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Learn Linux kernel programming, hands-on: a uniquely effective top-down approach

The Linux® Kernel Primer is the definitive guide to Linux kernel programming. The authors'
unique top-down approach makes kernel programming easier to understand by systematically
tracing functionality from user space into the kernel and carefully associating kernel internals
with user-level programming fundamentals. Their approach helps you build on what you already
know about Linux, gaining a deep understanding of how the kernel works and how its elements
fit together.

One step at a time, the authors introduce all the tools and assembly language programming
techniques required to understand kernel code and control its behavior. They compare x86 and
PowerPC implementations side-by-side, illuminating cryptic functionality through carefully-
annotated source code examples and realistic projects. The Linux® Kernel Primer is the first
book to offer in-depth coverage of the rapidly growing PowerPC Linux development platform, and
the only book to thoroughly discuss kernel configuration with the Linux build system. Coverage
includes

Data structures

x86 and PPC assembly language

Viewing kernel internals

Linux process model

User and kernel space

Interrupts and exceptions

Memory allocation and tracking

Tracing subsystem behavior

I/O interactions

Filesystems and file operations

Scheduling and synchronization

Kernel boot process

Kernel build system

Configuration options

Device drivers



And more...

If you know C, this book teaches you all the skills and techniques you need to succeed with Linux
kernel programming. Whether you're a systems programmer, software engineer, systems
analyst, test professional, open source project contributor, or simply a Linux enthusiast, you'll
find it indispensable.

© Copyright Pearson Education. All rights reserved.
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Foreword
Here there be dragons. Medieval mapmakers wrote that about unknown or dangerous places, and
that is likely the feeling you get the first time you type:

cd /usr/src/linux ; ls

"Where do I start?" you wonder. "What exactly am I looking at? How does it all hang together and
actually work?"

Modern, full-featured operating systems are big and complex. The number of subsystems is large,
and their interactions are many and often subtle. And while it's great that you have the Linux
kernel source code (more about that in a moment), knowing where to start, what to look at, and
in what order, is far from self-evident.

That is the purpose of this book. Step by step, you will learn about the different kernel
components, how they work, and how they relate to each other. The authors are intimately
familiar with the kernel, and this knowledge shows through; by the end of the book, you and the
kernel will at least be good friends, with the prospect of a deeper relationship ahead of you.

The Linux kernel is "Free" (as in freedom) Software. In The Free Software Definition,[1] Richard
Stallman defines the freedoms that make software Free (with a capital F). Freedom 0 is the
freedom to run the software. This is the most fundamental freedom. But immediately after that is
Freedom 1, the freedom to study how a program works. This freedom is often overlooked.
However, it is very important, because one of the best ways to learn how to do something is by
watching other people do it. In the software world, that means reading other peoples' programs
and seeing what they did well as well as what they did poorly. The freedoms of the GPL are, at
least in my opinion, one of the most fundamental reasons that GNU/Linux systems have become
such an important force in modern computing. Those freedoms benefit you every moment you use
your GNU/Linux system, and it's a good idea to stop and think about that every once in awhile.

[1] http://www.gnu.org/philosophy/free-sw.html

With this book, we take advantage of Freedom 1 to give you the opportunity to study the Linux
kernel source code in depth. You will see things that are done well, and other things that are done,
shall we say, less well. But because of Freedom 1, you will see it all, and you will be able to learn
from it.

And that brings me to the Prentice Hall Open Source Software Development Series, of which this
book is one of the first members. The idea for the series developed from the principle that reading
programs is one of the best ways to learn. Today, the world is blessed with an abundance of Free
and Open Source softwarewhose source code is just waiting (maybe even eager!) to be read,
understood, and appreciated. The aim of the series is to be your guide up the software
development learning curve, so to speak, and to help you learn by showing you as much real code
as possible.

I sincerely hope that you will enjoy this book and learn a lot. I also hope that you will be inspired
to carve out your own niche in the Free Software and Open Source worlds, which is definitely the
most enjoyable way to participate in them.

Have fun!

http://www.gnu.org/philosophy/free-sw.html


Arnold Robbins
Series Editor
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Preface
Technology in general and computers in specific have a magical allure that seems to consume
those who would approach them. Developments in technology push established boundaries and
force the re-evaluation of troublesome concepts previously laid to rest. The Linux operating
system has been a large contributor to a torrent of notable shifts in industry and the way business
is done. By its adoption of the GNU Public License and its interactions with GNU software, it has
served as a cornerstone to the various debates that surround open source, free software, and the
concept of the development community. Linux is an extremely successful example of how powerful
an open source operating system can be, and how the magic of its underpinnings can hold
programmers from all corners of the world spellbound.

The use of Linux is something that is increasingly accessible to most computer users. With
multiple distributions, community support, and industry backing, the use of Linux has also found
safe harbor in universities, industrial applications, and the homes of millions of users.

Increased need in support and for new functionality follow at the heels of this upsurge in use. In
turn, more and more programmers are finding themselves interested in the internals of the Linux
kernel as the number of architectures and devices that demand support are added to the already
vast (and rapidly growing) arsenal.

The porting of the Linux kernel to the Power architecture has contributed to the operating
system's blossoming among high-end servers and embedded systems. The need for
understanding how Linux runs on the Power architecture has grown, with companies now
purchasing PowerPC-based systems intended to run Linux.



Intended Audience

This book is intended for the budding and veteran systems programmer, the Linux enthusiast, and
the application programmer eager to have a better understanding of what makes his programs
work the way they do. Anyone who has knowledge of C, familiarity with basic Linux user
fundamentals, and wants to know how Linux works should find this book provides him with the
basic concepts necessary to build this understandingit is intended to be a primer for understanding
how the Linux kernel works.

Whether your experience with Linux has been logging in and writing small programs to run on
Linux, or you are an established systems programmer seeking to understand particularities of one
of the subsystems, this book provides you with the information you are looking for.



Organization of Material

This book is divided into three parts, each of which provides the reader with knowledge necessary
to succeed in the study of Linux internals.

Part I provides the necessary tools and understanding to tackle the exploration of the kernel
internals:

Chapter 1, "Overview," provides a history of Linux and UNIX, a listing of the many distributions,
and a short overview of the various kernel subsystems from a user space perspective.

Chapter 2, "Exploration Toolkit," provides a description of the data structures and language usage
commonly found throughout the Linux kernel, an introduction to assembly for x86 and PowerPC
architectures, and a summary of tools and utilities used to get the information needed to
understand kernel internals.

Part II introduces the reader to the basic concepts in each kernel subsystem and to trace the code
that executes the subsystem functionality:

Chapter 3, "Processes: The Principal Model of Execution," covers the implementation of the
process model. We explain how processes come to be and discuss the flow of control of a user
space process into kernel space and back. We also discuss how processes are implemented in the
kernel and discuss all data structures associated with process execution. This chapter also covers
interrupts and exceptions, how these hardware mechanisms occur in each of the architectures,
and how they interact with the Linux kernel.

Chapter 4, "Memory Management," describes how the Linux kernel tracks and manages available
memory among various user space processes and the kernel. This chapter describes the way in
which the kernel categorizes memory and how it decides to allocate and deallocate memory. It
also describes in detail the mechanism of the page fault and how it is executed in the hardware.

Chapter 5, "Input/Output," describes how the processor interacts with other devices, and how the
kernel interfaces and controls these interactions. This chapter also covers various kinds of devices
and their implementation in the kernel.

Chapter 6, "Filesystems," provides an overview of how files and directories are implemented in the
kernel. This chapter introduces the virtual filesystem, the layer of abstraction used to support
multiple filesystems. This chapter also traces the execution of file-related operations such as open
and close.

Chapter 7, "Scheduling and Kernel Synchronization," describes the operation of the scheduler,
which allows multiple processes to run as though they are the only process in the system. This
chapter covers in detail how the kernel selects which task to execute and how it interfaces with
the hardware to switch from one process to another. This chapter also describes what kernel
preemption is and how it is executed. Finally, it describes how the system clock works and its use
by the kernel to keep time.

Chapter 8, "Booting the Kernel," describes what happens from Power On to Power Off. It traces
how the various processors handle the loading of the kernel, including a description of BIOS, Open
Firmware, and bootloaders. This chapter then goes through the linear order in kernel bringup and
initialization, covering all the subsystems discussed in previous chapters.

Part III deals with a more hands-on approach to building and interacting with the Linux kernel:

Chapter 9, "Building the Linux Kernel," covers the toolchain necessary to build the kernel and the
format of the object files executed. It also describes in detail how the Kernel Source Build system
operates and how to add configuration options into the kernel build system.



Chapter 10, "Adding Your Code to the Kernel," describes the operation of /dev/random, which is
seen in all Linux systems. As it traces the device, the chapter touches on previously described
concepts from a more practical perspective. It then covers how to implement your own device in
the kernel.



Our Approach

This book introduces the reader to the concepts necessary to understand the kernel. We follow a
top-down approach in the following two ways:

First, we associate the kernel workings with the execution of user space operations the reader
may be more familiar with and strive to explain the kernel workings in association with this. When
possible, we begin with a user space example and trace the execution of the code down into the
kernel. It is not always possible to follow this tracing straight down since the subsystem data
types and substructures need to be introduced before the explanation of how it works can take
place. In these cases, we tie in explanations of the kernel subsystem with specific examples of
how it relates to a user space program. The intent is twofold: to highlight the layering seen in the
kernel as it interfaces with user space on one side and the hardware on the other, and to explain
workings of the subsystem by tracing the code and following the order of events as they occur.
We believe this will help the reader get a sense of how the kernel workings fit in with what he
knows, and will provide him with a framed reference for how a particular functionality associates
to the rest of the operating system.

Second, we use the top-down perspective to view the data structures central to the operation of
the subsystem and see how they relate to the execution of the system's management. We strive
to delineate structures central to the subsystem operation and to keep focus on them as we follow
the operation of the subsystem.



Conventions

Throughout this book, you will see listings of the source code. The top-right corner will hold the
location of the source file with respect to the root of the source code tree. The listings are shown
in this font. Line numbers are provided for the code commentary that usually follows. As we
explain the kernel subsystem and how it works, we will continually refer to the source code and
explain it.

Command-line options, function names, function output, and variable names are distinguished by
this font.

Bold type is used whenever a new concept is introduced.



Chapter 1. Overview
In this chapter
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Linux is an operating system that came into existence as the hobby of a student named Linus
Torvalds in 1991. The beginnings of Linux appear humble and unassuming in comparison to what
it has become. Linux was developed to run on machines with x86 architecture microprocessors
with AT hard disks. The first release sported a bash shell and a gcc compiler. Portability was not a
design concern at that time, nor was widespread use in academia and industry its vision. There
was no business plan or vision statement. However, it has been available for free from day one.

Linux became a collaborative project under the guidance and maintenance of Linus from the early
days of beta versions. It filled a gap that existed for hackers wanting a free operating system that
would run on the x86 architecture. These hackers began to contribute code that provided support
for their own particular needs.

It is often said that Linux is a type of UNIX. Technically, Linux is a clone of UNIX because it
implements the POSIX UNIX Specification P1003.0. UNIX has dominated the non-Intel workstation
scene since its inception in 1969, and it is highly regarded as a powerful and elegant operating
system. Relegated to high-performance workstations, UNIX was only available at research,
academic, and development institutions. Linux brought the capabilities of a UNIX system to the
Intel personal computer and into the homes of its users. Today, Linux sees widespread use in
industry and academia, and it supports numerous architectures, such as PowerPC.

This chapter provides a bird's eye view of the concepts that surround Linux. It takes you through
an overview of the components and features of the kernel and introduces some of the features
that make Linux so appealing. To understand the concepts of the Linux kernel, you need to have a
basic understanding of its intended purpose.



1.1. History of UNIX

We mentioned that Linux is a type of UNIX. Although Linux did not develop directly from an
existing UNIX, the fact that it implements common UNIX standards makes the history of UNIX
relevant to our discussion.

MULTiplexed Information and Computing Service (MULTICS), which is considered the precursor of
the UNIX operating systems, came about from a joint venture between MIT, Bell Laboratories, and
the General Electric Company (GEC), which was involved in the computer-manufacturing business
at that time. The development of MULTICS was born of the desire to introduce a machine to
support numerous timesharing users. At the time of this joint venture in 1965, operating systems,
although capable of multiprogramming (timesharing between jobs), were batch systems that
supported only a single user. The response time between a user submitting a job and getting back
the output was in the order of hours. The goal behind MULTICS was to create an operating system
that allowed multiuser timesharing that provided each user access to his own terminal.
Although Bell Labs and General Electric eventually abandoned the project, MULTICS eventually ran
in production settings in numerous places.

UNIX development began with the porting of a stripped-down version of MULTICS in an effort to
develop an operating system to run in the PDP-7 minicomputer that would support a new
filesystem. The new filesystem was the first version of the UNIX filesystem. This operating system,
developed by Ken Thompson, supported two users and had a command interpreter and programs
that allowed file manipulation for the new filesystem. In 1970, UNIX was ported to the PDP-11 and
updated to support more users. This was technically the first edition of UNIX.

In 1973, for the release of the fourth edition of UNIX, Ken Thompson and Dennis Ritchie rewrote
UNIX in C (a language then recently developed by Ritchie). This moved the operating system
away from pure assembly and opened the doors to the portability of the operating system. Take a
moment to consider the pivotal nature of this decision. Until then, operating systems were entirely
entrenched with the system's architecture specifications because assembly language is extremely
particular and not easily ported to other architectures. The rewrite of UNIX in C was the first step
toward a more portable (and readable) operating system, a step that contributed to UNIX's
sudden rise in popularity.

1974 marked the beginning of a boost in popularity of UNIX among universities. Academics began
to collaborate with the UNIX systems group at Bell Laboratories to produce the fifth edition with
many new innovations. This version was available free of cost and with source code to universities
for educational purposes. In 1979, after many innovations, code cleanups, and an effort to
improve portability, the seventh edition (V7) of the UNIX operating system came about. This
version contained a C compiler and a command interpreter known as the Bourne shell.

The 1980s brought the advent of the personal computer. The workstation was now within the
reach of businesses and universities. A number of UNIX variants were then developed from the
seventh edition. These include Berkley UNIX (BSD), which was developed at the University of
California at Berkley, and the AT&T UNIX System III and System V. Each version was then
developed into other systems, such as NetBSD and OpenBSD (variants of BSD), and AIX (IBM's
variant of System V). In fact, all commercial variants of UNIX are derived from System V or BSD.

Linux was introduced in 1991 at a time when UNIX was extremely popular but not available for
the PC. The cost of UNIX was prohibitive and not really available to a user unless he was affiliated
with a university. Linux was first implemented as an extension of an operating system called Minix
(a small operating system written by Andrew Tanenbaum for educational purposes).

In the following years, the Linux kernel, combined with system software provided by the Free
Software Foundation's (FSF) GNU project, made Linux[1] develop into a sufficiently solid system
that attracted attention beyond the scope of the contributing hackers. In 1994, version 1.0 of



Linux was released. From then on, Linux has grown vastly, generating a demand for the
distribution of Linux in mass quantities and to an increasing number of universities, corporations,
and individual users that require support on various architectures.

[1] Linux is also referred to as GNU/Linux in order to credit the component of system software provided by the FSF's GNU

project.



1.2. Standards and Common Interfaces

Common standards bridge the gaps between the different types of UNIX. The user's decision of
what variant of UNIX to use impacts its portability and, therefore, its potential market. If you are
a program developer, clearly, the market for your program is limited to the people who use the
same system you developed on unless you take the trouble to port it. Standards come about from
the need for a specification of a common programming interface that would facilitate having code
developed on one operating system run on another with minimal or no patching. Various
standards organizations have set out to define specifications for UNIX. POSIX, formed by the
Institute of Electronic Engineers (IEEE), is a standard for a portable operating system for
computer environments with which Linux aims to be compliant.



1.3. Free Software and Open Source

Linux is one of the most successful examples of open-source software. Open-source software is
software whose source code is freely available such that anyone can modify, read, and redistribute
it. This stands in contrast to the closed-source software distributed only in binary form.

Open source allows a user to develop the software at will to suit his own needs. Depending on the
license, certain restrictions apply to the code. The benefit of this is that users are never limited by
what has been developed by others because they can freely alter the code to suit their needs.
Linux provides an operating system that allows anyone to develop and contribute to it. This
caused a fairly rapid evolution of Linux as the rate of involvement, whether in development,
testing, or documentation, is staggering.

Various open-source licenses exist: In particular, Linux is licensed under the GNU General Public
License (GPL) version 2. A copy of the license can be found at the root of the source code in a file
called COPYING. If you plan on hacking the Linux kernel, it is a good idea to become familiar with
the terms of this license so that you know what the legal fate of your contribution will be.

There are two main camps around the conveyance of free and open-source software. The Free
Software Foundation and the open-source groups differ in ideology. The Free Software
Foundation, which is the older of the two groups, holds the ideology that the word free should be
applied to software in much the same way that the word free is applied to speech. The open-
source group views free and open-source software as a different methodology on par with
proprietary software. For more information, go to http://www.fsf.org and
http://www.opensource.org.

http://www.fsf.org
http://www.opensource.org


1.4. A Quick Survey of Linux Distributions

We mentioned that the Linux kernel is only part of what is usually referred to as "Linux." A Linux
distribution is a combination of the Linux kernel, tools, window managers, and many other
applications. Many of the system programs used in Linux are developed and maintained by the
FSF GNU project. With the rise in Linux's demand and popularity, the packaging of the kernel with
these and other tools has becoming a significant and lucrative undertaking. Groups of people and
corporations take on the mission of providing a particular distribution of Linux in keeping with a
particular set of objectives. Without getting into too much detail, we review the major Linux
distributions as of this writing. New Linux distributions continue to be released.

Most Linux distributions organize the tools and applications into groups of header and executable
files. These groupings are called packages and are the major advantage of using a Linux
distribution as opposed to downloading header files and compiling everything from source.
Referring to the GPL, the license gives the freedom to charge for added value to the open-source
software, such as these services provided in the code's redistribution.

1.4.1. Debian

Debian[2] is a GNU/Linux operating system. Like other distributions, the majority of applications
and tools come from GNU software and the Linux kernel. Debian has one of the better package-
management systems, apt (advanced packaging tool). The major drawback of Debian is in the
initial installation procedure, which seems to cause confusion among novice Linux users. Debian is
not tied to a corporation and is developed by a community of volunteers.

[2] http://www.debian.org.

1.4.2. Red Hat/Fedora

Red Hat[3] (the company) is a major player in the open-source software-development arena. Red
Hat Linux was the company's Linux distribution until recently (20022003) when it replaced its sole
offering with two separate distributions Red Hat Enterprise Linux and the Fedora Core. Red Hat
Enterprise Linux is aimed at business, government, or other industries that require a stable and
supported Linux environment. The Fedora Core is targeted to individual users and enthusiasts.
The major difference between the two distributions is stability versus features. Fedora will have
newer, less stable code included in the distribution than Red Hat Enterprise. Red Hat appears to be
the Linux enterprise version of choice in America.

[3] http://www.redhat.com.

1.4.3. Mandriva

Mandriva Linux[4] (formerly Mandrake Linux) originated as an easier-to-install version of Red Hat
Linux, but has since diverged into a separate distribution that targets the individual Linux user.
The major features of Mandriva Linux are easy system configuration and setup.

[4] http://www.mandriva.com/.

1.4.4. SUSE

http://www.debian.org
http://www.redhat.com
http://www.mandriva.com/


SUSE Linux[5] is another major player in the Linux arena. SUSE targets business, government,
industry, and individual users. The major advantage of SUSE is its installation and administration
tool Yast2. SUSE appears to be the Linux enterprise version of choice in Europe.

[5] http://www.novell.com/linux/suse/.

1.4.5. Gentoo

Gentoo[6] is the new Linux distribution on the block, and it has been winning lots of accolades. The
major difference with Gentoo Linux is that all the packages are compiled from source for the
specific configuration of your machine. This is done via the Gentoo portage system.

[6] http://www.gentoo.org/.

1.4.6. Yellow Dog

Yellow Dog Linux[7] is one of the major players in PPC-based Linux distributions. Although a
number of the recently described distributions work on PPC, their emphasis is on i386 versions of
Linux. Yellow Dog Linux is most similar to Red Hat Linux but with extended development to
support the PPC platform in general and Apple-based hardware specifically.

[7] http://www.yellowdoglinux.com/.

1.4.7. Other Distros

Linux users can be passionate about their distribution of choice, and there are many out there.
Slackware is a classic, MontaVista is great for embedded and, of course, you can roll your own
distribution. For further reading on the variety of Linux dis tributions, I recommend the Wikipedia
entry at http://en.wikipedia.org/wiki/Category:Linux_distributions.

This likely contains the most up-to-date information and, if not, links to further information on the
Web.

http://www.novell.com/linux/suse/
http://www.gentoo.org/
http://www.yellowdoglinux.com/
http://en.wikipedia.org/wiki/Category:Linux_distributions


1.5. Kernel Release Information

As with any software project, understanding the project's versioning scheme is a key element in
your involvement as a contributor. Prior to Linux kernel 2.6, the development community followed
a fairly simple release and development tree methodology. The even-number releases (2.2, 2.4,
and 2.6) were considered stable branches. The only code that was accepted into stable branches
was code that would fix existing errors. Development would continue in the development tree that
was marked by odd numbers (2.1, 2.3, and 2.5). Eventually, the development tree would be
deemed complete enough to take most of it and release a new stable tree.

In mid 2004, a change occurred with the standard release cycle: Code that might normally go into
a development tree is being included in the stable 2.6 tree. Specifically, "…the mainline kernel will
be the fastest and most feature-rich kernel around, but not, necessarily, the most stable. Final
stabilization is to be done by distributors (as happens now, really), but the distributors are
expected to merge their patches quickly" [Jonathan Corbet via
http://kerneltrap.org/node/view/3513].

As this is a relatively new development, only time will tell whether the release cycle will be
changed significantly in the long run.

http://kerneltrap.org/node/view/3513


1.6. Linux on Power

Linux on Power (Linux systems running on a Power or PowerPC processor) has witnessed a
spectacular rise in demand and popularity. An increase in the purchase of PowerPC-based systems
with the intention of running Linux on them can be seen among businesses and corporations. The
reason for the increase in purchase of PowerPC microprocessors is largely because of the fact that
they provide an extremely scalable architecture that addresses a wide range of needs.

The PowerPC architecture has made its presence felt in the embedded market where AMCC
PowerPC and Motorola PowerPC deliver 32-bit system-on-chip (SOC) integrated products. These
SOCs encompass the processor along with built-in clocks, memory, busses, controllers, and
peripherals.

The companies who license PowerPC include AMCC, IBM, and Motorola. Although these three
companies develop their chips independently, the chips share a common instruction set and are
therefore compatible.

Linux is running on PowerPC-based game consoles, mainframes, and desktops around the world.
The rapid expansion of Linux on another increasingly mainstream architecture has come about
from the combined efforts of open-source initiatives, such as http://www.penguinppc.org and
private enterprise initiatives, including the Linux Technology Center at IBM.

With the growing popularity of Linux on this platform, we have undertaken to explore how Linux
interfaces and makes use of PowerPC functionality.

Numerous sites contain helpful information related to Linux on Power, and we refer to them as we
progress through our explanations. http://www.penguinppc.org is where the Linux PPC port is
tracked and where the PowerPC developer community follows Linux on Power news.

http://www.penguinppc.org
http://www.penguinppc.org
ZJ
Squiggly

ZJ
Highlight

ZJ
Squiggly



1.7. What Is an Operating System?

We now look at general operating system concepts, basic Linux usability and features, and how
they tie together. This section overviews the concepts we cover in more detail in future chapters.
If you are familiar with these concepts, you can skip this section and dive right into Chapter 2,
"Exploration Toolkit."

The operating system is what turns your hardware into a usable computer. It is in charge of
managing the resources provided by your system's particular hardware components and of
providing a base for application programs to be developed on and executed. If there were no
operating system, each program would have to include drivers for all the hardware it was
interested in using, which could prove prohibitive to application programmers.

The anatomy of an operating system depends on its type. Linux and most UNIX variants are
monolithic systems. When we say a system is monolithic, we do not necessarily mean it is huge
(although, in most cases, this second interpretation might well apply). Rather, we mean that it is
composed of a single unita single object file. The operating system structure is defined by a
number of procedures that are compiled and linked together. How the procedures interrelate
defines the internal structure of a monolithic system.

In Linux, we have kernel space and user space as two distinct portions of the operating system.
A user associates with the operating system by way of user space where he will develop and/or
use application programs. User space does not access the kernel (and hence, the hardware
resources) directly but by way of system callsthe outermost layer of procedures defined by the
kernel. Kernel space is where the hardware-management functionality takes place. Within the
kernel, the system call procedures call on other procedures that are not available to user space to
manipulate finer grain functionality.

The subset of procedures that is not visible to user space is made up in part by functions from
individual device drivers and by kernel subsystem functions. Device drivers also provide well-
defined interface functions for system call or kernel subsystem access. Figure 1.1 shows the
structure of Linux.

Figure 1.1. Linux Architecture Perspective

Linux also sports dynamically loadable device drivers, breaking one of the main drawbacks



inherent in monolithic operating systems. Dynamically loadable device drivers allow the systems
programmer to incorporate system code into the kernel without having to compile his code into
the kernel image. Doing so implies a lengthy wait (depending on your system capabilities) and a
reboot, which greatly increases the time a systems programmer spends in developing his code.
With dynamically loadable device drivers, the systems programmer can load and unload his device
driver in real time without needing to recompile the entire kernel and bring down the system.

Throughout this book, we explain these different "parts" of Linux. When possible, we follow a top-
down approach, starting with an example application program and tracing its execution path down
through system calls and subsystem functions. This way, you can associate the more familiar user
space functionality with the kernel components that support it.



1.8. Kernel Organization

Linux supports numerous architecturesthis means that it can be run on many types of processors,
which include alpha, arm, i386, ia64, ppc, ppc64, and s390x. The Linux source code is packaged
to include support for all these architectures. Most of the source code is written in C and is
hardware independent. A portion of the code is heavily hardware dependent and is written in a
mix of C and assembly for the particular architecture. The heavily machine-dependent portion is
wrapped by a long list of system calls that serve as an interface. As you read this book, you get a
chance to see that the architecture-dependent portions of the code are generally involved with
system initialization and bootstrapping, exception vector handling, address translation, and device
I/O.



1.9. Overview of the Linux Kernel

There are various components to the Linux kernel. Throughout this book, we use the word
component and subsystem interchangeably to refer to these categorical and functional
differentiators of the kernel functions.

In the following sections, we discuss some of those components and how they are implemented in
the Linux kernel. We also cover some key features of the operating system that provide insight
into how things are implemented in the kernel. We break up the components into filesystem,
processes, scheduler, and device drivers. Although this is not intended to be a comprehensive list,
it provides a reference for the rest of this book.

1.9.1. User Interface

Users communicate with the system by way of programs. A user first logs in to the system
through a terminal or a virtual terminal. In Linux, a program, called mingetty for virtual
terminals or agetty for serial terminals, monitors the inactive terminal waiting for users to notify

that they want to log in. To do this, they enter their account name, and the getty program
proceeds to call the login program, which prompts for a password, accesses a list of names and

passwords for authentication, and allows them into the system if there is a match, or exits and
terminates the process if there is no match. The getty programs are all respawned once
terminated, which means they restart if the process ever exits.

Once authenticated in the system, users need a way to tell the system what they want to do. If
the user is authenticated successfully, the login program executes a shell. Although technically
not part of the operating system, the shell is the primary user interface to the operating system. A
shell is a command interpreter and consists of a listening process. The listening process (one that
blocks until the condition of receiving input is met) then interprets and executes the requests
typed in by the user. The shell is one of the programs found in the top layer of Figure 1.1.

The shell displays a command prompt (which is generally configurable, depending on the shell)
and waits for user input. A user can then interact with the system's devices and programs by
entering them using a syntax defined by the shell.

The programs a user can call are executable files stored within the filesystem that the user can
execute. The execution of these requests is initiated by the shell spawning a child process. The
child process might then make system call accesses. After the system call returns and the child
process terminates, the shell can go back to listen for user requests.

1.9.2. User Identification

A user logs in with a unique account name. However, he is also associated with a unique user ID
(UID). The kernel uses this UID to validate the user's permissions with respect to file accesses.
When a user logs in, he is granted access to his home directory, which is where he can create,
modify, and destroy files. It is important in a multiuser system, such as Linux, to associate users
with access permission and/or restrictions to prevent users from interfering with the activity of
other users and accessing their data. The superuser or root is a special user with unrestricted
permissions; this user's UID is 0.

A user is also a member of one or more groups, each of which has its own unique group ID
(GID). When a user is created, he is automatically a member of a group whose name is identical
to his username. A user can also be manually added to other groups that have been defined by
the system administrator.



A file or a program (an executable file) is associated with permissions as they apply to users and
groups. Any particular user can determine who is allowed to access his files and who is not. A file
will be associated with a particular UID and a particular GID.

1.9.3. Files and Filesystems

A filesystem provides a method for the storage and organization of data. Linux supports the
concept of the file as a device-independent sequence of bytes. By means of this abstraction, a
user can access a file regardless of what device (for example, hard disk, tape drive, disk drive)
stores it. Files are grouped inside a container called a directory. Because directories can be
nested in each other (which means that a directory can contain another directory), the filesystem
structure is that of a hierarchical tree. The root of the tree is the top-most node under which all
other directories and files are stored. It is identified by a forward slash (/). A filesystem is stored
in a hard-drive partition, or unit of storage.

1.9.3.1. Directories, Files, and Pathnames

Every file in a tree has a pathname that indicates its name and location. A file also has the
directory to which it belongs. A pathname that takes the current working directory, or the
directory the user is located in, as its root is called a relative pathname, because the file is
named relative to the current working directory. An absolute pathname is a pathname that is
taken from the root of the filesystem (for example, a pathname that starts with a /). In Figure
1.2, the absolute pathname of user paul's file.c is /home/paul/src/file.c. If we are located
inside paul's home directory, the relative pathname is simply src/file.c.

Figure 1.2. Hierarchical File Structure

The concepts of absolute versus relative pathnames come into play because the kernel associates
processes with the current working directory and with a root directory. The current working
directory is the directory from which the process was called and is identified by a . (pronounced
"dot"). As an aside, the parent directory is the directory that contains the working directory and is
identified by a .. (pronounced "dot dot"). Recall that when a user logs in, she is "located" in her
home directory. If Anna tells the shell to execute a particular program, such as ls, as soon as she
logs in, the process that executes ls has /home/anna as its current working directory (whose



parent directory is /home) and / will be its root directory. The root is always its own parent.

1.9.3.2. Filesystem Mounting

In Linux, as in all UNIX-like systems, a filesystem is only accessible if it has been mounted. A
filesystem is mounted with the mount system call and is unmounted with the umount system call. A

filesystem is mounted on a mount point, which is a directory used as the root access to the
mounted filesystem. A directory mount point should be empty. Any files originally located in the
directory used as a mount point are inaccessible after the filesystem is mounted and remains so
until the filesystem is unmounted. The /etc/mtab file holds the table of mounted filesystems while
/etc/fstab holds the filesystem table, which is a table listing all the system's filesystems and their

attributes. /etc/mtab lists the device of the mounted filesystem and associates it with its mount
point and any options with which it was mounted.[8]

[8] The options are passed as parameters to the mount system call.

1.9.3.3. File Protection and Access Rights

Files have access permissions to provide some degree of privacy and security. Access rights or
permissions are stored as they apply to three distinct categories of users: the user himself, a
designated group, and everyone else. The three types of users can be granted varying access
rights as applied to the three types of access to a file: read, write, and execute. When we execute
a file listing with an ls al, we get a view of the file permissions:

lkp :~# ls al /home/sophia 
drwxr-xr-x 22 sophia sophia    4096 Mar 14 15:13 .
drwxr-xr-x 24 root  root     4096 Mar 7 18:47 ..
drwxrwx--- 3 sophia department  4096 Mar 4 08:37 sources

The first entry lists the access permissions of sophia's home directory. According to this, she has
granted everyone the ability to enter her home directory but not to edit it. She herself has read,
write, and execute permission.[9] The second entry indicates the access rights of the parent
directory /home. /home is owned by root but it allows everyone to read and execute. In sophia's
home directory, she has a directory called sources, which she has granted read, write, and
execute permissions to herself, members of the group called department, and no permissions to
anyone else.

[9] Execute permission, as applied to a directory, indicates that a user can enter it. Execute permission as applied to a file

indicates that it can be run and is used only on executable files.

1.9.3.4. File Modes

In addition to access rights, a file has three additional modes: sticky, suid, and sgid. Let's look
at each mode more closely.

sticky

A file with the sticky bit enabled has a "t" in the last character of the mode field (for example, -rwx-
----t). Back in the day when disk accesses were slower than they are today, when memory was
not as large, and when demand-based methodologies hadn't been conceived,[10] an executable
file could have the sticky bit enabled and ensure that the kernel would keep it in memory despite
its state of execution. When applied to a program that was heavily used, this could increase

ZJ
Squiggly

ZJ
Squiggly



performance by reducing the amount of time spent accessing the file's information from disk.

[10] This refers to techniques that exploit the principle of locality with respect to loaded program chunks. We see more of this

in detail in Chapter 4.

When the sticky bit is enabled in a directory, it prevents the removal or renaming of files from
users who have write permission in that directory (with exception of root and the owner of the
file).

suid

An executable with the suid bit set has an "s" where the "x" character goes for the user-
permission bits (for example, -rws------). When a user executes an executable file, the process is

associated with the user who called it. If an executable has the suid bit set, the process inherits
the UID of the file owner and thus access to its set of access rights. This introduces the concepts
of the real user ID as opposed to the effective user ID. As we soon see when we look at
processes in the "Processes" section, a process' real UID corresponds to that of the user that
started the process. The effective UID is often the same as the real UID unless the setuid bit was
set in the file. In that case, the effective UID holds the UID of the file owner.

suid has been exploited by hackers who call executable files owned by root with the suid bit set
and redirect the program operations to execute instructions that they would otherwise not be
allowed to execute with root permissions.

sgid

An executable with the sgid bit set has an "s" where the "x" character goes for the group
permission bits (for example, -rwxrws---). The sgid bit acts just like the suid bit but as applied to
the group. A process also has a real group ID and an effective group ID that holds the GID of
the user and the GID of the file group, respectively.

1.9.3.5. File Metadata

File metadata is all the information about a file that does not include its content. For example,
metadata includes the type of file, the size of the file, the UID of the file owner, the access rights,
and so on. As we soon see, some file types (devices, pipes, and sockets) contain no data, only
metadata. All file metadata, with the exception of the filename, is stored in an inode or index
node. An inode is a block of information, and every file has its own inode. A file descriptor is an
internal kernel data structure that manages the file data. File descriptors are obtained when a
process accesses a file.

1.9.3.6. Types of Files

UNIX-like systems have various file types.

Regular File

A regular file is identified by a dash in the first character of the mode field (for example, -rw-rw-

rw-). A regular file can contain ASCII data or binary data if it is an executable file. The kernel does
not care what type of data is stored in a file and thus makes no distinctions between them. User
programs, however, might care. Regular files have their data stored in zero or more data
blocks.[11]

[11] An empty file has zero data blocks.
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Directory

A directory file is identified by a "d" in the first character of the mode field (for example, drwx------
). A directory is a file that holds associations between filenames and the file inodes. A directory
consists of a table of entries, each pertaining to a file that it contains. ls ai lists all the contents of
a directory and the ID of its associated inode.

Block Devices

A block device is identified by a "b" in the first character of the mode field (for example, brw-------

). These files represent a hardware device on which I/O is performed in discretely sized blocks in
powers of 2. Block devices include disk and tape drives and are accessed through the /dev

directory in the filesystem.[12] Disk accesses can be time consuming; therefore, data transfer for
block devices is performed by the kernel's buffer cache, which is a method of storing data
temporarily to reduce the number of costly disk accesses. At certain intervals, the kernel looks at
the data in the buffer cache that has been updated and synchronizes it with the disk. This provides
great increases in performance; however, a computer crash can result in loss of the buffered data
if it had not yet been written to disk. Synchronization with the disk drive can be forced with a call
to the sync, fsync, or fdatasync system calls, which take care of writing buffered data to disk. A

block device does not use any data blocks because it stores no data. Only an inode is required to
hold its information.

[12] The mount system call requires a block file.

Character Devices

A character device is identified by a "c" in the first character of the mode field (for example, crw---

----). These files represent a hardware device that is not block structured and on which I/O
occurs in streams of bytes and is transferred directly between the device driver and the requesting
process. These devices include terminals and serial devices and are accessed through the /dev
directory in the filesystem. Pseudo devices or device drivers that do not represent hardware but
instead perform some unrelated kernel side function can also be character devices. These devices
are also known as raw devices because of the fact that there is no intermediary cache to hold the
data. Similar to a block device, a character device does not use any data blocks because it stores
no data. Only an inode is required to hold its information.

Link

A link device is identified by an "l" in the first character of the mode field (for example, lrw-------

). A link is a pointer to a file. This type of file allows there to be multiple references to a particular
file while only one copy of the file and its data actually exists in the filesystem. There are two
types of links: hard link and symbolic, or soft, link. Both are created through a call to ln. A

hard link has limitations that are absent in the symbolic link. These include being limited to linking
files within the same filesystem, being unable to link to directories, and being unable to link to
non-existing files. Links reflect the permissions of the file to which it is pointing.

Named Pipes

A pipe file is identified by a "p" in the first character of the mode field (for example, prw-------). A

pipe is a file that facilitates communication between programs by acting as data pipes; data is
written into them by one program and read by another. The pipe essentially buffers its input data
from the first process. Named pipes are also known as FIFOs because they relay the information



to the reading program in a first in, first out basis. Much like the device files, no data blocks are
used by pipe files, only the inode.

Sockets

A socket is identified by an "s" in the first character of the mode field (for example, srw-------).

Sockets are special files that also facilitate communication between two processes. One difference
between pipes and sockets is that sockets can facilitate communication between processes on
different computers connected by a network. Socket files are also not associated with any data
blocks. Because this book does not cover networking, we do not go over the internals of sockets.

1.9.3.7. Types of Filesystems

Linux filesystems support an interface that allows various filesystem types to coexist. A filesystem
type is determined by the way the block data is broken down and manipulated in the physical
device and by the type of physical device. Some examples of types of filesystems include network
mounted, such as NFS, and disk based, such as ext3, which is one of the Linux default
filesystems. Some special filesystems, such as /proc, provide access to kernel data and address
space.

1.9.3.8. File Control

When a file is accessed in Linux, control passes through a number of stages. First, the program
that wants to access the file makes a system call, such as open(), read(), or write(). Control then
passes to the kernel that executes the system call. There is a high-level abstraction of a filesystem
called VFS, which determines what type of specific filesystem (for example, ext2, minix, and
msdos) the file exists upon, and control is then passed to the appropriate filesystem driver.

The filesystem driver handles the management of the file upon a given logical device. A hard drive
could have msdos and ext2 partitions. The filesystem driver knows how to interpret the data stored
on the device and keeps track of all the metadata associated with a file. Thus, the filesystem
driver stores the actual file data and incidental information such as the timestamp, group and user
modes, and file permissions (read/write/execute).

The filesystem driver then calls a lower-level device driver that handles the actual reading of the
data off of the device. This lower-level driver knows about blocks, sectors, and all the hardware
information that is necessary to take a chunk of data and store it on the device. The lower-level
driver passes the information up to the filesystem driver, which interprets and formats the raw
data and passes the information to the VFS, which finally transfers the data back to the originating
program.

1.9.4. Processes

If we consider the operating system to be a framework that developers can build upon, we can
consider processes to be the basic unit of activity undertaken and managed by this framework.
More specifically, a process is a program that is in execution. A single program can be executed
multiple times so there might be more than one process associated with a particular program.

The concept of processes became significant with the introduction of multiuser systems in the
1960s. Consider a single-user operating system where the CPU executes only a single process. In
this case, no other program can be executed until the currently running process is complete.
When multiple users are introduced (or if we want the ability to perform multiple tasks
concurrently), we need to define a way to switch between the tasks.

The process model makes the execution of multiple tasks possible by defining execution



contexts. In Linux, each process operates as though it were the only process. The operating
system then manages these contexts by assigning the processor to work on one or the other
according to a predefined set of rules. The scheduler defines and executes these rules. The
scheduler tracks the length of time the process has run and switches it off to ensure that no one
process hogs the CPU.

The execution context consists of all the parts associated with the program such as its data (and
the memory address space it can access), its registers, its stack and stack pointer, and the
program counter value. Except for the data and the memory addressing, the rest of the
components of a process are transparent to the programmer. However, the operating system
needs to manage the stack, stack pointer, program counter, and machine registers. In a
multiprocess system, the operating system must also be responsible for the context switch
between processes and the management of system resources that processes contend for.

1.9.4.1. Process Creation and Control

A process is created from another process with a call to the fork() system call. When a process

calls fork(), we say that the process spawned a new process, or that it forked. The new process
is considered the child process and the original process is considered the parent process. All
processes have a parent, with the exception of the init process. All processes are spawned from
the first process, init, which comes about during the bootstrapping phase. This is discussed

further in the next section.

As a result of this child/parent model, a system has a process tree that can define the
relationships between all the running processes. Figure 1.3 illustrates a process tree.

Figure 1.3. Process Tree

When a child process is created, the parent process might want to know when it is finished. The
wait() system call is used to pause the parent process until its child has exited.

A process can also replace itself with another process. This is done, for example, by the
mingetty() functions previously described. When a user requests access into the system, the
mingetty() function requests his username and then replaces itself with a process executing
login() to which it passes the username parameter. This replacement is done with a call to one of
the exec() system calls.

1.9.4.2. Process IDs

Every process has a unique identifier know as the process ID (PID). A PID is a non-negative
integer. Process IDs are handed out in incrementing sequential order as processes are created.



When the maximum PID value is hit, the values wrap and PIDs are handed out starting at the
lowest available number greater than 1. There are two special processes: process 0 and process
1. Process 0 is the process that is responsible for system initialization and for spawning off process
1, which is also known as the init process. All processes in a running Linux system are

descendants of process 1. After process 0 executes, the init process becomes the idle cycle.
Chapter 8, "Booting the Kernel," discusses this process in "The Beginning: start_kernel()" section.

Two system calls are used to identify processes. The getpid() system call retrieves the PID of the
current process, and the getppid() system call retrieves the PID of the process' parent.

1.9.4.3. Process Groups

A process can be a member of a process group by sharing the same group ID. A process group
facilitates associating a set of processes. This is something you might want to do, for example, if
you want to ensure that otherwise unrelated processes receive a kill signal at the same time.
The process whose PID is identical to the group ID is considered the group leader. Process group
IDs can be manipulated by calling the getpgid() and setpgid() system calls, which retrieve and
set the process group ID of the indicated process, respectively.

1.9.4.4. Process States

Processes can be in different states depending on the scheduler and the availability of the system
resources for which the process contends. A process might be in a runnable state if it is currently
being executed or in a run queue, which is a structure that holds references to processes that are
in line to be executed. A process can be sleeping if it is waiting for a resource or has yielded to
anther process, dead if it has been killed, and defunct or zombie if a process has exited before
its parent was able to call wait() on it.

1.9.4.5. Process Descriptor

Each process has a process descriptor that contains all the information describing it. The process
descriptor contains such information as the process state, the PID, the command used to start it,
and so on. This information can be displayed with a call to ps (process status). A call to ps might

yield something like this:

lkp:~#ps aux | more
USER PID TTY STAT COMMAND
root   1  ?    S  init [3]
root   2   ?   SN [ksoftirqd/0]
...
root  10  ?    S< [aio/0]
...
root  2026 ?    Ss /sbin/syslogd -a /var/lib/ntp/dev/log
root  2029 ?    Ss /sbin/klogd -c 1 -2 x
...
root  3324 tty2   Ss+ /sbin/mingetty tty2
root  3325 tty3   Ss+ /sbin/mingetty tty3
root  3326 tty4   Ss+ /sbin/mingetty tty4
root  3327 tty5   Ss+ /sbin/mingetty tty5
root  3328 tty6   Ss+ /sbin/mingetty tty6
root  3329 ttyS0   Ss+ /sbin/agetty -L 9600 ttyS0 vt102
root  14914 ?    Ss sshd: root@pts/0
...
root  14917 pts/0   Ss -bash
root  17682 pts/0   R+ ps aux



root  17683 pts/0   R+ more

The list of process information shows the process with PID 1 to be the init process. This list also
shows the mingetty() and agetty() programs listening in on the virtual and serial terminals,
respectively. Notice how they are all children of the previous one. Finally, the list shows the bash
session on which the ps aux | more command was issued. Notice that the | used to indicate a pipe
is not a process in itself. Recall that we said pipes facilitate communication between processes.
The two processes are ps aux and more.

As you can see, the STAT column indicates the state of the process, with S referring to sleeping
processes and R to running or runnable processes.

1.9.4.6. Process Priority

In single-processor computers, we can have only one process executing at a time. Processes are
assigned priorities as they contend with each other for execution time. This priority is dynamically
altered by the kernel based on how much a process has run and what its priority has been until
that moment. A process is allotted a timeslice to execute after which it is swapped out for
another process by the scheduler, as we describe next.

Higher priority processes are executed first and more often. The user can set a process priority
with a call to nice(). This call refers to the niceness of a process toward another, meaning how

much the process is willing to yield. A high priority has a negative value, whereas a low priority
has a positive value. The higher the value we pass nice, the more we are willing to yield to
another process.

1.9.5. System Calls

System calls are the main mechanism by which user programs communicate with the kernel.
Systems calls are generally wrapped inside library calls that manage the setup of the registers and
data that each system call needs before executing. The user programs then link in the library with
the appropriate routines to make the kernel request.

System calls generally apply to specific subsystems. This means that a user space program can
interact with any particular kernel subsystem by means of these system calls. For example, files
have file-handling system calls, and processes have process-specific system calls. Throughout this
book, we identify the system calls associated with particular kernel subsystems. For example,
when we talk about filesystems, we look at the read(), write(), open(), and close() system calls.
This provides you with a view of how filesystems are implemented and managed within the kernel.

1.9.6. Linux Scheduler

The Linux scheduler handles the task of moving control from one process to another. With the
inclusion of kernel pre-emption in Linux 2.6, any process, including the kernel, can be interrupted
at nearly any time and control passed to a new process.

For example, when an interrupt occurs, Linux must stop executing the current process and handle
the interrupt. In addition, a multitasking operating system, such as Linux, ensures that no one
process hogs the CPU for an extended time. The scheduler handles both of these tasks: On one
hand, it swaps the current process with a new process; on the other hand, it keeps track of
processes' usage of the CPU and indicates that they be swapped if they have run too long.

How the Linux scheduler determines which process to give control of the CPU is explained in depth
in Chapter 7, "Scheduling and Kernel Synchronization"; however, a quick summary is that the



scheduler determines priority based on past performance (how much CPU the process has used
before) and on the criticality of the process (interrupts are more critical than the log system).

The Linux scheduler also manages how processes execute on multiprocessor machines (SMP).
There are some interesting features for load balancing across multiple CPUs as well as the ability
to tie processes to a specific CPU. That being said, the basic scheduling functionality operates
identically across CPUs.

1.9.7. Linux Device Drivers

Device drivers are how the kernel interfaces with hard disks, memory, sound cards, Ethernet
cards, and many other input and output devices.

The Linux kernel usually includes a number of these drivers in a default installation; Linux wouldn't
be of much use if you couldn't enter any data via your keyboard. Device drivers are encapsulated
in a module. Although Linux is a monolithic kernel, it achieves a high degree of modularization by
allowing each device driver to be dynamically loaded. Thus, a default kernel can be kept relatively
small and slowly extended based upon the actual configuration of the system on which Linux runs.

In the 2.6 Linux kernel, device drivers have two major ways of displaying their status to a user of
the system: the /proc and /sys filesystems. In a nutshell, /proc is usually used to debug and
monitor devices and /sys is used to change settings. For example, if you have an RF tuner on an
embedded Linux device, the default tuner frequency could be visible, and possibly changeable,
under the devices entry in sysfs.

In Chapters 5, "Input/Output," and 10, "Adding Your Code to the Kernel," we closely look at
device drivers for both character and block devices. More specifically, we tour the /dev/random
device driver and see how it gathers entropy information from other devices on the Linux system.



1.10. Portability and Architecture Dependence

As we explore the internals of the Linux kernel, more often than not, we find ourselves discussing
some aspect of the underlying hardware or architecture. After all, the Linux kernel is a large lump
of software running on a specific kind of processor, and as such, it must have intimate knowledge
of that processor's (or processors') instruction set and capabilities. This however, does not require
every kernel or system programmer to be an expert on the host microprocessor, but a good idea
of how the kernel code is constructed or layered will go a long way to help debug some of the
stickier problems one will come across.

The Linux kernel is crafted in such a way as to minimize how much of its code is directly
dependent on the underlying hardware. When interaction with the hardware is required,
appropriate libraries have been brought in at compile time to execute that particular function on a
given architecture. For example, when the kernel wants to make a context switch, it calls the
function switch_to(). Because the kernel has been compiled for a given architecture (for example,

PowerPC or x86), it linked in (at compile time) the appropriate include files include/asm-
ppc/system.h or include/asm-i386/system.h in which the architecture-dependent definition of
switch_to() resides. At boot time, the architecture-dependent initialization code makes calls to
Firmware or BIOS (BIOS is the system startup software which is covered in Chapter 9, "Building
the Linux Kernel").

Depending on the target architecture, a different layer of software is brought in to interface with
the hardware. Above this layer, the kernel code is oblivious to the underlying hardware.

For this reason, the Linux kernel is said to be portable across different architectures. Limitations
arise when drivers have not been ported, either because the hardware they are bound to is not
available for a certain architecture or because there has not been enough demand for a port. To
create a device driver, the programmer must have a register-level specification for a given piece
of hardware. Not all manufacturers are willing to furnish this document because of the proprietary
nature of their hardware. This, too, indirectly limits the portability of Linux across architectures.



Summary

This chapter gave a brief overview and introduction to the topics that will be touched on in more
detail. We have also mentioned some of the features that have made Linux so popular, as well as
some of the issues surrounding this operating system. The following chapter goes over some basic
tools you need to effectively explore the Linux kernel.



Exercises

1: What is the difference between a UNIX system and a UNIX clone?

2: What does the term "Linux on Power" refer to?

3: What is user space? What is kernel space?

4: What is the interface to kernel functionality for user space programs?

5: What is the relationship between a user's UID and a username?

6: List the ways in which files are associated with users.

7: List the various types of files supported by Linux.

8: Is the shell part of the operating system?

9: Why do we have both file protection and file modes?

10: List the kind of information you would expect to find in a structure holding file
metadata.

11: What is the basic difference between a character and a block device?

12: What is the subcomponent of the Linux kernel that allows it to be a multiprocess
system?

13: How does a process become the parent of another process?

14: In this chapter, we introduced two kinds of hierarchical trees: file trees and process
trees. What do they have in common? How do they differ?

15: Is a process ID associated with a user ID?

16: What is the use of assigning process priorities? Should all users be able to alter the
priority values? Why or why not?

17: Are device drivers used solely for adding hardware support?

18: What helps make Linux portable across different architectures?
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This chapter overviews common Linux coding constructs and describes a number of methods to
interface with the kernel. We start by looking at common Linux datatypes used for efficient
storage and retrieval of information, coding methods, and basic assembly language. This provides
a foundation for the more detailed kernel analysis in the later chapters. We then describe how
Linux compiles and links the source code into executable code. This is useful for understanding
cross-platform code and nicely introduces the GNU toolset. This is followed by an outline of a
number of methods to gather information from the Linux kernel. We range from analyzing source
and executable code to inserting debugging statements within the Linux kernel. This chapter
closes with a "grab bag" of observations and comments on other regularly encountered Linux
conventions.[1]

[1] We do not yet delve into the kernel internals. At this point, we summarize the tools and concepts necessary to navigate

through the kernel code. If you are a more experienced kernel hacker, you can skip this section and jump right into the kernel

internals, which begins in Chapter 3, "Processes: The Principal Model of Execution."



2.1. Common Kernel Datatypes

The Linux kernel has many objects and structures of which to keep track. Examples include
memory pages, processes, and interrupts. A timely way to reference one of these objects among
many is a major concern if the operating system is run efficiently. Linux uses linked lists and
binary search trees (along with a set of helper routines) to first group these objects into a single
container and, second, to find a single element in an efficient manner.

2.1.1. Linked Lists

Linked lists are common datatypes in computer science and are used throughout the Linux
kernel. Linked lists are often implemented as circular doubly linked lists within the Linux kernel.
(See Figure 2.1.) Thus, given any node in a list, we can go to the next or previous node. All the
code for linked lists can be viewed in include/linux/list.h. This section deals with the major
features of linked lists.

Figure 2.1. Linked List After the INIT_LIST_HEAD Macro Is Called

A linked list is initialized by using the LIST_HEAD and INIT_ LIST_HEAD macros:

-----------------------------------------------------------------------------
include/linux/list.h
27
28 struct list_head {
29   struct list_head *next, *prev;
30 };
31 
32 #define LIST_HEAD_INIT(name) { &(name), &(name) }
33 
34 #define LIST_HEAD(name) \
35   struct list_head name = LIST_HEAD_INIT(name)
36 
37 #define INIT_LIST_HEAD(ptr) do { \
38   (ptr)->next = (ptr); (ptr)->prev = (ptr); \
39 } while (0)
-----------------------------------------------------------------------------

Line 34



The LIST_HEAD macro creates the linked list head specified by name.

Line 37

The INIT_LIST_HEAD macro initializes the previous and next pointers within the structure to
reference the head itself. After both of these calls, name contains an empty doubly linked list.[2]

[2] An empty list is defined as one whose head->next field points to the list's head element.

Simple stacks and queues can be implemented by the list_add() or list_add_tail() functions,
respectively. A good example of this being used is in the work queue code:

-----------------------------------------------------------------------------
kernel/workqueue.c
330 list_add(&wq->list, &workqueues);
-----------------------------------------------------------------------------

The kernel adds wq->list to the system-wide list of work queues, workqueues. workqueues is thus
a stack of queues.

Similarly, the following code adds work->entry to the end of the list cwq->worklist. cwq-
>worklist is thus being treated as a queue:

-----------------------------------------------------------------------------
kernel/workqueue.c
84 list_add_tail(&work->entry, &cwq->worklist);
-----------------------------------------------------------------------------

When deleting an element from a list, list_del() is used. list_del() takes the list entry as a

parameter and deletes the element simply by modifying the entry's next and previous nodes to
point to each other. For example, when a work queue is destroyed, the following code removes
the work queue from the system-wide list of work queues:

-----------------------------------------------------------------------------
kernel/workqueue.c
382 list_del(&wq->list);
-----------------------------------------------------------------------------

One extremely useful macro in include/linux/list.h is the list_for_each_entry macro:

-----------------------------------------------------------------------------
include/linux/list.h
349 /**  
350 * list_for_each_entry -  iterate over list of given type
351 * @pos:  the type * to use as a loop counter.
352 * @head:  the head for your list.
353 * @member:  the name of the list_struct within the struct.
354 */
355 #define list_for_each_entry(pos, head, member)       
356   for (pos = list_entry((head)->next, typeof(*pos), member),  



357      prefetch(pos->member.next);      
358    &pos->member != (head);         
359    pos = list_entry(pos->member.next, typeof(*pos), member), 
360      prefetch(pos->member.next))
-----------------------------------------------------------------------------

This function iterates over a list and operates on each member within the list. For example, when
a CPU comes online, it wakes a process for each work queue:

-----------------------------------------------------------------------------
kernel/workqueue.c
59 struct workqueue_struct {
60   struct cpu_workqueue_struct cpu_wq[NR_CPUS];
61   const char *name;
62   struct list_head list; /* Empty if single thread */
63 };
  ...
466   case CPU_ONLINE:
467     /* Kick off worker threads. */
468     list_for_each_entry(wq, &workqueues, list)
469       wake_up_process(wq->cpu_wq[hotcpu].thread);
470     break;
-----------------------------------------------------------------------------

The macro expands and uses the list_head list within the workqueue_struct wq to traverse the list
whose head is at work queues. If this looks a bit confusing remember that we do not need to
know what list we're a member of in order to traverse it. We know we've reached the end of the
list when the value of the current entry's next pointer is equal to the list's head.[3] See Figure 2.2
for an illustration of a work queue list.

[3] We could also use list_for_each_entry_reverse() to traverse the list backward.

Figure 2.2. Work Queue List

[View full size image]

A further refinement of the linked list is an implementation where the head of the list has only a
single pointer to the first element. This contrasts the double pointer head discussed in the
previous section. Used in hash tables (which are introduced in Chapter 4, "Memory Management"),
the single pointer head does not have a back pointer to reference the tail element of the list. This



is thought to be less wasteful of memory because the tail pointer is not generally used in a hash
search:

-----------------------------------------------------------------------------
include/linux/list.h
484  struct hlist_head {
485   struct hlist_node *first;
486  };

488  struct hlist_node {
489   struct hlist_node *next, **pprev;
490  };

492  #define HLIST_HEAD_INIT { .first = NULL } 
493  #define HLIST_HEAD(name) struct hlist_head name = { .first = NULL }
-----------------------------------------------------------------------------

Line 492

The HLIST_HEAD_INIT macro sets the pointer first to the NULL pointer.

Line 493

The HLIST_HEAD macro creates the linked list by name and sets the pointer first to the NULL
pointer.

These list constructs are used throughout the Linux kernel code in work queues, as we've seen in
the scheduler, the timer, and the module-handling routines.

2.1.2. Searching

The previous section explored grouping elements in a list. An ordered list of elements is sorted
based on a key value within each element (for example, each element having a key value greater
than the previous element). If we want to find a particular element (based on its key), we start at
the head and increment through the list, comparing the value of its key with the value we were
searching for. If the value was not equal, we move on to the next element until we find the
matching key. In this example, the time it takes to find a given element in the list is directly
proportional to the value of the key. In other words, this linear search takes longer as more
elements are added to the list.

Big-O

For a searching algorithm, big-O notation is the theoretical measure of the execution
of an algorithm usually in time needed to find a given key. It represents the worst-
case search time for a given number (n) elements. The big-O notation for a linear
search is O(n/2), which indicates that, on average, half of the list is searched to find
a given key.

Source: National Institute of Standards and Technology (www.nist.gov).



With large lists of elements, faster methods of storing and locating a given piece of data are
required if the operating system is to be prevented from grinding to a halt. Although many
methods (and their derivatives) exist, the other major data structure Linux uses for storage is the
tree.

2.1.3. Trees

Used in Linux memory management, the tree allows for efficient access and manipulation of data.
In this case, efficiency is measured in how fast we can store and retrieve a single piece of data
among many. Basic trees, and specifically red black trees, are presented in this section and, for
the specific Linux implementation and helper routines, see Chapter 6, "Filesystems." Rooted trees
in computer science consist of nodes and edges (see Figure 2.3). The node represents the data
element and the edges are the paths between the nodes. The first, or top, node in a rooted tree is
the root node. Relationships between nodes are expressed as parent, child, and sibling, where
each child has exactly one parent (except the root), each parent has one or more children, and
siblings have the same parent. A node with no children is termed as a leaf. The height of a tree is
the number of edges from the root to the most distant leaf. Each row of descendants across the
tree is termed as a level. In Figure 2.3, b and c are one level below a, and d, e, and f are two
levels below a. When looking at the data elements of a given set of siblings, ordered trees have
the left-most sibling being the lowest value ascending in order to the right-most sibling. Trees are
generally implemented as linked lists or arrays and the process of moving through a tree is called
traversing the tree.

Figure 2.3. Rooted Tree

2.1.3.1. Binary Trees

Previously, we looked at finding a key using a linear search, comparing our key with each
iteration. What if we could rule out half of the ordered list with every comparison?

A binary tree, unlike a linked list, is a hierarchical, rather than linear, data structure. In the binary
tree, each element or node points to a left or right child node, and in turn, each child points to a
left or right child, and so on. The main rule for ordering the nodes is that the child on the left has
a key value less than the parent, and the child on the right has a value equal to or greater than
the parent. As a result of this rule, we know that for a key value in a given node, the left child and
all its descendants have a key value less than that given node and the right child and all its
descendants have a key value greater than or equal to the given node.



When storing data in a binary tree, we reduce the amount of data to be searched by half during
each iteration. In big-O notation, this yields a performance (with respect to the number of items
searched) of O log(n). Compare this to the linear search big-O of O(n/2).

The algorithm used to traverse a binary tree is simple and hints of a recursive implementation
because, at every node, we compare our key value and either descend left or right into the tree.
The following is a discussion on the implementation, helper functions, and types of binary trees.

As just mentioned, a node in a binary tree can have one left child, one right child, a left and right
child, or no children. The rule for an ordered binary tree is that for a given node value (x), the left
child (and all its descendants) have values less than x and the right child (and all its descendants)
have values greater than x. Following this rule, if an ordered set of values were inserted into a
binary tree, it would end up being a linear list, resulting in a relatively slow linear search for a
given value. For example, if we were to create a binary tree with the values [0,1,2,3,4,5,6], 0
would become the root; 1, being greater than 0, would become the right child; 2, being greater
than 1, would become its right child; 3 would become the right child of 2; and so on.

A height-balanced binary tree is where no leaf is some number farther from the root than any
other. As nodes are added to the binary tree, it needs to be rebalanced for efficient searching; this
is accomplished through rotation. If, after an insertion, a given node (e), has a left child with
descendants that are two levels greater than any other leaf, we must right-rotate node e. As
shown in Figure 2.4, e becomes the parent of h, and the right child of e becomes the left child of
h. If rebalancing is done after each insertion, we are guaranteed that we need at most one
rotation. This rule of balance (no child shall have a leaf distance greater than one) is known as an
AVL-tree (after G. M. Adelson-Velskii and E. M. Landis).

Figure 2.4. Right Rotation

2.1.3.2. Red Black Trees

The red black tree used in Linux memory management is similar to an AVL tree. A red black tree
is a balanced binary tree in which each node has a red or black color attribute.

Here are the rules for a red black tree:

All nodes are either red or black.

If a node is red, both its children are black.



All leaf nodes are black.

When traversing from the root node to a leaf, each path contains the same number of black
nodes.

Both AVL and red black trees have a big-O of O log(n), and depending on the data being inserted
(sorted/unsorted) and searched, each can have their strong points. (Several papers on
performance of binary search trees [BSTs] are readily available on the Web and make for
interesting reading.)

As previously mentioned, many other data structures and associated search algorithms are used
in computer science. This section's goal was to assist you in your exploration by introducing the
concepts of the common structures used for organizing data in the Linux kernel. Having a basic
understanding of the list and tree structures help you understand the more complex operations,
such as memory management and queues, which are discussed in later chapters.



2.2. Assembly

Linux is an operating system. As such, sections of it are closely bound to the processor on which it
is running. The Linux authors have done a great job of keeping the processor- (or architecture-)
specific code to a minimum, striving for the maximum reuse of code across all the supported
architectures. In this section, we look at the following:

How the same C function is implemented in x86 and PowerPC architectures.

The use of macros and inline assembly code.

This section's goal is to cover enough of the basics so you can trace through the architecture-
specific kernel code having enough understanding so as not to get lost. We leave advanced
assembly-language programming to other books. We also cover some of the trickiest architecture-
specific code: inline assembler.

To discuss freely PPC and x86 assembly languages, let's look at the architectures of each
processor.

2.2.1. PowerPC

The PowerPC is a Reduced Instruction Set Computing (RISC) architecture. The goal of RISC
architecture is to improve performance by having a simple instruction set that executes in as few
processor cycles as possible. Because they take advantage of the parallel instruction (superscalar)
attributes of the hardware, some of these instructions, as we soon see, are far from simple. IBM,
Motorola, and Apple jointly defined the PowerPC architecture. Table 2.1 lists the user set of
registers for the PowerPC.

Table 2.1. PowerPC User Register Set

Register Name Width for Arch. Function Number
of Regs

  32 Bit 64 Bit    

CR 32 32 Condition register 1

LR 32 64 Link register 1

CTR 32 64 Count register 1

GPR[0..31] 32 64 General-purpose register 32

XER 32 64 Fixed-point exception register 1

FPR[0..31] 64 64 Floating-point register 32

FPSCR 32 64 Floating-point status control
register

1

Table 2.2 illustrates the Application Binary Interface usage of the general and floating-point
registers. Volatile registers are for use any time, dedicated registers have specific assigned uses,



and non-volatile registers can be used but must be preserved across function calls.

Table 2.2. ABI Register Usage

Register Type Use

r0 Volatile Prologue/epilogue, language specific

r1 Dedicated Stack pointer

r2 Dedicated TOC

r3-r4 Volatile Parameter passing, in/out

r5-r10 Volatile Parameter passing

r11 Volatile Environment pointer

r12 Volatile Exception handling

r13 Non-volatile Must be preserved across calls

r14-r31 Non-volatile Must be preserved across calls

f0 Volatile Scratch

f1 Volatile 1st FP parm, 1st FP scalar return

f2-f4 Volatile 2nd4th FP parm, FP scalar return

f5-f13 Volatile 5th13th FP parm

f14-f31 Non-volatile Must be preserved across calls

Application Binary Interface (ABI)

An ABI is a set of conventions that allows a linker to combine separately compiled
modules into one unit without recompilation, such as calling conventions, machine
interface, and operating-system interface. Among other things, an ABI defines the
binary interface between these units. Several PowerPC ABI variations are in existence.
They are often related to the target operating system and/or hardware. These
variations or supplements are documents based on the UNIX System V Application
Binary Interface, originally from AT&T and later from the Santa Cruz Operation (SCO).
The benefits of conforming to an ABI are that it allows linking object files compiled by
different compilers.

The 32-bit PowerPC architecture uses instructions that are 4 bytes long and word aligned. It
operates on byte, half-word, word, and double-word accesses. Instructions are categorized into
branch, fixed-point, and floating-point.

2.2.1.1. Branch Instructions

The condition register (CR) is integral to all branch operations. It is broken down into eight 4-
bit fields that can be set explicitly by a move instruction, implicitly, as the result of an instruction,



or most common, as the result of a compare instruction.

The link register (LR) is used by certain forms of the branch instruction to provide the target
address and the return address after a branch.

The count register (CTR) holds a loop count decremented by specific branch instructions. The
CTR can also hold the target address for certain branch instructions.

In addition to the CTR and LR above, PowerPC branch instructions can jump to a relative or
absolute address. Using Extended Mnemonics, there are many forms of conditional branches along
with the unconditional branch.

2.2.1.2. Fixed-Point Instructions

The PPC has no computational instructions that modify storage. All work must be brought into one
or more of the 32 general-purpose registers (GPRs). Storage access instructions access byte, half-
word, word, and double-word data in Big Endian ordering. With Extended Mnemonics, there are
many load, store, arithmetic, and logical fixed-point instructions, as well as special instructions to
move to/from system registers.

2.2.1.3. Floating-Point Instructions

Floating-point instructions can be broken down into two categories: computational, which includes
arithmetic, rounding, conversion, and comparison; and non-computational, which includes move
to/from storage or another register. There are 32 general-purpose floating-point registers; each
can contain data in double-precision floating-point format.

Big Endian/Little Endian

In processor architecture, Endianness refers to byte ordering and operations. The
PowerPC is said to be Big Endian, that is, the most significant byte is at the lower
address and the least significant byte is 3 bytes later (for 32-bit words). Little Endian,
adopted by the x86 architecture, is just the opposite. The least-significant byte is at
the lower address and the most significant is 3 bytes later. Let's examine the
representation of 0x12345678 (see Figure 2.5):

Figure 2.5. Big and Little Endian Byte Ordering



Discussion on which system is better is beyond the scope of this book, but it is
important to know which system you are working with when writing and debugging
code. An example pitfall to Endianness is writing a device driver using one architecture
for a PCI device based on the other.

The terms Big Endian and Little Endian originate from Jonathan Swift's Gulliver's
Travels. In the story, Gulliver comes to find two nations at war over which way to eat
a boiled eggfrom the big end or the little end.

2.2.2. x86

The x86 architecture is a Complex Instruction Set Computing (CISC) architecture.
Instructions are variable length, depending on their function. Three kinds of registers exist in the
Pentium class x86 architecture: general purpose, segment, and status/control. The basic user set
is as follows.

Here are the eight general-purpose registers and their conventional uses:

EAX. General purpose accumulator

EBX. Pointer to data

ECX. Counter for loop operations

EDX. I/O pointer

ESI. Pointer to data in DS segment

EDI. Pointer to data in ES segment

ESP. Stack pointer

EBP. Pointer to data on the stack

These six segment registers are used in real mode addressing where memory is accessed in
blocks. A given byte of memory is then referenced by an offset from this segment (for example,
ES:EDI references memory in the ES (extra segment) with an offset of the value in the EDI):

CS. Code segment

SS. Stack segment

ES, DS, FS, GS. Data segment

The EFLAGS register indicates processor status after each instruction. This can hold results such
as zero, overflow, or carry. The EIP is a dedicated pointer register that indicates an offset to the
current instruction to the processor. This is generally used with the code segment register to form
a complete address (for example, CS:EIP):

EFLAGS. Status, control, and system flags

EIP. The instruction pointer, contains an offset from CS

Data ordering in x86 architecture is in Little Endian. Memory access is in byte (8 bit), word (16
bit), double word (32 bit), and quad word (64 bit). Address translation (and its associated
registers) is discussed in Chapter 4, but for this section, it should be enough to know the usual
registers for code and data instructions in the x86 architecture can be broken down into three



categories: control, arithmetic, and data.

2.2.2.1. Control Instructions

Control instructions, similar to branch instructions in PPC, alter program flow. The x86 architecture
uses various "jump" instructions and labels to selectively execute code based on the values in the
EFLAGS register. Although many variations exist, Table 2.3 has some of the most common uses.
The condition codes are set according to the outcome of certain instructions. For example, when
the cmp (compare) instruction evaluates two integer operands, it modifies the following flags in the
EFLAGS register: OF (overflow), SF (sine flag), ZF (zero flag), PF (parity flag), and CF (carry flag).
Thus, if the cmp instruction evaluated two equal operands, the zero flag would be set.

Table 2.3. Common Forms of the Jump Instruction

Instruction Function EFLAGS Condition Codes

je Jump if equal ZF=1

jg Jump if greater ZF=0 and SF=OF

jge Jump if greater or equal SF=OF

jl Jump if less SF!=OF

jle Jump if less or equal ZF=1

jmp Unconditional jump unconditional

In x86 assembly code, labels consist of a unique name followed by a colon. Labels can be used
anywhere in an assembly program and have the same address as the line of code immediately
following it. The following code uses a conditional jump and a label:

-----------------------------------------------------------------------
100   pop eax
101 loop2:
102   pop ebx
103   cmp eax, ebx
104   jge loop2
-----------------------------------------------------------------------

Line 100

Get the value from the top of the stack and put it in eax.

Line 101

This is the label named loop2.

Line 102



Get the value from the top of the stack and put it in ebx.

Line 103

Compare the values in eax and ebx.

Line 104

Jump if eax is greater than or equal to ebx.

Another method of transferring program control is with the call and ret instructions. Referring to

the following line of assembly code:

-----------------------------------------------------------------------
   call my_routine
-----------------------------------------------------------------------

The call instruction transfers program control to the label my_routine, while pushing the address
of the instruction immediately following the call instruction on the stack. The ret instruction
(executed from within my_routine) then pops the return address and jumps to that location.

2.2.2.2. Arithmetic Instructions

Popular arithmetic instructions include add, sub, imul (integer multiply), idiv (integer divide), and
the logical operators and, or, not, and xor.

x86 floating-point instructions and their associated registers move beyond the scope of this book.
Recent extensions to Intel and AMD architectures, such as MMX, SSE, 3DNow, SIMD, and
SSE2/3, greatly enhance math-intensive applications, such as graphics and audio. You are
directed to the programming manuals for their respective architectures.

2.2.2.3. Data Instructions

Data can be moved between registers, between registers and memory, and from a constant to a
register or memory, but not from one memory location to another. Examples of these are as
follows:

-----------------------------------------------------------------------
100  mov eax,ebx
101  mov eax,WORD PTR[data3]
102  mov BYTE PTR[char1],al
103  mov eax,0xbeef
104  mov WORD PTR [my_data],0xbeef
-----------------------------------------------------------------------

Line 100

Move 32 bits of data from ebx to eax.



Line 101

Move 32 bits of data from memory variable data3 to eax.

Line 102

Move 8 bits of data from memory variable char1 to al.

Line 103

Move the constant value 0xbeef to eax.

Line 104

Move the constant value 0xbeef to the memory variable my_data.

As seen in previous examples, push, pop, and the long versions pushl and popl move data to and

from the stack (pointed to by SS:ESP). Similar to the mov instruction, the push and pop operations
can be used with registers, data, and constants.



2.3. Assembly Language Example

We can now create a simple program to see how the different architectures produce assembly
language for the same C code. For this experiment, we use the gcc compiler that came with Red
Hat 9 and the gcc cross compiler for PowerPC. We present the C program and then, for
comparison, the x86 code and the PPC code.

It might startle you to see how much assembly code is generated with just a few lines of C.
Because we are just compiling from C to assembler, we are not linking in any environment code,
such as the C runtime libraries or local stack creation/destruction, so the size is much smaller than
an actual ELF executable.

Note that with assembler, you are closest to seeing exactly what the processor is fetching from
cycle to cycle. Another way to look at it is that you have complete control of your code and the
system. It is important to mention that even though instructions are fetched from memory in
order, they might not always be executed in exactly the same order read in. Some architectures
order load and store operations separately.

Here is the example C code:

-----------------------------------------------------------------------
count.c
1 int main()
2 {
3  int i,j=0;
4
5  for(i=0;i<8;i++) 
6  j=j+i;
7
8  return 0;
9 }
-----------------------------------------------------------------------

Line 1

This is the function definition main.

Line 3

This line initializes the local variables i and j to 0.

Line 5

The for loop: While i takes values from 0 to 7, set j equal to j plus i.

Line 8



The return marks the jump back to the calling program.

2.3.1. x86 Assembly Example

Here is the code generated for x86 by entering gcc S count.c on the command line. Upon
entering the code, the base of the stack is pointed to by ss:ebp. The code is produced in "AT&T"
format, in which registers are prefixed with a % and constants are prefixed with a $. The assembly
instruction samples previously provided in this section should have prepared you for this simple
program, but one variant of indirect addressing should be discussed before we go further.

When referencing a location in memory (for example, stack), the assembler uses a specific syntax
for indexed addressing. By putting a base register in parentheses and an index (or offset) just
outside the parentheses, the effective address is found by adding the index to the value in the
register. For example, if %ebp was assigned the value 20, the effective address of 8(%ebp) would
be (8) + (20)= 12:

-----------------------------------------------------------------------
count.s
1  .file  "count.c"
2  .version  "01.01"
3  gcc2_compiled.:
4  .text
5  .align 4
6  .globl main
7  .type  main,@function
8 main:
  #create a local memory area of 8 bytes for i and j.
9  pushl  %ebp   
10  movl  %esp, %ebp  
11  subl  $8, %esp  

  #initialize i (ebp-4) and j (ebp-8) to zero.
12  movl  $0, -8(%ebp)  
13  movl  $0, -4(%ebp)  
14  .p2align 2   
15 .L3:    

#This is the for-loop test
16  cmpl  $7, -4(%ebp)   
17  jle  .L6   
18  jmp  .L4    
19  .p2align 2
20 .L6:

#This is the body of the for-loop 
21  movl  -4(%ebp), %eax   
22  leal  -8(%ebp), %edx   
23  addl  %eax, (%edx)   
24  leal  -4(%ebp), %eax   
25  incl  (%eax)    
26  jmp  .L3   
27  .p2align 2
28 .L4:

  #Setup to exit the function
29  movl  $0, %eax   30  leave     31  ret    
-----------------------------------------------------------------------



Line 9

Push stack base pointer onto the stack.

Line 10

Move the stack pointer into the base pointer.

Line 11

Get 8 bytes of stack mem starting at ebp.

Line 12

Move 0 into address ebp8 (j).

Line 13

Move 0 into address ebp4 (i).

Line 14

This is an assembler directive that indicates the instruction should be half-word aligned.

Line 15

This is an assembler-created label called .L3.

Line 16

This instruction compares the value of i to 7.

Line 17

Jump to label .L6 if 4(%ebp) is less than or equal to 7.

Line 18

Otherwise, jump to label .L4.

Line 19



Align.

Line 20

Label .L6.

Line 21

Move i into eax.

Line 22

Load the address of j into edx.

Line 23

Add i to the address pointed to by edx (j).

Line 24

Move the new value of i into eax.

Line 25

Increment i.

Line 26

Jump back to the for loop test.

Line 27

Align as described in Line 14 code commentary.

Line 28

Label .L4.

Line 29

Set the return code in eax.

Line 30



Release the local memory area.

Line 31

Pop any variable off stack, pop the return address, and jump back to the caller.

2.3.2. PowerPC Assembly Example

The following is the resulting PPC assembly code for the C program. If you are familiar with
assembly language (and acronyms), the function of many PPC instructions is clear. There are,
however, several derivative forms of the basic instructions that we must discuss here:

stwu RS, D(RA) (Store Word with Update). This instruction takes the value in (GPR)

register RS and stores it into the effective address formed by RA+D. The (GPR) register RA is
then updated with this new effective address.

li RT, RS, SI (Load Immediate). This is an extended mnemonic for a fixed-point load

instruction. It is equivalent to adding RT, RS, S1, where the sum of (GPR) RS and S1, the 16-
bit 2s complement integer is stored in RT. If RS is (GPR) R0, the value SI is stored in RT. Note
that the value being only 16 bit has to do with the fact that the opcode, registers, and value
must all be encoded into a 32-bit instruction.

lwz RT, D(RA) (Load Word and Zero). This instruction forms an effective address as in

stwu and loads a word of data from memory into (GPR) RT. The "and Zero" indicates that the
upper 32 bits of the calculated effective address are set to 0 if this is a 64-bit implementation
running in 32-bit mode. (See the PowerPC Architecture Book I for more on
implementations.)

blr (Branch to Link Register). This instruction is an unconditional branch to the 32-bit

address in the link register. When calling a function, the caller puts the return address into
the link register. Similar to the x86 ret instruction, blr is the common method of returning
from a function.

The following code was generated by entering gcc S count.c on the command line:

-----------------------------------------------------------------------
countppc.s
1  .file  "count.c"
2  .section  ".text"
3  .align 2
4  .globl main
5  .type  main,@function
6 main:
#Create 32 byte memory area from stack space and initialize i and j.
7  stwu 1,-32(1)  #Store stack ptr (r1) 32 bytes into the stack
8  stw 31,28(1)  #Store word r31 into lower end of memory area
9  mr 31,1   #Move contents of r1 into r31
10  li 0,0   #Load 0 into r0
11  stw 0,12(31)  #Store word r0 into effective address 12(r31), var j
12  li 0,0   #Load 0 into r0
13  stw 0,8(31)  #Store word r0 into effective address 8(r31) , var i
14 .L2:
#For-loop test
15  lwz 0,8(31)  #Load i into r0
16  cmpwi 0,0,7  #Compare word immediate r0 with integer value 7
17  ble 0,.L5  #Branch if less than or equal to label .L5



18  b .L3   #Branch unconditional to label .L3
19 .L5:
#The body of the for-loop
20  lwz 9,12(31)  #Load j into r9
21  lwz 0,8(31)  #Load i into r0
22  add 0,9,0  #Add r0 to r9 and put result in r0
23  stw 0,12(31)  #Store r0 into j
24  lwz 9,8(31)  #load i into r9
25  addi 0,9,1  #Add 1 to r9 and store in r0
26  stw 0,8(31)  #Store r0 into i
27  b .L2
28 .L3:
29  li 0,0   #Load 0 into r0
30  mr 3,0   #move r0 to r3
31  lwz 11,0(1)  #load r1 into r11
32  lwz 31,-4(11)  #Restore r31
33  mr 1,11   #Restore r1
34  blr   #Branch to Link Register contents
--------------------------------------------------------------------

Line 7

Store stack ptr (r1) 32 bytes into the stack.

Line 8

Store word r31 into the lower end of the memory area.

Line 9

Move the contents of r1 into r31.

Line 10

Load 0 into r0.

Line 11

Store word r0 into effective address 12(r31), var j.

Line 12

Load 0 into r0.

Line 13

Store word r0 into effective address 8(r31), var i.



Line 14

Label .L2:.

Line 15

Load i into r0.

Line 16

Compare word immediate r0 with integer value 7.

Line 17

Branch to label .L5 if r0 is less than or equal to 7.

Line 18

Branch unconditional to label .L3.

Line 19

Label .L5:.

Line 20

Load j into r9.

Line 21

Load i into r0.

Line 22

Add r0 to r9 and put the result in r0.

Line 23

Store r0 into j.

Line 24

Load i into r9.



Line 25

Add 1 to r9 and store in r0.

Line 26

Store r0 into i.

Line 27

This is an unconditional branch to label .L2.

Line 28

Label .L3:.

Line 29

Load 0 into r0.

Line 30

Move r0 to r3.

Line 31

Load r1 into r11.

Line 32

Restore r31.

Line 33

Restore r1.

Line 34

This is an unconditional branch to the location indicated by Link Register contents.

Contrasting the two assembler files, they have nearly the same number of lines. Upon further
inspection, you can see that the RISC (PPC) processor is characteristically using many load and
store instructions while the CISC (x86) tends to use the mov instruction more often.



2.4. Inline Assembly

Another form of coding allowed with the gcc compiler is the ability to do inline assembly code. As its
name implies, inline assembly does not require a call to a separately compiled assembler program. By
using certain constructs, we can tell the compiler that code blocks are to be assembled rather than
compiled. Although this makes for an architecture-specific file, the readability and efficiency of a C
function can be greatly increased.

Here is the inline assembler construct:

-----------------------------------------------------------------------
1  asm (assembler instruction(s)
2   : output operands   (optional)
3   : input operands   (optional)
4   : clobbered registers  (optional)
5  ); 
-----------------------------------------------------------------------

For example, in its most basic form,

asm ("movl %eax, %ebx");

could also be written as

asm ("movl %eax, %ebx" :::);

We would be lying to the compiler because we are indeed clobbering ebx. Read on.

What makes this form of inline assembly so versatile is the ability to take in C expressions, modify
them, and return them to the program, all the while making sure that the compiler is aware of our
changes. Let's further explore the passing of parameters.

2.4.1. Ouput Operands

On line 2, following the colon, the output operands are a list of C expressions in parentheses preceded
by a "constraint." For output operands, the constraint usually has the = modifier, which indicates that
this is write-only. The & modifier shows that this is an "early clobber" operand, which means that this
operand is clobbered before the instruction is finished using it. Each operand is separated by a comma.

2.4.2. Input Operands

The input operands on line 3 follow the same syntax as the output operands except for the write-only
modifier.



2.4.3. Clobbered Registers (or Clobber List)

In our assembly statements, we can modify various registers and memory. For gcc to know that these
items have been modified, we list them here.

2.4.4. Parameter Numbering

Each parameter is given a positional number starting with 0. For example, if we have one output
parameter and two input parameters, %0 references the output parameter and %1 and %2 reference the
input parameters.

2.4.5. Constraints

Constraints indicate how an operand can be used. The GNU documentation has the complete listing of
simple constraints and machine constraints. Table 2.4 lists the most common constraints for the x86.

Table 2.4. Simple and Machine Constraints for x86

Constraint Function

a eax register.

b ebx register.

c ecx register.

d edx register.

S esi register.

D edi register.

I Constant value (0…31).

q Dynamically allocates a register from eax, ebx, ecx, edx.

r Same as q + esi, edi.

m Memory location.

A Same as a + b. eax and ebx are allocated together to form a 64-bit
register.

2.4.6. asm

In practice (especially in the Linux kernel), the keyword asm might cause errors at compile time
because of other constructs of the same name. You often see this expression written as __asm__, which

has the same meaning.

2.4.7. __volatile__

Another commonly used modifier is __volatile__. This modifier is important to assembly code. It tells



the compiler not to optimize the inline assembly routine. Often, with hardware-level software, the
compiler thinks we are being redundant and wasteful and attempts to rewrite our code to be as
efficient as possible. This is useful for application-level programming, but at the hardware level, it can
be counterproductive.

For example, say we are writing to a memory-mapped register represented by the reg variable. Next,

we initiate some action that requires us to poll reg. The compiler simply sees this as consecutive reads
to the same memory location and eliminates the apparent redundancy. Using __volatile__, the

compiler now knows not to optimize accesses using this variable. Likewise, when you see asm volatile
(...) in a block of inline assembler code, the compiler should not optimize this block.

Now that we have the basics of assembly and gcc inline assembly, we can turn our attention to some
actual inline assembly code. Using what we just learned, we first explore a simple example and then a
slightly more complex code block.

Here's the first code example in which we pass variables to an inline block of code:

-----------------------------------------------------------------------
6  int foo(void)
7  {
8  int ee = 0x4000, ce = 0x8000, reg;
9  __asm__ __volatile__("movl %1, %%eax";
10   "movl %2, %%ebx";
11   "call setbits"  ;
12   "movl %%eax, %0"
13   : "=r" (reg)   // reg [param %0] is output   
14   : "r" (ce), "r"(ee)  // ce [param %1], ee [param %2] are inputs
15   : "%eax" , "%ebx"   // %eax and % ebx got clobbered 
16   )
17  printf("reg=%x",reg);
18 }
-----------------------------------------------------------------------

Line 6

This line is the beginning of the C routine.

Line 8

ee, ce, and req are local variables that will be passed as parameters to the inline assembler.

Line 9

This line is the beginning of the inline assembler routine. Move ce into eax.

Line 10

Move ee into ebx.

Line 11



Call some function from assembler.

Line 12

Return value in eax, and copy it to reg.

Line 13

This line holds the output parameter list. The parm reg is write only.

Line 14

This line is the input parameter list. The parms ce and ee are register variables.

Line 15

This line is the clobber list. The regs eax and ebx are changed by this routine. The compiler knows not
to use the values after this routine.

Line 16

This line marks the end of the inline assembler routine.

This second example uses the switch_to() function from include/ asm-i386/system.h. This function is
the heart of the Linux context switch. We explore only the mechanics of its inline assembly in this
chapter. Chapter 9, "Building the Linux Kernel," covers how switch_to() is used:

[View full width]
-----------------------------------------------------------------------
include/asm-i386/system.h
012  extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct
 task_struct *next));
...
015  #define switch_to(prev,next,last) do {     
016   unsigned long esi,edi;       
017   asm volatile("pushfl\n\t"       
018   "pushl %%ebp\n\t"        
019   "movl %%esp,%0\n\t"  /* save ESP */    
020   "movl %5,%%esp\n\t"  /* restore ESP */    
021   "movl $1f,%1\n\t"   /* save EIP */   
022   "pushl %6\n\t"   /* restore EIP */   
023   "jmp __switch_to\n"        
023   "1:\t"          
024   "popl %%ebp\n\t"        
025   "popfl"         
026   :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  
027   "=a" (last),"=S" (esi),"=D" (edi)     
028   :"m" (next->thread.esp),"m" (next->thread.eip),  
029   "2" (prev), "d" (next));       
030  } while (0)
-----------------------------------------------------------------------



Line 12

FASTCALL tells the compiler to pass parameters in registers.

The asmlinkage tag tells the compiler to pass parameters on the stack.

Line 15

do { statements...} while(0) is a coding method to allow a macro to appear more like a function to
the compiler. In this case, it allows the use of local variables.

Line 16

Don't be confused; these are just local variable names.

Line 17

This is the inline assembler; do not optimize.

Line 23

Parameter 1 is used as a return address.

Lines 1724

\n\t has to do with the compiler/assembler interface. Each assembler instruction should be on its own
line.

Line 26

prev->thread.esp and prev->thread.eip are the output parameters:

 [ %0]= (prev->thread.esp), is write-only memory
[%1]= (prev->thread.eip), is write-only memory

Line 27

[%2]=(last) is write only to register eax:

[%3]=(esi), is write-only to register esi
[%4]=(edi), is write-only to register edi

Line 28



Here are the input parameters:

[%5]=  (next->thread.esp), is memory
[%6]= (next->thread.eip), is memory

Line 29

[%7]= (prev), reuse parameter "2" (register eax) as an input:

[%8]= (next), is an input assigned to register edx.

Note that there is no clobber list.

The inline assembler for PowerPC is nearly identical in construct to x86. The simple constraints, such as
"m" and "r," are used along with a PowerPC set of machine constraints. Here is a routine to exchange a
32-bit pointer. Note how similar the inline assembler syntax is to x86:

-----------------------------------------------------------------------
include/asm-ppc/system.h
103  static __inline__ unsigned long
104  xchg_u32(volatile void *p, unsigned long val)
105  {
106   unsigned long prev;
107
108   __asm__ __volatile__ ("\n\
109  1:  lwarx  %0,0,%2 \n"
110  
111  "  stwcx.  %3,0,%2 \n\
112   bne-  1b"
113   : "=&r" (prev), "=m" (*(volatile unsigned long *)p)
114   : "r" (p), "r" (val), "m" (*(volatile unsigned long *)p)
115   : "cc", "memory");
116
117   return prev;
118  }
-----------------------------------------------------------------------

Line 103

This subroutine is expanded in place; it will not be called.

Line 104

Routine names with parameters p and val.

Line 106



This is the local variable prev.

Line 108

This is the inline assembler. Do not optimize.

Lines 109111

lwarx, along with stwcx, form an "atomic swap." lwarx loads a word from memory and "reserves" the
address for a subsequent store from stwcx.

Line 112

Branch if not equal to label 1 (b = backward).

Line 113

Here are the output operands:

[%0]= (prev), write-only, early clobber
[%1]= (*(volatile unsigned long *)p), write-only memory operand

Line 114

Here are the input operands:

[%2]= (p), register operand
[%3]= (val), register operand
[%4]= (*(volatile unsigned long *)p), memory operand

Line 115

Here are the clobber operands:

[%5]= Condition code register is altered
[%6]= memory is clobbered

This closes our discussion on assembly language and how the Linux 2.6 kernel uses it. We have seen
how the PPC and x86 architectures differ and how general ASM programming techniques are used
regardless of platform. We now turn our attention to the programming language C, in which the
majority of the Linux kernel is written, and examine some common problems programmers encounter
when using C.





2.5. Quirky C Language Usage

Within the Linux kernel are a number of conventions that can require lots of searching and reading to
discover their ultimate meaning and intent. This section clarifies some of the obscure or misleading
usage of C, with a specific focus on common C conventions that are used throughout the 2.6 Linux
kernel.

2.5.1. asmlinkage

asmlinkage tells the compiler to pass parameters on the local stack. This is related to the FASTCALL

macro, which resolves to tell the (architecture-specific) compiler to pass parameters in the general-
purpose registers. Here are the macros from include/asm/linkage.h:

-----------------------------------------------------------------------
include/asm/linkage.h
4  #define asmlinkage CPP_ASMLINKAGE __attribute__((regparm(0)))
5  #define FASTCALL(x)  x __attribute__((regparm(3)))
6  #define fastcall  __attribute__((regparm(3)))
-----------------------------------------------------------------------

An example of asmlinkage is as follows:

asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)

2.5.2. UL

UL is commonly appended to the end of a numerical constant to mark an "unsigned long." UL (or L for
long) is necessary because it tells the compiler to treat the value as a long value. This prevents certain
architectures from overflowing the bounds of their datatypes. For example, a 16-bit integer can
represent numbers between 32,768 and +32,767; an unsigned integer can represent numbers up to
65,535. Using UL allows you to write architecturally independent code for large numbers or long
bitmasks.

Some kernel code examples include the following:

-----------------------------------------------------------------------
include/linux/hash.h
18  #define GOLDEN_RATIO_PRIME 0x9e370001UL
-----------------------------------------------------------------------
include/linux/kernel.h
23  #define ULONG_MAX  (~0UL)
-----------------------------------------------------------------------
include/linux/slab.h
39  #define SLAB_POISON    0x00000800UL /* Poison objects */
-----------------------------------------------------------------------



2.5.3. inline

The inline keyword is intended to optimize the execution of functions by integrating the code of the

function into the code of its callers. The Linux kernel uses mainly inline functions that are also declared
as static. A "static inline" function results in the compiler attempting to incorporate the function's code
into all its callers and, if possible, it discards the assembly code of the function. Occasionally, the
compiler cannot discard the assembly code (in the case of recursion), but for the most part, functions
declared as static inline are directly incorporated into the callers.

The point of this incorporation is to eliminate any overhead from having a function call. The #define
statement can also eliminate function call overhead and is typically used for portability across compilers
and within embedded systems.

So, why not always use inline? The drawback to using inline is an increased binary image and, possibly,
a slow down when accessing the CPU's cache.

2.5.4. const and volatile

These two keywords are the bane of many an emerging programmer. The const keyword must not be
thought of as constant, but rather read only. For example, const int *x is a pointer to a const integer.
Thus, the pointer can be changed but the integer cannot. However, int const *x is a const pointer to an
integer, and the integer can change but the pointer cannot. Here is an example of const:

-----------------------------------------------------------------------
include/asm-i386/processor.h
628  static inline void prefetch(const void *x)
629  {
630   __asm__ __volatile__ ("dcbt 0,%0" : : "r" (x));
631  }
-----------------------------------------------------------------------

The volatile keyword marks variables that could change without warning. volatile informs the
compiler that it needs to reload the marked variable every time it encounters it rather than storing and
accessing a copy. Some good examples of variables that should be marked as volatile are ones that deal
with interrupts, hardware registers, or variables that are shared between concurrent processes. Here is
an example of how volatile is used:

-----------------------------------------------------------------------
include/linux/spinlock.h
51  typedef struct {
...
volatile unsigned int lock;
...
58  } spinlock_t;
-----------------------------------------------------------------------

Given that const should be interpreted as read only, we see that certain variables can be both const and
volatile (for example, a variable holding the contents of a read-only hardware register that changes
regularly).



This quick overview puts the prospective Linux kernel hacker on the right track for reading through the
kernel sources.



2.6. A Quick Tour of Kernel Exploration Tools

After successfully compiling and building your Linux kernel, you might want to peer into its internals before,
after, or even during its operation. This section quickly overviews the tools commonly used to explore
various files in the Linux kernel.

2.6.1. objdump/readelf

The objdump and readelf utilities display any of the information within object files (for objdump), or within

ELF files (for readelf). THRough command-line arguments, you can use the command to look at the
headers, size, or architecture of a given object file. For example, here is a dump of the ELF header for a
simple C program (a.out) using the h flag of readelf:

Lwp> readelf h a.out
ELF Header:
 Magic: 7f 45 4c 46 01 01 01 00 00 00 00 00 00 00 00 00 
 Class:        ELF32
 Data:        2's complement, little endian
 Version:       1 (current)
 OS/ABI:       UNIX - System V
 ABI Version:      0
 Type:        EXEC (Executable file)
 Machine:       Intel 80386
 Version:       0x1
 Entry point address:    0x8048310
 Start of program headers:   52 (bytes into file)
 Start of section headers:   10596 (bytes into file)
 Flags:        0x0
 Size of this header:    52 (bytes)
 Size of program headers:   32 (bytes)
 Number of program headers:   6
 Size of section headers:   40 (bytes)
 Number of section headers:   29
 Section header string table index: 26

Here is a dump of the program headers using the l flag of readelf:

[View full width]
Lwp> readelf l a.out
Elf file type is EXEC (Executable file)
Entry point 0x8048310
There are 6 program headers, starting at offset 52
Program Headers:
 Type   Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
 PHDR   0x000034 0x08048034 0x08048034 0x000c0 0x000c0 R E 0x4
 INTERP   0x0000f4 0x080480f4 0x080480f4 0x00013 0x00013 R 0x1
  [Requesting program interpreter: /lib/ld-linux.so.2]
 LOAD   0x000000 0x08048000 0x08048000 0x00498 0x00498 R E 0x1000
 LOAD   0x000498 0x08049498 0x08049498 0x00108 0x00120 RW 0x1000
 DYNAMIC  0x0004ac 0x080494ac 0x080494ac 0x000c8 0x000c8 RW 0x4
 NOTE   0x000108 0x08048108 0x08048108 0x00020 0x00020 R 0x4



 Section to Segment mapping:
 Segment Sections...
 00  
 01  .interp 
 02  .interp .note.ABI-tag .hash .dynsym .dynstr .gnu.version .gnu.version_r .rel.dyn .rel
.plt .init .plt .text .fini .rodata 
 03  .data .eh_frame .dynamic .ctors .dtors .got .bss 
 04  .dynamic 
 05  .note.ABI-tag

2.6.2. hexdump

The hexdump command displays the contents of a given file in hexadecimal, ASCII, or octal format. (Note

that, on older versions of Linux, od (octal dump) was also used. Most systems now use hexdump instead.)

For example, to look at the first 64 bytes of the ELF file a.out in hex, you could type the following:

Lwp>  hexdump x n 64 a.out

0000000 457f 464c 0101 0001 0000 0000 0000 0000
0000010 0002 0003 0001 0000 8310 0804 0034 0000
0000020 2964 0000 0000 0000 0034 0020 0006 0028
0000030 001d 001a 0006 0000 0034 0000 8034 0804
0000040

Note the (byte-swapped) ELF header magic number at address 0x0000000.

This is extremely useful in debugging activities; when a hardware device dumps its state to a file, a normal
text editor usually interprets the file as containing numerous control characters. hexdump allows you to peek
at what is actually contained in the file without intervening editor translation. hexedit is an editor that
enables you to directly modify the files without translating the contents into ASCII (or Unicode).

2.6.3. nm

The nm utility lists the symbols that reside within a specified object file. It displays the symbols value, type,

and name. This utility is not as useful as other utilities, but it can be helpful when debugging library files.

2.6.4. objcopy

Use the objcopy command when you want to copy an object file but omit or change certain aspects of it. A

common use of objcopy is to strip debugging symbols from a tested and working object file. This results in a
reduced object file size and is routinely done on embedded systems.

2.6.5. ar

The ar (or archive) command helps maintain the indexed libraries that the linker uses. The ar command

combines one or more object files into one library. It can also separate object files from a single library. The
ar command is more likely to be seen in a Make file. It is often used to combine commonly used functions
into a single library file. For example, you might have a routine that parses a command file and extracts



certain data or a call to extract information from a specific register in the hardware. These routines might
be needed by several executable programs. Archiving these routines into a single library file allows for
better version control by having a central location.



2.7. Kernel Speak: Listening to Kernel Messages

When your Linux system is up and running, the kernel itself logs messages and provides
information about its status throughout its operation. This section gives a few of the most
common ways the Linux kernel speaks to an end user.

2.7.1. printk()

One of the most basic kernel messaging systems is the printk() function. The kernel uses

printk() as opposed to printf() because the standard C library is not linked to the kernel.
printk() uses the same interface as printf() does and displays up to 1,024 characters to the
console. The printk() function operates by trying to grab the console semaphore, place the
output into the console's log buffer, and then call the console driver to flush the buffer. If printk()
cannot grab the console semaphore, it places the output into the log buffer and relies on the
process that has the console semaphore to flush the buffer. The log-buffer lock is taken before
printk() places any data into the log buffer, so concurrent calls to printk() do not trample each
other. If the console semaphore is being held, numerous calls to printk() can occur before the log
buffer is flushed. So, do not rely on printk() statements to indicate any program timing.

2.7.2. dmesg

The Linux kernel stores its logs, or messages, in a variety of ways. sysklogd() is a combination of
syslogd() and klogd(). (More in-depth information can be found in the man page of these
commands, but we can quickly summarize the system.) The Linux kernel sends its messages
through klogd(), which tags them with appropriate warning levels, and all levels of messages are
placed in /proc/kmsg. dmesg is a command-line tool to display the buffer stored in /proc/kmsg and,

optionally, filter the buffer based on the message level.

2.7.3. /var/log/messages

This location on a Linux system is where a majority of logged system messages reside. The
syslogd() program reads information in /etc/syslogd.conf for specific locations on where to store
received messages. Depending on the entries in syslogd.conf, which can vary among Linux
distributions, log messages can be stored in numerous files. However, /var/log/messages is

usually the standard location.



2.8. Miscellaneous Quirks

This section serves as a catch-all for quirks that plagued the authors when they began to traipse through the
kernel code. We include them here to give you an edge on Linux internals.

2.8.1. __init

The __init macro tells the compiler that the associate function or variable is used only upon initialization.

The compiler places all code marked with __init into a special memory section that is freed after the
initialization phase ends:

-----------------------------------------------------------------------
drivers/char/random.c
 679 static int __init batch_entropy_init(int size, struct entropy_store *r)
-----------------------------------------------------------------------

As an example, the random device driver initializes a pool of entropy upon being loaded. While the driver is
loaded, different functions are used to increase or decrease the size of the entropy pool. This practice of
device driver initialization being marked with __init is common, if not a standard.

Similarly, if there is data that is used only during initialization, the data needs to be marked with __initdata.

Here, we can see how __initdata is used in the ESP device driver:

-----------------------------------------------------------------------
drivers/char/esp.c
 107 static char serial_name[] __initdata = "ESP serial driver";
 108 static char serial_version[] __initdata = "2.2";
-----------------------------------------------------------------------

Also, the __exit and __exitdata macros are to be used only in the exit or shutdown routines. These are

commonly used when a device driver is unregistered.

2.8.2. likely() and unlikely()

likely() and unlikely() are macros that Linux kernel developers use to give hints to the compiler and

chipset. Modern CPUs have extensive branch-prediction heuristics that attempt to predict incoming
commands in order to optimize speed. The likely() and unlikely() macros allow the developer to tell the
CPU, through the compiler, that certain sections of code are likely, and thus should be predicted, or unlikely,
so they shouldn't be predicted.

The importance of branch prediction can be seen with some understanding of instruction pipelining. Modern
processors do anticipatory fetchingthat is, they anticipate the next few instructions that will be executed and
load them into the processor. Within the processor, these instructions are examined and dispatched to the
various units within the processor (integer, floating point, and so on) depending on how they can best be
executed. Some instructions might be stalled in the processor, waiting for an intermediate result from a
previous instruction. Now, imagine in the instruction stream, a branch instruction is loaded. The processor
now has two instruction streams from which to continue its prefetching. If the processor often chooses



poorly, it spends too much time reloading the pipeline of instructions that need execution. What if the
processor had a hint of which way the branch was going to go? A simple method of branch prediction, in
some architectures, is to examine the target address of the branch. If the value is previous to the current
address, there's a good chance that this branch is at the end of a loop construct where it loops back many
times and only falls through once.

Software is allowed to override the architectural branch prediction with special mnemonics. This ability is
surfaced by the compiler by the __builtin_expect() function, which is the foundation of the likely() and

unlikely() macros.

As previously mentioned, branch prediction and processor pipelining is complicated and beyond the scope of
this book, but the ability to "tune" the code where we think we can make a difference is always a
performance plus. Consider the following code block:

-----------------------------------------------------------------------
kernel/time.c
 90 asmlinkage long sys_gettimeofday(struct timeval __user *tv, struct timezone __user *tz)
  91 {
  92   if (likely(tv != NULL)) {
  93     struct timeval ktv;
  94     do_gettimeofday(&ktv);
  95     if (copy_to_user(tv, &ktv, sizeof(ktv)))
  96       return -EFAULT;
  97   }
  98   if (unlikely(tz != NULL)) {
  99     if (copy_to_user(tz, &sys_tz, sizeof(sys_tz)))
 100       return -EFAULT;
 101   }
 102   return 0;
 103 }
-----------------------------------------------------------------------

In this code, we see that a syscall to get the time of day is likely to have a timeval structure that is not null
(lines 9296). If it were null, we couldn't fill in the requested time of day! It is also unlikely that the timezone
is not null (lines 98100). To put it another way, the caller rarely asks for the timezone and usually asks for
the time.

The specific implementation of likely() and unlikely() are specified as follows:[4]

[4] __builtin_expect(), as seen in the code excerpt, is nulled before GCC 2.96, because there was no way to influence branch prediction

before that release of GCC.

-----------------------------------------------------------------------
include/linux/compiler.h
  45 #define likely(x)  __builtin_expect(!!(x), 1)
  46 #define unlikely(x)  __builtin_expect(!!(x), 0) 
-----------------------------------------------------------------------

2.8.3. IS_ERR and PTR_ERR

The IS_ERR macro encodes a negative error number into a pointer, while the PTR_ERR macro retrieves the

error number from the pointer.

Both macros are defined in include/linux/err.h.



2.8.4. Notifier Chains

The notifier-chain mechanism is provided for the kernel to register its interest in being informed regarding
the occurrence of variable asynchronous events. This generic interface extends its usability to all subsystems
or components of the kernel.

A notifier chain is a simply linked list of notifier_block objects:

-----------------------------------------------------------------------
include/linux/notifier.h
14 struct notifier_block
15 {
16 int(*notifier_call)(struct notifier_block *self, unsigned long, void *);
17 struct notifier_block *next;
18 int priority;
19 };
-----------------------------------------------------------------------

notifier_block contains a pointer to a function (notifier_call) to be called when the event comes to pass.

This function's parameters include a pointer to the notifier_block holding the information, a value
corresponding to event codes or flags, and a pointer to a datatype specific to the subsystem.

The notifier_block struct also contains a pointer to the next notifier_block in the chain and a priority
declaration.

The routines notifier_chain_register() and notifier_chain_unregister() register or unregister a

notifier_block object in a specific notifier chain.



Summary

This chapter exposed you to enough background to begin exploring the Linux kernel. Two methods
of dynamic storage were introduced: the linked list and the binary search tree. Having a basic
understanding of these structures helps you when, among many other topics, processes and
paging are discussed. We then introduced the basics of assembly language to assist you in
exploring or debugging down to the machine level and, focusing on an inline assembler, we
showed the hybrid of C and assembler within the same function. We end this chapter with a
discussion of various commands and functions that are necessary to study various aspects of the
kernel.



Project: Hellomod

This section introduces the basic concepts necessary to understand other Linux concepts and
structures discussed later in the book. Our projects center on the creation of a loadable module
using the new 2.6 driver architecture and building on that module for subsequent projects.
Because device drivers can quickly become complex; our goal here is only to introduce the basic
constructs of a Linux module. We will be developing on this driver in later projects. This module
runs in both PPC and x86.

Step 1: Writing the Linux Module Skeleton

The first module we write is the basic "hello world" character device driver. First, we look at the
basic code for the module, and then show how to compile with the new 2.6 Makefile system (this
is discussed in detail in Chapter 9), and finally, we attach and remove our module to the kernel
using the insmod and rmmod commands respectively:[5]

[5] Be sure to have module unloading enabled in your configuration.

-----------------------------------------------------------------------
hellomod.c
001
// hello world driver for Linux 2.6

004  #include <linux/module.h>
005  #include <linux/kernel.h>
006  #include <linux/init.h>
007  #MODULE_LICENCE("GPL"); //get rid of taint message

009  static int __init lkp_init( void )
{
  printk("<1>Hello,World! from the kernel space...\n");
  return 0;
013  }

015  static void __exit lkp_cleanup( void )
{
  printk("<1>Goodbye, World! leaving kernel space...\n");
018  }

020  module_init(lkp_init);
021  module_exit(lkp_cleanup);
-----------------------------------------------------------------------

Line 4

All modules use the module.h header file and must be included.

Line 5



The kernel.h header file contains often used kernel functions.

Line 6

The init.h header file contains the __init and __exit macros. These macros allow kernel memory
to be freed up. A quick read of the code and comments in this file are recommended.

Line 7

To warn of a possible non-GNU public license, several macros were developed starting in the 2.4
kernel. (For more information, see modules.h.)

Lines 912

This is our module initialization function. This function should, for example, contain code to build
and initialize structures. On line 11, we are able to send out a message from the kernel with
printk(). More on where we read this message when we load our module.

Lines 1518

This is our module exit or cleanup function. Here, we would do any housekeeping associated with
our driver being terminated.

Line 20

This is the driver initialization entry point. The kernel calls here at boot time for a built-in module
or at insertion-time for a loadable module.

Line 21

For a loadable module, the kernel calls the cleanup_module() function. For a built-in module, this
has no effect.

We can have only one initialization (module_init) point and one cleanup (module_exit) point in our
driver. These functions are what the kernel is looking for when we load and unload our module.

Step 2: Compiling the Module

If you are used to the older methods of building kernel modules (for example, those that started
with #define MODULE), the new method is quite a change. For those whose 2.6 modules are their
first, this might seem rather simple. The basic Makefile for our single module is as follows:

Makefile

002 # Makefile for Linux Kernel Primer module skeleton (2.6.7)

006   obj-m += hellomod.o



Notice that we specify to the build system that this be compiled as a loadable module. The
command-line invocation of this Makefile wrapped in a bash script called doit is as follows:

----------------------------------------------------------------------------doit
001 make -C /usr/src/linux-2.6.7 SUBDIRS=$PWD modules
--------------------------------------------------------------------------------

Line 1

The C option tells make to change to the Linux source directory (in our case, /usr/src/linux-
2.6.7) before reading the Makefiles or doing anything else.

Upon executing ./doit, you should get similar to the following output:

Lkp# ./doit
make: Entering directory '/usr/src/linux-2.6.7'
   CC [M]  /mysource/hellomod.o
   Building modules, stage 2
   MODPOST
   CC  /mysource/hellomod.o
   LD [M]  /mysource/hellomod.ko
  make: Leaving directory '/usr/src/linux-2.6.7'
  lkp# _

For those who have compiled or created Linux modules with earlier Linux versions, notice that we
now have a linking step LD and that our output module is hellomod.ko.

Step 3: Running the Code

We are now ready to insert our new module into the kernel. We do this using the insmod
command, as follows:

lkp# insmod hellomod.ko

To check that the module was inserted properly, you can use the lsmod command, as follows:

lkp# lsmod
Module     Size  Used  by
hellomod    2696  0  
lkp#

The output of our module is generated by printk(). This function prints to the system file
/var/log/messages by default. To quickly view this, type the following:



lkp# tail /var/log/messages

This prints the last 10 lines of the log file. You should see our initialization message:

...

...
Mar  6 10:35:55  lkp1  kernel: Hello,World! from the kernel space...

To remove our module (and see our exit message), use the rmmod command followed by the
module name as seen from the insmod command. For our program, this would look like the
following:

lkp# rmmod hellomod

Again, your output should go to the log file and look like the following:

...

...
Mar  6 12:00:05  lkp1  kernel: Hello,World! from the kernel space...

Depending on how your X-system is configured or if you are at a basic command line, the printk
output should go to your console, as well as the log file. In our next project, we touch on this
again when we look at system task variables.



Exercises

1: Describe how hash tables are implemented in the Linux kernel.

2: A structure that is a member of a doubly linked list will have a list_head structure.
Before the adoption of the list_head structure in the kernel, the structure would have
the fields prev and next pointing to other like structures. What is the purpose of
creating a structure solely to hold the prev and next pointers?

3: What is inline assembly and why would you want to use it?

4: Assume you write a device driver that accesses the serial port registers. Would you
mark these addresses volatile? Why or why not?

5: Given what __init does, what types of functions would you expect to use this macro?
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The term process, defined here as the basic unit of execution of a program, is perhaps the most
important concept to understand when learning how an operating system works. It is essential to
understand the difference between a program and a process. Therefore, we refer to a program as
an executable file that contains a set of functions, and we refer to a process as a single
instantiation of a particular program. A process is the unit of operation that uses resources
provided by the hardware and executes according to the orders of the program it instantiates. The
operating system facilitates and manages the system's resources as the process requires.

Computers do many things. Processes can perform tasks ranging from executing user commands
and managing system resources to accessing hardware. In part, a process is defined by the set of
instructions it is to execute, the contents of the registers and program counter when the program
is in execution, and its state.

A process, like any dynamic entity, goes through various states. In fact, a process has a lifecycle:
After a process is created, it lives for a variable time span during which it goes through a number
of state changes and then dies. Figure 3.1 shows the process lifecycle from a high-level view.

Figure 3.1. Process Lifecycle

[View full size image]



When a Linux system is powered on, the number of processes it will need is undetermined.
Processes need to be created and destroyed when they are needed.

A process is created by a previously existing process with a call to fork(). Forked processes are
referred to as the child processes, and the process that creates them is referred to as the
parent process. The child and parent processes continue to run in parallel. If the parent
continues to spawn more child processes, these processes are sibling processes to the original
child. The children may in turn spawn off child processes of their own. This creates a hierarchical
relationship among processes that define their relationship.

After a process is created, it is ready to become the running process. This means that the kernel
has set up all the structures and acquired all the necessary information for the CPU to execute the
process. When a process is prepared to become the running process but has not been selected to
run, it is in a ready state. After the task becomes the running process, it can

Be "deselected" and set back to the ready state by the scheduler.

Be interrupted and placed in a waiting or blocked state.

Become a zombie on its way to process death. Process death is reached by a call to exit().

This chapter looks closely at all these states and transitions. The scheduler handles the selection
and deselection of processes to be executed by the CPU. Chapter 7, "Scheduling and Kernel
Synchronization," covers the scheduler in great detail.

A program contains a number of components that are laid out in memory and accessed by the
process that executes the program. This includes a text segment, which holds the instructions
that are executed by the CPU; the data segments, which hold all the data variables manipulated
by the process; the stack, which holds automatic variables and function data; and a heap, which
holds dynamic memory allocations. When a process is created, the child process receives a copy of
the parent's data space, heap, stack, and process descriptor. The next section provides a more
detailed description of the Linux process descriptor.

There are many ways to explain a process. The approach we take is to start with a high-level view
of the execution of a process and follow it into the kernel, periodically explaining the kernel
support structures that sustain it.

As programmers, we are familiar with writing, compiling, and executing programs. But how does
this tie into a process? We discuss an example program throughout this chapter that we will follow
from its creation through its performance of some key tasks. In our case, the Bash shell process
will create the process that instantiates our program; in turn, our program instantiates another
child process.

Before we proceed to the discussion of processes, a few naming conventions need to be clarified.
Often, we use the word process and the word task to refer to the same thing. When we refer to
the running process, we refer to the process that the CPU is currently executing.



User Mode Versus Kernel Mode

What do we mean when we say a program is running in user mode or kernel mode? In
a process' lifespan, it executes either its own code or kernel code. Code is considered
kernel code when a system call is made, an exception occurs, or an interrupt comes
through (and we are executing in the interrupt handler). Any code a process uses that
is not a system call is considered user mode code and, hence, the process is running
in user mode and is subject to processor-imposed restrictions. If the process is in the
middle of executing a system call, we say that it is running in kernel mode. From a
hardware point of view, kernel code on the Intel processors is said to be running at
ring 0 and on the PowerPC, it is said to be running in supervisor mode.



3.1. Introducing Our Program

This section introduces the sample program called create_process. This example C program
illustrates the various states a process can go through, the system calls (which generate the
transitions between these states), and the manipulation of the kernel objects that support the
execution of processes. The idea is to reach an understanding of how a program is instantiated
into a process and how an operating system handles a process.

-----------------------------------------------------------------------
create_process.c 
1   #include <stdio.h>
2   #include <sys/types.h>
3   #include <sys/stat.h>
4   #include <fcntl.h>
5
6   int main(int argc, char *argv[])
7   {
8     int fd;
9     int pid;
11
12     pid = fork();
13     if (pid == 0)
14     {
15        execle("/bin/ls", NULL);
16        exit(2);
17     } 
18
19     if(waitpid(pid) < 0)
20        printf("wait error\n");
21
22     pid = fork();    
23     if (pid == 0){
24        fd=open("Chapter_03.txt", O_RDONLY);
25        close(fd);
26     }
27
28     if(waitpid(pid)<0)  
29        printf("wait error\n");
30
31
32     exit(0);
33   }
--------------------------------------------------------------------

This program defines a context of execution, which includes information regarding resources
needed to fulfill the requirements that the program defines. For example, at any moment, a CPU
executes exactly one instruction that it has just fetched from memory.[1] However, this instruction
would not make sense if a context did not surround it to keep track of how the instruction
referenced relates to the logic of the program. A process has a context that is composed of values
held in the program counter, registers, memory, and files (or hardware accessed).

[1] Recall the text segment that was previously mentioned.



This program is compiled and linked to create an executable file that holds all the information
required to execute this program. Chapter 9, "Building the Linux Kernel," details the partitioning of
the address space of the program and how it relates to the information referred to by the program
when we discuss process images and binary formats.

A process contains a number of characteristics that can describe the process as being unique from
other processes. The characteristics necessary for process management are kept in a single data
type, which is referred to as a process descriptor. We need to look at the process descriptor
before we delve into the details of process management.



3.2. Process Descriptor

In the kernel, the process descriptor is a structure called task_struct, which keeps track of
process attributes and information. All kernel information regarding a process is found there.
Throughout a process' lifecycle, a process interacts with many aspects of the kernel, such as
memory management and scheduling. The process descriptor keeps track of information
regarding these interactions, as well as the standard UNIX process attributes. The kernel stores all
the process descriptors in a circular doubly linked list called the task_list. The kernel also keeps a
reference to the currently running process' task_struct by means of the global variable current.
(We refer to current throughout this book to indicate the process descriptor of the currently
running process.)

A process may be comprised of one or more threads. Each thread has a task_struct associated
with it, including a unique thread ID. Threads in a common process share the same memory
address space.

The following categories describe some of the types of things a process descriptor must keep track
of during a process' lifespan:

Process attributes

Process relationships

Process memory space

File management

Signal management

Process credentials

Resource limits

Scheduling related fields

We now closely look at the fields in the task_struct structure. This section describes what they do
and refers to the actual processing with which the field is involved. Although many of the fields are
used for activities related to the aforementioned categories, some are beyond the scope of this
book. The task_struct structure is defined in include/linux/sched.h:

-----------------------------------------------------------------------
include/linux/sched.h
384   struct task_struct {
385     volatile long state;
386     struct thread_info *thread_info;
387     atomic_t usage;
388     unsigned long flags;  
389     unsigned long ptrace;
390
391     int lock_depth;
392
393     int prio, static_prio;
394     struct list_head run_list;
395     prio_array_t *array;
396



397     unsigned long sleep_avg;
398     long interactive_credit;
399     unsigned long long timestamp;
400     int activated;
401
302     unsigned long policy;
403     cpumask_t cpus_allowed;
404     unsigned int time_slice, first_time_slice;
405
406     struct list_head tasks;
407     struct list_head ptrace_children;
408     struct list_head ptrace_list;
409
410     struct mm_struct *mm, *active_mm;
...
413     struct linux_binfmt *binfmt;
414     int exit_code, exit_signal;
415     int pdeath_signal;
...
419     pid_t pid;
420     pid_t tgid;
...
426     struct task_struct *real_parent;
427     struct task_struct *parent;
428     struct list_head children;
429     struct list_head sibling;
430     struct task_struct *group_leader;
...
433     struct pid_link pids[PIDTYPE_MAX];
434
435     wait_queue_head_t wait_chldexit;
436     struct completion *vfork_done;
437     int __user *set_child_tid;
438     int __user *clear_child_tid;
439
440     unsigned long rt_priority;
441     unsigned long it_real_value, it_prof_value, it_virt_value;
442     unsigned long it_real_incr, it_prof_incr, it_virt_incr;
443     struct timer_list real_timer;
444     unsigned long utime, stime, cutime, cstime;
445     unsigned long nvcsw, nivcsw, cnvcsw, cnivcsw;
446     u64 start_time;
...
450     uid_t uid,euid,suid,fsuid;
451     gid_t gid,egid,sgid,fsgid;
452     struct group_info *group_info;
453     kernel_cap_t cap_effective, cap_inheritable, cap_permitted;
454     int keep_capabilities:1;
455     struct user_struct *user;
...
457     struct rlimit rlim[RLIM_NLIMITS];
458     unsigned short used_math;
459     char comm[16];
...
461     int link_count, total_link_count;
...
467     struct fs_struct *fs;
...
469     struct files_struct *files;
...



509     unsigned long ptrace_message;
510     siginfo_t *last_siginfo;
...
516   };
-----------------------------------------------------------------------

3.2.1. Process AttributeRelated Fields

The process attribute category is a catch-all category we defined for task characteristics related to
the state and identification of a task. Examining these fields' values at any time gives the kernel
hacker an idea of the current status of a process. Figure 3.2 illustrates the process attributerelated
fields of the task_struct.

Figure 3.2. Process AttributeRelated Fields

3.2.1.1. state

The state field keeps track of the state a process finds itself in during its execution lifecycle.
Possible values it can hold are TASK_RUNNING, TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE,
TASK_ZOMBIE, TASK_STOPPED, and TASK_DEAD (see the "Process Lifespan" section in this chapter for
more detail).

3.2.1.2. pid

In Linux, each process has a unique process identifier (pid). This pid is stored in the
task_struct as a type pid_t. Although this type can be traced back to an integer type, the default
maximum value of a pid is 32,768 (the value pertaining to a short int).

3.2.1.3. flags



Flags define special attributes that belong to the task. Per process flags are defined in
include/linux/sched.h and include those flags listed in Table 3.1. The flag's value provides the
kernel hacker with more information regarding what the task is undergoing.

Table 3.1. Selected task_struct Flag's Field Values

Flag Name When Set

PF_STARTING Set when the process is being created.

PF_EXITING Set during the call to do_exit().

PF_DEAD Set during the call to exit_notify() in the process of exiting.
At this point, the state of the process is either TASK_ZOMBIE or
TASK_DEAD.

PF_FORKNOEXEC The parent upon forking sets this flag.

3.2.1.4. binfmt

Linux supports a number of executable formats. An executable format is what defines the
structure of how your program code is to be loaded into memory. Figure 3.2 illustrates the
association between the task_struct and the linux_binfmt struct, the structure that contains all
the information related to a particular binary format (see Chapter 9 for more detail).

3.2.1.5. exit_code and exit_signal

The exit_code and exit_signal fields hold a task's exit value and the terminating signal (if one
was used). This is the way a child's exit value is passed to its parent.

3.2.1.6. pdeath_signal

pdeath_signal is a signal sent upon the parent's death.

3.2.1.7. comm

A process is often created by means of a command-line call to an executable. The comm field holds
the name of the executable as it is called on the command line.

3.2.1.8. ptrace

ptrace is set when the ptrace() system call is called on the process for performance
measurements. Possible ptrace() flags are defined in include/ linux/ptrace.h.

3.2.2. Scheduling Related Fields

A process operates as though it has its own virtual CPU. However, in reality, it shares the CPU
with other processes. To sustain the switching between process executions, each process closely



interrelates with the scheduler (see Chapter 7 for more detail).

However, to understand some of these fields, you need to understand a few basic scheduling
concepts. When more than one process is ready to run, the scheduler decides which one runs first
and for how long. The scheduler achieves fairness and efficiency by allotting each process a
timeslice and a priority. The timeslice defines the amount of time the process is allowed to
execute before it is switched off for another process. The priority of a process is a value that
defines the relative order in which it will be allowed to be executed with respect to other waiting
processesthe higher the priority, the sooner it is scheduled to run. The fields shown in Figure 3.3
keep track of the values necessary for scheduling purposes.

Figure 3.3. Scheduling Related Fields

3.2.2.1. prio

In Chapter 7, we see that the dynamic priority of a process is a value that depends on the
processes' scheduling history and the specified nice value. (See the following sidebar for more
information about nice values.) It is updated at sleep time, which is when the process is not being
executed and when timeslice is used up. This value, prio, is related to the value of the
static_prio field described next. The prio field holds +/- 5 of the value of static_prio, depending
on the process' history; it will get a +5 bonus if it has slept a lot and a -5 handicap if it has been a
processing hog and used up its timeslice.

3.2.2.2. static_prio

static_prio is equivalent to the nice value. The default value of static_prio is MAX_PRIO-20. In



our kernel, MAX_PRIO defaults to 140.

Nice

The nice() system call allows a user to modify the static scheduling priority of a
process. The nice value can range from 20 to 19. The nice() function then calls
set_user_nice() to set the static_prio field of the task_struct. The static_prio
value is computed from the nice value by way of the PRIO_TO_NICE macro. Likewise,
the nice value is computed from the static_prio value by means of a call to
NICE_TO_PRIO.

---------------------------------------kernel/sched.c
#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + nice + 20)
#define PRIO_TO_NICE(prio) ((prio  MAX_RT_PRIO  20)
-----------------------------------------------------

3.2.2.3. run_list

The run_list field points to the runqueue. A runqueue holds a list of all the processes to run. See
the "Basic Structure" section for more information on the runqueue struct.

3.2.2.4. array

The array field points to the priority array of a runqueue. The "Keeping Track of Processes: Basic
Scheduler Construction" section in this chapter explains this array in detail.

3.2.2.5. sleep_avg

The sleep_avg field is used to calculate the effective priority of the task, which is the average
amount of clock ticks the task has spent sleeping.

3.2.2.6. timestamp

The timestamp field is used to calculate the sleep_avg for when a task sleeps or yields.

3.2.2.7. interactive_credit

The interactive_credit field is used along with the sleep_avg and activated fields to calculate
sleep_avg.

3.2.2.8. policy

The policy determines the type of process (for example, time sharing or real time). The type of a



process heavily influences the priority scheduling. For more information on this field, see Chapter
7.

3.2.2.9. cpus_allowed

The cpus_allowed field specifies which CPUs might handle a task. This is one way in which we can
specify which CPU a particular task can run on when in a multiprocessor system.

3.2.2.10. time_slice

The time_slice field defines the maximum amount of time the task is allowed to run.

3.2.2.11. first_time_slice

The first_time_slice field is repeatedly set to 0 and keeps track of the scheduling time.

3.2.2.12. activated

The activated field keeps track of the incrementing and decrementing of sleep averages. If an
uninterruptible task gets woken, this field gets set to -1.

3.2.2.13. rt_priority

rt_priority is a static value that can only be updated through schedule(). This value is necessary
to support real-time tasks.

3.2.2.14. nivcsw and nvcsw

Different kinds of context switches exist. The kernel keeps track of these for profiling reasons. A
global switch count gets set to one of the four different context switch counts, depending on the
kind of transition involved in the context switch (see Chapter 7 for more information on context
switch). These are the counters for the basic context switch:

The nivcsw field (number of involuntary context switches) keeps count of kernel
preemptions applied on the task. It gets incremented only upon a task's return from a kernel
preemption where the switch count is set to nivcsw.

The nvcsw field (number of voluntary context switches) keeps count of context switches that
are not based on kernel preemption. The switch count gets set to nvcsw if the previous state
was not an active preemption.

3.2.3. Process RelationsRelated Fields

The following fields of the task_struct are those related to process relationships. Each task or
process p has a parent that created it. Process p can also create processes and, therefore, might
have children. Because p's parent could have created more than one process, it is possible that
process p might have siblings. Figure 3.4 illustrates how the task_structs of all these processes
relate.



Figure 3.4. Process RelationsRelated Fields

3.2.3.1. real_parent

real_parent points to the current process' parent's description. It will point to the process
descriptor of init() if the original parent of our current process has been destroyed. In previous
kernels, this was known as p_opptr.

3.2.3.2. parent

parent is a pointer to the descriptor of the parent process. In Figure 3.4, we see that this points to
the ptrace task_struct. When ptrace is run on a process, the parent field of task_struct points
to the ptrace process.

3.2.3.3. children

children is the struct that points to the list of our current process' children.



3.2.3.4. sibling

sibling is the struct that points to the list of the current process' siblings.

3.2.3.5. group_leader

A process can be a member of a group of processes, and each group has one process defined as
the group leader. If our process is a member of a group, group_leader is a pointer to the
descriptor of the leader of that group. A group leader generally owns the tty from which the
process was created, called the controlling terminal.

3.2.4. Process CredentialsRelated Fields

In multiuser systems, it is necessary to distinguish among processes that are created by different
users. This is necessary for the security and protection of user data. To this end, each process has
credentials that help the system determine what it can and cannot access. Figure 3.5 illustrates
the fields in the task_struct related to process credentials.

Figure 3.5. Process CredentialsRelated Fields

3.2.4.1. uid and gid



The uid field holds the user ID number of the user who created the process. This field is used for
protection and security purposes. Likewise, the gid field holds the group ID of the group who owns
the process. A uid or gid of 0 corresponds to the root user and group.

3.2.4.2. euid and egid

The effective user ID usually holds the same value as the user ID field. This changes if the
executed program has the set UID (SUID) bit on. In this case, the effective user ID is that of the
owner of the program file. Generally, this is used to allow any user to run a particular program
with the same permissions as another user (for example, root). The effective group ID works in
much the same way, holding a value different from the gid field only if the set group ID (SGID) bit
is on.

3.2.4.3. suid and sgid

suid (saved user ID) and sgid (saved group ID) are used in the setuid() system calls.

3.2.4.4. fsuid and fsgid

The fsuid and fsgid values are checked specifically for filesystem checks. They generally hold the
same values as uid and gid except for when a setuid() system call is made.

3.2.4.5. group_info

In Linux, a user may be part of more than one group. These groups may have varying
permissions with respect to system and data accesses. For this reason, the processes need to
inherit this credential. The group_info field is a pointer to a structure of type group_info, which
holds all the information regarding the various groups of which the process can be a member.

The group_info structure allows a process to associate with a number of groups that is bound by
available memory. In Figure 3.5, you can see that a field of group_info called small_block is an
array of NGROUPS_SMALL (in our case, 32) gid_t units. If a task belongs to more than 32 groups,
the kernel can allocate blocks or pages that hold the necessary number of gid_ts beyond
NGROUPS_SMALL. The field nblocks holds the number of blocks allocated, while ngroups holds the
value of units in the small_block array that hold a gid_t value.

3.2.5. Process CapabilitiesRelated Fields

Traditionally, UNIX systems offer process-related protection of certain accesses and actions by
defining any given process as privileged (super user or UID = 0) or unprivileged (any other
process). In Linux, capabilities were introduced to partition the activities previously available only
to the superuser; that is, capabilities are individual "privileges" that may be conferred upon a
process independently of each other and of its UID. In this manner, particular processes can be
given permission to perform particular administrative tasks without necessarily getting all the
privileges or having to be owned by the superuser. A capability is thus defined as a given
administrative operation. Figure 3.6 shows the fields that are related to process capabilities.

Figure 3.6. Process CapabilitiesRelated Fields



3.2.5.1. cap_effective, cap_inheritable, cap_permitted, and keep_capabilities

The structure used to support the capabilities model is defined in include/linux/security.h as an
unsigned 32-bit value. Each 32-bit mask corresponds to a capability set; each capability is
assigned a bit in each of:

cap_effective. The capabilities that can be currently used by the process.

cap_inheritable. The capabilities that are passed through a call to execve.

cap_permitted. The capabilities that can be made either effective or inheritable.

One way to understand the distinction between these three types is to consider the
permitted capabilities to be similar to a trivialized gene pool made available by one's parents.
Of the genetic qualities made available by one's parents, we can display a subset of them
(effective qualities) and/or pass them on (inheritable). Permitted capabilities constitute more
of a potentiality whereas effective capabilities are an actuality.

Therefore, cap_effective and cap_inheritable are always subsets of cap_permitted.

keep_capabilities. Keeps track of whether the process will drop or maintain its capabilities

on a call to setuid().

Table 3.2 lists some of the supported capabilities that are defined in include/linux/capability.h.

Table 3.2. Selected Capabilities



Capability Description

CAP_CHOWN Ignores the restrictions imposed by chown()

CAP_FOWNER Ignores file-permission restrictions

CAP_FSETID Ignores setuid and setgid restrictions on files

CAP_KILL Ignores ruid and euids when sending signals

CAP_SETGID Ignores group-related permissions checks

CAP_SETUID Ignores uid-related permissions checks

CAP_SETCAP Allows a process to set its capabilities

The kernel checks if a particular capability is set with a call to capable() passing as a parameter
the capability variable. Generally, the function checks to see whether the capability bit is set in the
cap_effective set; if so, it sets current->flags to PF_SUPERPRIV, which indicates that the
capability is granted. The function returns a 1 if the capability is granted and 0 if capability is not
granted.

Three system calls are associated with the manipulation of capabilities: capget(), capset(), and
prctl(). The first two allow a process to get and set its capabilities, while the prctl() system call
allows manipulation of current->keep_capabilities.

3.2.6. Process LimitationsRelated Fields

A task uses a number of the resources made available by hardware and the scheduler. To keep
track of how they are used and any limitations that might be applied to a process, we have the
following fields.

3.2.6.1. rlim

The rlim field holds an array that provides for resource control and accounting by maintaining
resource limit values. Figure 3.7 illustrates the rlim field of the task_struct.

Figure 3.7. task_struct Resource Limits



Linux recognizes the need to limit the amount of certain resources that a process is allowed to
use. Because the kinds and amounts of resources processes might use varies from process to
process, it is necessary to keep this information on a per process basis. What better place than to
keep a reference to it in the process descriptor?

The rlimit descriptor (include/linux/resource.h) has the fields rlim_cur and rlim_max, which
are the current and maximum limits that apply to that resource. The limit "units" vary by the kind
of resource to which the structure refers.

-----------------------------------------------------------------------
include/linux/resource.h
struct rlimit {
   unsigned long   rlim_cur;
   unsigned long   rlim_max;
};
-----------------------------------------------------------------------

Table 3.3 lists the resources upon which their limits are defined in include/asm/resource.h.
However, both x86 and PPC have the same resource limits list and default values.

Table 3.3. Resource Limits Values



RL Name Description Default rlim_cur Default rlim_max

RLIMIT_CPU The amount of CPU
time in seconds this
process may run.

RLIM_INFINITY RLIM_INFINITY

RLIMIT_FSIZE The size of a file in
1KB blocks.

RLIM_INFINITY RLIM_INFINITY

RLIMIT_DATA The size of the heap
in bytes.

RLIM_INFINITY RLIM_INFINITY

RLIMIT_STACK The size of the stack
in bytes.

_STK_LIM RLIM_INFINITY

RLIMIT_CORE The size of the core
dump file.

0 RLIM_INFINITY

RLIMIT_RSS The maximum
resident set size
(real memory).

RLIM_INFINITY RLIM_INFINITY

RLIMIT_NPROC The number of
processes owned by
this process.

0 0

RLIMIT_NOFILE The number of open
files this process
may have at one
time.

INR_OPEN INR_OPEN

RLIMIT_MEMLOCK Physical memory
that can be locked
(not swapped).

RLIM_INFINITY RLIM_INFINITY

RLIMIT_AS Size of process
address space in
bytes.

RLIM_INFINITY RLIM_INFINITY

RLIMIT_LOCKS Number of file locks. RLIM_INFINITY RLIM_INFINITY

When a value is set to RLIM_INFINITY, the resource is unlimited for that process.

The current limit (rlim_cur) is a soft limit that can be changed via a call to setrlimit(). The
maximum limit is defined by rlim_max and cannot be exceeded by an unprivileged process. The
geTRlimit() system call returns the value of the resource limits. Both setrlimit() and
getrlimit() take as parameters the resource name and a pointer to a structure of type rlimit.

3.2.7. Filesystem- and Address SpaceRelated Fields

Processes can be heavily involved with files throughout their lifecycle, performing tasks such as
opening, closing, reading, and writing. The task_struct has two fields that are associated with file-
and filesystem-related data: fs and files (see Chapter 6, "Filesystems," for more detail). The two
fields related to address space are active_mm and mm (see Chapter 4, "Memory Management," for
more detail on mm_struct). Figure 3.8 shows the filesystem- and address spacerelated fields of the
task_struct.

Figure 3.8. Filesystem- and Address SpaceRelated Fields



3.2.7.1. fs

The fs field holds a pointer to filesystem information.

3.2.7.2. files

The files field holds a pointer to the file descriptor table for the task. This file descriptor holds
pointers to files (more specifically, to their descriptors) that the task has open.

3.2.7.3. mm

mm points to address-space and memory-managementrelated information.

3.2.7.4. active_mm

active_mm is a pointer to the most recently accessed address space. Both the mm and active_mm
fields start pointing at the same mm_struct.

Evaluating the process descriptor gives us an idea of the type of data that a process is involved
with throughout its lifetime. Now, we can look at what happens throughout the lifespan of a
process. The following sections explain the various stages and states of a process and go through
the sample program line by line to explain what happens in the kernel.



3.3. Process Creation: fork(), vfork(), and clone() System

Calls

After the sample code is compiled into a file (in our case, an ELF executable[2]), we call it from the
command line. Look at what happens when we press the Return key. We already mentioned that any
given process is created by another process. The operating system provides the functionality to do
this by means of the fork(), vfork(), and clone() system calls.

[2] ELF executable is an executable format that Linux supports. Chapter 9 discusses the ELF executable format.

The C library provides three functions that issue these three system calls. The prototypes of these
functions are declared in <unistd.h>. Figure 3.9 shows how a process that calls fork() executes the
system call sys_fork(). This figure describes how kernel code performs the actual process creation.
In a similar manner, vfork() calls sys_fork(), and clone() calls sys_clone().

Figure 3.9. Process Creation System Calls



All three of these system calls eventually call do_fork(), which is a kernel function that performs the
bulk of the actions related to process creation. You might wonder why three different functions are
available to create a process. Each function slightly differs in how it creates a process, and there are
specific reasons why one would be chosen over the other.

When we press Return at the shell prompt, the shell creates the new process that executes our
program by means of a call to fork(). In fact, if we type the command ls at the shell and press
Return, the pseudocode of the shell at that moment looks something like this:

if( (pid = fork()) == 0 )
   execve("foo");
else
   waitpid(pid);

We can now look at the functions and trace them down to the system call. Although our program calls
fork(), it could just as easily have called vfork() or clone(), which is why we introduced all three
functions in this section. The first function we look at is fork(). We delve through the calls fork(),
sys_fork(), and do_fork(). We follow that with vfork() and finally look at clone() and trace them
down to the do_fork() call.

3.3.1. fork() Function

The fork() function returns twice: once in the parent and once in the child process. If it returns in the
child process, fork() returns 0. If it returns in the parent, fork() returns the child's PID. When the
fork() function is called, the function places the necessary information in the appropriate registers,
including the index into the system call table where the pointer to the system call resides. The
processor we are running on determines the registers into which this information is placed.

At this point, if you want to continue the sequential ordering of events, look at the "Interrupts"
section in this chapter to see how sys_fork() is called. However, it is not necessary to understand
how a new process gets created.

Let's now look at the sys_fork() function. This function does little else than call the do_fork()
function. Notice that the sys_fork() function is architecture dependent because it accesses function
parameters passed in through the system registers.

-----------------------------------------------------------------------
arch/i386/kernel/process.c
asmlinkage int sys_fork(struct pt_regs regs)
{
   return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
}
-----------------------------------------------------------------------

-----------------------------------------------------------------------
arch/ppc/kernel/process.c
int sys_fork(int p1, int p2, int p3, int p4, int p5, int p6,
             struct pt_regs *regs)
{
        CHECK_FULL_REGS(regs);
        return do_fork(SIGCHLD, regs->gpr[1], regs, 0, NULL, NULL);
}
-----------------------------------------------------------------------



The two architectures take in different parameters to the system call. The structure pt_regs holds
information such as the stack pointer. The fact that gpr[1] holds the stack pointer in PPC, whereas
%esp[3] holds the stack pointer in x86, is known by convention.

[3] Recall that in code produced in "AT&T" format, registers are prefixed with a %.

3.3.2. vfork() Function

The vfork() function is similar to the fork() function with the exception that the parent process is
blocked until the child calls exit() or exec().

sys_vfork()
arch/i386/kernel/process.c
asmlinkage int sys_vfork(struct pt_regs regs)
{
   return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.ep, &regs, 0, NULL, NULL);
}
-----------------------------------------------------------------------
arch/ppc/kernel/process.c
int sys_vfork(int p1, int p2, int p3, int p4, int p5, int p6,
              struct pt_regs *regs)
{
        CHECK_FULL_REGS(regs);
        return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs->gpr[1],
                        regs, 0, NULL, NULL);
}
-----------------------------------------------------------------------

The only difference between the calls to sys_fork() in sys_vfork() and sys_fork() are the flags that
do_fork() is passed. The presence of these flags are used later to determine if the added behavior
just described (of blocking the parent) will be executed.

3.3.3. clone() Function

The clone() library function, unlike fork() and vfork(), takes in a pointer to a function along with its
argument. The child process created by do_fork()calls this function as soon as it gets created.

[View full width]
-----------------------------------------------------------------------
sys_clone()
arch/i386/kernel/process.c
asmlinkage int sys_clone(struct pt_regs regs)
{
 unsigned long clone_flags;
        unsigned long newsp;
        int __user *parent_tidptr, *child_tidptr;

        clone_flags = regs.ebx;
        newsp = regs.ecx;
        parent_tidptr = (int __user *)regs.edx;
        child_tidptr = (int __user *)regs.edi;
        if (!newsp)
                newsp = regs.esp;
        return do_fork(clone_flags & ~CLONE_IDLETASK, newsp, &regs, 0, parent_tidptr,



 child_tidptr);
}
-----------------------------------------------------------------------

-----------------------------------------------------------------------
arch/ppc/kernel/process.c
int sys_clone(unsigned long clone_flags, unsigned long usp,
              int __user *parent_tidp, void __user *child_thread\
ptr,
              int __user *child_tidp, int p6,
              struct pt_regs *regs)
{
        CHECK_FULL_REGS(regs);
        if (usp == 0)
                usp = regs->gpr[1];     /* stack pointer for chi\
ld */
        return do_fork(clone_flags & ~CLONE_IDLETASK, usp, regs,\
 0,
                        parent_tidp, child_tidp);
}
-----------------------------------------------------------------------

As Table 3.4 shows, the only difference between fork(), vfork(), and clone() is which flags are set in
the subsequent calls to do_fork().

Table 3.4. Flags Passed to do_fork by fork(), vfork(), and clone()

  fork() vfork() clone()

SIGCHLD X X  

CLONE_VFORK   X  

CLONE_VM   X  

Finally, we get to do_fork(), which performs the real process creation. Recall that up to this point, we
only have the parent executing the call to fork(), which then enables the system call sys_fork(); we
still do not have a new process. Our program foo still exists as an executable file on disk. It is not
running or in memory.

3.3.4. do_fork() Function

We follow the kernel side execution of do_fork() line by line as we describe the details behind the
creation of a new process.

[View full width]
-----------------------------------------------------------------------
kernel/fork.c
1167   long do_fork(unsigned long clone_flags,
1168       unsigned long stack_start,
1169       struct pt_regs *regs,
1170       unsigned long stack_size,



1171       int __user *parent_tidptr,
1172       int __user *child_tidptr)
1173   {
1174     struct task_struct *p;
1175     int trace = 0;
1176     long pid;
1177
1178     if (unlikely(current->ptrace)) {
1179        trace = fork_traceflag (clone_flags);
1180        if (trace)
1181          clone_flags |= CLONE_PTRACE;
1182     }
1183
1184   p = copy_process(clone_flags, stack_start, regs, stack_size, parent_tidptr,
 child_tidptr);
-----------------------------------------------------------------------

Lines 11781183

The code begins by verifying if the parent wants the new process ptraced. ptracing references are
prevalent within functions dealing with processes. This book explains only the ptrace references at a
high level. To determine whether a child can be traced, fork_traceflag() must verify the value of
clone_flags. If CLONE_VFORK is set in clone_flags, if SIGCHLD is not to be caught by the parent, or if
the current process also has PT_TRACE_FORK set, the child is traced, unless the CLONE_UNTRACED or
CLONE_IDLETASK flags have also been set.

Line 1184

This line is where a new process is created and where the values in the registers are copied out. The
copy_process() function performs the bulk of the new process space creation and descriptor field
definition. However, the start of the new process does not take place until later. The details of
copy_process() make more sense when the explanation is scheduler-centric. See the "Keeping Track
of Processes: Basic Scheduler Construction" section in this chapter for more detail on what happens
here.

-----------------------------------------------------------------------
kernel/fork.c
...
1189     pid = IS_ERR(p) ? PTR_ERR(p) : p->pid;
1190
1191     if (!IS_ERR(p)) {
1192        struct completion vfork;
1193
1194        if (clone_flags & CLONE_VFORK) {
1195          p->vfork_done = &vfork;
1196          init_completion(&vfork);
1197        }
1198
1199        if ((p->ptrace & PT_PTRACED) || (clone_flags & CLONE_STOPPED)) {
...
1203          sigaddset(&p->pending.signal, SIGSTOP);
1204          set_tsk_thread_flag(p, TIF_SIGPENDING);
1205        }
...
-----------------------------------------------------------------------



Line 1189

This is a check for pointer errors. If we find a pointer error, we return the pointer error without
further ado.

Lines 11941197

At this point, check if do_fork() was called from vfork(). If it was, enable the wait queue involved
with vfork().

Lines 11991205

If the parent is being traced or the clone is set to CLONE_STOPPED, the child is issued a SIGSTOP signal
upon startup, thus starting in a stopped state.

-----------------------------------------------------------------------
kernel/fork.c
1207     if (!(clone_flags & CLONE_STOPPED)) {
...
1222          wake_up_forked_process(p);
1223     } else {
1224        int cpu = get_cpu();
1225
1226        p->state = TASK_STOPPED;
1227        if (!(clone_flags & CLONE_STOPPED))
1228          wake_up_forked_process(p);   /* do this last */
1229        ++total_forks;
1230
1231        if (unlikely (trace)) {
1232          current->ptrace_message = pid;
1233          ptrace_notify ((trace << 8) | SIGTRAP);
1234        }
1235
1236        if (clone_flags & CLONE_VFORK) {
1237          wait_for_completion(&vfork);
1238          if (unlikely (current->ptrace & PT_TRACE_VFORK_DONE)) 
1239             ptrace_notify ((PTRACE_EVENT_VFORK_DONE << 8) | SIGTRAP);
1240        } else
...
1248          set_need_resched();
1249     }
1250     return pid;
1251   }
-----------------------------------------------------------------------

Lines 12261229

In this block, we set the state of the task to TASK_STOPPED. If the CLONE_STOPPED flag was not set in
clone_flags, we wake up the child process; otherwise, we leave it waiting for its wakeup signal.



Lines 12311234

If ptracing has been enabled on the parent, we send a notification.

Lines 12361239

If this was originally a call to vfork(), this is where we set the parent to blocking and send a
notification to the trace if enabled. This is implemented by the parent being placed in a wait queue
and remaining there in a TASK_UNINTERRUPTIBLE state until the child calls exit() or execve().

Line 1248

We set need_resched in the current task (the parent). This allows the child process to run first.



3.4. Process Lifespan

Now that we have seen how a process is created, we need to look at what happens during the
course of its lifespan. During this time, a process can find itself in various states. The transition
between these states depends on the actions that the process performs and on the nature of the
signals sent to it. Our example program has found itself in the TASK_INTERRUPTIBLE state and in
TASK_RUNNING (its current state).

The first state a process state is set to is TASK_INTERRUPTIBLE. This occurs during process creation
in the copy_process() routine called by do_fork(). The second state a process finds itself in is
TASK_RUNNING, which is set prior to exiting do_fork(). These two states are guaranteed in the life
of the process. Following those two states, many variables come into play that determine what
states the process will find itself in. The last state a process is set to is TASK_ZOMBIE, during the call
to do_exit(). Let's look at the various process states and the manner in which the transitions from
one state to the next occur. We point out how our process proceeds from one state to another.

3.4.1. Process States

When a process is running, it means that its context has been loaded into the CPU registers and
memory and that the program that defines this context is being executed. At any particular time,
a process might be unable to run for a number of reasons. A process might be unable to continue
running because it is waiting for input that is not present or the scheduler may have decided it has
run the maximum amount of time units allotted and that it must yield to another process. A
process is considered ready when it's not running but is able to run (as with the rescheduling) or
blocked when waiting for input.

Figure 3.10 shows the abstract process states and underlies the possible Linux task states that
correspond to each abstract state. Table 3.5 outlines the four transitions and how it is brought
about. Table 3.6 associates the abstract states with the values used in the Linux kernel to identify
those states.

Figure 3.10. Process State Transition



Table 3.5. Summary of Transitions

Transition Agent of Transition

Ready to Running (A) Selected by scheduler

Running to Ready (B) Timeslice ends (inactive)

Process yields (active)

Blocked to Ready (C ) Signal comes in

Resource becomes available

Running to Blocked (D) Process sleeps or waits on something

Table 3.6. Association of Linux Flags with Abstract Process
States

Abstract State Linux Task States

Ready TASK_RUNNING

Running TASK_RUNNING

Blocked TASK_INTERRUPTIBLE

TASK_UNINTERRUPTIBLE

TASK_ZOMBIE

TASK_STOPPED

NOTE

The set_current_state() process state can be set if access to the task struct is available
by a direct assignment setting such as current->state= TASK_INTERRUPTIBLE. A call to
set_current_state(TASK_INTERRUPTIBLE) will perform the same effect.

3.4.2. Process State Transitions

We now look at the kinds of events that would cause a process to go from one state to another.
The abstract process transitions (refer to Table 3.5) include the transition from the ready state to
the running state, the transition from the running state to the ready state, the transitions from
the blocked state to the ready state, and the transition from the running state to the blocked
state. Each transition can translate into more than one transition between different Linux task
states. For example, going from blocked to running could translate to going from any one of TASK_
INTERRUPTIBLE, TASK_UNINTERRUPTIBLE, TASK_ZOMBIE, or TASK_STOPPED to TASK_RUNNING. Figure
3.11 and Table 3.7 describe these transitions.

Figure 3.11. Task State Transitions



Table 3.7. Summary of Task Transitions

Start Linux Task State End Linux Task State Agent of Transition

TASK_RUNNING TASK_UNINTERRUPTIBLE Process enters wait queue.

TASK_RUNNING TASK_INTERRUPTIBLE Process enters wait queue.

TASK_RUNNING TASK_STOPPED Process receives SIGSTOP
signal or process is being
traced.

TASK_RUNNING TASK_ZOMBIE Process is killed but parent
has not called sys_wait4().

TASK_INTERRUPTIBLE TASK_STOPPED During signal receipt.

TASK_UNINTERRUPTIBLE TASK_STOPPED During waking up.

TASK_UNINTERRUPTIBLE TASK_RUNNING Process has received the
resource it was waiting for.

TASK_INTERRUPTIBLE TASK_RUNNING Process has received the
resource it was waiting for
or has been set to running
as a result of a signal it
received.

TASK_RUNNING TASK_RUNNING Moved in and out by the
scheduler.

We now explain the various state transitions detailing the Linux task state transitions under the
general process transition categories.

3.4.2.1. Ready to Running

The abstract process state transition of "ready to running" does not correspond to an actual Linux
task state transition because the state does not actually change (it stays as TASK_RUNNING).
However, the process goes from being in a queue of ready to run tasks (or run queue) to actually
being run by the CPU.



TASK_RUNNING to TASK_RUNNING

Linux does not have a specific state for the task that is currently using the CPU, and the task
retains the state of TASK_RUNNING even though the task moves out of a queue and its context is
now executing. The scheduler selects the task from the run queue. Chapter 7 discusses how the
scheduler selects the next task to set to running.

3.4.2.2. Running to Ready

In this situation, the task state does not change even though the task itself undergoes a change.
The abstract process state transition helps us understand what is happening. As previously stated,
a process goes from running to being ready to run when it transitions from being run by the CPU
to being placed in the run queue.

TASK_RUNNING to TASK_RUNNING

Because Linux does not have a separate state for the task whose context is being executed by the
CPU, the task does not suffer an explicit Linux task state transition when this occurs and stays in
the TASK_RUNNING state. The scheduler selects when to switch out a task from being run to being
placed in the run queue according to the time it has spent executing and the task's priority
(Chapter 7 covers this in detail).

3.4.2.3. Running to Blocked

When a process gets blocked, it can be in one of the following states: TASK_INTERRUPTIBLE,
TASK_UNINTERRUPTIBLE, TASK_ZOMBIE, or TASK_STOPPED. We now describe how a task gets to be in
each of these states from TASK_RUNNING, as detailed in Table 3.7.

TASK_RUNNING to TASK_INTERRUPTIBLE

This state is usually called by blocking I/O functions that have to wait on an event or resource.
What does it mean for a task to be in the TASK_INTERRUPTIBLE state? Simply that it is not on the
run queue because it is not ready to run. A task in TASK_INTERRUPTIBLE wakes up if its resource
becomes available (time or hardware) or if a signal comes in. The completion of the original
system call depends on the implementation of the interrupt handler. In the code example, the
child process accesses a file that is on disk. The disk driver is in charge of knowing when the
device is ready for the data to be accessed. Hence, the driver will have code that looks something
like this:

while(1)
{
  if(resource_available)
   break();
set_current_state(TASK_INTERRUPTIBLE);
schedule();
}
set_current_state(TASK_RUNNING);

The example process enters the TASK_INTERRUPTIBLE state at the time it performs the call to



open(). At this point, it is removed from being the running process by the call to schedule(), and
another process that the run queue selects becomes the running process. After the resource
becomes available, the process breaks out of the loop and sets the process' state to TASK_RUNNING,
which puts it back on the run queue. It then waits until the scheduler determines that it is the
process' turn to run.

The following listing shows the function interruptible_sleep_on(), which can set a task in the
TASK_INTERRUPTIBLE state:

-----------------------------------------------------------------------
kernel/sched.c
2504  void interruptible_sleep_on(wait_queue_head_t *q)
2505  {
2506   SLEEP_ON_VAR
2507
2508   current->state = TASK_INTERRUPTIBLE;  
2509
2510   SLEEP_ON_HEAD
2511   schedule();
2512   SLEEP_ON_TAIL
2513  }
-----------------------------------------------------------------------

The SLEEP_ON_HEAD and the SLEEP_ON_TAIL macros take care of adding and removing the task from
the wait queue (see the "Wait Queues" section in this chapter). The SLEEP_ON_VAR macro initializes
the task's wait queue entry for addition to the wait queue.

TASK_RUNNING to TASK_UNINTERRUPTIBLE

The TASK_UNINTERRUPTIBLE state is similar to TASK_INTERRUPTIBLE with the exception that
processes do not heed signals that come in while it is in kernel mode. This state is also the default
state into which a task is set when it is initialized during creation in do_fork(). The sleep_on()
function is called to set a task in the TASK_UNINTERRUPTIBLE state.

-----------------------------------------------------------------------
kernel/sched.c
2545  long fastcall __sched sleep_on(wait_queue_head_t *q)
2546  {
2547   SLEEP_ON_VAR
2548
2549   current->state = TASK_UNINTERRUPTIBLE;
2550
2551   SLEEP_ON_HEAD
2552   schedule();
2553   SLEEP_ON_TAIL
2554
2555   return timeout;
2556  }
-----------------------------------------------------------------------

This function sets the task on the wait queue, sets its state, and calls the scheduler.



TASK_RUNNING to TASK_ZOMBIE

A process in the TASK_ZOMBIE state is called a zombie process. Each process goes through this
state in its lifecycle. The length of time a process stays in this state depends on its parent. To
understand this, realize that in UNIX systems, any process may retrieve the exit status of a child
process by means of a call to wait() or waitpid() (see the "Parent Notification and sys_wait4()"
section). Hence, minimal information needs to be available to the parent, even once the child
terminates. It is costly to keep the process alive just because the parent needs to know its state;
hence, the zombie state is one in which the process' resources are freed and returned but the
process descriptor is retained.

This temporary state is set during a process' call to sys_exit() (see the "Process Termination"
section for more information). Processes in this state will never run again. The only state they can
go to is the TASK_STOPPED state.

If a task stays in this state for too long, the parent task is not reaping its children. A zombie task
cannot be killed because it is not actually alive. This means that no task exists to kill, merely the
task descriptor that is waiting to be released.

TASK_RUNNING to TASK_STOPPED

This transition will be seen in two cases. The first case is processes that a debugger or a trace
utility is manipulating. The second is if a process receives SIGSTOP or one of the stop signals.

TASK_UNINTERRUPTIBLE or TASK_INTERRUPTIBLE to TASK_STOPPED

TASK_STOPPED manages processes in SMP systems or during signal handling. A process is set to the
TASK_STOPPED state when the process receives a wake-up signal or if the kernel specifically needs
the process to not respond to anything (as it would if it were set to TASK_INTERRUPTIBLE, for
example).

Unlike a task in state TASK_ZOMBIE, a process in state TASK_STOPPED is still able to receive a SIGKILL
signal.

3.4.2.4. Blocked to Ready

The transition of a process from blocked to ready occurs upon acquisition of the data or hardware
on which the process was waiting. The two Linux-specific transitions that occur under this
category are TASK_INTERRUPTIBLE to TASK_RUNNING and TASK_UNINTERRUPTIBLE to TASK_RUNNING.



3.5. Process Termination

A process can terminate voluntarily and explicitly, voluntarily and implicitly, or involuntarily.
Voluntary termination can be attained in two ways:

Returning from the main() function (implicit)1.

Calling exit() (explicit)2.

Executing a return from the main() function literally translates into a call to exit(). The linker
introduces the call to exit() under these circumstances.

Involuntary termination can be attained in three ways:

The process might receive a signal that it cannot handle.1.

An exception might be raised during its kernel mode execution.2.

The process might have received the SIGABRT or other termination signal.3.

The termination of a process is handled differently depending on whether the parent is alive or
dead. A process can

Terminate before its parent

Terminate after its parent

In the first case, the child is turned into a zombie process until the parent makes the call to
wait/waitpid(). In the second case, the child's parent status will have been inherited by the
init() process. We see that when any process terminates, the kernel reviews all the active
processes and verifies whether the terminating process is parent to any process that is still alive
and active. If so, it changes that child's parent PID to 1.

Let's look at the example again and follow it through its demise. The process explicitly calls
exit(0). (Note that it could have just as well called _exit(), return(0), or fallen off the end of
main with neither call.) The exit() C library function then calls the sys_exit() system call. We
can review the following code to see what happens to the process from here onward.

We now look at the functions that terminate a process. As previously mentioned, our process foo
calls exit(), which calls the first function we look at, sys_exit(). We delve through the call to
sys_exit() and into the details of do_exit().

3.5.1. sys_exit() Function

-----------------------------------------------------------------------
kernel/exit.c
asmlinkage long sys_exit(int error_code)
{
  do_exit((error_code&0xff)<<8);
}



-----------------------------------------------------------------------

sys_exit() does not vary between architectures, and its job is fairly straightforwardall it does is
call do_exit() and convert the exit code into the format required by the kernel.

3.5.2. do_exit() Function

-----------------------------------------------------------------------
kernel/exit.c
707  NORET_TYPE void do_exit(long code)
708  {
709   struct task_struct *tsk = current;
710
711   if (unlikely(in_interrupt()))
712    panic("Aiee, killing interrupt handler!");
713   if (unlikely(!tsk->pid))
714    panic("Attempted to kill the idle task!");
715   if (unlikely(tsk->pid == 1))
716    panic("Attempted to kill init!");
717   if (tsk->io_context)
718    exit_io_context();
719   tsk->flags |= PF_EXITING;
720   del_timer_sync(&tsk->real_timer);
721
722   if (unlikely(in_atomic()))
723    printk(KERN_INFO "note: %s[%d] exited with preempt_count %d\n",
724       current->comm, current->pid,
725       preempt_count());
-----------------------------------------------------------------------

Line 707

The parameter code comprises the exit code that the process returns to its parent.

Lines 711716

Verify against unlikely, but possible, invalid circumstances. These include the following:

Making sure we are not inside an interrupt handler.1.

Ensure we are not the idle task (PID0=0) or the init task (PID=1). Note that the only time
the init process is killed is upon system shutdown.

2.

Line 719

Here, we set PF_EXITING in the flags field of the processes' task struct. This indicates that the
process is shutting down. For example, this is used when creating interval timers for a given
process. The process flags are checked to see if this flag is set and thus helps prevent wasteful



processing.

-----------------------------------------------------------------------
kernel/exit.c
...
727   profile_exit_task(tsk);
728
729   if (unlikely(current->ptrace & PT_TRACE_EXIT)) {
730    current->ptrace_message = code;
731    ptrace_notify((PTRACE_EVENT_EXIT << 8) | SIGTRAP);
732   }
733
734   acct_process(code);
735   __exit_mm(tsk);
736
737   exit_sem(tsk);
738   __exit_files(tsk);
739   __exit_fs(tsk);
740   exit_namespace(tsk);
741   exit_thread();
...
-----------------------------------------------------------------------

Lines 729732

If the process is being ptraced and the PT_TRACE_EXIT flag is set, we pass the exit code and notify
the parent process.

Lines 735742

These lines comprise the cleaning up and reclaiming of resources that the task has been using and
will no longer need. __exit_mm() frees the memory allocated to the process and releases the
mm_struct associated with this process. exit_sem() disassociates the task from any IPC
semaphores. __exit_files() releases any files the task allocated and decrements the file
descriptor counts. __exit_fs() releases all file system data.

-----------------------------------------------------------------------
kernel/exit.c
...
744   if (tsk->leader)
745    disassociate_ctty(1);
746
747   module_put(tsk->thread_info->exec_domain->module);
748   if (tsk->binfmt)
749    module_put(tsk->binfmt->module);
...
-----------------------------------------------------------------------

Lines 744745

If the process is a session leader, it is expected to have a controlling terminal or tty. This function



disassociates the task leader from its controlling tty.

Lines 747749

In these blocks, we decrement the reference counts for the module:

-----------------------------------------------------------------------
kernel/exit.c
...
751   tsk->exit_code = code;
752   exit_notify(tsk);
753
754   if (tsk->exit_signal == -1 && tsk->ptrace == 0)
755    release_task(tsk);
756
757   schedule();
758   BUG();
759   /* Avoid "noreturn function does return". */
760   for (;;) ;
761  }
...
-----------------------------------------------------------------------

Line 751

Set the task's exit code in the task_struct field exit_code.

Line 752

Send the SIGCHLD signal to parent and set the task state to TASK_ZOMBIE. exit_notify() notifies
the relations of the impending task's death. The parent is informed of the exit code while the
task's children have their parent set to the init process. The only exception to this is if another
existing process exists within the same process group: In this case, the existing process is used as
a surrogate parent.

Line 754

If exit_signal is -1 (indicating an error) and the process is not being ptraced, the kernel calls on
the scheduler to release the process descriptor of this task and to reclaim its timeslice.

Line 757

Yield the processor to a new process. As we see in Chapter 7, the call to schedule() will not
return. All code past this point catches impossible circumstances or avoids compiler warnings.

3.5.3. Parent Notification and sys_wait4()

When a process is terminated, its parent is notified. Prior to this, the process is in a zombie state
where all its resources have been returned to the kernel, but the process descriptor remains. The



parent task (for example, the Bash shell) receives the signal SIGCHLD that the kernel sends to it
when the child process terminates. In the example, the shell calls wait() when it wants to be
notified. A parent process can ignore the signal by not implementing an interrupt handler and can
instead choose to call wait() (or waitpid()) at any point.

The wait family of functions serves two general roles:

Mortician. Getting task death information.

Grave digger. Getting rid of all traces of a process.

Our parent program can choose to call one of the four functions in the wait family:

pid_t wait(int *status)

pid_t waitpid(pid_t pid, int *status, int options)

pid_t wait3(int *status, int options, struct rusage *rusage)

pid_t wait4(pid_t pid, int *status, int options, struct rusage *rusage)

Each function will in turn call sys_wait4(), which is where the bulk of the notification occurs.

A process that calls one of the wait functions is blocked until one of its children terminates or
returns immediately if the child has terminated (or if the parent is childless). The sys_wait4()
function shows us how the kernel manages this notification:

-----------------------------------------------------------------------
kernel/exit.c
1031  asmlinkage long sys_wait4(pid_t pid,unsigned int * stat_addr, 
int options, struct rusage * ru)
1032  {
1033   DECLARE_WAITQUEUE(wait, current);
1034   struct task_struct *tsk;
1035   int flag, retval;
1036
1037   if (options & ~(WNOHANG|WUNTRACED|__WNOTHREAD|__WCLONE|__WALL))
1038    return -EINVAL;
1039
1040   add_wait_queue(&current->wait_chldexit,&wait);
1041  repeat:
1042   flag = 0;
1043   current->state = TASK_INTERRUPTIBLE;
1044   read_lock(&tasklist_lock);
...
-----------------------------------------------------------------------

Line 1031

The parameters include the PID of the target process, the address in which the exit status of the
child should be placed, flags for sys_wait4(), and the address in which the resource usage
information of the child should be placed.

Lines 1033 and 1040



Declare a wait queue and add the process to it. (This is covered in more detail in the "Wait
Queues" section.)

Line 10371038

This code mostly checks for error conditions. The function returns a failure code if the system call
is passed options that are invalid. In this case, the error EINVAL is returned.

Line 1042

The flag variable is set to 0 as an initial value. This variable is changed once the pid argument is
found to match one of the calling task's children.

Line 1043

This code is where the calling process is set to blocking. The state of the task is moved from
TASK_RUNNING to TASK_INTERRUPTIBLE.

-----------------------------------------------------------------------
kernel/exit.c
...
1045   tsk = current;
1046   do {
1047    struct task_struct *p;
1048    struct list_head *_p;
1049    int ret;
1050
1051    list_for_each(_p,&tsk->children) {
1052     p = list_entry(_p,struct task_struct,sibling);
1053
1054     ret = eligible_child(pid, options, p);
1055     if (!ret)
1056       continue;
1057     flag = 1;
1058     switch (p->state) {
1059     case TASK_STOPPED:
1060       if (!(options & WUNTRACED) &&
1061        !(p->ptrace & PT_PTRACED))
1062        continue;
1063       retval = wait_task_stopped(p, ret == 2,
1064           stat_addr, ru);
1065       if (retval != 0) /* He released the lock. */
1066        goto end_wait4;
1067       break;
1068     case TASK_ZOMBIE: 
...
1072       if (ret == 2)
1073        continue;
1074       retval = wait_task_zombie(p, stat_addr, ru);
1075       if (retval != 0) /* He released the lock. */
1076        goto end_wait4;
1077       break;
1078     }
1079    }
...



1091    tsk = next_thread(tsk);
1092    if (tsk->signal != current->signal)
1093     BUG();
1094   } while (tsk != current);
...
-----------------------------------------------------------------------

Lines 1046 and 1094

The do while loop iterates once through the loop while looking at itself, then continues while
looking at other tasks.

Line 1051

Repeat the action on every process in the task's children list. Remember that this is the parent
process that is waiting on its children's exit. The process is currently in TASK_INTERRUPTIBLE and
iterating over its children list.

Line 1054

Determine if the pid parameter passed is unreasonable.

Line 10581079

Check the state of each of the task's children. Actions are performed only if a child is stopped or if
it is a zombie. If a task is sleeping, ready, or running (the remaining states), nothing is done. If a
child is in TASK_STOPPED and the UNtrACED option has been used (which means that the task wasn't
stopped because of a process trace), we verify if the status of that child has been reported and
return the child's information. If a child is in TASK_ZOMBIE, it is reaped.

-----------------------------------------------------------------------
kernel/exit.c
...
1106   retval = -ECHILD;
1107  end_wait4:
1108   current->state = TASK_RUNNING;
1109   remove_wait_queue(&current->wait_chldexit,&wait);
1110   return retval;
1111  }
-----------------------------------------------------------------------

Line 1106

If we have gotten to this point, the PID specified by the parameter is not a child of the calling
process. ECHILD is the error used to notify us of this event.

Line 11071111



At this point, the children list has been processed, and any children that needed to be reaped have
been reaped. The parent's block is removed and its state is set to TASK_RUNNING once again.
Finally, the wait queue is removed.

At this point, you should be familiar with the various stages that a process goes through during its
lifecycle, the kernel functions that make all this happen, and the structures the kernel uses to
keep track of all this information. Now, we look at how the scheduler manipulates and manages
processes to create the effect of a multithreaded system. We also see in more detail how
processes go from one state to another.



3.6. Keeping Track of Processes: Basic Scheduler

Construction

Until this point, we kept the concepts of the states and the transitions process-centric. We have
not spoken about how the transition is managed, nor have we spoken about the kernel
infrastructure, which performs the running and stopping of processes. The scheduler handles all
these details. Having finished the exploration of the process lifecycle, we now introduce the basics
of the scheduler and how it interacts with the do_fork() function during process creation.

3.6.1. Basic Structure

The scheduler operates on a structure called a run queue. There is one run queue per CPU on the
system. The core data structures within a run queue are two priority-ordered arrays. One of these
contains active tasks and the other contains expired tasks. In general, an active task runs for a
set amount of time, the length of its timeslice or quantum, and is then inserted into the expired
array to wait for more CPU time. When the active array is empty, the scheduler swaps the two
arrays by exchanging the active and expired pointers. The scheduler then begins executing tasks
on the new active array.

Figure 3.12 illustrates the priority arrays within the run queue. The definition of the priority array
structure is as follows:

-----------------------------------------------------------------------
kernel/sched.c
192  struct prio_array {
193   int nr_active;
194   unsigned long bitmap[BITMAP_SIZE];
195   struct list_head queue[MAX_PRIO];
196  };
-----------------------------------------------------------------------

Figure 3.12. Priority Arrays in a Run Queue



The fields of the prio_array struct are as follows:

nr_active. A counter that keeps track of the number of tasks held in the priority array.

bitmap. This keeps track of the priorities within the array. The actual length of bitmap

depends on the size of unsigned longs on the system. It will always be enough to store
MAX_PRIO bits, but it could be longer.

queue. An array that stores lists of tasks. Each list holds tasks of a certain priority. Thus,

queue[0] holds a list of all tasks of priority 0, queue[1] holds a list of all tasks of priority 1,
and so on.

With this basic understanding of how a run queue is organized, we can now embark on following a
task through the scheduler on a single CPU system.

3.6.2. Waking Up from Waiting or Activation

Recall that when a process calls fork(), a new process is made. As previously mentioned, the
process calling fork() is called the parent, and the new process is called the child. The newly
created process needs to be scheduled for access to the CPU. This occurs via the do_fork()



function.

Two important lines deal with the scheduler in do_fork() related to waking up processes.
copy_process(), called on line 1184 of linux/kernel/fork.c, calls the function sched_fork(),
which initializes the process for an impending insertion into the scheduler's run queue.
wake_up_forked_process(), called on line 1222 of linux/kernel/fork.c, takes the initialized
process and inserts it into the run queue. Initialization and insertion have been separated to allow
for the new process to be killed, or otherwise terminated, before being scheduled. The process will
only be scheduled if it is created, initialized successfully, and has no pending signals.

3.6.2.1. sched_fork(): Scheduler Initialization for Newly Forked Process

The sched_fork()function performs the infrastructure setup the scheduler requires for a newly
forked process:

-----------------------------------------------------------------------
kernel/sched.c
719 void sched_fork(task_t *p)
720 {
721   /*  
722   * We mark the process as running here, but have not actually
723   * inserted it onto the runqueue yet. This guarantees that
724   * nobody will actually run it, and a signal or other external
725   * event cannot wake it up and insert it on the runqueue either.
726   */
727   p->state = TASK_RUNNING;
728   INIT_LIST_HEAD(&p->run_list);
729   p->array = NULL;
730   spin_lock_init(&p->switch_lock);
-----------------------------------------------------------------------

Line 727

The process is marked as running by setting the state attribute in the task structure to
TASK_RUNNING to ensure that no event can insert it on the run queue and run the process before
do_fork() and copy_process() have verified that the process was created properly. When that
verification passes, do_fork() adds it to the run queue via wake_up_forked_process().

Line 728730

The process' run_list field is initialized. When the process is activated, its run_list field is linked
into the queue structure of a priority array in the run queue. The process' array field is set to NULL
to represent that it is not part of either priority array on a run queue. The next block of
sched_fork(), lines 731 to 739, deals with kernel preemption. (Refer to Chapter 7 for more
information on preemption.)

-----------------------------------------------------------------------
kernel/sched.c
740   /*
741   * Share the timeslice between parent and child, thus the
742   * total amount of pending timeslices in the system doesn't change,
743   * resulting in more scheduling fairness.
744   */



745   local_irq_disable();
746   p->time_slice = (current->time_slice + 1) >> 1;
747   /*
748   * The remainder of the first timeslice might be recovered by
749   * the parent if the child exits early enough.
750   */
751   p->first_time_slice = 1;
752   current->time_slice >>= 1;
753   p->timestamp = sched_clock();
754   if (!current->time_slice) {
755     /*
756     * This case is rare, it happens when the parent has only
757     * a single jiffy left from its timeslice. Taking the
758     * runqueue lock is not a problem.
759     */
760     current->time_slice = 1;
761     preempt_disable();
762     scheduler_tick(0, 0);
763     local_irq_enable();
764     preempt_enable();
765   } else
766     local_irq_enable();
767 }
-----------------------------------------------------------------------

Lines 740753

After disabling local interrupts, we divide the parent's timeslice between the parent and the child
using the shift operator. The new process' first timeslice is set to 1 because it hasn't been run yet
and its timestamp is initialized to the current time in nanosec units.

Lines 754767

If the parent's timeslice is 1, the division results in the parent having 0 time left to run. Because
the parent was the current process on the scheduler, we need the scheduler to choose a new
process. This is done by calling scheduler_tick() (on line 762). Preemption is disabled to ensure
that the scheduler chooses a new current process without being interrupted. Once all this is done,
we enable preemption and restore local interrupts.

At this point, the newly created process has had its scheduler-specific variables initialized and has
been given an initial timeslice of half the remaining timeslice of its parent. By forcing a process to
sacrifice a portion of the CPU time it's been allocated and giving that time to its child, the kernel
prevents processes from seizing large chunks of processor time. If processes were given a set
amount of time, a malicious process could spawn many children and quickly become a CPU hog.

After a process has been successfully initialized, and that initialization verified, do_fork() calls
wake_up_forked_process():

-----------------------------------------------------------------------
kernel/sched.c
922 /*
923 * wake_up_forked_process - wake up a freshly forked process.
924 *
925 * This function will do some initial scheduler statistics housekeeping
926 * that must be done for every newly created process.



927 */
928 void fastcall wake_up_forked_process(task_t * p)
929 {
930   unsigned long flags;
931   runqueue_t *rq = task_rq_lock(current, &flags);
932
933   BUG_ON(p->state != TASK_RUNNING);
934
935   /*
936   * We decrease the sleep average of forking parents
937   * and children as well, to keep max-interactive tasks
938   * from forking tasks that are max-interactive.
939   */
940   current->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(current) *
941     PARENT_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
942
943   p->sleep_avg = JIFFIES_TO_NS(CURRENT_BONUS(p) *
944     CHILD_PENALTY / 100 * MAX_SLEEP_AVG / MAX_BONUS);
945
946   p->interactive_credit = 0;
947
948   p->prio = effective_prio(p);
949   set_task_cpu(p, smp_processor_id());
950
951   if (unlikely(!current->array))
952     __activate_task(p, rq);
953   else {
954     p->prio = current->prio;
955     list_add_tail(&p->run_list, &current->run_list);
956     p->array = current->array;
957     p->array->nr_active++;
958     rq->nr_running++;
959   }
960   task_rq_unlock(rq, &flags);
961  }
-----------------------------------------------------------------------

Lines 930934

The first thing that the scheduler does is lock the run queue structure. Any modifications to the
run queue must be made with the lock held. We also throw a bug notice if the process isn't
marked as TASK_RUNNING, which it should be thanks to the initialization in sched_fork() (see Line
727 in kernel/sched.c shown previously).

Lines 940947

The scheduler calculates the sleep average of the parent and child processes. The sleep average is
the value of how much time a process spends sleeping compared to how much time it spends
running. It is incremented by the amount of time the process slept, and it is decremented on each
timer tick while it's running. An interactive, or I/O bound, process spends most of its time waiting
for input and normally has a high sleep average. A non-interactive, or CPU-bound, process spends
most of its time using the CPU instead of waiting for I/O and has a low sleep average. Because
users want to see results of their input, like keyboard strokes or mouse movements, interactive
processes are given more scheduling advantages than non-interactive processes. Specifically, the
scheduler reinserts an interactive process into the active priority array after its timeslice expires.
To prevent an interactive process from creating a non-interactive child process and thereby



seizing a disproportionate share of the CPU, these formulas are used to lower the parent and child
sleep averages. If the newly forked process is interactive, it soon sleeps enough to regain any
scheduling advantages it might have lost.

Line 948

The function effective_prio() modifies the process' static priority. It returns a priority between
100 and 139 (MAX_RT_PRIO to MAX__PRIO-1). The process' static priority can be modified by up to 5
in either direction based on its previous CPU usage and time spent sleeping, but it always remains
in this range. From the command line, we talk about the nice value of a process, which can range
from +19 to -20 (lowest to highest priority). A nice priority of 0 corresponds to a static priority of
120.

Line 749

The process has its CPU attribute set to the current CPU.

Lines 951960

The overview of this code block is that the new process, or child, copies the scheduling information
from its parent, which is current, and then inserts itself into the run queue in the appropriate
place. We have finished our modifications of the run queue, so we unlock it. The following
paragraph and Figure 3.13 discuss this process in more detail.

Figure 3.13. Run Queue Insertion

The pointer array points to a priority array in the run queue. If the current process isn't pointing
to a priority array, it means that the current process has finished or is asleep. In that case, the
current process' runlist field is not in the queue of the run queue's priority array, which means
that the list_add_tail() operation (on line 955) would fail. Instead, we insert the newly created
process using __activate_task(), which adds the new process to the queue without referring to



its parent.

In the normal case, when the current process is waiting for CPU time on a run queue, the process
is added to the queue residing at slot p->prio in the priority array. The array that the process was
added to has its process counter, nr_active, incremented and the run queue has its process
counter, nr_running, incremented. Finally, we unlock the run queue lock.

The case where the current process doesn't point to a priority array on the run queue is useful in
seeing how the scheduler manages the run queue and priority array attributes.

-----------------------------------------------------------------------
kernel/sched.c
366 static inline void __activate_task(task_t *p, runqueue_t *rq)
367 {
368   enqueue_task(p, rq->active);
369   rq->nr_running++;
370 }
-----------------------------------------------------------------------

__activate_task() places the given process p on to the active priority array on the run queue rq
and increments the run queue's nr_running field, which is the counter for total number of
processes that are on the run queue.

-----------------------------------------------------------------------
kernel/sched.c
311 static void enqueue_task(struct task_struct *p, prio_array_t *array)
312 {
313   list_add_tail(&p->run_list, array->queue + p->prio);
314   __set_bit(p->prio, array->bitmap);
315   array->nr_active++;
316   p->array = array;
317 }
-----------------------------------------------------------------------

Lines 311312

enqueue_task() takes a process p and places it on priority array array, while initializing aspects of
the priority array.

Line 313

The process' run_list is added to the tail of the queue located at p->prio in the priority array.

Line 314

The priority array's bitmap at priority p->prio is set so when the scheduler runs, it can see that
there is a process to run at priority p->prio.

Line 315



The priority array's process counter is incremented to reflect the addition of the new process.

Line 316

The process' array pointer is set to the priority array to which it was just added.

To recap, the act of adding a newly forked process is fairly straightforward, even though the code
can be confusing because of similar names throughout the scheduler. A process is placed at the
end of a list in a run queue's priority array at the slot specified by the process' priority. The
process then records the location of the priority array and the list it's located in within its
structure.



3.7. Wait Queues

We discussed the process transition between the states of TASK_RUNNING and TASK_INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE. Now, we look at another structure that's involved in this transition. When a process
is waiting on an external event to occur, it is removed from the run queue and placed on a wait queue.
Wait queues are doubly linked lists of wait_queue_t structures. The wait_queue_t structure is set up to hold
all the information required to keep track of a waiting task. All tasks waiting on a particular external event
are placed in a wait queue. The tasks on a given wait queue are woken up, at which point the tasks verify
the condition they are waiting for and either resume sleep or remove themselves from the wait queue and
set themselves back to TASK_RUNNING. You might recall that sys_wait4() system calls use wait queues when
a parent requests status of its forked child. Note that a task waiting for an external event (and therefore is
no longer on the run queue[4]) is either in the TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE states.

[4] A task is removed from the run queue once it sleeps and, therefore, yields control to another process.

A wait queue is a doubly linked list of wait_queue_t structures that hold pointers to the process task
structures of the processes that are blocking. Each list is headed up by a wait_queue_head_t structure,
which marks the head of the list and holds the spinlock to the list to prevent wait_queue_t additional race
conditions. Figure 3.14 illustrates wait queue implementation. We now look at the wait_queue_t and the
wait_queue_head_t structures:

-----------------------------------------------------------------------
include/linux/wait.h
19  typedef struct __wait_queue wait_queue_t;
...
23  struct __wait_queue {
24   unsigned int flags;
25  #define WQ_FLAG_EXCLUSIVE  0x01
26   struct task_struct * task;
27   wait_queue_func_t func;
28   struct list_head task_list;
29  };
30
31  struct __wait_queue_head {
32   spinlock_t lock;
33   struct list_head task_list;
34  };
35  typedef struct __wait_queue_head wait_queue_head_t;
-----------------------------------------------------------------------

Figure 3.14. Wait Queue Structures

[View full size image]



The wait_queue_t structure is comprised of the following fields:

flags. Can hold the value WQ_FLAG_EXCLUSIVE, which is set to 1, or ~WQ_FLAG_EXCLUSIVE, which would

be 0. The WQ_FLAG_EXCLUSIVE flag marks this process as an exclusive process. Exclusive and non-
exclusive processes are discussed in the next section.

task. The pointer to the task descriptor of the process being placed on the wait queue.

func. A structure holding a function used to wake the task on the wait queue. This field uses as default

default_wake_function(), which is covered in detail in the section, "Waiting on the Event."

wait_queue_func_t is defined as follows:

------------------------------------------------------------------
include/linux/wait.h
typedef int (*wait_queue_func_t)(wait_queue_t *wait, 
unsigned mode, int sync);
------------------------------------------------------------------

where wait is the pointer to the wait queue, mode is either TASK_ INTERRUPTIBLE or
TASK_UNINTERRUPTIBLE, and sync specifies if the wakeup should be synchronous.

task_list. The structure that holds pointers to the previous and next elements in the wait queue.

The structure __wait_queue_head is the head of a wait queue list and is comprised of the following fields:

lock. One lock per list allows the addition and removal of items into the wait queue to be

synchronized.

task_list. The structure that points to the first and last elements in the wait queue.

The "Wait Queues" section in Chapter 10, "Adding Your Code to the Kernel," describes an example
implementation of a wait queue. In general, the way in which a process puts itself to sleep involves a call to
one of the wait_event* macros (which is discussed shortly) or by executing the following steps, as in the
example shown in Chapter 10:



1. By declaring the wait queue, the process sleeps on by way of DECLARE_WAITQUEUE_HEAD.

2. Adding itself to the wait queue by way of add_wait_queue() or add_wait_queue_exclusive().

3. Changing its state to TASK_INTERRUPTIBLE or TASK_ UNINTERRUPTIBLE.

4. Testing for the external event and calling schedule(), if it has not occurred yet.

5. After the external event occurs, setting itself to the TASK_RUNNING state.

6. Removing itself from the wait queue by calling remove_wait_queue().

The waking up of a process is handled by way of a call to one of the wake_up macros. These wake up all
processes that belong to a particular wait queue. This places the task in the TASK_RUNNING state and places it
back on the run queue.

Let's look at what happens when we call the add_wait_queue() functions.

3.7.1. Adding to the Wait Queue

Two different functions are used to add sleeping processes into a wait queue: add_wait_queue() and
add_wait_queue_exclusive(). The two functions exist to accommodate the two types of sleeping processes.
Non-exclusive waiting processes are those that wait for the return of a condition that is not shared by other
waiting processes. Exclusive waiting processes are waiting for a condition that another waiting process
might be waiting on, which potentially generates a race condition.

The add_wait_queue() function inserts a non-exclusive process into the wait queue. A non-exclusive process
is one which will, under any circumstance, be woken up by the kernel when the event it is waiting for comes
to fruition. The function sets the flags field of the wait queue struct, which represents the sleeping process
to 0, sets the wait queue lock to avoid interrupts accessing the same wait queue from generating a race
condition, adds the structure to the wait queue list, and restores the lock from the wait queue to make it
available to other processes:

-----------------------------------------------------------------------
kernel/fork.c
93  void add_wait_queue(wait_queue_head_t *q, wait_queue_t * wait)
94  {
95   unsigned long flags;
96
97   wait->flags &= ~WQ_FLAG_EXCLUSIVE;
98   spin_lock_irqsave(&q->lock, flags);
99   __add_wait_queue(q, wait);
100   spin_unlock_irqrestore(&q->lock, flags);
101  }
-----------------------------------------------------------------------

The add_wait_queue_exclusive() function inserts an exclusive process into the wait queue. The function
sets the flags field of the wait queue struct to 1 and proceeds in much the same manner as
add_wait_queue() exclusive, with the exception that it adds exclusive processes into the queue from the tail
end. This means that in a particular wait queue, the non-exclusive processes are at the front and the
exclusive processes are at the end. This comes into play with the order in which the processes in a wait
queue are woken up, as we see when we discuss waking up sleeping processes:



-----------------------------------------------------------------------
kernel/fork.c
105  void add_wait_queue_exclusive(wait_queue_head_t *q, wait_queue_t * wait)
106  {
107   unsigned long flags;
108
109   wait->flags |= WQ_FLAG_EXCLUSIVE;
110   spin_lock_irqsave(&q->lock, flags);
111   __add_wait_queue_tail(q, wait);
112   spin_unlock_irqrestore(&q->lock, flags);
113  }
-----------------------------------------------------------------------

3.7.2. Waiting on the Event

The sleep_on(), sleep_on_timeout(), and interruptible_sleep_on() interfaces, although still supported in
2.6, will be removed for the 2.7 release. Therefore, we cover only the wait_event*() interfaces that are to
replace the sleep_on*() interfaces.

The wait_event*() interfaces include wait_event(), wait_event_ interruptible(), and
wait_event_interruptible_timeout(). Figure 3.15 shows the function skeleton calling routing.

Figure 3.15. wait_event*() Call Graph

[View full size image]

We go through and describe the interfaces related to wait_event() and mention what the differences are
with respect to the other two functions. The wait_event() interface is a wrapper around the call to
__wait_event() with an infinite loop that is broken only if the condition being waited upon returns.
wait_event_interruptible_timeout() passes a third parameter called ret of type int, which is used to
pass the timeout time.

wait_event_interruptible() is the only one of the three interfaces that returns a value. This return value is
ERESTARTSYS if a signal broke the waiting event, or 0 if the condition was met:

-----------------------------------------------------------------------
include/linux/wait.h
137  #define wait_event(wq, condition)       
138  do {            
139   if (condition)         
140    break;         
141   __wait_event(wq, condition);       



142  } while (0)
-----------------------------------------------------------------------

The __wait_event() interface does all the work around the process state change and the descriptor
manipulation:

-----------------------------------------------------------------------
include/linux/wait.h
121  #define __wait_event(wq, condition)
122  do {
123   wait_queue_t __wait;
124   init_waitqueue_entry(&__wait, current);
125
126   add_wait_queue(&wq, &__wait);
127   for (;;) {
128    set_current_state(TASK_UNINTERRUPTIBLE);
129    if (condition)
130     break;
131    schedule();
132   }
133   current->state = TASK_RUNNING;
134   remove_wait_queue(&wq, &__wait);
135  } while (0)
-----------------------------------------------------------------------

Line 124126

Initialize the wait queue descriptor for the current process and add the descriptor entry to the wait queue
that was passed in. Up to this point, __wait_event_interruptible and
__wait_event_interruptible_timeout look identical to __wait_event.

Lines 127132

This code sets up an infinite loop that will only be broken out of if the condition is met. Before blocking on
the condition, we set the state of the process to TASK_INTERRUPTIBLE by using the set_current_state
macro. Recall that this macro references the pointer to the current process so we do not need to pass in the
process information. Once it blocks, it yields the CPU to the next process by means of a call to the
scheduler(). __wait_event_interruptible() differs in one large respect at this point; it sets the state field
of the process to TASK_ UNINTERRUPTIBLE and waits on a signal_pending call to the current process.
__wait_event_interruptible_timeout is much like __wait_event_ interruptible except for its call to
schedule_timeout() instead of the call to schedule() when calling the scheduler. schedule_timeout takes as
a parameter the timeout length passed in to the original wait_event_interruptible_ timeout interface.

Lines 133134

At this point in the code, the condition has been met or, in the case of the other two interfaces, a signal
might have been received or the timeout reached. The state field of the process descriptor is now set back
to TASK_RUNNING (the scheduler places this in the run queue). Finally, the entry is removed from the wait
queue. The remove_wait_queue() function locks the wait queue before removing the entry, and then it
restores the lock before returning.



3.7.3. Waking Up

A process must be woken up to verify whether its condition has been met. Note that a process might put
itself to sleep, but it cannot wake itself up. Numerous macros can be used to wake_up tasks in a wait queue
but only three main "wake_up" functions exist. The macros wake_up, wake_up_nr, wake_up_all, wake_up_
interruptible, wake_up_interruptible_nr, and wake_up_ interruptible_all all call __wake_up() with
different parameters. The macros wake_up_all_sync and wake_up_interruptible_sync both call __wake_
up_sync() with different parameters. Finally, the wake_up_locked macro defaults to the __wake_up_locked()
function:

[View full width]
-----------------------------------------------------------------------
include/linux/wait.h
116 extern void FASTCALL(__wake_up(wait_queue_head_t *q, unsigned int mode, int nr));
117 extern void FASTCALL(__wake_up_locked(wait_queue_head_t *q, unsigned int mode));
118 extern void FASTCALL(__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int
 nr));
119
120 #define wake_up(x)   __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 1)
121 #define wake_up_nr(x, nr) __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, nr)
122 #define wake_up_all(x)  __wake_up((x),TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE, 0)
123 #define wake_up_all_sync(x) __wake_up_sync((x),TASK_UNINTERRUPTIBLE |
 TASK_INTERRUPTIBLE, 0)
124 #define wake_up_interruptible(x)  __wake_up((x),TASK_INTERRUPTIBLE, 1)
125 #define wake_up_interruptible_nr(x, nr)  __wake_up((x),TASK_INTERRUPTIBLE, nr)
126 #define wake_up_interruptible_all(x) __wake_up((x),TASK_INTERRUPTIBLE, 0)
127 #define wake_up_locked(x)    __wake_up_locked((x), TASK_UNINTERRUPTIBLE  |
 TASK_INTERRUPTIBLE)
128 #define wake_up_interruptible_sync(x) __wake_up_sync((x),TASK_INTERRUPTIBLE, 1
129 )
-----------------------------------------------------------------------

Let's look at __wake_up():

-----------------------------------------------------------------------
kernel/sched.c
2336  void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
2337  {
2338    unsigned long flags;
2339
2340    spin_lock_irqsave(&q->lock, flags);
2341    __wake_up_common(q, mode, nr_exclusive, 0);
2342    spin_unlock_irqrestore(&q->lock, flags);
2343  }
-----------------------------------------------------------------------

Line 2336

The parameters passed to __wake_up include q, the pointer to the wait queue; mode, the indicator of the
type of thread to wake up (this is identified by the state of the thread); and nr_exclusive, which indicates
whether it's an exclusive or non-exclusive wakeup. An exclusive wakeup (when nr_exclusive = 0) wakes
up all the tasks in the wait queue (both exclusive and non-exclusive), whereas a non-exclusive wakeup
wakes up all the non-exclusive tasks and only one exclusive task.



Lines 2340, 2342

These lines set and unset the wait queue's spinlock. Set the lock before calling __wake_up_common()to ensure
no race condition comes up.

Line 2341

The function __wake_up_common() performs the bulk of the wakeup function:

-----------------------------------------------------------------------
kernel/sched.c
2313  static void __wake_up_common(wait_queue_head_t *q, 
unsigned int mode, int nr_exclusive, int sync)
2314  {
2315   struct list_head *tmp, *next;
2316
2317   list_for_each_safe(tmp, next, &q->task_list) {
2318      wait_queue_t *curr;
2319      unsigned flags; 
2320     curr = list_entry(tmp, wait_queue_t, task_list);
2321      flags = curr->flags;
2322      if (curr->func(curr, mode, sync) &&
2323       (flags & WQ_FLAG_EXCLUSIVE) &&
2324       !--nr_exclusive)
2325        break;
2326    }
2327  }
-----------------------------------------------------------------------

Line 2313

The parameters passed to __wake_up_common are q, the pointer to the wait queue; mode, the type of thread
to wake up; nr_exclusive, the type of wakeup previously shown; and sync, which states whether the
wakeup should be synchronous.

Line 2315

Here, we set temporary pointers for list-entry manipulation.

Line 2317

The list_for_each_safe macro scans each item of the wait queue. This is the beginning of our loop.

Line 2320

The list_entry macro returns the address of the wait queue structure held by the tmp variable.

Line 2322



The wait_queue_t's func field is called. By default, this calls default_wake_function(), which is shown here:

-----------------------------------------------------------------------
kernel/sched.c
2296  int default_wake_function(wait_queue_t *curr, unsigned mode, 
int sync)
2297  {
2298   task_t *p = curr->task;
2299   return try_to_wake_up(p, mode, sync);
2300  }
-----------------------------------------------------------------------

This function calls try_to_wake_up() (kernel/sched.c) on the task pointed to by the wait_queue_t structure.
This function performs the bulk of the work of waking up a process, including putting it on the run queue.

Lines 23222325

The loop terminates if the process being woken up is the first exclusive process. This makes sense if we
realize that all the exclusive processes are queued at the end of the wait queue. After we encounter the first
exclusive task in the wait queue all remaining tasks will also be exclusive so we do not want to wake them
and we break out of the loop.



3.8. Asynchronous Execution Flow

We mentioned that processes can transition from one state to another by means of interrupts, for instance
going from TASK_INTERRUPTIBLE to TASK_RUNNING. One of the ways this is attained is by means of asynchronous
execution which includes exceptions and interrupts. We have mentioned that processes move in and out of user
and kernel mode. We will now go into a description of how exceptions work and follow it up with an explanation
of how interrupts work.

3.8.1. Exceptions

Exceptions, also known as synchronous interrupts, are events that occur entirely within the processor's
hardware. These events are synchronous to the execution of the processor; that is, they occur not during but
after the execution of a code instruction. Examples of processor exceptions include the referencing of a virtual
memory location, which is not physically there (known as a page fault) and a calculation that results in a
divide by 0. The important thing to note with exceptions (sometimes called soft irqs) is that they typically
happen after an intruction's execution. This differentiates them from external or asynchronous events, which
are discussed later in Section 3.8.2, "Interrupts."

Most modern processors (the x86 and the PPC included) allow the programmer to initiate an exception by
executing certain instructions. These instructions can be thought of as hardware-assisted subroutine calls. An
example of this is the system call.

3.8.1.1. System Calls

Linux provides user mode programs with entry points into the kernel by which services or hardware access can
be requested from the kernel. These entry points are standardized and predefined in the kernel. Many of the C
library routines available to user mode programs, such as the fork() function in Figure 3.9, bundle code and
one or more system calls to accomplish a single function. When a user process calls one of these functions,
certain values are placed into the appropriate processor registers and a software interrupt is generated. This
software interrupt then calls the kernel entry point. Although not recommended, system calls (syscalls) can also
be accessed from kernel code. From where a syscall should be accessed is the source of some discussion
because syscalls called from the kernel can have an improvement in performance. This improvement in
performance is weighed against the added complexity and maintainability of the code. In this section, we
explore the "traditional" syscall implementation where syscalls are called from user space.

Syscalls have the ability to move data between user space and kernel space. Two functions are provided for
this purpose: copy_to_user() and copy_from_user(). As in all kernel programming, validation (of pointers,
lengths, descriptors, and permissions) is critical when moving data. These functions have the validation built in.
Interestingly, they return the number of bytes not transferred.

By its nature, the implementation of the syscall is hardware specific. Traditionally, with Intel architecture, all
syscalls have used software interrupt 0x80.[5]

[5] In an effort to gain in performance with the newer (PIV+) Intel processors, work has been done with the implementation of vsyscalls.

vsyscalls are based on calls to user space memory (in particular, a "vsyscall" page) and use the faster sysenter and sysexit instructions (when

available) over the traditional int 0x80 call. Similar performance work is also being pursued on many PPC implementations.

Parameters of the syscall are passed in the general registers with the unique syscall number in %eax. The
implementation of the system call on the x86 architecture limits the number of parameters to 5. If more than 5
are required, a pointer to a block of parameters can be passed. Upon execution of the assembler instruction int
0x80, a specific kernel mode routine is called by way of the exception-handling capabilities of the processor.
Let's look at an example of how a system call entry is initialized:



set_system_gate(SYSCALL_VECTOR,&system_call);

This macro creates a user privilege descriptor at entry 128 (SYSCALL_VECTOR), which points to the address of the
syscall handler in entry.S (system_call).

As we see in the next section on interrupts, PPC interrupt routines are "anchored" to certain memory locations;
the external interrupt handler is anchored to address 0x500, the system timer is anchored to address 0x900,
and so on. The system call instruction sc vectors to address 0xc00. Let's explore the code segment from head.S
where the handler is set for the PPC system call:

-----------------------------------------------------------------------
arch/ppc/kernel/head.S
484  /* System call */
485   . = 0xc00
486  SystemCall:
487   EXCEPTION_PROLOG
488   EXC_XFER_EE_LITE(0xc00, DoSyscall)
-----------------------------------------------------------------------

Line 485

The anchoring of the address. This line tells the loader that the next instruction is located at address 0xc00.
Because labels follow similar rules, the label SystemCall along with the first line of code in the macro
EXCEPTION_PROLOG both start at address 0xc00.

Line 488

This macro dispatches the DoSyscall() handler.

For both architectures, the syscall number and any parameters are stored in the processor's registers.

When the x86 exception handler processes the int 0x80, it indexes into the system call table. The file
arch/i386/kernel/entry.S contains low-level interrupt handling routines and the system call table,
sys_call_table. Likewise for the PPC, the syscall low-level routines are in arch/ppc/kernel/entry.S and the
sys_call_table is in arch/ppc/kernel/misc.S.

The syscall table is an assembly code implementation of an array in C with 4-byte entries. Each entry is
initialized to the address of a function. By convention, we must prepend the name of our function with "sys_."
Because the position in the table determines the syscall number, we must add the name of our function to the
end of the list. Even with different assembly languages, the tables are nearly identical between the
architectures. However, the PPC table has only 255 entries at the time of this writing, while the x86 table has
275.

The files include/asm-i386/unistd.h and include/asm-ppc/unistd.h associate the system calls with their
positional numbers in the sys_call_table. The "sys_" is replaced with a "__NR_" in this file. This file also has
macros to assist the user program in loading the registers with parameters. (See the assembly programming
section in Chapter 2, "Exploration Toolkit," for a crash course in C and assembler variables and inline
assembler.)

Let's look at how we would add a system call named sys_ourcall. The system call must be added to the
sys_call_table. The addition of our system call into the x86 sys_call_table is shown here:

-----------------------------------------------------------------------



arch/i386/kernel/entry.S
607  .data
608  ENTRY(sys_call_table)
609  .long sys_restart_syscall /* 0 - old "setup()" system call, used for restarting*/
...
878  .long sys_tgkill   /* 270 */
879  .long sys_utimes
880  .long sys_fadvise64_64
881  .long sys_ni_syscall   /* sys_vserver */
882  .long sys_ourcall   /* our syscall will be 274 */
883
884  nr_syscalls=(.-sys_call_table)/4
----------------------------------------------------------------------- 

In x86, our system call would be number 274. If we were to add a syscall named sys_ourcall in PPC, the entry
would be number 255. Here, we show how it would look when we introduce the association of our system call
with its positional number into include/asm-ppc/unistd.h. __NR_ourcall is number-entry number 255 at the
end of the table:

-----------------------------------------------------------------------
include/asm-ppc/unistd.h
/*
 * This file contains the system call numbers.
 */

#define __NR_restart_syscall  0
#define __NR_exit   1
#define __NR_fork   2
...
#define __NR_utimes   271
#define __NR_fadvise64_64  272
#define __NR_vserver  273
#define __NR_ourcall   274

/* #define NR_syscalls 274  this is the old value before our syscall */
#define NR_syscalls 275
-----------------------------------------------------------------------

The next section discusses interrupts and the hardware involved to alert the kernel to the need for handling
them. Where exceptions as a group diverge somewhat is what their handler does in response to being called.
Although exceptions travel the same route as interrupts at handling time, exceptions tend to send signals back
to the current process rather than work with hardware devices.

3.8.2. Interrupts

Interrupts are asynchronous to the execution of the processor, which means that interrupts can happen in
between instructions. The processor receives notification of an interrupt by way of an external signal to one of
its pins (INTR or NMI). This signal comes from a hardware device called an interrupt controller. Interrupts and
interrupt controllers are hardware and system specific. From architecture to architecture, many differences
exist in how interrupt controllers are designed. This section touches on the major hardware differences and
functions tracing the kernel code from the architecture-independent to the architecture-dependent parts.

An interrupt controller is needed because the processor must be in communication with one of several
peripheral devices at any given moment. Older x86 computers used a cascaded pair of Intel 8259 interrupt



controllers configured in such a way[6] that the processor was able to discern between 15 discrete interrupt
lines (IRQ) (see Figure 3.16).When the interrupt controller has a pending interrupt (for example, when you
press a key), it asserts its INT line, which is connected to the processor. The processor then acknowledges this
signal by asserting its acknowledge line connected to the INTA line on the interrupt controller. At this moment,
the interrupt controller transfers the IRQ data to the processor. This sequence is known as an interrupt-
acknowledge cycle.

[6] An IRQ from the first 8259 (usually IRQ2) is connected to the output of the second 8259.

Figure 3.16. Cascaded Interrupt Controllers

Newer x86 processors have a local Advanced Programmable Interrupt Controller (APIC). The local APIC (which
is built into the processor package) receives interrupt signals from the following:

Processor's interrupt pins (LINT0, LINT1)

Internal timer

Internal performance monitor

Internal temperature sensor

Internal APIC error

Another processor (inter-processor interrupts)

An external I/O APIC (via an APIC bus on multiprocessor systems)

After the APIC receives an interrupt signal, it routes the signal to the processor core (internal to the processor
package). The I/O APIC shown in Figure 3.17 is part of a processor chipset and is designed to receive 24
programmable interrupt inputs.

Figure 3.17. I/O APIC



The x86 processors with local APIC can also be configured with 8259 type interrupt controllers instead of the
I/O APIC architecture (or the I/O APIC can be configured to interface to an 8259 controller). To find out if a
system is using the I/O APIC architecture, enter the following on the command line:

lkp:~# cat /proc/interrupts

If you see I/O-APIC listed, it is in use. Otherwise, you see XT-PIC, which means it is using the 8259 type
architecture.

The PowerPC interrupt controllers for the Power Mac G4 and G5 are integrated into the Key Largo and K2 I/O
controllers. Entering this on the command line:

lkp:~# cat /proc/interrupts

on a G4 machine yields OpenPIC, which is an Open Programmable Interrupt Controller standard initiated by
AMD and Cyrix in 1995 for multiprocessor systems. MPIC is the IBM implementation of OpenPIC, and is used in
several of their CHRP designs. Old-world Apple machines had an in-house interrupt controller and, for the 4xx
embedded processors, the interrupt controller core is integrated into the ASIC chip.

Now that we have had the necessary discussion of how, why, and when interrupts are delivered to the kernel
by the hardware, we can analyze a real-world example of the kernel handling the Hardware System Timer
interrupt and expand on where the interrupt is delivered. As we go through the System Timer code, we see that
at interrupt time, the hardware-to-software interface is implemented in both the x86 and PPC architectures
with jump tables that select the proper handler code for a given interrupt.

Each interrupt of the x86 architecture is assigned a unique number or vector. At interrupt time, this vector is
used to index into the Interrupt Descriptor Table (IDT). (See the Intel Programmer's Reference for the
format of the x86 gate descriptor.) The IDT allows the hardware to assist the software with address resolution
and privilege checking of handler code at interrupt time. The PPC architecture is somewhat different in that it
uses an interrupt table created at compile time to execute the proper interrupt handler. (Later in this section,
there is more on the software aspects of initialization and use of the jump tables, when we compare x86 and
PPC interrupt handling for the system timer.) The next section discusses interrupt handlers and their
implementation. We follow that with a discussion of the system timer as an example of the Linux
implementation of interrupts and their associated handlers.



We now talk about the different kinds of interrupt handlers.

3.8.2.1. Interrupt Handlers

Interrupt and exception handlers look much like regular C functions. They mayand often docall hardware-
specific assembly routines. Linux interrupt handlers are broken into a high-performance top half and a low-
performance bottom half:

Top half. Must execute as quickly as possible. Top-half handlers, depending on how they are registered,
can run with all local (to a given processor) interrupts disabled (a fast handler). Code in a top-half handler
needs to be limited to responding directly to the hardware and/or performing time-critical tasks. To
remain in the top-half handler for a prolonged period of time could significantly impact system
performance. To keep performance high and latency (which is the time it takes to acknowledge a device)
low, the bottom-half architecture was introduced.

Bottom half. Allows the handler writer to delay the less critical work until the kernel has more time.[7]

Remember, the interrupt came in asynchronously with the execution of the system; the kernel might have
been doing something more time critical at that moment. With the bottom-half architecture, the handler
writer can have the kernel run the less critical handler code at a later time.

[7] Earlier versions of Linux used a top-half/bottom-half handler for the system timer. It has since been rewritten to be a high-

performance top half only.

Table 3.8 illustrates the four most common methods of bottom-half interrupt handling.

Table 3.8. Bottom-Half Interrupt Handling Methods

"Old" bottom
halves

These pre-SMP handlers are being phased out because of the
fact that only one bottom half can run at a time regardless of the
number of processors. This system has been removed in the 2.6
kernel and is mentioned only for reference.

Work queues The top-half code is said to run in interrupt context, which
means it is not associated with any process. With no process
association, the code cannot sleep or block. Work queues run in
process context and have the abilities of any kernel thread.
Work queues have a rich set of functions for creation,
scheduling, canceling, and so on. For more information on work
queues, see the "Work Queues and Interrupts" section in
Chapter 10.

Softirqs Softirqs run in interrupt context and are similar to bottom halves
except that softirqs of the same type can run on multiple
processors simultaneously. Only 32 softirqs are available in the
system. The system timer uses softirqs.

Tasklets Similar to softirqs except that no limit exists. All tasklets are
funneled through one softirq, and the same tasklet cannot run
simultaneously on multiple processors. The tasklet interface is
simpler to use and implement compared to softirqs.

3.8.2.2. IRQ Structures

Three main structures contain all the information related to IRQ's: irq_desc_t, irqaction, and



hw_interrupt_type. Figure 3.18 illustrates how they interrelate.

Figure 3.18. IRQ Structures

[View full size image]

Struct irq_desc_t

The irq_desc_t structure is the primary IRQ descriptor. irq_desc_t structures are stored in a globally
accessible array of size NR_IRQS (whose value is architecture dependent) called irq_desc.

-----------------------------------------------------------------------
include/linux/irq.h
60  typedef struct irq_desc {
61   unsigned int status;   /* IRQ status */
62   hw_irq_controller *handler;
63   struct irqaction *action; /* IRQ action list */
64   unsigned int depth;   /* nested irq disables */
65   unsigned int irq_count;  /* For detecting broken interrupts */
66   unsigned int irqs_unhandled;
67   spinlock_t lock;
68  } ____cacheline_aligned irq_desc_t;
69
70  extern irq_desc_t irq_desc [NR_IRQS];
-----------------------------------------------------------------------

Line 61

The value of the status field is determined by setting flags that describe the status of the IRQ line. Table 3.9
shows the flags.

Table 3.9. irq_desc_t->field Flags



Flag Description

IRQ_INPROGRESS Indicates that we are in the process of executing the handler
for that IRQ line.

IRQ_DISABLED Indicates that the IRQ is disabled by software so that its
handler is not executed even if the physical line itself is
enabled.

IRQ_PENDING A middle state that indicates that the occurrence of the
interrupt has been acknowledged, but the handler has not
been executed.

IRQ_REPLAY The previous IRQ has not been acknowledged.

IRQ_AUTODETECT The state the IRQ line is set when being probed.

IRQ_WAITING Used when probing.

IRQ_LEVEL The IRQ is level triggered as opposed to edge triggered.

IRQ_MASKED This flag is unused in the kernel code.

IRQ_PER_CPU Used to indicate that the IRQ line is local to the CPU calling.

Line 62

The handler field is a pointer to the hw_irq_controller. The hw_irq_ controller is a typedef for
hw_interrupt_type structure, which is the interrupt controller descriptor used to describe low-level hardware.

Line 63

The action field holds a pointer to the irqaction struct. This structure, described later in more detail, keeps
track of the interrupt handler routine to be executed when the IRQ is enabled.

Line 64

The depth field is a counter of nested IRQ disables. The IRQ_DISABLE flag is cleared only when the value of this
field is 0.

Lines 6566

The irq_count field, along with the irqs_unhandled field, identifies IRQs that might be stuck. They are used in
x86 and PPC64 in the function note_interrupt() (arch/<arch>/kernel/irq.c).

Line 67

The lock field holds the spinlock to the descriptor.

Struct irqaction

The kernel uses the irqaction struct to keep track of interrupt handlers and the association with the IRQ. Let's
look at the structure and the fields we will view in later sections:



-----------------------------------------------------------------------
include/linux/interrupt.h
35  struct irqaction {
36   irqreturn_t (*handler)  (int, void *, struct pt_regs *);
37   unsigned long flags;
38   unsigned long mask;
39   const char *name;
40   void *dev_id;
41   struct irqaction *next;
42  };
------------------------------------------------------------------------ 

Line 36

The field handler is a pointer to the interrupt handler that will be called when the interrupt is encountered.

Line 37

The flags field can hold flags such as SA_INTERRUPT, which indicates the interrupt handler will run with all
interrupts disabled, or SA_SHIRQ, which indicates that the handler might share an IRQ line with another handler.

Line 39

The name field holds the name of the interrupt being registered.

Struct hw_interrupt_type

The hw_interrupt_type or hw_irq_controller structure contains all the data related to the system's interrupt
controller. First, we look at the structure, and then we look at how it is implemented for a couple of interrupt
controllers:

-----------------------------------------------------------------------
include/linux/irq.h
40  struct hw_interrupt_type {
41   const char * typename;
42   unsigned int (*startup)(unsigned int irq);
43   void (*shutdown)(unsigned int irq);
44   void (*enable)(unsigned int irq);
45   void (*disable)(unsigned int irq);
46   void (*ack)(unsigned int irq);
47   void (*end)(unsigned int irq);
48   void (*set_affinity)(unsigned int irq, cpumask_t dest);
49  };
------------------------------------------------------------------------

Line 41

The typename holds the name of the Programmable Interrupt Controller (PIC). (PICs are discussed in detail



later.)

Lines 4248

These fields hold pointers to PIC-specific programming functions.

Now, let's look at our PPC controller. In this case, we look at the PowerMac's PIC:

-----------------------------------------------------------------------
arch/ppc/platforms/pmac_pic.c
170  struct hw_interrupt_type pmac_pic = {
171   " PMAC-PIC ",
172   NULL,
173   NULL,
174   pmac_unmask_irq,
175   pmac_mask_irq,
176   pmac_mask_and_ack_irq,
177   pmac_end_irq,
178   NULL
179  };
------------------------------------------------------------------------

As you can see, the name of this PIC is PMAC-PIC, and it has four of the six functions defined. The
pmac_unamsk_irq and the pmac_mask_irq functions enable and disable the IRQ line, respectively. The function
pmac_mask_and_ack_irq acknowledges that an IRQ has been received, and pmac_end_irq takes care of cleaning
up when we are done executing the interrupt handler.

-----------------------------------------------------------------------
arch/i386/kernel/i8259.c
59  static struct hw_interrupt_type i8259A_irq_type = {
60   "XT-PIC",
61   startup_8259A_irq,
62   shutdown_8259A_irq,
63   enable_8259A_irq,
64   disable_8259A_irq,
65   mask_and_ack_8259A,
66   end_8259A_irq,
67   NULL
68  };
------------------------------------------------------------------------

The x86 8259 PIC is called XT-PIC, and it defines the first five functions. The first two, startup_8259A_irq and
shutdown_8259A_irq, start up and shut down the actual IRQ line, respectively.

3.8.2.3. An Interrupt Example: System Timer

The system timer is the heartbeat for the operating system. The system timer and its interrupt are initialized
during system initialization at boot-up time. The initialization of an interrupt at this time uses interfaces
different to those used when an interrupt is registered at runtime. We point out these differences as we go
through the example.

As more complex support chips are produced, the kernel designer has gained several options for the source of



the system timer. The most common timer implementation for the x86 architecture is the Programmable
Interval Time (PIT) and, for the PowerPC, it is the decrementer.

The x86 architecture has historically implemented the PIT with the Intel 8254 timer. The 8254 is used as a 16-
bit down counterinterrupting on terminal count. That is, a value is written to a register and the 8254
decrements this value until it gets to 0. At that moment, it activates an interrupt to the IRQ 0 input on the
8259 interrupt controller, which was previously mentioned in this section.

The system timer implemented in the PowerPC architecture is the decrementer clock, which is a 32-bit down
counter that runs at the same frequency as the CPU. Similar to the 8259, it activates an interrupt at its
terminal count. Unlike the Intel architecture, the decrementer is built in to the processor.

Every time the system timer counts down and activates an interrupt, it is known as a tick. The rate or
frequency of this tick is set by the HZ variable.

HZ

HZ is a variation on the abbreviation for Hertz (Hz), named for Heinrich Hertz (1857-1894). One
of the founders of radio waves, Hertz was able to prove Maxwell's theories on electricity and
magnetism by inducing a spark in a wire loop. Marconi then built on these experiments leading to
modern radio. In honor of the man and his work the fundamental unit of frequency is named after
him; one cycle per second is equal to one Hertz.

HZ is defined in include/asm-xxx/param.h. Let's take a look at what these values are in our x86
and PPC.

[View full width]
-----------------------------------------------------------------------

include/asm-i386/param.h
005  #ifdef __KERNEL__
006  #define HZ           1000           /* internal
kernel timer frequency */
-----------------------------------------------------------------------

-----------------------------------------------------------------------

include/asm-ppc/param.h
008  #ifdef __KERNEL__
009  #define HZ           100           /* internal
kernel timer frequency */
-----------------------------------------------------------------------

The value of HZ has been typically 100 across most architectures, but as machines become faster,
the tick rate has increased on certain models. Looking at the two main architectures we are using
for this book, we can see (above) the default tick rate for both architectures is 1000. The period
of 1 tick is 1/HZ. Thus the period (or time between interrupts) is 1 millisecond. We can see that as
the value of HZ goes up, we get more interrupts in a given amount of time. While this yields
better resolution from the timekeeping functions, it is important to note that more of the
processor time is spent answering the system timer interrupts in the kernel. Taken to an extreme,
this could slow the system response to user mode programs. As with all interrupt handling, finding
the right balance is key.



We now begin walking through the code with the initialization of the system timer and its associated interrupts.
The handler for the system timer is installed near the end of kernel initialization; we pick up the code segments
as start_kernel(), the primary initialization function executed at system boot time, first calls trap_init(),
then init_IRQ(), and finally time_init():

init/main.c
386  asmlinkage void __init start_kernel(void)
387  {
...
413  trap_init();
...
415  init_IRQ();
...
419  time_init();
...
  }
-----------------------------------------------------------------------

Line 413

The macro trap_init() initializes the exception entries in the Interrupt Descriptor Table (IDT) for the x86
architecture running in protected mode. The IDT is a table set up in memory. The address of the IDT is set in
the processor's IDTR register. Each element of the interrupt descriptor table is one of three gates. A gate is an
x86 protected mode address that consists of a selector, an offset, and a privilege level. The gate's purpose is to
transfer program control. The three types of gates in the IDT are system, where control is transferred to
another task; interrupt, where control is passed to an interrupt handler with interrupts disabled; and trap,
where control is passed to the interrupt handler with interrupts unchanged.

The PPC is architected to jump to specific addresses, depending on the exception. The function trap_init() is a
no-op for the PPC. Later in this section, as we continue to follow the system timer code, we will contrast the
PPC interrupt table with the x86 interrupt descriptor table initialized next.

----------------------------------------------------------------------- 
arch/i386/kernel/traps.c
900  void __init trap_init(void)
901  {
902  #ifdef CONFIG_EISA
903   if (isa_readl(0x0FFFD9) == 'E'+('I'<<8)+('S'<<16)+('A'<<24)) {
904    EISA_bus = 1;
905   }
906  #endif
907
908  #ifdef CONFIG_X86_LOCAL_APIC
909   init_apic_mappings();
910  #endif
911
912   set_trap_gate(0,&divide_error);
913   set_intr_gate(1,&debug);
914   set_intr_gate(2,&nmi);
915   set_system_gate(3,&int3);  /* int3-5 can be called from all */
916   set_system_gate(4,&overflow);
917   set_system_gate(5,&bounds);
918   set_trap_gate(6,&invalid_op);
919   set_trap_gate(7,&device_not_available);
920   set_task_gate(8,GDT_ENTRY_DOUBLEFAULT_TSS);
921   set_trap_gate(9,&coprocessor_segment_overrun);



922   set_trap_gate(10,&invalid_TSS);
923   set_trap_gate(11,&segment_not_present);
924   set_trap_gate(12,&stack_segment);
925   set_trap_gate(13,&general_protection);
926   set_intr_gate(14,&page_fault);
927   set_trap_gate(15,&spurious_interrupt_bug);
928   set_trap_gate(16,&coprocessor_error);
929   set_trap_gate(17,&alignment_check);
930  #ifdef CONFIG_X86_MCE
931   set_trap_gate(18,&machine_check);
932  #endif
933   set_trap_gate(19,&simd_coprocessor_error);
934
935   set_system_gate(SYSCALL_VECTOR,&system_call) ;
936
937   /*
938   * default LDT is a single-entry callgate to lcall7 for iBCS
939   * and a callgate to lcall27 for Solaris/x86 binaries
940   */
941   set_call_gate(&default_ldt[0],lcall7);
942   set_call_gate(&default_ldt[4],lcall27);
943
944   /*
945   * Should be a barrier for any external CPU state.
846   */
947   cpu_init();
948
949   trap_init_hook();
950  }
----------------------------------------------------------------------- 

Line 902

Look for EISA signature. isa_readl() is a helper routine that allows reading the EISA bus by mapping I/O with
ioremap().

Lines 908910

If an Advanced Programmable Interrupt Controller (APIC) exists, add its address to the system fixed address
map. See include/asm-i386/fixmap.h for "special" system address helper routines;
set_fixmap_nocache().init_apic_mappings() uses this routine to set the physical address of the APIC.

Lines 912935

Initialize the IDT with trap gates, system gates, and interrupt gates.

Lines 941942

These special intersegment call gates support the Intel Binary Compatibility Standard for running other UNIX
binaries on Linux.

Line 947



For the currently executing CPU, initialize its tables and registers.

Line 949

Used to initialize system-specific hardware, such as different kinds of APICs. This is a no-op for most x86
platforms.

Line 415

The call to init_IRQ() initializes the hardware interrupt controller. Both x86 and PPC architectures have several
device implementations. For the x86 architecture, we explore the i8259 device. For PPC, we explore the code
associated with the Power Mac.

The PPC implementation of init_IRQ() is in arch/ppc/kernel/irq.c. Depending on the particular hardware
configuration, init_IRQ() calls one of several routines to initialize the PIC. For a Power Mac configuration, the
function pmac_pic_init() in arch/ppc/platforms/pmac_pic.c is called for the G3, G4, and G5 I/O controllers.
This is a hardware-specific routine that tries to identify the type of I/O controller and set it up appropriately. In
this example, the PIC is part of the I/O controller device. The process for interrupt initialization is similar to x86,
with the minor difference being the system timer is not started in the PPC version of init_IRQ(), but rather in
the time_init() function, which is covered later in this section.

The x86 architecture has fewer options for the PIC. As previously discussed, the older systems use the
cascaded 8259, while the later systems use the IOAPIC architecture. This code explores the APIC with the
emulated 8259 type controllers:

----------------------------------------------------------------------- 
arch/i386/kernel/i8259.c
342  void __init init_ISA_irqs (void)
343  {
344   int i;
345  #ifdef CONFIG_X86_LOCAL_APIC
346   init_bsp_APIC();
347  #endif
348   init_8259A(0);
...
351   for (i = 0; i < NR_IRQS; i++) {
352    irq_desc[i].status = IRQ_DISABLED;
353    irq_desc[i].action = 0;
354    irq_desc[i].depth = 1;
355  
356    if (i < 16) {
357     /*
358      * 16 old-style INTA-cycle interrupts:
359      */
360     irq_desc[i].handler = &i8259A_irq_type;
361    } else {
362     /*
363      * 'high' PCI IRQs filled in on demand
364      */
365     irq_desc[i].handler = &no_irq_type;
366    }
367   }
368  }
...
409



410  void __init init_IRQ(void)
411  {
412   int i;
413
414   /* all the set up before the call gates are initialized */
415   pre_intr_init_hook();
...
422  for (i = 0; i < NR_IRQS; i++) {
423   int vector = FIRST_EXTERNAL_VECTOR + i;
424   if (vector != SYSCALL_VECTOR) 
425    set_intr_gate(vector, interrupt[i]) ;
426  }
...
431  intr_init_hook();
...
437  setup_timer();
...
}
----------------------------------------------------------------------- 

Line 410

This is the function entry point called from start_kernel(), which is the primary kernel initialization function
called at system startup.

Lines 342348

If the local APIC is available and desired, initialize it and put it in virtual wire mode for use with the 8259. Then,
initialize the 8259 device using register I/O in init_8259A(0).

Lines 422426

On line 424, syscalls are not included in this loop because they were already installed earlier in TRap_init().
Linux uses an Intel interrupt gate (kernel-initiated code) as the descriptor for interrupts. This is set with the
set_intr_gate() macro (on line 425). Exceptions use the Intel system gate and trap gate set by the
set_system_gate() and set_trap_gate(), respectively. These macros can be found in
arch/i386/kernel/traps.c.

Line 431

Set up interrupt handlers for the local APIC (if used) and call setup_irq() in irq.c for the cascaded 8259.

Line 437

Start the 8253 PIT using register I/O.

Line 419

Now, we follow time_init() to install the system timer interrupt handler for both PPC and x86. In PPC, the
system timer (abbreviated for the sake of this discussion) initializes the decrementer:



----------------------------------------------------------------------- 
arch/ppc/kernel/time.c
void __init time_init(void)
{
...
317   ppc_md.calibrate_decr();
...
351   set_dec(tb_ticks_per_jiffy);
...
}
----------------------------------------------------------------------- 

Line 317

Figure the proper count for the system HZ value.

Line 351

Set the decrementer to the proper starting count.

The interrupt architecture of the PowerPC and its Linux implementation does not require the installation of the
timer interrupt. The decrementer interrupt vector comes in at 0x900. The handler call is hard coded at this
location and it is not shared:

----------------------------------------------------------------------- 
arch/ppc/kernel/head.S
  /* Decrementer */
479  EXCEPTION(0x900, Decrementer, timer_interrupt, EXC_XFER_LITE)
-----------------------------------------------------------------------

More detail on the EXCEPTION macro for the decrementer is given later in this section. The handler for the
decrementer is now ready to be executed when the terminal count is reached.

The following code snippets outline the x86 system timer initialization:

----------------------------------------------------------------------- 
arch/i386/kernel/time.c
void __init time_init(void)

{
...
340   time_init_hook();
}
-----------------------------------------------------------------------

The function time_init() flows down to time_init_hook(), which is located in the machine-specific setup file
setup.c:



----------------------------------------------------------------------- 
arch/i386/machine-default/setup.c
072  static struct irqaction irq0 = { timer_interrupt, SA_INTERRUPT, 0, "timer", NULL, NULL};
...
081  void __init time_init_hook(void)
082  {
083   setup_irq(0, &irq0);
084  }
-----------------------------------------------------------------------

Line 72

We initialize the irqaction struct that corresponds to irq0.

Lines 8184

The function call setup_irq(0, &irq0) puts the irqaction struct containing the handler timer_interrupt() on
the queue of shared interrupts associated with irq0.

This code segment has a similar effect to calling request_irq() for the general case handler (those not loaded
at kernel initialization time). The initialization code for the timer interrupt took a shortcut to get the handler into
irq_desc[]. Runtime code uses disable_irq(), enable_irq(), request_irq(), and free_irq() in irq.c. All
these routines are utilities to work with IRQs and touch an irq_desc struct at one point.

Interrupt Time

For PowerPC, the decrementer is internal to the processor and has its own interrupt vector at 0x900. This
contrasts the x86 architecture where the PIT is an external interrupt coming in from the interrupt controller.
The PowerPC external controller comes in on vector 0x500. A similar situation would arise in the x86
architecture if the system timer were based on the local APIC.

Tables 3.10 and 3.11 describe the interrupt vector tables of the x86 and PPC architectures, respectively.

Table 3.10. x86 Interrupt Vector Table



Vector Number/IRQ Description

0 Divide error

1 Debug extension

2 NMI interrupt

3 Breakpoint

4 INTO-detected overflow

5 BOUND range exceeded

6 Invalid opcode

7 Device not available

8 Double fault

9 Coprocessor segment overrun (reserved)

10 Invalid task state segment

11 Segment not present

12 Stack fault

13 General protection

14 Page fault

15 (Intel reserved. Do not use.)

16 Floating point error

17 Alignment check

18 Machine check*

1931 (Intel reserved. Do not use.)

32255 Maskable interrupts

Table 3.11. PPC Offset of Interrupt Vector



Offset (Hex) Interrupt Type

00000 Reserved

00100 System reset

00200 Machine check

00300 Data storage

00400 Instruction storage

00500 External

00600 Alignment

00700 Program

00800 Floating point unavailable

00900 Decrementer

00A00 Reserved

00B00 Reserved

00C00 System call

00D00 Trace

00E00 Floating point assist

00E10 Reserved

… …

00FFF Reserved

01000 Reserved, implementation specific

… …

02FFF (End of interrupt vector locations)

Note the similarities between the two architectures. These tables represent the hardware. The software
interface to the Intel exception interrupt vector table is the Interrupt Descriptor Table (IDT) that was previously
mentioned in this chapter.

As we proceed, we can see how the Intel architecture handles a hardware interrupt by way of an IRQ, to a
jump table in entry.S, to a call gate (descriptor), to finally the handler code. Figure 3.19 illustrates this.

Figure 3.19. x86 Interrupt Flow

[View full size image]



PowerPC, on the other hand, vectors to specific offsets in memory where the code to jump to the appropriate
handler is located. As we see next, the PPC jump table in head.S is indexed by way of being fixed in memory.
Figure 3.20 illustrates this.

Figure 3.20. PPC Interrupt Flow

This should become clearer as we now explore the PPC external (offset 0x500) and timer (offset 0x900)
interrupt handlers.

Processing the PowerPC External Interrupt Vector

As previously discussed, the processor jumps to address 0x500 in the event of an external interrupt. Upon
further investigation of the EXCEPTION() macro in the file head.S, we can see the following lines of code is linked
and loaded such that it is mapped to this memory region at offset 0x500. This architected jump table has the
same effect as the x86 IDT:

-----------------------------------------------------------------------
arch/ppc/kernel/head.S
453   /* External interrupt */
454  EXCEPTION(0x500, HardwareInterrupt, do_IRQ, EXC_XFER_LITE)

The third parameter, do_IRQ(), is called next. Let's take a look at this function.
arch/ppc/kernel/irq.c
510  void do_IRQ(struct pt_regs *regs)
511  {
512  int irq, first = 1;
513  irq_enter();
...
523  while ((irq = ppc_md.get_irq(regs)) >= 0) {
524   ppc_irq_dispatch_handler(regs, irq);
525   first = 0;



526  }
527  if (irq != -2 && first)
528   /* That's not SMP safe ... but who cares ? */
529   ppc_spurious_interrupts++;
530  irq_exit();
531  }
-----------------------------------------------------------------------

Lines 513530

Indicate to the preemption code that we are in a hardware interrupt.

Line 523

Read from the interrupt controller a pending interrupt and convert to an IRQ number (until all interrupts are
handled).

Line 524

The ppc_irq_dispatch_handler() handles the interrupt. We look at this function in more detail next.

The function ppc_irq_dispatch_handler() is nearly identical to the x86 function do_IRQ():

-----------------------------------------------------------------------
arch/ppc/kernel/irq.c
428  void ppc_irq_dispatch_handler(struct pt_regs *regs, int irq)
429  {
430  int status;
431  struct irqaction *action;
432  irq_desc_t *desc = irq_desc + irq;
433
434  kstat_this_cpu.irqs[irq]++;
435  spin_lock(&desc->lock);
436  ack_irq(irq);
...
441  status = desc->status & ~(IRQ_REPLAY | IRQ_WAITING);
442  if (!(status & IRQ_PER_CPU))
443   status |= IRQ_PENDING; /* we _want_ to handle it */
...
449   action = NULL;
450   if (likely(!(status & (IRQ_DISABLED | IRQ_INPROGRESS)))) {
451     action = desc->action;
452    if (!action || !action->handler) {
453     ppc_spurious_interrupts++;
454     printk(KERN_DEBUG "Unhandled interrupt %x, disabled\n",irq);
455      /* We can't call disable_irq here, it would deadlock */
456      ++desc->depth;
457      desc->status |= IRQ_DISABLED;
458      mask_irq(irq);
459      /* This is a real interrupt, we have to eoi it,
460       so we jump to out */
461      goto out;
462      }
463      status &= ~IRQ_PENDING; /* we commit to handling */



464      if (!(status & IRQ_PER_CPU))
465      status |= IRQ_INPROGRESS; /* we are handling it */
466    }
567   desc->status = status;
...
489  for (;;) {
490   spin_unlock(&desc->lock);
491   handle_irq_event(irq, regs, action);
492   spin_lock(&desc->lock);
493
494   if (likely(!(desc->status & IRQ_PENDING)))
495    break;
496   desc->status &= ~IRQ_PENDING;
497  }
498 out:
499  desc->status &= ~IRQ_INPROGRESS;
...
511  }  
-----------------------------------------------------------------------

Line 432

Get the IRQ from parameters and gain access to the appropriate irq_desc.

Line 435

Acquire the spinlock on the IRQ descriptor in case of concurrent accesses to the same interrupt by different
CPUs.

Line 436

Send an acknowledgment to the hardware. The hardware then reacts accordingly, preventing further interrupts
of this type from being processed until this one is finished.

Lines 441443

The flags IRQ_REPLAY and IRQ_WAITING are cleared. In this case, IRQ_REPLAY indicates that the IRQ was dropped
earlier and is being resent. IRQ_WAITING indicates that the IRQ is being tested. (Both cases are outside the
scope of this discussion.) In a uniprocessor system, the IRQ_PENDING flag is set, which indicates that we commit
to handling the interrupt.

Line 450

This block of code checks for conditions under which we would not process the interrupt. If IRQ_DISABLED or
IRQ_INPROGRESS are set, we can skip over this block of code. The IRQ_DISABLED flag is set when we do not want
the system to respond to a particular IRQ line being serviced. IRQ_INPROGRESS indicates that an interrupt is
being serviced by a processor. This is used in the case a second processor in a multiprocessor system tries to
raise the same interrupt.

Lines 451462



Here, we check to see if the handler exists. If it does not, we break out and jump to the "out" label in line 498.

Lines 463465

At this point, we cleared all three conditions for not servicing the interrupt, so we are committing to doing so.
The flag IRQ_INPROGRESS is set and the IRQ_PENDING flag is cleared, which indicates that the interrupt is being
handled.

Lines 489497

The interrupt is serviced. Before an interrupt is serviced, the spinlock on the interrupt descriptor is released.
After the spinlock is released, the routine handle_irq_event() is called. This routine executes the interrupt's
handler. Once done, the spinlock on the descriptor is acquired once more. If the IRQ_PENDING flag has not been
set (by another CPU) during the course of the IRQ handling, break out of the loop. Otherwise, service the
interrupt again.

Processing the PowerPC System Timer Interrupt

As noted in timer_init(), the decrementer is hard coded to 0x900. We can assume the terminal count has
been reached and the handler timer_interrupt() in arch/ppc/kernel/time.c is called at this time:

-----------------------------------------------------------------------
arch/ppc/kernel/head.S
  /* Decrementer */
479  EXCEPTION(0x900, Decrementer, timer_interrupt, EXC_XFER_LITE)
-----------------------------------------------------------------------

Here is the timer_interrupt() function.

-----------------------------------------------------------------------
arch/ppc/kernel/time.c
145  void timer_interrupt(struct pt_regs * regs)
146  {
...
152   if (atomic_read(&ppc_n_lost_interrupts) != 0)
153    do_IRQ(regs);
154
155   irq_enter();
...
159    if (!user_mode(regs))
160     ppc_do_profile(instruction_pointer(regs));
...
165   write_seqlock(&xtime_lock);
166    
167    do_timer(regs);
...   
189  if (ppc_md.set_rtc_time(xtime.tv_sec+1 + time_offset) == 0) 
...   
195   write_sequnlock(&xtime_lock);
...
198    set_dec(next_dec);



...
208   irq_exit();
209  }
-----------------------------------------------------------------------

Line 152

If an interrupt was lost, go back and call the external handler at 0x900.

Line 159

Do kernel profiling for kernel routing debug.

Lines 165 and 195

Lock out this block of code.

Line 167

This code is the same function used in the x86 timer interrupt (coming up next).

Line 189

Update the RTC.

Line 198

Restart the decrementer for the next interrupt.

Line 208

Return from the interrupt.

The interrupted code now runs as normal until the next interrupt.

Processing the x86 System Timer Interrupt

Upon activation of an interrupt (in our example, the PIT has counted down to 0 and activated IRQ0), the
interrupt controller activates an interrupt line going into the processor. The assembly code in enTRy.S has an
entry point that corresponds to each descriptor in the IDT. IRQ0 is the first external interrupt and is vector 32 in
the IDT. The code is then ready to jump to entry point 32 in the jump table in enTRy.S:

-----------------------------------------------------------------------
arch/i386/kernel/entry.S
385  vector=0
386  ENTRY(irq_entries_start)



387  .rept NR_IRQS
388   ALIGN
389  1:  pushl $vector-256
390   jmp common_interrupt
391  .data
392  .long 1b
393  .text
394  vector=vector+1
395  .endr
396
397   ALIGN
398  common_interrupt:
399   SAVE_ALL
400   call do_IRQ
401   jmp ret_from_intr
-----------------------------------------------------------------------

This code is a fine piece of assembler magic. The repeat construct .rept (on line 387), and its closing statement
(on line 395) create the interrupt jump table at compile time. Notice that as this block of code is repeatedly
created, the vector number to be pushed at line 389 is decremented. By pushing the vector, the kernel code
now knows what IRQ it is working with at interrupt time.

When we left off the code trace for x86, the code jumps to the proper entry point in the jump table and saves
the IRQ on the stack. The code then jumps to the common handler at line 398 and calls do_IRQ()
(arch/i386/kernel/irq.c) at line 400. This function is almost identical to ppc_irq_dispatch_handler(), which
was described in the section, "Processing the PowerPC External Interrupt Vector" so we will not repeat it here.

Based on the incoming IRQ, the function do_irq() accesses the proper element of irq_desc and jumps to each
handler in the chain of action structures. Here, we have finally made it to the actual handler function for the
PIT: timer_interrupt(). See the following code segments from time.c. Maintaining the same order as in the
source file, the handler starts at line 274:

-----------------------------------------------------------------------
arch/i386/kernel/time.c
274 irqreturn_t timer_interrupt(int irq, void *dev_id, struct pt_regs *regs)
275  {
...
287   do_timer_interrupt(irq, NULL, regs);
...
290   return IRQ_HANDLED;
291  }  
-----------------------------------------------------------------------

Line 274

This is the entry point for the system timer interrupt handler.

Line 287

This is the call to do_timer_interrupt().

-----------------------------------------------------------------------



arch/i386/kernel/time.c
208  static inline void do_timer_interrupt(int irq, void *dev_id,
209       struct pt_regs *regs)
210  {
   ...
227   do_timer_interrupt_hook(regs); 
 ...
250  }
------------------------------------------------------------

Line 227

Call to do_timer_interrupt_hook(). This function is essentially a wrapper around the call to do_timer(). Let's
look at it:

-----------------------------------------------------------------------
include/asm-i386/mach-default/do_timer.h
016  static inline void do_timer_interrupt_hook(struct pt_regs   *regs)
017  {
018   do_timer(regs);
...
025   x86_do_profile(regs);
...
030  }
------------------------------------------------------------------

Line 18

This is where the call to do_timer() gets made. This function performs the bulk of the work for updating the
system time.

Line 25

The x86_do_profile() routine looks at the eip register for the code that was running before the interrupt. Over
time, this data indicates how often processes are running.

At this point, the system timer interrupt returns from do_irq()to enTRy.S for system housekeeping and the
interrupted thread resumes.

As previously discussed, the system timer is the heartbeat of the Linux operating system. Although we have
used the timer as an example for interrupts in this chapter, its use is prevalent throughout the entire operating
system.



Summary

Processes have to share the processor with other processes and define individual contexts of
execution that hold all the information necessary to run the process. In the course of their
execution processes, they go through various states that can be abstracted into blocked states,
running states, and ready-to-be-run states.

The kernel stores information regarding tasks in a task_struct descriptor. The task_struct fields
can be split up according to different functions that involve the process, including process
attributes, process relationships, process memory access, process-related file management,
credentials, resource limits, and scheduling. All these fields are necessary to keep track of the
process context. A process can be composed of one or more threads that share the memory
address space. Each thread has its own structure.

Process creation comes about with a call to one of fork(), vfork(), or clone() system calls. All
three system calls end up calling the kernel routine do_fork(), which performs the bulk of the new
process creation. During execution, a process goes from one state to another. A process goes
from a ready state to a running state by way of scheduler selection, from a running state to a
ready state if its timeslice ends or if it yields to another process, from a blocked state to a ready
state if an awaited signal comes in, and from running state to a blocked state when awaiting a
resource or when sleeping. Process death comes about with a call to the exit() system call.

We then delved into the basics of scheduler construction and the structures it uses, including the
run queues and wait queues, and how it manages these structures to keep track of how processes
are to be scheduled.

This chapter closed with a discussion of the asynchronous flows of process execution, which
include exceptions and interrupts, by looking at how the x86 and the PPC hardware handle
interrupts. We explored how the Linux kernel manages an interrupt after the hardware delivers it
by using the system timer interrupt as an example.



Project: current System Variable

This chapter explored the task_struct and current, which is the system variable that points to the
currently executing task's task_struct. This project's goal is to reinforce the idea that the kernel
is an orderly yet ever-changing series of linked structures that are created and destroyed as
programs run. As we have seen, the task_struct structure is one of the most important structures
the kernel owns, in that it has all the information needed for any given task. This project module
accesses that structure just as the kernel does and serves as a base for future explorations for the
reader.

In this project, we access the current task_struct and print various elements from that structure.
Starting with the file include/linux/sched.h, we find the task_struct. Using sched.h, we
reference current->pid and current->comm., the current process ID and name, and follow these
structures to the parent's pid and comm. Next, we borrow a routine from printk() and send a
message back to the current tty terminal we are using.

See the following code:

NOTE

From running the first program (hellomod), what do you think the name of the current
process will be when the initialization routine prints out current->comm? What will be the
name of the parent process? See the following code discussion.

Project Source Code[8]

[8] You can use the project source as a starting point to explore the running kernel. Although the kernel has many useful

routines to view, such as its internals (for example, strace()), building your own tools, such as this project, sheds light on

the real-time aspects of the Linux kernel.

[View full width]
-----------------------------------------------------------------------
currentptr.c
001    #include <linux/module.h>
002    #include <linux//kernel.h>
003    #include <linux/init.h>
004    #include <linux/sched.h>
005    #include <linux/tty.h>
006
007           void tty_write_message1(struct tty_struct *, char *);
008
009           static int my_init( void )
010           {
011
012                   char *msg="Hello tty!";
013
014                   printk("Hello, from the kernel...\n");
015                   printk("parent pid =%d(%s)\n",current->parent->pid
,current->parent->comm);
016                   printk("current pid =%d(%s)\n",current->pid,current->comm);
017



018                   tty_write_message1(current->signal->tty,msg);
019                   return 0;
020     }

022  static void my_cleanup( void )
{
  printk("Goodbye, from the kernel...\n");
}

027  module_init(my_init);
028  module_exit(my_cleanup);

// This routine was borrowed from <printk.c>
032  void tty_write_message1(struct tty_struct *tty, char *msg)
{
  if (tty && tty->driver->write)
   tty->driver->write(tty, 0, msg, strlen(msg));
  return;
037  }
-----------------------------------------------------------------------

Line 4

sched.h contains struct task_struct {}, which is where we reference the process ID (->pid), and
the name of the current task (->comm.), as well as the pointer to the parent PID (->parent), which
references the parent task structure. We also find a pointer to the signal structure, which contains
a reference to the tty structure (see lines 1822).

Line 5

tty.h contains struct tty_struct {}, which is used by the routine we borrowed from printk.c
(see lines 3237).

Line 12

This is the simple message string we want to send back to our terminal.

Line 15

Here, we reference the parent PID and its name from our current task structure. The answer to
the previous question is that the parent of our task is the current shell program; in this case, it
was Bash.

Line 16

Here, we reference the current PID and its name from our current task structure. To answer the
other half of the previous question, we entered insmod on the Bash command line and that is
printed out as the current process.



Line 18

This is a function borrowed from kernel/printk.c. It is used to redirect messages to a specific
tty. To illustrate our current point, we pass this routine the tty_struct of the tty (window or
command line) from where we invoke our program. This is referenced by way of current->signal-
>tty. The msg parm is the string we declared on line 12.

Lines 3238

The tty write function checks that the tty exists and then calls the appropriate device driver with
the message.

Running the Code

Compile and insmod() the code as in the first project.



Exercises

1: When we described process states, we described the "waiting or blocking" state as the
state a process finds itself in when it is not running nor ready to run. What are the
differences between waiting and blocking? Under what conditions would a process find
itself in the waiting state, and under what conditions would it be in the blocking state?

2: Find the kernel code where a process is set from a running state to the blocked state.
To put it another way, find where the state of the current->state goes from
TASK_RUNNING to TASK_STOPPED.

3: To get an idea of how long it would take a counter to "roll over," do the following
calculations. If a 64-bit decrementer runs at 500MHz, how long would it take to
terminate with the following values?

0x000000000000ffffa.

0x00000000ffffffffb.

0xffffffffffffffffc.

4: Older versions of Linux used sti() and cli() to disable interrupts when a section of
code should not be interrupted. The newer versions of Linux use spin_lock() instead.
What is the main advantage of the spinlock?

5: How does the x86 routine do_IRQ() and the PPC routine ppc_irq_dispatch_handler()
allow for shared interrupts?

6: Why is it not recommended that a system call be accessed from kernel code?

7: How many run queues are there per CPU on a Linux system running the 2.6 kernel?

8: When a process forks a new process, does Linux require it to give up some of its
timeslice? If so, why?

9: How can processes get reinserted into the active priority array of a run queue after
their timeslice has expired? What is a normal process' priority range? What about real-
time processes?
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Memory management is the method by which an application running on a computer accesses
memory through a combination of hardware and software manipulation. The job of the memory
management subsystem is to allocate available memory to requesting processes and to deallocate
the memory from a process as it releases it, keeping track of memory as it is handled.

The operating system lifespan can be split up into two phases: normal execution and
bootstrapping. The bootstrapping phase makes temporary use of memory. The normal execution
phase splits the memory between a portion that is permanently assigned to the kernel code and
data, and a second portion that is assigned for dynamic memory requests. Dynamic memory
requests come about from process creation and growth. This chapter concentrates on normal
execution.

We must understand a few high-level concepts regarding memory management before we delve
into the specifics of implementation and how they tie together. This chapter first overviews what a
memory management system is and what virtual memory is. Next, we discuss the various kernel
structures and algorithms that aid in memory management. After we understand how the kernel
manages memory, we consider how process memory is split up and managed and outline how it
ties into the kernel structures in a top-down manner. After we cover process memory acquisition,
management, and release, we look at page faults and how the two architecturesPowerPC and
x86handle them.

The simplest type of memory management system is one in which a running process has access to
all the memory. For a process to work in this way, it must contain all the code necessary to
manipulate any hardware it needs in the system, must keep track of its memory addresses, and
must have all its data loaded into memory. This approach places a heavy responsibility on the
program developer and assumes that processes can fit into the available memory. As these



requirements have proven unrealistic given our increasingly complex program demands, available
memory is usually divided between the operating system and user processes, relegating the task
of memory management to the operating system.

The demands placed on operating systems today are such that multiple programs should be able
to share system resources and that the limitations on memory be transparent to the program
developer. Virtual memory is the result of a method that has been adopted to support programs
with the need to access more memory than is physically available on the system and to facilitate
the efficient sharing of memory among multiple programs. Physical, or core, memory is what is
made available by the RAM chips in the system. Virtual memory allows programs to behave as
though they have more memory available than that provided by the system's core memory by
transparently making use of disk space. Disk space, which is less expensive and has more capacity
for storage than physical memory, can be used as an extension of internal memory. We call this
virtual memory because the disk storage effectively acts as though it were memory without being
so. Figure 4.1 illustrates the relations between the various levels of data storage.

Figure 4.1. Data Access Hierarchy

To use virtual memory, the program data is split into basic units that can be moved from disk to
memory and back. This way, the parts of the program that are being used can be placed into
memory, taking advantage of the faster access times. The unused parts are temporarily placed on
disk, which minimizes the impact of the disk's significantly higher access times while still having
the data ready for access. These data units, or blocks of virtual memory, are called pages. In the
same manner, physical memory needs to be split up into partitions that hold these pages. These
partitions are called page frames. When a process requests an address, the page containing it is
loaded into memory. All requests to data on that page yield access to the page. If no addresses in
a page have been previously accessed, the page is not loaded into memory. The first access to an
address in a page yields a miss or page fault because it is not available in memory and must be
acquired from disk. A page fault is a trap. When this happens, the kernel must select a page frame
and write its contents (the page) back to disk, replacing it with the contents of the page the
program just requested.



When a program fetches data from memory, it uses addresses to indicate the portion of memory
it needs to access. These addresses, called virtual addresses, make up the process virtual
address space. Each process has its own range of virtual addresses that prevent it from reading
or writing over another program's data. Virtual memory allows processes to "use" more memory
than what's physically available. Hence, the operating system can afford to give each process its
own virtual linear address space.[1]

[1] Process addressing makes a few assumptions regarding process memory usage. The first is that a process will not make

use of all the memory it requests at the same time. The second is that two or more processes instantiated from a common

executable should need only to load the executable object once.

The size of this address space is determined by the size of the architecture's word size. If a
processor can hold a 32-bit value in its registers, the virtual address space of a program running
on that processor consists of 232 addresses.[2] Not only does virtual memory expand the amount
of memory addressable, it makes certain limitations imposed by the nature of physical memory
transparent to the user space programmer. For example, the programmer does not need to
manage any holes in memory. In our 32-bit example, we have a virtual address space that ranges
from 0 to 4GB. If the system has 2GB of RAM, its physical address range spans from 0 to 2GB.
Our programs might be 4GB programs, but they have to fit into the available memory. The
entirety of the program is kept on disk and pages are moved in as they are used.

[2] Although the limit of memory available is technically the sum of memory and swap space, the addressable limit is imposed

by the size of the architecture's word size. This means that even in a system with more than 4GB of memory, a process

cannot malloc more than 3GB (after accounting for the top 1GB that is assigned to the kernel).

The act of moving a page from memory to disk and back is called paging. Paging includes the
translation of the program virtual address onto the physical memory address.

The memory manager is a part of the operating system that keeps track of associations
between virtual addresses and physical addresses and handles paging. To the memory manager,
the page is the basic unit of memory. The Memory Management Unit (MMU), which is a
hardware agent, performs the actual translations.[3] The kernel provides page tables, indexed
lists of the available pages, and their associated addresses that the MMU can access when
performing address translations. These are updated whenever a page is loaded into memory.

[3] Some microprocessors, such as the Motorola 68000 (68K), lack an MMU altogether. uCLinux is a Linux distribution that

has specifically ported Linux to run in MMU-less systems. Without an MMU, virtual addresses and physical addresses are

one and the same.

Having seen the high-level concepts in memory management, let's start our view of how the
kernel implements its memory manager with a view at the implementation of pages.



4.1. Pages

As the basic unit of memory managed by the memory manager, a page has a lot of state that it
needs to be kept track of. For example, the kernel needs to know when pages become available
for reallocation. To do this, the kernel uses page descriptors. Every physical page in memory is
assigned a page descriptor.

This section describes various fields in the page descriptor and how the memory manager uses
them. The page structure is defined in include/linux/mm.h.

-----------------------------------------------------------------------------
include/linux/mm.h
170  struct page {
171   unsigned long flags; 
172
173   atomic_t count;
174   struct list_head list;
175   struct address_space *mapping;
176   unsigned long index;
177   struct list_head lru;
178
179   union {
180    struct pte_chain *chain;
181
182    pte_addr_t direct;
183   } pte;
184   unsigned long private;
185
...
196  #if defined(WANT_PAGE_VIRTUAL)
197   void *virtual;
198
199  #endif 
200  };
-----------------------------------------------------------------------------

4.1.1. flags

Atomic flags describe the state of the page frame. Each flag is represented by one of the bits in
the 32-bit value. Some helper functions allow us to manipulate and test particular flags. Also,
some helper functions allow us to access the value of the bit corresponding to the particular flag.
The flags themselves, as well as the helper functions, are defined in include/linux/page-flags.h.
Table 4.1 identifies and explains some of the flags that can be set in the flags field of the page
structure.

Table 4.1. Flag Values for page->flags



Flag Name Description

PG_locked This page is locked so it shouldn't be touched. This bit is
used during disk I/O, being set before the I/O operation
and reset upon completion.

PG_error Indicates that an I/O error occurred on this page.

PG_referenced Indicates that this page was accessed for a disk I/O
operation. This is used to determine which active or
inactive page list the page is on.

PG_uptodate Indicates that the page's contents are valid, being set
when a read completes upon that page. This is mutually
exclusive to having PG_error set.

PG_dirty Indicates a modified page.

PG_lru The page is in one of the Least Recently Used lists used
for page swapping. See the description of lru page struct
field in this section for more information regarding LRU
lists.

PG_active Indicates that the page is in the active page list.

PG_slab This page belongs to a slab created by the slab allocator,
which is described in the "Slab Allocator" section in this
chapter.

PG_highmem Indicates that this page is in the high memory zone
(ZONE_HIGHMEM) and so it cannot be permanently mapped
into the kernel virtual address space. The high memory
zone pages are identified as such during kernel bootup in
mem_init() (see Chapter 8, "Booting the Kernel," for more
detail).

PG_checked Used by the ext2 filesystem. Killed in 2.5.

PG_arch_1 Architecture-specific page state bit.

PG_reserved Marks pages that cannot be swapped out, do not exist, or
were allocated by the boot memory allocator.

PG_private Indicates that the page is valid and is set if page->private
contains a valid value.

PG_writeback Indicates that the page is under writeback.

PG_mappedtodisk This page has blocks currently allocated on a system disk.

PG_reclaim Indicates that the page should be reclaimed.

PG_compound Indicates that the page is part of a higher order
compound page.

4.1.1.1. count

The count field serves as the usage or reference counter for a page. A value of 0 indicates that the
page frame is available for reuse. A positive value indicates the number of processes that can
access the page data.[4]

[4] A page is free when the data it was holding is no longer used or needed.



4.1.1.2. list

The list field is the structure that holds the next and prev pointers to the corresponding elements
in a doubly linked list. The doubly linked list that this page is a member of is determined in part by
the mapping it is associated with and the state of the page.

4.1.1.3. mapping

Each page can be associated with an address_space structure when it holds the data for a file
memory mapping. The mapping field is a pointer to the address_space of which this page is a
member. An address_space is a collection of pages that belongs to a memory object (for example,
an inode). For more information on how address_space is used, go to Chapter 7, "Scheduling and
Kernel Synchronization," Section 7.14.

4.1.1.4. lru

The lru field holds the next and prev pointers to the corresponding elements in the Least Recently
Used (LRU) lists. These lists are involved with page reclamation and consist of two lists:
active_list, which contains pages that are in use, and incactive_list, which contains pages that
can be reused.

4.1.1.5. virtual

virtual is a pointer to the page's corresponding virtual address. In a system with highmem,[5] the
memory mapping can occur dynamically, making it necessary to recalculate the virtual address
when needed. In these cases, this value is set to NULL.

[5] Highmem is the physical memory that surpasses the virtually addressable range. See Section 4.2, "Memory Zones."

Compound Page

A compound page is a higher-order page. To enable compound page support in the
kernel, "Huge TLB Page Support" must be enabled at compile time. A compound page
is composed of more than one page, the first of which is called the "head" page and
the remainder of which are called "tail" pages. All compound pages will have the
PG_compound bit set in their respective page->flags, and the page->lru.next pointing
to the head page.



4.2. Memory Zones

Not all pages are created equal. Some computer architectures have constraints on what certain
physical address ranges of memory can be used for. For example, in x86, some ISA buses are
only able to address the first 16MB of RAM. Although PPC does not have this constraint, the
memory zone concepts are ported to simplify the architecture-independent portion of the code. In
the architecture-dependent portion of the PPC code, these zones are set to overlap. Another such
constraint is seen in a system that has more RAM than it can address with its linear address
space.

A memory zone is composed of page frames or physical pages, which means that a page frame is
allocated from a particular memory zone. Three memory zones exist in Linux: ZONE_DMA (used for
DMA page frames), ZONE_NORMAL (non-DMA pages with virtual mapping), and ZONE_HIGHMEM (pages
whose addresses are not contained in the virtual address space).

4.2.1. Memory Zone Descriptor

As with all objects that the kernel manages, a memory zone has a structure called zone, which
stores all its information. The zone struct is defined in include/linux/mmzone.h. We now closely
look at some of the most commonly used fields:

-----------------------------------------------------------------------------
include/linux/mmzone.h
66  struct zone {
...
70   spinlock_t   lock;
71   unsigned long   free_pages;
72   unsigned long   pages_min, pages_low, pages_high;
73
74   ZONE_PADDING(_pad1_)
75
76   spinlock_t   lru_lock;
77   struct list_head  active_list;
78   struct list_head  inactive_list;
79   atomic_t   refill_counter;
80   unsigned long   nr_active;
81   unsigned long   nr_inactive;
82   int    all_unreclaimable; /* All pages pinned */
83   unsigned long   pages_scanned;  /* since last reclaim */
84
85   ZONE_PADDING(_pad2_)
...
103   int temp_priority;
104   int prev_priority;
...
109   struct free_area  free_area[MAX_ORDER];
...
135   wait_queue_head_t  * wait_table;
136   unsigned long   wait_table_size;
137   unsigned long   wait_table_bits;
138
139   ZONE_PADDING(_pad3_)
140



...
157  } ____cacheline_maxaligned_in_smp;

-----------------------------------------------------------------------------

4.2.1.1. lock

The zone descriptor must be locked when it is being manipulated to prevent read/write errors. The
lock field holds the spinlock that protects the descriptor from this.

This is a lock for the descriptor itself and not for the memory range with which it is associated.

4.2.1.2. free_pages

The free_pages field holds the number of free pages that are left in the zone. This unsigned long is
decremented every time a page is allocated from the particular zone and incremented every time
a page is returned to the zone. The total amount of free RAM returned by a call to
nr_free_pages() is calculated by adding this value from all three zones.

4.2.1.3. pages_min, pages_low, and pages_high

The pages_min, pages_low, and pages_high fields hold the zone watermark values. When the
number of available pages reaches each of these watermarks, the kernel responds to the memory
shortage in ways suited for each decrementally serious situation.

4.2.1.4. lru_lock

The lru_lock field holds the spinlock for the free page list.

4.2.1.5. active_list and inactive_list

active_list and inactive_list are involved in the page reclamation functionality. The first is a
list of the active pages and the second is a list of pages that can be reclaimed.

4.2.1.6. all_unreclaimable

The all_unreclaimable field is set to 1 if all pages in the zone are pinned. They will only be
reclaimed by kswapd, which is the pageout daemon.

4.2.1.7. pages_scanned, temp_priority, and prev_priority

The pages_scanned, temp_priority, and prev_priority fields are all involved with page
reclamation functionality, which is outside the scope of this book.

4.2.1.8. free_area

The buddy system uses the free_area bitmap.



4.2.1.9. wait_table, wait_table_size, and wait_table_bits

The wait_table, wait_table_size, and wait_table_bits fields are associated with process wait
queues on the zone's pages.

Cache Aligning and Zone Padding

Cache aligning is done to improve performance on descriptor field accesses. Cache
aligning improves performance by minimizing the number of instructions needed to copy a
chunk of data. Take the case of having a 32-bit value not aligned on a word. The
processor would need to make two "load word" instructions to get the data onto registers
as opposed to just one. ZONE_PADDING shows how cache aligning is performed on a
memory zone:

[View full width]
---------------------------------------------------------------------------

include/linux/mmzone.h
#if defined(CONFIG_SMP)
struct zone_padding {
  int x;
} ____cacheline_maxaligned_in_smp;
#define ZONE_PADDING(name)  struct zone_padding name;
#else
#define ZONE_PADDING(name)
#endif
---------------------------------------------------------------------------

If you want to know more about how cache aligning works in Linux, refer to
include/linux/cache.h.

4.2.2. Memory Zone Helper Functions

When actions are commonly applied to an object, or information is often requested of an object,
usually, helper functions make coding easier. Here, we present a couple of helper functions that
facilitate memory zone manipulation.

4.2.2.1. for_each_zone()

The for_each_zone() macro iterates over all zones:

-----------------------------------------------------------------------------
include/linux/mmzone.h
268  #define for_each_zone(zone) \
269   for (zone = pgdat_list->node_zones; zone; zone = next_zone(zone))
-----------------------------------------------------------------------------



4.2.2.2. is_highmem() and is_normal()

The is_highmem() and is_normal() functions check if zone struct is in the highmem or normal
zones, respectively:

-----------------------------------------------------------------------------
include/linux/mmzone.h
315  static inline int is_highmem(struct zone *zone)
316  {
317   return (zone - zone->zone_pgdat->node_zones == ZONE_HIGHMEM);
318  }
319
320  static inline int is_normal(struct zone *zone)
321  {
322   return (zone - zone->zone_pgdat->node_zones == ZONE_NORMAL);
323  }
-----------------------------------------------------------------------------



4.3. Page Frames

A page frame is the unit of memory that holds a page. When a process requests memory, the kernel can
request a page frame. In the same manner, when a page frame is no longer being used, the kernel
releases it to make it available for another process. The following functions are called to perform those
operations.

4.3.1. Functions for Requesting Page Frames

A few routines can be called to request a page frame. We can split up the functions into two groups
depending on the type of their return value. One group returns a pointer to the page struct (return type is
void *) that corresponds to the page frame that is allocated to the request. This includes alloc_pages()
and alloc_page(). The second group of functions returns the 32-bit virtual address (return type is a long)
of the first allocated page. These include __get_free_page() and __get_dma_pages(). Many of these
routines are simply wrappers around a lower-level interface. Figures 4.2 and 4.3 show the calling graphs of
these routines.

Figure 4.2. alloc_*() Calling Graph

Figure 4.3. get_*_page() Calling Hierarchy

The following macros and functions refer to the number of pages being handled (requested or released) in
powers of 2. Pages are requested or released in contiguous page frames in powers of 2. We can request 1,
2, 4, 8, 16, and so on groups of pages.[6]

[6] Groups of pages requested or released are always continuous.

4.3.1.1. alloc_pages() and alloc_page()

alloc_page() requests a single page and thus has no order parameter. This function fills in a 0 value when
calling alloc_pages_node(). Alternatively, alloc_pages() can request two order pages:

-----------------------------------------------------------------------------



include/linux/gfp.h
75  #define alloc_pages(gfp_mask, order) \
76    alloc_pages_node(numa_node_id(), gfp_mask, order)
77  #define alloc_page(gfp_mask) \
78    alloc_pages_node(numa_node_id(), gfp_mask, 0)
-----------------------------------------------------------------------------

As you can see from Figure 4.2, both macros then call __alloc_pages_node(), passing it the appropriate
parameters. alloc_pages_node() is a wrapper function used for sanity checking of the order of requested
page frames:

[View full width]
-----------------------------------------------------------------------------
include/linux/gfp.h
67  static inline struct page * alloc_pages_node(int nid, unsigned int gfp_mask, unsigned
 int order)
68  {
69   if (unlikely(order >= MAX_ORDER))
70    return NULL;
71
72   return __alloc_pages(gfp_mask, order, NODE_DATA(nid)->node_zonelists + (gfp_mask &
 GFP_ZONEMASK));
73  }
-----------------------------------------------------------------------------

As you can see, if the order of pages requested is greater than the allowed maximum order (MAX_ORDER),
the request for page allocation does not go through. In alloc_page(), this value is always set to 0 and so
the call always goes through. MAX_ORDER, which is defined in linux/mmzone.h, is set to 11. Thus, we can
request up to 2,048 pages.

The __alloc_pages() function performs the meat of the page request. This function is defined in
mm/page_alloc.c and requires knowledge of memory zones, which we discussed in the previous section.

4.3.1.2. __get_free_page() and __get_dma_pages()

The __get_free_page() macro is a convenience for when only one page is requested. Like alloc_page(), it
passes a 0 as the order of pages requested to __get_free_pages(), which then performs the bulk of the
request. Figure 4.3 illustrates the calling hierarchy of these functions.

-----------------------------------------------------------------------------
include/linux/gfp.h
83  #define __get_free_page(gfp_mask) \
84    __get_free_pages((gfp_mask),0)
-----------------------------------------------------------------------------

The __get_dma_pages() macro specifies that the pages requested be from ZONE_DMA by adding that flag
onto the page flag mask. ZONE_DMA refers to a portion of memory that is reserved for DMA accesses:

-----------------------------------------------------------------------------
include/linux/gfp.h
86  #define __get_dma_pages(gfp_mask, order) \



87    __get_free_pages((gfp_mask) | GFP_DMA,(order))
-----------------------------------------------------------------------------

4.3.2. Functions for Releasing Page Frames

There are multiple routines for releasing page frames: two macros and the two functions for which they
each serve as a wrapper. Figure 4.4 shows the calling hierarchy of the page release routines. We can again
split up the functions into two groups. This time, the split is based on the type of parameters they take.
The first group, which includes __free_page() and __free_pages(), takes a pointer to the page descriptor
that refers to the page that is to be released. The second group, free_page() and free_pages(), takes the
address of the first page to be released.

Figure 4.4. *free_page*() Calling Hierarchy

The __free_page() and free_page() macros release a single page. They pass a 0 as the order of pages to
be released to the functions that perform the bulk of the work, __free_pages() and free_pages(),
respectively:

-----------------------------------------------------------------------------
include/linux/gfp.h
94  #define __free_page(page) __free_pages((page), 0)
95  #define free_page(addr) free_pages((addr),0)
-----------------------------------------------------------------------------

free_pages() eventually calls __free_pages_bulk(), which is the freeing function for the Linux
implementation of the buddy system. We explore the buddy system in more detail in the following section.

4.3.3. Buddy System

When page frames are allocated and deallocated, the system runs into a memory fragmentation problem
called external fragmentation. This occurs when the available page frames are spread out throughout
memory in such a way that large amounts of contiguous page frames are not available for allocation
although the total number of available page frames is sufficient. That is, the available page frames are
interrupted by one or more unavailable page frames, which breaks continuity. There are various
approaches to reduce external fragmentation. Linux uses an implementation of a memory management
algorithm called the buddy system.

Buddy systems maintain a list of available blocks of memory. Each list will point to blocks of memory of
different sizes, but they are all sized in powers of two. The number of lists depends on the implementation.
Page frames are allocated from the list of free blocks of the smallest possible size. This maintains larger
contiguous block sizes available for the larger requests. When allocated blocks are returned, the buddy
system searches the free lists for available blocks of memory that's the same size as the returned block. If



any of these available blocks is contiguous to the returned block, they are merged into a block twice the
size of each individual. These blocks (the returned block and the available block that is contiguous to it)
are called buddies, hence the name "buddy system." This way, the kernel ensures that larger block sizes
become available as soon as page frames are freed.

Now, look at the functions that implement the buddy system in Linux. The page frame allocation function is
__alloc_pages() (mm/page_alloc.c). The page frame deallocation functions is __free_pages_bulk():

-----------------------------------------------------------------------------
mm/page_alloc.c
585  struct page * fastcall
586  __alloc_pages(unsigned int gfp_mask, unsigned int order,
587      struct zonelist *zonelist)
588  {
589    const int wait = gfp_mask & __GFP_WAIT;
590    unsigned long min;
591    struct zone **zones;
592    struct page *page;
593    struct reclaim_state reclaim_state;
594    struct task_struct *p = current;
595    int i;
596    int alloc_type;
597    int do_retry;
598
599    might_sleep_if(wait);
600
601    zones = zonelist->zones;
602    if (zones[0] == NULL)  /* no zones in the zonelist */
603      return NULL;
604
605    alloc_type = zone_idx(zones[0]);
...
608    for (i = 0; zones[i] != NULL; i++) {
609      struct zone *z = zones[i];
610
611      min = (1<<order) + z->protection[alloc_type];
...
617      if (rt_task(p))
618        min -= z->pages_low >> 1;
619
620      if (z->free_pages >= min ||
621          (!wait && z->free_pages >= z->pages_high)) {
622        page = buffered_rmqueue(z, order, gfp_mask);
623        if (page) {
624         zone_statistics(zonelist, z);
625          goto got_pg;
626        }
627      }
628    }
629
630    /* we're somewhat low on memory, failed to find what we needed */
631    for (i = 0; zones[i] != NULL; i++)
632      wakeup_kswapd(zones[i]);
633
634    /* Go through the zonelist again, taking __GFP_HIGH into account */
635   for (i = 0; zones[i] != NULL; i++) {
636      struct zone *z = zones[i];
637
638      min = (1<<order) + z->protection[alloc_type];



639
640      if (gfp_mask & __GFP_HIGH)
641        min -= z->pages_low >> 2;
642      if (rt_task(p))
643        min -= z->pages_low >> 1;
644
645      if (z->free_pages >= min ||
646          (!wait && z->free_pages >= z->pages_high)) {
647        page = buffered_rmqueue(z, order, gfp_mask);
648        if (page) {
649          zone_statistics(zonelist, z);
650          goto got_pg;
651        }
652      }
653    }
...
720  nopage:
721    if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
722      printk(KERN_WARNING "%s: page allocation failure."
723        " order:%d, mode:0x%x\n",
724        p->comm, order, gfp_mask);
725      dump_stack();
726    }
727    return NULL;
728  got_pg:
729    kernel_map_pages(page, 1 << order, 1);
730    return page;
731  }
-----------------------------------------------------------------------------

The Linux buddy system is zoned, which means that lists of available page frames are maintained separate
by zone. Hence, every search for available page frames has three possible zones from which to get the
page frames.

Line 586

The gfp_mask integer value allows the caller of __alloc_pages() to specify both the manner in which to
look for page frames (action modifiers). The possible values are defined in include/linux/gfp.h, and Table
4.2 lists them.

Table 4.2. Action Modifiers for gfp_maks in Page Allocation



Flag Description

__GFP_WAIT Allows the kernel to block the process waiting for page
frames. For an example of its use, see line 537 of
page_alloc.c.

__GFP_COLD Requesting cache cold pages.

__GFP_HIGH Page frame can be found at the emergency memory pool.

__GFP_IO Can perform I/O transfers.

__GFP_FS Allowed to call down on low-level FS operations.

__GFP_NOWARN Upon failure of page-frame allocation, the allocation function
sends a failure warning. If this modifier is selected, this
warning is suppressed. For an example of its use, see lines
665666 of page_alloc.c.

__GFP_REPEAT Retry the allocation.

__GFP_NORETRY The request should not be retried because it might fail.

__GFP_DMA The page frame is in ZONE_DMA.

__GFP_HIGHMEM The page frame is in ZONE_HIGHMEM.

Table 4.3 provides a pointer to the zonelists that correspond to the modifiers from gfp_mask.

Table 4.3. Zonelist

Flag Description

GFP_USER Indicates that memory should be allocated not in kernel
RAM

GFP_KERNEL Indicates that memory should be allocated from kernel RAM

GFP_ATOMIC Used in interrupt handlers making the call to kmalloc
because it assures that the memory allocation will not sleep

GFP_DMA Indicates that memory should be allocated from ZONE_DMA

Line 599

The function might_sleep_if() takes in the value of variable wait, which holds the logical bit AND of the
gfp_mask and the value __GFP_WAIT. The value of wait is 0 if __GFP_WAIT was not set, and the value is 1 if it
was. If Sleep-inside-spinlock checking is enabled (under the Kernel Hacking menu) during kernel
configuration, this function allows the kernel to block the current process for a timeout value.

Lines 608628

In this block, we proceed to go through the list of zone descriptors once searching for a zone with enough
free pages to satisfy the request. If the number of free pages satisfies the request, or if the process is
allowed to wait and the number of free pages is higher than or equal to the upper threshold value for the
zone, the function buffered_rmqueue() is called.



The function buffered_rmqueue() takes three arguments: the zone descriptor of the zone with the
available page frames, the order of the number of page frames requested, and the temperature of the
page frames requested.

Lines 631632

If we get to this block, we have not been able to allocate a page because we are low on available page
frames. The intent here is to try and reclaim page frames to satisfy the request. The function
wakeup_kswapd() performs this function and replenishes the zones with the appropriate page frames. It
also appropriately updates the zone descriptors.

Lines 635653

After we attempt to replenish the page frames in the previous block, we go through the zonelist again to
search for enough free page frames.

Lines 720727

This block is jumped to after the function determines that no page frames can be made available. If the
modifier GFP_NOWARN is not selected, the function prints a warning of the page allocation failure, which
indicates the name of the command that was called for the current process, the order of page frames
requested, and the gfp_mask that was applied to this request. The function then returns NULL.

Lines 728730

This block is jumped to after the requested pages are found. The function returns the address of a page
descriptor. If more than one page frames were requested, it returns the address of the page descriptor of
the first page frame allocated.

When a memory block is returned, the buddy system makes sure to coalesce it into a larger memory block
if a buddy of the same order is available. The function __free_pages_bulk() performs this function. We
now look at how it works:

-----------------------------------------------------------------------------
mm/page_alloc.c
178  static inline void __free_pages_bulk (struct page *page, struct page *base,
179      struct zone *zone, struct free_area *area, unsigned long mask,
180      unsigned int order)
181  {
182    unsigned long page_idx, index;
183
184    if (order)
185      destroy_compound_page(page, order);
186    page_idx = page - base;
187    if (page_idx & ~mask)
188      BUG();
189    index = page_idx >> (1 + order);
190
191   zone->free_pages -= mask;
192    while (mask + (1 << (MAX_ORDER-1))) {
193      struct page *buddy1, *buddy2;
194
195      BUG_ON(area >= zone->free_area + MAX_ORDER);



196      if (!__test_and_change_bit(index, area->map))
...
206      buddy1 = base + (page_idx ^ -mask);
207      buddy2 = base + page_idx;
208      BUG_ON(bad_range(zone, buddy1));
209      BUG_ON(bad_range(zone, buddy2));
210      list_del(&buddy1->lru);
211      mask <<= 1;
212     area++;
213      index >>= 1;
214     page_idx &= mask;
215    }
216    list_add(&(base + page_idx)->lru, &area->free_list);
217  }
-----------------------------------------------------------------------------

Lines 184215

The __free_pages_bulk() function iterates over the size of the blocks corresponding to each of the free
block lists. (MAX_ORDER is the order of the largest block size.) For each order and until it reaches the
maximum order or finds the smallest possible buddy, it calls __test_and_change_bit(). This function tests
to see whether the buddy page to our returned block is allocated. If so, we break out of the loop. If not, it
sees if it can find a higher order buddy with which to merge our freed block of page frames.

Line 216

The free block is inserted into the proper list of free page frames.



4.4. Slab Allocator

We discussed that pages are the basic unit of memory for the memory manager. However,
processes generally request memory on the order of bytes, not on the order of pages. To support
the allocation of smaller memory requests made through calls to functions like kmalloc(), the
kernel implements the slab allocator, which is a layer of the memory manager that acts on
acquired pages.

The slab allocator seeks to reduce the cost incurred by allocating, initializing, destroying, and
freeing memory areas by maintaining a ready cache of commonly used memory areas. This cache
maintains the memory areas allocated, initialized, and ready to deploy. When the requesting
process no longer needs the memory areas, they are simply returned to the cache.

In practice, the slab allocator is made up of many caches, each of which stores memory areas of
different sizes. Caches can be specialized or general purpose. Specialized caches store
memory areas that hold specific objects, such as descriptors. For example, process descriptors,
the task_structs, are stored in a cache that the slab allocator maintains. The size of the memory
areas held by this cache are sizeof(task_struct). In the same manner, inode and dentry data
structures are also maintained in caches. General caches are made of memory areas of
predetermined sizes. These sizes include memory areas of 32, 64, 128, 256, 512, 1,024, 2,048,
4,096, 8,192, 16,384, 32,768, 65,536, and 131,072 bytes.[7]

[7] All general caches are L1 aligned for performance reasons.

If we run the command cat /proc/slabinfo, the existing slab allocator caches are listed. Looking
at the first column of the output, we can see the names of data structures and a group of entries
following the format size-*. The first set corresponds to specialized object caches; the latter set
corresponds to caches that hold general-purpose objects of the specified size.

You might also notice that the general-purpose caches have two entries per size, one of which
ends with (DMA). This exists because memory areas from either DMA or normal zones can be
requested. The slab allocator maintains caches of both types of memory to facilitate these
requests. Figure 4.5 shows the output of /proc/slabinfo, which shows the caches of both types of
memory.

Figure 4.5. cat /proc/slabinfo

[View full size image]



A cache is further subdivided into containers called slabs. Each slab is made up of one or more
contiguous page frames from which the smaller memory areas are allocated. That is why we say
that the slabs contain the objects. The objects themselves are address intervals of a
predetermined size within a page frame that belongs to a particular slab. Figure 4.6 shows the
slab allocator anatomy.

Figure 4.6. Slab Allocator Anatomy

[View full size image]

The slab allocator uses three main structures to maintain object information: the cache descriptor
called kmem_cache, the general caches descriptor called cache_sizes, and the slab descriptor
called slab. Figure 4.7 summarizes the relationships between all the descriptors.

Figure 4.7. Slab Allocator Structures

[View full size image]



4.4.1. Cache Descriptor

Every cache has a cache descriptor of type kmem_cache_s, which holds its information. Most of
these values are set or calculated at cache-creation time in kmem_cache_create() (mm/slab.c). We
discuss this function in a later section. First, let's look at some of the fields in the cache descriptor
and understand the information they hold.

-----------------------------------------------------------------------------
mm/slab.c
246  struct kmem_cache_s {
...
252   struct kmem_list3  lists;
...
254   unsigned int   objsize;
255   unsigned int   flags;  /* constant flags */
256   unsigned int   num;  /* # of objs per slab */
...
263   unsigned int   gfporder;
264
265  /* force GFP flags, e.g. GFP_DMA */
266   unsigned int   gfpflags;
267
268   size_t    color; /* cache coloring range */
269   unsigned int   color_off;  /* color offset */
270   unsigned int   color_next;  /* cache coloring */
271   kmem_cache_t   *slabp_cache;
272   unsigned int   dflags;   /* dynamic flags */
273
273  /* constructor func */
274   void (*ctor)(void *, kmem_cache_t *, unsigned long);
275



276  /* de-constructor func */
277   void (*dtor)(void *, kmem_cache_t *, unsigned long);
278
279  /* 4) cache creation/removal */
280   const char   *name;
281   struct list_head  next;
282
...
301  };
-----------------------------------------------------------------------------

4.4.1.1. lists

The lists field is a structure that holds three lists heads, which each correspond to the three
states that slabs can find themselves in: partial, full, and free. A cache can have one or more
slabs in any of these states. It is by way of this data structure that the cache references the slabs.
The lists themselves are doubly linked lists that are maintained by the slab descriptor field list.
This is described in the "Slab Descriptor" section later in this chapter.

-----------------------------------------------------------------------------
mm/slab.c
217  struct kmem_list3 {
218   struct list_head  slabs_partial; 
219   struct list_head  slabs_full;
220   struct list_head  slabs_free;
...
223   unsigned long  next_reap;
224   struct array_cache  *shared;
225  };
-----------------------------------------------------------------------------

lists.slabs_partial

lists.slabs_partial is the head of the list of slabs that are only partially allocated with objects.
That is, a slab in the partial state has some of its objects allocated and some free to be used.

lists.slabs_full

lists.slabs_full is the head of the list of slabs whose objects have all been allocated. These
slabs contain no available objects.

lists.slabs_free

lists.slabs_free is the head of the list of slabs whose objects are all free to be allocated. Not a
single one of its objects has been allocated.

Maintaining these lists reduces the time it takes to find a free object. When an object from the
cache is requested, the kernel searches the partial slabs. If the partial slabs list is empty, it then
looks at the free slabs. If the free slabs list is empty, a new slab is created.



lists.next_reap

Slabs have page frames allocated to them. If these pages are not in use, it is better to return
them to the main memory pool. Toward this end, the caches are reaped. This field holds the time
of the next cache reap. It is set in kmem_cache_create() (mm/slab.c) at cache-creation time and is
updated in cache_reap() (mm/slab.c) every time it is called.

4.4.1.2. objsize

The objsize field holds the size (in bytes) of the objects in the cache. This is determined at cache-
creation time based on requested size and cache alignment concerns.

4.4.1.3. flags

The flags field holds the flag mask that describes constant characteristics of the cache. Possible
flags are defined in include/linux/slab.h and Table 4.4 describes them.

Table 4.4. Slab Flags

Flag Name Description

SLAB_POISON Requests that a test pattern of a5a5a5a5 be written to
the slab upon creation. This can then be used to verify
memory that has been initialized.

SLAB_NO_REAP When memory requests meet with insufficient memory
conditions, the memory manager begins to reap
memory areas that are not used. Setting this flag
ensures that this cache won't be automatically reaped
under these conditions.

SLAB_HWCACHE_ALIGN Requests that objects be aligned to the processor's
hardware cacheline to improve performance by cutting
down memory cycles.

SLAB_CACHE_DMA Indicates that DMA memory should used. When
requesting new page frames, the GFP_DMA flag is passed
to the buddy system.

SLAB_PANIC Indicates that a panic should be called if
kmem_cache_create() fails for any reason.

4.4.1.4. num

The num field holds the number of objects per slab in this cache. This is determined upon cache
creation (also in kmem_cache_create()) based on gfporder's value (see the next field), the size of
the objects to be created, and the alignment they require.

4.4.1.5. gfporder

The gfporder is the order (base 2) of the number of contiguous page frames that are contained
per slab in the cache. This value defaults to 0 and is set upon cache creation with the call to



kmem_cache_create().

4.4.1.6. gfpflags

The gfpflags flags specify the type of page frames to be requested for the slabs in this cache.
They are determined based on the flags requested of the memory area. For example, if the
memory area is intended for DMA use, the gfpflags field is set to GFP_DMA, and this is passed on
upon page frame request.

4.4.1.7. slabp_cache

Slab descriptors can be stored within the cache itself or external to it. If the slab descriptors for
the slabs in this cache are stored externally to the cache, the slabp_cache field holds a pointer to
the cache descriptor of the cache that stores objects of the type slab descriptor. See the "Slab
Descriptor" section for more information on slab descriptor storage.

4.4.1.8. ctor

The ctor field holds a pointer to the constructor[8] that is associated with the cache, if one exists.

[8] If you are familiar with object-oriented programming, the concept of constructors and destructors will not be new to you.

The ctor field of the cache descriptor allows for the programming of a function that will get called every time a new cache

descriptor is created. Likewise, the dtor field holds a pointer to a function that will be called every time a cache descriptor is

destroyed.

4.4.1.9. dtor

Much like the ctor field, the dtor field holds a pointer to the destructor that is associated with the
cache, if one exists.

Both the constructor and destructor are defined at cache-creation time and passed as parameters
to kmem_cache_create().

4.4.1.10. name

The name field holds the human-readable string of the name that is displayed when /proc/slabinfo
is opened. For example, the cache that holds file pointers has a value of filp in this field. This can
be better understood by executing a call to cat /proc/slabinfo. The name field of a slab has to
hold a unique value. Upon creation, the name requested for a slab is compared to the names of all
other slabs in the list. No duplicates are allowed. The slab creation fails if another slab exists with
the same name.

4.4.1.11. next

next is the pointer to the next cache descriptor in the singly linked list of cache descriptors.

4.4.2. General Purpose Cache Descriptor

As previously mentioned, the caches that hold the predetermined size objects for general use are
always in pairs. One cache is for allocating the objects from DMA memory, and the other is for



standard allocations from normal memory. If you recall the memory zones, you realize that the
DMA cache is in ZONE_DMA and the standard cache is in ZONE_NORMAL. The struct cache_sizes is a
useful way to store together all the information regarding general size caches.

-----------------------------------------------------------------------------
include/linux/slab.h
69  struct cache_sizes {
70   size_t   cs_size;
71   kmem_cache_t  *cs_cachep;
72   kmem_cache_t  *cs_dmacachep;
73  };
-----------------------------------------------------------------------------

4.4.2.1. cs_size

The cs_size field holds the size of the memory objects contained in this cache.

4.4.2.2. cs_cachep

The cs_cachep field holds the pointer to the normal memory cache descriptor for objects to be
allocated from ZONE_NORMAL.

4.4.2.3. cs_dmacachep

The cs_dmacachep field holds the pointer to the DMA memory cache descriptor for objects to be
allocated from ZONE_DMA.

One question comes to mind, "Where are the cache descriptors stored?" The slab allocator has a
cache that is reserved just for that purpose. The cache_cache cache holds objects of the type
cache descriptors. This slab cache is initialized statically during system bootstrapping to ensure
that cache descriptor storage is available.

4.4.3. Slab Descriptor

Each slab in a cache has a descriptor that holds information particular to that slab. We just
mentioned that cache descriptors are stored in the specialized cache called cache_cache. Slab
descriptors in turn can be stored in two places: They are stored within the slab itself (specifically,
the first-page frame) or externally within the first "general purpose" cache with objects large
enough to hold the slab descriptor. This is determined upon cache creation based on space left
over from object alignment. This space is determined upon cache creation.

Let's look at some of the slab descriptor fields:

-----------------------------------------------------------------------------
mm/slab.c
173  struct slab {
174   struct list_head  list;
175   unsigned long   coloroff;
176   void    *s_mem;  /* including color offset */
177   unsigned int   inuse;   /* num of objs active in slab */
178   kmem_bufctl_t   free;



179  };
-----------------------------------------------------------------------------

4.4.3.1. list

If you recall from the cache descriptor discussion, a slab can be in one of three states: free,
partial, or full. The cache descriptor holds all slab descriptors in three listsone for each state. All
slabs in a particular state are kept in a doubly linked list by means of the list field.

4.4.3.2. s_mem

The s_mem field holds the pointer to the first object in the slab.

4.4.3.3. inuse

The value inuse keeps track of the number of objects that are occupied in that slab. For full and
partial slabs, this is a positive number; for free slabs, this is 0.

4.4.3.4. free

The free field holds an index value to the array whose entries represent the objects in the slab. In
particular, the free field contains the index value of the entry representing the first available
object in the slab. The kmem_bufctl_t data type links all the objects within a slab. The data type is
simply an unsigned integer and is defined in include/asm/types.h. These data types make up an
array that is always stored right after the slab descriptor, regardless of whether the slab
descriptor is stored internally or externally to the slab. This becomes clear when we look at the
inline function slab_bufctl(), which returns the array:

-----------------------------------------------------------------------------
mm/slab.c
1614  static inline kmem_bufctl_t *slab_bufctl(struct slab *slabp)
1615  {
1616   return (kmem_bufctl_t *)(slabp+1);
1617  }
-----------------------------------------------------------------------------

The function slab_bufctl() takes in a pointer to the slab descriptor and returns a pointer to the
memory area immediately following the slab descriptor.

When the cache is initialized, the slab->free field is set to 0 (because all objects will be free so it
should return the first one), and each entry in the kmem_bufctl_t array is set to the index value of
the next member of the array. This means that the 0th element holds the value 1, the 1st element
holds the value 2, and so on. The last element in the array holds the value BUFCTL_END, which
indicates that this is the last element in the array.

Figure 4.8 shows how the slab descriptor, the bufctl array, and the slab objects are laid out when
the slab descriptors are stored internally to the slab. Table 4.5 shows the possible values of certain
slab descriptor fields when the slab is in each of the three possible states.



Figure 4.8. Slab Descriptor and bufctl

Table 4.5. Slab State and Descriptor Field Values

  Free Partial Full

slab->inuse 0 X N

slab->free 0 X N

N = Number of objects in slab

X = Some variable positive number



4.5. Slab Allocator's Lifecycle

Now, we explore the interaction of caches and the slab allocator throughout the lifecycle of the
kernel. The kernel needs to make sure that certain structures are in place to support memory
area requests on the part of processes and the creation of specialized caches on the part of
dynamically loadable modules.

A few global structures play key roles for the slab allocator. Some of these were in passing
previously in the chapter. Let's look at these global variables.

4.5.1. Global Variables of the Slab Allocator

There are a number of global variables that are associated with the slab allocator. These include

cache_cache. The cache descriptor for the cache that is to contain all other cache descriptors.

The human-readable name of this cache is kmem_cache. This cache descriptor is the only one
that is statically allocated.

cache_chain. The list element that serves as a pointer to the cache descriptor list.

cache_chain_sem. The semaphore that controls access to cache_chain.[9] Every time an

element (new cache descriptor) is added to the chain, this semaphore needs to be acquired
with a down() and released with an up().

[9] Semaphores are discussed in detail in Chapter 9, "Building the Linux Kernel."

malloc_sizes[]. The array that holds the cache descriptors for the DMA and non-DMA caches

that correspond to a general cache.

Before the slab allocator is initialized, these structures are already in place. Let's look at their
creation:

-----------------------------------------------------------------------------
mm/slab.c
486  static kmem_cache_t cache_cache = {
487   .lists   = LIST3_INIT(cache_cache.lists),
488   .batchcount  = 1,
489   .limit   = BOOT_CPUCACHE_ENTRIES,
490   .objsize  = sizeof(kmem_cache_t),
491   .flags   = SLAB_NO_REAP,
492   .spinlock  = SPIN_LOCK_UNLOCKED,
493   .color_off  = L1_CACHE_BYTES,
494   .name   = "kmem_cache",
495  };
496
497  /* Guard access to the cache-chain. */
498  static struct semaphore  cache_chain_sem;
499
500  struct list_head cache_chain;
-----------------------------------------------------------------------------



The cache_cache cache descriptor has the SLAB_NO_REAP flag. Even if memory is low, this cache is
retained throughout the life of the kernel. Note that the cache_chain semaphore is only defined,
not initialized. The initialization occurs during system initialization in the call to kmem_cache_init().
We explore this function in detail here:

-----------------------------------------------------------------------------
mm/slab.c
462  struct cache_sizes malloc_sizes[] = {
463  #define CACHE(x) { .cs_size = (x) },
464  #include <linux/kmalloc_sizes.h>
465   { 0, }
466  #undef CACHE
467  };
-----------------------------------------------------------------------------

This piece of code initializes the malloc_sizes[] array and sets the cs_size field according to the
values defined in include/linux/kmalloc_sizes.h. As mentioned, the cache sizes can span from
32 bytes to 131,072 bytes depending on the specific kernel configurations.[10]

[10] There are a few additional configuration options that result in more general caches of sizes larger than 131,072. For more

information, see include/linux/kmalloc_sizes.h.

With these global variables in place, the kernel proceeds to initialize the slab allocator by calling
kmem_cache_init() from init/main.c.[11] This function takes care of initializing the cache chain,
its semaphore, the general caches, the kmem_cache cachein essence, all the global variables that
are used by the slab allocator for slab management. At this point, specialized caches can be
created. The function used to create caches is kmem_cache_create().

[11] Chapter 9 covers the initialization process linearly from power on. We see how kmem_cache_init() fits into the

bootstrapping process.

4.5.2. Creating a Cache

The creation of a cache involves three steps:

1. Allocation and initialization of the descriptor

2. Calculation of the slab coloring and object size

3. Addition of the cache to cache_chain list

General caches are set up during system initalization by kmem_cache_init() (mm/slab.c).
Specialized caches are created by way of a call to kmem_cache_create().

We now look at each of these functions.

4.5.2.1. kmem_cache_init()

This is where the cache_chain and general caches are created. This function is called during the
initialization process. Notice that the function has __init preceding the function name. As
discussed in Chapter 2, "Exploration Toolkit," this indicates that the function is loaded into
memory that gets wiped after the bootstrap and initialization process is over.



-----------------------------------------------------------------------------
mm/slab.c
659  void __init kmem_cache_init(void)
660  {
661   size_t left_over;
662   struct cache_sizes *sizes;
663   struct cache_names *names;
...
669   if (num_physpages > (32 << 20) >> PAGE_SHIFT)
670    slab_break_gfp_order = BREAK_GFP_ORDER_HI;
671
672
-----------------------------------------------------------------------

Lines 661663

The variable sizes and names are the head arrays for the kmalloc allocated arrays (the general
caches with geometrically distributes sizes). At this point, these arrays are located in the __init
data area. Be aware that kmalloc() does not exist at this point. kmalloc() uses the malloc_sizes
array and that is precisely what we are setting up now. At this point, all we have is the statically
allocated cache_cache descriptor.

Lines 669670

This code block determines how many pages a slab can use. The number of pages a slab can use
is entirely determined by how much memory is available. In both x86 and PPC, the variable
PAGE_SHIFT (include/asm/page.h) evaluates to 12. So, we are verifying if num_physpages holds a
value greater than 8k. This would be the case if we have a machine with more than 32MB of
memory. If this is the case, we fit BREAK_GFP_ORDER_HI pages per slab. Otherwise, one page is
allocated per slab.

-----------------------------------------------------------------------------
mm/slab.c
690   init_MUTEX(&cache_chain_sem);
691   INIT_LIST_HEAD(&cache_chain);
692   list_add(&cache_cache.next, &cache_chain);
693   cache_cache.array[smp_processor_id()] = &initarray_cache.cache;
694
695   cache_estimate(0, cache_cache.objsize, 0,
696     &left_over, &cache_cache.num);
697   if (!cache_cache.num)
698    BUG();
699
...
-----------------------------------------------------------------------------

Line 690

This line initializes the cache_chain semaphore cache_chain_sem.

Line 691



Initialize the cache_chain list where all the cache descriptors are stored.

Line 692

Add the cache_cache descriptor to the cache_chain list.

Line 693

Create the per CPU caches. The details of this are beyond the scope of this book.

Lines 695698

This block is a sanity check verifying that at least one cache descriptor can be allocated in
cache_cache. Also, it sets the cache_cache descriptor's num field and calculates how much space
will be left over. This is used for slab coloring Slab coloring is a method by which the kernel
reduces cache alignmentrelated performance hits.

-----------------------------------------------------------------------------
mm/slab.c
705   sizes = malloc_sizes;
706   names = cache_names;
707
708   while (sizes->cs_size) {
...
714    sizes->cs_cachep = kmem_cache_create(
715     names->name, sizes->cs_size,
716     0, SLAB_HWCACHE_ALIGN, NULL, NULL);
717    if (!sizes->cs_cachep)
718     BUG();
719
...
725
726    sizes->cs_dmacachep = kmem_cache_create(
727     names->name_dma, sizes->cs_size,
728     0, SLAB_CACHE_DMA|SLAB_HWCACHE_ALIGN, NULL, NULL);
729    if (!sizes->cs_dmacachep)
730     BUG();
731
732    sizes++;
733    names++;
734   }
-----------------------------------------------------------------------------

Line 708

This line verifies if we have reached the end of the sizes array. The sizes array's last element is
always set to 0. Hence, this case is true until we hit the last cell of the array.

Lines 714718



Create the next kmalloc cache for normal allocation and verify that it is not empty. See the
section, "kmem_cache_create()."

Lines 726730

This block creates the caches for DMA allocation.

Lines 732733

Go to the next element in the sizes and names arrays.

The remainder of the kmem_cache_init() function handles the replacement of the temporary
bootstrapping data for kmalloc allocated data. We leave out the explanation of this because it is
not directly pertinent to the actual initialization of the cache descriptors.

4.5.2.2. kmem_cache_create()

Times arise when the memory regions provided by the general caches are not sufficient. This
function is called when a specialized cache needs to be created. The steps required to create a
specialized cache are not unlike those required to create a general cache: create, allocate, and
initialize the cache descriptor, align objects, align slab descriptors, and add the cache to the cache
chain. This function does not have __init in front of the function name because persistent
memory is available when it is called:

-----------------------------------------------------------------------------
mm/slab.c
1027  kmem_cache_t *
1028  kmem_cache_create (const char *name, size_t size, size_t offset,
1029   unsigned long flags, void (*ctor)(void*, kmem_cache_t *, unsigned long),
1030   void (*dtor)(void*, kmem_cache_t *, unsigned long))
1031  {
1032   const char *func_nm = KERN_ERR "kmem_create: ";
1033   size_t left_over, align, slab_size;
1034   kmem_cache_t *cachep = NULL;
...
-----------------------------------------------------------------------------

Let's look at the function parameters of kmem_cache_create.

name

This is the name used to identify the cache. This gets stored in the name field of the cache
descriptor and displayed in /proc/slabinfo.

size

This parameter specifies the size (in bytes) of the objects that are contained in this cache. This
value is stored in the objsize field of the cache descriptor.



offset

This value determines where the objects are placed within a page.

flags

The flags parameter is related to the slab. Refer to Table 4.4 for a description of the cache
descriptor flags field and possible values.

ctor and dtor

ctor and dtor are respectively the constructor and destructor that are called upon creation or
destruction of objects in this memory region.

This function performs sizable debugging and sanity checks that we do not cover here. See the
code for more details:

-----------------------------------------------------------------------------
mm/slab.c
1079   /* Get cache's description obj. */
1080   cachep = (kmem_cache_t *) kmem_cache_alloc(&cache_cache, SLAB_KERNEL);
1081   if (!cachep)
1082    goto opps;
1083   memset(cachep, 0, sizeof(kmem_cache_t));
1084
...
1144   do {
1145    unsigned int break_flag = 0;
1146   cal_wastage:
1147    cache_estimate(cachep->gfporder, size, flags,
1148         &left_over, &cachep->num);
...
1174   } while (1);
1175
1176   if (!cachep->num) {
1177    printk("kmem_cache_create: couldn't create cache %s.\n", name);
1178    kmem_cache_free(&cache_cache, cachep);
1179    cachep = NULL;
1180    goto opps;
1181  }

-----------------------------------------------------------------------------

Lines 10791084

This is where the cache descriptor is allocated. Following this is the portion of the code that is
involved with the alignment of objects in the slab. We leave this portion out of this discussion.

Lines 11441174

This is where the number of objects in cache is determined. The bulk of the work is done by
cache_estimate(). Recall that the value is to be stored in the num field of the cache descriptor.



-----------------------------------------------------------------------------
mm/slab.c
...
1201   cachep->flags = flags;
1202   cachep->gfpflags = 0;
1203   if (flags & SLAB_CACHE_DMA)
1204    cachep->gfpflags |= GFP_DMA;
1205   spin_lock_init(&cachep->spinlock);
1206   cachep->objsize = size;
1207   /* NUMA */
1208   INIT_LIST_HEAD(&cachep->lists.slabs_full);
1209   INIT_LIST_HEAD(&cachep->lists.slabs_partial);
1210   INIT_LIST_HEAD(&cachep->lists.slabs_free);
1211
1212   if (flags & CFLGS_OFF_SLAB)
1213    cachep->slabp_cache = kmem_find_general_cachep(slab_size,0);
1214   cachep->ctor = ctor;
1215   cachep->dtor = dtor;
1216   cachep->name = name;
1217
...
1242
1243   cachep->lists.next_reap = jiffies + REAPTIMEOUT_LIST3 +
1244     ((unsigned long)cachep)%REAPTIMEOUT_LIST3;
1245
1246   /* Need the semaphore to access the chain. */
1247   down(&cache_chain_sem);
1248   {
1249    struct list_head *p;
1250    mm_segment_t old_fs;
1251
1252    old_fs = get_fs();
1253    set_fs(KERNEL_DS);
1254    list_for_each(p, &cache_chain) {
1255     kmem_cache_t *pc = list_entry(p, kmem_cache_t, next);
1256     char tmp;
...
1265     if (!strcmp(pc->name,name)) {
1266       printk("kmem_cache_create: duplicate cache %s\n",name);
1267       up(&cache_chain_sem);
1268       BUG();
1269     }
1270    }
1271    set_fs(old_fs);
1272   }
1273
1274   /* cache setup completed, link it into the list */
1275   list_add(&cachep->next, &cache_chain);
1276   up(&cache_chain_sem);
1277  opps:
1278   return cachep;
1279  }

-----------------------------------------------------------------------------

Just prior to this, the slab is aligned to the hardware cache and colored. The fields color and



color_off of the slab descriptor are filled out.

Lines 12001217

This code block initializes the cache descriptor fields much like we saw in kmem_cache_init().

Lines 12431244

The time for the next cache reap is set.

Lines 12471276

The cache descriptor is initialized and all the information regarding the cache has been calculated
and stored. Now, we can add the new cache descriptor to the cache_chain list.

4.5.3. Slab Creation and cache_grow()

When a cache is created, it starts empty of slabs. In fact, slabs are not allocated until a request
for an object demonstrates a need for a new slab. This happens when the cache descriptor's
lists.slabs_partial and lists.slabs_free fields are empty. At this point, we won't relate how
the request for memory translates into the request for an object within a particular cache. For
now, we take for granted that this translation has occurred and concentrate on the technical
implementation within the slab allocator.

A slab is created within a cache by cache_grow(). When we create a slab, we not only allocate and
initialize its descriptor; we also allocate the actual memory. To this end, we need to interface with
the buddy system to request the pages. This is done by kmem_getpages() (mm/slab.c).

4.5.3.1. cache_grow()

The cache_grow() function grows the number of slabs within a cache by 1. It is called only when
no free objects are available in the cache. This occurs when lists.slabs_partial and
lists.slabs_free are empty:

-----------------------------------------------------------------------------
mm/slab.c
1546  static int cache_grow (kmem_cache_t * cachep, int flags)
1547  {
...
-----------------------------------------------------------------------------

The parameters passed to the function are

cachep. This is the cache descriptor of the cache to be grown.

flags. These flags will be involved in the creation of the slab.

-----------------------------------------------------------------------------



mm/slab.c
1572  check_irq_off();
1573  spin_lock(&cachep->spinlock);
...
1581
1582   spin_unlock(&cachep->spinlock);
1583
1584   if (local_flags & __GFP_WAIT)
1585    local_irq_enable();
-----------------------------------------------------------------------------

Lines 15721573

Prepare for manipulating the cache descriptor's fields by disabling interrupts and locking the
descriptor.

Lines 15821585

Unlock the cache descriptor and reenable the interrupts.

-----------------------------------------------------------------------------
mm/slab.c
...
1597   if (!(objp = kmem_getpages(cachep, flags)))
1598    goto failed;
1599
1600   /* Get slab management. */
1601   if (!(slabp = alloc_slabmgmt(cachep, objp, offset, local_flags)))
1602    goto opps1;
...
1605   i = 1 << cachep->gfporder;
1606   page = virt_to_page(objp);
1607   do {
1608    SET_PAGE_CACHE(page, cachep);
1609    SET_PAGE_SLAB(page, slabp);
1610    SetPageSlab(page);
1611    inc_page_state(nr_slab);
1612    page++;
1613   } while (--i) ;
1614
1615   cache_init_objs(cachep, slabp, ctor_flags);
-----------------------------------------------------------------------------

Lines 15971598

Interface with the buddy system to acquire page(s) for the slab.

Lines 16011602

Place the slab descriptor where it needs to go. Recall that slab descriptors can be stored within the
slab itself or within the first general purpose cache.



Lines 16051613

The pages need to be associated with the cache and slab descriptors.

Line 1615

Initialize all the objects in the slab.

-----------------------------------------------------------------------------
mm/slab.c
1616   if (local_flags & __GFP_WAIT)
1617    local_irq_disable();
1618   check_irq_off();
1619   spin_lock(&cachep->spinlock);
1620
1621   /* Make slab active. */
1622   list_add_tail(&slabp->list, &(list3_data(cachep)->slabs_free));
1623   STATS_INC_GROWN(cachep);
1624   list3_data(cachep)->free_objects += cachep->num;
1625   spin_unlock(&cachep->spinlock);
1626   return 1;
1627  opps1:
1628   kmem_freepages(cachep, objp);
1629  failed:
1630   if (local_flags & __GFP_WAIT)
1631    local_irq_disable();
1632   return 0;
1633  }
-----------------------------------------------------------------------------

Lines 16161619

Because we are about to access and change descriptor fields, we need to disable interrupts and
lock the data.

Lines 16221624

Add the new slab descriptor to the lists.slabs_free field of the cache descriptor. Update the
statistics that keep track of these sizes.

Lines 16251626

Unlock the spinlock and return because all succeeded.

Lines 16271628

This gets called if something goes wrong with the page request. Basically, we are freeing the
pages.



Lines 16291632

Disable the interrupt disable, which now lets interrupts come through.

4.5.4. Slab Destruction: Returning Memory and kmem_cache_destroy()

Both caches and slabs can be destroyed. Caches can be shrunk or destroyed to return memory to
the free memory pool. The kernel calls these functions when memory is low. In either case, slabs
are being destroyed and the pages corresponding to them are being returned for the buddy
system to recycle. kmem_cache_destroy() gets rid of a cache. We explore this function in depth.
Caches can be reaped and shrunk by kmem_cache_reap() (mm/slab.c) and kmem_cache_shrink(),
respectively (mm/slab.c). The function to interface with the buddy system is kmem_freepages()
(mm/slab.c).

4.5.4.1. kmem_cache_destroy()

There are a few instances when a cache would need to be removed. Dynamically loadable modules
(assuming no persistent memory across loading and unloading) that create caches must destroy
them upon unloading to free up the memory and to ensure that the cache won't be duplicated the
next time the module is loaded. Thus, the specialized caches are generally destroyed in this
manner.

The steps to destroy a cache are the reverse of the steps to create one. Alignment issues are not
a concern upon destruction of a cache, only the deletion of descriptors and freeing of memory.
The steps to destroy a cache can be summarized as

1. Remove the cache from the cache chain.

2. Delete the slab descriptors.

3. Delete the cache descriptor.

-----------------------------------------------------------------------------
mm/slab.c
1421  int kmem_cache_destroy (kmem_cache_t * cachep)
1422  {
1423   int i;
1424
1425   if (!cachep || in_interrupt())
1426    BUG();
1427
1428   /* Find the cache in the chain of caches. */
1429   down(&cache_chain_sem);
1430   /*
1431   * the chain is never empty, cache_cache is never destroyed
1432   */
1433   list_del(&cachep->next);
1434   up(&cache_chain_sem);
1435
1436   if (__cache_shrink(cachep)) {
1437    slab_error(cachep, "Can't free all objects");
1438    down(&cache_chain_sem);
1439    list_add(&cachep->next,&cache_chain);
1440    up(&cache_chain_sem);



1441    return 1;
1442   }
1443
...
1450   kmem_cache_free(&cache_cache, cachep);
1451
1452   return 0;
1453  }
-----------------------------------------------------------------------------

The function parameter cache is a pointer to the cache descriptor of the cache that is to be
destroyed.

Lines 14251426

This sanity check consists of ensuring that an interrupt is not in play and that the cache descriptor
is not NULL.

Lines 14291434

Acquire the cache_chain semaphore, delete the cache from the cache chain, and release the cache
chain semaphore.

Lines 14361442

This is where the bulk of the work related to freeing the unused slabs takes place. If the
__cache_shrink() function returns true, that indicates that there are still slabs in the cache and,
therefore, it cannot be destroyed. Thus, we reverse the previous step and reenter the cache
descriptor into the cache_chain, again by first reacquiring the cache_chain semaphore, and
releasing it once we finish.

Line 1450

We finish by releasing the cache descriptor.



4.6. Memory Request Path

Until now, we have approached the description of the slab allocator as though it were independent
of any actual memory request. With the exception of the cache initialization functions, we have
not tied together how all these functions come to be called. Now, we look at the flow of control
associated with memory requests. When the kernel must obtain memory in byte-sized groupings,
it uses the kmalloc() function, which eventually makes the call to kmem_getpages as follows:

kmalloc()->__cache_alloc()->kmem_cache_grow()->kmem_getpages()

4.6.1. kmalloc()

The kmalloc() function allocates memory objects in the kernel:

-----------------------------------------------------------------------------
mm/slab.c
2098  void * __kmalloc (size_t size, int flags)
2099  {
2100   struct cache_sizes *csizep = malloc_sizes;
2101
2102   for (; csizep->cs_size; csizep++) {
2103    if (size > csizep->cs_size)
2104     continue;
...
2112    return __cache_alloc(flags & GFP_DMA ?
2113      csizep->cs_dmacachep : csizep->cs_cachep, flags);
2114   }
2115   return NULL;
2116  }
-----------------------------------------------------------------------------

4.6.1.1. size

This is the number of bytes requested.

4.6.1.2. flags

Indicates the type of memory requested. These flags are passed on to the buddy system without
affecting the behavior of kmalloc().Table 4.6 shows the flags, and they are covered in detail in the
"Buddy System" section.

Table 4.6. vm_area_struct->vm_flags Values



Flag Description

VM_READ Pages in this region can be read.

VM_WRITE Pages in this region can be written.

VM_EXEC Pages in this region can be executed.

VM_SHARED Pages in this region are shared with another process.

VM_GROWSDOWN The linear addresses are added onto the low side.

VM_GROWSUP The linear addresses are added onto the high side.

VM_DENYWRITE These pages cannot be written.

VM_EXECUTABLE Pages in this region consist of executable code.

VM_LOCKED Pages are locked.

VM_DONTCOPY These pages cannot be cloned.

VM_DNTEXPAND Do not expand this virtual memory area.

Lines 21022104

Find the first cache with objects greater than the size requested.

Lines 21122113

Allocate an object from the memory zone specified by the flags parameter.

4.6.2. kmem_cache_alloc()

This is a wrapper function around __cache_alloc(). It does not perform any additional
functionality because its parameters are passed as is:

-----------------------------------------------------------------------------
mm/slab.c
2070  void * kmem_cache_alloc (kmem_cache_t *cachep, int flags)
2071  {
2072   return __cache_alloc(cachep, flags);
2073  }
-----------------------------------------------------------------------------

4.6.2.1. cachep

The cachep parameter is the cache descriptor of the cache from which we want to allocate objects.

4.6.2.2. flags

The type of memory requested. This is passed directly as indicated to kmalloc().

To free byte-sized memory allocated with kmalloc(), the kernel provides the kfree() interface,



which takes as a parameter the pointer to the memory returned by kmalloc(). Figure 4.9
illustrates the flow from kfree to kmem_freepages.

Figure 4.9. kfree() Call Graph



4.7. Linux Process Memory Structures

Until now, we covered how the kernel manages its own memory. We now turn our attention to
user space programs and how the kernel manages program memory. The wonder of virtual
memory allows a user space process to effectively operate as though it has access to all memory.
In reality, the kernel manages what gets loaded, how it gets loaded, and when that happens. All
that we have discussed until now in this chapter relates to how the kernel manages memory and
is completely transparent to a user space program.

Upon creation, a user space process is assigned a virtual address space. As previously mentioned,
a process' virtual address space is a range of unsegmented linear addresses that the process can
use. The size of the range is defined by the size of the register in the system's architecture. Most
systems have a 32-bit address space. A G5, for example, has processes with a 64-bit address
space.

Upon creation, the address range the process is presented with can grow or shrink through the
addition or removal of linear address intervals, respectively. The address interval (a range of
addresses) represents yet another unit of memory called a memory region or a memory area.
It is useful to split the process address range into areas of different types. These different types
have different protection schemes or characteristics. The process-memory protection schemes are
associated with process context. For example, certain parts of a program's code are marked read-
only (text) while others are writable (variables) or executable (instructions). Also, a particular
process might access only certain memory areas that belong to it.

Within the kernel, a process address space, as well as all the information related to it, is kept in an
mm_struct descriptor. You might recall from Chapter 3, "Processes: The Principal Model of
Execution," that this structure is referenced in the task_struct for the process. A memory area is
represented by the vm_area_struct descriptor. Each memory area descriptor describes the
contiguous address interval it represents. Throughout this section, we refer to the descriptor for
an address interval as a memory area descriptor or as vma_area_struct.We now look at mm_struct
and vm_area_struct. Figure 4.10 illustrates the relationship between these data structures.

Figure 4.10. Process-Related Memory Structures

[View full size image]

4.7.1. mm_struct

Every task has an mm_struct (include/linux/sched.h) structure that the kernel uses to represent



its memory address range. All mm_struct descriptors are stored in a doubly linked list. The head of
the list is the mm_struct that corresponds to process 0, which is the idle process. This descriptor is
accessed by way of the global variable init_mm:

-----------------------------------------------------------------------------
include/linux/sched.h
185  struct mm_struct {
186   struct vm_area_struct * mmap;
187   struct rb_root mm_rb;
188   struct vm_area_struct * mmap_cache;
189   unsigned long free_area_cache;
190   pgd_t * pgd;
191   atomic_t mm_users;
192   atomic_t mm_count;
193   int map_count;
194   struct rw_semaphore mmap_sem;
195   spinlock_t page_table_lock
196
197   struct list_head mmlist;
...
202   unsigned long start_code, end_code, start_data, end_data;
203   unsigned long start_brk, brk, start_stack;
204   unsigned long arg_start, arg_end, env_start, env_end;
205   unsigned long rss, total_vm, locked_vm;
206   unsigned long def_flags;
207   cpumask_t cpu_vm_mask;
208   unsigned long swap_address;
...
228  }; 
-----------------------------------------------------------------------------

4.7.1.1. mmap

The memory area descriptors (which are defined in the next section) that have been assigned to a
process are linked in a list. This list is accessed by means of the mmap field in the mm_struct. The
list is traversed by way of the vm_next field of each vma_area_struct.

4.7.1.2. mm_rb

The simply linked list provides an easy way of traversing all the memory area descriptors that
correspond to a particular process. However, if the kernel searches for a particular memory area
descriptor, a simply linked list does not yield good search times. The memory area structures that
correspond to a process address range are also stored in a red-black tree that is accessed through
the mm_rb field. This yields faster search times when the kernel needs to access a particular
memory area descriptor.

4.7.1.3. mmap_cache

mmap_cache is a pointer to the last memory area referenced by the process. The principle of
locality states that when a memory address is referenced, memory areas that are close by tend
to get referenced soon after. Hence, it is likely that the address being currently checked belongs to
the same memory area as the last address checked. The hit rate of verifying whether the current
address is in the last accessed memory area is approximately 35 percent.



4.7.1.4. pgd

The pgd field is a pointer to the page global directory that holds the entry for this memory area. In
the mm_struct for the idle process (process 0), this field points to the swapper_pg_dir. See Section
4.9 for more information on what this field points to.

4.7.1.5. mm_users

The mm_users field holds the number of processes that access this memory area. Lightweight
processes or threads share the same address intervals and memory areas. Thus, the mm_struct
for threads generally have an mm_users field with a value greater than 1. This field is manipulated
by way of the atomic functions: atomic_set(), atomic_dec_and_lock(), atomic_read(), and
atomic_inc().

4.7.1.6. mm_count

mm_count is the usage count for the mm_struct. When determining if the structure can be
deallocated, a check is made against this field. If it holds the value of 0, no processes are using it;
therefore, it can be deallocated.

4.7.1.7. map_count

The map_count field holds the number of memory areas, or vma_area_struct descriptors, in the
process address space. Every time a new memory area is added to the process address space,
this field is incremented alongside with the vma_area_struct's insertion into the mmap list and mm_rb
tree.

4.7.1.8. mm_list

The mm_list field of type list_head holds the address of adjacent mm_structs in the memory
descriptor list. As previously mentioned, the head of the list is pointed to by the global variable
init_mm, which is the memory descriptor for process 0. When this list is manipulated, mmlist_lock
protects it from concurrent accesses.

The next 11 fields we describe deal with the various types of memory areas a process needs
allocated to it. Rather than digress into an explanation that distracts from the description of the
process memoryrelated structures, we now give a cursory description.

4.7.1.9. start_code and end_code

The start_code and end_code fields hold the starting and ending addresses for the code section of
the processes' memory region (that is, the executable's text segment).

4.7.1.10. start_data and end_data

The start_data and end_data fields contain the starting and ending addresses for the initialized
data (that found in the .data portion of the executable file).

4.7.1.11. start_brk and brk



The start_brk and brk fields hold the starting and ending addresses of the process heap.

4.7.1.12. start_stack

start_stack is the starting address of the process stack.

4.7.1.13. arg_start and arg_end

The arg_start and arg_end fields hold the starting and ending addresses of the arguments passed
to the process.

4.7.1.14. env_start and env_end

The env_start and env_end fields hold the starting and ending addresses of the environment
section.

This concludes the mm_struct fields that we focus on in this chapter. We now look at some of the
fields for the memory area descriptor, vm_area_struct.

4.7.2. vm_area_struct

The vm_area_struct structure defines a virtual memory region. A process has various memory
regions, but every memory region has exactly one vm_area_struct to represent it:

-----------------------------------------------------------------------------
include/linux/mm.h
51  struct vm_area_struct {
52   struct mm_struct * vm_mm;
53   unsigned long vm_start;
54   unsigned long vm_end;
...
57   struct vm_area_struct *vm_next;
...
60   unsigned long vm_flags;
61
62   struct rb_node vm_rb;
...
72   struct vm_operations_struct * vm_ops;
...
};
-----------------------------------------------------------------------------

4.7.2.1. vm_mm

All memory regions belong to an address space that is associated with a process and represented
by an mm_struct. The structure vm_mm points to a structure of type mm_struct that describes the
address space to which this memory area belongs to.



4.7.2.2. vm_start and vm_end

A memory region is associated with an address interval. In the vm_area_struct, this interval is
defined by keeping track of the starting and ending addresses. For performance reasons, the
beginning address of the memory region must be a multiple of the page frame size. The kernel
ensures that page frames are filled with data from a particular memory region by also demanding
that the size of memory region be in multiples of the page frame size.

4.7.2.3. vm_next

The field vm_next points to the next vm_area_struct in the linked list that comprises all the regions
within a process address space. The head of this list is referenced by way of the mmap field in the
mm_struct for the address space.

4.7.2.4. vm_flags

Within this interval, a memory region also has associated characteristics that describe it. These
are stored in the vm_flags field and apply to the pages within the memory region. Table 4.6
describes the possible flags.

4.7.2.5. vm_rb

vm_rb holds the red-black tree node that corresponds to this memory area.

4.7.2.6. vm_ops

vm_ops consists of a structure of function pointers that handle the particular vm_area_struct.
These functions include opening the memory area, closing, and unmapping it. Also, it holds a
function pointer to the function called when a no-page exception occurs.



4.8. Process Image Layout and Linear Address Space

When a user space program is loaded into memory, it has its linear address space partitioned into
various memory areas or segments. These segments are determined by functional differences in
relation to the execution of the process. The functionally separated segments are mapped within
the process address space. Six main segments are related to process execution:

Text. This segment, also known as the code segment, holds the executable instructions of a
program. As such, it has execute and read attributes. In the case that multiple processes can
be loaded from a single program, it would be wasteful to load the same instructions twice.
Linux allows for multiple processes to share this text segment in memory. The start_code
and end_code fields of the mm_struct hold the addresses for the beginning and end of the text
segment.

Data. This section holds all initialized data. Initialized data includes statically allocated and
global data that are initialized. The following code snippet shows an example of initialized
data:

---------------------------------------------------------------------------
example1.c
int gvar = 10;

int main(){
...
}
-----------------------------------------------------------------------------

gvar. A global variable that is initialized and stored in the data segment. This section has
read/write attributes but cannot be shared among processes running the same program. The
start_data and end_data fields of the mm_struct hold the addresses for the beginning and
end of the data segment.

BSS. This section holds uninitialized data. This data consists of global variables that the
system initializes with 0s upon program execution. Another name for this section is the zero-
initialized data section. The following code snippet shows an example of non-initialized data:

---------------------------------------------------------------------------
example2.c 
int gvar1[10];
long gvar2;

int main() {
...
}
-----------------------------------------------------------------------------

Objects in this segment have only name and size attributes.

Heap. This is used to grow the linear address space of a process. When a program uses
malloc() to obtain dynamic memory, this memory is placed in the heap. The start_brk and



brk fields of the mm_struct hold the addresses for the beginning and end of the heap. When
malloc() is called to obtain dynamic memory, a call to the system call sys_brk() moves the
brk pointer to its new location, thus growing the heap.

Stack. This contains all the local variables that get allocated. When a function is called, the
local variables for that function are pushed onto the stack. As soon as a function ends, the
variables associated with the function are popped from the stack. Other information,
including return addresses and parameters, is also stored in the stack. The field start_stack
of the mm_struct marks the starting address of the process stack.

Although six main areas are related to process execution, they only map to three memory areas in
the address space. These memory areas are called text, data, and stack. The data segment
includes the executable's initialized data segment, the bss, and the heap. The text segment
includes the executable's text segment.Figure 4.11 shows what the linear address space looks like
and how the mm_struct keeps track of these segments.

Figure 4.11. Process Address Space
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The various memory areas are mapped in the /proc filesystem. The memory map of a process
may be accessed through the output of /proc/<pid>/maps. We now look at an example program



and see the list of memory areas in the process' address space. The code in example3.c shows the
program being mapped.

-----------------------------------------------------------------------------
example3.c
#include <stdio.h>
int main(){
  while(1);
  return(0);
}
-----------------------------------------------------------------------------

The output of /proc/<pid>/maps for our example yields what's shown in Figure 4.12.

Figure 4.12. cat /proc/<pid>/maps

The left-most column shows the range of the memory segment. That is, the starting and ending
addresses for a particular segment. The next column shows the access permissions for that
segment. These flags are similar to the access permissions on files: r stands for readable, w stands
for writeable, and x stands for executable. The last flag can be either a p, which indicates a private
segment, or s, which indicates a shared segment. (A private segment is not necessarily
unshareable.) The p indicates only that it is currently not being shared. The next column holds the
offset for the segment. The fourth column from the left holds two numbers separated by a colon.
These represent the major and minor numbers of the filesystem the file associated with that
segment is found in. (Some segments do not have a file associated with them and, hence, just fill
in this value with 00:00.) The fifth column holds the inode of the file and the sixth and right-most
column holds the filename. For segments with no filename, this column is empty and the inode
column holds a 0.

In our example, the first row holds a description of the text segment of our sample program. This
can be seen on account of the permission flags set to executable. The next row describes our
sample program's data segment. Notice that its permissions indicate that it is writeable.

Our program is dynamically linked, which means that functions it uses belonging to a library are
loaded at runtime. These functions need to be mapped to the process' address space so that it can
access them. The next six rows deal with dynamically linked libraries. The next three rows
describe the ld library's text, data, and bss. These three rows are followed by descriptions of
libc's test, data, and bss segments in that order.

The final row, whose permissions indicated that it is readable, writeable, and executable,
represents the process stack and extends up to 0xC0000000. 0xC000000 is the highest memory
address accessible for user space processes.





4.9. Page Tables

Program memory is comfortably managed with virtual addresses. The problem with this is that
when an instruction is issued to the processor, it cannot do anything with a virtual address. The
processor operates on physical addresses. The association between the virtual address and the
corresponding physical address is kept by the kernel (with help from the hardware) in page tables.

Page tables keep track of memory in page frame units. They are stored in RAM throughout the
kernel's lifespan. Linux has what is called a three-level paging scheme. Three-level paging is
sufficient to ensure that 64-bit architectures have enough space to maintain mappings of all their
virtual-to-physical associations. As the name implies, three-level paging has three types of paging
tables: The top level directory is called the Page Global Directory (PGD) and is represented by a
pgd_t datatype; the second page is called the Page Middle Directory (PMD) and is represented by
a pmd_t datatype; the final page is called a Page Table (PTE) and is represented by a pte_t
datatype. Figure 4.13 illustrates the page tables.

Figure 4.13. Page Tables in Linux
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The PGD holds entries that refer to PMDs. The PMD holds entries that refer to PTEs, and the PTE
holds entries that refer to specific pages. Each process has its own set of page tables. The
mm_struct->pgd field points to the PGD for the process. The 32- or 64-bit virtual addresses are
split up into variously sized (depending on the architecture) offset fields. Each field corresponds to
an offset within the PGD, PMD, PTE, and the page itself.



4.10. Page Fault

Throughout the lifespan of a process, it is possible that it might attempt to access an address that
belongs to its address space but is not loaded in RAM. It might alternatively access a page that is
in RAM, but attempt action upon it that would violate the page's permission settings (for example,
writing in a read-only area). When this happens, the system generates a page fault. The page
fault is an exception handler that manages errors in a program's page access. Pages are fetched
from storage when the hardware raises this page fault exception that the kernel traps. The kernel
then allocates the missing page.

Each architecture has an architecture-dependent function that handles page faults. Both x86 and
PPC call the function do_page_fault(). The x86 page fault handler do_page_fault(*regs,
error_code) is located in /arch/i386/mm/fault.c. The PowerPC page fault handler
do_page_fault(*regs, address, error_code) is located in /arch/ppc/mm/fault.c. The similarities
are close enough that a discussion of do_page_fault() for the x86 covers the functionality of the
PowerPC version.

The major difference in how the two architectures handle the page fault is in how the fault
information is gathered and stored before do_page_fault() is called. We first explain the specifics
of the x86 page fault handling and proceed to explain the do_page_fault() function. We follow this
explanation by highlighting the differences seen in PowerPC.

4.10.1. x86 Page Fault Exception

The x86 page fault handler do_page_fault() is called as the result of a hardware interrupt 14. This
interrupt occurs when the processor identifies the following conditions to be true:

Paging is enabled, and the present bit is clear in the page-directory or page-table entry
needed for this address.

1.

Paging is enabled, and the current privilege level is less than that needed to access the
requested page.

2.

Upon raising this interrupt, the processor saves two valuable pieces of information:

The nature of the error in the lower 4 bits of a word pushed on the stack. (Bit 3 is not used
by do_page_fault().) See Table 4.7 to see what each bit value corresponds to.

Table 4.7. Page Fault error_code

  Bit 2 Bit 1 Bit 0

Value = 0 Kernel Read Page not present

Value = 1 User Write Protection fault

1.

The 32-bit linear address that caused the exception in cr2.2.



2.

The regs parameter of do_page_fault() is a struct that contains the system registers, and the
error_code parameter uses a 3-bit field to describe the source of the fault.

4.10.2. Page Fault Handler

For both architectures, the do_page_fault() function uses the just-given information and takes
one of several actions. These code segments follow a fairly complicated series of checks to end up
with one of the following:

The offending address being found by handle_mm_fault()

The famous oops dump (no_context:) bad_page_fault() for PowerPC

A segmentation fault (bad_area:) bad_page_fault() for PowerPC

An error returned to the caller (fixup)

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
212  asmlinkage void do_page_fault(struct pt_regs *regs, unsigned long error_code)
213  {
214   struct task_struct *tsk;
215   struct mm_struct *mm;
216   struct vm_area_struct * vma;
217   unsigned long address;
218   unsigned long page;
219   int write;
220   siginfo_t info;
221
222   /* get the address */
223   __asm__("movl %%cr2,%0":"=r" (address));
...
232   tsk = current;
233
234   info.si_code = SEGV_MAPERR;
-----------------------------------------------------------------------------

Line 223

The address at which the page fault occurred is stored in the cr2 control register. The linear
address is read and the local variable address is set to hold the value.

Line 232

The task_struct pointer tsk is set to point at the task_struct current.

Now, we are ready to find out more about where the address that generated the page fault comes
from. Figure 4.14 illustrates the flow of the following lines of code:

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
246  if (unlikely(address >= TASK_SIZE)) {



247   if (!(error_code & 5))
248    goto vmalloc_fault;
...
253   goto bad_area_nosemaphore;
254  }
...
257  mm = tsk->mm
...
-----------------------------------------------------------------------------

Figure 4.14. Page Fault I

Lines 246248

This code checks if the address at which the page fault occurred was in kernel module space (that
is, in a noncontiguous memory area). Noncontiguous memory area addresses have their linear
address >= TASK_SIZE. If it was, it checks if bits 0 and 2 of the error_code are clear. Recall from
Table 4.7 that this indicates that the error is caused by trying to access a kernel page that is not
present. If so, this indicates that the page fault occurred in kernel mode and the code at label
vmalloc_fault: is called.

Line 253

If we get here, it means that although the access occurred in a noncontiguous memory area, it
occurred in user mode, hit a protection fault, or both. In this case, we jump to the label
bad_area_semaphore:.

Line 257



This sets the local variable mm to point to the current task's memory descriptor. If the current task
is a kernel thread, this value is NULL. This becomes significant in the next code lines.

At this point, we have determined that the page fault did not occur in a noncontiguous memory
area. Again, Figure 4.15 illustrates the flow of the following lines of code:

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
...
262  if (in_atomic() || !mm)
263   goto bad_area_nosemaphore;
264
265  down_read(&mm->mmap_sem);
266
267  vma = find_vma(mm, address);
268  if (!vma)
269   goto bad_area;
270  if (vma->vm_start <= address)
271   goto good_area;
272  if (!(vma->vm_flags & VM_GROWSDOWN))
273   goto bad_area;
274  if (error_code & 4) {
...
281   if (address + 32 < regs->esp)
282    goto bad_area;
283  }
284  if (expand_stack(vma, address))
285   goto bad_area;
...
-----------------------------------------------------------------------------

Figure 4.15. Page Fault II

[View full size image]

Lines 262263

In this code block, we check to see if the fault occurred while executing within an interrupt handler
or in kernel space. If it did, we jump to label bad_area_ semaphore:.



Line 265

At this point, we are about to search through the memory areas of the current process, so we set
a read lock on the memory descriptor's semaphore.

Lines 267269

Given that, at this point, we know the address that generated the page fault is not in a kernel
thread or in an interrupt handler, we search the address space of the process to see if the address
is in one of its memory areas. If it is not there, jump to label bad_area:.

Lines 270271

If we found a valid region within the process address space, we jump to label good_area:.

Lines 272273

If we found a region that is not valid, we check if the nearest region can grow to fit the page. If
not, we jump to the label bad_area:.

Lines 274284

Otherwise, the offending address might be the result of a stack operation. If expanding the stack
does not help, jump to the label bad_area:.

Now, we proceed to explain what each of the label jump points do. We begin with the label
vmalloc_fault, which is illustrated in Figure 4.16:

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
473  vmalloc_fault:
  {

   int index = pgd_index(address);
   pgd_t *pgd, *pgd_k;
   pmd_t *pmd, *pmd_k;
   pte_t *pte_k;

   asm("movl %%cr3,%0":"=r" (pgd));
   pgd = index + (pgd_t *)__va(pgd);
   pgd_k = init_mm.pgd + index;

491   if (!pgd_present(*pgd_k))
    goto no_context;

   pmd = pmd_offset(pgd, address);
   pmd_k = pmd_offset(pgd_k, address);
   if (!pmd_present(*pmd_k))
    goto no_context;
   set_pmd(pmd, *pmd_k);



   pte_k = pte_offset_kernel(pmd_k, address);
506   if (!pte_present(*pte_k))
507    goto no_context;
508   return;
509  }
-----------------------------------------------------------------------------

Figure 4.16. Label vmalloc_fault

Lines 473509

The current process Page Global Directory is referenced (by way of cr3) and saved in the variable
pgd and the kernel Page Global Directory is referenced by pgd_k (likewise for the pmd and the pte
variables). If the offending address is not valid in the kernel paging system, the code jumps to the
no_context: label. Otherwise, the current process uses the kernel pgd.

Now, we look at the label good_area:. At this point, we know that the memory area holding the
offending address exists within the address space of the process. Now, we need to ensure that the
access permissions were correct. Figure 4.17 shows the flow diagram:

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
290  good_area:
291   info.si_code = SEGV_ACCERR;
292   write = 0;
293   switch (error_code & 3) {
294    default:  /* 3: write, present */
...
    /* fall through */
300    case 2:   /* write, not present */
301     if (!(vma->vm_flags & VM_WRITE))
302       goto bad_area;
303     write++;
304     break;
305    case 1:   /* read, present */
306     goto bad_area;



307    case 0:   /* read, not present */
308     if (!(vma->vm_flags & (VM_READ | VM_EXEC)))
309       goto bad_area;
310   }
-----------------------------------------------------------------------------

Figure 4.17. Label good_area

Lines 294304

If the page fault was caused by a memory access that was a write (recall that if this is the case,
our left-most bit in the error code is set to 1), we check if our memory area is writeable. If it is
not, we have a mismatch of permissions and we jump to the label bad_area:. If it was writeable,
we fall through the case statement and eventually proceed to handle_mm_fault() with the local
variable write set to 1.

Lines 305309

If the page fault was caused by a read or execute access and the page is present, we jump to the
label bad_area: because this constitutes a clear permissions violation. If the page is not present,
we check to see if the memory area has read or execute permissions. If it does not, we jump to
the label bad_area: because even if we were to fetch the page, the permissions would not allow
the operation. If it does, we fall out of the case statement and eventually proceed to
handle_mm_fault() with the local variable write set to 0.

The following label marks the code we fall through to when the permissions checks comes out OK.



It is appropriately labeled survive:.

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
survive:
318   switch (handle_mm_fault(mm, vma, address, write)) {
   case VM_FAULT_MINOR:
    tsk->min_flt++;
    break;
   case VM_FAULT_MAJOR:
    tsk->maj_flt++;
    break;
   case VM_FAULT_SIGBUS:
    goto do_sigbus;
   case VM_FAULT_OOM:
    goto out_of_memory;
329    default:
    BUG();
  }
-----------------------------------------------------------------------------

Lines 318329

The function handle_mm_fault() is called with the current memory descriptor (mm), the descriptor
to the offending address' area, the offending address, and whether the access was a read/execute
or write. The switch statement catches us if we fail at handling the fault, which ensures we exit
gracefully.

The following code snippet describes the flow of the label bad_area and bad_area_no_semaphore.
When we jump to this point, we know that either

The address generating the page fault is not in the process address space because we've
searched its memory areas and did not find one that matched.

1.

The address generating the page fault is not in the process address space and the region
that would contain it cannot grow to hold it.

2.

The address generating the page fault is in the process address space but the permissions of
the memory area did not match the action we wanted to perform.

3.

Now, we need to determine if the access is from within kernel mode. The following code and
Figure 4.18 illustrates the flow of these labels:

-----------------------------------------------------------------------------
arch/i386/mm.fault.c
348  bad_area:
349   up_read(&mm->mmap_sem);
350
351  bad_area_nosemaphore:
352   /* User mode accesses just cause a SIGSEGV */
353   if (error_code & 4) {
354    if (is_prefetch(regs, address))
355     return;
356
357    tsk->thread.cr2 = address;



358    tsk->thread.error_code = error_code;
359    tsk->thread.trap_no = 14;
360    info.si_signo = SIGSEGV;
361    info.si_errno = 0;
362    /* info.si_code has been set above */
363    info.si_addr = (void *)address;
364    force_sig_info(SIGSEGV, &info, tsk);
365    return;
366   }
-----------------------------------------------------------------------------

Figure 4.18. Label bad_area

Line 348

The function up_read() releases the read lock on the semaphore of the process' memory
descriptor. Notice that we have only jumped to the label bad_area after we place read lock on the
memory descriptor's semaphore to look through its memory areas to see if our address was within
the process address space. Otherwise, we have jumped to the label bad_area_nosemaphore. The
only difference between the two is the lifting of the read lock on the semaphore.

Lines 351353

Because the address is not in the address space, we now check to see if the error was generated
in user mode. If you recall from Table 4.7, an error code value of 4 indicates that the error
occurred in user mode.

Lines 354366

We have determined that the error occurred in user mode, so we send a SIGSEGV signal (trap 14).

The following code snippet describes the flow of the label no_context. When we jump to this point,
we know that either



One of the page tables is missing.

The memory access was not done while in kernel mode.

Figure 4.19 illustrates the flow diagram of the label no_context:

-----------------------------------------------------------------------------
arch/i386/mm/fault.c
388  no_context:

390   if (fixup_exception(regs))
   return;

432   die("Oops", regs, error_code);
  bust_spinlocks(0);
  do_exit(SIGKILL);
-----------------------------------------------------------------------------

Figure 4.19. Label no_context

Line 390

The function fixup_exception() uses the eip passed in to search an exception table for the
offending instruction. If the instruction is in the table, it must have already been compiled with
"hidden" fault handling code built in. The page fault handler, do_page__fault(), uses the fault
handling code as a return address and jumps to it. The code can then flag an error.

Line 432

If there is not an entry in the exception table for the offending instruction, the code that jumped
to label no_context ends up with the oops screen dump.



4.10.3. PowerPC Page Fault Exception

The PowerPC page fault handler do_page_fault() is called as a result of an instruction or data
store exception. Because of the subtle differences between the various versions of the PowerPC
processors, the error codes are in a slightly different format, but yield similar information. The bits
of interest are whether the offending operation was a read or write, and if it was a protection
fault. The PowerPC page fault handler do_page_fault() does not initiate the oops error.

In PowerPC, the label no_context code is combined with the label bad_area code and placed in a
function called bad_page_fault(), which ends by producing a segmentation fault. This function also
has the fixup function that traverses the exception_table.



Summary

This chapter began by overviewing all the concepts involved in memory management. We then
explained the implementation of each concept. The first concept we looked at was pages, which is
the basic unit of memory managed by the kernel and how pages are kept track of in the kernel.
We then discussed memory zones as memory partitions that are subject to limitations from
hardware. We followed this with a discussion about page frames and the memory allocation and
deallocation algorithm that Linux uses, which is called the buddy system.

After we covered the basics of page and page frame management, we discussed the allocation of
memory sizes smaller than a page, which is managed by the slab allocator. This introduced us to
kmalloc() and the kernel memory allocation functions. We traced the execution of these functions
down to how they interact with the slab allocator. This completed the discussion on the kernel
memory management structures.

After the kernel management structures and algorithms were covered, we talked about user space
process memory management. Process memory management is different from kernel memory
management. We discussed memory layout for a process and how the various process parts are
partitioned and mapped in memory. Following the discussion on process memory management
flow, we introduced the concept of the page fault, the interrupt handler that is in charge of
managing page misses from memory.



Project: Process Memory Map

We now look at what memory looks like for our own program. This project consists of an
exploration of a user space program that illustrates where things are placed in memory. For this
project, we create a simple shared library and a user space program that uses its function. From
the program, we print the location of some of the variables and compare it against the process
memory mappings to determine where the variables and functions are being stored.

The first step is to create the shared library. The shared library can have a single function, which
we will call from our main program. We want to print the address of a local variable from within
this function. Your shared library should look like this:

-----------------------------------------------------------------------------
lkpsinglefoo.c
mylibfoo()
{
  int libvar;
  printf("variable libvar \t location: 0x%x\n", &libvar);
}
-----------------------------------------------------------------------------

Compile and link singlefoo.c into a shared library:

#lkp>gcc c lkpsinglefoo.c
#lkp>gcc lkpsinglefoo.o o liblkpsinglefoo.so shared lc

The shared and lc flags are linker options. The shared option requests that a shared object that
can be linked with other objects be produced. The lc flag indicates that the C library be searched
when linking.

These commands generate a file called liblkpsinglefoo.so. To use it, you need to copy it to /lib.

The following is the main application we will call that links in your library:

-----------------------------------------------------------------------------
lkpmem.c
#include <fcntl.h>

int globalvar1;
int globalvar2 = 3;

void mylocalfoo()
{
  int functionvar;
  printf("variable functionvar \t location: 0x%x\n", &functionvar);
}

int main()
{



  void *localvar1 = (void *)malloc(2048)
  printf("variable globalvar1 \t location: 0x%x\n", &globalvar1);
  printf("variable globalvar2 \t location: 0x%x\n", &globalvar2);
  printf("variable localvar1 \t location: 0x%x\n", &localvar1);

  mylibfoo();
  mylocalfoo();

  while(1);
  return(0);
}
-----------------------------------------------------------------------------

Compile lkpmem.c as follows:

#lkp>gcc o lkpmem lkpmem.c llkplibsinglefoo

When you execute lkpmem, you get the print statements that indicate the memory locations of the
various variables. The function blocks on the while(1); statement and does not return. This allows
you to get the process PID and search the memory maps. To do so, use the following commands:

#lkp>./lkpmem
#lkp> ps aux | grep lkpmem
#lkp> cat /proc/<pid>/maps

Indicate the memory segment in which each variable is located.



Exercises

1: Why can't processes executed from a common executable or program not share the
data segments of memory?

2: What would the stack of the following function look like after three iterations?

foo(){
  int a;
  foo()
}

If it continues, what problem is this going to run into?

3: Fill in the values for the vm_area_struct descriptors that correspond to the memory
map shown in Figure 4.11.

4: What is the relationship between pages and slabs?

5: A 32-bit system with Linux loaded does not use the Page Middle Directory. That is, it
effectively has a two-level page table. The first 10 bits of the virtual address correspond
to the offset within the Page Global Directory (PGD). The second 10 bits correspond to
an offset into the Page Table (PTE). The remaining 12 bits correspond to the page
offset.

What is the page size in this Linux system? How many pages can a task access? How
much memory?

6: What is the relationship between a memory zone and a page?

7: At the hardware level, how does "real" addressing differ from "virtual" addressing?
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The Linux kernel is a collection of code that runs on one or more processors. The processors'
interface to the rest of the system is through the supporting hardware. At its lowest machine-
dependent layer, the kernel communicates with these devices with simple assembly-language
instructions. This chapter explores the relationship of the kernel to the surrounding hardware,
focusing on file I/O and hardware devices. We illustrate how the Linux kernel ties together
software and hardware by discussing how we go from the highest level of a virtual filesystem
down to the lowest level of writing bits to physical media.

This chapter starts with an overview of just how the core of a computer, the processor, connects
to the rest of the system. The concept of busses is also discussed, including how they connect the
processor to other elements of the system (such as memory). We also introduce devices and
controllers that make up the chipsets used in most x86 and PowerPC systems.

By having a basic understanding of the components of a system and their interconnection, we can
begin to analyze the layers of software from an application to the operating system, to the specific
block device used for storagethe hard drive and its controller. Although the concept of the
filesystem is not covered until the next chapter, we discuss enough of the components to get us
down to the generic block device layer and the most important method of communication for the
block device; the request queue.

The important relationship between a mechanical device (the hard drive) and the system software
is discussed when we introduce the concept of scheduling I/O. By understanding the physical
geometry of a hard drive and how the operating system partitions the drive, we can begin to
understand the timing between software and the underlying hardware.

Moving closer to the hardware, we see how the generic block driver interfaces to the specific block
driver, which allows us to have common software control over various hardware devices. Finally,
in our journey from the application level to the I/O level, we touch on the hardware I/O needed for
a disc controller and point you to other examples of I/O and device drivers in this book.

We then discuss the other major device typethe character deviceand how it differs from the block
device and the network device. The importance of other devicesthe DMA controller, the clock, and
terminal devicesare also contrasted with these.



5.1. How Hardware Does It: Busses, Bridges, Ports, and

Interfaces

The way a processor communicates with its surrounding devices is through a series of electrical
connections, or lines. Busses are groups of these lines with similar function. The most common
types of busses going to and from a processor are used for addressing the devices; for sending
and receiving data from the devices; and for transmitting control information, such as device-
specific initialization and characteristics. Thus, we can say the principal method for a device to
communicate with the processor (and vice versa) is through its address bus, data bus, and control
bus.

The most basic function of a processor in a system is to fetch and execute instructions. These
instructions are collectively called a computer program or software. A program resides in a
device (or group of devices) known as memory. The processor is attached to memory by way of
the address, data, and control busses. When executing a program, the processor selects the
location of an instruction in memory by way of the address bus and transfers (fetches) the
instruction by way of the data bus. The control bus handles the direction (in or out of the
processor) and type (in this case, memory) of transfer. Possibly adding to the confusion in this
terminology is that, when we refer to a particular bus, such as the front-side bus or the PCI
bus, we mean the address, data, and control busses all together.

The task of running software on a system requires a wide array of peripheral devices. Recent
computer systems have two major peripheral devices (also called controllers), which are referred
to as the Northbridge and the Southbridge. Traditionally, the term bridge describes a
hardware device that connects two busses. Figure 5.1 illustrates how the Northbridge and the
Southbridge interconnect other devices. Collectively, these controllers are the chipset of the
system.

Figure 5.1. Old Intel



The Northbridge connects the high-speed, high-performance peripherals, such as the memory
controller and the PCI controller. While there are chipset designs with graphics controllers
integrated into the Northbridge, most recent designs include a high-performance bus, such as the
Accelerated Graphics Port (AGP) or the PCI Express, to communicate with a dedicated graphics
adaptor. To achieve speed and good performance, the Northbridge bridges the front-side bus[1]

with, depending on the particular chipset design, the PCI bus and/or the memory bus.

[1] In some PowerPC systems, the front-side bus equivalent is known as the processor-local bus.

The Southbridge, which connects to the Northbridge, is also connected to a combination of low-
performance devices. The Intel PIIX4, for example, has its Southbridge connected to the PCI-ISA
bridge, the IDE controller, the USB, the real-time clock, the dual 82C59 interrupt controller (which
is covered in Chapter 3, "Processes: The Principal Model of Execution"), the 82C54 timer, the dual
82C37 DMA controllers, and the I/O APIC support.

In the earliest x86-based personal computers, communication with basic peripherals, such as the
keyboard, the serial port, and the parallel port, was done over an I/O bus. The I/O bus is a type
of the control bus. The I/O bus is a relatively slow method of communication that controls
peripherals. The x86 architecture has special I/O instructions, such as inb (read in a byte) and
outb (write out a byte), which communicate over the I/O bus. The I/O bus is implemented by
sharing the processor address and data lines. Control lines activated only when using the special
I/O instructions prevented I/O devices from being confused with memory. The PowerPC
architecture has a different method of controlling peripheral devices; it is known as memory-
mapped I/O. With memory-mapped I/O, devices are assigned regions of address space for
communication and control.

For example, in x86 architecture the first parallel port data register is located at I/O port 0x378,
whereas in the PPC it could be, depending on the implementation, at memory location
0xf0000300. To read the first parallel port data register in x86, we execute the assembler
instruction in al, 0x378. In this case, we activate a control line to the parallel port controller. This
indicates to the bus that 0x378 is not a memory address but an I/O port. To read the first parallel
port data register in PPC, we execute the assembly instruction lbz r3, 0(0xf0000300). The
parallel port controller watches the address bus[2] and replies only to requests on a specific
address range under which 0xf0000300 would fall.



[2] Watching the address bus is also referred to as decoding the address bus.

As personal computers matured, more discrete I/O devices were consolidated into single
integrated circuits called Superio chips. Superio function is often further consolidated into a
Southbridge chip (as in the ALI M1543C). As an example of typical functionality found in a discrete
Superio device, let's look at the SMSC FDC37C932. It includes a keyboard controller, a real-time
clock, power management device, a floppy disk controller, serial port controllers, parallel ports, an
IDE interface, and general purpose I/O. Other Southbridge chips contain integrated LAN
controllers, PCI Express controllers, audio controllers, and the like.

The newer Intel system architecture has moved to the concept of hubs. The Northbridge is now
known as the Graphics and Memory Controller Hub (GMCH). It supports a high-performance AGP
and DDR memory controller. With PCI Express, Intel chipsets are moving to a Memory Controller
Hub (MCH) for graphics and a DDR2 memory controller. The Southbridge is known as the I/O
Controller Hub (ICH). These hubs are connected through a proprietary point-to-point bus called
the Intel Hub Architecture (IHA). For more information, see the Intel chipset datasheets for the
865G[3] and the 925XE.[4] Figure 5.2 illustrates the ICH.

[3] http://www.intel.com/design/chipsets/datashts/25251405.pdf.

[4] http://www.intel.com/design/chipsets/datashts/30146403.pdf.

Figure 5.2. New Intel Hub

AMD has moved from the older Intel style of the Northbridge/Southbridge to the packetized
HyperTransport technology between its major chipset components. To the operating system,
HyperTransport is PCI compatible.[5] See AMD chipset datasheets for the 8000 Series chipsets.

http://www.intel.com/design/chipsets/datashts/25251405.pdf
http://www.intel.com/design/chipsets/datashts/30146403.pdf


Figure 5.3 illustrates the HyperTransport technology.

[5] See AMD chipset datasheets for the 8000 series: http://www.amd.com/us-

en/Processors/ProductInformation/0,30_118_6291_4886,00.html.

Figure 5.3. AMD HyperTransport

Apple, using the PowerPC, has a proprietary design called the Universal Motherboard Architecture
(UMA). UMA's goal is to use the same chipset across all Mac systems.

The G4 chipset includes the "UniNorth memory controller and PCI bus bridge" as a Northbridge
and the "Key Largo I/O and disk-device controller" as a Southbridge. The UniNorth supports
SDRAM, Ethernet, and AGP. The Key Largo Southbridge, connected to the UniNorth by a PCI-to-
PCI bridge, supports the ATA busses, USB, wireless LAN (WLAN), and sound.

The G5 chipset includes a system controller Application Specific Integrated Circuit (ASIC), which
supports AGP and DDR memory. Connected to the system controller via a HyperTransport bus is a
PCI-X controller and a high-performance I/O device. For more information on this architecture,
see the Apple developer pages.

By having this brief overview of the basic architecture of a system, we can now focus on the
interface to these devices provided by the kernel. Chapter 1, "Overview," mentioned that devices
are represented as files in the filesystem. File permissions, modes, and filesystem-related system
calls, such as open() or read(), apply to these special files as they do to regular files. The
significance of each call varies with respect to the device being handled and is customized to
handle each type of device. In this way, the details of the device handling are made transparent to
the application programmer and are hidden in the kernel. Suffice it to say that when a process
applies one of the system calls on the device file, it translates to some kind of device-handling

http://www.amd.com/us-


function. These handling functions are defined in the device driver. We now look at the types of
devices.



5.2. Devices

Two kinds of device files exist: block device files and character device files. Block devices transfer
data in chunks, and character devices (as the name implies) transfer data one character at a time.
A third device type, the network device, is a special case that exhibits attributes of both block and
character devices. However, network devices are not represented by files.

The old method of assigned numbers for devices where the major number usually referred to a
device driver or controller, and the minor number was a particular device within that controller, is
giving way to a new dynamic method called devfs. The history behind this change is that the
major and minor numbers are both 8-bit values; this allows for little more than 200 statically
allocated major devices for the entire planate. (Block and character devices each have their own
list of 256 entries.) You can find the official listing of the allocated major and minor device
numbers in /Documentation/devices.txt.

The Linux Device Filesystem (devfs) has been in the kernel since version 2.3.46. devfs is not
included by default in the 2.6.7 kernel build, but it can be enabled by setting CONFIG_DEVFS_FS=Y in
the configuration file. With devfs, a module can register a device by name rather than a
major/minor number pair. For compatibility, devfs allows the use of old major/minor numbers or
generates a unique 16-bit device number on any given system.

5.2.1. Block Device Overview

As previously mentioned, the Linux operating system sees all devices as files. Any given element
in a block device can be randomly referenced. A good example of a block device is the disk drive.
The filesystem name for the first IDE disk is /dev/hda. The associated major number of /dev/hda
is 3, and the minor number is 0. The disk drive itself usually has a controller and is electro-
mechanical by nature (that is, it has moving parts). The "General System File" section in Chapter
6, "Filesystems," discusses the basic construction of a hard disk.

5.2.1.1. Generic Block Device Layer

The device driver registers itself at driver initialization time. This adds the driver to the kernel's
driver table, mapping the device number to the block_device_operations structure. The
block_device_operations structure contains the functions for starting and stopping a given block
device in the system:

-------------------------------------------------------------------------
include/linux/fs.h
760  struct block_device_operations {
761   int (*open) (struct inode *, struct file *);
762   int (*release) (struct inode *, struct file *);
763   int (*ioctl) (struct inode *, struct file *, unsigned, unsigned long);
764   int (*media_changed) (struct gendisk *);
765   int (*revalidate_disk) (struct gendisk *);
766   struct module *owner;
767  };
-------------------------------------------------------------------------

The interfaces to the block device are similar to other devices. The functions open() (on line 761)



and release() (on line 762) are synchronous (that is, they run to completion when called). The
most important functions, read() and write(), are implemented differently with block devices
because of their mechanical nature. Consider accessing a block of data from a disk drive. The
amount of time it takes to position the head on the proper track and for the disk to rotate to the
desired block can take a long time, from the processor's point of view. This latency is the driving
force for the implementation of the system request queue. When the filesystem requests a
block (or more) of data, and it is not in the local page cache, it places the request on a request
queue and passes this queue on to the generic block device layer. The generic block device layer
then determines the most efficient way to mechanically retrieve (or store) the information, and
passes this on to the hard disk driver.

Most importantly, at initialization time, the block device driver registers a request queue handler
with the kernel (specifically with the block device manager) to facilitate the read/write operations
for the block device. The generic block device layer acts as an interface between the filesystem
and the register level interface of the device and allows for per-queue tuning of the read and write
queues to make better use of the new and smarter devices available. This is accomplished through
the tagged command queuing helper utilities. For example, if a device on a given queue supports
command queuing, read and write operations can be optimized to exploit the underlying hardware
by reordering requests. An example of per-queue tuning in this case would be the ability to set
how many requests are allowed to be pending. See Figure 5.4 for an illustration of how the
application layer, the filesystem layer, the generic block device layer, and the device driver
interrelate. The file biodoc.txt under /Documentation/block> has more helpful information on this
layer and information regarding changes from earlier kernels.

Figure 5.4. Block Read/Write

[View full size image]



5.2.2. Request Queues and Scheduling I/O

When a read or write request traverses the layers from VFS, through the filesystem drivers and
page cache,[6] it eventually ends up entering the block device driver to perform the actual I/O on
the device that holds the data requested.

[6] This traversal is described in Chapter 6.

As previously mentioned, the block device driver creates and initializes a request queue upon
initialization. This initialization also determines the I/O scheduling algorithm to use when a read or
write is attempted on the block device. The I/O scheduling algorithm is also known as the
elevator algorithm.

The default I/O scheduling algorithm is determined by the kernel at boot time with the default
being the anticipatory I/O scheduler.[7] By setting the kernel parameter elevator to the
following values, you can change the type of I/O scheduler:

[7] Some block device drivers can change their I/O scheduler during runtime, if it's visible in sysfs.



deadline. For the deadline I/O scheduler

noop. For the no-operation I/O scheduler

as. For the anticipatory I/O scheduler

As of this writing, a patch exists that makes the I/O schedulers fully modular. Using modprobe, the
user can load the modules and switch between them on the fly.[8] With this patch, at least one
scheduler must be compiled into the kernel to begin with.

[8] For more information, do a Web search on "Jens Axboe" and "Modular IO Schedulers."

Before we can describe how these I/O schedulers work, we need to touch on the basics of request
queues.

Block devices use request queues to order the many block I/O requests the devices are given.
Certain block devices, such as a RAM disk, might have little need for ordering requests because
the I/O requests to the device have little overhead. Other block devices, like hard drives, need to
order requests because there is a great overhead in reading and writing. As previously mentioned,
the head of the hard drive has to move from track to track, and each movement is agonizingly
slow from the CPU's perspective.

Request queues solve this problem by attempting to order block I/O read and write requests in a
manner that optimizes throughput but does not indefinitely postpone requests. A common and
useful analogy of I/O scheduling is to look at how elevators work.[9] If you were to order the stops
an elevator took by the order of the requests, you would have the elevator moving inefficiently
from floor to floor; it could go from the penthouse to the ground floor without ever stopping for
anyone in between. By responding to requests that occur while the elevator travels in the same
direction, it increases the elevator's efficiency and the riders' happiness. Similarly, I/O requests to
a hard disk should be grouped together to avoid the high overhead of repeatedly moving the disk
head back and forth. All the I/O schedulers mentioned (no-op, deadline, and anticipatory)
implement this basic elevator functionality. The following sections look at these elevators in more
detail.

[9] This analogy is why I/O schedulers are also referred to as elevators.

5.2.2.1. No-Op I/O Scheduler

The no-op I/O scheduler[10] takes a request and scans through its queue to determine if it can be
merged with an existing request. This occurs if the new request is close to an existing request. If
the new request is for I/O blocks before an existing request, it is merged on the front of the
existing request. If the new request is for I/O blocks after an existing request, it is merged on the
back of the existing request. In normal I/O, we read the beginning of a file before the end, and
thus, most requests are merged onto the back of existing requests.

[10] The code for the no-op I/O scheduler is located in drivers/block/noop-iosched.c.

If the no-op I/O scheduler finds that the new request cannot be merged into the existing request
because it is not near enough, the scheduler looks for a place within the queue between existing
requests. If the new request calls for I/O to sectors between existing requests it is inserted into
the queue at the determined position. If there are no places the request can be inserted, it is
placed on the tail of the request queue.

5.2.2.2. Deadline I/O Scheduler

The no-op I/O scheduler[11] suffers from a major problem; with enough close requests, new
requests are never handled. Many new requests that are close to existing ones would be either
merged or inserted between existing elements, and new requests would pile up at the tail of the
request queue. The deadline scheduler attempts to solve this problem by assigning each request



an expiration time and uses two additional queues to manage time efficiency as well as a queue
similar to the no-op algorithm to model disk efficiency.

[11] The code for the deadline I/O scheduler is located in drivers/block/deadline-iosched.c.

When an application makes a read request, it typically waits until that request is fulfilled before
continuing. Write requests, on the other hand, will not normally cause an application to wait; the
write can execute in the background while the application continues on to other tasks. The
deadline I/O scheduler uses this information to favor read requests over write requests. A read
queue and write queue are kept in addition to the queue sorted by a request's sector proximity. In
the read and write queue, requests are ordered by time (FIFO).

When a new request comes in, it is placed on the sorted queue as in the no-op scheduler. The
request is also placed on either the read queue or write queue depending on its I/O request. When
the deadline I/O scheduler handles a request, it first checks the head of the read queue to see if
that request has expired. If that requests expiration time has been reached, it is immediately
handled. Similarly, if no read request has expired, the scheduler checks the write queue to see if
the request at its head has expired; if so, it is immediately handled. The standard queue is
checked only when no reads or writes have expired and requests are handled in nearly the same
way as the no-op algorithm.

Read requests also expire faster than write requests:  a second versus 5 seconds in the default
case. This expiration difference and the preference of handling read requests over write requests
can lead to write requests being starved by numerous read requests. As such, a parameter tells
the deadline I/O scheduler the maximum number of times reads can starve a write; the default is
2, but because sequential requests can be treated as a single request, 32 sequential read requests
could pass before a write request is considered starved.[12]

[12] See lines 2427 of deadline-iosched.c for parameter definitions.

5.2.2.3. Anticipatory I/O Scheduling

One of the problems with the deadline I/O scheduling algorithm occurs during intensive write
operations. Because of the emphasis on maximizing read efficiency, a write request can be
preempted by a read, have the disk head seek to new location, and then return to the write
request and have the disk head seek back to its original location. Anticipatory I/O scheduling[13]

attempts to anticipate what the next operation is and aims to improve I/O throughput in doing so.

[13] The code for anticipatory I/O scheduling is located in drivers/block/as-iosched.c.

Structurally, the anticipatory I/O scheduler is similar to the deadline I/O scheduler. There exist a
read and write queue each ordered by time (FIFO) and a default queue that is ordered by sector
proximity. The main difference is that after a read request, the scheduler does not immediately
proceed to handling other requests. It does nothing for 6 milliseconds in anticipation of an
additional read. If another read request does occur to an adjacent area, it is immediately handled.
After the anticipation period, the scheduler returns to its normal operation as described under the
deadline I/O scheduler.

This anticipation period helps minimize the I/O delay associated with moving the disk head from
sector to sector across the block device.

Like the deadline I/O scheduler, a number of parameters control the anticipatory I/O scheduling

algorithm. The default time for reads to expire is  second and the default time for writes to

expire is  second. Two parameters control when to check to switch between streams of reads

and writes.[14] A stream of reads checks for expired writes after  second and a stream of writes

checks for expired reads after second.

[14] See lines 3060 of as-iosched.c for parameter definitions.



The default I/O scheduler is the anticipatory I/O scheduler because it optimizes throughput for
most applications and block devices. The deadline I/O scheduler is sometimes better for database
applications or those that require high disk performance requirements. The no-op I/O scheduler is
usually used in systems where I/O seek time is near negligible, such as embedded systems
running from RAM.

We now turn our attention from the various I/O schedulers in the Linux kernel to the request
queue itself and the manner in which block devices initialize request queues.

5.2.2.4. Request Queue

In Linux 2.6, each block device has its own request queue that manages I/O requests to that
device. A process can only update a device's request queue if it has obtained the lock of the
request queue. Let's examine the request_queue structure:

-------------------------------------------------------------------------
include/linux/blkdev.h
270 struct request_queue
271 {
272   /*
273   * Together with queue_head for cacheline sharing
274   */
275   struct list_head  queue_head;
276   struct request   *last_merge;
277   elevator_t    elevator;
278
279   /*
280   * the queue request freelist, one for reads and one for writes
281   */
282   struct request_list  rq;
------------------------------------------------------------------------

Line 275

This line is a pointer to the head of the request queue.

Line 276

This is the last request placed into the request queue.

Line 277

The scheduling function (elevator) used to manage the request queue. This can be one of the
standard I/O schedulers (noop, deadline, or anticipatory) or a new type of scheduler specifically
designed for the block device.

Line 282

The request_list is a structure composed of two wait_queues: one for queuing reads to the block
device and one for queuing writes.



-------------------------------------------------------------------------
include/linux/blkdev.h
283
284   request_fn_proc   *request_fn;
285   merge_request_fn  *back_merge_fn;
286   merge_request_fn  *front_merge_fn;
287   merge_requests_fn  *merge_requests_fn;
288   make_request_fn   *make_request_fn;
289   prep_rq_fn    *prep_rq_fn;
290   unplug_fn    *unplug_fn;
291   merge_bvec_fn   *merge_bvec_fn;
292   activity_fn    *activity_fn;
293
-------------------------------------------------------------------------

Lines 283293

These scheduler- (or elevator-) specific functions can be defined to control how requests are
managed for the block device.

-------------------------------------------------------------------------
include/linux/blkdev.h
294   /*
295   * Auto-unplugging state
296   */
297   struct timer_list  unplug_timer;
298   int      unplug_thresh; /* After this many requests */
299   unsigned long   unplug_delay; /* After this many jiffies*/
300   struct work_struct  unplug_work;
301
302   struct backing_dev_info backing_dev_info;
303
-------------------------------------------------------------------------

Lines 294303

These functions are used to unplug the I/O scheduling function used on the block device.
Plugging refers to the practice of waiting for more requests to fill the request queue with the
expectation that more requests allow the scheduling algorithm to order and sort I/O requests that
enhance the time it takes to perform the I/O requests. For example, a hard drive "plugs" a certain
number of read requests with the expectation that it moves the disk head less when more reads
exist. It's more likely that the reads can be arranged sequentially or even clustered together into a
single large read. Unplugging refers to the method in which a device decides that it can wait no
longer and must service the requests it has, regardless of possible future optimizations. See
documentation/block/biodoc.txt for more information.

-------------------------------------------------------------------------
include/linux/blkdev.h
304   /*
305   * The queue owner gets to use this for whatever they like.
306   * ll_rw_blk doesn't touch it.



307   */
308   void     *queuedata;
309
310   void     *activity_data;
311
-------------------------------------------------------------------------

Lines 304311

As the inline comments suggest, these lines request queue management that is specific to the
device and/or device driver:

-------------------------------------------------------------------------
include/linux/blkdev.h
312   /*
313   * queue needs bounce pages for pages above this limit
314   */
315   unsigned long   bounce_pfn;
316   int      bounce_gfp;
317
-------------------------------------------------------------------------

Lines 312317

Bouncing refers to the practice of the kernel copying high-memory buffer I/O requests to low-
memory buffers. In Linux 2.6, the kernel allows the device itself to manage high-memory buffers
if it wants. Bouncing now typically occurs only if the device cannot handle high-memory buffers.

-------------------------------------------------------------------------
include/linux/blkdev.h
318   /*
319   * various queue flags, see QUEUE_* below
320   */
321   unsigned long   queue_flags;
322
-------------------------------------------------------------------------

Lines 318321

The queue_flags variable stores one or more of the queue flags shown in Table 5.1 (see
include/linux/blkdev.h, lines 368375).

Table 5.1. queue_flags



Flag Name Flag Function

QUEUE_FLAG_CLUSTER /* cluster several segments into 1 */

QUEUE_FLAG_QUEUED /* uses generic tag queuing */

QUEUE_FLAG_STOPPED /* queue is stopped */

QUEUE_FLAG_READFULL /* read queue has been filled */

QUEUE_FLAG_WRITEFULL /* write queue has been filled */

QUEUE_FLAG_DEAD /* queue being torn down */

QUEUE_FLAG_REENTER /* Re-entrancy avoidance */

QUEUE_FLAG_PLUGGED /* queue is plugged */

-------------------------------------------------------------------------
include/linux/blkdev.h
323   /*
324   * protects queue structures from reentrancy
325   */
326   spinlock_t    *queue_lock;
327
328   /*
329   * queue kobject
330   */
331   struct kobject kobj;
332
333   /*
334   * queue settings
335   */
336   unsigned long   nr_requests; /* Max # of requests */
337   unsigned int   nr_congestion_on;
338   unsigned int   nr_congestion_off;
339
340   unsigned short   max_sectors;
341   unsigned short   max_phys_segments;
342   unsigned short   max_hw_segments;
343   unsigned short   hardsect_size;
344   unsigned int   max_segment_size;
345
346   unsigned long   seg_boundary_mask;
347   unsigned int   dma_alignment;
348
349   struct blk_queue_tag *queue_tags;
350
351   atomic_t    refcnt;
352
353   unsigned int   in_flight;
354
355   /*
356   * sg stuff
357   */
358   unsigned int   sg_timeout;
359   unsigned int   sg_reserved_size;
360 };
-------------------------------------------------------------------------



Lines 323360

These variables define manageable resources of the request queue, such as locks (line 326) and
kernel objects (line 331). Specific request queue settings, such as the maximum number of
requests (line 336) and the physical constraints of the block device (lines 340347) are also
provided. SCSI attributes (lines 355359) can also be defined, if they're applicable to the block
device. If you want to use tagged command queuing use the queue_tags structure (on line 349).
The refcnt and in_flight fields (on lines 351 and 353) count the number of references to the
queue (commonly used in locking) and the number of requests that are in process ("in flight").

Request queues used by block devices are initialized simply in the 2.6 Linux kernel by calling the
following function in the devices' __init function. Within this function, we can see the anatomy of
a request queue and its associated helper routines. In the 2.6 Linux kernel, each block device
controls its own locking, which is contrary to some earlier versions of Linux, and passes a spinlock
as the second argument. The first argument is a request function that the block device driver
provides.

-------------------------------------------------------------------------
drivers/block/ll_rw_blk.c
1397 request_queue_t *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1398  {
1399   request_queue_t *q;
1400   static int printed;
1401 
1402   q = blk_alloc_queue(GFP_KERNEL);
1403   if (!q)
1404   return NULL;
1405
1406   if (blk_init_free_list(q))
1407    goto out_init;
1408   
1409   if (!printed) {
1410    printed = 1;
1411    printk("Using %s io scheduler\n", chosen_elevator->elevator_name);
1412   }
1413  
1414   if (elevator_init(q, chosen_elevator))
1415    goto out_elv;
1416  
1417   q->request_fn   = rfn;
1418   q->back_merge_fn   = ll_back_merge_fn;
1419   q->front_merge_fn   = ll_front_merge_fn;
1420   q->merge_requests_fn  = ll_merge_requests_fn;
1421   q->prep_rq_fn   = NULL;
1422   q->unplug_fn   = generic_unplug_device;
1423   q->queue_flags   = (1 << QUEUE_FLAG_CLUSTER);
1424   q->queue_lock   = lock;
1425  
1426   blk_queue_segment_boundary(q, 0xffffffff);
1427  
1428   blk_queue_make_request(q, __make_request);
1429   blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
1430  
1431   blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
1432   blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
1433  
1434   return q;
1435  out_elv:
1436   blk_cleanup_queue(q);



1437  out_init:
1438   kmem_cache_free(requestq_cachep, q);
1439   return NULL;
1440  }
-------------------------------------------------------------------------

Line 1402

Allocate the queue from kernel memory and zero its contents.

Line 1406

Initialize the request list that contains a read queue and a write queue.

Line 1414

Associate the chosen elevator with this queue and initialize.

Lines 14171424

Associate the elevator-specific functions with this queue.

Line 1426

This function sets the boundary for segment merging and checks that it is at least a minimum
size.

Line 1428

This function sets the function used to get requests off the queue by the driver. It allows an
alternate function to be used to bypass the queue.

Line 1429

Initialize the upper-size limit on a combined segment.

Line 1431

Initialize the maximum segments the physical device can handle.

Line 1432

Initialize the maximum number of physical segments per request.

The values for lines 14291432 are set in include/linux/blkdev.h.



Line 1434

Return the initialized queue.

Lines 14351439

Routines to clean up memory in the event of an error.

We now have the request queue in place and initialized.

Before we explore the generic device layer and the generic block driver, let's quickly trace the
layers of software it takes to get to the manipulation of IO in the block device. (Refer to Figure
5.4.)

At the application level, an application has initiated a file operation such as fread(). This request is
taken by the virtual filesystem (VFS) layer (covered in Chapter 4), where the file's dentry
structure is found, and through the inode structure, where the file's read() function is called. The
VFS layer tries to find the requested page in its buffer cache, but if it is a miss, the filesystem
handler is called to acquire the appropriate physical blocks. The inode is linked to the filesystem
handler, which is associated with the correct filesystem. The filesystem handler calls on the
request queue utilities, which are part of the generic block device layer to create a request
with the correct physical blocks and device. The request is put on the request queue, which is
maintained by the generic block device layer.

5.2.3. Example: "Generic" Block Driver

We now look at the generic block device layer. Referring to Figure 5.4, it resides above the
physical device layer and just below the filesystem layer. The most important job of the generic
block layer is to maintain request queues and their related helper routines.

We first register our device with register_blkdev(major, dev_name, fops). This function takes in
the requested major number, the name of this block device (this appears in the /dev directory),
and a pointer to the file operations structure. If successful, it returns the desired major number.

Next, we create the gendisk structure.

The function alloc_disk(int minors) in include/linux/genhd.h takes in the number of partitions
and returns a pointer to the gendisk structure. We now look at the gendisk structure:

-------------------------------------------------------------------------
include/linux/genhd.h
081  struct gendisk {
082   int major;    /* major number of driver */
083   int first_minor;
084   int minors;
085   char disk_name[16];   /* name of major driver */
086   struct hd_struct **part;  /* [indexed by minor] */
087   struct block_device_operations *fops;
088   struct request_queue *queue;
089   void *private_data;
090   sector_t capacity;
091
092   int flags;
093   char devfs_name[64];   /* devfs crap */
094   int number;    /* more of the same */



095   struct device *driverfs_dev;
096   struct kobject kobj;
097
098   struct timer_rand_state *random;
099   int policy;
100
101   unsigned sync_io;   /* RAID */
102   unsigned long stamp, stamp_idle;
103   int in_flight;
104  #ifdef  CONFIG_SMP
105   struct disk_stats *dkstats;
106  #else
107   struct disk_stats dkstats;
108  #endif
109  };  
-------------------------------------------------------------------------

Line 82

The major_num field is filled in from the result of register_blkdev().

Line 83

A block device for a hard drive could handle several physical drives. Although it is driver
dependent, the minor number usually labels each physical drive. The first_minor field is the first
of the physical drives.

Line 85

The disk_name, such as hda or sdb, is the text name for an entire disk. (Partitions within a disk are
named hda1, hda2, and so on.) These are logical disks within a physical disk device.

Line 87

The fops field is the block_device_operations initialized to the file operations structure. The file
operations structure contains pointers to the helper functions in the low-level device driver. These
functions are driver dependent in that they are not all implemented in every driver. Commonly
implemented file operations are open, close, read, and write. Chapter 4, "Memory Management,"
discusses the file operations structure.

Line 88

The queue field points to the list of requested operations that the driver must perform.
Initialization of the request queue is discussed shortly.

Line 89

The private_data field is for driver-dependent data.



Line 90

The capacity field is to be set with the drive size (in 512KB sectors). A call to set_capacity()
should furnish this value.

Line 92

The flags field indicates device attributes. In case of a disk drive, it is the type of media, such as
CD, removable, and so on.

Now, we look at what is involved with initializing the request queue. With the queue already
declared, we call blk_init_queue(request_fn_proc, spinlock_t). This function takes, as its first
parameter, the transfer function to be called on behalf of the filesystem. The function
blk_init_queue() allocates the queue with blk_alloc_queue() and then initializes the queue
structure. The second parameter to blk_init_queue() is a lock to be associated with the queue for
all operations.

Finally, to make this block device visible to the kernel, the driver must call add_disk():

-------------------------------------------------------------------------
Drivers/block/genhd.c
193  void add_disk(struct gendisk *disk)
194  {
195   disk->flags |= GENHD_FL_UP;
196   blk_register_region(MKDEV(disk->major, disk->first_minor),
197     disk->minors, NULL, exact_match, exact_lock, disk);
198   register_disk(disk);
199   blk_register_queue(disk);
200  }
-------------------------------------------------------------------------

Line 196

This device is mapped into the kernel based on size and number of partitions.

The call to blk_register_region() has the following six parameters:

The disk major number and first minor number are built into this parameter.1.

This is the range of minor numbers after the first (if this driver handles multiple minor
numbers).

2.

This is the loadable module containing the driver (if any).3.

exact_match is a routine to find the proper disk.4.

exact_lock is a locking function for this code once the exact_match routine finds the proper
disk.

5.

Disk is the handle used for the exact_match and exact_lock functions to identify a specific
disk.

6.

Line 198



register_disk checks for partitions and adds them to the filesystem.

Line 199

Register the request queue for this particular region.

5.2.4. Device Operations

The basic generic block device has open, close (release), ioctl, and most important, the request
function. At the least, the open and close functions could be simple usage counters. The ioctl()
interface can be used for debug and performance measurements by bypassing the various
software layers. The request function, which is called when a request is put on the queue by the
filesystem, extracts the request structure and acts upon its contents. Depending on whether the
request is a read or write, the device takes the appropriate action.

The request queue is not accessed directly, but by a set of helper routines. (These can be found in
drivers/block/elevator.c and include/linux/blkdev.h.) In keeping with our basic device model,
we want to include the ability to act on the next request in our request function:

-------------------------------------------------------------------------
drivers/block/elevator.c
186  struct request *elv_next_request(request_queue_t *q)
-------------------------------------------------------------------------

This helper function returns a pointer to the next request structure. By examining the elements,
the driver can glean all the information needed to determine the size, direction, and any other
custom operations associated with this request.

When the driver finishes this request, it indicates this to the kernel by using the end_request()
helper function:

-------------------------------------------------------------------------
drivers/block/ll_rw_blk.c
2599  void end_request(struct request *req, int uptodate)
2600  {
2601  if (!end_that_request_first(req, uptodate, req->hard_cur_sectors)) {
2602  add_disk_randomness(req->rq_disk);
2603  blkdev_dequeue_request(req);
2604  end_that_request_last(req);
2605   }
2606  }
-------------------------------------------------------------------------

Line 2599

Pass in the request queue acquired from elev_next_request(),

Line 2601



end_that_request_first() TRansfers the proper number of sectors. (If sectors are pending,
end_request() simply returns.)

Line 2602

Add to the system entropy pool. The entropy pool is the system method for generating random
numbers from a function fast enough to be called at interrupt time. The basic idea is to collect
bytes of data from various drivers in the system and generate a random number from them.
Chapter 10, "Adding Your Code to the Kernel," discusses this. Another explanation is at the head
of the file /drivers/char/random.c.

Line 2603

Remove request structure from the queue.

Line 2604

Collect statistics and make the structure available to be free.

From this point on, the generic driver services requests until it is released.

Referring to Figure 5.4, we now have the generic block device layer constructing and maintaining
the request queue. The final layer in the block I/O system is the hardware (or specific) device
driver. The hardware device driver uses the request queue helper routines from the generic layer
to service requests from its registered request queue and send notifications when the request is
complete.

The hardware device driver has intimate knowledge of the underlying hardware with regard to
register locations, I/O, timing, interrupts, and DMA (discussed in the "Direct Memory Access
[DMA]" section of this chapter). The complexities of a complete driver for IDE or SCSI are beyond
the scope of this chapter. We offer more on hardware device drivers in Chapter 10 and a series of
projects to help you produce a skeleton driver to build on.

5.2.5. Character Device Overview

Unlike the block device, the character device sends a stream of data. All serial devices are
character devices. When we use the classic examples of a keyboard controller or a serial terminal
as a character stream device, it is intuitively clear we cannot (nor would we want to) access the
data from these devices out of order. This introduces the gray area for packetized data
transmission. The Ethernet medium at the physical transmission layer is a serial device, but at the
bus level, it uses DMA to transfer large chunks of data to and from memory.

As device driver writers, we can make anything happen in the hardware, but real-time practicality
is the governing force keeping us from randomly accessing an audio stream or streaming data to
our IDE drive. Although both sound like attractive challenges, we still have two simple rules we
must follow:

All Linux device I/O is based on files.

All Linux device I/O is either character or block.

The parallel port driver at the end of this chapter is a character device driver. Similarities between
character and block drivers is the file I/O-based interface. Externally, both types use file
operations such as open, close, read, and write. Internally, the most obvious difference between



a character device driver and a block device driver is that the character device does not have the
block device system of request queues for read and write operations (as previously discussed). It
is often the case that for a non-buffered character device, an interrupt is asserted for each
element (character) received. To contrast this to a block device, a chunk(s) of data is retrieved
and an interrupt is then asserted.

5.2.6. A Note on Network Devices

Network devices have attributes of both block and character devices and are often thought of as a
special set of devices. Like a character device, at the physical level, data is transmitted serially.
Like a block device, data is packetized and moved to and from the network controller via direct
memory access (discussed in the "Direct Memory Access [DMA]" section).

Network devices need to be mentioned as I/O in this chapter, but because of their complexity,
they are beyond the scope of this book.

5.2.7. Clock Devices

Clocks are I/O devices that count the hardware heartbeat of the system. Without the concept of
elapsed time, Linux would cease to function. Chapter 7, "Scheduling and Kernel Synchronization,"
covers the system and real-time clocks.

5.2.8. Terminal Devices

The earliest terminals were teletype machines (hence the name tty for the serial port driver). The
teletypewriter had been in development since the turn of the century with the desire to send and
read real text over telegraph lines. By the early 1960s, the teletype had matured with the early
RS-232 standard, and it seemed to be a match for the growing number of the day's
minicomputers. For communicating with computers, the teletype gave way to the terminal of the
1970s. True terminals are becoming a rare breed. Popular with mainframe and minicomputers in
the 1970s to the mid 1980s, they have given way to PCs running terminal-emulator software
packages. The terminal itself (often called a "dumb" terminal) was simply a monitor and keyboard
device that communicated with a mainframe by using serial communications. Unlike the PC, it had
only enough "smarts" to send and receive text data.

The main console (configurable at boot time) is the first terminal to come up on a Linux system.
Often, a graphical interface is launched, and terminal emulator windows are used thereafter.

5.2.9. Direct Memory Access (DMA)

The DMA controller is a hardware device that is situated between an I/O device and (usually) the
high-performance bus in the system. The purpose of the DMA controller is to move large amounts
of data without processor intervention. The DMA controller can be thought of as a dedicated
processor programmed to move blocks of data to and from main memory. At the register level,
the DMA controller takes a source and destination address and length to complete its task. Then,
while the main processor is idle, it can send a burst of data from a device to memory, or from
memory to memory or from memory to a device.

Many controllers (disk, network, and graphics) have a DMA engine built-in and can therefore
transfer large amounts of data without using precious processor cycles.



Summary

This chapter described how the Linux kernel handles input and output.

More specifically, we covered the following topics:

We provided an overview of the hardware the Linux kernel uses to perform low-level input
and output, such as bridges and busses.

We covered how Linux represents and interfaces with block devices.

We introduced the varieties of Linux schedulers and request queues: no-op, deadline, and
anticipatory.



Project: Building a Parallel Port Driver

This project introduces a basic parallel port controller, which demonstrates how the I/O routines
previously discussed coalesce. The parallel port, usually integrated into the Superio section of a
chipset, is a good example for a character device-driver skeleton. This driver, or dynamically
loaded module, is not extremely useful, but you can build upon and improve it. Because we
address the device at the register level, this module can be used in a PowerPC system for
accessing I/O as long as the register I/O mapping is documented.

Our parallel port device driver uses the standard open(), close(), and most importantly, the
ioctl() interface to illustrate the architecture and inner workings of the device driver. We won't
be using the read() or write() functions in this project because the ioctl() call returns register
values. (Because our device driver is a dynamically loadable module, we simply refer to it as a
module.)

We begin with a brief description on how to talk to the parallel port and then proceed to
investigate our basic character device-driver module operations. We use the ioctl() interface to
reference the individual registers in the device, and create an application to interface with our
module.

Parallel Port Hardware

Any Web search of the parallel port yields a massive amount of information. Because our goal for
this section is to describe a Linux module, we touch only on the basics of this device.

For this project, we use an x86 system for the experiment. This driver skeleton is easily ported to
PowerPC; it just needs to talk to another device at the I/O level. Although the parallel port exists
in many embedded PowerPC implementations, it is not widely used in desktops (such as the G4
and G5).

For the actual communication with the parallel port registers, we use inb() and outb(). We could
have just as easily used readb() and writeb(), which are available in the file io.h for both x86
and PPC architectures. The readb() and writeb() macros are a good choice for architecture
independence because they each resolve to the low-level I/O routines that are used for x86 and
PPC.

The parallel port in x86 systems is usually included as a part of the Superio device or it could be a
separate (PCI) card added to the system. If you go to your BIOS setup screen, you can see where
the parallel port(s) is mapped in the system I/O space. For x86 systems, the parallel port will be
at hex address 0x278, 0x378, or 0x3bc using IRQ 7. This is the base address of the device. The
parallel port has three 8-bit registers, starting at the base address shown in Table 5.2. For this
example, we use a base address of 0x378.

Table 5.2. Parallel Port Registers



Bit 7 6 5 4 3 2 1 0 I/O Port
Address

Data
register
(output)

D7 D6 D5 D4 D3 D2 D1 D0 0x378
(base+0)

Status
register
(input)

Busy[*] ACK Paper
end

Select Error       0x379
(base+1)

Control
register
(output)

        Select[*] Init Auto
feed[*]

Strobe[*] 0x37A
(base+2)

[*] Active low

The data register contains the 8 bits to write out to the pins on the connector.

The status register contains the input signals from the connector.

The control register sends specific control signals to the connector.

The connector for the parallel port is a 25-pin D-shell (DB-25). Table 5.3 shows how these signals
map to the specific pins of the connector.

Table 5.3. Association of Signals to Pins of the Parallel
Connector

Signal Name Pin Number

Strobe 1

D0 2

D1 3

D2 4

D3 5

D4 6

D5 7

D6 8

D7 9

Acknowledge 10

Busy 11

Paper end 12

Select in 13

Auto feed 14

Error 15

Initialize 16



Select 17

Ground 1825

CAUTION!

The parallel port can be sensitive to static electricity and overcurrent. Do not use your
integrated (built in to the motherboard) parallel port unless

You are certain of your hardware skills.

You have no problem destroying your portor worse, your motherboard.

We strongly suggest that you use a parallel-port adapter card for these, and all,
experiments.

For input operations, we will jumper D7 (pin 9) to Acknowledge (pin 10) and D6 (pin 8) to Busy
(pin 11) with 470 ohm resistors. To monitor output, we drive LEDs with data pins D0 through D4
by using a 470 ohm current limiting resistor. We can do this by using an old printer cable or a
25-pin male D-Shell connector from a local electronics store.

NOTE

A good register-level programmer should always know as much about the underlying
hardware as possible. This includes finding the datasheet for your particular parallel port
I/O device. In the datasheet, you can find the sink/source current limitations for your
device. Many Web sites feature interface methods to the parallel port, including isolation,
expanding the number of signals, and pull-up and pull-down resistors. They are a must
read for any I/O controller work beyond the scope of this example.

This module addresses the parallel port by way of the outb() and inb() functions. Recall from
Chapter 2, "Exploration Toolkit," that, depending on the platform compilation, these functions
correctly implement the in and out instructions for x86 and the lbz and stb instructions for the
memory-mapped I/O of the PowerPC. This inline code can be found in the /io.h file under the
appropriate platform.

Parallel Port Software

The following discussion focuses on the pertinent driver functions for this project. The complete
program listing for parll.c, along with Make and parll.h files, is included at the end of this book.

1. Setting Up the File Operations (fops)

As previously mentioned, this module uses open(), close(), and ioctl(), as well as the init and
cleanup operations discussed in previous projects.

The first step is to set up our file operations structure. This structure defined in /linux/fs.h lists



the possible functions we can choose to implement in our module. We do not have to itemize each
operationonly the ones we want. A Web search of C99 and linux module furnishes more
information on this methodology. By using this structure, we inform the kernel of the location of
our implementation (or entry points) of open, release, and ioctl.

-------------------------------------------------------------------------
parll.c
struct file_operations parlport_fops = { 
     .open =   parlport_open,
     .ioctl =  parlport_ioctl,
     .release =  parlport_close };

-------------------------------------------------------------------------

Next, we create the functions open() and close(). These are essentially dummy functions used to
flag when we have opened and closed:

-------------------------------------------------------------------------
parll.c

static int parlport_open(struct inode *ino, struct file *filp)
{
  printk("\n parlport open function");
  return 0;
}

static int parlport_close(struct inode *ino, struct file *filp)
{
  printk("\n parlport close function");
  return 0;
}

-------------------------------------------------------------------------

Create the ioctl() function. Note the following declarations were made at the beginning of
parll.c:

-------------------------------------------------------------------------
#define MODULE_NAME  "parll"
static int base = 0x378;

parll.c
static int parlport_ioctl(struct inode *ino, struct file *filp,
     unsigned int ioctl_cmd, unsigned long parm)
{
  printk("\n parlport ioctl function");
  if(_IOC_TYPE(ioctl_cmd) != IOCTL_TYPE)
  {
   printk("\n%s wrong ioctl type",MODULE_NAME);
   return -1;
  }
  switch(ioctl_cmd)



  {
   case DATA_OUT:
    printk("\n%s ioctl data out=%x",MODULE_NAME,(unsigned int)parm);
    outb(parm & 0xff, base+0);
    return (parm & 0xff);

   case GET_STATUS:
    parm = inb(base+1);
    printk("\n%s ioctl get status=%x",MODULE_NAME,(unsigned int)parm);
    return parm;

   case CTRL_OUT:
    printk("\n%s ioctl ctrl out=%x",MODULE_NAME,(unsigned int)parm);
    outb(parm && 0xff, base+2);
    return 0;

  }  //end switch
  return 0;
} //end ioctl

-------------------------------------------------------------------------

The ioctl() function is made available to handle any user-defined command. In our module, we
surface the three registers associated with the parallel port to the user. The DATA_OUT command
sends a value to the data register, the GET_STATUS command reads from the status register, and
finally, the CTRL_OUT command is available to set the control signals to the port. Although a better
methodology would be to hide the device specifics behind the read() and write() routines, this
module is mainly for experimentation with I/O, not data encapsulation.

The three commands just used are defined in the header file parll.h. They are created by using
the IOCTL helper routines for type checking. Rather than using an integer to represent an IOCTL
function, we use the IOCTL type checking macro IO(type,number), where the type is defined as p

(for parallel port) and number is the actual IOCTL number used in the case statement. At the
beginning of parlport_ioctl(), we check the type, which should be p. Because the application
code uses the same header file as the driver, the interface will be consistent.

2. Setting Up the Module Initialization Routine

The initialization module is used to associate the module with the operating system. It can also be
used for early initialization of any data structures if desired. Since the parallel port driver requires
no complex data structures, we simply register the module.

-------------------------------------------------------------------------
parll.c
static int parll_init(void)
{
  int retval;

  retval= register_chrdev(Major, MODULE_NAME, &parlport_fops);
  if(retval < 0)
  {
   printk("\n%s: can't register",MODULE_NAME);
   return retval;
  }
  else
  {



   Major=retval;
   printk("\n%s:registered, Major=%d",MODULE_NAME,Major);

   if(request_region(base,3,MODULE_NAME))
    printk("\n%s:I/O region busy.",MODULE_NAME);

  }
  return 0;
}
-------------------------------------------------------------------------

The init_module() function is responsible for registering the module with the kernel. The
register_chrdev() function takes in the requested major number (discussed in Section 5.2 and
later in Chapter 10; if 0, the kernel assigns one to the module). Recall that the major number is
kept in the inode structure, which is pointed to by the dentry structure, which is pointed to by a
file struct. The second parameter is the name of the device as it will appear in /proc/devices. The
third parameter is the file operations structure that was just shown.

Upon successfully registering, our init routine calls request_region() with the base address of the
parallel port and the length (in bytes) of the range of registers we are interested in.

The init_module() function returns a negative number upon failure.

3. Setting Up the Module Cleanup Routine

The cleanup_module() function is responsible for unregistering the module and releasing the I/O
range that we requested earlier:

-------------------------------------------------------------------------
parll.c
 
static void parll_cleanup( void )
{
   printk("\n%s:cleanup ",MODULE_NAME);
   release_region(base,3);
   unregister_chrdev(Major,MODULE_NAME);
}
-------------------------------------------------------------------------

Finally, we include the required init and cleanup entry points.

-----------------------------------------------------------------------
parll.c
module_init(parll_init);
module_exit(parll_cleanup);
-----------------------------------------------------------------------

4. Inserting the Module

We can now insert our module into the kernel, as in the previous projects, by using



Lkp:~# insmod parll.ko

Looking at /var/log/messages shows us our init() routine output as before, but make specific
note of the major number returned.

In previous projects, we simply inserted and removed our module from the kernel. We now need
to associate our module with the filesystem with the mknod command. From the command line,
enter the following:

Lkp:~# mknod /dev/parll c <XXX> 0

The parameters:

c. Create a character special file (as opposed to block)

/dev/parll. The path to our device (for the open call)

XXX. The major number returned at init time (from /var/log/messages)

0. The minor number of our device (not used in this example)

For example, if you saw a major number of 254 in /var/log/messages, the command would look
like this:

  Lkp:~# mknod /dev/parll c 254 0

5. Application Code

Here, we created a simple application that opens our module and starts a binary count on the D0
through D7 output pins.

Compile this code with gcc app.c. The executable output defaults to a.out:

-------------------------------------------------------------------------
app.c
000  //application to use parallel port driver

#include <fcntl.h>
#include <linux/ioctl.h>
004  #include "parll.h"

main()
{
  int fptr;
  int i,retval,parm =0;

  printf("\nopening driver now");
012   if((fptr = open("/dev/parll",O_WRONLY))<0)
  {
   printf("\nopen failed, returned=%d",fptr);



   exit(1);
  }

018   for(i=0;i<0xff;i++)
  {
020    system("sleep .2");
021    retval=ioctl(fptr,DATA_OUT,parm);
022    retval=ioctl(fptr,GET_STATUS,parm);

024    if(!(retval & 0x80))
    printf("\nBusy signal count=%x",parm);
   if(retval & 0x40)
027     printf("\nAck signal count=%x",parm);
028  //   if(retval & 0x20)
//    printf("\nPaper end signal count=%x",parm);
//   if(retval & 0x10)
//    printf("\nSelect signal count=%x",parm);
//   if(retval & 0x08) 
033  //    printf("\nError signal count=%x",parm);

   parm++;
  }

038   close(fptr);

}
-------------------------------------------------------------------------

Line 4

The header file common to both the application and the driver contains the new IOCTL helper
macros for type checking.

Line 12

Open the driver to get a file handle for our module.

Line 18

Enter the loop.

Line 20

Slow down the loop so we can watch the lights/count.

Line 21

Using the file pointer, send a DATA_OUT command to the module, which in turn uses outb() to write
the least significant 8 bits of the parameter to the data port.



Line 22

Read the status byte by way of the ioctl with a GET_STATUS command. This uses inb() and
returns the value.

Lines 2427

Watch for our particular bits of interest. Note that Busy* is an active low signal, so when the I/O is
off, we read this as true.

Lines 2833

Uncomment these as you improve on the design.

Line 38

Close our module.

If you have built the connector as outlined in Figure 5.5, the busy and ack signals come on when
the two most significant bits of the count are on. The application code reads these bits and
outputs accordingly.

Figure 5.5. Built Connector

[View full size image]

We just outlined the major elements for a character device driver. By knowing these functions, it



is easier to trace through working code or create your own driver. Adding an interrupt handler to
this module involves a call to request_irq() and passing in the desired IRQ and the name of the
handler. This would be included in the init_module().

Here are some suggested additions to the driver:

Make parallel port module service-timer interrupts to poll input.

How can we multiplex 8 bits of I/O into 16, 32, 64? What is sacrificed?

Send a character out the serial port from the write routine within the module.

Add an interrupt routine by using the ack signal.



Exercises

1: Load a module. What device file does the module become in the filesystem?

2: Find the major and minor number for the device file that was loaded.

3: When would it be advantageous to use the deadline I/O scheduler instead of an
anticipatory I/O scheduler?

4: When would it be better to use the no-op I/O scheduler instead of the anticipatory
I/O scheduler?

5: What are the characteristics of a Northbridge controller and a Southbridge
controller?

6: What is the advantage of rolling up so much function into a Superio chip?

7: Why would we not see graphics or network communications rolled into a Superio
chip at this time?

8: What is the main difference and advantage of a journaled filesystem, such as ext3,
over a standard filesystem like ext2?

9: What is the basic theory behind anticipatory I/O scheduling? Is this methodology
better suited for a hard disk drive or RAM disk?

10: What is the main difference between a block and a character device? Give examples
of each.

11: What is DMA? Why is it an effective way of moving data?

12: What was the original use for the teletype machine?
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Computing revolves around the storage, retrieval, and manipulation of information.

In Chapter 3, "Processes: The Principal Model of Execution," we talked about how processes are
the basic unit of execution and looked at how a process manipulates information by storing it in its
address space. However, the process address space is limited in that it lasts only as long as the
process is alive and it holds a fraction of the size of the system memory. The filesystem evolved
from the need for large capacity, non-volatile storage of information in media other than system
registers or memory. Non-volatile information is data that persists despite the termination of the
process that manipulates it or operating-system shutdown.

The storage of information on external media presents the problem of how to represent the
information. The basic unit of information storage is the file. The filesystem, or file-management
subsystem, is the operating-system component that deals with the file structure, manipulation,
and protection. This chapter covers the topics related to the Linux filesystem implementation.



6.1. General Filesystem Concepts

We begin with a description of the concepts behind the Linux filesystem. For many of you, these
concepts are familiar because they are tied into Linux usage and the programming of user space
applications. If you feel comfortable with general filesystem concepts, skip ahead to Section 6.2,
"Linux Virtual Filesystem."

6.1.1. File and Filenames

The word file is terminology borrowed from the real world. Information was stored in files since
before the advent of vacuum tubes. A real-world file is composed of one or more pieces of paper
of a predetermined size. These files are generally stored in a cabinet.

In Linux, a file is a linear stream of bytes. The significance of these bytes is of no interest to the
operating system, but they are of extreme importance to the user, much like the cabinet is
indifferent to the contents of its files. The filesystem provides a user interface to data storage and
transparently manipulates the physical data from the external drives.

A file in Linux has many attributes and characteristics. The attribute most familiar to a user is
usually the file's name. The name of a file often indicates the file's content. A filename can have a
filename extension, which is an additional name appended to the primary filename with a
period. This extension provides an additional manner of distinguishing content to user space
applications. For example, all the example files we've looked at so far have a filename extension of
.h or .c. User space programs, such as compilers and linkers, use these as indicators that the files
are header files or source files, respectively.

Although the filename can be important to a user application such as a compiler, the operating
system is indifferent to filenames because it deals only with the file as a container of bytes
irrespective of its content or purpose.

6.1.2. File Types

Linux supports many file types, including regular files, directories, links, device files, sockets, and
pipes. Regular files include binary files and ASCII files. ASCII files are simply lines of text that
can be displayed and understood by a user without any need for an interpreter program. Some
ASCII files are executable and are called scripts. These files are executed by programs called
interpreters. The shell, at its most basic, is an interpreter. Executable binary files are non-ASCII
files that seemingly display random data. These files have an internal format that is interpreted by
the kernel to run the program. The format is known as an object file format, and each operating
system interprets predetermined object file formats. Chapter 9, "Building the Linux Kernel," covers
object file formats in more detail.

In Linux, files are organized into a hierarchical directory system, such as the one shown in Figure
6.1. A directory contains files and exists to maintain the filesystem structure. The following
sections look at directories and the Linux file structure in more detail.

Figure 6.1. Filesystem Hierarchy



A link is a file that points to another file, a file pointer. These files simply contain the information
necessary to access another file.

Device files are representations of I/O devices used to access these hardware devices. Programs
that need to access an I/O device can use the same attributes that apply to files to affect the
device on which it is acting. Two main types of devices exist: block devices, which transfer data
in blocks, and character devices, which transfer data in characters. Chapter 5, "Input/Output,"
covers the details of I/O devices.

Sockets and pipes are forms of Interprocess Communication (IPC). These files support
directional data flow between processes. We do not discuss these special files.

6.1.3. Additional File Attributes

A file has more attributes than its name, type, and data. The operating system associates
additional information with each file, such as permissions for file access. File protection becomes
increasingly important in multiuser systems, such as Linux. Users are classified into three
categories:

User or owner of the file

Group or the users that belong to the group that owns the file

Other, which is the catch-all for the rest of the users on the system who do not belong to the
file's group

For each of these users, the file allows a particular set of permissions. Although many operations
can be applied to a file, Linux summarizes permissions as they apply to three file operations: read,
write, and execute. Because each of these three classes is applied to each of the three user
categories, a file has nine sets of permissions associated with it.

Other attributes include file size, creation timestamp, and last-access timestamp, all of which are
displayed by the core utility ls. When we look at the kernel's implementation of files, we see that
many other attributes are not visible to the user.

6.1.4. Directories and Pathnames

A directory is a file that maintains the hierarchical structure of the filesystem. The directory keeps
track of the files it contains, any directories beneath it, and information about itself. In Linux, each
user gets his own "home directory," under which he stores his files and creates his own directory
tree structure. In Figure 6.1, we see how the directory contributes to the tree structure of the
filesystem.

With the arrangement of the filesystem into a tree structure, the filename alone is not sufficient to
locate the file; we must know where it is located in the tree to find it. A file's pathname describes



the location of the file. A file's location can be described with respect to the root of the tree, which
is known as the absolute pathname. The absolute pathname starts with the root directory,
which is referred to as /. A directory node's name is the directory name followed by a /, such as
bin/. Thus, a file's absolute pathname is expressed as a collection of all the directory nodes one
traverses in the tree until one reaches the file. In Figure 6.1, the absolute pathname of the file
called hw1.txt is /home/ana/cs101/hw1.txt. Another way of representing a file is with a relative
pathname. This depends on the working directory of the process associated with the file. The
working directory, or current directory, is a directory associated with the execution of a process.
Hence, if /home/ana/ is the working directory for our process, we can refer to the file as
cs101/hw1.txt.

In Linux, directories contain files that perform varying tasks during the operation of the operating
system. For example, shareable files are stored under /usr and /opt whereas unshareable files
are stored under /etc/ and /boot. In the same manner, non-static files, those whose contents are
changed by system programs, are stored under the vcertain directories under /var. Refer to
http://www.pathname.com/fhs for more information on the filesystem hierarchy standard.

In Linux, each directory has two entries associated with it: . (pronounced "dot") and ..
(pronounced "dot dot"). The . entry denotes the current directory and .. denotes the parent
directory. For the root directory, . and .. denote the current directory. (In other words, the root
directory is its own parent.) This notation plays into relative pathnames in the following manner.
In our previous example, the working directory was /home/ana and the relative pathname of our
file was csw101/hw1.txt. The relative pathname of a hw1.txt file in paul's directory from within our
working directory is ../paul/cs101/hw1.txt because we first have to go up a level.

6.1.5. File Operations

File operations include all operations that the system allows on the files. Generally, files can be
created and destroyed, opened and closed, read and written. Additionally, files can also be
renamed and its attributes can be changed. The filesystem provides system calls as interfaces to
these operations, and these are in turn placed in wrapper functions that are made accessible to
user space applications by way of linkable libraries. We explore some of these operations as we
traverse through the implementation of the Linux filesystem.

6.1.6. File Descriptors

A file descriptor is an int datatype that the system uses to identify an open file. The open()
system call returns a file descriptor that can later be used on all future operations to be visited
upon that file by that process. In a later section, we see what the file descriptor stands for in
kernel terms.

Each process holds an array of file descriptors. When we discuss the kernel structures that support
the filesystem, we see how this information is maintained in an array. It is by convention that the
first element of the array (file descriptor 0) is associated with the process' standard input, the
second (file descriptor 1) with standard output, and the third (file descriptor 2) with standard
error. This allows applications to open a file on standard input, output, or error. Figure 6.2
illustrates the file descriptor array pertaining to a process.

Figure 6.2. File Descriptor Array

http://www.pathname.com/fhs


File descriptors are assigned on a "lowest available index" basis. Thus, if a process is to open
multiple files, the assigned file descriptors will be incrementally higher unless a previously opened
file is closed before the new one. We see how the open and close system calls manipulate file
descriptors to ensure this. Hence, within a process' lifetime, it might open two different files that
will have the same file descriptor if one is closed before the other is opened. Conversely and
separately, two different file descriptors can point to the same file.

6.1.7. Disk Blocks, Partitions, and Implementation

To understand the concerns of filesystem implementation, we need to understand some basic
concepts about hard disks. Hard disks magnetically record data. A hard disk contains multiple
rotating disks on which data is recorded. A head, which is mounted on a mechanical arm that
moves over the surface of the disk, reads and writes the data by moving along the radius of the
disks, much like the needle of a turntable. The disks themselves rotate much like LP's on a
turntable. Each disk is broken up into concentric rings called tracks. Tracks are numbered starting
from the outside to the inside of the disk. Groups of the same numbered tracks (across the disks)
are called cylinders. Each track is in turn broken up into (usually) 512K byte sectors. Cylinders,
tracks, and heads make up the geometry of a hard drive.

A blank disk must first be formatted before the filesystem is made. Formatting creates tracks,
blocks, and partitions in a disk. A partition is a logical disk and is how the operating system
allocates or uses the geometry of the hard drive. The partitions provide a way of dividing a single
hard disk to look as though there were multiple disks. This allows different filesystems to reside in
a common disk. Each partition is split up into tracks and blocks. The creation of tracks and
blocks in a disk is done by way of programs such as fdformat[1] whereas the creation of logical
partitions is done by programs such as fdisk. Both of these precede creation of the actual
filesystem.

[1] fdformat is used for low-level formatting (track and sector creation) of floppies. IDE and SCSI disks are generally

preformatted at the factory.

The Linux file tree can provide access to more than one filesystem. This means that if you have a
disk with multiple partitions, each of which has a filesystem, it is possible to view all these
filesystems from one logical namespace. This is done by attaching each filesystem to the main
Linux filesystem tree by using the mount command. We say that a filesystem is mounted to refer
to the fact that the device filesystem is attached and accessible from the main tree. Filesystems
are mounted onto directories.[2] The directory onto which a filesystem is mounted is referred to as
the mount point.

[2] In tree parlance, you would say that you are attaching a subtree to a node in the main tree.

One of the main difficulties in filesystem implementation is in determining how the operating
system will keep track of the sequence of bytes that make up a file. As previously mentioned, the
disk partition space is split into chunks of space called blocks. The size of a block varies by
implementation. The management of blocks determines the speed of file access and the level of
fragmentation[3] and therefore wasted space. For example, if we have a block size of 1,024 bytes
and a file size of 1,567 bytes, the file spans two blocks. The operating system keeps track of the
blocks that belong to a particular file by keeping the information in a structure called an index
node (inode).



[3] We visited fragmentation in Chapter 4, "Memory Management," and saw how wasted holes in memory can be created. The

same kind of fragmentation problems are seen with hard disk storage.

6.1.8. Performance

There are various ways in which the filesystem improves system performance. One way is by
maintaining internal infrastructure in the kernel that quickly accesses an inode that corresponds to
a given pathname. We see how the kernel does this when we explain filesystem implementation.

The page cache is another method in which the filesystem improves performance. The page cache
is an in-memory collection of pages. It is designed to cache many different types of pages,
originating from disk files, memory-mapped files, or any other page object the kernel can access.
This caching mechanism greatly reduces disk accesses and thus improves system performance.
This chapter shows how the page cache interacts with disk accesses in the course of file
manipulation.



6.2. Linux Virtual Filesystem

The implementation of filesystems varies from system to system. For example, in Windows, the
implementation of how a file relates to a disk block differs from how a file in a UNIX filesystem
relates to a disk block. In fact, Microsoft has various implementations of filesystems that
correspond to its various operating systems: MS-DOS for DOS and Win 3.x, VFAT for Windows 9x,
and NTFS for Windows NT. UNIX operating systems also have various implementations, such as
SYSV and MINIX. Linux specifically uses filesystems such as ext2, ext3, and ResierFS.

One of the best attributes of Linux is the many filesystems it supports. Not only can you view files
from its own filesystems (ext2, ext3, and ReiserFS), but you can also view files from filesystems
pertaining to other operating systems. On a single Linux system, you are capable of accessing files
from numerous different formats. Table 6.1 lists the currently supported filesystems. To a user,
there is no difference between one filesystem and another; he can indiscriminately mount any of
the supported filesystems to his original tree namespace.

Table 6.1. Some of the Linux Supported Filesystems

Filesystem Name Description

ext2 Second extended filesystem

ext3 ext3 journaling filesystem

Reiserfs Journaling filesystem

JFS IBM's journaled filesystem

XFS SGI Irix's high-performance journaling filesystem

MINIX Original Linux filesystem, minix OS filesystem

ISO9660 CD-ROM filesystem

JOLIET Microsoft CRDOM filesystem extensions

UDF Alternative CROM, DVD filesystem

MSDOS Microsoft Disk Operating System

VFAT Windows 95 Virtual File Allocation Table

NTFS Windows NT, 2000, XP, 2003 filesystem

ADFS Acorn Disk filesystem

HFS Apple Macintosh filesystem

BEFS BeOs filesystem

FreeVxfs Veritas Vxfs support

HPFS OS/2 support

SysVfs System V filesystem support

NFS Networking filesystem support

AFS Andrew filesystem (also networking)



UFS BSD filesystem support

NCP NetWare filesystem

SMB Samba

Linux supports more than on-disk filesystems. It also supports network-mounted filesystems and
special filesystems that are used for things other than managing disk space. For example, procfs
is a pseudo filesystem. This virtual filesystem provides information about different aspects of your
system. A procfs filesystem does not take up hard disk space and files are created on the fly upon
access. Another such filesystem is devfs,[4] which provides an interface to device drivers.

[4] In Linux 2.6, devfs is obsolete by udev, although minimal support is still available. For more information on udev, go to

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-FAQ.

Linux achieves this "masquerading" of the physical filesystem specifics by introducing an
intermediate layer of abstraction between user space and the physical filesystem. This layer is
known as the virtual filesystem (VFS). It separates the filesystem-specific structures and
functions from the rest of the kernel. The VFS manages the filesystem-related system calls and
translates them to the appropriate filesystem type functions. Figure 6.3 overviews the filesystem-
management structure.

Figure 6.3. Linux VFS

The user application accesses the generic VFS through system calls. Each supported filesystem

http://www.kernel.org/pub/linux/utils/kernel/hotplug/udev-FAQ


must have an implementation of a set of functions that perform the VFS-supported operations (for
example, open, read, write, and close). The VFS keeps track of the filesystems it supports and the
functions that perform each of the operations. You know from Chapter 5 that a generic block
device layer exists between the filesystem and the actual device driver. This provides a layer of
abstraction that allows the implementation of the filesystem-specific code to be independent of the
specific device it eventually accesses.

6.2.1. VFS Data Structures

The VFS relies on data structures to hold its generic representation of a filesystem.

The data structures are as follows:

superblock structure. Stores information relating to mounted filesystems

inode structure. Stores information relating to files

file structure. Stores information related to files opened by a process

dentry structure. Stores information related to a pathname and the file pointed to

In addition to these structures, the VFS also uses additional structures such as vfsmount, and
nameidata, which hold mounting information and pathname lookup information, respectively. We
see how these two structures relate to the main ones just described, although we do not
independently cover them.

The structures that compose the VFS are associated with actions that can be applied on the object
represented by the structure. These actions are defined in a table of operations for each object.
The tables of operations are lists of function pointers. We define the operations table for each
object as we describe them. We now closely look at each of these structures. (Note that we do not
focus on any locking mechanisms for the purposes of clarity and brevity.)

6.2.1.1. superblock Structure

When a filesystem is mounted, all information concerning it is stored is the super_block struct.
One superblock structure exists for every mounted filesystem. We show the structure definition
followed by explanations of some of the more important fields:

-----------------------------------------------------------------------
include/linux/fs.h
666  struct super_block {
667   struct list_head   s_list;
668   dev_t     s_dev;  
669   unsigned long    s_blocksize;
670   unsigned long    s_old_blocksize;
671   unsigned char    s_blocksize_bits;
672   unsigned char    s_dirt;
673   unsigned long long   s_maxbytes;  
674   struct file_system_type  *s_type;
675   struct super_operations  *s_op;
676   struct dquot_operations  *dq_op;
677   struct quotactl_ops   *s_qcop;
678   struct export_operations  *s_export_op;
679   unsigned long    s_flags;
680   unsigned long    s_magic;
681   struct dentry    *s_root;



682   struct rw_semaphore   s_umount;
683   struct semaphore   s_lock;
684   int     s_count;
685   int     s_syncing;
686   int     s_need_sync_fs;
687   atomic_t    s_active;
688   void      *s_security;
689  
690   struct list_head   s_dirty;  
691   struct list_head   s_io;   
692   struct hlist_head   s_anon;  
693   struct list_head   s_files;
694  
695   struct block_device   *s_bdev;
696   struct list_head   s_instances;
697   struct quota_info   s_dquot;  
698  
699   char      s_id[32];    
700  
701   struct kobject    kobj;   
702   void      *s_fs_info;  
...
708   struct semaphore   s_vfs_rename_sem;  
709  };
-----------------------------------------------------------------------

Line 667

The s_list field is of type list_head,[5] which is a pointer to the next and previous elements in
the circular doubly linked list in which this super_block is embedded. Like many other structures in
the Linux kernel, the super_block structs are maintained in a circular doubly linked list. The
list_head datatype contains pointers to two other list_heads: the list_head of the next
superblock object and the list_head of the previous superblock objects. (The global variable
super_blocks (fs/super.c) points to the first element in the list.)

[5] Chapter 2, "Exploration Toolkit," describes the list_head datatype in detail.

Line 672

On disk-based filesystems, the superblock structure is filled with information originally maintained
in a special disk sector that is loaded into the superblock structure. Because the VFS allows
editing of fields in the superblock structure, the information in the superblock structure can find
itself out of sync with the on-disk data. This field identifies that the superblock structure has been
edited and needs to sync up with the disk.

Line 673

This field of type unsigned long defines the maximum file size allowed in the filesystem.

Line 674

The superblock structure contains general filesystem information. However, it needs to be
associated with the specific filesystem information (for example, MSDOS, ext2, MINIX, and NFS).



The file_system_type structure holds filesystem-specific information, one for each type of
filesystem configured into the kernel. This field points to the appropriate filesystem-specific struct
and is how the VFS manages the interaction from general request to specific filesystem operation.

Figure 6.4 shows the relation between the superblock and the file_system_type structures. We
show how the superblock->s_type field points to the appropriate file_system_type struct in the
file_systems list. (In the "Global and Local List References" section later in this chapter, we show
what the file_systems list is.)

Figure 6.4. Relation Between superblock and file_system_type

Line 675

The field is a pointer of type super_operations struct. This datatype holds the table of superblock
operations. The super_operations struct itself holds function pointers that are initialized with the
particular filesystem's superblock operations. The next section explains super_operations in more
detail.

Line 681

This field is a pointer to a dentry struct. The dentry struct holds the pathname of a file. This
particular dentry object is the one associated with the mount directory whose superblock this
belongs to.

Line 690

The s_dirty field (not to be confused with s_dirt) is a list_head struct that points to the first and
last elements in the list of dirty inodes belonging to this filesystem.



Line 693

The s_files field is a list_head struct that points to the first element of a list of file structs that
are both in use and assigned to the superblock. In the "file Structure" section, you see that this is
one of the three lists in which a file structure can find itself.

Line 696

The field of s_instances is a list_head structure that points to the adjacent superblock elements
in the list of superblocks with the same filesystem type. The head of this list is referenced by the
fs_supers field of the file_system_type structure.

Line 702

This void * data type points to additional superblock information that is specific to a particular
filesystem (for example, ext3_sb_info). This acts as a sort of catch-all for any superblock data on
disk for that specific filesystem that was not abstracted out into the virtual filesystem superblock
concept.

6.2.1.2. superblock Operations

The s_op field of the superblock points to a table of operations that the filesystem's superblock
can perform. This list is specific to each filesystem because it operates directly on the filesystem's
implementation. The table of operations is stored in a structure of type super_operations:

-----------------------------------------------------------------------
include/linux/fs.h
struct super_operations {
  struct inode *(*alloc_inode)(struct super_block *sb);
  void (*destroy_inode)(struct inode *);

  void (*read_inode) (struct inode *);

  void (*dirty_inode) (struct inode *);
  void (*write_inode) (struct inode *, int);
  void (*put_inode) (struct inode *);
  void (*drop_inode) (struct inode *);
  void (*delete_inode) (struct inode *);
  void (*put_super) (struct super_block *);
  void (*write_super) (struct super_block *);
  int (*sync_fs)(struct super_block *sb, int wait);
  void (*write_super_lockfs) (struct super_block *);
  void (*unlockfs) (struct super_block *);
  int (*statfs) (struct super_block *, struct kstatfs *);
  int (*remount_fs) (struct super_block *, int *, char *);
  void (*clear_inode) (struct inode *);
  void (*umount_begin) (struct super_block *);

  int (*show_options)(struct seq_file *, struct vfsmount *);
};
-----------------------------------------------------------------------



When the superblock of a filesystem is initialized, the s_op field is set to point at the appropriate
table of operations. In the "Moving from the Generic to the Specific" section later in this chapter,
we show how this table of operations is implemented in the ext2 filesystem. Table 6.2 shows the
list of superblock operations. Some of these functions are optional and are only filled in by a
subset of the supported filesystems. Those that do not support a particular optional function set
the field to NULL in the operations struct.

Table 6.2. Superblock Operations

Superblock Operations
Name

Description

alloc_inode New in 2.6. It allocates and initializes a vfs inode under
the superblock. The specifics of initialization are left up
to the particular filesystem. The allocation is done with
a call to kmem_cache_create() or kemem_cache_alloc()
(see Chapter 4) on the inode's cache.

destroy_inode New in 2.6. It deallocates the specified inode pertaining
to the superblock. The deallocation is done with a call
to kmem_cache_free().

read_inode Reads the inode specified by the inode->i_ino field.
The inode's fields are updated from the on-disk data.
Particularly important is inode->i_op.

dirty_inode Places an inode in the superblock's dirty inode list. The
head and tail of the circular, doubly linked list is
referenced by way of the superblock->s_dirty field.
Figure 6.5 illustrates a superblock's dirty inode list.

write_inode Writes the inode information to disk.

put_inode Releases the inode from the inode cache. It's called by
iput().

drop_inode Called when the last access to an inode is dropped.

delete_inode Deletes an inode from disk. Used on inodes that are no
longer needed. It's called from
generic_delete_inode().

put_super Frees the superblock (for example, when unmounting a
filesystem).

write_super Writes the superblock information to disk.

sync_fs Currently used only by ext3, Resiserfs, XFS, and JFS,
this function writes out dirty superblock struct data to
the disk.

write_super_lockfs In use by ext3, JFS, Resierfs, and XFS, this function
blocks changes to the filesystem. It then updates the
disk superblock.

unlockfs Reverses the block set by the write_super_lockfs()
function.

stat_fs Called to get filesystem statistics.

remount_fs Called when the filesystem is remounted to update any
mount options.



clear_inode Releases the inode and all pages associated with it.

umount_begin Called when a mount operation must be interrupted.

show_options Used to get filesystem information from a mounted
filesystem.

Figure 6.5. Relation Between Superblock and Inode

This completes our introduction of the superblock structure and its operations. Now, we explore
the inode structure in detail.

6.2.1.3. inode Structure

We mentioned that inodes are structures that keep track of file information, such as pointers, to
the blocks that contain all the file data. Recall that directories, devices, and pipes (for example)
are also represented as files in the kernel, so an inode can represent one of them as well. Inode
objects exist for the full lifetime of the file and contain data that is maintained on disk.

Inodes are kept in lists to facilitate referencing. One list is a hash table that reduces the time it
takes to find a particular inode. An inode also finds itself in one of three types of doubly linked list.
Table 6.3 shows the three list types. Figure 6.5 shows the relationship between a superblock
structure and its list of dirty inodes.

Table 6.3. Inode Lists



List i_count Dirty Reference Pointer

Valid, unused i_count = 0 Not dirty inode_unused

(global)

Valid, in use i_count > 0 Not dirty inode_in_use

(global)

Dirty inodes i_count > 0 Dirty superblock's

s_dirty field

The inode struct is large and has many fields. The following is a description of a small subset of
the inode struct fields:

-----------------------------------------------------------------------
include/linux/fs.h
368  struct inode {
369   struct hlist_node   i_hash;
370   struct list_head   i_list;
371   struct list_head   i_dentry;
372   unsigned long    i_ino;
373   atomic_t    i_count;
...
390   struct inode_operations  *i_op;
...
392   struct super_block   *i_sb;
...
407   unsigned long    i_state;
...
421  };
-----------------------------------------------------------------------

Line 369

The i_hash field is of type hlist_node.[6] This contains a pointer to the hash list, which is used for
speedy inode lookup. The inode hash list is referenced by the global variable inode_hashtable.

[6] hlist_node is a type of list pointer for double-linked lists, much like list_head. The difference is that the list head (type

hlist_head) contains a single pointer that points at the first element rather than two (where the second one points at the tail

of the list). This reduces overhead for hash tables.

Line 370

This field links to the adjacent structures in the inode lists. Inodes can find themselves in one of
the three linked lists.

Line 371

This field points to a list of dentry structs that corresponds to the file. The dentry struct contains
the pathname pertaining to the file being represented by the inode. A file can have multiple dentry
structs if it has multiple aliases.



Line 372

This field holds the unique inode number. When an inode gets allocated within a particular
superblock, this number is an automatically incremented value from a previously assigned inode
ID. When the superblock operation read_inode() is called, the inode indicated in this field is read
from disk.

Line 373

The i_count field is a counter that gets incremented with every inode use. A value of 0 indicates
that the inode is unused and a positive value indicates that it is in use.

Line 392

This field holds the pointer to the superblock of the filesystem in which the file resides. Figure 6.5
shows how all the inodes in a superblocks' dirty inode list will have their i_sb field pointing to a
common superblock.

Line 407

This field corresponds to inode state flags. Table 6.4 lists the possible values.

Table 6.4. Inode States

Inode State Flags Description

I_DIRTY_SYNC See I_DIRTY description.

I_DIRTY_DATASYNC See I_DIRTY description.

I_DIRTY_PAGES See I_DIRTY description.

I_DIRTY This macro correlates to any of the three
I_DIRTY_* flags. It enables a quick check
for any of those flags. The I_DIRTY* flags
indicate that the contents of the inode
have been written to and need to be
synchronized.

I_LOCK Set when the inode is locked and cleared
when the inode is unlocked. An inode is
locked when it is first created and when it
is involved in I/O transfers.

I_FREEING Gets set when an inode is being removed.
This flag serves the purpose of tagging
the inode as unusable as it is being
deleted so no one takes a new reference
to it.

I_CLEAR Indicates that the inode is no longer
useful.



I_NEW Gets set upon inode creation. The flag
gets removed the first time the new inode
is unlocked.

An inode with the I_LOCK or I_DIRTY flags set finds itself in the inode_in_use list. Without either of
these flags, it is added to the inode_unused list.

6.2.1.4. dentry Structure

The dentry structure represents a directory entry and the VFS uses it to keep track of relations
based on directory naming, organization, and logical layout of files. Each dentry object
corresponds to a component in a pathname and associates other structures and information that
relates to it. For example, in the path /home/lkp/Chapter06.txt, there is a dentry created for /,
home, lkp, and Chapter06.txt. Each dentry has a reference to that component's inode, superblock,
and related information. Figure 6.6 illustrates the relationship between the superblock, the inode,
and the dentry structs.

Figure 6.6. Relations Between superblock, dentry, and inode

[View full size image]

We now look at some of the fields of the dentry struct:

-----------------------------------------------------------------------
include/linux/dcache.h
81  struct dentry {
...  
85   struct inode  * d_inode;  
86   struct list_head  d_lru;   
87   struct list_head  d_child;  /* child of parent list */
88   struct list_head  d_subdirs;  /* our children */
89   struct list_head  d_alias;  
90   unsigned long  d_time;  /* used by d_revalidate */
91   struct dentry_operations *d_op;
92   struct super_block  * d_sb;  



...
100   struct dentry  * d_parent;  
...
105  } ____cacheline_aligned; 
-----------------------------------------------------------------------

Line 85

The d_inode field points to the inode corresponding with the file associated with the dentry. In the
case that the pathname component corresponding with the dentry does not have an associated
inode, the value is NULL.

Lines 8588

These are the pointers to the adjacent elements in the dentry lists. A dentry object can find itself
in one of the kinds of lists shown in Table 6.5.

Table 6.5. Dentry Lists

Listname List Pointer Description

Used dentrys d_alias The inode with which these
dentrys are associated
points to the head of the
list via the i_dentry field.

Unused dentrys d_lru These dentrys are no longer
in use but are kept around
in case the same
components are accessed in
a pathname.

Line 91

The d_op field points to the table of dentry operations.

Line 92

This is a pointer to the superblock associated with the component represented by the dentry.
Refer to Figure 6.6 to see how a dentry is associated with a superblock struct.

Line 100

This field holds a pointer to the parent dentry, or the dentry corresponding to the parent
component in the pathname. For example, in the pathname /home/paul, the d_parent field of the
dentry for paul points to the dentry for home, and the d_parent field of this dentry in turn points to
the dentry for /.



6.2.1.5. file Structure

Another structure that the VFS uses is the file structure. When a process manipulates a file, the
file structure is the datatype the VFS uses to hold information regarding the process/file
association. Unlike other structures, no original on-disk data is held by a file structure; file
structures are created on-the-fly upon the issue of the open() syscall and are destroyed upon
issue of the close() syscall. Recall from Chapter 3 that throughout the lifetime of a process, the
file structures representing files opened by the process are referenced through the process
descriptor (the task_struct). Figure 6.7 illustrates how the file structure associates with the other
VFS structures. The task_struct points to the file descriptor table, which holds a list of pointers to
all the file descriptors that process has opened. Recall that the first three entries in the descriptor
table correspond to the file descriptors for stdin, stdout, and stderr, respectively.

Figure 6.7. File Objects

The kernel keeps file structures in circular doubly linked lists. There are three lists in which a file
structure can find itself embedded depending on its usage and assignment. Table 6.6 describes the
three lists.

Table 6.6. File Lists



Name
Reference Pointer to
Head of List Description

The free file object list Global variable free_list A doubly linked list
composed of all file objects
that are available. The size
of this list is always at least
NR_RESERVED_FILES large.

The in-use but unassigned
file object list

Global variable anon_list A doubly linked list
composed of all file objects
that are being used but
have not been assigned to
a superblock.

Superblock file object list Superblock field s_files A doubly linked list
composed of all file objects
that have a file associated
with a superblock.

The kernel creates the file structure by way of get_empty_filp(). This routine returns a pointer to
the file structure or returns NULL if there are no more free structures or if the system has run out
of memory.

We now look at some of the more important fields in the file structure:

-----------------------------------------------------------------------
include/linux/fs.h
506  struct file {
507   struct list_head   f_list;
508   struct dentry    *f_dentry;
509   struct vfsmount   *f_vfsmnt;
510   struct file_operations  *f_op;
511   atomic_t    f_count;
512   unsigned int    f_flags;
513   mode_t     f_mode;
514   loff_t     f_pos;
515   struct fown_struct   f_owner;
516   unsigned int    f_uid, f_gid;
517   struct  file_ra_state   f_ra;
...
527   struct address_space  *f_mapping;
...
529  };
-----------------------------------------------------------------------

Line 507

The f_list field of type list_head holds the pointers to the adjacent file structures in the list.

Line 508

This is a pointer to the dentry structure associated with the file.



Line 509

This is a pointer to the vfsmount structure that is associated with the mounted filesystem that the
file is in. All filesystems that are mounted have a vfsmount structure that holds the related
information. Figure 6.8 illustrates the data structures associated with vfsmount structures.

Figure 6.8. vfsmount Objects

[View full size image]

Line 510

This is a pointer to the file_operations structure, which holds the table of file operations that can
be applied to a file. (The inodes field i_fop points to the same structure.) Figure 6.7 illustrates this
relationship.

Line 511

Numerous processes can concurrently access a file. The f_count field is set to 0 when the file
structure is unused (and, therefore, available for use). The f_count field is set to 1 when it's
associated with a file and incremented by one thereafter with each process that handles the file.
Thus, if a file object that is in use represents a file accessed by four different processes, the



f_count field holds a value of 5.

Line 512

The f_flags field contains the flags that are passed in via the open() syscall. We cover this in
more detail in the "open()" section.

Line 514

The f_pos field holds the file offset. This is essentially the read/write pointer that some of the
methods in the file operations table use to refer to the current position in the file.

Line 516

We need to know who the owner of the process is to determine file access permissions when the
file is manipulated. These fields correspond to the uid and the gid of the user who started the
process and opened the file structure.

Line 517

A file can read pages from the page cache, which is the in-memory collection of pages, in
advance. The read-ahead optimization involves reading adjacent pages of a file prior to any of
them being requested to reduce the number of costly disk accesses. The f_ra field holds a
structure of type file_ra_state, which contains all the information related to the file's read-ahead
state.

Line 527

This field points to the address_space struct, which corresponds to the page-caching mechanism
for this file. This is discussed in detail in the "Page Cache" section.

6.2.2. Global and Local List References

The Linux kernel uses global variables that hold pointers to linked lists of the structures previously
mentioned. All structures are kept in a doubly linked list. The kernel keeps a pointer to the head of
the list using this as an access point to the list. The structures all have fields of type list_head,[7]

which they use to point to the previous and next elements in the list. Table 6.7 summarizes the
global variables that the kernel holds and the type of list it keeps a reference to.

[7] The inode struct has a variation of this called hlist_node, as we saw in Section 6.2.1.3, "inode Structure."

Table 6.7. VFS-Related Global Variables



Global Variable Structure Type

super_blocks super_block

file_systems file_system_type

dentry_unused dentry

vfsmntlist vfsmount

inode_in_use inode

inode_unused inode

The super_block, file_system_type, dentry, and vfsmount structures are all kept in their own list.
Inodes can find themselves in either global inode_in_use or inode_unused, or in the local list of the
superblock under which they correspond. Figure 6.9 shows how some of these structures
interrelate.

Figure 6.9. VFS-Related Global Variables
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The super_blocks variable points to the head of the superblock list with the elements pointing to
the previous and next elements in the list by means of the s_list field. The s_dirty field of the
superblock structure in turn points to the inodes it owns, which need to be synchronized with the
disk. Inodes not in a local superblock list are in the inode_in_use or inode_unused lists. All inodes
point to the next and previous elements in the list by way of the i_list field.

The superblock also points to the head of the list containing the file structs that have been
assigned to that superblock by way of the s_files list. The file structs that have not been assigned
are placed in one of the free_list lists of the anon_list list. Both lists have a dummy file struct as
the head of the list. All file structs point to the next and previous elements in their list by using the
f_list field.



Refer to Figure 6.6 to see how the inode points to the list of dentry structures by using the
i_dentry field.



6.3. Structures Associated with VFS

Other than the four main VFS structures, a few other structures interact with VFS: fs_struct,
files_struct, namespace, and fd_set. The structures fs_struct, files_stuct, and namespace are
all process-related objects that contain file-related data. Figure 6.10 relates how a process
descriptor associates with file-related structures. We now look at these additional structures.

Figure 6.10. Process-Related Objects

6.3.1. fs_struct Structure

In Linux, multiple processes could refer to a single file. As a result, the Linux VFS must store
information about how processes and files interact. For example, a process started by one user
might differ from a process started by another user with respect to permissions related to file
operations. The fs_struct structure holds all the information associating a particular process to a
file. We need to examine the fs_struct structure prior to examining the files_struct structure
because it uses the fs_struct datatype.

fs_struct can be referred to by multiple process descriptors, so it is not uncommon that an
fs_struct representing a file is referenced by many task_struct descriptors:

-----------------------------------------------------------------------
include/linux/fs_struct.h



 7  struct fs_struct {
 8   atomic_t count;
 9   rwlock_t lock;
10   int umask;
11   struct dentry * root, * pwd, * altroot;
12   struct vfsmount * rootmnt, * pwdmnt, * altrootmnt;
13  };
-----------------------------------------------------------------------

6.3.1.1. count

The count field holds the number of process descriptors that reference the particular fs_struct.

6.3.1.2. umask

The umask field holds the mask representing the permissions to be set on files opened.

6.3.1.3. root, pwd, and altroot

The root and pwd fields are pointers to the dentry object associated with the process' root
directory and current working directory, respectively. altroot is a pointer to the dentry structure
of an alternative root directory. This field is used for emulation environments.

6.3.1.4. rootmnt, pwdmnt, and altrootmnt

The fields rootmnt, pwdmnt, and altrootmnt are pointers to the mounted filesystem object of the
process' root, current working, and alternative root directories, respectively.

6.3.2. files_struct Structure

files_struct contains information related to open files and their descriptors. In the introduction,
we mentioned that file descriptors are unique int datatypes associated with an open file. In kernel
terms, the file descriptor is the index into the fd array of the files object of the current task's
task_struct or current->files->fd. Figure 6.7 shows the fd array of a task_struct and how it
points to the file's file structure.

Linux can associate sets of file descriptors according to shared qualities, such as read-only or
read-write. The fd_struct structure represents the file descriptor sets. The files_struct uses
these sets to group its file descriptors:

-----------------------------------------------------------------------
include/linux/file.h
22  struct files_struct {
23    atomic_t count;
24   spinlock_t file_lock
25    int max_fds;
26    int max_fdset;
27    int next_fd;
28    struct file ** fd;  
29    fd_set *close_on_exec;



30    fd_set *open_fds;
31    fd_set close_on_exec_init;
32    fd_set open_fds_init;
33    struct file * fd_array[NR_OPEN_DEFAULT];
34  };
-----------------------------------------------------------------------

Line 23

The count field exists because the files_struct can be referred to by multiple process descriptors,
much like the fs_struct. This field is incremented in the kernel routine fget() and decremented in
the kernel routine fput(). These functions are called during the file-closing process.

Line 25

The max_fds field keeps track of the maximum number of files that the process can have open.
The default of max_fds is 32 as associated with NR_OPEN_DEFAULT size of the fd_array. When a file
wants to open more than 32 files, this value is grown.

Line 26

The max_fdset field keeps track of the maximum number of file descriptors. Similar to max_fds,
this field can be expanded if the total number of files the process has open exceeds its value.

Line 27

The next_fd field holds the value of the next file descriptor to be assigned. We see how it is
manipulated through the opening and closing of files, but one thing should be understood: File
descriptors are assigned in an incremental manner unless a previously assigned file descriptor's
associated file is closed. In this case, the next_fd field is set to that value. Thus, file descriptors
are assigned in a lowest available value manner.

Line 28

The fd array points to the open file object array. It defaults to fd_array, which holds 32 file
descriptors. When a request for more than 32 file descriptors comes in, it points to a newly
generated array.

Lines 3032

close_on_exec, open_fds, close_on_exec_init, and open_fds_init are all fields of type fd_set. We
mentioned that the fd_set structure holds sets of file descriptors. Before explaining each field
individually, we look at the fd_set structure.

The fd_set datatype can be traced back to a struct that holds an array of unsigned longs, each of
which holds a file descriptor:

-----------------------------------------------------------------------
include/linux/types.h



22  typedef __kernel_fd_set   fd_set;
-----------------------------------------------------------------------

The fd_set datatype is a type definition of __kernel_fd_set. This datatype structure holds an
array of unsigned longs:

-----------------------------------------------------------------------
include/linux/posix_types.h
36  typedef struct {
37   unsigned long fds_bits [__FDSET_LONGS];
38  } __kernel_fd_set;
-----------------------------------------------------------------------

__FDSET_LONGS has a value of 32 on a 32-bit system and 16 on a 64-bit system, which ensures
that fd_sets always has a bitmap of size 1,024. This is where __FDSET_LONGS is defined:

-----------------------------------------------------------------------
include/linux/posix_types.h
 6  #undef __NFDBITS
 7  #define __NFDBITS  (8 * sizeof(unsigned long))
 8
 9  #undef __FD_SETSIZE
10  #define __FD_SETSIZE  1024
11  
12  #undef __FDSET_LONGS
13  #define __FDSET_LONGS  (__FD_SETSIZE/__NFDBITS)
-----------------------------------------------------------------------

Four macros are available for the manipulation of these file descriptor sets (see Table 6.8).

Table 6.8. File Descriptor Set Macros

Macro Description

FD_SET Sets the file descriptor in the set.

FD_CLR Clears the file descriptor from the set.

FD_ZERO Clears the file descriptor set.

FD_ISSET Returns if the file descriptor is set.

Now, we look at the various fields.

6.3.2.1. close_on_exec

The close_on_exec field is a pointer to the set of file descriptors that are marked to be closed on



exec(). It initially (and usually) points to the close_on_exec_init field. This changes if the number
of file descriptors marked to be open on exec() grows beyond the size of the close_on_exec_init
bit field.

6.3.2.2. open_fds

The open_fds field is a pointer to the set of file descriptors that are marked as open. Like
close_on_exec, it initially points to the open_fds_init field and changes if the number of file
descriptors marked as open grows beyond the size of open_fds_init bit field.

6.3.2.3. close_on_exec

The close_on_exec_init field holds the bit field that keeps track of the file descriptors of files that
are to be closed on exec().

6.3.2.4. open_fds_init

The open_fds_init field holds the bit field that keeps track of the file descriptors of files that are
open.

6.3.2.5. fd_array

The fd_array array pointer points to the first 32 open file descriptors.

The fs_struct structures are initialized by the INIT_FILES macro:

-----------------------------------------------------------------------
include/linux/init_task.h
 6  #define INIT_FILES \
 7  {         
 8   .count    = ATOMIC_INIT(1),   
 9   .file_lock   = SPIN_LOCK_UNLOCKED,   
10   .max_fds   = NR_OPEN_DEFAULT,   
11   .max_fdset   = __FD_SETSIZE,   
12   .next_fd   = 0,      
13   .fd    = &init_files.fd_array[0],  
14   .close_on_exec  = &init_files.close_on_exec_init, 
15   .open_fds   = &init_files.open_fds_init,  
16   .close_on_exec_init = { { 0, } },   
17   .open_fds_init  = { { 0, } },    
18   .fd_array   = { NULL, }    
19  }
-----------------------------------------------------------------------

Figure 6.11 illustrates what the fs_struct looks like after it is initialized.

-----------------------------------------------------------------------
include/linux/file.h
6  #define NR_OPEN_DEFAULT BITS_PER_LONG
-----------------------------------------------------------------------



Figure 6.11. init fs_struct

The NR_OPEN_DEFAULT global definition is set to BITS_PER_LONG, which is 32 on 32-bit systems and
64 on 64-bit systems.



6.4. Page Cache

In the introductory sections, we mentioned that the page cache is an in-memory collection of
pages. When data is frequently accessed, it is important to be able to quickly access the data.
When data is duplicated and synchronized across two devices, one of which typically is smaller in
storage size but allows much faster access than the other, we call it a cache. A page cache is how
an operating system stores parts of the hard drive in memory for faster access. We now look at
how it works and is implemented.

When you perform a write to a file on your hard drive, that file is broken into chunks called pages,
that are swapped into memory (RAM). The operating system updates the page in memory and, at
a later date, the page is written to disk.

If a page is copied from the hard drive to RAM (which is called swapping into memory), it can
become either clean or dirty. A dirty page has been modified in memory but the modifications
have not yet been written to disk. A clean page exists in memory in the same state that it exists
on disk.

In Linux, the memory is divided into zones.[8] Each zone has a list of active and inactive pages.
When a page is inactive for a certain amount of time, it gets swapped out (written back to disk) to
free memory. Each page in the zones list has a pointer to an address_space. Each address_space
has a pointer to an address_space_operations structure. Pages are marked dirty by calling the
set_dirty_page() function of the address_space_operation structure. Figure 6.12 illustrates this
dependency.

[8] See Chapter 4 for more on memory zones.

Figure 6.12. Page Cache and Zones

6.4.1. address_space Structure



The core of the page cache is the address_space object. Let's take a close look at it.

-----------------------------------------------------------------------
include/linux/fs.h
326 struct address_space {
327   struct inode   *host;  /* owner: inode, block_device */
328   struct radix_tree_root page_tree; /* radix tree of all pages */
329   spinlock_t    tree_lock; /* and spinlock protecting it */
330   unsigned long   nrpages;  /* number of total pages */
331   pgoff_t     writeback_index;/* writeback starts here */
332   struct address_space_operations *a_ops; /* methods */
333   struct prio_tree_root i_mmap;  /* tree of private mappings */
334   unsigned int   i_mmap_writable;/* count VM_SHARED mappings */
335   struct list_head  i_mmap_nonlinear;/*list VM_NONLINEAR mappings */
336   spinlock_t    i_mmap_lock; /* protect tree, count, list */
337   atomic_t    truncate_count; /* Cover race condition with truncate */
338   unsigned long   flags;   /* error bits/gfp mask */
339   struct backing_dev_info *backing_dev_info; /* device readahead, etc */
340   spinlock_t    private_lock; /* for use by the address_space */
341   struct list_head  private_list; /* ditto */
342   struct address_space *assoc_mapping; /* ditto */
343 };
-----------------------------------------------------------------------

The inline comments of the structure are fairly descriptive. Some additional explanation might help
in understanding how the page cache operates.

Usually, an address_space is associated with an inode and the host field points to this inode.
However, the generic intent of the page cache and address space structure need not require this
field. It could be NULL if the address_space is associated with a kernel object that is not an inode.

The address_space structure has a field that should be intuitively familiar to you by now:
address_space_operations. Like the file structure file_operations, address_space_operations
contains information about what operations are valid for this address_space.

-----------------------------------------------------------------------
include/linux/fs.h
297 struct address_space_operations {
298   int (*writepage)(struct page *page, struct writeback_control *wbc);
299   int (*readpage)(struct file *, struct page *);
300   int (*sync_page)(struct page *);
301 
302   /* Write back some dirty pages from this mapping. */
303   int (*writepages)(struct address_space *, struct writeback_control *);
304 
305   /* Set a page dirty */
306   int (*set_page_dirty)(struct page *page);
307 
308   int (*readpages)(struct file *filp, struct address_space *mapping,
309       struct list_head *pages, unsigned nr_pages);
310 
311   /*
312   * ext3 requires that a successful prepare_write() call be followed
313   * by a commit_write() call - they must be balanced
314   */
315   int (*prepare_write)(struct file *, struct page *, unsigned, unsigned);
316   int (*commit_write)(struct file *, struct page *, unsigned, unsigned);



317   /* Unfortunately this kludge is needed for FIBMAP. Don't use it */
318   sector_t (*bmap)(struct address_space *, sector_t);
319   int (*invalidatepage) (struct page *, unsigned long);
320   int (*releasepage) (struct page *, int);
321   ssize_t (*direct_IO)(int, struct kiocb *, const struct iovec *iov,
322       loff_t offset, unsigned long nr_segs);
323 };
-----------------------------------------------------------------------

These functions are reasonably straightforward. readpage() and writepage() read and write pages
associated with an address space, respectively. Multiple pages can be written and read via
readpages() and writepages(). Journaling file systems, such as ext3, can provide functions for
prepare_write() and commit_write().

When the kernel checks the page cache for a page, it must be blazingly fast. As such, each
address space has a radix_tree, which performs a quick search to determine if the page is in the
page cache or not.

Figure 6.13 illustrates how files, inodes, address spaces, and pages relate to each other; this
figure is useful for the upcoming analysis of the page cache code.

Figure 6.13. Files, Inodes, Address Spaces, and Pages

6.4.2. buffer_head Structure

Each sector on a block device is represented by the Linux kernel as a buffer_head structure. A
buffer_head contains all the information necessary to map a physical sector to a buffer in physical
memory. The buffer_head structure is illustrated in Figure 6.14.

-----------------------------------------------------------------------
include/linux/buffer_head.h



47 struct buffer_head {
48   /* First cache line: */
49   unsigned long b_state;  /* buffer state bitmap (see above) */
50   atomic_t b_count;    /* users using this block */
51   struct buffer_head *b_this_page;/* circular list of page's buffers */
52   struct page *b_page;   /* the page this bh is mapped to */
53 
54   sector_t b_blocknr;    /* block number */
55   u32 b_size;      /* block size */
56   char *b_data;     /* pointer to data block */
57 
58   struct block_device *b_bdev;
59   bh_end_io_t *b_end_io;   /* I/O completion */
60   void *b_private;    /* reserved for b_end_io */
61   struct list_head b_assoc_buffers; /* associated with another mapping */
62 };
-----------------------------------------------------------------------

Figure 6.14. buffer_head Structure

The physical sector that a buffer_head structure refers to is logical block b_blocknr on device
b_dev.

The physical memory that a buffer_head structure refers to is a block of memory starting at
b_data of b_size bytes. This memory block is within the physical page of b_page.

The other definitions within the buffer_head structure are used for managing housekeeping tasks
for how the physical sector is mapped to the physical memory. (Because this is a digression on bio
structures and not buffer_head structures, refer to mpage.c for more detailed information on struct
buffer_head.)

As mentioned in Chapter 4, each physical memory page in the Linux kernel is represented by a
struct page. A page is composed of a number of I/O blocks. As each I/O block can be no larger
than a page (although it can be smaller), a page is composed of one or more I/O blocks.

In older versions of Linux, block I/O was only done via buffers, but in 2.6, a new way was
developed, using bio structures. The new way allows the Linux kernel to group block I/O together
in a more manageable way.

Suppose we write a portion of the top of a text file and the bottom of a text file. This update would
likely need two buffer_head structures for the data transfer: one that points to the top and one
that points to the bottom. A bio structure allows file operations to bundle discrete chunks together
in a single structure. This alternate way of looking at buffers and pages occurs by looking at the



contiguous memory segments of a buffer. The bio_vec structure represents a contiguous memory
segment in a buffer. The bio_vec structure is illustrated in Figure 6.15.

-----------------------------------------------------------------------
include/linux/bio.h
47 struct bio_vec {
48   struct page  *bv_page;
49   unsigned int bv_len;
50   unsigned int bv_offset;
51 };
-----------------------------------------------------------------------

Figure 6.15. Bio Structure

The bio_vec structure holds a pointer to a page, the length of the segment, and the offset of the
segment within the page.

A bio structure is composed of an array of bio_vec structures (along with other housekeeping
fields). Thus, a bio structure represents a number of contiguous memory segments of one or more
buffers on one or more pages.[9]

[9] See include/linux/bio.h for detailed information on struct bio.



6.5. VFS System Calls and the Filesystem Layer

Until this point, we covered all the structures that are associated with the VFS and the page cache. Now, we
focus on two of the system calls used in file manipulation and trace their execution down to the kernel level.
We see how the open(), close(), read(), and write() system calls make use of the structures previously
described.

We mentioned that in the VFS, files are treated as complete abstractions. You can open, read, write, or close
a file, but the specifics of what physically happens are unimportant to the VFS layer. Chapter 5 covers these
specifics.

Hooked into the VFS is the filesystem-specific layer that translates the VFS' file I/O to pages and blocks.
Because you can have many specific filesystem types on a computer system, like an ext2 formatted hard
disk and an iso9660 cdrom, the filesystem layer can be divided into two main sections: the generic filesystem
operations and the specific filesystem operations (refer to Figure 6.3).

Following our top-down approach, this section traces a read and write request from the VFS call of read(), or
write(), tHRough the filesystem layer until a specific block I/O request is handed off to the block device
driver. In our travels, we move between the generic filesystem and specific filesystem layer. We use the ext2
filesystem driver as the example of the specific filesystem layer, but keep in mind that different filesystem
drivers could be accessed depending on what file is being acted upon. As we progress, we will also encounter
the page cache, which is a construct within Linux that is positioned in the generic filesystem layer. In older
versions of Linux, a buffer cache and page cache exist, but in the 2.6 kernel, the page cache has consumed
any buffer cache functionality.

6.5.1. open ()

When a process wants to manipulate the contents of a file, it issues the open()system call:

-----------------------------------------------------------------------
synopsis
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>

int open(const char *pathname, int flags);

int open(const char *pathname, int flags, mode_t mode);

int creat(const char *pathname, mode_t mode);
-----------------------------------------------------------------------

The open syscall takes as its arguments the pathname of the file, the flags to identify access mode of the file
being opened, and the permission bit mask (if the file is being created). open() returns the file descriptor of
the opened file (if successful) or an error code (if it fails).

The flags parameter is formed by bitwise ORing one or more of the constants defined in
include/linux/fcntl.h. Table 6.9 lists the flags for open() and the corresponding value of the constant. Only
one of O_RDONLY, O_WRONLY, or O_RDWR flags has to be specified. The additional flags are optional.

Table 6.9. open() Flags



Flag Name Value Description

O_RDONLY 0 Opens file for reading.

O_WRONLY 1 Opens file for writing.

O_RDWR 2 Opens file for reading and
writing.

O_CREAT 100 Indicates that, if the file
does not exist, it should be
created. The creat()
function is equivalent to the
open() function with this
flag set.

O_EXCL 200 Used in conjunction with
O_CREAT, this indicates the
open() should fail if the file
does exist.

O_NOCTTY 400 In the case that pathname
refers to a terminal device,
the process should not
consider it a controlling
terminal.

O_TRUNC 0x1000 If the file exists, truncate it
to 0 bytes.

O_APPEND 0x2000 Writes at the end of the file.

O_NONBLOCK 0x4000 Opens the file in non-
blocking mode.

O_NDELAY 0x4000 Same value as O_NONBLOCK.

O_SYNC 0x10000 Writes to the file have to
wait for the completion of
physical I/O. Applied to files
on block devices.

O_DIRECT 0x20000 Minimizes cache buffering
on I/O to the file.

O_LARGEFILE 0x100000 The large filesystem allows
files of sizes greater than
can be represented in 31
bits. This ensures they can
be opened.

O_DIRECTORY 0x200000 If the pathname does not
indicate a directory, the
open is to fail.

O_NOFOLLOW 0x400000 If the pathname is a
symbolic link, the open is to
fail.

Let's look at the system call:

-----------------------------------------------------------------------
fs/open.c



927  asmlinkage long sys_open (const char __user * filename, int flags, int mode)
928  {
929   char * tmp;
930   int fd, error;
931  
932 #if BITS_PER_LONG != 32
933   flags |= O_LARGEFILE;
934  #endif
935   tmp = getname(filename);
936   fd = PTR_ERR(tmp);
937   if (!IS_ERR(tmp)) {
938    fd = get_unused_fd();
939    if (fd >= 0) {
940     struct file *f = filp_open(tmp, flags, mode);
941     error = PTR_ERR(f);
942     if (IS_ERR(f))
943       goto out_error;
944     fd_install(fd, f);
945    }
946  out:
947    putname(tmp);
948   }
949   return fd;
950  
951  out_error:
952   put_unused_fd(fd);
953   fd = error;
954   goto out;
955  }
-----------------------------------------------------------------------

Lines 932934

Verify if our system is non-32-bit. If so, enable the large filesystem support flag O_LARGEFILE. This allows the
function to open files with sizes greater than those represented by 31 bits.

Line 935

The getname() routine copies the filename from user space to kernel space by invoking strncpy_from_user().

Line 938

The get_unused_fd() routine returns the first available file descriptor (or index into fd array: current-
>files->fd) and marks it busy. The local variable fd is set to this value.

Line 940

The filp_open() function performs the bulk of the open syscall work and returns the file structure that will
associate the process with the file. Let's take a closer look at the filp_open() routine:

-----------------------------------------------------------------------
fs/open.c



740  struct file *filp_open(const char * filename, int flags, int mode)
741  {
742   int namei_flags, error;
743   struct nameidata nd;
744
745   namei_flags = flags;
746   if ((namei_flags+1) & O_ACCMODE)
747    namei_flags++;
748   if (namei_flags & O_TRUNC)
749    namei_flags |= 2;
750  
751   error = open_namei(filename, namei_flags, mode, &nd);
752   if (!error)
753    return dentry_open(nd.dentry, nd.mnt, flags);
754  
755   return ERR_PTR(error);
-----------------------------------------------------------------------

Lines 745749

The pathname lookup functions, such as open_namei(), expect the access mode flags encoded in a specific
format that is different from the format used by the open system call. These lines copy the access mode
flags into the namei_flags variable and format the access mode flags for interpretation by open_namei().

The main difference is that, for pathname lookup, it can be the case that the access mode might not require
read or write permission. This "no permission" access mode does not make sense when trying to open a file
and is thus not included under the open system call flags. "No permission" is indicated by the value of 00.
Read permission is then indicated by setting the value of the low-order bit to 1 whereas write permission is
indicated by setting the value of the high-order bit to 1. The open system call flags for O_RDONLY, O_WRONLY,
and O_RDWR evaluate to 00, 01, and 02, respectively as seen in include/asm/fcntl.h.

The namei_flags variable can extract the access mode by logically bit ANDing it with the O_ACCMODE variable.
This variable holds the value of 3 and evaluates to true if the variable to be ANDed with it holds a value of 1,
2, or 3. If the open system call flag was set to O_RDONLY, O_WRONLY, and O_RDWR, adding a 1 to this value
translates it into the pathname lookup format and evaluates to true when ANDed with O_ACCMODE. The second
check just assures that if the open system call flag is set to allow for file truncation, the high-order bit is set
in the access mode specifying write access.

Line 751

The open_namei() routine performs the pathname lookup, generates the associated nameidata structure, and
derives the corresponding inode.

Line 753

The dentry_open() is a wrapper routine around dentry_open_it(), which creates and initializes the file
structure. It creates the file structure via a call to the kernel routine get_empty_filp(). This routine returns
ENFILE if the files_stat.nr_files is greater than or equal to files_stat.max_files. This case indicates that
the system's limit on the total number of open files has been reached.

Let's look at the dentry_open_it() routine:

[View full width]
-----------------------------------------------------------------------
fs/open.c



844  struct file *dentry_open_it(struct dentry *dentry, struct 845   vfsmount *mnt, int
 flags, struct lookup_intent *it)
846  {
847   struct file * f;
848   struct inode *inode;
849   int error;
850
851   error = -ENFILE;
852   f = get_empty_filp();
...
855   f->f_flags = flags;
856   f->f_mode = (flags+1) & O_ACCMODE;
857   f->f_it = it;
858   inode = dentry->d_inode;
859   if (f->f_mode & FMODE_WRITE) {
860    error = get_write_access(inode);
861    if (error)
862      goto cleanup_file;
863   }
...
866   f->f_dentry = dentry;
867   f->f_vfsmnt = mnt;
868   f->f_pos = 0;
869   f->f_op = fops_get(inode->i_fop);
870   file_move(f, &inode->i_sb->s_files);
871
872   if (f->f_op && f->f_op->open) {
873     error = f->f_op->open(inode,f);
874     if (error)
875      goto cleanup_all;
876     intent_release(it);
877   }
...
891  return f;
...
907  }
-----------------------------------------------------------------------

Line 852

The file struct is assigned by way of the call to get_empty_filp().

Lines 855856

The f_flags field of the file struct is set to the flags passed in to the open system call. The f_mode field is set
to the access modes passed to the open system call, but in the format expected by the pathname lookup
functions.

Lines 866869

The files struct's f_dentry field is set to point to the dentry struct that is associated with the file's pathname.
The f_vfsmnt field is set to point to the vmfsmount struct for the filesystem. f_pos is set to 0, which indicates
that the starting position of the file_offset is at the beginning of the file. The f_op field is set to point to the
table of operations pointed to by the file's inode.



Line 870

The file_move() routine is called to insert the file structure into the filesystem's superblock list of file
structures representing open files.

Lines 872877

This is where the next level of the open function occurs. It is called here if the file has more file-specific
functionality to perform to open the file. It is also called if the file operations table for the file contains an
open routing.

This concludes the dentry_open_it() routine.

By the end of filp_open(), we will have a file structure allocated, inserted at the head of the superblock's
s_files field, with f_dentry pointing to the dentry object, f_vfsmount pointing to the vfsmount object, f_op
pointing to the inode's i_fop file operations table, f_flags set to the access flags, and f_mode set to the
permission mode passed to the open() call.

Line 944

The fd_install() routine sets the fd array pointer to the address of the file object returned by filp_open().
That is, it sets current->files->fd[fd].

Line 947

The putname() routine frees the kernel space allocated to store the filename.

Line 949

The file descriptor fd is returned.

Line 952

The put_unused_fd() routine clears the file descriptor that has been allocated. This is called when a file object
failed to be created.

To summarize, the hierarchical call of the open() syscall process looks like this:

sys_open:

getname(). Moves filename to kernel space

get_unused_fd(). Gets next available file descriptor

filp_open(). Creates the nameidata struct

open_namei(). Initializes the nameidata struct

dentry_open(). Creates and initializes the file object

fd_install(). Sets current->files->fd[fd] to the file object



putname(). Deallocates kernel space for filename

Figure 6.16 illustrates the structures that are initialized and set and identifies the routines where this was
done.

Figure 6.16. Filesystem Structures

[View full size image]

Table 6.10 shows some of the sys_open() return errors and the kernel routines that find them.

Table 6.10. sys_open() Errors

Error Code Description Function Returning Error

ENAMETOOLONG Pathname too long. getname()

ENOENT File does not exist (and flag
O_CREAT not set).

getname()

EMFILE Process has maximum
number of files open.

get_unused_fd()

ENFILE System has maximum
number of files open.

get_unused_filp()



6.5.2. close ()

After a process finishes with a file, it issues the close() system call:

synopsis
#include <unistd.h>

int close(int fd);
-----------------------------------------------------------------------

The close system call takes as parameter the file descriptor of the file to be closed. In standard C programs,
this call is made implicitly upon program termination. Let's delve into the code for sys_close():

-----------------------------------------------------------------------
fs/open.c
1020  asmlinkage long sys_close(unsigned int fd)
1021  {
1022   struct file * filp;
1023   struct files_struct *files = current->files;
1024  
1025   spin_lock(&files->file_lock);
1026   if (fd >= files->max_fds)
1027    goto out_unlock;
1028   filp = files->fd[fd];
1029   if (!filp)
1030    goto out_unlock;
1031   files->fd[fd] = NULL;
1032   FD_CLR(fd, files->close_on_exec);
1033   __put_unused_fd(files, fd);
1034   spin_unlock(&files->file_lock);
1035   return filp_close(filp, files);
1036  
1037  out_unlock:
1038   spin_unlock(&files->file_lock);
1039   return -EBADF;
1040  }
-----------------------------------------------------------------------

Line 1023

The current task_struct's files field point at the files_struct that corresponds to our file.

Lines 10251030

These lines begin by locking the file so as to not run into synchronization problems. We then check that the
file descriptor is valid. If the file descriptor number is greater than the highest allowable file number for that
file, we remove the lock and return the error EBADF. Otherwise, we acquire the file structure address. If the
file descriptor index does not yield a file structure, we also remove the lock and return the error as there
would be nothing to close.



Lines 10311032

Here, we set the current->files->fd[fd] to NULL, removing the pointer to the file object. We also clear the
file descriptor's bit in the file descriptor set referred to by files->close_on_exec. Because the file descriptor
is closed, the process need not worry about keeping track of it in the case of a call to exec().

Line 1033

The kernel routine __put_unused_fd() clears the file descriptor's bit in the file descriptor set files->open_fds
because it is no longer open. It also does something that assures us of the "lowest available index"
assignment of file descriptors:

-----------------------------------------------------------------------
fs/open.c
897  static inline void __put_unused_fd(struct files_struct *files,  unsigned int fd)
898  {
899  __FD_CLR(fd, files->open_fds);
890  if (fd < files->next_fd)
891   files->next_fd = fd;
892  }
-----------------------------------------------------------------------

Lines 890891

The next_fd field holds the value of the next file descriptor to be assigned. If the current file descriptor's
value is less than that held by files->next_fd, this field will be set to the value of the current file descriptor
instead. This assures that file descriptors are assigned on the basis of the lowest available value.

Lines 10341035

The lock on the file is now released and the control is passed to the filp_close() function that will be in
charge of returning the appropriate value to the close system call. The filp_close() function performs the
bulk of the close syscall work. Let's take a closer look at the filp_close() routine:

-----------------------------------------------------------------------
fs/open.c
987  int filp_close(struct file *filp, fl_owner_t id)
988  {
989  int retval;
990  /* Report and clear outstanding errors */
991  retval = filp->f_error;
992  if (retval)
993   filp->f_error = 0;
994  
995  if (!file_count(filp)) {
996   printk(KERN_ERR "VFS: Close: file count is 0\n");
997   return retval;
998  }
999  
1000  if (filp->f_op && filp->f_op->flush) {
1001   int err = filp->f_op->flush(filp);
1002   if (!retval)



1003     retval = err;
1004  }
1005  
1006  dnotify_flush(filp, id);
1007  locks_remove_posix(filp, id);
1008  fput(filp);
1009  return retval;
1010  }
-----------------------------------------------------------------------

Lines 991993

These lines clear any outstanding errors.

Lines 995997

This is a sanity check on the conditions necessary to close a file. A file with a file_count of 0 should already
be closed. Hence, in this case, filp_close returns an error.

Lines 10001001

Invokes the file operation flush() (if it is defined). What this does is determined by the particular filesystem.

Line 1008

fput() is called to release the file structure. The actions performed by this routine include calling file
operation release(), removing the pointer to the dentry and vfsmount objects, and finally, releasing the file
object.

The hierarchical call of the close() syscall process looks like this:

sys_close():

__put_unused_fd(). Returns file descriptor to the available pool

filp_close(). Prepares file object for clearing

fput(). Clears file object

Table 6.11 shows some of the sys_close() return errors and the kernel routines that find them.

Table 6.11. sys_close() Errors

Error Function Description

EBADF sys_close() Invalid file descriptor

6.5.3. read()



When a user level program calls read(), Linux translates this to a system call, sys_read():

-----------------------------------------------------------------------
fs/read_write.c
272 asmlinkage ssize_t sys_read(unsigned int fd, char __user * buf, size_t count)
273 {
274   struct file *file;
275   ssize_t ret = -EBADF;
276   int fput_needed;
277 
278   file = fget_light(fd, &fput_needed);
279   if (file) {
280     ret = vfs_read(file, buf, count, &file->f_pos);
281     fput_light(file, fput_needed);
282   }
283 
284   return ret;
285 }
-----------------------------------------------------------------------

Line 272

sys_read() takes a file descriptor, a user-space buffer pointer, and a number of bytes to read from the file
into the buffer.

Lines 273282

A file lookup is done to translate the file descriptor to a file pointer with fget_light(). We then call
vfs_read(), which does all the main work. Each fget_light() needs to be paired with fput_light(,) so we
do that after our vfs_read() finishes.

The system call, sys_read(), has passed control to vfs_read(), so let's continue our trace:

-----------------------------------------------------------------------
fs/read_write.c
200 ssize_t vfs_read(struct file *file, char __user *buf, size_t count,
loff_t *pos)
201 {
202   struct inode *inode = file->f_dentry->d_inode;
203   ssize_t ret;
204 
205   if (!(file->f_mode & FMODE_READ))
206     return -EBADF;
207   if (!file->f_op || (!file->f_op->read && \            !file->f_op->aio_read))
208     return -EINVAL;
209 
210   ret = locks_verify_area(FLOCK_VERIFY_READ, inode,
file, *pos, count);
211   if (!ret) {
212     ret = security_file_permission (file, MAY_READ);
213     if (!ret) {
214       if (file->f_op->read)
215         ret = file->f_op->read(file,



buf, count, pos);
216       else
217         ret = do_sync_read(file, buf,
count, pos);
218       if (ret > 0)
219         dnotify_parent(file->f_dentry,
DN_ACCESS);
220     }
221   }
222 
223   return ret;
224 }
-----------------------------------------------------------------------

Line 200

The first three parameters are all passed via, or are translations from, the original sys_read() parameters.
The fourth parameter is the offset within file, where the read should start. This could be non-zero if
vfs_read() is called explicitly because it could be called from within the kernel.

Line 202

We store a pointer to the file's inode.

Lines 205208

Basic checking is done on the file operations structure to ensure that read or asynchronous read operations
have been defined. If no read operation is defined, or if the operations table is missing, the function returns
the EINVAL error at this point. This error indicates that the file descriptor is attached to a structure that
cannot be used for reading.

Lines 210214

We verify that the area to be read is not locked and that the file is authorized to be read. If it is not, we
notify the parent of the file (on lines 218219).

Lines 215217

These are the guts of vfs_read(). If the read file operation has been defined, we call it; otherwise, we call
do_sync_read().

In our tracing, we follow the standard file operation read and not the do_sync_read() function. Later, it
becomes clear that both calls eventually reach the same underlying point.

6.5.3.1. Moving from the Generic to the Specific

This is our first encounter with one of the many abstractions where we move between the generic filesystem
layer and the specific filesystem layer. Figure 6.17 illustrates how the file structure points to the specific
filesystem table or operations. Recall that when read_inode() is called, the inode information is filled in,
including having the fop field point to the appropriate table of operations defined by the specific filesystem



implementation (for example, ext2).

Figure 6.17. File Operations

When a file is created, or mounted, the specific filesystem layer initializes its file operations structure.
Because we are operating on a file on an ext2 filesystem, the file operations structure is as follows:

-----------------------------------------------------------------------
fs/ext2/file.c
42 struct file_operations ext2_file_operations = {
43   .llseek   = generic_file_llseek,
44   .read   = generic_file_read,
45   .write   = generic_file_write,
46   .aio_read  = generic_file_aio_read,
47   .aio_write  = generic_file_aio_write,
48   .ioctl   = ext2_ioctl,
49   .mmap   = generic_file_mmap,
50   .open   = generic_file_open,
51   .release  = ext2_release_file,
52   .fsync   = ext2_sync_file,
53   .readv   = generic_file_readv,
54   .writev   = generic_file_writev,
55   .sendfile  = generic_file_sendfile,
56 };
-----------------------------------------------------------------------

You can see that for nearly every file operation, the ext2 filesystem has decided that the Linux defaults are
acceptable. This leads us to ask when a filesystem would want to implement its own file operations. When a
filesystem is sufficiently unlike a UNIX filesystem, extra steps might be necessary to allow Linux to interface
with it. For example, MSDOS- or FAT-based filesystems need to implement their own write but can use the
generic read.[10]

[10] See fs/fat/file.c for more information.



Discovering that the specific filesystem layer for ext2 passes control to the generic filesystem layer, we now
examine generic_file_read():

-----------------------------------------------------------------------
mm/filemap.c
924 ssize_t
925 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
926 {
927   struct iovec local_iov = { .iov_base = buf, .iov_len = count };
928   struct kiocb kiocb;
929   ssize_t ret;
930 
931   init_sync_kiocb(&kiocb, filp);
932   ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
933   if (-EIOCBQUEUED == ret)
934     ret = wait_on_sync_kiocb(&kiocb);
935   return ret;
936 }
937 
938 EXPORT_SYMBOL(generic_file_read);
-----------------------------------------------------------------------

Lines 924925

Notice that the same parameters are simply being passed along from the upper-level reads. We have filp,
the file pointer; buf, the pointer to the memory buffer where the file will be read into; count, the number of
characters to read; and ppos, the position within the file to begin reading from.

Line 927

An iovec structure is created that contains the address and length of the user space buffer that the results of
the read are to be stored in.

Lines 928 and 931

A kiocb structure is initialized using the file pointer. (kiocb stands for kernel I/O control block.)

Line 932

The bulk of the read is done in the generic asynchronous file read function.



Asynchronous I/O Operations

kiocb and iovec are two datatypes that facilitate asynchronous I/O operations within the Linux
kernel.

Asynchronous I/O is desirable when a process wishes to perform an input or output operation
without immediately waiting for the result of the operation. It is extremely desirable for high I/O
environments, as you can allow the device the opportunity to order and schedule the I/O
requests instead of the process.

In Linux, an I/O vector (iovec) represents an address range of memory and is defined as

[View full width]
-------------------------------------------------------------------------

include/linux/uio.h
20 struct iovec
21 {
22   void __user *iov_base; /* BSD uses caddr_t (1003.1g requires
 void *) */
23   __kernel_size_t iov_len; /* Must be size_t (1003.1g) */
24 };
-------------------------------------------------------------------------

This is simply a pointer to a section of memory and the length of the memory.

The kernel I/O control block (kiocb) is a structure that is required to help manage how and
when the I/O vector gets operated upon asynchronously.

__generic_file_aio_read() function uses the kiocb and iovec structures to read the page_cache
directly.

Lines 933935

After we send off the read, we wait until the read finishes and then return the result of the read operation.

Recall the do_sync_read() path in vfs_read(); it would have eventually called this same function via another
path. Let's continue the trace of file I/O by examining __generic_file_aio_read():

-----------------------------------------------------------------------
mm/filemap.c
835 ssize_t
836 __generic_file_aio_read(struct kiocb *iocb,
const struct iovec *iov,
837     unsigned long nr_segs, loff_t *ppos)
838 {
839   struct file *filp = iocb->ki_filp;
840   ssize_t retval;
841   unsigned long seg;
842   size_t count;
843 
844   count = 0;



845   for (seg = 0; seg < nr_segs; seg++) {
846     const struct iovec *iv = &iov[seg];
...
852     count += iv->iov_len;
853     if (unlikely((ssize_t)(count|iv->iov_len) <
 0))
854       return -EINVAL;
855     if (access_ok(VERIFY_WRITE, iv->iov_base,
iv->iov_len))
856       continue;
857     if (seg == 0)
858       return -EFAULT;
859     nr_segs = seg;
860     count -= iv->iov_len
861     break;
862   }
...
-----------------------------------------------------------------------

Lines 835842

Recall that nr_segs was set to 1 by our caller and that iocb and iov contain the file pointer and buffer
information. We immediately extract the file pointer from iocb.

Lines 845862

This for loop verifies that the iovec struct passed is composed of valid segments. Recall that it contains the
user space buffer information.

-----------------------------------------------------------------------
mm/filemap.c
...
863
864   /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
865   if (filp->f_flags & O_DIRECT) {
866     loff_t pos = *ppos, size;
867     struct address_space *mapping;
868     struct inode *inode;
869 
870     mapping = filp->f_mapping;
871     inode = mapping->host;
872     retval = 0;
873     if (!count)
874       goto out; /* skip atime */
875     size = i_size_read(inode);
876     if (pos < size) {
877       retval = generic_file_direct_IO(READ, iocb,
878             iov, pos, nr_segs);
879       if (retval >= 0 && !is_sync_kiocb(iocb))
880         retval = -EIOCBQUEUED;
881       if (retval > 0)
882         *ppos = pos + retval;
883     }
884     file_accessed(filp);
885     goto out;



886   }
...
-----------------------------------------------------------------------

Lines 863886

This section of code is only entered if the read is direct I/O. Direct I/O bypasses the page cache and is a
useful property of certain block devices. For our purposes, however, we do not enter this section of code at
all. Most file I/O takes our path as the page cache, which we describe soon, which is much faster than the
underlying block device.

-----------------------------------------------------------------------
mm/filemap.c
...
887 
888   retval = 0;
889   if (count) {
890     for (seg = 0; seg < nr_segs; seg++) {
891       read_descriptor_t desc;
892 
893       desc.written = 0;
894       desc.buf = iov[seg].iov_base;
895       desc.count = iov[seg].iov_len;
896       if (desc.count == 0)
897         continue;
898       desc.error = 0;
899       do_generic_file_read(filp,ppos,&desc,file_read_actor);
900       retval += desc.written;
901       if (!retval) {
902         retval = desc.error;
903         break;
904       }
905     }
906   }
907 out:
08   return retval;
909 }
-----------------------------------------------------------------------

Lines 889890

Because our iovec is valid and we have only one segment, we execute this for loop once only.

Lines 891898

We translate the iovec structure into a read_descriptor_t structure. The read_descriptor_t structure keeps
track of the status of the read. Here is the description of the read_descriptor_t structure:

-----------------------------------------------------------------------
include/linux/fs.h
837  typedef struct {



838   size_t written;
839   size_t count;
840   char __user * buf;
841   int error;
842  } read_descriptor_t;
-----------------------------------------------------------------------

Line 838

The field written keeps a running count of the number of bytes transferred.

Line 839

The field count keeps a running count of the number of bytes left to be transferred.

Line 840

The field buf holds the current position into the buffer.

Line 841

The field error holds any error code encountered during the read operation.

Lines 899

We pass our new read_descriptor_t structure desc to do_generic_file_read(), along with our file pointer
filp and our position ppos. file_read_actor() is a function that copies a page to the user space buffer
located in desc.[11]

[11] file_read_actor() can be found on line 794 of mm/filemap.c.

Lines 900909

The amount read is calculated and returned to the caller.

At this point in the read() internals, we are about to access the page cache[12] and determine if the sections
of the file we want to read already exist in RAM, so we don't have to directly access the block device.

[12] The page cache is described in Section 6.4, "Page Cache."

6.5.3.2. Tracing the Page Cache

Recall that the last function we encountered passed a file pointer filp, an offset ppos, a read_descriptor_t
desc, and a function file_read_actor into do_generic_file_read().

-----------------------------------------------------------------------
include/linux/fs.h
1420 static inline void do_generic_file_read(struct file * filp, loff_t *ppos,



1421           read_descriptor_t * desc,
1422           read_actor_t actor)
1423 {
1424   do_generic_mapping_read(filp->f_mapping,
1425         &filp->f_ra,
1426         filp,
1427         ppos,
1428         desc,
1429         actor);
1430 }
-----------------------------------------------------------------------

Lines 14201430

do_generic_file_read() is simply a wrapper to do_generic_mapping_read(). filp->f_mapping is a pointer to
an address_space object and filp->f_ra is a structure that holds the address of the file's read-ahead
state.[13]

[13] See the "file Structure" section for more information about this field and read-ahead optimization.

So, we've transformed our read of a file into a read of the page cache via the address_space object in our file
pointer. Because do_generic_mapping_read() is an extremely long function with a number of separate cases,
we try to make the analysis of the code as painless as possible.

-----------------------------------------------------------------------
mm/filemap.c
645 void do_generic_mapping_read(struct address_space *mapping,
646        struct file_ra_state *_ra,
647        struct file * filp,
648        loff_t *ppos,
649        read_descriptor_t * desc,
650        read_actor_t actor)
651 {      
652   struct inode *inode = mapping->host;
653   unsigned long index, offset;
654   struct page *cached_page;
655   int error;
656   struct file_ra_state ra = *_ra;
657   
658   cached_page = NULL;  
659   index = *ppos >> PAGE_CACHE_SHIFT;
660   offset = *ppos & ~PAGE_CACHE_MASK;
-----------------------------------------------------------------------

Line 652

We extract the inode of the file we're reading from address_space.

Lines 658660

We initialize cached_page to NULL until we can determine if it exists within the page cache. We also calculate
index and offset based on page cache constraints. The index corresponds to the page number within the
page cache, and the offset corresponds to the displacement within that page. When the page size is 4,096



bytes, a right bit shift of 12 on the file pointer yields the index of the page.

"The page cache can [be] done in larger chunks than one page, because it allows for more efficient
throughput" (linux/pagemap.h). PAGE_CACHE_SHIFT and PAGE_CACHE_MASK are settings that control the
structure and size of the page cache:

-----------------------------------------------------------------------
mm/filemap.c
661 
662   for (;;) {
663     struct page *page;
664     unsigned long end_index, nr, ret;
665     loff_t isize = i_size_read(inode);
666 
667     end_index = isize >> PAGE_CACHE_SHIFT;
668 
669     if (index > end_index)
670       break;
671     nr = PAGE_CACHE_SIZE;
672     if (index == end_index) {
673       nr = isize & ~PAGE_CACHE_MASK;
674       if (nr <= offset)
675         break;
676     }
677 
678     cond_resched();
679     page_cache_readahead(mapping, &ra, filp, index);
680 
681     nr = nr - offset;
-----------------------------------------------------------------------

Lines 662681

This section of code iterates through the page cache and retrieves enough pages to fulfill the bytes requested
by the read command.

-----------------------------------------------------------------------
mm/filemap.c
682 find_page:
683     page = find_get_page(mapping, index);
684     if (unlikely(page == NULL)) {
685       handle_ra_miss(mapping, &ra, index);
686       goto no_cached_page;
687     }
688     if (!PageUptodate(page))
689       goto page_not_up_to_date;
-----------------------------------------------------------------------

Lines 682689

We attempt to find the first page required. If the page is not in the page cache, we jump to the
no_cached_page label. If the page is not up to date, we jump to the page_not_up_to_date label.
find_get_page() uses the address space's radix tree to find the page at index, which is the specified offset.



-----------------------------------------------------------------------
mm/filemap.c
690 page_ok:
691     /* If users can be writing to this page using arbitrary
692     * virtual addresses, take care about potential aliasing
693     * before reading the page on the kernel side.
694     */
695     if (mapping_writably_mapped(mapping))
696       flush_dcache_page(page);
697 
698     /*
699     * Mark the page accessed if we read the beginning.
700     */
701     if (!offset)
702       mark_page_accessed(page);
...
714     ret = actor(desc, page, offset, nr);
715     offset += ret;
716     index += offset >> PAGE_CACHE_SHIFT;
717     offset &= ~PAGE_CACHE_MASK;
718 
719     page_cache_release(page);
720     if (ret == nr && desc->count)
721       continue;
722     break;
723 
-----------------------------------------------------------------------

Lines 690723

The inline comments are descriptive so there's no point repeating them. Notice that on lines 656658, if more
pages are to be retrieved, we immediately return to the top of the loop where the index and offset
manipulations in lines 714716 help choose the next page to retrieve. If no more pages are to be read, we
break out of the for loop.

-----------------------------------------------------------------------
mm/filemap.c
724 page_not_up_to_date:
725     /* Get exclusive access to the page ... */
726     lock_page(page);
727 
728     /* Did it get unhashed before we got the lock? */
729     if (!page->mapping) {
730       unlock_page(page);
731       page_cache_release(page);
732       continue;
734 
735     /* Did somebody else fill it already? */
736     if (PageUptodate(page)) {
737       unlock_page(page);
738       goto page_ok;
739     }
740
-----------------------------------------------------------------------



Lines 724740

If the page is not up to date, we check it again and return to the page_ok label if it is, now, up to date.
Otherwise, we try to get exclusive access; this causes us to sleep until we get it. Once we have exclusive
access, we see if the page attempts to remove itself from the page cache; if it is, we hasten it along before
returning to the top of the for loop. If it is still present and is now up to date, we unlock the page and jump
to the page_ok label.

-----------------------------------------------------------------------
mm/filemap.c
741 readpage:
742  /* ... and start the actual read. The read will unlock the page. */
743     error = mapping->a_ops->readpage(filp, page);
744 
745     if (!error) {
746       if (PageUptodate(page))
747         goto page_ok;
748       wait_on_page_locked(page);
749       if (PageUptodate(page))
750         goto page_ok;
751       error = -EIO;
752     }
753 
754    /* UHHUH! A synchronous read error occurred. Report it */
755     desc->error = error;
756     page_cache_release(page);
757     break;
758
-----------------------------------------------------------------------

Lines 741743

If the page was not up to date, we can fall through the previous label with the page lock held. The actual
read, mapping->a_ops->readpage(filp, page), unlocks the page. (We trace readpage() further in a bit, but
let's first finish the current explanation.)

Lines 746750

If we read a page successfully, we check that it's up to date and jump to page_ok when it is.

Lines 751758

If a synchronous read error occurred, we log the error in desc, release the page from the page cache, and
break out of the for loop.

-----------------------------------------------------------------------
mm/filemap.c
759 no_cached_page:
760     /*
761     * Ok, it wasn't cached, so we need to create a new



762     * page..
763     */
764     if (!cached_page) {
765       cached_page = page_cache_alloc_cold(mapping);
766       if (!cached_page) {
767         desc->error = -ENOMEM;
768         break;
769       }
770     }
771     error = add_to_page_cache_lru(cached_page, mapping,
772             index, GFP_KERNEL);
773     if (error) {
774       if (error == -EEXIST)
775         goto find_page;
776       desc->error = error;
777       break;
778     }
779     page = cached_page;
780     cached_page = NULL;
781     goto readpage;
782   }
-----------------------------------------------------------------------

Lines 698772

If the page to be read wasn't cached, we allocate a new page in the address space and add it to both the
least recently used (LRU) cache and the page cache.

Lines 773775

If we have an error adding the page to the cache because it already exists, we jump to the find_page label
and try again. This could occur if multiple processes attempt to read the same uncached page; one would
attempt allocation and succeed, the other would attempt allocation and find it already existing.

Lines 776777

If there is an error in adding the page to the cache other than it already existing, we log the error and break
out of the for loop.

Lines 779781

When we successfully allocate and add the page to the page cache and LRU cache, we set our page pointer
to the new page and attempt to read it by jumping to the readpage label.

-----------------------------------------------------------------------
mm/filemap.c
784   *_ra = ra;
785 
786   *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
787   if (cached_page)
788     page_cache_release(cached_page);
789   file_accessed(filp);



790 }
-----------------------------------------------------------------------

Line 786

We calculate the actual offset based on our page cache index and offset.

Lines 787788

If we allocated a new page and could add it correctly to the page cache, we remove it.

Line 789

We update the file's last accessed time via the inode.

The logic described in this function is the core of the page cache. Notice how the page cache does not touch
any specific filesystem data. This allows the Linux kernel to have a page cache that can cache pages
regardless of the underlying filesystem structure. Thus, the page cache can hold pages from MINIX, ext2,
and MSDOS all at the same time.

The way the page cache maintains its specific filesystem layer agnosticism is by using the readpage()
function of the address space. Each specific filesystem implements its own readpage(). So, when the generic
filesystem layer calls mapping->a_ops->readpage(), it calls the specific readpage() function from the
filesystem driver's address_space_operations structure. For the ext2 filesystem, readpage() is defined as
follows:

-----------------------------------------------------------------------
fs/ext2/inode.c
676 struct address_space_operations ext2_aops = {
677   .readpage    = ext2_readpage,
678   .readpages    = ext2_readpages,
679   .writepage    = ext2_writepage,
680   .sync_page    = block_sync_page,
681   .prepare_write   = ext2_prepare_write,
682   .commit_write   = generic_commit_write,
683   .bmap     = ext2_bmap,
684   .direct_IO    = ext2_direct_IO,
685   .writepages    = ext2_writepages,
686 };
-----------------------------------------------------------------------

Thus, readpage()actually calls ext2_readpage():

-----------------------------------------------------------------------
fs/ext2/inode.c
616 static int ext2_readpage(struct file *file, struct page *page)
617 {
618   return mpage_readpage(page, ext2_get_block);
619 }
-----------------------------------------------------------------------



ext2_readpage() calls mpage_readpage(),which is a generic filesystem layer call, but passes it the specific
filesystem layer function ext2_get_block().

The generic filesystem function mpage_readpage() expects a get_block() function as its second argument.
Each filesystem implements certain I/O functions that are specific to the format of the filesystem;
get_block() is one of these. Filesystem get_block() functions map logical blocks in the address_space pages
to actual device blocks in the specific filesystem layout. Let's look at the specifics of mpage_readpage():

-----------------------------------------------------------------------
fs/mpage.c
358 int mpage_readpage(struct page *page, get_block_t get_block)
359 {
360   struct bio *bio = NULL;
361   sector_t last_block_in_bio = 0;
362 
363   bio = do_mpage_readpage(bio, page, 1,
364       &last_block_in_bio, get_block);
365   if (bio)
366     mpage_bio_submit(READ, bio);
367   return 0;
368 }
-----------------------------------------------------------------------

Lines 360361

We allocate space for managing the bio structure the address space uses to manage the page we are trying
to read from the device.

Lines 363364

do_mpage_readpage() is called, which translates the logical page to a bio structure composed of actual pages
and blocks. The bio structure keeps track of information associated with block I/O.

Lines 365367

We send the newly created bio structure to mpage_bio_submit() and return.

Let's take a moment and recap (at a high level) the flow of the read function so far:

Using the file descriptor from a call to read(), we locate the file pointer from which we obtain an inode.1.

The filesystem layer checks the in-memory page cache for a page, or pages, that correspond to the
given inode.

2.

If no page is found, the filesystem layer uses the specific filesystem driver to translate the requested
sections of the file to I/O blocks on a given device.

3.

We allocate space for pages in the page cache address_space and create a bio structure that ties the
new pages with the sectors on the block device.

4.

mpage_readpage() is the function that creates the bio structure and ties together the newly allocated pages



4.

from the page cache to the bio structure. However, no data exists in the pages yet. For that, the filesystem
layer needs the block device driver to do the actual interfacing to the device. This is done by the
submit_bio() function in mpage_bio_submit():

-----------------------------------------------------------------------
fs/mpage.c
90 struct bio *mpage_bio_submit(int rw, struct bio *bio)
91 {  
92   bio->bi_end_io = mpage_end_io_read;
93   if (rw == WRITE)
94     bio->bi_end_io = mpage_end_io_write;
95   submit_bio(rw, bio);
96   return NULL;
97 }
-----------------------------------------------------------------------

Line 90

The first thing to notice is that mpage_bio_submit() works for both read and write calls via the rw parameter.
It submits a bio structure that, in the read case, is empty and needs to be filled in. In the write case, the bio
structure is filled and the block device driver copies the contents to its device.

Lines 9294

If we are reading or writing, we set the appropriate function that will be called when I/O ends.

Lines 9596

We call submit_bio() and return NULL. Recall that mpage_readpage() doesn't do anything with the return
value of mpage_bio_submit().

submit_bio() is part of the generic block device driver layer of the Linux kernel.

-----------------------------------------------------------------------
drivers/block/ll_rw_blk.c
2433 void submit_bio(int rw, struct bio *bio)
2434 {    
2435   int count = bio_sectors(bio);
2436 
2437   BIO_BUG_ON(!bio->bi_size);
2438   BIO_BUG_ON(!bio->bi_io_vec);
2439   bio->bi_rw = rw;
2440   if (rw & WRITE)
2441     mod_page_state(pgpgout, count);
2442   else
2443     mod_page_state(pgpgin, count);
2444 
2445   if (unlikely(block_dump)) {
2446     char b[BDEVNAME_SIZE];
2447     printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
2448       current->comm, current->pid,
2449       (rw & WRITE) ? "WRITE" : "READ",
2450       (unsigned long long)bio->bi_sector,



2451       bdevname(bio->bi_bdev,b));
2452   }
2453 
2454   generic_make_request(bio);
2455 }
-----------------------------------------------------------------------

Lines 24332443

These calls enable some debugging: Set the read/write attribute of the bio structure, and perform some page
state housekeeping.

Lines 24452452

These lines handle the rare case that a block dump occurs. A debug message is thrown.

Line 2454

generic_make_request() contains the main functionality and uses the specific block device driver's request
queue to handle the block I/O operation.

Part of the inline comments for generic_make_request() are enlightening:

-----------------------------------------------------------------------
drivers/block/ll_rw_blk.c
2336 * The caller of generic_make_request must make sure that bi_io_vec
2337 * are set to describe the memory buffer, and that bi_dev and bi_sector   are
2338 * set to describe the device address, and the
2339 * bi_end_io and optionally bi_private are set to describe how
2340 * completion notification should be signaled.
-----------------------------------------------------------------------

In these stages, we constructed the bio structure, and thus, the bio_vec structures are mapped to the
memory buffer mentioned on line 2337, and the bio struct is initialized with the device address parameters
as well. If you want to follow the read even further into the block device driver, refer to the "Block Device
Overview"section in Chapter 5, which describes how the block device driver handles request queues and the
specific hardware constraints of its device. Figure 6.18 illustrates how the read() system call traverses
through the layers of kernel functionality.

Figure 6.18. read() Top-Down Traversal

[View full size image]



After the block device driver reads the actual data and places it in the bio structure, the code we have traced
unwinds. The newly allocated pages in the page cache are filled, and their references are passed back to the
VFS layer and copied to the section of user space specified so long ago by the original read() call.

However, we hear you ask, "Isn't this only half of the story? What if we wanted to write instead of read?"

We hope that these descriptions made it somewhat clear that the path a read() call takes through the Linux
kernel is similar to the path a write() call takes. However, we now outline some differences.

6.5.4. write()

A write() call gets mapped to sys_write() and then to vfs_write() in the same manner as a read() call:

-----------------------------------------------------------------------
fs/read_write.c
244 ssize_t vfs_write(struct file *file, const char __user *buf, size_t count, loff_t *pos)
245 {
...
259       ret = file->f_op->write(file, buf, count, pos);
...
268 }
-----------------------------------------------------------------------

vfs_write() uses the generic file_operations write function to determine what specific filesystem layer
write to use. This is translated, in our example ext2 case, via the ext2_file_operations structure:



-----------------------------------------------------------------------
fs/ext2/file.c
42 struct file_operations ext2_file_operations = {
43   .llseek   = generic_file_llseek,
44   .read   = generic_file_read,
45   .write   = generic_file_write,
...
56 };
-----------------------------------------------------------------------

Lines 4445

Instead of calling generic_file_read(), we call generic_file_write().

generic_file_write() obtains a lock on the file to prevent two writers from simultaneously writing to the
same file, and calls generic_file_write_nolock(). generic_file_write_nolock() converts the file pointers
and buffers to the kiocb and iovec parameters and calls the page cache write function
generic_file_aio_write_nolock().

Here is where a write diverges from a read. If the page to be written isn't in the page cache, the write does
not fall through to the device itself. Instead, it reads the page into the page cache and then performs the
write. Pages in the page cache are not immediately written to disk; instead, they are marked as "dirty" and,
periodically, all dirty pages are written to disk.

There are analogous functions to the read() functions' readpage(). Within generic_file_aio_write_nolock(),
the address_space_operations pointer accesses prepare_write() and commit_write(), which are both specific
to the filesystem type the file resides upon. Recall ext2_aops, and we see that the ext2 driver uses its own
function, ext2_prepare_write(), and a generic function generic_commit_write().

-----------------------------------------------------------------------
fs/ext2/inode.c
628 static int
629 ext2_prepare_write(struct file *file, struct page *page,
630       unsigned from, unsigned to)
631 {
632   return block_prepare_write(page,from,to,ext2_get_block);
633 }
-----------------------------------------------------------------------

Line 632

ext2_prepare_write is simply a wrapper for the generic filesystem function block_prepare_write(), which
passes in the ext2 filesystem-specific get_block() function.

block_prepare_write() allocates any new buffers that are required for the write. For example, if data is
being appended to a file enough buffers are created, and linked with pages, to store the new data.

generic_commit_write() takes the given page and iterates over the buffers within it, marking each dirty. The
prepare and the commit sections of a write are separated to prevent a partial write being flushed from the
page cache to the block device.

6.5.4.1. Flushing Dirty Pages



The write() call returns after it has insertedand marked dirtyall the pages it has written to. Linux has a
daemon, pdflush, which writes the dirty pages from the page cache to the block device in two cases:

The system's free memory falls below a threshold. Pages from the page cache are flushed to free
up memory.

Dirty pages reach a certain age. Pages that haven't been written to disk after a certain amount of
time are written to their block device.

The pdflush daemon calls the filesystem-specific function writepages() when it is ready to write pages to
disk. So, for our example, recall the ext2_file_operation structure, which equates writepages() with
ext2_writepages().[14]

[14] The pdflush daemon is fairly involved, and for our purposes of tracing a write, we can ignore the complexity. However, if you are

interested in the details, mm/pdflush.c, mm/fs-writeback.c, and mm/page-writeback.c contain the relevant code.

-----------------------------------------------------------------------
670 static int
671 ext2_writepages(struct address_space *mapping, struct writeback_control *wbc)
672 {
673   return mpage_writepages(mapping, wbc, ext2_get_block);
674 }
-----------------------------------------------------------------------

Like other specific implementations of generic filesystem functions, ext2_ writepages() simply calls the
generic filesystem function mpage_writepages() with the filesystem-specific ext2_get_block() function.

mpage_writepages() loops over the dirty pages and calls mpage_writepage() on each dirty page. Similar to
mpage_readpage(), mpage_writepage() returns a bio structure that maps the physical device layout of the
page to its physical memory layout. mpage_writepages() then calls submit_bio() to send the new bio
structure to the block device driver to transfer the data to the device itself.



Summary

This chapter began by looking at the structures and global variables that make up the common file
model. The structures include the superblock, the inode, the dentry, and the file structures. We
then looked at the structures associated with VFS. We saw how VFS works to support various
filesystems.

We then looked at VFS-associated system calls, open and close, to illustrate how it all works
together. We then traced the read() and write() user space call through VFS and throughout the
twists and turns of the generic filesystem layer and the specific filesystem layer. Using the ext2
filesystem driver as an example of the specific filesystem layer, we showed how the kernel
intertwines calls to specific filesystem driver functions and generic filesystem functions. This lead
us to discuss the page cache, which is a section of memory that stores recently accessed pages
from the block devices attached to the system.



Exercises

1: Under what circumstances would you use the inode i_hash field as opposed to the
i_list field? Why have both a hash list and a linear list for the same structures?

2: Of all the file structures we've seen, name the ones that have corresponding data
structures in the hard disk.

3: For what types of operations are dentry objects used? Why not just use inodes?

4: What is the association between a file descriptor and a file structure? Is it one-to-one?
Many-to-one? One-to-many?

5: What is the use of the fd_set structure?

6: What type of data structure ensures that the page cache operates at maximum speed?

7: Suppose that you are writing a new filesystem driver. You're replacing the ext2
filesystem driver with a new driver (media_fs) that optimizes file I/O for multimedia.
Where would you make changes to the Linux kernel to ensure that your new driver is
used instead of the ext2 driver?

8: How does a page get dirty? How does a dirty page get written to disk?
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The Linux kernel is a multitasking kernel, which means that many processes can run as if they
were the only process on the system. The way in which an operating system chooses which
process at a given time has access to a system's CPU(s) is controlled by a scheduler.

The scheduler is responsible for swapping CPU access between different processes and for
choosing the order in which processes obtain CPU access. Linux, like most operating systems,
triggers the scheduler by using a timer interrupt. When this timer goes off, the kernel needs to
decide whether to yield the CPU to a process different than the current process and, if a yield
occurs, which process gets the CPU next. The amount of time between the timer interrupt is called
a timeslice.

System processes tend to fall into two types: interactive and non-interactive. Interactive
processes are heavily dependent upon I/O and, as a result, do not usually use their entire
timeslice and, instead, yield the CPU to another process. Non-interactive processes are heavily
dependent on the CPU and typically use most, if not all, of their timeslice. The scheduler has to
balance the requirements of these two types of processes and attempt to ensure every process
gets enough time to accomplish its task without detrimentally affecting the execution of other
processes.

Linux, like some schedulers, distinguishes between one more type of process: a real-time process.
Real-time processes must execute in real time. Linux has support for real-time processes, but
those exist outside of the scheduler logic. Put simply, the Linux scheduler treats any process
marked as real-time as a higher priority than any other process. It is up to the developer of the
real-time processes to ensure that these processes do not hog the CPU and eventually yield.

Schedulers typically use some type of process queue to manage the execution of processes on the
system. In Linux, this process queue is called the run queue. The run queue is described fully in
Chapter 3, "Processes: The Principal Model of Execution,"[1] but let's recap some of the
fundamentals here because of the close tie between the scheduler and the run queue.

[1] Section 3.6 discusses the run queue.

In Linux, the run queue is composed of two priority arrays:

Active. Stores processes that have not yet used up their timeslice

Expired. Stores processes that have used up their timeslice



From a high level, the scheduler's job in Linux is to take the highest priority active processes, let
them use the CPU to execute, and place them in the expired array when they use up their
timeslice. With this high-level framework in mind, let's closely look at how the Linux scheduler
operates.



7.1. Linux Scheduler

The 2.6 Linux kernel introduces a completely new scheduler that's commonly referred to as the O(1)
scheduler. The scheduler can perform the scheduling of a task in constant time.[2] Chapter 3 addressed
the basic structure of the scheduler and how a newly created process is initialized for it. This section
describes how a task is executed on a single CPU system. There are some mentions of code for
scheduling across multiple CPU (SMP) systems but, in general, the same scheduling process applies
across CPUs. We then describe how the scheduler switches out the currently running process,
performing what is called a context switch, and then we touch on the other significant change in the
2.6 kernel: preemption.

[2] O(1) is big-oh notation, which means constant time.

From a high level, the scheduler is simply a grouping of functions that operate on given data
structures. Nearly all the code implementing the scheduler can be found in kernel/sched.c and
include/linux/sched.h. One important point to mention early on is how the scheduler code uses the
terms "task" and "process" interchangeably. Occasionally, code comments also use "thread" to refer to
a task or process. A task, or process, in the scheduler is a collection of data structures and flow of
control. The scheduler code also refers to a task_struct, which is a data structure the Linux kernel
uses to keep track of processes.[3]

[3] Chapter 3 explains the task_struct structure in depth.

7.1.1. Choosing the Next Task

After a process has been initialized and placed on a run queue, at some time, it should have access to
the CPU to execute. The two functions that are responsible for passing CPU control to different
processes are schedule() and scheduler_tick(). scheduler_tick() is a system timer that the kernel
periodically calls and marks processes as needing rescheduling. When a timer event occurs, the current
process is put on hold and the Linux kernel itself takes control of the CPU. When the timer event
finishes, the Linux kernel normally passes control back to the process that was put on hold. However,
when the held process has been marked as needing rescheduling, the kernel calls schedule() to choose
which process to activate instead of the process that was executing before the kernel took control. The
process that was executing before the kernel took control is called the current process. To make things
slightly more complicated, in certain situations, the kernel can take control from the kernel; this is
called kernel preemption. In the following sections, we assume that the scheduler decides which of two
user space processes gains CPU control.

Figure 7.1 illustrates how the CPU is passed among different processes as time progresses. We see
that Process A has control of the CPU and is executing. The system timer scheduler_tick() goes off,
takes control of the CPU from A, and marks A as needing rescheduling. The Linux kernel calls
schedule(), which chooses Process B and the control of the CPU is given to B.

Figure 7.1. Scheduling Processes

[View full size image]



Process B executes for a while and then voluntarily yields the CPU. This commonly occurs when a
process waits on some resource. B calls schedule(), which chooses Process C to execute next.

Process C executes until scheduler_tick() occurs, which does not mark C as needing rescheduling.
This results in schedule() not being called and C regains control of the CPU.

Process C yields by calling schedule(), which determines that Process A should gain control of the CPU
and A starts to execute again.

We first examine schedule(), which is how the Linux kernel decides which process to execute next, and
then we examine scheduler_tick(), which is how the kernel determines which processes need to yield
the CPU. The combined effects of these functions demonstrate the flow of control within the scheduler:

----------------------------------------------------------------------
kernel/sched.c
2184 asmlinkage void schedule(void)
2185 {
2186   long *switch_count;
2187   task_t *prev, *next;
2188   runqueue_t *rq;
2189   prio_array_t *array;
2190   struct list_head *queue;
2191   unsigned long long now;
2192   unsigned long run_time;
2193   int idx;
2194 
2195   /*
2196   * Test if we are atomic. Since do_exit() needs to call into
2197   * schedule() atomically, we ignore that path for now.
2198   * Otherwise, whine if we are scheduling when we should not be.
2199   */
2200   if (likely(!(current->state & (TASK_DEAD | TASK_ZOMBIE)))) {
2201     if (unlikely(in_atomic())) {
2202       printk(KERN_ERR "bad: scheduling while atomic!\n  ");
2203       dump_stack();
2204     }
2205   }
2206 
2207 need_resched:
2208   preempt_disable();
2209   prev = current;
2210   rq = this_rq();
2211 
2212   release_kernel_lock(prev);
2213   now = sched_clock();
2214   if (likely(now - prev->timestamp < NS_MAX_SLEEP_AVG))
2215     run_time = now - prev->timestamp;
2216   else
2217     run_time = NS_MAX_SLEEP_AVG;
2218 



2219   /*
2220   * Tasks with interactive credits get charged less run_time
2221   * at high sleep_avg to delay them losing their interactive
2222   * status
2223   */
2224   if (HIGH_CREDIT(prev))
2225   run_time /= (CURRENT_BONUS(prev) ? : 1);
-----------------------------------------------------------------------

Lines 22132218

We calculate the length of time for which the process on the scheduler has been active. If the process
has been active for longer than the average maximum sleep time (NS_MAX_SLEEP_AVG), we set its
runtime to the average maximum sleep time.

This is what the Linux kernel code calls a timeslice in other sections of the code. A timeslice refers to
both the amount of time between scheduler interrupts and the length of time a process has spent using
the CPU. If a process exhausts its timeslice, the process expires and is no longer active. The
timestamp is an absolute value that determines for how long a process has used the CPU. The
scheduler uses timestamps to decrement the timeslice of processes that have been using the CPU.

For example, suppose Process A has a timeslice of 50 clock cycles. It uses the CPU for 5 clock cycles
and then yields the CPU to another process. The kernel uses the timestamp to determine that Process
A has 45 cycles left on its timeslice.

Lines 22242225

Interactive processes are processes that spend much of their time waiting for input. A good example of
an interactive process is the keyboard controllermost of the time the controller is waiting for input, but
when it has a task to do, the user expects it to occur at a high priority.

Interactive processes, those that have an interactive credit of more than 100 (default value), get their
effective run_time divided by (sleep_avg/ max_sleep_avg * MAX_BONUS(10)):[4]

[4] Bonuses are scheduling modifiers for high priority.

----------------------------------------------------------------------
kernel/sched.c
2226
2227   spin_lock_irq(&rq->lock);
2228 
2229   /*
2230   * if entering off of a kernel preemption go straight
2231   * to picking the next task.
2232   */
2233   switch_count = &prev->nivcsw;
2234   if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2235     switch_count = &prev->nvcsw;
2236     if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2237         unlikely(signal_pending(prev))))
2238       prev->state = TASK_RUNNING;
2239     else
2240       deactivate_task(prev, rq);
2241   }
-----------------------------------------------------------------------



Line 2227

The function obtains the run queue lock because we're going to modify it.

Lines 22332241

If we have entered schedule() with the previous process being a kernel preemption, we leave the
previous process running if a signal is pending. This means that the kernel has preempted normal
processing in quick succession; thus, the code is contained in two unlikely() statements.[5] If there is
no further preemption, we remove the preempted process from the run queue and continue to choose
the next process to run.

[5] For more information on the unlikely routine, see Chapter 2, "Exploration Toolkit."

----------------------------------------------------------------------
kernel/sched.c
2243   cpu = smp_processor_id();
2244   if (unlikely(!rq->nr_running)) {
2245     idle_balance(cpu, rq);
2246     if (!rq->nr_running) {
2247       next = rq->idle;
2248       rq->expired_timestamp = 0;
2249       wake_sleeping_dependent(cpu, rq);
2250       goto switch_tasks;
2251     }
2252   }
2253 
2254   array = rq->active;
2255   if (unlikely(!array->nr_active)) {
2256     /*
2257     * Switch the active and expired arrays.
2258     */
2259     rq->active = rq->expired;
2260     rq->expired = array;
2261     array = rq->active;
2262     rq->expired_timestamp = 0;
2263     rq->best_expired_prio = MAX_PRIO;
2264   }
-----------------------------------------------------------------------

Line 2243

We grab the current CPU identifier via smp_processor_id().

Lines 22442252

If the run queue has no processes on it, we set the next process to the idle process and reset the run
queue's expired timestamp to 0. On a multiprocessor system, we first check if any processes are
running on other CPUs that this CPU can take. In effect, we load balance idle processes across all CPUs
in the system. Only if no processes can be moved from the other CPUs do we set the run queue's next
process to idle and reset the expired timestamp.



Lines 22552264

If the run queue's active array is empty, we switch the active and expired array pointers before
choosing a new process to run.

----------------------------------------------------------------------
kernel/sched.c 
2266   idx = sched_find_first_bit(array->bitmap); 
2267   queue = array->queue + idx; 
2268   next = list_entry(queue->next, task_t, run_list); 
2269 
2270   if (dependent_sleeper(cpu, rq, next)) { 
2271     next = rq->idle; 
2272     goto switch_tasks; 
2273   } 
2274 
2275   if (!rt_task(next) && next->activated > 0) { 
2276     unsigned long long delta = now - next->timestamp; 
2277 
2278     if (next->activated == 1)
2279       delta = delta * (ON_RUNQUEUE_WEIGHT * 128 / 100) / 128;
2280 
2281     array = next->array;
2282     dequeue_task(next, array);
2283     recalc_task_prio(next, next->timestamp + delta);
2284     enqueue_task(next, array);
2285   }
next->activated = 0;
-----------------------------------------------------------------------

Lines 22662268

The scheduler finds the highest priority process to run via sched_find_first_bit() and then sets up
queue to point to the list held in the priority array at the specified location. next is initialized to the first
process in queue.

Lines 22702273

If the process to be activated is dependent on a sibling that is sleeping, we choose a new process to be
activated and jump to switch_tasks to continue the scheduling function.

Suppose that we have Process A that spawned Process B to read from a device and that Process A was
waiting for Process B to finish before continuing. If the scheduler chooses Process A for activation, this
section of code, dependent_sleeper(), determines that Process A is waiting on Process B and chooses
an entirely new process to activate.

Lines 22752285

If the process' activated attribute is greater than 0, and the next process is not a real-time task, we
remove it from queue, recalculate its priority, and enqueue it again.



Line 2286

We set the process' activated attribute to 0, and then run with it.

----------------------------------------------------------------------
kernel/sched.c
2287 switch_tasks:
2288   prefetch(next);
2289   clear_tsk_need_resched(prev);
2290   RCU_qsctr(task_cpu(prev))++;
2291 
2292   prev->sleep_avg -= run_time;
2293   if ((long)prev->sleep_avg <= 0) {
2294     prev->sleep_avg = 0;
2295     if (!(HIGH_CREDIT(prev) || LOW_CREDIT(prev)))
2296       prev->interactive_credit--;
2297   }
2298   prev->timestamp = now;
2299 
2300   if (likely(prev != next)) {
2301     next->timestamp = now;
2302     rq->nr_switches++;
2303     rq->curr = next;
2304     ++*switch_count;
2305 
2306     prepare_arch_switch(rq, next);
2307     prev = context_switch(rq, prev, next);
2308     barrier();
2309 
2310     finish_task_switch(prev);
2311   } else
2312     spin_unlock_irq(&rq->lock);
2313 
2314   reacquire_kernel_lock(current);
2315   preempt_enable_no_resched();
2316   if (test_thread_flag(TIF_NEED_RESCHED))
2317     goto need_resched;
2318 }
-----------------------------------------------------------------------

Line 2288

We attempt to get the memory of the new process' task structure into the CPU's L1 cache. (See
include/linux/prefetch.h for more information.)

Line 2290

Because we're going through a context switch, we need to inform the current CPU that we're doing so.
This allows a multi-CPU device to ensure data that is shared across CPUs is accessed exclusively. This
process is called read-copy updating. For more information, see
http://lse.sourceforge.net/locking/rcupdate.html.

Lines 22922298

http://lse.sourceforge.net/locking/rcupdate.html


We decrement the previous process' sleep_avg attribute by the amount of time it ran, adjusting for
negative values. If the process is neither interactive nor non-interactive, its interactive credit is
between high and low, so we decrement its interactive credit because it had a low sleep average. We
update its timestamp to the current time. This operation helps the scheduler keep track of how much
time a given process has spent using the CPU and estimate how much time it will use the CPU in the
future.

Lines 23002304

If we haven't chosen the same process, we set the new process' timestamp, increment the run queue
counters, and set the current process to the new process.

Lines 23062308

These lines describe the assembly language context_switch(). Hold on for a few paragraphs as we
delve into the explanation of context switching in the next section.

Lines 23142318

We reacquire the kernel lock, enable preemption, and see if we need to reschedule immediately; if so,
we go back to the top of schedule().

It's possible that after we perform the context_switch(), we need to reschedule. Perhaps
scheduler_tick() has marked the new process as needing rescheduling or, when we enable
preemption, it gets marked. We keep rescheduling processes (and context switching them) until one is
found that doesn't need rescheduling. The process that leaves schedule() becomes the new process
executing on this CPU.

7.1.2. Context Switch

Called from schedule() in /kernel/sched.c, context_switch() does the machine-specific work of
switching the memory environment and the processor state. In the abstract, context_switch swaps
the current task with the next task. The function context_switch() begins executing the next task and
returns a pointer to the task structure of the task that was running before the call:

----------------------------------------------------------------------
kernel/sched.c
1048 /*
1049 * context_switch - switch to the new MM and the new
1050 * thread's register state.
1051 */
1052 static inline
1053 task_t * context_switch(runqueue_t *rq, task_t *prev, task_t *next)
1054 {
1055   struct mm_struct *mm = next->mm;
1056   struct mm_struct *oldmm = prev->active_mm;
...
1063     switch_mm(oldmm, mm, next);
...
1072   switch_to(prev, next, prev);
1073 
1074   return prev;
1075 }



-----------------------------------------------------------------------

Here, we describe the two jobs of context_switch: one to switch the virtual memory mapping and one
to switch the task/thread structure. The first job, which the function switch_mm() carries out, uses
many of the hardware-dependent memory management structures and registers:

----------------------------------------------------------------------
/include/asm-i386/mmu_context.h
026  static inline void switch_mm(struct mm_struct *prev,
027     struct mm_struct *next,
028     struct task_struct *tsk)
029  {
030   int cpu = smp_processor_id();
031
032   if (likely(prev != next)) {
033    /* stop flush ipis for the previous mm */
034    cpu_clear(cpu, prev->cpu_vm_mask);
035  #ifdef CONFIG_SMP
036    cpu_tlbstate[cpu].state = TLBSTATE_OK;
037    cpu_tlbstate[cpu].active_mm = next;
038  #endif
039    cpu_set(cpu, next->cpu_vm_mask);
040
041    /* Re-load page tables */
042    load_cr3(next->pgd);
043
044    /*
045    * load the LDT, if the LDT is different:
046    */
047   if (unlikely(prev->context.ldt != next->context.ldt))
048     load_LDT_nolock(&next->context, cpu);
049   }
050  #ifdef CONFIG_SMP
051   else {
-----------------------------------------------------------------------

Line 39

Bind the new task to the current processor.

Line 42

The code for switching the memory context utilizes the x86 hardware register cr3, which holds the
base address of all paging operations for a given process. The new page global descriptor is loaded
here from next->pgd.

Line 47

Most processes share the same LDT. If another LDT is required by this process, it is loaded here from
the new next->context structure.

The other half of function context_switch() in /kernel/sched.c then calls the macro switch_to(),



which calls the C function __switch_to(). The delineation of architecture independence to architecture
dependence for both x86 and PPC is the switch_to() macro.

7.1.2.1. Following the x86 Trail of switch_to()

The x86 code is more compact than PPC. The following is the architecture-dependent code for
__switch_to(). task_struct (not tHRead_struct) is passed to __switch_to(). The code discussed next
is inline assembler code for calling the C function __switch_to() (line 23) with the proper task_struct
structures as parameters.

The context_switch takes three task pointers: prev, next, and last. In addition, there is the current
pointer.

Let us now explain, at a high level, what occurs when switch_to() is called and how the task pointers
change after a call to switch_to().

Figure 7.2 shows three switch_to() calls using three processes: A, B, and C.

Figure 7.2. switch_to Calls

We want to switch A and B. Before, the first call we have

Current  A

Prev  A, next  B

After the first call:

Current  B



Last  A

Now, we want to switch B and C. Before the second call, we have

Current  B

Prev  B, next  C

After the second call:

Current  C

Last  B

Returning from the second call, current now points to task (C) and last points to (B).

The method continues with task (A) being swapped in once again, and so on.

The inline assembly of the switch_to() function is an excellent example of assembly magic in the
kernel. It is also a good example of the gcc C extensions. See Chapter 2, "Exploration Toolkit," for a
tutorial featuring this function. Now, we carefully walk through this code block.

[View full width]
----------------------------------------------------------------------
/include/asm-i386/system.h
012  extern struct task_struct * FASTCALL(__switch_to(struct task_struct *prev, struct
 task_struct *next));

015  #define switch_to(prev,next,last) do {     \
016   unsigned long esi,edi;       \
017   asm volatile("pushfl\n\t"       \
018   "pushl %%ebp\n\t"        \
019   "movl %%esp,%0\n\t"  /* save ESP */    \
020   "movl %5,%%esp\n\t"  /* restore ESP */    \
021   "movl $1f,%1\n\t"   /* save EIP */   \
022   "pushl %6\n\t"   /* restore EIP */   \
023   "jmp __switch_to\n"        \
023   "1:\t"          \
024   "popl %%ebp\n\t"        \
025   "popfl"         \
026   :"=m" (prev->thread.esp),"=m" (prev->thread.eip),  \
027   "=a" (last),"=S" (esi),"=D" (edi)     \
028   :"m" (next->thread.esp),"m" (next->thread.eip),   \
029   "2" (prev), "d" (next));       \
030  } while (0)
-----------------------------------------------------------------------

Line 12

The FASTCALL macro resolves to __attribute__ regparm(3), which forces the parameters to be passed
in registers rather than stack.

Lines 1516

The do {} while (0) construct allows (among other things) the macro to have local the variables esi



and edi. Remember, these are just local variables with familiar names.

Current and the Task Structure

As we explore the kernel, whenever we need to retrieve or store information on the task
(or process) which is currently running on a given processor, we use the global variable
current to reference its task structure. For example, current->pid holds the process ID.
Linux allows for a quick (and clever) method of referencing the current task structure.

Every process is assigned 8K of contiguous memory when it is created. (With Linux 2.6,
there is a compile-time option to use 4K instead of 8K.) This 8K segment is occupied by
the task structure and the kernel stack for the given process. Upon process creation, Linux
puts the task structure at the low end of the 8K memory and the kernel stack pointer
starts at the high end. The kernel stack pointer (especially for x86 and r1 for PPC)
decrements as data is pushed onto the stack. Because this 8K memory region is page-
aligned, its starting address (in hex notation) always ends in 0x000 (multiples of 4k
bytes).

As you might have guessed, the clever method by which Linux references the current task
structure is to AND the contents of the stack pointer with 0xffff_f000. Recent versions of
the PPC Linux kernel have taken this one step further by dedicating General Purpose
Register 2 to holding the current pointer.

Lines 17 and 30

The construct asm volatile ()[6] encloses the inline assembly block and the volatile keyword assures
that the compiler will not change (optimize) the routine in any way.

[6] See Chapter 2 for more information on volatile.

Lines 1718

Push the flags and ebp registers onto the stack. (Note: We are still using the stack associated with the
prev task.)

Line 19

This line saves the current stack pointer esp to the prev task structure.

Line 20

Move the stack pointer from the next task structure to the current processor esp.

NOTE

By definition, we have just made a context switch.



We are now with a new kernel stack and thus, any reference to current is to the new (next) task
structure.

Line 21

Save the return address for prev into its task structure. This is where the prev task resumes when it is
restarted.

Line 22

Push the return address (from when we return from __switch_to()) onto the stack. This is the eip
from next. The eip was saved into its task structure (on line 21) when it was stopped, or preempted
the last time.

Line 23

Jump to the C function __switch_to() to update the following:

The next thread structure with the kernel stack pointer

Thread local storage descriptor for this processor

fs and gs for prev and next, if needed

Debug registers, if needed

I/O bitmaps, if needed

__switch_to() then returns the updated prev task structure.

Lines 2425

Pop the base pointer and flags registers from the new (next task) kernel stack.

Lines 2629

These are the output and input parameters to the inline assembly routine. See the "Inline Assembly"
section in Chapter 2 for more information on the constraints put on these parameters.

Line 29

By way of assembler magic, prev is returned in eax, which is the third positional parameter. In other
words, the input parameter prev is passed out of the switch_to() macro as the output parameter last.

Because switch_to() is a macro, it was executed inline with the code that called it in
context_switch(). It does not return as functions normally do.

For the sake of clarity, remember that switch_to() passes back prev in the eax register, execution
then continues in context_switch(), where the next instruction is return prev (line 1074 of



kernel/sched.c). This allows context_switch() to pass back a pointer to the last task running.

7.1.2.2. Following the PPC context_switch()

The PPC code for context_switch() has slightly more work to do for the same results. Unlike the cr3
register in x86 architecture, the PPC uses hash functions to point to context environments. The
following code for switch_mm() touches on these functions, but Chapter 4, "Memory Management,"
offers a deeper discussion.

Here is the routine for switch_mm() which, in turn, calls the routine set_context().

----------------------------------------------------------------------
/include/asm-ppc/mmu_context.h
155  static inline void switch_mm(struct mm_struct *prev, struct
mm_struct *next,struct task_struct *tsk)
156  {
157   tsk->thread.pgdir = next->pgd;
158   get_mmu_context(next);
159   set_context(next->context, next->pgd);
160  }
-----------------------------------------------------------------------

Line 157

The page global directory (segment register) for the new thread is made to point to the next->pgd
pointer.

Line 158

The context field of the mm_struct (next->context) passed into switch_mm() is updated to the value of
the appropriate context. This information comes from a global reference to the variable context_map[],
which contains a series of bitmap fields.

Line 159

This is the call to the assembly routine set_context. Below is the code and discussion of this routine.
Upon execution of the blr instruction on line 1468, the code returns to the switch_mm routine.

----------------------------------------------------------------------
/arch/ppc/kernel/head.S
1437  _GLOBAL(set_context)
1438  mulli  r3,r3,897  /* multiply context by skew factor */
1439  rlwinm  r3,r3,4,8,27  /* VSID = (context & 0xfffff) << 4 */
1440  addis  r3,r3,0x6000  /* Set Ks, Ku bits */
1441  li  r0,NUM_USER_SEGMENTS
1442  mtctr  r0
...
1457  3:  isync
...
1461  mtsrin  r3,r4
1462  addi  r3,r3,0x111  /* next VSID */



1463  rlwinm  r3,r3,0,8,3  /* clear out any overflow from VSID field */
1464  addis  r4,r4,0x1000  /* address of next segment */
1465  bdnz  3b
1466  sync
1467  isync
1468  blr
------------------------------------------------------------------------

Lines 14371440

The context field of the mm_struct (next->context) passed into set_context() by way of r3, sets up
the hash function for PPC segmentation.

Lines 14611465

The pgd field of the mm_struct (next->pgd) passed into set_context() by way of r4, points to the
segment registers.

Segmentation is the basis of PPC memory management (refer to Chapter 4). Upon returning from
set_context(), the mm_struct next is initialized to the proper memory regions and is returned to
switch_mm().

7.1.2.3. Following the PPC Trail of switch_to()

The result of the PPC implementation of switch_to() is necessarily identical to the x86 call; it takes in
the current and next task pointers and returns a pointer to the previously running task:

----------------------------------------------------------------------
include/asm-ppc/system.h 
88 extern struct task_struct *__switch_to(struct task_struct *,
89   struct task_struct *);
90 #define switch_to(prev, next, last)
((last) = __switch_to((prev), (next))) 
91 
92 struct thread_struct;
93 extern struct task_struct *_switch(struct thread_struct *prev,
94         struct thread_struct *next);
-----------------------------------------------------------------------

On line 88, __switch_to() takes its parameters as task_struct type and, at line 93, _switch() takes its
parameters as tHRead_struct. This is because the thread entry within task_struct contains the

architecture-dependent processor register information of interest for the given thread. Now, let us
examine the implementation of __switch_to():

----------------------------------------------------------------------
/arch/ppc/kernel/process.c 
200  struct task_struct *__switch_to(struct task_struct *prev,
   struct task_struct *new)
201  {
202   struct thread_struct *new_thread, *old_thread;
203   unsigned long s;



204   struct task_struct *last;
205   local_irq_save(s);
...
247   new_thread = &new->thread;
248   old_thread = &current->thread;
249   last = _switch(old_thread, new_thread);
250   local_irq_restore(s);
251   return last;
252  }
-----------------------------------------------------------------------

Line 205

Disable interrupts before the context switch.

Lines 247248

Still running under the context of the old thread, pass the pointers to the thread structure to the
_switch() function.

Line 249

_switch() is the assembly routine called to do the work of switching the two thread structures (see the
following section).

Line 250

Enable interrupts after the context switch.

To better understand what needs to be swapped within a PPC thread, we need to examine the
thread_struct passed in on line 249.

Recall from the exploration of the x86 context switch that the switch does not officially occur until we
are pointing to a new kernel stack. This happens in _switch().

Tracing the PPC Code for _switch()

By convention, the parameters of a PPC C function (from left to right) are held in r3, r4, r5, …r12.
Upon entry into switch(), r3 points to the thread_struct for the current task and r4 points to the
thread_struct for the new task:

----------------------------------------------------------------------
/arch/ppc/kernel/entry.S 
437  _GLOBAL(_switch)
438   stwu  r1,-INT_FRAME_SIZE(r1)
439   mflr  r0
440   stw  r0,INT_FRAME_SIZE+4(r1)
441   /* r3-r12 are caller saved -- Cort */
442   SAVE_NVGPRS(r1)
443   stw  r0,_NIP(r1)  /* Return to switch caller */
444   mfmsr  r11



...
458  1:  stw  r11,_MSR(r1)
459   mfcr  r10
460   stw  r10,_CCR(r1)
461   stw  r1,KSP(r3)  /* Set old stack pointer */
462  
463   tophys(r0,r4)
464   CLR_TOP32(r0)
465   mtspr  SPRG3,r0/* Update current THREAD phys addr */
466   lwz  r1,KSP(r4)  /* Load new stack pointer */
467   /* save the old current 'last' for return value */
468   mr  r3,r2
469   addi  r2,r4,-THREAD  /* Update current */
...
478   lwz  r0,_CCR(r1)
479   mtcrf  0xFF,r0
480   REST_NVGPRS(r1)
481  
482   lwz  r4,_NIP(r1)  /* Return to _switch caller in new task */
483   mtlr  r4
484   addi  r1,r1,INT_FRAME_SIZE
485   blr
-----------------------------------------------------------------------

The byte-for-byte mechanics of swapping out the previous thread_struct for the new is left as an
exercise for you. It is worth noting, however, the use of r1, r2, r3, SPRG3, and r4 in _switch() to see
the basics of this operation.

Lines 438460

The environment is saved to the current stack with respect to the current stack pointer, r1.

Line 461

The entire environment is then saved into the current thread_struct pointer passed in by way of r3.

Lines 463465

SPRG3 is updated to point to the thread structure of the new task.

Line 466

KSP is the offset into the task structure (r4) of the new task's kernel stack pointer. The stack pointer r1
is now updated with this value. (This is the point of the PPC context switch.)

Line 468

The current pointer to the previous task is returned from _switch() in r3. This represents the last task.



Line 469

The current pointer (r2) is updated with the pointer to the new task structure (r4).

Lines 478486

Restore the rest of the environment from the new stack and return to the caller with the previous task
structure in r3.

This concludes the explanation of context_switch(). At this point, the processor has swapped the two
processes prev and next as called by context_switch in schedule().

----------------------------------------------------------------------
kernel/sched.c
1709   prev = context_switch(rq, prev, next);
-----------------------------------------------------------------------

prev now points to the process that we have just switched away from and next points to the current
process.

Now that we've discussed how tasks are scheduled in the Linux kernel, we can examine how tasks are
told to be scheduled. Namely, what causes schedule() to be called and one process to yield the CPU to
another process?

7.1.3. Yielding the CPU

Processes can voluntarily yield the CPU by simply calling schedule(). This is most commonly used in
kernel code and device drivers that want to sleep or wait for a signal to occur.[7] Other tasks want to
continually use the CPU and the system timer must tell them to yield. The Linux kernel periodically
seizes the CPU, in so doing stopping the active process, and then does a number of timer-based tasks.
One of these tasks, scheduler_tick(), is how the kernel forces a process to yield. If a process has
been running for too long, the kernel does not return control to that process and instead chooses
another one. We now examine how scheduler_tick()determines if the current process must yield the
CPU:

[7] Linux convention specifies that you should never call schedule while holding a spinlock because this introduces the possibility of

system deadlock. This is good advice!

----------------------------------------------------------------------
kernel/sched.c
1981 void scheduler_tick(int user_ticks, int sys_ticks)
1982 {
1983   int cpu = smp_processor_id();
1984   struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1985   runqueue_t *rq = this_rq();
1986   task_t *p = current;
1987 
1988   rq->timestamp_last_tick = sched_clock();
1989 
1990   if (rcu_pending(cpu))
1991    rcu_check_callbacks(cpu, user_ticks);  
-----------------------------------------------------------------------



Lines 19811986

This code block initializes the data structures that the scheduler_tick() function needs. cpu,
cpu_usage_stat, and rq are set to the processor ID, CPU stats and run queue of the current processor.
p is a pointer to the current process executing on cpu.

Line 1988

The run queue's last tick is set to the current time in nanoseconds.

Lines 19901991

On an SMP system, we need to check if there are any outstanding read-copy updates to perform
(RCU). If so, we perform them via rcu_check_callback().

----------------------------------------------------------------------
kernel/sched.c
1993   /* note: this timer irq context must be accounted for as well */
1994   if (hardirq_count() - HARDIRQ_OFFSET) {
1995     cpustat->irq += sys_ticks;
1996     sys_ticks = 0;
1997   } else if (softirq_count()) {
1998     cpustat->softirq += sys_ticks;
1999     sys_ticks = 0; 
2000   }
2001 
2002   if (p == rq->idle) {
2003     if (atomic_read(&rq->nr_iowait) > 0)
2004       cpustat->iowait += sys_ticks;
2005     else
2006       cpustat->idle += sys_ticks;
2007     if (wake_priority_sleeper(rq))
2008       goto out;
2009     rebalance_tick(cpu, rq, IDLE);
2010     return;
2011   }
2012   if (TASK_NICE(p) > 0)
2013     cpustat->nice += user_ticks;
2014   else
2015     cpustat->user += user_ticks;
2016   cpustat->system += sys_ticks;
-----------------------------------------------------------------------

Lines 19942000

cpustat keeps track of kernel statistics, and we update the hardware and software interrupt statistics
by the number of system ticks that have occurred.

Lines 20022011



If there is no currently running process, we atomically check if any processes are waiting on I/O. If so,
the CPU I/O wait statistic is incremented; otherwise, the CPU idle statistic is incremented. In a
uniprocessor system, rebalance_tick() does nothing, but on a multiple processor system,
rebalance_tick() attempts to load balance the current CPU because the CPU has nothing to do.

Lines 20122016

More CPU statistics are gathered in this code block. If the current process was niced, we increment the
CPU nice counter; otherwise, the user tick counter is incremented. Finally, we increment the CPU's
system tick counter.

----------------------------------------------------------------------
kernel/sched.c
2019   if (p->array != rq->active) {
2020     set_tsk_need_resched(p); 
2021     goto out;
2022   }
2023   spin_lock(&rq->lock);
-----------------------------------------------------------------------

Lines 20192022

Here, we see why we store a pointer to a priority array within the task_struct of the process. The
scheduler checks the current process to see if it is no longer active. If the process has expired, the
scheduler sets the process' rescheduling flag and jumps to the end of the scheduler_tick() function.
At that point (lines 20922093), the scheduler attempts to load balance the CPU because there is no
active task yet. This case occurs when the scheduler grabbed CPU control before the current process
was able to schedule itself or clean up from a successful run.

Line 2023

At this point, we know that the current process was running and not expired or nonexistent. The
scheduler now wants to yield CPU control to another process; the first thing it must do is take the run
queue lock.

----------------------------------------------------------------------
kernel/sched.c
2024   /*
2025   * The task was running during this tick - update the
2026   * time slice counter. Note: we do not update a thread's
2027   * priority until it either goes to sleep or uses up its
2028   * timeslice. This makes it possible for interactive tasks
2029   * to use up their timeslices at their highest priority levels.
2030   */
2031   if (unlikely(rt_task(p))) {
2032     /*
2033     * RR tasks need a special form of timeslice management.
2034     * FIFO tasks have no timeslices.
2035     */
2036     if ((p->policy == SCHED_RR) && !--p->time_slice) {
2037       p->time_slice = task_timeslice(p);
2038       p->first_time_slice = 0;



2039       set_tsk_need_resched(p);
2040 
2041       /* put it at the end of the queue: */
2042       dequeue_task(p, rq->active);
2043       enqueue_task(p, rq->active);
2044     }
2045     goto out_unlock;
2046  }
-----------------------------------------------------------------------

Lines 20312046

The easiest case for the scheduler occurs when the current process is a real-time task. Real-time tasks
always have a higher priority than any other tasks. If the task is a FIFO task and was running, it
should continue its operation so we jump to the end of the function and release the run queue lock. If
the current process is a round-robin real-time task, we decrement its timeslice. If the task has no more
timeslice, it's time to schedule another round-robin real-time task. The current task has its new
timeslice calculated by task_timeslice(). Then the task has its first time slice reset. The task is then
marked as needing rescheduling and, finally, the task is put at the end of the round-robin real-time
tasklist by removing it from the run queue's active array and adding it back in. The scheduler then
jumps to the end of the function and releases the run queue lock.

----------------------------------------------------------------------
kernel/sched.c
2047   if (!--p->time_slice) {
2048     dequeue_task(p, rq->active);
2049     set_tsk_need_resched(p);
2050     p->prio = effective_prio(p);
2051     p->time_slice = task_timeslice(p);
2052     p->first_time_slice = 0;
2053 
2054     if (!rq->expired_timestamp)
2055       rq->expired_timestamp = jiffies;
2056     if (!TASK_INTERACTIVE(p) || EXPIRED_STARVING(rq)) {
2057       enqueue_task(p, rq->expired);
2058       if (p->static_prio < rq->best_expired_prio)
2059         rq->best_expired_prio = p->static_prio;
2060     } else
2061       enqueue_task(p, rq->active);
2062   } else {
-----------------------------------------------------------------------

Lines 20472061

At this point, the scheduler knows that the current process is not a real-time process. It decrements
the process' timeslice and, in this section, the process' timeslice has been exhausted and reached 0.
The scheduler removes the task from the active array and sets the process' rescheduling flag. The
priority of the task is recalculated and its timeslice is reset. Both of these operations take into account
prior process activity.[8] If the run queue's expired timestamp is 0, which usually occurs when there
are no more processes on the run queue's active array, we set it to jiffies.

[8] See effective_prio() and task_timeslice().



Jiffies

Jiffies is a 32-bit variable counting the number of ticks since the system has been booted.
This is approximately 497 days before the number wraps around to 0 on a 100HZ system.
The macro on line 20 is the suggested method of accessing this value as a u64. There are
also macros to help detect wrapping in include/jiffies.h.

[View full width]
-----------------------------------------------------------------------

include/linux/jiffies.h
017  extern unsigned long volatile jiffies;
020  u64 get_jiffies_64(void);
-----------------------------------------------------------------------

We normally favor interactive tasks by replacing them on the active priority array of the run queue;
this is the else clause on line 2060. However, we don't want to starve expired tasks. To determine if
expired tasks have been waiting too long for CPU time, we use EXPIRED_STARVING() (see
EXPIRED_STARVING on line 1968). The function returns true if the first expired task has been waiting an
"unreasonable" amount of time or if the expired array contains a task that has a greater priority than
the current process. The unreasonableness of waiting is load-dependent and the swapping of the active
and expired arrays decrease with an increasing number of running tasks.

If the task is not interactive or expired tasks are starving, the scheduler takes the current process and
enqueues it onto the run queue's expired priority array. If the current process' static priority is higher
than the expired run queue's highest priority task, we update the run queue to reflect the fact that the
expired array now has a higher priority than before. (Remember that high-priority tasks have low
numbers in Linux, thus, the (<) in the code.)

----------------------------------------------------------------------
kernel/sched.c
2062   } else {
2063     /*
2064     * Prevent a too long timeslice allowing a task to monopolize
2065     * the CPU. We do this by splitting up the timeslice into
2066     * smaller pieces.
2067     *
2068     * Note: this does not mean the task's timeslices expire or
2069     * get lost in any way, they just might be preempted by
2070     * another task of equal priority. (one with higher
2071     * priority would have preempted this task already.) We
2072     * requeue this task to the end of the list on this priority
2073     * level, which is in essence a round-robin of tasks with
2074     * equal priority.
2075     *
2076     * This only applies to tasks in the interactive
2077     * delta range with at least TIMESLICE_GRANULARITY to requeue.
2078     */
2079     if (TASK_INTERACTIVE(p) && !((task_timeslice(p) -
2080       p->time_slice) % TIMESLICE_GRANULARITY(p)) &&
2081       (p->time_slice >= TIMESLICE_GRANULARITY(p)) &&
2082       (p->array == rq->active)) {



2083 
2084       dequeue_task(p, rq->active);
2085       set_tsk_need_resched(p);
2086       p->prio = effective_prio(p);
2087       enqueue_task(p, rq->active);
2088     }
2089   }
2090 out_unlock:
2091   spin_unlock(&rq->lock);
2092 out:
2093   rebalance_tick(cpu, rq, NOT_IDLE);
2094 }
-----------------------------------------------------------------------

Lines 20792089

The final case before the scheduler is that the current process was running and still has timeslices left
to run. The scheduler needs to ensure that a process with a large timeslice doesn't hog the CPU. If the
task is interactive, has more timeslices than TIMESLICE_GRANULARITY, and was active, the scheduler
removes it from the active queue. The task then has its reschedule flag set, its priority recalculated,
and is placed back on the run queue's active array. This ensures that a process at a certain priority
with a large timeslice doesn't starve another process of an equal priority.

Lines 20902094

The scheduler has finished rearranging the run queue and unlocks it; if executing on an SMP system, it
attempts to load balance.

Combining how processes are marked to be rescheduled, via scheduler_tick() and how processes are
scheduled, via schedule() illustrates how the scheduler operates in the 2.6 Linux kernel. We now
delve into the details of what the scheduler means by "priority."

7.1.3.1. Dynamic Priority Calculation

In previous sections, we glossed over the specifics of how a task's dynamic priority is calculated. The
priority of a task is based on its prior behavior, as well as its user-specified nice value. The function
that determines a task's new dynamic priority is recalc_task_prio():

----------------------------------------------------------------------
kernel/sched.c
381 static void recalc_task_prio(task_t *p, unsigned long long now)
382 {
383   unsigned long long __sleep_time = now - p->timestamp;
384   unsigned long sleep_time; 
385 
386   if (__sleep_time > NS_MAX_SLEEP_AVG)
387     sleep_time = NS_MAX_SLEEP_AVG;
388   else
389     sleep_time = (unsigned long)__sleep_time;
390 
391   if (likely(sleep_time > 0)) {
392     /*
393     * User tasks that sleep a long time are categorised as
394     * idle and will get just interactive status to stay active &



395     * prevent them suddenly becoming cpu hogs and starving
396     * other processes.
397     */
398     if (p->mm && p->activated != -1 &&
399       sleep_time > INTERACTIVE_SLEEP(p)) {
400         p->sleep_avg = JIFFIES_TO_NS(MAX_SLEEP_AVG -
401             AVG_TIMESLICE);
402         if (!HIGH_CREDIT(p))
403           p->interactive_credit++;
404     } else {
405       /*
406       * The lower the sleep avg a task has the more
407       * rapidly it will rise with sleep time.
408       */
409       sleep_time *= (MAX_BONUS - CURRENT_BONUS(p)) ? : 1;
410 
411       /*
412       * Tasks with low interactive_credit are limited to
413       * one timeslice worth of sleep avg bonus.
414       */
415       if (LOW_CREDIT(p) &&
416        sleep_time > JIFFIES_TO_NS(task_timeslice(p)))
417         sleep_time = JIFFIES_TO_NS(task_timeslice(p));
418 
419       /*
420       * Non high_credit tasks waking from uninterruptible
421       * sleep are limited in their sleep_avg rise as they
422       * are likely to be cpu hogs waiting on I/O
423       */
424       if (p->activated == -1 && !HIGH_CREDIT(p) && p->mm) {
425         if (p->sleep_avg >= INTERACTIVE_SLEEP(p))
426           sleep_time = 0;
427         else if (p->sleep_avg + sleep_time >=
428             INTERACTIVE_SLEEP(p)) {
429           p->sleep_avg = INTERACTIVE_SLEEP(p);
430           sleep_time = 0;
431         }
432       }
433 
434       /*
435       * This code gives a bonus to interactive tasks.
436       *
437       * The boost works by updating the 'average sleep time'
438       * value here, based on ->timestamp. The more time a
439       * task spends sleeping, the higher the average gets -
440       * and the higher the priority boost gets as well.
441       */
442       p->sleep_avg += sleep_time;
443 
444       if (p->sleep_avg > NS_MAX_SLEEP_AVG) {
445         p->sleep_avg = NS_MAX_SLEEP_AVG;
446         if (!HIGH_CREDIT(p))
447           p->interactive_credit++;
448       }
449     }
450   }
452 
452   p->prio = effective_prio(p);
453 }
-----------------------------------------------------------------------



Lines 386389

Based on the time now, we calculate the length of time the process p has slept for and assign it to
sleep_time with a maximum value of NS_MAX_SLEEP_AVG. (NS_MAX_SLEEP_AVG defaults to 10
milliseconds.)

Lines 391404

If process p has slept, we first check to see if it has slept enough to be classified as an interactive task.
If it has, when sleep_time > INTERACTIVE_SLEEP(p), we adjust the process' sleep average to a set
value and, if p isn't classified as interactive yet, we increment p's interactive_credit.

Lines 405410

A task with a low sleep average gets a higher sleep time.

Lines 411418

If the task is CPU intensive, and thus classified as non-interactive, we restrict the process to having, at
most, one more timeslice worth of a sleep average bonus.

Lines 419432

Tasks that are not yet classified as interactive (not HIGH_CREDIT) that awake from uninterruptible sleep
are restricted to having a sleep average of INTERACTIVE().

Lines 434450

We add our newly calculated sleep_time to the process' sleep average, ensuring it doesn't go over
NS_MAX_SLEEP_AVG. If the processes are not considered interactive but have slept for the maximum time
or longer, we increment its interactive credit.

Line 452

Finally, the priority is set using effective_prio(), which takes into account the newly calculated
sleep_avg field of p. It does this by scaling the sleep average of 0 .. MAX_SLEEP_AVG into the range of -
5 to +5. Thus, a process that has a static priority of 70 can have a dynamic priority between 65 and
85, depending on its prior behavior.

One final thing: A process that is not a real-time process has a range between 101 and 140. Processes
that are operating at a very high priority, 105 or less, cannot cross the real-time boundary. Thus, a
high priority, highly interactive process could never have a dynamic priority of lower than 101. (Real-
time processes cover 0..100 in the default configuration.)

7.1.3.2. Deactivation

We already discussed how a task gets inserted into the scheduler by forking and how tasks move from



the active to expired priority arrays within the CPU's run queue. But, how does a task ever get
removed from a run queue?

A task can be removed from the run queue in two major ways:

The task is preempted by the kernel and its state is not running, and there is no signal pending
for the task (see line 2240 in kernel/sched.c).

On SMP machines, the task can be removed from a run queue and placed on another run queue
(see line 3384 in kernel/sched.c).

The first case normally occurs when schedule() gets called after a process puts itself to sleep on a wait
queue. The task marks itself as non-running (TASK_INTERRUPTIBLE, TASK_UNINTERRUPTIBLE,
TASK_STOPPED, and so on) and the kernel no longer considers it for CPU access by removing it from the
run queue.

The case in which the process is moved to another run queue is dealt with in the SMP section of the
Linux kernel, which we do not explore here.

We now trace how a process is removed from the run queue via deactivate_task():

----------------------------------------------------------------------
kernel/sched.c 
507 static void deactivate_task(struct task_struct *p, runqueue_t *rq)
508 {
509   rq->nr_running--;
510   if (p->state == TASK_UNINTERRUPTIBLE)
511     rq->nr_uninterruptible++;
512   dequeue_task(p, p->array);
513   p->array = NULL;
514 }
-----------------------------------------------------------------------

Line 509

The scheduler first decrements its count of running processes because p is no longer running.

Lines 510511

If the task is uninterruptible, we increment the count of uninterruptible tasks on the run queue. The
corresponding decrement operation occurs when an unin terruptible process wakes up (see
kernel/sched.c line 824 in the function TRy_to_wake_up()).

Line 512513

Our run queue statistics are now updated so we actually remove the process from the run queue. The
kernel uses the p->array field to test if a process is running and on a run queue. Because it no longer
is either, we set it to NULL.

There is still some run queue management to be done; let's examine the specifics of dequeue_task():

----------------------------------------------------------------------
kernel/sched.c



303 static void dequeue_task(struct task_struct *p, prio_array_t *array)
304 {
305   array->nr_active--;
306   list_del(&p->run_list);
307   if (list_empty(array->queue + p->prio))
308     __clear_bit(p->prio, array->bitmap);
309 }  
-----------------------------------------------------------------------

Line 305

We adjust the number of active tasks on the priority array that process p is oneither the expired or the
active array.

Lines 306308

We remove the process from the list of processes in the priority array at p's priority. If the resulting list
is empty, we need to clear the bit in the priority array's bitmap to show there are no longer any
processes at priority p->prio().

list_del() does all the removal in one step because p->run_list is a list_head structure and thus has
pointers to the previous and next entries in the list.

We have reached the point where the process is removed from the run queue and has thus been
completely deactivated. If this process had a state of TASK_INTERRUPTIBLE or TASK_UNINTERRUPTIBLE, it
could be awoken and placed back on a run queue. If the process had a state of TASK_STOPPED,
TASK_ZOMBIE, or TASK_DEAD, it has all of its structures removed and discarded.



7.2. Preemption

Preemption is the switching of one task to another. We mentioned how schedule() and
scheduler_tick()decide which task to switch to next, but we haven't described how the Linux
kernel decides when to switch. The 2.6 kernel introduces kernel preemption, which means that
both user space programs and kernel space programs can be switched at various times. Because
kernel preemption is the standard in Linux 2.6, we describe how full kernel and user preemption
operates in Linux.

7.2.1. Explicit Kernel Preemption

The easiest preemption to understand is explicit kernel preemption. This occurs in kernel space
when kernel code calls schedule(). Kernel code can call schedule() in two ways, either by directly
calling schedule() or by blocking.

When the kernel is explicitly preempted, as in a device driver waiting with a wait_queue, the
control is simply passed to the scheduler and a new task is chosen to run.

7.2.2. Implicit User Preemption

When the kernel has finished processing a kernel space task and is ready to pass control to a user
space task, it first checks to see which user space task it should pass control to. This might not be
the user space task that passed its control to the kernel. For example, if Task A invokes a system
call, after the system call completes, the kernel could pass control of the system to Task B.

Each task on the system has a "rescheduling necessary" flag that is set whenever a task should be
rescheduled:

----------------------------------------------------------------------
include/linux/sched.h
988 static inline void set_tsk_need_resched(struct task_struct *tsk)
989 {
990   set_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
991 }
992 
993 static inline void clear_tsk_need_resched(struct task_struct *tsk)
994 {
995   clear_tsk_thread_flag(tsk,TIF_NEED_RESCHED);
996 }
...
1003 static inline int need_resched(void)
1004 {
1005   return unlikely(test_thread_flag(TIF_NEED_RESCHED));
1006 }
-----------------------------------------------------------------------

Lines 988996

set_tsk_need_resched and clear_tsk_need_resched are the interfaces provided to set the



architecture-specific flag TIF_NEED_RESCHED.

Lines 10031006

need_resched tests the current thread's flag to see if TIF_NEED_RESCHED is set.

When the kernel is returning to user space, it chooses a process to pass control to, as described in
schedule() and scheduler_tick(). Although scheduler_tick() can mark a task as needing
rescheduling, only schedule() operates on that knowledge. schedule() repeatedly chooses a new
task to execute until the newly chosen task does not need to be rescheduled. After schedule()
completes, the new task has control of the processor.

Thus, while a process is running, the system timer causes an interrupt that triggers
scheduler_tick(). scheduler_tick() can mark that task as needing rescheduling and move it to
the expired array. Upon completion of kernel operations, scheduler_tick() could be followed by
other interrupts and the kernel would continue to have control of the processorschedule() is
invoked to choose the next task to run. So, the scheduler_tick() marks processes and
rearranges queues, but schedule() chooses the next task and passes CPU control.

7.2.3. Implicit Kernel Preemption

New in Linux 2.6 is the implementation of implicit kernel preemption. When a kernel task has
control of the CPU, it can only be preempted by another kernel task if it does not currently hold
any locks. Each task has a field, preempt_count, which marks whether the task is preemptible. The
count is incremented every time the task obtains a lock and decremented whenever the task
releases a lock. The schedule() function disables preemption while it determines which task to run
next.

There are two possibilities for implicit kernel preemption: Either the kernel code is emerging from
a code block that had preemption disabled or processing is returning to kernel code from an
interrupt. If control is returning to kernel space from an interrupt, the interrupt calls schedule()
and a new task is chosen in the same way as just described.

If the kernel code is emerging from a code block that disabled preemption, the act of enabling
preemption can cause the current task to be preempted:

----------------------------------------------------------------------
include/linux/preempt.h
46 #define preempt_enable() \
47 do { \
48   preempt_enable_no_resched(); \
49   preempt_check_resched(); \
50 } while (0)
-----------------------------------------------------------------------

Lines 4650

preempt_enable() calls preempt_enable_no_resched(), which decrements the preempt_count on the
current task by one and then calls preempt_check_resched():

----------------------------------------------------------------------
include/linux/preempt.h
40 #define preempt_check_resched() \



41 do { \
42   if (unlikely(test_thread_flag(TIF_NEED_RESCHED))) \
43     preempt_schedule(); \
44 } while (0)
-----------------------------------------------------------------------

Lines 4044

preempt_check_resched() sees if the current task has been marked for rescheduling; if so, it calls
preempt_schedule().

----------------------------------------------------------------------
kernel/sched.c
2328 asmlinkage void __sched preempt_schedule(void)
2329 {
2330   struct thread_info *ti = current_thread_info();
2331 
2332   /*
2333   * If there is a non-zero preempt_count or interrupts are disabled,
2334   * we do not want to preempt the current task. Just return..
2335   */
2336   if (unlikely(ti->preempt_count || irqs_disabled()))
2337     return; 
2338 
2339 need_resched:
2340   ti->preempt_count = PREEMPT_ACTIVE;
2341   schedule();
2342   ti->preempt_count = 0;
2343 
2344  /* we could miss a preemption opportunity between schedule and now */
2345   barrier();
2346   if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
2347     goto need_resched;
2348 }
-----------------------------------------------------------------------

Line 23362337

If the current task still has a positive preempt_count, likely from nesting preempt_disable()
commands, or the current task has interrupts disabled, we return control of the processor to the
current task.

Line 23402347

The current task has no locks because preempt_count is 0 and IRQs are enabled. Thus, we set the
current tasks preempt_count to note it's undergoing preemption, and call schedule(), which
chooses another task.

If the task emerging from the code block needs rescheduling, the kernel needs to ensure it's safe
to yield the processor from the current task. The kernel checks the task's value of preempt_count.
If preempt_count is 0, and thus the current task holds no locks, schedule() is called and a new
task is chosen for execution. If preempt_count is non-zero, it is unsafe to pass control to another



task, and control is returned to the current task until it releases all of its locks. When the current
task releases locks, a test is made to see if the current task needs rescheduling. When the current
task releases its final lock and preempt_count goes to 0, scheduling immediately occurs.



7.3. Spinlocks and Semaphores

When two or more processes require dedicated access to a shared resource, they might need to
enforce the condition that they are the sole process to operate in a given section of code. The
basic form of locking in the Linux kernel is the spinlock.

Spinlocks take their name from the fact that they continuously loop, or spin, waiting to acquire a
lock. Because spinlocks operate in this manner, it is imperative not to have any section of code
inside a spinlock attempt to acquire a lock twice. This results in deadlock.

Before operating on a spinlock, the spin_lock_t structure must be initialized. This is done by
calling spin_lock_init():

----------------------------------------------------------------------
include/linux/spinlock.h
63 #define spin_lock_init(x) \
64   do { \
65     (x)->magic = SPINLOCK_MAGIC; \
66     (x)->lock = 0; \
67     (x)->babble = 5; \
68     (x)->module = __FILE__; \
69     (x)->owner = NULL; \
70     (x)->oline = 0; \
71   } while (0)
-----------------------------------------------------------------------

This section of code sets the spin_lock to "unlocked," or 0, on line 66 and initializes the other
variables in the structure. The (x)->lock variable is the one we're concerned about here.

After a spin_lock is initialized, it can be acquired by calling spin_lock() or spin_lock_irqsave().
The spin_lock_irqsave() function disables interrupts before locking, whereas spin_lock() does
not. If you use spin_lock(), the process could be interrupted in the locked section of code.

To release a spin_lock after executing the critical section of code, you need to call spin_unlock()
or spin_unlock_irqrestore(). The spin_unlock_irqrestore() restores the state of the interrupt
registers to the state they were in when spin_lock_irq() was called.

Let's examine the spin_lock_irqsave() and spin_unlock_irqrestore() calls:

----------------------------------------------------------------------
include/linux/spinlock.h
258 #define spin_lock_irqsave(lock, flags) \
259 do { \
260   local_irq_save(flags); \
261   preempt_disable(); \
262   _raw_spin_lock_flags(lock, flags); \
263 } while (0)
...
321 #define spin_unlock_irqrestore(lock, flags) \
322 do { \
323   _raw_spin_unlock(lock); \
324   local_irq_restore(flags); \



325   preempt_enable(); \
326 } while (0)
-----------------------------------------------------------------------

Notice how preemption is disabled during the lock. This ensures that any operation in the critical
section is not interrupted. The IRQ flags saved on line 260 are restored on line 324.

The drawback of spinlocks is that they busily loop, waiting for the lock to be freed. They are best
used for critical sections of code that are fast to complete. For code sections that take time, it is
better to use another Linux kernel locking utility: the semaphore.

Semaphores differ from spinlocks because the task sleeps, rather than busy waits, when it
attempts to obtain a contested resource. One of the main advantages is that a process holding a
semaphore is safe to block; they are SMP and interrupt safe:

----------------------------------------------------------------------
include/asm-i386/semaphore.h
44 struct semaphore {
45   atomic_t count;
46   int sleepers;
47   wait_queue_head_t wait;
48 #ifdef WAITQUEUE_DEBUG
49   long __magic;
50 #endif
51 };
-----------------------------------------------------------------------
----------------------------------------------------------------------
include/asm-ppc/semaphore.h
24 struct semaphore {
25   /*
26   * Note that any negative value of count is equivalent to 0,
27   * but additionally indicates that some process(es) might be
28   * sleeping on 'wait'.
29   */
30   atomic_t count;
31   wait_queue_head_t wait;
32 #ifdef WAITQUEUE_DEBUG
33   long __magic;
34 #endif
35 };
-----------------------------------------------------------------------

Both architecture implementations provide a pointer to a wait_queue and a count. The count is the
number of processes that can hold the semaphore at the same time. With semaphores, we could
have more than one process entering a critical section of code at the same time. If the count is
initialized to 1, only one process can enter the critical section of code; a semaphore with a count
of 1 is called a mutex.

Semaphores are initialized using sema_init() and are locked and unlocked by calling down() and
up(), respectively. If a process calls down() on a locked semaphore, it blocks and ignores all
signals sent to it. There also exists down_interruptible(), which returns 0 if the semaphore is
obtained and EINTR if the process was interrupted while blocking.

When a process calls down(), or down_interruptible(), the count field in the semaphore is
decremented. If that field is less than 0, the process calling down() is blocked and added to the
semaphore's wait_queue. If the field is greater than or equal to 0, the process continues.



After executing the critical section of code, the process should call up() to inform the semaphore
that it has finished the critical section. By calling up(), the process increments the count field in
the semaphore and, if the count is greater than or equal to 0, wakes a process waiting on the
semaphore's wait_queue.



7.4. System Clock: Of Time and Timers

For scheduling, the kernel uses the system clock to know how long a task has been running. We already
covered the system clock in Chapter 5 by using it as an example for the discussion on interrupts. Here, we
explore the Real-Time Clock and its uses and implementation; but first, let's recap clocks in general.

The clock is a periodic signal applied to a processor, which allows it to function in the time domain. The
processor depends on the clock signal to know when it can perform its next function, such as adding two
integers or fetching data from memory. The speed of this clock signal (1.4GHz, 2GHz, and so on) has
historically been used to compare the processing speed of systems at the local electronics store.

At any given moment, your system has several clocks and/or timers running. Simple examples include the
time of day displayed in the bottom corner of your screen (otherwise known as wall time), the cursor
patiently pulsing on a cluttered desktop, or your laptop screensaver taking over because of inactivity. More
complicated examples of timekeeping include audio and video playback, key repeat (holding a key down),
how fast communications ports run, and, as previously discussed, how long a task can run.

7.4.1. Real-Time Clock: What Time Is It?

The Linux interface to wall clock time is accomplished through the /dev/rtc device driver ioctl() function.
The device for this driver is called a Real-Time Clock (RTC). The RTC[9] provides timekeeping functions
with a small 114-byte user NVRAM. The input to this device is a 32.768KHz oscillator and a connection for
battery backup. Some discrete models of the RTC have the oscillator and battery built in, while other RTCs
are now built in to the peripheral bus controller (for example, the Southbridge) of a processor chipset. The
RTC not only reports the time of day, but it is also a programmable timer that is capable of interrupting
the system. The frequency of interrupts varies from 2Hz to 8,192Hz. The RTC can also interrupt daily, like
an alarm clock. Here, we explore the RTC code:

[9] Manufactured by several vendors, most notably Motorola, with the mc146818. (This RTC is no longer in production. The Dallas

DS12885 or equivalent is used instead.)

----------------------------------------------------------------------
/include/linux/rtc.h

/*
 * ioctl calls that are permitted to the /dev/rtc interface, if
 * any of the RTC drivers are enabled.
 */

70  #define RTC_AIE_ON   _IO('p', 0x01)  /* Alarm int. enable on */
71  #define RTC_AIE_OFF   _IO('p', 0x02)  /* ... off   */
72  #define RTC_UIE_ON   _IO('p', 0x03)  /* Update int. enable on  */
73  #define RTC_UIE_OFF   _ IO('p', 0x04)  /* ... off    */
74  #define RTC_PIE_ON   _IO('p', 0x05)  /* Periodic int. enable on  */
75  #define RTC_PIE_OFF   _IO('p', 0x06)  /* ... off    */
76  #define RTC_WIE_ON   _IO('p', 0x0f) /* Watchdog int. enable on  */
77  #define RTC_WIE_OFF   _IO('p', 0x10) /* ... off    */

78  #define RTC_ALM_SET   _IOW('p', 0x07, struct rtc_time) /* Set alarm time */
79  #define RTC_ALM_READ  _IOR('p', 0x08, struct rtc_time) /* Read alarm time*/
80  #define RTC_RD_TIME   _IOR('p', 0x09, struct rtc_time) /* Read RTC time */
81  #define RTC_SET_TIME  _IOW('p', 0x0a, struct rtc_time) /* Set RTC time */
82  #define RTC_IRQP_READ  _IOR('p', 0x0b, unsigned long)  /* Read IRQ rate*/
83  #define RTC_IRQP_SET  _IOW('p', 0x0c, unsigned long)  /* Set IRQ rate */



84  #define RTC_EPOCH_READ  _IOR('p', 0x0d, unsigned long)  /* Read epoch */
85  #define RTC_EPOCH_SET  _IOW('p', 0x0e, unsigned long)  /* Set epoch */
86  
87  #define RTC_WKALM_SET  _IOW('p', 0x0f, struct rtc_wkalrm)/*Set wakeupalarm*/
88  #define RTC_WKALM_RD  _IOR('p', 0x10, struct rtc_wkalrm)/*Get wakeupalarm*/
89  
90  #define RTC_PLL_GET   _IOR('p', 0x11, struct rtc_pll_info) /* Get PLL correction */
91  #define RTC_PLL_SET   _IOW('p', 0x12, struct rtc_pll_info) /* Set PLL correction */  
-----------------------------------------------------------------------

The ioctl() control functions are listed in include/linux/rtc.h. At this writing, not all the ioctl() calls for
the RTC are implemented for the PPC architecture. These control functions each call lower-level hardware-
specific functions (if implemented). The example in this section uses the RTC_RD_TIME function.

The following is a sample ioctl() call to get the time of day. This program simply opens the driver and
queries the RTC hardware for the current date and time, and prints the information to stderr. Note that
only one user can access the RTC driver at a time. The code to enforce this is shown in the driver
discussion.

----------------------------------------------------------------------
Documentation/rtc.txt
/*
 *  Trimmed down version of code in /Documentation/rtc.txt
 *
 */

int main(void) {

int fd, retval = 0;
//unsigned long tmp, data;
struct rtc_time rtc_tm;

fd = open ("/dev/rtc", O_RDONLY);

/* Read the RTC time/date */
retval = ioctl(fd, RTC_RD_TIME, &rtc_tm);

/* print out the time from the rtc_tm variable */

close(fd);
return 0;

} /* end main */
------------------------------------------------------------------------

This code is a segment of a more complete example in /Documentation/ rtc.txt. The two main lines of
code in this program are the open() command and the ioctl() call. open() tells us which driver we will use
(/dev/rtc) and ioctl() indicates a specific path through the code down to the physical RTC interface by
way of the RTC_RD_TIME command. The driver code for the open() command resides in the driver source,
but its only significance to this discussion is which device driver was opened.

7.4.2. Reading the PPC Real-Time Clock



At kernel compile time, the appropriate code tree (x86, PPC, MIPS, and so on) is inserted. The source
branch for PPC is discussed here in the source code file for the generic RTC driver for non-x86 systems:

----------------------------------------------------------------------
/drivers/char/genrtc.c 
276  static int gen_rtc_ioctl(struct inode *inode, struct file *file,
277    unsigned int cmd, unsigned long arg)
278  {
279   struct rtc_time wtime;
280   struct rtc_pll_info pll;
281  
282   switch (cmd) {
283  
284   case RTC_PLL_GET:
...  
290   case RTC_PLL_SET:
...
298   case RTC_UIE_OFF:  /* disable ints from RTC updates.  */
...
302   case RTC_UIE_ON:  /* enable ints for RTC updates.  */
...
305   case RTC_RD_TIME:  /* Read the time/date from RTC  */
306    
307    memset(&wtime, 0, sizeof(wtime));
308    get_rtc_time(&wtime);
309  
310    return copy_to_user((void *)arg,&wtime,sizeof(wtime)) ? -EFAULT:0;
311
312   case RTC_SET_TIME:  /* Set the RTC */
313    return -EINVAL;
314   }
...
353  static int gen_rtc_open(struct inode *inode, struct file *file)
354  {
355   if (gen_rtc_status & RTC_IS_OPEN)
356    return -EBUSY;
357   gen_rtc_status |= RTC_IS_OPEN;
------------------------------------------------------------------------

This code is the case statement for the ioctl command set. Because we made the ioctl call from the user
space test program with the RTC_RD_TIME flag, control is transferred to line 305. The next call is at line 308,
get_rtc_time(&wtime) in rtc.h (see the following code). Before leaving this code segment, note line 353.
This allows only one user to access, via open(), the driver at a time by setting the status to RTC_IS_OPEN:

----------------------------------------------------------------------
include/asm-ppc/rtc.h
045  static inline unsigned int get_rtc_time(struct rtc_time *time)
046  {
047    if (ppc_md.get_rtc_time) {
048     unsigned long nowtime;
049   
050    nowtime = (ppc_md.get_rtc_time)();
051   
052     to_tm(nowtime, time);
053   
054     time->tm_year -= 1900;



055  time->tm_mon -= 1; /* Make sure userland has a 0-based month */
056    }
057   return RTC_24H;
058  }
------------------------------------------------------------------------

The inline function get_rtc_time() calls the function that the structure variable pointed at by
ppc_md.get_rtc_time on line 50. Early in the kernel initialization, this variable is set in chrp_setup.c:

----------------------------------------------------------------------
arch/ppc/platforms/chrp_setup.c
447  chrp_init(unsigned long r3, unsigned long r4, unsigned long r5,
448  unsigned long r6, unsigned long r7)
449  {
...
477   ppc_md.time_init  = chrp_time_init;
478   ppc_md.set_rtc_time = chrp_set_rtc_time;
479   ppc_md.get_rtc_time = chrp_get_rtc_time;
480   ppc_md.calibrate_decr = chrp_calibrate_decr;
------------------------------------------------------------------------

The function chrp_get_rtc_time() (on line 479) is defined in chrp_time.c in the following code segment.
Because the time information in CMOS memory is updated on a periodic basis, the block of read code is
enclosed in a for loop, which rereads the block if the update is in progress:

----------------------------------------------------------------------
arch/ppc/platforms/chrp_time.c
122  unsigned long __chrp chrp_get_rtc_time(void)
123  {
124   unsigned int year, mon, day, hour, min, sec;
125   int uip, i;
...  
141   for ( i = 0; i<1000000; i++) {
142    uip = chrp_cmos_clock_read(RTC_FREQ_SELECT);
143    sec = chrp_cmos_clock_read(RTC_SECONDS);
144    min = chrp_cmos_clock_read(RTC_MINUTES);
145    hour = chrp_cmos_clock_read(RTC_HOURS);
146    day = chrp_cmos_clock_read(RTC_DAY_OF_MONTH);
147    mon = chrp_cmos_clock_read(RTC_MONTH);
148    year = chrp_cmos_clock_read(RTC_YEAR);
149    uip |= chrp_cmos_clock_read(RTC_FREQ_SELECT);
150    if ((uip & RTC_UIP)==0) break;
151   }
152   if (!(chrp_cmos_clock_read(RTC_CONTROL)
153   & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
154   {
155    BCD_TO_BIN(sec);
156    BCD_TO_BIN(min);
157    BCD_TO_BIN(hour);
158    BCD_TO_BIN(day);
159    BCD_TO_BIN(mon);
160    BCD_TO_BIN(year); 
161   }
...



054  int __chrp chrp_cmos_clock_read(int addr)
055  {   if (nvram_as1 != 0)
056   outb(addr>>8, nvram_as1);
057   outb(addr, nvram_as0);
058   return (inb(nvram_data));
059  }
------------------------------------------------------------------------

Finally, in chrp_get_rtc_time(), the values of the individual components of the time structure are read
from the RTC device by using the function chrp_cmos_clock_read. These values are formatted and
returned in the rtc_tm structure that was passed into the ioctl call back in the userland test program.

7.4.3. Reading the x86 Real-Time Clock

The methodology for reading the RTC on the x86 system is similar to, but somewhat more compact and
robust than, the PPC method. Once again, we follow the open driver /dev/rtc, but this time, the build has
compiled the file rtc.c for the x86 architecture. The source branch for x86 is discussed here:

----------------------------------------------------------------------
drivers/char/rtc.c 
...
352  static int rtc_do_ioctl(unsigned int cmd, unsigned long arg, int kernel)
353  {
...
switch (cmd) {
...
482  case RTC_RD_TIME:  /* Read the time/date from RTC  */
483  {
484   rtc_get_rtc_time(&wtime);
485   break;
486  }
...
1208  void rtc_get_rtc_time(struct rtc_time *rtc_tm)
1209  {
...
1238   spin_lock_irq(&rtc_lock);
1239   rtc_tm->tm_sec = CMOS_READ(RTC_SECONDS);
1240   rtc_tm->tm_min = CMOS_READ(RTC_MINUTES);
1241   rtc_tm->tm_hour = CMOS_READ(RTC_HOURS);
1242   rtc_tm->tm_mday = CMOS_READ(RTC_DAY_OF_MONTH);
1243   rtc_tm->tm_mon = CMOS_READ(RTC_MONTH);
1244   rtc_tm->tm_year = CMOS_READ(RTC_YEAR);
1245   ctrl = CMOS_READ(RTC_CONTROL);
...
1249  spin_unlock_irq(&rtc_lock);
1250
1251  if (!(ctrl & RTC_DM_BINARY) || RTC_ALWAYS_BCD)
1252  {
1253   BCD_TO_BIN(rtc_tm->tm_sec);
1254   BCD_TO_BIN(rtc_tm->tm_min);
1255   BCD_TO_BIN(rtc_tm->tm_hour);
1256   BCD_TO_BIN(rtc_tm->tm_mday);
1257   BCD_TO_BIN(rtc_tm->tm_mon);
1258   BCD_TO_BIN(rtc_tm->tm_year);
1259  }
------------------------------------------------------------------------



The test program uses the ioctl() flag RTC_RD_TIME in its call to the driver rtc.c. The ioctl switch
statement then fills the time structure from the CMOS memory of the RTC. Here is the x86 implementation
of how the RTC hardware is read:

----------------------------------------------------------------------
include/asm-i386/mc146818rtc.h 
...
018  #define CMOS_READ(addr) ({ \
019   outb_p((addr),RTC_PORT(0)); \
020   inb_p(RTC_PORT(1)); \
021  })
-----------------------------------------------------------------------



Summary

This chapter covered the Linux scheduler, preemption in Linux, and the Linux system clock and
timers.

More specifically, we covered the following topics:

We introduced the new Linux 2.6 scheduler and outlined its new features.

We described how the scheduler chooses the next task from among all tasks it can choose
and the algorithms the scheduler uses to do so.

We discussed the context switch that the scheduler uses to actually swap a process and
traced the function into the low-level architecture-specific code.

We covered how processes in Linux can yield the CPU to other processes by calling
schedule() and how the kernel then marks that process as "to be scheduled."

We delved into how the Linux kernel calculates dynamic priority based on the previous
behavior of an individual process and how a process eventually gets removed from the
scheduling queue.

We then moved on and covered implicit and explicit user- and kernel-level preemption and
how each is dealt with in the 2.6 Linux kernel.

Finally, we explored timers and the system clock and how the system clock is implemented in
both x86 and PPC architectures.



Exercises

1: How does Linux notify the scheduler to run periodically?

2: Describe the difference between interactive and non-interactive processes.

3: With respect to the scheduler, what's special about real-time processes?

4: What happens when a process runs out of scheduler ticks?

5: What's the advantage of an O(1) scheduler?

6: What kind of data structure does the scheduler use to manage the priority of the
processes running on a system?

7: What happens if you were to call schedule() while holding a spinlock?

8: How does the kernel decide whether a kernel task can be implicitly preempted?
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So far, we presented the subsystems of the Linux kernel and the structures central to their
operation. Every chapter has assumed that the subsystem was up and running, and we focused
on the typical kernel subsystem management and handling operations. However, each subsystem
must be initialized before it can be used. This initialization occurs during the kernel bootup, which
is a process that begins after the bootloader finishes loading the kernel image into memory and
passes processing control to it.

We chose to follow the kernel initialization process in the linear order in which it occurs. We begin
with a discussion of what happens on power-on through to the call to the first architecture-
independent function, start_kernel(), and follow the process up to the invocation of /sbin/init.
Figure 8.1 illustrates the order of events from system power on to power off.

Figure 8.1. Kernel Inception and Boot Process

[View full size image]

We begin with a discussion of BIOS and Open Firmware, which is the first code that runs in the
x86 and PPC systems upon power on, respectively. This is followed by a discussion of bootloaders
commonly used with Linux and how they load the kernel and pass execution control to it. We then
discuss in detail the step known as kernel initialization, where all the subsystems are initialized.
The end of the kernel initialization is marked by the call to /sbin/init by process 1. The init
program continues on with what is known as system initialization by enabling processes that
need to be running before users can log in.

It soon becomes obvious that part of the nature of kernel initialization consists of interleaved
subsystem bring-up. This makes it difficult to follow the initialization of a given subsystem from
start to end without being interrupted. However, following the linear order of the Linux kernel
bootup allows us to trace the setup of kernel subsystems as they occur and illustrates the



complexity of the bootstrapping process.

We refer to many of the structures introduced in previous chapters because this is where these
structures are first brought up and initialized. We begin by looking at the first step: BIOS and
Open Firmware.



8.1. BIOS and Open Firmware

Upon power-on the processor first accesses an address that usually resides in read-only memory.
This read-only memory is often referred to as Flash ROM (or just Flash). This is where the first
code that runs on the system resides. This code is responsible for enabling enough of the system
to handle the loading of the kernel.

For x86 systems, this is where the system BIOS resides. The Basic Input Output System
(BIOS) is a block of hardware-specific system initialization code that boots the system. In x86
systems, the boot loader and, in turn Linux, depend on BIOS to bring the system to a known
state. The interface to BIOS is a uniform set of functions known as interrupts. At load time, Linux
uses these interrupts to query available system resources. After BIOS completes its initialization,
it copies the first 512 bytes from the boot device (which is discussed in the next section) to
address 0x7c00 and jumps to it. Although in some installations, BIOS loads the operating system
over a network connection, this discussion is confined to the process when loading Linux from the
hard drive. When Linux is loaded, BIOS is still in memory and its functions are accessible and
called by way of interrupts.

For PowerPC, the type of initialization code depends on the age of the specific PowerPC
architecture. Older IBM systems use PowerPC Reference Platform (PreP) whereas more
recent IBM systems use Common Hardware Reference Platform (CHRP). G4 systems and
later have been called "True New World" and use Open Firmware (OF) bound to a particular
architecture implementation. (For more information on this processor and system-independent
boot firmware and how it is bound to one of these formats, see the Open Firmware home page at
www.openfirmware.org.)



8.2. Boot Loaders

Boot loaders are programs that reside on the boot device of a computer. The first boot device is
usually the first hard disk in the system. A boot loader is called by BIOS (x86) or firmware (PPC)
after enough system initialization has occurred to support the memory, interrupts, and I/O
required to load the kernel. Once loaded, the kernel initializes and configures the operating
system.

For x86 systems, the BIOS allows the user to set the order of boot devices for their system. These
boot devices are typically the floppy, CD-ROM, and the hard drive. Formatting a disk (with fdisk,
for example) creates the Master Boot Record (MBR), which resides in the first sector (sector 0,
cylinder 0, head 0) of the boot device. The MBR contains a small program and a four-entry
partition table. The end of the boot sector has a hex marker 0xAA55 at location 510. Table 8.1
shows the components of the MBR.

Table 8.1. MBR Components

Offset Length Purpose

0x00 0x1bd MBR program code

0x1be 0x40 Partition table

0x1fe 0x2 Hex marker or signature

The MBR's partition table holds information pertinent to each of the hard disk primary partitions.
Table 8.2 shows what each 16-byte entry of the MBR's partition table looks like:

Table 8.2. MBR 16-byte Entries

Offset Length Purpose

0x00 1 Active Boot Partition Flag

0x01 3 Starting Cylinder/Head/Sector of boot partition

0x04 1 Partition Type (Linux uses 0x83,PPC PReP uses 0x41)

0x05 3 Ending Cylinder/Head/Sector of boot partition

0x08 4 Partition starting sector number

0x0c 4 Partition length (in sectors)

At the end of self-test and hardware identification, the system initialization code (Firmware or
BIOS) accesses the hard drive controller to read the MBR. After the type of boot drive is identified,
one can follow a documented interface (for example, on an IDE drive) to access head 0, cylinder
0, and sector 0.

After the boot device is located, the MBR is copied to memory address 0x7c00 and executed. The



small program at the head of the MBR moves itself out of the way and searches its partition table
for the location of the active boot partition. The MBR then copies the code from the active boot
partition to address 0x7c00 and begins executing it. From this point, DOS is usually booted on an
x86 system. However, the active boot partition can have a bootloader that, in turn, loads the
operating system. We now discuss some of the most common bootloaders that Linux uses. Figure
8.2 shows what memory looks like at bootup time.

Figure 8.2. View of Memory at Bootup Time

[View full size image]

8.2.1. GRUB

The Grand Unified Bootloader (GRUB) is an x86-based bootloader that's used to load Linux.
GRUB 2 is in the process of being ported to PPC at the time of writing. Ample documentation
exists on www.gnu.org/software/grub, including its history and future designs. GRUB recognizes
filesystems on the boot drives, and the kernel can be loaded by specifying the filename, drive, and
partition where the kernel resides. GRUB is a two-stage bootloader.[1] Stage 1 is installed in
the MBR and is called by BIOS. Stage 2 is partially loaded by Stage 1 and then finishes loading
itself from the filesystem. The breakdown of events ocurring in each of the stages is the following:

[1] Sometimes, GRUB is used with a Stage 1.5, but we discuss only the usual two stages.

Stage 1

Initialization.1.

Detect the loading drive.

Load the first sector of Stage 2.

Jump to Stage 2.

Stage 2

Load the rest of Stage 2.1.



1.

Jump to loaded code.

GRUB can be accessed through an interactive command line or a menu-driven interface. When
using the menu interface, a configuration file must be created. Here is a stanza from the GRUB
configuration file that loads the Linux kernel:

[View full width]
----------------------------------------------------------------------
/boot/menu.lst
...
title     Kernel 2.6.7, test kernel
root      (hd0,0)
kernel      /boot/bzImage-2.6.7-mytestkernel root=/dev/hda1 ro [2]

...
-----------------------------------------------------------------------

[2] The kernel accepts specifications at boot time by way of the kernel command line. This is a string describing a list of

parameters that specify information such as hardware specifications, default values, etc. Go to

www.tldp.org/HOWTO/BootPrompt-HOWTO.html for more information on the Linux boot prompt.

The options are title, which holds a label for the setup; root, which sets the current root device
to hd0, partition 0; and kernel, which loads the primary boot image of the kernel from the
specified file. The rest of the information in the kernel entry is passed as boot time parameters to
the kernel.

Certain aspects of booting, such as the location of where the kernel image is loaded and
uncompressed, are configured in the architecture-specific sections of the Linux kernel code. Let's
look at arch/i386/boot/setup.S where this is done for x86:

----------------------------------------------------------------------
arch/i836/boot/setup.S
61 INITSEG = DEF_INITSEG   # 0x9000, we move boot here, out of the way
62 SYSSEG = DEF_SYSSEG   # 0x1000, system loaded at 0x10000 (65536).
63 SETUPSEG = DEF_SETUPSEG   # 0x9020, this is the current segment
-----------------------------------------------------------------------

This configuration specifies that Linux boots and loads the executable image to linear address
0x9000 and jumps to 0x9020. At this point, the uncompressed part of the Linux kernel
decompresses the compressed portion to address 0x10000 and kernel initialization begins.

GRUB is based on the Multiboot Specification. At the time of this writing, Linux does not have all
the structures in place to be multiboot-compliant, but it is worth discussing multiboot
requirements.

8.2.1.1. Multiboot Specification

The Multiboot Specification describes an interface between any potential bootloader and any
potential operating system. The Multiboot Specification does not say how a bootloader should
work, but how it must interface with the operating system being loaded. Currently targeted at x86
architectures and free 32-bit operating systems, it provides a standard means for a bootloader to
pass configuration information to an operating system. The OS image can be of any type (ELF or
special), but must contain a multiboot header in the first 8K of the image, as well as the magic
number 0x1BADB002. The multiboot-compliant loader should also provide a method for auxiliary
boot modules or drivers to be used by the OS at boot time as certain OSes do not load all the



programs necessary for operation into the bootable kernel image. This is often done to modularize
boot kernels and keep the boot kernel to a manageable size.

The Multiboot Specification dictates that, when the bootloader invokes the OS, the system must be
in a specific 32-bit real mode state such that the OS can successfully make calls back into BIOS if
desired. Finally, the bootloader must present the OS with a data structure filled with essential
machine data. We now look at the multiboot information data structure.

-----------------------------------------------------------------------
typedef struct multiboot_info
{
ulong flags;   // indicate following fields
ulong mem_lower;  // if flags[0],amnt of mem < 1M
ulong mem_upper;  // if flags[0],amnt of mem > 1M
ulong boot_device;  // if flags[1],drive,part1,2,3 
ulong cmdline;   // if flags[2],addr of cmd line
ulong mods_count;  // if flags[3],#of boot modules
ulong mods_addr;  // if flags[3],addr of first
        boot module.    
union
{
aout_symbol_table_t aout_sym; // if flags[4], symbol table
    from a.out kernel image
elf_section_header_table_t elf_sec;// if flags[5], header 
     from ELF kernel.
} u;
ulong mmap_length;  // if flags[6],BIOS mem map len
ulong mmap_addr;  // if flags[6],BIOS map addr
ulong drives_length;  // if flags[7],BIOS drive info structs
ulong drives_length;  // if flags[7],first BIOS drive info 
       struct.
ulong config_table  // if flags[8],ROM config table 
ulong boot_loader_name  // if flags[9],addr of string
ulong apm_table  // if flags[10],addr of APM info table
ulong vbe_control_info  // if flags[11],video mode settings
ulong vbe_mode_info
ulong vbe_mode
ulong vbe_interface_seg
ulong vbe_interface_off
ulong vbe_interface_len
};
-----------------------------------------------------------------------

A pointer to this structure is passed in EBX when control is passed to the OS. The first field, flags,
indicates which of the following fields are valid. Unused fields must be 0. You can learn more about
the Multiboot Specification at www.gnu.org/software/grub/manual/multiboot/multiboot.html.

8.2.2. LILO

The LInux LOader (LILO) has been used for years as an x86 loader for Linux. It was one of the
earliest boot-loading programs available to assist in the configuration and loading of the Linux
kernel. LILO is similar to GRUB in the sense that it is a two-stage bootloader. LILO uses a
configuration file and does not have a command-line interface.

Again, we start with BIOS initializing the system and loading the MBR (Stage 1) into memory and
transferring control to it. The breakdown of the events occurring in each of LILO's stages is as



follows:

Stage 1

Begins execution and displays "L."1.

Detects disk geometry and displays "I."

Loads Stage 2 code.

Stage 2

Begins execution and displays "L."1.

Locates boot data and OS and displays "O."

Determines which OS to start and jumps to it.

A stanza from the LILO configuration file looks like this:

----------------------------------------------------------------------
/etc/lilo.conf
image=/boot/bzImage-2.6.7-mytestkernel
label=Kernel 2.6.7, my test kernel
root=/dev/hda6
read-only
-----------------------------------------------------------------------

The parameters are image, which indicates the pathname of the kernel; label, which is a string
describing the configuration; root, which indicates the partition where the root filesystem resides;
and read-only, which indicates that the root partition cannot be altered during boot.

Here is a list of the differences between GRUB and LILO:

LILO stores configuration information in the MBR. If any changes are made, /sbin/lilo must
be run to update the MBR.

LILO cannot read various filesystems.

LILO has no interactive command-line interface.

Let's review what happens when LILO is the bootloader. First, the MBR (which contains LILO) is
copied to 0x7c00 and begins execution. LILO begins by copying the kernel image referenced in
/etc/lilo.conf from the hard drive. This image, created by build.c, is made up of the init
sector (loaded at 0x90000), the setup sector (loaded at 0x90200), and the compressed image
(loaded at 0x10000). LILO then jumps to label start_of _setup at address 0x90200.

8.2.3. PowerPC and Yaboot

Yaboot is a bootloader based on the Open Firmware (OF) of New World PowerPC machines.
Similar to LILO and GRUB, Yaboot uses a configuration file and a utility such as ybin or



ybootconfig to set up a bootstrap partition containing Yaboot. Similar to the x86 BIOS, OF allows
configuration of the boot device. However, in the OF case, it varies by system. OF settings can be
usually found by pressing "Command+Option/Alt+o+f..?"

Yaboot uses the following steps to boot:

1. Yaboot gets called by OF.

2. Finds boot device, boot path, and opens boot partition.

3. Opens /etc/yaboot.conf or command shell.

4. Loads image or kernel and initrd.

5. Executes image.

As you can see, the kernel-loading stanza for Yaboot is similar to LILO and GRUB:

----------------------------------------------------------------------
yaboot.conf
label=Linux
root=/dev/hda11
sysmap=/boot/System.map
read-only
-----------------------------------------------------------------------

As in LILO, ybin installs Yaboot to the boot partition. Any updates/changes to the Yaboot
configuration require rerunning ybin.

Documentation on Yaboot can be found at www.penguinppc.org.



8.3. Architecture-Dependent Memory Initialization

We now take a moment to discuss hardware management features in PPC and x86. Both x86 and PowerPC
architectures have hardware memory-management features to support real and virtual addressing
environments. As in all operating systems, Linux Memory Management depends on the underlying
hardware architecture. This section describes the hardware initialization of both architectures. Because the
initialization of memory management is extremely hardware dependent, the hardware specifications need
to be understood in order to follow the initialization process. Memory management is one of the first
subsystems to be initialized and begins prior to the execution of start_kernel() because of its highly
architecture-dependent nature.

8.3.1. PowerPC Hardware Memory Management

Also known as "storage control" in the PowerPC world, this section describes the hardware-supported
features of address translation specific to the PowerPC architecture. We follow up with a discussion on how
Linux uses (or disregards, for the sake of portability) these features from system power-on through kernel
initialization.

8.3.1.1. Real Addressing Mode

From embedded up to high performance, all PowerPC processors come out of hardware reset in real
mode.[3] PowerPC real-addressing mode is defined as having the processor in a state of disabled address
translation. Address translation is controlled by the instruction relocate (IR) and data relocate (DR)
bits in the Machine State Register (MSR). For fetch instructions, if the IR bit is 0, the effective
address (EA) is the same as the real address. For load and store instructions, the DR bit in the MSR plays
a similar role.

[3] Even the 440 series of processors, which technically have no real mode, start with a "shadow" TLB that maps linear addresses to

physical addresses.

The MSR, which is illustrated in Figure 8.3, is a 64- or 32-bit register that describes the current state of the
processor. On a 32-bit implementation, the IR and DR are bits 26 and 27.

Figure 8.3. PowerPC Machine State Register (MSR)

Because address translation in Linux is a combination of hardware and software structures, real mode is
fundamental to the boot process of initializing the memory subsystem and the memory-management
structures of Linux. The need to enable address translation is exemplified by the inherent limitations of real
mode. Real mode is only capable of addressing the implemented address width; this is 64- or 32-bit in
most applications. The two major limitations are as follows:

There is no hardware protection for load/store operations.

Any access (instruction or data) to or from an address that does not have a device physically
attached to the bus might cause a Machine Check (also known as a Checkstop), which in most cases,



is unrecoverable.

8.3.1.2. Address Translation

The lack of address translation is real addressing. Address translation opens the door to virtual addressing
where every possible address is not physically available at any given instance, but through the clever use
of hardware and software, every possible address can be made virtually available when accessed.

With address translation enabled, the PowerPC architecture translates an EA by one of two methods:
Segmented Address Translation or Block Address Translation (see Figure 8.4). If the EA can be
translated by both methods, Block Address Translation takes precedence. Address translation is said to be
enabled when MSRIR=1, or MSRDR=1, or both. Segmented Address Translation breaks virtual memory into
segments, which are divided into 4KB pages, each representing physical memory. Block Address
Translation breaks memory into regions ranging from 128MB to 256MB.

Figure 8.4. 32-Bit Address Translation



Memory Addressing Terminology

When we reference memory, we really only have two distinct methodologies or modes: real
addressing, where each increment of the address specifies a specific base unit (usually a
byte) in physical memory; and virtual addressing, where the address is a computation in
hardware and/or software. Here are some example terms used for each:

Real addressing. Physical, bus

Virtual addressing. Effective, protected, and translated

In PowerPC, effective address space is considered a subset of virtual address space.

Terms such as linear, flat, and logical can apply to both modes.

Segmented Address Translation Direct Store Segment T

The next level of translation is determined by the T bit, which is located in the Segment Register. Bits
0:3 of the EA select one of 16 segment registers (SRs) in the PowerPC 7xx series. Figure 8.5 illustrates the
segment register.

Figure 8.5. Segment Register

With the T bit set, the segment is deemed a direct store segment to an I/O device, and there is no
reference to hardware page tables. The I/O address is made up of a permission bit, the BUID, the
controller-specific field, and bits 4:31 of the EA. Linux does not use direct store segmentation.

When the Segmented Address Translation Ordinary Segment T is not set, the virtual segment ID (VSID)
field is used.

Referring to Figure 8.6, a 52-bit virtual address (VA) is formed by concatenating bits 20:31 of the EA
(the offset within a given page), bits 4:19 of the EA, and bits 8:31 of the selected segment register VSID
field. The most significant 40 bits of the VA make up the virtual page number (VPN). The PowerPC
architecture uses a Hashed Page Table to map VPNs to real page numbers (the real address of a desired
page in memory). The hash function uses the VPN and the value in Storage Description Register 1
(SDR1) to store and retrieve a Page Table Entry (PTE). The PTE, which is illustrated in Figure 8.7, is an
8-byte structure that contains all the necessary attributes of a page in memory.

Figure 8.6. Segment Translation



Figure 8.7. Page Table Entry

Block Address Translation

As its name implies, Block Address Translation (BAT) is an addressing mechanism that allows for
mapping blocks of contiguous memory from 125KB to 256MB. BAT registers are privileged special
purpose registers (SPRs) in the PowerPC architecture. Figure 8.8 illustrates the BAT register.

Figure 8.8. BAT Register



The formation of a real address from a BAT register can be seen in Figure 8.9. Four Instruction BAT
(IBAT) registers and four Data BAT (DBAT) registers can be read or written using mtspr and mfspr PPC
instructions.[4]

[4] Block Address Translation is not implemented on all PowerPC processors. Notably, it was not implemented on G4 or G5. It is

implemented in the 4xx-embedded processors.

Figure 8.9. BAT Real

Translation Lookaside Buffers

The Translation Lookaside Buffers (TLBs) can be thought of as a hardware cache with hardware
protection for the paging system. The TLB varies in length with PowerPC architectures and contains an



index of the most recently used PTEs. The paging software must be sure to keep the TLBs in sync with the
page table. When the processor cannot find a page in the hash table,[5] the Linux page tables are then
searched. If the page is still not found, a normal page fault is generated. Information on optimization of
the synchronization between the Linux page tables and PPC hash tables can be found in the document,
"Low Level Optimizations in the PowerPC/Linux Kernels," by Paul Mackerras.

[5] Hash tables are not implemented on all PowerPC processors. They are absent in the 4xx- and 8xx-embedded systems where a TLB

miss generates an exception in the hardware and the paging software, and then brings the page in.

Storage Access Mode Control

When address translation is enabled (MSRIR=1, or MSRDR=1, or both) and accomplished by way of
Segmented Address Translation or Block Address Translation, the storage mode is determined by four
control bits: W, I, M, and G. For Segmented Address Translation, they are bits 25:28 of the second word of
a PTE, and the same bits for the second SPR of the DBAT. (The G-bit is reserved in the IBAT.) Two more
bitsReference and Control, which are located in the PTEare available for Segmented Address Translation.
The R and C bits are set by hardware or software. (See the following sidebar for a discussion of the W, I,
M, G, R, and C bits.)

Control Bits

The W, I, M, G, R, and C bits control how the processor accesses the cache and main
memory:

W (Write Through). If data is in the cache and a store operation is performed on it, if
W=1, the copy in main memory must also be updated.

I (Cache Inhibit). Updates bypass cache and goes straight through to main memory.

M (Memory Coherence). When M=1, hardware memory coherency is enforced.

G (Guarded). When G=1, speculative execution is suppressed.

R (Referenced). When R=1, the Page Table entry has been referenced.

C (Changed). When C=1, the Page Table entry has been changed.

8.3.1.3. How Linux Uses PPC Address Translation

We now look at the code that influences memory management in PPC.

The following code is the first in the kernel distribution to get control. This routine calls back into the
Firmware for allocation of temporary regions by using the claim() function. The kernel is then
decompressed into its proper location:

----------------------------------------------------------------------
arch/ppc/boot/openfirmware/newworldmain.c
40  void boot(int a1, int a2, void *prom)
...
54  claim(initrd_start, RAM_END - initrd_start, 0);
55  printf("initial ramdisk moving 0x%x <- 0x%p (%x bytes)\n\r",
56   initrd_start, (char *)(&__ramdisk_begin), initrd_size);



57  memcpy((char *)initrd_start, (char *)(&__ramdisk_begin), initrd_size);
...
63  /* claim 3MB starting at PROG_START */
64   claim(PROG_START, PROG_SIZE, 0);
65   dst = (void *) PROG_START;
66   if (im[0] == 0x1f && im[1] == 0x8b) {
67  /* claim some memory for scratch space */
68  avail_ram = (char *) claim(0, SCRATCH_SIZE, 0x10);
69  begin_avail = avail_high = avail_ram;
70  end_avail = avail_ram + SCRATCH_SIZE;
71  printf("heap at 0x%p\n", avail_ram);
72  printf("gunzipping (0x%p <- 0x%p:0x%p)...", dst, im, im+len);
73  gunzip(dst, PROG_SIZE, im, &len);
74  printf("done %u bytes\n", len);
75  printf("%u bytes of heap consumed, max in use %u\n",
76   avail_high - begin_avail, heap_max);
...
86  sa = (unsigned long)PROG_START;
87   printf("start address = 0x%x\n", sa);
88
89   (*(kernel_start_t)sa)(a1, a2, prom);
----------------------------------------------------------------------

Line 40

Entry point to this file is the function boot(a1, a2, *prom).

Line 54

Function claim() is called to allocate memory just below 1M and ramdisk is copied into that memory.

Line 64

Function claim() is called to allocate 3M of memory, starting at 0x1_0000 for the image.

Line 68

Function claim() is called to allocate 8K of memory starting at 0x00 for scratch/heap.

Line 73

The image is gunzipped to address 0x1_0000 (PROG_START).

Line 89

Jump to 0x1_0000 ((*kernel_start_t)sa) with parameters (a1, a2, and prom) where a1 holds the value in
r3 (equal to the boot ramdisk start), a2 holds the value in r4 (equal to the boot ramdisk size or
0xdeadbeef in the case of no ramdisk) and prom holds the value in r5 (code stored in system ROM).

The next code block readies the hardware memory-management features of the various PowerPC



processors. The first 16M of RAM is mapped to 0xc0000000:

----------------------------------------------------------------------
arch/ppc/kernel/head.S
131  __start:
...
150  bl  early_init  in <arch/ppc/kernel/setup.c> (283)
...
170  bl  mmu_off
...  
171   RFI: SRR0=>IP, SRR1=>MSR
172  #ifndef CONFIG_POWER4
173   bl  clear_bats
174   bl  flush_tlbs
175
176   bl  initial_bats
177  #if !defined(CONFIG_APUS) && defined(CONFIG_BOOTX_TEXT)
178   bl  setup_disp_bat
179  #endif
180  #else /* CONFIG_POWER4 */
181   bl  reloc_offset
182   bl  initial_mm_power4
183  #endif /* CONFIG_POWER4 */
185  /*
186  * Call setup_cpu for CPU 0 and initialize 6xx Idle
187  */
188   bl  reloc_offset
189   li  r24,0    /* cpu# */
190   bl  call_setup_cpu   /* Call setup_cpu for this CPU */
195  #ifdef CONFIG_POWER4
196   bl  reloc_offset
197  bl  init_idle_power4
198  #endif /* CONFIG_POWER4 */
199
210  bl  reloc_offset
211  mr  r26,r3
212  addis  r4,r3,KERNELBASE@h  /* current address of _start */
213  cmpwi  0,r4,0    /* are we already running at 0? */
214  bne  relocate_kernel
215
...
224  turn_on_mmu:
225  mfmsr  r0
226  ori  r0,r0,MSR_DR|MSR_IR
227  mtspr  SRR1,r0
228  lis  r0,start_here@h
229  ori  r0,r0,start_here@l
230  mtspr  SRR0,r0
231  SYNC
232  RFI     /* enables MMU */
----------------------------------------------------------------------

Line 131

This is the entry point to this code. Get minimal mmu environment set up. (Note that APUS stands for Amiga
Power Up System.)



Line 150

There might be a difference between where the kernel is loaded and where it is linked. The function
early_init returns the physical address of the current code.

Line 170

Shut off memory-management unit of PPC. If both IR and DR are enabled, leave them on; otherwise, shut
off relocation.

Lines 173176

If not power4 or G5, clear the BAT registers, flush TLBs, and set up BATs to map the first 16M of RAM to
0xc0000000.

Note the various labels for kernel memory used throughout the kernel:

----------------------------------------------------------------------
arch/ppc/defconfig
CONFIG_KERNEL_START=0xc0000000
-----------------------------------------------------------------------

and

----------------------------------------------------------------------
include/asm-ppc/page.h
#define PAGE_OFFSET  CONFIG_KERNEL_START
#define KERNELBASE  PAGE_OFFSET
----------------------------------------------------------------------

Lines 181182

By using segmentation, set up kernel memory for power4 and G5.

Lines 188198

setup_cpu() initializes the kernel and user features, such as cache configuration, or whether an FPU or
MMU exists. (Note that at this writing, init_idle_power4 is a noop.)

Line 210

Relocate kernel to KERNELBASE or 0x00, depending on the platform.

Lines 224232



Turn on the MMU (if it is not already) by enabling IR and DR in MSR. Then, execute an RFI instruction
causing a jump to the label start_here:. (Note: The RFI instruction loads the MSR with the contents of
SRR1 and branches to the address in SRR0.)

The following code is where the kernel starts. It sets up all memory in the system based on the command
line:

----------------------------------------------------------------------
arch/ppc/kernel/head.S
1337  start_here:
...
1364  bl  machine_init  
1365  bl  MMU_init
...
1385  lis  r4,2f@h
1386  ori  r4,r4,2f@l
1387  tophys(r4,r4)
1388  li  r3,MSR_KERNEL & ~(MSR_IR|MSR_DR)
1389  FIX_SRR1(r3,r5)
1390  mtspr  SRR0,r4
1391  mtspr  SRR1,r3
1392  SYNC
1393  RFI
1394  /* Load up the kernel context */
1395  2:  bl  load_up_mmu
...
1411  /* Now turn on the MMU for real! */
1412  li  r4,MSR_KERNEL
1413  FIX_SRR1(r4,r5)
1414  lis  r3,start_kernel@h
1415  ori  r3,r3,start_kernel@l
1416  mtspr  SRR0,r3
1417  mtspr  SRR1,r4
1418  SYNC
1419  RFI
----------------------------------------------------------------------

Line 1337

This line is the entry point to this section.

Line 1364

machine_init() (see the file arch/ppc/kernel/setup.c, line 532) sets up machine-specific information,
such as NVRAM, L2, CPU cache line size, debugging, and so on.

Line 1365

MMU_init() (see file arch/ppc/mm/init.c, line 234) discovers the total memory size for highmem and lowmem.
It then initializes the MMU hardware (MMU_init_hw(), line 267), sets up Hash Page Table
(arch/ppc/mm/hashtable.s), maps all RAM starting at KERNELBASE (mapin_ram(), line 272), maps all I/O
(setup_io_mappings(), line 285), and initializes context management(mmu_context_init(), line 288).



Line 1385

Shut off IR and DR to set up SDR1. This holds the real address of the Page Table and how many bits from
the hash are used in the Page Table Index.

Line 1395

Clear TLBs, load SDR1 (hash table base and size), set up segmentation, and, depending on the particular
PPC platform, initialize the BAT registers.

Lines 14121419

Turn on IR, DR, and RFI to start_kernel in /init/main.c. Note that at interrupt time in the PowerPC
architecture, the contents of the Instruction Address Registser (ISR) holds the address the processor
must return to after servicing the interrupt. This value is saved in the Save Restore Register 0 (SRR0).
The Machine Status Register is in turn saved in the Save Restore Register 1 (SRR1). In shorthand, at
interrupt time:

IAR->SRR0

MSR->SRR1

The RFI instruction, which is normally executed at the end of an interrupt routine, is the inverse of this
procedure, where SRR0 is restored to the IAR and SRR1 is restored to the MSR. In shorthand:

SRR0->IAR

SRR1->MSR

The code in lines 13851419 uses this methodology to turn memory management on and off by this three-
step process:

1. Sets the desired bits for the MSR (refer to Figure 8.1) in SRR1.

2. Sets the desired address we want to jump to in SRR0.

3. Executes the RFI instruction.

8.3.2. x86 Intel-Based Hardware Memory Management

At power-on, all Intel processors are in real address mode. Real addressing is a compatibility mode to the
early Intel processors. As processors grew more complex, legacy code was always in use that newer
processors still needed to be able to run. In real address mode, the processor can execute a program
written for the 8086 and 8088 processors using the same instructions and, more importantly, the same
method of addressing or address translation. The end result of address translation is how the processor
accesses the system memory. The early Intel processors had a 20-bit address bus, which accessed
approximately 64K bytes of memory. This is the limitation put on the early code in the system. In real
address mode, the linear address is the same as the physical address. As we move through the code that
initializes memory management, we see more of the features of the later processors being used in the
hardware and more complex structures added to the software.

The code in setup.S performs several important functions with respect to memory initialization:



----------------------------------------------------------------------
arch/i386/boot/setup.S
307  #define SMAP 0x534d4150
308
309  meme820:
310   xorl  %ebx, %ebx    # continuation counter
311   movw  $E820MAP, %di    # point into the whitelist
312         # so we can have the bios
313         # directly write into it.
314
315  jmpe820:
316   movl  $0x0000e820, %eax   # e820, upper word zeroed
317   movl  $SMAP, %edx    # ascii 'SMAP'
318   movl  $20, %ecx    # size of the e820rec
319   pushw  %ds     # data record.
320   popw  %es
321   int  $0x15     # make the call
322   jc  bail820     # fall to e801 if it fails
323
324   cmpl  $SMAP, %eax    # check the return is 'SMAP'
325   jne  bail820     # fall to e801 if it fails
326
...
333  good820:
334   movb  (E820NR), %al    # up to 32 entries
335   cmpb  $E820MAX, %al
336   jnl  bail820
337
338   incb  (E820NR)
339   movw  %di, %ax
340   addw  $20, %ax
341   movw  %ax, %di
342  again820:
343   cmpl  $0, %ebx    # check to see if
344   jne  jmpe820     # %ebx is set to EOF
345  bail820:
-----------------------------------------------------------------------

Lines 307345

Looking at the code segment, we first see (on line 321) a call to the BIOS int15h function with ax= 0xe820.
This returns the addresses and lengths of the many different types of memory of which BIOS is aware.
This simple memory map represents the basic pool from which all the pages of memory in Linux are
obtained. As seen from further studying of the code, the memory map can be obtained by three methods:
0xe820, 0xe801, and 0x88. All three methods have to do with compatibility with existing BIOS distributions
and their platforms.

[View full width]
----------------------------------------------------------------------
arch/i386/boot/setup.S
595  # Now we move the system to its rightful place ... but we check if we have a #
 big-kernel. In that case we *must* not move it ...
597   testb  $LOADED_HIGH, %cs:loadflags
598   jz  do_move0    # .. then we have a normal low
599         # loaded zImage
600         # .. or else we have a high
601         # loaded bzImage



602   jmp  end_move    # ... and we skip moving
603
604  do_move0:
605   movw  $0x100, %ax    # start of destination segment
606   movw  %cs, %bp    # aka SETUPSEG
607   subw  $DELTA_INITSEG, %bp   # aka INITSEG
608   movw  %cs:start_sys_seg, %bx   # start of source segment
609   cld
610  do_move:
611   movw  %ax, %es    # destination segment
612   incb  %ah     # instead of add ax,#0x100
613   movw  %bx, %ds    # source segment
614   addw  $0x100, %bx
615   subw  %di, %di
616   subw  %si, %si
617   movw  $0x800, %cx
618   rep
619   movsw
620   cmpw  %bp, %bx    # assume start_sys_seg > 0x200,
621         # so we will perhaps read one
622         # page more than needed, but
623         # never overwrite INITSEG
624         # because destination is a
625         # minimum one page below source
626   jb  do_move
627
628  end_move:
----------------------------------------------------------------------

Lines 595628

This code is the kernel image created by build.c and loaded by LILO. It is made up of the init sector (at
address 0x9000), the setup sector (at address 0x9200), and the compressed image. The image is
originally loaded at address 0x10000. If it is LARGE (>0X7FF), it is left in place; otherwise, it is moved down
to 0x1000.

----------------------------------------------------------------------
arch/i386/boot/setup.S
723   # Try enabling A20 through the keyboard controller
724  #endif /* CONFIG_X86_VOYAGER */
725  a20_kbc:
726   call  empty_8042
727
728  #ifndef CONFIG_X86_VOYAGER
729   call  a20_test    # Just in case the BIOS worked
730   jnz  a20_done    # but had a delayed reaction.
731  #endif
732
733   movb  $0xD1, %al    # command write
734   outb  %al, $0x64
735   call  empty_8042
736
737   movb  $0xDF, %al    # A20 on
738   outb  %al, $0x60
739   call  empty_8042
----------------------------------------------------------------------



Forming the 20-bit Physical Address in Intel Real Address Mode

The Intel 8088 processor in the original IBM PC had only 20 address lines [0...19]. This
allowed the system to access up to 1 megabyte plus approximately 64K bytes of memory (0
to 0x10_FFEF) internally, but physically (on the bus) the last 64K of addressable memory was
actually the first 64K of real memory!

Internal to the processor, a 20-bit address is formed from a 16-bit segment selector and a
16-bit segment offset. The selector is shifted left 4 bits and added to the offset, which is
extended by 4 bits. The sum of these registers is the physical address seen on the bus.

For example:

To obtain the highest address, we load a segment selector (CS, DS, ES, and so on) with a
value of 0xFFFF and an index register (SI, DI, and so on) with a value of 0xFFFF. Internal to
the processor, the segment selector is shifted left 4 bits and added to the offset.

0xFFFF shifted left 4 bits = 0x0F_FFF0

Add the offset + 0x00_FFFF

Internal sum = 0x10_FFEF

External Physical Address = 0x00_FFEF

This resulting Physical Address is the same as a segment selector with the value of 0x0000
and an offset value of 0xFFEF (0000:FFEF).

Accessing the highest address and above would wrap back into low memory at 0xFFEF.
Certain programs written for this processor would depend on this 20-bit wrap-around
behavior. The introduction of the Intel 286 and later processors with wider address busses
incorporated Real Addressing to maintain backward compatibility with 8088 and 8086. Real
Addressing mode did not take into account legacy software that depended on the 20-bit wrap-
around. The A20M# signal pin was added to mimic this "feature" of the earlier processors.
Asserting this signal would mask off the A20 signal allowing the low memory to be accessed
once again.

A logic gate was used to enable or disable the memory bus A20 signal. The original design to
assert this gate was to use an extra I/O signal from the keyboard controller that was
controlled by I/O ports 0x60 and 0x64. A "Fast Gate A20" method was later developed which
used I/O port 0x92 designed into the system board. Since all x86 processors come out of
reset in Real Address mode, it is wise for boot code to make certain address line A20 is
enabled by one or both of these methods.

Lines 723739

This code is a fascinating throwback to the early Intel processors. This is a mere nuisance in the setup of
Memory Management.

----------------------------------------------------------------------
arch/i386/boot/setup.S



790  # set up gdt and idt
791  lidt  idt_48     # load idt with 0,0
792  xorl  %eax, %eax    # Compute gdt_base
793  movw  %ds, %ax    # (Convert %ds:gdt to a linear ptr)
794  shll  $4, %eax
795  addl  $gdt, %eax
796  movl  %eax, (gdt_48+2)
797  lgdt  gdt_48     # load gdt with whatever is
798        # appropriate
...
981  gdt:
982   .fill GDT_ENTRY_BOOT_CS,8,0
983
984   .word  0xFFFF     # 4Gb - (0x100000*0x1000 = 4Gb)
985   .word  0     # base address = 0
986   .word  0x9A00     # code read/exec
987   .word  0x00CF     # granularity = 4096, 386
988         # (+5th nibble of limit)
989
990   .word  0xFFFF     # 4Gb - (0x100000*0x1000 = 4Gb)
991   .word  0     # base address = 0
992   .word  0x9200     # data read/write
993   .word  0x00CF     # granularity = 4096, 386
994         # (+5th nibble of limit)
995  gdt_end:
996   .align  4
997
998   .word  0     # alignment byte
999  idt_48:
1000   .word  0     # idt limit = 0
1001  .word  0, 0     # idt base = 0L
1002
1003   .word  0     # alignment byte
1004  gdt_48:
1005   .word  gdt_end - gdt - 1   # gdt limit
1006   .word  0, 0     # gdt base (filled in later)
----------------------------------------------------------------------

Lines 790797

The structures and data for the provisional GDT and IDT are compiled into the end of setup.S. These
tables are implemented in their simplest form.

Lines 9811006

These lines are the compiled-in values for the provisional GDT. The GDT has a code and data descriptor,
each representing 4GB of memory starting at 0x00. The IDT is left initialized to 0x00 and is filled in later.

As far as memory management on an Intel platform is concerned, entering protected mode is one of the
most important phases. At this point, the hardware begins to build a virtual address space for the
operating system.



Protected Mode

The Intel method of memory management is called protected mode. The protection refers to
multiple independent segmented address spaces that are protected from each other. The
other half of Intel memory management is paging or page translation. System programmers
can make use of various combinations of segmentation and paging, but Linux uses a flat
model where segmentation is all but eliminated. In the flat model, each process has access to
its entire 32-bit address space (4GB).

----------------------------------------------------------------------
arch/i386/boot/setupS
830  movw  $1, %ax     # protected mode (PE) bit
831  lmsw  %ax     # This is it!
832  jmp  flush_instr
833
834  flush_instr:
835   xorw  %bx, %bx    # Flag to indicate a boot
836   xorl  %esi, %esi    # Pointer to real-mode code
837   movw  %cs, %si
838   subw  $DELTA_INITSEG, %si
839   shll  $4, %esi  
-----------------------------------------------------------------------

Lines 830831

Set the PE bit in the Machine Status Word to enter protected mode. The jmp instruction begins executing in
protected mode.

Lines 834839

Save a 32-bit pointer to real-mode for decompressing and loading the kernel later on in startup_32().

Recall that in real addressing mode, code is executed by using 16-bit instructions. The current file is
compiled using the .code16 assembler directive, which enforces this mode; this is also known as a 16-bit
module in the Intel Programmer's Reference. To jump from a 16-bit module to a 32-bit module, the Intel
architecture (and assembler magic) allows us to build a 32-bit instruction in a 16-bit module.

Build and execute the 32-bit jump:

----------------------------------------------------------------------
arch/i386/boot/setup.S
841  # jump to startup_32 in arch/i386/kernel/head.S
842  #
843  # NOTE: For high loaded big kernels we need a
844  #  jmpi 0x100000,__BOOT_CS
845  #
846  #  but we haven't yet reloaded the CS register, so the default size 
847  #  of the target offset still is 16 bit.
848  #  However, using an operand prefix (0x66), the CPU will properly
849  #  take our 48 bit far pointer. (INTeL 80386 Programmer's Reference



850  #  Manual, Mixing 16-bit and 32-bit code, page 16-6)
851
852   .byte 0x66, 0xea    # prefix + jmpi-opcode
853  code32:  .long  0x1000     # will be set to 0x100000
854         # for big kernels
855   .word  __BOOT_CS
-----------------------------------------------------------------------

Line 852

This line builds the 32-bit jump instruction.

After this jump is executed, the system uses the provisional GDT and the code is executing in 32-bit
protected mode, starting at the label startup_32 in arch/i386/kernel/head.S line 57.

8.3.2.1. Protected Mode

Until this point, the discussion has been how to get the Intel system ready to set up paging. As we trace
through the code in head.S, we see what initialization needs to take place and how Linux uses the x86-
based protected mode paging system. This is the final code before the kernel is started in main.c. For
complete information on the many possible modes and settings that relate to memory initialization and
Intel processors, look at the Intel Architecture Software Developers Manual, Volume 3.

----------------------------------------------------------------------
arch/i386/kernel/head.S
057  ENTRY(startup_32)
058
059  /*
060  * Set segments to known values.
061  */
062   cld
063   lgdt boot_gdt_descr - __PAGE_OFFSET
064   movl $(__BOOT_DS),%eax
065   movl %eax,%ds
066   movl %eax,%es
067   movl %eax,%fs
068   movl %eax,%gs
068
081  /*
082  * Initialize page tables. This creates a PDE and a set of page
083  * tables, which are located immediately beyond _end. The variable
084  * init_pg_tables_end is set up to point to the first "safe" location.
085  * Mappings are created both at virtual address 0 (identity mapping)
086  * and PAGE_OFFSET for up to _end+sizeof(page tables)+INIT_MAP_BEYOND_END.
087  *
088  * Warning: don't use %esi or the stack in this code. However, %esp
089  * can be used as a GPR if you really need it... 
090  */
091  page_pde_offset = (__PAGE_OFFSET >> 20);
092
093   movl $(pg0 - __PAGE_OFFSET), %edi
094   movl $(swapper_pg_dir - __PAGE_OFFSET), %edx
095   movl $0x007, %eax    /* 0x007 = PRESENT+RW+USER */
096  10:
097    leal 0x007(%edi),%ecx    /* Create PDE entry */



098   movl %ecx,(%edx)    /* Store identity PDE entry */
099   movl %ecx,page_pde_offset(%edx)   /* Store kernel PDE entry */
100   addl $4,%edx
101   movl $1024, %ecx
102  11:
103   stosl
104   addl $0x1000,%eax
105   loop 11b
106   /* End condition: we must map up to and including INIT_MAP_BEYOND_END */
107   /* bytes beyond the end of our own page tables; the +0x007 is the attribute bits */
108  leal (INIT_MAP_BEYOND_END+0x007)(%edi),%ebp
109   cmpl %ebp,%eax
110   jb 10b
111  movl %edi,(init_pg_tables_end - __PAGE_OFFSET)
112
113  #ifdef CONFIG_SMP
...
156  3:
157  #endif /* CONFIG_SMP */
158
159  /*
160  * Enable paging
161  */
162   movl $swapper_pg_dir-__PAGE_OFFSET,%eax
163   movl %eax,%cr3   /* set the page table pointer.. */
164   movl %cr0,%eax
165   orl $0x80000000,%eax
166   movl %eax,%cr0   /* ..and set paging (PG) bit */
167   ljmp $__BOOT_CS,$1f  /* Clear prefetch and normalize %eip */
168  1:
169   /* Set up the stack pointer */
170   lss stack_start,%esp
...
177   pushl $0
178   popfl
179
180  #ifdef CONFIG_SMP
181   andl %ebx,%ebx
182   jz 1f     /* Initial CPU cleans BSS */
183   jmp checkCPUtype
184  1:
185  #endif /* CONFIG_SMP */
186
187  /*
188  * start system 32-bit setup. We need to re-do some of the things done
189  * in 16-bit mode for the "real" operations.
190  */
191   call setup_idt
192
193  *
194  * Copy bootup parameters out of the way.
195  * Note: %esi still has the pointer to the real-mode data.
196  */
197   movl $boot_params,%edi
198   movl $(PARAM_SIZE/4),%ecx
199   cld
200   rep
201   movsl
202   movl boot_params+NEW_CL_POINTER,%esi
203   andl %esi,%esi



204   jnz 2f    # New command line protocol
205   cmpw $(OLD_CL_MAGIC),OLD_CL_MAGIC_ADDR
206   jne 1f
207   movzwl OLD_CL_OFFSET,%esi
208   addl $(OLD_CL_BASE_ADDR),%esi
209  2:
210   movl $saved_command_line,%edi
211   movl $(COMMAND_LINE_SIZE/4),%ecx
212   rep
213   movsl
214  1:
215  checkCPUtype:
...
279   lgdt cpu_gdt_descr
280   lidt idt_descr
...
303   call start_kernel
----------------------------------------------------------------------

Line 57

This line is the 32-bit protected mode entry point for the kernel code. Currently, the code uses the
provisional GDT.

Line 63

This code initializes the GDTR with the base address of the boot GDT. This boot GDT is the same as the
provisional GDT used in setup.S (4GB code and data starting at address 0x00000000) and is used only by
this boot code.

Lines 6468

Initialize the remaining segment registers with __BOOT_DS, which resolves to 24 (see /include/asm-
i386/segment.h). This value points to the 24th selector (starting at 0) in the final GDT, which is set later in
this code.

Lines 91111

Create a page directory entry (PDE) in swapper_pg_dir that references a page table (pg0) with 0 based
(identity) entries and duplicate PAGE_OFFSET (kernel memory) entries.

Lines 113157

This code block initializes secondary (non-boot) processors to the page tables. For this discussion, we
focus on the boot processor.

Lines 162164

The cr3 register is the entry point for x86 hardware paging. This register is initialized to point to the base
of the Page Directory, which in this case, is swapper_pg_dir.



Lines 165168

Set the PG (paging) bit in cr0 of the boot processor. The PG bit enables the paging mechanism in the x86
architecture. The jump instruction (on line 167) is recommended when changing the PG bit to ensure that
all instructions within the processor are serialized at the moment of entering or exiting paging mode.

Line 170

Initialize the stack to the start of the data segment (see also lines 401403).

Lines 177178

The eflags register is a read/write system register that contains the status of interrupts, modes, and
permissions. This register is cleared by pushing a 0 onto the stack and directly popping it into the register
with the popfl instruction.

Lines 180185

The general-purpose register ebx is used as a flag to indicate whether it is the boot processor to the
processor that runs this code. Because we are tracing this code as the boot processor, ebx has been
cleared (0), and we jump to the call to setup_idt.

Line 191

The routine setup_idt initializes an Interrupt Descriptor Table (IDT) where each entry points to a dummy
handler. The IDT, discussed in Chapter 7, "Scheduling and Kernel Synchronization," is a table of functions
(or handlers) that are called when the processor needs to immediately execute time-critical code.

Lines 197214

The user can pass certain parameters to Linux at boot time. They are stored here for later use.

Lines 215303

The code listed on these lines does a large amount of necessary (but tedious) x86 processor-version
checking and some minor initialization. By way of the cupid instruction (or lack thereof), certain bits are
set in the eflags register and cr0. One notable setting in cr0 is bit 4, the extension type (ET). This bit
indicates the support of math-coprocessor instructions in older x86 processors. The most important lines of
code in this block are lines 279280. This is where the IDT and the GDT are loaded (by way of the lidt and
lgdt instructions) into the idtr and gdtr registers. Finally, on line 303, we jump to the routine
start_kernel().

With the code in head.S, the system can now map a logical address to a linear address to finally a
physical address (see Figure 8.10). Starting with a logical address, the selector (in the CS, DS, ES,
etc., registers) references one of the descriptors in the GDT. The offset is the flat address that we seek.
The information from the descriptor and the offset are combined to form the logical address.



Figure 8.10. Boot-Time Paging

In the code walkthrough, we saw how the Page Directory (swapper_pg_dir) and Page Table (pg0) were
created and that cr3 was initialized to point to the Page Directory. As previously discussed, the processor
becomes aware of where to look for the paging components by cr3's setting, and setting cr0 (PG bit) is
how the processor is informed to start using them. On the logical address, bits 22:31 indicate the Page
Directory Entry (PDE), bits 12:21 indicate the Page Table Entry (PTE), and bits 0:11 indicate the
offset (in this example, 4KB) into the physical page.

The system now has 8MB of memory mapped out using a provisional paging system. The next step is to
call the function start_kernel() in init/main.c.

8.3.3. PowerPC and x86 Code Convergence

Notice that both the PowerPC code and the x86 code have now converged on start_kernel() in
init/main.c. This routine, which is located in the architecture-independent section of the code, calls
architecture-specific routines to finish memory initialization.

The first function called in this file is setup_arch() in arch/i386/ kernel/ setup.c, which then calls
paging_init() in arch/i386/mm/init.c, which then calls pagetable_init() in the same file. The remainder
of system memory is allocated here to produce the final page tables.

In the PowerPC world, much has already been done. The setup_arch() file in arch/ppc/kernel/setup.c



then calls paging_init() in arch/ppc/mm/init.c. The one notable function performed in paging_init() for
PPC is to set all pages to be in the DMA zone.



8.4. Initial RAM Disk

LILO, GRUB, and Yaboot support the loading of the initial RAM disk (initrd). initrd acts as a root
filesystem before the final root filesystem is loaded and initialized. We refer to the loading of the
final root filesystem as pivoting the root.

This initial step allows Linux to initially come up with certain modules precompiled and then
dynamically load other modules and drivers from initrd. The major difference to the bootloader is
that it loads a minimal kernel and the RAM disk during Stage 2. The kernel initializes using the
RAM disk, mounts the final root filesystem, and then removes the initrd.

initrd allows for

Configuring a kernel at boot time

Keeping a small general-purpose kernel

Having one kernel for several hardware configurations

The previously referenced stanzas are the most common for loading Linux with Yaboot, GRUB, and
LILO. Each bootloader has a rich set of commands for their configuration files. For a customized or
special function boot process, a quick Web search on GRUB and LILO configuration files yields
good information on the subject.

Now that we have seen how the kernel is loaded and how memory initialization starts, let's look at
the process of kernel initialization.



8.5. The Beginning: start_kernel()

This discussion begins with the jump to the start_kernel() (init/main.c) function, the first architecture-
independent part of the code to be called.

With the jump to start_kernel(), we execute Process 0, which is otherwise known as the root thread.
Process 0 spawns off Process 1, known as the init process. Process 0 then becomes the idle thread for the

CPU. When /sbin/init is called, we have only those two processes running:

----------------------------------------------------------------------
init/main.c
396  asmlinkage void __init start_kernel(void)
397  {
398   char * command_line;
399   extern char saved_command_line[];
400   extern struct kernel_param __start___param[], __stop___param[];
...
405   lock_kernel();
406   page_address_init();
407   printk(linux_banner);
408   setup_arch(&command_line);
409   setup_per_cpu_areas();
...
415   smp_prepare_boot_cpu();
...
422   sched_init();
423  
424   build_all_zonelists();
425   page_alloc_init();
426   printk("Kernel command line: %s\n", saved_command_line);
427   parse_args("Booting kernel", command_line, __start___param,
428     __stop___param - __start___param,
429     &unknown_bootoption);
430   sort_main_extable();
431   trap_init();
432   rcu_init();
433   init_IRQ();
434   pidhash_init();
435   init_timers();
436   softirq_init();
437   time_init();
...
444   console_init();
445   if (panic_later)
446    panic(panic_later, panic_param) ;
447   profile_init();
448   local_irq_enable();
449  #ifdef CONFIG_BLK_DEV_INITRD
450   if (initrd_start && !initrd_below_start_ok &&
451     initrd_start < min_low_pfn << PAGE_SHIFT) {
452    printk(KERN_CRIT "initrd overwritten (0x%08lx < 0x%08lx) - "
453     "disabling it.\n",initrd_start,min_low_pfn << PAGE_SHIFT);
454    initrd_start = 0;
455   }
456  #endif



457   mem_init();
458   kmem_cache_init();
459   if (late_time_init)
460    late_time_init();
461   calibrate_delay();
462   pidmap_init();
463   pgtable_cache_init();
464   prio_tree_init();
465   anon_vma_init();
466  #ifdef CONFIG_X86
467   if (efi_enabled)
468    efi_enter_virtual_mode();
469  #endif
470   fork_init(num_physpages);
471   proc_caches_init();
472   buffer_init();
473   unnamed_dev_init();
474   security_scaffolding_startup();
475   vfs_caches_init(num_physpages);
476   radix_tree_init();
477   signals_init();
478   /* rootfs populating might need page-writeback */
479   page_writeback_init();
480  #ifdef CONFIG_PROC_FS
481   proc_root_init();
482  #endif
483   check_bugs();
...
490   init_idle(current, smp_processor_id());
...
493   rest_init();
494  }
-----------------------------------------------------------------------

8.5.1. The Call to lock_kernel()

Line 405

In the 2.6 Linux kernel, the default configuration is to have a preemptible kernel. A preemptible kernel
means that the kernel itself can be interrupted by a higher priority task, such as a hardware interrupt, and
control is passed to the higher priority task. The kernel must save enough state so that it can return to
executing when the higher priority task finishes.

Early versions of Linux implemented kernel preemption and SMP locking by using the Big Kernel Lock
(BKL). Later versions of Linux correctly abstracted preemption into various calls, such as preempt_disable().
The BKL is still with us in the initialization process. It is a recursive spinlock that can be taken several times
by a given CPU. A side effect of using the BKL is that it disables preemption, which is an important side effect
during initialization.

Locking the kernel prevents it from being interrupted or preempted by any other task. Linux uses the BKL to
do this. When the kernel is locked, no other process can execute. This is the antithesis of a preemptible
kernel that can be interrupted at any point. In the 2.6 Linux kernel, we use the BKL to lock the kernel upon
startup and initialize the various kernel objects without fear of being interrupted. The kernel is unlocked on
line 493 within the rest_init() function. Thus, all of start_kernel() occurs with the kernels locked. Let's
look at what happens in lock_kernel():



----------------------------------------------------------------------
include/linux/smp_lock.h
42 static inline void lock_kernel(void)
43 {
44   int depth = current->lock_depth+1;
45   if (likely(!depth))
46     get_kernel_lock();
47   current->lock_depth = depth;
48 }
-----------------------------------------------------------------------

Lines 4448

The init task has a special lock_depth of -1. This ensures that in multi-processor systems, different CPUs do
not attempt to simultaneously grab the kernel lock. Because only one CPU runs the init task, only it can
grab the big kernel lock because depth is 0 only for init (otherwise, depth is greater than 0). A similar trick
is used in unlock_kernel() where we test (--current->lock_depth < 0). Let's see what happens in
get_kernel_lock():

----------------------------------------------------------------------
include/linux/smp_lock.h
10 extern spinlock_t kernel_flag;
11 
12 #define kernel_locked()   (current->lock_depth >= 0)
13 
14 #define get_kernel_lock()  spin_lock(&kernel_flag)
15 #define put_kernel_lock()  spin_unlock(&kernel_flag)
...
59 #define lock_kernel()       do { } while(0)
60 #define unlock_kernel()       do { } while(0)
61 #define release_kernel_lock(task)    do { } while(0)
62 #define reacquire_kernel_lock(task)    do { } while(0)
63 #define kernel_locked()       1  
-----------------------------------------------------------------------

Lines 1015

These macros describe the big kernel locks that use standard spinlock routines. In multiprocessor systems, it
is possible that two CPUs might try to access the same data structure. Spinlocks, which are explained in
Chapter 7, prevent this kind of contention.

Lines 5963

In the case where the kernel is not preemptible and not operating over multiple CPUs, we simply do nothing
for lock_kernel() because nothing can interrupt us anyway.

The kernel has now seized the BKL and will not let go of it until the end of start_kernel(); as a result, all the
following commands cannot bepreempted.

8.5.2. The Call to page_address_init()



Line 406

The call to page_address_init() is the first function that is involved with the initialization of the memory
subsystem in this architecture-dependent portion of the code. The definition of page_address_init() varies
according to three different compile-time parameter definitions. The first two result in page_address_init()
being stubbed out to do nothing by defining the body of the function to be do { } while (0), as shown in the
following code. The third is the operation we explore here in more detail. Let's look at the different definitions
and discuss when they are enabled:

----------------------------------------------------------------------
include/linux/mm.h
376 #if defined(WANT_PAGE_VIRTUAL)
382 #define page_address_init() do { } while(0)

385 #if defined(HASHED_PAGE_VIRTUAL)
388 void page_address_init(void);

391 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
394 #define page_address_init() do { } while(0)
----------------------------------------------------------------------

The #define for WANT_PAGE_VIRTUAL is set when the system has direct memory mapping, in which case simply
calculating the virtual address of the memory location is sufficient to access the memory location. In cases
where all of RAM is not mapped into the kernel address space (as is often the case when himem is
configured), we need a more involved way to acquire the memory address. This is why the initialization of
page addressing is defined only in the case where HASHED_PAGE_VIRTUAL is set.

We now look at the case where the kernel has been told to use HASHED_PAGE_VIRTUAL and where we need to
initialize the virtual memory that the kernel is using. Keep in mind that this happens only if himem has been
configured; that is, the amount of RAM the kernel can access is larger than that mapped by the kernel
address space (generally 4GB).

In the process of following the function definition, various kernel objects are introduced and revisited. Table
8.2 shows the kernel objects introduced during the process of exploring page_address_init().

Table 8.2. Objects Introduced During the Call to
page_address_init()

Object Name Description

page_address_map Struct

page_address_slot Struct

page_address_pool Global variable

page_address_maps Global variable

page_address_htable Global variable

----------------------------------------------------------------------
mm/highmem.c



510 static struct page_address_slot {
511  struct list_head lh;    
512 spinlock_t lock;    
513 } ____cacheline_aligned_in_smp page_address_htable[1<<PA_HASH_ORDER]; 
...
591 static struct page_address_map page_address_maps[LAST_PKMAP];
592 
593 void __init page_address_init(void)
594 {
595   int i;
596   
597   INIT_LIST_HEAD(&page_address_pool);
598   for (i = 0; i < ARRAY_SIZE(page_address_maps); i++)    
599     list_add(&page_address_maps[i].list, &page_address_pool)  ;
600   for (i = 0; i < ARRAY_SIZE(page_address_htable); i++) {
601     INIT_LIST_HEAD(&page_address_htable[i].lh);
602     spin_lock_init(&page_address_htable[i].lock);
603   }
604   spin_lock_init(&pool_lock);
605 }
----------------------------------------------------------------------

Line 597

The main purpose of this line is to initialize the page_address_pool global variable, which is a struct of type
list_head and point to a list of free pages allocated from page_address_maps (line 591). Figure 8.11
illustrates page_address_pool.

Figure 8.11. Data Structures Surrounding the Page Address Map Pool

[View full size image]

Lines 598599

We add each list of pages in page_address_maps to the doubly linked list headed by page_address_pool. We
describe the page_address_map structure in detail next.



Lines 600603

We initialize each page address hash table's list_head and spinlock. The page_address_htable variable holds
the list of entries that hash to the same bucket. Figure 8.12 illustrates the page address hash table.

Figure 8.12. Page Address Hash Table

Line 604

We initialize the page_address_pool's spinlock.

Let's look at the page_address_map structure to better understand the lists we just saw initialized. This
structure's main purpose is to maintain the association with a page and its virtual address. This would be
wasteful if the page had a linear association with its virtual address. This becomes necessary only if the
addressing is hashed:

----------------------------------------------------------------------
mm/highmem.c  
490 struct page_address_map {
491   struct page *page;
492   void *virtual;
493   struct list_head list;
494 };
-----------------------------------------------------------------------

As you can see, the object keeps a pointer to the page structure that's associated with this page, a pointer to
the virtual address, and a list_head struct to maintain its position in the doubly linked list of the page
address list it is in.

8.5.3. The Call to printk(linux_banner)

Line 407



This call is responsible for the first console output made by the Linux kernel. This introduces the global
variable linux_banner:

----------------------------------------------------------------------
init/version.c
31  const char *linux_banner = 
32   "Linux version " UTS_RELEASE " (" LINUX_COMPILE_BY "@"
LINUX_COMPILE_HOST ") (" LINUX_COMPILER ") " UTS_VERSION "\n";
-----------------------------------------------------------------------

The version.c file defines linux_banner as just shown. This string provides the user with a reference of the
Linux kernel version, the gcc version it was compiled with, and the release.

8.5.4. The Call to setup_arch

Line 408

The setup_arch() function in arch/i386/kernel/setup.c is cast to the __init type (refer to Chapter 2 for a
description of __init) where it runs only once at system initialization time. The setup_arch() function takes
in a pointer to any Linux command-line data entered at boot time and initializes many of the architecture-
specific subsystems, such as memory, I/O, processors, and consoles:

----------------------------------------------------------------------
arch/i386/kernel/setup.c
1083  void __init setup_arch(char **cmdline_p)
1084  {
1085   unsigned long max_low_pfn;
1086
1087   memcpy(&boot_cpu_data, &new_cpu_data, sizeof(new_cpu_data));
1088   pre_setup_arch_hook();
1089   early_cpu_init();
1090
1091   /*
1092   * FIXME: This isn't an official loader_type right
1093   * now but does currently work with elilo.
1094   * If we were configured as an EFI kernel, check to make
1095   * sure that we were loaded correctly from elilo and that
1096   * the system table is valid. If not, then initialize normally.
1097   */
1098  #ifdef CONFIG_EFI
1099   if ((LOADER_TYPE == 0x50) && EFI_SYSTAB)
1100    efi_enabled = 1;
1101  #endif
1102
1103   ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
1104   drive_info = DRIVE_INFO;
1105   screen_info = SCREEN_INFO;
1106   edid_info = EDID_INFO;
1107   apm_info.bios = APM_BIOS_INFO;
1108   ist_info = IST_INFO;
1109   saved_videomode = VIDEO_MODE;
1110   if( SYS_DESC_TABLE.length != 0 ) {



1111    MCA_bus = SYS_DESC_TABLE.table[3] &0x2;
1112    machine_id = SYS_DESC_TABLE.table[0];
1113    machine_submodel_id = SYS_DESC_TABLE.table[1];
1114    BIOS_revision = SYS_DESC_TABLE.table[2];
1115   }
1116   aux_device_present = AUX_DEVICE_INFO; 
1117
1118  #ifdef CONFIG_BLK_DEV_RAM
1119   rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
1120   rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
1121   rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
1122  #endif
1123   ARCH_SETUP
1124   if (efi_enabled)
1125    efi_init();
1126   else
1127    setup_memory_region();
1128
1129   copy_edd();
1130
1131   if (!MOUNT_ROOT_RDONLY)
1132    root_mountflags &= ~MS_RDONLY;
1133   init_mm.start_code = (unsigned long) _text;
1134   init_mm.end_code = (unsigned long) _etext;
1135   init_mm.end_data = (unsigned long) _edata;
1136   init_mm.brk = init_pg_tables_end + PAGE_OFFSET;
1137
1138   code_resource.start = virt_to_phys(_text);
1139   code_resource.end = virt_to_phys(_etext)-1;
1140   data_resource.start = virt_to_phys(_etext);
1141   data_resource.end = virt_to_phys(_edata)-1;
1142
1143   parse_cmdline_early(cmdline_p);
1144
1145   max_low_pfn = setup_memory();
1146
1147   /*
1148   * NOTE: before this point _nobody_ is allowed to allocate
1149   * any memory using the bootmem allocator.
1150   */

1152  #ifdef CONFIG_SMP
1153   smp_alloc_memory(); /* AP processor realmode stacks in low memory*/
1154  #endif
1155   paging_init();
1156
1157  #ifdef CONFIG_EARLY_PRINTK
1158   {
1159    char *s = strstr(*cmdline_p, "earlyprintk=");
1160    if (s) {
1161     extern void setup_early_printk(char *);
1162
1163     setup_early_printk(s);
1164     printk("early console enabled\n");
1165    }
1166   }
1167  #endif
...
1170   dmi_scan_machine();
1171



1172  #ifdef CONFIG_X86_GENERICARCH
1173   generic_apic_probe(*cmdline_p);
1174  #endif  
1175   if (efi_enabled)
1176    efi_map_memmap();
1177
1178   /*
1179   * Parse the ACPI tables for possible boot-time SMP configuration.
1180   */
1181   acpi_boot_init();
1182
1183  #ifdef CONFIG_X86_LOCAL_APIC
1184   if (smp_found_config)
1185    get_smp_config();
1186  #endif
1187
1188  register_memory(max_low_pfn);
1188
1190  #ifdef CONFIG_VT
1191  #if defined(CONFIG_VGA_CONSOLE)
1192   if (!efi_enabled || (efi_mem_type(0xa0000) != EFI_CONVENTIONAL_MEMORY))
1193    conswitchp = &vga_con;
1194  #elif defined(CONFIG_DUMMY_CONSOLE)
1195   conswitchp = &dummy_con;
1196  #endif
1197  #endif
1198  }
-----------------------------------------------------------------------

Line 1087

Get boot_cpu_data, which is a pointer to the cpuinfo_x86 struct filled in at boot time. This is similar for PPC.

Line 1088

Activate any machine-specific identification routines. This can be found in arch/xxx/machine-
default/setup.c.

Line 1089

Identify the specific processor.

Lines 11031116

Get the system boot parameters.

Lines 11181122

Get RAM disk if set in arch/<arch>/defconfig.



Lines 11241127

Initialize Extensible Firmware Interface (if set in /defconfig) or just print out the BIOS memory map.

Line 1129

Save off Enhanced Disk Drive parms from boot time.

Lines 11331141

Initialize memory-management structs from the BIOS-provided memory map.

Line 1143

Begin parsing out the Linux command line. (See arch/<arch>/kernel/ setup.c.)

Line 1145

Initializes/reserves boot memory. (See arch/i386/kernel/setup.c.)

Lines 11531155

Get a page for SMP initialization or initialize paging beyond the 8M that's already initialized in head.S. (See
arch/i386/mm/init.c.)

Lines 11571167

Get printk() running even though the console is not fully initialized.

Line 1170

This line is the Desktop Management Interface (DMI), which gathers information about the specific system-
hardware configuration from BIOS. (See arch/i386/kernel/dmi_scan.c.)

Lines 11721174

If the configuration calls for it, look for the APIC given on the command line. (See arch/i386/machine-
generic/probe.c.)

Lines 11751176

If using Extensible Firmware Interface, remap the EFI memory map. (See arch/i386/kernel/efi.c.)

Line 1181



Look for local and I/O APICs. (See arch/i386/kernel/acpi/boot.c.) Locate and checksum System
Description Tables. (See drivers/acpi/tables.c.) For a better understanding of ACPI, go to the
ACPI4LINUX project on the Web.

Lines 11831186

Scan for SMP configuration. (See arch/i386/kernel/mpparse.c.) This section can also use ACPI for
configuration information.

Line 1188

Request I/O and memory space for standard resources. (See arch/i386/kernel/std_resources.c for an idea
of how resources are registered.)

Lines 11901197

Set up the VGA console switch structure. (See drivers/video/console/vgacon.c.)

A similar but shorter version of setup_arch() can be found in arch/ppc/kernel/setup.c for the PowerPC. This
function initializes a large part of the ppc_md structure. A call to pmac_feature_init() in
arch/ppc/platforms/pmac_feature.c does an initial probe and initialization of the pmac hardware.

8.5.5. The Call to setup_per_cpu_areas()

Line 409

The routine setup_per_cpu_areas() exists for the setup of a multiprocessing environment. If the Linux kernel
is compiled without SMP support, setup_per_cpu_areas() is stubbed out to do nothing, as follows:

----------------------------------------------------------------------
init/main.c
317  static inline void setup_per_cpu_areas(void) { }
-----------------------------------------------------------------------

If the Linux kernel is compiled with SMP support, setup_per_cpu_areas() is defined as follows:

----------------------------------------------------------------------
init/main.c
327 static void __init setup_per_cpu_areas(void)
328 {
329   unsigned long size, i;
330   char *ptr;
331   /* Created by linker magic */
332   extern char __per_cpu_start[], __per_cpu_end[];
333 
334   /* Copy section for each CPU (we discard the original) */
335   size = ALIGN(__per_cpu_end - __per_cpu_start, SMP_CACHE_BYTES);
336 #ifdef CONFIG_MODULES
337   if (size < PERCPU_ENOUGH_ROOM)



338     size = PERCPU_ENOUGH_ROOM;
339 #endif
340 
341   ptr = alloc_bootmem(size * NR_CPUS);
342 
343   for (i = 0; i < NR_CPUS; i++, ptr += size) {
344     __per_cpu_offset[i] = ptr - __per_cpu_start;
345     memcpy(ptr, __per_cpu_start, __per_cpu_end - __per_cpu_start);
346   }
347 }
-----------------------------------------------------------------------

Lines 329332

The variables for managing a consecutive block of memory are initialized. The "linker magic" variables are
defined during linking in the appropriate architecture's kernel directory (for example,
arch/i386/kernel/vmlinux.lds.S).

Lines 334341

We determine the size of memory a single CPU requires and allocate that memory for each CPU in the
system as a single contiguous block of memory.

Lines 343346

We cycle through the newly allocated memory, initializing each CPU's chunk of memory. Conceptually, we
have taken a chunk of data that's valid for a single CPU (__per_cpu_start to __per_cpu_end) and copied it for
each CPU on the system. This way, each CPU has its own data with which to play.

8.5.6. The Call to smp_prepare_boot_cpu()

Line 415

Similar to smp_per_cpu_areas(), smp_prepare_boot_cpu() is stubbed out when the Linux kernel does not
support SMP:

----------------------------------------------------------------------
include/linux/smp.h
106 #define smp_prepare_boot_cpu()     do {} while (0)
-----------------------------------------------------------------------

However, if the Linux kernel is compiled with SMP support, we need to allow the booting CPU to access its
console drivers and the per-CPU storage that we just initialized. Marking CPU bitmasks achieves this.

A CPU bitmask is defined as follows:

----------------------------------------------------------------------



include/asm-generic/cpumask.h
10 #if NR_CPUS > BITS_PER_LONG && NR_CPUS != 1
11 #define CPU_ARRAY_SIZE   BITS_TO_LONGS(NR_CPUS)
12 
13 struct cpumask
14 {
15   unsigned long mask[CPU_ARRAY_SIZE];
16 };
-----------------------------------------------------------------------

This means that we have a platform-independent bitmask that contains the same number of bits as the
system has CPUs.

smp_prepare_boot_cpu() is implemented in the architecture-dependent section of the Linux kernel but, as we
soon see, it is the same for i386 and PPC systems:

----------------------------------------------------------------------
arch/i386/kernel/smpboot.c
66 /* bitmap of online cpus */
67 cpumask_t cpu_online_map;
...
70 cpumask_t cpu_callout_map;
...
1341 void __devinit smp_prepare_boot_cpu(void)
1342 {
1343   cpu_set(smp_processor_id(), cpu_online_map);
1344   cpu_set(smp_processor_id(), cpu_callout_map);
1345 }
-----------------------------------------------------------------------

----------------------------------------------------------------------
arch/ppc/kernel/smp.c
49 cpumask_t cpu_online_map;
50 cpumask_t cpu_possible_map;
...
331 void __devinit smp_prepare_boot_cpu(void)
332 {
333   cpu_set(smp_processor_id(), cpu_online_map);
334   cpu_set(smp_processor_id(), cpu_possible_map);
335 }
-----------------------------------------------------------------------

In both these functions, cpu_set() simply sets the bit smp_processor_id() in the cpumask_t bitmap. Setting a
bit implies that the value of the set bit is 1.

8.5.7. The Call to sched_init()

Line 422

The call to sched_init() marks the initialization of all objects that the scheduler manipulates to manage the
assignment of CPU time among the system's processes. Keep in mind that, at this point, only one process
exists: the init process that currently executes sched_init():



----------------------------------------------------------------------
kernel/sched.c
3896 void __init sched_init(void)
3897 {
3898   runqueue_t *rq;
3899   int i, j, k;
3900
...
3919   for (i = 0; i < NR_CPUS; i++) {
3920     prio_array_t *array;
3921 
3922     rq = cpu_rq(i);
3923     spin_lock_init(&rq->lock);
3924     rq->active = rq->arrays;
3925     rq->expired = rq->arrays + 1;
3926     rq->best_expired_prio = MAX_PRIO;
...
3938     for (j = 0; j < 2; j++) {
3939       array = rq->arrays + j;
3940       for (k = 0; k < MAX_PRIO; k++) {
3941         INIT_LIST_HEAD(array->queue + k);
3942         __clear_bit(k, array->bitmap);
3943       }
3944       // delimiter for bitsearch
3945       __set_bit(MAX_PRIO, array->bitmap);
3946     }
3947   }
3948   /*
3949   * We have to do a little magic to get the first
3950   * thread right in SMP mode.
3951   */
3952   rq = this_rq();
3953   rq->curr = current;
3954   rq->idle = current;
3955   set_task_cpu(current, smp_processor_id());
3956   wake_up_forked_process(current);
3957 
3958   /*
3959   * The boot idle thread does lazy MMU switching as well:
3960   */
3961   atomic_inc(&init_mm.mm_count);
3962   enter_lazy_tlb(&init_mm, current);
3963 }
-----------------------------------------------------------------------

Lines 39193926

Each CPU's run queue is initialized: The active queue, expired queue, and spinlock are all initialized in this
segment. Recall from Chapter 7 that spin_lock|_init() sets the spinlock to 1, which indicates that the data
object is unlocked.

Figure 8.13 illustrates the initialized run queue.

Figure 8.13. Initialized Run Queue rq



Lines 39383947

For each possible priority, we initialize the list associated with the priority and clear all bits in the bitmap to
show that no process is on that queue. (If all this is confusing, refer to Figure 8.14. Also, see Chapter 7 for
an overview of how the scheduler manages its run queues.) This code chunk just ensures that everything is
ready for the introduction of a process. As of line 3947, the scheduler is in the position to know that no
processes exist; it ignores the current and idle processes for now.

Figure 8.14. rq->arrays

[View full size image]

Lines 39523956

We add the current process to the current CPU's run queue and call wake_up_forked_process() on ourselves
to initialize current into the scheduler. Now, the scheduler knows that exactly one process exists: the init



process.

Lines 39613962

When lazy MMU switching is enabled, it allows a multiprocessor Linux system to perform context switches at
a faster rate. A TLB is a transaction lookaside buffer that contains the recent page translation addresses. It
takes a long time to flush the TLB, so we swap it if possible. enter_lazy_tlb() ensures that the mm_struct
init_mm isn't being used across multiple CPUs and can be lazily switched. On a uniprocessor system, this
becomes a NULL function.

The sections that were omitted in the previous code deal with initialization of SMP machines. As a quick
overview, those sections bootstrap each CPU to the default settings necessary to allow for load balancing,
group scheduling, and thread migration. They are omitted here for clarity and brevity.

8.5.8. The Call to build_all_zonelists()

Line 424

The build_all_zonelists()function splits up the memory according to the zone types ZONE_DMA, ZONE_NORMAL,
and ZONE_HIGHMEM. As mentioned in Chapter 6, "Filesystems," zones are linear separations of physical
memory that are used mainly to address hardware limitations. Suffice it to say that this is the function where
these memory zones are built. After the zones are built, pages are stored in page frames that fall within
zones.

The call to build_all_zonelists() introduces numnodes and NODE_DATA. The global variable numnodes holds the
number of nodes (or partitions) of physical memory.

The partitions are determined according to CPU access time. Note that, at this point, the page tables have
already been fully set up:

----------------------------------------------------------------------
mm/page_alloc.c
1345  void __init build_all_zonelists(void)
1346  {
1347   int i;
1348  
1349   for(i = 0 ; i < numnodes ; i++)
1350    build_zonelists(NODE_DATA(i));
1351   printk("Built %i zonelists\n", numnodes);
1352  }
----------------------------------------------------------------------

build_all_zonelists() calls build_zonelists() once for each node and finishes by printing out the number
of zonelists created. This book does not go into more detail regarding nodes. Suffice it to say that, in our one
CPU example, numnodes are equivalent to 1, and each node can have all three types of zones. The NODE_DATA
macro returns the node's descriptor from the node descriptor list.

8.5.9. The Call to page_alloc_init

Line 425



The function page_alloc_init() simply registers a function in a notifier chain.[6] The function-registered
page_alloc_cpu_notify() is a page-draining function[7] associated with dynamic CPU configuration.

[6] Chapter 2 discusses notifier chains.

[7] Page draining refers to removing pages that are in use by a CPU that will no longer be used.

Dynamic CPU configuration refers to bringing up and down CPUs during the running of the Linux system, an
event referred to as "hotplugging the CPU." Although technically, CPUs are not physically inserted and
removed during machine operation, they can be turned on and off in some systems, such as the IBM p-
Series 690. Let's look at the function:

----------------------------------------------------------------------
mm/page_alloc.c
1787  #ifdef CONFIG_HOTPLUG_CPU
1788  static int page_alloc_cpu_notify(struct notifier_block *self,
1789      unsigned long action, void *hcpu)
1790  {
1791   int cpu = (unsigned long)hcpu;
1792   long *count;
1793  
if (action == CPU_DEAD) {
...
1796    count = &per_cpu(nr_pagecache_local, cpu);
1797    atomic_add(*count, &nr_pagecache);
1798    *count = 0;
1799    local_irq_disable();
1800    __drain_pages(cpu);
1801    local_irq_enable();
1802   }
1803   return NOTIFY_OK;
1804  }
1805  #endif /* CONFIG_HOTPLUG_CPU */
1806
1807  void __init page_alloc_init(void)
1808  {
1809   hotcpu_notifier(page_alloc_cpu_notify, 0);
1810  }
-----------------------------------------------------------------------

Line 1809

This line is the registration of the page_alloc_cpu_notify() routine into the hotcpu_notifier notifier chain.
The hotcpu_notifier() routine creates a notifier_block that points to the page_alloc_cpu_notify()
function and, with a priority of 0, then registers the object in the cpu_chain notifier chain(kernel/cpu.c).

Line 1788

page_alloc_cpu_notify() has the parameters that correspond to a notifier call, as Chapter 2 explained. The
system-specific pointer points to an integer that specifies the CPU number.

Lines 17941802



If the CPU is dead, free up its pages. The variable action is set to CPU_DEAD when a CPU is brought down.
(See drain_pages() in this same file.)

8.5.10. The Call to parse_args()

Line 427

The parse_args() function parses the arguments passed to the Linux kernel.

For example, nfsroot is a kernel parameter that sets the NFS root filesystem for systems without disks. You
can find a complete list of kernel parameters in Documentation/kernel-parameters.txt:

----------------------------------------------------------------------
kernel/params.c
116 int parse_args(const char *name,
117    char *args,
118    struct kernel_param *params,
119    unsigned num,
120    int (*unknown)(char *param, char *val))
121 {
122   char *param, *val;
123 
124   DEBUGP("Parsing ARGS: %s\n", args);
125 
126   while (*args) {
127     int ret;
128 
129     args = next_arg(args, &param, &val);
130     ret = parse_one(param, val, params, num, unknown);
131     switch (ret) {
132     case -ENOENT:
133       printk(KERN_ERR "%s: Unknown parameter '%s'\n",
134        name, param);
135       return ret;
136     case -ENOSPC:
137       printk(KERN_ERR
138        "%s: '%s' too large for parameter '%s'\n",
139        name, val ?: "", param);
140       return ret;
141     case 0:
142       break;
143     default:
144       printk(KERN_ERR
145        "%s: '%s' invalid for parameter '%s'\n",
146        name, val ?: "", param);
147       return ret;
148     }
149   }
150 
151   /* All parsed OK. */
152   return 0;
153 }
-----------------------------------------------------------------------



Lines 116125

The parameters passed to parse_args() are the following:

name. A character string to be displayed if any errors occur while the kernel attempts to parse the

kernel parameter arguments. In standard operation, this means that an error message, "Booting
Kernel: Unknown parameter X," is displayed.

args. The kernel parameter list of form foo=bar,bar2 baz=fuz wix.

params. Points to the kernel parameter structure that holds all the valid parameters for the specific

kernel. Depending on how a kernel was compiled, some parameters might exist and others might not.

num. The number of kernel parameters in this specific kernel, not the number of arguments in args.

unknown. Points to a function to call if a kernel parameter is specified that is not recognized.

Lines 126153

We loop through the string args, set param to point to the first parameter, and set val to the first value (if
any, val could be null). This is done via next_args() (for example, the first call to next_args() with args
being foo=bar,bar2 baz=fuz wix). We set param to foo and val to bar, bar2. The space after bar2 is
overwritten with a \0 and args is set to point at the beginning character of baz.

We pass our pointers param and val into parse_one(), which does the work of setting the actual kernel
parameter data structures:

----------------------------------------------------------------------
kernel/params.c
46 static int parse_one(char *param,
47      char *val,
48      struct kernel_param *params,
49      unsigned num_params,
50      int (*handle_unknown)(char *param, char *val))
51 {
52   unsigned int i;
53 
54   /* Find parameter */
55   for (i = 0; i < num_params; i++) {
56     if (parameq(param, params[i].name)) {
57       DEBUGP("They are equal! Calling %p\n",
58        params[i].set);
59       return params[i].set(val, &params[i]);
60     }
61   }
62 
63   if (handle_unknown) {
64     DEBUGP("Unknown argument: calling %p\n", handle_unknown);
65     return handle_unknown(param, val);
66   }
67 
68   DEBUGP("Unknown argument '%s'\n", param);
69   return -ENOENT;
70 }
-----------------------------------------------------------------------



Lines 4654

These parameters are the same as those described under parse_args() with param and val pointing to a
subsection of args.

Lines 5561

We loop through the defined kernel parameters to see if any match param. If we find a match, we use val to
call the associated set function. Thus, the set function handles multiple, or null, arguments.

Lines 6266

If the kernel parameter was not found, we call the handle_unknown() function that was passed in via
parse_args().

After parse_one() is called for each parameter-value combination specified in args, we have set the kernel
parameters and are ready to continue starting the Linux kernel.

8.5.11. The Call to trap_init()

Line 431

In Chapter 3, we introduced exceptions and interrupts. The function TRap_init() is specific to the handling of
interrupts in x86 architecture. Briefly, this function initializes a table referenced by the x86 hardware. Each
element in the table has a function to handle kernel or user-related issues, such as an invalid instruction or
reference to a page not currently in memory. Although the PowerPC can have these same issues, its
architecture handles them in a somewhat different manner. (Again, all this is discussed in Chapter 3.)

8.5.12. The Call to rcu_init()

Line 432

The rcu_init() function initializes the Read-Copy-Update (RCU) subsystem of the Linux 2.6 kernel. RCU
controls access to critical sections of code and enforces mutual exclusion in systems where the cost of
acquiring locks becomes significant in comparison to the chip speed. The Linux implementation of RCU is
beyond the scope of this book. We occasionally mention calls to the RCU subsystem in our code analysis, but
the specifics are left out. For more information on the Linux RCU subsystem, consult the Linux Scalability
Effort pages at http://lse.sourceforge.net/locking/rcupdate.html:

----------------------------------------------------------------------
kernel/rcupate.c
297 void __init rcu_init(void)
298 {
299   rcu_cpu_notify(&rcu_nb, CPU_UP_PREPARE,
300       (void *)(long)smp_processor_id());
301   /* Register notifier for non-boot CPUs */
302   register_cpu_notifier(&rcu_nb);
303 }
-----------------------------------------------------------------------

http://lse.sourceforge.net/locking/rcupdate.html


8.5.13. The Call to init_IRQ()

Line 433

The function init_IRQ() in arch/i386/kernel/i8259.c initializes the hardware interrupt controller, the
interrupt vector table and, if on x86, the system timer. Chapter 3 includes a thorough discussion of interrupts
for both x86 and PPC, where the Real-Time Clock is used as an interrupt example:

----------------------------------------------------------------------
arch/i386/kernel/i8259.c
410 void __init init_IRQ(void)
411 {
412  int i;
...
422  for (i = 0; i < (NR_VECTORS - FIRST_EXTERNAL_VECTOR); i++) {
423   int vector = FIRST_EXTERNAL_VECTOR + i;
424   if (i >= NR_IRQS)
425    break;
...
430   if (vector != SYSCALL_VECTOR) 
431    set_intr_gate(vector, interrupt[i]);
432  }
...
437  intr_init_hook();
...
443  setup_timer();
...
449  if (boot_cpu_data.hard_math && !cpu_has_fpu)
450   setup_irq(FPU_IRQ, &fpu_irq);
451 }
-----------------------------------------------------------------------

Lines 422432

Initialize the interrupt vectors. This associates the x86 (hardware) IRQs with the appropriate handling code.

Line 437

Set up machine-specific IRQs, such as the Advanced Programmable Interrupt Controller (APIC).

Line 443

Initialize the timer clock.

Lines 449450

Set up for FPU if needed.



The following code is the PPC implementation of init_IRQ():

----------------------------------------------------------------------
arch/ppc/kernel/irq.c
700  void __init init_IRQ(void)
701  {
702   int i;
703
704   for (i = 0; i < NR_IRQS; ++i)
705    irq_affinity[i] = DEFAULT_CPU_AFFINITY;
706
707   ppc_md.init_IRQ();
708  }
-----------------------------------------------------------------------

Line 704

In multiprocessor systems, an interrupt can have an affinity for a specific processor.

Line 707

For a PowerMac platform, this routine is found in arch/ppc/platforms/ pmac_pic.c. It sets up the
Programmable Interrupt Controller (PIC) portion of the I/O controller.

8.5.14. The Call to softirq_init()

Line 436

The softirq_init() function prepares the boot CPU to accept notifications from tasklets. Let's look at the
internals of softirq_init():

----------------------------------------------------------------------
kernel/softirq.c
317 void __init softirq_init(void)
318 {
319   open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
320   open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
321 }
...
327 void __init softirq_init(void)
328 {
329  open_softirq(TASKLET_SOFTIRQ, tasklet_action, NULL);
330  open_softirq(HI_SOFTIRQ, tasklet_hi_action, NULL);
331 tasklet_cpu_notify(&tasklet_nb, (unsigned long)CPU_UP_PREPARE,
332         (void *)(long)smp_processor_id());
333 register_cpu_notifier(&tasklet_nb);
334 }
-----------------------------------------------------------------------



Lines 319320

We initialize the actions to take when we get a TASKLET_SOFTIRQ or HI_SOFTIRQ interrupt. As we pass in NULL,
we are telling the Linux kernel to call tasklet_action(NULL) and tasklet_hi_action(NULL) (in the cases of
Line 319 and Line 320, respectively). The following implementation of open_softirq() shows how the Linux
kernel stores the tasklet initialization information:

----------------------------------------------------------------------
kernel/softirq.c
177 void open_softirq(int nr, void (*action)(struct softirq_action*),
void * data)
178 {
179   softirq_vec[nr].data = data;
180   softirq_vec[nr].action = action;
181 }
----------------------------------------------------------------------

8.5.15. The Call to time_init()

Line 437

The function time_init() selects and initializes the system timer. This function, like TRap_init(), is very
architecture dependent; Chapter 3 covered this when we explored timer interrupts. The system timer gives
Linux its temporal view of the world, which allows it to schedule when a task should run and for how long.
The High Performance Event Timer (HPET) from Intel will be the successor to the 8254 PIT and RTC
hardware. The HPET uses memory-mapped I/O, which means that the HPET control registers are accessed
as if they were memory locations. Memory must be configured properly to access I/O regions. If set in
arch/i386/defconfig.h, time_init() needs to be delayed until after mem_init() has set up memory regions.
See the following code:

----------------------------------------------------------------------
arch/i386/kernel/time.c
376 void __init time_init(void)
377 {
...
378 #ifdef CONFIG_HPET_TIMER
379  if (is_hpet_capable()) {
380   late_time_init = hpet_time_init;
381   return;
382  }
...
387 #endif
388  xtime.tv_sec = get_cmos_time();
389  wall_to_monotonic.tv_sec = -xtime.tv_sec;
390  xtime.tv_nsec = (INITIAL_JIFFIES % HZ) * (NSEC_PER_SEC / HZ);
391  wall_to_monotonic.tv_nsec = -xtime.tv_nsec;
392
393  cur_timer = select_timer();
394  printk(KERN_INFO "Using %s for high-res timesource\n",cur_timer->name);
395
396  time_init_hook();
397 }  
----------------------------------------------------------------------- 



Lines 379387

If the HPET is configured, time_init() must run after memory has been initialized. The code for
late_time_init() (on lines 358373) is the same as time_init().

Lines 388391

Initialize the xtime time structure used for holding the time of day.

Line 393

Select the first timer that initializes. This can be overridden. (See arch/i386/ kernel/timers/timer.c.)

8.5.16. The Call to console_init()

Line 444

A computer console is a device where the kernel (and other parts of a system) output messages. It also has
login capabilities. Depending on the system, the console can be on the monitor or through a serial port. The
function console_init() is an early call to initialize the console device, which allows for boot-time reporting
of status:

----------------------------------------------------------------------
drivers/char/tty_io.c
2347 void __init console_init(void)
2348 {
2349  initcall_t *call;
...
2352  (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
...
2358 #ifdef CONFIG_EARLY_PRINTK
2359   disable_early_printk();
2360 #endif
...  
2366  call = &__con_initcall_start;
2367  while (call < &__con_initcall_end) {
2368   (*call)();
2369   call++;
2370  }
2371 }  
-----------------------------------------------------------------------

Line 2352

Set up the line discipline.



Line 2359

Keep the early printk support if desired. Early printk support allows the system to report status during the
boot process before the system console is fully initialized. It specifically initializes a serial port (ttyS0, for
example) or the system's VGA to a minimum functionality. Early printk support is started in setup_arch().
(For more information, see the code discussion on line 408 in this section and the files /kernel/printk.c and
/arch/i386/kernel/ early_printk.c.)

Line 2366

Initialize the console.

8.5.17. The Call to profile_init()

Line 447

profile_init() allocates memory for the kernel to store profiling data in. Profiling is the term used in
computer science to describe data collection during program execution. Profiling data is used to analyze
performance and otherwise study the program being executed (in our case, the Linux kernel itself):

----------------------------------------------------------------------
kernel/profile.c
30 void __init profile_init(void)
31 {
32   unsigned int size;
33 
34   if (!prof_on)
35     return;
36 
37   /* only text is profiled */
38   prof_len = _etext - _stext;
39   prof_len >>= prof_shift;
40 
41   size = prof_len * sizeof(unsigned int) + PAGE_SIZE - 1;
42   prof_buffer = (unsigned int *) alloc_bootmem(size);
43 }
-----------------------------------------------------------------------

Lines 3435

Don't do anything if kernel profiling is not enabled.

Lines 3839

_etext and _stext are defined in kernel/head.S. We determine the profile length as delimited by _etext and
_stext and then shift the value by prof_shift, which was defined as a kernel parameter.

Lines 4142



We allocate a contiguous block of memory for storing profiling data of the size requested by the kernel
parameters.

8.5.18. The Call to local_irq_enable()

Line 448

The function local_irq_enable() allows interrupts on the current CPU. It is usually paired with
local_irq_disable(). In previous kernel versions, the sti(), cli() pair were used for this purpose. Although
these macros still resolve to sti() and cli(), the keyword to note here is local. These affect only the
currently running processor:

----------------------------------------------------------------------
include\asm-i386\system.h 

446  #define local_irq_disable()  _asm__ __volatile__("cli": : :"memory")
447  #define local_irq_enable()  __asm__ __volatile__("sti": : :"memory")
----------------------------------------------------------------------

Lines 446447

Referring to the "Inline Assembly" section in Chapter 2, the item in the quotes is the assembly instruction
and memory is on the clobber list.

8.5.19. initrd Configuration

Lines 449456

This #ifdef statement is a sanity check on initrdthe initial RAM disk.

A system using initrd loads the kernel and mounts the initial RAM disk as the root filesystem. Programs can
run from this RAM disk and, when the time comes, a new root filesystem, such as the one on a hard drive,
can be mounted and the initial RAM disk unmounted.

This operation simply checks to ensure that the initial RAM disk specified is valid. If it isn't, we set
initrd_start to 0, which tells the kernel to not use an initial RAM disk.[8]

[8] For more information, refer to Documentation/initrd.txt.

8.5.20. The Call to mem_init()

Line 457

For both x86 and PPC, the call to mem_init() finds all free pages and sends that information to the console.
Recall from Chapter 4 that the Linux kernel breaks available memory into zones. Currently, Linux has three
zones:



Zone_DMA. Memory less than 16MB.

Zone_Normal. Memory starting at 16MB but less than 896MB. (The kernel uses the last 128MB.)

Zone_HIGHMEM. Memory greater than 1GB.

The function mem_init() finds the total number of free page frames in all the memory zones. This function
prints out informational kernel messages regarding the beginning state of the memory. This function is
architecture dependent because it manages early memory allocation data. Each architecture supplies its own
function, although they all perform the same tasks. We first look at how x86 does it and follow it up with
PPC:

[View full width]
----------------------------------------------------------------------
arch/i386/mm/init
445  void __init mem_init(void)
446  {
447   extern int ppro_with_ram_bug(void);
448   int codesize, reservedpages, datasize, initsize;
449   int tmp;
450   int bad_ppro;
...
459  #ifdef CONFIG_HIGHMEM
460   if (PKMAP_BASE+LAST_PKMAP*PAGE_SIZE >= FIXADDR_START) {
461   printk(KERN_ERR "fixmap and kmap areas overlap - this will crash\n");
462   printk(KERN_ERR "pkstart: %lxh pkend:%lxh fixstart %lxh\n",
463   PKMAP_BASE, PKMAP_BASE+LAST_PKMAP*PAGE_SIZE, FIXADDR_START);
464   BUG();
465  }
466  #endif
467
468   set_max_mapnr_init();
...
476  /* this will put all low memory onto the freelists */
477   totalram_pages += __free_all_bootmem();
478
479
480   reservedpages = 0;
481   for (tmp = 0; tmp < max_low_pfn; tmp++)
...   
485   if (page_is_ram(tmp) && PageReserved(pfn_to_page(tmp)))
486    reservedpages++;
487
488   set_highmem_pages_init(bad_ppro);
490   codesize = (unsigned long) &_etext - (unsigned long) &_text;
491   datasize = (unsigned long) &_edata - (unsigned long) &_etext;
492   initsize = (unsigned long) &__init_end - (unsigned long) &__init_begin;
493
494   kclist_add(&kcore_mem, __va(0), max_low_pfn << PAGE_SHIFT); 
495   kclist_add(&kcore_vmalloc, (void *)VMALLOC_START, 
496     VMALLOC_END-VMALLOC_START);
497
498   printk(KERN_INFO "Memory: %luk/%luk available (%dk kernel code, %dk reserved, %dk
 data, %dk init, %ldk highmem)\n",
499    (unsigned long) nr_free_pages() << (PAGE_SHIFT-10),
500    num_physpages << (PAGE_SHIFT-10),
501    codesize >> 10,
502    reservedpages << (PAGE_SHIFT-10),
503    datasize >> 10,
504    initsize >> 10,



505    (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10))
506     );
...
521  #ifndef CONFIG_SMP
522    zap_low_mappings();
523  #endif
524  }
-----------------------------------------------------------------------

Line 459

This line is a straightforward error check so that fixed map and kernel map do not overlap.

Line 469

The function set_max_mapnr_init() (arch/i386/mm/init.c) simply sets the value of num_physpages, which is a
global variable (defined in mm/memory.c) that holds the number of available page frames.

Line 477

The call to __free_all_bootmem() marks the freeing up of all low-memory pages. During boot time, all pages
are reserved. At this late point in the bootstrapping phase, the available low-memory pages are released.
The flow of the function calls are seen in Figure 8.15.

Figure 8.15. __free_all_bootmem() Call Hierarchy

Let's look at the core portion of free_all_bootmem_core() to understand what is happening:

[View full width]
----------------------------------------------------------------------
mm/bootmem.c
257  static unsigned long __init free_all_bootmem_core(pg_data_t *pgdat)
258  {
259   struct page *page;
260   bootmem_data_t *bdata = pgdat->bdata;
261   unsigned long i, count, total = 0;
...
295   page = virt_to_page(bdata->node_bootmem_map);
296   count = 0;
297    for (i = 0; i < ((bdata->node_low_pfn-(bdata->node_boot_start >> PAGE_SHIFT))/8 +
 PAGE_SIZE-1)/PAGE_SIZE; i++,page++) {
298     count++;
299     ClearPageReserved(page);



300     set_page_count(page, 1);
301     __free_page(page);
302   }
303   total += count;
304   bdata->node_bootmem_map = NULL;
305  
306   return total;
307  }
-----------------------------------------------------------------------

For all the available low-memory pages, we clear the PG_reserved flag[9] in the flags field of the page struct.
Next, we set the count field of the page struct to 1 to indicate that it is in use and call __free_page(), thus
passing it to the buddy allocator. If you recall from Chapter 4's explanation of the buddy system, we explain
that this function releases a page and adds it to a free list.

[9] Recall from Chapter 6 that this flag is set in pages that are to be pinned in memory and that it is set for low memory during early

bootstrapping.

The function __free_all_bootmem() returns the number of low memory pages available, which is added to
the running count of totalram_pages (an unsigned long defined in mm/page_alloc.c).

Lines 480486

These lines update the count of reserved pages.

Line 488

The call to set_highmem_pages_init() marks the initialization of high-memory pages. Figure 8.16 illustrates
the calling hierarchy of set_highmem_pages_init().

Figure 8.16. highmem_pages_init Calling Hierarchy

Let's look at the bulk of the code performed in one_highpage_init():

----------------------------------------------------------------------
arch/i386/mm/init.c
253  void __init one_highpage_init(struct page *page, int pfn, int bad_ppro)
254  {
255         if (page_is_ram(pfn) && !(bad_ppro && page_kills_ppro(pfn))) {
256                  ClearPageReserved(page);
257                 set_bit(PG_highmem, &page->flags);
258                  set_page_count(page, 1);
259                  __free_page(page);
260                  totalhigh_pages++;
261          } else
262                  SetPageReserved(page);



263  }
----------------------------------------------------------------------

Much like __free_all_bootmem(), all high-memory pages have their page struct flags field cleared of the
PG_reserved flag, have PG_highmem set, and have their count field set to 1. __free_page() is also called to add
these pages to the free lists and the totalhigh_pages counter is incremented.

Lines 490506

This code block gathers and prints out information regarding the size of memory areas and the number of
available pages.

Lines 521523

The function zap_low_mappings flushes the initial TLBs and PGDs in low memory.

The function mem_init() marks the end of the boot phase of memory allocation and the beginning of the
memory allocation that will be used throughout the system's life.

The PPC code for mem_init() finds and initializes all pages for all zones:

----------------------------------------------------------------------
arch/ppc/mm/init.c
393  void __init mem_init(void)
394   {
395   unsigned long addr;
396   int codepages = 0;
397   int datapages = 0;
398   int initpages = 0;
399   #ifdef CONFIG_HIGHMEM
400   unsigned long highmem_mapnr;

402   highmem_mapnr = total_lowmem >> PAGE_SHIFT;
403   highmem_start_page = mem_map + highmem_mapnr;
404  #endif /* CONFIG_HIGHMEM */
405   max_mapnr = total_memory >> PAGE_SHIFT;

407   high_memory = (void *) __va(PPC_MEMSTART + total_lowmem);
408   num_physpages = max_mapnr;  /* RAM is assumed contiguous */

410   totalram_pages += free_all_bootmem();

412  #ifdef CONFIG_BLK_DEV_INITRD
413   /* if we are booted from BootX with an initial ramdisk,
414    make sure the ramdisk pages aren't reserved. */
415   if (initrd_start) {
416  for (addr = initrd_start; addr < initrd_end; addr += PAGE_SIZE)
417    ClearPageReserved(virt_to_page(addr));
418  }
419  #endif /* CONFIG_BLK_DEV_INITRD */

421  #ifdef CONFIG_PPC_OF
422   /* mark the RTAS pages as reserved */
423   if ( rtas_data )
424    for (addr = (ulong)__va(rtas_data);



425     addr < PAGE_ALIGN((ulong)__va(rtas_data)+rtas_size) ;
426     addr += PAGE_SIZE)
427     SetPageReserved(virt_to_page(addr));
428  #endif
429  #ifdef CONFIG_PPC_PMAC
430   if (agp_special_page)
431    SetPageReserved(virt_to_page(agp_special_page));
432  #endif
433   if ( sysmap )
434    for (addr = (unsigned long)sysmap;
435     addr < PAGE_ALIGN((unsigned long)sysmap+sysmap_size) ;
436     addr += PAGE_SIZE)
437     SetPageReserved(virt_to_page(addr));

439   for (addr = PAGE_OFFSET; addr < (unsigned long)high_memory;
440    addr += PAGE_SIZE) {
441    if (!PageReserved(virt_to_page(addr)))
442     continue;
443    if (addr < (ulong) etext)
444     codepages++;
445    else if (addr >= (unsigned long)&__init_begin
446      && addr < (unsigned long)&__init_end)
447     initpages++;
448    else if (addr < (ulong) klimit)
449     datapages++;
450   }

452  #ifdef CONFIG_HIGHMEM
453   {
454    unsigned long pfn;

456   for (pfn = highmem_mapnr; pfn < max_mapnr; ++pfn) {
457     struct page *page = mem_map + pfn;

459     ClearPageReserved(page);
460     set_bit(PG_highmem, &page->flags);
461     set_page_count(page, 1);
462     __free_page(page);
463     totalhigh_pages++;
464    }
465    totalram_pages += totalhigh_pages;
466   }
467  #endif /* CONFIG_HIGHMEM */

469  printk("Memory: %luk available (%dk kernel code, %dk data, %dk init, %ldk highmem)\n",
470     (unsigned long)nr_free_pages()<< (PAGE_SHIFT-10),
471     codepages<< (PAGE_SHIFT-10), datapages<< (PAGE_SHIFT-10),
472     initpages<< (PAGE_SHIFT-10),
473     (unsigned long) (totalhigh_pages << (PAGE_SHIFT-10)));
474   if (sysmap)
475    printk("System.map loaded at 0x%08x for debugger, size: %ld bytes\n",
476     (unsigned int)sysmap, sysmap_size);
477  #ifdef CONFIG_PPC_PMAC
478   if (agp_special_page)
479    printk(KERN_INFO "AGP special page: 0x%08lx\n", agp_special_page); 
480  #endif

482   /* Make sure all our pagetable pages have page->mapping
483    and page->index set correctly. */
484   for (addr = KERNELBASE; addr != 0; addr += PGDIR_SIZE) {



485    struct page *pg;
486    pmd_t *pmd = pmd_offset(pgd_offset_k(addr), addr);
487    if (pmd_present(*pmd)) {
488     pg = pmd_page(*pmd);
489     pg->mapping = (void *) &init_mm;
490     pg->index = addr;
491    }
492   }

493   mem_init_done = 1;
494  }
-----------------------------------------------------------------------

Lines 399410

These lines find the amount of memory available. If HIGHMEM is used, those pages are also counted. The
global variable totalram_pages is modified to reflect this.

Lines 412419

If used, clear any pages that the boot RAM disk used.

Lines 421432

Depending on the boot environment, reserve pages for the Real-Time Abstraction Services and AGP (video),
if needed.

Lines 433450

If required, reserve some pages for system map.

Lines 452467

If using HIGHMEM, clear any reserved pages and modify the global variable totalram_pages.

Lines 469480

Print memory information to the console.

Lines 482492

Loop through page directory and initialize each mm_struct and index.

8.5.21. The Call to late_time_init()



Lines 459460

The function late_time_init() uses HPET (refer to the discussion under "The Call to time_init" section). This
function is used only with the Intel architecture and HPET. This function has essentially the same code as
time_init(); it is just called after memory initialization to allow the HPET to be mapped into physical
memory.

8.5.22. The Call to calibrate_delay()

Line 461

The function calibrate_delay() in init/main.c calculates and prints the value of the much celebrated
"BogoMips," which is a measurement that indicates the number of delay() iterations your processor can
perform in a clock tick. calibrate_delay() allows delays to be approximately the same across processors of
different speeds. The resulting valueat most an indicator of how fast a processor is runningis stored in
loop_pre_jiffy and the udelay() and mdelay() functions use it to set the number of delay() iterations to
perform:

----------------------------------------------------------------------
init/main.c
void __init calibrate_delay(void)
{
  unsigned long ticks, loopbit;
  int lps_precision = LPS_PREC;

186   loops_per_jiffy = (1<<12);

  printk("Calibrating delay loop... ");
189   while (loops_per_jiffy <<= 1) {
   /* wait for "start of" clock tick */
   ticks = jiffies;
   while (ticks == jiffies)
    /* nothing */;
   /* Go .. */
   ticks = jiffies;
   __delay(loops_per_jiffy);
   ticks = jiffies - ticks;
   if (ticks)
    break;
200   }

/* Do a binary approximation to get loops_per_jiffy set to equal one clock
 (up to lps_precision bits) */
204   loops_per_jiffy >>= 1;
  loopbit = loops_per_jiffy;
206   while ( lps_precision-- && (loopbit >>= 1) ) {
   loops_per_jiffy |= loopbit;
   ticks = jiffies;
   while (ticks == jiffies); 
   ticks = jiffies;
   __delay(loops_per_jiffy);
   if (jiffies != ticks)  /* longer than 1 tick */
    loops_per_jiffy &= ~loopbit;
214   }

/* Round the value and print it */  



217   printk("%lu.%02lu BogoMIPS\n",
   loops_per_jiffy/(500000/HZ),
219    (loops_per_jiffy/(5000/HZ)) % 100);
}
----------------------------------------------------------------------

Line 186

Start at 0x800.

Lines 189200

Keep doubling loops_per_jiffy until the amount of time it takes the function delay(loops_per_jiffy) to
exceed one jiffy.

Line 204

Divide loops_per_jiffy by 2.

Lines 206214

Successively add descending powers of 2 to loops_per_jiffy until tick equals jiffy.

Lines 217219

Print the value out as if it were a float.

8.5.23. The Call to pgtable_cache_init()

Line 463

The key function in this x86 code block is the system function kmem_cache_create(). This function creates a
named cache. The first parameter is a string used to identify it in /proc/slabinfo:

----------------------------------------------------------------------
arch/i386/mm/init.c
529 kmem_cache_t *pgd_cache;
530 kmem_cache_t *pmd_cache;
531 
532 void __init pgtable_cache_init(void)
533 {
534   if (PTRS_PER_PMD > 1) {
535     pmd_cache = kmem_cache_create("pmd",
536           PTRS_PER_PMD*sizeof(pmd_t),
537           0, 538           SLAB_HWCACHE_ALIGN | SLAB_MUST_H  WCACHE_ALIGN,     
539           pmd_ctor,
540           NULL);



541     if (!pmd_cache)
542       panic("pgtable_cache_init(): cannot create pmd c  ache");
543   }    
544   pgd_cache = kmem_cache_create("pgd",
545         PTRS_PER_PGD*sizeof(pgd_t),
546         0,
547         SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_A  LIGN,
548         pgd_ctor,
549         PTRS_PER_PMD == 1 ? pgd_dtor : NULL);
550   if (!pgd_cache)
551     panic("pgtable_cache_init(): Cannot create pgd cache");
552 }
----------------------------------------------------------------------

----------------------------------------------------------------------
arch/ppc64/mm/init.c
976 void pgtable_cache_init(void)
977 {
978   zero_cache = kmem_cache_create("zero",
979         PAGE_SIZE,
980         0,
981         SLAB_HWCACHE_ALIGN | SLAB_MUST_HWCACHE_A  LIGN,     
982         zero_ctor, 
983         NULL);
984   if (!zero_cache)
985     panic("pgtable_cache_init(): could not create zero_cache  !\n"); 
986 }
----------------------------------------------------------------------

Lines 532542

Create the pmd cache.

Lines 544551

Create the pgd cache.

On the PPC, which has hardware-assisted hashing, pgtable_cache_init() is a no-op:

----------------------------------------------------------------------
include\asmppc\pgtable.h
685  #define pgtable_cache_init()  do { } while (0)

8.5.24. The Call to buffer_init()

Line 472

The buffer_init() function in fs/buffer.c holds data from filesystem devices:

----------------------------------------------------------------------



fs/buffer.c
3031  void __init buffer_init(void)
{
  int i;
  int nrpages;

3036   bh_cachep = kmem_cache_create("buffer_head",
    sizeof(struct buffer_head), 0,
    0, init_buffer_head, NULL);
3039   for (i = 0; i < ARRAY_SIZE(bh_wait_queue_heads); i++)
   init_waitqueue_head(&bh_wait_queue_heads[i].wqh);

3044   nrpages = (nr_free_buffer_pages() * 10) / 100;
  max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
  hotcpu_notifier(buffer_cpu_notify, 0);
3048  }  
----------------------------------------------------------------------

Line 3036

Allocate the buffer cache hash table.

Line 3039

Create a table of buffer hash wait queues.

Line 3044

Limit low-memory occupancy to 10 percent.

8.5.25. The Call to security_scaffolding_startup()

Line 474

The 2.6 Linux kernel contains code for loading kernel modules that implement various security features.
security_scaffolding_startup() simply verifies that a security operations object exists, and if it does, calls
the security module's initialization functions.

How security modules can be created and what kind of issues a writer might face are beyond the scope of
this text. For more information, consult Linux Security Modules (http://lsm.immunix.org/) and the Linux-
security-module mailing list (http://mail.wirex.com/mailman/listinfo/linux-security-module).

8.5.26. The Call to vfs_caches_init()

Line 475

The VFS subsystem depends on memory caches, called SLAB caches, to hold the structures it manages.
Chapter 4 discusses SLAB caches detail. The vfs_caches_init() function initializes the SLAB caches that the

http://lsm.immunix.org/
http://mail.wirex.com/mailman/listinfo/linux-security-module


subsystem uses. Figure 8.17 shows the overview of the main function hierarchy called from
vfs_caches_init(). We explore in detail each function included in this call hierarchy. You can refer to this
hierarchy to keep track of the functions as we look at each of them.

Figure 8.17. vfs_caches_init() Call Hierarchy

Table 8.3 summarizes the objects introduced by the vfs_caches_init() function or by one of the functions it
calls.

----------------------------------------------------------------------
fs/dcache.c
1623  void __init vfs_caches_init(unsigned long mempages)
1624  {
1625   names_cachep = kmem_cache_create("names_cache", 
1626     PATH_MAX, 0, 
1627     SLAB_HWCACHE_ALIGN, NULL, NULL);
1628   if (!names_cachep)
1629    panic("Cannot create names SLAB cache");
1630  
1631   filp_cachep = kmem_cache_create("filp", 
1632     sizeof(struct file), 0,
1633     SLAB_HWCACHE_ALIGN, filp_ctor, filp_dtor);



1634   if(!filp_cachep)
1635    panic("Cannot create filp SLAB cache");
1636  
1637   dcache_init(mempages);
1638   inode_init(mempages);
1639   files_init(mempages); 
1640   mnt_init(mempages);
1641   bdev_cache_init();
1642   chrdev_init();
1643  }
-----------------------------------------------------------------------

Table 8.3. Objects Introduced by vfs_caches_init

Object Name Description

names_cachep Global variable

filp_cachep Global variable

inode_cache Global variable

dentry_cache Global variable

mnt_cache Global variable

namespace Struct

mount_hashtable Global variable

root_fs_type Global variable

file_system_type Struct (discussed in Chapter 6)

bdev_cachep Global variable

Line 1623

The routine takes in the global variable num_physpages (whose value is calculated during mem_init()) as a
parameter that holds the number of physical pages available in the system's memory. This number
influences the creation of SLAB caches, as we see later.

Lines 16251629

The next step is to create the names_cachep memory area. Chapter 4 describes the kmem_cache_create()
function in detail. This memory area holds objects of size PATH_MAX, which is the maximum allowable number
of characters a pathname is allowed to have. (This value is set in linux/limits.h as 4,096.) At this point,
the cache that has been created is empty of objects, or memory areas of size PATH_MAX. The actual memory
areas are allocated upon the first and potentially subsequent calls to getname().

As discussed in Chapter 6 the getname() routine is called at the beginning of some of the file-related system
calls (for example, sys_open()) to read the file pathname from the process address space. Objects are freed
from the cache with the putname() routine.

If the names_cache cache cannot be created, the kernel jumps to the panic routine, exiting the function's flow
of control.



Lines 16311635

The filp_cachep cache is created next, with objects the size of the file structure. The object holding the file
structure is allocated by the get_empty_filp() (fs/file_table.c) routine, which is called, for example, upon
creation of a pipe or the opening of a file. The file descriptor object is deallocated by a call to the file_free()
(fs/file_table.c) routine.

Line 1637

The dcache_init() (fs/dcache.c) routine creates the SLAB cache that holds dentry descriptors.[10] The
cache itself is called the dentry_cache. The dentry descriptors themselves are created for each hierarchical
component in pathnames referred by processes when accessing a file or directory. The structure associates
the file or directory component with the inode that represents it, which further facilitates requests to that
component for a speedier association with its corresponding inode.

[10] Recall that dentry is short for directory entry.

Line 1638

The inode_init() (fs/inode.c) routine initializes the inode hash table and the wait queue head array used
for storing hashed inodes that the kernel wants to lock. The wait queue heads (wait_queue_head_t) for
hashed inodes are stored in an array called i_wait_queue_heads. This array gets initialized at this point of the
system's startup process.

The inode_hashtable gets created at this point. This table speeds up the searches on inode. The last thing
that occurs is that the SLAB cache used to hold inode objects gets created. It is called inode_cache. The
memory areas for this cache are allocated upon calls to alloc_inode (fs/inode.c) and freed upon calls to
destroy_inode() (fs/inode.c).

Line 1639

The files_init() routine is called to determine the maximum amount of memory allowed for files per
process. The max_files field of the files_stat structure is set. This is then referenced upon file creation to
determine if there is enough memory to open the file. Let's look at this routine:

----------------------------------------------------------------------
fs/file_table.c
292  void __init files_init(unsigned long mempages)
293  { 
294   int n; 
...
299   n = (mempages * (PAGE_SIZE / 1024)) / 10;
300   files_stat.max_files = n; 
301   if (files_stat.max_files < NR_FILE)
302    files_stat.max_files = NR_FILE;
303  }
----------------------------------------------------------------------

Line 299



The page size is divided by the amount of space that a file (along with associated inode and cache) will
roughly occupy (in this case, 1K). This value is then multiplied by the number of pages to get the total
amount of "blocks" that can be used for files. The division by 10 shows that the default is to limit the
memory usage for files to no more than 10 percent of the available memory.

Lines 301302

The NR_FILE (include/linux/fs.h) is set to 8,192.

Line 1640

The next routine, called mnt_init(), creates the cache that will hold the vfsmount objects the VFS uses for
mounting filesystems. The cache is called mnt_cache. The routine also creates the mount_hashtable array,
which stores references to objects in mnt_cache for faster access. It then issues calls to initialize the sysfs
filesystem and mounts the root filesystem. Let's closely look at the creation of the hash table:

[View full width]
----------------------------------------------------------------------
fs/namespace.c
1137  void __init mnt_init(unsigned long mempages)
{
1139   struct list_head *d;
1140   unsigned long order;
1141   unsigned int nr_hash;
1142   int i;
...
1149   order = 0; 
1150   mount_hashtable = (struct list_head *)
1151    __get_free_pages(GFP_ATOMIC, order);
1152  
1153   if (!mount_hashtable)
1154    panic("Failed to allocate mount hash table\n");
...
1161  nr_hash = (1UL << order) * PAGE_SIZE / sizeof(struct list_head);
1162   hash_bits = 0;
1163   do {
1164    hash_bits++;
1165    } while ((nr_hash >> hash_bits) != 0);
1166   hash_bits--;
...
1172   nr_hash = 1UL << hash_bits;
1173   hash_mask = nr_hash-1;
1174  
1175  printk("Mount-cache hash table entries: %d (order: %ld, %ld bytes)\n", nr_hash,
 order, (PAGE_SIZE << order));
...
1179   d = mount_hashtable;
1180   i = nr_hash;
1181   do {
1182    INIT_LIST_HEAD(d); 
1183    d++;
1184    i--;
1185   } while (i);
..
1189  }
----------------------------------------------------------------------



Lines 11391144

The hash table array consists of a full page of memory. Chapter 4 explains in detail how the routine
__get_free_pages() works. In a nutshell, this routine returns a pointer to a memory area of size 2 order
pages. In this case, we allocate one page to hold the hash table.

Lines 11611173

The next step is to determine the number of entries in the table. nr_hash is set to hold the order (power of
two) number of list heads that can fit into the table. hash_bits is calculated as the number of bits needed to
represent the highest power of two in nr_hash. Line 1172 then redefines nr_hash as being composed of the
single leftmost bit. The bitmask can then be calculated from the new nr_hash value.

Lines 11791185

Finally, we initialize the hash table through a call to the INIT_LIST_HEAD macro, which takes in a pointer to
the memory area where a new list head is to be initialized. We do this nr_hash times (or the number of
entries that the table can hold).

Let's walk through an example: We assume a PAGE_SIZE of 4KB and a struct list_head of 8 bytes. Because
order is equal to 0, the value of nr_hash becomes 500; that is, up to 500 list_head structs can fit in one 4KB
table. The (1UL << order) becomes the number of pages that have been allocated. For example, if the order
had been 1 (meaning we had requested 21 pages allocated to the hash table), 0000 0001 bit-shifted once to
the left becomes 0000 0010 (or 2 in decimal notation). Next, we calculate the number of bits the hash key
will need. Walking through each iteration of the loop, we get the following:

Beginning values are hash_bits = 0 and nr_hash = 500.

Iteration 1: hash_bits = 1, and (500 >> 1) ! = 0

(0001 1111 0100 >> 1) = 0000 1111 1010

Iteration 2: hash_bits = 2, and (500 >> 2) ! = 0

(0001 1111 1010 >> 2) = 0000 0111 1110

Iteration3: hash_bits = 3, and (500 >> 3) ! = 0

(0001 1111 1010 >> 3) = 0000 0011 1111

Iteration 4: hash_bits = 4, and (500 >> 4) ! = 0

(0001 1111 1010 >> 4) = 0000 0001 1111

Iteration 5: hash_bits = 5, and (500 >> 5) ! = 0

(0001 1111 1010 >> 5) = 0000 0000 1111

Iteration 6: hash_bits = 6, and (500 >> 6) ! = 0

(0001 1111 1010 >> 6) = 0000 0000 0111

Iteration 7: hash_bits = 7, and (500 >> 7) ! = 0

(0001 1111 1010 >> 7) = 0000 0000 0011



Iteration 8: hash_bits = 8, and (500 >> 8) ! = 0

(0001 1111 1010 >> 8) = 0000 0000 0001

Iteration 9: hash_bits = 9, and (500 >> 9) ! = 0

(0001 1111 1010 >> 9) = 0000 0000 0000

After breaking out of the while loop, hash_bits is decremented to 8, nr_hash is set to 0001 0000 0000, and
the hash_mask is set to 0000 1111 1111.

After the mnt_init() routine initializes mount_hashtable and creates mnt_cache, it issues three calls:

----------------------------------------------------------------------
fs/namespace.c
...
1189   sysfs_init();
1190   init_rootfs();
1191   init_mount_tree();
1192  }
----------------------------------------------------------------------

sysfs_init() is responsible for the creation of the sysfs filesystem. init_rootfs() and init_mount_tree()
are together responsible for mounting the root filesystem. We closely look at each routine in turn.

----------------------------------------------------------------------
init_rootfs()
fs/ramfs/inode.c
218  static struct file_system_type rootfs_fs_type = {
219   .name   = "rootfs",
220   .get_sb  = rootfs_get_sb,
221   .kill_sb  = kill_litter_super,
222  };
...
237  int __init init_rootfs(void)
238  {
239  return register_filesystem(&rootfs_fs_type);
240  }
----------------------------------------------------------------------

The rootfs filesystem is an initial filesystem the kernel mounts. It is a simple and quite empty directory that
becomes overmounted by the real filesystem at a later point in the kernel boot-up process.

Lines 218222

This code block is the declaration of the rootfs_fs_type file_system_type struct. Only the two methods for
getting and killing the associated superblock are defined.

Lines 237240

The init_rootfs() routine merely register this rootfs with the kernel. This makes available all the
information regarding the type of filesystem (information stored in the file_system_type struct) within the



kernel.

----------------------------------------------------------------------
init_mount_tree()
fs/namespace.c
1107  static void __init init_mount_tree(void)
1108  {
1109   struct vfsmount *mnt;
1110   struct namespace *namespace;
1111   struct task_struct *g, *p;
1112
1113   mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
1114   if (IS_ERR(mnt))
1115    panic("Can't create rootfs");
1116   namespace = kmalloc(sizeof(*namespace), GFP_KERNEL);
1117   if (!namespace)
1118    panic("Can't allocate initial namespace");
1119   atomic_set(&namespace->count, 1);
1120   INIT_LIST_HEAD(&namespace->list);
1121   init_rwsem(&namespace->sem);
1122   list_add(&mnt->mnt_list, &namespace->list);
1123   namespace->root = mnt;
1124  
1125   init_task.namespace = namespace;
1126   read_lock(&tasklist_lock);
1127   do_each_thread(g, p) {
1128    get_namespace(namespace);
1129    p->namespace = namespace;
1130   } while_each_thread(g, p);
1131   read_unlock(&tasklist_lock);
1132
1133  set_fs_pwd(current->fs, namespace->root, 
     namespace->root->mnt_root);
1134  set_fs_root(current->fs, namespace->root, 
     namespace->root->mnt_root);
1135  }
----------------------------------------------------------------------- 

Lines 11161123

Initialize the process namespace. This structure keeps pointers to the mount tree-related structures and the
corresponding dentry. The namespace object is allocated, the count set to 1, the list field of type list_head is
initialized, the semaphore that locks the namespace (and the mount tree) is initialized, and the root field
corresponding to the vfsmount structure is set to point to our newly allocated vfsmount.

Line 1125

The current task's (the init task's) process descriptor namespace field is set to point at the namespace
object we just allocated and initialized. (The current process is Process 0.)

Lines 11341135

The following two routines set the values of four fields in the fs_struct associated with our process.
fs_struct holds field for the root and current working directory entries set by these two routines.



We just finished exploring what happens in the mnt_init function. Let's continue exploring vfs_mnt_init.

----------------------------------------------------------------------
1641 bdev_cache_init()
fs/block_dev.c
290  void __init bdev_cache_init(void)
291  {
292   int err;
293   bdev_cachep = kmem_cache_create("bdev_cache",
294     sizeof(struct bdev_inode),
295     0,
296   SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT,
297     init_once,
298     NULL);
299   if (!bdev_cachep)
300    panic("Cannot create bdev_cache SLAB cache");
301   err = register_filesystem(&bd_type);
302   if (err)
303    panic("Cannot register bdev pseudo-fs");
304   bd_mnt = kern_mount(&bd_type);
305   err = PTR_ERR(bd_mnt);
306   if (IS_ERR(bd_mnt))
307    panic("Cannot create bdev pseudo-fs");
308   blockdev_superblock = bd_mnt->mnt_sb;  /* For writeback */
309  }
----------------------------------------------------------------------

Lines 293298

Create the bdev_cache SLAB cache, which holds bdev_inodes.

Line 301

Register the bdev special filesystem. It has been defined as follows:

----------------------------------------------------------------------
fs/block_dev.c
294  static struct file_system_type bd_type = {
295   .name   = "bdev",
296   .get_sb  = bd_get_sb,
297   .kill_sb  = kill_anon_super,
298  };
----------------------------------------------------------------------

As you can see, the file_system_type struct of the bdev special filesystem has only two routines defined: one
for fetching the filesystem's superblock and the other for removing/freeing the superblock. At this point, you
might wonder why block devices are registered as filesystems. In Chapter 6, we saw that systems that are
not technically filesystems can use filesystem kernel structures; that is, they do not have mount points but
can make use of the VFS kernel structures that support filesystems. Block devices are one instance of a
pseudo filesystem that makes use of the VFS filesystem kernel structures. As with bdev, these special
filesystems generally define only a limited number of fields because not all of them make sense for the



particular application.

Lines 304308

The call to kern_mount() sets up all the mount-related VFS structures and returns the vfsmount structure.
(See Chapter 6 for more information on setting the global variables bd_mnt to point to the vfsmount structure
and blockdev_superblock to point to the vfsmount superblock.)

This function initializes the character device objects that surround the driver model:

----------------------------------------------------------------------
1642 chrdev_init
fs/char_dev.c
void __init chrdev_init(void)  
{
433   subsystem_init(&cdev_subsys);
434   cdev_map = kobj_map_init(base_probe, &cdev_subsys);
435  }
----------------------------------------------------------------------

8.5.27. The Call to radix_tree_init()

Line 476

The 2.6 Linux kernel uses a radix tree to manage pages within the page cache. Here, we simply initialize a
contiguous section of kernel space for storing the page cache radix tree:

----------------------------------------------------------------------
lib/radix-tree.c
798 void __init radix_tree_init(void)
799 {
800   radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
801       sizeof(struct radix_tree_node), 0,
802       SLAB_PANIC, radix_tree_node_ctor, NULL);
803   radix_tree_init_maxindex();
804   hotcpu_notifier(radix_tree_callback, 0);
-----------------------------------------------------------------------
----------------------------------------------------------------------
lib/radix-tree.c
768 static __init void radix_tree_init_maxindex(void)
769 {
770   unsigned int i;
771 
772   for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
773     height_to_maxindex[i] = __maxindex(i);
774 }
-----------------------------------------------------------------------

Notice how radix_tree_init() allocates the page cache space and radix_tree_init_maxindex() configures
the radix tree data store, height_to_maxindex[].



hotcpu_notifier() (on line 804) refers to Linux 2.6's capability to hotswap CPUs. When a CPU is
hotswapped, the kernel calls radix_tree_callback(), which attempts to cleanly free the parts of the page
cache that were linked to the hotswapped CPU.

8.5.28. The Call to signals_init()

Line 477

The signals_init() function in kernel/signal.c initializes the kernel signal queue:

----------------------------------------------------------------------
fs/buffer.c
2565  void __init signals_init(void)
2566  {
2567  sigqueue_cachep =
2568     kmem_cache_create("sigqueue",
2569       sizeof(struct sigqueue),
2570       __alignof__(struct sigqueue),
2571       0, NULL, NULL);
2572   if (!sigqueue_cachep)
2573    panic("signals_init(): cannot create sigqueue SLAB cache");
2574  }  
-----------------------------------------------------------------------

Lines 25672571

Allocate SLAB memory for sigqueue.

8.5.29. The Call to page_writeback_init()

Line 479

The page_writeback_init() function initializes the values controlling when a dirty page is written back to
disk. Dirty pages are not immediately written back to disk; they are written after a certain amount of time
passes or a certain number or percent of the pages in memory are marked as dirty. This init function
attempts to determine the optimum number of pages that must be dirty before triggering a background write
and a dedicated write. Background dirty-page writes take up much less processing power than dedicated
dirty-page writes:

----------------------------------------------------------------------
mm/page-writeback.c
488 /*
489 * If the machine has a large highmem:lowmem ratio then scale back the default
490 * dirty memory thresholds: allowing too much dirty highmem pins an excessive
491 * number of buffer_heads.
492 */
493 void __init page_writeback_init(void)
494 {
495   long buffer_pages = nr_free_buffer_pages();



496   long correction;
497 
498   total_pages = nr_free_pagecache_pages();
499 
500   correction = (100 * 4 * buffer_pages) / total_pages;
501 
502   if (correction < 100) {
503     dirty_background_ratio *= correction;
504     dirty_background_ratio /= 100;
505     vm_dirty_ratio *= correction;
506     vm_dirty_ratio /= 100;
507   }
508   mod_timer(&wb_timer, jiffies + (dirty_writeback_centisecs * HZ) / 100);
509   set_ratelimit();
510   register_cpu_notifier(&ratelimit_nb);
511 }
-----------------------------------------------------------------------

Lines 495507

If we are operating on a machine with a large page cache compared to the number of buffer pages, we lower
the dirty-page writeback thresholds. If we choose not to lower the threshold, which raises the frequency of
writebacks, at each writeback, we would use an inordinate amount of buffer_heads. (This is the meaning of
the comment before page_writeback().)

The default background writeback, dirty_background_ratio, starts when 10 percent of the pages are dirty. A
dedicated writeback, vm_dirty_ratio, starts when 40 percent of the pages are dirty.

Line 508

We modify the writeback timer, wb_timer, to be triggered periodically (every 5 seconds by default).

Line 509

set_ratelimit() is called, which is documented excellently. I defer to these inline comments:

----------------------------------------------------------------------
mm/page-writeback.c
450 /*
451 * If ratelimit_pages is too high then we can get into dirty-data overload
452 * if a large number of processes all perform writes at the same time.
453 * If it is too low then SMP machines will call the (expensive)
454 * get_writeback_state too often.
455 *
456 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
457 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
458 * thresholds before writeback cuts in.
459 *
460 * But the limit should not be set too high. Because it also controls the
461 * amount of memory which the balance_dirty_pages() caller has to write back.
462 * If this is too large then the caller will block on the IO queue all the
463 * time. So limit it to four megabytes - the balance_dirty_pages() caller
464 * will write six megabyte chunks, max.
465 */



466 
467 static void set_ratelimit(void)
468 {
469   ratelimit_pages = total_pages / (num_online_cpus() * 32);
470   if (ratelimit_pages < 16)
471     ratelimit_pages = 16;
472   if (ratelimit_pages * PAGE_CACHE_SIZE > 4096 * 1024)
473     ratelimit_pages = (4096 * 1024) / PAGE_CACHE_SIZE;
474 }
-----------------------------------------------------------------------

Line 510

The final command of page_writeback_init() registers the ratelimit notifier block, ratelimit_nb, with the
CPU notifier. The ratelimit notifier block calls ratelimit_handler() when notified, which in turn, calls
set_ratelimit(). The purpose of this is to recalculate ratelimit_pages when the number of online CPUs
changes:

----------------------------------------------------------------------
mm/page-writeback.c
483 static struct notifier_block ratelimit_nb = {
484   .notifier_call = ratelimit_handler,
485   .next   = NULL,
486 };
-----------------------------------------------------------------------

Finally, we need to examine what happens when the wb_timer (from Line 508) goes off and calls
wb_time_fn():

----------------------------------------------------------------------
mm/page-writeback.c
414 static void wb_timer_fn(unsigned long unused)
415 {
416   if (pdflush_operation(wb_kupdate, 0) < 0)
417     mod_timer(&wb_timer, jiffies + HZ); /* delay 1 second */
418 }
-----------------------------------------------------------------------

Lines 416417

When the timer goes off, the kernel triggers pdflush_operation(), which awakens one of the pdflush
threads to perform the actual writeback of dirty pages to disk. If pdflush_operation() cannot awaken any
pdflush thread, it tells the writeback timer to trigger again in 1 second to retry awakening a pdflush tHRead.
See Chapter 9, "Building the Linux Kernel," for more information on pdflush.

8.5.30. The Call to proc_root_init()

Lines 480482



As Chapter 2 explained, the CONFIG_* #define refers to a compile-time variable. If, at compile time, the proc
filesystem is selected, the next step in initialization is the call to proc_root_init():

----------------------------------------------------------------------
fs/proc/root.c
40  void __init proc_root_init(void)
41  {
42   int err = proc_init_inodecache();
43   if (err)
44    return;
45   err = register_filesystem(&proc_fs_type);
46   if (err)
47    return;
48   proc_mnt = kern_mount(&proc_fs_type);
49   err = PTR_ERR(proc_mnt);
50   if (IS_ERR(proc_mnt)) {
51    unregister_filesystem(&proc_fs_type);
52    return;
53   }
54   proc_misc_init();
55   proc_net = proc_mkdir("net", 0);
56  #ifdef CONFIG_SYSVIPC
57   proc_mkdir("sysvipc", 0);
58  #endif
59  #ifdef CONFIG_SYSCTL
60   proc_sys_root = proc_mkdir("sys", 0);
61  #endif
62  #if defined(CONFIG_BINFMT_MISC) || defined(CONFIG_BINFMT_MISC_MODULE)
63   proc_mkdir("sys/fs", 0);
64   proc_mkdir("sys/fs/binfmt_misc", 0);
65  #endif
66   proc_root_fs = proc_mkdir("fs", 0);
67   proc_root_driver = proc_mkdir("driver", 0);
68   proc_mkdir("fs/nfsd", 0); /* somewhere for the nfsd filesystem to be mounted */
69  #if defined(CONFIG_SUN_OPENPROMFS) || defined(CONFIG_SUN_OPENPROMFS_MODULE)
70   /* just give it a mountpoint */
71   proc_mkdir("openprom", 0);
72  #endif
73   proc_tty_init();
74  #ifdef CONFIG_PROC_DEVICETREE
75   proc_device_tree_init();
76  #endif
77   proc_bus = proc_mkdir("bus", 0);
78  } 
-----------------------------------------------------------------------

Line 42

This line initializes the inode cache that holds the inodes for this filesystem.

Line 45

The file_system_type structure proc_fs_type is registered with the kernel. Let's closely look at the
structure:



----------------------------------------------------------------------
fs/proc/root.c
33  static struct file_system_type proc_fs_type = {
34   .name   = "proc",
35   .get_sb  = proc_get_sb,
36   .kill_sb  = kill_anon_super,
37  };
----------------------------------------------------------------------

The file_system_type structure, which defines the filesystem's name simply as proc, has the routines for
retrieving and freeing the superblock structures.

Line 48

We mount the proc filesystem. See the sidebar on kern_mount for more details as to what happens here.

Lines 5478

The call to proc_misc_init() is what creates most of the entries you see in the /proc filesystem. It creates
entries with calls to create_proc_read_entry(), create_proc_entry(), and create_proc_seq_entry(). The
remainder of the code block consists of calls to proc_mkdir for the creation of directories under /proc/, the
call to the proc_tty_init() routine to create the tree under /proc/tty, and, if the config time value of
CONFIG_PROC_DEVICETREE is set, then the call to the proc_device_tree_init() routine to create the
/proc/device-tree subtree.

8.5.31. The Call to init_idle()

Line 490

init_idle() is called near the end of start_kernel() with parameters current and smp_processor_id() to
prepare start_kernel() for rescheduling:

----------------------------------------------------------------------
kernel/sched.c
2643 void __init init_idle(task_t *idle, int cpu)
2644 {
2645   runqueue_t *idle_rq = cpu_rq(cpu), *rq = cpu_rq(task_cpu(idle));
2646   unsigned long flags;
2647 
2648   local_irq_save(flags);
2649   double_rq_lock(idle_rq, rq);
2650 
2651   idle_rq->curr = idle_rq->idle = idle;
2652   deactivate_task(idle, rq);
2653   idle->array = NULL;
2654   idle->prio = MAX_PRIO;
2655   idle->state = TASK_RUNNING;
2656   set_task_cpu(idle, cpu);
2657   double_rq_unlock(idle_rq, rq);
2658   set_tsk_need_resched(idle);



2659   local_irq_restore(flags);
2660 
2661   /* Set the preempt count _outside_ the spinlocks! */
2662 #ifdef CONFIG_PREEMPT
2663   idle->thread_info->preempt_count = (idle->lock_depth >= 0);
2664 #else
2665   idle->thread_info->preempt_count = 0;
2666 #endif
2667 }
-----------------------------------------------------------------------

Line 2645

We store the CPU request queue of the CPU that we're on and the CPU request queue of the CPU that the
given task idle is on. In our case, with current and smp_processor_id(), these request queues will be equal.

Line 26482649

We save the IRQ flags and obtain the lock on both request queues.

Line 2651

We set the current task of the CPU request queue of the CPU that we're on to the task idle.

Lines 26522656

These statements remove the task idle from its request queue and move it to the CPU request queue of
cpu.

Lines 26572659

We release the request queue locks on the run queues that we previously locked. Then, we mark task idle
for rescheduling and restore the IRQs that we previously saved. We finally set the preemption counter if
kernel preemption is configured.

8.5.32. The Call to rest_init()

Line 493

The rest_init() routine is fairly straightforward. It essentially creates what we call the init thread, removes
the initialization kernel lock, and calls the idle tHRead:

----------------------------------------------------------------------
init/main.c
388  static void noinline rest_init(void)
389  {
390   kernel_thread(init, NULL, CLONE_FS | CLONE_SIGHAND);



391   unlock_kernel();
392   cpu_idle();
393  }
-----------------------------------------------------------------------

Line 388

You might have noticed that this is the first routine start_kernel() calls that is not __init. If you recall from
Chapter 2, we said that when a function is preceded by __init, it is because all the memory used to maintain
the function variables and the like will be memory that is cleared/freed once initialization nears completion.
This is done through a call to free_initmem(), which we see in a moment when we explore what happens in
init(). The reason why rest_init() is not an __init function is because it calls the init thread before its
completion (meaning the call to cpu_idle). Because the init tHRead executes the call to free_initmem(),
there is the possibility of a race condition occurring whereby free_initmem() is called before rest_init() (or
the root thread) is finished.

Line 390

This line is the creation of the init thread, which is also referred to as the init process or process 1. For
brevity, all we say here is that this thread shares all kernel data structures with the calling process. The
kernel thread calls the init() functions, which we look at in the next section.

Line 391

The unlock_kernel() routine does nothing if only a single processor exists. Otherwise, it releases the BKL.

Line 392

The call to cpu_idle() is what turns the root thread into the idle thread. This routine yields the processor to
the scheduler and is returned to when the scheduler has no other pending process to run.

At this point, we have completed the bulk of the Linux kernel initialization. We now briefly look at what
happens in the call to init().



8.6. The init Thread (or Process 1)

We now explore the init thread. Note that we skip over all SMP-related routines for brevity:

----------------------------------------------------------------------
init/main.c
601  static int init(void * unused)
602  {
603   lock_kernel(); 
...
612   child_reaper = current;
...
627   populate_rootfs();

629   do_basic_setup();
...
635   if (sys_access((const char __user *) "/init", 0) == 0)
636    execute_command = "/init";
637   else
638    prepare_namespace();
...
645   free_initmem();
646   unlock_kernel();
647   system_state = SYSTEM_RUNNING;

649   if (sys_open((const char __user *) "/dev/console", O_RDWR, 0) < 0)
650    printk("Warning: unable to open an initial console.\n");
651 
652   (void) sys_dup(0);
653   (void) sys_dup(0);
...
662   if (execute_command)
663    run_init_process(execute_command);
664
665   run_init_process("/sbin/init");
666   run_init_process("/etc/init");
667   run_init_process("/bin/init");
668   run_init_process("/bin/sh");
669   
670   panic("No init found. Try passing init= option to kernel.");
671  }
-----------------------------------------------------------------------

Line 612

The init thread is set to reap any thread whose parent has died. The child_reaper variable is a
global pointer to a task_struct and is defined in init/main.c. This variable comes into play in
"reparenting functions" and is used as a reference to the thread that should become the new
parent. We refer to functions such as reparent_to_init() (kernel/exit.c), choose_new_parent()
(kernel/exit.c), and forget_original_parent() (kernel/exit.c) because they use child_reaper
to reset the calling thread's parent.



Line 629

The do_basic_setup() function initializes the driver model, the sysctl interface, the network
socket interface, and work queue support:

----------------------------------------------------------------------
init/main.c
551  static void __init do_basic_setup(void)
552  {
553   driver_init();
554  
555  #ifdef CONFIG_SYSCTL
556    sysctl_init();
557  #endif
... 
560   sock_init();
561  
562   init_workqueues();
563   do_initcalls();
564  }
----------------------------------------------------------------------

Line 553

The driver_init() (drivers/base/init.c) function initializes all the subsystems involved in driver
support. This is the first part of device driver initializations. The second comes on line 563 with the
call to do_initcalls().

Lines 555557

The sysctl interface provides support for dynamic alteration of kernel parameters. This means
that the kernel parameters that sysctl supports can be modified at runtime without the need for
recompiling and rebooting the kernel. sysctl_init() (kernel/sysctl.c) initializes the interface.
For more information on sysctl, read the man page (man sysctl).

Line 560

The sock_init() function is a dummy function with a simple printk if the kernel is configured
without net support. In this case, sock_init() is defined in net/nonet.c. In the case that network
support is configured then sock_init() is defined in net/socket.c, it initializes the memory caches
to be used for network support and registers the filesystem that supports networking.

Line 562

The call to init_workqueues sets up the work queue notifier chain. Chapter 10, "Adding Your Code
to the Kernel," discusses work queues.

Line 563



The do_initcalls() (init/main.c) function constitutes the second part of device driver
initialization. This function sequentially calls the entries in an array of function pointers that
correspond to built-in device initialization functions.[11]

[11] Refer to http://geek.vtnet.ca/doc/initcall/ for an excellent distillation of the initcall mechanism by Trevor Woerner.

Lines 635638

If an early user space init exists, the kernel does not prepare the namespace; it allows it to
perform this function. Otherwise, the call to prepare_namespace() is made. A namespace refers to
the mount point of a filesystem hierarchy:

----------------------------------------------------------------------
init/do_mounts.c  
383  void __init prepare_namespace(void)
384  {
385   int is_floppy;
386  
387   mount_devfs();
...
391   if (saved_root_name[0]) {
392    root_device_name = saved_root_name;
393    ROOT_DEV = name_to_dev_t(root_device_name);
394    if (strncmp(root_device_name, "/dev/", 5) == 0)
395     root_device_name += 5;
396   }
397   
398   is_floppy = MAJOR(ROOT_DEV) == FLOPPY_MAJOR;  
399
400   if (initrd_load())
401    goto out;
402  
403   if (is_floppy && rd_doload && rd_load_disk(0))
404    ROOT_DEV = Root_RAM0;
405  
406   mount_root();
407  out:
408   umount_devfs("/dev");
409   sys_mount(".", "/", NULL, MS_MOVE, NULL);
410   sys_chroot(".");
411   security_sb_post_mountroot();
412   mount_devfs_fs ();
413  }
----------------------------------------------------------------------

Line 387

The mount_devfs() function creates the /dev mount-related structures. We need to mount /dev
because we use it to refer to the root device name.

Lines 391396

This code block sets the global variable ROOT_DEV to the indicated root device as passed in through

http://geek.vtnet.ca/doc/initcall/


kernel boot-time parameters.

Line 398

A simple comparison of major numbers indicates whether the root device is a floppy.

Lines 400401

The call to initrd_load() mounts the RAM disk if a RAM disk has been indicated as the kernel's
root filesystem. If this is the case, it returns a 1 and executes the jump to the out label, which
undoes all we've done in preparation of a root filesystem from a device.

Line 406

The call to mount_root does the majority of the root-filesystem mounting. Let's closely look at this
function:

----------------------------------------------------------------------
init/do_mounts.c
353  void __init mount_root(void)
354  {
355  #ifdef CONFIG_ROOT_NFS
356   if (MAJOR(ROOT_DEV) == UNNAMED_MAJOR) {
357    if (mount_nfs_root())
358     return;
359  
360    printk(KERN_ERR "VFS: Unable to mount root fs via NFS, trying floppy.\n");
361    ROOT_DEV = Root_FD0;
362   }
363  #endif
364  #ifdef CONFIG_BLK_DEV_FD
365   if (MAJOR(ROOT_DEV) == FLOPPY_MAJOR) {
...
367    if (rd_doload==2) {
368     if (rd_load_disk(1)) {
369       ROOT_DEV = Root_RAM1;
370       root_device_name = NULL;
371     }
372    } else
373     change_floppy("root floppy");
374   }
375  #endif
376   create_dev("/dev/root", ROOT_DEV, root_device_name);
377   mount_block_root("/dev/root", root_mountflags);
378  }
----------------------------------------------------------------------

Lines 355358

If the kernel has been configured to mount an NFS filesystem, we execute mount_nfs_root(). If
the NFS mount fails, the kernel prints out the appropriate message and then proceeds to try to



mount the floppy as the root filesystem.

Lines 364375

In this code block, the kernel tries to mount the root floppy.[12]

[12] A note on rd_doload: This global variable holds a value of 0 if no RAM disk is to be loaded, a value of 1 if a RAM disk is

to be loaded, and a value of 2 for a "dual initrd/ramload setup."

Line 377

This function performs the bulk of the root device mounting. We now return to init().

Line 645

The call to free_initmem() frees all memory segments that the routines used up with the __init
precursor. This marks our exit from pure kernel space and we begin to set up user mode data.

Lines 649650

Open up the initial console.

Lines 662668

The execute_command variable is set in init_setup() and holds the value of a boot-time parameter
that contains the name of the init program to call if we do not want the default /sbin/init to be
called. If an init program name is passed, it takes priority over the usual /sbin/init. Note that
the call to run_init_process() (init/main.c) does not return because it ends with a call to
execve(). Thus, the first init function call to run successfully is the only one run. In the case that
an init program is not found, we can use the bash shell to start up.

Line 670

This panic statement should be reached only if all of our tries to execute various init program
fails.

This concludes kernel initialization. From here on out, the init process involves itself with system
initialization and starting all the necessary processes and daemon support required for user login
and support.



Summary

This chapter described what happens between power on and kernel bootup. We discussed what
BIOS and Open Firmware are and how they interact with the kernel bootloaders. We discussed
LILO, GRUB, and Yaboot as some of the more commonly used bootloaders. We overviewed how
they work and how they call up the first kernel initialization routines.

We also went through the functions that make up kernel initialization. We traversed the kernel
code through its initialization process, touching on concepts that were introduced in previous
chapters. More specifically, we traced the Linux kernel initialization through the following high-
level operations:

Starting and locking the kernel

Initializing the page cache and page addresses for memory management in Linux

Preparing multiple CPUs

Displaying the Linux banner

Initializing the Linux scheduler

Parsing the arguments passed to the Linux kernel

Initializing the interrupts, timers, and signal handlers

Mounting the initial filesystems

Finishing system initialization and passing control out of init and back to the system

As we leave kernel initialization, we must mention that, at this point, the kernel is functional and
begins to start many higher level Linux applications, such as X11, sendmail, and so on. All these
programs rely on the basic configuration and setup that we have just outlined.



Exercises

1: What's the difference between the Big Kernel Lock (BLK) and a normal spinlock?

2: What init script allows you to add extra security features to the Linux kernel?

3: What initializes the data structure for kernel page management?

4: What percentage of pages must be dirty to trigger a background writeback of dirty
pages to disk? What percentage triggers a dedicated writeback?

5: Why is rest_init() not an __init function?



Chapter 9. Building the Linux Kernel
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Until now, we've seen the subsystems within the Linux kernel and we've explored the system
initialization functions. It is also important to understand how the image gets created. This chapter
explores the process of compiling and linking the kernel image. We also look at the internals of the
Linux build process.



9.1. Toolchain

A toolchain is the set of programs necessary to create a Linux kernel image. The concept of the
chain is that the output of one tool becomes the input for the next. Our toolchain includes a
compiler, an assembler, and a linker. Technically, it needs to also include your text editor, but this
section covers the first three tools mentioned. A toolchain is something that is necessary
whenever we want to develop software. The necessary tools are also referred to as Software
Development Kit (SDK).

A compiler is a translation program that takes in a high-level source language and produces a
low-level object language. The object code is a series of machine-dependent commands running
on the target system. An assembler is a translation program that takes in an assembly language
program and produces the same kind of object code as the compiler. The difference here is that
there is a one-to-one correspondence between each line of the assembly language and each
machine instruction produced whereas every line of high-level code might get translated into
many machine instructions. As you have seen, some of the files in the architecture-dependent
sections of the Linux source code are in assembly. These get compiled down (into object code) by
issuing a call to an assembler.

A link editor (or linker) groups executable modules for execution as a unit.

Figure 9.1 shows the "chaining" of the toolchain. The linker would be linking the object code of our
program with any libraries we are using. Compilers have flags that allow the user the level to
which it compiles down. For example, in Figure 9.1, we see that the compiler can directly produce
machine code or compile down to assembly source code, which can then be assembled into
machine code that the computer can directly execute.

Figure 9.1. Toolchain

9.1.1. Compilers

Common compilers also have a "chaining" quality internally whereby they execute a series of
phases or steps where the output of one phase is the input of the next. Figure 9.2 diagrams these
phases. The first step of compiling is the scanner phase, which breaks the high-level program
into a series of tokens. Next, the parser phase groups the tokens according to syntactical rules,



and the contextual analysis phase further groups them by semantic attributes. An optimizer
then tries to increase the efficiency of the parsed tokens and the code generation phase
produces the object code. The output of the compiler is a symbol table and relocatable object
code. That is, the starting address of each compiled module is 0 and must be relocated to its
proper place at link time.

Figure 9.2. Compiler Operation

9.1.2. Cross Compilers

Toolkits usually run natively, which means that the object code they generate runs on the same
system on which it is compiled. If you are developing a kernel on an x86 system to load on
another (or the same) x86 system, you can get away with using whatever compiler comes with
the system. Power Macs and the myriad of x86 boxes all compile code that runs on their
respective architectures. But what if we wanted to write code on one platform and run it on
another?

This is not as odd as it sounds. Consider the embedded market. Embedded systems are usually
implemented to have just enough memory and I/O to get the job done. Whether it is controlling
an automobile, router, or cell phone, there is rarely any room for a full native development
environment on an embedded system (let alone monitor or keyboard). The solution is to have
developers use their powerful and relatively inexpensive workstations as host systems to develop
code that they can then download and test on the target system. Hence, the term cross
compiler!

For example, you might be a developer for a PowerPC-embedded system that has a 405 processor
in it. Most of your desktop development systems are x86 based. By using gcc, for example, you
would do all of your development (both C and assembler) on the desktop and compile with the -
mcpu=405 option.[1] This creates object code using 405-specific instructions and addressing. You
would then download the executable to the embedded system to run and debug. Granted, this
sounds tedious, but with the limited resources of a target embedded system, it saves a great deal
of memory.

[1] For more gcc options that are specific to IBM RS/6000 (POWER) and PowerPC, go to

http://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options.

For this particular environment, many tools are on the market to assist in the development and
debugging of cross-compiled embedded code.

9.1.3. Linker

When we compile a C program ("hello world!," for example), there is far more code than the three
or four lines in our .c file. It is the job of the linker to find all these externally referenced modules
and "link" them. External modules or libraries originate from the developer, the operating system,

http://gcc.gnu.org/onlinedocs/gcc/RS_002f6000-and-PowerPC-Options.html#RS_002f6000-and-PowerPC-Options


or (the home of printf()) the C runtime library. The linker extracts these libraries, fixes up
pointers (relocation), and references (symbol resolution) across the modules to create an
executable module. Symbols can be global or local. Global symbols can be defined within a module
or externally referenced by a module. It is the linker's job to find a definition for each symbol
associated with a module. (Note that user space libraries are not available to the kernel
programmer.) For common function, the kernel has its own versions available. Static libraries
are found and copied at link time, while dynamic libraries or shared libraries can be loaded at
runtime and shared across processes. Microsoft and OS/2 call shared libraries dynamic link
libraries. Linux provides the system calls dlopen(), dlsym(), and dlclose(), which can be used to
load/open a shared library, find a symbol in the library, and then close the shared library.

9.1.4. ELF Object Files

The format of object files varies from manufacturer to manufacturer. Today, most UNIX systems
use the Executable and Linking Format (ELF). Many types of ELF files exist, each of which
performs a different function. The main types of ELF files are executable files, relocatable object
files, and core files or shared libraries. The ELF format allows object files to be compatible across
platforms and architectures. Figure 9.3 illustrates an executable and a non-executable ELF object
file.

Figure 9.3. Executable and Non-Executable ELF Files

The ELF header is always at offset zero within the ELF file. Everything in the file can be found
through the ELF header. Because the ELF header is the only fixed structure in the object file, it
must point to and specify the size of the substructures within the file. All the ELF files are broken
down into blocks of similar data called sections or segments. The non-executable object file
contains sections and a section header table, while the executable object files must contain
segments and a program header table.

9.1.4.1. ELF Header



The ELF header is kept track of in the Linux structure elf32_hdr (for a 32-bit system, that is; for
64-bit systems, there is the elf64_hdr structure). Let's look at this structure:

-----------------------------------------------------------------------
include/linux/elf.h
234  #define EI_NIDENT  16
235
236  typedef struct elf32_hdr{
237   unsigned char  e_ident[EI_NIDENT];
238   Elf32_Half  e_type;
239   Elf32_Half  e_machine;
240   Elf32_Word  e_version;
241   Elf32_Addr  e_entry; /* Entry point */
242   Elf32_Off  e_phoff;
243   Elf32_Off  e_shoff;
244   Elf32_Word  e_flags;
245   Elf32_Half  e_ehsize;
246   Elf32_Half  e_phentsize;
247   Elf32_Half  e_phnum;
248   Elf32_Half  e_shentsize;
249   Elf32_Half  e_shnum;
250   Elf32_Half  e_shstrndx;
251  } Elf32_Ehdr;
-----------------------------------------------------------------------

Line 237

The e_ident field holds the 16-byte magic number, which identifies a file as an ELF file.

Line 238

The e_type field specifies the object file type, such as executable, relocatable, or shared object.

Line 239

The e_machine field identifies the architecture of the system for which the file is compiled.

Line 240

The e_version field specifies object file version.

Line 241

The e_enTRy field holds the starting address of the program.

Line 242

The e_phoff field holds the program header table offset in bytes.



Line 243

The e_shoff field holds the offset for the section header table offset in bytes.

Line 244

The e_flags field holds processor-specific flags.

Line 245

The e_ehsize field holds the size of the ELF header.

Line 246

The e_phentsize field holds the size of each entry in the program header table.

Line 247

The e_phnum field contains the number of entries in the program header.

Line 248

The e_shentsize field holds the size of each entry in the section header table.

Line 249

The e_shnum field holds the number of entries in the section header, which indicates the number of
sections in the file.

Line 250

The e_shstrndx field holds the index of the section string within the section header.

9.1.4.2. Section Header Table

The section header table is an array of type Elf32_Shdr. Its offset in the ELF file is given by the
e_shoff field in the ELF header. There is one section header table for each section in the file:

-----------------------------------------------------------------------
include/linux/elf.h
332  typedef struct {
333   Elf32_Word  sh_name;
334   Elf32_Word  sh_type;
335   Elf32_Word  sh_flags;
336   Elf32_Addr  sh_addr;
337   Elf32_Off  sh_offset;



338   Elf32_Word  sh_size;
339   Elf32_Word  sh_link;
340   Elf32_Word  sh_info;
341   Elf32_Word  sh_addralign;
342   Elf32_Word  sh_entsize;
343  } Elf32_Shdr;
-----------------------------------------------------------------------

Line 333

The sh_name field contains the section name.

Line 334

The sh_type field contains the section's contents.

Line 335

The sh_flags field contains information regarding miscellaneous attributes.

Line 336

The sh_addr field holds the address of the section in memory image.

Line 337

The sh_offset field holds the offset of the first byte of this section within the ELF file.

Line 338

The sh_size field contains the section size.

Line 339

The sh_link field contains the index of the table link, which depends on sh_type.

Line 340

The sh_info field contains extra information, depending on the value of sh_type.

Line 341

The sh_addralign field contains the address alignment constraints.



Line 342

The sh_entsize field contains the entry size of the sections when it holds a fixed-size table.

9.1.4.3. Non-Executable ELF File Sections

The ELF file is divided into a number of sections, each of which contains information of a specific
type. Table 9.1 outlines the types of sections. Some of these sections are only present if certain
compiler flags are set at compile time. Recall that ELF32_Ehdr->e_shnum holds the number of
sections in the ELF file.

Table 9.1. ELF File Sections

Section Name Description

.bss Uninitialized data

.comment GCC uses this for the compiler version

.data Initialized data

.debug Symbolic debug information in the form of
a symbol table

.dynamic Dynamic linking information

.dynstr Dynamic linking strings

.fini Process termination code, GCC exit code

.got Global offset table

.hash Symbol hash table

.init Initialization code

.interp Name of where the program interpreter is
located

.line Line numbers for debugging

.note Compiler uses this for versioning

.plt Procedure linkage table

.relname Relocation information

.rodata Read-only data

.shstrtab Section names

.symtab Symbol table

.text Executable instructions

9.1.4.4. Program Header Table

The header table for an executable or shared object file is an array of structures, each describing
a segment or other information for execution:



-----------------------------------------------------------------------
include/linux/elf.h
276  typedef struct elf32_phdr{
277   Elf32_Word  p_type;
278   Elf32_Off  p_offset;
279   Elf32_Addr  p_vaddr;
280   Elf32_Addr  p_paddr;
281   Elf32_Word  p_filesz;
282   Elf32_Word  p_memsz;
283   Elf32_Word  p_flags;
284   Elf32_Word  p_align;
285  } Elf32_Phdr;
-----------------------------------------------------------------------

Line 277

The p_type field describes the type of segment this is.

Line 278

The p_offset field holds the offset from the beginning of the file to where the segment begins.

Line 279

The p_vaddr field holds the segment's virtual address if used.

Line 280

The p_paddr field holds the segment's physical address if used.

Line 281

The p_filesz field holds the number of bytes in the file image of the segment.

Line 282

The p_memsz field holds the number of bytes in the memory image of the segment.

Line 283

The p_flags field holds the flags depending on p_type.

Line 284

The p_align field describes how aligned the segment is aligned in memory. The value is in integral
powers of 2.



Using this information, the system exec() function, along with the linker, works to create a
process image of the executable program in memory. This includes the following:

Moving the segments into memory

Loading any shared libraries that need to be loaded

Performing relocation as needed

Transferring control to the program

By understanding the object file formats and the available tools, you can better debug compile-
time problems (such as unresolved references) and runtime problems by knowing where code is
loaded and relocated.



9.2. Kernel Source Build

We now look at how the kernel is compiled into a binary image and gets loaded into memory prior to
execution. As a kernel developer, you will be heavily involved with the source code. It is necessary to
understand how to navigate the source code and how to edit the build system so you can add your changes.

This chapter is a roadmap to get you from downloading the source code to compiling a kernel image that
loads. We cover how the kernel image is created. This is not a detailed, step-by-step instruction manual.
There is much comprehensive documentation online about how to build a kernel image, such as the kernel
HOWTO (www.tldp.org/HOWTO/Kernel-HOWTO/), which is currently under review. This is instead intended to
provide the kind of information you need in order to incorporate changes into the build system.

Among developers, build systems or Makefiles are never a source of great interest, but as such, we need to
understand the kernel build system and how to update it to illustrate changes to the source code. With the 2.6
kernel version, you now have more tools to help you understand all the options that surround the kernel build
system. Also, the build system has been significantly cleaned up and redesigned as well as being more
effectively documented.

This section covers how the source code is laid out and how the kernel build and Makefiles work. The first
step is to get the source code. We start by describing the source code structure and where to get it.

9.2.1. Source Explained

The site for Linus's official code release is www.kernel.org. The source is available to download in a .tar.gz file
with gzip compression or a .tar.bz2 file with bzip2 compression. These packages contain the source code to
all the available architectures.

When a kernel developer makes a change to the kernel source, he submits it to the kernel maintainer. The
maintainer then decides whether the changes get incorporated into the next stable tree. Cutting-edge PPC
development used to occur in a separate tree maintained at www.penguinppc.org. The changes made in the
PPC tree would then be submitted to the main tree into which they were (mostly) eventually incorporated.
Currently, the Linux PPC community is moving toward working directly on the main tree.

The location of source code is somewhat dependent on your distribution. For example, in a Red Hat system,
source code is placed (whether it is by default install or by an RPM) under /usr/src/linux-<version>/. If you
are cross- compilingthat is, building the kernel for an architecture different to the one you are doing the actual
compiling inthe location of the source code might be somewhere under /opt/<distribution name> on your
host or alternatively in a root filesystem image the user chroots into. For example, Montavista, which is a
distribution geared toward the embedded Linux market, stores the source code (and the cross compilers)
under /opt/mvista/ by default.

In this section, the root of the source code filesystem is referred to simply as the root. In the Red Hat
distribution, the root of the source code is located under /usr/src/linux-<version>. Figure 9.4 details the
hierarchical layout of the source code.

Figure 9.4. Source Code Layout

[View full size image]



The source code is divided into architecture-dependent and architecture- independent portions. The arch/
directory under the root holds all the code that is architecture dependent. Source code downloaded from a
mirror of kernel.org contains all the supported architectures listed under this subdirectory. Every supported
architecture has a directory under arch/ that contains a further breakdown of the architecture-dependent
code. Figure 9.5 shows the supported architectures by means of displaying the listing under the arch/
directory.

Figure 9.5. ls /usr/src/linux/arch

We begin by looking at the structure of the architecture-independent portion of the source code to understand
its breakdown. We then present an overview of the architecture-dependent portion of the source code,
followed by a brief summary of miscellaneous files that pertain to neither category.

9.2.1.1. Architecture-Independent Code

The architecture-independent portion of the source code is divided into 11 subdirectories that follow a sensible
categorization by functionality. Table 9.2 overviews these subdirectories.

Table 9.2. Architecture-Independent Subdirectories



Subdirectory Description

crypto Holds code for cryptographic API and
various encrypting/decrypting algorithms.

drivers Code for device drivers.

fs Code for VFS and all the filesystems
supported by Linux.

include The header files. This directory has a
series of subdirectories starting with the
prefix asm. These directories hold the
architecture-specific header files. The
remaining directories hold architecture-
independent header files.

init The architecture-independent portion of
the bootstrapping code and initialization
code.

ipc Code for interprocess communication
(IPC) support.

kernel Code for kernel space specific code.

lib Code for helper functions.

mm Code for the memory manager.

net Code to support the various networking
protocols.

sound Code for sound system support.

Throughout the various chapters, we have been exploring source code that is located in one or more of these
subdirectories. To put them in the proper context, the following sections provide a cursory look at some of the
subdirectories. We leave out the ones we have not looked at in more detail.

fs/

The fs/ directory is further subdivided into C source files that support the VFS internals and subdirectories for
each supported filesystem. As Chapter 7, "Scheduling and Kernel Synchronization," details, the VFS is the
abstraction layer for the various types of filesystems. The code found in each of these subdirectories consists
of the code bridging the gap between the storage device and the VFS abstraction layer.

init/

The init/ directory contains all the code necessary for system initialization. During the execution of this code,
all the kernel subsystems are initialized and initial processes are created.

kernel/

The bulk of the architecture-independent kernel code is located in the kernel/ directory. Most of the kernel
subsystems have their code under here. Some, such as filesystems and memory, have their own directories at
the same level as kernel/. The filenames are fairly self-explanatory with respect to the code they contain.



mm/

The mm/ directory holds the memory-management code. We looked at examples of this code in Chapter 4,
"Memory Management."

9.2.1.2. Architecture-Dependent Code

The architecture-dependent code is the portion of the kernel source that is directly tied to reference the actual
hardware. One thing to remember in your travails through this portion of the code is that Linux was originally
developed for the x86. To minimize the complexity of the porting efforts, some of the x86-centric terminology
was retained in variable names and global kernel structures. If you look through the PPC code and see names
that refer to address translation modes that don't exist in PPC, don't panic.

Doing a listing for both arch/i386/ and arch/ppc, you notice three files that they each have in common:
defconfig, Kconfig, and Makefile. These files are tied into the infrastructure of the kernel build system. The
purpose of these three files is made clear in Section 9.2.2, "Building the Kernel Image."

Table 9.3 gives an overview of the files and directories shown in a listing of arch/ppc. Once you have gone
over the structure of Makefiles and Kconfig files, it is useful to browse through these files in each of the
subdirectories to become familiar with where code is located.

Table 9.3. arch/ppc/ Source Code Listing

Subdirectory Description

4xx_io Source code for MPC4xx-specific I/O
parts, in particular, the IBM STB3xxx
SICC serial port.

8260_io Source code for MPC8260-communication
options.

8xx_io Source code for the MPC8xx-
communication options.

amiga Source code for the PowerPC-equipped
Amiga computers.

boot Source code related to PPC bootstrapping.
This directory also contains a subdirectory
called images, which is where the
compiled bootable image is stored.

config Configuration files for the build of specific
PPC platforms and architectures.

kernel Source code for the kernel subsystem
hardware dependencies.

lib Source code for PPC specific library files.

math-emu Source code for PPC math emulation.

mm Source code for the PPC-specific parts of
the memory manager. Chapter 6,
"Filesystems," discusses this in detail.

platforms Source code specific to platforms (boards)
on which the PPC chips are mounted.



syslib Part of the source code core for the
general hardware-specific subsystems.

xmon Source code of PPC-specific debugger.

The directories under arch/x86 hold a structure similar to that seen in the PPC architecture-dependent
directory. Table 9.4 summarizes the various subdirectories.

Table 9.4. arch/x86 Source Code Listing

Subdirectory Description

boot Source code related to the x86
bootstrapping and install process.

kernel Source code for the kernel subsystem
hardware dependencies.

lib Source code for x86-specific library files.

mach-x Source code for the x86 subarchitectures.

math-emu Source code for x86 math-emulation
functions.

mm Source code for the x86-specific parts of
memory management. Chapter 6
discusses this in detail.

oprofile Source code for the oprofile kernel
profiling tool.

pci x86 PCI drivers.

power Source code for x86 power management.

You may be wondering why the two architecture-specific listings are not more similar. The reason is that
functional breakdowns that work well in one architecture may not work well in the other. For example, in PPC,
PCI drivers vary by platform and subarchitecture, making a simple PCI subdirectory less ideal than for x86.

9.2.1.3. Miscellaneous Files and Directories

In the source root, a few files are not necessarily pertinent either to the architecture-dependent code or the
architecture-independent code. Table 9.5 lists these files.

Table 9.5. Miscellaneous Files



File/Directory Description

COPYING The GPL license under which Linux is
licensed.

CREDITS List of contributors to the Linux project.

MAINTAINERS List of maintainers and instructions on
submitting kernel changes.

README Release notes.

REPORTING-BUGS Describes the procedure for reporting
bugs.

documentation/ Directory with partial documentation on
various aspects of the Linux kernel and
source code. Great source of information,
if sometimes slightly out of date.

scripts/ Holds utilities and scripts used during the
kernel build process.

9.2.2. Building the Kernel Image

The kernel build system, or kbuild, is the mechanism by which kernel configuration options can be selected
when building the kernel. It has been updated for the 2.6 kernel tree. This new kbuild version is much faster
than its predecessor and significantly better documented. The kbuild system is highly dependent on the
hierarchical structure of the source code.

9.2.2.1. Kernel Configuration Tool

The kernel configuration tool automatically generates the kernel configuration file named .config. This is the
first step of the kernel build. The .config file is placed in the source code root; it contains a description of all
the kernel options that were selected with the configuration tool. Each kernel build option has a name and
value associated with it. The name is in the form CONFIG_<NAME>, where <NAME> is the label with which the
option is associated. This variable can hold one of three values: y, m, or n. The y stands for "yes" and indicates
that the option should be compiled into the kernel source, or built in. The m stands for "module" and indicates
that the option should be compiled as a module separate from the kernel source. If an option is not selected
(or its value set to n for "no"), the .config file indicates this by having a comment of the form CONFIG_<NAME>
is not set. The .config file options are ordered according to the way they appear in the kernel configuration
tool and comments are provided that indicate under what menu the option is found. Let's look at an excerpt of
a .config file:

-----------------------------------------------------------------------
.config
1  #
2  # Automatically generated make config: don't edit
3  #
4  CONFIG_X86=y
5  CONFIG_MMU=y
6  CONFIG_UID16=y
7  CONFIG_GENERIC_ISA_DMA=y
8
9  #
10  # Code maturity level options
11  #
12  CONFIG_EXPERIMENTAL=y



13  CONFIG_CLEAN_COMPILE=
14  CONFIG_STANDALONE=y
15  CONFIG_BROKEN_ON_SMP=y
16
17  #
18  # General setup
19  #
20  CONFIG_SWAP=y
21  CONFIG_SYSVIPC=y
22  #CONFIG_POSIX_MQUEUE is not set
23  CONFIG_BSD_PROCESS_ACCT=y
-----------------------------------------------------------------------

This .config file indicates that the options from lines 4 to 7 are located under the top level, the options from
lines 12 to 15 are located under the Code Maturity Level Options menu, and the options from lines 20 to 23
are under the General Setup menu.

Looking at the menus made available through any of the configuration tools, you see that the first few options
are at the root level along with the menu items Code Maturity Level Options and General Setup. The latter two
get expanded into a submenu that holds those options listed underneath. This is shown in qconf, which is the
configuration tool that executes when we issue a call to make xconfig. The menus the configuration tool
shows default to x86. To have it show the PPC-related menus, as shown in Figure 9.6, the parameter ARCH=ppc
must be appended at the end of the make xconfig call.

Figure 9.6. qconf Snapshot

[View full size image]

The .config file generated by the configuration tool is read by the root Makefile when the image is to be built
by the call to make bzImage. The root Makefile also pulls in information provided by the architecture-specific
Makefile, which is located under arch/<arch>/. This is done by way of the include directive:



-----------------------------------------------------------------------
Makefile
434  include .config
...
450  include $(srctree)/arch/$(ARCH)/Makefile
-----------------------------------------------------------------------

At this point, the Makefile has already determined what architecture it is compiling for. The root Makefile
determines the architecture it is compiling for in three possible ways:

By way of the command-line parameter ARCH1.

By way of the environment variable ARCH2.

Automatically from information received from a call to uname on the host the build is executed on3.

If the architecture being compiled for is different from the native host the compilation is executed on, the
CROSS_COMPILE parameter has to be passed, which indicates the prefix of the cross compiler to be used.
Alternatively, the Makefile itself can be edited and this variable is given a value. For example, if I compile for
a PPC-based processor on an x86 host machine, I would execute the following commands:

lkp:~#make xconfig ARCH=ppc
lkp:~#make ARCH=ppc CROSS_COMPILE=ppc-linux-

The .config file also generates include/linux/autoconf.h, which #defines the CONFIG_<NAME> values that
have been selected and #undefs those that were deselected.

9.2.2.2. Sub-Makefiles

The build system relies on sub-Makefiles that are located under each subdirectory. Each subdirectory's
Makefile (called a sub-Makefile or kbuild Makefile) defines rules to build object files from source code files
located in that subdirectory and only makes appropriate modifications in that directory. The call to each sub-
Makefile is done recursively down the tree going into all subdirectories under init/, drivers/, sound/, net/,
lib/, and usr/.

Before the beginning of the recursive make call, kbuild needs to make sure a few things are in place,
including updating include/linux/version.h if necessary and setting the symbolic link include/asm to point at
the architecture-specific files of the architecture for which we are compiling. For example, if we are compiling
for PPC, include/asm points to include/asm-ppc. kbuild also builds include/linux/autoconf.h and
include/linux/config. After this is done, kbuild begins to recursively descend down the tree.

If you are a kernel developer and you make an addition to a particular subsystem, you place your files or edits
in a specific subdirectory and update the Makefile if necessary to incorporate your changes. If your code is
embedded in a file that already existed, you can surround your code within an #ifdef(CONFIG_<NAME>) block. If
this value is selected in the .config file, it is #defined in include/ linux/autoconf.h and your changes are
included at compile time.

The sub-Makefile lines have a specific format that must be followed to indicate how the object file is to be
built. These Makefiles are straightforward because information such as compiler name and libraries are
already defined in the root Makefile and the architecture-specific root Makefile, and rules are defined in the
scripts/Makefile.*s. The sub-Makefiles build three possible lists:



$(obj-y) listing the object files that will be linked into built-in.o and later into vmlinux

$(obj-m) listing the object files that will be built as a module

$(lib-y) listing the object files that will be built into lib.a

In other words, when we issue a call to make of type make bzImage, kbuild builds all object files in obj-y and
links them. The basic line in a sub-Makefile is of the type.

obj-$(CONFIG_FOO) += foo.o

If CONFIG_FOO is set to y in the .config file read by the root Makefile, this line becomes equivalent to obj-y +=
foo.o. kbuild builds that object file from the corresponding foo.c or foo.S file in that directory according to
rules defined in scripts/Makefile.build. (We see more about this file in a moment.) If foo.c or foo.S do not
exist, make complaints with

Make[1]: *** No rule to make target '<subdir>/foo.o', needed by '<subdir>/built-in.o'. Stop.

The way that kbuild knows to descend into directories is through explicit additions to obj-y or obj-m. You can
add a directory to set obj-y, which indicates that it needs to descend into the specified directory:

Obj-$(CONFIG_FOO) += /foo

If /foo does not exist, make complaints with the following:

Make[2]: *** No rule to make target '<dir>/foo/Makefile'. Stop.

CML2

Where does the configuration program that you navigate when choosing kernel options get the
information? The kbuild system depends on CML2, which is a domain-specific language designed
for kernel configuration. CML2 creates a rulebase that an interpreter then reads and uses to
generate the config file. This file covers the syntax and semantics of the language. The CML2
rulebase that is read by configuration programs is stored in files called defconfig and Kconfig.
The defconfig files are found at the root of the architecture-specific directories, arch/*/. The
Kconfig files are found in most other subdirectories. The Kconfig files hold information regarding
the options created, such as the menu it should be listed under, the help information to provide,
the config name value, and whether it can be built-in only or also compiled as a module. For
more information about CML2 and Kconfig files, see Documentation/kbuild/kconfig-
language.txt.

Let's review what we have seen of the kbuild process. The first step is to call the configuration tool with make
xconfig or make xconfig ARCH=ppc, depending on the architecture we want to build for. The selection made in
the tool is then stored in the .config file. The top Makefile reads .config when a call such as make bzImage is



issued to build the kernel image. The top Makefile then performs the following before descending recursively
down the subdirectories:

Updates include/linux/version.h.1.

Sets the symbolic link include/asm to point at the architecture-specific files of the architecture we are
compiling for.

2.

Builds include/linux/autoconf.h.3.

Builds include/linux/config.h.4.

kbuild then descends the subdirectories, calling make on the sub-Makefiles and creating the object files in
each one.

We have seen the structure of the sub-Makefiles. Now, we closely look at the top-level Makefiles and see
how they are used to drive the kernel build system.

9.2.2.3. Linux Kernel Makefiles

Linux Makefiles are fairly complex. This section highlights the interrelationship between all the Makefiles in
the source tree and explains the make particulars that are implemented in them. However, if you want to
expand your knowledge of make, undertaking to understand all the specifics of the kbuild Makefiles is a
fantastic way to get started. For more information on make, go to www.gnu.org/software/make/make.html.

In the source tree, virtually every directory has a Makefile. As mentioned in the previous section, the
Makefiles in subtrees devoted to a particular category of the source code (or kernel subsystem) are fairly
straightforward and merely define target source files to be added to the list that is then looked at to build
them. Alongside these, five other Makefiles define rules and execute them. These include the source root
Makefile, the arch/$(ARCH)/Makefile, scripts/Makefile.build, scripts/Makefile.clean, and
scripts/Makefile. Figure 9.7 shows the relationship between the various Makefiles. We define the
relationships to be of the "include" type or of the "execute" type. When we refer to an "include" type
relationship, we mean that the Makefile pulls in the information from a file by using the rule include
<filename>. When we refer to an "execute" type relationship, we mean that the original Makefile executes a
make f call to the secondary Makefile.

Figure 9.7. Makefile Relationships

[View full size image]



When we issue a make call at the root of the source tree, we call on the root Makefile. The root Makefile
defines variables that are then exported to other Makefiles and issues further make calls in each of the root-
level source subdirectories, passing off execution to them.

Calls to the compiler and linker are defined in scripts/Makefile.build. This means that when we descend into
subdirectories and build the object by means of a call to make, we are somehow executing a rule defined in
Makefile.build. This is done by way of the shorthand call $(Q) $(MAKE) $(build)=<dir>. This rule is the way
make is invoked in each subdirectory. The build variable is shorthand for

Makefile
1157  build := -f $(if $(KBUILD_SRC),$(srctree)/)scripts/Makefile.build obj
-----------------------------------------------------------------------

A call to $(Q) $(MAKE) $(build)=fs expands to

"@ make f /path/to/source/scripts/Makefile.build obj=fs".

The scripts/Makefile.build then reads the Makefile of the directory it was passed as parameter (fs, in our
example). This sub-Makefile has defined one or more of the lists obj-y, obj-m, lib-y, and others. The file
scripts/Makefile.build, along with any definitions from the included scripts/ Makefile.lib, compiles the
source files in the subdirectory and descends into any further subdirectories defined in the lists mentioned.
The call is the same as what was just described.

Let's see how this works in an example. If, under the configuration tool, we go to the File Systems menu and
select Ext3 journalling filesystem support, CONFIG_EXT3_FS will be set to y in the .config file. A snippet of the
sub-Makefile corresponding to fs is shown here:

Makefile
49  obj-$(CONFIG_EXT3_FS)   += ext3/
-----------------------------------------------------------------------



When make runs through this rule, it evaluates to obj-y += ext3/, making ext3/ one of the elements of obj-
y. make, having recognized that this is a subdirectory, calls $(Q) $(MAKE) $(build)=ext3.

$(Q)

The $(Q) variable prefixes all $(MAKE) calls. With the 2.6 kernel tree and the cleanup of the
kbuild infrastructure, you can suppress the verbose mode of the make output. make prints the
command line prior to executing it. When a line is prefixed with the @, the output (or echo) of
that line is suppressed:

--------------------------------------------------------------------
Makefile
254  ifeq ($(KBUILD_VERBOSE),1)
255  quiet =
256  Q =
257  else
258  quiet=quiet_
259  Q = @
260  endif
--------------------------------------------------------------------

As we can see in these lines, Q is set to @ if KBUILD_VERBOSE is set to 0, which means that we do
not want the compile to be verbose.

After the build process completes, we end up with a kernel image. This bootable, compressed kernel image is
called zImage or vmlinuz because the kernel gets compressed with the zlib algorithm. Common Linux
conventions also specify the location of the bootable image on the filesystem; the image must be placed in
/boot or /. At this point, the kernel image is ready to be loaded into memory by a bootloader.



Summary

This chapter explored the process of compiling and linking and the structure of object files to
understand how we end up with code that can be executed. We also looked at the infrastructure
surrounding the kernel build system and how the structure of the source code is tied to the build
system itself. We gave a cursory glance at how the functional breakdown of the source code is tied
to the kernel subsystems we have seen in previous chapters.



Exercises

1: Describe the various kinds of ELF files and what they are used for.

2: What is the point of segments in object files?

3: Look at both arch/ppc/Kconfig and arch/i386/Kconfig and determine what the
supported processors are in each architecture.

4: Look in arch/ppc and in arch/i386. What files and directories do they have in
common? Explore these and list the support they provide. Do they match exactly?

5: If you are cross-compiling the kernel, what parameter do you use to specify the cross-
compiler prefix?

6: Under what condition would you specify the architecture through the command-line
parameter ARCH?

7: What is a sub-makefile? How do they work?

8: Look at the scripts/Makefile.build, scripts/ Makefile.clean, and
scripts/Makefile.lib. List what they do.
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This section is divided into two major parts: "Traversing the Source" and "Writing the Code."

"Traversing the Source" walks through a device driver common to nearly all Linux systems,
/dev/random, and shows how the kernel connects with it. During this overview we recap some of
the inner workings of the kernel we previously described and show them in a more practical light.

"Writing the Code" walks through building a device driver and delves into common situations that
a developer will encounter when writing device drivers.

After those sections, we proceed to describe how you can debug a device driver using the /proc
system. Maybe that's the third side to a coin?



10.1. Traversing the Source

This section covers introductory concepts for system calls and drivers (also called modules) under
Linux. System calls are what user programs use to communicate with the operating system to
request services. Adding a system call is one way to create a new kernel service. Chapter 3,
"Processes: The Principal Model of Execution," describes the internals of system call implementation.
This chapter describes the practical aspects of incorporating your own system calls into the Linux
kernel.

Device drivers encompass the interface that the Linux kernel uses to allow a programmer to control
the system's input/output devices. Entire books have been written specifically on Linux device drivers.
This chapter distills this topic down to its essentials. In this section, we follow a device driver from
how the device is represented in the filesystem and then through the specific kernel code that controls
it. In the next section, we show how to use what we've learned in the first part to construct a
functional character driver. The final parts of Chapter 10 describe how to write system calls and how
to build the kernel. We start by exploring the filesystem and show how these files tie into the kernel.

10.1.1. Getting Familiar with the Filesystem

Devices in Linux can be accessed via /dev. For example, an ls l /dev/random yields the following:

crw-rw-rw- 1 root  root  1, 8 Oct 2 08:08 /dev/random

The leading "c" tells us that the device is a character device; a "b" identifies a block device. After the
owner and group columns are two numbers that are separated by a comma (in this case, 1, 8). The
first number is the driver's major number and the second its minor number. When a device driver
registers with the kernel, it registers a major number. When a given device is opened, the kernel uses
the device file's major number to find the driver that has registered with that major number.[1] The
minor number is passed through the kernel to the device driver itself because a single driver can
control multiple devices. For example, /dev/urandom has a major number of 1 and a minor number of
9. This means that the device driver registered with major number 1 handles both /dev/random and
/dev/urandom.

[1] mknod creates block and character device files.

To generate a random number, we simply read from /dev/random. The following is one possible way to
read 4 bytes of random data:[2]

[2] head c4 gathers the first 4 bytes and od x formats the bytes in hexadecimal.

lkp@lkp:~$ head -c4 /dev/urandom | od -x
0000000 823a 3be5
0000004

If you repeat this command, you notice the 4 bytes [823a 3be5] continue to change. To demonstrate
how the Linux kernel uses device drivers, we follow the steps that the kernel takes when a user
accesses /dev/random.

We know that the /dev/random device file has a major number of 1. We can determine what driver



controls the node by checking /proc/devices:

lkp@lkp:~$ less /proc/devices
Character devices:
 1 mem

Let's examine the mem device driver and search for occurrences of "random":

-----------------------------------------------------------------------
drivers/char/mem.c
653 static int memory_open(struct inode * inode, struct file * filp)
654 {
655   switch (iminor(inode)) {
656     case 1:
...
676     case 8:
677       filp->f_op = &random_fops;
678       break;
679     case 9:
680       filp->f_op = &urandom_fops;
681       break;
-----------------------------------------------------------------------

Lines 655681

This switch statement initializes driver structures based on the minor number of the device being
operated on. Specifically, filps and fops are being set.

This leads us to ask, "What is a filp? What is a fop?"

10.1.2. Filps and Fops

A filp is simply a file struct pointer, and a fop is a file_operations struct pointer. The kernel uses
the file_operations structure to determine what functions to call when the file is operated on. Here
are selected sections of the structures that are used in the random device driver:

-----------------------------------------------------------------------
include/linux/fs.h
556 struct file {
557   struct list_head  f_list;
558   struct dentry   *f_dentry;
559   struct vfsmount   *f_vfsmnt;
560   struct file_operations *f_op;
561   atomic_t    f_count;
562   unsigned int   f_flags;
...
581   struct address_space *f_mapping;
582 };
-----------------------------------------------------------------------
-----------------------------------------------------------------------
include/linux/fs.h



863 struct file_operations {
 864   struct module *owner;
 865   loff_t (*llseek) (struct file *, loff_t, int);
 866   ssize_t (*read) (struct file *, char __user *, size_t, loff_t *);
 867   ssize_t (*aio_read) (struct kiocb *, char __user *, size_t, loff_t);
 868   ssize_t (*write) (struct file *, const char __user *, size_t, loff_t *);
 869   ssize_t (*aio_write) (struct kiocb *, const char __user *, size_t, loff_t);
 870   int (*readdir) (struct file *, void *, filldir_t);
 871   unsigned int (*poll) (struct file *, struct poll_table_struct *);
 872   int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

...
888 };
-----------------------------------------------------------------------

The random device driver declares which file operations it provides in the following way: Functions
that the drivers implement must conform to the prototypes listed in the file_operations structure:

-----------------------------------------------------------------------
drivers/char/random.c
1824 struct file_operations random_fops = {
 1825   .read   = random_read,
 1826   .write   = random_write,
 1827   .poll   = random_poll,
 1828   .ioctl   = random_ioctl,
 1829 };
 1830 
 1831 struct file_operations urandom_fops = {
 1832   .read   = urandom_read,
 1833   .write   = random_write,
 1834   .ioctl   = random_ioctl,
1835 };
-----------------------------------------------------------------------

Lines 18241829

The random device provides the operations of read, write, poll, and ioctl.

Lines 18311835

The urandom device provides the operations of read, write, and ioctl.

The poll operation allows a programmer to check before performing an operation to see if that
operation blocks. This suggests, and is indeed the case, that /dev/random blocks if a request is made
for more bytes of entropy than are in its entropy pool.[3] /dev/urandom does not block, but might not
return completely random data, if the entropy pool is too small. For more information consult your
systems man pages, specifically man 4 random.

[3] In the random device driver, entropy refers to system data that cannot be predicted. Typically, it is harvested from keystroke

timing, mouse movements, and other irregular input.

Digging deeper into the code, notice that when a read operation is performed on /dev/random, the
kernel passes control to the function random_read() (see line 1825). random_read() is defined as
follows:



-----------------------------------------------------------------------
drivers/char/random.c
1588 static ssize_t
 1589 random_read(struct file * file, char __user * buf, size_t 
nbytes, loff_t *ppos)
-----------------------------------------------------------------------

The function parameters are as follows:

file. Points to the file structure of the device.

buf. Points to an area of user memory where the result is to be stored.

nbytes. The size of data requested.

ppos. Points to a position within the file that the user is accessing.

This brings up an interesting issue: If the driver executes in kernel space, but the buffer is memory in
user space, how do we safely get access to the data in buf? The next section explains the process of
moving data between user and kernel memory.

10.1.3. User Memory and Kernel Memory

If we were to simply use memcpy() to copy the buffer from kernel space to user space, the copy
operation might not work because the user space addresses could be swapped out when memcpy()
occurs. Linux has the functions copy_to_user() and copy_from_user(), which allow drivers to move
data between kernel space and user space. In read_random(), this is done in the function
extract_entropy(), but there is an additional twist:

-----------------------------------------------------------------------
drivers/char/random.c
 1: static ssize_t extract_entropy(struct entropy_store *r, void * buf,
 2:         size_t nbytes, int flags)
 3: {
1349 static ssize_t extract_entropy(struct entropy_store *r, void * buf,
 1350        size_t nbytes, int flags)
 1351 {
...
1452     /* Copy data to destination buffer */
1453     i = min(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
1454     if (flags & EXTRACT_ENTROPY_USER) {
1455       i -= copy_to_user(buf, (__u8 const *)tmp, i);
1456       if (!i) {
1457         ret = -EFAULT;
1458         break;
1459       }
1460     } else
1461       memcpy(buf, (__u8 const *)tmp, i);
-----------------------------------------------------------------------

exTRact_entropy() has the following parameters:



r. A pointer to an internal storage of entropy, it is ignored for the purposes of our discussion.

buf. A pointer to an area of memory that should be filled with data.

nbytes. The amount of data to write to buf.

flags. Informs the function whether buf is in kernel or user memory.

exTRact_entropy() returns ssize_t, which is the size, in bytes, of the random data generated.

Lines 14541455

If flags tells us that buf points to a location in user memory, we use copy_to_user() to copy the
kernel memory pointed to by tmp to the user memory pointed to by buf.

Lines 14601461

If buf points to a location in kernel memory, we simply use memcpy() to copy the data.

Obtaining random bytes is something that both kernel space and user space programs are likely to
use; a kernel space program can avoid the overhead of copy_to_user() by not setting the flag. For
example, the kernel can implement an encrypted filesystem and can avoid the overhead of copying to
user space.

10.1.4. Wait Queues

We detoured slightly to explain how to move data between user and kernel memory. Let's return to
read_random() and examine how it uses wait queues.

Occasionally, a driver might need to wait for some condition to be true, perhaps access to a system
resource. In this case, we don't want the kernel to wait for the access to complete. It is problematic
to cause the kernel to wait because all other system processing halts while the wait occurs.[4] By
declaring a wait queue, you can postpone processing until a later time when the condition you are
waiting on has occurred.

[4] Actually, the CPU running the kernel task will wait. On a multi-CPU system, other CPUs can continue to run.

Two structures are used for this process of waiting: a wait queue and a wait queue head. A module
should create a wait queue head and have parts of the module that use sleep_on and wake_up macros
to manage things. This is precisely what occurs in random_read():

-----------------------------------------------------------------------
drivers/char/random.c
1588 static ssize_t
 1589 random_read(struct file * file, char __user * buf, size_t nbytes, loff_t *ppos)
 1590 {
 1591   DECLARE_WAITQUEUE(wait, current);
...
1597   while (nbytes > 0) {
...
1608     n = extract_entropy(sec_random_state, buf, n,
 1609          EXTRACT_ENTROPY_USER |
 1610          EXTRACT_ENTROPY_LIMIT |
 1611          EXTRACT_ENTROPY_SECONDARY);
...



1618     if (n == 0) {
 1619       if (file->f_flags & O_NONBLOCK) {
 1620         retval = -EAGAIN;
 1621         break;
 1622       }
 1623       if (signal_pending(current)) {
 1624         retval = -ERESTARTSYS;
 1625         break;
 1626       }
...
1632       set_current_state(TASK_INTERRUPTIBLE);
 1633       add_wait_queue(&random_read_wait, &wait);
 1634 
 1635       if (sec_random_state->entropy_count / 8 == 0)
 1636         schedule();
 1637 
 1638       set_current_state(TASK_RUNNING);
 1639       remove_wait_queue(&random_read_wait, &wait);
...
1645       continue;
1646  }
-----------------------------------------------------------------------

Line 1591

The wait queue wait is initialized on the current task. The macro current refers to a pointer to the
current task's task_struct.

Lines 16081611

We extract a chunk of random data from the device.

Lines 16181626

If we could not extract the necessary amount of entropy from the entropy pool and we are non-
blocking or there is a signal pending, we return an error to the caller.

Lines 16311633

Set up the wait queue. random_read() uses its own wait queue, random_read_wait, instead of the
system wait queue.

Lines 16351636

At this point, we are on a blocking read and if we don't have 1 byte worth of entropy, we release
control of the processor by calling schedule(). (The entropy_count variables hold bits and not bytes;
thus, the division by 8 to determine whether we have a full byte of entropy.)

Lines 16381639



When we are eventually restarted, we clean up our wait queue.

NOTE

The random device in Linux requires the entropy queue to be full before returning. The
urandom device does not have this requirement and returns regardless of the size of data
available in the entropy pool.

Let's closely look at what happens when a task calls schedule():

-----------------------------------------------------------------------
kernel/sched.c
2184 asmlinkage void __sched schedule(void)
2185 {
...
2209   prev = current;
...
2233   switch_count = &prev->nivcsw;
2234   if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
2235     switch_count = &prev->nvcsw;
2236     if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
2237         unlikely(signal_pending(prev))))
2238       prev->state = TASK_RUNNING;
2239     else
2240       deactivate_task(prev, rq);
2241   } 
2242 ...
-----------------------------------------------------------------------

Line 2209

A pointer to the current task's task structure is stored in the prev variable. In cases where the task
itself called schedule(), current points to that task.

Line 2233

We store the task's context switch counter, nivcsw, in switch_count. This is incremented later if the
switch is successful.[5]

[5] See Chapters 4 and 7 for more information on how context switch counters are used.

Line 2234

We only enter this if statement when the task's state, prev->state, is non-zero and there is not a
kernel preemption. In other words, we enter this statement when a task's state is not TASK_RUNNING,
and the kernel has not preempted the task.

Lines 22352241



If the task is interruptible, we're fairly certain that it wanted to release control. If a signal is pending
for the task that wanted to release control, we set the task's state to TASK_RUNNING so that is has the
opportunity to be chosen for execution by the scheduler when control is passed to another task. If no
signal is pending, which is the common case, we deactivate the task and set switch_count to nvcsw.
The scheduler increments switch_count later. Thus, nvcsw or nivcsw is incremented.

The schedule() function then picks the next task in the scheduler's run queue and switches control to
that task.[6]

[6] For detailed information, see the "switch_to()" section in Chapter 7.

By calling schedule(), we allow a task to yield control of the processor to another kernel task when
the current task knows it will be waiting for some reason. Other tasks in the kernel can make use of
this time and, hopefully, when control returns to the function that called schedule(), the reason for
waiting will have been removed.

Returning from our digression on the scheduler to the random_read() function, eventually, the kernel
gives control back to random_read() and we clean up our wait queue and continue. This repeats the
loop and, if the system has generated enough entropy, we should be able to return with the
requested number of random bytes.

random_read() sets its state to TASK_INTERRUPTIBLE before calling schedule() to allow itself to be
interrupted by signals while it is on a wait queue. The driver's own code generates these signals when
extra entropy is collected by calling wake_up_interruptible() in batch_entropy_process() and
random_ioctl(). TASK_UNINTERRUPTIBLE is usually used when the task is waiting for hardware to
respond as opposed to software (when TASK_INTERRUPTIBLE is normally used).

The code that random_read() uses to pass control to another task (see lines 16321639,
drivers/char/random.c) is a variant of interruptible_sleep_on() from the scheduler code.

-----------------------------------------------------------------------
kernel/sched.c
2489 #define SLEEP_ON_VAR         \
 2490   unsigned long flags;       \
 2491   wait_queue_t wait;        \
 2492   init_waitqueue_entry(&wait, current);
 2493
 2494 #define SLEEP_ON_HEAD         \
 2495   spin_lock_irqsave(&q->lock,flags);    \
 2496   __add_wait_queue(q, &wait);      \
 2497   spin_unlock(&q->lock);
 2498
 2499 #define SLEEP_ON_TAIL         \
 2500   spin_lock_irq(&q->lock);      \
 2501   __remove_wait_queue(q, &wait);     \
 2502   spin_unlock_irqrestore(&q->lock, flags);
2503
 2504 void fastcall __sched interruptible_sleep_on(wait_queue_head_t *q)
 2505 {
 2506   SLEEP_ON_VAR
 2507
 2508   current->state = TASK_INTERRUPTIBLE;
 2509
 2510   SLEEP_ON_HEAD
 2511   schedule();
 2512   SLEEP_ON_TAIL
2513 }
-----------------------------------------------------------------------



q is a wait_queue_head structure that coordinates the module's sleeping and waiting.

Lines 24942497

Atomically add our task to a wait queue q.

Lines 24992502

Atomically remove the task from the wait queue q.

Lines 25042513

Add to the wait queue. Cede control of the processor to another task. When we are given control,
remove ourselves from the wait queue.

random_read() uses its own wait queue code instead of the standard macros, but essentially does an
interruptible_sleep_on() with the exception that, if we have more than a full byte's worth of
entropy, we don't yield control but loop again to try and get all the requested entropy. If there isn't
enough entropy, random_read() waits until it's awoken with wake_up_interruptible() from entropy-
gathering processes of the driver.

10.1.5. Work Queues and Interrupts

Device drivers in Linux routinely have to deal with interrupts generated by the devices with which
they are interfacing. Interrupts trigger an interrupt handler in the device driver and cause all currently
executing codeboth user space and kernel spaceto cease execution. Clearly, it is desirable to have the
driver's interrupt handler execute as quickly as possible to prevent long waits in kernel processing.

However, this leads us to the standard dilemma of interrupt handling: How do we handle an interrupt
that requires a significant amount of work? The standard answer is to use top-half and bottom-half
routines. The top-half routine quickly handles accepting the interrupt and schedules a bottom-half
routine, which has the code to do the majority of the work and is executed when possible. Normally,
the top-half routine runs with interrupts disabled to ensure that an interrupt handler isn't interrupted
by the same interrupt. Thus, the device driver does not have to handle recursive interrupts. The
bottom-half routine normally runs with interrupts enabled so that other interrupts can be handled
while it continues the bulk of the work.

In prior Linux kernels, this division of top-half and bottom-half, also known as fast and slow
interrupts, was handled by task queues. New to the 2.6 Linux kernel is the concept of a work queue,
which is now the standard way to deal with bottom-half interrupts.

When the kernel receives an interrupt, the processor stops executing the current task and
immediately handles the interrupt. When the CPU enters this mode, it is commonly referred to as
being in interrupt context. The kernel, in interrupt context, then determines which interrupt handler to
pass control to. When a device driver wants to handle an interrupt, it uses request_irq() to request
the interrupt number and register the handler function to be called when this interrupt is seen. This
registration is normally done at module initialization time. The top-half interrupt function registered
with request_irq() does minimal management and then schedules the appropriate work to be done
upon a work queue.

Like request_irq() in the top half, work queues are normally registered at module initialization. They
can be initialized statically with the DECLARE_WORK() macro or the work structure can be allocated and
initialized dynamically by calling INIT_WORK(). Here are the definitions of those macros:



-----------------------------------------------------------------------
include/linux/workqueue.h
30 #define DECLARE_WORK(n, f, d)         \
31   struct work_struct n = __WORK_INITIALIZER(n, f, d)
...
45 #define INIT_WORK(_work, _func, _data)       \
46   do {             \
47     INIT_LIST_HEAD(&(_work)->entry);    \
48     (_work)->pending = 0;       \
49     PREPARE_WORK((_work), (_func), (_data));  \
50     init_timer(&(_work)->timer);     \
51   } while (0)
-----------------------------------------------------------------------

Both macros take the following arguments:

n or work. The name of the work structure to create or initialize.

f or func. The function to run when the work structure is removed from a work queue.

d or data. Holds the data to pass to the function f, or func, when it is run.

The interrupt handler function registered in register_irq() would then accept an interrupt and send
the relevant data from the top half of the interrupt handler to the bottom half by setting the
work_struct data section and calling schedule_work() on the work queue.

The code present in the work queue function operates in process context and can thus perform work
that is impossible to do in interrupt context, such as copying to and from user space or sleeping.

Tasklets are similar to work queues but operate entirely in interrupt context. This is useful when you
have little to do in the bottom half and want to save the overhead of a top-half and bottom-half
interrupt handler. Tasklets are initialized with the DECLARE_TASKLET() macro:

-----------------------------------------------------------------------
include/linux/interrupt.h
136 #define DECLARE_TASKLET(name, func, data) \
137 struct tasklet_struct name = { NULL, 0, ATOMIC_INIT(0), func, data }
-----------------------------------------------------------------------

name. The name of the tasklet structure to create.

func. The function to call when the tasklet is scheduled.

data. Holds the data to pass to the func function when the tasklet executes.

To schedule a tasklet, use tasklet_schedule():

-----------------------------------------------------------------------
include/linux/interrupt.h
171 extern void FASTCALL(__tasklet_schedule(struct tasklet_struct *t));
172 
173 static inline void tasklet_schedule(struct tasklet_struct *t)



174 {
175   if (!test_and_set_bit(TASKLET_STATE_SCHED, &t->state))
176     __tasklet_schedule(t);
177 }
-----------------------------------------------------------------------

tasklet_struct. The name of the tasklet created with DECLARE_TASKLET().

In the top-half interrupt handler, you can call tasklet_schedule() and be guaranteed that, sometime
in the future, the function declared in the tasklet is executed. Tasklets differ from work queues in that
different tasklets can run simultaneously on different CPUs. If a tasklet is already scheduled, and
scheduled again before the tasklet executes, it is only executed once. As tasklets run in interrupt
context, they cannot sleep or copy data to user space. Because of running in interrupt context, if
different tasklets need to communicate, the only safe way to synchronize is by using spinlocks.

10.1.6. System Calls

There are other ways to add code to the kernel besides device drivers. Linux kernel system calls
(syscalls) are the method by which user space programs can access kernel services and system
hardware. Many of the C library routines available to user mode programs bundle code and one or
more system calls to accomplish a single function. In fact, syscalls can also be accessed from kernel
code.

By its nature, syscall implementation is hardware specific. In the Intel architecture, all syscalls use
software interrupt 0x80. Parameters of the syscall are passed in the general registers. The
implementation of syscall on the x86 architecture limits the number of parameters to 5. If more than
5 are required, a pointer to a block of parameters can be passed. Upon execution of the assembler
instruction int 0x80, a specific kernel mode routine is called by way of the exception-handling
capabilities of the processor.

10.1.7. Other Types of Drivers

Until now, all the device drivers we dealt with have been character drivers. These are usually the
easiest to understand, but you might want to write other drivers that interface with the kernel in
different ways.

Block devices are similar to character devices in that they can be accessed via the filesystem.
/dev/hda is the device file for the primary IDE hard drive on the system. Block devices are registered
and unregistered in similar ways to character devices by using the functions register_blkdev() and
unregister_blkdev().

A major difference between block drivers and character drivers is that block drivers do not provide
their own read and write functionality; instead, they use a request method.

The 2.6 kernel has undergone major changes in the block device subsystem. Old functions, such as
block_read() and block_write() and kernel structures like blk_size and blksize_size, have been
removed. This section focuses solely on the 2.6 block device implementation.

If you need the Linux kernel to work with a disk (or a disk-like) device, you need to write a block
device driver. The driver must inform the kernel what kind of disk it's interfacing with. It does this by
using the gendisk structure:

-----------------------------------------------------------------------
include/linux/genhd.h



82 struct gendisk {
83   int major;      /* major number of driver */
84   int first_minor;
85   int minors;
86   char disk_name[32];    /* name of major driver */
87   struct hd_struct **part;  /* [indexed by minor] */
88   struct block_device_operations *fops;
89   struct request_queue *queue;
90   void *private_data;
91   sector_t capacity;
...
-----------------------------------------------------------------------

Line 83

major is the major number for the block device. This can be either statically set or dynamically
generated by using register_blkdev(), as it was in character devices.

Lines 8485

first_minor and minors are used to determine the number of partitions within the block device.
minors contains the maximum number of minor numbers the device can have. first_minor contains
the first minor device number of the block device.

Line 86

disk_name is a 32-character name for the block device. It appears in the /dev filesystem, sysfs and
/proc/partitions.

Line 87

hd_struct is the set of partitions that is associated with the block device.

Line 88

fops is a pointer to a block_operations structure that contains the operations open, release, ioctl,
media_changed, and revalidate_disk. (See include/ linux/fs.h.) In the 2.6 kernel, each device has
its own set of operations.

Line 89

request_queue is a pointer to a queue that helps manage the device's pending operations.

Line 90

private_data points to information that will not be accessed by the kernel's block subsystem.
Typically, this is used to store data that is used in low-level, device-specific operations.



Line 91

capacity is the size of the block device in 512-byte sectors. If the device is removable, such as a
floppy disk or CD, a capacity of 0 signifies that no disk is present. If your device doesn't use 512-byte
sectors, you need to set this value as if it did. For example, if your device has 1,000 256-byte sectors,
that's equivalent to 500 512-byte sectors.

In addition to having a gendisk structure, a block device also needs a spinlock structure for use with
its request queue.

Both the spinlock and fields in the gendisk structure must be initialized by the device driver. (Go to
http://en.wikipedia.org/wiki/Ram_disk for a demonstration of initializing a RAM disk block device
driver.) After the device is initialized and ready to handle requests, the add_disk() function should be
called to add the block device to the system.

Finally, if the block device can be used as a source of entropy for the system, the module initialization
can also call add_disk_randomness(). (For more information, see drivers/char/random.c.)

Now that we covered the basics of block device initialization, we can examine its complement, exiting
and cleaning up the block device driver. This is easy in the 2.6 version of Linux.

del_gendisk( struct gendisk ) removes the gendisk from the system and cleans up its partition
information. This call should be followed by putdisk (struct gendisk), which releases kernel
references to the gendisk. The block device is unregistered via a call to unregister_blkdev(int
major, char[16] device_name), which then allows us to free the gendisk structure.

We also need to clean up the request queue associated with the block device driver. This is done by
using blk_cleanup_queue( struct *request_queue). Note: If you can only reference the request
queue via the gendisk structure, be sure to call blk_cleanup_queue before freeing gendisk.

In the block device initialization and shutdown overview, we could easily avoid talking about the
specifics of request queues. But now that the driver is set up, it has to actually do something, and
request queues are how a block device accomplishes its major functions of reading and writing.

-----------------------------------------------------------------------
include/linux/blkdev.h
576 extern request_queue_t *blk_init_queue(request_fn_proc *, spinlock_t *);
...
-----------------------------------------------------------------------

Line 576

To create a request queue, we use blk_init_queue and pass it a pointer to a spinlock to control queue
access and a pointer to a request function that is called whenever the device is accessed. The request
function should have the following prototype:

static void my_request_function( request_queue_t *q );

The guts of the request function usually use a number of helper functions with ease. To determine the
next request to be processed, the elv_next_request() function is called and it returns a pointer to a
request structure, or it returns null if there is no next request.

In the 2.6 kernel, the block device driver iterates through BIO structures in the request structure. BIO
stands for Block I/O and is fully defined in include/linux/bio.h.

http://en.wikipedia.org/wiki/Ram_disk


The BIO structure contains a pointer to a list of biovec structures, which are defined as follows:

-----------------------------------------------------------------------
include/linux/bio.h
47 struct bio_vec {
48   struct page  *bv_page;
49   unsigned int bv_len;
50   unsigned int bv_offset;
51 };
-----------------------------------------------------------------------

Each biovec uses its page structure to hold data buffers that are eventually written to or read from
disk. The 2.6 kernel has numerous bio helpers to iterate over the data contained within bio structures.

To determine the size of BIO operation, you can either consult the bio_size field within the BIO struct
to get a result in bytes or use the bio_sectors() macro to get the size in sectors. The block operation
type, READ or WRITE, can be determined by using bio_data_dir().

To iterate over the biovec list in a BIO structure, use the bio_for_each_segment() macro. Within that
loop, even more macros can be used to further delve into biovec bio_page(), bio_offset(),
bio_curr_sectors(), and bio_data(). More information can be found in include/linux.bio.h and
Documentation/block/biodoc.txt.

Some combination of the information contained in the biovec and the page structures allow you to
determine what data to read or write to the block device. The low-level details of how to read and
write the device are tied to the hardware the block device driver is using.

Now that we know how to iterate over a BIO structure, we just have to figure out how to iterate over
a request structure's list of BIO structures. This is done using another macro: rq_for_each_bio:

-----------------------------------------------------------------------
include/linux/blkdev.h
495 #define rq_for_each_bio(_bio, rq)  \
496   if ((rq->bio))     \
497     for (_bio = (rq)->bio; _bio; _bio = bio->bi_next)
-----------------------------------------------------------------------

Line 495

bio is the current BIO structure and rq is the request to iterate over.

After each BIO is processed, the driver should update the kernel on its progress. This is done by using
end_that_request_first().

-----------------------------------------------------------------------
include/linux/blkdev.h
557 extern int end_that_request_first(struct request *, int, int); 
-----------------------------------------------------------------------

Line 557



The first int argument should be non-zero unless an error has occurred, and the second int
argument represents the number of sectors that the device processed.

When end_that_request_first() returns 0, the entire request has been processed and the cleanup
needs to begin. This is done by calling blkdev_dequeue_request() and end_that_request_last() in
that orderboth of which take the request as the sole argument.

After this, the request function has done its job and the block subsystem uses the block device
driver's request queue function to perform disk operations. The device might also need to handle
certain ioctl functions, as our RAM disk handles partitioning, but those, again, depend on the type of
block device.

This section has only touched on the basics of block devices. There are Linux hooks for DMA
operations, clustering, request queue command preparation, and many other features of more
advanced block devices. For further reading, refer to the Documentation/block directory.

10.1.8. Device Model and sysfs

New in the 2.6 kernel is the Linux device model, to which sysfs is intimately related. The device
model stores a set of internal data related to the devices and drivers on a system. The system tracks
what devices exist and breaks them down into classes: block, input, bus, etc. The system also keeps
track of what drivers exist and how they relate to the devices they manage. The device model exists
within the kernel, and sysfs is a window into this model. Because some devices and drivers do not
expose themselves through sysfs, a good way of thinking of sysfs is the public view of the kernel's
device model.

Certain devices have multiple entries within sysfs.

Only one copy of the data is stored within the device model, but there are various ways of accessing
that piece of data, as the symbolic links in the sysfs TRee shows.

The sysfs hierarchy relates to the kernel's kobject and kset structures. This model is fairly complex,
but most driver writers don't have to delve too far into the details to accomplish many useful tasks.[7]

By using the sysfs concept of attributes, you work with kobjects, but in an abstracted way. Attributes
are parts of the device or driver model that can be accessed or changed via the sysfs filesystem.
They could be internal module variables controlling how the module manages tasks or they could be
directly linked to various hardware settings. For example, an RF transmitter could have a base
frequency it operates upon and individual tuners implemented as offsets from this base frequency.
Changing the base frequency can be accomplished by exposing a module attribute of the RF driver to
sysfs.

[7] Reference documentation/filesystems/sysfs.txt in the kernel source.

When an attribute is accessed, sysfs calls a function to handle that access, show() for read and
store() for write. There is a one-page limit on the size of data that can be passed to show() or
store() functions.

With this outline of how sysfs works, we can now get into the specifics of how a driver registers with
sysfs, exposes some attributes, and registers specific show() and store() functions to operate when
those attributes are accessed.

The first task is to determine what device class your new device and driver should fall under (for
example, usb_device, net_device, pci_device, sys_device, and so on). All these structures have a
char *name field within them. sysfs uses this name field to display the new device within the sysfs
hierarchy.

After a device structure is allocated and named, you must create and initialize a devicer_driver
structure:



-----------------------------------------------------------------------
include/linux/device.h
102 struct device_driver {
 103   char     * name;
 104   struct bus_type   * bus;
 105
 106   struct semaphore  unload_sem;
 107   struct kobject   kobj;
 108   struct list_head  devices;
 109
 110   int  (*probe)  (struct device * dev);
 111   int  (*remove)  (struct device * dev);
 112   void (*shutdown)  (struct device * dev);
 113   int  (*suspend)  (struct device * dev, u32 state, u32 level);
 114   int  (*resume)  (struct device * dev, u32 level);
115};
-----------------------------------------------------------------------

Line 103

name refers to the name of the driver that is displayed in the sysfs hierarchy.

Line 104

bus is usually filled in automatically; a driver writer need not worry about it.

Lines 105115

The programmer does not need to set the rest of the fields. They should be automatically initialized at
the bus level.

We can register our driver during initialization by calling driver_register(), which passes most of the
work to bus_add_driver(). Similarly upon driver exit, be sure to add a call to driver_unregister().

-----------------------------------------------------------------------
drivers/base/driver.c
86 int driver_register(struct device_driver * drv)
  87 {
  88   INIT_LIST_HEAD(&drv->devices);
  89   init_MUTEX_LOCKED(&drv->unload_sem);
  90   return bus_add_driver(drv);
91 }
-----------------------------------------------------------------------

After driver registration, driver attributes can be created via driver_attribute structures and a
helpful macro, DRIVER_ATTR:

-----------------------------------------------------------------------
include/linux/device.h
133 #define DRIVER_ATTR(_name,_mode,_show,_store) \
134 struct driver_attribute driver_attr_##_name = {     \



135   .attr = {.name = __stringify(_name), .mode = _mode, .owner = THIS_MODULE },  \
136   .show = _show,        \
137   .store = _store,        \
138 };
-----------------------------------------------------------------------

Line 135

name is the name of the attribute for the driver. mode is the bitmap describing the level of protection of
the attribute. include/linux/stat.h contains many of these modes, but S_IRUGO (for read-only) and
S_IWUSR (for root write access) are two examples.

Line 136

show is the name of the driver function to use when the attribute is read via sysfs. If reads are not
allowed, NULL should be used.

Line 137

store is the name of the driver function to use when the attribute is written via sysfs. If writes are
not allowed, NULL should be used.

The driver functions that implement show() and store() for a specific driver must adhere to the
prototypes shown here:

-----------------------------------------------------------------------
include/linux/sysfs.h
34 struct sysfs_ops {
35   ssize_t (*show)(struct kobject *, struct attribute *,char *);
36   ssize_t (*store)(struct kobject *,struct attribute *,const char *, size_t);
37 };
-----------------------------------------------------------------------

Recall that the size of data read and written to sysfs attributes is limited to PAGE_SIZE bytes. The
show() and store() driver attribute functions should ensure that this limit is enforced.

This information should allow you to add basic sysfs functionality to kernel device drivers. For further
sysfs and kobject reading, see the Documentation/ device-model directory.

Another type of device driver is a network device driver. Network devices send and receive packets of
data and might not necessarily be a hardware devicethe loopback device is a software-network
device.



10.2. Writing the Code

10.2.1. Device Basics

When you create a device driver, it is tied to the operating system through an entry in the
filesystem. This entry has a major number that indicates to the kernel which driver to use when the
file is referenced as well as a minor number that the driver itself can use for greater granularity.
When the device driver is loaded, it registers its major number. This registration can be viewed by
examining /proc/devices:

-----------------------------------------------------------------------
lkp# less /proc/devices
Character devices:
 1 mem
 2 pty
 3 ttyp
 4 ttyS
 5 cua
 6 lp
 7 vcs
 10 misc
 29 fb
128 ptm
136 pts

Block devices:
 1 ramdisk
 2 fd
 3 ide0
 7 loop
 22 ide1
-----------------------------------------------------------------------

This number is entered in /proc/devices when the device driver registers itself with the kernel; for
character devices, it calls the function register_chrdev().

-----------------------------------------------------------------------
include/linux/fs.h
 1: int register_chrdev(unsigned int major, const char *name,
 2:      struct file_operations *fops)
-----------------------------------------------------------------------

major. The major number of the device being registered. If major is 0, the kernel dynamically

assigns it a major number that doesn't conflict with any other module currently loaded.

name. The string representation of the device in the /dev tree of the filesystem.



fops. A pointer to file-operations structure that defines what operations can be performed on

the device being registered.

Using 0 as the major number is the preferred method for creating a device number for those
devices that do not have set major numbers (IDE drivers always use 3; SCSI, 8; floppy, 2). By
dynamically assigning a device's major number, we avoid the problem of choosing a major number
that some other device driver might have chosen.[8] The consequence is that creating the
filesystem node is slightly more complicated because after module loading, we must check what
major number was assigned to the device. For example, while testing a device, you might need to
do the following:

[8] The register_chrdev() function returns the major number assigned. It might be useful to capture this information when

dynamically assigning major numbers.

-----------------------------------------------------------------------
lkp@lkp# insmod my_module.o
lkp@lkp# less /proc/devices
1 mem
...
233 my_module
lkp@lkp# mknod c /dev/my_module0 233 0
lkp@lkp# mknod c /dev/my_module1 233 1
-----------------------------------------------------------------------

This code shows how we can insert our module using the command insmod. insmod installs a
loadable module in the running kernel. Our module code contains these lines:

-----------------------------------------------------------------------
static int my_module_major=0;
...
module_param(my_module_major, int, 0);
...
result = register_chrdev(my_module_major, "my_module", &my_module_fops);
-----------------------------------------------------------------------

The first two lines show how we create a default major number of 0 for dynamic assignment but
allow the user to override that assignment by using the my_module_major variable as a module
parameter:

-----------------------------------------------------------------------
include/linux/moduleparam.h
 1: /* This is the fundamental function for registering boot/module
 parameters. perm sets the visibility in driverfs: 000 means it's
 not there, read bits mean it's readable, write bits mean it's
 writable. */
...
/* Helper functions: type is byte, short, ushort, int, uint, long,
 ulong, charp, bool or invbool, or XXX if you define param_get_XXX,
 param_set_XXX and param_check_XXX. */
...
 2: #define module_param(name, type, perm)
-----------------------------------------------------------------------



In previous versions of Linux, the module_param macro was MODULE_PARM; this is deprecated in
version 2.6 and module_param must be used.

name. A string that is used to access the value of the parameter.

type. The type of value that is stored in the parameter name.

perm. The visibility of the module parameter name in sysfs. If you don't know what sysfs is,

use a value of 0, which means the parameter is not accessible via sysfs.

Recall that we pass into register_chrdev() a pointer to a fops structure. This tells the kernel what
functions the driver handles. We declare only those functions that the module handles. To declare
that read, write, ioctl, and open are valid operations upon the device that we are registering, we
add code like the following:

-----------------------------------------------------------------------
struct file_operations my_mod_fops = {
 .read = my_mod_read,
 .write = my_mod_write,
 .ioctl = my_mod_ioctl,
 .open = my_mod_open,
};
-----------------------------------------------------------------------

10.2.2. Symbol Exporting

In the course of writing a complex device driver, there might be reasons to export some of the
symbols defined in the driver for use by other kernel modules. This is commonly used in low-level
drivers that expect higher-level drivers to build upon their basic functionality.

When a device driver is loaded, any exported symbol is placed into the kernel symbol table. Drivers
that are loaded subsequently can use any symbols exported by prior drivers. When modules
depend on each other, the order in which they are loaded becomes important; insmod fails if the
symbols that a high-level module depend on aren't present.

In the 2.6 Linux kernel, two macros are available to a device programmer to export symbols:

-----------------------------------------------------------------------
include/linux/module.h
187 #define EXPORT_SYMBOL(sym)          \
188   __EXPORT_SYMBOL(sym, "")
189 
190 #define EXPORT_SYMBOL_GPL(sym)         \
191   __EXPORT_SYMBOL(sym, "_gpl")
-----------------------------------------------------------------------

The EXPORT_SYMBOL macro allows the given symbol to be seen by other pieces of the kernel by
placing it into the kernel's symbol table. EXPORT_SYMBOL_GPL allows only modules that have defined a
GPL-compatible license in their MODULE_LICENSE attribute. (See include/linux/module.h for a
complete list of licenses.)



10.2.3. IOCTL

Until now, we have primarily dealt with device drivers that take actions of their own accord or read
and write data to their device. What happens when you have a device that can do more than just
read and write? Or you have a device that can do different kinds of reads and writes? Or your
device requires some kind of hardware control interface? In Linux, device drivers typically use the
ioctl method to solve these problems.

ioctl is a system call that allows the device driver to handle specific commands that can be used to
control the I/O channel. A device driver's ioctl call must follow the declaration inside of the
file_operations structure:

-----------------------------------------------------------------------
include/linux/fs.h
863 struct file_operations {
 ...
872 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);
-----------------------------------------------------------------------

From user space, the ioctl function call is defined as follows:

int ioctl (int d, int request, ...);

The third argument in the user space definition is an untyped pointer to memory. This is how data
passes from user space to the device driver's ioctl implementation. It might sound complex, but to
actually use ioctl within a driver is fairly simple.

First, we want to declare what IOCTL numbers are valid for our device. We should consult the file
Documentation/ioctl-number.txt and choose a code that the machine won't use. By consulting the
current 2.6 file, we see that the ioctl code of 'g' is not currently in use. In our driver, we claim it
with the following code:

#define MYDRIVER_IOC_MAGIC 'g'

For each distinct control message the driver receives, we need to declare a unique ioctl number.
This is based off of the magic number just defined:

-----------------------------------------------------------------------
#define MYDRIVER_IOC_OP1 _IO(MYDRIVER_IOC_MAGIC, 0)
#define MYDRIVER_IOC_OP2 _IOW(MYDRIVER_IOC_MAGIC, 1)
#define MYDRIVER_IOC_OP3 _IOW(MYDRIVER_IOC_MAGIC, 2)
#define MYDRIVER_IOC_OP4 _IORW(MYDRIVER_IOC_MAGIC, 3)
-----------------------------------------------------------------------

The four operations just listed ( op1, op2, op3, and op4) have been given unique ioctl numbers
using the macros defined in include/asm/ioctl.h using MYDRIVER_IOC_MAGIC, which is our ioctl
magic number. The documentation file is eloquent on what everything means:



-----------------------------------------------------------------------
Documentation/lioctl-number.txt
6 If you are adding new ioctls to the kernel, you should use the _IO
7 macros defined in <linux/ioctl.h>:
8
9  _IO an ioctl with no parameters
10  _IOW an ioctl with write parameters (copy_from_user)
11  _IOR an ioctl with read parameters (copy_to_user)
12  _IOWR an ioctl with both write and read parameters.
13
14 'Write' and 'read' are from the user's point of view, just like the
15 system calls 'write' and 'read'. For example, a SET_FOO ioctl would
16 be _IOW, although the kernel would actually read data from user space;
17 a GET_FOO ioctl would be _IOR, although the kernel would actually write
18 data to user space.
-----------------------------------------------------------------------

From user space, we could call the ioctl commands like this:

-----------------------------------------------------------------------
ioctl(fd, MYDRIVER_IOC_OP1, NULL);
ioctl(fd, MYDRIVER_IOC_OP2, &mydata);
ioctl(fd, MYDRIVER_IOC_OP3, mydata);
ioctl(fd, MYDRIVER_IOC_OP4, &mystruct);
-----------------------------------------------------------------------

The user space program needs to know what the ioctl commands are (in this case,
MYDRIVER_IOC_OP1 … MY_DRIVER_IOC_OP4) and the type of arguments the commands expect. We
could return a value by using the return code of the ioctl system call or we could interpret the
parameter as a pointer to be set or read. In the latter case, remember that the pointer references a
section of user space memory that must be copied into, or out of, the kernel.

The cleanest way to move memory between user space and kernel space in an ioctl function is by
using the routines put_user() and get_user(), which are defined here:

-----------------------------------------------------------------------
Include/asm-i386/uaccess.h
* get_user: - Get a simple variable from user space.
* @x: Variable to store result.
* @ptr: Source address, in user space.
 ...
* put_user: - Write a simple value into user space.
* @x: Value to copy to user space.
* @ptr: Destination address, in user space.
-----------------------------------------------------------------------

put_user() and get_user() ensure that the user space memory being read or written to is in
memory at the time of the call.

There is an additional constraint that you might want to add to the ioctl functions of your device
driver: authentication.



One way to test whether the process calling your ioctl function is authorized to call ioctl is by
using capabilities. A common capability used in driver authentication is CAP_SYS_ADMIN:

-----------------------------------------------------------------------
include/linux/capability.h
202 /* Allow configuration of the secure attention key */
 203 /* Allow administration of the random device */
 204 /* Allow examination and configuration of disk quotas */
 205 /* Allow configuring the kernel's syslog (printk behavior) */
 206 /* Allow setting the domainname */
 207 /* Allow setting the hostname */
 208 /* Allow calling bdflush() */
 209 /* Allow mount() and umount(), setting up new smb connection */
 210 /* Allow some autofs root ioctls */
 211 /* Allow nfsservctl */
 212 /* Allow VM86_REQUEST_IRQ */
 213 /* Allow to read/write pci config on alpha */
 214 /* Allow irix_prctl on mips (setstacksize) */
 215 /* Allow flushing all cache on m68k (sys_cacheflush) */
 216 /* Allow removing semaphores */
 217 /* Used instead of CAP_CHOWN to "chown" IPC message queues, semaphores
 218 and shared memory */
 219 /* Allow locking/unlocking of shared memory segment */
 220 /* Allow turning swap on/off */
 221 /* Allow forged pids on socket credentials passing */
 222 /* Allow setting readahead and flushing buffers on block devices */
 223 /* Allow setting geometry in floppy driver */
 224 /* Allow turning DMA on/off in xd driver */
 225 /* Allow administration of md devices (mostly the above, but some
 226 extra ioctls) */
 227 /* Allow tuning the ide driver */
 228 /* Allow access to the nvram device */
 229 /* Allow administration of apm_bios, serial and bttv (TV) device */
 230 /* Allow manufacturer commands in isdn CAPI support driver */
 231 /* Allow reading non-standardized portions of pci configuration space */
 232 /* Allow DDI debug ioctl on sbpcd driver */
 233 /* Allow setting up serial ports */
 234 /* Allow sending raw qic-117 commands */
 235 /* Allow enabling/disabling tagged queuing on SCSI controllers and sending
 236 arbitrary SCSI commands */
 237 /* Allow setting encryption key on loopback filesystem */
 238
239 #define CAP_SYS_ADMIN 21
-----------------------------------------------------------------------

Many other more specific capabilities in include/linux/capability.h might be more appropriate for
a more restricted device driver, but CAP_SYS_ADMIN is a good catch-all.

To check the capability of the calling process within your driver, add something similar to the
following code:

if (! capable(CAP_SYS_ADMIN)) {
 return EPERM;
}



10.2.4. Polling and Interrupts

When a device driver sends a command to the device it is controlling, there are two ways it can
determine whether the command was successful: It can poll the device or it can use device
interrupts.

When a device is polled, the device driver periodically checks the device to ensure that the
command it delivered succeeded. Because device drivers are part of the kernel, if they were to poll
directly, they risk causing the kernel to wait until the device completes the poll operation. The way
device drivers that poll get around this is by using system timers. When the device driver wants to
poll a device, it schedules the kernel to call a routine within the device driver at a later time. This
routine performs the device check without pausing the kernel.

Before we get further into the details of how kernel interrupts work, we must explain the main
method of locking access to critical sections of code in the kernel: spinlocks. Spinlocks work by
setting a special flag to a certain value before it enters the critical section of code and resetting the
value after it leaves the critical section. Spinlocks should be used when the task context cannot
block, which is precisely the case in kernel code. Let's look at the spinlock code for x86 and PPC
architectures:

-----------------------------------------------------------------------
include/asm-i386/spinlock.h
32 #define SPIN_LOCK_UNLOCKED (spinlock_t) { 1 SPINLOCK_MAGIC_INIT }
33
34 #define spin_lock_init(x)  do { *(x) = SPIN_LOCK_UNLOCKED; } while(0)
...
43 #define spin_is_locked(x)  (*(volatile signed char *)(&(x)->lock) <= 0)
44 #define spin_unlock_wait(x)  do { barrier(); } while(spin_is_locked(x))

include/asm-ppc/spinlock.h
25 #define SPIN_LOCK_UNLOCKED  (spinlock_t) { 0 SPINLOCK_DEBUG_INIT }
26
27 #define spin_lock_init(x)  do { *(x) = SPIN_LOCK_UNLOCKED; } while(0)
28 #define spin_is_locked(x)  ((x)->lock != 0)
while(spin_is_locked(x))
29 #define spin_unlock_wait(x)  do { barrier(); } while(spin_is_locked(x))
-----------------------------------------------------------------------

In the x86 architecture, the actual spinlock's flag value is 1 if unlocked whereas on the PPC, it's 0.
This illustrates that in writing a driver, you need to use the supplied macros instead of raw values
to ensure cross-platform compatibility.

Tasks that want to gain the lock will, in a tight loop, continuously check the value of the special flag
until it is less than 0; hence, waiting tasks spin. (See spin_unlock_wait() in the two code blocks.)

Spinlocks for drivers are normally used during interrupt handling when the kernel code needs to
execute a critical section without being interrupted by other interrupts. In prior versions of the
Linux kernel, the functions cli() and sti() were used to disable and enable interrupts. As of
2.5.28, cli() and sti() are being phased out and replaced with spinlocks. The new way to execute
a section of kernel code that cannot be interrupted is by the following:

-----------------------------------------------------------------------
Documentation/cli-sti-removal.txt
 1: spinlock_t driver_lock = SPIN_LOCK_UNLOCKED;
 2: struct driver_data;
 3:



 4: irq_handler (...)
 5: {
 6: unsigned long flags;
 7: ....
 8: spin_lock_irqsave(&driver_lock, flags);
 9: ....
10: driver_data.finish = 1;
11: driver_data.new_work = 0;
12: ....
13: spin_unlock_irqrestore(&driver_lock, flags);
14: ....
15: }
16:
17: ...
18:
19: ioctl_func (...)
20: {
21: ...
22: spin_lock_irq(&driver_lock);
23: ...
24: driver_data.finish = 0;
25: driver_data.new_work = 2;
26: ...
27: spin_unlock_irq(&driver_lock);
28: ...
29: }
-----------------------------------------------------------------------

Line 8

Before starting the critical section of code, save the interrupts in flags and lock driver_lock.

Lines 912

This critical section of code can only be executed one task at a time.

Line 27

This line finishes the critical section of code. Restore the state of the interrupts and unlock
driver_lock.

By using spin_lock_irq_save() (and spin_lock_irq_restore()), we ensure that interrupts that
were disabled before the interrupt handler ran remain disabled after it finishes.

When ioctl_func() has locked driver_lock, other calls of irq_handler() will spin. Thus, we need to
ensure the critical section in ioctl_func() finishes as fast as possible to guarantee the
irq_handler(), which is our top-half interrupt handler, waits for an extremely short time.

Let's examine the sequence of creating an interrupt handler and its top-half handler (see Section
10.2.5 for the bottom half, which uses a work queue):

-----------------------------------------------------------------------
#define mod_num_tries 3
static int irq = 0;



...
int count = 0;
unsigned int irqs = 0;
while ((count < mod_num_tries) && (irq <= 0)) {
 irqs = probe_irq_on();
 /* Cause device to trigger an interrupt.
  Some delay may be required to ensure receipt 
  of the interrupt */
 irq = probe_irq_off(irqs);
 /* If irq < 0 multiple interrupts were received.
  If irq == 0 no interrupts were received. */
 count++;
}
if ((count == mod_num_tries) && (irq <=0)) {
 printk("Couldn't determine interrupt for %s\n",
   MODULE_NAME);
}
-----------------------------------------------------------------------

This code would be part of the initialization section of the device driver and would likely fail if no
interrupts could be found. Now that we have an interrupt, we can register that interrupt and our
top-half interrupt handler with the kernel:

-----------------------------------------------------------------------
retval = request_irq(irq, irq_handler, SA_INTERRUPT,
      DEVICE_NAME, NULL);
if (retval < 0) {
 printk("Request of IRQ %n failed for %s\n", 
   irq, MODULE_NAME);
 return retval;
}
-----------------------------------------------------------------------

request_irq() has the following prototype:

-----------------------------------------------------------------------
arch/ i386/kernel/irq.c
590 /**
 591 *  request_irq - allocate an interrupt line
 592 *  @irq: Interrupt line to allocate
 593 *  @handler: Function to be called when the IRQ occurs
 594 *  @irqflags: Interrupt type flags
 595 *  @devname: An ascii name for the claiming device
 596 *  @dev_id: A cookie passed back to the handler function
...
622 int request_irq(unsigned int irq,
 623     irqreturn_t (*handler)(int, void *, struct pt_regs *),
 624     unsigned long irqflags,
 625     const char * devname,
626     void *dev_id)
-----------------------------------------------------------------------



The irqflags parameter can be the ord value of the following macros:

SA_SHIRQ for a shared interrupt

SA_INTERRUPT to disable local interrupts while running handler

SA_SAMPLE_RANDOM if the interrupt is a source of entropy

dev_id must be NULL if the interrupt is not shared and, if shared, is usually the address of the
device data structure because handler receives this value.

At this point, it is useful to remember that every requested interrupt needs to be freed when the
module exits by using free_irq():

-----------------------------------------------------------------------
arch/ i386/kernel/irq.c
669 /**
670 *  free_irq - free an interrupt
671 *  @irq: Interrupt line to free
672 *  @dev_id: Device identity to free
...
682 */
683 
684 void free_irq(unsigned int irq, void *dev_id)
-----------------------------------------------------------------------

If dev_id is a shared irq, the module should ensure that interrupts are disabled before calling this
function. In addition, free_irq() should never be called from interrupt context. Calling free_irq()
in the module cleanup routine is standard. (See spin_lock_irq() and spin_unlock_irq.)

At this point, we have registered our interrupt handler and the irq it is linked to. Now, we have to
write the actual top-half handler, what we defined as irq_handler():

-----------------------------------------------------------------------
void irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
 /* See above for spin lock code */
 /* Copy interrupt data to work queue data for handling in
  bottom-half */
 schedule_work( WORK_QUEUE );
 /* Release spin_lock */
}
-----------------------------------------------------------------------

If you just need a fast interrupt handler, you can use a tasklet instead of a work queue:

-----------------------------------------------------------------------
void irq_handler(int irq, void *dev_id, struct pt_regs *regs)
{
 /* See above for spin lock code */
 /* Copy interrupt data to tasklet data */
 tasklet_schedule( TASKLET_QUEUE );
 /* Release spin_lock */



}
-----------------------------------------------------------------------

10.2.5. Work Queues and Tasklets

The bulk of the work in an interrupt handler is usually done in a work queue. In the last section,
we've seen that the top half of the interrupt handler copies pertinent data from the interrupt to a
data structure and then calls schedule_work().

To have tasks run from a work queue, they must be packaged in a work_struct. To declare a work
structure at compile time, use the DECLARE_WORK() macro. For example, the following code could be
placed in our module to initialize a work structure with an associated function and data:

-----------------------------------------------------------------------
...
struct bh_data_struct {
 int data_one;
 int *data_array;
 char *data_text;
}
...
static bh_data_struct bh_data;
...
static DECLARE_WORK(my_mod_work, my_mod_bh, &bh_data);
...
static void my_mod_bh(void *data)
{
 struct bh_data_struct *bh_data = data;

 /* all the wonderful bottom half code */
}
-----------------------------------------------------------------------

The top-half handler would set all the data required by my_mod_bh in bh_data and then call
schedule_work(my_mod_work).

schedule_work() is a function that is available to any module; however, this means that the work
schedule is put on the generic work queue "events." Some modules might want to make their own
work queues, but the functions required to do so are only exported to GPL-compatible modules.
Thus, if you want to keep your module proprietary, you must use the generic work queue.

A work queue is created by using the create_workqueue() macro, which calls __create_workqueue()
with a second parameter of 0:

-----------------------------------------------------------------------
kernel/workqueue.c
304 struct workqueue_struct *__create_workqueue(const char *name,
 305            int singlethread)
-----------------------------------------------------------------------

name can be up to 10 characters long.



If singlethread is 0, the kernel creates a workqueue thread per CPU; if singlethread is 1, the kernel
creates a single workqueue thread for the entire system.

Work structures are created in the same way as what's been previously described, but they are
placed on your custom work queue using queue_work() instead of schedule_work().

-----------------------------------------------------------------------
kernel/workqueue.c
97 int fastcall queue_work(struct workqueue_struct *wq, struct work_struct *work)
98 {
-----------------------------------------------------------------------

wq is the custom work queue created with create_workqueue().

work is the work structure to be placed on wq.

Other work queue functions, found in kernel/workqueue.c, include the following:

queue_work_delayed(). Ensures the work structure function is not called until a specified

number of jiffies has passed.

flush_workqueue(). Causes the caller to wait until all scheduled work on the queue has

finished. This is commonly used when a device driver exits.

destroy_workqueue(). Flushes and then frees the work queue.

Similar functions, schedule_work_delayed() and flush_scheduled_work(), exist for the generic work
queue.

10.2.6. Adding Code for a System Call

We could edit the Makefile in /kernel to include a file with our function, but an easier method is to
include our function code in an already existing file in the source tree. The file /kernel/sys.c
contains the kernel functions for the system calls and the file arch/i386/kernel/sys_i386.c
contains x86 system calls with a nonstandard calling sequence. The former is where we add the
source code for our syscall function written in C. This code runs in kernel mode and does all the
work. Everything else in this procedure is in support of getting us to this function. It is dispatched
through the x86 exception handler:

-----------------------------------------------------------------------
kernel/sys.c
 1: ...
 2: /* somewhere after last function */
 3:
 4: /* simple function to demonstrate a syscall. */
 5: /* take in a number, print it out, return the number+1 */
 6: 
 7: asmlinkage long sys_ourcall(long num)
 8: {
 9: printk("Inside our syscall num =%d \n", num);
10: return(num+1);
11: }
-----------------------------------------------------------------------



When the exception handler processes the int 0x80, it indexes into the system call table. The file
/arch/i386/kernel/entry.S contains low-level interrupt handling routines and the system call table
sys_call_tabl. The table is an assembly code implementation of an array in C with each element
being 4 bytes. Each element or entry in this table is initialized to the address of a function. By
convention, we must prepend the name of our function with sys_. Because the position in the table
determines the syscall number, we must add the name of our function to the end of the list. See
the following code for the table changes:

-----------------------------------------------------------------------
arch/i386/kernel/entry.S
 : .data
608: ENTRY(sys_call_table)
  .long sys_restart_syscall /* 0 - old "setup()" system call, used for restarting*/
...
  .long sys_tgkill  /* 270 */
  .long sys_utimes
  .long sys_fadvise64_64
  .long sys_ni_syscall /* sys_vserver */
  .long sys_ourcall  /* our syscall will be 274 */
884: nr_syscalls=(.-sys_call_table)/4
-----------------------------------------------------------------------

The file include/asm/unistd.h associates the system calls with their positional numbers in the
sys_call_table. Also in this file are macro routines to assist the user program (written in C) in
loading the registers with parameters. Here are the changes to unistd.h to insert our system call:

-----------------------------------------------------------------------
include/asm/unistd.h
 1: /*
 2: * This file contains the system call numbers.
 3: */
 4:
 5: #define __NR_restart_syscall 0
 6: #define __NR_exit    1
 7: #define __NR_fork    2
 8: ... 
 9: #define __NR_utimes   271
10: #define __NR_fadvise64_64  272
11: #define __NR_vserver   273
12: #define __NR_ourcall   274
13:
14: /* #define NR_syscalls 274 this is the old value before our syscall */
15: #define NR_syscalls   275
-----------------------------------------------------------------------

Finally, we want to create a user program to test the new syscall. As previously mentioned in this
section, a set of macros exists to assist the kernel programmer in loading the parameters from C
code into the x86 registers. In /usr/include/asm/unistd.h, there are seven macros:
_syscallx(type, name,..), where x is the number of parameters. Each macro is dedicated to

loading the proper number of parameters from 0 to 5 and syscall6(...) allows for passing a
pointer to more parameters. The following example program takes in one parameter. For this
example (on line 5), we use the _syscall1(type, name,type1,name1) macro from /unistd.h, which
resolves to a call to int 0x80 with the proper parameters:



-----------------------------------------------------------------------
mytest.c
 1: #include <stdio.h>
 2: #include <stdlib.h>
 3: #include "/usr/include/asm/unistd.h"
 4:
 5: _syscall(long,ourcall,long, num);
 6:
 7: main()
 8: {
 9: printf("our syscall --> num in=5, num out = %d\n", ourcall(5));
10: }
-----------------------------------------------------------------------



10.3. Building and Debugging

Adding your code to the kernel typically involves cycles of programming and bug fixing. In this
section, we describe how to debug the kernel code you've written and how to build debugging-
related tools.

10.3.1. Debugging Device Drivers

In previous sections, we used the /proc filesystem to gather information about the kernel. We can
also make information about our device driver accessible to users via /proc, and it is an excellent
way to debug parts of your device driver. Every node in the /proc filesystem connects to a kernel
function when it is read or written to. In the 2.6 kernel, most writes to part of the kernel, devices
included, are done through sysfs instead of /proc. The operations modify specific kernel object
attributes while the kernel is running. /proc remains a useful tool for read-only operations that
require a larger amount of data than an attribute-value pair, and this section deals only with
reading from /proc enTRies.

The first step in allowing read access to your device is to create an entry in the /proc filesystem,
which is done by create_proc_read_entry():

-----------------------------------------------------------------------
include/linux/proc_fs.h
146 static inline struct proc_dir_entry *create_proc_read_entry(const char *name,
147   mode_t mode, struct proc_dir_entry *base,
148   read_proc_t *read_proc, void * data)
-----------------------------------------------------------------------

*name is the entry of the node that appears under /proc, a mode of 0 allows the file to be world-
readable. If you are creating many different proc files for a single device driver, it could be
advantageous to first create a proc directory by using proc_mkdir(), and then base each file under
that. *base is the directory path under /proc to place the file; a value of NULL places the file
directly under /proc. The *read_proc function is called when the file is read, and *data is a pointer
that is passed back into *read_proc:

-----------------------------------------------------------------------
include/linux/proc_fs.h
44 typedef int (read_proc_t)(char *page, char **start, off_t off,
45       int count, int *eof, void *data);
-----------------------------------------------------------------------

This is the prototype for functions that want to be read via the /proc filesystem. *page is a pointer
to the buffer where the function writes its data for the process reading the /proc file. The function
should start writing at off bytes into *page and write no more than count bytes. As most reads
return only a small amount of information, many implementations ignore both off and count. In
addition, **start is normally ignored and is rarely used anywhere in the kernel. If you implement
a read function that returns a vast amount of data, **start, off, and count can be used to
manage reading small chunks at a time. When the read is finished, the function should write 1 to
*eof. Finally, *data is the parameter passed to the read function defined in



create_proc_read_entry().



Summary

This chapter covered device drivers, modules, and system calls. We described the variety of ways
that Linux uses device drivers.

More specifically, we covered the following topics:

We described the /dev TRee in the Linux filesystem and explained how to determine what
device is controlled by what device driver.

We explained how device drivers use file structures and file operations structures to handle
filesystem I/O.

We discussed the difference between user-level memory and kernel space memory and how
device drivers need to copy data structures between the two.

We examined the wait queue construct of the Linux kernel and demonstrated how it is used
when a device driver needs to wait for a particular resource to become available.

We explored the theory behind wait queues and interrupts, which are the methods that the
Linux kernel uses to cleanly interrupt the processing of device drivers when the CPU needs to
be yielded to another process.

We introduced Linux system calls and outlined their basic functions.

We covered the differences between block and character device drivers and the new device
model that was introduced in Linux 2.6. This involved a quick tour of sysfs.

In the first part of Chapter 10, these topics were talked about from an abstract level, and we
traced a specific device driver, /dev/random, tHRough the topics described. The second part of
Chapter 10 provided more concrete examples and sample code for how to actually construct a
device driver.

More specifically, we detailed the following concepts:

We showed how to construct nodes in /dev that could be attached to a device driver and how
to construct dynamic modules.

We described the new methods in Linux 2.6 to export symbols from device driver modules.

We demonstrated how a device driver provides IOCTL functions that allows the device to
interact with Linux via the filesystem.

We explained how interrupts and polling occur and the difference between spinlocks in the
x86 and PPC architecture.

We explained how to add a simple system call to the Linux kernel.

Chapter 10 provides a solid basis for developing device drivers in Linux 2.6 and combines, in a
practical fashion, the ideas and concepts we introduced previously in this book.



Exercises

1: See Chapter 3, "Processes: The Principal Model of Execution," on building the kernel
and user code. Recompile the kernel and compile mytest.c. Run mytest.c and
observe the output.

2: Add another parameter to ourcall.

3: Make a system call from within ourcall.

4: Explain the similarities and differences between system calls and device drivers.

5: Why can't we use memcpy to copy data between user space and kernel space?

6: What is the difference between a top-half and bottom-half routine?

7: What's the difference between a tasklet and a work_queue?

8: When a device can handle more than simply read and write requests, how does Linux
interact with it?

9: What is the numerical value of an unlocked spinlock on x86 architecture? On PPC?

10: In one sentence, describe the difference between block drivers and character drivers.
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         tracing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

     types of

cahces

     buffers

calaculations

     dynamic priority

calibrate_delay() function

     calling 2nd 3rd

call

    system

         VFS 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th

28th 29th 30th

calling

     buffer_init() function 2nd

     build_all_zonelists() function 2nd

     calibrate_delay() function 2nd 3rd

     console_init() function 2nd

     init_IRQ() function 2nd 3rd

     late_time_init() function

     local_irq_enable() function

     lock_kernel() function 2nd

     mem_init() function 2nd 3rd 4th 5th 6th 7th 8th

     page_address_init() function 2nd 3rd 4th

     page_alloc_init() function 2nd

     page_writeback_init() function 2nd 3rd

     parse_args() function 2nd 3rd

     pgtable_cache_init() function 2nd

     printk() function

     proc_root_init() function 2nd 3rd



     profile_init() function

     radix_tree_init() function

     rcu_init() function

     rest_init() function 2nd

     sched_init() function 2nd 3rd

     security_scaffolding_startup() function

     setup_arch() function 2nd 3rd 4th 5th 6th

     setup_per_cpu_areas() function 2nd 3rd

     signals_init() function 2nd

     smp_prepare_boot_cpu() function 2nd

     softirq_init() function

     time_init() function 2nd

     trap_init() function

     vfs_cache_init() function 2nd 3rd 4th 5th 6th 7th 8th 9th

calls [See system calls]

     process creation system 2nd

         clone() function 2nd 3rd

         do_fork() function 2nd 3rd 4th 5th 6th

         fork() function 2nd

         vfork() function 2nd

capabilties

    fields

         task_struct structure 2nd

characters

     devices 2nd 3rd 4th

child processes 2nd

children field (task_struct structure)

chipsets

CHRP (Common Hardware Reference Platform)

CISC (Complex Instruction Set Computing) architecture

clobbered registers 2nd

clocks

     devices

     real-time 2nd 3rd 4th 5th 6th 7th 8th 9th

clone() function 2nd 3rd

close() function 2nd 3rd 4th 5th 6th 7th

CML2

code

     inline assembly 2nd

         _ _volatile__ modifer 2nd 3rd 4th 5th 6th

         asm keyword

         clobbered registers

         constriants

         input operands

         output operands

         parameter numbering

code generation phases

coloring (slabs)

comm field (task_struct structure)

commands

     ar 2nd

     hexdump

     objcopy

Common Hardware Reference Platform (CHRP)

compilers 2nd

     asmlinkage

     cross 2nd

Complex Instruction Set Computing (CISC) architecture

components

     MBR



compound pages

computer programs [See also applications]

condition register (CR)

configuration

     kernel configuration tool

configuring

     caches 2nd 3rd 4th 5th 6th 7th 8th 9th

    devices

         writing code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

     initrd

console_init() function

     calling 2nd

const keyword 2nd

constants

    UL

         marking

constraints

context

context of execution

context_switch() function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

control

     of files

control bits

control information, transmitting

controllers

     DMA 2nd

     interrupts

controlling terminal

count field (flags)

count register (CTR)

CPUs

     yielding 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

cpus_allowed field (task_struct structure)

CR (condition register)

create_process program 2nd 3rd

credentials

    fields

         task_struct structure 2nd

cross compilers 2nd

cs_cachep field (cache descriptors)

cs_dmacachep field (cache descriptors)

cs_size field (cache desciptors)

ctor field (cache descriptors)

CTR (count register)

current task structures

current variable

current working directories
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Data BAT (DBAT)

data instructions (x86)

data relocate (DR)

data segments

data structures

     VFS 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

datatypes

     linked lists 2nd 3rd 4th

     searching 2nd 3rd

     trees

         binary 2nd

         red black 2nd

DBAT (Data BAT)

deactivating tasks

dead processes

deadline I/O schedulers

deadlock

Debian

debugging

     device drivers 2nd

DECLARE_WORK() macro

declaring IOCTL numbers 2nd 3rd 4th

decrementers

defining

     execution contexts

defunct processes

dentry structures 2nd 3rd 4th 5th

dependence

     architecture

descriptors

     cache_sizes

     caches 2nd 3rd 4th

     files

     kmem_cache

     memory zones 2nd 3rd

     processes 2nd 3rd 4th 5th

         address space fields 2nd

         attribute fields 2nd

         capabilities fields 2nd

         credentials fields 2nd

         filesystem fields 2nd

         limitations fields 2nd 3rd

         relationship fields 2nd

         scheduling fields 2nd 3rd 4th

descriptors (files)

destroying

     caches 2nd

devfs (Linux Device Filesystem)

devices

     access 2nd



     addressing

     block

     characters 2nd

     drivers 2nd

         creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

         debugging 2nd

         types of 2nd 3rd 4th

     files 2nd 3rd

         block devices 2nd

         characters 2nd

         clocks

         DMA 2nd

         generic block drivers 2nd 3rd

         networks

         operations 2nd

         request queues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         scheduling I/O 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         terminals

    models

         sysfs 2nd 3rd 4th

     pseudo

Direct Memory Access (DMA) 2nd

direct store segments

directories 2nd

     /dev

     current working

     files 2nd 3rd

     fs/

     home

     init/

     kernel/

     mm/

     Page Global Directory

     working

dirty pages, flushing 2nd

disks

     blocks

     formatting

     initrd 2nd

     partitions 2nd

distributions

     Debian

     Fedora 2nd

     Gentoo 2nd

     Mandriva

     Red Hat 2nd

     SUSE

     Yellow Dog

DMA (Direct Memory Access) 2nd

dmesg tool

do_exit() function 2nd 3rd 4th

do_fork() function 2nd 3rd 4th 5th 6th

do_page_fault() function

DR (data relocate)

driver

     tables

drivers

    cource code

         traversing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

     creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th



     debugging 2nd

     devices 2nd

    parallel ports

         building 2nd 3rd 4th 5th 6th 7th 8th

     types of 2nd 3rd 4th

     wait queues 2nd 3rd 4th 5th

     work queues 2nd 3rd

dtor field (cache descriptors)

dumb terminals

dynamic libraries

dynamic priority calculations
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EA (effective address)

effective address (EA)

effective group IDs

effective user IDs

elevator algorithms

ELF (Executable and Linking Format)

     object files 2nd 3rd 4th 5th 6th 7th 8th 9th

euid field (task_struct structure)

events

     wait_event*() interfaces 2nd

EXCEPTION() macro

exceptions

     asynchronous execution flow 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd

23rd 24th 25th 26th

     page faults

     PowerPC page faults

exec() system calls

Executable and Linking Format (ELF)

     object files 2nd 3rd 4th 5th 6th 7th 8th 9th

executing

    processes

         adding to wait queues

         asynchronous execution flow 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd

23rd 24th 25th 26th 27th

         clone() function 2nd 3rd

         creating 2nd

         do_exit() function 2nd 3rd 4th

         do_fork() function 2nd 3rd 4th 5th 6th

         fork() function 2nd

         lifespans 2nd 3rd 4th 5th 6th 7th

         sys_exit() function 2nd

         termination

         tracking 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         vfork() funciton 2nd

         wait queues 2nd

         wait() function 2nd 3rd 4th 5th 6th

         wait_event*() interfaces 2nd

         waking up 2nd 3rd 4th

     schedulers

         context_switch() function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         selecting tasks 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         yielding CPUs 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

execution

     context of

    processes

         create_process program 2nd 3rd

execution contexts, defining

exit_code field (task_struct structure)

exit_signal field (task_struct structure)

exploration tools (kernels)



     ar command 2nd

     hexdump command

     mm

     objcopy command

     objdump/readelf 2nd

EXPORT_SYMBOL macro

exporting

     symbols

extensions

     filenames

external fragmentation

external interrupts



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

faults (pages) 2nd

     memory management 2nd 3rd 4th 5th 6th 7th 8th 9th

fdatasync system calls

Fedora 2nd

field handlers

fields

     flags 2nd

     memory zones 2nd 3rd

    process descriptor

         address space 2nd

         attributes 2nd

         capabilities 2nd

         credentials 2nd

         filesystem 2nd

         limitations 2nd 3rd

         relationship 2nd

         scheduling 2nd 3rd 4th

     superblock structures 2nd 3rd

         operations 2nd 3rd

    task_struct structure

         address space 2nd

         attribute 2nd

         capabilities 2nd

         credentials 2nd

         filesystem 2nd

         limitations 2nd 3rd

         relationship 2nd

         scheduling 2nd 3rd 4th

file descriptors

file structures

     VFS 2nd 3rd

filenames

     extensions

files 2nd

     /etc/fstab

     attributes

     control

     descriptors

     devices 2nd 3rd

         block devices 2nd

         characters 2nd

         clocks

         DMA 2nd

         generic block drivers 2nd 3rd

         networks

         operations 2nd

         request queues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         scheduling I/O 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         terminals

     directories 2nd 3rd



     ELF 2nd 3rd 4th 5th 6th 7th 8th 9th

     filenames

     kernels 2nd

         protection 2nd 3rd 4th 5th

     metadata

     modes

     operations

    parameters

         offsetting

     pathnames 2nd

    processes

         close() function 2nd 3rd 4th 5th 6th 7th

         files_struct structure 2nd 3rd 4th

         fs_struct structure

         open() function 2nd 3rd 4th 5th 6th

     regular 2nd

     types 2nd

     types of

files field (task_struct structure)

files_struct structure 2nd 3rd 4th

filesystems 2nd

     devfs

    fields

         task_struct structure 2nd

     handlers

     hierarchies

     implementing

     kernels 2nd

     layers 2nd 3rd 4th 5th 6th 7th

     navigating 2nd

     overview 2nd 3rd 4th 5th 6th

     page caches 2nd 3rd 4th

     performance

     types of

     VFS

     VFS structures 2nd 3rd 4th 5th 6th

     VFS system calls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th

26th 27th 28th 29th 30th

     virtual 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

first_time_slice field (task_struct structure)

fixed-point instructions (PowerPC)

flags

     memory management 2nd

flags field

flags field (cache descriptors)

flags field (task_struct structure)

Flash

flips 2nd 3rd

floating-point instructions (PowerPC)

flops 2nd 3rd

flushing dirty pages 2nd

for_each_zone() function

fork() function 2nd

fork() system calls

forked processes

formatting

     caches 2nd 3rd 4th 5th 6th 7th 8th 9th

    devices

         writing code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

     disks



fragmentation

     external

frames

     pages

         memory management 2nd 3rd 4th 5th 6th 7th 8th

free field (slab descriptors)

free software 2nd

Free Software Foundation (FSF)

free_area field ( memory zones)

free_page() function

free_pages field (memory zones)

front-side busses

fs field (task_struct structure)

fs/ directory

fs_struct structure

FSF (Free Software Foundation)

fsgid field (task_struct structure)

fsuid field (task_struct structure)

fsync system calls

funcitons

     nice()

function

     is_highmem()

     kmalloc() 2nd

     kmem_cache_alloc()

functions

     __builtin_expect()

     __free_page()

     __get_dma_pages()

     __get_free_page()

     add_wait_queue()

     add_wait_queue_exclusive()

     alloc_page()

     alloc_pages()

     cache_grow() 2nd 3rd

     close() 2nd 3rd 4th 5th 6th 7th

     context_switch() 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

     do_exit() 2nd 3rd 4th

     do_page_fault()

     for_each_zone()

     free_page()

    helper

         memory zones 2nd

     is_normal()

     kmem_cache_destroy() 2nd

     likely() 2nd 3rd

     list_del()

     nice()

     open() 2nd 3rd 4th 5th 6th

     printk()

     process creation 2nd

         clone() function 2nd 3rd

         do_fork() function 2nd 3rd 4th 5th 6th

         fork() function 2nd

         vfork() function 2nd

    releases

         page frames

    requests

         page frames 2nd 3rd

     sched_fork() 2nd 3rd 4th 5th 6th 7th 8th



     scheduler_tick()

     start_kernel() 2nd

         calling buffer_init() function 2nd

         calling build_all_zonelists() function 2nd

         calling calibrate_delay() function 2nd 3rd

         calling console_init() function 2nd

         calling init_IRQ() function 2nd 3rd

         calling late_time_init() function

         calling local_irq_enable() function

         calling lock_kernel() function 2nd

         calling mem_init() function 2nd 3rd 4th 5th 6th 7th 8th

         calling page_address_init() function 2nd 3rd 4th

         calling page_alloc_init() function 2nd

         calling page_writeback_init() function 2nd 3rd

         calling parse_args() function 2nd 3rd

         calling pgtable_cache_init() function 2nd

         calling printk() function

         calling proc_root_init() function 2nd 3rd

         calling profile_init() function

         calling radix_tree_init() function

         calling rcu_init() function

         calling rest_init() function 2nd

         calling sched_init() function 2nd 3rd

         calling security_scaffolding_startup() function

         calling setup_arch() function 2nd 3rd 4th 5th 6th

         calling setup_per_cpu_areas() function 2nd 3rd

         calling signals_init() function 2nd

         calling smp_prepare_boot_cpu() function 2nd

         calling softirq_init() function

         calling time_init() function 2nd

         calling trap_init() function

         calling vfs_cache_init() function 2nd 3rd 4th 5th 6th 7th 8th 9th

     switch()

     switch_to() 2nd

     synchronous

     sys_exit() 2nd

     unlikely() 2nd 3rd

     wait() 2nd 3rd 4th 5th 6th
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GEC (General Electric Company)

General Electric Company (GEC)

general purpose caches

general-purpose registers (GPRs)

generic block device layers 2nd

generic block driver layers 2nd 3rd

Gentoo 2nd

geometry of hard drives

gfp_mask integer value

gfpflags field (cache descriptors)

gfporder field (cache descriptors)

GID (group ID) 2nd

global variables

     local list references 2nd

     slab allocators 2nd 3rd

GMCH (Graphics and Memory Controller Hub)

GNU General Public License (GPL)

GPL (GNU General Public License)

GPRs (general-purpose registers)

Grand Unified Bootleader (GRUB) 2nd 3rd 4th

Graphics and Memory Controller Hub (GMCH)

group ID (GID) 2nd

group_info field (task_struct structure) 2nd

group_leader field (task_struct structure)

GRUB (Grand Unified Botloader) 2nd 3rd 4th
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handlers

     filesystems

     page faults 2nd 3rd 4th 5th 6th 7th

hard drives

     geometry of

hard links

hardware

     I/O 2nd 3rd

     parallel ports

headers

     ELF 2nd

     tables

         programs 2nd

         sections 2nd

heads

heaps

helper functions

     memory zones 2nd

Hertz (HZ)

Hertz, Heinrich

hexdump command

hierarchies

     filesystems

High Performance Event Timer (HPET)

history

     of UNIX 2nd

home directories

host systems

HPET (High Performance Event Timer)

hubs

hw_interrupt_type structure

hw_irq_controller structure

HyperTransport technology

HZ (Hertz)
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I/O

     asynchronous operations

    devices

         block devices 2nd

         characters 2nd

         clocks

         DMA 2nd

         files 2nd

         generic block drivers 2nd 3rd

         networks

         operations 2nd

         request queues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         scheduling 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         terminals

     hardware 2nd 3rd

I/O (input/output)

I/O Controller Hub (ICH)

i386 Intel-based memeory management 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

IBAT (Instruction BAT)

ICH (I/O Controller Hub)

IDT (Interrupt Descriptor Table) 2nd

IHA (Intel Hub Architecture)

images

    kernels

         building 2nd 3rd

implementing

     filesystems

implicit kernel preemption 2nd 3rd 4th

implicit user preemption 2nd

inactive_list field (emory zones)

inb (read in a byte)

index nodes

init process 2nd 3rd

init threads (Process 1) 2nd 3rd 4th 5th 6th

init/ directory

init_IRQ() function

     calling 2nd 3rd

initial RAM disk (initrd) 2nd

initializing

     architecture-dependent memory

         i386 Intel-based 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

         PowerPC 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         x86

     irqaction struct

     kernels

     systems

initrd

     configuring

initrd (initial RAM disk) 2nd

inline assembly 2nd



     _ _volatile__modifer 2nd 3rd 4th 5th 6th

     asm keyword

     clobbered registers

     constraints

     input operands

     output operands

     parameter numbering

inline keyword

inode strcutures

inode structures 2nd 3rd 4th

inodes

input operands

input/output [See I/O]

Instruction BAT (IBAT)

instruction relocate (IR)

Intel Hub Architecture (IHA)

interactive processes

interactive tasks

interactive_credit field (task_struct structure)

interfaces

     ABI

     I/O 2nd 3rd

     users

     wait_event*() 2nd

Interrupt Descriptor Table (IDT) 2nd

interrupt-acknowledge cycle

interrupts 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th

     context

     controllers

     polling and 2nd 3rd 4th 5th

intervals

     addresses

inuse field (slab descriptors)

IOCTL numbers, declaring 2nd 3rd 4th

IPC (Interprocess Communication)

IR (instruction relocate)

IRQ structures

irq_desc_t structure

irqaction struct

irqaction structs, initializing

IS_ERR macro

is_highmem() function

is_normal() function
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jiffies 2nd
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kernel

     messages

         /var/log/messages

         dmesg

         printk() function

kernel configuration tool

kernel mode

kernel/ directory

kernels

     architecture-dependent memory initialization

         i386 Intel-based 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

         PowerPC 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         x86

     boot loaders

         GRUB 2nd 3rd 4th

         LILO 2nd

         PowerPC 2nd

         Yaboot 2nd

     create_process program 2nd 3rd

     datatypes

         linked lists 2nd 3rd 4th

         searching 2nd 3rd

         trees 2nd 3rd 4th 5th

     distributions

         Debian

         Fedora 2nd

         Gentoo 2nd

         Mandriva

         Red Hat 2nd

         SUSE

         Yellow Dog

     explicit kernel preemption

     exploration tools

         ar command 2nd

         hexdump command

         mm

         objcopy command

         objdump/readelf 2nd

     implicit kernel preemption 2nd 3rd 4th

     init threads (Process 1) 2nd 3rd 4th 5th 6th

     initialization

     memory 2nd

     organization

     overview of

         access rights 2nd 3rd 4th 5th

         device drivers 2nd

         files/filesystems 2nd

         processes 2nd 3rd

         schedulers

         system calls 2nd



         UID 2nd

         user interfaces

     release information 2nd

     source build systems 2nd

         architecture-dependent source code 2nd

         architecture-independent source code 2nd

         images 2nd 3rd

         Linux makefiles 2nd 3rd

         sub-makefiles 2nd 3rd

     space

     start_kernel() function 2nd

         calling buffer_init() function 2nd

         calling build_all_zonelists() function 2nd

         calling calibrate_delay() function 2nd 3rd

         calling console_init() function 2nd

         calling init_IRQ() function 2nd 3rd

         calling late_time_init() function

         calling local_irq_enable() function

         calling lock_kernel() function 2nd

         calling mem_init() function 2nd 3rd 4th 5th 6th 7th 8th

         calling page_address_init() function 2nd 3rd 4th

         calling page_alloc_init() function 2nd

         calling page_writeback_init() function 2nd 3rd

         calling parse_args() function 2nd 3rd

         calling pgtable_cache_init() function 2nd

         calling printk() function

         calling proc_root_init() function 2nd 3rd

         calling profile_init() function

         calling radix_tree_init() function

         calling rcu_init() function

         calling rest_init() function 2nd

         calling sched_init() function 2nd 3rd

         calling security_scaffolding_startup() function

         calling setup_arch() function 2nd 3rd 4th 5th 6th

         calling setup_per_cpu_areas() function 2nd 3rd

         calling signals_init() function 2nd

         calling smp_prepare_boot_cpu() function 2nd

         calling softirq_init() function

         calling time_init() function 2nd

         calling trap_init() function

         calling vfs_cache_init() function 2nd 3rd 4th 5th 6th 7th 8th 9th

     toolchains 2nd

         compilers

         cross compilers 2nd

         ELF object files 2nd 3rd 4th 5th 6th 7th 8th 9th

         linkers

keywords

     asm

     const 2nd

     inline

     volatile 2nd

kmalloc() function 2nd

kmem_cache descriptors

kmem_cache_alloc() function

kmem_cache_destroy() function 2nd
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languages

     assembly

         example of 2nd 3rd 4th 5th 6th 7th 8th

         PowerPC 2nd 3rd 4th

         x86 2nd 3rd 4th

     C

         asmlinkage

         const keyword 2nd

         inline keyword

         UL

         volatile keyword 2nd

late_time_init() function

     calling

latency

layers

     filesystems 2nd 3rd 4th 5th 6th 7th

     generic block device 2nd

     generic block drivers 2nd 3rd

layouts

     source code

li RT, RS, SI (Load Immediate)

libraries

licenses

     GPL

lifecycles

     slab allocators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

lifespans

     of process descriptors 2nd 3rd

     processes

         states 2nd

         transitions (states) 2nd 3rd 4th 5th 6th

likely() function 2nd 3rd

LILO (LInux LOader) 2nd

limitations

    fields

         task_struct structure 2nd 3rd

linear address spaces

     memory management 2nd 3rd

linear addresses

link editors

link register (LR)

linked lists 2nd 3rd 4th

linkers

links 2nd 3rd 4th

Linux

    filesystems [See filesystems]

     makefiles 2nd 3rd

    process structures

         linear address spaces 2nd 3rd

         memory management 2nd 3rd 4th 5th 6th



         page faults 2nd 3rd 4th 5th 6th 7th 8th 9th

         page tables 2nd

Linux Device Filesystem (devfs)

LInux LOader (LILO) 2nd

Linux Power

list field (flags)

list field (slab descriptors)

list_del() function

lists

     clobber

     linked 2nd 3rd 4th

     local references (global variables and) 2nd

     searching 2nd 3rd

     slab descriptors

     work queues

lists field (cache descriptors)

lists,next_reap

lists.slabs_free

lists.slabs_full

lists.slabs_partial

Little Endian

Load Immediate (li_RT,_RS,_SI)

Load Word and Zero (lwz_RT,_D(RA))

local list references 2nd

local stacks

     asmlinkage

local_irq_enable() function

     calling

lock field (memory zones)

lock_kernel() function

     calling 2nd

locking

     spinlocks 2nd 3rd 4th 5th

logical addresses

logical disks

login programs

LR (link register)

lru field (flags)

lru_lock field (memory zones)

ls /usr/src/linux/arch

lwz RT, D(RA) (Load Word and Zero)



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

Machine State Register (MSR)

macros

     __init 2nd

     DECLARE_WORK()

     EXCEPTION()

     EXPORT_SYMBOL

     IS_ERR

     PTR_ERR

makefiles

     Linux 2nd 3rd

     sub-makefiles 2nd 3rd

malloc_sizes[] global variable

management

     memory 2nd 3rd

         linear address spaces 2nd 3rd

         Linux process structures 2nd 3rd 4th 5th 6th

         page faults 2nd 3rd 4th 5th 6th 7th 8th 9th

         page frames 2nd 3rd 4th 5th 6th 7th 8th

         page tables 2nd

         pages 2nd 3rd

         request paths 2nd

         slab allocators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

         zones 2nd 3rd

Mandriva

mapping

     memory processes 2nd

mappng field (flags)

marking

    constants

         UL

Master Boot Record (MBR)

MBR (Master Boot Record)

MCH (Memory Controller Hub)

mem_init() function

     calling 2nd 3rd 4th 5th 6th 7th 8th

memory

    addresses

         mm_struct 2nd 3rd 4th

         vm_area_struct 2nd 3rd 4th

     addressing

     architecture-dependent initialization

         i386 Intel-based 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

         PowerPC 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         x86

     areas 2nd

     buffer_head structures

     DMA 2nd

     initrd 2nd

     kernels 2nd

     kmalloc() function 2nd



     kmem_cache_alloc() function

     management 2nd 3rd

         linear address spaces 2nd 3rd

         Linux process structures 2nd 3rd 4th 5th 6th

         page faults 2nd 3rd 4th 5th 6th 7th 8th 9th

         page frames 2nd 3rd 4th 5th 6th 7th 8th

         page tables 2nd

         pages 2nd 3rd

         request paths 2nd

         slab allocators 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

         zones 2nd 3rd

     manager

    processes

         mapping 2nd

     regions

     users 2nd 3rd 4th

     virtual

Memory Controller Hub (MCH)

Memory Management Unit (MMU)

memory-mapped I/O

messages

     kernels

         /var/log/messages

         dmesg

         printk() function

metadata

     files

mingetty programs

Minix

MIT

mm field (task_struct structure)

mm utility

mm/ directory

mm_struct structure 2nd 3rd 4th

MMU (Memory Management Unit)

models

    devices

         sysfs and 2nd 3rd 4th

modes

     files

     kernel

     sgid

     sticky

     suid

     user

modifiers

     _ _volatile__ 2nd 3rd 4th 5th 6th

modules

    source code

         traversing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

monolithic systems

mount points

mount systems

MSR (Machine State Register)

Multiboot Specification (GRUB)

MULTiplexed Information and Computing Service (MULTICS)

multiprogramming

multiuser timesharing
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name field (cache descriptors)

named pipes

navigating

     filesystems 2nd

networks

     devices

next field (cache descriptors)

nice() funciton

nice() function

nivcsw field (task_struct structure)

no-op

no-op I/O schedulers

nodes

     index

non-executable ELF file sections 2nd

non-volatile storage

Northbridge 2nd

notations

     big-o

notification

     parents 2nd 3rd 4th 5th 6th

notifier chains

num field (cache descriptors)

numbering

     parameters

numbers

    IOCTL

         delcaring 2nd 3rd 4th

nvcsw field (task_struct structure)
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O(1) schedulers

     context_switch() function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

    CPUs

         yielding 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

    tasks

         selecting 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

objcopy command

objdump utility 2nd

object languages

objects

     create_process program 2nd 3rd

     ELF 2nd 3rd 4th 5th 6th 7th 8th 9th

     file formats

     linked lists 2nd 3rd 4th

     searching 2nd 3rd

     trees

         binary 2nd

         red black 2nd

objsize field (cache descriptors)

OF (Open Firmware) 2nd

offsetting descriptors

offsetting file parameters

Open Firmware (OF) 2nd

Open Programmable Interrupt Controller (OpenPIC)

open source software 2nd

open() function 2nd 3rd 4th 5th 6th

OpenPIC (Open Programmable Interrupt Controller)

operating systems

     create_process program 2nd 3rd

     overview of 2nd

operations

     asynchronous I/O

     devices 2nd

     files

     superblock structures 2nd 3rd

optimizers

optimizing

     filesystems

organization of kernels

outb (write out a byte)

output operands

overview of Linux
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padding

     zones

page caches

     address_space structures 2nd 3rd

     tracing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

Page Directory Entry (PDE)

page faults

page frames

Page Global Directory

Page Table Entry (PTE) 2nd

page_address_init() function

     calling 2nd 3rd 4th

page_alloc_init() function

     calling 2nd

page_writeback_init() function

     calling 2nd 3rd

pages

    caches

         filesystems 2nd 3rd 4th

     compound

    dirty

         flushing 2nd

     faults

         memory management 2nd 3rd 4th 5th 6th 7th 8th 9th

    flags

         fields 2nd

    frames

         memory management 2nd 3rd 4th 5th 6th 7th 8th

     memory management 2nd 3rd

     tables

         memory management 2nd

pages_high field (memory zones)

pages_min, pages_low field (memory zones)

pages_scanned, temp_priority field (memory zones)

paging

parallel port drivers, building 2nd 3rd 4th 5th 6th 7th 8th

parameters

     asmlinkage

    files

         offsetting

     numbering

parent field (task_struct structure)

parent processes 2nd

parents

     notification 2nd 3rd 4th 5th 6th

parse_args() function

     calling 2nd 3rd

partitions 2nd

     disks

pathnames 2nd



     files 2nd

paths

    requests

         memory management 2nd

PCI busses

PDE (Page Directory Entry)

pdeath field (task_struct structure)

performance

     filesystems

pgtable_cache_init() function

     calling 2nd

phases of compiling

physical addresses

PIC (Programmable Interrupt Controller)

pid field (task_struct structure)

PID process ID)

pipes

     named

PIT (Programmable Interval Time)

pivoting the root

plugging

policy field (task_struct structure)

polling and interrupts 2nd 3rd 4th 5th

portability

ports

     I/O 2nd 3rd

    parallel drivers

         building 2nd 3rd 4th 5th 6th 7th 8th

PowerPC

     architecture-dependent memory intialization 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

     assembly languages 2nd 3rd 4th

         example 2nd 3rd 4th

     bootloaders 2nd

     page fault exceptions

    x86

         code convergence

PowerPC architecture

     Linux Power

PowerPC Reference Platform (PreP)

PPC

    real-time clocks

         reading

preemption

     tasks

         explicit kernel

         implicit kernel 2nd 3rd 4th

         implicit user 2nd

PreP (PowerPC Reference Platform)

prev_priority field (memory zones)

principle of locality

printk() function

     calling

prio field (task_struct structure)

priority

     dynamic calaculations

     processes

priority arrays

proc_root_init() function

     calling 2nd 3rd

process 0



Process 0

process 1

Process 1

Process 1 (init threads) 2nd 3rd 4th 5th 6th

process ID (PID)

process status (ps)

processes 2nd 3rd 4th

     asynchronous execution flow

         exceptions 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

     clone() function 2nd 3rd

     context

     create_process program 2nd 3rd

     creating 2nd 3rd

     dead

     descriptors 2nd 3rd 4th 5th

         address space fields 2nd

         attribute fields 2nd

         capabilities fields 2nd

         credentials fields 2nd

         filesystem fields 2nd

         limitations fields 2nd 3rd

         relationship fields 2nd

         scheduling fields 2nd 3rd 4th

     do_fork() function 2nd 3rd 4th 5th 6th

    files

         close() function 2nd 3rd 4th 5th 6th 7th

         files_struct structure 2nd 3rd 4th

         fs_struct structure

         open() function 2nd 3rd 4th 5th 6th

     fork() function 2nd

     init

     interactive

     lifespans

         states 2nd

    Linux

         memory management 2nd 3rd 4th 5th 6th

    memory

         mapping 2nd

     priority

     running

    schedulers

         selecting tasks

     sleeping

     spawning

     termination

         do_exit() function 2nd 3rd 4th

         sys_exit() function 2nd

         wait() function 2nd 3rd 4th 5th 6th

     tracking 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

    transitions

         states 2nd 3rd 4th 5th 6th

     types of

     vfork() function 2nd

     wait queues 2nd

         adding to

         wait_event*() interfaces 2nd

         waking up 2nd 3rd 4th

     zombie

profile_init() function

     calling



program header tables 2nd

Programmable Interrupt Controller (PIC)

Programmable Interval Time (PIT)

programming

     filesystems 2nd 3rd 4th 5th 6th

         page caches 2nd 3rd 4th

         VFS structures 2nd 3rd 4th 5th 6th

         VFS system calls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th

25th 26th 27th 28th 29th 30th

         virtual 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

programs

     create_process 2nd 3rd

protected mode (memory management) 2nd

protection

     files 2nd 3rd 4th 5th

ps (process status)

pseudo devices

PTE (Page Table Entry) 2nd

PTR_ERR macro

ptrace field (task_struct structure)
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queues

     request utilities

     requests 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

     run

     system requests

     wait 2nd 3rd 4th 5th 6th 7th

         adding to

         wait_event*() interfaces 2nd

         waking up 2nd 3rd 4th

     work 2nd 3rd

         lists

         tasklets 2nd 3rd
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radix_tree_init() function

     calling

RAM

     initrd 2nd

rcu_init() function

     calling

readelf utility 2nd

reading

     PPC real-time clocks

    real-time clocks

         x86

ready state

ready to running state transition

real addressing

real group IDs

real mode

real user IDs

real-time clocks 2nd 3rd 4th 5th 6th 7th 8th 9th

real_parent field (task_struct structure)

receiving data from devices

red black trees 2nd

Red Hat 2nd

Reduced Instruction Set Computing (RISC) architecture

references

     local lists (global variables and) 2nd

regions

     memory

registers

     clobbered

     PowerPC

     segment

     SPRs

regular files 2nd

relationships

    fields

         task_struct structure 2nd

     makefiles 2nd 3rd

relative pathnames 2nd

release information (kernels) 2nd

releases

    functions

         page frames

relocatable object code

relocation

requests

    functions

         page frames 2nd 3rd

    paths

         memory management 2nd

     queue utilities



     queues 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

     system queues

respawning programs

rest_init() function

     calling 2nd

rights

     access 2nd 3rd 4th 5th

RISC (Reduced Instruction Set Computing) architecture

Ritchie, Dennis

rlim field (task_struct structure)

root of users

root threads

rt_priority field (task_struct structure)

rules

     schedulers

run queues 2nd

run_list field (task_struct structure)

runnable states (processes)

running processes

running to blocked state transition

running to ready state transition



Index

[SYMBOL] [A] [B] [C] [D] [E] [F] [G] [H] [I] [J] [K] [L] [M] [N] [O] [P] [Q] [R] [S] [T] [U] [V] [W] [X] [Y] [Z]

s_mem field (slab descriptors)

scanner phases

sched_fork() function 2nd 3rd 4th 5th 6th 7th 8th

sched_init() function

     calling 2nd 3rd

scheduler_tick() function

schedulers 2nd

     anticipatory

     creating 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

     deadline I/O

     no-op I/O

     O(1)

         context_switch() function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         selecting tasks 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         yielding CPUs 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

     rules

scheduling

    fields

         task_struct structure 2nd 3rd 4th

     I/O 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

scripts

SDR1 (Storage Description Register 1)

searching

     datatypes 2nd 3rd

sections

     header tables 2nd

     non-executable ELF files 2nd

security_scaffolding_startup() function

     calling

Segment Registers

Segmented Address Translation

segments

     data

     text

selecting

    tasks

         schedulers 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

semantic attributes

semaphores 2nd 3rd 4th 5th

setup_arch() function

     calling 2nd 3rd 4th 5th 6th

setup_per_cpu_areas() function

     calling 2nd 3rd

sgid field (task_struct structure)

sgid mode

shared libraries

sibling field (task_struct structure)

sibling processes

signals_init() function

     calling 2nd



SIGSTOP

slabp_cache field (cache descriptors)

slabs

    allocators

         global variables 2nd 3rd

         memory management 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th

     coloring

sleep_avg field (task_struct structure)

sleeping

     processes

smp_prepare_boot_cpu() function

     calling 2nd

sockets 2nd

soft links

softirq_init() function

     calling

software [See applications]

     free/open source 2nd

source build systems 2nd

     architecture-dependent source code 2nd

     architecture-independent source code 2nd

     images 2nd 3rd

     Linux makefiles 2nd 3rd

     sub-makefiles 2nd 3rd

source code

    system calls

         adding 2nd 3rd

     traversing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

     writing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

Southbridge 2nd

space

     kernels

     users

spaces

    addresses

         memory management 2nd 3rd

     virtual addresses

spawning processes

special purpose registers (SPRs)

specialized caches

spinlocks 2nd 3rd 4th 5th

SPRs (special purpose registers)

stacks

     asmlinkage

standards

start_kernel() function 2nd

    buffer_init() function

         calling 2nd

    build_all_zonelists() function

         calling 2nd

    calibrate_delay() function

         calling 2nd 3rd

    console_init() function

         calling 2nd

    init_IRQ() function

         calling 2nd 3rd

    late_time_init() function

         calling

    local_irq_enable() function

         calling



    lock_kernel() function

         calling 2nd

    mem_init() function

         calling 2nd 3rd 4th 5th 6th 7th 8th

    page_address_init() function

         calling 2nd 3rd 4th

    page_alloc_init() function

         calling 2nd

    page_writeback_init() function

         calling 2nd 3rd

    parse_args() function

         calling 2nd 3rd

    pgtable_cache_init() function

         calling 2nd

    printk() function

         calling

    proc_root_init() function

         calling 2nd 3rd

    profile_init() function

         calling

    radix_tree_init() function

         calling

    rcu_init() function

         calling

    rest_init() function

         calling 2nd

    sched_init() function

         calling 2nd 3rd

    security_scaffolding_startup() function

         calling

    setup_arch() function

         calling 2nd 3rd 4th 5th 6th

    setup_per_cpu_areas() function

         calling 2nd 3rd

    signals_init() function

         calling 2nd

    smp_prepare_boot_cpu() function

         calling 2nd

    softirq_init() function

         calling

    time_init() function

         calling 2nd

    trap_init() function

         calling

    vfs_cache_init() function

         calling 2nd 3rd 4th 5th 6th 7th 8th 9th

state

    processes

         lifespans 2nd 3rd

         transitions 2nd 3rd 4th 5th 6th

state field (task_struct structure)

states

     ready

static libraries

static_prio field (task_struct structure)

statically allocated major devices

status

     processes

sticky mode

Storage Description Register 1 (SDR1)



Store Word with Update (stwu_RS,_D(RA))

structures

     address_space 2nd 3rd

     block_device_operations

     buffer_head

     current task

     dentry 2nd 3rd 4th

    file

         VFS 2nd 3rd

     files_struct 2nd 3rd 4th

     fs_struct

     hw_interrupt_type

     hw_irq_controller

     inode 2nd 3rd 4th

     IRQ

     irq_desc_t

     mm_struct 2nd 3rd 4th

    processes (Linux)

         memory management 2nd 3rd 4th 5th 6th

     superblock 2nd 3rd

         operations 2nd 3rd

     task_struct 2nd 3rd

         address space fields 2nd

         attribute fields 2nd

         capabilities fields 2nd

         credentials fields 2nd

         filesystem fields 2nd

         limitations fields 2nd 3rd

         relationship fields 2nd

         scheduling fields 2nd 3rd 4th

     VFS 2nd 3rd 4th 5th 6th

     vm_area_struct 2nd 3rd 4th

     wait queues 2nd

         adding to

struuctures

    data

         VFS 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

stwu RS, D(RA) (Store Word with Update)

sub-makefiles 2nd 3rd

subdirectories

     architecture-independent

suid field (task_struct structure)

suid mode

super_operations structure

superblock structures 2nd 3rd 4th

     operations 2nd 3rd

Superio chips

superusers

SUSE

switch() function

switch_to() function 2nd

switching

     tasks

         explicit kernel preemption

         implicit kernel preemption 2nd 3rd 4th

         implicit user preemption 2nd

symbol resolution

symbolic links

symbols

     exporting



sync system calls

synchronous functions

synchronous interrupts

syntactical rules

sys_exit() function 2nd

sysfs

     device models and 2nd 3rd 4th

system calls 2nd 3rd 4th 5th 6th 7th

     clone() function 2nd 3rd

    code

         adding 2nd 3rd

     do_fork() function 2nd 3rd 4th 5th 6th

     fork() function 2nd

    source code

         traversing 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

     vfork() function 2nd

     VFS 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th 27th

28th 29th 30th

system clocks

     real-time 2nd 3rd 4th 5th 6th 7th 8th 9th

system request queues

system timers 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

systems

     initializing
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tables

     drivers

     headers

         programs 2nd

         sections 2nd

     pages

         memory management 2nd

Tanenbaum, Andrew

target system

TASK_INTERRUPTIBLE state

task_list

TASK_RUNNING state

TASK_STOPPED state

task_struct structure 2nd 3rd

    fields

         address space 2nd

         attributes 2nd

         capabilities 2nd

         credentials 2nd

         filesystem 2nd

         limitations 2nd 3rd

         relationship 2nd

         scheduling 2nd 3rd 4th

TASK_UNINTERRUPTIBLE state

TASK_ZOMBIE state

tasklets

     work queues and 2nd 3rd

tasks

     current task structure

     deactivating

     interactive

     preemption

         explicit kernel

         implicit kernel 2nd 3rd 4th

         implicit user 2nd

     schedulers

         context_switch() function 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th

         selecting 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

         yielding CPUs 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th

     system clocks

         real-time 2nd 3rd 4th 5th 6th 7th 8th 9th

terminals

     devices

termination

     processes

         do_exit() function 2nd 3rd 4th

         sys_exit() function 2nd

         wait() function 2nd 3rd 4th 5th 6th

text

     segments



the contextual analysis phases

Thompson, Ken

threads

     init (Process 1) 2nd 3rd 4th 5th 6th

time_init() function

     calling 2nd

time_slice field (task_struct structure)

timers

     real-time clocks 2nd 3rd 4th 5th 6th 7th 8th 9th

timers (system) 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th

timesharing users

timeslices 2nd 3rd

timestamp field (task_struct structure)

timestamsps

     schedulers

TLBs (Translation Lookaside Buffers)

toolchains 2nd

     compilers

         cross 2nd

     ELF object files 2nd 3rd 4th 5th 6th 7th 8th 9th

     linkers

tools

     distributions

         Debian

         Fedora 2nd

         Gentoo 2nd

         Mandriva

         Red Hat 2nd

         SUSE

         Yellow Dog

     dmesg

     exploration (kernels)

         ar command 2nd

         hexdump command

         mm

         objcopy command

         objdump/readelf 2nd

     kernel configuration

top-half interrupt handler methods

Torvalds, Linus

tracing

     page caches 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th

tracking

     processes 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

tracks 2nd

transitions

     prcess state

     process state 2nd 3rd 4th 5th 6th

translation

     addresses

         i386 Intel-based

         PPC

Translation Lookaside Buffers (TLBs)

transmitting control information

trap_init() function

     calling

traps

traversing

     source code 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th

trees



     binary 2nd

     red black 2nd

troubleshooting

    device drivers

         debugging 2nd

    filesystems

         optimizing

types

     of drivers 2nd 3rd 4th

     of files 2nd 3rd

     of filesystems

     of interrupt handlers
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UID (user ID) 2nd

UL (unsigned long)

UMA (Universal Motherboard Architecture)

Universal Motherboard Architecture (UMA)

UNIX

     history of 2nd

unlikely() function 2nd 3rd

unlpugging

unsigned long (UL)

user ID (UID) 2nd

user mode

users

     implicit user preemption 2nd

     interfaces

     space

     superusers

utilities

     request queues
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VA (virtual address)

values

     flags

variables

     $(Q) variable

     current

    global

         local list references 2nd

         slab allocators 2nd 3rd

     HZ

vectors

versions

    kernels

         release information 2nd

vfork() function 2nd

VFS

     structures 2nd 3rd 4th 5th 6th

     system calls 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th 14th 15th 16th 17th 18th 19th 20th 21st 22nd 23rd 24th 25th 26th

27th 28th 29th 30th

VFS (virtual filesystem)

vfs_cache_init() function

     calling 2nd 3rd 4th 5th 6th 7th 8th 9th

virtual address (VA)

virtual addresses

virtual addressing

virtual field (flags)

virtual filesystem (VFS)

virtual filesystems 2nd 3rd 4th 5th 6th 7th 8th 9th 10th 11th 12th 13th
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