecture overview
bootloader 2nd
diet libc support
embutils
GNU toolchain
kernel and 2nd
PMON and 2nd
U-Boot and
Ul modules and
MIR (medium speed infrared)
MisterHouse project
mkcramfs tool
mke2fs command 2nd
mkfs.jffs utility (MTD)
mkfs.jffs2 utility (MTD) 2nd
mkimage utility 2nd
mknod command 2nd
MMU (memory management unit) 2nd 3rd 4th
\mnt directory
Modbus protocol 2nd
modems, hardware support 2nd
modprobe docprobe command
modules_install target
monitoring, systems 2nd
monitors, bootloaders and 2nd 3rd
MontaVista 2nd 3rd
Motorola [See M68k processors PowerPC]
mounting
constraints using loopback
directories on TMPFS 2nd 3rd
filesystem considerations
JFFS2 filesystem
partitions
root filesystem

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

mouse, hardware support
MTD (memory technology device)
blob and
chip drivers
DiskOnChip and
filesystems and
hardware support
installing utilities
kernel and
Native CFl Flash and
reprogramming boot storage media
usage basics
writing JFFS2 to
mtd_debug utility (MTD)
mtd_info structure
multibit 1/0
MyLinux project

eam e |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[symBoL] [A] [B] [C] [D] [E] [F] [6] [H] [1]] K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] [WI [X] [¥] [Z]

Name Switch Service [See NSS]
naming conventions 2nd
NAND flash
DOC and
functionality
JFFS2 and 2nd
MTD support 2nd
NAND Flash Translation Layer [See NFTL]
nanddump utility (MTD)
nandtest utility (MTD)
nandwrite utility (MTD)
nanokernels
Net-SNMP package
netkit package 2nd
netkit-base package
netkit-rsh package
netkit-telnet package
network adapters
network boot 2nd 3rd
Network Interface Card (NIC)
network login 2nd
networks
debugging using
dynamic configuration
embedded systems and 2nd 3rd
fieldbuses
hardware support
industrial grade
internet super-servers
kernel functions and protocols
remote administration
secure communication
web content and HTTP
worksheet
NFS
booting with
debugging recommendations
mounting root filesystem
network boot 2nd
tracing
writing to flash
NFTL (NAND Flash Translation Layer)
disk filesystem 2nd 3rd
DOC devices 2nd 3rd
features
journalling filesystems
MTD support 2nd 3rd
nftl_format command 2nd 3rd 4th 5th 6th
nftidump utility (MTD)
NIC (Network Interface Card)
nm utility (binutils) 2nd
NOR flash devices
notifier_chain_register function
notifier_chain_unregister function
NSS (Name Service Switch)

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

glibc 2nd 3rd
strace
TinyLogin
udhcp

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

OBEX

objcopy utility (binutils)
objdump utility (binutils) 2nd
Ocan driver project

ODVA (Open DeviceNet Vendor Association)

Open Sound System (OSS)
open source
ALSA project
Apache HTTP servers
BDM debugger
BlueZ project
bootloaders listed 2nd
CAN projects
CompactPCI bus
distribution considerations
embedded Linux
hardware projects 2nd
home automation 2nd
IDEs
licensing and
Modbus projects
movement for
Net-SNMP
OpenSSH
PPC support
support restrictions
U-Boot
virtual machines
Open Source Initiative (OSI)
OpenBT
Opencores project
OpenGroup 2nd
OpenOBEX 2nd
OpenOffice 2nd
OpenSSH 2nd 3rd
OpenSSL 2nd 3rd
\opt directory
oscilloscopes 2nd
OSI (Open Source Initiative)
OSS (Open Sound System)

(eam 1o |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[symBoL] [A] [B] [C] [D] [E] [F] [6] [H] [1] B3] K] [L] [M] [N] [O] [P] [Q] [R] [S] [T1 [U] [V] [WI [X] [¥] [Z]

PAGE_CACHE_SIZE
panic() function
panic_notifier_list
parallel ports

hardware support 2nd 3rd

kernel support options

process control
partitions

bootloader image

CF devices 2nd

CFI flash and

creating filesystems in

DOC 2nd 3rd 4th

erase blocks

mounting

MTD subsystem
patch utility 2nd 3rd 4th
patches

GRUB interrupt handler

kernel considerations

retrieving code by date

worksheet
patent issues 2nd
PATH environment variable 2nd
PC/104 bus 2nd
PC/104 Consortium
PC/104 single board computer (SBC)
PCI (Peripheral Component Interconnect) bus 2nd 3rd 4th
PCI Industrial Computer ManufacturerOs Group (PCIMG)
PCMCIA bus

802.11 cards

CF cards and

CompactFlash adapters

FTL user module and

hardware support

LILO and
PDA (Personal Digital Assistant) 2nd
pdisk utility
PDQ print management package
per-process statistics 2nd
performance analysis

code coverage

interrupt latency

kernel profiling

process profiling 2nd

system monitoring 2nd

system profiling
Peripheral Component Interconnect [See PCI]
Perl programming language 2nd 3rd
permissions [See security]
persistent storage 2nd
Personal Digital Assistant (PDA) 2nd
physical address space 2nd
PICMG (PCI Industrial Computer ManufacturerOs Group)
piconets

http://www.wowebook.info

Download at wowebook. 1nfag

ping utility 2nd 3rd
pivot_root() system call
PLCs (programmable logic controllers) 2nd 3rd
PMON (Prom Monitor) bootloader 2nd 3rd
PNP (Plug and Play) devices
pointer devices
portmapper service
PostScript (PS) format 2nd
POTS (plain old telephone system)
POWER (Performance Optimization With Enhanced RISC)
power failure, CompactFlash devices
power-down reliability
ext2 and
filesystems and
JFFS2
JFFS2 user module
PowerPC (PPC)
architecture overview 2nd
bootloader comparison
diet libc support
embedded system survey
embutils
gdb debugger
GNU toolchain
hardware support options
host build example
kernel 2nd 3rd 4th
PCMCIA support
U-Boot
PowerPC Reference Platform (PReP)
PPCBoot [See U-Boot]
PPR print management package
PREFIX environment variable 2nd
PREFIX variable (make command) 2nd 3rd
PReP (PowerPC Reference Platform)
printenv command 2nd
printf()
printing
hardware support 2nd
parallel port I/0
privilege separation user 2nd
\proc directory
\proc filesystem 2nd
process automation 2nd
process profiling
processors
architecture overview
bootloader variety and
configuration options
constraints below 32 bits
hardware worksheet
kernel name selection and
kernels appropriateness for
uClibc support
procps package
profile= boot parameter
programmable logic controllers (PLCs) 2nd 3rd
project identification worksheet

http://www.wowebook.info

Downlload at

wowebook. 1nfo

project workspace

protocols [See specific protocols]
ps utility

ptrace() system call 2nd
public-key cryptography
publication resources

Python programming language

http://www.wowebook.info

(Team Lio |

Download at wowebook. 1nfag

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V] [W] [X] [Y] [Z]

queuing, printers and

(eam 1o |

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R] [S] [T] [V] [V] [W] [X] [Y] [Z]

RACSI (Remote ATV Control at ISS)
Radio Frequency Interference (RFI)
RAM (random access memory) [See also memory][See also memory]

CFI flash and
flash location and

generic requirements
hardware worksheet

MTD support

root filesystem and
RAM disks

booting with

copying image to flash
filesystems and 2nd 3rd 4th

ranlib utility (binutils)
read-only block 2nd

2nd

read/write access rights 2nd

readelf utility (binutils)
readprofile utility 2nd
real-time Linux

2nd 3rd

Real-Time Linux Foundation 2nd

Red Hat
access rights
crosgcc mailing list

Cygwin environment

MIPS support
overview

SourceNavigator IDE

survey findings 2nd
RedBoot bootloader

comparison

features

M68k

SuperH

reiserfs journalling filesystem 2nd

remote administration
reset command
resources

books 2nd

GNU toolchain 2nd

online 2nd

2nd

open source projects 2nd

organizations

publications
RFC1051 protocol
RFC1201 protocol
RFCOMM protocol
RFCOMMd (Bluez)
RFI (Radio Frequency |
Roll-Your-Own survey

nterference)

ROLO (ROmable LOader) bootloader 2nd

ROM
booting from
CFI flash and
hardware worksheet
MTD support

http://www.wowebook.info

Download at wowebook. 1nfag

ROMFS cautions
ROMFS (ROM file system) cautions
\root directory
root filesystem
basic structure
bootloaders 2nd
building 2nd
C library and
CRAMFS
custom applications 2nd
debugging
development/production differences
device files
disk filesystem over NFTL 2nd
disk filesystem over RAM disk
generic requirements
init program and
JFFS2 2nd
kernel and 2nd
libraries
live updates
minit and
NFS-mounted 2nd 3rd
selecting filesystem type for
start_kernel() function
SYSM module
system applications
system initialization
System V init program
TMPFS 2nd
top-level directories
worksheet
writing image to flash
root hub (USB) 2nd
root privileges 2nd 3rd
RPC
inetd and uClibc
xinetd and
RPM (RPM Package Manager)
RS232 interface
1/0 support
linked setup
Modbus protocol and
terminal emulation and
RSA keys
rsh shell 2nd
rsync utility
RTAI project
Adeos nanokernel and
ARM support
GPL licensing and
MIPS support
PowerPC support
real-time Linux
software watchdog
RTLinux
ARM support
licensing

http://www.wowebook.info

Downlload at

wowebook. 1nfo

PowerPC support

project

SuperH support
RTNet
RTU (Modbus messaging format)
run command

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicus]
[SYmBOL] [A] [B] [C] [D] [E] [F] [6] [H] [1] 9] [K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T] [U] V] [W] [X] [¥] [Z]

S-Record format (Motorola) 2nd
SAE (Society of Automotive Engineers)
saveenv command
SBC (single board computer) 2nd
\sbin directory
SCADA (System Control and Data Acquisition) protocol converter
scripts
ad hoc updating scripts
CGI scripting
creating boot 2nd
trace helpers
SCSI (Small Computer Systems Interface)
CF cards and
fdisk utility
hardware support 2nd
IEEE1394 differences
LILO and 2nd
U-Boot and
SCSL (Sun Community Source License)
SDP (Service Discovery Protocol)
SDPd (BlueZz)
SDS (Smart Distributed System) protocol 2nd 3rd
Secondary Program Loader (SPL) 2nd
security
changing permissions
gdb cautions
root login cautions
secure authorization
secure communication
worksheet
Sega game console
sensord daemon
serial infrared (SIR)
serial ports
data loss
debugging host/target systems 2nd
embedded system example
gdb 2nd 3rd
hardware support 2nd
limiting access
modems as
process control
serial dongles
terminal emulators
set remotebaud command (gdb)
set solib-absolute-prefix command (gdb)
setenv command 2nd
SH project 2nd
sh-boot bootloader 2nd 3rd
shadow password support 2nd 3rd 4th 5th
SHARED_LIB_LOADER_PATH variable (uClibc)
Sharp Zaurus
shells
BusyBox 2nd 3rd
performing updates 2nd

http://www.wowebook.info

Download at wowebook. 1nfag

rsh shell 2nd

ssh shell 2nd
.shstrtab section (ELF binary)
Simple Network Management Protocol (SNMP)
Simputer project
Single Unix Specification (SUS) 2nd
SIR (serial infrared)
size utility (binutils)
Small Computer Systems Interface [See SCSI]
SMBus (System Management Bus)
SNMP (Simple Network Management Protocol)
snmpd utility
snmpget utility
SoC (System-on-Chip) 2nd
Society of Automotive Engineers (SAE)
soft real-time system
software

availability for i386

distribution considerations

Linux and 2nd 3rd

package management tools

running vs. modifying 2nd
solid state storage media 2nd 3rd
sound, hardware support 2nd
SourceForge project 2nd 3rd 4th
SourceNavigator (IDE)
SPL (Secondary Program Loader) 2nd
spooling system, print process and
spread spectrum frequency hopping
SSH protocol 2nd 3rd
ssh shell 2nd
SSL (Secure Socket Layer) protocol
stab (symbol table)
.stab section (ELF binary) 2nd
.stabstr section (ELF binary) 2nd
_start symbol
start_kernel() function
state machines, control modules and
static linking

Boa 2nd

BusyBox

copyright laws

diet libc

DOSTATIC flag 2nd

embutils

glibc setup option 2nd

LDFLAGS option

libraries and

microperl

rsync

strace and uClibc

thttpd

udhcp

xinetd
statistics 2nd 3rd
stepper motors
STMicroelectronics (SGS-Thomson Microelectronics)
storage devices [See also solid state storage media][See also solid state storage media]

http://www.wowebook.info

Download at wowebook. 1nfag

boot configuration setups
build-tools directory cleanup
disk devices
DiskOnChip
embedded systems and
generic requirements
hardware support
hardware worksheet
initrd images
linked setup and
Linux workstations
log files and
MTD subsystem
Native CFI Flash
persistent storage 2nd
removable storage setup
root filesystem
setting up
structure for access
swapping
worksheet
writing CRAMFS image
strace tool
stringent time constraints
strings utility (binutils)
strip utility
binutils package
ELF binary and
libraries
reducing binary sizes
relocating
telnetd cautions
.strtab section (ELF binary)
Sun Community Source License (SCSL)
SuperH processor
appropriate kernel location
architecture overview 2nd
bootloader comparison
GNU toolchain version combinations
sh-boot and RedBoot
watchdog timers for
swapping, storage devices and
symbolic debugging [See debugging tools]
symbolic links
\dev directory
BusyBox 2nd
creating to relocated binaries
embutils
glibc package 2nd 3rd
kernel configuration
OpenSSH
rsync updating utility
TinyLogin 2nd
.symtab section (ELF binary)
SYSM (system management) module
Boa
compacting
DAQ module and

http://www.wowebook.info

Download at wowebook. 1nfag

dynamic configurations

embedded system 2nd

HTTP and

keepalive signals

Net-SNMP package

netkit-base example

netkit-telnet 2nd

OpenSSH

real-time kernels

thttpd 2nd

udhcp 2nd

utelnetd

xinetd build 2nd
system applications 2nd
system initialization

panic function registration

RAM disks and

root filesystem and

worksheet
system libraries, installing on root filesystem
System Management Bus (SMBus)
system startup 2nd 3rd
System V init program 2nd 3rd
System-on-Chip (SoC) 2nd
System.map file
SYSTEM_DEVEL_PREFIX variable (uClibc)
systems

component determination 2nd

configuration options

defined

monitoring 2nd

multicomponent

rebooting 2nd

statistics 2nd

(eam 1o |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[symBoL] [A] [B] [C] [D] [E] [F] [6] [H] [1] 9] K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T1 [U] [V] [WI [X] [¥] [Z]

tar command 2nd 3rd
tar-bzip2 file
target command (gdb)
TARGET environment variable 2nd
target remote command
target systems [See also host systems][See also host systems]
creating
debugging 2nd 3rd
defined
developing
gdb constraints
GNU toolchain 2nd
installing MTD utilities 2nd
network login
RAM disks and
self-hosting 2nd
TARGET variable
testing connections
TARGET_ARCH variable (make command)
TARGET_PREFIX variable 2nd
TCP/IP
embedded system example
gdb servers 2nd
host/target debugging setups
Modbus protocol
remote management with SNMP
time constraints and
Telephony Control protocol Specification Binary
Telnet protocol 2nd
telnetd daemon 2nd 3rd
terminal emulators
background
C-Kermit
minicom 2nd
sending image file to target
U-Boot and 2nd
UUCP cu 2nd 3rd 4th
worksheet
Terminate and Stay Resident (TSR) program
testing
disabling netkit-base
host/target connection
.text section (ELF binary)
TFTP (Trivial File Transfer Protocol)
booting with
linked setup
network boot 2nd 3rd 4th
setting up daemon
U-Boot image into RAM
tftpboot command
thttpd 2nd 3rd
time constraints 2nd 3rd
timestamps
TinyLogin 2nd
TinyTP (Tiny Transport Protocol)

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

TiVo system

Tkinter interface

\tmp directory 2nd 3rd

TMPFS, mounting directories 2nd 3rd
top utility

TQM860L board 2nd

trace command

trace daemon

traceanalyze command

tracedump command

traceview command

tracevisualizer command 2nd 3rd
tracing

transducers 2nd

trap daemon (SNMP)

Trivial File Transfer Protocol [See TFTP]
TrueFFS tools (M-Systems)

TuxScreen project

TV Linux Alliance 2nd

(eam 1o |

http://www.wowebook.info

Download at wowebook. 1nfag

[eeevicns]
[sYmBoL] [A] [B] [C] [D] [E] [F] [6] [H] [1] 9] K] [L] [M] [N] [O] [P] [Q] [R1 [S] [T] [U] [V] [WI [X] [¥] [Z]

U-Boot bootloader
ARM and
binary images 2nd
booting 2nd
booting from CF devices
booting with RAM disk
CF device partitions
command help
comparison
compiling and installing
emulation constraints
environment variables
features
MIPS and
PowerPC and
update cautions
updating
U-BootOs environment variables 2nd
UARTs (Universal Asynchronous Receiver-Transmitters) 2nd
uClibc library
Boa
BusyBox and
features
file dependencies
FreSSH constraints
inetd support
Idd command and
microperl and
Net-SNMP and 2nd
OpenSSH and 2nd
patch utility
Python considerations
rsync utility
shell script for updates
strace static link
telnetd
thttpd
TinyLogin 2nd
udhcp
utelnetd
xinetd constraints
uClinux project 2nd
udhcp project (BusyBox)
Ul (user interface) module
as X terminals
DAQ module and
dynamic configurations to
embedded system example 2nd 3rd
JFFS2 and
patch utility
SYSM module and
system memory layout
UID field
Universal Asynchronous Receiver-Transmitters (UARTs) 2nd
Unix workstations 2nd

http://www.wowebook.info

Downl oad

at wowebook. 1nfo

unlock utility (MTD)
updating
live updates
U-Boot
USB (Universal Serial Bus) interface
CF cards and
hardware support 2nd
IEEE1394 differences
kernel support options
LILO and
Linux 1/0 device support
USB dongles
USB-IF (USB Implementers Forum)
USE_SYSTEM_PWD_GRP variable 2nd
USE_SYSTEM_SHADOW variable
user accounts 2nd
\usr directory
utelnetd package
util-linux package
UUCP (Unix to Unix CoPy) cu 2nd 3rd 4th

(eam Lin |

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V] [W] [X] [Y] [Z]

value-added packages

\var directory 2nd 3rd
VDC (Venture Development Corporation) 2nd

vendor support
ARM 2nd
CAN
CompactPCI bus
DAQ packages
distributions and

| <Superscript>2<Default Para Font>C bus

independence
IrDA
MIPS

Motorola 68000 processors
PowerPC architecture

process control
VME bus

Venture Development Corporation (VDC) 2nd

versions

EXTRAVERSION variable

firmware 2nd 3rd
kernels 2nd 3rd
LILO

naming conventions
NTFL formatting
tracking

worksheet

4th

VFIR (very fast infrared)

vi (IDE)

ViewML

virtual addresses 2nd
virtual machines
visualization tool 2nd
VME bus 2nd 3rd
vmlinux file

VxWorks (WindRiver)

eam e |

3rd

2nd

http://www.wowebook.info

(Team Lio |

Download at wowebook. 1nfag

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

watchdog timers 2nd
wear leveling 2nd
web content

Windows workstations
WindowsCE
WinModem 2nd
wireless technologies
worksheet, embedded
workspace 2nd

[See Bluetooth IEEE 802.11 IrDA]
Linux systems

workstations 2nd 3rd 4th 5th

eam e |

http://www.wowebook.info

Download at wowebook. 1nfag

(Team Lio |

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

X terminals 2nd

X Window System
graphical interface
JDK and JRE
kernel configuration
xconfig script

X10 corporation

X10 Power Line Carrier (PLC) protocol 2nd

X86 processor
architecture overvie

w 2nd

bootloader comparison 2nd

bzlmage target

diet libc support

DiskOnChip devices

embedded system s

GRUB and

ISA support

kernel 2nd

system startup proc
xconfig command
XEmacs (IDE)

urvey

€ss

XFS journalling filesystem

Xxinetd super-server
features 2nd
Red Hat-based
telnetd and
TFTP service

XIP (eXecute In Place)

(eam Lin |

http://www.wowebook.info

(Team Lio |

Download at wowebook. 1nfag

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

Yellow Dog Linux

(eam 1o |

http://www.wowebook.info

(Team Lio |

Download at wowebook. 1nfag

[SymBOL] [A] [B] [C] [D] [E] [F] [G] [H] [1] [91 [K] [L] [M] [N] [©] [P] [Q] [R1 [S] [T] [V] [V]1 [W] [X] [Y] [Z]

zlmage file

zlib compression library 2nd 3rd 4th

(eam Lin |

http://www.wowebook.info

	Building Embedded Linux Systems
	Table of Contents
	Copyright
	Dedication
	Preface
	Audience of This Book
	Scope and Background Information
	Organization of the Material
	Hardware Used in This Book
	Software Versions
	Book Web Site
	Typographical Conventions
	Contact Information
	Acknowledgments

	Chapter 1. Introduction
	1.1 Definitions
	1.2 Real Life and Embedded Linux Systems
	1.3 Example Multicomponent System
	1.4 Design and Implementation Methodology

	Chapter 2. Basic Concepts
	2.1 Types of Hosts
	2.2 Types of Host/Target Development Setups
	2.3 Types of Host/Target Debug Setups
	2.4 Generic Architecture of an Embedded Linux System
	2.5 System Startup
	2.6 Types of Boot Configurations
	2.7 System Memory Layout

	Chapter 3. Hardware Support
	3.1 Processor Architectures
	3.2 Buses and Interfaces
	3.3 I/O
	3.4 Storage
	3.5 General Purpose Networking
	3.6 Industrial Grade Networking
	3.7 System Monitoring

	Chapter 4. Development Tools
	4.1 Using a Practical Project Workspace
	4.2 GNU Cross-Platform Development Toolchain
	4.3 C Library Alternatives
	4.4 Java
	4.5 Perl
	4.6 Python
	4.7 Ada
	4.8 Other Programming Languages
	4.9 Integrated Development Environments
	4.10 Terminal Emulators

	Chapter 5. Kernel Considerations
	5.1 Selecting a Kernel
	5.2 Configuring the Kernel
	5.3 Compiling the Kernel
	5.4 Installing the Kernel
	5.5 In the Field

	Chapter 6. Root Filesystem Content
	6.1 Basic Root Filesystem Structure
	6.2 Libraries
	6.3 Kernel Modules
	6.4 Kernel Images
	6.5 Device Files
	6.6 Main System Applications
	6.7 Custom Applications
	6.8 System Initialization

	Chapter 7. Storage Device Manipulation
	7.1 MTD-Supported Devices
	7.2 Disk Devices
	7.3 To Swap or Not to Swap

	Chapter 8. Root Filesystem Setup
	8.1 Selecting a Filesystem
	8.2 Using an NFS-Mounted Root Filesystem to Write a Filesystem Image to Flash
	8.3 CRAMFS
	8.4 JFFS2
	8.5 Disk Filesystem over NFTL
	8.6 Disk Filesystem over RAM Disk
	8.7 Mounting Directories on TMPFS
	8.8 Live Updates

	Chapter 9. Setting Up the Bootloader
	9.1 Bootloaders Galore
	9.2 Server Setup for Network Boot
	9.3 Using LILO with Disk and CompactFlash Devices
	9.4 Using GRUB with DiskOnChip Devices
	9.5 U-Boot

	Chapter 10. Setting Up Networking Services
	10.1 The Internet Super-Server
	10.2 Remote Administration with SNMP
	10.3 Network Login Through Telnet
	10.4 Secure Communication with SSH
	10.5 Serving Web Content Through HTTP
	10.6 Dynamic Configuration Through DHCP

	Chapter 11. Debugging Tools
	11.1 Debugging Applications with gdb
	11.2 Tracing
	11.3 Performance Analysis
	11.4 Memory Debugging
	11.5 A Word on Hardware Tools

	Appendix A. Worksheet
	A.1 Project Identification
	A.2 Hardware Summary
	A.3 Development Tools
	A.4 Kernel
	A.5 Root filesystem
	A.6 Storage Device Organization
	A.7 Bootloader Configuration and Use
	A.8 Networking services
	A.9 Custom Project Software
	A.10 Debug Notes
	A.11 Additional Notes
	A.12 Embedded Linux Systems Worksheet

	Appendix B. Resources
	B.1 Online
	B.2 Books
	B.3 Publications
	B.4 Organizations
	B.5 Linux and Open-Source-Oriented Hardware Projects

	Appendix C. Important Licenses and Notices
	C.1 Exclusion of User-Space Applications from Kernel's GPL
	C.2 Notices on Binary Kernel Modules
	C.3 Legal Clarifications About the Kernel by Linus Torvalds

	Colophon
	index
	index_SYMBOL
	index_A
	index_B
	index_C
	index_D
	index_E
	index_F
	index_G
	index_H
	index_I
	index_J
	index_K
	index_L
	index_M
	index_N
	index_O
	index_P
	index_Q
	index_R
	index_S
	index_T
	index_U
	index_V
	index_W
	index_X
	index_Y
	index_Z

	UNREGISTERED VERSION OF CHM TO PDF CONVERTER

