
SolutionsEngineering

Reprinted from April 2005

Matching Device Drivers
with Embedded Hardware

There are different sources, and levels of diffi culty, for obtaining device
drivers for embedded application. Often these vary with the popularity
of the OS or the target peripheral. Finding the best source can result in
saving time and money.

In today’s fast-paced world, the length
of a design cycle for a product is in-
creasingly critical to the projects’ suc-

cess, whether that project is deployed in-
house or is a marketable product. In both
cases, the adage, time is money holds true.
In an embedded system, the operating
system and the hardware interface with
each other through device drivers. The
selection of any piece—operating system,
hardware or device driver—impacts the
other pieces.

In embedded systems consisting of
both hardware and software components,
the division of time has shifted from years
past. Much of the complexity of todays
embedded systems lies in the software.
Some systems have multiple programmer-
years invested in development. Thus, it is
wise to consider ways of reducing some
of the time spent on software develop-
ment. In embedded systems, much of the
highly detailed, diffi cult development is
spent on interfacing the software with the
hardware. This is where a device driver
comes in.

Proper selection of device drivers
takes into account the operating system
and the hardware, while also balancing the
overall performance needs and the avail-
ability of each of these pieces. Of course,
there are always tradeoffs. A general-pur-
pose operating system may provide quick
development time but may require more
expensive hardware than a smaller, more
optimized operating system. Choosing
hardware without any performance cush-
ion may not allow for future enhance-
ments. Choosing unique hardware may
mean that device drivers are not available
for the selected operating system.

A device driver is code that enables
an operating system to interface with a
hardware device. In essence, the driver
acts as a translator between the operating
system and the hardware. This way, the
operating system is spared from having to
know the details of every piece of hard-
ware to which it may connect.

Device driver development may be
quite complex since it requires a register-
level understanding of the hardware as

well as a low-level understanding of the
operating system. For example, a data ac-
quisition board that acquires data through
an analog-to-digital converter and then

by Glenn S. Kubota
Micro/sys

Figure 1 A single board, such as this
Micro/sys SBC2596, has
three kinds of Linux drivers
available: OS-supplied
drivers for the serial and
parallel ports, compact
flash, USB and Ethernet.
There are manufacturer-
supplied drivers for A/D
and D/A I/O and digital I/O.
Finally, there is direct
hardware access to the
global positioning system.

PC/104 Update

SolutionsEngineeringSolutionsEngineering

Reprinted from April 2005

transfers this data using direct memory ac-
cess (DMA) cycles, will require a device
driver that is capable of initializing the
registers of the data acquisition system. It
will also need to be capable of setting up
the DMA controller through means that
are permitted by the operating system. A
summary of the possible sources for de-
vice drivers is given in Table 1.

OS-Supplied Drivers
Some hardware is so common that

many operating systems already come
with device drivers as part of the standard
distribution. This is especially true of the
“embedded PC” architecture based on the
venerable IBM PC/XT/AT. Because of its
long history in the desktop world, the in-
clusion of operating system device drivers
for many common hardware devices has
become de rigueur. Serial ports, printer
ports, disk drive controllers, mice, key-
boards and video adapters are among the
commonly seen devices with native oper-
ating system drivers. This greatly benefi ts
the developer because these drivers are
probably going to end up in many differ-
ent projects, and having them ready to go
means that they will save a great deal of
time each time they are used.

The use of OS-supplied drivers will
depend on the hardware selected. The
use of unique hardware, such as serial
ports that support many different proto-
cols, may increase the performance, but
it would most likely eliminate the possi-
bility of using OS-supplied drivers. The
advantages and disadvantages need to be
examined carefully to determine the best
course of action.

The selection of the operating sys-
tem will also determine the availability of

drivers for any particular devices. There
are many different devices, so every op-
erating system has a different list of sup-
ported hardware.

Manufacturer-Supplied
Hardware Drivers

Although many modern operating
systems have a wealth of device drivers
built in, there are many more hardware
devices that do not have built-in support.
For example, in a control system, the hard-
ware required may span analog data ac-
quisition boards, motor controllers, digital
I/O interfaces and many other unique de-
vices. It is unlikely that an operating sys-
tem would have support for any of these
devices. In this case, the manufacturer of
the hardware is probably the most com-
mon source for these device drivers.

The reason for getting these device
drivers from the hardware manufacturer
is the manufacturer is probably the one
most familiar with the inner workings of a
particular device. It is possible that other
software developers could create a more
optimized driver for that hardware, but in
most cases, this does not make sense from
the standpoint of completing the project in
a timely fashion. The hardware manufac-
turer has taken on the tasks of creating a
software API (application programming
interface), developing code to interface
with the hardware, developing code to in-
terface with the operating system, develop-
ing sample programs for the device driver,
and testing the resultant device driver.

Another criteri on that must be
checked when selecting a device driver is
whether it is compatible with the specifi c
operating system. There are many differ-
ent operating systems and it is impossible

to support all of them. Generally speaking,
the more popular the operating system, the
more likely it is that the manufacturer can
supply drivers. Note, however, operating
systems popular in embedded systems are
often quite different from those popular in
desktop computer systems.

Direct Hardware Access
Drivers

Manufacturer-supplied device driv-
ers are typically separate from the exam-
ple programs. However, if the operating
system allows direct access to the hard-
ware, some devices may be simple enough
to access by integrating direct calls to the
hardware into the program. For example,
under DOS (MS-DOS and other embed-
ded DOS variants), the application pro-
gram can access the hardware without any
special permissions. Generally speaking,
many digital I/O boards can be accessed
with reads and writes to a few ports. These
accesses may be part of the program, or a
few primitive routines may be used to add
one level of abstraction.

One of the advantages of directly
reading and writing to the hardware is
that it allows the fastest possible accesses.
In some time-critical applications this
may be important. Another advantage is
that source code availability makes for a
greater understanding of the internals of
the device and also may allow porting to
other operating systems.

There are many different operating
systems and pieces of hardware where
this type of driver makes sense. It may be
a question of whether this allows access to
the needed parts of the device. Also, in
some cases, this may be the only software
support for a particular device.

Advantages Disadvantages

OS-Supplied Drivers No need to search for compatible drivers Only the most popular hardware is supported

Manufacturer-Supplied Drivers Availability reduces development time May not be optimal for a specific application

Direct Hardware Access Very fast access. Simple to use. May not take advantage of operating system features

Third-Party Proprietary Driver May add enhanced functionality Not available for all operating systems or hardware

Roll Your Own Driver May be highly optimized for the application May require considerable development and testing time

Table 1 Summary of sources for embedded device drivers.

SolutionsEngineeringEngineering

Reprinted from April 2005

Open-Source Drivers
With the increasing popularity of the

open-source movement, particularly in the
area of Linux, open-source device drivers
developed by non-vendors are becoming
more common. In some cases these device
drivers were developed from published
hardware specifi cations, and in other
cases the hardware interface was reverse-
engineered. Open-source device drivers
are often of high quality because many
people have access to the source code to
check for bugs. Also, the availability of
the source code allows customization for
a particular application.

The main problem with non-ven-
dor drivers for embedded systems is that
they tend to be more available for more
popular hardware. For example, an indus-
trial control and monitoring panel would
probably be able to use non-vendor touch
screen drivers, but non-vendor drivers for
a particular data acquisition board would
probably not be available.

Third-Party Proprietary Drivers
Occasionally there are device driv-

ers available that are not from the manu-
facturer and are not open-source. Often
these drivers are available to provide some
enhanced functionality. For example, a

CANbus driver from a manufacturer may
offer low-level access to the CANbus,
but there could be a third-party device
driver that can communicate with some
higher-level protocol, such as DeviceNet
or CANopen.

The availability of third-party device
drivers will depend on both the operating
system and the hardware selected. Again,
planning ahead is important for determin-
ing whether all of these pieces will work
well together.

Roll Your Own Driver
Although not the preferred method

due to time constraints, there are a few
instances where creating a custom driver
may still be necessary. Unique operat-
ing systems or custom hardware are such
cases. For example, there are many real-
time operating systems available. Only a
few of the larger ones are likely to have
driver support for any particular hard-
ware. And of course, in the case of a full
custom designed I/O board, there will not
be drivers available.

When creating a brand-new device
driver for an unsupported operating sys-
tem, it is still advantageous to have driver
source code for a supported operating sys-
tem. Even though the operating system

calls are likely to be quite different, the
code that communicates with the regis-
ters of the hardware is going to be similar.
Plenty of time must be available to create
and test a custom driver. It can be tricky to
debug because of the asynchronous nature
of the hardware.

There are different ways of getting
device drivers for embedded systems,
each with their own advantages and disad-
vantages. And the same system may have
drivers from several different sources
(Figure 1). There are many tradeoffs in
selecting the hardware, operating system
and device drivers. The process of selec-
tion is iterative. Selecting any one piece
without considering the effect on the other
pieces is a recipe for disaster. In general,
having the drivers early in the design cy-
cle will make the design go more quickly.
However, itís essential that the drivers
are actually compatible with the particu-
lar operating system and hardware being
used. Device drivers are the glue between
the operating system and the hardware. A
little attention can pay off in a big way.

Micro/sys
Montrose, CA.
(818) 244-4600.
[www.embeddedsys.com].

