Linux Device Drivers, 2nd Edition

By Alessandro Rubini & Jonathan Corbet
2nd Edition June 2001

0-59600-008-1, Order Number: 0081
586 pages, $39.95

22 June 2001 16:32

PREFACE

This is, on the surface, a book about writing device drivers for the Linux system.
That is a worthy goal, of course; the flow of new hardware products is not likely
to slow down anytime soon, and somebody is going to have to make all those
new gadgets work with Linux. But this book is also about how the Linux kernel
works and how to adapt its workings to your needs or interests. Linux is an open
system; with this book, we hope, it will be more open and accessible to a larger
community of developers.

Much has changed with Linux since the first edition of this book came out. Linux
now runs on many more processors and supports a much wider variety of hard-
ware. Many of the internal programming interfaces have changed significantly.
Thus, the second edition. This book covers the 2.4 kernel, with all of the new fea-
tures that it provides, while still giving a look backward to earlier releases for
those who need to support them.

We hope you'll enjoy reading this book as much as we have enjoyed writing it.

Alessandro’s Introduction

As an electronic engineer and a do-it-yourself kind of person, I have always
enjoyed using the computer to control external hardware. Ever since the days of
my father’s Apple Ile, T have been looking for another platform where I could con-
nect my custom circuitry and write my own driver software. Unfortunately, the PC
of the 1980s wasn’t powerful enough, at either the software or the hardware level:
the internal design of the PC is much worse than that of the Apple II, and the
available documentation has long been unsatisfying. But then Linux appeared, and
I decided to give it a try by buying an expensive 386 motherboard and no propri-
etary software at all.

Xi

22 June 2001 16:32

Preface

At the time, I was using Unix systems at the university and was greatly excited by
the smart operating system, in particular when supplemented by the even smarter
utilities that the GNU project donates to the user base. Running the Linux kernel
on my own PC motherboard has always been an interesting experience, and I
could even write my own device drivers and play with the soldering iron once
again. I continue to tell people, “When I grow up, I wanna be a hacker,” and
GNU/Linux is the perfect platform for such dreams. That said, I don’t know if I
will ever grow up.

As Linux matures, more and more people get interested in writing drivers for cus-
tom circuitry and for commercial devices. As Linus Torvalds noted, “We’re back to
the times when men were men and wrote their own device drivers.”

Back in 1996, I was hacking with my own toy device drivers that let me play with
some loaned, donated, or even home-built hardware. I already had contributed a
few pages to the Kernel Hacker’s Guide, by Michael Johnson, and began writing
kernel-related articles for Linux Journal, the magazine Michael founded and
directed. Michael put me in touch with Andy Oram at O’Reilly; he expressed an
interest in having me write a whole book about device drivers, and T accepted this
task, which kept me pretty busy for quite a lot of time.

In 1999 it was clear I couldn’t find the energy to update the book by myself: my
family had grown and I had enough programming work to keep busy producing
exclusively GPL'd software. Besides, the kernel had grown bigger and supported
more diverse platforms than it used to, and the API had turned more broad and
more mature. That's when Jonathan offered to help: he had just the right skills and
enthusiasm to start the update and to force me to stay on track with the sched-
ule—which slipped quite a lot anyway. He’s been an invaluable mate in the pro-
cess, which he pushed forward with good skills and dedication, definitely more
than I could put in. I really enjoyed working with him, both on a technical and
personal level.

Jon’s Introduction

I first started actively playing with Linux early in 1994, when I convinced my
employer to buy me a laptop from a company called, then, Fintronic Systems.
Having been a Unix user since the beginning of the 1980s, and having played
around in the source since about then, T was immediately hooked. Even in 1994,
Linux was a highly capable system, and the first truly free system that I had ever
been able to work with. I lost almost all my interest in working with proprietary
systems at that point.

I didn’t ever really plan to get into writing about Linux, though. Instead, when I
started talking with O’Reilly about helping with the second edition of this book, I
had recently quit my job of 18 years to start a Linux consulting company. As a way

Xii

22 June 2001 16:32

Preface

of attracting attention to ourselves, we launched a Linux news site, Linux Weekly
News (bttp://lwn.net), which, among other things, covered kernel development. As
Linux exploded in popularity, the web site did too, and the consulting business
was eventually forgotten.

But my first interest has always been systems programming. In the early days, that
interest took the form of “fixing” the original BSD Unix paging code (which has to
have been a horrible hack job) or making recalcitrant tape drives work on a
VAX/VMS system (where source was available, if you didn’t mind the fact that it
was in assembly and Bliss, and came on microfiche only). As time passed, I got to
hack drivers on systems with names like Alliant, Ardent, and Sun, before moving
into tasks such as deploying Linux as a real-time radar data collection system or, in
the process of writing this book, fixing the I/O request queue locking in the Linux
floppy driver.

So I welcomed the opportunity to work on this book for several reasons. As much
as anything, it was a chance to get deeply into the code and to help others with a
similar goal. Linux has always been intended to be fun as well as useful, and play-
ing around with the kernel is one of the most fun parts of all—at least, for those
with a certain warped sense of fun. Working with Alessandro has been a joy, and I
must thank him for trusting me to hack on his excellent text, being patient with
me as I came up to speed and as I broke things, and for that jet-lagged bicycle
tour of Pavia. Writing this book has been a great time.

Audience of This Book

On the technical side, this text should offer a hands-on approach to understanding
the kernel internals and some of the design choices made by the Linux develop-
ers. Although the main, official target of the book is teaching how to write device
drivers, the material should give an interesting overview of the kernel implementa-
tion as well.

Although real hackers can find all the necessary information in the official kernel
sources, usually a written text can be helpful in developing programming skills.
The text you are approaching is the result of hours of patient grepping through
the kernel sources, and we hope the final result is worth the effort it took.

This book should be an interesting source of information both for people who
want to experiment with their computer and for technical programmers who face
the need to deal with the inner levels of a Linux box. Note that “a Linux box” is a
wider concept than “a PC running Linux,” as many platforms are supported by our
operating system, and kernel programming is by no means bound to a specific
platform. We hope this book will be useful as a starting point for people who
want to become kernel hackers but don’t know where to start.

X1ii

22 June 2001 16:32

Preface

The Linux enthusiast should find in this book enough food for her mind to start
playing with the code base and should be able to join the group of developers
that is continuously working on new capabilities and performance enhancements.
This book does not cover the Linux kernel in its entirety, of course, but Linux
device driver authors need to know how to work with many of the kernel’s sub-
systems. It thus makes a good introduction to kernel programming in general.
Linux is still a work in progress, and there’s always a place for new programmers
to jump into the game.

If, on the other hand, you are just trying to write a device driver for your own
device, and you don’t want to muck with the kernel internals, the text should be
modularized enough to fit your needs as well. If you don’t want to go deep into
the details, you can just skip the most technical sections and stick to the standard
API used by device drivers to seamlessly integrate with the rest of the kernel.

The main target of this book is writing kernel modules for version 2.4 of the Linux
kernel. A module is object code that can be loaded at runtime to add new func-
tionality to a running kernel. Wherever possible, however, our sample code also
runs on versions 2.2 and 2.0 of the kernel, and we point out where things have
changed along the way.

Organization of the Material

The book introduces its topics in ascending order of complexity and is divided
into two parts. The first part (Chapters 1 to 10) begins with the proper setup of
kernel modules and goes on to describe the various aspects of programming that
you'll need in order to write a full-featured driver for a char-oriented device. Every
chapter covers a distinct problem and includes a “symbol table” at the end, which
can be used as a reference during actual development.

Throughout the first part of the book, the organization of the material moves
roughly from the software-oriented concepts to the hardware-related ones. This
organization is meant to allow you to test the software on your own computer as
far as possible without the need to plug external hardware into the machine. Every
chapter includes source code and points to sample drivers that you can run on any
Linux computer. In Chapter 8 and Chapter 9, however, we’ll ask you to connect an
inch of wire to the parallel port in order to test out hardware handling, but this
requirement should be manageable by everyone.

The second half of the book describes block drivers and network interfaces and
goes deeper into more advanced topics. Many driver authors will not need this
material, but we encourage you to go on reading anyway. Much of the material
found there is interesting as a view into how the Linux kernel works, even if you
do not need it for a specific project.

xiv

22 June 2001 16:32

Preface

Background Information

In order to be able to use this book, you need to be confident with C program-
ming. A little Unix expertise is needed as well, as we often refer to Unix com-
mands and pipelines.

At the hardware level, no previous expertise is required to understand the material
in this book, as long as the general concepts are clear in advance. The text isn’t
based on specific PC hardware, and we provide all the needed information when
we do refer to specific hardware.

Several free software tools are needed to build the kernel, and you often need
specific versions of these tools. Those that are too old can lack needed features,
while those that are too new can occasionally generate broken kernels. Usually,
the tools provided with any current distribution will work just fine. Tool version
requirements vary from one kernel to the next; consult Documentation/Changes in
the source tree of the kernel you are using for exact requirements.

Sources of Further Information

Most of the information we provide in this book is extracted directly from the ker-
nel sources and related documentation. In particular, pay attention to the Docu-
mentation directory that is found in the kernel source tree. There is a wealth of
useful information there, including documentation of an increasing part of the ker-
nel API (in the DocBook subdirectory).

There are a few interesting books out there that extensively cover related topics;
they are listed in the bibliography.

There is much useful information available on the Internet; the following is a sam-
pling. Internet sites, of course, tend to be highly volatile while printed books are
hard to update. Thus, this list should be regarded as being somewhat out of date.

htp.//www.kernel.org

Sp://ftp.kernel.org

This site is the home of Linux kernel development. You’ll find the latest kernel
release and related information. Note that the FTP site is mirrored throughout
the world, so you’ll most likely find a mirror near you.

btp.//www.linuxdoc.org
The Linux Documentation Project carries a lot of interesting documents called
“HOWTOSs”; some of them are pretty technical and cover kernel-related topics.

XU

22 June 2001 16:32

Preface

btp./www.linux-mag.com/depts/gear.html
The “Gearheads only” section from Linux Magazine often runs kernel-oriented
articles from well-known developers.

http./www.linux.it/kerneldocs

This page contains many kernel-oriented magazine articles written by Alessan-
dro.

btip://lwn.net
At the risk of seeming self-serving, we’ll point out this news site (edited by
one of your authors) which, among other things, offers regular kernel devel-
opment coverage.

bttp.//kt.zork.net
Kernel Traffic is a popular site that provides weekly summaries of discussions
on the Linux kernel development mailing list.

bttp://www.atnf.csivo.au/ rgooch/linux/docs/kernel-newsflash.btml
The Kernel Newsflash site is a clearinghouse for late-breaking kernel news. In
particular, it concentrates on problems and incompatibilities in current kernel
releases; thus, it can be a good resource for people trying to figure out why
the latest development kernel broke their drivers.

htp.//www.kernelnotes.org
Kernel Notes is a classic site with information on kernel releases, unofficial
patches, and more.

bttp.//www.kernelnewbies.org
This site is oriented toward new kernel developers. There is beginning infor-
mation, an FAQ, and an associated IRC channel for those looking for immedi-
ate assistance.

btip://lksr.org
The Linux Kernel Source Reference is a web interface to a CVS archive con-
taining an incredible array of historical kernel releases. It can be especially
useful for finding out just when a particular change occurred.

bup.//www.linux-mm.org
This page is oriented toward Linux memory management development. It con-
tains a fair amount of useful information and an exhaustive list of kernel-ori-
ented web links.

htp.//www.conecta.it/linux
This Ttalian site is one of the places where a Linux enthusiast keeps updated
information about all the ongoing projects involving Linux. Maybe you already
know an interesting site with HTTP links about Linux development; if not, this
one is a good starting point.

XVi

Preface

Online Version and License

The authors have chosen to make this book freely available under the GNU Free
Documentation License, version 1.1.

Full license
bttp.//www.oreilly.com/catalog/linuxdrive2/chapter/licenseinfo.btmi,

HTML
btp://www.oreilly.com/catalog/linuxdrive2/chapter/book,

DocBook
bttp://www.oreilly.com/catalog/linuxdrive2/chapter/bookindex.xml,

PDF
bttp.//www.oreilly.com/catalog/linuxdrive2/chapter/bookindexpdf.btmi.

Conventions Used in This Book

The following is a list of the typographical conventions used in this book:

Ttalic Used for file and directory names, program and command
names, command-line options, URLs, and new terms

Constant Width Used in examples to show the contents of files or the out-
put from commands, and in the text to indicate words
that appear in C code or other literal strings

Constant Italic Used to indicate variable options, keywords, or text that
the user is to replace with an actual value

Constant Bold Used in examples to show commands or other text that
should be typed literally by the user

Pay special attention to notes set apart from the text with the following icons:

This is a tip. It contains useful supplementary information about the
topic at hand.

This is a warning. It helps you solve and avoid annoying problems.

XUii

22 June 2001 16:32

22 June 2001 16:32

Preface

We'd Like to Hear from You

We have tested and verified the information in this book to the best of our ability,
but you may find that features have changed (or even that we have made mis-
takes!). Please let us know about any errors you find, as well as your suggestions
for future editions, by writing to:

O'Reilly & Associates, Inc.

101 Morris Street

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have a web page for the book, where we list errata, examples, or any addi-
tional information. You can access this page at:

bup.//www.oreilly.com/catalog/linuxdrive2
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Cen-
ters,and the O’Reilly Network, see our web site at:

bip://www.oreilly.com

Acknowledgments

This book, of course, was not written in a vacuum; we would like to thank the
many people who have helped to make it possible.

I (Alessandro) would like to thank the people that made this work possible. First
of all, the incredible patience of Federica, who went as far as letting me review the
first edition during our honeymoon, with a laptop in the tent. Giorgio and Giulia
have only been involved in the second edition of the book, and helped me stay in
touch with reality by eating pages, pulling wires, and crying for due attention. I
must also thank all four grandparents, who came to the rescue when the deadlines
were tight and took over my fatherly duties for whole days, letting me concentrate
on code and coffee. I still owe a big thanks to Michael Johnson, who made me
enter the world of writing. Even though this was several years ago, he’s still the
one that made the wheel spin; earlier, I had left the university to avoid writing arti-
cles instead of software. Being an independent consultant, I have no employer
that kindly allowed me to work on the book; on the other hand, T owe due
acknowledgment to Francesco Magenta and Rodolfo Giometti, who are helping
me as “dependent consultants.” Finally, T want to acknowledge the free-software
authors who actually taught me how to program without even knowing me; this

XUiil

22 June 2001 16:32

Preface

includes both kernel and user-space authors I enjoyed reading, but they are too
many to list.

I (Jon) am greatly indebted to many people; first and foremost T wish to thank my
wife, Laura, who put up with the great time demands of writing a book while
simultaneously trying to make a “dotcom” business work. My children, Michele
and Giulia, have been a constant source of joy and inspiration. Numerous people
on the linux-kernel list showed great patience in answering my questions and set-
ting me straight on things. My colleagues at LWN.net have been most patient with
my distraction, and our readers’ support of the LWN kernel page has been out-
standing. This edition probably would not have happened without the presence of
Boulder’s local community radio station (appropriately named KGNU), which
plays amazing music, and the Lake Eldora ski lodge, which allowed me to camp
out all day with a laptop during my kids’ ski lessons and served good coffee. I
owe gratitude to Evi Nemeth for first letting me play around in the early BSD
source on her VAX, to William Waite for really teaching me to program, and to Rit
Carbone of the National Center for Atmospheric Research (NCAR), who got me
started on a long career where I learned almost everything else.

We both wish to thank our editor, Andy Oram; this book is a vastly better product
as a result of his efforts. And obviously we owe a lot to the smart people who
pushed the free-software idea and still keep it running (that’s mainly Richard Stall-
man, but he’s definitely not alone).

We have also been helped at the hardware level; we couldn’t study so many plat-
forms without external help. We thank Intel for loaning an early 1A-64 system, and
Rebel.com for donating a Netwinder (their ARM-based tiny computer). Prosa Labs,
the former Linuxcare-Italia, loaned a pretty fat PowerPC system; NEC Electronics
donated their interesting development system for the VR4181 processor—that’s a
palmtop where we could put a GNU/Linux system on flash memory. Sun-Italia
loaned both a SPARC and a SPARC64 system. All of those companies and those
systems helped keep Alessandro busy in debugging portability issues and forced
him to get one more room to fit his zoo of disparate silicon beasts.

The first edition was technically reviewed by Alan Cox, Greg Hankins, Hans Ler-
men, Heiko Eissfeldt, and Miguel de Icaza (in alphabetic order by first name). The
technical reviewers for the second edition were Allan B. Cruse, Christian Morgner,
Jake Edge, Jeff Garzik, Jens Axboe, Jerry Cooperstein, Jerome Peter Lynch, Michael
Kerrisk, Paul Kinzelman, and Raph Levien. Together, these people have put a vast
amount of effort into finding problems and pointing out possible improvements to
our writing.

Last but certainly not least, we thank the Linux developers for their relentless
work. This includes both the kernel programmers and the user-space people, who
often get forgotten. In this book we chose never to call them by name in order to
avoid being unfair to someone we might forget. We sometimes made an exception
to this rule and called Linus by name; we hope he doesn’t mind, though.

Xix

22 June 2001 16:32

CHAPTER ONE

AN INTRODUCTION TO
DEVICE DRIVERS

As the popularity of the Linux system continues to grow, the interest in writing
Linux device drivers steadily increases. Most of Linux is independent of the hard-
ware it runs on, and most users can be (happily) unaware of hardware issues. But,
for each piece of hardware supported by Linux, somebody somewhere has written
a driver to make it work with the system. Without device drivers, there is no func-
tioning system.

Device drivers take on a special role in the Linux kernel. They are distinct “black
boxes” that make a particular piece of hardware respond to a well-defined internal
programming interface; they hide completely the details of how the device works.
User activities are performed by means of a set of standardized calls that are inde-
pendent of the specific driver; mapping those calls to device-specific operations
that act on real hardware is then the role of the device driver. This programming
interface is such that drivers can be built separately from the rest of the kernel,
and “plugged in” at runtime when needed. This modularity makes Linux drivers
easy to write, to the point that there are now hundreds of them available.

There are a number of reasons to be interested in the writing of Linux device
drivers. The rate at which new hardware becomes available (and obsolete!) alone
guarantees that driver writers will be busy for the foreseeable future. Individuals
may need to know about drivers in order to gain access to a particular device that
is of interest to them. Hardware vendors, by making a Linux driver available for
their products, can add the large and growing Linux user base to their potential
markets. And the open source nature of the Linux system means that if the driver
writer wishes, the source to a driver can be quickly disseminated to millions of
users.

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

This book will teach you how to write your own drivers and how to hack around
in related parts of the kernel. We have taken a device-independent approach; the
programming techniques and interfaces are presented, whenever possible, without
being tied to any specific device. Each driver is different; as a driver writer, you
will need to understand your specific device well. But most of the principles and
basic techniques are the same for all drivers. This book cannot teach you about
your device, but it will give you a handle on the background you need to make
your device work.

As you learn to write drivers, you will find out a lot about the Linux kernel in gen-
eral; this may help you understand how your machine works and why things
aren’t always as fast as you expect or don’t do quite what you want. We'll intro-
duce new ideas gradually, starting off with very simple drivers and building upon
them; every new concept will be accompanied by sample code that doesn’t need
special hardware to be tested.

This chapter doesn’t actually get into writing code. However, we introduce some
background concepts about the Linux kernel that youll be glad you know later,
when we do launch into programming.

The Role of the Device Driver

As a programmer, you will be able to make your own choices about your driver,
choosing an acceptable trade-off between the programming time required and the
flexibility of the result. Though it may appear strange to say that a driver is “flexi-
ble,” we like this word because it emphasizes that the role of a device driver is
providing mechanism, not policy.

The distinction between mechanism and policy is one of the best ideas behind the
Unix design. Most programming problems can indeed be split into two parts:
“what capabilities are to be provided” (the mechanism) and “how those capabili-
ties can be used” (the policy). If the two issues are addressed by different parts of
the program, or even by different programs altogether, the software package is
much easier to develop and to adapt to particular needs.

For example, Unix management of the graphic display is split between the X
server, which knows the hardware and offers a unified interface to user programs,
and the window and session managers, which implement a particular policy with-
out knowing anything about the hardware. People can use the same window man-
ager on different hardware, and different users can run different configurations on
the same workstation. Even completely different desktop environments, such as
KDE and GNOME, can coexist on the same system. Another example is the lay-
ered structure of TCP/IP networking: the operating system offers the socket
abstraction, which implements no policy regarding the data to be transferred,
while different servers are in charge of the services (and their associated policies).

22 June 2001 16:32

The Role of the Device Driver

Moreover, a server like fipd provides the file transfer mechanism, while users can
use whatever client they prefer; both command-line and graphic clients exist, and
anyone can write a new user interface to transfer files.

Where drivers are concerned, the same separation of mechanism and policy
applies. The floppy driver is policy free—its role is only to show the diskette as a
continuous array of data blocks. Higher levels of the system provide policies, such
as who may access the floppy drive, whether the drive is accessed directly or via a
filesystem, and whether users may mount filesystems on the drive. Since different
environments usually need to use hardware in different ways, it’s important to be
as policy free as possible.

When writing drivers, a programmer should pay particular attention to this funda-
mental concept: write kernel code to access the hardware, but don’t force particu-
lar policies on the user, since different users have different needs. The driver
should deal with making the hardware available, leaving all the issues about how
to use the hardware to the applications. A driver, then, is flexible if it offers access
to the hardware capabilities without adding constraints. Sometimes, however,
some policy decisions must be made. For example, a digital I/O driver may only
offer byte-wide access to the hardware in order to avoid the extra code needed to
handle individual bits.

You can also look at your driver from a different perspective: it is a software layer
that lies between the applications and the actual device. This privileged role of the
driver allows the driver programmer to choose exactly how the device should
appear: different drivers can offer different capabilities, even for the same device.
The actual driver design should be a balance between many different considera-
tions. For instance, a single device may be used concurrently by different pro-
grams, and the driver programmer has complete freedom to determine how to
handle concurrency. You could implement memory mapping on the device inde-
pendently of its hardware capabilities, or you could provide a user library to help
application programmers implement new policies on top of the available primi-
tives, and so forth. One major consideration is the trade-off between the desire to
present the user with as many options as possible and the time in which you have
to do the writing as well as the need to keep things simple so that errors don’t
creep in.

Policy-free drivers have a number of typical characteristics. These include support
for both synchronous and asynchronous operation, the ability to be opened multi-
ple times, the ability to exploit the full capabilities of the hardware, and the lack of
software layers to “simplify things” or provide policy-related operations. Drivers of
this sort not only work better for their end users, but also turn out to be easier to
write and maintain as well. Being policy free is actually a common target for soft-
ware designers.

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

Many device drivers, indeed, are released together with user programs to help
with configuration and access to the target device. Those programs can range from
simple utilities to complete graphical applications. Examples include the tunelp
program, which adjusts how the parallel port printer driver operates, and the
graphical cardctl utility that is part of the PCMCIA driver package. Often a client
library is provided as well, which provides capabilities that do not need to be
implemented as part of the driver itself.

The scope of this book is the kernel, so we’ll try not to deal with policy issues, or
with application programs or support libraries. Sometimes we’ll talk about different
policies and how to support them, but we won’t go into much detail about pro-
grams using the device or the policies they enforce. You should understand, how-
ever, that user programs are an integral part of a software package and that even
policy-free packages are distributed with configuration files that apply a default
behavior to the underlying mechanisms.

Splitting the Kernel

In a Unix system, several concurrent processes attend to different tasks. Each pro-
cess asks for system resources, be it computing power, memory, network connec-
tivity, or some other resource. The kernel is the big chunk of executable code in
charge of handling all such requests. Though the distinction between the different
kernel tasks isn’t always clearly marked, the kernel’s role can be split, as shown in
Figure 1-1, into the following parts:

Process management

The kernel is in charge of creating and destroying processes and handling
their connection to the outside world (input and output). Communication
among different processes (through signals, pipes, or interprocess communica-
tion primitives) is basic to the overall system functionality and is also handled
by the kernel. In addition, the scheduler, which controls how processes share
the CPU, is part of process management. More generally, the kernel’s process
management activity implements the abstraction of several processes on top of
a single CPU or a few of them.

Memory management
The computer’s memory is a major resource, and the policy used to deal with
it is a critical one for system performance. The kernel builds up a virtual
addressing space for any and all processes on top of the limited available
resources. The different parts of the kernel interact with the memory-manage-
ment subsystem through a set of function calls, ranging from the simple mail-
loc/ free pair to much more exotic functionalities.

Filesystems
Unix is heavily based on the filesystem concept; almost everything in Unix can
be treated as a file. The kernel builds a structured filesystem on top of
unstructured hardware, and the resulting file abstraction is heavily used

Splitting the Kernel

The System Call Interface
i Process : Memory Filesystems § Device i Networking
i management § : management § : control Kernel
: : subsystems
Concurrency, Virtual Files and dirs: Tiys & i Features
multitasking memory the VFS device access COMMECHVIlY i oiemented
File system § : Character Network
] Arcl:l- Memory types devices subsystem
ependent manager
%ode : g - O o Software
: o s o support
Block devices IF drivers
D@D § OO OO
w Hardware
CPU Memory Disks & CDs Consoles, Network
etc. interfaces
D features implemented as modules

Figure 1-1. A split view of the kernel

throughout the whole system. In addition, Linux supports multiple filesystem
types, that is, different ways of organizing data on the physical medium. For
example, diskettes may be formatted with either the Linux-standard ext2
filesystem or with the commonly used FAT filesystem.

Device control

Almost every system operation eventually maps to a physical device. With the
exception of the processor, memory, and a very few other entities, any and all
device control operations are performed by code that is specific to the device
being addressed. That code is called a device driver. The kernel must have
embedded in it a device driver for every peripheral present on a system, from
the hard drive to the keyboard and the tape streamer. This aspect of the ker-
nel’s functions is our primary interest in this book.

22 June 2001 16:32

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

Networking

Networking must be managed by the operating system because most network
operations are not specific to a process: incoming packets are asynchronous
events. The packets must be collected, identified, and dispatched before a
process takes care of them. The system is in charge of delivering data packets
across program and network interfaces, and it must control the execution of
programs according to their network activity. Additionally, all the routing and
address resolution issues are implemented within the kernel.

Toward the end of this book, in Chapter 16, you'll find a road map to the Linux
kernel, but these few paragraphs should suffice for now.

One of the good features of Linux is the ability to extend at runtime the set of fea-
tures offered by the kernel. This means that you can add functionality to the ker-
nel while the system is up and running.

Each piece of code that can be added to the kernel at runtime is called a module.
The Linux kernel offers support for quite a few different types (or classes) of mod-
ules, including, but not limited to, device drivers. Each module is made up of
object code (not linked into a complete executable) that can be dynamically linked
to the running kernel by the insmod program and can be unlinked by the rmmod
program.

Figure 1-1 identifies different classes of modules in charge of specific tasks—a
module is said to belong to a specific class according to the functionality it offers.
The placement of modules in Figure 1-1 covers the most important classes, but is
far from complete because more and more functionality in Linux is being modular-
ized.

Classes of Devices and Modules

The Unix way of looking at devices distinguishes between three device types.
Each module usually implements one of these types, and thus is classifiable as a
char module, a block module, or a network module. This division of modules into
different types, or classes, is not a rigid one; the programmer can choose to build
huge modules implementing different drivers in a single chunk of code. Good pro-
grammers, nonetheless, usually create a different module for each new functional-
ity they implement, because decomposition is a key element of scalability and
extendability.

The three classes are the following:

Character devices
A character (char) device is one that can be accessed as a stream of bytes (like
a file); a char driver is in charge of implementing this behavior. Such a driver
usually implements at least the open, close, read, and write system calls. The

22 June 2001 16:32

Classes of Devices and Modules

text console (/deuv/console) and the serial ports (/dev/ttySO and friends) are
examples of char devices, as they are well represented by the stream abstrac-
tion. Char devices are accessed by means of filesystem nodes, such as
/dev/tty1 and /dev/IpO. The only relevant difference between a char device and
a regular file is that you can always move back and forth in the regular file,
whereas most char devices are just data channels, which you can only access
sequentially. There exist, nonetheless, char devices that look like data areas,
and you can move back and forth in them; for instance, this usually applies to
frame grabbers, where the applications can access the whole acquired image
using mmap or Iseek.

Block devices

Like char devices, block devices are accessed by filesystem nodes in the /dev
directory. A block device is something that can host a filesystem, such as a
disk. In most Unix systems, a block device can be accessed only as multiples
of a block, where a block is usually one kilobyte of data or another power of
2. Linux allows the application to read and write a block device like a char
device—it permits the transfer of any number of bytes at a time. As a result,
block and char devices differ only in the way data is managed internally by
the kernel, and thus in the kernel/driver software interface. Like a char device,
each block device is accessed through a filesystem node and the difference
between them is transparent to the user. A block driver offers the kernel the
same interface as a char driver, as well as an additional block-oriented inter-
face that is invisible to the user or applications opening the /dev entry points.
That block interface, though, is essential to be able to mount a filesystem.

Network interfaces

Any network transaction is made through an interface, that is, a device that is
able to exchange data with other hosts. Usually, an interface is a hardware
device, but it might also be a pure software device, like the loopback inter-
face. A network interface is in charge of sending and receiving data packets,
driven by the network subsystem of the kernel, without knowing how individ-
ual transactions map to the actual packets being transmitted. Though both Tel-
net and FTP connections are stream oriented, they transmit using the same
device; the device doesn’t see the individual streams, but only the data pack-
ets.

Not being a stream-oriented device, a network interface isn’t easily mapped to
a node in the filesystem, as /dev/ttyl is. The Unix way to provide access to
interfaces is still by assigning a unique name to them (such as eth0), but that
name doesn’t have a corresponding entry in the filesystem. Communication
between the kernel and a network device driver is completely different from
that used with char and block drivers. Instead of read and write, the kernel
calls functions related to packet transmission.

Other classes of driver modules exist in Linux. The modules in each class exploit
public services the kernel offers to deal with specific types of devices. Therefore,

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

one can talk of universal serial bus (USB) modules, serial modules, and so on. The
most common nonstandard class of devices is that of SCSI* drivers. Although every
peripheral connected to the SCSI bus appears in /dev as either a char device or a
block device, the internal organization of the software is different.

Just as network interface cards provide the network subsystem with hardware-
related functionality, so a SCSI controller provides the SCSI subsystem with access
to the actual interface cable. SCSI is a communication protocol between the com-
puter and peripheral devices, and every SCSI device responds to the same proto-
col, independently of what controller board is plugged into the computer. The
Linux kernel therefore embeds a SCSI implementation (i.e., the mapping of file
operations to the SCSI communication protocol). The driver writer has to imple-
ment the mapping between the SCSI abstraction and the physical cable. This map-
ping depends on the SCSI controller and is independent of the devices attached to
the SCSI cable.

Other classes of device drivers have been added to the kernel in recent times,
including USB drivers, FireWire drivers, and 120 drivers. In the same way that they
handled SCSI drivers, kernel developers collected class-wide features and exported
them to driver implementers to avoid duplicating work and bugs, thus simplifying
and strengthening the process of writing such drivers.

In addition to device drivers, other functionalities, both hardware and software,
are modularized in the kernel. Beyond device drivers, filesystems are perhaps the
most important class of modules in the Linux system. A filesystem type determines
how information is organized on a block device in order to represent a tree of
directories and files. Such an entity is not a device driver, in that there’s no explicit
device associated with the way the information is laid down; the filesystem type is
instead a software driver, because it maps the low-level data structures to higher-
level data structures. It is the filesystem that determines how long a filename can
be and what information about each file is stored in a directory entry. The filesys-
tem module must implement the lowest level of the system calls that access direc-
tories and files, by mapping filenames and paths (as well as other information,
such as access modes) to data structures stored in data blocks. Such an interface is
completely independent of the actual data transfer to and from the disk (or other
medium), which is accomplished by a block device driver.

If you think of how strongly a Unix system depends on the underlying filesystem,
you'll realize that such a software concept is vital to system operation. The ability
to decode filesystem information stays at the lowest level of the kernel hierarchy
and is of utmost importance; even if you write a block driver for your new CD-
ROM, it is useless if you are not able to run /s or ¢p on the data it hosts. Linux
supports the concept of a filesystem module, whose software interface declares
the different operations that can be performed on a filesystem inode, directory,

* SCSI is an acronym for Small Computer Systems Interface; it is an established standard in
the workstation and high-end server market.

22 June 2001 16:32

Security Issues

file, and superblock. It’s quite unusual for a programmer to actually need to write
a filesystem module, because the official kernel already includes code for the most
important filesystem types.

Security Issues

Security is an increasingly important concern in modern times. We will discuss
security-related issues as they come up throughout the book. There are a few gen-
eral concepts, however, that are worth mentioning now.

Security has two faces, which can be called deliberate and incidental. One security
problem is the damage a user can cause through the misuse of existing programs,
or by incidentally exploiting bugs; a different issue is what kind of (mis)functional-
ity a programmer can deliberately implement. The programmer has, obviously,
much more power than a plain user. In other words, it's as dangerous to run a
program you got from somebody else from the root account as it is to give him or
her a root shell now and then. Although having access to a compiler is not a secu-
rity hole per se, the hole can appear when compiled code is actually executed,;
everyone should be careful with modules, because a kernel module can do any-
thing. A module is just as powerful as a superuser shell.

Any security check in the system is enforced by kernel code. If the kernel has
security holes, then the system has holes. In the official kernel distribution, only
an authorized user can load modules; the system call create_module checks if the
invoking process is authorized to load a module into the kernel. Thus, when run-
ning an official kernel, only the superuser,* or an intruder who has succeeded in
becoming privileged, can exploit the power of privileged code.

When possible, driver writers should avoid encoding security policy in their code.
Security is a policy issue that is often best handled at higher levels within the ker-
nel, under the control of the system administrator. There are always exceptions,
however. As a device driver writer, you should be aware of situations in which
some types of device access could adversely affect the system as a whole, and
should provide adequate controls. For example, device operations that affect
global resources (such as setting an interrupt line) or that could affect other users
(such as setting a default block size on a tape drive) are usually only available to
sufficiently privileged users, and this check must be made in the driver itself.

Driver writers must also be careful, of course, to avoid introducing security bugs.
The C programming language makes it easy to make several types of errors. Many
current security problems are created, for example, by buffer overrun errors, in
which the programmer forgets to check how much data is written to a buffer, and
data ends up written beyond the end of the buffer, thus overwriting unrelated

* Version 2.0 of the kernel allows only the superuser to run privileged code, while version
2.2 has more sophisticated capability checks. We discuss this in “Capabilities and
Restricted Operations” in Chapter 5.

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

data. Such errors can compromise the entire system and must be avoided. Fortu-
nately, avoiding these errors is usually relatively easy in the device driver context,
in which the interface to the user is narrowly defined and highly controlled.

Some other general security ideas are worth keeping in mind. Any input received
from user processes should be treated with great suspicion; never trust it unless
you can verify it. Be careful with uninitialized memory; any memory obtained
from the kernel should be zeroed or otherwise initialized before being made avail-
able to a user process or device. Otherwise, information leakage could result. If
your device interprets data sent to it, be sure the user cannot send anything that
could compromise the system. Finally, think about the possible effect of device
operations; if there are specific operations (e.g., reloading the firmware on an
adapter board, formatting a disk) that could affect the system, those operations
should probably be restricted to privileged users.

Be careful, also, when receiving software from third parties, especially when the
kernel is concerned: because everybody has access to the source code, everybody
can break and recompile things. Although you can usually trust precompiled ker-
nels found in your distribution, you should avoid running kernels compiled by an
untrusted friend—if you wouldn’t run a precompiled binary as root, then you’d
better not run a precompiled kernel. For example, a maliciously modified kernel
could allow anyone to load a module, thus opening an unexpected back door via
create_module.

Note that the Linux kernel can be compiled to have no module support whatso-
ever, thus closing any related security holes. In this case, of course, all needed
drivers must be built directly into the kernel itself. It is also possible, with 2.2 and
later kernels, to disable the loading of kernel modules after system boot, via the
capability mechanism.

Version Numbering

Before digging into programming, we'd like to comment on the version number-
ing scheme used in Linux and which versions are covered by this book.

First of all, note that every software package used in a Linux system has its own
release number, and there are often interdependencies across them: you need a
particular version of one package to run a particular version of another package.
The creators of Linux distributions usually handle the messy problem of matching
packages, and the user who installs from a prepackaged distribution doesn’t need
to deal with version numbers. Those who replace and upgrade system software,
on the other hand, are on their own. Fortunately, almost all modern distributions
support the upgrade of single packages by checking interpackage dependencies;
the distribution’s package manager generally will not allow an upgrade until the
dependencies are satisfied.

10

22 June 2001 16:32

Version Numbering

To run the examples we introduce during the discussion, you won’t need particu-
lar versions of any tool but the kernel; any recent Linux distribution can be used
to run our examples. We won'’t detail specific requirements, because the file Docu-
mentation/Changes in your kernel sources is the best source of such information if
you experience any problem.

As far as the kernel is concerned, the even-numbered kernel versions (i.e., 2.2.x
and 2.4.x) are the stable ones that are intended for general distribution. The odd
versions (such as 2.3.x), on the contrary, are development snapshots and are quite
ephemeral; the latest of them represents the current status of development, but
becomes obsolete in a few days or so.

This book covers versions 2.0 through 2.4 of the kernel. Our focus has been to
show all the features available to device driver writers in 2.4, the current version at
the time we are writing. We also try to cover 2.2 thoroughly, in those areas where
the features differ between 2.2 and 2.4. We also note features that are not available
in 2.0, and offer workarounds where space permits. In general, the code we show
is designed to compile and run on a wide range of kernel versions; in particular, it
has all been tested with version 2.4.4, and, where applicable, with 2.2.18 and
2.0.38 as well.

This text doesn’t talk specifically about odd-numbered kernel versions. General
users will never have a reason to run development kernels. Developers experi-
menting with new features, however, will want to be running the latest develop-
ment release. They will usually keep upgrading to the most recent version to pick
up bug fixes and new implementations of features. Note, however, that there’s no
guarantee on experimental kernels,* and nobody will help you if you have prob-
lems due to a bug in a noncurrent odd-numbered kernel. Those who run odd-
numbered versions of the kernel are usually skilled enough to dig in the code
without the need for a textbook, which is another reason why we don’t talk about
development kernels here.

Another feature of Linux is that it is a platform-independent operating system, not
just “a Unix clone for PC clones” anymore: it is successfully being used with Alpha
and SPARC processors, 68000 and PowerPC platforms, as well as a few more. This
book is platform independent as far as possible, and all the code samples have
been tested on several platforms, such as the PC brands, Alpha, ARM, I1A-64, M68k,
PowerPC, SPARC, SPARC64, and VR41xx (MIPS). Because the code has been tested
on both 32-bit and 64-bit processors, it should compile and run on all other plat-
forms. As you might expect, the code samples that rely on particular hardware
don’t work on all the supported platforms, but this is always stated in the source
code.

* Note that there’s no guarantee on even-numbered kernels as well, unless you rely on a
commercial provider that grants its own warranty.

11

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

License Terms

Linux is licensed with the GNU General Public License (GPL), a document devised
for the GNU project by the Free Software Foundation. The GPL allows anybody to
redistribute, and even sell, a product covered by the GPL, as long as the recipient
is allowed to rebuild an exact copy of the binary files from source. Additionally,
any software product derived from a product covered by the GPL must, if it is
redistributed at all, be released under the GPL.

The main goal of such a license is to allow the growth of knowledge by permitting
everybody to modify programs at will, at the same time, people selling software to
the public can still do their job. Despite this simple objective, there’s a never-end-
ing discussion about the GPL and its use. If you want to read the license, you can
find it in several places in your system, including the directory /usr/src/linux, as a
file called COPYING.

Third-party and custom modules are not part of the Linux kernel, and thus you’re
not forced to license them under the GPL. A module uses the kernel through a
well-defined interface, but is not part of it, similar to the way user programs use
the kernel through system calls. Note that the exemption to GPL licensing applies
only to modules that use only the published module interface. Modules that dig
deeper into the kernel must adhere to the “derived work” terms of the GPL.

In brief, if your code goes in the kernel, you must use the GPL as soon as you
release the code. Although personal use of your changes doesn’t force the GPL on
you, if you distribute your code you must include the source code in the distribu-
tion—people acquiring your package must be allowed to rebuild the binary at
will. If you write a module, on the other hand, you are allowed to distribute it in
binary form. However, this is not always practical, as modules should in general
be recompiled for each kernel version that they will be linked with (as explained
in Chapter 2, in the section “Version Dependency,” and Chapter 11, in the section
“Version Control in Modules”). New kernel releases—even minor stable releases—
often break compiled modules, requiring a recompile. Linus Torvalds has stated
publicly that he has no problem with this behavior, and that binary modules
should be expected to work only with the kernel under which they were com-
piled. As a module writer, you will generally serve your users better by making
source available.

As far as this book is concerned, most of the code is freely redistributable, either
in source or binary form, and neither we nor O’Reilly & Associates retain any right
on any derived works. All the programs are available through FTP from
S://ftp.ora.com/pub/examples/linux/drivers/; and the exact license terms are stated
in the file LICENSE in the same directory.

12

22 June 2001 16:32

Overview of the Book

When sample programs include parts of the kernel code, the GPL applies: the
comments accompanying source code are very clear about that. This only happens
for a pair of source files that are very minor to the topic of this book.

Joining the Kernel Development
Community

As you get into writing modules for the Linux kernel, you become part of a larger
community of developers. Within that community, you can find not only people
engaged in similar work, but also a group of highly committed engineers working
toward making Linux a better system. These people can be a source of help, of
ideas, and of critical review as well—they will be the first people you will likely
turn to when you are looking for testers for a new driver.

The central gathering point for Linux kernel developers is the linux-kernel mailing
list. All major kernel developers, from Linus Torvalds on down, subscribe to this
list. Please note that the list is not for the faint of heart: traffic as of this writing can
run up to 200 messages per day or more. Nonetheless, following this list is essen-
tial for those who are interested in kernel development; it also can be a top-qual-
ity resource for those in need of kernel development help.

To join the linux-kernel list, follow the instructions found in the linux-kernel mail-
ing list FAQ: htip//www.tux.org/lkml. Please read the rest of the FAQ while you
are at it; there is a great deal of useful information there. Linux kernel developers
are busy people, and they are much more inclined to help people who have
clearly done their homework first.

Overview of the Book

From here on, we enter the world of kernel programming. Chapter 2 introduces
modularization, explaining the secrets of the art and showing the code for running
modules. Chapter 3 talks about char drivers and shows the complete code for a
memory-based device driver that can be read and written for fun. Using memory
as the hardware base for the device allows anyone to run the sample code without
the need to acquire special hardware.

Debugging techniques are vital tools for the programmer and are introduced in
Chapter 4. Then, with our new debugging skills, we move to advanced features of
char drivers, such as blocking operations, the use of select, and the important ioct/
call; these topics are the subject of Chapter 5.

Before dealing with hardware management, we dissect a few more of the kernel’s
software interfaces: Chapter 6 shows how time is managed in the kernel, and
Chapter 7 explains memory allocation.

13

22 June 2001 16:32

Chapter 1: An Introduction to Device Drivers

Next we focus on hardware. Chapter 8 describes the management of I/O ports and
memory buffers that live on the device; after that comes interrupt handling, in
Chapter 9. Unfortunately, not everyone will be able to run the sample code for
these chapters, because some hardware support is actually needed to test the soft-
ware interface to interrupts. We've tried our best to keep required hardware sup-
port to a minimum, but you still need to put your hands on the soldering iron to
build your hardware “device.” The device is a single jumper wire that plugs into
the parallel port, so we hope this is not a problem.

Chapter 10 offers some additional suggestions about writing kernel software and
about portability issues.

In the second part of this book, we get more ambitious; thus, Chapter 11 starts
over with modularization issues, going deeper into the topic.

Chapter 12 then describes how block drivers are implemented, outlining the
aspects that differentiate them from char drivers. Following that, Chapter 13
explains what we left out from the previous treatment of memory management:
mmap and direct memory access (DMA). At this point, everything about char and
block drivers has been introduced.

The third main class of drivers is introduced next. Chapter 14 talks in some detail
about network interfaces and dissects the code of the sample network driver.

A few features of device drivers depend directly on the interface bus where the
peripheral fits, so Chapter 15 provides an overview of the main features of the bus
implementations most frequently found nowadays, with a special focus on PCI and
USB support offered in the kernel.

Finally, Chapter 16 is a tour of the kernel source: it is meant to be a starting point
for people who want to understand the overall design, but who may be scared by
the huge amount of source code that makes up Linux.

14

22 June 2001 16:34

CHAPTER TWO

BUILDING AND
RUNNING MODULES

It's high time now to begin programming. This chapter introduces all the essential
concepts about modules and kernel programming. In these few pages, we build
and run a complete module. Developing such expertise is an essential foundation
for any kind of modularized driver. To avoid throwing in too many concepts at
once, this chapter talks only about modules, without referring to any specific
device class.

All the kernel items (functions, variables, header files, and macros) that are intro-
duced here are described in a reference section at the end of the chapter.

For the impatient reader, the following code is a complete “Hello, World” module
(which does nothing in particular). This code will compile and run under Linux
kernel versions 2.0 through 2.4.*

#define MODULE
#include <linux/module.h>

int init_module(void) { printk("<1l>Hello, world\n"); return 0; }
void cleanup_module(void) { printk("<l1>Goodbye cruel world\n"); }

The printk function is defined in the Linux kernel and behaves similarly to the
standard C library function printf. The kernel needs its own printing function
because it runs by itself, without the help of the C library. The module can call
printk because, after insmod has loaded it, the module is linked to the kernel and
can access the kernel’s public symbols (functions and variables, as detailed in the
next section). The string <1> is the priority of the message. We've specified a high
priority (low cardinal number) in this module because a message with the default
priority might not show on the console, depending on the kernel version you are

* This example, and all the others presented in this book, is available on the O'Reilly FTP
site, as explained in Chapter 1.

15

22 June 2001 16:34

Chapter 2: Building and Running Modules

running, the version of the klogd daemon, and your configuration. You can ignore
this issue for now; we’ll explain it in the section “printk” in Chapter 4.

You can test the module by calling insmod and rmmod, as shown in the screen
dump in the following paragraph. Note that only the superuser can load and
unload a module.

The source file shown earlier can be loaded and unloaded as shown only if the
running kernel has module version support disabled; however, most distributions
preinstall versioned kernels (versioning is discussed in “Version Control in Mod-
ules” in Chapter 11). Although older modutils allowed loading nonversioned mod-
ules to versioned kernels, this is no longer possible. To solve the problem with
bello.c, the source in the misc-modules directory of the sample code includes a
few more lines to be able to run both under versioned and nonversioned kernels.
However, we strongly suggest you compile and run your own kernel (without ver-
sion support) before you run the sample code.*

root# gecc -c hello.c
root# insmod ./hello.o
Hello, world

root# rmmod hello
Goodbye cruel world
root#

According to the mechanism your system uses to deliver the message lines, your
output may be different. In particular, the previous screen dump was taken from a
text console; if you are running insmod and rmmod from an xterm, you won’t see
anything on your TTY. Instead, it may go to one of the system log files, such as
/var/log/messages (the name of the actual file varies between Linux distributions).
The mechanism used to deliver kernel messages is described in “How Messages
Get Logged” in Chapter 4.

As you can see, writing a module is not as difficult as you might expect. The hard
part is understanding your device and how to maximize performance. We'll go
deeper into modularization throughout this chapter and leave device-specific
issues to later chapters.

Kernel Modules Versus Applications

Before we go further, it's worth underlining the various differences between a ker-
nel module and an application.

Whereas an application performs a single task from beginning to end, a module
registers itself in order to serve future requests, and its “main” function terminates
immediately. In other words, the task of the function init_module (the module’s

*If you are new to building kernels, Alessandro has posted an article at
bttp.//www.linux.it/kerneldocs/kconf that should help you get started.

16

22 June 2001 16:34

Kernel Modules Versus Applications

entry point) is to prepare for later invocation of the module’s functions; it’s as
though the module were saying, “Here I am, and this is what I can do.” The sec-
ond entry point of a module, cleanup_module, gets invoked just before the mod-
ule is unloaded. It should tell the kernel, “I'm not there anymore; don’t ask me to
do anything else.” The ability to unload a module is one of the features of modu-
larization that you’ll most appreciate, because it helps cut down development
time; you can test successive versions of your new driver without going through
the lengthy shutdown/reboot cycle each time.

As a programmer, you know that an application can call functions it doesn’t
define: the linking stage resolves external references using the appropriate library
of functions. printfis one of those callable functions and is defined in /ibc. A mod-
ule, on the other hand, is linked only to the kernel, and the only functions it can
call are the ones exported by the kernel; there are no libraries to link to. The
printk function used in hello.c earlier, for example, is the version of printf defined
within the kernel and exported to modules. It behaves similarly to the original
function, with a few minor differences, the main one being lack of floating-point
support.”

Figure 2-1 shows how function calls and function pointers are used in a module to
add new functionality to a running kernel.

Because no library is linked to modules, source files should never include the
usual header files. Only functions that are actually part of the kernel itself may be
used in kernel modules. Anything related to the kernel is declared in headers
found in include/linux and include/asm inside the kernel sources (usually found
in /usr/src/linux). Older distributions (based on /ibc version 5 or earlier) used to
carry symbolic links from /usw/include/linux and /usr/include/asm to the actual
kernel sources, so your /ibc include tree could refer to the headers of the actual
kernel source you had installed. These symbolic links made it convenient for user-
space applications to include kernel header files, which they occasionally need to
do.

Even though user-space headers are now separate from kernel-space headers,
sometimes applications still include kernel headers, either before an old library is
used or before new information is needed that is not available in the user-space
headers. However, many of the declarations in the kernel header files are relevant
only to the kernel itself and should not be seen by user-space applications. These
declarations are therefore protected by #ifdef _ _KERNEL_ _ blocks. That's why
your driver, like other kernel code, will need to be compiled with the
_ _KERNEL_ _ preprocessor symbol defined.

The role of individual kernel headers will be introduced throughout the book as
each of them is needed.

* The implementation found in Linux 2.0 and 2.2 has no support for the L and Z qualifiers.
They have been introduced in 2.4, though.

17

22 June 2001 16:34

Chapter 2: Building and Running Modules

Module Kernel Proper

insmod ===~~~ 4 | init_module() Jr===s==tereccceen >| register_capability () I

L [[[T

printk()

>
> I
>
>

cleanup_module () 4 unregister_capability ()

: One function EEmEN, Data Function call = Data pointer
| Multiple functions Function pointer === > Assignment to data

Figure 2-1. Linking a module to the kernel

Developers working on any large software system (such as the kernel) must be
aware of and avoid namespace pollution. Namespace pollution is what happens
when there are many functions and global variables whose names aren’t meaning-
ful enough to be easily distinguished. The programmer who is forced to deal with
such an application expends much mental energy just to remember the “reserved”
names and to find unique names for new symbols. Namespace collisions can cre-
ate problems ranging from module loading failures to bizarre failures—which, per-
haps, only happen to a remote user of your code who builds a kernel with a
different set of configuration options.

Developers can’t afford to fall into such an error when writing kernel code
because even the smallest module will be linked to the whole kernel. The best
approach for preventing namespace pollution is to declare all your symbols as
static and to use a prefix that is unique within the kernel for the symbols you

18

22 June 2001 16:34

Kernel Modules Versus Applications

leave global. Also note that you, as a module writer, can control the external visi-
bility of your symbols, as described in “The Kernel Symbol Table” later in this
chapter.*

Using the chosen prefix for private symbols within the module may be a good
practice as well, as it may simplify debugging. While testing your driver, you could
export all the symbols without polluting your namespace. Prefixes used in the ker-
nel are, by convention, all lowercase, and we’ll stick to the same convention.

The last difference between kernel programming and application programming is
in how each environment handles faults: whereas a segmentation fault is harmless
during application development and a debugger can always be used to trace the
error to the problem in the source code, a kernel fault is fatal at least for the cur-
rent process, if not for the whole system. We’ll see how to trace kernel errors in
Chapter 4, in the section “Debugging System Faults.”

User Space and Kernel Space

A module runs in the so-called kernel space, whereas applications run in user
space. This concept is at the base of operating systems theory.

The role of the operating system, in practice, is to provide programs with a consis-
tent view of the computer’s hardware. In addition, the operating system must
account for independent operation of programs and protection against unautho-
rized access to resources. This nontrivial task is only possible if the CPU enforces
protection of system software from the applications.

Every modern processor is able to enforce this behavior. The chosen approach is
to implement different operating modalities (or levels) in the CPU itself. The levels
have different roles, and some operations are disallowed at the lower levels; pro-
gram code can switch from one level to another only through a limited number of
gates. Unix systems are designed to take advantage of this hardware feature, using
two such levels. All current processors have at least two protection levels, and
some, like the x86 family, have more levels; when several levels exist, the highest
and lowest levels are used. Under Unix, the kernel executes in the highest level
(also called supervisor mode), where everything is allowed, whereas applications
execute in the lowest level (the so-called wuser mode), where the processor regu-
lates direct access to hardware and unauthorized access to memory.

We usually refer to the execution modes as kernel space and user space. These
terms encompass not only the different privilege levels inherent in the two modes,
but also the fact that each mode has its own memory mapping—its own address
space—as well.

* Most versions of insmod (but not all of them) export all non-static symbols if they find
no specific instruction in the module; that’'s why it's wise to declare as static all the
symbols you are not willing to export.

19

22 June 2001 16:34

Chapter 2: Building and Running Modules

Unix transfers execution from user space to kernel space whenever an application
issues a system call or is suspended by a hardware interrupt. Kernel code execut-
ing a system call is working in the context of a process—it operates on behalf of
the calling process and is able to access data in the process’s address space. Code
that handles interrupts, on the other hand, is asynchronous with respect to pro-
cesses and is not related to any particular process.

The role of a module is to extend kernel functionality; modularized code runs in
kernel space. Usually a driver performs both the tasks outlined previously: some
functions in the module are executed as part of system calls, and some are in
charge of interrupt handling.

Concurrency in the Kernel

One way in which device driver programming differs greatly from (most) applica-
tion programming is the issue of concurrency. An application typically runs
sequentially, from the beginning to the end, without any need to worry about
what else might be happening to change its environment. Kernel code does not
run in such a simple world and must be written with the idea that many things can
be happening at once.

There are a few sources of concurrency in kernel programming. Naturally, Linux
systems run multiple processes, more than one of which can be trying to use your
driver at the same time. Most devices are capable of interrupting the processor;
interrupt handlers run asynchronously and can be invoked at the same time that
your driver is trying to do something else. Several software abstractions (such as
kernel timers, introduced in Chapter 6) run asynchronously as well. Moreover, of
course, Linux can run on symmetric multiprocessor (SMP) systems, with the result
that your driver could be executing concurrently on more than one CPU.

As a result, Linux kernel code, including driver code, must be reentrant—it must
be capable of running in more than one context at the same time. Data structures
must be carefully designed to keep multiple threads of execution separate, and the
code must take care to access shared data in ways that prevent corruption of the
data. Writing code that handles concurrency and avoids race conditions (situations
in which an unfortunate order of execution causes undesirable behavior) requires
thought and can be tricky. Every sample driver in this book has been written with
concurrency in mind, and we will explain the techniques we use as we come to
them.

A common mistake made by driver programmers is to assume that concurrency is
not a problem as long as a particular segment of code does not go to sleep (or
“block™. It is true that the Linux kernel is nonpreemptive; with the important
exception of servicing interrupts, it will not take the processor away from kernel

20

22 June 2001 16:34

Kernel Modules Versus Applications

code that does not yield willingly. In past times, this nonpreemptive behavior was
enough to prevent unwanted concurrency most of the time. On SMP systems,
however, preemption is not required to cause concurrent execution.

If your code assumes that it will not be preempted, it will not run properly on
SMP systems. Even if you do not have such a system, others who run your code
may have one. In the future, it is also possible that the kernel will move to a pre-
emptive mode of operation, at which point even uniprocessor systems will have to
deal with concurrency everywhere (some variants of the kernel already implement
it). Thus, a prudent programmer will always program as if he or she were working
on an SMP system.

The Current Process

Although kernel modules don’t execute sequentially as applications do, most
actions performed by the kernel are related to a specific process. Kernel code can
know the current process driving it by accessing the global item current, a
pointer to struct task_struct, which as of version 2.4 of the kernel is
declared in <asm/current.h>, included by <linux/sched.h>. The current
pointer refers to the user process currently executing. During the execution of a
system call, such as open or read, the current process is the one that invoked the
call. Kernel code can use process-specific information by using current, if it
needs to do so. An example of this technique is presented in “Access Control on a
Device File,” in Chapter 5.

Actually, current is not properly a global variable any more, like it was in the
first Linux kernels. The developers optimized access to the structure describing the
current process by hiding it in the stack page. You can look at the details of cur-
rent in <asm/current.h>. While the code you’ll look at might seem hairy, we
must keep in mind that Linux is an SMP-compliant system, and a global variable
simply won’t work when you are dealing with multiple CPUs. The details of the
implementation remain hidden to other kernel subsystems though, and a device
driver can just include <linux/sched.h> and refer to the current process.

From a module’s point of view, current is just like the external reference printk.
A module can refer to current wherever it sees fit. For example, the following
statement prints the process ID and the command name of the current process by
accessing certain fields in struct task_struct:

printk ("The process is \"%s\" (pid %i)\n",
current->comm, current->pid);

The command name stored in current->commn is the base name of the program
file that is being executed by the current process.

21

22 June 2001 16:34

Chapter 2: Building and Running Modules

Compiling and Loading

The rest of this chapter is devoted to writing a complete, though typeless, module.
That is, the module will not belong to any of the classes listed in “Classes of
Devices and Modules” in Chapter 1. The sample driver shown in this chapter is
called skull, short for Simple Kernel Utility for Loading Localities. You can reuse
the skull source to load your own local code to the kernel, after removing the
sample functionality it offers.”

Before we deal with the roles of init_module and cleanup_module, however, we’ll
write a makefile that builds object code that the kernel can load.

First, we need to define the _ _KERNEL_ _ symbol in the preprocessor before we
include any headers. As mentioned earlier, much of the kernel-specific content in
the kernel headers is unavailable without this symbol.

Another important symbol is MODULE, which must be defined before including
<linux/module.h> (except for drivers that are linked directly into the kerneD.
This book does not cover directly linked modules; thus, the MODULE symbol is
always defined in our examples.

If you are compiling for an SMP machine, you also need to define __SMP_ _
before including the kernel headers. In version 2.2, the “multiprocessor or unipro-
cessor” choice was promoted to a proper configuration item, so using these lines
as the very first lines of your modules will do the task:

#include <linux/config.h>
#ifdef CONFIG_SMP

define _ _SMP_
#endif

A module writer must also specify the —O flag to the compiler, because many func-
tions are declared as inline in the header files. gcc doesn’t expand inline func-
tions unless optimization is enabled, but it can accept both the —g and —O options,
allowing you to debug code that uses inline functions.t Because the kernel makes
extensive use of inline functions, it is important that they be expanded properly.

You may also need to check that the compiler you are running matches the kernel
you are compiling against, referring to the file Documentation/Changes in the ker-
nel source tree. The kernel and the compiler are developed at the same time,
though by different groups, so sometimes changes in one tool reveal bugs in the

* We use the word local here to denote personal changes to the system, in the good old
Unix tradition of /us#/local.

t Note, however, that using any optimization greater than —O2 is risky, because the com-
piler might inline functions that are not declared as inline in the source. This may be a
problem with kernel code, because some functions expect to find a standard stack layout
when they are called.

22

22 June 2001 16:34

Compiling and Loading

other. Some distributions ship a version of the compiler that is too new to reliably
build the kernel. In this case, they will usually provide a separate package (often
called kgco) with a compiler intended for kernel compilation.

Finally, in order to prevent unpleasant errors, we suggest that you use the —Wall
(all warnings) compiler flag, and also that you fix all features in your code that
cause compiler warnings, even if this requires changing your usual programming
style. When writing kernel code, the preferred coding style is undoubtedly Linus’s
own style. Documentation/CodingStyle is amusing reading and a mandatory lesson
for anyone interested in kernel hacking.

All the definitions and flags we have introduced so far are best located within the
CFLAGS variable used by make.

In addition to a suitable CFLAGS, the makefile being built needs a rule for joining
different object files. The rule is needed only if the module is split into different
source files, but that is not uncommon with modules. The object files are joined
by the /d -r command, which is not really a linking operation, even though it uses
the linker. The output of /d -r is another object file, which incorporates all the
code from the input files. The —r option means “relocatable;” the output file is
relocatable in that it doesn’t yet embed absolute addresses.

The following makefile is a minimal example showing how to build a module
made up of two source files. If your module is made up of a single source file, just
skip the entry containing /d -r.

Change it here or specify it on the "make" command line
KERNELDIR = /usr/src/linux

include $ (KERNELDIR)/.config

CFLAGS = -D__KERNEL__ -DMODULE -I$(KERNELDIR)/include \
-0 -Wall

ifdef CONFIG_SMP
CFLAGS += -D__SMP__ -DSMP
endif

all: skull.o

skull.o: skull_init.o skull_clean.o
$(LD) -r $° -o se

clean:
rm -f *.o0 *7 core

If you are not familiar with make, you may wonder why no .c file and no compila-
tion rule appear in the makefile shown. These declarations are unnecessary
because make is smart enough to turn .c into .o without being instructed to, using
the current (or default) choice for the compiler, $ (CC), and its flags, $ (CFLAGS) .

23

22 June 2001 16:34

Chapter 2: Building and Running Modules

After the module is built, the next step is loading it into the kernel. As we've
already suggested, insmod does the job for you. The program is like /d, in that it
links any unresolved symbol in the module to the symbol table of the running ker-
nel. Unlike the linker, however, it doesn’t modify the disk file, but rather an in-
memory copy. insmod accepts a number of command-line options (for details, see
the manpage), and it can assign values to integer and string variables in your mod-
ule before linking it to the current kernel. Thus, if a module is correctly designed,
it can be configured at load time; load-time configuration gives the user more flex-
ibility than compile-time configuration, which is still used sometimes. Load-time
configuration is explained in “Automatic and Manual Configuration” later in this
chapter.

Interested readers may want to look at how the kernel supports insmod: it relies
on a few system calls defined in kernel/module.c. The function sys_create_module
allocates kernel memory to hold a module (this memory is allocated with vmalloc;
see “vmalloc and Friends” in Chapter 7). The system call get _kernel_syms returns
the kernel symbol table so that kernel references in the module can be resolved,
and sys_init_module copies the relocated object code to kernel space and calls the
module’s initialization function.

If you actually look in the kernel source, you'll find that the names of the system
calls are prefixed with sys_. This is true for all system calls and no other func-
tions; it'’s useful to keep this in mind when grepping for the system calls in the
sources.

Version Dependency

Bear in mind that your module’s code has to be recompiled for each version of
the kernel that it will be linked to. Each module defines a symbol called __mod-
ule_kernel_version, which insmod matches against the version number of
the current kernel. This symbol is placed in the .modinfo Executable Linking
and Format (ELF) section, as explained in detail in Chapter 11. Please note that
this description of the internals applies only to versions 2.2 and 2.4 of the kernel;
Linux 2.0 did the same job in a different way.

The compiler will define the symbol for you whenever you include
<linux/module.h> (that's why hello.c earlier didn’t need to declare it). This
also means that if your module is made up of multiple source files, you have to
include <linux/module.h> from only one of your source files (unless you use
_ _NO_VERSION which we’ll introduce in a while).

—

In case of version mismatch, you can still try to load a module against a different
kernel version by specifying the —f (“force”) switch to insmod, but this operation
isn’'t safe and can fail. It’s also difficult to tell in advance what will happen. Load-
ing can fail because of mismatching symbols, in which case you’ll get an error

24

22 June 2001 16:34

Compiling and Loading

message, or it can fail because of an internal change in the kernel. If that happens,
you'll get serious errors at runtime and possibly a system panic—a good reason to
be wary of version mismatches. Version mismatches can be handled more grace-
fully by using versioning in the kernel (a topic that is more advanced and is intro-
duced in “Version Control in Modules” in Chapter 11).

If you want to compile your module for a particular kernel version, you have to
include the specific header files for that kernel (for example, by declaring a differ-
ent KERNELDIR) in the makefile given previously. This situation is not uncommon
when playing with the kernel sources, as most of the time you’ll end up with sev-
eral versions of the source tree. All of the sample modules accompanying this
book use the KERNELDIR variable to point to the correct kernel sources; it can be
set in your environment or passed on the command line of make.

When asked to load a module, insmod follows its own search path to look for the
object file, looking in version-dependent directories under //ib/modules. Although
older versions of the program looked in the current directory, first, that behavior is
now disabled for security reasons (it's the same problem of the PATH environment
variable). Thus, if you need to load a module from the current directory you
should use ./module.o, which works with all known versions of the tool.

Sometimes, you'll encounter kernel interfaces that behave differently between ver-
sions 2.0.x and 2.4.x of Linux. In this case you'll need to resort to the macros
defining the version number of the current source tree, which are defined in the
header <linux/version.h>. We will point out cases where interfaces have
changed as we come to them, either within the chapter or in a specific section
about version dependencies at the end, to avoid complicating a 2.4-specific discus-
sion.

The header, automatically included by /linux/module.h, defines the following
macros:

UTS_RELEASE
The macro expands to a string describing the version of this kernel tree. For
example, "2.3.48".

LINUX_VERSION_CODE
The macro expands to the binary representation of the kernel version, one
byte for each part of the version release number. For example, the code for
2.3.48 is 131888 (i.e., 0x020330).* With this information, you can (almost) eas-
ily determine what version of the kernel you are dealing with.

KERNEL_VERSION (major,minor, release)
This is the macro used to build a “kernel_version_code” from the individual
numbers that build up a version number. For example, KERNEL_VER-
SION(2,3,48) expands to 131888. This macro is very useful when you

* This allows up to 256 development versions between stable versions.

25

22 June 2001 16:34

Chapter 2: Building and Running Modules

need to compare the current version and a known checkpoint. We'll use this
macro several times throughout the book.

The file version.b is included by module.h, so you won’t usually need to include
version.h explicitly. On the other hand, you can prevent module.h from including
version.h by declaring __NO_VERSION__ in advance. Youll use
__NO_VERSION__ if you need to include <linux/module.h> in several
source files that will be linked together to form a single module—for example, if
you need preprocessor macros declared in module.h. Declaring
_ _NO_VERSION_ _ before including module.h prevents automatic declaration of
the string __module_kernel_version or its equivalent in source files where
you don’t want it (/d -r would complain about the multiple definition of the sym-
bolD). Sample modules in this book use __NO_VERSION_ _ to this end.

Most dependencies based on the kernel version can be worked around with pre-
processor conditionals by exploiting KERNEL_VERSION and LINUX_VER-
SION_CODE. Version dependency should, however, not clutter driver code with
hairy #ifdef conditionals; the best way to deal with incompatibilities is by con-
fining them to a specific header file. That’'s why our sample code includes a sys-
dep.h header, used to hide all incompatibilities in suitable macro definitions.

The first version dependency we are going to face is in the definition of a “make
install” rule for our drivers. As you may expect, the installation directory,
which varies according to the kernel version being used, is chosen by looking in
version.h. The following fragment comes from the file Rules.make, which is
included by all makefiles:

VERSIONFILE = $(INCLUDEDIR)/linux/version.h
VERSION = $(shell awk -F\" ’/REL/ {print $$2}’ $(VERSIONFILE))
INSTALLDIR = /lib/modules/$ (VERSION) /misc

We chose to install all of our drivers in the misc directory; this is both the right
choice for miscellaneous add-ons and a good way to avoid dealing with the
change in the directory structure under /lib/modules that was introduced right
before version 2.4 of the kernel was released. Even though the new directory
structure is more complicated, the misc directory is used by both old and new ver-
sions of the modutils package.

With the definition of INSTALLDIR just given, the install rule of each makefile,
then, is laid out like this:

install:

install -d $(INSTALLDIR)
install -c $(OBJS) $(INSTALLDIR)

26

22 June 2001 16:34

The Kernel Symbol Table

Platform Dependency

Each computer platform has its peculiarities, and kernel designers are free to
exploit all the peculiarities to achieve better performance in the target object file.

Unlike application developers, who must link their code with precompiled
libraries and stick to conventions on parameter passing, kernel developers can
dedicate some processor registers to specific roles, and they have done so. More-
over, kernel code can be optimized for a specific processor in a CPU family to get
the best from the target platform: unlike applications that are often distributed in
binary format, a custom compilation of the kernel can be optimized for a specific
computer set.

Modularized code, in order to be interoperable with the kernel, needs to be com-
piled using the same options used in compiling the kernel (i.e., reserving the same
registers for special use and performing the same optimizations). For this reason,
our top-level Rules.make includes a platform-specific file that complements the
makefiles with extra definitions. All of those files are called Makefile.plat-
form and assign suitable values to make variables according to the current kernel
configuration.

Another interesting feature of this layout of makefiles is that cross compilation is
supported for the whole tree of sample files. Whenever you need to cross compile
for your target platform, you’ll need to replace all of your tools (gcc, Id, etc.) with
another set of tools (for example, m68k-linux-gcc, mo8k-linux-Id). The prefix to
be used is defined as $ (CROSS_COMPILE), either in the make command line or
in your environment.

The SPARC architecture is a special case that must be handled by the makefiles.
User-space programs running on the SPARC64 (SPARC V9) platform are the same
binaries you run on SPARC32 (SPARC V8). Therefore, the default compiler running
on SPARC64 (gco) generates SPARC32 object code. The kernel, on the other hand,
must run SPARC V9 object code, so a cross compiler is needed. All GNU/Linux dis-
tributions for SPARC64 include a suitable cross compiler, which the makefiles
select.

Although the complete list of version and platform dependencies is slightly more
complicated than shown here, the previous description and the set of makefiles
we provide is enough to get things going. The set of makefiles and the kernel
sources can be browsed if you are looking for more detailed information.

The Kernel Symbol Table

We've seen how insmod resolves undefined symbols against the table of public
kernel symbols. The table contains the addresses of global kernel items—

27

22 June 2001 16:34

Chapter 2: Building and Running Modules

functions and variables—that are needed to implement modularized drivers. The
public symbol table can be read in text form from the file /proc/ksyms (assuming,
of course, that your kernel has support for the /proc filesystem—which it really
should).

When a module is loaded, any symbol exported by the module becomes part of
the kernel symbol table, and you can see it appear in /proc/ksyms or in the output
of the ksyms command.

New modules can use symbols exported by your module, and you can stack new
modules on top of other modules. Module stacking is implemented in the main-
stream kernel sources as well: the msdos filesystem relies on symbols exported by
the fat module, and each input USB device module stacks on the wusbcore and
input modules.

Module stacking is useful in complex projects. If a new abstraction is implemented
in the form of a device driver, it might offer a plug for hardware-specific imple-
mentations. For example, the video-for-linux set of drivers is split into a generic
module that exports symbols used by lower-level device drivers for specific hard-
ware. According to your setup, you load the generic video module and the spe-
cific module for your installed hardware. Support for parallel ports and the wide
variety of attachable devices is handled in the same way, as is the USB kernel sub-
system. Stacking in the parallel port subsystem is shown in Figure 2-2; the arrows
show the communications between the modules (with some example functions
and data structures) and with the kernel programming interface.

Low-level
device
Port sharing operations | .ot e bp Kernel API
and device —
i i (Message
registration | parport printing, driver
 — i registration,
1p port allocation,
> etc.)

Figure 2-2. Stacking of parallel port driver modules

When using stacked modules, it is helpful to be aware of the modprobe utility.
modprobe functions in much the same way as insmod, but it also loads any other
modules that are required by the module you want to load. Thus, one modprobe
command can sometimes replace several invocations of insmod (although you’ll
still need insmod when loading your own modules from the current directory,
because modprobe only looks in the tree of installed modules).

28

22 June 2001 16:34

Initialization and Shutdown

Layered modularization can help reduce development time by simplifying each
layer. This is similar to the separation between mechanism and policy that we dis-
cussed in Chapter 1.

In the usual case, a module implements its own functionality without the need to
export any symbols at all. You will need to export symbols, however, whenever
other modules may benefit from using them. You may also need to include spe-
cific instructions to avoid exporting all non-static symbols, as most versions
(but not alD) of modutils export all of them by default.

The Linux kernel header files provide a convenient way to manage the visibility of
your symbols, thus reducing namespace pollution and promoting proper informa-
tion hiding. The mechanism described in this section works with kernels 2.1.18
and later; the 2.0 kernel had a completely different mechanism, which is described
at the end of the chapter.

If your module exports no symbols at all, you might want to make that explicit by
placing a line with this macro call in your source file:

EXPORT_NO_SYMBOLS;

The macro expands to an assembler directive and may appear anywhere within
the module. Portable code, however, should place it within the module initializa-
tion function (init_module), because the version of this macro defined in sysdep.h
for older kernels will work only there.

If, on the other hand, you need to export a subset of symbols from your module,
the first step is defining the preprocessor macro EXPORT_SYMTAB. This macro
must be defined before including module.b. 1t is common to define it at compile
time with the —D compiler flag in Makefile.

If EXPORT_SYMTAB is defined, individual symbols are exported with a couple of
macros:

EXPORT_SYMBOL (name) ;
EXPORT_SYMBOL_NOVERS (name) ;

Either version of the macro will make the given symbol available outside the mod-
ule; the second version (EXPORT_SYMBOL_NOVERS) exports the symbol with no
versioning information (described in Chapter 11). Symbols must be exported out-
side of any function because the macros expand to the declaration of a variable.
(Interested readers can look at <linux/module.h> for the details, even though
the details are not needed to make things work.)

Initialization and Shutdown

As already mentioned, init_module registers any facility offered by the module. By
Sfacility, we mean a new functionality, be it a whole driver or a new software
abstraction, that can be accessed by an application.

29

22 June 2001 16:34

Chapter 2: Building and Running Modules

Modules can register many different types of facilities; for each facility, there is a
specific kernel function that accomplishes this registration. The arguments passed
to the kernel registration functions are usually a pointer to a data structure describ-
ing the new facility and the name of the facility being registered. The data struc-
ture usually embeds pointers to module functions, which is how functions in the
module body get called.

The items that can be registered exceed the list of device types mentioned in
Chapter 1. They include serial ports, miscellaneous devices, /proc files, executable
domains, and line disciplines. Many of those registrable items support functions
that aren’t directly related to hardware but remain in the “software abstractions”
field. Those items can be registered because they are integrated into the driver’s
functionality anyway (like /proc files and line disciplines for example).

There are other facilities that can be registered as add-ons for certain drivers, but
their use is so specific that it's not worth talking about them; they use the stacking
technique, as described earlier in “The Kernel Symbol Table.” If you want to probe
further, you can grep for EXPORT_SYMBOL in the kernel sources and find the
entry points offered by different drivers. Most registration functions are prefixed
with register_, so another possible way to find them is to grep for register_
in /proc/ksyms.

Error Handling in init_module

If any errors occur when you register utilities, you must undo any registration
activities performed before the failure. An error can happen, for example, if there
isn’t enough memory in the system to allocate a new data structure or because a
resource being requested is already being used by other drivers. Though unlikely,
it might happen, and good program code must be prepared to handle this event.

Linux doesn’t keep a per-module registry of facilities that have been registered, so
the module must back out of everything itself if init_module fails at some point. If
you ever fail to unregister what you obtained, the kernel is left in an unstable
state: you can't register your facilities again by reloading the module because they
will appear to be busy, and you can’t unregister them because you’d need the
same pointer you used to register and you’re not likely to be able to figure out the
address. Recovery from such situations is tricky, and you’ll be often forced to
reboot in order to be able to load a newer revision of your module.

Error recovery is sometimes best handled with the goto statement. We normally
hate to use goto, but in our opinion this is one situation (well, the only situation)
where it is useful. In the kernel, goto is often used as shown here to deal with
errors.

The following sample code (using fictitious registration and unregistration func-
tions) behaves correctly if initialization fails at any point.

30

22 June 2001 16:34

Initialization and Shutdown

int init_module (void)
{

int err;

/* registration takes a pointer and a name */
err = register_this(ptrl, "skull");

if (err) goto fail_this;

err = register_that (ptr2, "skull");

if (err) goto fail_that;

err = register_those(ptr3, "skull");

if (err) goto fail_those;

return 0; /* success */

fail those: unregister_that (ptr2, "skull");
fail_that: unregister_this(ptrl, "skull");
fail_this: return err; /* propagate the error */

}

This code attempts to register three (fictitious) facilities. The goto statement is
used in case of failure to cause the unregistration of only the facilities that had
been successfully registered before things went bad.

Another option, requiring no hairy goto statements, is keeping track of what has
been successfully registered and calling cleanup_module in case of any error. The
cleanup function will only unroll the steps that have been successfully accom-
plished. This alternative, however, requires more code and more CPU time, so in
fast paths you’ll still resort to goto as the best error-recovery tool. The return
value of init_module, err, is an error code. In the Linux kernel, error codes are
negative numbers belonging to the set defined in <linux/errno.h>. If you
want to generate your own error codes instead of returning what you get from
other functions, you should include <linux/errno.h> in order to use symbolic
values such as -ENODEV, -ENOMEM, and so on. It is always good practice to
return appropriate error codes, because user programs can turn them to meaning-
ful strings using perror or similar means. (However, it's interesting to note that sev-
eral versions of modutils returned a “Device busy” message for any error returned
by init_module; the problem has only been fixed in recent releases.)

Obviously, cleanup_module must undo any registration performed by init_mod-
ule, and it is customary (but not mandatory) to unregister facilities in the reverse
order used to register them:

void cleanup_module (void)

{

unregister_those(ptr3, "skull");
unregister_that (ptr2, "skull");
unregister_this(ptrl, "skull");
return;

}

31

22 June 2001 16:34

Chapter 2: Building and Running Modules

If your initialization and cleanup are more complex than dealing with a few items,
the goto approach may become difficult to manage, because all the cleanup code
must be repeated within init_module, with several labels intermixed. Sometimes,
therefore, a different layout of the code proves more successful.

What you’d do to minimize code duplication and keep everything streamlined is to
call cleanup_module from within init_module whenever an error occurs. The
cleanup function, then, must check the status of each item before undoing its reg-
istration. In its simplest form, the code looks like the following:

struct something *iteml;
struct somethingelse *item2;
int stuff_ok;

void cleanup_module (void)

{

if (iteml)

release_thing(iteml) ;

if (item2)
release_thing2 (item2) ;

if (stuff_ok)
unregister_stuff () ;
return;

}

int init_module (void)
{
int err = -ENOMEM;

iteml = allocate_thing(arguments) ;
item2 = allocate_thing2 (arguments2) ;
if (litem2 || !item2)

goto fail;

err = register_stuff(iteml, item2);
if (lerr)

stuff_ok = 1;
else

goto fail;
return 0; /* success */

fail:
cleanup_module() ;
return err;

}

As shown in this code, you may or may not need external flags to mark success of
the initialization step, depending on the semantics of the registration/allocation
function you call. Whether or not flags are needed, this kind of initialization scales
well to a large number of items and is often better than the technique shown
earlier.

32

22 June 2001 16:34

Initialization and Shutdown

The Usage Count

The system keeps a usage count for every module in order to determine whether
the module can be safely removed. The system needs this information because a
module can’t be unloaded if it is busy: you can’t remove a filesystem type while
the filesystem is mounted, and you can’t drop a char device while a process is
using it, or you’'ll experience some sort of segmentation fault or kernel panic when
wild pointers get dereferenced.

In modern kernels, the system can automatically track the usage count for you,
using a mechanism that we will see in the next chapter. There are still times, how-
ever, when you will need to adjust the usage count manually. Code that must be
portable to older kernels must still use manual usage count maintenance as well.
To work with the usage count, use these three macros:

MOD_INC_USE_COUNT
Increments the count for the current module

MOD_DEC_USE_COUNT
Decrements the count

MOD_IN_USE
Evaluates to true if the count is not zero

The macros are defined in <linux/module.h>, and they act on internal data
structures that shouldn’t be accessed directly by the programmer. The internals of
module management changed a lot during 2.1 development and were completely
rewritten in 2.1.18, but the use of these macros did not change.

Note that there’s no need to check for MOD_IN_USE from within cleanup_module,
because the check is performed by the system call sys_delete_module (defined in
kernel/module.c) in advance.

Proper management of the module usage count is critical for system stability.
Remember that the kernel can decide to try to unload your module at absolutely
any time. A common module programming error is to start a series of operations
(in response, say, to an open request) and increment the usage count at the end. If
the kernel unloads the module halfway through those operations, chaos is
ensured. To avoid this kind of problem, you should call MOD_INC_USE_COUNT
before doing almost anything else in a module.

You won’t be able to unload a module if you lose track of the usage count. This
situation may very well happen during development, so you should keep it in
mind. For example, if a process gets destroyed because your driver dereferenced a
NULL pointer, the driver won’t be able to close the device, and the usage count
won't fall back to zero. One possible solution is to completely disable the usage
count during the debugging cycle by redefining both MOD_INC_USE_COUNT and

33

22 June 2001 16:34

Chapter 2: Building and Running Modules

MOD_DEC_USE_COUNT to no-ops. Another solution is to use some other method
to force the counter to zero (you'll see this done in the section “Using the ioctl
Argument” in Chapter 5). Sanity checks should never be circumvented in a pro-
duction module. For debugging, however, sometimes a brute-force attitude helps
save development time and is therefore acceptable.

The current value of the usage count is found in the third field of each entry in
/proc/modules. This file shows the modules currently loaded in the system, with
one entry for each module. The fields are the name of the module, the number of
bytes of memory it uses, and the current usage count. This is a typical /proc/mod-
ules file:

parport_pc 7604 1 (autoclean)

1p 4800 0 (unused)

parport 8084 1 [parport_probe parport_pc 1lp]
lockd 33256 1 (autoclean)

sunrpc 56612 1 (autoclean) [lockd]

ds 6252 1

182365 22304 1

pcmcia_core 41280 0 [ds 182365]

Here we see several modules in the system. Among other things, the parallel port
modules have been loaded in a stacked manner, as we saw in Figure 2-2. The
(autoclean) marker identifies modules managed by kmod or kerneld (see
Chapter 11); the (unused) marker means exactly that. Other flags exist as well.
In Linux 2.0, the second (size) field was expressed in pages (4 KB each on most
platforms) rather than bytes.

Unloading

To unload a module, use the rmmod command. Its task is much simpler than
loading, since no linking has to be performed. The command invokes the
delete_module system call, which calls cleanup_module in the module itself if the
usage count is zero or returns an error otherwise.

The cleanup_module implementation is in charge of unregistering every item that
was registered by the module. Only the exported symbols are removed automati-
cally.

Explicit Initialization and Cleanup Functions

As we have seen, the kernel calls init_module to initialize a newly loaded module,
and calls cleanup_module just before module removal. In modern kernels, how-
ever, these functions often have different names. As of kernel 2.3.13, a facility
exists for explicitly naming the module initialization and cleanup routines; using
this facility is the preferred programming style.

34

22 June 2001 16:34

Using Resources

Consider an example. If your module names its initialization routine my_init
(instead of init_module) and its cleanup routine my_cleanup, you would mark
them with the following two lines (usually at the end of the source file):

module_init(my_init);
module_exit (my_cleanup) ;

Note that your code must include <linux/init.h> to use module_init and
module_exit.

The advantage of doing things this way is that each initialization and cleanup func-
tion in the kernel can have a unique name, which helps with debugging. These
functions also make life easier for those writing drivers that work either as a mod-
ule or built directly into the kernel. However, use of module_init and module_exit
is not required if your initialization and cleanup functions use the old names. In
fact, for modules, the only thing they do is define init_module and cleanup_mod-
ule as new names for the given functions.

If you dig through the kernel source (in versions 2.2 and later), you will likely see
a slightly different form of declaration for module initialization and cleanup func-
tions, which looks like the following:

static int _ _init my init(void)

{
}

static void _ _exit my_ cleanup (void)
{

}

The attribute __init, when used in this way, will cause the initialization function
to be discarded, and its memory reclaimed, after initialization is complete. It only
works, however, for built-in drivers; it has no effect on modules. _ _exit, instead,
causes the omission of the marked function when the driver is not built as a mod-
ule; again, in modules, it has no effect.

The use of __init (and _ _initdata for data items) can reduce the amount of
memory used by the kernel. There is no harm in marking module initialization
functions with __init, even though currently there is no benefit either. Manage-
ment of initialization sections has not been implemented yet for modules, but it’s a
possible enhancement for the future.

Using Resources

A module can’'t accomplish its task without using system resources such as

35

22 June 2001 16:34

Chapter 2: Building and Running Modules

memory, I/O ports, I/O memory, and interrupt lines, as well as DMA channels if
you use old-fashioned DMA controllers like the Industry Standard Architecture
(ISA) one.

As a programmer, you are already accustomed to managing memory allocation;
writing kernel code is no different in this regard. Your program obtains a memory
area using kmalloc and releases it using kfree. These functions behave like malloc
and free, except that kmalloc takes an additional argument, the priority. Usually, a
priority of GFP_KERNEL or GFP_USER will do. The GFP acronym stands for “get
free page.” (Memory allocation is covered in detail in Chapter 7.)

Beginning driver programmers may initially be surprised at the need to allocate
I/O ports, I/O memory,” and interrupt lines explicitly. After all, it is possible for a
kernel module to simply access these resources without telling the operating sys-
tem about it. Although system memory is anonymous and may be allocated from
anywhere, I/O memory, ports, and interrupts have very specific roles. For
instance, a driver needs to be able to allocate the exact ports it needs, not just
some ports. But drivers cannot just go about making use of these system resources
without first ensuring that they are not already in use elsewhere.

1/0 Ports and 1/0O Memory

The job of a typical driver is, for the most part, writing and reading I/O ports and
I/O memory. Access to I/O ports and I/O memory (collectively called /O regions)
happens both at initialization time and during normal operations.

Unfortunately, not all bus architectures offer a clean way to identify I/O regions
belonging to each device, and sometimes the driver must guess where its I/O
regions live, or even probe for the devices by reading and writing to “possible”
address ranges. This problem is especially true of the ISA bus, which is still in use
for simple devices to plug in a personal computer and is very popular in the
industrial world in its PC/104 implementation (see PC/104 and PC/104+ in Chapter
15).

Despite the features (or lack of features) of the bus being used by a hardware
device, the device driver should be guaranteed exclusive access to its I/O regions
in order to prevent interference from other drivers. For example, if a module prob-
ing for its hardware should happen to write to ports owned by another device,
weird things would undoubtedly happen.

The developers of Linux chose to implement a request/free mechanism for I/O
regions, mainly as a way to prevent collisions between different devices. The
mechanism has long been in use for I/O ports and was recently generalized to
manage resource allocation at large. Note that this mechanism is just a software

* The memory areas that reside on the peripheral device are commonly called /O memory
to differentiate them from system RAM, which is customarily called memory).

36

22 June 2001 16:34

Using Resources

abstraction that helps system housekeeping, and may or may not be enforced by
hardware features. For example, unauthorized access to I/O ports doesn’t produce
any error condition equivalent to “segmentation fault”—the hardware can’t enforce
port registration.

Information about registered resources is available in text form in the files
/proc/ioports and /proc/iomem, although the latter was only introduced during 2.3
development. We'll discuss version 2.4 now, introducing portability issues at the
end of the chapter.

Ports

A typical /proc/ioports file on a recent PC that is running version 2.4 of the kernel
will look like the following:

0000-001f : dmal
0020-003f : picl
0040-005f : timer
0060-006f : keyboard
0080-008f : dma page reg
00a0-00bf : pic2
00c0-00df : dma2
00f0-00ff : fpu
0170-0177 : idel
01£0-01£f7 : ide0
02f8-02ff : serial(set)
0300-031f : NE2000
0376-0376 : idel
03c0-03df : vga+
03f6-03f6 : ide0l
03£f8-03ff : serial(set)
1000-103f : Intel Corporation 82371AB PIIX4 ACPI
1000-1003 : acpi
1004-1005 : acpi
1008-100b : acpi
100c-100f : acpi
1100-110f : Intel Corporation 82371AB PIIX4 IDE
1300-131f : pcnet_cs
1400-141f : Intel Corporation 82371AB PIIX4 ACPI
1800-18ff : PCI CardBus #02
1c00-1cff : PCI CardBus #04
5800-581f : Intel Corporation 82371AB PIIX4 USB
d000-dfff : PCI Bus #01
d000-d0ff : ATI Technologies Inc 3D Rage LT Pro AGP-133

Each entry in the file specifies (in hexadecimal) a range of ports locked by a driver
or owned by a hardware device. In earlier versions of the kernel the file had the
same format, but without the “layered” structure that is shown through indenta-
tion.

37

22 June 2001 16:34

Chapter 2: Building and Running Modules

The file can be used to avoid port collisions when a new device is added to the
system and an I/O range must be selected by moving jumpers: the user can check
what ports are already in use and set up the new device to use an available I/O
range. Although you might object that most modern hardware doesn’t use jumpers
any more, the issue is still relevant for custom devices and industrial components.

But what is more important than the ioports file itself is the data structure behind
it. When the software driver for a device initializes itself, it can know what port
ranges are already in use; if the driver needs to probe I/O ports to detect the new
device, it will be able to avoid probing those ports that are already in use by other
drivers.

ISA probing is in fact a risky task, and several drivers distributed with the official
Linux kernel refuse to perform probing when loaded as modules, to avoid the risk
of destroying a running system by poking around in ports where some yet-
unknown hardware may live. Fortunately, modern (as well as old-but-well-
thought-out) bus architectures are immune to all these problems.

The programming interface used to access the I/O registry is made up of three
functions:

int check_region(unsigned long start, unsigned long len);
struct resource *request_region(unsigned long start,
unsigned long len, char *name) ;

void release_region(unsigned long start, unsigned long len);

check_region may be called to see if a range of ports is available for allocation; it
returns a negative error code (such as ~EBUSY or -~EINVAL) if the answer is no.
request_region will actually allocate the port range, returning a non-NULL pointer
value if the allocation succeeds. Drivers don’t need to use or save the actual
pointer returned—checking against NULL is all you need to do.* Code that needs
to work only with 2.4 kernels need not call check_region at all; in fact, it’s better
not to, since things can change between the calls to check _region and
request_region. If you want to be portable to older kernels, however, you must
use check_region because request_region used to return void before 2.4. Your
driver should call release_region, of course, to release the ports when it is done
with them.

The three functions are actually macros, and they are declared in
<linux/ioport.h>.

The typical sequence for registering ports is the following, as it appears in the
skull sample driver. (The function skull_probe_hw is not shown here because it
contains device-specific code.)

* The actual pointer is used only when the function is called internally by the resource
management subsystem of the kernel.

38

22 June 2001 16:34

Using Resources

#include <linux/ioport.h>

#include <linux/errno.h>

static int skull_detect (unsigned int port, unsigned int range)
{

int err;

if ((err = check_region(port,range)) < 0) return err; /* busy */

if (skull_probe_hw(port,range) != 0) return -ENODEV; /* not found */
request_region (port, range, "skull") ; /* "Can’'t fail" */

return 0;

}

This code first looks to see if the required range of ports is available; if the ports
cannot be allocated, there is no point in looking for the hardware. The actual allo-
cation of the ports is deferred until after the device is known to exist. The
request_region call should never fail; the kernel only loads a single module at a
time, so there should not be a problem with other modules slipping in and steal-
ing the ports during the detection phase. Paranoid code can check, but bear in
mind that kernels prior to 2.4 define request_region as returning void.

Any 1/O ports allocated by the driver must eventually be released; skull does it
from within cleanup_module:

static void skull_release(unsigned int port, unsigned int range)

{
release_region(port, range) ;
}

The request/free approach to resources is similar to the register/unregister
sequence described earlier for facilities and fits well in the goto-based implemen-
tation scheme already outlined.

Memory

Similar to what happens for I/O ports, I/O memory information is available in the
/proc/iomem file. This is a fraction of the file as it appears on a personal computer:

00000000-0009fbff System RAM
0009£fc00-0009ffff : reserved
000a0000-000bffff : Video RAM area
000c0000-000c7£f£ff : video ROM
000£f0000-000f£ff£ff System ROM

00100000-03feffff

00100000-0022¢c557 :
0022c558-0024455f :

20000000-2fffffff
68000000-68000££f£f
68001000-68001£fff
e0000000-e3f££f££fE
e4000000-e7£f££££E

e4000000-e4ffffff :

System RAM

Kernel code
Kernel data
Intel Corporation
Texas Instruments
Texas Instruments
PCI Bus #01

PCI Bus #01

ATI Technologies

440BX/ZX - 82443BX/ZX Host bridge
PCI1225
PCI1225 (#2)

Inc 3D Rage LT Pro AGP-133

39

22 June 2001 16:34

Chapter 2: Building and Running Modules

e6000000-e6000fff : ATI Technologies Inc 3D Rage LT Pro AGP-133
f££c0000-f£f£££ff£ff : reserved

Once again, the values shown are hexadecimal ranges, and the string after the
colon is the name of the “owner” of the I/O region.

As far as driver writing is concerned, the registry for I/O memory is accessed in
the same way as for I/O ports, since they are actually based on the same internal
mechanism.

To obtain and relinquish access to a certain I/O memory region, the driver should
use the following calls:

int check_mem_ region(unsigned long start, unsigned long len);

int request_mem_region (unsigned long start, unsigned long len,
char *name) ;

int release_mem_region(unsigned long start, unsigned long len);

A typical driver will already know its own I/O memory range, and the sequence
shown previously for I/O ports will reduce to the following:

if (check_mem_ region(mem_addr, mem_size)) { printk("drivername:
memory already in use\n"); return -EBUSY; }
request_mem_region (mem_addr, mem_size, "drivername") ;

Resource Allocation in Linux 2.4

The current resource allocation mechanism was introduced in Linux 2.3.11 and
provides a flexible way of controlling system resources. This section briefly
describes the mechanism. However, the basic resource allocation functions
(request_region and the rest) are still implemented (via macros) and are still uni-
versally used because they are backward compatible with earlier kernel versions.
Most module programmers will not need to know about what is really happening
under the hood, but those working on more complex drivers may be interested.

Linux resource management is able to control arbitrary resources, and it can do so
in a hierarchical manner. Globally known resources (the range of I/O ports, say)
can be subdivided into smaller subsets—for example, the resources associated
with a particular bus slot. Individual drivers can then further subdivide their range
if need be.

Resource ranges are described via a resource structure, declared in
<linux/ioport.h>:

struct resource {

const char *name;

unsigned long start, end;

unsigned long flags;

struct resource *parent, *sibling, *child;
};

40

22 June 2001 16:34

Using Resources

Top-level (root) resources are created at boot time. For example, the resource
structure describing the I/O port range is created as follows:

struct resource ioport_resource =
{ "PCI IO", 0x0000, IO_SPACE_LIMIT, IORESOURCE_IO };

Thus, the name of the resource is PCI IO, and it covers a range from zero
through TO_SPACE_LIMIT, which, according to the hardware platform being run,
can be OxEfE£££f (16 bits of address space, as happens on the x86, IA-64, Alpha,
M68k, and MIPS), Oxffffffff (32 bitss SPARC, PPC, SH) or
OxXfEEffEEEEEEELEEE (64 bits: SPARCO4).

Subranges of a given resource may be created with allocate_resource. For exam-
ple, during PCI initialization a new resource is created for a region that is actually
assigned to a physical device. When the PCI code reads those port or memory
assignments, it creates a new resource for just those regions, and allocates them
under ioport_resource or iomem_resource.

A driver can then request a subset of a particular resource (actually a subrange of
a global resource) and mark it as busy by calling _ _request_region, which returns
a pointer to a new struct resource data structure that describes the resource
being requested (or returns NULL in case of error). The structure is already part of
the global resource tree, and the driver is not allowed to use it at will.

An interested reader may enjoy looking at the details by browsing the source in
kernel/resource.c and looking at the use of the resource management scheme in
the rest of the kernel. Most driver writers, however, will be more than adequately
served by request_region and the other functions introduced in the previous sec-
tion.

This layered mechanism brings a couple of benefits. One is that it makes the I/O
structure of the system apparent within the data structures of the kernel. The result
shows up in /proc/ioports, for example:

e800-e8ff : Adaptec AHA-2940U2/W / 7890
e800-e8be : aic7xxx

The range e800-e8ff is allocated to an Adaptec card, which has identified itself
to the PCI bus driver. The aic 7xxx driver has then requested most of that range—
in this case, the part corresponding to real ports on the card.

The other advantage to controlling resources in this way is that it partitions the
port space into distinct subranges that reflect the hardware of the underlying sys-
tem. Since the resource allocator will not allow an allocation to cross subranges, it
can block a buggy driver (or one looking for hardware that does not exist on the
system) from allocating ports that belong to more than range—even if some of
those ports are unallocated at the time.

41

22 June 2001 16:34

Chapter 2: Building and Running Modules

Automatic and Manual Configuration

Several parameters that a driver needs to know can change from system to system.
For instance, the driver must know the hardware’s actual I/O addresses, or mem-
ory range (this is not a problem with well-designed bus interfaces and only applies
to ISA devices). Sometimes you’'ll need to pass parameters to a driver to help it in
finding its own device or to enable/disable specific features.

Depending on the device, there may be other parameters in addition to the I/O
address that affect the driver’s behavior, such as device brand and release number.
It's essential for the driver to know the value of these parameters in order to work
correctly. Setting up the driver with the correct values (i.e., configuring it) is one
of the tricky tasks that need to be performed during driver initialization.

Basically, there are two ways to obtain the correct values: either the user specifies
them explicitly or the driver autodetects them. Although autodetection is undoubt-
edly the best approach to driver configuration, user configuration is much easier to
implement. A suitable trade-off for a driver writer is to implement automatic con-
figuration whenever possible, while allowing user configuration as an option to
override autodetection. An additional advantage of this approach to configuration
is that the initial development can be done without autodetection, by specifying
the parameters at load time, and autodetection can be implemented later.

Many drivers also have configuration options that control other aspects of their
operation. For example, drivers for SCSI adapters often have options controlling
the use of tagged command queuing, and the Integrated Device Electronics (IDE)
drivers allow user control of DMA operations. Thus, even if your driver relies
entirely on autodetection to locate hardware, you may want to make other config-
uration options available to the user.

Parameter values can be assigned at load time by insmod or modprobe; the latter
can also read parameter assignment from a configuration file (typically
/etc/modules.conf). The commands accept the specification of integer and string
values on the command line. Thus, if your module were to provide an integer
parameter called skull_ival and a string parameter skull_sval, the parameters could
be set at module load time with an insmod command like:

insmod skull skull_ival=666 skull_sval="the beast"

However, before insmod can change module parameters, the module must make
them available. Parameters are declared with the MODULE_PARM macro, which is
defined in module.h. MODULE_PARM takes two parameters: the name of the vari-
able, and a string describing its type. The macro should be placed outside of any
function and is typically found near the head of the source file. The two parame-
ters mentioned earlier could be declared with the following lines:

42

22 June 2001 16:34

Automatic and Manual Configuration

int skull_ival=0;
char *skull_sval;

MODULE_PARM (skull_ival, "i");
MODULE_PARM (skull_sval, "s");

Five types are currently supported for module parameters: b, one byte; h, a short
(two bytes); i, an integer; 1, a long; and s, a string. In the case of string values, a
pointer variable should be declared; insmod will allocate the memory for the user-
supplied parameter and set the variable accordingly. An integer value preceding
the type indicates an array of a given length; two numbers, separated by a
hyphen, give a minimum and maximum number of values. If you want to find the
author’s description of this feature, you should refer to the header file
<linux/module.h>.

As an example, an array that must have at least two and no more than four values
could be declared as:

int skull_arrayl[4];
MODULE_PARM (skull_array, "2-4i");

There is also a macro MODULE_PARM DESC, which allows the programmer to
provide a description for a module parameter. This description is stored in the
object file; it can be viewed with a tool like objdump, and can also be displayed
by automated system administration tools. An example might be as follows:

int base_port = 0x300;
MODULE_PARM (base_port, "i");
MODULE_PARM_DESC (base_port, "The base I/0 port (default 0x300)");

All module parameters should be given a default value; insmod will change the
value only if explicitly told to by the user. The module can check for explicit
parameters by testing parameters against their default values. Automatic configura-
tion, then, can be designed to work this way: if the configuration variables have
the default value, perform autodetection; otherwise, keep the current value. In
order for this technique to work, the “default” value should be one that the user
would never actually want to specify at load time.

The following code shows how sku/l autodetects the port address of a device. In
this example, autodetection is used to look for multiple devices, while manual
configuration is restricted to a single device. The function skull_detect occurred
earlier, in “Ports,” while skull_init_board is in charge of device-specific initializa-
tion and thus is not shown.

/*

* port ranges: the device can reside between

* 0x280 and 0x300, in steps of 0x10. It uses 0x10 ports.
*/

#define SKULL_PORT_FLOOR 0x280

#define SKULL_PORT_ CEIL 0x300

#define SKULL_PORT_RANGE 0x010

43

22 June 2001 16:34

Chapter 2: Building and Running Modules

/*

* the following function performs autodetection, unless a specific
* value was assigned by insmod to "skull_port_base"

*/

static int skull_port_base=0; /* 0 forces autodetection */
MODULE_PARM (skull_port_base, "i");
MODULE_PARM_DESC (skull_port_base, "Base I/O port for skull");

static int skull_find _hw(void) /* returns the # of devices */
{
/* base is either the load-time value or the first trial */
int base = skull_port_base ? skull_port_base
SKULL_PORT_FLOOR;
int result = 0;

/* loop one time if value assigned; try them all if autodetecting */

do {

if (skull_detect (base, SKULL_PORT RANGE) == 0) {

skull_init_board (base) ;

result++;

}

base += SKULL_PORT RANGE; /* prepare for next trial */
}
while (skull_port_base == 0 && base < SKULL_PORT CEIL) ;

return result;

}

If the configuration variables are used only within the driver (they are not pub-
lished in the kernel’s symbol table), the driver writer can make life a little easier
for the user by leaving off the prefix on the variable names (in this case,
skull_). Prefixes usually mean little to users except extra typing.

For completeness, there are three other macros that place documentation into the
object file. They are as follows:

MODULE_AUTHOR (name)
Puts the author’s name into the object file.

MODULE_DESCRIPTION (desc)
Puts a description of the module into the object file.

MODULE_SUPPORTED_DEVICE (dev)
Places an entry describing what device is supported by this module. Com-
ments in the kernel source suggest that this parameter may eventually be used
to help with automated module loading, but no such use is made at this time.

44

22 June 2001 16:34

Doing It in User Space

Doing It in User Space

A Unix programmer who’s addressing kernel issues for the first time might well be
nervous about writing a module. Writing a user program that reads and writes
directly to the device ports is much easier.

Indeed, there are some arguments in favor of user-space programming, and some-
times writing a so-called user-space device driver is a wise alternative to kernel
hacking.

The advantages of user-space drivers can be summarized as follows:

e The full C library can be linked in. The driver can perform many exotic tasks
without resorting to external programs (the utility programs implementing
usage policies that are usually distributed along with the driver itself).

e The programmer can run a conventional debugger on the driver code without
having to go through contortions to debug a running kernel.

e If a user-space driver hangs, you can simply kill it. Problems with the driver
are unlikely to hang the entire system, unless the hardware being controlled is
really misbehaving.

e User memory is swappable, unlike kernel memory. An infrequently used
device with a huge driver won’t occupy RAM that other programs could be
using, except when it is actually in use.

e A well-designed driver program can still allow concurrent access to a device.

An example of a user-space driver is the X server: it knows exactly what the hard-
ware can do and what it can’t, and it offers the graphic resources to all X clients.
Note, however, that there is a slow but steady drift toward frame-buffer-based
graphics environments, where the X server acts only as a server based on a real
kernel-space device driver for actual graphic manipulation.

Usually, the writer of a user-space driver implements a server process, taking over
from the kernel the task of being the single agent in charge of hardware control.
Client applications can then connect to the server to perform actual communica-
tion with the device; a smart driver process can thus allow concurrent access to
the device. This is exactly how the X server works.

Another example of a user-space driver is the ghm mouse server: it performs arbi-
tration of the mouse device between clients, so that several mouse-sensitive appli-
cations can run on different virtual consoles.

Sometimes, though, the user-space driver grants device access to a single program.
This is how /libsuga works. The library, which turns a TTY into a graphics display,
gets linked to the application, thus supplementing the application’s capabilities

45

22 June 2001 16:34

Chapter 2: Building and Running Modules

without resorting to a central authority (e.g., a server). This approach usually gives
you better performance because it skips the communication overhead, but it
requires the application to run as a privileged user (this is one of the problems
being solved by the frame buffer device driver running in kernel space).

But the user-space approach to device driving has a number of drawbacks. The
most important are as follows:

e Interrupts are not available in user space. The only way around this (on the
x806) is to use the vm86 system call, which imposes a performance penalty.*

e Direct access to memory is possible only by mmapping /dev/mem, and only a
privileged user can do that.

e Access to I/O ports is available only after calling ioperm or iopl. Moreover, not
all platforms support these system calls, and access to /dev/port can be too
slow to be effective. Both the system calls and the device file are reserved to a
privileged user.

e Response time is slower, because a context switch is required to transfer infor-
mation or actions between the client and the hardware.

e Worse yet, if the driver has been swapped to disk, response time is unaccept-
ably long. Using the mlock system call might help, but usually you'll need to
lock several memory pages, because a user-space program depends on a lot
of library code. mlock, too, is limited to privileged users.

e The most important devices can’t be handled in user space, including, but not
limited to, network interfaces and block devices.

As you see, user-space drivers can’t do that much after all. Interesting applications
nonetheless exist: for example, support for SCSI scanner devices (implemented by
the SANE package) and CD writers (implemented by cdrecord and other tools). In
both cases, user-level device drivers rely on the “SCSI generic” kernel driver,
which exports low-level SCSI functionality to user-space programs so they can
drive their own hardware.

In order to write a user-space driver, some hardware knowledge is sufficient, and
there’s no need to understand the subtleties of kernel software. We won'’t discuss
user-space drivers any further in this book, but will concentrate on kernel code
instead.

One case in which working in user space might make sense is when you are
beginning to deal with new and unusual hardware. This way you can learn to
manage your hardware without the risk of hanging the whole system. Once you've

* The system call is not discussed in this book because the subject matter of the text is ker-
nel drivers; moreover, vm806 is too platform specific to be really interesting.

46

22 June 2001 16:34

Backward Compatibility

done that, encapsulating the software in a kernel module should be a painless
operation.

Backward Compatibility

The Linux kernel is a moving target—many things change over time as new fea-
tures are developed. The interface that we have described in this chapter is that
provided by the 2.4 kernel; if your code needs to work on older releases, you will
need to take various steps to make that happen.

This is the first of many “backward compatibility” sections in this book. At the end
of each chapter we’ll cover the things that have changed since version 2.0 of the
kernel, and what needs to be done to make your code portable.

For starters, the KERNEL_VERSION macro was introduced in kernel 2.1.90. The
sysdep.bh header file contains a replacement for kernels that need it.

Changes in Resource Management

The new resource management scheme brings in a few portability problems if you
want to write a driver that can run with kernel versions older than 2.4. This section
discusses the portability problems you’ll encounter and how the sysdep.h header
tries to hide them.

The most apparent change brought about by the new resource management code
is the addition of request_mem_region and related functions. Their role is limited
to accessing the I/O memory database, without performing specific operations on
any hardware. What you can do with earlier kernels, thus, is to simply not call the
functions. The sysdep.h header easily accomplishes that by defining the functions
as macros that return 0 for kernels earlier than 2.4.

Another difference between 2.4 and earlier kernel versions is in the actual proto-
types of request_region and related functions.

Kernels earlier than 2.4 declared both request_region and release_region as func-
tions returning void (thus forcing the use of check_region beforehand). The new
implementation, more correctly, has functions that return a pointer value so that
an error condition can be signaled (thus making check_region pretty useless). The
actual pointer value will not generally be useful to driver code for anything other
than a test for NULL, which means that the request failed.

If you want to save a few lines of code in your drivers and are not concerned
about backward portability, you could exploit the new function calls and avoid
using check_region in your code. Actually, check_region is now implemented on
top of request_region, releasing the 1I/O region and returning success if the request
is fulfilled; the overhead is negligible because none of these functions is ever
called from a time-critical code section.

47

22 June 2001 16:34

Chapter 2: Building and Running Modules

If you prefer to be portable, you can stick to the call sequence we suggested ear-
lier in this chapter and ignore the return values of request_region and
release_region. Anyway, sysdep.h declares both functions as macros returning 0
(success), so you can both be portable and check the return value of every func-
tion you call.

The last difference in the I/O registry between version 2.4 and earlier versions of
the kernel is in the data types used for the start and len arguments. Whereas
new kernels always use unsigned long, older kernels used shorter types. This
change has no effect on driver portability, though.

Compiling for Multiprocessor Systems

Version 2.0 of the kernel didn’t use the CONFIG_SMP configuration option to build
for SMP systems; instead, choice was made a global assignment in the main kernel
makefile. Note that modules compiled for an SMP machine will not work in a
uniprocessor kernel, and vice versa, so it is important to get this one right.

The sample code accompanying this book automatically deals with SMP in the
makefiles, so the code shown earlier need not be copied in each module. How-
ever, we do not support SMP under version 2.0 of the kernel. This should not be a
problem because multiprocessor support was not very robust in Linux 2.0, and
everyone running SMP systems should be using 2.2 or 2.4. Version 2.0 is covered
by this book because it's still the platform of choice for small embedded systems
(especially in its no-MMU implementation), but no such system has multiple pro-
CEeSSOrs.

Exporting Symbols in Linux 2.0

The Linux 2.0 symbol export mechanism was built around a function called regis-
ter_symitab. A Linux 2.0 module would build a table describing all of the symbols
to be exported, then would call register_symitab from its initialization function.
Only symbols that were listed in the explicit symbol table were exported to the
kernel. If, instead, the function was not called at all, all global symbols were
exported.

If your module doesn’t need to export any symbols, and you don’t want to declare
everything as static, just hide global symbols by adding the following line to
init_module. This call to register_symtab simply overwrites the module’s default
symbol table with an empty one:

register_ symtab (NULL) ;

This is exactly how sysdep.h defines EXPORT_NO_SYMBOLS when compiling for
version 2.0. This is also why EXPORT_NO_SYMBOLS must appear within init_mod-
ule to work properly under Linux 2.0.

48

22 June 2001 16:34

Backward Compatibility

If you do need to export symbols from your module, you will need to create a
symbol table structure describing these symbols. Filling a Linux 2.0 symbol table
structure is a tricky task, but kernel developers have provided header files to sim-
plify things. The following lines of code show how a symbol table is declared and
exported using the facilities offered by the headers of Linux 2.0:

static struct symbol_table skull_syms = {

#include <linux/symtab_begin.h>
X(skull_£fnl),
X(skull_fn2),
X (skull_variable),
#include <linux/symtab_end.h>
}i

register_symtab (&skull_syms) ;

Writing portable code that controls symbol visibility takes an explicit effort from
the device driver programmer. This is a case where it is not sufficient to define a
few compatibility macros; instead, portability requires a fair amount of conditional
preprocessor code, but the concepts are simple. The first step is to identify the
kernel version in use and to define some symbols accordingly. What we chose to
do in sysdep.h is define a macro REGISTER_SYMTAB () that expands to nothing
on version 2.2 and later and expands to register_symtab on version 2.0. Also,
__USE_OLD_SYMTAB_ _ is defined if the old code must be used.

By making use of this code, a module that exports symbols may now do so
portably. In the sample code is a module, called misc-modules/export.c, that does
nothing except export one symbol. The module, covered in more detail in “Ver-
sion Control in Modules” in Chapter 11, includes the following lines to export the
symbol portably:

#ifdef __USE_OLD_SYMTAB_ _
static struct symbol_table export_syms = {
#include <linux/symtab_begin.h>
X (export_function),
#include <linux/symtab_end.h>
Y
#else
EXPORT_SYMBOL (export_function) ;
#endif

int export_init(void)

{

REGISTER_SYMTAB (&export_syms) ;
return 0;

}

49

22 June 2001 16:34

Chapter 2: Building and Running Modules

If __USE_OLD_SYMTAB_ _ is set (meaning that you are dealing with a 2.0 ker-
neD), the symbol_table structure is defined as needed; otherwise, EXPORT_SYMBOL
is used to export the symbol directly. Then, in init_module, REGISTER_SYMTAB
is called; on anything but a 2.0 kernel, it will expand to nothing.

Module Configuration Parameters

MODULE_PARM was introduced in kernel version 2.1.18. With the 2.0 kernel, no
parameters were declared explicitly; instead, insmod was able to change the value
of any variable within the module. This method had the disadvantage of providing
user access to variables for which this mode of access had not been intended;
there was also no type checking of parameters. MODULE_PARM makes module
parameters much cleaner and safer, but also makes Linux 2.2 modules incompati-
ble with 2.0 kernels.

If 2.0 compatibility is a concern, a simple preprocessor test can be used to define
the various MODULE_ macros to do nothing. The header file sysdep.h in the sam-
ple code defines these macros when needed.

Quick Reference

This section summarizes the kernel functions, variables, macros, and /proc files
that we’ve touched on in this chapter. It is meant to act as a reference. Each item
is listed after the relevant header file, if any. A similar section appears at the end
of every chapter from here on, summarizing the new symbols introduced in the
chapter.

__KERNEL_ _

MODULE
Preprocessor symbols, which must both be defined to compile modularized
kernel code.

__SMP_ _

A preprocessor symbol that must be defined when compiling modules for
symmetric multiprocessor systems.

int init_module(void) ;
void cleanup_module (void) ;
Module entry points, which must be defined in the module object file.

#include <linux/init.h>

module_init (init_function);

module_exit (cleanup_function) ;
The modern mechanism for marking a module’s initialization and cleanup
functions.

50

Quick Reference

#include <linux/module.h>
Required header. It must be included by a module source.

MOD_INC_USE_COUNT;
MOD_DEC_USE_COUNT;
MOD_IN_USE;

Macros that act on the usage count.

/proc/modules
The list of currently loaded modules. Entries contain the module name, the
amount of memory each module occupies, and the usage count. Extra strings
are appended to each line to specify flags that are currently active for the
module.

EXPORT_SYMTAB;
Preprocessor macro, required for modules that export symbols.

EXPORT_NO_SYMBOLS;
Macro used to specify that the module exports no symbols to the kernel.

EXPORT_SYMBOL (symbol) ;

EXPORT_SYMBOL_NOVERS (symbol) ;
Macro used to export a symbol to the kernel. The second form exports with-
out using versioning information.

int register_symtab(struct symbol_table *);
Function used to specify the set of public symbols in the module. Used in 2.0
kernels only.

#include <linux/symtab_begin.h>

X (symbol) ,

#include <linux/symtab_end.h>
Headers and preprocessor macro used to declare a symbol table in the 2.0
kernel.

MODULE_PARM (variable, type);

MODULE_PARM_DESC (variable, description);
Macros that make a module variable available as a parameter that may be
adjusted by the user at module load time.

MODULE_AUTHOR (author) ;
MODULE_DESCRIPTION (description) ;
MODULE_SUPPORTED_DEVICE (device) ;

Place documentation on the module in the object file.

51

22 June 2001 16:34

22 June 2001 16:34

Chapter 2: Building and Running Modules

#include <linux/version.h>
Required header. It is included by <linux/module.h>, unless
_ _NO_VERSION_ _ is defined (see later in this list).

LINUX_VERSION_CODE
Integer macro, useful to #ifdef version dependencies.

char kernel_version[] = UTS_RELEASE;
Required variable in every module. <linux/module.h> defines it, unless
_ _NO_VERSION_ _ is defined (see the following entry).

__NO_VERSTION_ _
Preprocessor symbol. Prevents declaration of kernel_version in
<linux/module.h>.

#include <linux/sched.h>
One of the most important header files. This file contains definitions of much
of the kernel API used by the driver, including functions for sleeping and
numerous variable declarations.

struct task_struct *current;
The current process.

current->pid
current->comm
The process ID and command name for the current process.

#include <linux/kernel.h>
int printk(const char * fmt, ...);
The analogue of printffor kernel code.

#include <linux/malloc.h>

void *kmalloc (unsigned int size, int priority);

void kfree(void *obj);
Analogue of malloc and free for kernel code. Use the value of GFP_KERNEL
as the priority.

#include <linux/ioport.h>
int check_region(unsigned long from, unsigned long extent);
struct resource *request_region(unsigned long from, unsigned
long extent, const char *name) ;
void release_region(unsigned long from, unsigned long
extent) ;
Functions used to register and release 1/O ports.

52

22 June 2001 16:34

Quick Reference

int check_mem region (unsigned long start, unsigned long
extent) ;
struct resource *request_mem_region (unsigned long start,
unsigned long extent, const char *name);
void release_mem region (unsigned long start, unsigned long
extent) ;
Macros used to register and release I/O memory regions.

/proc/ksyms
The public kernel symbol table.

/proc/ioports
The list of ports used by installed devices.

/proc/iomem
The list of allocated memory regions.

53

22 June 2001 16:35

CHAPTER THREE

CHAR DRIVERS

The goal of this chapter is to write a complete char device driver. We’ll develop a
character driver because this class is suitable for most simple hardware devices.
Char drivers are also easier to understand than, for example, block drivers or net-
work drivers. Our ultimate aim is to write a modularized char driver, but we won’t
talk about modularization issues in this chapter.

Throughout the chapter, we'll present code fragments extracted from a real device
driver: scull, short for Simple Character Utility for Loading Localities. scull is a char
driver that acts on a memory area as though it were a device. A side effect of this
behavior is that, as far as scull is concerned, the word device can be used inter-
changeably with “the memory area used by scull.”

The advantage of scull is that it isn’t hardware dependent, since every computer
has memory. scull just acts on some memory, allocated using kmalloc. Anyone can
compile and run scull, and scull is portable across the computer architectures on
which Linux runs. On the other hand, the device doesn’t do anything “useful”
other than demonstrating the interface between the kernel and char drivers and
allowing the user to run some tests.

The Design of scull

The first step of driver writing is defining the capabilities (the mechanism) the
driver will offer to user programs. Since our “device” is part of the computer’s
memory, we're free to do what we want with it. It can be a sequential or random-
access device, one device or many, and so on.

To make scull be useful as a template for writing real drivers for real devices, we’ll
show you how to implement several device abstractions on top of the computer
memory, each with a different personality.

The scull source implements the following devices. Each kind of device imple-
mented by the module is referred to as a type:

54

22 June 2001 16:35

Major and Minor Numbers

scullO to scull3

Four devices each consisting of a memory area that is both global and persis-
tent. Global means that if the device is opened multiple times, the data con-
tained within the device is shared by all the file descriptors that opened it.
Persistent means that if the device is closed and reopened, data isn’t lost. This
device can be fun to work with, because it can be accessed and tested using
conventional commands such as ¢p, cat, and shell I/O redirection; we’ll exam-
ine its internals in this chapter.

scullpipeO to scullpipe3

Four FIFO (first-in-first-out) devices, which act like pipes. One process reads
what another process writes. If multiple processes read the same device, they
contend for data. The internals of scullpipe will show how blocking and non-
blocking read and write can be implemented without having to resort to inter-
rupts. Although real drivers synchronize with their devices using hardware
interrupts, the topic of blocking and nonblocking operations is an important
one and is separate from interrupt handling (covered in Chapter 9).

scullsingle

scullpriv

sculluid

scullwuid
These devices are similar to scull0, but with some limitations on when an
open is permitted. The first (scullsingle) allows only one process at a time to
use the driver, whereas scullpriv is private to each virtual console (or X termi-
nal session) because processes on each console/terminal will get a different
memory area from processes on other consoles. sculluid and scullwuid can be
opened multiple times, but only by one user at a time; the former returns an
error of “Device Busy” if another user is locking the device, whereas the latter
implements blocking open. These variations of scull add more “policy” than
“mechanism;” this kind of behavior is interesting to look at anyway, because
some devices require types of management like the ones shown in these scu//
variations as part of their mechanism.

Each of the scull devices demonstrates different features of a driver and presents
different difficulties. This chapter covers the internals of scullO to skuli3; the more
advanced devices are covered in Chapter 5: scullpipe is described in “A Sample
Implementation: scullpipe” and the others in “Access Control on a Device File.”

Major and Minor Numbers

Char devices are accessed through names in the filesystem. Those names are
called special files or device files or simply nodes of the filesystem tree; they are
conventionally located in the /dev directory. Special files for char drivers are

55

22 June 2001 16:35

Chapter 3: Char Drivers

identified by a “c” in the first column of the output of /s - Block devices appear
in /dev as well, but they are identified by a “b.” The focus of this chapter is on
char devices, but much of the following information applies to block devices as
well.

If you issue the Is—/ command, you'll see two numbers (separated by a comma) in
the device file entries before the date of last modification, where the file length
normally appears. These numbers are the major device number and minor device
number for the particular device. The following listing shows a few devices as
they appear on a typical system. Their major numbers are 1, 4, 7, and 10, while
the minors are 1, 3, 5, 64, 65, and 129.

crw-rw-rw- 1 root root 1, 3 Feb 23 1999 null
Crw------- 1 root root 10, 1 Feb 23 1999 psaux
crw------- 1 rubini tty 4, 1 Aug 16 22:22 ttyl
crw-rw-rw- 1 root dialout 4, 64 Jun 30 11:19 ttysSO
crw-rw-rw- 1 root dialout 4, 65 Aug 16 00:00 ttysSl
Crw------- 1 root sys 7, 1 Feb 23 1999 wvcsl
Crw------- 1 root sys 7, 129 Feb 23 1999 wvcsal
crw-rw-rw- 1 root root 1, 5 Feb 23 1999 zero

The major number identifies the driver associated with the device. For example,
/dev/null and /dev/zero are both managed by driver 1, whereas virtual consoles
and serial terminals are managed by driver 4; similarly, both wvcs? and wvcsal
devices are managed by driver 7. The kernel uses the major number at open time
to dispatch execution to the appropriate driver.

The minor number is used only by the driver specified by the major number; other
parts of the kernel don’t use it, and merely pass it along to the driver. It is com-
mon for a driver to control several devices (as shown in the listing); the minor
number provides a way for the driver to differentiate among them.

Version 2.4 of the kernel, though, introduced a new (optional) feature, the device
file system or deyfs. If this file system is used, management of device files is sim-
plified and quite different; on the other hand, the new filesystem brings several
user-visible incompatibilities, and as we are writing it has not yet been chosen as a
default feature by system distributors. The previous description and the following
instructions about adding a new driver and special file assume that deyfs is not
present. The gap is filled later in this chapter, in “The Device Filesystem.”

When deufs is not being used, adding a new driver to the system means assigning
a major number to it. The assignment should be made at driver (module) initializa-
tion by calling the following function, defined in <linux/fs.h>:

int register_chrdev (unsigned int major, const char *name,
struct file_operations *fops);

56

22 June 2001 16:35

Major and Minor Numbers

The return value indicates success or failure of the operation. A negative return
code signals an error; a 0 or positive return code reports successful completion.
The major argument is the major number being requested, name is the name of
your device, which will appear in /proc/devices, and fops is the pointer to an
array of function pointers, used to invoke your driver’s entry points, as explained
in “File Operations,” later in this chapter.

The major number is a small integer that serves as the index into a static array of
char drivers; “Dynamic Allocation of Major Numbers” later in this chapter explains
how to select a major number. The 2.0 kernel supported 128 devices; 2.2 and 2.4
increased that number to 256 (while reserving the values 0 and 255 for future
uses). Minor numbers, too, are eight-bit quantities; they aren’t passed to regis-
ter_chrdev because, as stated, they are only used by the driver itself. There is
tremendous pressure from the developer community to increase the number of
possible devices supported by the kernel; increasing device numbers to at least 16
bits is a stated goal for the 2.5 development series.

Once the driver has been registered in the kernel table, its operations are associ-
ated with the given major number. Whenever an operation is performed on a char-
acter device file associated with that major number, the kernel finds and invokes
the proper function from the file_operations structure. For this reason, the
pointer passed to register_chrdev should point to a global structure within the
driver, not to one local to the module’s initialization function.

The next question is how to give programs a name by which they can request
your driver. A name must be inserted into the /dev directory and associated with
your driver’s major and minor numbers.

The command to create a device node on a filesystem is mknod, superuser privi-
leges are required for this operation. The command takes three arguments in addi-
tion to the name of the file being created. For example, the command

mknod /dev/scull0 c 254 0

creates a char device (¢) whose major number is 254 and whose minor number is
0. Minor numbers should be in the range 0 to 255 because, for historical reasons,
they are sometimes stored in a single byte. There are sound reasons to extend the
range of available minor numbers, but for the time being, the eight-bit limit is still
in force.

Please note that once created by mknod, the special device file remains unless it is
explicitly deleted, like any information stored on disk. You may want to remove
the device created in this example by issuing rm /dev/scullO.

Dynamic Allocation of Major Numbers

Some major device numbers are statically assigned to the most common devices. A
list of those devices can be found in Documentation/devices.txt within the kernel

57

22 June 2001 16:35

Chapter 3: Char Drivers

source tree. Because many numbers are already assigned, choosing a unique num-
ber for a new driver can be difficult—there are far more custom drivers than avail-
able major numbers. You could use one of the major numbers reserved for
“experimental or local use,” but if you experiment with several “local” drivers or
you publish your driver for third parties to use, you'll again experience the prob-
lem of choosing a suitable number.

Fortunately (or rather, thanks to someone’s ingenuity), you can request dynamic
assignment of a major number. If the argument major is set to 0 when you call
register_chrdev, the function selects a free number and returns it. The major num-
ber returned is always positive, while negative return values are error codes.
Please note the behavior is slightly different in the two cases: the function returns
the allocated major number if the caller requests a dynamic number, but returns 0
(not the major number) when successfully registering a predefined major number.

For private drivers, we strongly suggest that you use dynamic allocation to obtain
your major device number, rather than choosing a number randomly from the
ones that are currently free. If, on the other hand, your driver is meant to be use-
ful to the community at large and be included into the official kernel tree, you’ll
need to apply to be assigned a major number for exclusive use.

The disadvantage of dynamic assignment is that you can’t create the device nodes
in advance because the major number assigned to your module can’t be guaran-
teed to always be the same. This means that you won’t be able to use loading-on-
demand of your driver, an advanced feature introduced in Chapter 11. For normal
use of the driver, this is hardly a problem, because once the number has been
assigned, you can read it from /proc/devices.

To load a driver using a dynamic major number, therefore, the invocation of ins-
mod can be replaced by a simple script that after calling insmod reads
/proc/devices in order to create the special file(s).

A typical /proc/devices file looks like the following:

Character devices:
1 mem

2 pty

3 ttyp

4 ttyS

6 1lp

7 vcs

10 misc
13 input
14 sound
21 sg

180 usb

* Major numbers in the ranges 60 to 63, 120 to 127, and 240 to 254 are reserved for local
and experimental use: no real device will be assigned such major numbers.

58

22 June 2001 16:35

Major and Minor Numbers

Block devices:
2 fd
8 sd
11 sr
65 sd
66 sd

The script to load a module that has been assigned a dynamic number can thus be
written using a tool such as awk to retrieve information from /proc/devices in order
to create the files in /dev.

The following script, scull_load, is part of the scull distribution. The user of a
driver that is distributed in the form of a module can invoke such a script from the
system’s rc.local file or call it manually whenever the module is needed.

#!/bin/sh
module="scull"
device="scull"
mode="664"

invoke insmod with all arguments we were passed
and use a pathname, as newer modutils don’t look in . by default
/sbin/insmod -f ./$module.o $* || exit 1

remove stale nodes
rm -f /dev/${device}[0-3]

major=‘awk "\\$2==\"S$module\" {print \\$1}" /proc/devices'

mknod /dev/${device}0 c¢ $major
mknod /dev/${device}l c Smajor
mknod /dev/${device}2 c Smajor
mknod /dev/${device}3 c S$major

w NN P o

give appropriate group/permissions, and change the group.

Not all distributions have staff; some have "wheel" instead.
group="staff"

grep ’'“staff:’ /etc/group > /dev/null || group="wheel"

chgrp $group /dev/${device}[0-3]
chmod $mode /dev/${device}[0-3]

The script can be adapted for another driver by redefining the variables and
adjusting the mknod lines. The script just shown creates four devices because four
is the default in the scull sources.

The last few lines of the script may seem obscure: why change the group and
mode of a device? The reason is that the script must be run by the superuser, so
newly created special files are owned by root. The permission bits default so that
only root has write access, while anyone can get read access. Normally, a device
node requires a different access policy, so in some way or another access rights
must be changed. The default in our script is to give access to a group of users,

59

22 June 2001 16:35

Chapter 3: Char Drivers

but your needs may vary. Later, in the section “Access Control on a Device File” in
Chapter 5, the code for sculluid will demonstrate how the driver can enforce its
own kind of authorization for device access. A scull_unload script is then available
to clean up the /dev directory and remove the module.

As an alternative to using a pair of scripts for loading and unloading, you could
write an init script, ready to be placed in the directory your distribution uses for
these scripts.” As part of the scull source, we offer a fairly complete and config-
urable example of an init script, called scull.init; it accepts the conventional argu-
ments—either “start” or “stop” or “restart”—and performs the role of both
scull_load and scull_unload.

If repeatedly creating and destroying /dev nodes sounds like overkill, there is a
useful workaround. If you are only loading and unloading a single driver, you can
just use rmmod and insmod after the first time you create the special files with
your script: dynamic numbers are not randomized, and you can count on the same
number to be chosen if you don’t mess with other (dynamic) modules. Avoiding
lengthy scripts is useful during development. But this trick, clearly, doesn’t scale to
more than one driver at a time.

The best way to assign major numbers, in our opinion, is by defaulting to dynamic
allocation while leaving yourself the option of specifying the major number at load
time, or even at compile time. The code we suggest using is similar to the code
introduced for autodetection of port numbers. The scull implementation uses a
global variable, scull_major, to hold the chosen number. The variable is initial-
ized to SCULL_MAJOR, defined in scull.h. The default value of SCULL_MAJOR in
the distributed source is 0, which means “use dynamic assignment.” The user can
accept the default or choose a particular major number, either by modifying the
macro before compiling or by specifying a value for scull_major on the ins-
mod command line. Finally, by using the scull_load script, the user can pass argu-
ments to insmod on scull_load’s command line.t

Here’s the code we use in scull’s source to get a major number:

result = register_chrdev(scull_major, "scull", &scull_fops);

if (result < 0) {

printk (KERN_WARNING "scull: can’t get major %d\n",scull_major) ;
return result;

}

if (scull_major == 0) scull_major = result; /* dynamic */

* Distributions vary widely on the location of init scripts; the most common directories
used are /etc/init.d, /etc/rc.d/init.d, and /sbin/init.d. In addition, if your script is to be run
at boot time, you will need to make a link to it from the appropriate run-level directory
G.e., .../rc3.d).

t The init script scull.init doesn’t accept driver options on the command line, but it sup-
ports a configuration file because it’s designed for automatic use at boot and shutdown
time.

60

22 June 2001 16:35

Major and Minor Numbers

Removing a Driver from the System

When a module is unloaded from the system, the major number must be released.
This is accomplished with the following function, which you call from the mod-
ule’s cleanup function:

int unregister_chrdev(unsigned int major, const char *name);

The arguments are the major number being released and the name of the associ-
ated device. The kernel compares the name to the registered name for that num-
ber, if any: if they differ, -EINVAL is returned. The kernel also returns ~-EINVAL if
the major number is out of the allowed range.

Failing to unregister the resource in the cleanup function has unpleasant effects.
/proc/devices will generate a fault the next time you try to read it, because one of
the name strings still points to the module’s memory, which is no longer mapped.
This kind of fault is called an oops because that’s the message the kernel prints
when it tries to access invalid addresses.”

When you unload the driver without unregistering the major number, recovery will
be difficult because the stremp function in unregister_chrdev must dereference a
pointer (name) to the original module. If you ever fail to unregister a major num-
ber, you must reload both the same module and another one built on purpose to
unregister the major. The faulty module will, with luck, get the same address, and
the name string will be in the same place, if you didn’t change the code. The safer
alternative, of course, is to reboot the system.

In addition to unloading the module, youll often need to remove the device files
for the removed driver. The task can be accomplished by a script that pairs to the
one used at load time. The script scull_unload does the job for our sample device;
as an alternative, you can invoke scull.init stop.

If dynamic device files are not removed from /dev, there’s a possibility of unex-
pected errors: a spare /dev/framegrabber on a developer’s computer might refer to
a fire-alarm device one month later if both drivers used a dynamic major number.
“No such file or directory” is a friendlier response to opening /dev/framegrabber
than the new driver would produce.

dev_t and kdev_t

So far we've talked about the major number. Now it's time to discuss the minor
number and how the driver uses it to differentiate among devices.

Every time the kernel calls a device driver, it tells the driver which device is being
acted upon. The major and minor numbers are paired in a single data type that the
driver uses to identify a particular device. The combined device number (the major

* The word oops is used as both a noun and a verb by Linux enthusiasts.

61

22 June 2001 16:35

Chapter 3: Char Drivers

and minor numbers concatenated together) resides in the field i_rdev of the
inode structure, which we introduce later. Some driver functions receive a pointer
to struct inode as the first argument. So if you call the pointer inode (as
most driver writers do), the function can extract the device number by looking at
inode->i_rdev.

Historically, Unix declared dev_t (device type) to hold the device numbers. It
used to be a 16-bit integer value defined in <sys/types.h>. Nowadays, more
than 256 minor numbers are needed at times, but changing dev_t is difficult
because there are applications that “know” the internals of dev_t and would
break if the structure were to change. Thus, while much of the groundwork has
been laid for larger device numbers, they are still treated as 16-bit integers for
now.

Within the Linux kernel, however, a different type, kdev_t, is used. This data
type is designed to be a black box for every kernel function. User programs do
not know about kdev_t at all, and kernel functions are unaware of what is inside
a kdev_t. If kdev_t remains hidden, it can change from one kernel version to
the next as needed, without requiring changes to everyone’s device drivers.

The information about kdev_t is confined in <linux/kdev_t.h>, which is
mostly comments. The header makes instructive reading if you're interested in the
reasoning behind the code. There’s no need to include the header explicitly in the
drivers, however, because <linux/fs.h> does it for you.

The following macros and functions are the operations you can perform on
kdev_t:

MAJOR (kdev_t dev) ;
Extract the major number from a kdev_t structure.

MINOR (kdev_t dev) ;
Extract the minor number.

MKDEV (int ma, int mi);
Create a kdev_t built from major and minor numbers.

kdev_t_to_nr (kdev_t dev) ;
Convert a kdev_t type to a number (a dev_t).

to_kdev_t (int dev);
Convert a number to kdev_t. Note that dev_t is not defined in kernel
mode, and therefore int is used.

As long as your code uses these operations to manipulate device numbers, it
should continue to work even as the internal data structures change.

62

22 June 2001 16:35

File Operations

File Operations

In the next few sections, we’ll look at the various operations a driver can perform
on the devices it manages. An open device is identified internally by a £ile struc-
ture, and the kernel uses the file_operations structure to access the driver’s
functions. The structure, defined in <linux/fs.h>, is an array of function point-
ers. Each file is associated with its own set of functions (by including a field called
f_op that points to a £ile_operations structure). The operations are mostly in
charge of implementing the system calls and are thus named open, read, and so
on. We can consider the file to be an “object” and the functions operating on it to
be its “methods,” using object-oriented programming terminology to denote
actions declared by an object to act on itself. This is the first sign of object-ori-
ented programming we see in the Linux kernel, and we’ll see more in later chap-
ters.

Conventionally, a file_operations structure or a pointer to one is called fops
(or some variation thereof); we've already seen one such pointer as an argument
to the register_chrdev call. Each field in the structure must point to the function in
the driver that implements a specific operation, or be left NULL for unsupported
operations. The exact behavior of the kernel when a NULL pointer is specified is
different for each function, as the list later in this section shows.

The file_operations structure has been slowly getting bigger as new func-
tionality is added to the kernel. The addition of new operations can, of course,
create portability problems for device drivers. Instantiations of the structure in
each driver used to be declared using standard C syntax, and new operations were
normally added to the end of the structure; a simple recompilation of the drivers
would place a NULL value for that operation, thus selecting the default behavior,
usually what you wanted.

Since then, kernel developers have switched to a “tagged” initialization format that
allows initialization of structure fields by name, thus circumventing most problems
with changed data structures. The tagged initialization, however, is not standard C
but a (useful) extension specific to the GNU compiler. We will look at an example
of tagged structure initialization shortly.

The following list introduces all the operations that an application can invoke on a
device. We've tried to keep the list brief so it can be used as a reference, merely
summarizing each operation and the default kernel behavior when a NULL pointer
is used. You can skip over this list on your first reading and return to it later.

The rest of the chapter, after describing another important data structure (the
file, which actually includes a pointer to its own file_operations), explains
the role of the most important operations and offers hints, caveats, and real code
examples. We defer discussion of the more complex operations to later chapters
because we aren’t ready to dig into topics like memory management, blocking
operations, and asynchronous notification quite yet.

63

22 June 2001 16:35

Chapter 3: Char Drivers

The following list shows what operations appear in struct file_operations
for the 2.4 series of kernels, in the order in which they appear. Although there are
minor differences between 2.4 and earlier kernels, they will be dealt with later in
this chapter, so we are just sticking to 2.4 for a while. The return value of each
operation is 0 for success or a negative error code to signal an error, unless other-
wise noted.

loff_t (*1llseek) (struct file *, loff_t, int);

The /lseek method is used to change the current read/write position in a file,
and the new position is returned as a (positive) return value. The loff_t isa
“long offset” and is at least 64 bits wide even on 32-bit platforms. Errors are
signaled by a negative return value. If the function is not specified for the
driver, a seek relative to end-of-file fails, while other seeks succeed by modify-
ing the position counter in the file structure (described in “The file Struc-
ture” later in this chapter).

ssize_t (*read) (struct file *, char *, size_t, loff_t *);
Used to retrieve data from the device. A null pointer in this position causes the
read system call to fail with ~-EINVAL (“Invalid argument”). A non-negative
return value represents the number of bytes successfully read (the return value
is a “signed size” type, usually the native integer type for the target platform).

ssize_t (*write) (struct file *, const char *, size_t,
loff_t *);
Sends data to the device. If missing, ~-EINVAL is returned to the program call-
ing the write system call. The return value, if non-negative, represents the
number of bytes successfully written.

int (*readdir) (struct file *, wvoid *, filldir_ t);
This field should be NULL for device files; it is used for reading directories,
and is only useful to filesystems.

unsigned int (*poll) (struct file *, struct
poll_table_struct *);

The poll method is the back end of two system calls, poll and select, both used
to inquire if a device is readable or writable or in some special state. Either
system call can block until a device becomes readable or writable. If a driver
doesn’t define its poll method, the device is assumed to be both readable and
writable, and in no special state. The return value is a bit mask describing the
status of the device.

int (*ioctl) (struct inode *, struct file *, unsigned int,
unsigned long) ;
The ioctl system call offers a way to issue device-specific commands (like for-
matting a track of a floppy disk, which is neither reading nor writing). Addi-
tionally, a few joct/ commands are recognized by the kernel without referring

64

22 June 2001 16:35

File Operations

to the fops table. If the device doesn’t offer an joct/ entry point, the system
call returns an error for any request that isn’t predefined (-ENOTTY, “No such
ioctl for device”). If the device method returns a non-negative value, the same
value is passed back to the calling program to indicate successful completion.

int (*mmap) (struct file *, struct vm_area_struct *);
mmap is used to request a mapping of device memory to a process’s address
space. If the device doesn’t implement this method, the mmap system call
returns ~ENODEV.

int (*open) (struct inode *, struct file *);
Though this is always the first operation performed on the device file, the
driver is not required to declare a corresponding method. If this entry is NULL,
opening the device always succeeds, but your driver isn’t notified.

int (*flush) (struct file *);
The flush operation is invoked when a process closes its copy of a file
descriptor for a device; it should execute (and wait for) any outstanding oper-
ations on the device. This must not be confused with the fsync operation
requested by user programs. Currently, flush is used only in the network file
system (NFS) code. If flush is NULL, it is simply not invoked.

int (*release) (struct inode *, struct file *);
This operation is invoked when the file structure is being released. Like
open, release can be missing.”

int (*fsync) (struct inode *, struct dentry *, int);
This method is the back end of the fsync system call, which a user calls to
flush any pending data. If not implemented in the driver, the system call
returns —EINVAL.

int (*fasync) (int, struct file *, int);
This operation is used to notify the device of a change in its FASYNC flag.
Asynchronous notification is an advanced topic and is described in Chapter 5.
The field can be NULL if the driver doesn’t support asynchronous notification.

int (*lock) (struct file *, int, struct file_lock *);
The Jock method is used to implement file locking; locking is an indispensable
feature for regular files, but is almost never implemented by device drivers.

ssize_t (*readv) (struct file *, const struct iovec *,
unsigned long, loff t *);

ssize_t (*writev) (struct file *, const struct iovec *,
unsigned long, loff t *);

* Note that release isn’'t invoked every time a process calls close. Whenever a file struc-
ture is shared (for example, after a fork or a dup), release won't be invoked until all
copies are closed. If you need to flush pending data when any copy is closed, you
should implement the flush method.

65

22 June 2001 16:35

Chapter 3: Char Drivers

These methods, added late in the 2.3 development cycle, implement scat-
ter/gather read and write operations. Applications occasionally need to do a
single read or write operation involving multiple memory areas; these system
calls allow them to do so without forcing extra copy operations on the data.

struct module *owner;
This field isn’t a method like everything else in the file_operations struc-
ture. Instead, it is a pointer to the module that “owns” this structure; it is used
by the kernel to maintain the module’s usage count.

The scull device driver implements only the most important device methods, and
uses the tagged format to declare its file_operations structure:

struct file_operations scull_fops = {
llseek: scull_llseek,

read: scull_read,

write: scull_write,

ioctl: scull_ioctl,

open: scull_open,

release: scull_release,

Y

This declaration uses the tagged structure initialization syntax, as we described ear-
lier. This syntax is preferred because it makes drivers more portable across
changes in the definitions of the structures, and arguably makes the code more
compact and readable. Tagged initialization allows the reordering of structure
members; in some cases, substantial performance improvements have been real-
ized by placing frequently accessed members in the same hardware cache line.

It is also necessary to set the owner field of the file_operations structure. In
some kernel code, you will often see owner initialized with the rest of the struc-
ture, using the tagged syntax as follows:

owner: THIS_MODULE,

That approach works, but only on 2.4 kernels. A more portable approach is to use
the SET_MODULE_OWNER macro, which is defined in <linux/module.h>. scull
performs this initialization as follows:

SET_MODULE_OWNER (&scull_fops) ;

This macro works on any structure that has an owner field; we will encounter this
field again in other contexts later in the book.

The file Structure

struct file, defined in <linux/fs.h>, is the second most important data
structure used in device drivers. Note that a file has nothing to do with the

66

22 June 2001 16:35

The file Structure

FILEs of user-space programs. A FILE is defined in the C library and never
appears in kernel code. A struct file, on the other hand, is a kernel structure
that never appears in user programs.

The file structure represents an open file. (It is not specific to device drivers;
every open file in the system has an associated struct file in kernel space.) It
is created by the kernel on open and is passed to any function that operates on
the file, until the last close. After all instances of the file are closed, the kernel
releases the data structure. An open file is different from a disk file, represented by
struct inode.

In the kernel sources, a pointer to struct file is usually called either file or
filp (“file pointer”). We'll consistently call the pointer £ilp to prevent ambigui-
ties with the structure itself. Thus, file refers to the structure and filp to a
pointer to the structure.

The most important fields of struct file are shown here. As in the previous
section, the list can be skipped on a first reading. In the next section though,
when we face some real C code, we’ll discuss some of the fields, so they are here
for you to refer to.

mode_t f_mode;
The file mode identifies the file as either readable or writable (or both), by
means of the bits FMODE_READ and FMODE_WRITE. You might want to check
this field for read/write permission in your ioct/ function, but you don’t need
to check permissions for read and write because the kernel checks before
invoking your method. An attempt to write without permission, for example,
is rejected without the driver even knowing about it.

loff_t f_pos;
The current reading or writing position. Loff_t is a 64-bit value (long
long in gcc terminology). The driver can read this value if it needs to know
the current position in the file, but should never change it (read and write
should update a position using the pointer they receive as the last argument
instead of acting on £ilp->f_pos directly).

unsigned int f_flags;
These are the file flags, such as O_RDONLY, O_NONBLOCK, and O_SYNC. A
driver needs to check the flag for nonblocking operation, while the other flags
are seldom used. In particular, read/write permission should be checked using
f_mode instead of f_flags. All the flags are defined in the header
<linux/fcntl.h>.

67

22 June 2001 16:35

Chapter 3: Char Drivers

struct file_operations *f_op;

The operations associated with the file. The kernel assigns the pointer as part
of its implementation of open, and then reads it when it needs to dispatch any
operations. The value in £11p->f_op is never saved for later reference; this
means that you can change the file operations associated with your file when-
ever you want, and the new methods will be effective immediately after you
return to the caller. For example, the code for open associated with major
number 1 (/dewnull, /dev/zero, and so on) substitutes the operations in
filp->f_op depending on the minor number being opened. This practice
allows the implementation of several behaviors under the same major number
without introducing overhead at each system call. The ability to replace the
file operations is the kernel equivalent of “method overriding” in object-ori-
ented programming.

void *private_data;
The open system call sets this pointer to NULL before calling the open method
for the driver. The driver is free to make its own use of the field or to ignore
it. The driver can use the field to point to allocated data, but then must free
memory in the release method before the £ile structure is destroyed by the
kernel. private_data is a useful resource for preserving state information
across system calls and is used by most of our sample modules.

struct dentry *f_dentry;
The directory entry (dentry) structure associated with the file. Dentries are an
optimization introduced in the 2.1 development series. Device driver writers
normally need not concern themselves with dentry structures, other than to
access the inode structure as filp->f_dentry->d_inode.

The real structure has a few more fields, but they aren’t useful to device drivers.
We can safely ignore those fields because drivers never fill £ile structures; they
only access structures created elsewhere.

open and release

Now that we’ve taken a quick look at the fields, we’ll start using them in real scull
functions.

The open Method

The open method is provided for a driver to do any initialization in preparation for
later operations. In addition, open usually increments the usage count for the
device so that the module won’t be unloaded before the file is closed. The count,
described in “The Usage Count” in Chapter 2, is then decremented by the release
method.

68

22 June 2001 16:35

open and release

In most drivers, open should perform the following tasks:

e Increment the usage count

e Check for device-specific errors (such as device-not-ready or similar hardware
problems)

e Initialize the device, if it is being opened for the first time
e Identify the minor number and update the £_op pointer, if necessary
e Allocate and fill any data structure to be put in filp->private_data

In scull, most of the preceding tasks depend on the minor number of the device
being opened. Therefore, the first thing to do is identify which device is involved.
We can do that by looking at inode->i_rdev.

We've already talked about how the kernel doesn’t use the minor number of the
device, so the driver is free to use it at will. In practice, different minor numbers
are used to access different devices or to open the same device in a different way.
For example, /deuv/st0 (minor number 0) and /dev/st1 (minor 1) refer to different
SCSI tape drives, whereas /deu/nstO (minor 128) is the same physical device as
/dev/stO, but it acts differently (it doesn’t rewind the tape when it is closed). All of
the tape device files have different minor numbers, so that the driver can tell them
apart.

A driver never actually knows the name of the device being opened, just the
device number—and users can play on this indifference to names by aliasing new
names to a single device for their own convenience. If you create two special files
with the same major/minor pair, the devices are one and the same, and there is no
way to differentiate between them. The same effect can be obtained using a sym-
bolic or hard link, and the preferred way to implement aliasing is creating a sym-
bolic link.

The scull driver uses the minor number like this: the most significant nibble
(upper four bits) identifies the type (personality) of the device, and the least signif-
icant nibble (lower four bits) lets you distinguish between individual devices if the
type supports more than one device instance. Thus, scu/lO is different from
scullpipeO in the top nibble, while scull0 and scull1 differ in the bottom nibble.”
Two macros (TYPE and NUM) are defined in the source to extract the bits from a
device number, as shown here:

#define TYPE(dev) (MINOR(dev) >> 4) /* high nibble */
#define NUM(dev) (MINOR(dev) & 0xf) /* low nibble */

* Bit splitting is a typical way to use minor numbers. The IDE driver, for example, uses the
top two bits for the disk number, and the bottom six bits for the partition number.

69

22 June 2001 16:35

Chapter 3: Char Drivers

For each device type, scull defines a specific file_operations structure, which
is placed in £ilp->f_op at open time. The following code shows how multiple
fops are implemented:

struct file_operations *scull_fop_arrayl[]={
&scull_fops, /* type 0 */
&scull_priv_fops, /* type 1 */
&scull_pipe_fops, /* type 2 */
&scull_sngl_fops, /* type 3 */
&scull_user_fops, /* type 4 */
&scull_wusr_fops /* type 5 */

}i

#define SCULL_MAX_TYPE 5

/* In scull_open, the fop_array is used according to TYPE(dev) */
int type = TYPE(inode->i_rdev) ;

if (type > SCULL_MAX_TYPE) return -ENODEV;
filp->f_op = scull_fop_arrayl[typel;

The kernel invokes open according to the major number; scull uses the minor
number in the macros just shown. TYPE is used to index into scull_fop_array
in order to extract the right set of methods for the device type being opened.

In scull, £ilp->f_op is assigned to the correct file_operations structure as
determined by the device type, found in the minor number. The open method
declared in the new fops is then invoked. Usually, a driver doesn’t invoke its
own fops, because they are used by the kernel to dispatch the right driver
method. But when your open method has to deal with different device types, you
might want to call fops->open after modifying the fops pointer according to
the minor number being opened.

The actual code for scull_open follows. It uses the TYPE and NUM macros defined
in the previous code snapshot to split the minor number:

int scull_open(struct inode *inode, struct file *filp)
{

Scull_Dev *dev; /* device information */

int num = NUM(inode->i_rdev) ;

int type = TYPE(inode->i_rdev) ;

/*

* If private data is not valid, we are not using devfs

* so use the type (from minor nr.) to select a new f_op

*/
if (!filp->private_data && type) {

if (type > SCULL_MAX_ TYPE) return -ENODEV;

filp->f_op = scull_fop_arrayltypel;

return filp->f_ op->open(inode, filp); /* dispatch to specific open */
}

70

22 June 2001 16:35

open and release

/* type 0, check the device number (unless private_data valid) */
dev = (Scull_Dev *)filp->private_data;

if (!dev) {

if (num >= scull_nr_ devs) return -ENODEV;

dev = &scull_devices[num];

filp->private_data = dev; /* for other methods */

}

MOD_INC_USE_COUNT; /* Before we maybe sleep */

/* now trim to 0 the length of the device if open was write-only */
if ((filp->f_flags & O_ACCMODE) == O_WRONLY) {

if (down_interruptible (&dev->sem)) {

MOD_DEC_USE_COUNT;

return -ERESTARTSYS;

}

scull_trim(dev); /* ignore errors */

up (&dev->sem) ;

}

return 0; /* success */

}

A few explanations are due here. The data structure used to hold the region of
memory is Scull_Dev, which will be introduced shortly. The global variables
scull_nr_devs and scull_devices[] (all lowercase) are the number of
available devices and the actual array of pointers to Scull_Dev.

The calls to down_interruptible and up can be ignored for now; we will get to
them shortly.

The code looks pretty sparse because it doesn’t do any particular device handling
when open is called. It doesn’t need to, because the scull0-3 device is global and
persistent by design. Specifically, there’s no action like “initializing the device on
first open” because we don’t keep an open count for sculls, just the module usage
count.

Given that the kernel can maintain the usage count of the module via the owner
field in the file_operations structure, you may be wondering why we incre-
ment that count manually here. The answer is that older kernels required modules
to do all of the work of maintaining their usage count—the owner mechanism
did not exist. To be portable to older kernels, scull increments its own usage
count. This behavior will cause the usage count to be too high on 2.4 systems, but
that is not a problem because it will still drop to zero when the module is not
being used.

The only real operation performed on the device is truncating it to a length of
zero when the device is opened for writing. This is performed because, by design,
overwriting a pscull device with a shorter file results in a shorter device data area.
This is similar to the way opening a regular file for writing truncates it to zero
length. The operation does nothing if the device is opened for reading.

71

22 June 2001 16:35

Chapter 3: Char Drivers

We'll see later how a real initialization works when we look at the code for the
other scull personalities.

The release Method

The role of the release method is the reverse of open. Sometimes you'll find that
the method implementation is called device_close instead of
device_release. Either way, the device method should perform the following
tasks:

e Deallocate anything that open allocated in £filp->private_data
e Shut down the device on last close
e Decrement the usage count

The basic form of scull has no hardware to shut down, so the code required is
minimal:*

int scull_release(struct inode *inode, struct file *filp)
{

MOD_DEC_USE_COUNT;

return 0;

}

It is important to decrement the usage count if you incremented it at open time,
because the kernel will never be able to unload the module if the counter doesn’t
drop to zero.

How can the counter remain consistent if sometimes a file is closed without hav-
ing been opened? After all, the dup and fork system calls will create copies of
open files without calling open; each of those copies is then closed at program ter-
mination. For example, most programs don’t open their stdin file (or device), but
all of them end up closing it.

The answer is simple: not every close system call causes the release method to be
invoked. Only the ones that actually release the device data structure invoke the
method—hence its name. The kernel keeps a counter of how many times a file
structure is being used. Neither fork nor dup creates a new f£ile structure (only
open does that); they just increment the counter in the existing structure.

The close system call executes the release method only when the counter for the
file structure drops to zero, which happens when the structure is destroyed.
This relationship between the release method and the close system call guarantees
that the usage count for modules is always consistent.

* The other flavors of the device are closed by different functions, because scull_open sub-
stituted a different £i1p->£f_op for each device. We’ll see those later.

72

22 June 2001 16:35

scull’s Memory Usage

Note that the flush method is called every time an application calls close. However,
very few drivers implement flush, because usually there’s nothing to perform at
close time unless release is involved.

As you may imagine, the previous discussion applies even when the application
terminates without explicitly closing its open files: the kernel automatically closes
any file at process exit time by internally using the close system call.

scull’s Memory Usage

Before introducing the read and write operations, we'd better look at how and
why scull performs memory allocation. “How” is needed to thoroughly understand
the code, and “why” demonstrates the kind of choices a driver writer needs to
make, although scull is definitely not typical as a device.

This section deals only with the memory allocation policy in scull and doesn’t
show the hardware management skills you'll need to write real drivers. Those
skills are introduced in Chapter 8, and in Chapter 9. Therefore, you can skip this
section if you're not interested in understanding the inner workings of the mem-
ory-oriented scull driver.

The region of memory used by scull, also called a device here, is variable in
length. The more you write, the more it grows; trimming is performed by overwrit-
ing the device with a shorter file.

The implementation chosen for scull is not a smart one. The source code for a
smart implementation would be more difficult to read, and the aim of this section
is to show read and write, not memory management. That's why the code just
uses kmalloc and kfree without resorting to allocation of whole pages, although
that would be more efficient.

On the flip side, we didn’t want to limit the size of the “device” area, for both a
philosophical reason and a practical one. Philosophically, it's always a bad idea to
put arbitrary limits on data items being managed. Practically, scull can be used to
temporarily eat up your system’s memory in order to run tests under low-memory
conditions. Running such tests might help you understand the system’s internals.
You can use the command cp /dev/zero /dev/scullO to eat all the real RAM with
scull, and you can use the dd utility to choose how much data is copied to the
scull device.

In scull, each device is a linked list of pointers, each of which points to a
Scull_Dev structure. Each such structure can refer, by default, to at most four
million bytes, through an array of intermediate pointers. The released source uses
an array of 1000 pointers to areas of 4000 bytes. We call each memory area a
quantum and the array (or its length) a gquantum set. A scull device and its mem-
ory areas are shown in Figure 3-1.

73

22 June 2001 16:35

Chapter 3: Char Drivers

Scull_Dev
next
data [

[] a—
Quantum set M
[]
Individual .
quanta

Figure 3-1. The layout of a scull device

The chosen numbers are such that writing a single byte in scu/l consumes eight or
twelve thousand bytes of memory: four thousand for the quantum and four or
eight thousand for the quantum set (according to whether a pointer is represented
in 32 bits or 64 bits on the target platform). If, instead, you write a huge amount of
data, the overhead of the linked list is not too bad. There is only one list element
for every four megabytes of data, and the maximum size of the device is limited
by the computer’s memory size.

Choosing the appropriate values for the quantum and the quantum set is a ques-
tion of policy, rather than mechanism, and the optimal sizes depend on how the
device is used. Thus, the scull driver should not force the use of any particular val-
ues for the quantum and quantum set sizes. In scull, the user can change the val-
ues in charge in several ways: by changing the macros SCULL_QUANTUM and
SCULL_QSET in scull.h at compile time, by setting the integer values
scull_guantum and scull_gset at module load time, or by changing both
the current and default values using ioct/ at runtime.

Using a macro and an integer value to allow both compile-time and load-time con-
figuration is reminiscent of how the major number is selected. We use this tech-
nique for whatever value in the driver is arbitrary, or related to policy.

The only question left is how the default numbers have been chosen. In this par-
ticular case, the problem is finding the best balance between the waste of memory
resulting from half-filled quanta and quantum sets and the overhead of allocation,
deallocation, and pointer chaining that occurs if quanta and sets are small.

74

scull’s Memory Usage

Additionally, the internal design of kmalloc should be taken into account. We
won't touch the point now, though; the innards of kmalloc are explored in “The
Real Story of kmalloc” in Chapter 7.

The choice of default numbers comes from the assumption that massive amounts
of data are likely to be written to scu/l while testing it, although normal use of the
device will most likely transfer just a few kilobytes of data.

The data structure used to hold device information is as follows:

typedef struct Scull_Dev {

void **data;

struct Scull_Dev *next; /* next list item */

int quantum; /* the current quantum size */

int gset; /* the current array size */

unsigned long size;

devfs_handle_t handle; /* only used if devfs is there */
unsigned int access_key; /* used by sculluid and scullpriv */
struct semaphore sem; /* mutual exclusion semaphore */

} Scull_Dev;

The next code fragment shows in practice how Scull_Dev is used to hold data.
The function scull_trim is in charge of freeing the whole data area and is invoked
by scull_open when the file is opened for writing. It simply walks through the list
and frees any quantum and quantum set it finds.

int scull_trim(Scull_Dev *dev)

{

Scull_Dev *next, *dptr;

int gset = dev->gset; /* "dev" is not null */
int i;

for (dptr = dev; dptr; dptr = next) { /* all the list items */
if (dptr->data) {
for (i = 0; 1 < gset; i++)
if (dptr->datalil)
kfree (dptr->datali]);
kfree (dptr->data) ;
dptr->data=NULL;
}
next=dptr->next;
if (dptr != dev) kfree(dptr); /* all of them but the first */
}
dev->size = 0;
dev->quantum = scull_guantum;
dev->gset = scull_gset;
dev->next = NULL;
return O0;

75

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

A Brief Introduction to Race Conditions

Now that you understand how scu/l’s memory management works, here is a sce-
nario to consider. Two processes, A and B, both have the same scull device open
for writing. Both attempt simultaneously to append data to the device. A new
quantum is required for this operation to succeed, so each process allocates the
required memory and stores a pointer to it in the quantum set.

The result is trouble. Because both processes see the same scull device, each will
store its new memory in the same place in the quantum set. If A stores its pointer
first, B will overwrite that pointer when it does its store. Thus the memory allo-
cated by A, and the data written therein, will be lost.

This situation is a classic race condition; the results vary depending on who gets
there first, and usually something undesirable happens in any case. On uniproces-
sor Linux systems, the scull code would not have this sort of problem, because
processes running kernel code are not preempted. On SMP systems, however, life
is more complicated. Processes A and B could easily be running on different pro-
cessors and could interfere with each other in this manner.

The Linux kernel provides several mechanisms for avoiding and managing race
conditions. A full description of these mechanisms will have to wait until Chapter
9, but a beginning discussion is appropriate here.

A semaphore is a general mechanism for controlling access to resources. In its sim-
plest form, a semaphore may be used for mutual exclusion; processes using
semaphores in the mutual exclusion mode are prevented from simultaneously run-
ning the same code or accessing the same data. This sort of semaphore is often
called a mutex, from “mutual exclusion.”

Semaphores in Linux are defined in <asm/semaphore.h>. They have a type of
struct semaphore, and a driver should only act on them using the provided
interface. In scull, one semaphore is allocated for each device, in the Scull_Dev
structure. Since the devices are entirely independent of each other, there is no
need to enforce mutual exclusion across multiple devices.

Semaphores must be initialized prior to use by passing a numeric argument to
sema_init. For mutual exclusion applications (i.e., keeping multiple threads from
accessing the same data simultaneously), the semaphore should be initialized to a
value of 1, which means that the semaphore is available. The following code in
scull’s module initialization function (scull_inif) shows how the semaphores are
initialized as part of setting up the devices.

for (i=0; i < scull_nr_devs; i++) {
scull_devices[i].quantum = scull_guantum;
scull_devices[i].gset = scull_gset;
sema_init (&scull_devices[i].sem, 1);

}

76

22 June 2001 16:35

A Brief Introduction to Race Conditions

A process wishing to enter a section of code protected by a semaphore must first
ensure that no other process is already there. Whereas in classical computer sci-
ence the function to obtain a semaphore is often called P, in Linux you’ll need to
call down or down_interruptible. These functions test the value of the semaphore
to see if it is greater than 0; if so, they decrement the semaphore and return. If the
semaphore is 0, the functions will sleep and try again after some other process,
which has presumably freed the semaphore, wakes them up.

The down_interruptible function can be interrupted by a signal, whereas down
will not allow signals to be delivered to the process. You almost always want to
allow signals; otherwise, you risk creating unkillable processes and other undesir-
able behavior. A complication of allowing signals, however, is that you always
have to check if the function (here down_interruptible) was interrupted. As usual,
the function returns 0 for success and nonzero in case of failure. If the process is
interrupted, it will not have acquired the semaphores; thus, you won'’t need to call
up. A typical call to invoke a semaphore therefore normally looks something like
this:

if (down_interruptible (&sem))
return -ERESTARTSYS;

The -ERESTARTSYS return value tells the system that the operation was inter-
rupted by a signal. The kernel function that called the device method will either
retry it or return ~EINTR to the application, according to how signal handling has
been configured by the application. Of course, your code may have to perform
cleanup work before returning if interrupted in this mode.

A process that obtains a semaphore must always release it afterward. Whereas
computer science calls the release function V, Linux uses #p instead. A simple call
like

up (&sem) ;

will increment the value of the semaphore and wake up any processes that are
waiting for the semaphore to become available.

Care must be taken with semaphores. The data protected by the semaphore must
be clearly defined, and all code that accesses that data must obtain the semaphore
first. Code that uses down_interruptible to obtain a semaphore must not call
another function that also attempts to obtain that semaphore, or deadlock will
result. If a routine in your driver fails to release a semaphore it holds (perhaps as a
result of an error return), any further attempts to obtain that semaphore will stall.
Mutual exclusion in general can be tricky, and benefits from a well-defined and
methodical approach.

In scull, the per-device semaphore is used to protect access to the stored data. Any
code that accesses the data field of the Scull_Dev structure must first have

77

22 June 2001 16:35

Chapter 3: Char Drivers

obtained the semaphore. To avoid deadlocks, only functions that implement
device methods will try to obtain the semaphore. Internal routines, such as
scull_trim shown earlier, assume that the semaphore has already been obtained.
As long as these invariants hold, access to the Scull_Dev data structure is safe
from race conditions.

read and write

The read and write methods perform a similar task, that is, copying data from and
to application code. Therefore, their prototypes are pretty similar and it’'s worth
introducing them at the same time:

ssize_t read(struct file *filp, char *buff,
size_t count, loff_t *offp);

ssize_t write(struct file *filp, const char *buff,
size_t count, loff_t *offp);

For both methods, £i1p is the file pointer and count is the size of the requested
data transfer. The buff argument points to the user buffer holding the data to be
written or the empty buffer where the newly read data should be placed. Finally,
offp is a pointer to a “long offset type” object that indicates the file position the
user is accessing. The return value is a “signed size type;” its use is discussed later.

As far as data transfer is concerned, the main issue associated with the two device
methods is the need to transfer data between the kernel address space and the
user address space. The operation cannot be carried out through pointers in the
usual way, or through memcpy. User-space addresses cannot be used directly in
kernel space, for a number of reasons.

One big difference between kernel-space addresses and user-space addresses is
that memory in user-space can be swapped out. When the kernel accesses a user-
space pointer, the associated page may not be present in memory, and a page
fault is generated. The functions we introduce in this section and in “Using the
ioctl Argument” in Chapter 5 use some hidden magic to deal with page faults in
the proper way even when the CPU is executing in kernel space.

Also, it’s interesting to note that the x86 port of Linux 2.0 used a completely differ-
ent memory map for user space and kernel space. Thus, user-space pointers
couldn’t be dereferenced at all from kernel space.

If the target device is an expansion board instead of RAM, the same problem
arises, because the driver must nonetheless copy data between user buffers and
kernel space (and possibly between kernel space and I/O memory).

Cross-space copies are performed in Linux by special functions, defined in
<asm/uaccess.h>. Such a copy is either performed by a generic (memcpy-like)
function or by functions optimized for a specific data size (char, short, int,
long); most of them are introduced in “Using the ioctl Argument” in Chapter 5.

78

22 June 2001 16:35

read and write

The code for read and write in scull needs to copy a whole segment of data to or
from the user address space. This capability is offered by the following kernel
functions, which copy an arbitrary array of bytes and sit at the heart of every read
and write implementation:

unsigned long copy_to_user(void *to, const void *from,
unsigned long count) ;

unsigned long copy_ from_user (void *to, const void *from,
unsigned long count) ;

Although these functions behave like normal memcpy functions, a little extra care
must be used when accessing user space from kernel code. The user pages being
addressed might not be currently present in memory, and the page-fault handler
can put the process to sleep while the page is being transferred into place. This
happens, for example, when the page must be retrieved from swap space. The net
result for the driver writer is that any function that accesses user space must be
reentrant and must be able to execute concurrently with other driver functions
(see also “Writing Reentrant Code” in Chapter 5). That's why we use semaphores
to control concurrent access.

The role of the two functions is not limited to copying data to and from user-
space: they also check whether the user space pointer is valid. If the pointer is
invalid, no copy is performed; if an invalid address is encountered during the
copy, on the other hand, only part of the data is copied. In both cases, the return
value is the amount of memory still to be copied. The scull code looks for this
error return, and returns —~EFAULT to the user if it’s not 0.

The topic of user-space access and invalid user space pointers is somewhat
advanced, and is discussed in “Using the ioctl Argument” in Chapter 5. However,
it's worth suggesting that if you don’t need to check the user-space pointer you
can invoke copy_to_user and _ _copy_from_user instead. This is useful, for

example, if you know you already checked the argument.

As far as the actual device methods are concerned, the task of the read method is
to copy data from the device to user space (using copy_to_user), while the write
method must copy data from user space to the device (using copy_from_user).
Each read or write system call requests transfer of a specific number of bytes, but
the driver is free to transfer less data—the exact rules are slightly different for
reading and writing and are described later in this chapter.

Whatever the amount of data the methods transfer, they should in general update
the file position at *offp to represent the current file position after successful
completion of the system call. Most of the time the offp argument is just a
pointer to £ilp->f_pos, but a different pointer is used in order to support the
pread and pwrite system calls, which perform the equivalent of Iseek and read or
write in a single, atomic operation.

Figure 3-2 represents how a typical read implementation uses its arguments.

79

22 June 2001 16:35

Chapter 3: Char Drivers

ssize_t dev_readgstruct file *filq,lchar *bufvlsize_t count, loff t *ppos);

struct file

Buffer Buffer
L (in the driver) (in the
f_flags application
s or libc) | i
"
£_pos copy_to_user()
Kernel Space User Space

(nonswappable) (swappable)

Figure 3-2. The arguments to read

Both the read and write methods return a negative value if an error occurs. A
return value greater than or equal to 0 tells the calling program how many bytes
have been successfully transferred. If some data is transferred correctly and then
an error happens, the return value must be the count of bytes successfully trans-
ferred, and the error does not get reported until the next time the function is
called.

Although kernel functions return a negative number to signal an error, and the
value of the number indicates the kind of error that occurred (as introduced in
Chapter 2 in “Error Handling in init_module”), programs that run in user space
always see —1 as the error return value. They need to access the errno variable to
find out what happened. The difference in behavior is dictated by the POSIX call-
ing standard for system calls and the advantage of not dealing with errno in the
kernel.

The read Method

The return value for read is interpreted by the calling application program as fol-
lows:

e If the value equals the count argument passed to the read system call, the
requested number of bytes has been transferred. This is the optimal case.

80

22 June 2001 16:35

read and write

e If the value is positive, but smaller than count, only part of the data has been
transferred. This may happen for a number of reasons, depending on the
device. Most often, the application program will retry the read. For instance, if
you read using the fread function, the library function reissues the system call
till completion of the requested data transfer.

e If the value is 0, end-of-file was reached.

e A negative value means there was an error. The value specifies what the error
was, according to <linux/errno.h>. These errors look like ~-EINTR (inter-
rupted system call) or -EFAULT (bad address).

What is missing from the preceding list is the case of “there is no data, but it may
arrive later.” In this case, the read system call should block. We won’t deal with
blocking input until “Blocking I/O” in Chapter 5.

The scull code takes advantage of these rules. In particular, it takes advantage of
the partial-read rule. Each invocation of scull_read deals only with a single data
quantum, without implementing a loop to gather all the data; this makes the code
shorter and easier to read. If the reading program really wants more data, it reiter-
ates the call. If the standard I/O library (i.e., fread and friends) is used to read the
device, the application won'’t even notice the quantization of the data transfer.

If the current read position is greater than the device size, the read method of
scull returns 0 to signal that there’s no data available (in other words, we're at
end-of-file). This situation can happen if process A is reading the device while
process B opens it for writing, thus truncating the device to a length of zero. Pro-
cess A suddenly finds itself past end-of-file, and the next read call returns 0.

Here is the code for read:

ssize_t scull_read(struct file *filp, char *buf, size_t count,
loff_t *f_pos)

{

Scull_Dev *dev = filp->private_data; /* the first list item */
Scull_Dev *dptr;

int quantum = dev->quantum;

int gset = dev->gset;

int itemsize = quantum * gset; /* how many bytes in the list item */
int item, s_pos, g pos, rest;

ssize_t ret = 0;

if (down_interruptible (&dev->sem))
return -ERESTARTSYS;
if (*f_pos >= dev->size)
goto out;
if (*f_pos + count > dev->size)
count = dev->size - *f_pos;
/* find list item, gset index, and offset in the quantum */
item = (long)*f_pos / itemsize;
rest = (long)*f_pos % itemsize;

81

Chapter 3: Char Drivers

s_pos = rest / quantum; g _pos = rest % quantum;

/* follow the list up to the right position (defined elsewhere) */
dptr = scull_follow(dev, item);

if (!dptr->data)

goto out; /* don’t fill holes */

if (!dptr->datals_pos])

goto out;

/* read only up to the end of this quantum */
if (count > quantum - g pos)

count = quantum - g_pos;

if (copy_to_user (buf, dptr->datals_posl+qg pos, count)) {
ret = -EFAULT;
goto out;
}
*f_pos += count;
ret = count;

out:
up (&dev->sem) ;
return ret;

The write Method

write, like read, can transfer less data than was requested, according to the follow-
ing rules for the return value:

e If the value equals count, the requested number of bytes has been trans-
ferred.

e If the value is positive, but smaller than count, only part of the data has been
transferred. The program will most likely retry writing the rest of the data.

e If the value is 0, nothing was written. This result is not an error, and there is
no reason to return an error code. Once again, the standard library retries the
call to write. We'll examine the exact meaning of this case in “Blocking I/O” in
Chapter 5, where blocking write is introduced.

e A negative value means an error occurred,; like for read, valid error values are
those defined in <linux/errno.h>.

Unfortunately, there may be misbehaving programs that issue an error message
and abort when a partial transfer is performed. This happens because some pro-
grammers are accustomed to seeing write calls that either fail or succeed com-
pletely, which is actually what happens most of the time and should be supported
by devices as well. This limitation in the scull implementation could be fixed, but
we didn’t want to complicate the code more than necessary.

82

22 June 2001 16:35

read and write

The scull code for write deals with a single quantum at a time, like the read
method does:

ssize_t scull _write(struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

Scull_Dev *dev = filp->private_data;

Scull_Dev *dptr;

int quantum = dev->quantum;

int gset = dev->gset;

int itemsize = quantum * gset;

int item, s_pos, Q _pos, rest;

ssize_t ret = -ENOMEM; /* value used in "goto out" statements */

if (down_interruptible (&dev->sem))
return -ERESTARTSYS;

/* find list item, gset index and offset in the qguantum */
item = (long)*f_pos / itemsize;

rest = (long)*f_pos % itemsize;

s_pos = rest / quantum; g pos = rest % quantum;

/* follow the list up to the right position */

dptr = scull_follow(dev, item);

if (!dptr->data) {

dptr->data = kmalloc(gset * sizeof (char *), GFP_KERNEL) ;
if (!dptr->data)
goto out;

memset (dptr->data, 0, gset * sizeof(char *));

}

if (!dptr->datals_pos]) {

dptr->datals_pos] = kmalloc (quantum, GFP_KERNEL) ;
if (!dptr->datals_pos])
goto out;

}

/* write only up to the end of this quantum */

if (count > gquantum - g pos)

count = quantum - g _pos;

if (copy_from user (dptr->datals_pos]l+qg pos, buf, count)) {
ret = -EFAULT;
goto out;
}
*f_pos += count;
ret = count;

/* update the size */
if (dev->size < *f_pos)
dev-> size = *f_pos;

83

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

out:
up (&dev->sem) ;
return ret;

}

readv and writev

Unix systems have long supported two alternative system calls named readv and
writev. These “vector” versions take an array of structures, each of which contains
a pointer to a buffer and a length value. A readv call would then be expected to
read the indicated amount into each buffer in turn. writev, instead, would gather
together the contents of each buffer and put them out as a single write operation.

Until version 2.3.44 of the kernel, however, Linux always emulated readv and
writev with multiple calls to read and write. If your driver does not supply meth-
ods to handle the vector operations, they will still be implemented that way. In
many situations, however, greater efficiency is achieved by implementing readv
and writev directly in the driver.

The prototypes for the vector operations are as follows:

ssize_t (*readv) (struct file *filp, const struct iovec *iov,
unsigned long count, loff_t *ppos);

ssize_t (*writev) (struct file *filp, const struct iovec *iov,
unsigned long count, loff_t *ppos);

Here, the £ilp and ppos arguments are the same as for read and write. The
iovec structure, defined in <linux/uio.h>, looks like this:

struct iovec

{

void *iov_base;
_ _kernel_size_t iov_len;
}i

Each iovec describes one chunk of data to be transferred; it starts at iov_base
(in user space) and is 1ov_1len bytes long. The count parameter to the method
tells how many iovec structures there are. These structures are created by the
application, but the kernel copies them into kernel space before calling the driver.

The simplest implementation of the vectored operations would be a simple loop
that just passes the address and length out of each iovec to the driver’s read or
write function. Often, however, efficient and correct behavior requires that the
driver do something smarter. For example, a writev on a tape drive should write
the contents of all the 1ovec structures as a single record on the tape.

Many drivers, though, will gain no benefit from implementing these methods
themselves. Thus, scull omits them. The kernel will emulate them with read and
write, and the end result is the same.

84

22 June 2001 16:35

The Device Filesystem

Playing with the New Devices

Once you are equipped with the four methods just described, the driver can be
compiled and tested; it retains any data you write to it until you overwrite it with
new data. The device acts like a data buffer whose length is limited only by the
amount of real RAM available. You can try using c¢p, dd, and input/output redirec-
tion to test the driver.

The free command can be used to see how the amount of free memory shrinks
and expands according to how much data is written into scull.

To get more confident with reading and writing one quantum at a time, you can
add a printk at an appropriate point in the driver and watch what happens while
an application reads or writes large chunks of data. Alternatively, use the strace
utility to monitor the system calls issued by a program, together with their return
values. Tracing a ¢p or an Is -I > /dev/scull0 will show quantized reads and writes.
Monitoring (and debugging) techniques are presented in detail in the next chapter.

The Device Filesystem

As suggested at the beginning of the chapter, recent versions of the Linux kernel
offer a special filesystem for device entry points. The filesystem has been available
for a while as an unofficial patch; it was made part of the official source tree in
2.3.46. A backport to 2.2 is available as well, although not included in the official
2.2 kernels.

Although use of the special filesystem is not widespread as we write this, the new
features offer a few advantages to the device driver writer. Therefore, our version
of scull exploits deuvfs if it is being used in the target system. The module uses ker-
nel configuration information at compile time to know whether particular features
have been enabled, and in this case we depend on CONFIG_DEVFS_FS being
defined or not.

The main advantages of deufs are as follows:

e Device entry points in /dev are created at device initialization and removed at
device removal.

e The device driver can specify device names, ownership, and permission bits,
but user-space programs can still change ownership and permission (but not
the filename).

e There is no need to allocate a major number for the device driver and deal
with minor numbers.

As a result, there is no need to run a script to create device special files when a
module is loaded or unloaded, because the driver is autonomous in managing its
own special files.

85

22 June 2001 16:35

Chapter 3: Char Drivers

To handle device creation and removal, the driver should call the following func-
tions:

#include <linux/devfs_fs_kernel.h>

devfs_handle_t devfs_mk_dir (devfs_handle_t dir,
const char *name, void *info);

devfs_handle_t devfs_register (devfs_handle_t dir,
const char *name, unsigned int flags,
unsigned int major, unsigned int minor,
umode_t mode, void *ops, void *info);

void devfs_unregister (devfs_handle_t de);

The deyfs implementation offers several other functions for kernel code to use.
They allow creation of symbolic links, access to the internal data structures to
retrieve devfs_handle_t items from inodes, and other tasks. Those other func-
tions are not covered here because they are not very important or easily under-
stood. The curious reader could look at the header file for further information.

The various arguments to the register/unregister functions are as follows:
dir
The parent directory where the new special file should be created. Most

drivers will use NULL to create special files in /dev directly. To create an
owned directory, a driver should call devfs_mbk_dir.

name
The name of the device, without the leading /dev/. The name can include
slashes if you want the device to be in a subdirectory; the subdirectory is cre-
ated during the registration process. Alternatively, you can specify a valid dir
pointer to the hosting subdirectory.

flags
A Dbit mask of deufs flags. DEVFS_FL_DEFAULT can be a good choice, and
DEVFS_FL_AUTO_DEVNUM is the flag you need for automatic assignment of
major and minor numbers. The actual flags are described later.

major

minor
The major and minor numbers for the device. Unused if
DEVFS_FL_AUTO_DEVNUM is specified in the flags.

mode
Access mode of the new device.

ops
A pointer to the file operation structure for the device.

86

22 June 2001 16:35

The Device Filesystem

info
A default value for filp->private_data. The filesystem will initialize the
pointer to this value when the device is opened. The info pointer passed to
devfs_mk_dir is not used by deyfs and acts as a “client data” pointer.

de A “deufs entry” obtained by a previous call to devfs_register.

The flags are used to select specific features to be enabled for the special file
being created. Although the flags are briefly and clearly documented in
<linux/devfs_fs_kernel.h>, it's worth introducing some of them.

DEVFS_FL_NONE

DEVFS_FL_DEFAULT
The former symbol is simply 0, and is suggested for code readability. The lat-
ter macro is currently defined to DEVFS_FIL_NONE, but is a good choice to be
forward compatible with future implementations of the filesystem.

DEVFS_FL_AUTO_OWNER
The flag makes the device appear to be owned by the last uid/gid that opened
it, and read/write for anybody when no process has it opened. The feature is
useful for tty device files but is also interesting for device drivers to prevent
concurrent access to a nonshareable device. We'll see access policy issues in
Chapter 5.

DEVFS_FL_SHOW_UNREG

DEVFS_FL_HIDE
The former flag requests not to remove the device file from /dev when it is
unregistered. The latter requests never to show it in /dev. The flags are not
usually needed for normal devices.

DEVFS_FL_AUTO_DEVNUM
Automatically allocate a device number for this device. The number will
remain associated with the device name even after the devfs entry is unregis-
tered, so if the driver is reloaded before the system is shut down, it will
receive the same major/minor pair.

DEVFS_FL_NO_PERSISTENCE
Don’t keep track of this entry after it is removed. This flags saves some system
memory after module removal, at the cost of losing persistence of device fea-
tures across module unload/reload. Persistent features are access mode, file
ownership, and major/minor numbers.

It is possible to query the flags associated with a device or to change them at run-
time. The following two functions perform the tasks:

int devfs_get_flags (devfs_handle_t de, unsigned int *flags);
int devfs_set_flags (devfs_handle_t de, unsigned int flags);

87

22 June 2001 16:35

Chapter 3: Char Drivers

Using deuvfs in Practice

Because deyfs leads to serious user-space incompatibilities as far as device names
are concerned, not all installed systems use it. Independently of how the new fea-
ture will be accepted by Linux users, it’s unlikely you’ll write devfs-only drivers
anytime soon; thus, you'll need to add support for the “older” way of dealing with
file creation and permission from user space and using major/minor numbers in
kernel space.

The code needed to implement a device driver that only runs with deufs installed
is a subset of the code you need to support both environments, so we only show
the dual-mode initialization. Instead of writing a specific sample driver to try out
devfs, we added deufs support to the scull driver. If you load scull to a kernel that
uses devfs, you’ll need to directly invoke insmod instead of running the scull_load
script.

We chose to create a directory to host all scull special files because the structure of
deufs is highly hierarchical and there’s no reason not to adhere to this convention.
Moreover, we can thus show how a directory is created and removed.

Within scull_init, the following code deals with device creation, using a field
within the device structure (called handle) to keep track of what devices have
been registered:

/* If we have devfs, create /dev/scull to put files in there */
scull_devfs_dir = devfs_mk_dir (NULL, "scull", NULL);
if (!scull_devfs_dir) return -EBUSY; /* problem */

for (i=0; i < scull_nr_devs; i++) {
sprintf (devname, "%i", 1i);
devfs_register(scull_devfs_dir, devname,
DEVFS_FL_AUTO_DEVNUM,
0, 0, S_IFCHR | S_IRUGO | S_IWUGO,
&scull_fops,
scull_devices+i) ;

}

The previous code is paired by the two lines that are part of the following excerpt
from scull_cleanup:

if (scull_devices) {
for (i=0; i<scull_nr_devs; i++) {
scull_trim(scull_devices+i);
/* the following line is only used for devfs */
devfs_unregister (scull_devices[i] .handle) ;
}
kfree(scull_devices) ;

}

/* once again, only for devfs */
devfs_unregister (scull_devfs_dir);

88

The Device Filesystem

Part of the previous code fragments is protected by #ifdef CONFIG_DEVFS_FS.
If the feature is not enabled in the current kernel, scull will revert to regis-
ter_chrdev.

The only extra task that needs to be performed in order to support both environ-
ments is dealing with initialization of £ilp->f_ops and filp->private_data
in the open device method. The former pointer is simply not modified, since the
right file operations have been specified in deyfs_register. The latter will only need
to be initialized by the open method if it is NULL, since it will only be NULL if
deufs is not being used.

/*

* If private data is not valid, we are not using devfs

* so use the type (from minor nr.) to select a new f_op

*/
if (!filp->private_data && type) {

if (type > SCULL_MAX_ TYPE) return -ENODEV;

filp->f_op = scull_fop_arrayltypel;

return filp->f_ op->open(inode, filp); /* dispatch to specific open */
}

/* type 0, check the device number (unless private_data wvalid) */
dev = (Scull_Dev *)filp->private_data;
if (!dev) {

if (num >= scull_nr_devs) return -ENODEV;

dev = &scull_devices[num];

filp->private_data = dev; /* for other methods */

}

Once equipped with the code shown, the scu/l module can be loaded to a system
running deufs. It will show the following lines as output of Is -/ /dev/scull:

crw-rw-rw- 1 root root 144, 1 Jan 1 1970 O
crw-rw-rw- 1 root root 144, 2 Jan 1 1970 1
crw-rw-rw- 1 root root 144, 3 Jan 1 1970 2
crw-rw-rw- 1 root root 144, 4 Jan 1 1970 3
crw-rw-rw- 1 root root 144, 5 Jan 1 1970 pipeO
crw-rw-rw- 1 root <root 144, 6 Jan 1 1970 pipel
crw-rw-rw- 1 root <root 144, 7 Jan 1 1970 pipe2
crw-rw-rw- 1 root root 144, 8 Jan 1 1970 pipe3
crw-rw-rw- 1 root <root 144, 12 Jan 1 1970 priv
crw-rw-rw- 1 root <root 144, 9 Jan 1 1970 single
crw-rw-rw- 1 root root 144, 10 Jan 1 1970 user
crw-rw-rw- 1 root root 144, 11 Jan 1 1970 wuser

The functionality of the various files is the same as that of the “normal” scull mod-
ule, the only difference being in device pathnames: what used to be /dev/scullO is
now /dev/scull/O.

89

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

Portability Issues and devfs

The source files of scull are somewhat complicated by the need to be able to com-
pile and run well with Linux versions 2.0, 2.2, and 2.4. This portability requirement
brings in several instances of conditional compilation based on CON-
FIG_DEVFS_FS.

Fortunately, most developers agree that #ifdef constructs are basically bad when
they appear in the body of function definitions (as opposed to being used in
header files). Therefore, the addition of deyfs brings in the needed machinery to
completely avoid #ifdef in your code. We still have conditional compilation in
scull because older versions of the kernel headers can’t offer support for that.

If your code is meant to only be used with version 2.4 of the kernel, you can
avoid conditional compilation by calling kernel functions to initialize the driver in
both ways; things are arranged so that one of the initializations will do nothing at
all, while returning success. The following is an example of what initialization
might look like:

#include <devfs_fs_kernel.h>

int init_module()

{

/* request a major: does nothing if devfs is used */
result = devfs_register_chrdev(major, "name", &fops);
if (result < 0) return result;

/* register using devfs: does nothing if not in use */
devfs_register (NULL, "name", /* */);
return 0;

}

You can resort to similar tricks in your own header files, as long as you are careful
not to redefine functions that are already defined by kernel headers. Removing
conditional compilation is a good thing because it improves readability of the code
and reduces the amount of possible bugs by letting the compiler parse the whole
input file. Whenever conditional compilation is used, there is the risk of introduc-
ing typos or other errors that can slip through unnoticed if they happen in a place
that is discarded by the C preprocessor because of #ifdef.

This is, for example, how scull.h avoids conditional compilation in the cleanup
part of the program. This code is portable to all kernel versions because it doesn’t
depend on deufs being known to the header files:

#ifdef CONFIG_DEVFS_FS /* only if enabled, to avoid errors in 2.0 */
#include <linux/devfs_fs_kernel.h>

#else

typedef void * devfs_handle_t; /* avoid #ifdef inside the structure */
#endif

90

22 June 2001 16:35

Backward Compatibility

Nothing is defined in sysdep.h because it is very hard to implement this kind of
hack generically enough to be of general use. Each driver should arrange for its
own needs to avoid excessive #ifdef statements in function code. Also, we
chose not to support deyfs in the sample code for this book, with the exception of
scull. We hope this discussion is enough to help readers exploit deuyfs if they want
to; devfs support has been omitted from the rest of the sample files in order to
keep the code simple.

Backward Compatibility

This chapter, so far, has described the kernel programming interface for version
2.4 of the Linux kernel. Unfortunately, this interface has changed significantly over
the course of kernel development. These changes represent improvements in how
things are done, but, once again, they also pose a challenge for those who wish to
write drivers that are compatible across multiple versions of the kernel.

Insofar as this chapter is concerned, there are few noticeable differences between
versions 2.4 and 2.2. Version 2.2, however, changed many of the prototypes of the
file_operations methods from what 2.0 had; access to user space was greatly
modified (and simplified) as well. The semaphore mechanism was not as well
developed in Linux 2.0. And, finally, the 2.1 development series introduced the
directory entry (dentry) cache.

Changes in the File Operations Structure

A number of factors drove the changes in the file_operations methods. The
longstanding 2 GB file-size limit caused problems even in the Linux 2.0 days. As a
result, the 2.1 development series started using the 1off_t type, a 64-bit value, to
represent file positions and lengths. Large file support was not completely inte-
grated until version 2.4 of the kernel, but much of the groundwork was done ear-
lier and had to be accommodated by driver writers.

Another change introduced during 2.1 development was the addition of the
f_pos pointer argument to the read and write methods. This change was made to
support the POSIX pread and pwrite system calls, which explicitly set the file off-
set where data is to be read or written. Without these system calls, threaded pro-
grams can run into race conditions when moving around in files.

Almost all methods in Linux 2.0 received an explicit inode pointer argument. The
2.1 development series removed this parameter from several of the methods, since
it was rarely needed. If you need the inode pointer, you can still retrieve it from
the £ilp argument.

The end result is that the prototypes of the commonly used file_operations
methods looked like this in 2.0:

91

22 June 2001 16:35

Chapter 3: Char Drivers

int (*lseek) (struct inode *, struct file *, off_t, int);
Note that this method is called Iseek in Linux 2.0, instead of llseek. The name
change was made to recognize that seeks could now happen with 64-bit offset
values.

int (*read) (struct inode *, struct file *, char *, int);
int (*write) (struct inode *, struct file *, const char *,
int) ;
As mentioned, these functions in Linux 2.0 had the inode pointer as an argu-
ment, and lacked the position argument.

void (*release) (struct inode *, struct file *);
In the 2.0 kernel, the release method could not fail, and thus returned void.

There have been many other changes to the file_operations structure; we
will cover them in the following chapters as we get to them. Meanwhile, it is
worth a moment to look at how portable code can be written that accounts for the
changes we have seen so far. The changes in these methods are large, and there is
no simple, elegant way to cover them over.

The way the sample code handles these changes is to define a set of small wrap-
per functions that “translate” from the old API to the new. These wrappers are
only used when compiling under 2.0 headers, and must be substituted for the
“real” device methods within the file_operations structure. This is the code
implementing the wrappers for the scu/l driver:

/*

* The following wrappers are meant to make things work with 2.0 kernels
*/
#ifdef LINUX_20
int scull_lseek_20(struct inode *ino, struct file *f,

off_t offset, int whence)
{
return (int)scull_llseek(f, offset, whence);

}

int scull_read_20(struct inode *ino, struct file *f, char *buf,
int count)

{

return (int)scull_read(f, buf, count, &f->f_pos);

}

int scull_write_20(struct inode *ino, struct file *f, const char *b,
int c¢)

{

return (int)scull_write(f, b, c, &f->f_pos);

}

void scull_release_20(struct inode *ino, struct file *f)

{

92

22 June 2001 16:35

Backward Compatibility

scull_release(ino, f);

}

/* Redefine "real" names to the 2.0 ones */
#define scull_llseek scull_lseek_20

#define scull_read scull_read_20

#define scull_write scull_write_20

#define scull_release scull_release_20
#define llseek lseek

#endif /* LINUX_20 */

Redefining names in this manner can also account for structure members whose
names have changed over time (such as the change from Iseek to liseek).

Needless to say, this sort of redefinition of the names should be done with care;
these lines should appear before the definition of the file_operations struc-
ture, but after any other use of those names.

Two other incompatibilities are related to the file_operations structure. One
is that the flush method was added during the 2.1 development cycle. Driver writ-
ers almost never need to worry about this method, but its presence in the middle
of the structure can still create problems. The best way to avoid dealing with the

Slush method is to use the tagged initialization syntax, as we did in all the sample

source files.

The other difference is in the way an inode pointer is retrieved from a filp
pointer. Whereas modern kernels use a dentry (directory entry) data structure,
version 2.0 had no such structure. Therefore, sysdep.h defines a macro that should
be used to portably access an inode from a £ilp:

#ifdef LINUX_20

define INODE_FROM_F (filp) ((£filp)->f_inode)

#else

define INODE_FROM_F (filp) ((filp)->f_dentry->d_inode)
#endif

The Module Usage Count

In 2.2 and earlier kernels, the Linux kernel did not offer any assistance to modules
in maintaining the usage count. Modules had to do that work themselves. This
approach was error prone and required the duplication of a lot of work. It also
encouraged race conditions. The new method is thus a definite improvement.

Code that is written to be portable, however, must be prepared to deal with the
older way of doing things. That means that the usage count must still be incre-
mented when a new reference is made to the module, and decremented when
that reference goes away. Portable code must also work around the fact that the
owner field did not exist in the file_operations structure in earlier kernels.

93

22 June 2001 16:35

Chapter 3: Char Drivers

The easiest way to handle that is to use SET_MODULE_OWNER, rather than work-
ing with the owner field directly. In sysdep.h, we provide a null
SET_FILE_OWNER for kernels that do not have this facility.

Changes in Semaphore Support

Semaphore support was less developed in the 2.0 kernel; support for SMP systems
in general was primitive at that time. Drivers written for only that kernel version
may not need to use semaphores at all, since only one CPU was allowed to be
running kernel code at that time. Nonetheless, there may still be a need for
semaphores, and it does not hurt to have the full protection needed by later kernel
versions.

Most of the semaphore functions covered in this chapter existed in the 2.0 kernel.
The one exception is sema_init; in version 2.0, programmers had to initialize
semaphores manually. The sysdep.h header file handles this problem by defining a
version of sema_init when compiled under the 2.0 kernel:

#ifdef LINUX_ 20
ifdef MUTEX_LOCKED /* Only if semaphore.h included */
extern inline void sema_init (struct semaphore *sem, int val)
{
sem->count = val;
sem->waking = sem->lock = 0;
sem->wait = NULL;
}
endif
#endif /* LINUX_20 */

Changes in Access to User Space

Finally, access to user space changed completely at the beginning of the 2.1 devel-
opment series. The new interface has a better design and makes much better use
of the hardware in ensuring safe access to user-space memory. But, of course, the
interface is different. The 2.0 memory-access functions were as follows:

void memcpy fromfs(void *to, const void *from, unsigned long count);
void memcpy_tofs(void *to, const void *from, unsigned long count) ;

The names of these functions come from the historical use of the FS segment reg-
ister on the i386. Note that there is no return value from these functions; if the
user supplies an invalid address, the data copy will silently fail. sysdep.h hides the
renaming and allows you to portably call copy_to_user and copy_from_user.

94

Quick Reference

Quick Reference

This chapter introduced the following symbols and header files. The list of the
fields in struct file_operations and struct file is not repeated here.

#include <linux/fs.h>
The “file system” header is the header required for writing device drivers. All
the important functions are declared in here.

int register_chrdev(unsigned int major, const char
*name, struct file_operations *fops);
Registers a character device driver. If the major number is not O, it is used
unchanged; if the number is 0, then a dynamic number is assigned for this
device.

int unregister_chrdev (unsigned int major, const char *name);
Unregisters the driver at unload time. Both major and the name string must
contain the same values that were used to register the driver.

kdev_t inode->i_rdev;
The device “number” for the current device is accessible from the inode
structure.

int MAJOR (kdev_t dev) ;
int MINOR (kdev_t dev) ;
These macros extract the major and minor numbers from a device item.

kdev_t MKDEV (int major, int minor) ;
This macro builds a kdev_t data item from the major and minor numbers.

SET_MODULE_OWNER (struct file_operations *fops)
This macro sets the owner field in the given file_operations structure.

#include <asm/semaphore.h>
Defines functions and types for the use of semaphores.

void sema_init (struct semaphore *sem, int val);
Initializes a semaphore to a known value. Mutual exclusion semaphores are
usually initialized to a value of 1.

int down_interruptible (struct semaphore *sem) ;
void up (struct semaphore *sem) ;
Obtains a semaphore (sleeping, if necessary) and releases it, respectively.

#include <asm/segment.h>

#include <asm/uaccess.h>
segment.bh defines functions related to cross-space copying in all kernels up to
and including 2.0. The name was changed to waccess.h in the 2.1
development series.

95

22 June 2001 16:35

22 June 2001 16:35

Chapter 3: Char Drivers

unsigned long _ _copy_ from_user (void *to, const void *from,
unsigned long count) ;
unsigned long _ _copy_to_user (void *to, const void *from,

unsigned long count) ;
Copy data between user space and kernel space.

void memcpy_fromfs(void *to, const void *from, unsigned long
count) ;
void memcpy_ tofs(void *to, const void *from, unsigned long
count) ;
These functions were used to copy an array of bytes from user space to kernel
space and vice versa in version 2.0 of the kernel.

#include <linux/devfs_fs_kernel.h>

devfs_handle_t devfs_mk_dir (devfs_handle_t dir, const char
*name, void *info);

devfs_handle_t devfs_register (devfs_handle_t dir, const
char *name, unsigned int flags,

unsigned int major, unsigned int minor, umode_t mode, void
*ops, void *info);

void devfs_unregister (devfs_handle_t de);

These are the basic functions for registering devices with the device filesystem

(devfs).

96

22 June 2001 16:35

CHAPTER FOUR

DEBUGGING
TECHNIQUES

One of the most compelling problems for anyone writing kernel code is how to
approach debugging. Kernel code cannot be easily executed under a debugger,
nor can it be easily traced, because it is a set of functionalities not related to a spe-
cific process. Kernel code errors can also be exceedingly hard to reproduce and
can bring down the entire system with them, thus destroying much of the evi-
dence that could be used to track them down.

This chapter introduces techniques you can use to monitor kernel code and trace
errors under such trying circumstances.

Debugging by Printing

The most common debugging technique is monitoring, which in applications pro-
gramming is done by calling printf at suitable points. When you are debugging
kernel code, you can accomplish the same goal with printk.

printk

We used the printk function in earlier chapters with the simplifying assumption
that it works like prinitf. Now it's time to introduce some of the differences.

One of the differences is that printk lets you classify messages according to their
severity by associating different loglevels, or priorities, with the messages. You usu-
ally indicate the loglevel with a macro. For example, KERN_INFO, which we saw
prepended to some of the earlier print statements, is one of the possible loglevels
of the message. The loglevel macro expands to a string, which is concatenated to
the message text at compile time; that’s why there is no comma between the prior-
ity and the format string in the following examples. Here are two examples of
printk commands, a debug message and a critical message:

97

22 June 2001 16:35

Chapter 4: Debugging Techniques

printk (KERN_DEBUG "Here I am: %s:%i\n", __FILE _, __LINE_&_);
printk (KERN_CRIT "I'm trashed; giving up on %$p\n", ptr);

There are eight possible loglevel strings, defined in the header <linux/ker-
nel.h>:

KERN_EMERG
Used for emergency messages, usually those that precede a crash.

KERN_ALERT
A situation requiring immediate action.

KERN_CRIT
Critical conditions, often related to serious hardware or software failures.

KERN_ERR
Used to report error conditions; device drivers will often use KERN_ERR to
report hardware difficulties.

KERN_WARNING
Warnings about problematic situations that do not, in themselves, create seri-
ous problems with the system.

KERN_NOTICE
Situations that are normal, but still worthy of note. A number of security-
related conditions are reported at this level.

KERN_INFO
Informational messages. Many drivers print information about the hardware
they find at startup time at this level.

KERN_DEBUG
Used for debugging messages.

Each string (in the macro expansion) represents an integer in angle brackets. Inte-
gers range from 0 to 7, with smaller values representing higher priorities.

A printk statement with no specified priority defaults to DEFAULT_MES-
SAGE_LOGLEVEL, specified in kernel/printk.c as an integer. The default loglevel
value has changed several times during Linux development, so we suggest that
you always specify an explicit loglevel.

Based on the loglevel, the kernel may print the message to the current console, be
it a text-mode terminal, a serial line printer, or a parallel printer. If the priority is
less than the integer variable console_loglevel, the message is displayed. If
both klogd and syslogd are running on the system, kernel messages are appended
to /var/log/messages (or otherwise treated depending on your syslogd configura-
tion), independent of console_loglevel. If klogd is not running, the message
won't reach user space unless you read /proc/kmsg.

98

22 June 2001 16:35

Debugging by Printing

The variable console_loglevel is initialized to DEFAULT CON-
SOLE_LOGLEVEL and can be modified through the sys_syslog system call. One
way to change it is by specifying the —c switch when invoking klogd, as specified
in the klogd manpage. Note that to change the current value, you must first kill
klogd and then restart it with the —c option. Alternatively, you can write a program
to change the console loglevel. You'll find a version of such a program in misc-
progs/setlevel.c in the source files provided on the O'Reilly FTP site. The new level
is specified as an integer value between 1 and 8, inclusive. If it is set to 1, only
messages of level 0 (KERN_EMERG) will reach the console; if it is set to 8, all mes-
sages, including debugging ones, will be displayed.

You'll probably want to lower the loglevel if you work on the console and you
experience a kernel fault (see “Debugging System Faults” later in this chapter),
because the fault-handling code raises the console_loglevel to its maximum
value, causing every subsequent message to appear on the console. You’ll want to
raise the loglevel if you need to see your debugging messages; this is useful if you
are developing kernel code remotely and the text console is not being used for an
interactive session.

From version 2.1.31 on it is possible to read and modify the console loglevel using
the text file /proc/sys/kernel/printk. The file hosts four integer values. You may be
interested in the first two: the current console loglevel and the default level for
messages. With recent kernels, for instance, you can cause all kernel messages to
appear at the console by simply entering

echo 8 > /proc/sys/kernel/printk
If you run 2.0, however, you still need the setlevel tool.

It should now be apparent why the hello.c sample had the <1> markers; they are
there to make sure that the messages appear on the console.

Linux allows for some flexibility in console logging policies by letting you send
messages to a specific virtual console (if your console lives on the text screen). By
default, the “console” is the current virtual terminal. To select a different virtual ter-
minal to receive messages, you can issue ioctl (TIOCLINUX) on any console
device. The following program, setconsole, can be used to choose which console
receives kernel messages; it must be run by the superuser and is available in the
misc-progs directory.

This is how the program works:
int main(int argc, char **argv)

{
char bytes[2] = {11,0}; /* 11 is the TIOCLINUX cmd number */

if (argc==2) bytes[l] = atoi(argv[l]); /* the chosen console */
else {
fprintf (stderr, "%s: need a single arg\n",argv[0]); exit(1l);

}

99

22 June 2001 16:35

Chapter 4: Debugging Techniques

if (ioctl(STDIN_FILENO, TIOCLINUX, bytes)<0) { /* use stdin */
fprintf (stderr, "$s: ioctl(stdin, TIOCLINUX): %s\n",
argv[0], strerror(errno));
exit (1) ;
}
exit(0);

}

setconsole uses the special ioctl command TIOCLINUX, which implements Linux-
specific functions. To use TIOCLINUX, you pass it an argument that is a pointer to
a byte array. The first byte of the array is a number that specifies the requested
subcommand, and the following bytes are subcommand specific. In setconsole,
subcommand 11 is used, and the next byte (stored in bytes[1]) identifies the
virtual console. The complete description of TIOCLINUX can be found in
drivers/char/tty_io.c, in the kernel sources.

How Messages Get Logged

The printk function writes messages into a circular buffer that is LOG_BUF_LEN
(defined in kernel/printk.c) bytes long. It then wakes any process that is waiting
for messages, that is, any process that is sleeping in the syslog system call or that is
reading /proc/kmsg. These two interfaces to the logging engine are almost equiva-
lent, but note that reading from /proc/kmsg consumes the data from the log buffer,
whereas the syslog system call can optionally return log data while leaving it for
other processes as well. In general, reading the /proc file is easier, which is why it
is the default behavior for klogd.

If you happen to read the kernel messages by hand, after stopping klogd you’ll
find that the /proc file looks like a FIFO, in that the reader blocks, waiting for
more data. Obviously, you can’t read messages this way if klogd or another pro-
cess is already reading the same data because you’ll contend for it.

If the circular buffer fills up, printk wraps around and starts adding new data to
the beginning of the buffer, overwriting the oldest data. The logging process thus
loses the oldest data. This problem is negligible compared with the advantages of
using such a circular buffer. For example, a circular buffer allows the system to
run even without a logging process, while minimizing memory waste by overwrit-
ing old data should nobody read it. Another feature of the Linux approach to mes-
saging is that printk can be invoked from anywhere, even from an interrupt
handler, with no limit on how much data can be printed. The only disadvantage is
the possibility of losing some data.

If the klogd process is running, it retrieves kernel messages and dispatches them to
syslogd, which in turn checks /etc/sysiog.conf to find out how to deal with them.
syslogd differentiates between messages according to a facility and a priority;
allowable values for both the facility and the priority are defined in

100

22 June 2001 16:35

Debugging by Printing

<sys/syslog.h>. Kernel messages are logged by the LOG_KERN facility, at a
priority corresponding to the one used in printk (for example, LOG_ERR is used
for KERN_ERR messages). If klogd isn’t running, data remains in the circular buffer
until someone reads it or the buffer overflows.

If you want to avoid clobbering your system log with the monitoring messages
from your driver, you can either specify the —f (file) option to klogd to instruct it to
save messages to a specific file, or modify /etc/syslog.conf to suit your needs. Yet
another possibility is to take the brute-force approach: kill klogd and verbosely
print messages on an unused virtual terminal* or issue the command cat
/proc/kmsg from an unused xterm.

Turning the Messages On and Off

During the early stages of driver development, printk can help considerably in
debugging and testing new code. When you officially release the driver, on the
other hand, you should remove, or at least disable, such print statements. Unfortu-
nately, you're likely to find that as soon as you think you no longer need the mes-
sages and remove them, you’ll implement a new feature in the driver (or
somebody will find a bug) and you’ll want to turn at least one of the messages
back on. There are several ways to solve both issues, to globally enable or disable
your debug messages and to turn individual messages on or off.

Here we show one way to code printk calls so you can turn them on and off indi-
vidually or globally; the technique depends on defining a macro that resolves to a
printk (or printf) call when you want it to.

e Each print statement can be enabled or disabled by removing or adding a sin-
gle letter to the macro’s name.

e All the messages can be disabled at once by changing the value of the
CFLAGS variable before compiling.

e The same print statement can be used in kernel code and user-level code, so
that the driver and test programs can be managed in the same way with
regard to extra messages.

The following code fragment implements these features and comes directly from
the header scull.b.

#undef PDEBUG /* undef it, just in case */
#ifdef SCULL_DEBUG
ifdef _ _KERNEL_ _
/* This one if debugging is on, and kernel space */
define PDEBUG (fmt, args...) printk(KERN_DEBUG "scull: " fmt,
args)

* For example, use setlevel 8; setconsole 10 to set up terminal 10 to display messages.

101

22 June 2001 16:35

Chapter 4: Debugging Techniques

else

/* This one for user space */
define PDEBUG (fmt, args...) fprintf(stderr, fmt, ## args)
endif
#else
define PDEBUG(fmt, args...) /* not debugging: nothing */
#endif

#undef PDEBUGG
#define PDEBUGG (fmt, args...) /* nothing: it’s a placeholder */

The symbol PDEBUG depends on whether or not SCULL_DEBUG is defined, and it
displays information in whatever manner is appropriate to the environment where
the code is running: it uses the kernel call printk when it’s in the kernel, and the
libc call fprintf to the standard error when run in user space. The PDEBUGG sym-
bol, on the other hand, does nothing; it can be used to easily “comment” print
statements without removing them entirely.

To simplify the process further, add the following lines to your makefile:

Comment/uncomment the following line to disable/enable debugging
DEBUG = y

Add your debugging flag (or not) to CFLAGS
ifeq ($(DEBUG),y)

DEBFLAGS = -0 -g -DSCULL_DEBUG # "-0" is needed to expand inlines
else

DEBFLAGS = -02
endif

CFLAGS += $ (DEBFLAGS)

The macros shown in this section depend on a gcc extension to the ANSI C pre-
processor that supports macros with a variable number of arguments. This gcc
dependency shouldn’t be a problem because the kernel proper depends heavily
on gcc features anyway. In addition, the makefile depends on GNU’s version of
make; once again, the kernel already depends on GNU make, so this dependency
is not a problem.

If you're familiar with the C preprocessor, you can expand on the given definitions
to implement the concept of a “debug level,” defining different levels and assign-
ing an integer (or bit mask) value to each level to determine how verbose it
should be.

But every driver has its own features and monitoring needs. The art of good pro-
gramming is in choosing the best trade-off between flexibility and efficiency, and
we can't tell what is the best for you. Remember that preprocessor conditionals (as
well as constant expressions in the code) are executed at compile time, so you
must recompile to turn messages on or off. A possible alternative is to use C

102

22 June 2001 16:35

Debugging by Querying

conditionals, which are executed at runtime and therefore permit you to turn mes-
saging on and off during program execution. This is a nice feature, but it requires
additional processing every time the code is executed, which can affect perfor-
mance even when the messages are disabled. Sometimes this performance hit is
unacceptable.

The macros shown in this section have proven themselves useful in a number of
situations, with the only disadvantage being the requirement to recompile a mod-
ule after any changes to its messages.

Debugging by Querying

The previous section described how printk works and how it can be used. What it
didn’t talk about are its disadvantages.

A massive use of printk can slow down the system noticeably, because syslogd
keeps syncing its output files; thus, every line that is printed causes a disk opera-
tion. This is the right implementation from syslogd’s perspective. It tries to write
everything to disk in case the system crashes right after printing the message; how-
ever, you don’t want to slow down your system just for the sake of debugging
messages. This problem can be solved by prefixing the name of your log file as it
appears in /etc/syslogd.conf with a minus.” The problem with changing the config-
uration file is that the modification will likely remain there after you are done
debugging, even though during normal system operation you do want messages to
be flushed to disk as soon as possible. An alternative to such a permanent change
is running a program other than klogd (such as cat /proc/kmsg, as suggested ear-
lier), but this may not provide a suitable environment for normal system operation.

More often than not, the best way to get relevant information is to query the sys-
tem when you need the information, instead of continually producing data. In fact,
every Unix system provides many tools for obtaining system information: ps, net-
stat, vmstat, and so on.

Two main techniques are available to driver developers for querying the system:
creating a file in the /proc filesystem and using the ioct! driver method. You may
use devfs as an alternative to /proc, but /proc is an easier tool to use for informa-
tion retrieval.

Using the /proc Filesystem

The /proc filesystem is a special, software-created filesystem that is used by the
kernel to export information to the world. Each file under /proc is tied to a kernel
function that generates the file’s “contents” on the fly when the file is read. We

* The minus is a “magic” marker to prevent syslogd from flushing the file to disk at every
new message, documented in syslog.conf(5), a manual page worth reading.

103

22 June 2001 16:35

Chapter 4: Debugging Techniques

have already seen some of these files in action; /proc/modules, for example,
always returns a list of the currently loaded modules.

/proc is heavily used in the Linux system. Many utilities on a modern Linux distri-
bution, such as ps, top, and uptime, get their information from /proc. Some device
drivers also export information via /proc, and yours can do so as well. The /proc
filesystem is dynamic, so your module can add or remove entries at any time.

Fully featured /proc entries can be complicated beasts; among other things, they
can be written to as well as read from. Most of the time, however, /proc entries are
read-only files. This section will concern itself with the simple read-only case.
Those who are interested in implementing something more complicated can look
here for the basics; the kernel source may then be consulted for the full picture.

All modules that work with /proc should include <linux/proc_fs.h> to define
the proper functions.

To create a read-only /proc file, your driver must implement a function to produce
the data when the file is read. When some process reads the file (using the read
system call), the request will reach your module by means of one of two different
interfaces, according to what you registered. We'll leave registration for later in this
section and jump directly to the description of the reading interfaces.

In both cases the kernel allocates a page of memory (i.e., PAGE_SIZE bytes)
where the driver can write data to be returned to user space.

The recommended interface is read_proc, but an older interface named get_info
also exists.

int (*read_proc) (char *page, char **start, off_t offset, int
count, 1int *eof, void *data);

The page pointer is the buffer where you’'ll write your data; start is used by
the function to say where the interesting data has been written in page (more
on this later); offset and count have the same meaning as in the read
implementation. The eof argument points to an integer that must be set by
the driver to signal that it has no more data to return, while data is a driver-
specific data pointer you can use for internal bookkeeping.” The function is
available in version 2.4 of the kernel, and 2.2 as well if you use our sysdep.h
header.

int (*get_info) (char *page, char **start, off_t offset, int
count) ;
get_info is an older interface used to read from a /proc file. The arguments all
have the same meaning as for read_proc. What it lacks is the pointer to report
end-of-file and the object-oriented flavor brought in by the data pointer. The

* We'll find several of these pointers throughout the book; they represent the “object”
involved in this action and correspond somewhat to this in C++.

104

22 June 2001 16:35

Debugging by Querying

function is available in all the kernel versions we are interested in (although it
had an extra unused argument in its 2.0 implementation).

Both functions should return the number of bytes of data actually placed in the
page bulffer, just like the read implementation does for other files. Other output
values are *eof and *start. eof is a simple flag, but the use of the start
value is somewhat more complicated.

The main problem with the original implementation of user extensions to the /proc
filesystem was use of a single memory page for data transfer. This limited the total
size of a user file to 4 KB (or whatever was appropriate for the host platform). The
start argument is there to implement large data files, but it can be ignored.

If your proc_read function does not set the *start pointer (it starts out NULL),
the kernel assumes that the of fset parameter has been ignored and that the data
page contains the whole file you want to return to user space. If, on the other
hand, you need to build a bigger file from pieces, you can set *start to be equal
to page so that the caller knows your new data is placed at the beginning of the
buffer. You should then, of course, skip the first of £set bytes of data, which will
have already been returned in a previous call.

There has long been another major issue with /proc files, which start is meant
to solve as well. Sometimes the ASCII representation of kernel data structures
changes between successive calls to read, so the reader process could find incon-
sistent data from one call to the next. If *start is set to a small integer value, the
caller will use it to increment £ilp->f_pos independently of the amount of data
you return, thus making f_pos an internal record number of your read_proc or
get_info procedure. If, for example, your read_proc function is returning informa-
tion from a big array of structures, and five of those structures were returned in
the first call, start could be set to 5. The next call will provide that same value
as the offset; the driver then knows to start returning data from the sixth structure
in the array. This is defined as a “hack” by its authors and can be seen in

Ss/proc/generic.c.

Time for an example. Here is a simple read_proc implementation for the scull
device:

int scull_read _procmem(char *buf, char **start, off_t offset,
int count, int *eof, void *data)
{
int i, j, len = 0;
int limit = count - 80; /* Don’t print more than this */

for (i = 0; 1 < scull_nr _devs && len <= limit; i++) {
Scull_Dev *d = &scull_devices[i];
if (down_interruptible (&d->sem))
return -ERESTARTSYS;
len += sprintf (buf+len, "\nDevice %i: gset %i, q %i, sz %li\n",
i, d->gset, d->quantum, d->size);
for (; d && len <= limit; d = d->next) { /* scan the list */

105

22 June 2001 16:35

Chapter 4: Debugging Techniques

len += sprintf (buf+len, " item at %p, gset at %p\n", 4,
d->data) ;
if (d->data && !d->next) /* dump only the last item
- save space */
for (j = 0; j < d->gset; j++) {
if (d->dataljl)
len += sprintf (buf+len," % 4i: %8p\n",
j,d->dataljl);
}
}
up (&scull_devices[i].sem) ;

}
*eof = 1;
return len;

}

This is a fairly typical read_proc implementation. It assumes that there will never
be a need to generate more than one page of data, and so ignores the start and
offset values. It is, however, careful not to overrun its buffer, just in case.

A /proc function using the get_info interface would look very similar to the one
just shown, with the exception that the last two arguments would be missing. The
end-of-file condition, in this case, is signaled by returning less data than the caller
expects (i.e., less than count).

Once you have a read_proc function defined, you need to connect it to an entry
in the /proc hierarchy. There are two ways of setting up this connection, depend-
ing on what versions of the kernel you wish to support. The easiest method, only
available in the 2.4 kernel (and 2.2 too if you use our sysdep.h header), is to sim-
ply call create_proc_read_entry. Here is the call used by scull to make its /proc
function available as /proc/scullmem:

create_proc_read_entry("scullmem",
0 /* default mode */,
NULL /* parent dir */,
scull_read_procmemn,
NULL /* client data */);

The arguments to this function are, as shown, the name of the /proc entry, the file
permissions to apply to the entry (the value 0 is treated as a special case and is
turned to a default, world-readable mask), the proc_dir_entry pointer to the
parent directory for this file (we use NULL to make the driver appear directly
under /proc), the pointer to the read_proc function, and the data pointer that will
be passed back to the read_proc function.

The directory entry pointer can be used to create entire directory hierarchies under
/proc. Note, however, that an entry may be more easily placed in a subdirectory of
/proc simply by giving the directory name as part of the name of the entry—as
long as the directory itself already exists. For example, an emerging convention

106

22 June 2001 16:35

Debugging by Querying

says that /proc entries associated with device drivers should go in the subdirectory
driver/, scull could place its entry there simply by giving its name as
driver/scullmem.

Entries in /proc, of course, should be removed when the module is unloaded.
remove_proc_entry is the function that undoes what create_proc_read_entry did:

remove_proc_entry("scullmem", NULL /* parent dir */);

The alternative method for creating a /proc entry is to create and initialize a
proc_dir_entry structure and pass it to proc_register_dynamic (version 2.0) or
proc_register (version 2.2, which assumes a dynamic file if the inode number in
the structure is 0). As an example, consider the following code that scull uses
when compiled against 2.0 headers:

static int scull_get_info(char *buf, char **start, off_t offset,
int len, int unused)

int eof = 0;
return scull_read procmem (buf, start, offset, len, &eof, NULL);

struct proc_dir_entry scull_proc_entry = {

namelen: 8,

name: "scullmem",

mode: S_IFREG | S_IRUGO,
nlink: 1,

get_info: scull_get_info,

Y

static void scull_create_proc()
{

proc_register_dynamic (&proc_root, &scull_proc_entry);

static void scull_remove_proc ()
{

proc_unregister (&proc_root, scull_proc_entry.low_ino) ;
}

The code declares a function using the get info interface and fills in a
proc_dir_entry structure that is registered with the filesystem.

This code provides compatibility across the 2.0 and 2.2 kernels, with a little sup-
port from macro definitions in sysdep.h. It uses the get_info interface because the
2.0 kernel did not support read_proc. Some more work with #ifdef could have
made it use read_proc with Linux 2.2, but the benefits would be minor.

107

22 June 2001 16:35

Chapter 4: Debugging Techniques

The ioctl Method

ioctl, which we show you how to use in the next chapter, is a system call that acts
on a file descriptor; it receives a number that identifies a command to be per-
formed and (optionally) another argument, usually a pointer.

As an alternative to using the /proc filesystem, you can implement a few ioct/ com-
mands tailored for debugging. These commands can copy relevant data structures
from the driver to user space, where you can examine them.

Using ioct! this way to get information is somewhat more difficult than using /proc,
because you need another program to issue the ioct/ and display the results. This
program must be written, compiled, and kept in sync with the module you're test-
ing. On the other hand, the driver’s code is easier than what is needed to imple-
ment a /proc file

There are times when idoct/ is the best way to get information, because it runs
faster than reading /proc. If some work must be performed on the data before it’s
written to the screen, retrieving the data in binary form is more efficient than read-
ing a text file. In addition, ioct/ doesn’t require splitting data into fragments smaller
than a page.

Another interesting advantage of the ioct/ approach is that information-retrieval
commands can be left in the driver even when debugging would otherwise be dis-
abled. Unlike a /proc file, which is visible to anyone who looks in the directory
(and too many people are likely to wonder “what that strange file is”), undocu-
mented joct/ commands are likely to remain unnoticed. In addition, they will still
be there should something weird happen to the driver. The only drawback is that
the module will be slightly bigger.

Debugging by Waitching

Sometimes minor problems can be tracked down by watching the behavior of an
application in user space. Watching programs can also help in building confidence
that a driver is working correctly. For example, we were able to feel confident
about scull after looking at how its read implementation reacted to read requests
for different amounts of data.

There are various ways to watch a user-space program working. You can run a
debugger on it to step through its functions, add print statements, or run the pro-
gram under strace. Here we’ll discuss just the last technique, which is most inter-
esting when the real goal is examining kernel code.

The strace command is a powerful tool that shows all the system calls issued by a
user-space program. Not only does it show the calls, but it can also show the argu-
ments to the calls, as well as return values in symbolic form. When a system call

108

22 June 2001 16:35

Debugging by Watching

fails, both the symbolic value of the error (e.g., ENOMEM) and the corresponding
string (Out of memory) are displayed. strace has many command-line options;
the most useful of which are —f to display the time when each call is executed, —T
to display the time spent in the call, —e to limit the types of calls traced, and —o to
redirect the output to a file. By default, strace prints tracing information on
stderr.

strace receives information from the kernel itself. This means that a program can
be traced regardless of whether or not it was compiled with debugging support
(the —g option to gcc) and whether or not it is stripped. You can also attach tracing
to a running process, similar to the way a debugger can connect to a running pro-
cess and control it.

The trace information is often used to support bug reports sent to application
developers, but it's also invaluable to kernel programmers. We've seen how driver
code executes by reacting to system calls; strace allows us to check the consis-
tency of input and output data of each call.

For example the following screen dump shows the last lines of running the com-
mand strace Is /dev > /dev/scullO:

[...]

open("/dev", O_RDONLY|O_NONBLOCK) =4
fentl (4, F_SETFD, FD_CLOEXEC) =0
brk (0x8055000) = 0x8055000
lseek (4, 0, SEEK_CUR) =0
getdents (4, /* 70 entries */, 3933) = 1260
[...]
getdents (4, /* 0 entries */, 3933) =0
close(4) =0
fstat (1, {st_mode:S_IFCHR|0664, st_rdev=makedev (253, 0), ...}) =0
ioctl(l, TCGETS, Oxbffffa5c) = -1 ENOTTY (Inappropriate ioctl
for device)
write(l, "MAKEDEV\natibm\naudio\naudiol\na"..., 4096) = 4000
write(l, "d2\nsdd3\nsdd4\nsdd5\nsddé\nsdd7"..., 96) = 96
write(l, "4\nsde5\nsde6\nsde7\nsde8\nsde9\n"..., 3325) = 3325
close (1) =0
exit (0) = ?

It's apparent in the first write call that after /s finished looking in the target direc-
tory, it tried to write 4 KB. Strangely (for /), only four thousand bytes were writ-
ten, and the operation was retried. However, we know that the write
implementation in scull writes a single quantum at a time, so we could have
expected the partial write. After a few steps, everything sweeps through, and the
program exits successfully.

As another example, let’s read the scull device (using the wec command):
[...]

open("/dev/scullO", O_RDONLY) = 4
fstat (4, {st_mode=S_IFCHR|0664, st_rdev=makedev (253, 0), ...}) =0

109

22 June 2001 16:35

Chapter 4: Debugging Techniques

read (4, "MAKEDEV\natibm\naudio\naudiol\na"..., 16384) = 4000
read (4, "d2\nsdd3\nsdd4\nsdd5\nsdd6\nsdd7"..., 16384) = 3421
read(4, "", 16384) =0

fstat (1, {st_mode:S_IFCHR|0600, st_rdev=makedev (3, 7), ...}) =0
ioctl(l, TCGETS, {B38400 opost isig icanon echo ...}) =0
write(1l, " 7421 /dev/scullO\n", 20) = 20

close(4) =0

_exit(0) = 9

As expected, read is able to retrieve only four thousand bytes at a time, but the
total amount of data is the same that was written in the previous example. It's
interesting to note how retries are organized in this example, as opposed to the
previous trace. wc is optimized for fast reading and thus bypasses the standard
library, trying to read more data with a single system call. You can see from the
read lines in the trace how we tried to read 16 KB at a time.

Linux experts can find much useful information in the output of strace. If you're
put off by all the symbols, you can limit yourself to watching how the file methods
(open, read, and so on) work.

Personally, we find strace most useful for pinpointing runtime errors from system
calls. Often the perror call in the application or demo program isn’t verbose
enough to be useful for debugging, and being able to tell exactly which arguments
to which system call triggered the error can be a great help.

Debugging System Faults

Even if you've used all the monitoring and debugging techniques, sometimes bugs
remain in the driver, and the system faults when the driver is executed. When this
happens it’s important to be able to collect as much information as possible to
solve the problem.

Note that “fault” doesn’t mean “panic.” The Linux code is robust enough to
respond gracefully to most errors: a fault usually results in the destruction of the
current process while the system goes on working. The system can panic, and it
may if a fault happens outside of a process’s context, or if some vital part of the
system is compromised. But when the problem is due to a driver error, it usually
results only in the sudden death of the process unlucky enough to be using the
driver. The only unrecoverable damage when a process is destroyed is that some
memory allocated to the process’s context is lost; for instance, dynamic lists allo-
cated by the driver through kmalloc might be lost. However, since the kernel calls
the close operation for any open device when a process dies, your driver can
release what was allocated by the open method.

We've already said that when kernel code misbehaves, an informative message is
printed on the console. The next section explains how to decode and use such

110

22 June 2001 16:35

Debugging System Faults

messages. Even though they appear rather obscure to the novice, processor dumps
are full of interesting information, often sufficient to pinpoint a program bug with-
out the need for additional testing.

Oops Messages

Most bugs show themselves in NULL pointer dereferences or by the use of other
incorrect pointer values. The usual outcome of such bugs is an oops message.

Any address used by the processor is a virtual address and is mapped to physical
addresses through a complex structure of so-called page tables (see “Page Tables”
in Chapter 13). When an invalid pointer is dereferenced, the paging mechanism
fails to map the pointer to a physical address and the processor signals a page
JSault to the operating system. If the address is not valid, the kernel is not able to
“page in” the missing address; it generates an oops if this happens while the pro-
cessor is in supervisor mode.

It’s worth noting that the first enhancement introduced after version 2.0 was auto-
matic handling of invalid address faults when moving data to and from user space.
Linus chose to let the hardware catch erroneous memory references, so that the
normal case (where the addresses are correct) is handled more efficiently.

An oops displays the processor status at the time of the fault, including the con-
tents of the CPU registers, the location of page descriptor tables, and other seem-
ingly incomprehensible information. The message is generated by printk
statements in the fault handler (arch/*kernel/traps.c) and is dispatched as
described earlier, in the section “printk.”

Let’s look at one such message. Here’s what results from dereferencing a NULL
pointer on a PC running version 2.4 of the kernel. The most relevant information
here is the instruction pointer (EIP), the address of the faulty instruction.

Unable to handle kernel NULL pointer dereference at virtual address \
00000000
printing eip:
c48370c3
*pde = 00000000
Oops: 0002
CPU: 0
EIP: 0010:[<c48370c3>]
EFLAGS: 00010286
eax: ffffffea ebx: c2281a20 ecx: c48370c0 edx: c2281a40
esi: 4000c000 edi: 4000c000 ebp: c¢38adf8c esp: c38adf8c
ds: 0018 es: 0018 ss: 0018
Process ls (pid: 23171, stackpage=c38ad000)
Stack: 0000010e c01356e6 c2281a20 4000c000 0000010e c2281ad40 c38ac000 \
0000010e
4000c000 bffffclc 00000000 00000000 c38adfc4 c010b860 00000001 \
4000c000
0000010e 0000010e 4000c000 bffffclc 00000004 0000002b 0000002b \

111

22 June 2001 16:35

Chapter 4: Debugging Techniques

00000004
Call Trace: [<c01356e6>] [<c010b860>]
Code: c7 05 00 00 00 00 00 00 00 00 31 cO 89 ec 5d c3 8d b6 00 00

This message was generated by writing to a device owned by the faulty module, a
module built deliberately to demonstrate failures. The implementation of the write
method of faulty.c is trivial:

ssize_t faulty write (struct file *filp, const char *buf, size_t count,
loff_t *pos)

/* make a simple fault by dereferencing a NULL pointer */
*(int *)0 = 0;
return 0;

}

As you can see, what we do here is dereference a NULL pointer. Since 0 is never a
valid pointer value, a fault occurs, which the kernel turns into the oops message
shown earlier. The calling process is then killed.

The faulty module has more interesting fault conditions in its read implementa-
tion:

char faulty buf[1024];

ssize_t faulty read (struct file *filp, char *buf, size_t count,
loff_t *pos)

int ret, ret2;
char stack_buf[4];

printk (KERN_DEBUG "read: buf %p, count %1li\n", buf, (long)count);
/* the next line oopses with 2.0, but not with 2.2 and later */
ret = copy_to_user (buf, faulty buf, count);

if (!ret) return count; /* we survived */

printk (KERN_DEBUG "didn’'t fail: retry\n");

/* For 2.2 and 2.4, let’s try a buffer overflow */
sprintf (stack_buf, "1234567\n");

if (count > 8) count = 8; /* copy 8 bytes to the user */
ret2 = copy_to_user (buf, stack buf, count);

if (!ret2) return count;

return ret2;

}

It first reads from a global buffer without checking the size of the data, and then
performs a buffer overrun by writing to a local buffer. The first situation results in
an oops only in version 2.0 of the kernel, because later versions automatically deal
with user copy functions. The buffer overflow results in an oops with all kernel
versions; however, since the return instruction brings the instruction pointer to
nowhere land, this kind of fault is much harder to trace, and you can get some-
thing like the following:

112

22 June 2001 16:35

Debugging System Faults

EIP: 0010: [<00000000>]
[...]

Call Trace: [<c010b860>]
Code: Bad EIP value.

The main problem with users dealing with oops messages is in the little intrinsic
meaning carried by hexadecimal values; to be meaningful to the programmer they
need to be resolved to symbols. A couple of utilities are available to perform this
resolution for developers: klogd and ksymoops. The former tool performs symbol
decoding by itself whenever it is running; the latter needs to be purposely invoked
by the user. In the following discussion we use the data generated in our first oops
example by dereferencing a NULL pointer.

Using klogd

The klogd daemon can decode oops messages before they reach the log files. In
many situations, Rklogd can provide all the information a developer needs to track
down a problem, though sometimes the developer must give it a little help.

A dump of the oops for faulty, as it reaches the system log, looks like this (note
the decoded symbols on the EIP line and in the stack trace):

Unable to handle kernel NULL pointer dereference at virtual address \
00000000

printing eip:

c48370c3

*pde = 00000000

Oops: 0002

CPU: 0

EIP: 0010: [faulty:faulty _write+3/576]

EFLAGS: 00010286

eax: ffffffea ebx: c2c55ael ecx: c48370c0 edx: c2c¢55b00

esi: 08044038 edi: 08044038 ebp: c2337f8c esp: c2337f8c

ds: 0018 es: 0018 ss: 0018

Process cat (pid: 23413, stackpage=c2337000)

Stack: 00000001 c01356e6 c2c55ae0 08044038 00000001 c2c¢c55b00 ¢2336000 \
00000001

08044038 bfffflbd4d 00000000 00000000 bffffbd4 c010b860 00000001 \
08044038
00000001 00000001 08044038 bffffbd4d 00000004 0000002b 0000002b \

00000004

Call Trace: [sys_write+214/256] [system_call+52/56]

Code: c7 05 00 00 00 00 00 00 00 00 31 cO 89 ec 5d c3 8d b6 00 00

klogd provides most of the necessary information to track down the problem. In
this case we see that the instruction pointer (EIP) was executing in the function

JSaulty_write, so we know where to start looking. The 3/576 string tells us that the

processor was at byte 3 of a function that appears to be 576 bytes long. Note that
the values are decimal, not hex.

113

22 June 2001 16:35

Chapter 4: Debugging Techniques

The developer must exercise some care, however, to get useful information for
errors that occur within loadable modules. klogd loads all of the available symbol
information when it starts, and uses those symbols thereafter. If you load a module
after klogd has initialized itself (usually at system boot), klogd will not have your
module’s symbol information. To force klogd to go out and get that information,
send the klogd process a SIGUSRI signal after your module has been loaded (or
reloaded), and before you do anything that could cause it to oops.

It is also possible to run klogd with the —p (“paranoid”) option, which will cause it
to reread symbol information anytime it sees an oops message. The klogd man-
page recommends against this mode of operation, however, since it makes klogd
query the kernel for information after the problem has occurred. Information
obtained after an error could be plain wrong.

For klogd to work properly, it must have a current copy of the System.map symbol
table file. Normally this file is found in /boot; if you have built and installed a ker-
nel from a nonstandard location you may have to copy System.map into /boot, or
tell klogd to look elsewhere. klogd refuses to decode symbols if the symbol table
doesn’t match the current kernel. If a symbol is decoded on the system log, you
can be reasonably sure it is decoded correctly.

Using ksymoops

At times klogd may not be enough for your tracing purposes. Usually, you need to
get both the hexadecimal address and the associated symbol, and you often need
offsets printed as hex numbers. You may need more information than address
decoding. Also, it is common for klogd to get killed during the fault. In such situa-
tions, a stronger oops analyzer may be called for; ksymoops is such a tool.

Prior to the 2.3 development series, ksymoops was distributed with the kernel
source, in the scripts directory. It now lives on its own FTP site and is maintained
independently of the kernel. Even if you are working with an older kernel, you
probably should go to fip:/fip.ocs.com.au/pub/ksymoops and get an updated ver-
sion of the tool.

To operate at its best, ksymoops needs a lot of information in addition to the error
message; you can use command-line options to tell it where to find the various
items. The program needs the following items:

A System.map file
This map must correspond to the kernel that was running at the time the oops
occurred. The default is /usr/src/linux/System.map.

A list of modules
ksymoops needs to know what modules were loaded when the oops occurred,
in order to extract symbolic information from them. If you do not supply this
list, ksymoops will look at /proc/modules.

114

22 June 2001 16:35

Debugging System Faults

A list of kernel symbols defined when the oops occurred
The default is to get this list from /proc/ksyms.

A copy of the kernel image that was running
Note that ksymoops needs a straight kernel image, not the compressed version
(vmlinuz, zImage, or bzImage) that most systems boot. The default is to use
no kernel image because most people don’t keep it. If you have the exact
image handy, you should tell the program where it is by using the -v option.

The locations of the object files for any kernel modules that were loaded
ksymoops will look in the standard directories for modules, but during devel-
opment you will almost certainly have to tell it where your module lives using
the -o option

Although ksymoops will go to files in /proc for some of its needed information, the
results can be unreliable. The system, of course, will almost certainly have been
rebooted between the time the oops occurs and when ksymoops is run, and the
information from /proc may not match the state of affairs when the failure
occurred. When possible, it is better to save copies of /proc/modules and
/proc/ksyms prior to causing the oops to happen.

We urge driver developers to read the manual page for ksymoops because it is a
very informative document.

The last argument on the tool's command line is the location of the oops message;
if it is missing, the tool will read stdin in the best Unix tradition. The message
can be recovered from the system logs with luck; in the case of a very bad crash
you may end up writing it down off the screen and typing it back in (unless you
were using a serial console, a nice tool for kernel developers).

Note that ksymoops will be confused by an oops message that has already been
processed by klogd. If you are running klogd, and your system is still running after
an oops occurs, a clean oops message can often be obtained by invoking the
dmesg command.

If you do not provide all of the listed information explicitly, ksymoops will issue
warnings. It will also issue warnings about things like loaded modules that define
no symbols. A warning-free run of ksymoops is rare.

Output from ksymoops tends to look like the following:

>>EIP; c48370c3 <[faulty]lfaulty write+3/20> <=====
Trace; c01356e6 <sys_write+d6/100>
Trace; c010b860 <system call+34/38>
Code; ¢48370c3 <[faultylfaulty write+3/20>
00000000 <_EIP>:
Code; ¢48370c3 <[faulty]lfaulty_write+3/20> <=====
0: c7 05 00 00 00 movl $0x0, 0x0 <=====
Code; ¢48370c8 <[faulty]lfaulty write+8/20>
5: 00 00 00 00 00

115

22 June 2001 16:35

Chapter 4: Debugging Techniques

Code; ¢48370cd <[faulty]lfaulty write+d/20>

a: 31 c0 xorl %eax, $eax

Code; ¢48370cf <[faultylfaulty write+f/20>
c: 89 ec movl %ebp, $esp

Code; ¢48370d1 <[faultylfaulty write+11/20>
e: 5d popl $ebp

Code; ¢48370d2 <[faulty]faulty write+12/20>
f: c3 ret

Code; ¢48370d3 <[faulty]faulty write+13/20>
10: 8d b6 00 00 00 leal 0x0 (%esi), %esi

Code; ¢48370d8 <[faultylfaulty write+18/20>
15: 00

As you can see, ksymoops provides EIP and kernel stack information much like
klogd does, but more precisely and in hexadecimal. Youwll note that the
Jaulty _write function is correctly reported to be 0x20 bytes long. This is because
ksymoops reads the object file of your module and extracts all available informa-
tion.

In this case, moreover, you also get an assembly language dump of the code
where the fault occurred. This information can often be used to figure out exactly
what was happening; here it’s clearly an instruction that writes a 0 to address 0.

One interesting feature of ksymoops is that it is ported to nearly all the platforms
where Linux runs and exploits the bfd (binary format description) library in order
to support several computer architectures at the same time. To step outside of the
PC world, let’s see how the same oops message appears on the SPARC64 platform
(several lines have been broken for typographical needs):

Unable to handle kernel NULL pointer dereference
tsk->mm->context = 0000000000000734
tsk->mm->pgd = £££££80003499000

AV

"@r/ .. \@"

/| N__/ |-\

__U_/

1s(16740) : Oops
TSTATE: 0000004400009601 TPC: 0000000001000128 TNPC: 0000000000457fbc \
Y: 00800000
g0: 000000007002ea88 gl: 0000000000000004 g2: 0000000070029fb0 \
g3: 0000000000000018
g4: £££££80000000000 g5: 0000000000000001 g6: f£££££8000119c000 \
g7: 0000000000000001
o0: 0000000000000000 ol: 000000007001a000 o2: 0000000000000178 \
o3: fffff8001224£f168
o4: 0000000001000120 o5: 0000000000000000 sp: fff££8000119f621 \
ret_pc: 0000000000457fb4
10: £££££800122376c0 11: ffffffffffffffea 12: 000000000002c400 \
13: 000000000002c400
14: 0000000000000000 15: 0000000000000000 16: 0000000000019c00 \
17: 0000000070028cbc
i0: £££££8001224£f140 il: 000000007001a000 i2: 0000000000000178 \

116

22 June 2001 16:35

Debugging System Faults

i3: 000000000002c400

i4: 000000000002c400 i5:
i7: 0000000000410114
Caller[0000000000410114]
Caller[000000007007cba4]
Instruction DUMP: 01000000 90102000 81c3e008 <c0202000> \
30680005 01000000 01000000 01000000 01000000

000000000002c000 i6: ££f£££8000119f6el \

Note how the instruction dump doesn’t start from the instruction that caused the
fault but three instructions earlier: that’s because the RISC platforms execute sev-
eral instructions in parallel and may generate deferred exceptions, so one must be
able to look back at the last few instructions.

This is what ksymoops prints when fed with input data starting at the TSTATE line:

>>TPC; 0000000001000128 <[faulty].text.start+88/a0> <=====
>>07; 0000000000457fb4 <sys_write+114/160>

>>I7; 0000000000410114 <linux_sparc_syscall+34/40>

Trace; 0000000000410114 <linux_sparc_syscall+34/40>

Trace; 000000007007cbad4 <END_OF_CODE+6£07c40d/???7?>

Code; 000000000100011lc <[faulty].text.start+7c/al0>

0000000000000000 <_TPC>:

Code; 000000000100011lc <[faulty].text.start+7c/ald>
0: 01 00 00 00 nop
Code; 0000000001000120 <[faulty].text.start+80/a0>
4: 90 10 20 00 clr %o0 1 0 <_TPC>
Code; 0000000001000124 <[faulty].text.start+84/a0>
8: 81 c3 e0 08 retl
Code; 0000000001000128 <[faulty].text.start+88/a0> <=====
c: c0 20 20 00 clr [%90 1] <=====
Code; 000000000100012c <[faulty].text.start+8c/al>
10: 30 68 00 05 b,a $xcc, 24 <_TPC+0x24> \
0000000001000140 <[faulty]lfaulty write+0/20>
Code; 0000000001000130 <[faulty].text.start+90/a0>
14: 01 00 00 00 nop
Code; 0000000001000134 <[faulty].text.start+94/a0>
18: 01 00 00 00 nop
Code; 0000000001000138 <[faulty].text.start+98/a0>
1c: 01 00 00 00 nop
Code; 000000000100013c <[faulty].text.start+9c/al>
20: 01 00 00 00 nop

To print the disassembled code shown we had to tell ksymoops the target file for-
mat and architecture (this is needed because the native architecture for SPARCG4
user space is 32 bit). In this case, the options -t elf64-sparc -a sparc:v9 did the job.

You may complain that this call trace doesn’t carry any interesting information;
however, the SPARC processors don’t save all the call trace on the stack: the 07
and I7 registers hold the instruction pointers of the last two calling functions,
which is why they are shown near the call trace. In this case, the faulty instruction

was in a function invoked by sys_write.

117

22 June 2001 16:35

Chapter 4: Debugging Techniques

Note that, whatever the platform/architecture pair, the format used to show disas-
sembled code is the same as that used by the objdump program. objdump is a
powerful utility; if you want to look at the whole function that failed, you can
invoke the command objdump —d faulty.o (once again, on SPARCG64, you need
special options: —target elfo4-sparc— architecture sparc:v9). For more informa-
tion on objdump and its command-line options, see the manpage for the com-
mand.

Learning to decode an oops message requires some practice and an understanding
of the target processor you are using, as well as of the conventions used to repre-
sent assembly language, but it's worth doing. The time spent learning will be
quickly repaid. Even if you have previous expertise with the PC assembly lan-
guage under non-Unix operating systems, you may need to devote some time to
learning, because the Unix syntax is different from Intel syntax. (A good descrip-
tion of the differences is in the Info documentation file for as, in the chapter called
“1386-specific.”)

System Hangs

Although most bugs in kernel code end up as oops messages, sometimes they can
completely hang the system. If the system hangs, no message is printed. For exam-
ple, if the code enters an endless loop, the kernel stops scheduling, and the sys-
tem doesn't respond to any action, including the magic CTRL-ALT-DEL
combination. You have two choices for dealing with system hangs—either prevent
them beforehand or be able to debug them after the fact.

You can prevent an endless loop by inserting schedule invocations at strategic
points. The schedule call (as you might guess) invokes the scheduler and thus
allows other processes to steal CPU time from the current process. If a process is
looping in kernel space due to a bug in your driver, the schedule calls enable you
to kill the process, after tracing what is happening.

You should be aware, of course, that any call to schedule may create an additional
source of reentrant calls to your driver, since it allows other processes to run. This
reentrancy should not normally be a problem, assuming that you have used suit-
able locking in your driver. Be sure, however, not to call schedule any time that
your driver is holding a spinlock.

If your driver really hangs the system, and you don’t know where to insert sched-
ule calls, the best way to go is to add some print messages and write them to the
console (by changing the console_loglevel value).

Sometimes the system may appear to be hung, but it isn’t. This can happen, for
example, if the keyboard remains locked in some strange way. These false hangs
can be detected by looking at the output of a program you keep running for just
this purpose. A clock or system load meter on your display is a good status moni-
tor; as long as it continues to update, the scheduler is working. If you are not
using a graphic display, you can check the scheduler by running a program that

118

22 June 2001 16:35

Debugging System Faults

flashes the keyboard LEDs, turns on the floppy motor every now and then, or ticks
the speaker—conventional beeps are quite annoying and should be avoided; look
for the KDMKTONE foct/ command instead. A sample program (misc-progs/beart-
beat.c) that flashes a keyboard LED in a heartbeat fashion is available in the
sources on the O’Reilly FTP site.

If the keyboard isn’t accepting input, the best thing to do is log into the system
through your network and kill any offending processes, or reset the keyboard
(with kbd_mode —a). However, discovering that the hang is only a keyboard
lockup is of little use if you don’t have a network available to help you recover. If
this is the case, you could set up alternative input devices to be able at least to
reboot the system cleanly. A shutdown and reboot cycle is easier on your com-
puter than hitting the so-called big red button, and it saves you from the lengthy

fsck scanning of your disks.

Such an alternative input device can be, for example, the mouse. Version 1.10 or
newer of the gpm mouse server features a command-line option to enable a simi-
lar capability, but it works only in text mode. If you don’t have a network connec-
tion and run in graphics mode, we suggest running some custom solution, like a
switch connected to the DCD pin of the serial line and a script that polls for status
change.

An indispensable tool for these situations is the “magic SysRq key,” which is avail-
able on more architectures in 2.2 and later kernels. Magic SysRq is invoked with
the combination of the ALT and SysRq keys on the PC keyboard, or with the ALT
and Stop keys on SPARC keyboards. A third key, pressed along with these two,
performs one of a number of useful actions, as follows:

r Turns off keyboard raw mode in situations where you cannot run kbd_mode.

k Invokes the “secure attention” (SAK) function. SAK will kill all processes run-
ning on the current console, leaving you with a clean terminal.

s Performs an emergency synchronization of all disks.

u Attempts to remount all disks in a read-only mode. This operation, usually
invoked immediately after s, can save a lot of filesystem checking time in
cases where the system is in serious trouble.

b Immediately reboots the system. Be sure to synchronize and remount the disks
first.

p Prints the current register information.
t Prints the current task list.
m Prints memory information.

Other magic SysRq functions exist; see sysrq.txt in the Documentation directory of
the kernel source for the full list. Note that magic SysRq must be explicitly enabled
in the kernel configuration, and that most distributions do not enable it, for

119

22 June 2001 16:35

Chapter 4: Debugging Techniques

obvious security reasons. For a system used to develop drivers, however, enabling
magic SysRq is worth the trouble of building a new kernel in itself. Magic SysRq
must be enabled at runtime with a command like the following:

echo 1 > /proc/sys/kernel/sysrq

Another precaution to use when reproducing system hangs is to mount all your
disks as read-only (or unmount them). If the disks are read-only or unmounted,
there’s no risk of damaging the filesystem or leaving it in an inconsistent state.
Another possibility is using a computer that mounts all of its filesystems via NFS,
the network file system. The “NFS-Root” capability must be enabled in the kernel,
and special parameters must be passed at boot time. In this case you’ll avoid any
filesystem corruption without even resorting to SysRq, because filesystem coher-
ence is managed by the NFS server, which is not brought down by your device
driver.

Debuggers and Related Tools

The last resort in debugging modules is using a debugger to step through the
code, watching the value of variables and machine registers. This approach is
time-consuming and should be avoided whenever possible. Nonetheless, the fine-
grained perspective on the code that is achieved through a debugger is sometimes
invaluable.

Using an interactive debugger on the kernel is a challenge. The kernel runs in its
own address space on the behalf of all the processes on the system. As a result, a
number of common capabilities provided by user-space debuggers, such as break-
points and single-stepping, are harder to come by in the kernel. In this section we
look at several ways of debugging the kernel; each of them has advantages and
disadvantages.

Using gdb

gdb can be quite useful for looking at the system internals. Proficient use of the
debugger at this level requires some confidence with gdb commands, some under-
standing of assembly code for the target platform, and the ability to match source
code and optimized assembly.

The debugger must be invoked as though the kernel were an application. In addi-
tion to specifying the filename for the uncompressed kernel image, you need to
provide the name of a core file on the command line. For a running kernel, that
core file is the kernel core image, /proc/kcore. A typical invocation of gdb looks
like the following:

gdb /usr/src/linux/vmlinux /proc/kcore

The first argument is the name of the uncompressed kernel executable, not the
zlmage or bzlmage or anything compressed.

120

22 June 2001 16:35

Debuggers and Related Tools

The second argument on the gdb command line is the name of the core file. Like
any file in /proc, /proc/kcore is generated when it is read. When the read system
call executes in the /proc filesystem, it maps to a data-generation function rather
than a data-retrieval one; we’ve already exploited this feature in “Using the /proc
Filesystem” earlier in this chapter. kcore is used to represent the kernel “exe-
cutable” in the format of a core file; it is a huge file because it represents the
whole kernel address space, which corresponds to all physical memory. From
within gdb, you can look at kernel variables by issuing the standard gdb com-
mands. For example, p jiffies prints the number of clock ticks from system boot to
the current time.

When you print data from gdb, the kernel is still running, and the various data
items have different values at different times; gdb, however, optimizes access to
the core file by caching data that has already been read. If you try to look at the
jiffies variable once again, you’ll get the same answer as before. Caching val-
ues to avoid extra disk access is a correct behavior for conventional core files, but
is inconvenient when a “dynamic” core image is used. The solution is to issue the
command core-file /proc/kcore whenever you want to flush the gdb cache; the
debugger prepares to use a new core file and discards any old information. You
won’t, however, always need to issue core-file when reading a new datum; gdb
reads the core in chunks of a few kilobytes and caches only chunks it has already
referenced.

Numerous capabilities normally provided by gdb are not available when you are
working with the kernel. For example, gdb is not able to modify kernel data; it
expects to be running a program to be debugged under its own control before
playing with its memory image. It is also not possible to set breakpoints or watch-
points, or to single-step through kernel functions.

If you compile the kernel with debugging support (—g), the resulting vmlinux file
turns out to work better with gdb than the same file compiled without —g. Note,
however, that a large amount of disk space is needed to compile the kernel with
the —g option (each object file and the kernel itself are three or more times bigger
than usual).

On non-PC computers, the game is different. On the Alpha, make boot strips the
kernel before creating the bootable image, so you end up with both the vmlinux
and the vmlinux.gz files. The former is usable by gdb, and you can boot from the
latter. On the SPARC, the kernel (at least the 2.0 kernel) is not stripped by default.

When you compile the kernel with —g and run the debugger using vmlinux
together with /proc/kcore, gdb can return a lot of information about the kernel
internals. You can, for example, use commands such as p *module_list, p *mod-
ule_list->next, and p *chrdevs/4/->fops to dump structures. To get the best out of p,
you’ll need to keep a kernel map and the source code handy.

121

22 June 2001 16:35

Chapter 4: Debugging Techniques

Another useful task that gdb performs on the running kernel is disassembling func-
tions, via the disassemble command (which can be abbreviated to disass) or the
“examine instructions” (x/1) command. The disassemble command can take as its
argument either a function name or a memory range, whereas x/i takes a single
memory address, also in the form of a symbol name. You can invoke, for example,
X/20i to disassemble 20 instructions. Note that you can’t disassemble a module
function, because the debugger is acting on vmlinux, which doesn’t know about
your module. If you try to disassemble a module by address, gdb is most likely to
reply “Cannot access memory at xxxx.” For the same reason, you can'’t look at data
items belonging to a module. They can be read from /dev/mem if you know the
address of your variables, but it’s hard to make sense out of raw data extracted
from system RAM.

If you want to disassemble a module function, you're better off running the obj-
dump utility on the module object file. Unfortunately, the tool runs on the disk
copy of the file, not the running one; therefore, the addresses as shown by o0bj-
dump will be the addresses before relocation, unrelated to the module’s execution
environment. Another disadvantage of disassembling an unlinked object file is that
function calls are still unresolved, so you can’t easily tell a call to printk from a call
to kmalloc.

As you see, gdb is a useful tool when your aim is to peek into the running kernel,
but it lacks some features that are vital to debugging device drivers.

The kdb Kernel Debugger

Many readers may be wondering why the kernel does not have any more
advanced debugging features built into it. The answer, quite simply, is that Linus
does not believe in interactive debuggers. He fears that they lead to poor fixes,
those which patch up symptoms rather than addressing the real cause of prob-
lems. Thus, no built-in debuggers.

Other kernel developers, however, see an occasional use for interactive debugging
tools. One such tool is the kdb built-in kernel debugger, available as a nonofficial
patch from oss.sgi.com. To use kdb, you must obtain the patch (be sure to get a
version that matches your kernel version), apply it, and rebuild and reinstall the
kernel. Note that, as of this writing, kdb works only on IA-32 (x86) systems
(though a version for the [A-64 existed for a while in the mainline kernel source
before being removed).

Once you are running a kdb-enabled kernel, there are a couple of ways to enter
the debugger. Hitting the Pause (or Break) key on the console will start up the
debugger. kdb also starts up when a kernel oops happens, or when a breakpoint
is hit. In any case, you will see a message that looks something like this:

Entering kdb (0xcl1278000) on processor 1 due to Keyboard Entry
[1]1kdb>

122

22 June 2001 16:35

Debuggers and Related Tools

Note that just about everything the kernel does stops when kdb is running. Noth-
ing else should be running on a system where you invoke kdb; in particular, you
should not have networking turned on—unless, of course, you are debugging a
network driver. It is generally a good idea to boot the system in single-user mode
if you will be using kdb.

As an example, consider a quick scull debugging session. Assuming that the driver
is already loaded, we can tell kdb to set a breakpoint in scull_read as follows:

[11kdb> bp scull_read

Instruction(i) BP #0 at 0xc8833514 (scull_read)
is enabled on cpu 1

[11kdb> go

The bp command tells kdb to stop the next time the kernel enters scull_read. We
then type go to continue execution. After putting something into one of the scul/
devices, we can attempt to read it by running cat under a shell on another termi-
nal, yielding the following:

Entering kdb (0xc3108000) on processor 0 due to Breakpoint @ 0xc8833515
Instruction(i) breakpoint #0 at 0xc8833514

scull_read+0x1l: movl $esp, $ebp

[0]1kdb>

We are now positioned at the beginning of scull_read. To see how we got there,
we can get a stack trace:

[01kdb> bt
EBP EIP Function (args)
0xc3109c5¢c 0xc8833515 scull_read+0x1l
0xc3109fbc 0xfc458bl0 scull_read+0x33c255fc(0x3, 0x803ad78, 0x1000,
0x1000, 0x804ad78)
Oxbffffc88 0xc0l0becO system_call
[0]1kdb>

kdb attempts to print out the arguments to every function in the call trace. It gets
confused, however, by optimization tricks used by the compiler. Thus it prints five
arguments for scull_read, which only has four.

Time to look at some data. The mds command manipulates data; we can query the
value of the scull_devices pointer with a command like:

[0]1kdb> mds scull_devices 1
c8836104: c4cl25c0

Here we asked for one (four-byte) word of data starting at the location of
scull_devices; the answer tells us that our device array was allocated starting
at the address c4c125c0. To look at a device structure itself we need to use that
address:

123

22 June 2001 16:35

Chapter 4: Debugging Techniques

[0]kdb> mds c4cl125c0
c4cl25c0: ¢3785000
c4cl25c4: 00000000
c4cl25c8: 00000fal
c4cl25cc: 000003e8
c4cl125d0: 0000009%a
c4cl25d4: 00000000
c4cl25d8: 00000000
c4cl25dc: 00000001

The eight lines here correspond to the eight fields in the Scull_Dev structure.
Thus we see that the memory for the first device is allocated at 0xc3785000, that
there is no next item in the list, that the quantum is 4000 (hex fa0) and the array
size is 1000 (hex 3e8), that there are 154 bytes of data in the device (hex 9a), and
SO on.

kdb can change data as well. Suppose we wanted to trim some of the data from
the device:

[0]kdb> mm c4cl125d0 0x50
0xc4c125d0 = 0x50

A subsequent cat on the device will now return less data than before.

kdb has a number of other capabilities, including single-stepping (by instructions,
not lines of C source code), setting breakpoints on data access, disassembling
code, stepping through linked lists, accessing register data, and more. After you
have applied the kdb patch, a full set of manual pages can be found in the Docu-
mentation/kdb directory in your kernel source tree.

The Integrated Kernel Debugger Paich

A number of kernel developers have contributed to an unofficial patch called the
integrated kernel debugger, or IKD. IKD provides a number of interesting kernel
debugging facilities. The x86 is the primary platform for this patch, but much of it
works on other architectures as well. As of this writing, the IKD patch can be
found at fip://fip.kernel.org/pub/linux/kernel/people/andrea/ikd. Tt is a patch that
must be applied to the source for your kernel; the patch is version specific, so be
sure to download the one that matches the kernel you are working with.

One of the features of the IKD patch is a kernel stack debugger. If you turn this
feature on, the kernel will check the amount of free space on the kernel stack at
every function call, and force an oops if it gets too small. If something in your ker-
nel is causing stack corruption, this tool may help you to find it. There is also a
“stack meter” feature that you can use to see how close to filling up the stack you
get at any particular time.

124

22 June 2001 16:35

Debuggers and Related Tools

The IKD patch also includes some tools for finding kernel lockups. A “soft lockup”
detector forces an oops if a kernel procedure goes for too long without schedul-
ing. It is implemented by simply counting the number of function calls that are
made and shutting things down if that number exceeds a preconfigured threshold.
Another feature can continuously print the program counter on a virtual console
for truly last-resort lockup tracking. The semaphore deadlock detector forces an
oops if a process spends too long waiting on a down call.

Other debugging capabilities in IKD include the kernel trace capability, which can
record the paths taken through the kernel code. There are some memory debug-
ging tools, including a leak detector and a couple of “poisoners,” that can be use-
ful in tracking down memory corruption problems.

Finally, IKD also includes a version of the kdb debugger discussed in the previous
section. As of this writing, however, the version of kdb included in the IKD patch
is somewhat old. If you need kdb, we recommend that you go directly to the
source at oss.sgi.com for the current version.

The kgdb Patch

kgdb is a patch that allows the full use of the gdb debugger on the Linux kernel,
but only on x86 systems. It works by hooking into the system to be debugged via
a serial line, with gdb running on the far end. You thus need two systems to use
kgdb—one to run the debugger and one to run the kernel of interest. Like kdb,
kgdb is currently available from oss.sgi.com.

Setting up kgdb involves installing a kernel patch and booting the modified kernel.
You need to connect the two systems with a serial cable (of the null modem vari-
ety) and to install some support files on the gdb side of the connection. The patch
places detailed instructions in the file Documentation/i386/gdb-serial.txt, we won't
reproduce them here. Be sure to read the instructions on debugging modules:
toward the end there are some nice gdb macros that have been written for this
purpose.

Kernel Crash Dump Analyzers

Crash dump analyzers enable the system to record its state when an oops occurs,
so that it may be examined at leisure afterward. They can be especially useful if
you are supporting a driver for a user at a different site. Users can be somewhat
reluctant to copy down oops messages for you so installing a crash dump system
can let you get the information you need to track down a user’s problem without
requiring work from him. It is thus not surprising that the available crash dump
analyzers have been written by companies in the business of supporting systems
for users.

125

22 June 2001 16:35

Chapter 4: Debugging Techniques

There are currently two crash dump analyzer patches available for Linux. Both
were relatively new when this section was written, and both were in a state of
flux. Rather than provide detailed information that is likely to go out of date, we’ll
restrict ourselves to providing an overview and pointers to where more informa-
tion can be found.

The first analyzer is LKCD (Linux Kernel Crash Dumps). It’s available, once again,
from oss.sgi.com. When a kernel oops occurs, LKCD will write a copy of the cur-
rent system state (memory, primarily) into the dump device you specified in
advance. The dump device must be a system swap area. A utility called LCRASH is
run on the next reboot (before swapping is enabled) to generate a summary of the
crash, and optionally to save a copy of the dump in a conventional file. LCRASH
can be run interactively and provides a number of debugger-like commands for
querying the state of the system.

LKCD is currently supported for the Intel 32-bit architecture only, and only works
with swap partitions on SCSI disks.

Another crash dump facility is available from www.missioncriticallinux.com. This
crash dump subsystem creates crash dump files directly in /var/dumps and does
not use the swap area. That makes certain things easier, but it also means that the
system will be modifying the file system while in a state where things are known
to have gone wrong. The crash dumps generated are in a standard core file for-
mat, so tools like gdb can be used for post-mortem analysis. This package also
provides a separate analyzer that is able to extract more information than gdb from
the crash dump files.

The User-Mode Linux Port

User-Mode Linux is an interesting concept. It is structured as a separate port of the
Linux kernel, with its own arch/um subdirectory. It does not run on a new type of
hardware, however; instead, it runs on a virtual machine implemented on the
Linux system call interface. Thus, User-Mode Linux allows the Linux kernel to run
as a separate, user-mode process on a Linux system.

Having a copy of the kernel running as a user-mode process brings a number of
advantages. Because it is running on a constrained, virtual processor, a buggy ker-
nel cannot damage the “real” system. Different hardware and software configura-
tions can be tried easily on the same box. And, perhaps most significantly for
kernel developers, the user-mode kernel can be easily manipulated with gdb or
another debugger. After all, it is just another process. User-Mode Linux clearly has
the potential to accelerate kernel development.

As of this writing, User-Mode Linux is not distributed with the mainline kernel; it
must be downloaded from its web site (bttp.//user-mode-linux.sourceforge.net).
The word is that it will be integrated into an early 2.4 release after 2.4.0; it may
well be there by the time this book is published.

126

22 June 2001 16:35

Debuggers and Related Tools

User-Mode Linux also has some significant limitations as of this writing, most of
which will likely be addressed soon. The virtual processor currently works in a
uniprocessor mode only; the port runs on SMP systems without a problem, but it
can only emulate a uniprocessor host. The biggest problem for driver writers,
though, is that the user-mode kernel has no access to the host system’s hardware.
Thus, while it can be useful for debugging most of the sample drivers in this book,
User-Mode Linux is not yet useful for debugging drivers that have to deal with real
hardware. Finally, User-Mode Linux only runs on the IA-32 architecture.

Because work is under way to fix all of these problems, User-Mode Linux will
likely be an indispensable tool for Linux device driver programmers in the very
near future.

The Linux Trace Toolkit

The Linux Trace Toolkit (LTT) is a kernel patch and a set of related utilities that
allow the tracing of events in the kernel. The trace includes timing information
and can create a reasonably complete picture of what happened over a given
period of time. Thus, it can be used not only for debugging but also for tracking
down performance problems.

LTT, along with extensive documentation, can be found on the Web at www.oper-
sys.com/LTT.

Dynamic Probes

Dynamic Probes (or DProbes) is a debugging tool released (under the GPL) by
IBM for Linux on the TA-32 architecture. It allows the placement of a “probe” at
almost any place in the system, in both user and kernel space. The probe consists
of some code (written in a specialized, stack-oriented language) that is executed
when control hits the given point. This code can report information back to user
space, change registers, or do a number of other things. The useful feature of
DProbes is that once the capability has been built into the kernel, probes can be
inserted anywhere within a running system without kernel builds or reboots.
DProbes can also work with the Linux Trace Toolkit to insert new tracing events at
arbitrary locations.

The DProbes tool can be downloaded from IBM’s open source site: 0ss.sofi-
ware.ibm.com.

127

22 June 2001 16:36

CHAPTER FIVE

ENHANCED CHAR
DRIVER OPERATIONS

In Chapter 3, we built a complete device driver that the user can write to and read
from. But a real device usually offers more functionality than synchronous read
and write. Now that we're equipped with debugging tools should something go
awry, we can safely go ahead and implement new operations.

What is normally needed, in addition to reading and writing the device, is the abil-
ity to perform various types of hardware control via the device driver. Control
operations are usually supported via the ioct/ method. The alternative is to look at
the data flow being written to the device and use special sequences as control
commands. This latter technique should be avoided because it requires reserving
some characters for controlling purposes; thus, the data flow can’t contain those
characters. Moreover, this technique turns out to be more complex to handle than
ioctl. Nonetheless, sometimes it’s a useful approach to device control and is used
by tty’s and other devices. We'll describe it later in this chapter in “Device Control
Without ioctl.”

As we suggested in the previous chapter, the ioctl system call offers a device spe-
cific entry point for the driver to handle “commands.” ioct/ is device specific in
that, unlike read and other methods, it allows applications to access features
unique to the hardware being driven, such as configuring the device and entering
or exiting operating modes. These control operations are usually not available
through the read/write file abstraction. For example, everything you write to a
serial port is used as communication data, and you cannot change the baud rate
by writing to the device. That is what ioct/ is for: controlling the I/O channel.

Another important feature of real devices (unlike scull) is that data being read or
written is exchanged with other hardware, and some synchronization is needed.
The concepts of blocking I/O and asynchronous notification fill the gap and are
introduced in this chapter by means of a modified scull device. The driver uses
interaction between different processes to create asynchronous events. As with the
original scull, you don’t need special hardware to test the driver’'s workings. We
will definitely deal with real hardware, but not until Chapter 8.

128

22 June 2001 16:36

ioctl

toctl

The ioctl function call in user space corresponds to the following prototype:
int ioctl(int fd, int cmd, ...);

The prototype stands out in the list of Unix system calls because of the dots,
which usually represent not a variable number of arguments. In a real system,
however, a system call can’t actually have a variable number of arguments. System
calls must have a well-defined number of arguments because user programs can
access them only through hardware “gates,” as outlined in “User Space and Kernel
Space” in Chapter 2. Therefore, the dots in the prototype represent not a variable
number of arguments but a single optional argument, traditionally identified as
char *argp. The dots are simply there to prevent type checking during compila-
tion. The actual nature of the third argument depends on the specific control com-
mand being issued (the second argument). Some commands take no arguments,
some take an integer value, and some take a pointer to other data. Using a pointer
is the way to pass arbitrary data to the iocil call; the device will then be able to
exchange any amount of data with user space.

The ioct/ driver method, on the other hand, receives its arguments according to
this declaration:

int (*ioctl) (struct inode *inode, struct file *filp,
unsigned int cmd, unsigned long arg);

The inode and filp pointers are the values corresponding to the file descriptor
fd passed on by the application and are the same parameters passed to the open
method. The cmd argument is passed from the user unchanged, and the optional
arg argument is passed in the form of an unsigned long, regardless of
whether it was given by the user as an integer or a pointer. If the invoking pro-
gram doesn’t pass a third argument, the arg value received by the driver opera-
tion has no meaningful value.

Because type checking is disabled on the extra argument, the compiler can’t warn
you if an invalid argument is passed to ioctl, and the programmer won’t notice the
error until runtime. This lack of checking can be seen as a minor problem with the
joctl definition, but it is a necessary price for the general functionality that ioct/
provides.

As you might imagine, most ‘octl implementations consist of a switch statement
that selects the correct behavior according to the cmd argument. Different com-
mands have different numeric values, which are usually given symbolic names to
simplify coding. The symbolic name is assigned by a preprocessor definition. Cus-
tom drivers usually declare such symbols in their header files; scull.h declares
them for scull. User programs must, of course, include that header file as well to
have access to those symbols.

129

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

Choosing the ioctl Commands

Before writing the code for ioctl, you need to choose the numbers that correspond
to commands. Unfortunately, the simple choice of using small numbers starting
from 1 and going up doesn’t work well.

The command numbers should be unique across the system in order to prevent
errors caused by issuing the right command to the wrong device. Such a mismatch
is not unlikely to happen, and a program might find itself trying to change the
baud rate of a non-serial-port input stream, such as a FIFO or an audio device. If
each ifoctl number is unique, then the application will get an EINVAL error rather
than succeeding in doing something unintended.

To help programmers create unique ioct/ command codes, these codes have been
split up into several bitfields. The first versions of Linux used 16-bit numbers: the
top eight were the “magic” number associated with the device, and the bottom
eight were a sequential number, unique within the device. This happened because
Linus was “clueless” (his own word); a better division of bitfields was conceived
only later. Unfortunately, quite a few drivers still use the old convention. They
have to: changing the command codes would break no end of binary programs. In
our sources, however, we will use the new command code convention exclu-
sively.

To choose ioct/ numbers for your driver according to the new convention, you
should first check include/asm/ioctl.h and Documentation/ioctl-number.txt. The
header defines the bitfields you will be using: type (magic number), ordinal num-
ber, direction of transfer, and size of argument. The ioct/-number.txt file lists the
magic numbers used throughout the kernel, so you’ll be able to choose your own
magic number and avoid overlaps. The text file also lists the reasons why the con-
vention should be used.

The old, and now deprecated, way of choosing an ioct/ number was easy: authors
chose a magic eight-bit number, such as “k” (hex 0x6b), and added an ordinal
number, like this:

#define SCULL_IOCTL1 0x6b01
#define SCULL_IOCTL2 0x6b02
/* oo %/

If both the application and the driver agreed on the numbers, you only needed to
implement the switch statement in your driver. However, this way of defining
ioctl numbers, which had its foundations in Unix tradition, shouldn’t be used any
more. We've only shown the old way to give you a taste of what ioct/ numbers
look like.

The new way to define numbers uses four bitfields, which have the following
meanings. Any new symbols we introduce in the following list are defined in
<linux/ioctl.h>.

130

22 June 2001 16:36

ioctl

type
The magic number. Just choose one number (after consulting ioctl-number.txt)
and wuse it throughout the driver. This field is eight bits wide
(_IOC_TYPEBITS).

number
The ordinal (sequential) number. It’s eight bits (_TOC_NRBITS) wide.

direction

The direction of data transfer, if the particular command involves a data trans-
fer. The possible values are _TOC_NONE (no data transfer), _TOC_READ,
_IOC_WRITE, and _IOC_READ | _IOC_WRITE (data is transferred both
ways). Data transfer is seen from the application’s point of view; _IOC_READ
means reading from the device, so the driver must write to user space. Note
that the field is a bit mask, so _TOC_READ and _TOC_WRITE can be extracted
using a logical AND operation.

size
The size of user data involved. The width of this field is architecture depen-
dent and currently ranges from 8 to 14 bits. You can find its value for your
specific architecture in the macro _IOC_SIZEBITS. If you intend your driver
to be portable, however, you can only count on a size up to 255. It’s not
mandatory that you use the size field. If you need larger data structures, you
can just ignore it. We'll see soon how this field is used.

The header file <asm/ioctl.h>, which is included by <linux/ioctl.h>,
defines macros that help set up the command numbers as follows:
_IO(type,nr), _IOR(type,nr,dataitem), _IOW(type,nr,dataitem),
and _IOWR (type,nr,dataitem). Each macro corresponds to one of the possi-
ble values for the direction of the transfer. The type and number fields are
passed as arguments, and the size field is derived by applying sizeof to the
dataitem argument. The header also defines macros to decode the numbers:
_IOC_DIR(nr), _IOC_TYPE (nr), _IOC_NR(nr), and _IOC_SIZE(nr). We
won’t go into any more detail about these macros because the header file is clear,
and sample code is shown later in this section.

Here is how some ioct/ commands are defined in scull. In particular, these com-
mands set and get the driver’s configurable parameters.

/* Use 'k’ as magic number */
#define SCULL_IOC_MAGIC 'k’

#define SCULL_IOCRESET _IO(SCULL_IOC_MAGIC, 0)

/*

* S means "Set" through a ptr

* T means "Tell" directly with the argument value

* G means "Get": reply by setting through a pointer
* Q means "Query": response is on the return value

131

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

* X means "eXchange": G and S atomically

* H means "sHift": T and Q atomically

*/
#define SCULL_IOCSQUANTUM _IOW(SCULL_IOC_MAGIC, 1, scull_guantum)
#define SCULL_IOCSQSET _IOW(SCULL_IOC_MAGIC, 2, scull_gset)
#define SCULL_IOCTQUANTUM _IO(SCULL_IOC_MAGIC, 3)
#define SCULL_IOCTQSET _IO(SCULL_IOC_MAGIC, 4)
#define SCULL_IOCGQUANTUM _IOR(SCULL_IOC_MAGIC, 5, scull_guantum)
#define SCULL_IOCGQSET _IOR(SCULL_IOC_MAGIC, 6, scull_gset)
#define SCULL_IOCQQUANTUM _IO(SCULL_IOC_MAGIC, 7)
#define SCULL_IOCQQSET _IO(SCULL_IOC_MAGIC, 8)
#define SCULL_IOCXQUANTUM _IOWR (SCULL_IOC_MAGIC, 9, scull_guantum)
#define SCULL_IOCXQSET _IOWR (SCULL_IOC_MAGIC,10, scull_gset)
#define SCULL_IOCHQUANTUM _IO(SCULL_IOC_MAGIC, 11)
#define SCULL_IOCHQSET _IO(SCULL_IOC_MAGIC, 12)
#define SCULL_IOCHARDRESET _IO(SCULL_IOC_MAGIC, 15) /* debugging tool */

#define SCULL_IOC_MAXNR 15

The last command, HARDRESET, is used to reset the module’s usage count to 0 so
that the module can be unloaded should something go wrong with the counter.
The actual source file also defines all the commands between IOCHQSET and
HARDRESET, although they’re not shown here.

We chose to implement both ways of passing integer arguments—by pointer and
by explicit value, although by an established convention ioct/ should exchange
values by pointer. Similarly, both ways are used to return an integer number: by
pointer or by setting the return value. This works as long as the return value is a
positive integer; on return from any system call, a positive value is preserved (as
we saw for read and write), while a negative value is considered an error and is
used to set errno in user space.

The “exchange” and “shift” operations are not particularly useful for scull. We
implemented “exchange” to show how the driver can combine separate operations
into a single atomic one, and “shift” to pair “tell” and “query.” There are times
when atomic® test-and-set operations like these are needed, in particular, when
applications need to set or release locks.

The explicit ordinal number of the command has no specific meaning. It is used
only to tell the commands apart. Actually, you could even use the same ordinal
number for a read command and a write command, since the actual ioct/ number
is different in the “direction” bits, but there is no reason why you would want to
do so. We chose not to use the ordinal number of the command anywhere but in
the declaration, so we didn’t assign a symbolic value to it. That's why explicit

* A fragment of program code is said to be atomic when it will always be executed as
though it were a single instruction, without the possibility of the processor being inter-
rupted and something happening in between (such as somebody else’s code running).

132

22 June 2001 16:36

ioctl

numbers appear in the definition given previously. The example shows one way
to use the command numbers, but you are free to do it differently.

The value of the ioctl cmd argument is not currently used by the kernel, and it’s
quite unlikely it will be in the future. Therefore, you could, if you were feeling
lazy, avoid the complex declarations shown earlier and explicitly declare a set of
scalar numbers. On the other hand, if you did, you wouldn’t benefit from using
the bitfields. The header <linux/kd.h> is an example of this old-fashioned
approach, using 16-bit scalar values to define the joct/ commands. That source file
relied on scalar numbers because it used the technology then available, not out of
laziness. Changing it now would be a gratuitous incompatibility.

The Return Value

The implementation of ioctl is usually a switch statement based on the command
number. But what should the default selection be when the command number
doesn’t match a valid operation? The question is controversial. Several kernel func-
tions return ~-EINVAL (“Invalid argument”), which makes sense because the com-
mand argument is indeed not a valid one. The POSIX standard, however, states
that if an inappropriate ioct/ command has been issued, then -ENOTTY should be
returned. The string associated with that value used to be “Not a typewriter” under
all libraries up to and including /ibc5. Only /ibc6 changed the message to “Inap-
propriate ioctl for device,” which looks more to the point. Because most recent
Linux system are /ibc6 based, we'll stick to the standard and return -ENOTTY. It's
still pretty common, though, to return -EINVAL in response to an invalid ioct/
command.

The Predefined Commands

Though the joctl system call is most often used to act on devices, a few commands
are recognized by the kernel. Note that these commands, when applied to your
device, are decoded before your own file operations are called. Thus, if you
choose the same number for one of your ioct/ commands, you won’t ever see any
request for that command, and the application will get something unexpected
because of the conflict between the ioct/ numbers.

The predefined commands are divided into three groups:

e Those that can be issued on any file (regular, device, FIFO, or socket)
e Those that are issued only on regular files

e Those specific to the filesystem type

Commands in the last group are executed by the implementation of the hosting
filesystem (see the chattr command). Device driver writers are interested only in
the first group of commands, whose magic number is “T.” Looking at the workings
of the other groups is left to the reader as an exercise; ext2_ioctl is a most

133

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

interesting function (though easier than you may expect), because it implements
the append-only flag and the immutable flag.

The following ioct/ commands are predefined for any file:

FIOCLEX
Set the close-on-exec flag (File 1Octl CLose on EXec). Setting this flag will
cause the file descriptor to be closed when the calling process executes a new
program.

FIONCLEX
Clear the close-on-exec flag.

FIOASYNC
Set or reset asynchronous notification for the file (as discussed in “Asyn-
chronous Notification” later in this chapter). Note that kernel versions up to
Linux 2.2.4 incorrectly used this command to modify the O_SYNC flag. Since
both actions can be accomplished in other ways, nobody actually uses the
FIOASYNC command, which is reported here only for completeness.

FIONBIO
“File IOctl Non-Blocking I/O” (described later in this chapter in “Blocking and
Nonblocking Operations”). This call modifies the O_NONBLOCK flag in
filp->f_flags. The third argument to the system call is used to indicate
whether the flag is to be set or cleared. We'll look at the role of the flag later
in this chapter. Note that the flag can also be changed by the fcntl system call,
using the F_SETFL command.

The last item in the list introduced a new system call, fcntl, which looks like ioctl.
In fact, the fcntl call is very similar to ioct/ in that it gets a command argument and
an extra (optional) argument. It is kept separate from foctl mainly for historical
reasons: when Unix developers faced the problem of controlling I/O operations,
they decided that files and devices were different. At the time, the only devices
with doctl implementations were ttys, which explains why -ENOTTY is the stan-
dard reply for an incorrect ioct/ command. Things have changed, but fcnt/ remains
in the name of backward compatibility.

Using the ioctl Argument

Another point we need to cover before looking at the ioctl code for the scull
driver is how to use the extra argument. If it is an integer, it’s easy: it can be used
directly. If it is a pointer, however, some care must be taken.

When a pointer is used to refer to user space, we must ensure that the user
address is valid and that the corresponding page is currently mapped. If kernel
code tries to access an out-of-range address, the processor issues an exception.

134

22 June 2001 16:36

ioctl

Exceptions in kernel code are turned to oops messages by every Linux kernel up
through 2.0.x; version 2.1 and later handle the problem more gracefully. In any
case, it’s the driver’s responsibility to make proper checks on every user-space
address it uses and to return an error if it is invalid.

Address verification for kernels 2.2.x and beyond is implemented by the function
access_ok, which is declared in <asm/uaccess.h>:

int access_ok(int type, const void *addr, unsigned long size);

The first argument should be either VERIFY_READ or VERIFY_WRITE, depend-
ing on whether the action to be performed is reading the user-space memory area
or writing it. The addr argument holds a user-space address, and size is a byte
count. If ioctl, for instance, needs to read an integer value from user space, size
is sizeof (int). If you need to both read and write at the given address, use
VERIFY_WRITE, since it is a superset of VERIFY_READ.

Unlike most functions, access_ok returns a boolean value: 1 for success (access is
OK) and 0 for failure (access is not OK). If it returns false, the driver will usually
return —-EFAULT to the caller.

There are a couple of interesting things to note about dccess_ok. First is that it
does not do the complete job of verifying memory access; it only checks to see
that the memory reference is in a region of memory that the process might reason-
ably have access to. In particular, access_ok ensures that the address does not
point to kernel-space memory. Second, most driver code need not actually call
access_ok. The memory-access routines described later take care of that for you.
We will nonetheless demonstrate its use so that you can see how it is done, and
for backward compatibility reasons that we will get into toward the end of the
chapter.

The scull source exploits the bitfields in the ioct/ number to check the arguments
before the switch:

int err = 0, tmp;
int ret 0;

/*

* extract the type and number bitfields, and don’t decode

* wrong cmds: return ENOTTY (inappropriate ioctl) before access_ok()
*/

if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;

if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;

* the direction is a bitmask, and VERIFY_WRITE catches R/W

* transfers. ‘Type’ is user oriented, while

* access_ok is kernel oriented, so the concept of "read" and
* "write" is reversed

135

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

if (_IOC_DIR(cmd) & _IOC_READ)

err = l!access_ok(VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd)) ;
else if (_IOC_DIR(cmd) & _IOC_WRITE)
err = l!access_ok(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd)) ;

if (err) return -EFAULT;

After calling access_ok, the driver can safely perform the actual transfer. In addi-
tion to the copy_from_user and copy_to_user functions, the programmer can
exploit a set of functions that are optimized for the most-used data sizes (one, two,
and four bytes, as well as eight bytes on 64-bit platforms). These functions are
described in the following list and are defined in <asm/uaccess.h>.

put_user (datum, ptr)

_ _put_user (datum, ptr)
These macros write the datum to user space; they are relatively fast, and
should be called instead of copy_to_user whenever single values are being
transferred. Since type checking is not performed on macro expansion, you
can pass any type of pointer to put_user, as long as it is a user-space address.
The size of the data transfer depends on the type of the ptr argument and is
determined at compile time using a special gcc pseudo-function that isn’t
worth showing here. As a result, if ptr is a char pointer, one byte is trans-
ferred, and so on for two, four, and possibly eight bytes.

put_user checks to ensure that the process is able to write to the given mem-
ory address. It returns 0 on success, and ~EFAULT on error. __pul_user per-
forms less checking (it does not call access_ok), but can still fail on some
kinds of bad addresses. Thus, __put_user should only be used if the memory
region has already been verified with access_ok.

As a general rule, you'll call __put_user to save a few cycles when you are
implementing a read method, or when you copy several items and thus call
access_ok just once before the first data transfer.

get_user (local, ptr)

__get_user(local, ptr)
These macros are used to retrieve a single datum from user space. They
behave like put user and __put_user, but transfer data in the opposite direc-
tion. The value retrieved is stored in the local variable 1ocal; the return value
indicates whether the operation succeeded or not. Again, __get user should
only be used if the address has already been verified with access_ok.

If an attempt is made to use one of the listed functions to transfer a value that
does not fit one of the specific sizes, the result is usually a strange message from
the compiler, such as “conversion to non-scalar type requested.” In such cases,
copy_to_user or copy_from_user must be used.

136

22 June 2001 16:36

ioctl

Capabilities and Restricted Operations

Access to a device is controlled by the permissions on the device file(s), and the
driver is not normally involved in permissions checking. There are situations, how-
ever, where any user is granted read/write permission on the device, but some
other operations should be denied. For example, not all users of a tape drive
should be able to set its default block size, and the ability to work with a disk
device does not mean that the user can reformat the drive. In cases like these, the
driver must perform additional checks to be sure that the user is capable of per-
forming the requested operation.

Unix systems have traditionally restricted privileged operations to the superuser
account. Privilege is an all-or-nothing thing—the superuser can do absolutely any-
thing, but all other users are highly restricted. The Linux kernel as of version 2.2
provides a more flexible system called capabilities. A capability-based system
leaves the all-or-nothing mode behind and breaks down privileged operations into
separate subgroups. In this way, a particular user (or program) can be empowered
to perform a specific privileged operation without giving away the ability to per-
form other, unrelated operations. Capabilities are still little used in user space, but
kernel code uses them almost exclusively.

The full set of capabilities can be found in <linux/capability.h>. A subset
of those capabilities that might be of interest to device driver writers includes the
following:

CAP_DAC_OVERRIDE
The ability to override access restrictions on files and directories.

CAP_NET_ADMIN
The ability to perform network administration tasks, including those which
affect network interfaces.

CAP_SYS_MODULE
The ability to load or remove kernel modules.

CAP_SYS_RAWIO
The ability to perform “raw” I/O operations. Examples include accessing
device ports or communicating directly with USB devices.

CAP_SYS_ADMIN
A catch-all capability that provides access to many system administration oper-
ations.

CAP_SYS_TTY_CONFIG
The ability to perform tty configuration tasks.

Before performing a privileged operation, a device driver should check that the
calling process has the appropriate capability with the capable function (defined in
<sys/sched.h>):

137

Chapter 5: Enbanced Char Driver Operations

int capable(int capability);

In the scull sample driver, any user is allowed to query the quantum and quantum
set sizes. Only privileged users, however, may change those values, since inappro-
priate values could badly affect system performance. When needed, the scull
implementation of ioctl checks a user’s privilege level as follows:

if (! capable (CAP_SYS_ADMIN))
return -EPERM;

In the absence of a more specific capability for this task, CAP_SYS_ADMIN was
chosen for this test.

The Implementation of the ioctl Commands

The scull implementation of ioctl only transfers the configurable parameters of the
device and turns out to be as easy as the following:

switch(cmd) {

#ifdef SCULL_DEBUG
case SCULL_TIOCHARDRESET:

/*

* reset the counter to 1, to allow unloading in case

* of problems. Use 1, not 0, because the invoking

* process has the device open.

*/

while (MOD_IN_USE)

MOD_DEC_USE_COUNT;

MOD_INC_USE_COUNT;

/* don’t break: fall through and reset things */
#endif /* SCULL_DEBUG */

case SCULL_IOCRESET:
scull_quantum = SCULL_QUANTUM;
scull_gset = SCULL_QSET;
break;

case SCULL_IOCSQUANTUM: /* Set: arg points to the value */
if (! capable (CAP_SYS_ADMIN))
return -EPERM;
ret = __get_user(scull_qguantum, (int *)arg):;
break;

case SCULL_IOCTQUANTUM: /* Tell: arg is the value */
if (! capable (CAP_SYS_ADMIN))
return -EPERM;
scull_quantum = arg;
break;

138

22 June 2001 16:36

22 June 2001 16:36

}

ioctl

case SCULL_IOCGQUANTUM: /* Get: arg is pointer to result */
ret = __put_user(scull_guantum, (int *)arg):;
break;

case SCULL_IOCQQUANTUM: /* Query: return it (it’s positive) */
return scull_guantum;

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
if (! capable (CAP_SYS_ADMIN))
return -EPERM;
tmp = scull_qguantum;

ret = __get_user(scull_guantum, (int *)arg);
if (ret == 0)

ret = __put_user (tmp, (int *)arg):;
break;

case SCULL_IOCHQUANTUM: /* sHift: like Tell + Query */
if (! capable (CAP_SYS_ADMIN))
return -EPERM;
tmp = scull_qguantum;
scull_qguantum = arg;
return tmp;

default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;

return ret;

scull also includes six entries that act on scull_gset. These entries are identical

to the ones for scull_guantum and are not worth showing in print.

The six ways to pass and receive arguments look like the following from the

caller’s point of view (i.e., from user space):
int quantum;

ioctl (fd, SCULL_IOCSQUANTUM, &qQuantum) ;
ioctl (fd, SCULL_IOCTQUANTUM, quantum) ;

ioctl (fd, SCULL_IOCGQUANTUM, &quantum) ;
quantum = ioctl (fd, SCULL_IOCQQUANTUM) ;

ioctl (fd, SCULL_IOCXQUANTUM, &quantum) ;

quantum = ioctl (fd, SCULL_IOCHQUANTUM, quantum) ;

Of course, a normal driver would not implement such a mix of calling modes in
one place. We have done so here only to demonstrate the different ways in which
things could be done. Normally, however, data exchanges would be consistently
performed, either through pointers (more common) or by value (less common),
and mixing of the two techniques would be avoided.

139

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

Device Control Without ioctl

Sometimes controlling the device is better accomplished by writing control
sequences to the device itself. This technique is used, for example, in the console
driver, where so-called escape sequences are used to move the cursor, change the
default color, or perform other configuration tasks. The benefit of implementing
device control this way is that the user can control the device just by writing data,
without needing to use (or sometimes write) programs built just for configuring
the device.

For example, the setterm program acts on the console (or another terminal) con-
figuration by printing escape sequences. This behavior has the advantage of per-
mitting the remote control of devices. The controlling program can live on a
different computer than the controlled device, because a simple redirection of the
data stream does the configuration job. You're already used to this with ttys, but
the technique is more general.

The drawback of controlling by printing is that it adds policy constraints to the
device; for example, it is viable only if you are sure that the control sequence can’t
appear in the data being written to the device during normal operation. This is
only partly true for ttys. Although a text display is meant to display only ASCII
characters, sometimes control characters can slip through in the data being written
and can thus affect the console setup. This can happen, for example, when you
issue grep on a binary file; the extracted lines can contain anything, and you often
end up with the wrong font on your console.”

Controlling by write is definitely the way to go for those devices that don’t transfer
data but just respond to commands, such as robotic devices.

For instance, a driver written for fun by one of your authors moves a camera on
two axes. In this driver, the “device” is simply a pair of old stepper motors, which
can’t really be read from or written to. The concept of “sending a data stream” to a
stepper motor makes little or no sense. In this case, the driver interprets what is
being written as ASCII commands and converts the requests to sequences of
impulses that manipulate the stepper motors. The idea is similar, somewhat, to the
AT commands you send to the modem in order to set up communication, the
main difference being that the serial port used to communicate with the modem
must transfer real data as well. The advantage of direct device control is that you
can use cat to move the camera without writing and compiling special code to
issue the ioctl calls.

* CTRL-N sets the alternate font, which is made up of graphic symbols and thus isn’'t a
friendly font for typing input to your shell; if you encounter this problem, echo a CTRL-O
character to restore the primary font.

140

22 June 2001 16:36

Blocking 1I/O

When writing command-oriented drivers, there’s no reason to implement the ioct!
method. An additional command in the interpreter is easier to implement and use.

Sometimes, though, you might choose to act the other way around: instead of
making write into an interpreter and avoiding ioct/, you might choose to avoid
write altogether and use ifoctl commands exclusively, while accompanying the
driver with a specific command-line tool to send those commands to the driver.
This approach moves the complexity from kernel space to user space, where it
may be easier to deal with, and helps keep the driver small while denying use of
simple cat or echo commands.

Blocking 1/0

One problem that might arise with read is what to do when there’s no data yer,
but we’re not at end-of-file.

The default answer is “go to sleep waiting for data.” This section shows how a
process is put to sleep, how it is awakened, and how an application can ask if
there is data without just blindly issuing a read call and blocking. We then apply
the same concepts to write.

As usual, before we show actual code, we'll explain a few concepts.

Going to Sleep and Awakening

Whenever a process must wait for an event (such as the arrival of data or the ter-
mination of a process), it should go to sleep. Sleeping causes the process to sus-
pend execution, freeing the processor for other uses. At some future time, when
the event being waited for occurs, the process will be woken up and will continue
with its job. This section discusses the 2.4 machinery for putting a process to sleep
and waking it up. Earlier versions are discussed in “Backward Compatibility” later
in this chapter.

There are several ways of handling sleeping and waking up in Linux, each suited
to different needs. All, however, work with the same basic data type, a wait queue

(wait_queue_head_t). A wail queue is exactly that—a queue of processes that
are waiting for an event. Wait queues are declared and initialized as follows:

wait_queue_head_t my_gueue;
init_waitqueue_head (&my_gueue) ;

When a wait queue is declared statically (i.e., not as an automatic variable of a
procedure or as part of a dynamically-allocated data structure), it is also possible
to initialize the queue at compile time:

DECLARE_WAIT QUEUE_HEAD (my_gueue) ;

141

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

It is a common mistake to neglect to initialize a wait queue (especially since earlier
versions of the kernel did not require this initialization); if you forget, the results
will usually not be what you intended.

Once the wait queue is declared and initialized, a process may use it to go to
sleep. Sleeping is accomplished by calling one of the variants of sleep_on, depend-
ing on how deep a sleep is called for.

sleep_on(wait_gueue_head_t *queue) ;
Puts the process to sleep on this queue. sleep_on has the disadvantage of not
being interruptible; as a result, the process can end up being stuck (and un-
killable) if the event it's waiting for never happens.

interruptible_sleep_on(wait_gqueue_head_t *queue);
The interruptible variant works just like sleep_on, except that the sleep can be
interrupted by a signal. This is the form that device driver writers have been
using for a long time, before wait _event_interruptible (described later)
appeared.

sleep_on_timeout (wait_queue_head_t *queue, long timeout) ;
interruptible_sleep_on_timeout (wait_queue_head_t *queue,
long timeout) ;
These two functions behave like the previous two, with the exception that the
sleep will last no longer than the given timeout period. The timeout is speci-
fied in “jiffies,” which are covered in Chapter 6.

void wait_event (wait_qgueue_head_t queue, int condition);
int wait_event_interruptible(wait_gqueue_head_t queue, int
condition) ;

These macros are the preferred way to sleep on an event. They combine wait-
ing for an event and testing for its arrival in a way that avoids race conditions.
They will sleep until the condition, which may be any boolean C expression,
evaluates true. The macros expand to a while loop, and the condition is
reevaluated over time—the behavior is different from that of a function call or
a simple macro, where the arguments are evaluated only at call time. The lat-
ter macro is implemented as an expression that evaluates to 0 in case of suc-
cess and ~-ERESTARTSYS if the loop is interrupted by a signal.

It is worth repeating that driver writers should almost always use the interruptible
instances of these functions/macros. The noninterruptible version exists for the
small number of situations in which signals cannot be dealt with, for example,
when waiting for a data page to be retrieved from swap space. Most drivers do not
present such special situations.

Of course, sleeping is only half of the problem; something, somewhere will have
to wake the process up again. When a device driver sleeps directly, there is

142

22 June 2001 16:36

Blocking 1I/O

usually code in another part of the driver that performs the wakeup, once it
knows that the event has occurred. Typically a driver will wake up sleepers in its
interrupt handler once new data has arrived. Other scenarios are possible, how-
ever.

Just as there is more than one way to sleep, so there is also more than one way to
wake up. The high-level functions provided by the kernel to wake up processes
are as follows:

wake_up (wait_queue_head_t *queue);
This function will wake up all processes that are waiting on this event queue.

wake_up_interruptible (wait_queue_head_t *queue) ;
wake_up_interruptible wakes up only the processes that are in interruptible
sleeps. Any process that sleeps on the wait queue using a noninterruptible
function or macro will continue to sleep.

wake_up_sync (wait_gqueue_head_t *queue) ;

wake_up_interruptible_sync (wait_gqueue_head_t *queue) ;
Normally, a wake up call can cause an immediate reschedule to happen,
meaning that other processes might run before wake up returns. The “syn-
chronous” variants instead make any awakened processes runnable, but do
not reschedule the CPU. This is used to avoid rescheduling when the current
process is known to be going to sleep, thus forcing a reschedule anyway.
Note that awakened processes could run immediately on a different processor,
so these functions should not be expected to provide mutual exclusion.

If your driver is using interruptible_sleep_on, there is little difference between
wake_up and wake_up_interruptible. Calling the latter is a common convention,
however, to preserve consistency between the two calls.

As an example of wait queue usage, imagine you want to put a process to sleep
when it reads your device and awaken it when someone else writes to the device.
The following code does just that:

DECLARE_WAIT_QUEUE_HEAD (wq) ;

ssize_t sleepy_read (struct file *filp, char *buf, size_t count,
loff_t *pos)
{
printk (KERN_DEBUG "process %i (%s) going to sleep\n",
current->pid, current->comm) ;
interruptible_sleep_on (&wq) ;
printk (KERN_DEBUG "awoken %i (%s)\n", current->pid, current->comm) ;
return 0; /* EOF */

143

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

ssize_t sleepy _write (struct file *filp, const char *buf, size_t count,
loff_t *pos)
{
printk (KERN_DEBUG "process %1 (%s) awakening the readers...\n",
current->pid, current->comm) ;
wake_up_interruptible (&wq) ;
return count; /* succeed, to avoid retrial */

}

The code for this device is available as sleepy in the example programs and can
be tested using cat and input/output redirection, as usual.

An important thing to remember with wait queues is that being woken up does
not guarantee that the event you were waiting for has occurred; a process can be
woken for other reasons, mainly because it received a signal. Any code that sleeps
should do so in a loop that tests the condition after returning from the sleep, as
discussed in “A Sample Implementation: scullpipe” later in this chapter.

A Deeper Look at Wait Queues

The previous discussion is all that most driver writers will need to know to get
their job done. Some, however, will want to dig deeper. This section attempts to
get the curious started; everybody else can skip to the next section without miss-
ing much that is important.

The wait_queue_head_t type is a fairly simple structure, defined in
<linux/wait.h>. It contains only a lock variable and a linked list of sleeping
processes. The individual data items in the list are of type wait_queue_t, and
the list is the generic list defined in <linux/list.h> and described in “Linked
Lists” in Chapter 10. Normally the wait_queue_t structures are allocated on the
stack by functions like interruptible_sleep_omn; the structures end up in the stack
because they are simply declared as automatic variables in the relevant functions.
In general, the programmer need not deal with them.

Some advanced applications, however, can require dealing with wait_queue_t
variables directly. For these, it’s worth a quick look at what actually goes on inside
a function like interruptible_sleep_on. The following is a simplified version of the
implementation of interruptible_sleep_on to put a process to sleep:

void simplified_sleep_on(wait_gqueue_head_t *queue)
{

wait_queue_t wait;

init_waitqueue_entry (&wait, current) ;
current->state = TASK_INTERRUPTIBLE;

add_wait_qgueue (queue, &wait);

schedule() ;
remove_wait_queue (queue, &wait);

144

Blocking 1I/O

The code here creates a new wait_queue_t variable (wait, which gets allo-
cated on the stack) and initializes it. The state of the task is set to TASK_INTER-
RUPTIBLE, meaning that it is in an interruptible sleep. The wait queue entry is
then added to the queue (the wait_queue_head_t * argument). Then schedule
is called, which relinquishes the processor to somebody else. schedule returns
only when somebody else has woken up the process and set its state to
TASK_RUNNING. At that point, the wait queue entry is removed from the queue,
and the sleep is done.

Figure 5-1 shows the internals of the data structures involved in wait queues and
how they are used by processes.

KEY

wait_queue head t Wait Queues in Linux 2.4

e No process is sleeping on the queue

structlist_head task_list; |—--—‘
[{j
L=

wait_queue_t

struct task_struct *task;

)

struct list_head task_list;

The current process is sleeping on the device’s queue

The device structure ‘

with its |_ --—

il
]

wait_queue_head_t

—

—
'

The struct l—: \

wait_queue itself

The current
process and
its associated
stack page

Several processes are sleeping on the same queue

I
Another | J
process and — L)
its associated !
stack page L—n

L’,‘

@ O

Figure 5-1. Wait queues in Linux 2.4

A quick look through the kernel shows that a great many procedures do their
sleeping “manually” with code that looks like the previous example. Most of those

145

22 June 2001 16:36

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

implementations date back to kernels prior to 2.2.3, before wait_event was intro-
duced. As suggested, wait_event is now the preferred way to sleep on an event,
because interruptible_sleep_on is subject to unpleasant race conditions. A full
description of how that can happen will have to wait until “Going to Sleep With-
out Races” in Chapter 9; the short version, simply, is that things can change in the
time between when your driver decides to sleep and when it actually gets around
to calling interruptible_sleep_on.

One other reason for calling the scheduler explicitly, however, is to do exclusive
waits. There can be situations in which several processes are waiting on an event;
when wake_up is called, all of those processes will try to execute. Suppose that
the event signifies the arrival of an atomic piece of data. Only one process will be
able to read that data; all the rest will simply wake up, see that no data is avail-
able, and go back to sleep.

This situation is sometimes referred to as the “thundering herd problem.” In high-
performance situations, thundering herds can waste resources in a big way. The
creation of a large number of runnable processes that can do no useful work gen-
erates a large number of context switches and processor overhead, all for nothing.
Things would work better if those processes simply remained asleep.

For this reason, the 2.3 development series added the concept of an exclusive
sleep. If processes sleep in an exclusive mode, they are telling the kernel to wake
only one of them. The result is improved performance in some situations.

The code to perform an exclusive sleep looks very similar to that for a regular
sleep:

void simplified_sleep_exclusive (wait_queue_head_t *queue)
{

wait_queue_t wait;

init_waitqueue_entry(&wait, current);
current->state = TASK_INTERRUPTIBLE | TASK_EXCLUSIVE;

add_wait_queue_exclusive (queue, &wait);
schedule() ;
remove_wait_qgueue (queue, &wait);

}

Adding the TASK_EXCLUSIVE flag to the task state indicates that the process is in
an exclusive wait. The call to add_wait_queue_exclusive is also necessary, how-
ever. That function adds the process to the end of the wait queue, behind all oth-
ers. The purpose is to leave any processes in nonexclusive sleeps at the
beginning, where they will always be awakened. As soon as wake_up hits the first
exclusive sleeper, it knows it can stop.

146

22 June 2001 16:36

Blocking 1I/O

The attentive reader may have noticed another reason to manipulate wait queues
and the scheduler explicitly. Whereas functions like sleep_on will block a process
on exactly one wait queue, working with the queues directly allows sleeping on
multiple queues simultaneously. Most drivers need not sleep on more than one
queue; if yours is the exception, you will need to use code like what we've
shown.

Those wanting to dig even deeper into the wait queue code can look at
<linux/sched.h> and kernel/sched.c.

Writing Reentrant Code

When a process is put to sleep, the driver is still alive and can be called by
another process. Let’s consider the console driver as an example. While an appli-
cation is waiting for keyboard input on ttyl, the user switches to tty2 and
spawns a new shell. Now both shells are waiting for keyboard input within the
console driver, although they sleep on different wait queues: one on the queue
associated with ttyl and the other on the queue associated with tty2. Each pro-
cess is blocked within the interruptible_sleep_on function, but the driver can still
receive and answer requests from other ttys.

Of course, on SMP systems, multiple simultaneous calls to your driver can happen
even when you do not sleep.

Such situations can be handled painlessly by writing reentrant code. Reentrant
code is code that doesn’t keep status information in global variables and thus is
able to manage interwoven invocations without mixing anything up. If all the sta-
tus information is process specific, no interference will ever happen.

If status information is needed, it can either be kept in local variables within the
driver function (each process has a different stack page in kernel space where
local variables are stored), or it can reside in private_data within the filp
accessing the file. Using local variables is preferred because sometimes the same
filp can be shared between two processes (usually parent and child).

If you need to save large amounts of status data, you can keep the pointer in a
local variable and use kmalloc to retrieve the actual storage space. In this case you
must remember to kfree the data, because there’s no equivalent to “everything is
released at process termination” when you’re working in kernel space. Using local
variables for large items is not good practice, because the data may not fit the sin-
gle page of memory allocated for stack space.

You need to make reentrant any function that matches either of two conditions.
First, if it calls schedule, possibly by calling sleep_on or wake_up. Second, if it
copies data to or from user space, because access to user space might page-fault,
and the process will be put to sleep while the kernel deals with the missing page.

147

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

Every function that calls any such functions must be reentrant as well. For exam-
ple, if sample_read calls sample_getdata, which in turn can block, then sam-
ple_read must be reentrant as well as sample_getdata, because nothing prevents
another process from calling it while it is already executing on behalf of a process
that went to sleep.

Finally, of course, code that sleeps should always keep in mind that the state of
the system can change in almost any way while a process is sleeping. The driver
should be careful to check any aspect of its environment that might have changed
while it wasn’t paying attention.

Blocking and Nonblocking Operations

Another point we need to touch on before we look at the implementation of full-
featured read and write methods is the role of the O_NONBLOCK flag in
filp->f_flags. The flag is defined in <linux/fcntl.h>, which is automati-
cally included by <linux/fs.h>.

The flag gets its name from “open-nonblock,” because it can be specified at open
time (and originally could only be specified there). If you browse the source code,
you'll find some references to an O_NDELAY flag; this is an alternate name for
O_NONBLOCK, accepted for compatibility with System V code. The flag is cleared
by default, because the normal behavior of a process waiting for data is just to
sleep. In the case of a blocking operation, which is the default, the following
behavior should be implemented in order to adhere to the standard semantics:

e If a process calls read but no data is (yet) available, the process must block.
The process is awakened as soon as some data arrives, and that data is
returned to the caller, even if there is less than the amount requested in the
count argument to the method.

e If a process calls write and there is no space in the buffer, the process must
block, and it must be on a different wait queue from the one used for reading.
When some data has been written to the hardware device, and space becomes
free in the output buffer, the process is awakened and the write call succeeds,
although the data may be only partially written if there isn’t room in the buffer
for the count bytes that were requested.

Both these statements assume that there are both input and output buffers; in
practice, almost every device driver has them. The input buffer is required to avoid
losing data that arrives when nobody is reading. In contrast, data can’t be lost on
write, because if the system call doesn’t accept data bytes, they remain in the user-
space buffer. Even so, the output buffer is almost always useful for squeezing
more performance out of the hardware.

148

22 June 2001 16:36

Blocking 1I/O

The performance gain of implementing an output buffer in the driver results from
the reduced number of context switches and user-level/kernel-level transitions.
Without an output buffer (assuming a slow device), only one or a few characters
are accepted by each system call, and while one process sleeps in write, another
process runs (that’s one context switch). When the first process is awakened, it
resumes (another context switch), write returns (kernel/user transition), and the
process reiterates the system call to write more data (user/kernel transition); the
call blocks, and the loop continues. If the output buffer is big enough, the write
call succeeds on the first attempt—the buffered data will be pushed out to the
device later, at interrupt time—without control needing to go back to user space
for a second or third write call. The choice of a suitable size for the output buffer
is clearly device specific.

We didn’t use an input buffer in scull, because data is already available when read
is issued. Similarly, no output buffer was used, because data is simply copied to
the memory area associated with the device. Essentially, the device is a buffer, so
the implementation of additional buffers would be superfluous. We’ll see the use
of buffers in Chapter 9, in the section titled “Interrupt-Driven 1/O.”

The behavior of read and write is different if O_NONBLOCK is specified. In this
case, the calls simply return -EAGAIN if a process calls read when no data is
available or if it calls write when there’s no space in the buffer.

As you might expect, nonblocking operations return immediately, allowing the
application to poll for data. Applications must be careful when using the stdio
functions while dealing with nonblocking files, because they can easily mistake a
nonblocking return for EOF. They always have to check errno.

Naturally, O_NONBLOCK is meaningful in the open method also. This happens
when the call can actually block for a long time; for example, when opening a
FIFO that has no writers (yet), or accessing a disk file with a pending lock. Usu-
ally, opening a device either succeeds or fails, without the need to wait for exter-
nal events. Sometimes, however, opening the device requires a long initialization,
and you may choose to support O_NONBLOCK in your open method by returning
immediately with ~-EAGAIN (“try it again”) if the flag is set, after initiating device
initialization. The driver may also implement a blocking open to support access
policies in a way similar to file locks. We’ll see one such implementation in the
section “Blocking open as an Alternative to EBUSY” later in this chapter.

Some drivers may also implement special semantics for O_NONBLOCK; for exam-
ple, an open of a tape device usually blocks until a tape has been inserted. If the
tape drive is opened with O_NONBLOCK, the open succeeds immediately regard-
less of whether the media is present or not.

Only the read, write, and open file operations are affected by the nonblocking
flag.

149

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

A Sample Implementation: scullpipe

The /dev/scullpipe devices (there are four of them by default) are part of the scull
module and are used to show how blocking I/O is implemented.

Within a driver, a process blocked in a read call is awakened when data arrives;
usually the hardware issues an interrupt to signal such an event, and the driver
awakens waiting processes as part of handling the interrupt. The scull driver
works differently, so that it can be run without requiring any particular hardware
or an interrupt handler. We chose to use another process to generate the data and
wake the reading process; similarly, reading processes are used to wake sleeping
writer processes. The resulting implementation is similar to that of a FIFO (or
named pipe) filesystem node, whence the name.

The device driver uses a device structure that embeds two wait queues and a
buffer. The size of the buffer is configurable in the usual ways (at compile time,
load time, or runtime).

typedef struct Scull_Pipe {
wait_queue_head_t ing, outq; /* read and write queues */

char *buffer, *end; /* begin of buf, end of buf */

int buffersize; /* used in pointer arithmetic */

char *rp, *wp; /* where to read, where to write */
int nreaders, nwriters; /* number of openings for r/w */
struct fasync_struct *async_queue; /* asynchronous readers */
struct semaphore sem; /* mutual exclusion semaphore */
devfs_handle_t handle; /* only used if devfs is there */

} Scull_Pipe;

The read implementation manages both blocking and nonblocking input and
looks like this (the puzzling first line of the function is explained later, in “Seeking
a Device”):

ssize_t scull_p_read (struct file *filp, char *buf, size_t count,
loff_t *f_pos)

Scull_Pipe *dev = filp->private_data;
if (f_pos != &filp->f_pos) return -ESPIPE;

if (down_interruptible (&dev->sem))
return -ERESTARTSYS;
while (dev->rp == dev->wp) { /* nothing to read */
up (&dev->sem) ; /* release the lock */
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
PDEBUG ("\"%s\" reading: going to sleep\n", current->comm) ;
if (wait_event_interruptible(dev->ing, (dev->rp != dev->wp)))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
/* otherwise loop, but first reacquire the lock */
if (down_interruptible (&dev->sem))

150

22 June 2001 16:36

Blocking 1I/O

return -ERESTARTSYS;
}
/* ok, data is there, return something */
if (dev->wp > dev->rp)
count = min(count, dev->wp - dev->rp);
else /* the write pointer has wrapped, return data up to dev->end */
count = min(count, dev->end - dev->rp);
if (copy_to_user (buf, dev->rp, count)) {
up (&dev->sem) ;
return -EFAULT;
}
dev->rp += count;
if (dev->rp == dev->end)
dev->rp = dev->buffer; /* wrapped */
up (&dev->sem) ;

/* finally, awaken any writers and return */
wake_up_interruptible (&dev->outq) ;

PDEBUG ("\"%s\" did read %1i bytes\n",current->comm, (long)count);
return count;

}

As you can see, we left some PDEBUG statements in the code. When you compile
the driver, you can enable messaging to make it easier to follow the interaction of
different processes.

Note also, once again, the use of semaphores to protect critical regions of the
code. The scull code has to be careful to avoid going to sleep when it holds a
semaphore—otherwise, writers would never be able to add data, and the whole
thing would deadlock. This code uses wait_event_interruptible to wait for data if
need be; it has to check for available data again after the wait, though. Somebody
else could grab the data between when we wake up and when we get the
semaphore back.

It's worth repeating that a process can go to sleep both when it calls schedule,
either directly or indirectly, and when it copies data to or from user space. In the
latter case the process may sleep if the user array is not currently present in main
memory. If scull sleeps while copying data between kernel and user space, it will
sleep with the device semaphore held. Holding the semaphore in this case is justi-
fied since it will not deadlock the system, and since it is important that the device
memory array not change while the driver sleeps.

The if statement that follows interruptible_sleep_on takes care of signal handling.
This statement ensures the proper and expected reaction to signals, which could
have been responsible for waking up the process (since we were in an interrupt-
ible sleep). If a signal has arrived and it has not been blocked by the process, the
proper behavior is to let upper layers of the kernel handle the event. To this aim,
the driver returns ~-ERESTARTSYS to the caller; this value is used internally by the

151

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

virtual filesystem (VFS) layer, which either restarts the system call or returns
-EINTR to user space. We'll use the same statement to deal with signal handling
for every read and write implementation. Because signal_pending was introduced
only in version 2.1.57 of the kernel, sysdep.h defines it for earlier kernels to pre-
serve portability of source code.

The implementation for write is quite similar to that for read (and, again, its first
line will be explained later). Its only “peculiar” feature is that it never completely
fills the buffer, always leaving a hole of at least one byte. Thus, when the buffer is
empty, wp and rp are equal; when there is data there, they are always different.

static inline int spacefree(Scull_Pipe *dev)

{

if (dev->rp == dev->wp)
return dev->buffersize - 1;
return ((dev->rp + dev->buffersize - dev->wp) % dev->buffersize) - 1;

ssize_t scull_p_write(struct file *filp, const char *buf, size_t count,
loff_t *f_pos)

Scull_Pipe *dev = filp->private_data;
if (f_pos != &filp->f_pos) return -ESPIPE;

if (down_interruptible (&dev->sem))
return -ERESTARTSYS;

/* Make sure there’s space to write */
while (spacefree(dev) == 0) { /* full */
up (&dev->sem) ;
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN;
PDEBUG ("\"%s\" writing: going to sleep\n", current->comm) ;
if (wait_event_interruptible (dev->outqg, spacefree(dev) > 0))
return -ERESTARTSYS; /* signal: tell the fs layer to handle it */
if (down_interruptible (&dev->sem))
return -ERESTARTSYS;
}
/* ok, space is there, accept something */
count = min(count, spacefree(dev));
if (dev->wp >= dev->rp)
count = min(count, dev->end - dev->wp); /* up to end-of-buffer */
else /* the write pointer has wrapped, fill up to rp-1 */
count = min(count, dev->rp - dev->wp - 1);
PDEBUG ("Going to accept %1li bytes to %p from %p\n",
(long) count, dev->wp, buf);
if (copy_from_user (dev->wp, buf, count)) {
up (&dev->sem) ;
return -EFAULT;

152

22 June 2001 16:36

Blocking 1I/O

dev->wp += count;
if (dev->wp == dev->end)

dev->wp = dev->buffer; /* wrapped */
up (&dev->sem) ;

/* finally, awaken any reader */
wake_up_interruptible (&dev->ing); /* blocked in read() and select() */

/* and signal asynchronous readers, explained later in Chapter 5 */
if (dev->async_qgueue)

kill_fasync (&dev->async_queue, SIGIO, POLL_IN) ;
PDEBUG ("\"%s\" did write %1i bytes\n",current->comm, (long)count);
return count;

}

The device, as we conceived it, doesn’t implement blocking open and is simpler
than a real FIFO. If you want to look at the real thing, you can find it in fs/pipe.c,
in the kernel sources.

To test the blocking operation of the scullpipe device, you can run some programs
on it, using input/output redirection as usual. Testing nonblocking activity is trick-
ier, because the conventional programs don’t perform nonblocking operations.
The misc-progs source directory contains the following simple program, called
nbtest, for testing nonblocking operations. All it does is copy its input to its output,
using nonblocking I/O and delaying between retrials. The delay time is passed on
the command line and is one second by default.

int main(int argc, char **argv)
{
int delay=1, n, m=0;

if (argc>1) delay=atoi(argvI[ll]);
fentl (0, F_SETFL, fentl(0,F_GETFL) | O_NONBLOCK); /* stdin */
fcntl(l, F_SETFL, fcntl(l,F_GETFL) | O_NONBLOCK); /* stdout */

while (1) {
n=read (0, buffer, 4096);

if (n>=0)
m=write(l, buffer, n);
if ((n<0 || m<0) && (errno != EAGAIN))
break;
sleep (delay) ;
}
perror(n<0 ? "stdin" : "stdout");

exit(1l);

153

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

poll and select

Applications that use nonblocking 1/O often use the poll and select system calls as
well. poll and select have essentially the same functionality: both allow a process
to determine whether it can read from or write to one or more open files without
blocking. They are thus often used in applications that must use multiple input or
output streams without blocking on any one of them. The same functionality is
offered by two separate functions because they were implemented in Unix almost
at the same time by two different groups: select was introduced in BSD Unix,
whereas poll was the System V solution.

Support for either system call requires support from the device driver to function.
In version 2.0 of the kernel the device method was modeled on select (and no poll
was available to user programs); from version 2.1.23 onward both were offered,
and the device method was based on the newly introduced poll system call
because poll offered more detailed control than select.

Implementations of the poll method, implementing both the poll and select system
calls, have the following prototype:

unsigned int (*poll) (struct file *, poll_table *);

The driver’s method will be called whenever the user-space program performs a
poll or select system call involving a file descriptor associated with the driver. The
device method is in charge of these two steps:

1. Call poll_wait on one or more wait queues that could indicate a change in the
poll status.

2. Return a bit mask describing operations that could be immediately performed
without blocking.

Both of these operations are usually straightforward, and tend to look very similar
from one driver to the next. They rely, however, on information that only the
driver can provide, and thus must be implemented individually by each driver.

The poll_table structure, the second argument to the poll method, is used
within the kernel to implement the poll and select calls; it is declared in
<linux/poll.h>, which must be included by the driver source. Driver writers
need know nothing about its internals and must use it as an opaque object; it is
passed to the driver method so that every event queue that could wake up the
process and change the status of the poll operation can be added to the
poll_table structure by calling the function poll_wait:

void poll_wait (struct file *, wait_qgueue_head_t *, poll_table *);

154

poll and select

The second task performed by the poll method is returning the bit mask describ-
ing which operations could be completed immediately; this is also straightforward.
For example, if the device has data available, a read would complete without
sleeping; the poll method should indicate this state of affairs. Several flags (defined
in <linux/poll.h>) are used to indicate the possible operations:

POLLIN
This bit must be set if the device can be read without blocking.

POLLRDNORM
This bit must be set if “normal” data is available for reading. A readable device
returns (POLLIN | POLLRDNORM)

POLLRDBAND
This bit indicates that out-of-band data is available for reading from the
device. It is currently used only in one place in the Linux kernel (the DECnet
code) and is not generally applicable to device drivers.

POLLPRT
High-priority data (out-of-band) can be read without blocking. This bit causes
select to report that an exception condition occurred on the file, because select
reports out-of-band data as an exception condition.

POLLHUP
When a process reading this device sees end-of-file, the driver must set POLL-
HUP (hang-up). A process calling select will be told that the device is readable,
as dictated by the select functionality.

POLLERR
An error condition has occurred on the device. When poll is invoked, the
device is reported as both readable and writable, since both read and write
will return an error code without blocking.

POLLOUT
This bit is set in the return value if the device can be written to without block-
ing.

POLLWRNORM

This bit has the same meaning as POLLOUT, and sometimes it actually is the
same number. A writable device returns (POLLOUT | POLLWRNORM) .

POLLWRBAND
Like POLLRDBAND, this bit means that data with nonzero priority can be writ-
ten to the device. Only the datagram implementation of po/l uses this bit, since
a datagram can transmit out of band data.

It's worth noting that POLLRDBAND and POLLWRBAND are meaningful only with
file descriptors associated with sockets: device drivers won’'t normally use these
flags.

155

22 June 2001 16:36

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

The description of poll takes up a lot of space for something that is relatively sim-
ple to use in practice. Consider the scullpipe implementation of the poll method:

unsigned int scull_p_poll (struct file *filp, poll_table *wait)
{

Scull_Pipe *dev = filp->private_data;

unsigned int mask = 0;

/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp". "left" is 0 if the
* buffer is empty, and it is "1" if it is completely full.
*/
int left = (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;

poll wait(filp, &dev->ing, wait);

poll_wait(filp, &dev->outq, wait);

if (dev->rp != dev->wp) mask |= POLLIN | POLLRDNORM; /* readable */
if (left != 1) mask |= POLLOUT | POLLWRNORM; /* writable */

return mask;

}

This code simply adds the two scullpipe wait queues to the poll_table, then
sets the appropriate mask bits depending on whether data can be read or written.

The poll code as shown is missing end-of-file support. The poll method should
return POLLHUP when the device is at the end of the file. If the caller used the
select system call, the file will be reported as readable; in both cases the applica-
tion will know that it can actually issue the read without waiting forever, and the
read method will return 0 to signal end-of-file.

With real FIFOs, for example, the reader sees an end-of-file when all the writers
close the file, whereas in scullpipe the reader never sees end-of-file. The behavior
is different because a FIFO is intended to be a communication channel between
two processes, while scullpipe is a trashcan where everyone can put data as long
as there’s at least one reader. Moreover, it makes no sense to reimplement what is
already available in the kernel.

Implementing end-of-file in the same way as FIFOs do would mean checking
dev->nwriters, both in read and in poll, and reporting end-of-file (as just
described) if no process has the device opened for writing. Unfortunately, though,
if a reader opened the scullpipe device before the writer, it would see end-of-file
without having a chance to wait for data. The best way to fix this problem would
be to implement blocking within open; this task is left as an exercise for the
reader.

156

poll and select

Interaction with read and write

The purpose of the poll and select calls is to determine in advance if an I/O opera-
tion will block. In that respect, they complement read and write. More important,
poll and select are useful because they let the application wait simultaneously for
several data streams, although we are not exploiting this feature in the scull exam-
ples.

A correct implementation of the three calls is essential to make applications work
correctly. Though the following rules have more or less already been stated, we’ll
summarize them here.

Reading data from the device

e If there is data in the input buffer, the read call should return immediately,
with no noticeable delay, even if less data is available than the application
requested and the driver is sure the remaining data will arrive soon. You can
always return less data than you're asked for if this is convenient for any rea-
son (we did it in scul)), provided you return at least one byte.

e If there is no data in the input buffer, by default read must block until at least
one byte is there. If O_NONBLOCK is set, on the other hand, read returns
immediately with a return value of -EAGAIN (although some old versions of
System V return O in this case). In these cases poll must report that the device
is unreadable until at least one byte arrives. As soon as there is some data in
the buffer, we fall back to the previous case.

e If we are at end-of-file, read should return immediately with a return value of
0, independent of O_NONBLOCK. poll should report POLLHUP in this case.

Writing to the device

e If there is space in the output buffer, write should return without delay. It can
accept less data than the call requested, but it must accept at least one byte. In
this case, poll reports that the device is writable.

e If the output buffer is full, by default write blocks until some space is freed. If
O_NONBLOCK is set, write returns immediately with a return value of
-EAGAIN (older System V Unices returned 0). In these cases poll should
report that the file is not writable. If, on the other hand, the device is not able
to accept any more data, write returns ~-ENOSPC (“No space left on device”),
independently of the setting of O_NONBLOCK.

e Never make a write call wait for data transmission before returning, even if
O_NONBLOCK is clear. This is because many applications use select to find out
whether a write will block. If the device is reported as writable, the call must

157

22 June 2001 16:36

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

consistently not block. If the program using the device wants to ensure that
the data it enqueues in the output buffer is actually transmitted, the driver
must provide an fSync method. For instance, a removable device should have
an fSync entry point.

Although these are a good set of general rules, one should also recognize that
each device is unique and that sometimes the rules must be bent slightly. For
example, record-oriented devices (such as tape drives) cannot execute partial
writes.

Flushing pending output

We've seen how the write method by itself doesn’t account for all data output
needs. The fsync function, invoked by the system call of the same name, fills the
gap. This method’s prototype is

int (*fsync) (struct file *file, struct dentry *dentry, int datasync);

If some application will ever need to be assured that data has been sent to the
device, the fsync method must be implemented. A call to fsync should return only
when the device has been completely flushed (i.e., the output buffer is empty),
even if that takes some time, regardless of whether O_NONBLOCK is set. The
datasync argument, present only in the 2.4 kernel, is used to distinguish
between the fSync and fdatasync system calls; as such, it is only of interest to
filesystem code and can be ignored by drivers.

The fsync method has no unusual features. The call isn’t time critical, so every
device driver can implement it to the author’s taste. Most of the time, char drivers
just have a NULL pointer in their fops. Block devices, on the other hand, always
implement the method with the general-purpose block_fsync, which in turn
flushes all the blocks of the device, waiting for I/O to complete.

The Underlying Data Structure

The actual implementation of the poll and select system calls is reasonably simple,
for those who are interested in how it works. Whenever a user application calls
either function, the kernel invokes the poll method of all files referenced by the
system call, passing the same poll_table to each of them. The structure is, for
all practical purposes, an array of poll_table_entry structures allocated for a
specific poll or select call. Each poll_table_entry contains the struct file
pointer for the open device, a wait_queue_head_t pointer, and a
wait_queue_t entry. When a driver calls poll_wait, one of these entries gets
filled in with the information provided by the driver, and the wait queue entry gets
put onto the driver’s queue. The pointer to wait_gqueue_head_t is used to track
the wait queue where the current poll table entry is registered, in order for
Jfree_wait to be able to dequeue the entry before the wait queue is awakened.

158

22 June 2001 16:36

Asynchronous Notification

If none of the drivers being polled indicates that I/O can occur without blocking,
the poll call simply sleeps until one of the (perhaps many) wait queues it is on
wakes it up.

What'’s interesting in the implementation of poll is that the file operation may be
called with a NULL pointer as poll_table argument. This situation can come
about for a couple of reasons. If the application calling poll has provided a timeout
value of 0 (indicating that no wait should be done), there is no reason to accumu-
late wait queues, and the system simply does not do it. The poll_table pointer
is also set to NULL immediately after any driver being polled indicates that 1I/O is
possible. Since the kernel knows at that point that no wait will occur, it does not
build up a list of wait queues.

When the poll call completes, the poll_table structure is deallocated, and all
wait queue entries previously added to the poll table (if any) are removed from
the table and their wait queues.

Actually, things are somewhat more complex than depicted here, because the poll
table is not a simple array but rather a set of one or more pages, each hosting an
array. This complication is meant to avoid putting too low a limit (dictated by the
page size) on the maximum number of file descriptors involved in a poll or select
system call.

We tried to show the data structures involved in polling in Figure 5-2; the figure is
a simplified representation of the real data structures because it ignores the multi-
page nature of a poll table and disregards the file pointer that is part of each
poll_table_entry. The reader interested in the actual implementation is urged
to look in <linux/poll.h> and f§/select.c.

Asynchronous Notification

Though the combination of blocking and nonblocking operations and the select
method are sufficient for querying the device most of the time, some situations
aren’t efficiently managed by the techniques we’ve seen so far.

Let’s imagine, for example, a process that executes a long computational loop at
low priority, but needs to process incoming data as soon as possible. If the input
channel is the keyboard, you are allowed to send a signal to the application (using
the INTR’ character, usually CTRL-C), but this signaling ability is part of the tty
abstraction, a software layer that isn’t used for general char devices. What we need
for asynchronous notification is something different. Furthermore, any input data
should generate an interrupt, not just CTRL-C.

User programs have to execute two steps to enable asynchronous notification from
an input file. First, they specify a process as the “owner” of the file. When a pro-
cess invokes the F_SETOWN command using the fcnt/ system call, the process ID
of the owner process is saved in £ilp->f_owner for later use. This step is nec-
essary for the kernel to know just who to notify. In order to actually enable

159

Chapter 5: Enbanced Char Driver Operations

The data structures behind poll

The struct poll table struct A process calls poll for ane device only

int error;

——

struct poll_table_page *tables;

The struct poll_table_entry L,

wait_queue_t wait;

wait_queue_head_t *wait_address;

|_ 7 A generic device structure A process is calling poll (or select) on two devices

with its
wait_queue head t

Lo

A process with an active |
— poll () —

(—b_J The struct T
poll_table_ struct | J_>
Poll table entries r L_.{

Figure 5-2. The data structures of poll

asynchronous notification, the user programs must set the FASYNC flag in the
device by means of the F_SETFL fcntl command.

After these two calls have been executed, the input file can request delivery of a
SIGIO signal whenever new data arrives. The signal is sent to the process (or pro-
cess group, if the value is negative) stored in £ilp->f_owner.

For example, the following lines of code in a user program enable asynchronous
notification to the current process for the stdin input file:

signal (SIGIO, &input_handler); /* dummy sample; sigaction() is better */
fcntl (STDIN_FILENO, F_SETOWN, getpid());

oflags = fcntl (STDIN_FILENO, F_GETFL);

fcntl (STDIN_FILENO, F_SETFL, oflags | FASYNC) ;

The program named asynctest in the sources is a simple program that reads

160

22 June 2001 16:36

22 June 2001 16:36

Asynchronous Notification

stdin as shown. It can be used to test the asynchronous capabilities of sculipipe.
The program is similar to cat, but doesn’t terminate on end-of-file; it responds only
to input, not to the absence of input.

Note, however, that not all the devices support asynchronous notification, and you
can choose not to offer it. Applications usually assume that the asynchronous
capability is available only for sockets and ttys. For example, pipes and FIFOs
don’t support it, at least in the current kernels. Mice offer asynchronous notifica-
tion because some programs expect a mouse to be able to send SIGIO like a tty
does.

There is one remaining problem with input notification. When a process receives a
SIGIO, it doesn’'t know which input file has new input to offer. If more than one
file is enabled to asynchronously notify the process of pending input, the applica-
tion must still resort to poll or select to find out what happened.

The Driver’s Point of View

A more relevant topic for us is how the device driver can implement asynchronous
signaling. The following list details the sequence of operations from the kernel’s
point of view:

1. When F_SETOWN is invoked, nothing happens, except that a value is assigned
to filp->f_owner.

2. When F_SETFL is executed to turn on FASYNC, the driver’s fasync method is
called. This method is called whenever the value of FASYNC is changed in
filp->f_flags, to notify the driver of the change so it can respond prop-
erly. The flag is cleared by default when the file is opened. We'll look at the
standard implementation of the driver method soon.

3. When data arrives, all the processes registered for asynchronous notification
must be sent a SIGIO signal.

While implementing the first step is trivial—there’s nothing to do on the driver’s
part—the other steps involve maintaining a dynamic data structure to keep track
of the different asynchronous readers; there might be several of these readers. This
dynamic data structure, however, doesn’t depend on the particular device
involved, and the kernel offers a suitable general-purpose implementation so that
you don’t have to rewrite the same code in every driver.

The general implementation offered by Linux is based on one data structure and
two functions (which are called in the second and third steps described earlier).
The header that declares related material is <linux/fs.h>—nothing new
here—and the data structure is called struct fasync_struct. As we did with
wait queues, we need to insert a pointer to the structure in the device-specific data
structure. Actually, we've already seen such a field in the section “A Sample Imple-
mentation: scullpipe.”

161

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

The two functions that the driver calls correspond to the following prototypes:

int fasync_helper (int fd, struct file *filp,
int mode, struct fasync_struct **fa);
void kill_fasync (struct fasync_struct **fa, int sig, int band);

fasync_helper is invoked to add files to or remove files from the list of inter-
ested processes when the FASYNC flag changes for an open file. All of its argu-
ments except the last are provided to the fasync method and can be passed
through directly. kill_fasync is used to signal the interested processes when
data arrives. Its arguments are the signal to send (usually SIGIO) and the band,
which is almost always POLL_IN (but which may be used to send “urgent” or out-
of-band data in the networking code).

Here’s how scullpipe implements the fasync method:

int scull_p_fasync(fasync_file fd, struct file *filp, int mode)
{

Scull_Pipe *dev = filp->private_data;

return fasync_helper (fd, filp, mode, &dev->async_gueue) ;

}

It's clear that all the work is performed by fasync_belper. It wouldn’t be possible,
however, to implement the functionality without a method in the driver, because
the helper function needs to access the correct pointer to struct
fasync_struct * (here &dev->async_gueue), and only the driver can pro-
vide the information.

When data arrives, then, the following statement must be executed to signal asyn-
chronous readers. Since new data for the scullpipe reader is generated by a pro-
cess issuing a write, the statement appears in the write method of scullpipe.

if (dev->async_gueue)
kill_fasync (&dev->async_queue, SIGIO, POLL_IN) ;

It might appear that we're done, but there’s still one thing missing. We must
invoke our fasync method when the file is closed to remove the file from the list
of active asynchronous readers. Although this call is required only if
filp->f_flags has FASYNC set, calling the function anyway doesn’t hurt and is
the usual implementation. The following lines, for example, are part of the close
method for scullpipe:

/* remove this filp from the asynchronously notified filp’s */
scull_p_fasync (-1, filp, 0);

The data structure underlying asynchronous notification is almost identical to the
structure struct wailt_qgueue, because both situations involve waiting on an
event. The difference is that struct £file is used in place of struct
task_struct. The struct file in the queue is then used to retrieve
f_owner, in order to signal the process.

162

22 June 2001 16:36

Seeking a Device

Seeking a Device

The difficult part of the chapter is over; now we’ll quickly detail the /lseek method,
which is useful and easy to implement.

The llseek Implementation

The /liseek method implements the Iseek and /lseek system calls. We have already
stated that if the /lseek method is missing from the device’s operations, the default
implementation in the kernel performs seeks from the beginning of the file and
from the current position by modifying £ilp->f_pos, the current reading/writ-
ing position within the file. Please note that for the Iseek system call to work cor-
rectly, the read and write methods must cooperate by updating the offset item
they receive as argument (the argument is usually a pointer to £ilp->f_pos).

You may need to provide your own liseek method if the seek operation corre-
sponds to a physical operation on the device or if seeking from end-of-file, which
is not implemented by the default method, makes sense. A simple example can be
seen in the scull driver:

loff_t scull_llseek(struct file *filp, loff_t off, int whence)
{

Scull_Dev *dev = filp->private_data;

loff_t newpos;

switch (whence) {

case 0: /* SEEK_SET */
newpos = off;
break;

case 1l: /* SEEK_CUR */
newpos = filp->f pos + off;
break;

case 2: /* SEEK_END */
newpos = dev->size + off;
break;

default: /* can’t happen */
return -EINVAL;

}

if (newpos<0) return -EINVAL;

filp->f_pos = newpos;

return newpos;

}

The only device-specific operation here is retrieving the file length from the
device. In scull the read and write methods cooperate as needed, as shown in
“read and write” in Chapter 3.

163

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

Although the implementation just shown makes sense for scull, which handles a
well-defined data area, most devices offer a data flow rather than a data area (just
think about the serial ports or the keyboard), and seeking those devices does not
make sense. If this is the case, you can’t just refrain from declaring the /seek oper-
ation, because the default method allows seeking. Instead, you should use the fol-
lowing code:

loff_t scull_p_llseek(struct file *filp, loff_t off, int whence)
{

return -ESPIPE; /* unseekable */
}

This function comes from the scullpipe device, which isn’t seekable; the error code
is translated to “Illegal seek,” though the symbolic name means “is a pipe.”
Because the position indicator is meaningless for nonseekable devices, neither
read nor write needs to update it during data transfer.

It's interesting to note that since pread and pwrite have been added to the set of
supported system calls, the Iseek device method is not the only way a user-space
program can seek a file. A proper implementation of unseekable devices should
allow normal read and write calls while preventing pread and pwrite. This is
accomplished by the following line—the first in both the read and write methods
of scullpipe—we didn’t explain when introducing those methods:

if (f_pos != &filp->f_pos) return -ESPIPE;

Access Control on a Device File

Offering access control is sometimes vital for the reliability of a device node. Not
only should unauthorized users not be permitted to use the device (a restriction is
enforced by the filesystem permission bits), but sometimes only one authorized
user should be allowed to open the device at a time.

The problem is similar to that of using ttys. In that case, the Jogin process changes
the ownership of the device node whenever a user logs into the system, in order
to prevent other users from interfering with or sniffing the tty data flow. However,
it's impractical to use a privileged program to change the ownership of a device
every time it is opened, just to grant unique access to it.

None of the code shown up to now implements any access control beyond the
filesystem permission bits. If the open system call forwards the request to the
driver, open will succeed. We now introduce a few techniques for implementing
some additional checks.

Every device shown in this section has the same behavior as the bare scu// device
(that is, it implements a persistent memory area) but differs from scull in access
control, which is implemented in the open and close operations.

164

22 June 2001 16:36

Access Control on a Device File

Single-Open Devices

The brute-force way to provide access control is to permit a device to be opened
by only one process at a time (single openness). This technique is best avoided
because it inhibits user ingenuity. A user might well want to run different pro-
cesses on the same device, one reading status information while the other is writ-
ing data. In some cases, users can get a lot done by running a few simple
programs through a shell script, as long as they can access the device concur-
rently. In other words, implementing a single-open behavior amounts to creating
policy, which may get in the way of what your users want to do.

Allowing only a single process to open a device has undesirable properties, but it
is also the easiest access control to implement for a device driver, so it’s shown
here. The source code is extracted from a device called scullsingle.

The open call refuses access based on a global integer flag:

int scull_s_open(struct inode *inode, struct file *filp)

{
Scull_Dev *dev = &scull_s_device; /* device information */
int num = NUM(inode->i_rdev) ;

if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */
spin_lock (&scull_s_lock) ;
if (scull_s_count) {
spin_unlock(&scull_s_1lock) ;
return -EBUSY; /* already open */
}
scull_s_count++;
spin_unlock(&scull_s_lock);
/* then, everything else is copied from the bare scull device */

if ((filp->f_flags & O_ACCMODE) == O_WRONLY)
scull_trim(dev) ;
if (!filp->private_data)
filp->private_data = dev;
MOD_INC_USE_COUNT;
return 0; /* success */

}
The close call, on the other hand, marks the device as no longer busy.

int scull_s_release(struct inode *inode, struct file *filp)
{
scull_s_count--; /* release the device */
MOD_DEC_USE_COUNT;
return 0;

}

Normally, we recommend that you put the open flag scull_s_count (with the
accompanying spinlock, scull_s_lock, whose role is explained in the next

165

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

subsection) within the device structure (Scull_Dev here) because, conceptually,
it belongs to the device. The scull driver, however, uses standalone variables to
hold the flag and the lock in order to use the same device structure and methods
as the bare scull device and minimize code duplication.

Another Digression into Race Conditions

Consider once again the test on the variable scull_s_count just shown. Two
separate actions are taken there: (1) the value of the variable is tested, and the
open is refused if it is not 0, and (2) the variable is incremented to mark the
device as taken. On a single-processor system, these tests are safe because no
other process will be able to run between the two actions.

As soon as you get into the SMP world, however, a problem arises. If two pro-
cesses on two processors attempt to open the device simultaneously, it is possible
that they could both test the value of scull_s_count before either modifies it.
In this scenario you’ll find that, at best, the single-open semantics of the device is
not enforced. In the worst case, unexpected concurrent access could create data
structure corruption and system crashes.

In other words, we have another race condition here. This one could be solved in
much the same way as the races we already saw in Chapter 3. Those race condi-
tions were triggered by access to a status variable of a potentially shared data
structure and were solved using semaphores. In general, however, semaphores
can be expensive to use, because they can put the calling process to sleep. They
are a heavyweight solution for the problem of protecting a quick check on a status
variable.

Instead, scullsingle uses a different locking mechanism called a spinlock. Spinlocks
will never put a process to sleep. Instead, if a lock is not available, the spinlock
primitives will simply retry, over and over (i.e., “spin”), until the lock is freed.
Spinlocks thus have very little locking overhead, but they also have the potential
to cause a processor to spin for a long time if somebody hogs the lock. Another
advantage of spinlocks over semaphores is that their implementation is empty
when compiling code for a uniprocessor system (where these SMP-specific races
can’t happen). Semaphores are a more general resource that make sense on
uniprocessor computers as well as SMP, so they don’t get optimized away in the
uniprocessor case.

Spinlocks can be the ideal mechanism for small critical sections. Processes should
hold spinlocks for the minimum time possible, and must never sleep while hold-
ing a lock. Thus, the main scu/l driver, which exchanges data with user space and
can therefore sleep, is not suitable for a spinlock solution. But spinlocks work
nicely for controlling access to scull_s_single (even if they still are not the
optimal solution, which we will see in Chapter 9).

Spinlocks are declared with a type of spinlock_t, which is defined in
<linux/spinlock.h>. Prior to use, they must be initialized:

166

22 June 2001 16:36

Access Control on a Device File

spin_lock_init(spinlock_t *lock);

A process entering a critical section will obtain the lock with spin_lock:
spin_lock(spinlock_t *lock) ;

The lock is released at the end with spin_unlock:
spin_unlock(spinlock_t *lock);

Spinlocks can be more complicated than this, and we’ll get into the details in
Chapter 9. But the simple case as shown here suits our needs for now, and all of
the access-control variants of scull will use simple spinlocks in this manner.

The astute reader may have noticed that whereas scull_s_open acquires the
scull_s_lock lock prior to incrementing the scull_s_count flag,
scull_s_close takes no such precautions. This code is safe because no other code
will change the value of scull_s_count if it is nonzero, so there will be no
conflict with this particular assignment.

Restricting Access to a Single User at a Time

The next step beyond a single system-wide lock is to let a single user open a
device in multiple processes but allow only one user to have the device open at a
time. This solution makes it easy to test the device, since the user can read and
write from several processes at once, but assumes that the user takes some
responsibility for maintaining the integrity of the data during multiple accesses.
This is accomplished by adding checks in the open method; such checks are per-
formed afiter the normal permission checking and can only make access more
restrictive than that specified by the owner and group permission bits. This is the
same access policy as that used for ttys, but it doesn’t resort to an external privi-
leged program.

Those access policies are a little trickier to implement than single-open policies. In
this case, two items are needed: an open count and the uid of the “owner” of the
device. Once again, the best place for such items is within the device structure;
our example uses global variables instead, for the reason explained earlier for
scullsingle. The name of the device is sculluid.

The open call grants access on first open, but remembers the owner of the device.
This means that a user can open the device multiple times, thus allowing cooper-
ating processes to work concurrently on the device. At the same time, no other
user can open it, thus avoiding external interference. Since this version of the
function is almost identical to the preceding one, only the relevant part is repro-
duced here:

spin_lock (&scull_u_lock) ;

if (scull_u_count &&
(scull_u_owner != current->uid) && /* allow user */
(scull_u_owner != current->euid) && /* allow whoever did su */

167

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

!capable (CAP_DAC_OVERRIDE)) { /* still allow root */
spin_unlock(&scull_u_lock);
return -EBUSY; /* -EPERM would confuse the user */
}

if (scull_u_count == 0)
scull_u_owner = current->uid; /* grab it */

scull_u_count++;
spin_unlock (&scull_u_lock);

We chose to return ~-EBUSY and not -EPERM, even though the code is performing
a permission check, in order to point a user who is denied access in the right
direction. The reaction to “Permission denied” is usually to check the mode and
owner of the /dev file, while “Device busy” correctly suggests that the user should
look for a process already using the device.

This code also checks to see if the process attempting the open has the ability to
override file access permissions; if so, the open will be allowed even if the open-
ing process is not the owner of the device. The CAP_DAC_OVERRIDE capability
fits the task well in this case.

The code for close is not shown, since all it does is decrement the usage count.

Blocking open as an Alternative to EBUSY

When the device isn’t accessible, returning an error is usually the most sensible
approach, but there are situations in which you’d prefer to wait for the device.

For example, if a data communication channel is used both to transmit reports on
a timely basis (using crontab) and for casual usage according to people’s needs,
it's much better for the timely report to be slightly delayed rather than fail just
because the channel is currently busy.

This is one of the choices that the programmer must make when designing a
device driver, and the right answer depends on the particular problem being
solved.

The alternative to EBUSY, as you may have guessed, is to implement blocking
open.

The scullwuid device is a version of sculluid that waits for the device on open
instead of returning -EBUSY. It differs from sculluid only in the following part of
the open operation:

spin_lock (&scull_w_lock) ;

while (scull_w_count &&
(scull_w_owner != current->uid) && /* allow user */
(scull_w_owner != current->euid) && /* allow whoever did su */
!capable (CAP_DAC_OVERRIDE)) {
spin_unlock (&scull_w_lock) ;

168

22 June 2001 16:36

Access Control on a Device File

if (filp->f_flags & O_NONBLOCK) return -EAGAIN;
interruptible_sleep_on (&scull_w_wait) ;
if (signal_pending(current)) /* a signal arrived */
return -ERESTARTSYS; /* tell the fs layer to handle it */
/* else, loop */
spin_lock (&scull_w_lock) ;
}
if (scull_w_count == 0)
scull_w_owner = current->uid; /* grab it */
scull_w_count++;
spin_unlock(&scull_w_lock) ;

The implementation is based once again on a wait queue. Wait queues were cre-
ated to maintain a list of processes that sleep while waiting for an event, so they fit
perfectly here.

The release method, then, is in charge of awakening any pending process:

int scull_w_release(struct inode *inode, struct file *filp)
{
scull_w_count--;
if (scull_w_count == 0)
wake_up_interruptible(&scull_w_wait); /* awaken other uid’s */
MOD_DEC_USE_COUNT;
return 0;

}

The problem with a blocking-open implementation is that it is really unpleasant
for the interactive user, who has to keep guessing what is going wrong. The inter-
active user usually invokes precompiled commands such as ¢p and tar and can’t
just add O_NONBLOCK to the open call. Someone who’s making a backup using
the tape drive in the next room would prefer to get a plain “device or resource
busy” message instead of being left to guess why the hard drive is so silent today
while faris scanning it.

This kind of problem (different, incompatible policies for the same device) is best
solved by implementing one device node for each access policy. An example of
this practice can be found in the Linux tape driver, which provides multiple device
files for the same device. Different device files will, for example, cause the drive to
record with or without compression, or to automatically rewind the tape when the
device is closed.

Cloning the Device on Open

Another technique to manage access control is creating different private copies of
the device depending on the process opening it.

169

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

Clearly this is possible only if the device is not bound to a hardware object; scull is
an example of such a “software” device. The internals of /dev/tty use a similar
technique in order to give its process a different “view” of what the /dev entry
point represents. When copies of the device are created by the software driver, we
call them virtual devices—ijust as virtual consoles use a single physical tty device.

Although this kind of access control is rarely needed, the implementation can be
enlightening in showing how easily kernel code can change the application’s per-
spective of the surrounding world (.e., the computer). The topic is quite exotic,
actually, so if you aren’t interested, you can jump directly to the next section.

The /dev/sculipriv device node implements virtual devices within the scull pack-
age. The scullpriv implementation uses the minor number of the process’s control-
ling tty as a key to access the virtual device. You can nonetheless easily modify the
sources to use any integer value for the key; each choice leads to a different pol-
icy. For example, using the uid leads to a different virtual device for each user,
while using a pid key creates a new device for each process accessing it.

The decision to use the controlling terminal is meant to enable easy testing of the
device using input/output redirection: the device is shared by all commands run
on the same virtual terminal and is kept separate from the one seen by commands
run on another terminal.

The open method looks like the following code. It must look for the right virtual
device and possibly create one. The final part of the function is not shown
because it is copied from the bare scull, which we’ve already seen.

/* The clone-specific data structure includes a key field */
struct scull_listitem {

Scull_Dev device;

int key;

struct scull_listitem *next;

}i

/* The list of devices, and a lock to protect it */
struct scull_listitem *scull_c_head;
spinlock_t scull_c_lock;

/* Look for a device or create one if missing */
static Scull_Dev *scull_c_lookfor_device (int key)
{

struct scull_listitem *1lptr, *prev = NULL;

for (lptr = scull_c_head; lptr && (lptr->key != key); lptr = lptr->next)
prev=1lptr;
if (lptr) return &(lptr->device);

/* not found */

lptr = kmalloc(sizeof (struct scull_listitem), GFP_ATOMIC) ;
if (!lptr) return NULL;

170

Access Control on a Device File

/* initialize the device */

memset (1ptr, 0, sizeof (struct scull_listitem)) ;
lptr->key = key;

scull_trim(&(lptr->device)); /* initialize it */
sema_init (& (lptr->device.sem), 1);

/* place it in the list */
if (prev) prev->next = lptr;
else scull_c_head = lptr;

return & (lptr->device);

int scull_c_open(struct inode *inode, struct file *filp)

{
Scull_Dev *dev;
int key, num = NUM(inode->i_rdev) ;

if (!filp->private_data && num > 0)
return -ENODEV; /* not devfs: allow 1 device only */

if (!current->tty) {
PDEBUG ("Process \"%s\" has no ctl tty\n",current->comm) ;
return -EINVAL;

}

key = MINOR (current->tty->device);

/* look for a scullc device in the list */
spin_lock (&scull_c_lock) ;

dev = scull_c_lookfor_device(key) ;
spin_unlock (&scull_c_lock);

if (!dev) return -ENOMEM;

/* then, everything else is copied from the bare scull device */

The release method does nothing special. It would normally release the device on
last close, but we chose not to maintain an open count in order to simplify the
testing of the driver. If the device were released on last close, you wouldn’t be
able to read the same data after writing to the device unless a background process
were to keep it open. The sample driver takes the easier approach of keeping the
data, so that at the next open, you'll find it there. The devices are released when
scull_cleanup is called.

Here’s the release implementation for /deuv/scullpriv, which closes the discussion of
device methods.

int scull_c_release(struct inode *inode, struct file *filp)
{

/*

* Nothing to do, because the device is persistent.

* A ‘real’ cloned device should be freed on last close

171

22 June 2001 16:36

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

*/
MOD_DEC_USE_COUNT;
return 0;

}

Backward Compatibility

Many parts of the device driver API covered in this chapter have changed between
the major kernel releases. For those of you needing to make your driver work with
Linux 2.0 or 2.2, here is a quick rundown of the differences you will encounter.

Wait Queues in Linux 2.2 and 2.0

A relatively small amount of the material in this chapter changed in the 2.3 devel-
opment cycle. The one significant change is in the area of wait queues. The 2.2
kernel had a different and simpler implementation of wait queues, but it lacked
some important features, such as exclusive sleeps. The new implementation of
wait queues was introduced in kernel version 2.3.1.

The 2.2 wait queue implementation used variables of the type struct
walt_queue * instead of wait_queue_head_t. This pointer had to be initial-
ized to NULL prior to its first use. A typical declaration and initialization of a wait
queue looked like this:

struct wait_queue *my_gueue = NULL;

The various functions for sleeping and waking up looked the same, with the
exception of the variable type for the queue itself. As a result, writing code that
works for all 2.x kernels is easily done with a bit of code like the following, which
is part of the sysdep.h header we use to compile our sample code.

define DECLARE_WAIT QUEUE_HEAD (head) struct wait_qgqueue *head = NULL
typedef struct wait_queue *wait_queue_head_t;
define init_waitqueue_head(head) (* (head)) = NULL

The synchronous versions of wake_up were added in 2.3.29, and sysdep.h pro-
vides macros with the same names so that you can use the feature in your code
while maintaining portability. The replacement macros expand to normal
wake_up, since the underlying mechanisms were missing from earlier kernels. The
timeout versions of sleep_on were added in kernel 2.1.127. The rest of the wait
queue interface has remained relatively unchanged. The sysdep.h header defines
the needed macros in order to compile and run your modules with Linux 2.2 and
Linux 2.0 without cluttering the code with lots of #ifdefs.

The wait_event macro did not exist in the 2.0 kernel. For those who need it, we
have provided an implementation in sysdep.b

172

22 June 2001 16:36

Backward Compatibility

Asynchronous Notification

Some small changes have been made in how asynchronous notification works for
both the 2.2 and 2.4 releases.

In Linux 2.3.21, kill_fasync got its third argument. Prior to this release, kill_fasync
was called as

kill_fasync(struct fasync_struct *queue, int signal);
Fortunately, sysdep.b takes care of the issue.

In the 2.2 release, the type of the first argument to the fasync method changed. In
the 2.0 kernel, a pointer to the inode structure for the device was passed, instead
of the integer file descriptor:

int (*fasync) (struct inode *inode, struct file *filp, int on);

To solve this incompatibility, we use the same approach taken for read and write:
use of a wrapper function when the module is compiled under 2.0 headers.

The inode argument to the fasync method was also passed in when called from
the release method, rather than the -1 value used with later kernels.

The fsync Method

The third argument to the fSync file_operations method (the integer data-
sync value) was added in the 2.3 development series, meaning that portable code
will generally need to include a wrapper function for older kernels. There is a
trap, however, for people trying to write portable fsync methods: at least one dis-
tributor, which will remain nameless, patched the 2.4 fsync API into its 2.2 kernel.
The kernel developers usually (usually...) try to avoid making API changes
within a stable series, but they have little control over what the distributors do.

Access to User Space in Linux 2.0

Memory access was handled differently in the 2.0 kernels. The Linux virtual mem-
ory system was less well developed at that time, and memory access was handled
a little differently. The new system was the key change that opened 2.1 develop-
ment, and it brought significant improvements in performance; unfortunately, it
was accompanied by yet another set of compatibility headaches for driver writers.

The functions used to access memory under Linux 2.0 were as follows:

verify_area(int mode, const void *ptr, unsigned long size);
This function worked similarly to access_ok, but performed more extensive
checking and was slower. The function returned 0 in case of success and

173

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

-EFAULT in case of errors. Recent kernel headers still define the function, but
i's now just a wrapper around access_ok. When using version 2.0 of the ker-
nel, calling verify_area is never optional; no access to user space can safely be
performed without a prior, explicit verification.

put_user (datum, ptr)
The put_user macro looks much like its modern-day equivalent. It differed,
however, in that no verification was done, and there was no return value.

get_user (ptr)
This macro fetched the value at the given address, and returned it as its return
value. Once again, no verification was done by the execution of the macro.

verify_area had to be called explicitly because no user-area copy function per-
formed the check. The great news introduced by Linux 2.1, which forced the
incompatible change in the get user and put_user functions, was that the task of
verifying user addresses was left to the hardware, because the kernel was now
able to trap and handle processor exceptions generated during data copies to user
space.

As an example of how the older calls are used, consider scu/l one more time. A
version of scull using the 2.0 API would call verify_area in this way:

int err = 0, tmp;

/*

* extract the type and number bitfields, and don’'t decode
* wrong cmds: return ENOTTY before verify_ area()

*/
if (_IOC_TYPE(cmd) != SCULL_IOC_MAGIC) return -ENOTTY;
if (_IOC_NR(cmd) > SCULL_IOC_MAXNR) return -ENOTTY;

* the direction is a bit mask, and VERIFY_WRITE catches R/W

* transfers. ‘Type’ is user oriented, while

* verify_area is kernel oriented, so the concept of "read" and
* "write" is reversed

*/
if (_IOC_DIR(cmd) & _IOC_READ)

err = verify_area (VERIFY_WRITE, (void *)arg, _IOC_SIZE(cmd));
else if (_IOC_DIR(cmd) & _IOC_WRITE)

err = verify_area(VERIFY_READ, (void *)arg, _IOC_SIZE(cmd)) ;
if (err) return err;

Then get_user and put_user can be used as follows:

case SCULL_IOCXQUANTUM: /* eXchange: use arg as pointer */
tmp = scull_qguantum;

scull_quantum = get_user((int *)arg);

put_user (tmp, (int *)arg);

break;

174

22 June 2001 16:36

Backward Compatibility

default: /* redundant, as cmd was checked against MAXNR */
return -ENOTTY;
}

return 0;

Only a small portion of the ioctl switch code has been shown, since it is little dif-
ferent from the version for 2.2 and beyond.

Life would be relatively easy for the compatibility-conscious driver writer if it
weren’t for the fact that put_user and get_user are implemented as macros in all
Linux versions, and their interfaces changed. As a result, a straightforward fix using
macros cannot be done.

One possible solution is to define a new set of version-independent macros. The
path taken by sysdep.h consists in defining upper-case macros: GET_USER,
__GET _USER, and so on. The arguments are the same as with the kernel macros
of Linux 2.4, but the caller must be sure that verify_area has been called first
(because that call is needed when compiling for 2.0).

Capabilities in 2.0

The 2.0 kernel did not support the capabilities abstraction at all. All permissions
checks simply looked to see if the calling process was running as the superuser; if
so, the operation would be allowed. The function suser was used for this purpose;
it takes no arguments and returns a nonzero value if the process has superuser
privileges.

suser still exists in later kernels, but its use is strongly discouraged. It is better to
define a version of capable for 2.0, as is done in sysdep.h:

define capable(anything) suser()

In this way, code can be written that is portable but which works with modern,
capability-oriented systems.

The Linux 2.0 select Method

The 2.0 kernel did not support the poll system call; only the BSD-style select call
was available. The corresponding device driver method was thus called select, and
operated in a slightly different way, though the actions to be performed are almost
identical.

The select method is passed a pointer to a select_table, and must pass that
pointer to select_wait only if the calling process should wait for the requested con-
dition (one of SEL_IN, SEL_OUT, or SEL_EX).

The scull driver deals with the incompatibility by declaring a specific select method
to be used when it is compiled for version 2.0 of the kernel:

175

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

#ifdef __USE_OLD_SELECT _
int scull_p_poll (struct inode *inode, struct file *filp,
int mode, select_table *table)

Scull_Pipe *dev = filp->private_data;

if (mode == SEL_IN) {
if (dev->rp != dev->wp) return 1; /* readable */
PDEBUG ("Waiting to read\n");
select_wait (&dev->ing, table); /* wait for data */
return 0;
}
if (mode == SEL_OUT) {
/*
* The buffer is circular; it is considered full
* if "wp" is right behind "rp". "left" is 0 if the
* buffer is empty, and it is "1" if it is completely full.
*/
int left = (dev->rp + dev->buffersize - dev->wp) % dev->buffersize;
if (left != 1) return 1; /* writable */
PDEBUG ("Waiting to write\n");
select_wait (&dev->outqg, table); /* wait for free space */
return 0;

}
return 0; /* never exception-able */
}

#else /* Use poll instead, already shown */

The __USE_OLD_SELECT__ preprocessor symbol used here is set by the sys-
dep.h include file according to kernel version.

Seeking in Linux 2.0

Prior to Linux 2.1, the /liseek device method was called [seek instead, and it
received different parameters from the current implementation. For that reason,
under Linux 2.0 you were not allowed to seek a file, or a device, past the 2 GB
limit, even though the /llseek system call was already supported.

The prototype of the file operation in the 2.0 kernel was the following:

int (*lseek) (struct inode *inode, struct file *filp , off_t off,
int whence) ;

Those working to write drivers compatible with 2.0 and 2.2 usually end up defin-
ing separate implementations of the seek method for the two interfaces.

2.0 and SMP

Because Linux 2.0 only minimally supported SMP systems, race conditions of the
type mentioned in this chapter did not normally come about. The 2.0 kernel did
have a spinlock implementation, but, since only one processor could be running

176

Quick Reference

kernel code at a time, there was less need for locking.

Quick Reference
This chapter introduced the following symbols and header files.

#include <linux/ioctl.h>
This header declares all the macros used to define ioct! commands. It is cur-
rently included by <linux/fs.h>.

_TIOC_NRBITS

_IOC_TYPEBITS

_TIOC_SIZEBITS

_TIOC_DIRBITS
The number of bits available for the different bitfields of ioct/ commands.
There are also four macros that specify the MASKs and four that specify the
SHIFTs, but they're mainly for internal use. _IOC_SIZEBITS is an important
value to check, because it changes across architectures.

_IOC_NONE

_IOC_READ

_IOC_WRITE
The possible values for the “direction” bitfield. “Read” and “write” are differ-
ent bits and can be OR'd to specify read/write. The values are 0 based.

_IOC(dir, type,nr,size)
_IO0(type,nr)
_IOR(type,nr,size)
_IOW(type,nr, size)
_JTOWR (type,nr, size)
Macros used to create an ioctl command.

_IOC_DIR(nr)

_IOC_TYPE (nr)

_TIOC_NR(nr)

_IOC_SIZE (nr)
Macros used to decode a command. In particular, _TOC_TYPE (nr) is an OR
combination of _TOC_READ and _TIOC_WRITE.

#include <asm/uaccess.h>
int access_ok(int type, const void *addr, unsigned long
size);
This function checks that a pointer to user space is actually usable. access_ok
returns a nonzero value if the access should be allowed.

177

22 June 2001 16:36

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

VERIFY_ READ

VERIFY WRITE
The possible values for the type argument in daccess_ok. VERIFY_WRITE is a
superset of VERIFY_READ.

#include <asm/uaccess.h>

int put_user (datum, ptr) ;

int get_user(local,ptr);

int _ _put_user (datum, ptr) ;

int _ _get_user(local,ptr);
Macros used to store or retrieve a datum to or from user space. The number of
bytes being transferred depends on sizeof (*ptr). The regular versions call
access_ok first, while the qualified versions (__put_user and __get_user)
assume that access_ok has already been called.

#include <linux/capability.h>
Defines the various CAP_ symbols for capabilities under Linux 2.2 and later.

int capable(int capability);
Returns nonzero if the process has the given capability.

#include <linux/wait.h>

typedef struct { /* ... */ } wait_queue_head_t;

void init_waitqueue_head (wait_queue_head_t *queue) ;

DECLARE_WAIT QUEUE_HEAD (queue) ;
The defined type for Linux wait queues. A wait_queue_head_t must be
explicitly initialized with either init_waitqueue_head at runtime or
declare_wait_queue_bead at compile time.

#include <linux/sched.h>

void interruptible_sleep_on(wait_queue_head_t *q);

void sleep_on(wait_queue_head_t *q);

void interruptible_sleep_on_timeout (wait_queue_head_t *q,

long timeout) ;

void sleep_on_timeout (wait_queue_head_t *qg, long timeout) ;
Calling any of these functions puts the current process to sleep on a queue.
Usually, you'll choose the interruptible form to implement blocking read and
write.

void wake_up (struct wait_gueue **q);

void wake_up_interruptible(struct wait_gqueue **q);

void wake_up_sync (struct wait_gqueue **q);

void wake_up_interruptible_sync (struct wait_queue **q);
These functions wake processes that are sleeping on the queue q. The _inter-
ruptible form wakes only interruptible processes. The _sync versions will not
reschedule the CPU before returning.

178

Quick Reference

typedef struct { /* ... */ } wait_gueue_t;
init_waitqueue_entry(wait_gqueue_t *entry, struct task_struct
*task) ;

The wait_queue_t type is used when sleeping without calling sleep_on.
Wait queue entries must be initialized prior to use; the task argument used is
almost always current.

void add_wait_gqueue (wait_queue_head_t *qg, wait_queue_t
*wait) ;
void add_wait_gqueue_exclusive (wait_queue_head_t *q,
wait_queue_t *wait);
void remove_wait_queue (wait_gqueue_head_t *g, wait_qgueue_t
*wait) ;
These functions add an entry to a wait queue; add_wail_queue_exclusive adds
the entry to the end of the queue for exclusive waits. Entries should be
removed from the queue after sleeping with remove_wait_queue.

void wait_event (wait_queue_head_t g, int condition);
int wait_event_interruptible(wait_gqueue_head_t g, int condi-
tion) ;
These two macros will cause the process to sleep on the given queue until the
given condition evaluates to a true value.

void schedule(void) ;
This function selects a runnable process from the run queue. The chosen pro-
cess can be current or a different one. You won’t usually call schedule
directly, because the sleegp_on functions do it internally.

#include <linux/poll.h>
void poll_wait(struct file *filp, wait_gqueue_head_t *q,
poll_table *p)
This function puts the current process into a wait queue without scheduling
immediately. It is designed to be used by the poll method of device drivers.

int fasync_helper (struct inode *inode, struct file *filp,
int mode, struct fasync_struct **fa);
This function is a “helper” for implementing the fasync device method. The
mode argument is the same value that is passed to the method, while fa
points to a device-specific fasync_struct *.

void kill_fasync(struct fasync_struct *fa, int sig, int
band) ;
If the driver supports asynchronous notification, this function can be used to
send a signal to processes registered in fa.

179

22 June 2001 16:36

Chapter 5: Enbanced Char Driver Operations

#include <linux/spinlock.h>

typedef struct { /* ... */ } spinlock t;

void spin_lock_init(spinlock_t *lock);
The spinlock_t type defines a spinlock, which must be initialized (with
spin_lock_inif) prior to use.

spin_lock(spinlock_t *lock);

spin_unlock (spinlock_t *lock);
spin_lock locks the given lock, perhaps waiting until it becomes available. The
lock can then be released with spin_umnlock.

180

22 June 2001 16:36

22 June 2001 16:37

CHAPTER SIX

FLOW OF TIME

At this point, we know the basics of how to write a full-featured char module.
Real-world drivers, however, need to do more than implement the necessary oper-
ations; they have to deal with issues such as timing, memory management, hard-
ware access, and more. Fortunately, the kernel makes a number of facilities
available to ease the task of the driver writer. In the next few chapters we’ll fill in
information on some of the kernel resources that are available, starting with how
timing issues are addressed. Dealing with time involves the following, in order of
increasing complexity:

e Understanding kernel timing
e Knowing the current time
e Delaying operation for a specified amount of time

e Scheduling asynchronous functions to happen after a specified time lapse

Time Intervals in the Kernel

The first point we need to cover is the timer interrupt, which is the mechanism the
kernel uses to keep track of time intervals. Interrupts are asynchronous events that
are usually fired by external hardware; the CPU is interrupted in its current activity
and executes special code (the Interrupt Service Routine, or ISR) to serve the inter-
rupt. Interrupts and ISR implementation issues are covered in Chapter 9.

Timer interrupts are generated by the system’s timing hardware at regular intervals;
this interval is set by the kernel according to the value of HZ, which is an

181

22 June 2001 16:37

Chapter 6: Flow of Time

architecture-dependent value defined in <linux/param.h>. Current Linux ver-
sions define HZ to be 100 for most platforms, but some platforms use 1024, and
the IA-64 simulator uses 20. Despite what your preferred platform uses, no driver
writer should count on any specific value of HZ.

Every time a timer interrupt occurs, the value of the variable jiffies is incre-
mented. jiffies is initialized to 0 when the system boots, and is thus the num-
ber of clock ticks since the computer was turned on. It is declared in
<linux/sched.h> as unsigned long volatile, and will possibly overflow
after a long time of continuous system operation (but no platform features jiffy
overflow in less than 16 months of uptime). Much effort has gone into ensuring
that the kernel operates properly when jiffies overflows. Driver writers do not
normally have to worry about jiffies overflows, but it is good to be aware of
the possibility.

It is possible to change the value of HZ for those who want systems with a differ-
ent clock interrupt frequency. Some people using Linux for hard real-time tasks
have been known to raise the value of HZ to get better response times; they are
willing to pay the overhead of the extra timer interrupts to achieve their goals. All
in all, however, the best approach to the timer interrupt is to keep the default
value for HZ, by virtue of our complete trust in the kernel developers, who have
certainly chosen the best value.

Processor-Specific Registers

If you need to measure very short time intervals or you need extremely high preci-
sion in your figures, you can resort to platform-dependent resources, selecting pre-
cision over portability.

Most modern CPUs include a high-resolution counter that is incremented every
clock cycle; this counter may be used to measure time intervals precisely. Given
the inherent unpredictability of instruction timing on most systems (due to instruc-
tion scheduling, branch prediction, and cache memory), this clock counter is the
only reliable way to carry out small-scale timekeeping tasks. In response to the
extremely high speed of modern processors, the pressing demand for empirical
performance figures, and the intrinsic unpredictability of instruction timing in CPU
designs caused by the various levels of cache memories, CPU manufacturers intro-
duced a way to count clock cycles as an easy and reliable way to measure time
lapses. Most modern processors thus include a counter register that is steadily
incremented once at each clock cycle.

The details differ from platform to platform: the register may or may not be read-
able from user space, it may or may not be writable, and it may be 64 or 32 bits
wide—in the latter case you must be prepared to handle overflows. Whether or
not the register can be zeroed, we strongly discourage resetting it, even when

182

22 June 2001 16:37

Time Intervals in the Kernel

hardware permits. Since you can always measure differences using unsigned vari-
ables, you can get the work done without claiming exclusive ownership of the
register by modifying its current value.

The most renowned counter register is the TSC (timestamp counter), introduced in
x86 processors with the Pentium and present in all CPU designs ever since. It is a
64-bit register that counts CPU clock cycles; it can be read from both kernel space
and user space.

After including <asm/msr .h> (for “machine-specific registers”), you can use one
of these macros:

rdtsc (low,high) ;
rdtscl (low) ;

The former atomically reads the 64-bit value into two 32-bit variables; the latter
reads the low half of the register into a 32-bit variable and is sufficient in most
cases. For example, a 500-MHz system will overflow a 32-bit counter once every
8.5 seconds; you won't need to access the whole register if the time lapse you are
benchmarking reliably takes less time.

These lines, for example, measure the execution of the instruction itself:

unsigned long ini, end;
rdtscl(ini); rdtscl(end);
printk("time lapse: %li\n", end - ini);

Some of the other platforms offer similar functionalities, and kernel headers offer
an architecture-independent function that you can use instead of rdtsc. It is called
get_cycles, and was introduced during 2.1 development. Its prototype is

#include <linux/timex.h>
cycles_t get_cycles(void) ;

The function is defined for every platform, and it always returns 0 on the plat-
forms that have no cycle-counter register. The cycles_t type is an appropriate
unsigned type that can fit in a CPU register. The choice to fit the value in a single
register means, for example, that only the lower 32 bits of the Pentium cycle
counter are returned by get_cycles. The choice is a sensible one because it avoids
the problems with multiregister operations while not preventing most common
uses of the counter—namely, measuring short time lapses.

Despite the availability of an architecture-independent function, we’d like to take
the chance to show an example of inline assembly code. To this aim, we’ll imple-
ment a rdiscl function for MIPS processors that works in the same way as the x86
one.

We'll base the example on MIPS because most MIPS processors feature a 32-bit
counter as register 9 of their internal “coprocessor 0.” To access the register, only

183

22 June 2001 16:37

Chapter 6: Flow of Time

readable from kernel space, you can define the following macro that executes a
“move from coprocessor 0” assembly instruction:*

#define rdtscl (dest) \
asm__ __volatile__ ("mfcO %0,$9; nop" : "=r" (dest))

With this macro in place, the MIPS processor can execute the same code shown
earlier for the x86.

What'’s interesting with gcc inline assembly is that allocation of general-purpose
registers is left to the compiler. The macro just shown uses %0 as a placeholder for
“argument 0,” which is later specified as “any register (r) used as output (=).” The
macro also states that the output register must correspond to the C expression
dest. The syntax for inline assembly is very powerful but somewhat complex,
especially for architectures that have constraints on what each register can do
(namely, the x86 family). The complete syntax is described in the gcc documenta-
tion, usually available in the info documentation tree.

The short C-code fragment shown in this section has been run on a K7-class x86
processor and a MIPS VR4181 (using the macro just described). The former
reported a time lapse of 11 clock ticks, and the latter just 2 clock ticks. The small
figure was expected, since RISC processors usually execute one instruction per
clock cycle.

Knowing the Current Time

Kernel code can always retrieve the current time by looking at the value of
jiffies. Usually, the fact that the value represents only the time since the last
boot is not relevant to the driver, because its life is limited to the system uptime.
Drivers can use the current value of jiffies to calculate time intervals across
events (for example, to tell double clicks from single clicks in input device
drivers). In short, looking at jiffies is almost always sufficient when you need
to measure time intervals, and if you need very sharp measures for short time
lapses, processor-specific registers come to the rescue.

It's quite unlikely that a driver will ever need to know the wall-clock time, since
this knowledge is usually needed only by user programs such as cron and at. If
such a capability is needed, it will be a particular case of device usage, and the
driver can be correctly instructed by a user program, which can easily do the con-

* The trailing nop instruction is required to prevent the compiler from accessing the target
register in the instruction immediately following mifcO. This kind of interlock is typical of
RISC processors, and the compiler can still schedule useful instructions in the delay slots.
In this case we use nop because inline assembly is a black box for the compiler and no
optimization can be performed.

184

22 June 2001 16:37

Knowing the Current Time

version from wall-clock time to the system clock. Dealing directly with wall-clock
time in a driver is often a sign that policy is being implemented, and should thus
be looked at closely.

If your driver really needs the current time, the do_gettimeofday function comes to
the rescue. This function doesn’t tell the current day of the week or anything like
that; rather, it fills a struct timeval pointer—the same as used in the gettime-
ofday system call—with the usual seconds and microseconds values. The proto-
type for do_gettimeofday is:

#include <linux/time.h>
void do_gettimeofday (struct timeval *tv);

The source states that do_gettimeofday has “near microsecond resolution” for
many architectures. The precision does vary from one architecture to another,
however, and can be less in older kernels. The current time is also available
(though with less precision) from the xtime variable (a struct timeval);
however, direct use of this variable is discouraged because you can’t atomically
access both the timeval fields tv_sec and tv_usec unless you disable inter-
rupts. As of the 2.2 kernel, a quick and safe way of getting the time quickly, possi-
bly with less precision, is to call get_fast_time:

void get_fast_time(struct timeval *tv);

Code for reading the current time is available within the jit (“Just In Time”) mod-
ule in the source files provided on the O’Reilly FTP site. jit creates a file called
/proc/currentime, which returns three things in ASCII when read:

e The current time as returned by do_gettimeofday
e The current time as found in xtime
e The current jiffies value

We chose to use a dynamic /proc file because it requires less module code—it’s
not worth creating a whole device just to return three lines of text.

If you use cat to read the file multiple times in less than a timer tick, you’ll see the
difference between xtime and do_gettimeofday, reflecting the fact that xtime is
updated less frequently:

morgana% cd /proc; cat currentime currentime currentime
gettime: 846157215.937221

Xtime: 846157215.931188

jiffies: 1308094

gettime: 846157215.939950

Xtime: 846157215.931188

jiffies: 1308094

gettime: 846157215.942465

Xtime: 846157215.941188

jiffies: 1308095

185

22 June 2001 16:37

Chapter 6: Flow of Time

Delaying Execution

Device drivers often need to delay the execution of a particular piece of code for a
period of time—usually to allow the hardware to accomplish some task. In this
section we cover a number of different techniques for achieving delays. The cir-
cumstances of each situation determine which technique is best to use; we'll go
over them all and point out the advantages and disadvantages of each.

One important thing to consider is whether the length of the needed delay is
longer than one clock tick. Longer delays can make use of the system clock;
shorter delays typically must be implemented with software loops.

Long Delays

If you want to delay execution by a multiple of the clock tick or you don’t require
strict precision (for example, if you want to delay an integer number of seconds),
the easiest implementation (and the most braindead) is the following, also known
as busy waiting:

unsigned long j = jiffies + jit_delay * HZ;

while (jiffies < 3j)
/* nothing */;

This kind of implementation should definitely be avoided. We show it here
because on occasion you might want to run this code to understand better the
internals of other code.

So let’s look at how this code works. The loop is guaranteed to work because
jiffies is declared as volatile by the kernel headers and therefore is reread
any time some C code accesses it. Though “correct,” this busy loop completely
locks the processor for the duration of the delay; the scheduler never interrupts a
process that is running in kernel space. Still worse, if interrupts happen to be dis-
abled when you enter the loop, jiffies won’t be updated, and the while con-
dition remains true forever. You’'ll be forced to hit the big red button.

This implementation of delaying code is available, like the following ones, in the
Jit module. The /proc/jit* files created by the module delay a whole second every
time they are read. If you want to test the busy wait code, you can read /proc/jit-
busy, which busy-loops for one second whenever its read method is called; a
command such as dd if=/proc/jitbusy bs=1 delays one second each time it reads a
character.

As you may suspect, reading /proc/jitbusy is terrible for system performance,
because the computer can run other processes only once a second.

186

22 June 2001 16:37

Delaying Execution

A better solution that allows other processes to run during the time interval is the
following, although it can’t be used in hard real-time tasks or other time-critical sit-
uations.

while (jiffies < j)
schedule() ;

The variable j in this example and the following ones is the value of jiffies at
the expiration of the delay and is always calculated as just shown for busy waiting.

This loop (which can be tested by reading /proc/jitsched) still isn’t optimal. The
system can schedule other tasks; the current process does nothing but release the
CPU, but it remains in the run queue. If it is the only runnable process, it will
actually run (it calls the scheduler, which selects the same process, which calls the
scheduler, which . ..). In other words, the load of the machine (the average num-
ber of running processes) will be at least one, and the idle task (process number
0, also called swapper for historical reasons) will never run. Though this issue may
seem irrelevant, running the idle task when the computer is idle relieves the pro-
cessor’s workload, decreasing its temperature and increasing its lifetime, as well as
the duration of the batteries if the computer happens to be your laptop. Moreover,
since the process is actually executing during the delay, it will be accounted for all
the time it consumes. You can see this by running time cat /proc/jitsched.

If, instead, the system is very busy, the driver could end up waiting rather longer
than expected. Once a process releases the processor with schedule, there are no
guarantees that it will get it back anytime soon. If there is an upper bound on the
acceptable delay time, calling schedule in this manner is not a safe solution to the
driver’s needs.

Despite its drawbacks, the previous loop can provide a quick and dirty way to
monitor the workings of a driver. If a bug in your module locks the system solid,
adding a small delay after each debugging printk statement ensures that every
message you print before the processor hits your nasty bug reaches the system log
before the system locks. Without such delays, the messages are correctly printed to
the memory buffer, but the system locks before klogd can do its job.

The best way to implement a delay, however, is to ask the kernel to do it for you.
There are two ways of setting up short-term timeouts, depending on whether your
driver is waiting for other events or not.

If your driver uses a wait queue to wait for some other event, but you also want to
be sure it runs within a certain period of time, it can use the timeout versions of
the sleep functions, as shown in “Going to Sleep and Awakening” in Chapter 5:

sleep_on_timeout (wait_queue_head_t *g, unsigned long timeout) ;
interruptible_sleep_on_timeout (wait_queue_head_t *q,
unsigned long timeout);

Both versions will sleep on the given wait queue, but will return within the time-
out period (in jiffies) in any case. They thus implement a bounded sleep that will

187

22 June 2001 16:37

Chapter 6: Flow of Time

not go on forever. Note that the timeout value represents the number of jiffies to
wait, not an absolute time value. Delaying in this manner can be seen in the
implementation of /proc/jitqueue:

wait_queue_head_t wait;

init_waitqueue_head (&wait);
interruptible_sleep_on_timeout (&wait, jit_delay*HZ) ;

In a normal driver, execution could be resumed in either of two ways: somebody
calls wake_up on the wait queue, or the timeout expires. In this particular imple-
mentation, nobody will ever call wake_up on the wait queue (after all, no other
code even knows about it), so the process will always wake up when the timeout
expires. That is a perfectly valid implementation, but, if there are no other events
of interest to your driver, delays can be achieved in a more straightforward manner
with schedule_timeout:

set_current_state (TASK_INTERRUPTIBLE) ;
schedule_timeout (jit_delay*HZ);

The previous line (for /proc/jitself) causes the process to sleep until the given time
has passed. schedule_timeout, too, expects a time offset, not an absolute number
of jiffies. Once again, it is worth noting that an extra time interval could pass
between the expiration of the timeout and when your process is actually sched-
uled to execute.

Short Delays

Sometimes a real driver needs to calculate very short delays in order to synchro-
nize with the hardware. In this case, using the jiffies value is definitely not the
solution.

The kernel functions udelay and mdelay serve this purpose.” Their prototypes are

#include <linux/delay.h>
void udelay (unsigned long usecs) ;
void mdelay (unsigned long msecs) ;

The functions are compiled inline on most supported architectures. The former
uses a software loop to delay execution for the required number of microseconds,
and the latter is a loop around udelay, provided for the convenience of the pro-
grammer. The udelay function is where the BogoMips value is used: its loop is
based on the integer value loops_per_second, which in turn is the result of the
BogoMips calculation performed at boot time.

The udelay call should be called only for short time lapses because the precision
of loops_per_second is only eight bits, and noticeable errors accumulate when

* The u in udelay represents the Greek letter mu and stands for micro.

188

22 June 2001 16:37

Task Queues

calculating long delays. Even though the maximum allowable delay is nearly one
second (since calculations overflow for longer delays), the suggested maximum
value for wudelay is 1000 microseconds (one millisecond). The function mdelay
helps in cases where the delay must be longer than one millisecond.

It’s also important to remember that udelay is a busy-waiting function (and thus
mdelay is too); other tasks can’t be run during the time lapse. You must therefore
be very careful, especially with mdelay, and avoid using it unless there’s no other
way to meet your goal.

Currently, support for delays longer than a few microseconds and shorter than a
timer tick is very inefficient. This is not usually an issue, because delays need to
be just long enough to be noticed by humans or by the hardware. One hundredth
of a second is a suitable precision for human-r