Emhedded Systems
 Building Blocks

Second kdition
e 2 -
* Complete and Ready-to-Use -
. Modules in (>

P e .
|!I'.H ‘-'!...[) « % ’\ :_‘..-" 4 ‘.-1-
m (9 ¥ | r"
-, Ly K
!

o Py o QO
LA S
I JEAN J. L‘fﬂ%ﬂﬁ%

Embedded Systems
Building Blocks,
Second Edition

Complete and Ready-to-Use
Modules in C

Jean J. Labrosse

R&D Books
Lawrence, KS 66046

R&D Books

1601 West 23rd Street, Suite 200
Lawrence, Kansas 66046

USA

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where R&D Books is aware of a trademark claim, the product name appears in initial capital
letters, in all capital letters, or in accordance with the vendor's capitalization preference. Readers should
contact the appropriate companies for more complete information on trademarks and trademark regis-
trations. All trademarks and registered trademarks in this book are the property of their respective hold-
ers.

Copyright © 2000 by Miller Freeman, Inc., except where noted otherwise. Published by R&D Books,
an imprint of Miller Freeman, Inc. All rights reserved. Printed in the United States of America. No part
of this publication may be reproduced or distributed in any form or by any means, or stored in a data-
base or retrieval system, without the prior written permission of the publisher; with the exception that
the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but they are not guaranteed for any particular purpose. The publisher does not offer any warran-
ties and does not guarantee the accuracy, adequacy, or completeness of any information herein and is
not responsible for any errors or omissions. The publisher assumes no liablility for damages resulting
from the use of the information in this book or for any infringement of the intellectual property rights of
third parties which would result from the use of this information.

Cover art created by: Robert Ward.

Distributed in the U.S. and Canada by:
Publishers Group West

1700 Fourth Street

Berkeley, CA 94710

1-800-788-3123

ISBN 0-87930-604-1

m Miller Freeman

A United News & Media publication

3

To my loving and caring wife and best friend, Manon,
and to our two lovely children,
James and Sabrina.

an

-

Table of Contents

Preface.........

Introduction. .

Chapter 1

.. xiii
‘What’s new in the Second Edition?ccccceeveuvveninneen Xiii
GOAIS ...ttt e e s e e erae e s e e eas Xiv
Intended AUdIENCEcoeevevieeeceeeeeeeeeeeeee e Xiv
POrtability.....cccoocevirererieieeeeie et e Xiv
What Will You Need to Use this Book?..........cceeveeennee Xiv
Acknowledgments.............coceeevveeeveerrneeesreneeeeeerceeesarasneens XV

8 8 6 0 6 0 5 0 00 S B0 E O SO E 00 L0 LN 0 LG eSS S0 es e XVii

Figure, Listing, and Table Conventions..........cccceeueueun. xviii
Source Code CONVENtions...........ccveetereereererccereersrcennees Xviii
Chapter CONLENES..........coeeverevierereeieeeeeneeeeesseeeeeesseessnes Xix
WED SIE....eioeeeriereireee et XXi
Bibliographycccccveicieiieeieiie et XXii
Sample Code 1
1.00 Installing Embedded Systems Building Blocks.......... 1
1.01 How Each Chapter Is Organized............ccooeeveecveennen. 2
1.02 INCLUDES . Huuoovrevrrereeeeieeeresereesssssessssrsessssssssssesssssans 3
1.03 Compiler Independent Data Typesccceeevereereuennne 3
1.04 CFG.Cand CEFG.H..uooovieeieeeeieeceeenieeceeneeseeseneesnnseens 4
1.05 Global Variablesccovceeveeeeenieenreeneeenenteeenenaees 4
1.06 OS_ENTER_CRITICAL() and

OS_EXTT_CRTITTICATI{) ceeccenmrennmmeneeenneeaeeeaeeseasaesans 6
1.07 ESBB Sample Codeccccvreieeiereeieeeeeecereeeecneenane 6

1.08 Bibliographycccceeveervuereinienceeneerieseneeeeenneeneeenes 24

Vi — Embedded Systems Building Blocks, Second Edition

Chapter 2

Real-Time Systems Concepts.........cccue... 61
2.00 Foreground/Background Systems.........cc.cceecerieneenne 62
2.01 Critical Section of Code.......ccoccerrirernererrreeiereennees 63
2.02 RESOUICE......ceoiienrieiieeieeieee e et e e e sareeeeeane e s 63
2.03 Shared ResOUICE........covueeireeeerereereeieeseereer s 63
2.04 MUultitaskingcccoecvveeviiieceenieeecceereeeceee e eeer e 63
2.05 TaSK et 63
2.06 Context Switch (or Task SWitch).....cccoeeovvvervneeeennee. 65
2.07 Kemel.....oooiiieiiieeieecee et 65
2.08 Scheduler..........oovieeeiiiiee e e 66
2.09 Non-Preemptive Kernelcccocceevuevvnnienennennnenne 66
2.10 Preemptive Kernelccooooviiieiiiicininnncceee e 67
2.11 REENITANCYccvvreniinniinrenieriiieieeereeieeieeseneeeeeeeeneneene 68
2.12 Round-Robin Scheduling............ccocveeeeeceineveriereennen. 70
2.13 Task PHOMILY.....coorireeeiireniieciisiece et 70
2.14 StatiC Priorities.ccvvuvereeeeieeienreccnieseececssiee e 70
2.15 Dynamic PriOritiesccoueeerverceeninccrnieneenrecrencenens 71
2.16 Priority InVersions.........c.cceecvveviericerereeneeeesesnneeenens 71
2.17 Assigning Task Priorities......c.cccecceevveevreeerveeceeneaanne 73
2.18 Mutual EXclusion......cccecovveeeieeiviieiiecceeeeeceeee 75
2.19 Deadlock (or Deadly Embrace)ccoccvvecceveceeennnen. 82
2.20 Synchronizationc.cceecceeevriieeercienireeeeeeneren e 82
221 Event Flags......c.coovioeeriiiiiiiciceneceeereceeeeee e 84
2.22 Intertask Communication..........ccveerreeeureereenvennnces 85
2.23 Message MailboXes......ccocvrecievviieiccieeieccr e 86
2.24 Message QUEUES.........ccccvevrmeeeeeeerrieereneirareeeeaneeeneens 87
2.25 INLEITUPLS ...eeeeeveierieetreeeree e s e treeaae s rene e 88
2.26 Interrupt Latency......ccccovveeieeiienenncncniniceciceneenane 88
2.27 Interrupt RESPONSEcovuvvriuriicierieeeen e 89
2.28 Interrupt RECOVETY ...viiiiiiiiieeiiiiiieciiceeeecneee 90
2.29 Interrupt Latency, Response, and Recovery 90
2.30 ISR Processing Time.......ccceceervrrreroverriersensceneenuenens 91
2.31 Nonmaskable Interrupts (NMIS)ccocevvvecrrcrennen. 91
2.32 CLOCK TiCK. .. ciririiieeeiieierientteeec et 94
2.33 Memory Requirements.........ccccccevevirveercrivnnienencrnnne 96
2.34 Advantages and Disadvantages of

Real-Time Kernels..........cccoevvrrreeonnniiieienineenene 97
2.35 Real-Time Systems Summary........c..cccceeeevrieeneernnens 98

2.36 BibliOZraphycccccceerierniirviiniinnerenreeneeeieeneesenennaene 99

T

Table of Contents — Vii

Chapter 3 Keyboards 101
3.00 Keyboard BasiCscoovereeeeeenieerenrereniesneneeeenreennen 101
3.01 Matrix Keyboard Scanning Algorithm 103
3.02 Matrix Keyboard Moduleccccorverrienierccennnenen. 105
3.03 Internals......cceeeeeeeruieieeiee et 106
3.04 Interface FUnctions.........cc.cceeevvveecennensenreencenneeeen. 109

LGSV T R UT=1 o Y (5 TSR 110
ReYGELKEY () ciiveeeieeieieeieveee e eestereeeeseveeeee st oo 111
KeyGetKeyDOWITImME (). iccrreeeeeriereeeseevvveeeenn 112
KEYHIE () voerirrreieerreeenineniesererere e neeseeseeseesanansenes 113
J2CE3720 0 % IS ol () TSP 114
3.05 Configurationccceeeveencrvevreniecnnenreseenneen 114
3.06 How to Use the Matrix Keyboard Module 115
3.07 Bibliographyccc.cecccevereiiieeninereiciennecsrecnenanes 119

Chapter 4 Multiplexed LED Displays 133
4.00 LED DiSPlays.......cccevveerrereeseemrenseneneseresserseasessens 133
4.01 Multiplexed LED Display Module 136 -
4.02 INternals......ccceuriaiieerieriieeereeeee et 137
4.03 Interface Functions........c.ccoccvvveeieiiieeneeneeeeene e, 140

DISPCIESCE () crreriieireeeieeeieeeieissiseinrsrraerereeesienseens 141

DISPINIE () cerrererierieeirrieeseesraeseestaeseeeaesseeenssneenes 142

DISPSEALCLIE () coiiiiieeeeeeeeeee e e 143

DiSPSLALSEE () citiieeieeeiieeee et 144

DR =Y 0wl U EE R 145

4.04 Configurationcccueveueeeirereervrerererseseeessseervaasnns 146
4.05 How to Use the Multiplexed LED Display

Moduleooeiieiieceee e 146

4.06 Bibliographyccccceviirrneninenicnnceneecnecnencenas 148

Chapter 5 Character LCD Modules 161
5.00 Liquid Crystal DiSplaysccceeeervererenvenreesnieneccenn. 161
5.01 Character LCD Modules.......cccveeeceirvernneniniercneene 163
5.02 Character LCD Module, Internals........coccovvvvveuunnnen. 165
5.03 Interface FUNCHONS.......cccueerveirveneriricnenreeeceniereneenne 167

DISPCRAT () ereeeeeereiereeeeeeeereeeeeee e e s e eraereeesessnnnes 168
DISPCLIILATIO () cirtiririiiieeeireirneerisvrsrerseneeeeerseeseees 169
[DhR=]0 G N ars eaall (5 BRSNS 170
DiSPDELChAT () cerireeeriirereereeeeieeieeeeeeevereervvrereee e 171
DISPHOTIBAT () coreriiiieeeetrieeeeeeereeeeceeeneeeeseensveneees 173

DispHOrBarTnit () cceeiieeceiireeeeereeeeeeeeeeens 175

Viii — Embedded Systems Building Blocks, Second Edition

Chapter 6

Chapter 7

DISPINIE () crverrrnrieeirerrrrereeieersessssressssssssssnreerenneees
DR =] o1 ol all () I UUU SO
5.04 LCD Module Display, Configuration......................
5.05 LCD Module Manufacturers........c..coccoeveeecerrenvenne

Time-of-Day Clock
6.00 Clocks/Calendarsccoovueeeeirieecmmeeieeciieeeeresennens
6.01 Clock/Calendar Module.................coeueeeeeeeinnnreiinnnnes
6.02 INternals...........oeeeeiiieeeieieeeeeeeeceeeeee e
6.03 Interface FuncCtions..........ccocuvveeeeecccmricceeecieeee e
ClKFOYMAEDAEE () civvrreeieeieeeremreieeeeivneceeeernennnnes
ClKFOYIALTIME () wereeeeerieeeirieieeeeerreereiesesnsens
ClKFOTIMALTS () cevueerrrerereeeireeeereeeeenmeneersneeeesenseess
CLlRGEETS () teveetiiieiiieerereieetreesseeenreneearsssnsernnees
TG I o TS ol O R
CLKMAKETS () cereereceieerernneererereranneererieenseesesssnsseeseees
QU <S=3 517N ot =X () TN
CLKSEtDALETIME () weerereemeeereerereeeeeeereeeeeeeeeeereneens
CLKSEETIINE () vovererrrernmrrrrereeeereessesssssssnnsrssseniessenes
6.04 Clock/Calendar Module, Configuration..................
6.05 Bibliographyccccocevioiinienncnniinciiiniceniccnce

Timer Manager
7.00 Timer Manager Module............cccoovevveennininnrrnnene.
7.01 Timer Manager Moduler, Internals.........................
7.02 Timer Manager Module, Interface Functions..........
TOECEGENICT () vttt cceeerree e
TILCHK () oottt

i1V 9S] o) o X (5 TS SRR U
7.03 Timer Manager Module, Configuration..................
7.04 Bibliographyccccceevievervirnrienenrcceeienee e

Table of Contents — Ix

Chapter 8 Discrete I/0s 255
8.00 Discrete INputscocccereeceerierrerreniereneeeseneeenes 256
8.01 Discrete Qutputs........ccc.cceeireenincniennvcenenceeenens 259
8.02 Discrete I/O Modulecccoeeeevreceecreeeeeerne 263
8.03 Discrete I/O Module, Internalsccccevveeennnenee.. 263
8.04 Discrete I/O Module, Interface Functions 267
DICFgEAgeDetectFNCt () eerereeeeeeeereeeene 269
DICEGMOAER () wurerireeeeeeeceiireeerceeecereeeeeeeecneeeeeeesennnnas 271
DICLY () tireiieeeceiirirreerreeeeeireeeeessnnrenesessssavanesesannnnns 273
DIGEE () ceeereerieeeereeeeee et e eeesreeseeeaesseeeseesaessnasnnens 274
DIOTINIE () eeeereieirieeeeeeeeeeee e e eree e eaeaeeaeas 275
DISEEBYASS () coveeeerirvereerrereeineesenreseessseresssneesans 276
DISELBYPASSEIN () weeeeecereiieiiemreeeriiceiveeeeeneeeneennes 277
DOCEGBLINIK () coveeeeerieeriesiieeeeeeee s eeeeeeeecneeneeeeans 278
DOCEGMOAE {) ccrrrrreracnieeeesasccainnersrassessrsranreenssssnnns 280
DOGEL () weeevrreeeareeeareeriuerasessrssseassneessseeseeesesasessnenns 281
DOSEL () ceveeereerrereeveereecteeieeseeesseesseeereeeeeesaeesneseens 282
DOSEEBYPASS () coveeeverrcrreierscsencsiniessnenseseenennsans 283 R
DOSEtBYPASSEIN () .ececcccinrirreeererereierereeeeeeeesseseseenes 284 -
DOSetSYNCCEIMAX () wiviiriieereeeeeeeereeeeeeeeeesseernnnnnenes 285

8.05 Configuration.........c.cceveeuerermeenrenennienenencrneeeneees 286

8.06 How to Use the Discrete I/O Module 287

Chapter 9 Fixed-Point Math.... 315
9.00 Fixed-Point NUmMDbEIS.........ccccceeevieeeeeivieeeireeeeeeeeanns 315
9.01 Fixed-Point Addition and Subtraction 319
9.02 Fixed-Point Multiplication..........cccccecueeeeineenereencns 320
9.03 Fixed-Point DiviSion.......c..ccceevereeceeecvrecieereaenennene 320
9.04 Fixed-Point Comparisonc.cceeeueverirerenecenenne 321
9.05 Using Fixed-Point Arithmetic, Example #1............ 321
9.06 Using Fixed-Point Arithmetic, Example #2............ 322 B
9.07 Using Fixed-Point Arithmetic, Example #3............ 325
9.08 CONCIUSIONcoevvvririeciriieiiereeeetirerertreeeerreesieeeasens 326
9.09 Bibliographycoceeeervveereverreeneerncereereeeenseneessnenes 326

Chapter 10 Analog I/Os 327
10.00 Analog INPULS.......ccoeeeemeereiereenineenierererresnenneeaeens 328
10.01 Reading an ADCcccooiemevcenirnincecieeeieaes 330
10.02 Temperature Measurement Example.................... 336
10.03 Analog Outputs...........coeeveeimmceeecrrceeccnsereenne 340

10.04 Temperature Display Exampleccoccoeruenneee. 341

X — Embedded Systems Building Blocks, Second Edition

Chapter 11

10.05 Analog /O Module.............ccovvrmverieiccrrerrennnee. 344
10.06 Internals..........coeeeeemmeierieeeeeeeeee e 344
10.07 Interface Functions.........ccccceeeeviveeenveeciiiireeenenen. 348
ATCEGCATL () cevrreeeriieeeeeeee et reeee e rveeeaeae e 349
DGk e 62172 (5 H 350
ATCEGSCALING () cevvrnniirrrrieieeeeeesiveeeeeecrressesreeeeeeens 352

AT GO () ettt irieeeerteereeeeeeereeesvreserraeesnessrenaes 354
ATOTNIE () eeeeeiicetiirereeeeeeeseeeeeeesresssssssssnrerreeneeeses 355
ATSEEBYDASS () eerrreercrireeeireerrreeeesireessteeessrsesesnns 356
ATSEtBYPASSEN () wreeriieiiieiieeeeeeeeeeveiennsnievsreeeennns 357

P:X0 05 e (67= 1 I O TR PO 358
DOCEGTONV {) et eeeeevte et s s e nnaee s 359
AOCEGSCALING () ctrrtreiiiiiiiieiieeeeeeeee e eeeaverereeeees 360
AOSEE () tettieieirirertiee e erreeteeereeeerieeerrta e ernnaaraanes 362
AOSELBYPASS {) eeeeeeceieeeeeeeieeeeeeereeeesseeeresesenneeeens 363
AOSEtBYPASSEIN{) tivrrrcrireieeresrreteeeeecreeesssnernens 364
10.08 Analog I/O Module, Configuration...................... 365
10.09 How to Use the Analog I/O Module..................... 366
10.10 Bibliographyccccccceevvevcvicniininrcceeiene e 374
Asynchronous Serial Communications......... 399
11.00 Asynchronous Communications............c..ccceeueenns 400
11.01 RS-232C..... et cetr e neee 403
11.02 RS-485 ottt et e veenr e eveeen 407
11.03 Sending and Receiving Data.........cccccevevevecnnennnne 411
11.04 Serial Ports on a PCooovvvveiiiiiiieeieieeceeeens 420
11.05 Low-Level PC Serial I/O Module (COMM_PC)..... 423
COMMCEGPOTE () teieeeeenrnenreerrrnereeeeeeeeesessannnnnnnnees 425
COMMBRXELUSIL () cerieeieeieivrrreereiiinninnrrreeeeeeeeeeeensnnnns 427
ComMBRXINEDIS () erveeeiieiieeecrirereeeceee e 428
COMMRXINEEN () teeeiieieieeee et eeeereeee e 429
ComMTRINEDIS () eeieeeeeeeieeeieecceiirerreeeeeeere e e e 430

* COMMTRINIEET {) tertee et eeeeeteeeeeeeaeesannsaenaaenes 431
ComMMSEETINEVECE () ceirrririeeereeeeeerrrereee e s eeeeecssnans 432
CommRCIINEVECE () coviiiiiiecceeerrreere e, 433
11.06 Buffered Serial I/O Module (COMMBGND) 434
(000)111311€/SY (6 o F=h it () 1SS R 437
COMMITNIIE () vrvrieeeeeerecieeiiiieenennnrrerarrrrereseeeaeeeeens 438
COMMISEMDEY () ceeeieirieeeeeieeesiereeee e eeerieeecessesanaeeeeas 439
ComMISFULL () tviereeeeiiiiireeererreererrrreeee e e e s seee e 440

@l0)111t11 =B Rul @] V= N all () NP 441

Table of Contents — Xi

11.07 Buffered Serial I/O Module (COMMRTOS)............ 442
ComMGEECNAT () covvvvrvreereeierrreee e eeeieecsrenevrverreeeeenas 445
COMMITIIE {1} vevrrnemrerererrereeieieeeeeereessesnrssrerceesseesseenas 447
(000)1111{1S] 1110 Yol VA (5 SOOI 448
COMMISFULTL () e eeeeeeenn 449
COMIMPUECRAT ()} verrreeeiireriiiieeeerereenisnerreeseeeneeenes 450

11.08 Configurationcccovmmeericrcnesiesieenceneeseesneens 452

11.09 How to use the COMM_PC and the COMMBGND

MOAUIE ... 452

11.10 How to use the COMM_PC and the COMMRTOS

Moduleooooeiriceieeceecrere e 453
11.11 Bibliographyc..cccecoeeimirrcninenenencenienieneeenn 455
Chapter 12 PC Services cevvossansesseses 495

12.00 Character Based Display........cccccevvvrececnvrrvenecne. 495

12.01 Saving and Restoring DOS’s Context.................. 498

12.02 Elapsed Time Measurement..........cc.cceovevverrunrunnene 500

12.03 MiSCellaneousoeeeeveiieviieeeiiieiecceeieeeeee s 500

12.04 Interface Functions............ccccceeeeeveeieeccirieeeeeeeenns 501
PC_DiSPCHAT () crereerirriecsieeeesseeevveessseeeeessvensseens 502
PC_DisPCLrCOL () ciivrierrereeeeciicieeieeieeeeeeeeeeenneensens 503
PC_DIiSPCIIROW ()} teiiireereeriieecrireneeseeeeeeeereeesnennnnes 504
PC_DiSPCIISCY ()} tirrireeemrieriiiinnenreerrrrereeeeneeeeeeeens 505
PC_DISPSET () terviioreeeeeenrrrrnnreereeriersiieeesssnsssssssnns 506
PC_DOSRETUTTL () eevierereeeneiiiiieeeeeceeeveereeeeseveeeeeas 508
PC_DOSSAVERETULTL () voverrerereireerreiriieeerrrrrnranneceens 509
PC_ElapsedInit () wreceeeeneerenreeesenens 510
PC_E1apSedSEart () viveeucecrrrreerrerrrrrreeeeeiesesssssens 511
PC_E1apsedStop () ccveeeeeericrinrreeeereeeeeeeeeeeeeeeas 513
PC_GetDAateTime () viccccecrrvvrrrreerrrrerreeereeesseesseennns 514
PC_GEERKEY () rreeeiiiecereeeeeiiisereeessessneeeeeessssneseeees 515
PC_SetTLiCKRALE () crrrrrerieieeiceeeeeeerrnnreeeeeisrneeens 516
PC_VECEGEL () veerririvrerriccicirirncivcsienescccnvnennes 517
PC_VECESEE () trrireeiiiiiieeeceeeiccecrinirrrneerreteeeeeesaeeans 518

12.05 Bibliographyccceceeeoirvieroreriennreceeneeceeneenneens 519

Appendix A pC/OS-I1, The Real-Time Kernelccceueee. 535
OSTIILE () eervrreeirrrmrerereeeriireeerrresesineeeesssresssaeesensssenen 537
OSSEMCTEALE () cevrnnnnnerrireieeereirreeeeeeseereesernnnnnnsannnes 538
OSSEMPEINA () 1vuvverrrrrrreeeeeeierereeeeeeesiersessssssessssssssreens 539

OSSEMPOSE () covrrrreeemrvrereeteeeereeeeeieseeesesessssmmesasssssssne 541

Xii — Embedded Systems Building Blocks, Second Edition

Appendix B

Appendix C

Appendix D

Appendix E

OSSEATTE () corereeererrrenserrteneseessereeeertreseessesansaneneens 543
OSSEALTNIL () cevererreererrarrerreseneresresaeseessensenseneens 344
OSTASKCTeate () ccvvicreirnreeereiereecetreees e s seeeeenn 545
OSTaskCreateBxt () e 548
OSTIMEDLY () teeeereeeieeeeeiereeereeeereeeeeeessnneeesseesnnnnns 552
OSTIMEDLIYHMSM () eeveeeererrrreeeererreceeerssraseeccsnnnnnneens 553
OISAV =Y =R io) n I () N U 555
OS_ENTER_CRITICAL() and
OS_EXIT_CRITTICALI () ceeeeeeeeeererrererereesenrnnceseeas 556
Programming Conventions 571
B.00 Directory Structurec.cccceeeeeeererneenrecreereneneens 571
B.01 C Programming Style.......cccccoceevinvirvvennccnnuericennen. 573
B.02 Bibliography.....c..ccccceecceinmmseeenrenrireeeeeeeeeeennen 585
Acronym, Abbreviation, and Mnemonic
Dictionary 587
HPLISTC and TO 595
D.00 HPLISTC .iciiicceecreceeeeereeieseeressesssssassessessseeessenses 595
D01 TO oottt st e et 596
Companion CD-ROM 599
E.00 Hardware/Software Requirementscc.ccce... 599
E.01 Installationccccceeeoeeeineiieeeeecee e 599
E.02 Directory Structureooceveeeveeceenivvecserenaeeeeas 600
E.03 Finding EITors....c..oooeeveeiieeecerreceeee e 602
E.04 LiCenSingcccccceveeieerireeereseeeeee vt eeinaeseeeenas 602

Preface

This is the second edition of Embedded Systems Building Blocks, Complete and Ready-to-Use Modules
in C. This is a book of software modules that you can use to design embedded systems. The modules
are some of the most common building blocks of embedded systems: keyboard scanners, display inter-
faces, timers, and 1/Os. Most of the code is written in highly portable C.

Managers will like this book because it can reduce the amount of time, and thus money, required for
some of the more repetitive aspects of embedded systems design. Each chapter is independent of the
others, allowing you to use only the module(s) you need. Each chapter describes what the module does,
how it works and, what services it provides. This information will help you estimate the resources you’ll
need to implement your product.

What’s new in the Second Edition?

I made a number of changes from the first edition. The most notable one is, of course, the hard cover
which makes the book more durable. The second major change is that all of the code and examples
have been revised to use uC/OS-II. uC/OS-II is a Real-Time Operating System that I wrote and is fully
described in my other book, MicroC/OS-1I, The Real-Time Kernel ISBN 0-87930-543-6), R&D Books.
A scaled down version of uC/OS-II is provided in object form to allow you to run and change the sam-
ple code.

I decided to use the Borland C/C++ compiler V4.51 instead of V3.1 because some of you had indi-
cated that the version 3 tools are no longer available. I also included a makefile to build the sample
code instead of relying on the IDE (Integrated Development Environment). The makefile can easily
be changed so the code can be compiled for just about any other target processor.

Chapter 1, “Sample Code”, has been completely revised. Chapter 2, “Real-Time Systems Con-
cepts”, now contains over 10 new pages. For all the building blocks, I now have a section that presents
the APIs (Application Programming Interfaces) in a standard format. This allows you to better use the
interface functions of each building block. In the first edition, Appendix F contained all the data sheets
of electronic components I used. I decided to move the data sheets to the companion CD-ROM in PDF
form to reduce the book size by about 100 pages and save a few trees in the process.

In the first edition, I included the execution times of each of the building block interface functions
provided in the book. This process was quite tedious and so I decided to drop this in the second edition.
Also, the 80386 computer I had used to come up with the execution times was retired a few years ago.

Xiil

Xiv — Embedded Systems Building Blocks, Second Edition

Goals

This book is designed to aid embedded systems programmers by providing ready-to-use modules. If the
code in this book doesn’t match your exact requirements, you can use the code as a starting point. In
other words, it is a lot easier to modify code than to start from scratch. The main objective of this book
is to save you time.

Intended Audience

This book is for embedded system programmers, consultants, and students interested in embedded sys-
tems. I assume you know C and have a minimal knowledge of assembly language. You should also
understand microprocessors and have a basic electronics background. The hardware presented in this
book is, however, fairly easy to understand. Because the code is written in C, you can apply the concepts
presented in this book to a much broader range of microprocessors (assembly language would not be
portable).

If you are a student interested in embedded systems, this book will take some of the mysteries out of
the unique requirements of embedded system software design by providing you with concrete program-
ming examples. This book will also allow students to build much more complex embedded systems than
would otherwise be possible in the classroom.

Portability

The code presented in this book is written in ANSI C and is highly portable. C has been the language of
choice for embedded system designs because C has the following features:

¢ Ccode is easier to write and understand than code in assembly language.
* The code generated by some C compilers approaches assembly language in efficiency.

* Once written, C code often can be used on different processors. This is not the case for assembly
language code.

In many cases, less than 10% of the code uses more than 90% of the CPU time. You can always opti-
mize this time-critical code by using assembly language. The non-time critical code (90% of the code),
can still be written in C. If you are still using assembly language to design embedded systems, you
should consider obtaining a C compiler and writing portions of your code in C.

Hardware interface functions have been carefully isolated to minimize the amount of work required
to adapt the module to your own hardware environment. I have kept the assembly language to a mini-
mum, and in the places where I have used assembly language, I have kept the code as clear and simple
as possible.

What Will You Need to Use this Book?

The code supplied with this book assumes you will be using a PC (80486 minimum) computer running
under either Windows 95/98/NT or DOS v4.x and higher. The code was compiled with Borland Interna-
tional’s (now called Inprise) C++ v4.51 (see www.borland. com). You should have about 5 Mbytes of
free disk space on your hard drive.

awrrs

Acknowledgments — Xv

Acknowledgments

First and foremost, I would like to thank my wife for her encouragement, understanding, and patience.
This book would never have been possible without her. I would also like to thank my children James
(age 9) and Sabrina (age 6) for putting up with having just a mom for a few months while I was ‘hiding’
in my office working on this new edition. I hope one day they will understand. Special thanks to Dr.
Bernard Williams and all the fine people at R&D Books for their help in making this book a reality.
Finally, I would like to thank you for buying this book and I hope it will live up to your expectations.

xvi — Embedded Systems Building Blocks, Second Edition

385

Introduction

I’ve been designing embedded systems for more than 17 years. During that time, I’ve noticed that some
of the pieces always seem to keep coming back. I have concluded that 80+ percent of the code for an
embedded product seems to be similar to the previous product. I always seem to need to read analog
and discrete inputs, output control signals on analog and discrete outputs, provide some form of user
interface and thus, I need to read/scan keys on a keyboard and put information on a display device of
some sort (7-segment numeric and/or to an LCD module). Most embedded controllers seem to have an
asynchronous serial port (i.e., UART, Uriversal Asynchronous Receiver Transmitter) and interfacing to
a laptop seems like a natural thing to do. I also find myself needing to trigger events when a certain
amount of time expires, and to keep track of the date and time. Although it was fun and challenging to
develop some of these modules at one point in my career, having to do the same thing over again for
each new project has become mundane and even unpleasant. I find that the real challenge is to develop
application code that makes my products unique. Over the years, I’ve written fairly generic modules to
accomplish some of the functions mentioned above. As I used these modules, I optimized and enhanced
them, giving me a good collection of Embedded Systems Building Blocks.

As Steve McConnell mentions in his book, Code Complete, “The single biggest way to improve
both the quality of your code and your productivity is to reuse good code.” In his fine book, T#e Art of
Programming Embedded Systems, Jack Ganssle states that, “It’s ludicrous that we software people rein-
vent the wheel with every project. ... Wise programmers make an ongoing effort to build an arsenal of
tools for current and future projects ... Collect algorithms!”

If you already write software for embedded systems, this book will provide you with portable,
ready-to-use code so that you can save time with your next embedded system design. Time to market is
becoming just as important (and in some instances, more important) than the cost of the product itself.
Reduced time-to-market provides a competitive advantage.

If I can save you days or even weeks of programming time on one of your products, I will have met
my objectives. You might decide to use the code provided in this book for rapid prototyping or as a per-
manent addition to your final product. All of the modules presented in this book most likely have noth-

xvii

XViii — Embedded Systems Building Blocks, Second Edition

ing to do with what makes your product unique. In other words, your application code is what makes
your product different. For example, you may need a keyboard scanning routine and an LCD display
module in a FAX machine. What you provide in this product is your FAX machine expertise and you
shouldn’t have to spend time with keyboard scanning and LCD display details.

It is very difficult to write 100% reusable code. This is especially true for embedded systems
because most embedded systems have very unique requirements and most likely limited memory to
hold both the executable portion of your code and its data. The code presented in this book is not
intended for embedded systems that will be sold in very large volume. This is because large volume
applications are very cost sensitive which means you must typically account for just about every single
byte of memory (ROM and RAM); my focus was not to save every single byte.

Figure, Listing, and Table Conventions

You will notice that when I reference a specific element in a figure, I use the letter ‘F’ followed by the
figure number. A number in parentheses following the figure number represents a specific element in
the figure that I am trying to bring your attention to. ‘F1.2(3)’ thus means look at the third item in Fig-
ure 1.2.

Listings and tables work exactly the same way except that a listing starts with the letter ‘L’ and a
table starts with the letter “T".

Source Code Conventions

All of the building block objects (functions, variables, #define constants and macros) start with a pre-
fix indicating that they are related to the specific building block. For example, all clock module func-
tions and variables start with C1k. Similarly, all timer manager functions and variables start with Tmr.

Functions are found in alphabetical order in all the source code files. This allows you to quickly
locate any function.

You will find the coding style I use is very consistent. I have been adopting the K&R style for many
years. However, I did add some of my own enhancements to make the code (I believe) easier to read
and maintain. Indention is always 4 spaces, tabs are never used, always at least one space around an
operator, comments are always to the right of code, comment blocks are used to describe functions, etc.

I also use and combine acronyms, abbreviations, and mnemonics (AAMs) to make function, vari-
able, and #define names in a hierarchical way (see Appendix C).

Introduction — Xix

Figure 1.1 A block diagram representing the key areas covered in
this book.

Asynchronous
Serial Communications

Rx —»| SIO |—» Tx

-

Keyboard

Display
o0
pisP—HHHHH

.
5 :
v

+» KEY |«

Discrete Inputs Discrete Outputs

gin]:tsh —» Your hamps
witches —p- ' . . otors
statuses —»| DI [*—*} Application DO [5 Fans

Etc. — : —» Etc.
Analog Inputs Analog Outputs

—» Actuators
<—» AO — Valves

Temperatures —p
Pressures —* Al |«

v

Levels — ; —» Meters
Etc. — e —» Etc.
k] ¢ L 4
/ AN
Y #*
CLK 0.S. TMR
VCIock Operating Timer
Calendar 'zlstem Manager
(Kernel)

Figure 1.1 is a block diagram representing the key areas covered by this book. Even though the
building blocks shown in the figure interact mostly with hardware, I have carefully isolated hard-
ware-dependent code to a few easy-to-change functions or constants. This makes the code easy to port
to your own environment. Also, I avoided using assembly language except when absolutely necessary.

Chapter Contents

Each chapter describes one or more of the building blocks shown in the figure. The building blocks are
mostly independent of one another, so you can jump to any chapter you need. However, you should read

Y

XX — Embedded Systems Building Blocks, Second Edition

at least Chapter 1 to familiarize yourself with some of my conventions. You will also need to understand
the material presented in Chapter 9 in order to understand Chapter 10.

Chapter 1 tells you how to install the software provided on the CD-ROM. The chapter also tells you
about some of the conventions I use and then provides you with an example on how to use some of the
modules presented in this book. I decided to include this information early in the book to allow you to
start using the code as soon as possible.

Chapter 2 introduces real-time systems concepts such as foreground/background systems, critical
sections, resources, multitasking, context switching, scheduling, reentrancy, task priorities, mutual
exclusion, semaphores, intertask communications, task synchronization, task coordination, interrupts,
clock ticks, etc.

Chapter 3 describes one of the building blocks shown in Figure 1.1, keyboards. Chapter 3 describes
keyboard basics and provides you with a general purpose module that can scan and decode any key-
board matrix from a 3x3 to an 8x8 key arrangement. The keyboard module can buffer keystrokes, repeat
the same key if the key is held down for a certain length of time, keep track of how long the key has
been pressed, and allow you to define multiple scan codes for each key. The code can be easily
expanded to support larger keyboards.

Chapter 4 will show you how to control LED (Light Emitting Diode) displays. LED displays can
consist of discrete LEDs, seven-segment modules, or any combination of both. Chapter 4 provides you
with a module that can multiplex LEDs from a 3x3 to an 8x8 arrangement. The code can easily be
changed to accommodate larger displays.

Chapter 5 provides you with a software module that will control Character LCD Modules which are
based on the Hitachi HD44780 Dot Matrix LCD Controller & Driver chip. Character LCD (Liquid
Crystal Display) modules are display devices that can display alphanumeric data.

Chapter 6 describes a software-driven clock/calendar module that keeps track of hours, minutes, sec-
onds, days, months, years (including leap years) and day-of-week. The code also provides you with a
32-bit timestamp which can be used to mark the occurrence of events.

Chapter 7 describes a module that manages up to 250 countdown timers. Each timer can be preset to
timeout after up to 100 hours with 0.1 second resolution. You can define a function that will be executed
when the timer expires (one for each timer).

Chapter 8 provides a module that can read discrete inputs and control discrete outputs (up to 250
each). For discrete inputs, the module will tell you whether the input is high, low, transitioned from low
to high, high to low or both. When a transition is detected, a user-definable function can be executed
(one for each input). Each discrete input can also simulate a toggle action (push-ON, push-OFF). Each
discrete output can be turned ON, turned OFF, or made to blink at a user-definable rate.

Chapter 9 will give you tools to improve the efficiency of mathematical calculations in embedded
processors. The concepts presented in this chapter will be used in Chapter 10.

Introduction — xXI

Chapter 10 describes how to read and scale analog inputs and how to scale and control analog out-
puts. This chapter also provides you with code that will read and scale up to 250 analog inputs and scale
and update up to 250 analog outputs.

Chapter 11 discusses asynchronous serial communications and specifically provides you with code
that performs buffered serial I/O on a PC. There are actually two versions of this code. One version can
be used by a DOS application while the other assumes the presence of a real-time kernel.

Appendix A describes how to use MicroC/OS-II, The Real-Time Kernel. pC/OS-II (for short) is a
portable, ROM-able, preemptive, real-time, multitasking kernel. The internals of pC/OS-II are fully
described in my other book, MicroC/OS-II, The Real-Time Kernel, which is also available (along with a
diskette containing the source code) from R&D Books (see the ad at the back of the book). Most of the
code presented in Embedded Systems Building Blocks assumes the presence of a real-time kernel. Spe-
cifically, I make use of semaphores and time delays which are available on most (if not all) commer-
cially-available real-time kernels. To allow you to use the code in this book, I have included a compiled
version of pC/OS-II (compiled using a Borland C++ v4.51 compiler for an Intel 80x86 Large Model).

Appendix B describes some of my programining conventions. Specifically, I describe my directory
structures and C programming style.

Appendix C lists the acronyms, abbreviations, and mnemonics that I used in the code presented in
this book.

Appendix D presents two DOS utilities that I use: TO and HPLISTC. TO is a utility that I use to
quickly move between MS-DOS directories without having to type the CD (change directory) com-
mand. HPLISTC is a utility to print C source code in compressed mode (i.e., 17 CPI) and allows you to
specify page breaks. The printout is assumed to be to a Hewlett Packard (HP) Laserjet type printer.

Appendix E describes how to install the source code provided on the companion CD-ROM included
with this book and describes the licensing policy with regards to using the code in commercial applica-
tions.

Web Site

To provide better support to you, I created the pC/OS-II web site (www.uCOS-II.com). You can obtain
information about:

» news on pC/0OS, pC/OS-11, and Embedded Systems Building Blocks,
* upgrades,

* bug fixes,

» answers to frequently asked questions (FAQs),

* application notes,

* books,

* classes,

» links to other web sites, and more.

XXxii — Embedded Systems Building Blocks, Second Edition

Bibliography

Ganssle, Jack G.

The Art of Programming Embedded Systems
San Diego, California

Academic Press, Inc.

ISBN 0-12-274880-8

McConnell, Steve

Code Complete, A Practical Handbook of Software Construction
Redmond, Washington

Microsoft Press

ISBN 1-55615-484-4

Chapter 1

Sample Code

This chapter provides you with an example on how to use some of the embedded systems building
blocks described in this book. I decided to include this chapter early in the book to allow you to start
using the code as soon as possible. Before getting into the sample code, I will describe some of the con-
ventions I use throughout the book.

The sample code was compiled using the Borland International (now called Inprise) C/C++ com-
piler V4.51 and options were selected to generate code for an Intel/AMD 80186 processor (large mem-
ory model) although the compiler was also instructed to generate floating-point instructions. I realize
that the 80186 doesn’t have hardware assisted but most PCs nowadays contain at least a 80486 proces-
sor which has floating-point hardware. The code was actually run and tested on a 300 MHz Intel Pen-
tinm-II based PC which can be viewed as a super fast 80186 processor (at least for my purpose). I chose
a PC as my target system for a number of reasons. First and foremost, it’s a lot easier to test code on a
PC than on any other embedded environment (i.e., evaluation board, emulator etc.) — there are no
EPROMs to burn, no downloads to EPROM emulators, CPU emulators, etc. You simply compile, link,
and run. Second, the 80186 object code (Real Mode, Large Model) generated using the Borland C/C++
compiler is compatible with all 80x86 derivative processors from Intel or AMD.

Embedded Systems Building Blocks assumes the presence of a real-time kernel. For your conve-
nience, I included a copy (in object form) of uC/OS-II, The Real-Time Kernel (see Appendix A for
details).

1.00 Installing Embedded Systems Building Blocks

R&D Books has included a companion CD-ROM to Embedded Systems Building Blocks (ESBB). The
CD-ROM is in MS-DOS format and contains all the source code provided in this book. It is assumed
that you have a DOS, Windows 95, Windows 98, or Windows NT-based computer system running on an
80x86, Pentium, or Pentium-II processor. You will need less than about 10 Mbytes of free disk space to
install ESBB and its source files on your system.

Before starting the installation, make a backup copy of the files found on the companion CD-ROM.
To install the code provided on the CD-ROM, follow these steps:

2 — Embedded Systems Building Blocks, Second Edition

1. Load DOS (or open a DOS box in Windows 95/98/NT) and specify the C: drive as the default drive
2. Insert the companion CD-ROM in your CD drive
3. Enter <cddrives>:INSTALL <cddrives> [drive]

Note that <cddrive> is the drive letter where your CD is found and, [drive] is an optional drive
letter indicating the destination disk on which the source code provided in this book will be installed. If
you do not specify a drive, the source code will be installed on the current drive.

INSTALL is a DOS batch file called INSTALL . BAT and is found in the root directory of the compan-
ion CD-ROM. INSTALL.BAT will create a \SOFTWARE directory on the specified destination drive.
INSTALL. BAT will then change the directory to \SOFTWARE and copy the file ESBB. EXE from the A:
drive to this directory. INSTALL.BAT will then execute ESBB. EXE, which will create all other directo-
ries under \ SOFTWARE and transfer all source and executable files provided in this book. Upon comple-
tion, INSTALL.BAT will delete ESBB.EXE and change the directory to
\ SOFTWARE \BLOCKS\ SAMPLE\TEST where the example code executable is found.

Make sure you read the READ.ME file on the companion CD-ROM for last minute changes and
notes.

Also see Appendix E for a list of files and directories created.

1.01 How Each Chapter Is Organized

Each chapter in this book briefly introduces and describes the features of the “Embedded Systems
Building Block” provided in the chapter. A more detailed description generally follows the introduction.
Next, I describe the internals of the module. You will find:

* the name of the directory where the module’s files are located,
» the name of the files for the building block,

» the naming conventions related to the module, and

+ the step-by-step description of how the module works.

Your application interfaces with each module through functions. Interface functions allow the details
of the module to be hidden from your own code. This is called data abstraction. If done properly, data
abstraction allows you to change the implementation details of the module without affecting your appli-
cation code. In other words, your application always sees the same module even though you may
change the intemals of the module. Each interface function is presented along with a description of how
to use the function and what arguments are expected.

The modules provided in this book have been developed for use on fairly low-end 8-bit processors. I
purchased an IBM PC/AT compatible breadboard to test some of the hardware aspects of the modules
presented in this book. This breadboard made testing a breeze. The breadboard I used was the JDR
Microdevices (see bibliography) PDS-601 which cost only $80. The PDS-601 contains an ISA bus
interface, decoding logic, an Intel 8255A chip, an Intel 8253 (similar to an 82C54), and a large bread-
board area.

In every building block, I tried to isolate target-specific code into a few functions and configuration
constants, i.e., #defines. This allows you to easily adapt the code to your own environment. Thus,
each chapter has a configuration section which describes how to change the code so that it can work in
your target system.

Some of the chapters, specifically Chapters 3, 4, §, 10 and 11, include a section called, “How to Use
the 77? Module.” This section provides an example on how you can actually use the module in an appli-

Chapter 1: Sample Code — 3

cation. The example describes how to properly initialize the code and how to invoke some of its ser-
vices.

Each chapter ends with a bibliography, source code listings, and pointers to one or more data sheets
(stored on the CD-ROM) of an electronic components mentioned in the chapter.

1.02 INCLUDES.H

You will notice that every .C file in this book contains the following declaration:

Listing 1.1 Master INCLUDE file

#include "includes.h"

INCLUDES . H allows every .C file in your project to be written without concern about which header
file will actually be included. In other words, INCLUDES . H is a Master include file. The only drawback
is that INCLUDES . H includes header files that are not pertinent to some of the .C file being compiled.
This means that each file will require extra time to compile. This inconvenience is offset by code porta-
bility. You can certainly edit INCLUDES.H to add your own header files. The actual INCLUDES.H I
used is found in Listing 1.24 at the end of this chapter.

1.03 Compiler Independent Data Types

Because different microprocessors have different word lengths, 1 have created a number of type defini-
tions that ensures portability (see \SOFTWARE\uCOS-IT\Ix86L-FP\OS_CPU.H (see Appendix A,
Listing A.1) for the 80x86 real-mode, large model). Specifically, ESBB and uC/OS-II code never make
use of C’s short, int, and long data types because they are inherently non-portable. Instead, 1
defined integer data types that are both portable and intuitive as shown below.

Listing 1.2 Compiler independent data types

typedef unsigned char BOOLEAN;
typedef unsigned char INT8U;
typedef signed <char INT8S;
typedef unsigned int INT16U;
typedef signed int INT16S;
typedef unsigned long INT32U;
typedef signed long INT32S;
typedef float FP32;
typedef double FP64;

The INT16U data type, for example, always represents a 16-bit unsigned integer. ESBB, uC/OS-11,
and your application code can now assume that the range of values for variables declared with this type
is from 0 to 65535. A compiler for a 32-bit processor could specify that an INT16U would be declared
as an unsigned short instead of an unsigned int. Where the code is concerned, however, it still

4 — Embedded Systems Building Blocks, Second Edition

deals with an INT16U. The above code fragment provide the declarations for the 80x86 and the Bor-
land C/C++ compiler as an example.

1.04 CFG.Cand CFG.H

To allow you to easily adapt the code in this book to your environment, I created two user-configurable
files called CFG.C and CFG.H. All the target-specific code has been conveniently located for you in
CFG.C and CFG.H. You don’t have to edit every .C and .H file to use the code in this book. If you adapt
CFG.C and CFG. H to your environment, you can use every module ‘as is’.

CFG.C (Listing 1.22) contains the hardware-specific functions of the modules presented in this
book. CFG.H (Listing 1.23) contains the configuration #defines for each module. CFG.C and CFG.H
are found in the \ SOFTWARE\BLOCKS\ SAMPLE\ SOURCE directory. In order to use CFG.C and CFG.H,
you must ‘tell’ the compiler to ignore the same declarations in the code for the modules. You accom-
plish this by defining the constants CFG_C and CFG_H in INCLUDES.H.

1.05 Global Variables

The following is a technique that I use to declare global variables. As you know, a global variable needs
to be allocated storage space in RAM and must be referenced by other modules using the C keyword
extern. Declarations must thus be placed in both the .C and the .H files. This duplication of declara-
tions, however, can lead to mistakes. The technique described in this section only requires a single dec-
laration in the header file, but is a little tricky to understand. However, once you know how this
technique works, you will apply it mechanically.

In all .H files that define global variables, you will find the following declaration:

Listing 1.3 External references

#ifdef xxx_GLOBALS
#define xxx_EXT

#else

#idefine xxx_EXT extern
#endif

Each variable that needs to be declared global will be prefixed with xxx_EXT in the .H file. ‘xccx’ rep-
resents a prefix identifying the module name. The module’s .C file will contain the following declara-
tion:

Listing 1.4 .Cfile declarations of global variables

#define oo GLOBALS

#include "includes.h"

When the compiler processes the .C file it forces xxxx_ EXT (found in the corresponding .H file) to
“nothing” (because XXX_GLOBALS is defined) and thus each global variable will be allocated storage
space. When the compiler processes the other .C files, xxx_GLOBALS will not be defined and thus

Chapter 1: Sample Code — 5

xxx_EXT will be set to extern, allowing you to reference the global variable. To illustrate the con-
cept, let’s look at DIO. H (from Chapter 8) which contains the following declarations:

Listing 1.5 Example using DIO.H

#ifdef DIO_GLOBALS
#define DIO_EXT

#else

#define DIO _EXT extern

#endif

DIO_EXT DIO DI DITbl [DIO _MAX DI];
DIO_EXT DIO_DO DOTb1 [DIO_MAX_DOJ ;

DIO.C contains the following declarations:

Listing 1.6 Example using DIO.C

#define DIO_GLOBALS

#include “includes.h”

When the compiler processes DIO.C, it makes the header file (DIO.H) appear as shown below
because DIO_EXT is set to “nothing”:

Listing 1.7 Expanding DIO.H

DIO_DI DITbl [DIO_MAX DI];
DIO_DO DOTb1 [DIO_MAX DO] ;

The compiler is thus told to allocate storage for these variables. When the compiler processes any
other .C files, the header file (DIO.H) looks as shown by the following code because DIO_GLOBALS is
not defined and thus DIO_EXT is set to extern.

Listing 1.8 Expanded .Hfile other than DIO.H

extern DIO_DI DITbl [DIO MAX DI];
extern DIO_DO DOTb1 [DIO_MAX_DO] ;

In this case, no storage is allocated and any .C file can access these variables. The nice thing about
this technique is that the declaration for the variables is done in only one file, the .H file.

6 — Embedded Systems Building Blocks, Second Edition

1.06 OS ENTER CRITICAL() and
OS EXIT CRITICAL()

Throughout the source code provided in this book, you will see calls to the following macros:
OS_ENTER_CRITICAL() and OS_EXIT CRITICAL(). OS_ENTER_CRITICAL{) is a macro that
disables interrupts and OS_EXIT_CRITICAL() is a macro that enables interrupts. Disabling and
enabling interrupts is done to protect critical sections of code. These macros are obviously pro-
cessor specific and are different for each processor. These macros are found in OS_CPU.H (see
Appendix A, Listing A.1) and for the code provided in this book, these macros are defined as fol-
lows.

Listing 1.9 Critical section macros

#define OS_ENTER_CRITICAL() asm {PUSHF; CLI}
#define OS_EXIT CRITICAL() asm POPF

Your application code can make use of these macros as long as you realize that they are used to disable
and enable interrupts. Disabling interrupts obviously affects interrupt latency so be careful. You can
also protect critical sections using semaphores.

1.07 ESBB Sample Code

The sample code is found in the \ SOFTWARE\BLOCKS \SAMPLE\ SOURCE of the installation directory.
This source directory contains the following files:

e CFG.C (Listing 1.22)

* CFG.H (Listing 1.23)

e INCLUDES.H (Listing 1.24)

* OS_CFG.H (Listing 1.26)

e TEST.C (Listing 1.27)

* TEST.LNK (Listing 1.28)
CFG.C and CFG.H were discussed in section 1.04. INCLUDES.H was discussed in section 1.02. OS_
CFG.H is a configuration file needed by pC/OS-II and should not be altered unless you obtain the full
source version of nC/OS-II (see Appendix A for details). TEST.INK is the linker command file and is
shown in Listing 1.28.

The sample code is actually found in TEST . C (see Listing 1.27) and will be described in this section.

The sample provided (along with the building blocks used) in this chapter was compiled using the
Borland C/C++ V4.51 compiler in a DOS box on a Windows 95 platform. To make the process easy, I
created a makefile called TEST.MAK (see Listing 1.29). The makefile is invoked by the batch file
MAKETEST . BAT (see Listing 1.25). Both files are found in the \SOFTWARE\BLOCKS\ SAMPLE\TEST
directory. To build the sample code, you need to change your current directory (using the DOS CD
command) to \ SOFTWARE\BLOCKS\ SAMPLE\TEST and type:

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > MAKETEST

awT

Chapter 1: Sample Code — 7

You should note that my Borland compiler is installed on my E: drive, but you can easily change
the makefile to have it point to the proper directory and drive by changing the following lines in
TEST .MAK:

Listing 1.10 Tool declarations in TEST . MAK

FHEHBE R R R R R REEREEEEEEH R R R EEREEE RN R
TOOLS
FHHEHEHEE R EEEEEEEREEEEEEE R R R REEEEEREREEEEEEEE R R R

BORLAND=E: \BC45
BORLAND_EXE=E:\BC45\BIN

pC/OS-I1 is a scalable operating system which means that the code size of pC/OS-II can be reduced
if you are not using all of its services. However, because nC/OS-II is not provided in source form in this
book, you will be limited to the features I needed to run the sample code. You can obtain the full source
version of nC/OS-II by obtaining a copy of my other book, MicroC/OS-11, The Real-Time Kernel, ISBN
0-87930-543-6.

Once built, you can run the sample code by typing:

C: \SOFTWARE\BLOCKS\SAMPLE\TEST > TEST

The display on your PC should look as shown in Figure 1.1. You will notice that there is no sample
code for Chapter 3 “Keyboards”, Chapter 4 “Multiplexed LED Displays”, and Chapter 5 “Character
LCD Modules” because you would need some special hardware which I didn’t want to assume.

8 — Embedded Systems Building Blocks, Second Edition

Figure 1.1 DOS Window display for Sample code
EMBEDDED SYSTEMS BUILDING BLOCKS
Complete and Ready-to-Use Modules in C
Jean J. Labrosse
SAMPLE CODE
Chapter 3, Keyboards Chapter 8, Discrete I/0s
Chapter 4, Multiplexed LED Displays DO #0: 50% Duty Cycle (Async)
Chapter 5, Character LCD Modules DO #1: 50% Duty Cycle (Async)
-No Sample Code- DO #2: 25% Duty Cycle (Sync)
Chapter 6, Time-0f-Day Clock Chapter 10, Analog I/0s
Date: Friday December 31, 1999 AT #0:
Time: 23:58:00
TS : 1999-12-31 23:58:00
Date: 11 uS Time: 4 uS
Chapter 7, Timer Manager Comm.

Tmr0: 01:03.0 Tx
Rx
Tmrl: 02:00.0
MicroC/0S-I1 V2.00 #Tasks: 14 #Task switch/sec:

<-PRESS 'ESC' TO QUIT->

Chapter 11, Async. Serial

345

CPU Usage: 1 %

The sample code basically consists of 13 tasks as listed in Table 1.1.

Table 1.1 Tasks in sample code

Module/File Task Priority
TEST.C Analog 1/O Test Task 10 (Highest)
TEST.C Clock Test Task 11

TEST.C Asynchronous Serial Comm. Tx Test Task 12

TEST.C Asynchronous Serial Comm. Rx Test Task 13

TEST.C Discrete I/0O Test Task 14

TEST.C Timer Manager Test Task 15

TEST.C Statistic / PC Keyboard Test Task 16

CLK.C Time-of-Day Clock Task 51

TMR.C Timer Manager Task 52

DIO.C Discrete 1/0 Manager Task 53

AIO.C Analog 1/0 Manager Task 54

puC/OS-1I Statistic Task 62

uC/OS-II Idle Task 63 (Lowest)

Chapter 1: Sample Code — 9

uC/OS-1II creates two internal tasks: the idle task and a task that determines CPU usage. Four of the
building blocks each create a task and TEST . C creates the other 7 tasks.

As can be seen from the screen of Figure 1.1, there is no sample code for Chapters 3, 4, and 5
because they would require hardware not available on a regular PC.

For Chapter 6, the test code sets up the CLK module’s current date and time to December 31, 1999 at
11:58 PM to show you that the CLK module is year 2000 (Y2K) compliant by correctly rolling over to
Saturday, January 1, 2000 in two minutes. However, by the time you get this book, the Y2K problem
should be a thing of the past. You should note that the CLK module doesn’t change the actual date and
time of your PC. When you run the code, you will also see the timestamp being updated. Also, I used the
elapsed time measurement functions in PC.C to determine the execution time of ClkFormatDate ()
and C1lkFormatTime ().

The sample code for Chapter 7 sets up 2 timers. The first timer expires after 1 minute and 3 seconds
and the second expires after 2 minutes. When the first timer expires, the message, “Timer #0 Timed
Out!” will be displayed just below the line showing timer #0. When the second timer expires, the mes-
sage, “Timer #1 Timed Out!” below its timer. Instead of displaying messages, you could perform
any other operation including signaling a task.

For Chapter 8, although the DIO task continuously reads discrete inputs (DI), I don’t actually make
use of that feature because it would require external hardware. Instead, I only set up 3 discrete outputs
(DO) for which I display the state of these outputs on the screen (TRUE or FALSE for DO #0, HIGH or
LOW for DO #1 and, ON or OFF for DO #2). The first discrete output is setup to produce a ‘blinking’ out-
put with a 50% duty-cycle (50% ON, 50% OFF) at a rate of 1 Hz. The second discrete output is also set
up to ‘blink’ but does so at half the rate of the first channel (0.5 Hz). Finally, the third output blinks with
a 25% duty cycle but runs in ‘synchronous mode’ (see Chapter 8).

There is no sample code provided for Chapter 9 because this chapter doesn’t actually contain a
building block.

For Chapter 10, instead of having you come up with an ADC on a PC, I simply decided to ‘simulate’
the ramping of an analog input which increases by 10 counts every time an ADC reading is required.
When the counts reach 32700 (assuming a simulated 15-bit ADC), the counts are reset back to 0. Note
that there aren’t too many commercial 15-bit ADCs but, as you will see in Chapter 10, you can fake
your software into thinking that all ADCs with less than 16 bits can actually look like they have 15 bits!

For Chapter 11, I created two tasks. One task sends the value of a counter to the other task. How-
ever, this message is actually sent through the serial port (COM1 on the PC). To see the operation of the
sample code, you’ll need to truly run in DOS (i.e., not in a DOS box under Windows 95/98 or NT) and
connect the Tx and Rx lines of COM1 on your PC together. In order to accomplish this, I used a
‘LapLink’ serial cable (you can buy this at any good computer store) that I plugged into my PC. I then
shorted pins 2 and 3 of either the DB-9 female or DB25 female connector using a paper clip.

1.07.01 main()

A pC/OS-II application looks just like any other DOS application. You compile and link your code just
as if you would do a single threaded application ninning under DOS. The .EXE file that you create is
loaded and executed by DOS, and execution of your application starts from main ().

The sample code (TEST.EXE) serves two purposes. First, if you invoke the sample code from the
DOS prompt and specify either “display” or “DISPLAY” [L1.11(1)] as an argument, your screen will
display the corresponding characters that corresponds to each byte value from 0x00 to OxFF. In other
words, to see the character mapping simply type:

TEST display

am

10 — Embedded Systems Building Blocks, Second Edition

or,

TEST DISPLAY
at the DOS prompt.

If you simply typed TEST at the DOS prompt, then main () clears the screen to ensure we don’t
have any characters left over from the previous DOS session [L1.11(2)]. Note that I specified to use
white letters on a black background. Since the screen will be cleared, I could have simply specified to
use a black background and not specify a foreground. If I did this, and you decided to return to DOS
then you would not see anything on the screen! It’s always better to specify a visible foreground just for
this reason.

Listing 1.11 main()

void main (int argc, char *argv(])
{

if (arge > 1) { (1)
if (strcmp(argv(1l}, "display") == 0 ||
stremp(argv[1], 'DISPLAY") == 0) {
TestDispMap() ;
}
exit(0); .
) —_—
PC_DPispClrScr (DISP_FGND WHITE + DISP_BGND_BLACK) ; (2)
0SInit(); (3)
OSFPInit(); (4)
PC_DOSSaveReturn() ; (5)
PC_VectSet (uCOS, 0OSCtxSw) ; (6) v
OSTaskCreateExt (TestStatTask, (7)
{(void *)0,

&TestStatTaskStk [TASK STK_SIZE],
STAT TASK_PRIO,
STAT TASK_PRIO,
&TestStatTaskStk[0],
TASK_STK_SIZE,
(void *)0,
OS_TASK_OPT_SAVE_FP) ;
Osstart(); (8)

A requirement of uC/OS-II is that you call 0SInit () [L1.11(3)] before you invoke any of its other
services. OSInit () creates two tasks: an idle task which executes when no other task is ready-to-run
and a statistic task which computes CPU usage.

Chapter 1: Sample Code — 11

Because the code is assumed to run on a 80486 or Pentium class computer, I decided to make use of
hardware assisted floating-point and thus, we need to invoke the code that will tell pC/OS-1II to initialize
the floating-point support [L1.11(4)].

The current DOS environment is then saved by calling PC_DOSSaveReturn () [L1.11(5)]. This
allows us to return to DOS as if we had never started uC/OS-II. A lot happens in PC_DOSSaveReturn ()
and this is all explained in Chapter 12 (section 12.01).

main () then calls PC_VectSet () [L1.11(6)] to install pC/OS-II’s context switch handler. Task
level context switching is done by issuing an 80x86 INT instruction to this vector location. I decided to
use vector 0x80 (i.e., 128) because it’s not used by either DOS or the BIOS.

Before starting multitasking, I create one task [L1.11(7)] called TestStatTask (). Itis very impor-
tant that you create at least one task before multitasking begins with OSStart () [L1.11(8)]). Failure to
do this will certainly make your application crash. Once OSStart () is called, multitasking begins and
puC/OS-II runs the highest priority task that is ready-to-run. This happens to be TestStatTask ()
which will be described next.

1.07.02 TeststatTask()

Initialization of the sample code continues in TestStatTask (). puC/OS-II needs a little more setup
which is accomplished by ‘installing’ the tick handler [L1.12(1)]. Next, I decided to change the tick
rate from the default DOS 18.2 Hz to 200 Hz [L.1.12(2)]. This allows better granularity when we need
to run tasks at regular intervals. You should note that a lot of setup has to be done to move from the
DOS environment to the puC/OS-II environment. In an actual embedded system, there would be no need
to save the CPU registers to return back to DOS (see PC_DOSSaveReturn ()) because we would most
likely not return back to DOS to begin with. We would, however, most likely need to install the tick ISR
handler and set a hardware timer which would provide a tick source.

Note that main () purposely didn’t set the interrupt vector to uC/OS-II’s tick handler because you
don’t want a tick interrupt to occur before the operating system (uC/OS-II) is fully initialized and run-
ning. If you run code in an embedded application, you should always enable the ticker (as I have done
here) from within the first task.

Before we create any other tasks, we need to determine how fast you particular PC is. This is done
by calling the uC/OS-II function OSStatInit() [L1.12(4)]. Calling OSStatInit() allows
puC/OS-1I to determine the CPU usage (in percent) of your CPU while your application (in this case, the
test code) is running.

Once pC/OS-II knows about your CPU, we call TestInitModules () to initialize the building
blocks that are used in the sample code. The code for TestInitModules () is shown in Listing 1.13.

Listing 1.12 Beginning of TestStatTask()

void TestStatTask (void *pdata)
{

INT8U i;

INT16S key;

char s(81};

pdata = pdata;

12 — Embedded Systems Building Blocks, Second Edition

Listing 1.12 Beginning of TestStatTask()

OS_ENTER_CRITICAL();

PC_VectSet (0x08, OSTickISR); (1)
PC_SetTickRate(OS_TICKS_PER_SEC) ; (2)
OS_EXIT _CRITICAL();

PC _DispStr(0, 22, "Determining CPU's capacity ...", (3)
DISP_FGND WHITE) ;

OSStatInit(); (4)

PC_DispClrRow (22, DISP_FGND WHITE + DISP_BGND_BLACK}) ; (5)

TestInitModules () ; (6)

TestInitModules () starts off by initializing the elapsed time measurement provided in the PC
services (see Chapter 12) [L1.13(1)]. Because MODULE_KEY_MN [L1.13(2)], and MODULE_LED
[L1.13(3)] and MODULE_LCD [L.1.13(4)] are set to O in INCLUDES.H, the keyboard, LED, and LCD
building blocks are not initialized. All of the other building blocks, however, are initialized because
they are enabled in INCLUDES.H [L1.13(5-8)]. The last building block (COMM) uses the RTOS version
(see Chapter 11) because it is used in conjunction with pC/OS-II. In this case, I assume that COMM1 on
your PC is used for the test and it is setup to communicate at 9600 baud [L1.13(10-13)].

Listing 1.14 is part of TestStatTask () and is responsible for creating the test tasks which will exer-
cise the building blocks used in the sample code. Each task that is to be managed by pC/OS-II must be
created. This allows pC/OS-II to know about where the task code resides, what stack is to be allocated to
the task, what priority is given to the task, and more. You can find out more about OSTaskCreateExt ()
in Appendix A.

Listing 1.13 TestInitModules()

static wvoid TestInitModules (void)
{

PC_ElapsedInit(); (1)

#if MODULE_KEY_ MN (2)
KeyInit();

#endif

#if MODULE_LED (3)
DispInit();

#endif

Listing 1.13 TestInitModules()

Chapter 1: Sample Code — 13

#if MODULE_LCD
DispInit(4, 20);
#endif

#if MODULE_CLK
ClkInit();
#endif

#if MODULE_TMR
TmrInit();
#endif-

#if MODULE_DIO
DIOInit(};
#endif

#1f MODULE_AIO
ATIOInit();
#endif

#if MODULE_COMM_BGND
CommInit();
#endif

#if MODULE_COMM_RTOS
CommInit();

#endif

#if MODULE_COMM_FC

CommCfgPort (COMM1, 9600, 8, COMM_PARITY_NONE, 1);

CommSetIntVect (COMML) ;
CommRxIntEn {COMML) ;
#endif
}

(4)

(5)

(6)

(7}

(8}

(9)

(10)

(11)
(12}
(13)

e

14 — Embedded Systems Building Blocks, Second Edition

Listing 1.14 Creation of test tasks (TestStatTask())

OSTaskCreatekxt (TestClkTask,
(void *)0,
&TestClkTaskStk [TASK_STK_SIZE],
TEST_CLK_TASK__.PRIO , TEST _CLK_TASK_PRIO,
&TestClkTaskStk[O0],
TASK_STK_SIZE,
(void *)0,
OS_TASK_OPT_SAVE_FP) ;
OSTaskCreatekxt (TestRxTask,
(void *)0,
&TestRxTaskStk [TASK_STK _SIZE],
TEST_RX_TASK_PRIO, TEST RX_TASK_PRIO,
&TestRxTaskStk[0],
TASK_STK_SIZE,
(void *)0,
OS_TASK_OPT_SAVE FP);
OSTaskCreateExt (TestTxTask,
(void *)0,
&TestTxTaskStk [TASK_STK SIZE],
TEST_TX_ _TASK_PRIO, TEST_TX_TASK_PRIO,
&TestTxTaskStk[0],
TASK_STK_SIZE,
(void *)0,
OS_TASK_OPT_SAVE_FP);
OSTaskCreateExt (TestTmrTask,
(void *)0,
&TestTmrTaskStk [TASK STK_SIZE],
TEST_TMR_TASK_PRIO, TEST TMR_TASK PRIO,
&TestTmrTaskStk([0],
TASK_STK_SIZE,
(void *)0,
OS_TASK_OPT_SAVE_FP) ;

Chapter 1: Sample Code — 15

Listing 1.14 Creation of test tasks (TestStatTask())

OSTaskCreateExt (TestDIOTask,
(void *)OQ,
&TestDIOTaskStk [TASK_STK SIZE],
TEST DIO_TASK_PRIO, TEST_DIO TASK PRIO,
&TestDIOTaskStk{0],
TASK_STK_SIZE,
(void *)0,
OS_TASK _OPT _SAVE_FP) ;
OSTaskCreateExt {TestAIOTask,
(void *)0,
&TestAIOTaskStk [TASK_STK_SIZE],
TEST_ATO_TASK_PRIO, TEST_AIO_TASK_PRIO,
&TestATOTaskStk[0],
TASK_STK_SIZE,
(void *)O0,
OS_TASK_OPT_SAVE_FP) ;

Listing 1.15 is also part of TestStatTask (). The literals (i.e., text that doesn’t change on the
screen) are displayed by calling TestDispLit () [L1.15(1)]. This is done to avoid wasting CPU time
updating the display with information that doesn’t change. Next, TestStatTask() displays the cur-
rent version of pC/OS-1I at the bottom left hand corner of the screen [L1.15(2)].

TestStatTask() then enters an infinite loop. This is the main body of the task code. Every sec-
ond (you’ll see why later) the following information is displayed at the bottom of the screen:

* the number of tasks created (0STaskCtr) [L1.15(3)],
+ the number of context switches (i.e., task switches) per second (OSCtxSwCtr) {L1.15(4)] and,
» the percentage of the CPU used by the sample code (OSCPUUsage) [L.1.15(5)].

You may question why I am updating the display of the task counter every second since there are no
other tasks created from here on. The reason is to allow you to create other tasks which could be
delayed. In other words, you may decide to create a task only after some time has expired.

This task then checks to see if a key has been pressed [L1.15(6)] and if so, determines whether the
key pressed was the Esc key [L1.15(7)]. If the Esc key is pressed, the sample code exits back to DOS.
Before we can return to DOS, though, we must reinstate the original DOS COMM1 ISR vector [L1.15(8)].
Returning back to DOS is accomplished by calling PC_DOSReturn () [L1.15(9)] (see Chapter 12, sec-
tion 12.01).

In order to display the number of context switches per second, the global variable OSCtxSwCtr
must be cleared every second [L1.15(10)].

To prevent this task from using all the CPU (remember that we are in an infinite loop), the task calls
the pC/OS-II service OSTimeDI1yHMSM () [L1.15(11)] (see Appendix A). This call suspends the cur-
rent task until some time expires. In our case, the arguments 0, 0, 1, O specify a one second delay.
When one second expires, pC/OS-II will resume execution of this task immediately after the call to
OSTimeD1yHMSM () or, at the top of the for () loop.

16 — Embedded Systems Building Blocks, Second Edition

Listing 1.15 Task portion of TestStatTask()

TestDispLit () ; (1)

sprintf(s, "v$ld.%02d", (2)
OSversion() / 100,
OSVersion() % 100);

PC_DispStr(13, 23, s, DISP_FGND_YELLOW + DISP_BGND_ BLUE);

for (;;) {
sprintf (s, "%5d", OSTaskCtr); (3)
PC_DispStr (30, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN) ;

sprintf(s, "%5d", OSCtxSwCtr); (4)
PC_DispStr(56, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN);

sprintf(s, "%3d", OSCPUUsage); (5)
PC_DispStr(75, 23, s, DISP_FGND_BLUE -+ DISP_BGND CYAN) ;

if (PC_GetKey({&key) == TRUE) { (6)
if (key == 0x1B) { (7)
#if MODULE_COMM PC ‘
CommRclIntVect (COMML) ; (8)
#endif
PC_DOSReturn () ; (9)
}
}
OSCtxSwCtr = 0; (10)
0STimeDlyHMSM(0, 0, 1, 0); (11)

1.07.03 mestclkTask()

TestClkTask () is shown in Listing 1.16 and this task shows some of the functions of the CLK build-
ing block of Chapter 6 which consist of code to maintain a time-of-day clock.

We first set up the current time-of-day and date to December 31, 1999 at 12:58 PM (i.e., 2 minutes
before midnight) [L1.16(1)].

The task portion of the code (i.e., the infinite loop) is then entered and the function PC_
ElapsedStart () is invoked [L1.16(2)] to setup the PC’s timer #2 so that it can be used to mea-
sure the execution time of ClkFormatDate() [L1.16(3)]. ClkFormatDate () formats the cur-

e

Chapter 1: Sample Code — 17

rent date maintained by the CLK building block into an ASCII string. The format selected (i.e., 2)
is “Day Month DD, YYYY” where ‘Day’ is the day of the week (Monday, Tuesday ...), ‘Month’ is
the month of the year (January, February ...), ‘DD’ is the calendar day (1, 2, 3 ...), and ‘YYYY’ is
the current year using 4 digits. The execution time of ClkFormatDate () is captured by calling
PC_ElapsedStop () [L1.16(4)] which returns the time in microseconds. Both the current date
and the execution time are then displayed.

Listing 1.16 TestClkTask()

void TestClkTask (void *data)
{

char s[81];

INT16U time;

TS ts;

data = data;

ClkSetDateTime (12, 31, 1999, 23, 58, 0); (1)
for (;:) {
PC_ElapsedStart(): (2)
ClkFormatDate (2, s); (3)
time = PC_ElapsedStop({):; (4)
PC_DispsStr(8, 11, * ", DISP_FGND_WHITE) ;

PC_DispStr(8, 11, s, DISP_FGND_BLUE + DISP_BGND_CYAN) ;
sprintf(s, "%3d uS", time);
PC_DispStr{(8, 14, s, DISP_FGND_RED + DISP BGND_LIGHT GRAY) ;

PC_ElapsedStart() ; (5)
ClkFormatTime (1, s); (6)
time = PC_ElapsedStop(); (7) -

PC_DiSpStr(8, 12, s, DISP_FGND_BLUE + DISP_BGND_CYAN) ;
sprintf(s, "%3d usS", time);
PC_DispStr(22, 14, s, DISP_FGND_RED + DISP_BGND LIGHT GRAY) ;

ts = ClkGetTs(); (8)
ClkFormatTS(2, ts, s); (9)

PC_DispStr(8, 13, s, DISP_FGND_BLUE + DISP_BGND_CYAN) ;

OSTimeDlyHMSM(0, 0, 0, 100); (10)

18 — Embedded Systems Building Blocks, Second Edition

The function PC_ElapsedStart () is called again [L1.16(5)] to setup the PC’s timer #2 so that it
can be used to measure the execution time of C1kFormatTime () [L1.16(6)]. Cl1kFormatTime () for-
mats the current time maintained by the CLK building block into an ASCII string. The format selected
(i.e, 1) is “HH:MM:SS” which consist of the current time in 24 hour format (i.e., up to 23:59:59). The
execution time of ClkFormatTime () is captured by also calling PC_ElapsedStop() [L1.16(7)].
Both the current time and the execution time are then displayed.

The CLK building block also maintains a special format called a timestamp. A timestamp basically
captures the date and time in a single 32-bit variable as shown in Figure 1.2. This allows your applica-
tion to mark an event such as the occurrence of an error or the reception of a message and capture when
that event occurred. You can thus obtain the current timestamp by calling C1kGetTS () [L1.16(8)]. It
is easier to display the timestamp in ASCII which is why C1kFormatTs () is invoked [L1.16(9)]. The
format selected “YYYY-MM-DD HH:MM:SS” is new to this second edition. I personally like this format
because it displays the year as 4 digits followed by the month and then the day. What’s also convenient
about this ASCI format is that it can be sorted easily. 0STimeDl1yHMSM() is then called to suspend
this task for 100 milliseconds. In other words, this task executes 10 times per second [L1.16(10)].

Figure 1.2 Timestamp format

B25- - -B22 B16----BI2 BS-—-———- BO
B31------ B26 B21----B17 Bll------- B6

Year Month Hours Minutes Seconds
L 0 .59
0..59

0..63
(Actual year - CLK_TS_BASE_YEAR)

1.07.04 TestTmrTask()

TestTmrTask() is shown in Listing 1.17 and shows some of the functions of the TMR building block
of Chapter 7 which consists of code that maintains up to 250 down counters that can be set to any time
from 1 tenth of a second to 99 minutes, 59 seconds and 9 tenths of a second or, 99:59.9 (using the
nomenclature MM: SS. T). When a timer expires, it can optionally call a user-definable function.

We first start up by configuring timer #0’s timeout function {L.1.17(1)]. When timer #0 times out, it
will call TestTmr0TO () which simply displays “Timer #0 Timed Out!”. The timer is then initial-
ized to 1:03.9 [L.1.17(2)] and then it’s started [L.1.17(3)].

Chapter 1: Sample Code — 19

We then configure a second timer, timer #1’s timeout function [L.1.17(4)]. When timer #1 times out,
it will call TestTmr1TO() which also displays a similar message, “Timer #1 Timed Out!”. The
timer is then initialized to 2:00.0 [L.1.17(5)] and then it’s started [L.1.17(6)].

Listing 1.17 TestTmrTask()

void TestTmrTask (void *data)

{
char s[81]1;
INT16U time;
data = data;
TrCfgPnct (0, TestTmr0TO, (void *)0); (1)
TmrSetMsST (0, 1, 3, 9); (2)
TmrStart (0) ; (3)
TmrCfgPnct (1, TestTmrlTO, (void *)0); (4)
TmrSetMsST(1, 2, 0, 0); : (5) —
TmrStart (1) ; (6}
for (;;) {
TmrFormat (0, s):] (7)
PC_DispStr(8, 16, s, DISP_FGND _RED+DISP_BGND_LIGHT GRAY);
TrrFormat (1, s); (8}
PC_DispStr(8, 18, s, DISP_FCH\ID_RED+DISP_BGI\]D_LIGI{T_GRAY);
OSTimeDl1yHMSM(0, 0, 0, 50); (9)
}
} _

The time remaining for both timers is displayed [L.1.17(7-8)] and the task body continuously loops
20 times per second (it doesn’t really need to be this fast though) [L.1.17(9)].

1.07.05 mestDpIOTask()

TestDIOTask () is shown in Listing 1.18 and shows some of the functions of the DIO building block
of Chapter 8. The DIO module reads and updates up to 256 discrete inputs and outputs. A discrete input
normally represents the state of an external switch (a pushbutton switch, a pressure switch, a tempera-
ture switch, etc.). A discrete output generally consists of a single relay output to control a single light, a
valve, a motor, etc.

20 — Embedded Systems Building Blocks, Second Edition

Although the DIO task can read discrete inputs (DI), I don’t actually make use of that feature
because it would require external hardware. Instead, I only set up 3 discrete outputs (DO) for which I
display the state of these outputs on the screen:

* For DO #0 we will display TRUE or FALSE
¢ For DO #1 we will display HIGH or LOW
¢ For DO #2 we will display ON or OFF

The DIO task [DIOTask (), see Chapter 8] which is responsible for updating the DIs and DOs will
execute 10 times per second (see CFG.H, DIO_TASK_DLY TICKS). To get a 10 second synchronous
count value, we call DOSetSyncCtrMax () [L1.18(1)] which sets DOSyncCtrMax to 100 (100 * 0.1
sec). Note that you wouldn’t need to invoke this function if you didn’t use the ‘synchronous’ mode of
the DIO module.

I then configure DO #0 to blink at a rate of 1 Hz with a 50% duty cycle [L1.18(2)]. The values spec-
ified as arguments to DOC£gBlink () do not correspond to RTOS ticks but instead, they correspond to
number of updates of the DTO module. In other words, if the DTO task is updated 10 times per second —
then a value of 10 represents 1 second, a value of 20 represents 2 seconds, etc. To finalize the configu-
ration of DO #0, I need to set the mode to asynchronous blinking and non-invert the output (see Chapter
8, Figure 8.9) [LL1.18(3)]. Configuration of DO #1 is similar to DO #0 except that I set the blink at a rate
to 0.5 Hz (i.e., 2 seconds) [LL1.18(4)]. DO #1 is also set to asynchronous blinking and non-invert the
output [L1.18(5)]. Configuration of DO #2 is set to synchronous blinking and its output is also
non-inverted [L.1.18(6-7)].

We then enter the task body which simply obtains the state of each discrete output and displays it on
the screen. This happens 10 times per second although this doesn’t need to be done this fast considering
that none of the outputs change this quickly.

Listing 1.18 TestDIOTask()

void TestDIOTask (void *data)

{
BOOLEAN state;

data = data;

DOSetSyncCtxMax (100) ; (1)
DOCfgBlink (0, DO_BLINK_EN, 5, 10); o (2)
DOCfgMode (0, DO_MODE BLINK ASYNC, FALSE); (3)
DOCfgBlink(1, DO_BLINK_EN, 10, 20); (4)
DOCfgMode (1, DO_MODE_BLINK_ASYNC, FALSE); (5)
DOCfgBlink (2, DO_BLINK_EN, 25, 0); (6)

DoCfgMode (2, DO_MODE_BLINK_SYNC, FALSE); (7)

Chapter 1: Sample Code — 21

Listing 1.18 TestDIOTask()

for (;;) {
state = DOGet (0);
if (state == TRUE) {
PC_DispStr (49, 6, "TRUE ",
DISP_FGND_YELLOW + DISP_BGND_BLUE) ;
} else {
PC_DispStr(49, 6, "FALSE",
DISP_FGND_YELLOW + DISP_BGND BLUE) ;
}
state = DOGet(l);
if (state == TRUE) ({
PC_DispStr(49, 7, "HIGH",
DISP_FGND_YELLOW + DISP_BGND_BLUE) ;
} else {
PC_DispStr(49, 7, "LOW ",
DISP_FGND_YELLOW + DISP_BGND_BLUE) ;
}
state = DOGet(2);
if (state == TRUE) {
PC_DispStr(49, 8, "ON ",
DISP_FGND_YELLOW + DISP_BGND_BLUE) ;
} else {
PC_DispStr(49, 8, "OFF",
DISP_FGND_YELLOW + DISP_BGND_BLUE);

OSTimeDlyHMSM (0, O, O, 100);

1.07.06 TestAaIOTask()

TestATOTask () is shown in Listing 1.19 and shows some of the functions of the ATO building block
of Chapter 10. The ATO module reads and updates up to 256 analog inputs and outputs. Each analog
input can be configured to read just about any type of sensor (temperature, pressure, position, flow, etc.).
An analog output can be made to control a large number of devices such as a valve, an actuator, a posi-
tioner, etc.

It’s difficult to show the operation of this building block without actually having an ADC (Analog
to Digital Converter) and a DAC (Digital to Analog Converter) on a PC. What I decided to do is simply
simulate a ramping ADC and convert the value to some engineering units. I thought of using the
L.M-34A (see Chapter 10, Figure 10.7) as my ‘simulated’ sensor and generate temperatures from —50 to

22 — Embedded Systems Building Blocks, Second Edition

about 300 degrees Farenheit. I assumed that my ADC would be made to look like a 16-bit signed ADC,
referenced at 10 volts, the gain would be set to 2.5 and, I have a 1.25 volt offset so that I could read
negative temperatures. From Equations 10.9 and 10.10, I obtain a gain of 0.01220740 and an offset of
—4095.875 and I configure Al #0 accordingly [L.1.19(1)].

The task code simply consists of reading the current engineering value (i.e., the temperature of the

simulated LM34A) from the analog channel [L.1.19(2)] and displaying it on the screen. You should note
that I didn’t need to display decimal places and thus, I converted the temperature to an integer.

The task code repeats 100 times per second {L.1.19(3)]. Again, this rate is not necessary and has

been chosen simply to make the CPU busy.

Listing 1.19 TestAIOTask()

void TestAIOTask (void *data)

{

char
FP32
INT16S
INT8U

s[81];
value;
temp;
err;

data = data;

AICfgConv (0, 0.01220740, -4095.875, 10); (1)
AICfgCal(0, 1.00, 0.00):

for (;;)

err

temp

ATGet (0, &value); (2)
(INT16S) value; '

sprintf (s, "%5d4", temp);
PC_DispStr(49, 11, s, DISP_FGND_YELLOW + DISP_BGND BLUE});

OSTimeDlyHMSM(0, 0, 0, 10); (3)

1.07.07 TestTxTask() and TestRxTask()

It is assumed that you would connect a ‘LapLink’ serial cable on COM1 and short the Tx line (pin #3) to
the Rx line (pin #2) on the free end of the DBIF connector.

TestTxTask () is shown in Listing 1.20 and shows some of the functions of the COMM building

block of Chapter 11. This task simply increments a 16-bit counter, converts it to ASCII {L.1.20(1)] and
sends the string on COM1 one character after the other [LL1.20(2)]. A delay of 5 ticks is added in case
you run this code under Windows 95/98 or NT {L.1.20(3)]. This is needed to accommodate overhead
imposed by Windows. If you were to run this code either in DOS or on an actual embedded system, you

Chapter 1: Sample Code — 23

would not need the delay. I actually tested this code on a DOS-based machine all the way to 38400
baud for a few hours without any glitches, however, it crashes with Windows 95/98.

TestRxTask () is shown in Listing 1.21 and is basically the receiving task for the transmitted mes-
sages from TestTxTask (). This task waits for characters to be received on COM1 [L1.21(1)]. As each
character is received, it is placed in a buffer [L1.21(2)]. When the carriage return character (‘\n’ or
0x0D) is received, the string is terminated [I.1.21(3)] and the string received is displayed [L1.21(4)]. Of
course both the transmitted and received messages should match.

Listing 1.20 TestTxTask()

void TestTxTask {(void *data)
{

INT16U ctr;
char s[81];
char *ps;

data = data;
ctr = 0;
for (;;) { L —
sprintf (s, "$05d\n", ctr): (1)
PC_DispStr(49, 16, s, DISP.FGND_YELLOW + DISP_BGND_BLUE);
pS = s; :
while (*ps != NUL) { ;
CommPutChar (COMML, *ps, OS_TICKS_PER_SEC) ; 2)
OSTimeDly (5) ; (3}
pS++; ‘
}

ctr++;

24 — Embedded Systems Building Blocks, Second Edition

Listing 1.21 TestRxTask()

void TestRxTask (void *data)
{

INT8U err;

INT8U nbytes;

INT8U «c:

char s[81];

char *ps;

data = data;
for (;:) {
ps
nbytes
do {
c = CommGetChar (COMML, OS_TICKS_PER_SEC, &err);

*pS++ = C;

s;
0;

nbytes++;
} while (c != '\n' && nbytes < 20);
*ps = NUL;
PC DispStr(49, 17, s, DISP_FGND_YELLOW + DISP_BGND_BLUE) ;

1.08 Bibliography

JDR Microdevices

1850 South 10th Street
San Jose, CA 95112-4108
(800) 538-5000

(408) 494-1400

PDS-601 link:
http://www.jdr.com/interact/item. asp?itemno=gr-pds

(1)
(2)

(3)
(4)

Chapter 1: Sample Code — 25

Listing 1.22 CFG.C

/*

e vk e vk ok o vk ok o ok ok ok ok ok kR ok ke ke ek kK kK Kk Kk %k A A A AR A A A A A A A A AR A A A A AR A XA A A A XA AR Kk kA ko k ok kA Ak kk*
* Embedded Systems Building Blocks

* Complete and Ready-to-Use Modules in C

*

* Configuration File

*

* {c) Copyright 1999, Jean J. Labrosse, Weston, FL

* A1l Rights Reserved

*

* Filename : CFG.C

* Programmer : Jean J. Labrosse

Pk ok kK KKK KK KKK AR KR kA KKKk h kb k ok k ok ko k ok ek Kk kK kKK kKK KK Kk kK Kkk EE R0
*/

#include "includes.h”

/*$PAGE*/

ansaT

26 — Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued) CFG.C

/*
KAEE A KK I A A KA AKX I AT T *dhhhkdrkhhhhkhkrhkk hkkkkkhkhkkkhkhhkdkhddrhdhhdhhhhhhhhhkhkhkhkrhxhddx
* KEYBOARD
* INITTALIZE I/0 PORTS
& ok ok ok ok * Lid EhkhkkEkrhE A hkhkhkkhkhhhhkhkhhhkhkhkkkhkkhkk
*/
#if MODULE_KEY_MN
void KeyInitPort (void)
{
outp (KEY_PORT CW, 0x82); /* Initialize 82C55A: A=OUT, B=IN (COLS), C=OUT (ROWS) */
}
/*
Ak Aok K kK *hkkk FAEE I KK kA Ak kkhkkkkkkkk
* KEYBOARD
* SELECT A ROW

* Description : This function is called to select a row on the keyboard.
* Arguments : 'row' 1is the row number (0..7) or KEY_ALL ROWS

* Returns : none

* Note : The row is selected by writing a LOW.

*AK K o d ok ok ok EX e e e e e R e e RS R e R T T R R e R LR R R L R ST TS T ~
*/

void KeySelRow (INT8U row)

{
if (row == KEY_ALL, ROWS) {
outp(KEY_PORT ROW, 0x00); /* Force all rows LOW */
} else {
outp (KEY_PORT_ROW, ~(1 << row)); /* Force desired row LOW */
}
}
/*
KhkkkkkkhkEkkhkhkkkkrhkkhkk *hkkkhkkk KA A KA A AT E A A A A AT A A A AT A A A A A A A A AR A AN AT AL AN T A I I AR Ak h T h*h*®
* KEYBOARD
* READ COLUMNS

*

* Description : This function is called to read the column port.
* Arguments : none

* Returns : the camplement of the colum port thus, ones are keys pressed
ke ok o ok ok ok ok ok ok ok gk ok ok ok ok ok k Rk ok * KEKKKKKK LR T R L L kkkk XxkEXEX** Kk Ak**k
*/

INT8U KeyGetCol (void)

{

return {~inp(KEY PORT COL)); /* Caplement columms (ones indicate key is pressed) */
}
#endif

/*$PAGE*/

Chapter 1: Sample Code — 27

Listing 1.22 (continued) CFG.C

/*

*kkokk *hkkkhkkkkkhhkhhkkkkkkkkkitd Khkkkkhkkkkhkkhhk ok ko ok ko kK Aok
* MULTIPLEXED LED DISPLAY

* I/0 PORTS INITIALIZATION

*
* Description: This is called by DispInit() to initialize the output ports used in the LED multiplexing.
* Arguments : none

* Returns : none

* Notes : 74HC573 8 bit latches are used for both the segments and digits outputs.

*k ok *hkk dhkkdkkkhkhkkkhkkk
*/

#if MODULE_LED
void DispInitPort (void)

{

outp (DISP_PORT _SEG, 0x00); /* Turn OFF segments */

outp (DISP_PORT_DIG, 0x00); /* Turn OFF digits */
}
/*

*okkokk kkhk

* MULTIPLEXED LED DISPLAY
* SEGMENTS output

* Description: This function outputs seven-segment patterns.
* Arguments : seg is the seven-segment patterns to output
* Returns : none

*kk * * ek ok koo ok * ke ke g ok ok k ok ok Kk ek ok ok

*/

void DispOutSeg (INT8U seg)

{
outp (DISP_PORT _SEG, seg);
}
/*
Fkkkhkkhkkhkkhkkkxkkhkhkkik *okkk ok * *hkkk kkokok
* MULTIPLEXED LED DISPLAY
* DIGIT output

*

* Description: This function outputs the digit selector.
* Arguments : msk is the mask used to select the current digit. -

* Returns : none
e ke ke e e ok e okk ke ok e e ok ok ok ook ke ko ok ok ** * AEAKEKEKEKEKRAKRKAK AT AAKRA A AR A AKX TR AA AR ARk A Ak kkkhhhkhkhkhhkhk -
*/

void DispOutDig (INTSU msk)

{

outp (DISP_PORT DIG, msk);
}
#endif

/*S$PAGE*/

===
28 — Embedded Systems Building Blocks, Second Edition
. L. .

Listing 1.22 (continued) CFG.C
/*
vk ok ok ok ok ok ek Rk Fede Aok d dk * * Je ok K
* LCD DISPLAY MODULE
* INITIALIZE DISPLAY DRIVER I/0O PORTS
*
* Description : This initializes the I/0 ports used by the display driver.
* Arguments : none
* Returns : none
7 ok vk o vk e & ok ok ok I ok ok ke *hkkk ** e ok ok ok ok
*/
#if MODULE_ICD
void DispInitPort (void)
{

outp (DISP_PORT (MD, 0x82); /* Set to Mode 0: A are output, B are inputs, C are outputs */
}
/*

Fodk gk ddok dok ok ke Jk X e Fo ke gk ok ok ok Aok kkkdkhhkkkkkokdkkk ko kdokkdkkdhhk

* LCD DISPLAY MODULE
* WRITE DATA TO DISPLAY DEVICE
*
* Description : This function sends a single BYTE to the display device. .
* Arguments ‘data' is the BYTE to send to the display device —_—
* Returns : none
* Notes : You will need to adjust the value of DISP_DLY _CNTS (LCD.H) to produce a delay between
* writes of at least 40 uS. The display I used for the test actually required a delay of
* " 80 uS! If characters seem to appear randomly on the screen, you might want to increase
* the value of DISP_DLY CNTS.
Ahkkhkxhkhkhkhkkkikhhkdkikhhk * kX * * kK EEE S22 & Lt T
*/

void DispDatawr (INTSU data)

{

INT8U diy;

outp(DISP_PORT DATA, data); /* Write data to display module */
outp (DISP_PCRT CMD, 0x01); /* Set E line HIGH */
DispDummy ()} ; /* Delay about 1 uS */
outp (DISP_PORT _(MD, 0x00); /* Set E line LOW */
for (dly = DISP DLY CNTS; dly > 0; dly--) { /* Delay for at least 40 uS */

DispDunmy () ;
}

Chapter 1: Sample Code — 29

Listing 1.22 (continued) CFG.C

/*
ek ek ok ok e ok ok ok ok ok ok ko k * kkk KRRk kk kKR Ak ok ko k ko k R * ke kAR ok ok ko Rk k ok ok
* ICD DISPLAY MODULE

* SELECT COMMAND OR DATA REGISTER

*

* Description : This function read a BYTE from the display device.
* Arguments : none

ok ok ok ok k * %k kkkkkkkhkhkkhhkhkkkkkkkhdkdkkkdkdkhhhkdkdk ok hddhddkdkkddddddhkhkdhkhdhdddkddddhdddddkdkid
*/
void DispSel (INT8U sel)
{
if (sel == DISP_SEL, CMD_RHEG) {
outp (DISP_FORT CMD, 0x02); /* Select the command register (RS low) */
} else {
outp(DISP_PORT CMD, 0x03); /* Select the data register (RS high) */
}
}
#endif
/*
kkkkdkkkk & vk ok k kkkkkkkkhkkhkhkkkkhhhkkkhkhkhhddk kokkkd ok ok ok ke ok dook ok ok ok ok ke
* CLOCK/CALENDAR MODULE
ko ok * ko ko ek k Rk kkkkdkkkhkkhkkkkhdkhkhhhkhkkkhkkkdhhkrkhhkkkhkhhhkkdkkk hkdkx
*/

#if MODULE CLK
#endif

/*
Hdd ek ko kk ok ko *k * * * * dkkk ddkdedk de ok ok ok ke KRk

* TIMER MANAGER

Hkkdkkkk ok kkkok ok k Ak RN KRk kR ARk Rk kR ko k ok ko ko ko *kkk *k ok *kkkkok *kkk

*/

#if MODULE_TMR
#endif

/*$PAGE*/

30 — Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued) CFG.C

/*
* DISCRETE I/0 MODULE
* INITIALIZE PHYSICAL I/Os

* Description : This function is by DIOInit() to initialze the physical I/0 used by the DIO driver.

* Arguments : None.
* Returns : None.
* Notes : The physical I/0 is assumed to be an 82C55A chip initialized as follows:
* Port A = OUT (Discrete outputs) (Address 0x0300)
* Port B = IN (Discrete inputs) (Address 0x0301)
* Port C = OUT (not used) (Address 0x0302)
* Control Word (Address 0x0303)
* Refer to the Intel 82CS55A data sheet.
*% Ak khkhkk

*/
#if MODULE DIO
void DIOInitIO (void)
{

outp(0x0303, 0x82); /* Port A = OUT, Port B = IN, Port C = OUT */
}
/*
* DISCRETE I/0 MODULE
* READ PHYSICAL INPUTS

* Description : This function is called to read and map all of the physical inputs used for discrete

* inputs and map these inputs to their appropriate discrete input data structure.
* Arguments : None.

* Returns : None.

*/

void DIRA (void)
{
DIO DI *pdi;
INT8U 1i;
INT8U in;
INT8U msk;

pdi = &DITb1(0]; /* Point at beginning of discrete inmputs
msk = 0x01; /* Set mask to extract bit 0
in = inp(0x0301); /* Read the physical port (8 bits)
for (1 = 0; 1 < 8; i++) { /* Map all 8 bits to first 8 DI channels
pdi->DITn = (BOOLEAN) (in & msk) 2 1 : 0;
msk <<= 1;

pdi++;

*/
*/
*/
*/

Chapter 1: Sample Code — 31

Listing 1.22 (continued) CFG.C

/*

eI S Tt e st I L T hokok
*
*

*

DISCRETE I/0 MODULE
UPDATE PHYSICAL OUTPUTS

*x kR

* Description : This function is called to map all of the discrete output charmels to their appropriate

* physical destinations.
* Arguments : None.

* Returns : None.

*/

void DOWr (void)
{

DIO DO *pdo;
INT8U i;

INT8U out;
INT8U msk;

pdo = &DOTBL[0];
msk = 0x01;
out = 0x00;
for (1 = 0; 1 < 8; i++)
if {pdo->DOOut == TRUE) {

out = msk;
}
msk <<= 1;
pd0++;
}
outp(0x0300, out);
}
#endif

/*SPAGE*/

/* Point at first discrete output charmel
/* First DO will be mapped to bit 0

/* Local 8 bit port image

/* Map first 8 DOs to 8 bit port image

/* Output port image to physical port

*/
*/
*/

*/

32 — Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued) CFG.C

/*
*hkhkkkkkhkk *kkkk * *k dkkkkKkkhkhkhkkhhkhhkkhkkkhid

* ANALOG I/0 MODULE
* INITIALIZE PHYSICAL I/Os
*
* Description : This function is called by ATOInit() to initialize the physical I/0 used by the AIO
* driver.
* Arguments : None.
* Returns : None.

*k * Tk kA * *hkkkkk * *kkkk *
*/
#if MODULE_ATO

void AIOInitIO (void)

{

/* This is where you will need to put you initialization code for the ADCs and DACs */
/* You should also cansider initializing the contents of your DAC(s) to a known value. */
}
/*
khkhkhkkkhkkkhkkkdk * *kokk *% * *% L LR E
* ANALOG 1/0 MODULE
* READ PHYSICAL INPUTS
*
* Description : This function is called to read a physical ADC chamnel. The function is assumed to
* also control a multiplexer if more than one analog input is comnected to the ADC.
* Arguments : ch is the ADC logical channel number (0..ATO_MAX AT-1).
* Returns : The raw ADC counts from the physical device. .
*hkkk Kkokkkkhk Ak kg ke Ak ok ok ek k khkhkkkkkkkk ek k ok ok Kk Kk
*/
INT16S ATRA (INT8U ch)

{

/* This is where you will need to provide the code to read your ADC(s). */

/* ATRA() is passed a 'LOGICAL‘ chamnel number.

You will have to convert this logical channel */

/* number into actual physical port locations (or addresses) where your MUX. and AICs are located. */
/* ATRA{) is responsible for:

/* 1) Selecting the proper MUX. channel,

/* 2) Waiting for the MUX. to stabilize,

/* 3) Starting the ADC,

/* 4) Waiting for the ADC to camplete its conversion,
/* 5) Reading the counts from the ADC and,

/* 6) Returning the counts to the calling function.

return (ch);

/*SPAGE*/

*/
*/
*/
*/
*/
*/
*/

Chapter 1: Sample Code — 33

Listing 1.22 (continued) CFG.C

/*
* ANALOG I/0 MODULE
* UPDATE PHYSICAL OUTPUTS

* Description : This function is called to write the 'raw' counts to the proper analog output device

* (i.e. DAC). It is up to this function to direct the DAC counts to the proper DAC if more
* than one DAC is used.
* Arguments : ch is the DAC logical channel mumber (0..ATO MAX AO-1).
* cnts are the DAC counts to write to the DAC
* Returns : None.

* *kkx K *x * L * Ak okk *hkkwkk
*/

void ACWr (INT8U ch, INT16S cnts)

{

ch = ch;

cnts = cnts;

/* This is where you will need to provide the code to update your DAC(s). */

/* AOWr() is passed a 'LOGICAL' channel number. You will have to convert this logical channel */

/* number into actual physical port locations (or addresses) where your DACs are located. */

/* AOWr () is responsible for writing the counts to the selected DAC based on a logical number. */ =
}

34 — Embedded Systems Building Blocks, Second Edition

Listing 1.23 CFG.H

/*

* ok * * %k LA d b 2 7k 7 3% ok ok ok ok ok ok ok sk b b sk A sk sk sk sk sk sk s b bk A Ak sk sk sk b b Aok sk b b A b b b b b b bbb A
* Embedded Systems Building Blocks
* Carplete and Ready-to-Use Modules in C
*
* Configuration Header File
*
* {c) Copyright 1999, Jean J. Labrosse, Weston, FL
* 211 Rights Reserved
*
* Filename : CFG.H
* Programmer : Jean J. Labrosse
KhkkKXhkkkkkx * * * ok k o %k X
*/
/*

%k & ok okok *kkkKk % * * %k ko *k kK %% % e Ak ok

* KEYBOARD CONFIGURATTICN CONSTANTS
* (Chapter 3)

*

* Note: These #defines would normally reside in your application specific code.

Y o ok ok e ok % gk kok e d ek Fdedk Ak kdkok Fededededk hddk ke kKKK

*/
#if MODULE, KEY_MN
#define KEY_BUF_SIZE 10 /* Size of the KEYBOARD buffer */
#define KEY_MAX ROWS 4 /* The maximum number of rows on the keyboard */
#define KEY MAX COLS 6 /* The maximum number of columns on the keyboard */
#idefine KEY_PORT ROW 0x0312 /* The port address of the keyboard matrix ROWs */
#define KEY_PORT_COL 0x0311 /* The port address of the keyboard matrix COLUMNs */
#define KEY_PORT CW 0x0313 /* The port address of the I/O ports control word */
#define KEY_RPT DLY 20 /* Number of scan times before auto repeat executes again */
#define KEY_RPT_START DLY 100 /* Number of scan times before auto repeat function engages*/
#define KEY_SCAN TASK DLY 50 /* Number of milliseconds between keyboard scans */
#define KEY_SCAN TASK PRIO 50 /* Set priority of keyboard scan task */
#define KEY_SCAN TASK_STK SIZE 1024 /* Size of keyboard scan task stack */
#define KEY_SHIFT1 MSK 0x80 /* The SHIFT1 key is on bit B7 of the column input port */
/* (A 0x00 indicates that a SHIFT1 key is not present) */
#define KEY_SHIFT1_OFFSET 24 /* The scan code offset to add when SHIFT1 is pressed */
#define KEY_SHIFT2_MSK 0x40 /* The SHIFT2 key is on bit B6 of the column input port */
/* (A 0x00 indicates that an SHIFT2 key is not present)*/
#define KEY_SHIFT2_OFFSET 48 /* The scan code offset to add when SHIFT2 is pressed */
#define KEY_SHIFT3_MSK 0x00 /* The SHIFT3 key is on bit B5 of the colum input port */
/* (A 0x00 indicates that a SHIFT3 key is not present) */
#define KEY_SHIFT3_OFFSET 0 /* The scan code offset to add when SHIFT3 is pressed */
#endif

/*$PAGE*/

ames

Chapter 1: Sample Code — 35

Listing 1.23 (continued) CFG.H

/*

*k ek Aok ok Ak ok * * w* ok * %k *kk
* MULTIPLEXED LED DISPLAY DRIVER CONFIGURATION CONSTANTS

* (Chapter 4)

Fkkkkk ok k ko kR ok kA AT IR Ak Ak kI kA AT hkkk ok dkk ok k kk ok dk hk ko kkk*k * ok b e * *

*/

#if MODULE_1ED

#define DISP FORT SHG 0x0300 /* Port address of SEGMENTS output */
#define DISP_PORT DIG 0x0301 /* Port address of DIGITS output */
#define DISP N _DIG 8 /* Total number of digits (including status indicators) */
#define DISP N SS 7 /* Total number of seven-segment digits */
#endif

/*

KAKKAKKAA KRR A KAA A ARk kk kA khk kA hkAhkhkkkkhkhkhkAkkkkx AAkkkAARAkAKAAkAA Rk kkAdkdkrkkkddohhkhkdhhdk
* ICD DISPLAY MODULE DRIVER CONFIGURATION CONSTANTS

* (Chapter 5)

KKK A A KA KK A AT AR AR KRR R AR AR AR AR AT AR R AR KR AR AR IR A A AR A AR AR AR R A AR R Ak A ARk ko kkkhdhkkk* *

*/

#if MODULE_ICD 7
#define DISP_DLY_CNTS 100 /* Number of iterations to delay for 40 uS (software loop) */
#define DISP_PORT DATA 0x0300 /* Port address of the DATA port of the I{D module */
#define DISP_PORT CMD 0x0303 /* Address of the Control Word (82C55) to control RS & E */
#endif

/*$PAGE*/

36 — Embedded Systems Building Blocks, Second Edition

Listing 1.23 (continued) CFG.H

/*

ke ke ok ke ke ok ok Ik ook ok ok ook *k Fhkkkkkkkkkhkkkkhkhkkkikkhhhkhkhihkhihkhikhkk kdok ok ok ek ok ok ok
* CLOCK/CALENDAR MODULE CONFIGURATICN CONSTANTS

* (Chapter 6)

e ok ok g ke ok ok ke ok ok ek ok ke ke de ke kg * %k *ikk hkkkkkkhkhkkkkhhkhkhkh * kdkikkkk o g ke ok ok ok ko *kk
*/

#if MODULE,_CTXK

#define CLK_TASK PRIO 45 /* This defines the priority of ClkTask() */
#define CLK _DLY TICKS OS_TICKS PER_SEC /* # of clock ticks to obtain 1 second */
#define CLK_TASK_STK_SIZE 512 /* Stack size in BYTEs for ClkTask()} */
#define CLK_DATE EN 1 /* Enable DATE (when 1) */
#define CILK_TS_EN 1 /* Enable TIME-STAMPS (when 1) */
#define CLK_USE_DLY 1 /* Task will use OSTimeDly(} instead of pend on sem. */
#endif

/*

L T L e e e T T s e St e s s e

TIMER MANAGER

*

*

(Chapter 7)

e ke e e e e ke e ke e e ek T ek ok e ok ek ke ok e e e e o T ok ok ke ok ook ko ko T ok e e o sk ok sk ok ok ok ok ok K ek e e e ok ok ok ok ok ok ok

*/

#if
#define
#define
#define
#define

#define

#endif

MODULE,_TMR

TMR_TASK_FPRIO 40

TMR_DLY_TICKS (OS_TICKS_PER_SEC / 10)
TMR_TASK_STK_SIZE 512

TMR_MAX_TMR 20

TMR_USE_SEM 0

/*SPAGE*/

Chapter 1: Sample Code — 37

Listing 1.23 (continued) CFG.H

/*

L L T L L L L L L T T T
* DISCRETE I/0 MODULE CONFIGURATION CONSTANTS

* (Chapter 8)

s T]

*/

#if MODULE DIO

#define DIO_TASK_PRIO 35

#define DIO_TASK DLY_TICKS (OS_TICKS_PER SEC / 10)

#define DIO_TASK STK SIZE 512

#define DIO MAX DI 8 /* Maximum nunmber of Discrete Input Channels {1..255) */
#define DIO _MAX_DO 8 /* Maximum number of Discrete Output Channels (1..255) */
#define DI_EDGE EN 1 /* Enable code generation to support edge trig. (when 1) */
#define DO _BLINK MODE_EN 1 /* Enable code generation to support blink mode (when 1) */
#endif

/*

*kkk * * kkkk kKX ER T2 R s e T TSR S s S RS R s R RS LR R S LTRSS S RIS SRR Lt
* ANAIOG I/0 MODULE CONFIGURATION CONSTANTS

* (Chapter 10)

Kk Ak kA KR Kk ko k kA AR AR Ak ok ok AR A I I Hk ok ko F kK I IRk kk ok kA k R d Ak dkokkd o krdh ko ARk okkk Xk Ak Ak kokdkkokdkkkkkwk

*/

#if MODULE_ATO

#define ATO_TASK PRIO 30

#define AIO_TASK_DLY 100 /* Execute every 100 mS */
#define AIO TASK STK SIZE 512

#define ATO MAX AT 8 /* Maximum number of Analog Input Channels (1..250) */
#define AIQ MAX AO 8 /* Maximum number of Analog Output Channels (1..250) */
#endif

/*$SPAGE*/

38 — Embedded Systems Building Blocks, Second Edition

Listing 1.23 (continued) CFG.H

/*
* *kk *k sk k * * xkkk
* ASYNCHRONOUS SERTAL COMMUNICATIONS MODULE CONFIGURATION CONSTANTS
* (Chapter 11)
* * %k * ok ok *kok *kok *, ok &k ke * * * * ok kk ke
*/
#if MODULE _CCMM PC
#define COMMI_BRASE 0x03F8 /* Base address of PC's COML */
#define COMM2_BASE 0x02F8 /* Base address of PC's COM2 */
#define COMM MAX RX 2 /* Maximum number of characters in Rx buffer of ... */
/* ... NS16450 UART. 2 for 16450, 16 for 16550. */
#endif
#if MODULE_CCMM BGND
#define COMML 1
#define coM2 2
#define COMM RX BUF_SIZE 64 /* Number of characters in Rx ring buffer */
#define COMM_TX_BUF_SIZE 64 /* Number of characters in Tx ring buffer */
#endif
#if MODULE_CCMM_RTOS
#define comMl 1
#define COMM2 2
#define COMM RX_BUF_SIZE 64 /* Number of characters in Rx ring buffer */
#define COMM_TX BUF_SIZE 64 /* Number of characters in Tx ring buffer */

#endif

Chapter 1: Sample Code — 39

Listing 1.24 INCLUDES.H

/*
KEAAKKAXXA A ALK A A Ak kX Xk hhkkkkKx 3 * % ok ok &k ok AR AA A KA AR A AR A A A A A AR A A AL AN h o hh &
* Embedded Systems Building Blocks
* Camplete and Ready-to-Use Modules in C
*
* Master Include File
*
* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved
*
* Filename : INCLUDES.H
* Programmer : Jean J. Labrosse
A A KA A AR AN A AR AR A A A A A KA A A AKX AR A AT A kA ARk ko kA Ak Ak L *kk kA HAKA AR AAE AT AL AT Ak h ok k
*/
/*
kkkk Ak ok kk kR A A A A Aok k Ak kk Ak ko kdkok ok kA A hhkk Ak kkdkdkx hkkkhkhkhkhk khk kKA A A RA KK
* CCNSTANTS

LR e T T T e T

*/

/* MODULE ENARIED (1) or DISABLED (0) */
#define MODULE_KEY_MN 1 /* Keyboard module */
#define MODULE_LED 0 /* Multiplexed LED module */
#define MODULE ICD 1 /* LCD Character module */
#define MODULE_CLK 1 /* Clock/Calendar module */
#define MODULE TMR 1 /* Timer Manager module */
#define MODULE _DIO 1 /* Discrete I/0 module */
#define MODULE_ATO 1 /* Analog I/0 module */
#define MODULE COMM PC 1 /* Asynchronous Serial Cammnications module */
#define MODULE_COMM_BGND 0 /* Foreground/Background buffered serial I/0 */
#define MODULE COMM RTOS 1 /* Real-Time Kemmnel buffered serial I/0 */
#define MODULE ELAPSED 1 /* Elapsed time measurement module */
#define CFG.C /* Indicate that application specific code is found in CFG.C */
#define CFGH /* Indicate that configuration #defines is found in CFG.H */
/*
KA A A A A A AR AR A A A A AR A AN AL AA AN AR kA AR A AN AT I h ARk kA Ak kR kk * ok * hhkhkkhk kA A AAXA A AKXk hhExhhkdd
* CONSTANTS

L L T X T R T T T T A E 2

*/

#define FALSE 0
#define TRUE 1

/*$PAGE*/

40 — Embedded Systems Building Blocks, Second Edition

Listing 1.24 (continued) INCLUDES.H

/*
KAK KA A AR A KRR AR IR A A A KA KRR AR KA RARKRKR AR AR AR AR AAR KA Ak h R I Ik k kA hhhhhhdhk A ukhkhhhhhhhdhhhkhhhhhhhhhkakhkhhhhdhkhhhhhkhidi
* Standard Libraries (DOS)

R T L T R L L e Lt e T Ty S T

*/

#include <stdio.h>
#include <string.h>
#include <ctype.h>
#include <stdlib.h>
#include <conio.h>
#include <dos.h>
#include <setjmp.h>

/*
AEE KA AR A AR T A I AR A A A A AR AT AN A A AT AR A R A A AR AR A A IR AR A A AR R I A KA A A AR A ANA AR A A KA AR AR AR A KA A Ak Rk A A AR Ak AT A Ak kA ko ke h K
* uC/0S Header Files

g g L e e e e e e S e S T T e s T

*/

#include “\software\ucos-1i\ix861-fp\bcd5\os_cpu.h"

#include "\software\blocks\sample\source\os_cfg.h"

#include "\software\ucos-ii\source\ucos_ii.h"

#include “\software\blocks\pc\bcd5\pc.h" -

/*SPAGE* /

Listing 1.24 (continued) INCLUDES.H

Chapter 1: Sample Code — 41

/*

L L T T T T L P T e T L

*

Building Blocks Header Files

L T S T T T T L T

*/
#ifdef
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
$#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endi f

CFG_H
"\ software\blocks\sample\source\cfg.h"

MODULE,_KEY_ MN
"\software\blocks\key mm\source\key.h"

MODULE_ICD
"\sof tware\blocks\lcd\source\lcd.h"

MODULE_LED
"\sof tware\blocks\led\source\led.h"

MODULE_CLK
"\software\blocks\clk\source\clk.h" =

MODULE, TMR
"\software\blocks\ tmr\source\tmr.h"

MODULE_DIO
"\software\blocks\dio\source\dio.h"

MODULE_ATO
"\software\blocks\aio\source\aio.h"

MODULE COvM_PC
"\sof tware\blocks\camm\source\camm _pc.h"

MODULE_CCOMM_BGND
"\ sof tware\blocks \camm\ source\commbgnd.h" -

MODULE CGMM_RTOS
"\ sof tware\blocks\cam\source\camrtos.h"

i
3
R

42 — Embedded Systems Building Blocks, Second Edition

Listing 1.25 MAKETEST .BAT

ECHO OFF

CLS

Em.lo hkdk Ak kkhhdr kA kkkhkkrkkxxkhdkkkkkx %k ok * %k KhkkhkkA XA kXXX h kK *k
ECHO Embedded Systems Building Blocks

ECHO
ECHO
ECHO
ECHO
ECHO
ECHO * Filename : MAKETEST.BAT

ECHO * Description : Batch file to create the application.

ECHO * Output : TEST.EXE will contain the DOS executable

ECHO * Usage : MAKETEST

ECHO * Note(s) : 1) This file assume that we use a MAKE utility.

m{o AAKKE AR TAAKRKE LRI AKRK AR AT AR AR AR KA A AR AR KT A Ak A AR Ak hhhkhkhhhhk Ak hkhkKkhkhkhkAkA AKX KET KKK

ECHO *

ECHO ON

MD .. \WORK

MD ..\OBJ

MD . ALST

CD . . \WORK

copPY . \TEST\TEST.MAK TEST.MAK

E:\UTILS\MAKE -R -C TEST.BAT -#4 -F TEST.MAK

IF NOT EXIST TEST.BAT GOTO END =
COPY TEST.BAT ..\TEST /y

CALL, TEST.BAT

:END

CD . \TEST

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
A1l Rights Reserved

* k% % ¥k

Chapter 1: Sample Code — 43

Listing 1.26 OS _CFG.H

/*

Akkkkk kA khddAkdkkkkkkkkkdkkdkkkkkkkdkkkkkkkkkkkkkdkkhdkk A kA A d kA kddkkhkkArkhkkkkkkkkkkkkkkArkdhkkdAkAhkkkhkkkkx
* uC/0S~IT

* The Real-Time Kernel

*

* (c) Copyright 1992-1998, Jean J. labrosse, Plantation, FL

* All Rights Reserved

*

*

Configuration for Intel 80x86 (Large)
*

* File : OS5 CFG.H

* By : Jean J. Labrosse

Tk kA AR AR AR AT I IRk hh ok ok ok ko k ok ko k A Ak ARk ok Ak k ok kA kA kA AR AR * Ak A kA Ak A A R Ak kkh kA kA kk kA kkkk ok ko kkk Ak kkhdkkkhdk

*/

/*
hkhkkhkhkhkhdhkhkhkhkhkkkkhkkkhkkhk ok kA A Ak ko d ok ko kA ko ko k ok Ak kA ke kA kAR A A A A A A A A kA h ok kA kA A A A A A Ak kd Ak k Ak kkdokk
* uC/0S-IT CONFIGURATION
*hk ki KAk kkhk Ak kA kkAdhAxhhkkdihd
*/
#define OS_MAX_EVENTS 5 /* Max. mumber of event control blocks in your application ... */
/* ... MUST be >= 2 */
#define OS MAX_MFM_PART 5 /* Max. number of memory partitions ... */
/* ... MUST be >= 2 . */
#define 0S _MAX QS 5 /* Max. mumber of queue control blocks in your application ... */
/* ... MUST be >= 2 */
#define 0OS_MAX TASKS 20 /* Max. number of tasks in your application ... */
/* ... MUST be >= 2 */
#define OS_LOWEST PRIO 63 /* Defines the lowest priority that can be assigned ... */
/* ... MUST NEVER be higher than 63! */
#define OS_TASK_IDLE STK SIZE 512 /* Idle task stack size (¥ of 16-bit wide entries) */
#define OS_TASK STAT EN 1 /* Enable (1) or Disable(0) the statistics task */
#define OS_TASK STAT STK_SIZE 512 /* Statistics task stack size (# of 16-bit wide entries) */

#define 0OS_CPU_HOOKS_EN
#define OS_MBOX EN

#define 0S_MEM EN

#define 0S_Q EN

#define OS_SEM_EN

#define 0S_TASK CHANGE PRIO_EN
#define 0OS_TASK CREATE_EN
#define 0S_TASK CREATE EXT EN
#define OS_TASK_DEI, FN

#define 0OS_TASK SUSPEND_EN

/* uC/0S-II hooks are found in the processor port files */
/* Include code for MATLBOXES */
/* Include code for MEMORY MANAGFR (fixed sized memory blocks) */
/* Include code for QUEUES */
/* Include code for SEMAPHORES */
Include code for OSTaskChangePrio() */
/* Include code for OSTaskCreate() */
/* Include code for OSTaskCreateExt () */
/* Include code for OSTaskDel() */
/* Include code for OSTaskSuspend() and OSTaskResume() */

CORRPRORREROR
~
»*

#define OS_TICKS PER_SEC 200 /* Set the number of ticks in one second */

=
44 — Embedded Systems Building Blocks, Second Edition
o« 4o
Listing 1.27 TEST.C
/%
/
A A A A A A A A kA A kA kA A Ak A kA kA kA kA Ak A Ak A A A A kA A A A kA A A A A A A A A A A A A A A A XA A XA A I A XA XA XA X I XA * A dhhkx
* Embedded Systems Building Blocks
* Camplete and Ready-to-Use Modules in C
*
* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved
*
* Filename : TEST.C
* Programmey : Jean J. Labrosse
Ak A A A AT AR A A A A A A A A A A AR A A A AR A AR A A I A XA A AKX KA A A ARk dkk ko k ok
*/
#include "includes.h"
/*
Fk ko kR A A A A A AR Rk Ak A A kA A A A A kA kA Ak ke kA A A A Ak Rk kA kA ko d ko ke bk ok ok ok ko o
* CONSTANTS
Kk kA Ak A A A A A A A A A A A A A A A A A A Ak A A R kA A Ak A A Ak Ak kA kA kA kA ko ko ko kb ok ke ok ke ok
*/
#define TASK_STK_SIZE 512 /* Size of each task's stacks (# of 16-bit words) */
#define TEST._TASK_PRTO 10 —
#define STAT TASK PRIO 20
#define RND_TASK_PRIO 30
/*
**********{***i****
* VARTABLES

LR L e T

*/

0OS_STK TestStatTaskStk[TASK_STK_SIZE] ;

0S_STK TestTaskStk[TASK_STK_SIZE] ;

0S_STK TestRndTaskStk([10] [TASK_STK_SIZE];

/ *

Kk kA A AR A A kA A ARk kA A A A A kA A A A A A ok kA Ak ok kA Ak ok ko d ke kA Ak ke d ok ok ko hok ok kk o
* FUNCTION PROTOTYPES

e ke e e e ok vk 3k ke ko ko ko ok oAk o 3k o e o ok 3 o ko ok o ke ke ok o ok e ke ok ok ok ok ok ok ok o ok o ok ok o e o e o o o ok o ok o ke ok ok ek

*/

void TestStatTask(void *data);

void TestTask{void *data);

void TestRndTask (void *data);
static void TestInitModules (void) ;
static void TestTmr0TO(void *arg) ;
static void TestTmrlTO{void *arg);

/*SPAGE*/

Chapter 1: Sample Code — 45

Listing 1.27 (continued) TEST.C

/*
* *k kkokk *k
* MAIN
*kkk *k *k kkkeok kokok *k

*/

void main (void)

{
PC_DispClrScr (DISP_FGND WHITE + DISP_BGND BLACK) ; /* Clear the screen */
OSInit(); /* Initialize uC/0S-II */
OSFPInit () ; /* Initialize floating-point support */
PC_DOSSaveReturn() ; /* Save enviromment to return to DOS */
PC_VectSet {uC0S, OSCtxSw) ; /* Install uC/0S-II's context switch vector */

OSTaskCreateExt (TestStatTask, (void *)0, &TestStatTaskStk[TASK_STK_SIZE], STAT TASK_PRIO,
STAT TASK_PRYO, &TestStatTaskStk[0], TASK STK SIZE, (void *)0, OS_TASK OPT SAVE FP);
osstart () ; . /* Start multitasking */

/*$PAGE*/

46 — Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued) TEST.C

/*
e e e et e e L s S e S e L S s 2 T e 2 T2
* STATISTICS TASK

ek ek ke kK *kok ke de kK k LR T L e e T s T e L e
*/

void TestStatTask (void *pdata)
{

INT8U i;

INT16S key;

char s{100]};

pdata = pdata; /* Prevent campiler warning

PC_DispStr(21, O, " EMBEDDED SYSTEMS BUILDING BLOCKS *y

DISP_FGND WHITE + DISP_BGND_RED + DISP BLINK) ;
PC_DispStr(21, 1, 'Camlete and Ready-to-Use Modules in C", DISP FGND WHITE) ;
PC_DispStr({21, 2, " Jean J. Labrosse®, DISP FGND WHITE};
BC DispStr(21, 3, " SAMPLE (CODE‘, DISP_FGND_WHITE) ;

OS_ENTER_CRITICAL{) ;

PC_VectSet (0x08, OSTickISR);: /* Install uC/0S-II's clock tick ISR
BC_SetTickRate (OS_TICKS_PER SEC); /* Reprogram tick rate
0OS_EXIT_CRITICAL();

PC DispStr(0, 22, "“Determining CPU's capacity ...", DISP_FGND WHITE);
0SStatInit(); /* Initialize uC/0OS-II's statistics
PC_DispClrLine(22, DISP_FGND WHITE + DISP BGND_BILACK) ;

PC DispStr{ 0, 22, "#Tasks : xxoxxx CPU Usage: xxx %', DISP_FGND WHITE) ;
PC_DispStr(0, 23, "#Task switch/sec: xoox®, DISP_FGND WHITE) ;
PC DispStr(28, 24, "<-PRESS 'ESC' TO QUIT->*, DISP_FGND WHITE + DISP_BLINK) ;

OSTaskCreateExt (TestTask, (void *)0, &TestTaskStk(TASK STK SIZE}, TEST_TASK PRIO,

TEST_TASK_PRIO, &TestTaskStk[0], TASK STK SIZE, (void *)0, OS_TASK OPT_SAVE FP);

for (i = 0; 1 < 10; i++) {

*/

*/
*/

*/

OSTaskCreateExt (TestRndTask, (void *)0, &TestRndTaskStk(i][TASK STK_SIZE], RND TASK PRIO + i,
RND_TASK _PRIO + i, &TestRndTaskStk[i][0], TASK STK SIZE, (void *)0, OS_TASK OPT_SAVE FP);

for (;;) {
sprintf(s, "%5d4", OSTaskCtr); /* Display #tasks running
PC_DispStr{l8, 22, s, DISP_FGND BIUE + DISP BGND CYAN);

sprintf(s, "%$3d", OSCPUUsage); /* Display CPU usage in %
PC_DispStr(36, 22, s, DISP_FGND BIUE + DISP_BGND CY2N);

sprintf (s, *%5d", OSCtxSwCtr); /* Display #context switches per second
PC_DispStr (18, 23, s, DISP_FGND BLUE + DISP_BGND_CYAN);

OSCExSwCtr = 0;
sprintf(s, "v%1d.%02d", Osversion()} / 100, OSversion() % 100);
PC_DispStr(75, 24, s, DISP_FGND_YELLOW + DISP_BGND_BLUE) ;

*/

*/

*/

Chapter 1: Sample Code — 47

Listing 1.27 (continued) TEST.C

PC_GetDateTime(s); /* Get and display date and time */
PC_DispStr(0, 24, s, DISP_FGND BLUE + DISP_BGND CYAN);

if (PC_GetKey(&key) == TRUE) { /* See if key has been pressed */
if (key == 0x1B) { /* Yes, see if it's the ESCAPE key */
PC_DOSReturn{) ; /* Return to DOS */
}
}
OSTimeDlyHMSM(0, 0, 1, 0}; /* Wait one second : */

}
}
/*$SPAGE*/

48 — Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued) TEST.C

/*

ek ok ok K Kk ko kK KKk Kk Kk kK Kk KR KKKk KKK ko kA k kT Kok ok ok ok ok Kok ok ok ok ok bk ok ok ok Tk ok ke ok ok ok ok ok ok ok R T o ok ke ok ok ok ok ok ok ok

* TEST TASK

R T T e LR L LA I T T T P P e e PP e e T

*/

void TestTask (void *data)
{

char s[81];

INT16U time;

data = data;
PC_DispStr(0, , "Date :", DISP_FGND WHITE);
PC _DisgpStr(0, , "Time :", DISP_FGND WHITE);
PC DispStr(0, 8, "Tmr#0:

DISP_FGND_WHITE) ;
PC DigpStr(0, 9, "Tmr#l:

DISP_FGND_WHITE} ;
PC_DispStr(0, 10, "DO #0:", DISP_FGND WHITE);
PC_DispStr(0, 11, "DO #1:", DISP_FGND WHITE);

~

TestInitModules();

ClkSetDateTime (12, 31, 1999, 23, 57, 55);
TmrCfgFnct (0, TestTwr0TO, (void *)0);
TmrCfgFnct (1, TestTmrlTO, (void *)0);
TrrSetMST (0, 1, 3, 9);

TmrStart (0);

TmrSetMST(1, 2, 0, 0);

TmrStart(1l);

DOCEgBlink (0, DO_BLINK EN, 9, 18);
DOCfgBlink (1, DO_BLINK EN, 45, 90);
DCCfgMode (0, DO_MODE,_BLINK_ASYNC, FALSE);
DOCfgMode (1, DO _MODE BLINK_ASYNC, FAISE);

/* Prevent campiler warning

Task that displays numbers randomly!

/* Initialize all building blocks used

/* Set the clock/calendar

/* Execute when Timer #0 times out

/* Execute when Timer #1 times out

/* Set timer #0 to 1 min., 3 sec. 9/10 sec.

/* Set timer #1 to 2 minutes

/* Initialize Discrete Qutputs #0 and #1

*/

*/
*/
*/
*/
*/
*/

*/

miT

Listing 1.27 (continued) TEST.C

Chapter 1: Sample Code — 49

for (;:) {

PC_ElapsedStart(};
ClkFormatDate(2, s); /*
time = PC_ElapsedStop{);

Get formatted date from clock/calendar

FC_DispStr(10, 6, * *, DISP_FGND_WHITE) ;

PC DispStr(10, 6, s, DISP_FGND WHITE);

sprintf(s, 'ClkFormatDate() takes %3d uS', time);
PC DispStr(0, 15, s, DISP FGND_WHITE);

PC_ElapsedStart () ;

ClkFormatTime(1, s); /*
time = PC_ElapsedStop();

PC DispStr (10, 7, s, DISP_FGND WHITE);

sprintf(s, "ClkFormatTime() takes %3d uS", time);
PC DispStr{ 0, 16, s, DISP _FGND WHITE);

ThneFormat (0, s); /*
PC_DispStr(10, 8, s, DISP_FGND WHITE);
TmrFormat (1, s); /*

PC DispStr(10, 9, s, DISP_FGND WHITE);

PC_DispChar (10, 10, DOGet(0) + '0', DISP_FGND WHITE);
PC_DispChar (10, 11, DOGet(1) + '0', DISP_FGND WHITE);

OSTimeDlyHMSM(0, 0, 0, 100);

/*SPAGE*/

Get formatted time from clock/calendar

Get formatted remaining time for Tmr#0

Get formatted remaining time for Tmr#l

/* Display state of discrete outputs
/* Display state of discrete outputs

*/

*/

*/

*/

*/
*/

50 — Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued) TEST.C

/*
Fokkok Kk kK k ek k ok k Rk Ak ko kR kR k ko k kR ok h kK Kk kA kKR dokk Ak ok hk ok kk ko hok ok ok Hkokk *kok *
* RANDOM NUMBER TASK

33k e e ok ok kg de o K ok ok ke s e g vk ke ke ek ko ke ke k ok sk ek Ak ek ko ke kK ke kA ok kK ke k ok ok de ko k ok ok ok ok ok kk ok

*/

void TestRndTask (void *data)

{
INT8U x;
INT8U vy;
INTS8U z;
data = data;
for (;:) {
OSTimeDly (1) ;
x = random(36); /* Find X position where task number will appear *x/
y = random(10) ; /* Find Y position where task number will appear */
z = random(10) ; /* Find random number from 0 to 9 */
PC DispChar (X + 43, v + 10, z + '0', DISP_ F&D WHITE); /* Display number at random locations */
}
}
/*$PAGE*/

Chapter 1: Sample Code — 51

Listing 1.27 (continued) TEST.C

/*

* EMBEDDED SYSTEMS BUILDING BLOCKS
* Modules Initialization

*/

static void TestInitModules (void)
{
#if MODULE_ELAPSED
PC_ElapsedInit () ; /* Initialize the elapsed time module */
#endif

#if MODULE_KEY MN
KeyInit(); /* Initialize the keyboard scanning module */
#endif

#if MODULE_ICD
DispInit(4, 20); /* Initialize the LCD module (4 x 20 disp.) */
#endif

#if MODULE_CLK
ClkInit(); /* Initialize the clock/calendar module */
#endif =

#if MODULE TMR
TrrInit () ; /* Initialize the timer manager module */
#endif

#if MODULE_DIO
DIOInit () ; /* Initialize the discrete I/0 module */
#endif

#if MODULE_ATO
ATOInit(); /* Initialize the analog I/O module */
#endif

#if MODULE COMM PC
ComCfgPort (COMML, 9600, 8, COMM PARITY_NCNE, 1); /* Initialize CCM1 on the PC */
#endif

#if MODULE,_COMM BGND -
CommInit () ; /* Initialize the buffered serial I/0 module*/
#endif _

#if MODULE_COMM RTOS
CommInit () ; /* Initialize the buffered serial 1/0 module*/
#endif
}
/*SPAGE*/

52 — Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued) TEST.C

Vad

* *kokdkokkk kkkk kA kAh Ak khkhk kAR kA A A Ak khdkhdhhkrdhkdhdhhk kA A Ak kk ok ok dhkkk ko kkkkdhk kb hhhhkrrdhhddhdx
* Function executed when Timers Time Cut

L T T S T T T ST

*/

static void TestTmrOTO (void *arg)
{
arg = arg;
PC _DispStr(22, 8, "Timer #0 Timed Out!", DISP_FGND WHITE);

static void TestTmrlTO (void *arg)
{
arg = arg;
PC_DispStr (22, 9, "Timer #1 Timed Out!", DISP_FGND WHITE) ;

pis

Chapter 1: Sample Code — 53

Listing 1.28 TEST.LNK

/v /s /¢ /P- /LE:\BC45\LIB +
COL.OBJ +

. - \OBJ\CFG.OBJ

. .\OBJ\CLK.OBJ

.. \OBJ\COMM_FC.OBJ
. . \OBJ\COMM_PCA.OBJ
. . \OBJ\COMMRTOS . OBJ
. .\OBJ\AIO.CBJ

. -\OBJ\DIO.OBJ

.. \OBJ\KEY.OBJ

.. \OBJ\LCD.OBJ

.. \OBJ\OS_CPU_A.OBJ
.. \OBJ\OS_CFU_C.OBJ
..\OBJ\PC.OBJ

. .\OBJ\TEST.OBJ

. .\OBJ\TMR.OBJ +

. .\OBJ\uCOS_IT.ORJ, . . \OBJ\TEST, . .\CBJ\TEST,CL.LIB +
FP87.LIB +

MATHL.LIB

+ o+ o+ o+ o+ o+ o+ o+ A+ o+ o+ o+

54 — Embedded Systems Building Blocks, Second Edition

Listing 1.29 TEST.MAK

HHEHHHEEEEEHEEER R R R R

Enbedded Systems Building Blocks

#

(c} Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

#

#

Filename : TEST.MAK

FHEEHEEEEHEEEHEE R R R
#

#/*SPAGE*/
HEHHEEEHEHE R EHEEEEER R
TOOLS

HHHHEEEEEE R R R R R R R
#

CC=E: \BC45\BIN\BCC
ASM=E: \BC45\BIN\TASM
LINK=E: \BC45\BIN\TLINK

HHEHHHEHHHHEE R R R R
DIRECTORIES

SRR R R R R
#

ATO=\SOFTWARE\BLOCKS\ATO\ SOURCE
CLK=\SOFTWARE\BLOCKS \CLK\ SOURCE
COMM=\ SOFTWARE\ BLOCKS\ COMM\ SOURCE
DIO=\SOFTWARE\BLOCKS\DIO\ SOURCE
KEY=\SOFTWARE\BLOCKS\KEY_MN\SCURCE
LCD=\SOFTWARE\BLOCKS\ LCD\ SOURCE
LED=\SOFTWARE\BLOCKS \ LED\ SOURCE
0S=\SOFTWARE\uCOS-II\SOURCE

PC=\ SOFTWARE\BLOCKS\ PC\BC45
PORT=\SOFTWARE\uCOS-II\IxX86L-FP\BC45
TMR=\SOFTWARE\BLOCKS\TMR\ SOURCE

#

LIB_PATH = E:\BC45\LIB
INCLUDE_PATH = E:\BC45\INCLUDE

#
#/*SPAGE*/

ks

Chapter I: Sample Code — 55

Listing 1.29 (continued) TEST.MAK

SRR R IR R R

ASSEMBLER FLAGS

#

/ml ' Large model

/zi Full debug info

FEHH BB AR A AR A AR R A R R R
#

ASM FLAGS=/ml /zi

FHEHHEHHEEHH A R i
CMPILER FLAGS

#

#

-1 Generate 80186 code

-B Campile and call assenbler

Campiler to .OBJ

-d Duplicate strings merged

-dc Put strings in code segment

G Select code for speed

-1 Path to include directory

k- Don't use standard stack frame

-ml Large mewmory model

N- Do not check for stack overflow

-n Path to object directory =
-0 Optimize jumps

-S Generate assembler source

—v Source debugging ON

—vi Turm inline expansion ON

—wpro Error reporting: call to functions with no prototype

-z Suppress redundant loads

SR RERR R R R R R R R R R

#
C_FLAGS=~f287 ~c -ml -1 -G -0 Ogenwvlbpi -Z —d -n..\obj -k~ -v -vi- -wpro -I$(INCLUDE_PATH)

FHHEEHHEHHEHEEEEEHHR R R R B R

LINKER FLAGS

HHHHEHE R R R
#

LINK_FLAGS=

#/*SPAGE*/ -

56 — Embedded Systems Building Blocks, Second Edition

Listing 1.29 (continued) TEST.MAK

R R EREREEEEEH R R R

#

CREATION OF .HEX FILES

HEHHEEEHHEHHREEEEEHHH R R R R R R R

$ (TARGET) \TEST . EXE:

$ (OBJ) \ATO.OBJ
$ (OBJ) \CFG.OBJ
$(OBJ) \CLK.OBJ

$ (OBT) \COMM_PC.OBRT
$ (OBJ) \COMM_PCA.OBJ
$ (OBJ) \COMMRTOS . OB
$ (OBJ}\DIO.OBJ
$(OBJ) \KEY.OBJ

$ (OBJ) \LCD.OBJ

$ (OBJ) \LED.OBJ
$(OBJ) \LED_IA.OBJ
$ (OBJ)\OS_CPU_A.OBJ
$ (OBJ) \OS_CPU_C.OBJ
$(OBJ) \PC.OBT

$ (OBJ) \TEST.CBJ
$(OBJ) \TMR.CBJ

$ (OBJ) \uCOS_II.OBJ
$ (SOURCE) \TEST. LNK
copy $ (SOURCE) \TEST . LNK

DEL $ (TARGET) \TEST.MAP

DEL $ (TARGET) \TEST. EXE

$(LINK) $(LINK FLAGS) @TEST.LNK

COPY $(ORJ)\TEST.EXE $(WORK)\TEST.EXE /vy
E: \PD\PDCCNVRT TEST

copY $(OBJ)\TEST.MAP $(TARGET) \TEST.MAP /y
CoPY $(OBJ)\TEST.EXE $(TARGET)\TEST.EXE /vy
DEL TEST.MAK

P P o

HEHEHHEEEE R EREEREEEEE R R R R R

#

CREATION OF .0 (Object) FILES

W R EERHEHHERHRE R

$ (ORJ) \AIO.ORJ:

$(OBJ) \CFG.OBRJ:

$ (OBJ) \CLK.CBJ:

$ (ATO)\ATO.C \

INCLUDES.H
COPY $(ATO)\AIO.C ATO.C
DEL $ (OBJ) \AIO.OBJ

$(CC) $(C_FLAGS) ATO.C

$ (SOURCE) \CFG.C \

INCLUDES.H
COPY $(SOURCE) \CFG.C CFG.C
DEL $ (OBJ)\CFG.CBJ

$(CC) $(C_FLAGS) CFG.C

$(CLK) \CLK.C \

INCLUDES.H

COPY $(CLK)\CIK.C CLX.C
DEL $ (OBJ) \CLK.OBJ

$(CC) $(C_FLAGS) CLX.C

Fer

Chapter 1: Sample Code — 57

Listing 1.29 (continued) TEST.MAK

${OBJ} \COMM_PC.OBJ:

$ (OBJ) \COMM_PCA.OBJ:

$(OBJ) \COMMRTOS.OBJ :

$(OBJ) \DIO.OBJ:

$(OBJ) \KEY.OBJ:

$(OBJ) \LCD.OBJ:

${OBJ) \LED.OBJ:

$(OBJ)\LED_JA.OBJ:

$ (COMM) \COMM_PC.C \
INCLUDES.H

COPY ${COMMI\COMM_PC.C
DEL $ (OBJ) \COMM_FC.OBJ

$(CC) $(C_FLAGS)

$ (CoMM) \COMM_PCA . ASM

COPY $(COMM) \COMM_PCA.ASM
DEL $ (OBJ) \COMM_PCA.CBJ

$(ASM) S (ASM _FLAGS)

$ (CoMM) \CQMMRTOS .C \
INCLUDES.H

COPY $(COMM) \COMMRTOS.C
DEL $ (OBJ) \COMMRTOS . OBJ

$(CC) $(C_FLAGS)

$(DIO)\DIO.C \
INCLUDES.H

COPY $(DIO)\DIO.C
DEL $ (OBJ) \DIO.OBJ
${CC) $(C_FLAGS)

$ (KEY) \KEY.C \
INCLUDES.H

COPY $(KEY)\KEY.C
DEL $(OBJ) \KEY .OBJ
$(CC) $(C_FLAGS)

$ (LCD)\LCD.C \
INCLUDES.H

CQOPY $(LCDINLCD.C
DEL $ (OBJ) \LCD.OBJ
$(CC) $(C_FLAGS)

$ (LED) \LED.C \
INCLUDES . H

COPY $(LED)\LED.C
DEL $(OBJ) \LED.OBJ
${CC) $(C_FLAGS)

$ (LED) \LED_TA.ASM

COPY $(LED)\LED TA.ASM
DEL $(OBJ) \LED_IA.OBJ

$(ASM) $(ASM_FLAGS)

oM PC.C

oM _PC.C

COMM_PCA.ASM

$ (CoMM) \COMM_PCA.ASM, $(OBJ) \COMM_PCA.CBJ

COMMRTOS.C

COMMRTOS.C

DIO.C

DIO.C

KEY.C

KEY.C

LCD.C

ICD.C

LED.C

LED.C

LED TA.ASM

$ (LED) \LED_TA.ASM, $(OBJ)\LED_TA.OBJ

58 — Embedded Systems Building Blocks, Second Edition

Listing 1.29 (continued) TEST.MAK

$ (OBJ)\OS_CPU_A.OBJ: $(PORT)\OS_CPU_A.ASM \
INCLUDES.H
COPY $(PORT)\OS_CPU_A.ASM 0OS_CPU_A.ASM
DEL $ (OBJ)\OS_CPU_A.OBJ
$(ASM) $(ASM FLAGS) S (PORT)\OS_CPU_A.ASM, S (OBJ)\OS_CPU_A.CBJ

${(CBJ}\OS_CPJ C.ORJ: $(PORT)\OS_CPU_C.C \
INCLUDES.H
COPY ${PCRT)\OS_CPU_C.C Os_Cry_C.C
DEL $ (OBJ) \OS_CPU_C.COBJ

$(CC) $(C_FLAGS) 0S_CPU C.C
$ (OBJ) \PC.OBJ: S(FC)\FC.C \
: INCLUDES.H
COPY $(FC)\PC.C PC.C
DEL $ (OBT) \PC.OBT
$(CC) $(C_FLAGS) FC.C
$ (OBJ) \TEST.ORJ: $ (SOURCE) \TEST.C \
INCLUDES.H
COPY $(SOURCE) \TEST.C TEST.C
DEL $ (CBJ) \TEST.OBJ
$(CC) $(C_FLAGS) TEST.C
$ (ORJ) \ITMR.ORJ: ${TMR)\IMR.C \
INCLUDES.H
COPY $(TMR)\IMR.C TMR.C
DEL $ (OBJ) \TMR.OBJ
${CC) $(C_FLAGS) ™R.C
$ (OBJ) \uC0S_IT.0BJ: $(0S)\uCos_II.C \
INCLUDES.H
COPY $(0S)\uCoS_11.C uCos_II.C
DEL $ (OBJ) \uC0S_II.OBJ
$(CC) $(C_FLAGS) ucos_I1.C

#/*SPAGE*/

Chapter 1: Sample Code — 59

Listing 1.29 (continued) TEST.MAK

HHHHHHHEHEHHHHEEHHEHEHHSEHSEEHHH HEEREHEHEHEERERHERHRREER R

#

HEADER FILES

HHEEEHEEEE R R RHEHEREHREEEEEEREH R R

INCLUDES.H:

ATO.H:

CLK.H:

CoMM_PC.H:

COMMRTOS .H:

DIO.H:

KEY.H:

ICD.H:

LED.H:

0S_CFG.H:

0S_CPU.H:

TMR.H:

uCOS_TII.H:

$ (SOURCE) \INCLUDES .H \
ATO.H
CLK.H
COMM_PC.H
COMMRTOS .H
DIO.H
KEY.H
LCD.H
LED.H
OS_CFG.H
0S_CPU.H
PC.H
™R.H
uCos_II.H

P B A B A

C: \POLYTRON\ POLYMAKE\TOUCH -V $(SOURCE) \INCLUDES.H

COPY $(SOURCE) \ INCLUDES.H

$(AI0)\ATIO.H
COPY $(ATIO)\AIO.H

$(CLE)\CLK.H
COPY $(CLK)\CLK.H

$ (COMM) \COMM_PC.H
COPY $(COMM)\COMM_PC.H

$ (COM) \COMMRTOS . H
COPY $(COMM) \COMMRTOS .H

$ (DIO)\DIO.H
COPY $(DIO)\DIO.H

$ (KEY) \KEY.H
COPY $(KEY)\KEY.H

$ (LCD)\LCD.H
COPY $(LCD)\LCD.H

$ (LED) \LED.H
COPY $(LED)\LED.H

$ (SOURCE) \OS_CFG.H
COPY $(SOURCE) \OS_CFG.H

$ (PORT) \OS_CPU.H
COPY $(PORT)\OS_CPU.H

$(PC)\PC.H
COPY $(PC)\PC.H

$(TMR)\TMR.H
COPY $(TMR) \TMR.H

$(0S) \uCOS_II.H
COPY ${0S)\uCOS_II.H

INCLUDES.H

ATO.H

CLK.H

covMM_PC.H

COMMRTOS .H

DIO.H

KEY.H

ICD.H

LED.H

QOS_CFG.H

OS_CPU.H

PC.H

TMR.H

uCOs_II.H

60 — Embedded Systems Building Blocks, Second Edition

Chapter 2

Real-Time Systems Concepts

Real-time systems are characterized by the severe consequences that result if logical as well as timing
correctness properties of the system are not met. There are two types of real-time systems: SOFT and
HARD. In a SOFT real-time system, tasks are performed by the systemn as fast as possible, but the tasks
don’t have to finish by specific times. In HARD real-time systems, tasks have to be performed not only
correctly but on time. Most real-time systems have a combination of SOFT and HARD requirements.
Real-time applications cover a wide range, but most real-time systems are embedded. This means that
the computer is built into a system and is not seen by the user as being a computer. The following list
shows a few examples of embedded systems.

Process control Communication
Food processing Switches
Chemical plants Routers
Automotive Robots
Engine controls Aerospace
Antijlock braking systems Flight management systems
Office automation : Weapons systems
FAX machines Jet engine controls
Copiers Domestic
Computer peripherals Microwave ovens
Printers Dishwashers
Terminals Washing machines
Scanners Thermostats
Modems

Real-time software applications are typically more difficult to design than non-real-time applications.
This chapter describes real-time concepts.

61

e

62 — Embedded Systems Building Blocks, Second Edition

2.00 Foreground/Background Systems

Small systems of low complexity are generally designed as shown in Figure 2.1. These systems are
called foreground/background or super-loops. An application consists of an infinite loop that calls mod-
ules (i.e., functions) to perform the desired operations (background). Interrupt Service Routines (ISRs)
handle asynchronous events (foreground). Foreground is also called inferrupt level; background is
called task level. Critical operations must be performed by the ISRs to ensure that they are dealt with in
a timely fashion. Because of this, ISRs have a tendency to take longer than they should. Also, informa-
tion for a background module made available by an ISR is not processed until the background routine
gets its turn to execute. This is called the task level response. The worst case task-level response time
depends on how long the background loop takes to execute. Because the execution time of typical code
is not constant, the time for successive passes through a portion of the loop is nondeterministic. Further-
more, if a code change is made, the timing of the loop is affected.

Figure 2.1 Foreground/background systems.

Background ~ ——— Foreground —

> | T

ISR

\x Code execution

Most high-volume microcontroller-based applications (e.g., microwave ovens, telephones, toys, and
so on) are designed as foreground/background systems. Also, in microcontroller-based applications, it
may be better (from a power consumption point of view) to halt the processor and perform all of the
processing in ISRs.

Chapter 2: Real-Time Systems Concepts — 63

2.01 Critical Section of Code

A critical section of code, also called a critical region, is code that needs to be treated indivisibly. Once
the section of code starts executing, it must not be interrupted. To ensure this, interrupts are typically
disabled before the critical code is executed and enabled when the critical code is finished (see also sec-
tion 2.03, Shared Resource).

2.02 Resource

A resource is any entity used by a task. A resource can thus be an I/O device, such as a printer, a key-
board, or a display, or a variable, a structure, or an array. -

2.03 Shared Resource

A shared resource is a resource that can be used by more than one task. Each task should gain exclusive
access to the shared resource to prevent data corruption. This is called mutual exclusion, and techniques
to ensure mutual exclusion are discussed in section 2.18, Mutual Exclusion.

2.04 Multitasking

Multitasking is the process of scheduling and switching the CPU (Central Processing Unit) between
several tasks; a single CPU switches its attention between several sequential tasks. Multitasking is like
foreground/background with multiple backgrounds. Multitasking maximizes the utilization of the CPU
and also provides for modular construction of applications. One of the most important aspects of multi-
tasking is that it allows the application programmer to manage complexity inherent in real-time applica-
tions. Application programs are typically easier to design and maintain if multitasking is used.

2.05 Task

A task, also called a thread, is a simple program that thinks it has the CPU all to itself. The design pro-
cess for a real-time application involves splitting the work to be done into tasks responsible for a portion
of the problem. Each task is assigned a priority, its own set of CPU registers, and its own stack area (as
shown in Figure 2.2).

Each task typically is an infinite loop that can be in any one of five states: DORMANT, READY,
RUNNING, WAITING (for an event), or ISR (interrupted) (Figure 2.3). The DORMANT state corre-
sponds to a task that resides in memory but has not been made available to the multitasking kernel. A
task is READY when it can execute but its priority is less than the currently running task. A task is
RUNNING when it has control of the CPU. A task is WAITING when it requires the occurrence of an
event (waiting for an I/O operation to complete, a shared resource to be available, a timing pulse to
occur, time to expire, etc.). Finally, a task is in the ISR state when an interrupt has occurred and the CPU
is in the process of servicing the interrupt. Figure 2.3 also shows the functions provided by nC/OS-II to
make a task move from one state to another.

d

64 — Embedded Systems Building Blocks, Second Edition

Figure 2.2 Multiple tasks.

TASK n
Stack

Task Control Block
| Status

SP
Priority

TASK 1 TASK 2
Stack Stack
—»
—»
Task Control Block Task Control Block
Status [Status |
SP SP
MEMORY \ \ e
fffffffff - ,%* .
CPU \ x /
r'd
CPU Registers
I
7| Context

J

Chapter 2: Real-Time Systems Concepts — 65

Figure 2.3 Task states.

OSMBoxPost () OSHBoxPend ()
0SQPost () 0SQPend ()
0SQPostFront ()}

OSSemPost () OSSemPend ()
OSTaskResune {) 0STaskSuspend {
0STimeDlyResume() OSTimeDly()
0STimeTick() 0STimeD1yHMSM(

0STaskDel ()

OSTaskCreate()
OSTaskCreateExt ()

OSStart ()
OSIntBxit()
0S_TASK SW()

OSIntExit ()

OSTaskDel ()

Task is Preempted

0OSTaskDel ()

2.06 Context Switch (or Task Switch)

When a multitasking kernel decides to run a different task, it simply saves the current task’s context
(CPU registers) in the current task’s context storage area — its stack (Figure 2.2). Once this operation is
performed, the new task’s context is restored from its storage area then resumes execution of the new
task’s code. This process is called a context switch or a task switch. Context switching adds overhead to
the application. The more registers a CPU has, the higher the overhead. The time required to perform a
context switch is determined by how many registers have to be saved and restored by the CPU. Perfor-
mance of a real-time kernel should not be judged by how many context switches the kernel is capable of
doing per second.

2.07 Kernel

The kernel is the part of a multitasking system responsible for the management of tasks (i.e., for manag-
ing the CPU’s time) and communication between tasks. The fundamental service provided by the kernel
is context switching. The use of a real-time kernel generally simplifies the design of systems by allow-
ing the application to be divided into multiple tasks managed by the kernel. A kemnel adds overhead to
your system because it requires extra ROM (code space) and additional RAM for the kernel data struc-
tures. But most importantly, each task requires its own stack space, which has a tendency to eat up RAM
quite quickly. A kernel will also consume CPU time (typically between 2 and 5 percent).

Single-chip microcontrollers are generally not able to run a real-time kernel because they have very
little RAM. A kernel allows you to make better use of your CPU by providing you with indispensable

66 — Embedded Systems Building Blocks, Second Edition

services such as semaphore management, mailboxes, queues, time delays, etc. Once you design a sys-
tem using a real-time kernel, you will not want to go back to a foreground/background system.

2.08 Scheduler

The scheduler, also called the dispatcher, is the part of the kernel responsible for determining which
task will run next. Most real-time kernels are priority based. Each task is assigned a priority based on its
importance. The priority for each task is application specific. In a priority-based kemel, control of the
CPU is always given to the highest priority task ready to run. When the highest priority task gets the
CPU, however, is determined by the type of kemnel used. There are two types of priority-based kernels:
non-preemptive and preemptive.

2.09 Non-Preemptive Kernel

Non-preemptive kernels require that each task does something to explicitly give up control of the CPU.
To maintain the illusion of concurrency, this process must be done frequently. Non-preemptive schedul-
ing is also called cooperative multitasking; tasks cooperate with each other to share the CPU. Asynchro-
nous events are still handled by ISRs. An ISR can make a higher priority task ready to run, but the ISR
always returns to the interrupted task. The new higher priority task will gain control of the CPU only
when the current task gives up the CPU.

One of the advantages of a non-preemptive kernel is that interrupt latency is typically low (see the
later discussion on interrupts). At the task level, non-preemptive kernels can also use non-reentrant
functions (discussed later). Non-reentrant functions can be used by each task without fear of corruption
by another task. This is because each task can run to completion before it relinquishes the CPU. How-
ever, non-reentrant functions should not be allowed to give up control of the CPU.

Task-level response using a non-preemptive kernel can be much lower than with foreground/back-
ground systems because task-level response is now given by the time of the longest task.

Another advantage of non-preemptive kernels is the lesser need to guard shared data through the use
of semaphores. Each task owns the CPU, and you don’t have to fear that a task will be preempted. This
is not an absolute rule, and in some instances, semaphores should still be used. Shared I/O devices may
still require the use of mutual exclusion semaphores; for example, a task might still need exclusive
access to a printer.

The execution profile of a non-preemptive kernel is shown in Figure 2.4. A task is executing
[F2.4(1)] but gets interrupted. If interrupts are enabled, the CPU vectors (jumps) to the ISR [L2.4(2)].
The ISR handles the event [F2.4(3)] and makes a higher priority task ready to run. Upon completion of
the ISR, a Return From Interrupt instruction is executed, and the CPU returns to the interrupted task
[F2.4(4)]. The task code resumes at the instruction following the interrupted instruction [F2.4(5)]. When
the task code completes, it calls a service provided by the kernel to relinquish the CPU to another task
[F2.4(6)]. The new higher priority task then executes to handle the event signaled by the ISR [F2.4(7)].

Chapter 2: Real-Time Systems Concepts — 67

Figure 2.4 Non-preemptive kernel.

Low-Priority Task

ey

ISR

@,

®

C))

ISR maﬁes the v
) high-priority task ready Time

(6) High-Priority Task
Low-priority task (7
relinquishes the CPU

The most important drawback of a non-preemptive kernel is responsiveness. A higher priority task
that has been made ready to run may have to wait a long time to run because the current task must give
up the CPU when it is ready to do so. As with background execution in foreground/background systems,
task-level response time in a non-preemptive kernel is nondeterministic; you never really know when
the highest priority task will get control of the CPU. It is up to your application to relinquish control of
the CPU.

To summarize, a non-preemptive kernel allows each task to run until it voluntarily gives up control
of the CPU. An interrupt preempts a task. Upon completion of the ISR, the ISR returns to the interrupted
task. Task-level response is much better than with a foreground/background system but is still nondeter-
ministic. Very few commercial kernels are non-preemptive.

2.10 Preemptive Kernel

A preemptive kernel is used when system responsiveness is important. Because of this, pC/OS-II and
most commercial real-time kernels are preemptive. The highest priority task ready to run is always
given control of the CPU. When a task makes a higher priority task ready to run, the current task is pre-
empted (suspended) and the higher priority task is immediately given control of the CPU. If an ISR
makes a higher priority task ready, when the ISR completes, the interrupted task is suspended and the
new higher priority task is resumed. This is illustrated in Figure 2.5.

68 — Embedded Systems Building Blocks, Second Edition

Figure 2.5 Preemptive kernel.

Low-Priority Task

ISR

:——'>;

High-Priority Task
—>

ISR makes the high- .
priority task ready Time

<l
~

With a preemptive kernel, execution of the highest priority task is deterministic; you can deter-
mine when it will get control of the CPU. Task-level response time is thus minimized by using a pre-
emptive kernel.

Application code using a preemptive kernel should not use non-reentrant functions, unless exclusive
access to these functions is ensured through the use of mutual exclusion semaphores, because both a
low- and a high-priority task can use a common function. Corruption of data may occur if the higher pri-
ority task preempts a lower priority task that is using the function.

To summarize, a preemptive kernel always executes the highest priority task that is ready to run. An
interrupt preempts a task. Upon completion of an ISR, the kernel resumes execution to the highest prior-
ity task ready to run (not the interrupted task). Task-level response is optimum and deterministic.
pC/OS-II is a preemptive kernel.

2.11 Reentrancy

A reentrant function can be used by more than one task without fear of data corruption. A reentrant
function can be interrupted at any time and resumed at a later time without loss of data. Reentrant func-
tions either use local variables (i.e., CPU registers or variables on the stack) or protect data when global
variables are used. An example of a reentrant function is shown in Listing 2.1.

Chapter 2: Real-Time Systems Concepts — 69

Listing 2.1 Reentrant function.

void strcpy(char *dest, char *src)
{
while (*dest++ = *src++) {

?

*dest = NUL;

Because copies of the arguments to strcpy () are placed on the task’s stack, strcpy () can be
invoked by multiple tasks without fear that the tasks will corrupt each other’s pointers.

An example of a non-reentrant function is shown in Listing 2.2. swap () is a simple function that
swaps the contents of its two arguments. For the sake of discussion, I assume that you are using a pre-
emptive kernel, that interrupts are enabled, and that Temp is declared as a global integer:

Listing 2.2 Non-reentrant function.

int Temp;

void swap{int *x, int *y)

{
Temp = *x;
o= *y;
*y = Temp;

The programmer intended to make swap () usable by any task. Figure 2.6 shows what could happen
if a low-priority task is interrupted while swap () [F2.6(1)] is executing. Note that at this point Temp
contains 1. The ISR makes the higher priority task ready to run, so at the completion of the ISR
[F2.6(2)], the kernel (assuming puC/OS-II) is invoked to switch to this task [F2.6(3)]. The high-priority
task sets Temp to 3 and swaps the contents of its variables correctly (i.e., zis 4 and t is 3). The high-pri-
ority task eventually relinquishes control to the low-priority task [F2.6(4)] by calling a kernel service to
delay itself for one clock tick (described later). The lower priority task is thus resumed [F2.6(5)]. Note
that at this point, Temp is still set to 3! When the low-priority task resumes execution, it sets y to 3
instead of 1.

Note that this a simple example, so it is obvious how to make the code reentrant. However, other sit-
uations are not as easy to solve. An error caused by a non-reentrant function may not show up in your
application during the testing phase; it will most likely occur once the product has been delivered! If
you are new to multitasking, you will need to be careful when using non-reentrant functions.

You can make swap () reentrant with one of the following techniques:

e Declare Temp local to swap ().
* Disable interrupts before the operation and enable them afterwards.
* Use a semaphore (described later).

70 — Embedded Systems Building Blocks, Second Edition

Figure 2.6 Non-reentrant function.

LOW-PRIORITY TASK HIGH-PRIORITY TASK
. Temp == . |
A e
v -3 @) HERGEE.
ISR |——»| O.S. 3)
swap (&x,) swap (&z, &t);
;{; &x, &y (1) | | {p &z, &
Temp = *x; Temp = *z;
*z = *t;
« O Tos e s e
sy = Tzl;p; @

} i
; OSTimeDly () ;
Temp == 3! .

OSTimeDly(1);

Temp ==
If the interrupt occurs either before or after swap (), the x and y values for both tasks will be correct.

2.12 Round-Robin Scheduling

When two or more tasks have the same priority, the kernel allows one task to run for a predetermined
amount of time, called a guantum, then selects another task. This is also called time slicing. The kernel
gives control to the next task in line if

* the current task has no work to do during its time slice or

« the current task completes before the end of its time slice.

HC/OS-II does not currently support round-robin scheduling. Each task must have a unique priority in
your application.

2.13 Task Priority

A priority is assigned to each task. The more important the task, the higher the priority given to it.

2.14 Static Priorities

Task priorities are said to be static when the priority of each task does not change during the appﬁca—
tion’s execution. Each task is thus given a fixed priority at compile time. All the tasks and their timing
constraints are known at compile time in a system where priorities are static.

Chapter 2: Real-Time Systems Concepts — 71

2.15 Dynamic Priorities

Task priorities are said to be dynamic if the priority of tasks can be changed during the application’s
execution; each task can change its priority at run time. This is a desirable feature to have in a real-time
kernel to avoid priority inversions.

2.16 Priority Inversions

Priority inversion is a problem in real-time systems and occurs mostly when you use a real-time kernel.
Figure 2.7 illustrates a priority inversion scenario. Task 1 has a higher priority than Task 2, which in turn
has a higher priority than Task 3. Task 1 and Task 2 are both waiting for an event to occur and Task 3 is
executing [F2.7(1)]. At some point, Task 3 acquires a semaphore (see section 2.18.04, Semaphores),
which it needs before it can access a shared resource [F2.7(2)]. Task 3 performs some operations on the
acquired resource [FF2.7(4)] until it is preempted by the high-priority task, Task 1 [F2.7(3)]. Task 1 exe-
cutes for a while until it also wants to access the resource [F2.7(5)]. Because Task 3 owns the resource,
Task 1 has to wait until Task 3 releases the semaphore. As Task 1 tries to get the semaphore, the kernel
notices that the semaphore is already owned; thus, Task 1 is suspended and Task 3 is resumed [F2.7(6)].
Task 3 continues execution until it is preempted by Task 2 because the event that Task2 was waiting for
occurred [F2.7(7)]. Task 2 handles the event [F2.7(8)] and when it’s done, Task 2 relinquishes the CPU
back to Task 3 [F2.7(9)]. Task 3 finishes working with the resource [F2.7(10)] and releases the sema-
phore [F2.7(11)]. At this point, the kernel knows that a higher priority task is waiting for the semaphore,
and a context switch is done to resume Task 1. At this point, Task 1 has the semaphore and can access
the shared resource [F2.7(12)].

The priority of Task 1 has been virtually reduced to that of Task 3 because it was waiting for the
resource that Task 3 owned. The situation was aggravated when Task 2 preempted Task 3, which further
delayed the execution of Task 1.

You can correct this sitnation by raising the priority of Task 3, just for the time it takes to access the
resource, then restoring the original priority level when the task is finished. The priority of Task 3 must
be raised up to or above the highest priority of the other tasks competing for the resource. A multitask-
ing kernel should allow task priorities to change dynamically to help prevent priority inversions. How-
ever, it takes some time to change a task’s priority. What if Task 3 had completed access of the resource
before it was preempted by Task 1 and then by Task 2? Had you raised the priority of Task 3 before
accessing the resource and then lowered it back when done, you would have wasted valuable CPU time.
What is really needed to avoid priority inversion is a kernel that changes the priority of a task automati-
cally. This is called priority inheritance, which pC/OS-II unfortunately does not support. There are,
however, some commercial kernels that do.

72 — Embedded Systems Building Blocks, Second Edition

Figure 2.7 Priority inversion problem.

Priority Inversion

»!
Ll

|] |
i

[
&

ol o ay

Task 1 (H) | :Qi: fffffffffff L
|
o .
_ o | ® | !
Task 2 (M) b i !
| | I |
N .

! tode a0

Task3(L) [T %/

| | |
| lo |

Task 3 Gets Semaphore |] L |
@) : | | Task 3 Resumes

Task 1 Preempts Task 3- S &) !
3 ! |

|

|

| .
Task 1 Tries to get Semaphore Task 3 Releases the.Semaphore
® (11)
Task 2 Preempts Task 3
Q)

Figure 2.8 illustrates what happens when a kernel supports priority inheritance. As with the previous
example, Task 3 is running [F2.8(1)] and acquires a semaphore to access a shared resource [F2.8(2)].
Task 3 accesses the resource [F2.8(3)] and then is preempted by Task 1 [F2.8(4)]. Task 1 executes
[F2.8(5)] and tries to obtain the semaphore [F2.8(6)]. The kernel sees that Task 3 has the semaphore but
has a lower priority than Task 1. In this case, the kernel raises the priority of Task 3 to the same level as
Task 1. The kernel then switches back to Task 3 so that this task can continue with the resource
[F2.8(7)). When Task 3 is done with the resource, it releases the semaphore [F2.8(8)]. At this point, the
kernel reduces the priority of Task 3 to its original value and gives the semaphore to Task 1 which is
now free to continue [F2.8(9)]. When Task 1 is done executing [F2.8(10)], the medium-priority task
(i.e., Task 2) gets the CPU [F2.8(11)]. Note that Task 2 could have been ready to run any time between
F2.8(3) and (10) without affecting the outcome. There is still some level of priority inversion that cannot
be avoided.

-

|

Chapter 2: Real-Time Systems Concepts — 73

Figure 2.8 Kernel that supports priority inheritance.

Priority Inversion 21
———> -
Lo ! ! ! :
Pl
Task 1 (H) . i
I I
Lo l ! ?
b '_ ! ‘ (11)
Task 2 (M) bl ! '
I | | |
I | |
| ay | | | |
()N) NI () o
Task 3 (L) !
I T T T T T T T T T
. | |
Task 3 Gets Semaphore| | | | |
2) | | | Task 1 Completes
Task 1 Preempts Task 3 | | (10
)] i |
| |
Task 1 Tries to get Semaphore [
(Priority of Task 3 is raised to Task I's) =K 2 (Br‘;ls‘fsleaéhsﬁgz’;ap hore
©) ®)

2.17 Assigning Task Priorities

Assigning task priorities is not a trivial undertaking because of the complex nature of real-time systems.
In most systems, not all tasks are considered critical. Noncritical tasks should obviously be given low
priorities. Most real-time systems have a combination of SOFT and HARD requirements. In a SOFT
real-time system, tasks are performed as quickly as possible, but they don’t have to finish by specific
times. In HARD real-time systems, tasks have to be performed not only correctly, but on time.

74 — Embedded Systems Building Blocks, Second Edition

An interesting technique called Rate Monotonic Scheduling (RMS) has been established to assign
task priorities based on how often tasks execute. Simply put, tasks with the highest rate of execution are
given the highest priority (Figure 2.9).

Figure 2.9 Assigning task priorities based on task execution rate.

High —m
T _____ -
2 ¢ -
S -
A T 1 7’:]i
| I N N] I S
R L] - — E
Low b J

Task Execution Rate (Hz)

RMS makes a number of assumptions:
» All tasks are periodic (they occur at regular intervals).
» Tasks do not synchronize with one another, share resources, or exchange data.

* The CPU must always execute the highest priority task that is ready to run. In other words, preemp-
tive scheduling must be used.

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem states that all task
HARD real-time deadlines will always be met if the inequality in Equation [2.1] is verified.

[2.1) Z%Sn(2l/"~ 1)

i t

where, E; corresponds to the maximum execution time of task i and T; corresponds to the execution period
of task i. In other words, E;/T; corresponds to the fraction of CPU time required to execute task i. Table
2.1 shows the value for size n(2!n — 1) based on the number of tasks. The upper bound for an infinite num-
ber of tasks is given by In(2), or 0.693. This means that to meet all HARD real-time deadlines based on
RMS, CPU utilization of all time-critical tasks should be less than 70 percent! Note that you can still have
non-time-critical tasks in a system and thus use 100 percent of the CPU’s time. Using 100 percent of your
CPU’s time is not a desirable goal because it does not allow for code changes and added features. As a
rule of thumb, you should always design a system to use less than 60 to 70 percent of your CPU.

RMS says that the highest rate task has the highest priority. In some cases, the highest rate task may
not be the most important task. Your application will thus dictate how you need to assign priorities.
However, RMS is an interesting starting point.

Chapter 2: Real-Time Systems Concepts — 75

Table 2.1 Allowable CPU utilization based on number of tasks.

Number of Tasks n2in.-q)
1 1.000
2 0.828
3 0.779
4 0.756
5 0.743
®© 0.693

2.18 Mutual Exclusion

The easiest way for tasks to communicate with each other is through shared data structures. This is
especially easy when all tasks exist in a single address space and can reference global variables, point-
ers, buffers, linked lists, ring buffers, etc. Although sharing data simplifies the exchange of information,
you must ensure that each task has exclusive access to the data to avoid contention and data corruption.
The most common methods of obtaining exclusive access to shared resources are '

* disabling interrupts,

* performing test-and-set operations,
* disabling scheduling, and

* using semaphores.

2.18.01 Disabling and Enabling Interrupts

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and enabling
interrupts, as shown in the pseudocode in Listing 2.3.

Listing 2.3 Disabling and enabling interrupts. -

Disable interrupts;
Access the resource (read/write from/to variables);

Reenable interrupts;

pC/OS-II uses this technique (as do most, if not all, kernels) to access internal variables and data struc-
tures. In fact, uC/OS-II provides two macros that allow you to disable and then enable interrupts from
your C code: OS_ENTER_CRITICAL() and OS_EXIT_CRITICAL (), respectively. You need to use
these macros in tandem, as shown in Listing 2.4.

76 — Embedded Systems Building Blocks, Second Edition

Listing 2.4 Using pC/OS-II macros to disable and enable interrupts.

void Function (void)
{
OS_ENTER_CRITICAL();

/* You can access shared data in here */

OS_EXIT _CRITICAL() ;

You must be careful, however, not to disable interrupts for too long because this affects the response
of your system to interrupts. This is known as interrupt latency. You should consider this method when
you are changing or copying a few variables. Also, this is the only way that a task can share variables or
data structures with an ISR. In all cases, you should keep interrupts disabled for as little time as possible.

If you use a kernel, you are basically allowed to disable interrupts for as much time as the kernel
does without affecting interrupt latency. Obviously, you need to know how long the kernel will disable
interrupts. Any good kernel vendor will provide you with this information. After all, if they sell a
real-time kemel, time is important!)

2.18.02 Test-And-Set

If you are not using a kernel, two functions could ‘agree’ that to access a resource, they must check a
global variable and if the variable is 0, the function has access to the resource. To prevent the other func-
tion from accessing the resource, however, the first function that gets the resource simply sets the vari-
able to 1. This is commonly called a Test-And-Set (or TAS) operation. Either the TAS operation must be
performed indivisibly (by the processor) or you must disable interrupts when doing the TAS on the vari-
able, as shown in Listing 2.5.

Listing 2.5 Using Test-And-Set to access a resource.

Disable interrupts;
if (‘Access Variable’ is 0) {
Set variable to 1;
Reenable interrupts;
Access the resource;
Disable interrupts;
Set the ‘Access Variable’ back to 0;
Reenable interrupts;
} else {
Reenable interrupts;

/* You don‘t have access to the resource, try back later; */

e

Chapter 2: Real-Time Systems Concepts — 77

Some processors actually implement a TAS operation in hardware (e.g., the 68000 family of processors
have the TAS instruction).

2.18.03 Disabling and Enabling the Scheduler

If your task is not sharing variables or data structures with an ISR, you can disable and enable schedul-
ing, as shown in Listing 2.6 (using pC/OS-II as an example). In this case, two or more tasks can share
data without the possibility of contention. You should note that while the scheduler is locked, interrupts
are enabled, and if an interrupt occurs while in the critical section, the ISR is executed immediately. At
the end of the ISR, the kemel always returns to the interrupted task, even if a higher priority task has
been made ready to run by the ISR. The scheduler is invoked when OSSchedUnlock () is called to see
if a higher priority task has been made ready to run by the task or an ISR. A context switch results if a
higher priority task is ready to run. Although this method works well, you should avoid disabling the
scheduler because it defeats the purpose of having a kernel in the first place. The next method should be
chosen instead.

Listing 2.6 Accessing shared data by disabling and
enabling scheduling.

void Function (void)
{
0SSchedlLock () ;

/* You can access shared data in here (interrupts are recognized) */

0SSchedUnlock () ;

2.18.04 Semaphores

The semaphore was invented by Edgser Dijkstra in the mid-1960s. It is a protocol mechanism offered
by most multitasking kernels. Semaphores are used to

¢ control access to a shared resource (mutual exclusion),
* signal the occurrence of an event, and
* allow two tasks to synchronize their activities.

A semaphore is a key that your code acquires in order to continue execution. If the semaphore is already
in use, the requesting task is suspended until the semaphore is released by its current owner. In other
words, the requesting task says: “Give me the key. If someone else is using it, I am willing to wait for it!”
There are two types of semaphores: binary semaphores and counting semaphores. As its name implies, a
binary semaphore can only take two values: 0 or 1. A counting semaphore allows values between 0 and
255, 65535, or 4294967295, depending on whether the semaphore mechanism is implemented using
8, 16, or 32 bits, respectively. The actual size depends on the kernel used. Along with the semaphore’s
value, the kernel also needs to keep track of tasks waiting for the semaphore’s availability.

Generally, only three operations can be performed on a semaphore: INITIALIZE (also called CREATE),
WAIT (also called PEND), and SIGNAL (also called POST). The initial value of the semaphore must be
provided when the semaphore is initialized. The waiting list of tasks is always initially empty.

78 — Embedded Systems Building Blocks, Second Edition

A task desiring the semaphore will perform a WAIT operation. If the semaphore is available (the
semaphore value is greater than 0), the semaphore value is decremented and the task continues execu-
tion. If the semaphore’s value is 0, the task performing a WAIT on the semaphore is placed in a waiting
list. Most kemnels allow you to specify a timeout; if the semaphore is not available within a certain
amount of time, the requesting task is made ready to run and an error code (indicating that a timeout has
occurred) is returned to the caller.

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for the sema-
phore, the semaphore value is simply incremented. If any task is waiting for the semaphore, however,
one of the tasks is made ready to run and the semaphore value is not incremented; the key is given to one
of the tasks waiting for it. Depending on the kernel, the task that receives the semaphore is either

« the highest priority task waiting for the semaphore or
 the first task that requested the semaphore (First In First Out, or FIFO).

Some kernels have an option that allows you to choose either method when the semapbore is initial-
ized. pC/OS-II only supports the first method. If the readied task has a higher priority than the current
task (the task releasing the semaphore), a context switch occurs (with a preemptive kernel) and the
higher priority task resumes execution; the current task is suspended until it again becomes the highest
priority task ready to run.

Listing 2.7 shows how you can share data using a semaphore (in pC/OS-II). Any task needing access
to the same shared data calls OSSemPend (), and when the task is done with the data, the task calls
0OSsemPost (). Both of these functions are described later. You should note that a semaphore is an
object that needs to be initialized before it’s used; for mutual exclusion, a semaphore is initialized to a
value of 1. Using a semaphore to access shared data doesn’t affect interrupt latency. If an ISR or the cur-
rent task makes a higher priority task ready to run while accessing shared data, the higher priority task
executes immediately.

Listing 2.7 Accessing shared data by obtaining a semaphore.

OS_EVENT *SharedDataSem;
void Function (void)
{
INT8U err;
OSSemPend (SharedDataSem, 0, &err);

/* You can access shared data in here (interrupts are recognized) */

OSSemPost (SharedDataSem) ;

Semaphores are especially useful when tasks share I/O devices. Imagine what would happen if two
tasks were allowed to send characters to a printer at the same time. The printer would contain inter-
leaved data from each task. For instance, the printout from Task 1 printing “I am Task 1!” and Task 2
printing “I am Task 2!” could result in:

I Ia amm T Tasask k1 12!

ape:

Chapter 2: Real-Time Systems Concepts — 79

In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore). The rule is simple: to access
the printer each task first must obtain the resource’s semaphore. Figure 2.10 shows tasks competing for a
semaphore to gain exclusive access to the printer. Note that the semaphore is represented symbolically
by a key, indicating that each task must obtain this key to use the printer.

Figure 2.10 Using a semaphore to get permission to access a printer.

"] am Task 11"
— SRR
\\
AN
Acquire Semaphore N
R
LSEMAPHORE PRINTER
, X
‘Acquire Semaphore Va
Ve _
/
L / ,
'T am Task 2!" —_

The above example implies that each task must know about the existence of the semaphore in order
to access the resource. There are situations when it is better to encapsulate the semaphore. Each task
would thus not know that it is actually acquiring a semaphore when accessing the resource. For exam-
ple, an RS-232C port is used by multiple tasks to send commands and receive responses from a device
connected at the other end (Figure 2.11).

The function CommSendCmd () is called with three arguments: the ASCII string containing the com-
mand, a pointer to the response string from the device, and finally, a timeout in case the device doesn’t
respond within a certain amount of time. The pseudocode for this function is shown in Listing 2.8.

Listing 2.8 Encapsulating a semaphore.

INT8U CommSendCmd (char *cmd, char *response, INT16U timeout)) -
{
Acquire port's semaphore;
Send command to device;
Wait for response (with timeout) ;
if (timed out) {
Release semaphore;
return {(error code);

} else {

80 — Embedded Systems Building Blocks, Second Edition

Listing 2.8 Encapsulating a semaphore. (Continued)

Release semaphore;

return (no error);

Each task that needs to send a command to the device has to call this function. The semaphore is
assumed to be initialized to 1 (i.e., available) by the communication driver initialization routine. The
first task that calls CommSendCmd () acquires the semaphore, proceeds to send the command, and waits
for a response. If another task attempts to send a command while the port is busy, this second task is sus-
pended until the semaphore is released. The second task appears simply to have made a call to a normal
function that will not return until the function has performed its duty. When the semaphore is released
by the first task, the second task acquires the semaphore and is allowed to use the RS-232C port.

Figure 2.11 Hiding a semaphore from tasks.

COmmSendC:md) I —_—

DRIVER ﬁ—b RS-232C

l
COmmSended O I
I
I
| 1 Semaphore

A counting semaphore is used when a resource can be used by more than one task at the same time.
For example, a counting semaphore is used in the management of a buffer pool as shown in Figure 2.12.
Assume that the buffer pool initially contains 10 buffers. A task would obtain a buffer from the buffer _
manager by calling BufReq (). When the buffer is no longer needed, the task would return the buffer to
the buffer manager by calling BufRel (). The pseudocode for these functions is shown in Listing 2.9.

Chapter 2: Real-Time Systems Concepts — 81

Listing 2.9 Buffer management using a semaphore.

BUF *BufReq(void)
{
BUF *ptr;

Acquire a semaphore;
Disable interrupts;

ptr = BufFreeList;
BufFreelist = ptr->BufNext;
Enable interrupts;

return (ptr);

void BufRel (BUF *ptr)

{
Disable interrupts;
ptr->BufNext = BufFreeList;
BufFreeList = ptr;
Enable interrupts;

Release semaphore;

Figure 2.12 Using a counting semaphore.

BufFreelist

Next-—»| Next +——»

Next» 0

i 10

!

BufReqg()|e—» 14—» BufRel ()

Buffer Manager

(]

e

82 — Embedded Systems Building Blocks, Second Edition

The buffer manager will satisfy the first 10 buffer requests because there are 10 keys. When all
semaphores are used, a task requesting a buffer is suspended until a semaphore becomes available.
Interrupts are disabled to gain exclusive access to the linked list (this operation is very quick). When a
task is finished with the buffer it acquired, it calls BufRel () to return the buffer to the buffer manager;

the buffer is inserted into the linked list before the semaphore is released. By encapsulating the interface

to the buffer manager in BufReq () and BufRel (), the caller doesn’t need to be concerned with the
actual implementation details.

Semaphores are often overused. The use of a semaphore to access a simple shared variable is over-
kill in most situations. The overhead involved in acquiring and releasing the semaphore can consume
valuable time. You can do the job just as efficiently by disabling and enabling interrupts (see section
2.18.01, Disabling and Enabling Interrupts). Suppose that two tasks are sharing a 32-bit integer vari-
able. The first task increments the variable while the other task clears it. If you consider how long a pro-
cessor takes to perform either operation, you will realize that you do not need a semaphore to gain
exclusive access to the variable. Each task simply needs to disable interrupts before performing its oper-
ation on the variable and enable interrupts when the operation is complete. A semaphore should be used,
however, if the variable is a floating-point variable and the microprocessor doesn’t support floating point
in hardware. In this case, the processing time involved in processing the floating-point variable could
have affected interrupt latency if you had disabled interrupts.

2.19 Deadlock (or Deadly Embrace)

A deadlock, also called a deadly embrace, is a situation in which two tasks are each unknowingly wait-
ing for resources held by the other. Assume task T1 has exclusive access to resource R1 and task T2 has
exclusive access to resource R2. If T1 needs exclusive access to R2 and T2 needs exclusive access to
R1, neither task can continue. They are deadlocked. The simplest way to avoid a deadlock is for tasks to

» acquire all resources before proceeding,
¢ acquire the resources in the same order, and
* release the resources in the reverse order.

Most kemels allow you to specify a timeout when acquiring a semaphore. This feature allows a
deadlock to be broken. If the semaphore is not available within a certain amount of time, the task
requesting the resource resumes execution. Some form of error code must be returned to the task to
notify it that a timeout occurred. A return error code prevents the task from thinking it has obtained the
resource. Deadlocks generally occur in large multitasking systems, not in embedded systems.

2.20 Synchronization

A task can be synchronized with an ISR (or another task when no data is being exchanged) by using a
semaphore as shown in Figure 2.13. Note that, in this case, the semaphore is drawn as a flag to indicate
that it is used to signal the occurrence of an event (rather than to ensure mutual exclusion, in which case
it would be drawn as a key). When used as a synchronization mechanism, the semaphore is initialized to
0. Using a semaphore for this type of synchronization is called a unilateral rendezvous. A task initiates
an I/O operation and waits for the semaphore. When the I/O operation is complete, an ISR (or another
task) signals the semaphore and the task is resumed.

Chapter 2: Real-Time Systems Concepts — 83

Figure 2.13 Synchronizing tasks and ISRs.

ISR - POST _,, F | PEND

_POST F | PEND

If the kernel supports counting semaphores, the semaphore would accumulate events that have not
yet been processed. Note that more than one task can be waiting for an event to occur. In this case, the
kernel.could signal the occurrence of the event either to

» the highest priority task waiting for the event to occur or
» the first task waiting for the event.

Depending on the application, more than one ISR or task could signal the occurrence of the event.

Two tasks can synchronize their activities by using two semaphores, as shown in Figure 2.14. This is
called a bilateral rendezvous. A bilateral rendezvous is similar to a unilateral rendezvous, except both
tasks must synchronize with one another before proceeding.

For example, two tasks are executing as shown in Listing 2.10. When the first task reaches a certain
point, it signals the second task [L.2.10(1)] then waits for a return signal [L.2.10(2)]. Similarly, when the
second task reaches a certain point, it signals the first task [L.2.10(3)] and waits for a return signal
[L.2.10(4)]. At this point, both tasks are synchronized with each other. A bilateral rendezvous cannot be
performed between a task and an ISR because an ISR cannot wait on a semaphore.

Figure 2.14 Tasks synchronizing their activities.

POST F PEND

PEND F POST

84 — Embedded Systems Building Blocks, Second Edition

Listing 2.10 Bilateral rendezvous.

Taskl ()
{
for (;:) {
' Perform operation;
Signal task #2; (1)
Wait for signal from task #2; (2)

Continue operation;

Task?2 ()
{
for (;5) {
Perform operation;
Signal task #1; (3)
Wait for signal from task #1; (4)

Continue operation;

2.21 Event Flags

Event flags are used when a task needs to synchronize with the occurrence of multiple events. The task
can be synchronized when any of the events have occurred. This is called disjunctive synchronization
(logical OR). A task can also be synchronized when all events have occurred. This is called conjunctive
synchronization (logical AND). Disjunctive and conjunctive synchronization are shown in Figure 2.15.

Common events can be used to signal multiple tasks, as shown in Figure 2.16. Events are typically
grouped. Depending on the kernel, a group consists of 8, 16, or 32 events, each reprensnted by a bit.
(mostly 32 bits, though). Tasks and ISRs can set or clear any event in a group. A task is resumed when
all the events it requires are satisfied. The evaluation of which task will be resumed is performed when a
new set of events occurs (i.e., during a SET operation).

Kernels supporting event flags offer services to SET event flags, CLEAR event flags, and WAIT for
event flags (conjunctively or disjunctively). pC/OS-II does not currently support event flags.

i

Chapter 2: Real-Time Systems Concepts — 85

Figure 2.15 Disjunctive and conjunctive synchronization.

s~
\TASK\
N — Events Semaphore
' 3 OR POST F PEND
{ ISR)
\ > DISJUNCTIVE SYNCHRONIZATION
N
\ TASK)
N Events Semaphore
' 3 AND POST F PEND

—_—— CONJUNCTIVE SYNCHRONIZATION

2.22 Intertask Communication

It is sometimes necessary for a task or an ISR to communicate information to another task. This infor-
mation transfer is called intertask communication. Information may be communicated between tasks in

two ways: through global data or by sending messages.

When using global variables, each task or ISR must ensure that it has exclusive access to the vari-
ables. If an ISR is involved, the only way to ensure exclusive access to the common variables is to dis-
able interrupts. If two tasks are sharing data, each can gain exclusive access to the variables either by
disabling and enabling interrupts or with the use of a semaphore (as we have seen). Note that a task can
only communicate information to an ISR by using global variables. A task is not aware when a global
variable is changed by an ISR, unless the ISR signals the task by using a semaphore or unless the task
polls the contents of the variable periodically. To correct this situation, you should consider using either

a message mailbox or a message queue.

o

86 — Embedded Systems Building Blocks, Second FEdition

Figure 2.16 Event flags.

—

N
Task V' f Y
! / \ SR,
~—
Events

(8, 16, or 32 bits)
HRRENN

Events g Semaphore
Py —B|OR | POST , F PEND
Events Semaphore

AND|-2OST F PEND

2.23 Message Mailboxes

Messages can be sent to a task through kernel services. A Message Mailbox, also called a message
exchange, is typically a pointer-size variable. Through a service provided by the kernel, a task or an ISR
can deposit a message (the pointer) into this mailbox. Similarly, one or more tasks can receive messages
through a service provided by the kernel. Both the sending task and receiving task agree on what the
pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one task wants to receive messages
through the mailbox. A task desiring a message from an empty mailbox is suspended and placed on the
waiting list until a message is received. Typically, the kernel allows the task waiting for a message to
specify a timeout. If a message is not received before the timeout expires, the requesting task is made
ready to run and an error code (indicating that a timeout has occurred) is returned to it. When a message
is deposited into the mailbox, either the highest priority task waiting for the message is given the mes-
sage (priority based) or the first task to request a message is given the message (First-In-First-Out, or
FIFO). Figure 2.17 shows a task depositing a message into a mailbox. Note that the mailbox is repre-
sented by an I-beam and the timeout is represented by an hourglass. The number next to the hourglass
represents the number of clock ticks (described later) the task will wait for a message to arrive.

Chapter 2: Real-Time Systems Concepts — 87

Kernels typically provide the following mailbox services.
» Initialize the contents of a mailbox. The mailbox initially may or may not contain a message.
» Deposit a message into the mailbox (POST).
* Wait for a message to be deposited into the mailbox (PEND).

* Get a message from a mailbox if one is present, but do not suspend the caller if the mailbox is empty
(ACCEPT). If the mailbox contains a message, the message is extracted from the mailbox. A return
code is used to notify the caller about the outcome of the call.

Message mailboxes can also simulate binary semaphores. A message in the mailbox indicates that the
resource is available, and an empty mailbox indicates that the resource is already in use by another task.

Figure 2.17 Message mailbox.

Mailbox

Y10

POST

—> >

2.24 Message Queues

A message queue is used to send one or more messages to a task. A message queue is basically an array
of mailboxes. Through a service provided by the kernel, a task or an ISR can deposit a message (the
pointer) into a message queue. Similarly, one or more tasks can receive messages through a service pro-
vided by the kernel. Both the sending task and receiving task agree as to what the pointer is actually
pointing to. Generally, the first message inserted in the queue will be the first message extracted from
the queue (FIFO). In addition, to extract messages in a FIFO fashion, pC/OS-1I allows a task to get mes-
sages Last-In-First-Out (LIFO).

As with the mailbox, a waiting list is associated with each message queue, in case more than one
task is to receive messages through the queue. A task desiring a message from an empty queue is sus-
pended and placed on the waiting list until a message is received. Typically, the kernel allows the task
waiting for a message to specify a timeout. If a message is not received before the timeout expires, the
requesting task is made ready to run and an error code (indicating a timeout has occurred) is returned to
it. When a message is deposited into the queue, either the highest priority task or the first task to wait for
the message is given the message. Figure 2.18 shows an ISR (Interrupt Service Routine) depositing a
message into a queue. Note that the queue is represented graphically by a double I-beam. The “10” indi-
cates the number of messages that can accumulate in the queue. A “0” next to the hourglass indicates
that the task will wait forever for a message to arrive.

88 — Embedded Systems Building Blocks, Second Edition

Kernels typically provide the message queue services listed below.
« Initialize the queue. The queue is always assumed to be empty after initialization.
* Deposit a message into the queue (POST).
* Wait for a message to be deposited into the queue (PEND).

* Get a message from a queue if one is present, but do not suspend the caller if the queue is empty
(ACCEPT). If the queue contains a message, the message is extracted from the queue. A return code
is used to notify the caller about the outcome of the call.

Figure 2.18 Message queue.

Queue
PEND
Interrupt—> ISR POST 10 ———PX
0

2.25 Interrupts

An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred.
When an interrupt is recognized, the CPU saves part (or all) of its context (i.e., registers) and jumps to a
special subroutine called an Interrupt Service Routine, or ISR. The ISR processes the event, and upon
completion of the ISR, the program returns to

» the background for a foreground/background system,
+ the interrupted task for a non-preemptive kernel, or
 the highest priority task ready to run for a preemptive kernel.

Interrupts allow a microprocessor to process events when they occur. This prevents the microproces-
sor from continuously polling an event to see if it has occurred. Microprocessors allow interrupts to be
ignored and recognized through the use of two special instructions: disable interrupts and enable inter-
rupts, respectively. In a real-time environment, interrupts should be disabled as little as possible. Dis-
abling interrupts affects interrupt latency (see section 2.26, Interrupt Latency) and may cause interrupts
to be missed. Processors generally allow interrupts to be nested. This means that while servicing an inter-
rupt, the processor will recognize and service other (more important) interrupts, as shown in Figure 2.19.

2.26 Interrupt Latency

Probably the most important specification of a real-time kernel is the amount of time interrupts are dis-
abled. All real-time systems disable interrupts to manipulate critical sections of code and reenable inter-
rupts when the critical section has executed. The longer interrupts are disabled, the higher the interrupt
latency. Interrupt latency is given by Equation [2.2].

[2.2] Maximum amount of time interrupts are disabled
+ Time to start executing the first instruction in the ISR

Chapter 2: Real-Time Systems Concepts — 89

Figure 2.19 Interrupt nesting.

TIME

\ 4

TASK { V2227

ISR 1 @ Y,

ISR 2 V.2 Y,

ISR 3

/

|
|
I
1
g |
Interrupt 1 J

!
%
|
l
|
|
|
Interru t/2 |
P)

Interrupt 3

2.27 Interrupt Response

Interrupt response is defined as the time between the reception of the interrupt and the start of the user
code that handles the interrupt. The interrupt response time accounts for all the overhead involved in
handling an interrupt. Typically, the processor’s context (CPU registers) is saved on the stack before the
user code is executed.

For a foreground/background system, the user ISR code is executed immediately after saving the
processor’s context. The response time is given by Equation [2.3].

[2.3] Interrupt latency + Time to save the CPU’s context

For a non-preemptive kernel, the user ISR code is executed immediately after the processor’s con-
text is saved. The response time to an interrupt for a non-preemptive kernel is given by Equation [2.4].

[2.4] Interrupt latency + Time to save the CPU’s context

For a preemptive kernel, a special function provided by the kernel needs to be called. This function
notifies the kernel that an ISR is in progress and allows the kernel to keep track of interrupt nesting. For

i

(W)

90 — Embedded Systems Building Blocks, Second Edition

nC/OS-I1, this function is called OSIntEnter (). The response time to an interrupt for a preemptive
kernel is given by Equation [2.5].

[2.5] Interrupt latency
+ Time to save the CPU’s context
+ Execution time of the kernel ISR entry function

A system’s worst case interrupt response time is its only response. Your system may respond to
interrupts in 50us 99 percent of the time, but if it responds to interrupts in 250us the other 1 percent,
you must assume a 250us interrupt response time.

2.28 Interrupt Recovery

Interrupt recovery is defined as the time required for the processor to return to the interrupted code.
Interrupt recovery in a foreground/background system simply involves restoring the processor’s context
and returning to the interrupted task. Interrupt recovery is given by Equation [2.6].

[2.6] Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

As with a fofeground/background system, interrupt recovery with a non-preemptive kernel (Equa-
tion [2.7]) simply involves restoring the processor’s context and returning to the interrupted task.

{2.71 Time to restore the CPU’s context
+ Time to execute the return from interrupt instruction

For a preemptive kernel, interrupt recovery is more complex. Typically, a function provided by the
kernel is called at the end of the ISR. For uC/OS-1I, this function is called OSTntExit () and allows the
kernel to determine if all interrupts have nested. If they have nested (i.e., a return from interrupt would
return to task-level code), the kernel determines if a higher priority task has been made ready torun as a
result of the ISR. If a higher priority task is ready to run as a result of the ISR, this task is resumed. Note
that, in this case, the interrupted task will resume only when it again becomes the highest priority task
ready to run. For a preemptive kernel, interrupt recovery is given by Equation [2.8].

[2.8] Time to determine if a higher priority task is ready
+ Time to restore the CPU’s context of the highest priority task
+ Time to execute the return from interrupt instruction

2.29 Interrupt Latency, Response, and Recovery

Figures 2.20 through 2.22 show the interrupt latency, response, and recovery for a foreground/back-
ground system, a non-preemptive kernel, and a preemptive kernel, respectively.

You should note that for a preemptive kernel, the exit function either decides to return to the inter-
rupted task [F2.22(A)] or to a higher priority task that the ISR has made ready to run [F2.22(B)]. In the
later case, the execution time is slightly longer because the kernel has to perform a context switch. I
made the difference in execution time somewhat to scale assuming nC/OS-II on an Intel 80186 proces-
sor (see Table 9.3, Execution times of pC/OS-II services on 33MHz 80186). This allows you to see the
cost (in execution time) of switching context.

Chapter 2: Real-Time Systems Concepts — 91

2.30 ISR Processing Time

Although ISRs should be as short as possible, there are no absolute limits on the amount of time for an
ISR. One cannot say that an ISR must always be less than 100us, 500us, or 1ms. If the ISR code is the
most important code that needs to run at any given time, it could be as long as it needs to be. In most
cases, however, the ISR should recognize the interrupt, obtain data or a status from the interrupting
device, and signal a task to perform the actual processing. You should also consider whether the over-
head involved in signaling a task is more than the processing of the interrupt. Signaling a task from an
ISR (i.e., through a semaphore, a mailbox, or a queue) requires some processing time. If processing
your interrupt requires less than the time required to signal a task, you should consider processing the
interrupt in the ISR itself and possibly enabling interrupts to allow higher priority interrupts to be recog-
nized and serviced.

Figure 2.20 Interrupt latency, response, and recovery
(foreground/background).

»
Interrupt Request
BACKGROUND B CKGROUND
Z 027
| | |
I | |
| & CPU Context Saved
|
| |
ISR | | [| k CPU context
| o User ISR Code | restored
| | g |
{ | I,/J/ _____ W| |
| | | | |
| I | ! [
! Interrupt Latency ! | |
‘ !
Interrupt Response Interrupt Recovery
>

2.31 Nonmaskable Interrupts (NMls)

Sometimes, an interrupt must be serviced as quickly as possible and cannot afford to have the latency
imposed by a kernel. In these situations, you may be able to use the Nonmaskable Interrupt (NMI) pro-
vided on most microprocessors. Because the NMI cannot be disabled, interrupt latency, response, and
recovery are minimal. The NMI is generally reserved for drastic measures such as saving important

92 — Embedded Systems Building Blocks, Second Edition

information during a power down. If, however, your application doesn’t have this requirement, you
could use the NMI to service your most time-critical ISR. The following equations show how to deter-
mine the interrupt latency [2.9], response [2.10], and recovery [2.11], respectively, of an NMI.

[2.9] Time to execute longest instruction + Time to start executing the NMI ISR
[2.10] Interrupt latency + Time to save the CPU’s context
[2.11] Time to restore the CPU’s context

+ Time to execute the return from interrupt instruction

I have used the NMI in an application to respond to an interrupt that could occur every 150us. The
processing time of the ISR took from 80 to 125ps, and the kernel I used disabled interrupts for about
45ps. As you can see, if I had used maskable interrupts, the ISR could have been late by 20us.

When you are servicing an NMI, you cannot use kernel services to signal a task because NMIs can-
not be disabled to access critical sections of code. However, you can still pass parameters to and from
the NMI. Parameters passed must be global variables and the size of these variables must be read or
written indivisibly; that is, not as separate byte read or write instructions.

Figure 2.21 Interrupt latency, response, and recovery
(non-preemptive kernel).

TIME

\4

Interrupt Request

TASK

\
&m

Zi
|
|
%' CPU Context Saved
I | “—CPU context

|

I User ISR Code | restored
| v, |

rFr T |

| |

| |

l |

ISR

Interrupt Latenc¥

Interrupt Response
"

i
Interrupt Recovery

Chapter 2: Real-Time Systems Concepts — 93

Figure 2.22 Interrupt latency, response, and recovery

(preemptive kernel).
2
TIME -
Interrupt Request
Interrupt Recovery
[m—]
TASK i | TASK
7 72 ez
| i |
| — CPU Context Saved Kernel's ISR | A
T Exit function |
ISR Kernel's ISR | f | kCPU context
Entry function | | restored

UserlSB Code

|
|
|
|
|

!

Interrupt Latenc¥

Interrupt Response

|
|
|
A __ ¥ 2
|
|

'LCPU context T

o
Kernel's ISR Pl
Exit function

| restored B
|
| ZZD)
| | TASK
i
Interrupt Recovery

NMIs can be disabled by adding external circuitry, as shown in Figure 2.23. Assuming that both the
interrupt and the NMI are positive-going signals, a simple AND gate is inserted between the interrupt
source and the processor’s NMI input. Interrupts are disabled by writing a 0 to an output port. You
wouldn’t want to disable interrupts to use kernel services, but you could use this feature to pass parame-
ters (i.e., larger variables) to and from the ISR and a task.

Figure 2.23 Disabling nonmaskable interrupts. -

NMI Interrupt Source

Output

Port

}To Processor's NMI Input

94 — Embedded Systems Building Blocks, Second Edition

Now, suppose that the NMI service routine needs to signal a task every 40 times it executes. If the
NMI occurs every 150us, a signal would be required every 6ms (40 x 150us). From a NMI ISR, you
cannot use the kernel to signal the task, but you could use the scheme shown in Figure 2.24. In this case,
the NMI service routine would generate a hardware interrupt through an output port (i.e., bring an out-
put high). Since the NMI service routine typically has the highest priority and interrupt nesting is typi-
cally not allowed while servicing the NMI ISR, the interrupt would not be recognized until the end of
the NMI service routine. At the completion of the NMI service routine, the processor would be inter-
rupted to service this hardware interrupt. This ISR would clear the interrupt source (i.e., bring the port
output low) and post to a semaphore that would wake up the task. As long as the task services the sema-
phore well within 6ms, your deadline would be met.

Figure 2.24 Signaling a task from a nonmaskable interrupt.

Issues interrupt by writing
to an output port
7 Semaphore

NMI Interrupt— = PEND

2.32 Clock Tick

A clock tick is a special interrupt that occurs periodically. This interrupt can be viewed as the system’s
heartbeat. The time between interrupts is application specific and is generally between 10 and 200ms.
The clock tick interrupt allows a kernel to delay tasks for an integral number of clock ticks and to pro-
vide timeouts when tasks are waiting for events to occur. The faster the tick rate, the higher the overhead
imposed on the system.

All kernels allow tasks to be delayed for a certain number of clock ticks. The resolution of delayed
tasks is one clock tick; however, this does not mean that its accuracy is one clock tick.

Figures 2.25 through 2.27 are timing diagrams showing a task delaying itself for one clock tick. The
shaded areas indicate the execution time for each operation being performed. Note that the time for each
operation varies to reflect typical processing, which would include loops and conditional statements
(i.e., if/else, switch, and ?:). The processing time of the Tick ISR has been exaggerated to show
that it too is subject to varying execution times.

Case 1 (Figure 2.25) shows a situation where higher priority tasks and ISRs execute prior to the task,
which needs to delay for one tick. As you can see, the task attempts to delay for 20ms but because of its
priority, actually executes at varying intervals. This causes the execution of the task to jirzer.

Chapter 2: Real-Time Systems Concepts — 95

Figure 2.25 Delaying a task for one tick (Case 1).

<4—20ms—p
Tick Interrupt | I | N |
Tick ISR [] [N I [
All higher priority tasks C 1 ..n
Call to delay 1 tick (20ms) - Call to della-V 1 tick (20ms) r Call to delay 1 tck (20ms)
Delayed Task H ,,___,,J:I__‘%,,__D__/
|
!4—— 11— ‘N‘—— 13 *——bl
(19ms) [—— 22— (27ms)

(17ms)

Case 2 (Figure 2.26) shows a situation where the execution times of all higher priority tasks and
ISRs are slightly less than one tick. If the task delays itself just before a clock tick, the task will execute
again almost immediately! Because of this, if you need to delay a task at least one clock tick, you must
specify one extra tick. In other words, if you need to delay a task for at least five ticks, you must specify
six ticks!

Figure 2.26 Delaying a task for one tick (Case 2).

<4— 20ms—»
Tick Interrupt l | I I I
Tick ISR [] [0 1 []
All higher priority tasks D D
Call to delay 1 tck (20ms) | Call ‘Ol delay 1 tick (20ms) r Cal to defay 1 ick (20ms)
Delayed Task H L_] ‘——l
| |
- 2 —p (27ms)

(6ms) (19ms)

Eld

96 — Embedded Systems Building Blocks, Second Edition

Case 3 (Figure 2.27) shows a situation in which the execution times of all higher priority tasks and ISRs
extend beyond one clock tick. In this case, the task that tries to delay for one tick actually executes two
ticks later and misses its deadline. This might be acceptable in some applications, but in most cases it isn’t.

These situations exist with all real-time kernels. They are related to CPU processing load and possi-
bly incorrect system design. Here are some possible solutions to these problems:

* Increase the clock rate of your microprocessor.

* Increase the time between tick interrupts.

* Rearrange task priorities.

* Avoid using floating-point math (if you must, use single precision).
* Get a compiler that performs better code optimization.

* Write time-critical code in assembly language.

» If possible, upgrade to a faster microprocessor in the same family; that is, 8086 to 80186, 68000 to
68020, etc.

Regardless of what you do, jitter will always occur.

Figure 2.27 Delaying a task for one tick (Case 3).

<4—20ms—» J—
Tick Interrupt I [| | I

Tick ISR il [] [I [

All higher priority tasks [1

Call to delay 1 tick (20ms)—, Call to delay 1 tick (20ms)—’
Delayed Task |_| B D I—]
i l [
l¢ < 2 —p
e 1 e (26ms)
(40ms) _

2.33 Memory Requirements

If you are designing a foreground/background system, the amount of memory required depends solely
on your application code.With a multitasking kernel, things are quite different. To begin with, a kernel
requires extra code space (ROM). The size of the kernel depends on many factors. Depending on the
features provided by the kernel, you can expect anywhere from 1 to 100Kb. A minimal kernel for an
8-bit CPU that provides only scheduling, context switching, semaphore management, delays, and time-
outs should require about 1 to 3Kb of code space. The total code space is given by Equation [2.12].

[2.12] Application code size + Kernel code size

Chapter 2: Real-Time Systems Concepts — 97

Because each task runs independently of the others, it must be provided with its own stack area
(RAM). As a designer, you must determine the stack requirement of each task as closely as possible
(this is sometimes a difficult undertaking). The stack size must not only account for the task require-
ments (local variables, function calls, etc.), it must also account for maximum interrupt nesting (saved
registers, local storage in ISRs, etc.). Depending on the target processor and the kernel used, a separate
stack can be used to handle all interrupt-level code. This is a desirable feature because the stack require-
ment for each task can be substantially reduced. Another desirable feature is the ability to specify the
stack size of each task on an individual basis (WC/OS-II permits this). Conversely, some kernels require
that all task stacks be the same size. All kernels require extra RAM to maintain internal variables, data
structures, queues, etc. The total RAM required if the kernel does not support a separate interrupt stack
is given by Equation [2.13].

[2.13] Application code requirements
+ Data space (i.e., RAM) needed by the kernel
+ SUM(task stacks + MAX(ISR nesting))

If the kernel supports a separate stack for interrupts, the total RAM required is given by Equation [2.14].

[2.14] Application code requirements
+ Data space (i.e., RAM) needed by the kernel
+ SUM(task stacks)
+ MAX(ISR nesting)

Unless you have large amounts of RAM to work with, you need to be careful how you use the stack
space. To reduce the amount of RAM needed in an application, you must be careful how you use each
task’s stack for

¢ large arrays and structures declared locally to functions and ISRs,
« function (i.e., subroutine) nesting,

« interrupt nesting,

« library functions stack usage, and

« function calls with many arguments.

To summarize, a multitasking system requires more code space (ROM) and data space (RAM) than
a foreground/background system. The amount of extra ROM depends only on the size of the kernel, and
the amount of RAM depends on the number of tasks in your system.

2.34 Advantages and Disadvantages of
Real-Time Kernels

A real-time kernel, also called a Real-Time Operating System, or RTOS, allows real-time applications to
be designed and expanded easily; functions can be added without requiring major changes to the soft-
ware. The use of an RTOS simplifies the design process by splitting the application code into separate
tasks. With a preemptive RTOS, all time-critical events are handled as quickly and as efficiently as pos-
sible. An RTOS allows you to make better use of your resources by providing you with valuable ser-
vices, such as semaphores, mailboxes, queues, time delays, timeouts, etc.

You should consider using a real-time kernel if your application can afford the extra requirements:
extra cost of the kernel, more ROM/RAM, and 2 to 4 percent additional CPU overhead.

98 — Embedded Systems Building Blocks, Second Edition

fiate]

The one factor I haven’t mentioned so far is the cost associated with the use of a real-time kernel. In
some applications, cost is everything and would preclude you from even considering an RTOS.

There are currently about 80+ RTOS vendors. Products are available for 8-, 16-, 32-, and even 64-bit
microprocessors. Some of these packages are complete operating systems and include not only the
real-time kernel but also an input/output manager, windowing systems (display), a file system, network-
ing, language interface libraries, debuggers, and cross-platform compilers. The cost of an RTOS varies
from $70 to well over $30,000. The RTOS vendor may also require royalties on a per-target-system
basis. This is like buying a chip from the RTOS vendor that you include with each unit sold. The RTOS
vendors call this silicon software. The royalty fee varies between $5 to about $250 per unit. Like any
other software package these days, you also need to consider the maintenance cost, which can set you

back another $100 to $5,000 per year!

2.35 Real-Time Systems Summary

Table 2.2 summarizes the three types of real-time systems: foreground/background, non-preemptive

kernel, and preemptive kernel.

Table 2.2 Real-time systems summary.

Foreground/ Non-Preemptive . _
oregro " plive Preemptive Kernel
Background Kernel
Int y MAX(Longestinstruction, MAX(Longest instruction, =~ MAX(Longest instruction,
h'l't"”"P User int. disable) User int. disable, User int. disable,
H""cy + Vector to ISR Kemel int. disable) Kemel int. disable)
(Time) + Vector to ISR + Vector to ISR
Interrupt Int. latency Int. latency Interrupt latency
response + Save CPU’s context + Save CPU’s context + Save CPU’s context
(Time) + Kemel ISR entry function
I Restore background’s Restore task’s context Find highest priority task
nterrupt context + Retum from int. + Restore highest priority
r;govery + Retumn from int. task’s context :
(Time) + Retum from interrapt
Task Background Longest task Find highest priority task -
response +Find hlgheSt pﬂoﬂ‘y task + Context switch
(Time) + Context switch
ROM si Application code Application code Application code
size + Kemel code + Kemel code
Application code Application code Application code
RAM si + Kemel RAM + Kemel RAM
size + SUM(Task stacks + SUM(Task stacks
+ MAX(ISR stack)) + MAX(ISR stack))
Services Application code must Yes Yes
available? provide

Chapter 2: Real-Time Systems Concepts — 99

2.36 Bibliography

Allworth, Steve T. 1981. Introduction To Real-Time Software Design. New York: Springer-Verlag. ISBN
0-387-91175-8.

Bal Sathe, Dhananjay. 1988. Fast Algorithm Determines Priority. EDN (India), September, p. 237.

Comer, Douglas. 1984.0perating System Design, The XINU Approach. Englewood Cliffs, New Jersey:
Prentice-Hall. ISBN 0-13-637539-1.

Deitel, Harvey M. and Michael S. Kogan. 1992. The Design Of OS/2. Reading, Massachusetts: Addi-
son-Wesley. ISBN 0-201-54889-5.

Ganssle, Jack G. 1992. The Art of Programming Embedded Systems. San Diego: Academic Press. ISBN
0-122-748808.

Gareau, Jean L. 1998. Embedded x86 Programming: Protected Mode. Embedded Systems Program-
ming, April, p. 80-93.

Halang, Wolfgang A. and Alexander D. Stoyenko. 1991. Constructing Predictable Real Time Systems.
Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9202-7.

Hunter & Ready. 1986. VRTX Technical Tips. Palo Alto, California: Hunter & Ready.
Hunter & Ready. 1983. Dijkstra Semaphores, Application Note. Palo Alto, California: Hunter & Ready.
Hunter & Ready. 1986. VRTX and Event Flags. Palo Alto, California: Hunter & Ready.

Intel Corporation. 1986. iAPX 86/88, 186/188 User’s Manual: Programmer’s Reference. Santa Clara,
California: Intel Corporation.

Kernighan, Brian W. and Dennis M. Ritchie. 1988. The C Programming Language, 2nd edition. Engle-
wood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-110362-8.

Klein, Mark H., Thomas Ralya, Bill Pollak, Ray Harbour Obenza, and Michael Gonzlez. 1993. A Prac-
tioner’s Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Sys-
tems. Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9361-9.

Labrosse, Jean J. 1992. uC/0S, The Real-Time Kernel. Lawrence, Kansas: R&D Publications. ISBN
0-87930-444-8.

Laplante, Phillip A. 1992. Real-Time Systems Design and Analysis, An Engineer’s Handbook. Piscat-
away, New Jersey: IEEE Computer Society Press. ISBN 0-780-334000.

Lehoczky, John, Lui Sha, and Ye Ding. 1989. The Rate Monotonic Scheduling Algorithm: Exact Char-
acterization and Average Case Behavior. In: Proceedings of the IEEE Real-Time Systems Sympo-
sium., Los Alamitos, California. Piscataway, New Jersey: IEEE Computer Society, p. 166—171.

Madnick, E. Stuart and John J. Donovan. 1974. Operating Systems. New York: McGraw-Hill. ISBN
0-07-039455-5.

Ripps, David L. 1989. An Implementation Guide To Real-Time Programming. Englewood Cliffs, New
Jersey: Yourdon Press. ISBN 0-13-451873-X.

s

100 — Embedded Systems Building Blocks, Second Edition

Savitzky, Stephen R. 1985. Real-Time Microprocessor Systems. New York: Van Nostrand Reinhold.
ISBN 0-442-28048-3.

Wood, Mike and Tom Barrett . 1990. A Real-Time Primer. Embedded Systems Programming, February,
p. 20-28.

Chapter 3

Keyboards

A large number of embedded products, such as microwave ovens, FAX machines, copiers, laser print-
ers, Point Of Sale (POS) terminals, Programmable Logic Controls (PLCs), and so on, rely on a key-
board or keypad interface for user input. The keyboard might be used to input numerical data as well as
to select the operating mode of the controlling device. As an embedded system designer, you are always
concerned with the cost of your products. Chips are currently available to perform keyboard scanning,
but a software approach to keyboard scanning has the benefit of reducing the recurring cost of a system
and requires very little CPU overhead.

In this chapter, I will describe how a microprocessor can scan a keyboard, and I will also provide
you with a complete, portable m x n matrix keyboard scanning module. The module can scan any key-
board matrix arrangement up to an 8§x8 matrix, but can easily be modified to handle a larger number of
keys. The matrix keyboard module code is an important building block for embedded systems. The key-
board module presented in this chapter has the following features:

¢ Scans any keyboard arrangement from a 3x3 to an 8x8 key matrix.
« Provides buffering (user configurable buffer size).

¢ Supports auto-repeat.

¢ Keeps track of how long a key has been pressed.

* Allows up to three Shift keys.

All you need to do to use this module is to write three simple hardware interface functions and set
the value of 17 #define constants. The keyboard module assumes the presence of a real-time kernel
but can easily be modified to work in a foreground/background environment.

3.00 Keyboard Basics

A momentary contact switch is typically used in a keyboard, and a closure can easily be detected by a
microprocessor using the simple circuit shown in Figure 3.1. The pull-up resistor provides a logic 1
when the switch is opened and a logic 0 when the switch is closed. Unfortunately, switches are not per-
fect in that they do not generate a crisp 1 or 0 when they are pressed or released. Although a contact

101

102 — Embedded Systems Building Blocks, Second Edition

may appear to close firmly and quickly, at the fast running speed of a microprocessor, the action is com-
paratively slow. As the contact closes, the contact bounces like a ball. This bouncing effect produces
multiple pulses as shown in Figure 3.1. The duration of the bounce typically will last between S and 30
mS. If muitiple keys are needed, each switch can be connected to its own input port on the microproces-
sor. As the number of switches increases, however, this method quickly begins to use up all the input
ports.

Figure 3.1 Keyboard switch.

To microprocessor input port

nnko"‘wi

A Leading edge bounce Trailing edge bounce
+5V (1)| Switch open / \ Switch open

GND (0) 1 Switch closed

l¢—— Key pressed ——p t
The most efficient way to lay out the switches in a keyboard (when more than five keys are needed)
is to form a two-dimensional matrix as shown in Figure 3.2. The most optimum arrangement (where /O
lines are concerned) occurs when there are as many rows as columns, that is, a square matrix. A momen-
tary contact switch (push button) is placed at the intersection of each row and column. The number of
keys needed in the matrix is obviously application dependent. Each row is driven by a bit of an output
port, while each column is pulled up by a resistor and fed to a bit on an input port.

Chapter 3: Keyboards — 103

Figure 3.2 Keyboard matrix.

Output Port

+5V
P) PO
S SEIEErIE
'SP g MO
1o

LN 'E_ﬂ i __-'E_J?L.
£l] £]-— %]]
Input Port

Keyboard scanning is the process of having the microprocessor look at the keyboard matrix at a reg-
ular interval to see if a key has been pressed. Once the processor determines that a key has been pressed,
the keyboard scanning software filters out the bounce and determines which of the keys was pressed.
Each key is assigned a unique identifier called a scan code. The scan code is used by your application to
determine what action is to be taken based on the key pressed. In other words, the scan code tells your
application which key was pressed.

Pressing (accidentally or deliberately) more than one key at a time is called rollover. Any algorithm
that can correctly recognize that a new key has been pressed — even though n-I keys are already
pressed — is said to have n-key rollover capability. The matrix keyboard module presented in this chap-
ter does not implement an n-key rollover algorithm because of the extra code required. The code pre-
sented here is intended for small embedded systems where user input would occur one keystroke after
the other. Such systems typically do not require full-featured keyboards like the ones found on terminals
Of computer systems.

3.01 Matrix Keyboard Scanning Algorithm

During initialization, all rows (output port) are forced low (see Figure 3.2). When no key is pressed, all
columns (input port) read high. Any key closure will cause one of the columns to go low. To see if a key
has been pressed, the microprocessor only needs to see if any of the input lines are low. Once the

104 — Embedded Systems Building Blocks, Second Edition

microprocessor has detected that a key has been pressed, it needs to find out which key it was. This pro-
cess is quite simple. The microprocessor outputs a low on only one of the rows. If it finds a 0 on the
input port, the microprocessor knows that the key closure occurred on the selected row. Conversely, if
the input port had all highs, the key pressed was not on that row and the microprocessor selects the next
row, repeating the process until it finds the row. Once the row has been identified, the specific column
of the pressed key can be established by locating the position of the single low bit on the input port. The
time required for the microprocessor to perform these steps is very short compared to the minimum
switch closure time and it is thus assumed that the key will remain pressed during that interval.

To filter through the bouncing problem, the microprocessor samples the keyboard at regular inter-
vals, typically between 20 mS and 100 mS (called the debounce period) depending on the bounce char-
acteristics of the switches being used.

The scan code of the key pressed is typically placed in a buffer until the application is ready to pro-
cess a keystroke. Buffering is a handy feature because it prevents losing keystrokes when the application
cannot process them as they occur. The size of the buffer depends on your application requirements. A
buffer size of 10 keystrokes is a good starting point. The buffer is generally implemented as a circular
queue. When a key is pressed, the scan code is placed at the next empty location in the quene. When
your application obtains a scan code from the keyboard module, the scan code is extracted from the old-
est location in the queue. If the queue is full, any further keystrokes are lost.

Another nice feature is what is called auto-repeat or typematic. Auto-repeat allows the scan code of
a key pressed to be repeatedly inserted into the buffer for as long as you press the key or until the buffer
fills up. Auto-repeat capability is nice to have if you plan on incrementing or decrementing the value of
a parameter (i.e., a variable) without having to continuously press and release the key. The timing dia-
gram of Figure 3.3 shows how auto-repeat works. The scan code of the key pressed is inserted in the
buffer as soon as the closure is detected. If the key is held down longer than the auto-repeat start delay,
the scan code is again inserted in the buffer. From then on, if the key remains pressed, the scan code will
be inserted in the buffer every auto-repeat delay.

Figure 3.3 Auto-repeat.

Scan code placed in buffer Auto repeat delay
¥ A
| oy FoT
| | | | I
| I | I I
| | | | |
I | I |

I
Key RELEASED Key RELEASED

f

I
Key PRESSED %

>
Auto repeat start delay

By also telling you how long the key has been pressed, your application can speed up the process of
incrementing or decrementing the value of a parameter based on how long the key has been pressed.

To reduce the recurring cost of your system, you can assign multiple functions to each key. To access
the alternate function of each key, you can either assign a prefix key (like calculators) or provide one or
more Shift keys. With a prefix key, you access the alternate function by pressing the prefix key followed
by the desired key. To execute another alternate function, you generally have to press the prefix key
again. With a Shift key, you access the alternate function by first pressing and holding down the Shift
key and then pressing the desired key. In both cases, the keyboard scanning code can keep track of the
operation and provide your application with a unique scan code for each type of key pressed. The matrix

pIES

i

Chapter 3: Keyboards — 105

keyboard module supports the second method and allows you to have up to three Shift keys. Note that
you can still use the prefix keys with the keyboard module except that your user interface software will
have to keep track of them.

3.02 Matrix Keyboard Module

The source code for the matrix keyboard module is found in the \ SOFTWARE\BLOCKS\KEY_MN\SOURCE
directory. The source code is found in the files KEY . C and KEY . H. The source code is shown in Listing 3.1
(KEY.C) and Listing 3.2 (KEY.H). As a convention, all functions and variables related to the keyboard
module start with Key while all #define constants start with KEY .

The code allows you to scan a keyboard having any number of rows and columns up to an 8x8
matrix. Rows are driven by an output port (up to 8 bits). The module assumes that rows are populated
starting with bit 0 on the output port. Columns are fed to an input port (up to 8 bits). As with the rows,
columns must be populated starting with bit 0. You must sacrifice column inputs if your application
requires Shift keys. The module can accommodate up to three Shift keys. Shift keys must be populated
starting with bit 7 of the input port. In other words, your first Shift key should be placed on bit 7 of the
input port, the next one, on bit 6, and the third on bit 5.

The module in Listing 3.1 and 3.2 has been configured and tested assuming the keyboard layout
shown in Figure 3.4: a 4-row by 6-column keyboard matrix with two Shift keys. Each key in the matrix
has a scan code associated with it (see Figure 3.4). When no Shift key is pressed, the scan code for a key
is between 0 and 23 (incl.). When the SHIFT1 key is pressed, the scan code for each is the number
shown in Figure 3.4 plus 24. Similarly, if the SHIFT?2 key is pressed, 48 is added to the scan codes in
Figure 3.4. (See Table 3.1).

106 — Embedded Systems Building Blocks, Second Edition

Figure 3.4 Keyboard matrix.

ROWS
(Output port) +5V

AAAA
MWW
WY
WW
AAA
~AW

W

B3 —e-
s P &) J .
£l %] £ %] £] A
B 23u 22 21?—' ZOU 19L' 18?.—'
-ﬁL‘ '|<g_‘ j‘fq_‘ 4 "I{_‘ '|§_‘ Scan code

17 16 15 14 13 12 | (No SHIFT key pressed)

Bl S I G O B S B O R
]] k]] %]

BO, + 1

COLUMNS 3 4 3 2 1 0 +5V
Input port L
B7
B6
B5 _lé o]
B4 i I
B3 =
B2 SHIFT1 SHIFT2
Bl
BO
Table 3.1 Scan codes for keyboard shown in Figure 3.4.
Scan code Shift key(s) pressed
0..23 None
24..47 Shiftl
48..71 Shift2
72..95 Shift] and Shift2

3.03 In

ternals

Figure 3.5 shows a flow diagram of the matrix keyboard module. To use this module, all you need to do is
to adapt three hardware interface functions to your environment and change the value of 17 #define
constants. As shown in Figure 3.5, the code assumes the presence of a real-time kemel. The keyboard
scanning module only makes use of two kernel services: semaphores and time delays. You should refer to

Listing 3.1 and

3.2 for the following description. A single task, KeyScanTask (}, is responsible for scan-

Chapter 3: Keyboards — 107

ning the keyboard. KeyScanTask () is created when your application calls KeyInit (). Once created,
KeyScanTask () executes every KEY SCAN_TASK_DLY milliseconds. KEY_SCAN_TASK_DLY should
be set to produce a scan rate between 10 and 30 Hz (rate in Hertz is 1000 / KEY_SCAN TASK_DLY).

Figure 3.5 Matrix keyboard driver flow diagram.

Application Keyboard Driver Hardware

Interface

KeyDown Timer : KEY_SCAN_TASK_DLY

¥a

KeyGetKeyDownTime () <9 Matrix Keyboard

I
I
I
|
I
|

<l

e .
KeyInitPort ()
KeySelRow()
KeyGetCol ()

KeyInit() ————»

PEND | Semaphore 1

I
|
| POST
I
KeyGetKey () « |I

KeyBuf[] KeyBufOutIx
| XTimeout [
zkeyNRead

KeyBufInIx
The simplest method I have found to scan a keyboard and implement all the features described pre-

viously is to build a simple state machine as shown in Figure 3.6. The state machine is executed every
debounce period. Only one of the four states is executed every KEY_SCAN_TASK_DLY milliseconds.

KeyHit ()

|

I

|

|

I

I

I

I‘

|V

I

I

I

I

I

|

|

I
- |

|
KeyFlush() — |
|
1
|
|

E

o

108 — Embedded Systems Building Blocks, Second Edition

Figure 3.6 Matrix keyboard driver state machine.

Initialization

Key not pressed

Key no longer pressed Key pressed:

Clear key down timer

DEBOUNCE

Key still pressed & Debounce time has expired:
Find which key was pressed
Place key code in buffer
Inc. key down timer

Key not pressed

Key still pressed & delay to auto repeat not elapsed:
Inc. key down timer

WAITTO
START AUTO
REPEAT

Key still pressed & delay to auto repeat elapsed:
Find which key was pressed
Place key code in buffer
Inc. key down timer

Key is pressed:

if (end of delay betw: ats
A FoR (o e oo

Place key code in buffer
Inc. key down timer

Initially, the state machine is in the KEY_STATE_UP state. When a key is pressed, the state of the
state machine changes to KEY_STATE_ DEBOUNCE, which will execute KEY_SCAN_TASK_DLY millisec-
onds later. Notice that the operating system’s (i.e., uC/OS-II) function OSTimeD1yHMSM () provides a
convenient way to debounce and scan the keyboard at a regular interval.

After the delay, KeyScanTask () executes the code in the KEY_STATE_DEBOUNCE state, which
again checks to see if the key is pressed. The state machine returns to the KEY_STATE,_UP state if the
key is released. If the key is still pressed, however, the scan code is found by calling KeyDecode ()
and inserted in the circular buffer through KeyBufIn (). KeyBufIn() discards the scan code if the
buffer is already full. KeyBufIn () also signals the keyboard semaphore, allowing your application to
obtain the scan code of the key through KeyGetKey (). The state machine is then changed to the
KEY_STATE_RPT START DLY state.

The auto-repeat function will engage if the key is pressed for more than KEY_RPT START DLY scan
times. In this case, the scan code is inserted in the buffer and the state is changed to the KEY_STATE_RPT DLY
state. If the key is no longer pressed, the state of the state machine is changed to the KEY_STATE_DEBOUNCE
state to debounce the released key.

After a scan period, KeyScanTask () executes the code in the KEY_STATE_RPT_DLY state, where
the scan code for a pressed key will be inserted into the buffer every KEY_RPT _DLY scan times. As with
the other states, debouncing will be required if the key is released.

3.04 Interface Functions

Chapter 3: Keyboards — 109

Figure 3.7 shows a block diagram of the matrix keyboard module. Your application knows about the key-
board module only through five functions: KeyFlush (), KeyGetKey (), KeyGetKeyDownTime (),

KeyHit (), and KeyInit ().

Figure 3.7 Matrix keyboard driver block diagram.

Application Interface
KeyInit ()
KeyHit ()
KeyGetKey () <4+—>
KeyFlush()
KeyGetKeyDownTime ()

MxN
Matrix
Keyboard
Driver

Hardware

M x N Matrix Keyboard

Hardware Interface
KeyInitPort ()
KeySelRow ()
KeyGetCol ()

110 — Embedded Systems Building Blocks, Second Edition

KeyFlush()

void ReyFlush(void);

The matrix keyboard module buffers user keystrokes until they are consumed by your application. In
some instances, it may be useful to flush the buffer and start with fresh user input. In other words, you
may want to throw away previously accumulated keystrokes and start with an empty keyboard buffer.
You can accomplish this by calling KeyFlush().

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for (:;:) {

KeyFlush() ; /* Clear the keyboard buffer */

3.04 Interface Functions

Chapter 3: Keyboards — 109

Figure 3.7 shows a block diagram of the matrix keyboard module. Your application knows about the key-
board module only through five functions: KeyFlush (), KeyGetKey (), KeyGetKeyDownTime (),

KeyHit (), and KeyInit ().

Figure 3.7 Matrix keyboard driver block diagram.

Application Interface
KeyInit{)
KeyHit ()
KeyGetKey () 4—p
KeyFlush{()
KeyGetKeyDownTime ()

MxN
Matrix
Keyboard
Driver

Hardware

M x N Matrix Keyboard

Hardware Interface
KeyInitPort ()
KeySelRow ()
KeyGetCol ()

110 — Embedded Systems Building Blocks, Second Edition

KeyFlush()

void ReyFlush(void);

The matrix keyboard module buffers user keystrokes until they are consumed by your application. In
some instances, it may be useful to flush the buffer and start with fresh user input. In other words, you
may waunt to throw away previously accumulated keystrokes and start with an empty keyboard buffer.
You can accomplish this by calling KeyFlush ().

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for (;:) {

KeyFlush(); /* Clear the keyboard buffer */

Chapter 3: Keyboards — 111

KeyGetKey ()

INT8U KeyGetKey (INT16U to);

KeyGetKey () is called by your application to obtain a scan code from the keyboard module. If a key
has not been pressed, the calling task will be suspended until the user presses a key or until a user-spec-
ified timeout expires; the timeout is passed as an argument to KeyGetKey (). If a timeout occurs,
KeyGetKey () returns OxFF.

I

Arguments

tois a user specified time out specified in ‘clock ticks’. To wait for ever for a key press, specify a tim-
eout of 0.

Return Value

The scan code corresponding to the key pressed or 0xFF if the specified timeout period expires. The
scan code returned by KeyGetKey () depends on whether or not any of the Shift keys are pressed, as
shown in .

Notes/Warnings

This function will suspend the calling task until a key is pressed.

Example

void Task (void *pdata)
{
INT8U scancode;

for (;;) {
scancode = KeyGetKey(10); /* Wait for key to be pressed */ -
/* .. up to 10 ticks */

112 — Embedded Systems Building Blocks, Second Edition

KeyGetKeyDownTime ()
INT16U KeyGetKeyDownTime (void);
KeyGetKeyDownTime () returns the amount of time (in milliseconds) that a key has been pressed.
This function is useful to speed up the process of incrementing or decrementing the value of a parameter
based on how long a key has been pressed.

The key down time is not cleared when the pressed key is released. Instead, the key down time is
reset only when the next key is pressed. In other words, you can always obtain the amount of time that
the last key was pressed.

Arguments

None

Return Value

The amount of time that the current key is being pressed.

Notes/Warnings _

The first edition of this book returned the time the key was pressed in number of clock ticks instead of
milliseconds. You will thus have to change your code if you used the previous version of this function.

Example

void Task (void *pdata)
{

INT16U time;
for (;:) {
time = KeyGetKeyDownTime() ; /* See how long last key was pressed */

L

Chapter 3: Keyboards — 113

KeyHit ()
BOOLEAN ReyHit (void);

KeyHit () allows your application to determine if a key has been pressed. Unlike KeyGetKey (),
KeyHit () does not suspend the caller. KeyHit () immediately returns TRUE if a key was pressed and
FALSE otherwise.

Arguments 3%

None

Return Value

TRUE is a key is available from the keyboard buffer.
FALSE if no key has been pressed.

Notes/Warnings

None
Example I

void Task (veid *pdata)
{
INT8U scancode;

for (;:) {

if (ReyHit()) { /* See if a key has been pressed */
scancode = KeyGetKey(0); /* Yes, get scan code *x/
}

114 — Embedded Systems Building Blocks, Second Edition

KReyInit()
void ReyInit(void);

KeyInit () is the initialization code for the module and it must be called before you invoke any of the
other functions. KeyInit () is responsible for initializing internal variables used by the module, initial-
izing the hardware ports, and creating a task that will be responsible for scanning the keyboard.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void main (void)

{

KeyInit(); /* Initialize the keyboard handler */

3.05 Configuration

Configuration of the matrix keyboard module code involves changing the value of 17 #defines and
adapting three hardware-interface functions to your environment. The #defines are found in KEY.H
(section: User Defined Constants) and are also found in CFG.H. The #defines are fully described in
KEY . H. You should typically assign a low task priority to keyboard scanning.

WARNING:
In the previous edition of this book, you needed to specify KEY_SCAN_TASK_DLY in number of
ticks between execution of KeyScanTask (). Because uC/OS-II provides a more convenient

function (i.e., OSTimeD1lyHMSM ()) to specify the task execution period in hours, minutes, sec-
onds, and milliseconds — KEY_SCAN_TASK_DLY now specifies the scan period in milliseconds
instead of ticks.

Chapter 3: Keyboards — 115

WARNING

In the previous edition of this book, KEY_SCAN_TASK STK SIZE specified the size of the stack
for KeyScanTask () in number of bytes. pnC/OS-II assumes the stack is specified in stack width
elements.

To make this module as portable as possible, access to hardware ports has been isolated into three
functions: XeyInitPort (), KeySelRow (), and KeyGetCol (). The matrix keyboard module can be
adapted to just about any environment as long as you write these functions as described.

KeyInitPort () is responsible for initializing the I/O ports used for the rows and columns. I tested
the code using an Intel 82C55A PPI (Programmable Peripheral Interface). KeyInitPort () is called
by KeyInit ().

KeySelRow () is used to select rows. KeySelRow () expects a single argument that can either be
KEY_ALL_ROWS (to force all rows low) or a number between 0 and 7 (to force a specific row low).

KeyGetCol () reads and returns the complement of the columns input port (a 1 indicates a key
pressed).

3.06 How to Use the Matrix Keyboard Module

Let’s suppose that your application needs a keyboard, as shown in Figure 3.8. This keyboard should
look somewhat familiar except for the four function keys: F1 to F4.
Before you can use any of the keyboard module’s services, you must call KeyInit{():

void main(void)
{
OSInit(}; /* Initialize the 0.S. (mC/0S-II) */

KeyInit(); /* Initialize the keyboard module */

osStart () ; /* Start multitasking (mC/0S-II) */

116 — Embedded Systems Building Blocks, Second Edition

Figure 3.8 Using the keyboard module.

ROWS
(Output port) +5V
3 03 3
B3 718 9 |F1
B2 4|56 |F2 Keyg:md
Bl 1{2!{3 F3 Scan Codes
15 14 3 4
BO * 10| # | F4 718 9 F1
11 10 9 8
COLUMNS 74 65 56 4F2
Input port 1 2 3 F3
3 2 1 0
B7 { % | 0 | # | F4
B6
BS Scan Code
B4
B3
B2
B1
BO

Once multitasking has started, the keyboard will be scanned at the rate defined by KEY_ SCAN_TASK_DLY.
At this point, your application task (typically some type of user interface) will call one of the four keyboard
module services: KeyGetKey (), KeyHit (), KeyFlush(), or KeyGetKeyDownTime ().

In the following code, the user interface task calls KeyGetKey () by specifying a timeout of 0. In this
case, the user interface will be suspended until a key is pressed. When a key is pressed, KeyGetKey ()
returns the scan code of the key pressed. For example, if you pressed the 8 key, the scan code returned by
KeyGetKey () would be 14 (see Figure 3.8).

void UserIFTask (void *data)

{
INT8U key;

data = data;

for (::) {
key = KeyGetKey(0):;
switch (key) {

Chapter 3: Keyboards — 117

/* Wait for user input (no timeout) */

You can map scan codes to anything you want by defining a lookup table:

char UserKeyMapTbl([] = {
‘A,
|#| ,
0,

Pk
’

'B',
'3,
o,
1,
o,
6,
5,
4,
‘D',
g,
g,
7

}s

/*

F4

/* #
/* 0
/% *

/*

F3

/* 3
/* 2
/* 1

/*

/* 6
/* 5
/* 4

/*

/* 9
/* 8
/* 7

key
key
key
key
key
key
key
key
key
key
key
key
key
key
key
key

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

The user interface code would now look as shown following this paragraph. With UserkKeyMapTbl (],
the 8 key would now be returned to your application as ASCII 8 or, ' 8, the # would be returned as ASCII

"H#, etc.

118 — Embedded Systems Building Blocks, Second Edition

void UserIFTask (void *data)
{

INT8U code;

char key;

data = data;

for (;;) {
code = KeyGetKey(0); /* Wait for user input */
key = UserKeyMapTbllcode]; /* Get ASCII value of key */

switch (key) {

One of the disadvantages of the user interface code shown previously is that the user interface code
is suspended until a key is pressed. If your user interface also needs to display run-time information, you

can run the user interface code at a regular rate and poll the keyboard module:

void UserIFTask {(void *data)
{

INT8U code;
char key;
data = data;
for (;;) {
OSTimeD1yHMSM(?7?7?) ; /*
if (ReyHit()) { ’*
code = KeyGetKey (0); /*
key = UserKeyMapTbl[code]; /*

switch (key) {

}

/* User interface display functions */

Delay user I/F

See if key was pressed
Get user input
Convert to ASCII key

*/
*/
*/
*/

3.07 Bibliography

Dybowski, John
“Negotiating a Keyboard Interface”
The Computer Applications Journal, October/November 1992, p.88-93

Lipovski, G. J.

Single- and Multiple-Chip Microcomputer Interfacing
Englewood Cliffs, NJ

Prentice Hall

Texas Instruments

TMS7000 Keyboard Interface (SPNA0OO3)
Houston, TX

Texas Instruments, 1985

Zaks, Rodnay

Microprocessors, from Chips to Systems
Berkeley, CA

Sybex

Chapter 3: Keyboards — 119

Pap

120 — Embedded Systems Building Blocks, Second Edition

Listing 3.1 KEY.C

/*

Ak ok Rk kkkkkd ko koo ok kA AR A Ak kkkk ko ko kkkk ok ok kkk ko kkkok ko dokk ok kkdrhhdkkkkhhhhkkkkkkkk kb hkkkk kot kk
* Embedded Systems Building Blocks

* Complete and Ready-to-Use Modules in C

*

* Matrix Keyboard Driver

*

* (c) Copyright 1999, Jean J. labrosse, Weston, FL
* All Rights Reserved

*

* Filename : KEY.C

* Programmer : Jean J. Labrosse

R L L e e L e T 2T

* DESCRIPTION
*

* The keyboard is assumed to be a matrix having 4 rows by 6 colums. However, this code works for any
* matrix arrangements up to an 8 X 8 matrix. By using from one to three of the colum inputs, the driver
* can support “SHIFT" keys. These keys are: SHIFT1, SHIFT2 and SHIFT3.

*

Your application software must declare (see KEY.H):

*

* KEY_BUF_SIZE Size of the KEYBOARD buffer

*

* KEY_MAX RCWS The maximum number of rows on the keyboard

* KEY_MAX COLS The maximum number of colums on the keyboard

*

* KEY_RPT DLY Nurmber of scan times before auto repeat executes the function again
* KEY_RPT_START DLY Number of scan times before auto repeat function engages

*

* KEY_SCAN _TASK DLY The nunber of milliseconds between keyboard scans

* KEY_SCAN_TASK PRIO Sets the priority of the keyboard scamning task

* KEY_SCAN_TASK _STK_SIZE The size of the keyboard scamning task stack

*

* KEY_SHIFT1_MSK The mask which determines which column input handles the SHIFT1 key
* (A 0x00 indicates that a SHIFT1 key is not present)

* KEY_SHIFT1_OFFSET The scan code offset to add when the SHIFT1 key is pressed

*

* KEY_SHIFT2_MSK The mask which determines which column input handles the SHIFT2 key
* {A Ox00 indicates that an SHIFT2 key is not present)

* KEY_SHIFT2_OFFSET The scan code offset to add when the SHIFT2 key is pressed

*

* KEY_SHIFT3_MSK The mask which determines which colum input handles the SHIFT3 key
* (A 0x00 indicates that a SHIFT3 key is not present)

* KEY_SHIFT3_OFFSET The scan code offset to add when the SHIFT3 key is pressed

*

*

* KEY_PORT_ROW The port address of the keyboard matrix ROWs

* KEY_PORT_COL The port address of the keyboard matrix COLUMNS

* KEY_PORT_CW The port address of the keyboard I/0 ports control word

*

*

KeyInitPort, KeySelRow() and KeyGetCol{) are the only three hardware specific functions. This has
been done to localize the interface to the hardware in only these two functions and thus make is
* easier to adapt to your application.

B T I T

*/

*

L L L L T

/*SPAGE*/

Chapter 3: Keyboards — 121

Listing 3.1 (continued) KEY.C

/*
FHFK I A KE KK I A AKH A AR AARA AR HRAAAA KT A R AR ARk AR A kI ARk kA A AR kA KA KA KK A kAo A A KK kKK kA ok kA ok
* INCILUDE FILES

hAkok ok kK Rk A ARk A kA kA kKKK A A A >k ok ok ok ok 3k ok ok ok e ok ok 2k kK ook ok 3k 3k ok ok ok ok 3k ok ok ok ok 3 ok e ok ok ok ok ok ok
*/

#include "includes.h®

/*
K ok ok ok ko ok ok ok ok ok ok ok o ook ok ook ok k9 ok 1ok ok 5 ok ok 3ok o 8 otk ok ke Kk otk ok kot ok ok ko ok ok ok ot 3 2k ok ok ok ok otk ok ok ok ok o ok ok o ok ok ok ok ok ko R K
* LOCAL CONSTANTS

3 3k 3 3 5 7 ok o 9 3k 5% ok ok sk 58 ok 9 ok ke ok 58 ok 9 ok ke ok 9k ok vk ok A 3 3 ok o ok 3 vk sk ok ok o 3 ok sk oo ok sk ok ok o sk ok ok ok sk ok ok ok ok ok ko b ok e ke ok ok Sk ke e of ke ok

*/

#define KEY_ STATE UP

#define KEY_STATE DEBOUNCE
#define KEY STATE RPT START DLY
#define KEY_STATE RPT DLY

/* Key scanning states used in KeyScan() */

W N

/*
% 3 ok % 2k ok 3k 9 3k 3k ok ok o 3k 9k 3 ok 9 ok 3k ok A 9 o 3k ok ok o o 3k ok ok ok 3k ok 5 ok o ok 3 9k 5 ok o sk ok ok 3 ok 9 39 ok o 3 9 ok 3 ok o 3 o ok ok ok o 3 ok 5 ok o ok ok ok ok ok ok ok Tk e ok o Aok ok ke R

* GLOBAL VARIABLES

3 3k e kv 5 9 k7 3k 5k 3 903k ok 9k 3 ok 9 ok ok ke k39 3 ok ke ok o8 ok 38 ok ke vk ok 30 3 ok ok ok ok 3 ok ok koo 0 ok ok ok S E Ok o ek R Ok I ko o sk ok Ak ok ok ko ke ok ke Ok ek ok

*/

static INT8U KeyBuf [KEY_BUF_SIZE]: /* Keyboard buffer */
static INT8U KeyBufInIx; /* Index into key buf where next scan code will be inserted*/
static INT8U KeyBufOutIx; /* Index into key buf where next scan code will be removed */
static INT16U KeyDownTmr ; /* Counts how long key has been pressed */
static INT8U KeyNRead; /* Number of keys read from the keyboard */
static INT8U KeyRptStartDlyCtr; /* Number of scan times before auto repeat is started */
static INT8U KeyRptDlyCtr; /* Number of scan times before auto repeat executes again */
static INT8U KeyScanState; /* Current state of key scanning function */
static 0S_STK KeyScanTaskStk [KEY_SCAN TASK_STK_SIZE]; /* Keyboard scanmning task stack */
static OS_EVENT *KeySemPtr; /* Pointer to keyboard semaphore */
/*

Rk kA ok k ko Ak kA kA A kA A A A A A A A A A A I AT A A A A A A kAR Ak kA Ik kA kkk ko k kR kk kA Rk khkkkkkkhkhkhkkkhkhhkhkhkkkkkk
* LOCAL FUNCTION PROTOTYPES

3 3k ok k3 3k 7 3k 9k 5 9 3k ok 9 ok 9 3k 9 3 o8 5K 9 3k o 3 vk ok o o 3k 9k 5 sk A3k o 9k 5 vk ok o 3 9k 5 ok 3k ok o 5k 5 ok o sk ok 73 ok 9 3 9 S ok ok 9 3 0 ok ok o 3 ok ok ok o 0o 3 o o 3 Tk ok ok ok sk ok ok ke

*/

static void KeyBufIn (INT8U code) ; /* Insert scan code into keyboard buffer */
static INT8U ReyDecode (void) ; /* Get scan code from current key pressed */
static BOOLEAN KeyIsKeyDowrn(void); /* See if key has been pressed */
static wvoid KeyScanTask (void *data); /* Keyboard scanning task */

/*SPAGE*/

122 — Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued) KEY.C

/*

* INSERT KEY CHARACTER INTO KEYBOARD BUFFER

* Description : This function inserts a key character into the keyboard buffer
* Arguments : code is the keyboard scan code to insert into the buffer

* Returns 1 none

*/

static wvoid KeyBufIn (INTS8U code)
{

*kk ok k ek * * ok dkk

OS_ENTER_CRITICAL() ; /* Start of critical section of code, disable ints */
if (KeyNRead < KEY BUF_SIZE) { /* Make sure that we don't overflow the buffer */
KeyNRead++; /* Increment the number of keys read */
KeyBuf [KeyBufInIx++] = code; /* Store the scan code into the buffer */.
if (KeyBufInIx »= KEY BUF_SIZE) { /* Adjust index to the next scan code to put in buffer*/

KeyBufInTx = 0;

}

OS_EXIT_CRITICAL({) ; /* End of critical section of code */

OSSemPost (KeySemPtr) ; /* Signal sem if scan code inserted in the buffer */
} else { /* Buffer is full, key scan code is lost */

0S_EXIT CRITICAL(); /* End of critical section of code */

/*$SPAGE*/

Chapter 3: Keyboards — 123

Listing 3.1 (continued) KEY.C

/*
dek A Aok kA ok Rk ok ke R kR ok Ak k R KRk ok d K Rk kA ke ek Rk ok ek ok Rk ok ok kR ok ok ok ok Rk ok ok ok ok e ok ok ok ok ok ok ok Rk ke
* DECCDE KEYBOARD

*

* Description : This function is called to determine the key scan code of the key pressed.

* Arguments : none

* Returns : the key scan code

kkhh Ak kkkhkhdk * Kk okhkh ok ok ek Ak Heke kA KA KRR AI KK A A A AN AR A A AN AR A A A dk ko dh kg dhkdkkkkkkhkdik
*/

static INT8U KeyDecode (void)
{

INTBU col;
INT8U row;
INT8U offset;
BOOLEAN done;
INT8U col_id;
INT8U msk;
done = FALSE;
row = 0; N
while {row < KEY _MAX ROWS && !done) { /* Find out in which row key was pressed */
KeySelRow (row) ; /* Select a row */ —_
if (KeyIsKeyDown()) { /* See if key is pressed in this row */
done = TRUE; /* We are done finding the row */
} else {
YOWs+; /* Select next row */
}
}
col = KeyGetCol () ; /* Read columns */
offset = 0; /* No SHIFT1, SHIFT2 or SHIFT3 key pressed */
if (col & KEY_SHIFT1_MSK) { /* See if SHIFT1 key was also pressed */

offset += KEY_ SHIFT1_OFFSET;
}

if (col & KEY_SHIFTZ2_MSK) { /* See if SHIFT2 key was also pressed */ -
offset += KEY_SHIFT2_OFFSET;
}
if (col & KEY_SHIFT3_MSK) { /* See if SHIFT3 key was also pressed */
offset += KEY SHIFT3_OFFSET;
}
msk = 0x01; /* Set bit mask to scan for the column */ -
col_id = 0; /* Set colum value (0..7) */
done = FALSE;
while (col_id < KEY_MAX COLS && !done) { /* Go through all columns */
if (col & msk) { /* See if key was pressed in this columns */
done = TRUE; /* Done, i has colum value of the key (0..7) */
} else {
col_id++;
msk <<= 1;
}
}
return (row * KEY MAX COLS + offset + col_id); /* Return scan code */

/*SPAGE*/

124 — Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued) KEY.C

/*

* *kkk * Ak KAIARAKF KK RA K IR A Kk Kk A A kh KK *kk kK * % * * *kkk

* FLUSH KEYBOARD BUFFER

*

* Description : This function clears the kevboard buffer

* Arguments : none

* Returns : none

KAK KA KKK AR KA A KKK KA AR KAKAK AR K kA IR AR RA AT A A Ak hk kXK hkhdhkk * *hkkkk ek ok Kk kk ok *k *hkkkkkkkk
*/

void KeyFlush (void)

{
while (KeyHit({}) { /* While there are keys in the buffer... */
KeyGetKey (0) ; /* ... extract the next key from the buffer */
}
}
/‘k
KKK K KRR AR KA KRR E R AR Rk kA KKK KKK A KKK KK KK KRR AR AR R A KA R AR KRR ARk kK Ak Rk kAR KRRk kKRR KKk khkk
* GET KEY

* Description : Get a keyboard scan code from the keyboard driver.

* Arguments : 'to’ is the amount of time KeyGetKey() will wait {(in mumber of ticks) for a key to be
* pressed. A timeout of '0' means that the caller is willing to wait forever for
* a key to be pressed.

* Returns : = OXFF is the key scan code of the key pressed

* == OxFF indicates that there is no key in the buffer within the specified timeout
dkkkkAkAkhkhkhkhkkhkkhkhkhkhkkhkhkkhkkhkkhkhkhkhkkik *hkkkkk * Kk kk KA KKKKKK A AR KKKk KAk ARk Rk KKK KKK)
*/

INT8U KeyGetKey (INT16U to)

{
INT8U code;
INT8U err;
OsSemPend (KeySemPtr, to, &err); /* Wait for a key to be pressed */
OS_ENTER_CRITICAL(); /* Start of critical section of code, disable ints */
if (KeyNRead > 0) { /* See if we have keys in the buffer */
KeyNRead--; /* Decrement the number of keys read */
code = KeyBuf [KeyBufOutIx]; /* Get scan code from the buffer */
KeyBufOutIx++;
if (KeyBufOutIx >= KEY_BUF_SIZE) { /* Adjust index into the keyboard buffer */
KeyBufOutIx = 0;
} .
OS_EXIT CRITICAL(); /* End of critical section of code */
return (code); /* Return the scan code of the key pressed */
} else {
OS_EXIT CRITICAL{); /* End of critical section of code */
return (OxFF); /* No scan codes in the buffer, return -1 */
}
}

/*SPAGE*/

Chapter 3: Keyboards — 125

Listing 3.1 (continued) KEY.C

/*

KAk kA AR A A A A AR Ak kA A Ak A A A AR A ARk A A A AR A A A A A A AR AR A A AT AR A A A A AR A A AR T AR Ak TRk hkkkkk kA kdhkkkkkxkdkk

* GET HOW LONG KEY HAS BEEN PRESSED -
* -
* Description : This function returns the amount of time the key has been pressed.

* Arguments : none 3

* Returns : key down time in 'milliseconds’ i

FE T L L L L T T L T T S AT

*/

INT32U KeyGetKeyDownTime (void)

{
INT16U tmr;
OS_ENTER_CRITICAL({) ;
tmr = KeyDownTmr;
OS_EXIT CRITICAL();
return (tmr * KEY_SCAN TASK DLY);
)
/*SPAGE*/
/*
kA AR A KA A A AT E IR A kA AR ARk A A A kA kAR AR A A A A A A A A A A A A A AR AR A A A A A A AR AR AR A A A A AR AR A Ak kA h* ARk kA k*
* SEE IF ANY KEY IN BUFFER

*
* Description : This function checks to see if a key was pressed
* Arguments : none

* Returns : TRUE if a key has been pressed

* FAISE if no key pressed

KEK I KKK KAA X XK KA A KA KA K kAR Ihhkk kR dkkkk ko k kkkkdk kkkkkdhk* * ¥ k% * ok * ok * * Fedk ko Kk gk ok Kk ok kk
*/

BOOLEAN KeyHit (void)
{ -
BOCLEAN hit;

OS_ENTER_CRITICAL{);

hit = (BOOLEAN) (KeyNRead > 0} ? TRUE : FALSE;

OS_EXIT_CRITICAL(}; -
return (hit);

126 — Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued) KEY.C

/*
dkk ok ek ke e ek ke ok ke ek ok * LR TR TR T AT L ed

* KEYBOARD INITTALIZATION

* Description: Keyboard initialization function. KeyInit() nust be called before calling any other of
* the user accessible functions.
* Arguments : none

* Returns : none
*xk ke ke ke ok ok ok ok ok ke *kkk
*/
void KeyInit (void)
{
KeySelRow (KEY_ALL_ROWS) ; /* Select all row */
KeyScanState = KEY_STATE UP; /* Keyboard should not have a key pressed */
KeyNRead = 0; /* Clear the mmber of keys read */
KeyDownTmr = O;
KeyBufInTx = 0O; /* Key codes inserted at the beginning of the buffer */
KeyBufOutIx = 0; /* Key codes ramoved fram the beginning of the buffer */
KeySemPtr = OSSemCreate(0); /* Initialize the keyboard semaphore */
KeyInitPort(); /* Initialize I/O ports used in keyboard driver */
OSTaskCreate (KeyScanTask, (void *)0, &KeyScanTaskStk[KEY _SCAN_TASK_STK SIZE}, KEY_SCAN TASK FRIO);
}
/*SPAGE*/
/*
* ke ke ke ke 0 e e ok ke ok e ke 9 ok ok ok ok ek ke I ok K ek e e ko e ek k ko
* SEE IF KEY PRESSED

* Description : This function checks to see if a key is pressed
* Arguments : none

* Returns : TRUE if a key is pressed
* FALSE if a key is not pressed
* Note : (1 << KEY_MAX_COLS) - 1 is used as a mask to isolate the colum inputs (i.e. mask off
* the SHIFT keys).

* e kok ok ok *k * kkkkkkkhkkkhkhkkkhhkkkhxhkrkkkk
*/

static BOOLEAN KeyIsKeyDown {void}
{
if (KeyGetCol() & ((1 << KEY MAX COLS) - 1)) { /* Key not pressed if 0 */
OS_ENTER_CRITICAL(};
KeyDowniTinr++ ; /* Update key down counter */
OS_EXIT _CRITICAL();
return (TRUE);
} else {
return (FALSE) ;

/*SPAGE* /

U

Chapter 3: Keyboards — 127

Listing 3.1 (continued) KEY.C

/%
Ak Rk kR ok kR Rk kkkkokk kR kkkkkkk Kk k Rk kkkkkk kKR dkkkdhkddehkhkkkrrrkdkhkrrhdkdkdxdorhkdkkikkrrrrkkxxrxkkxrxxxrk
* KEYBOARD SCANNING TASK

*

* Description : This function contains the body of the keyboard scanning task. The task should be

* assigned a low priority. The scanning period is determined by KEY_SCAN TASK DLY.

* Arguments : ‘data‘’ is a pointer to data passed to task when task is created (NOT USED).

* Returns : KeyScanTask() never returns.

* Notes : - An auto repeat of the key pressed will be executed after the key has been pressed for
* more than KEY RPT START DLY scan times. Once the auto repeat has started, the key will
* be repeated every KEY_RPT DLY scan times as long as the key is pressed. For example,

* if the scanning of the keyboard occurs every 50 mS and KEY_RPT START DLY is set to 40
* and KEY RPT DLY is set to 2, then the auto repeat function will engage after 2 seconds
* and will repeat every 100 mS (10 times per second).

dkAkhokkkdkkhkhkhkkkkkhkdhkhhkhkAkhkhkr X kkh vk khkr Ak khkhkkhhhkdkkhhhhkkkhhhhkkhkhkhhkkdhkhhdkkkhkhhkhdkhhhkkhkkdkhhkdhkhhhhkkkhkk
*/

/*SPRAGE*/

static wvoid KeyScanTask (void *data)

{
INT8U code;

128 — Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued) KEY.C
data = data;
for (;;) {

OSTimeDlyHMSM (0, 0, 0, KEY_SCAN TASK DLY);
switch (KeyScanState} {
case KEY_STATE UP:
if (KeyIsKeyDown()) {

KeyScanState = KEY_STATE DEBOUNCE;
KeyDownTmr = 0;

}

break;

case KEY_STATE_DEBOUNCE:
if (KeyIsKeyDown()) {
code

KeyBufIn(code) ;

= KeyDecode() ;

/* Avoid compiler warning (uC/OS-II req.)
/* Delay between keyboard scans

/* See if need to look for a key pressed

/* See if key is pressed

/* Next call we will have debounced the key
/* Reset key down timer

/* Key pressed, get scan code and buffer
/* See if key is pressed

/* Determine the key scan code

/* Input scan code in buffer

KeyRptStartDlyCtr = KEY_RPT START DLY;/* Start delay to auto-repeat function

KeyScanState
} else {
KeySelRow (KEY_ALL_ROWS) ;
KeyScanState = KEY_STATE UP;
}
break;

case KEY_STATE RPT START DLY:
if (KeyIskeyDown()) {
if (KeyRptStartDlyCtr > 0) {
KeyRptStartDlyCtr—-;
if (KeyRptStartDlyCtr == 0) {
code = KeyDecode() ;
KeyBufIn(code) ;
KeyRptDlyCtr =
KeyScanState =

KEY_RPT_DLY;

}
} else {
KeyScanState = KEY_STATE_DEBOUNCE;
}

break;

case KEY_STATE RPT DLY:
if (KeyIsKeyDown(}) {
if (KeyRptDlyCtr > 0) {

KeyRptDlyCtr--;
if (KeyRptDlyCtr == 0) {
code = KeyDecode({};
KeyBufIn{code);
KeyRptDlyCtr = KEY RPT DLY;
}
}
} else {
KeyScanState = KEY_STATE DEBOUNCE;

}
break;

/*SPAGE* /

= KEY_STATE RPT_START DLY;

/* Select all row
/* Key was not pressed after all!

/* See if key is still pressed

/* See if we need to delay before auto rpt
/* Yes, decrement counter to start of rpt
/* If delay to auto repeat is campleted ...
/* Determine the key scan code

/* Input scan code in buffer

/* Load delay before next repeat

KEY_STATE,_RPT_DLY;

/* Key was not pressed after all

/* See if key is still pressed

/* See if we need to wait before repeat key
/* Yes, dec. wait time to next key repeat
/* See if it's time to repeat key

/* Determine the key scan code

/* Input scan code in buffer

/* Reload delay counter before auto repeat

/* Key was not pressed after all

*/

*/

*/
*/
*/
*/

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/
*/
*/

*/

*/
*/
*/
*/
*/
*/
*/

*/

Chapter 3: Keyboards — 129

Listing 3.1 (continued) KEY.C

/*
kA ok ok ok A Kok ok ok Kk ok ok ok ek ok ok ok ok K ok ok Kk ok ok ok ok ok ok ok ok ok ok ko ok o ok koo ok ke ok ok ok ok ek ok ok
* READ COLAMNS

*

* Description : This function is called to read the colum port.
* Arguments : none

* Returns : the complement of the colum port thus, ones are keys pressed
% o vk % o e e ke ke o e 3 7 vk ok ok 9 o e ok 9 % 9 9 ok ok ok e e ok ok ko ook ok ko * ¥k k * hkhkkdkdkkhkkhkhkkkhkkkkkkkhkkkkhkhkkhkhhkhkrkkhkkkkx
*/

#ifndef CFG_C
INT8U KeyGetCol (void)

{

return (~inp{KEY_PORT COL)); /* Cawplement colums (ones indicate key is pressed) */
}
#endif
/*
ek A A gk Aok ek ok ok ke Ak kA Ak ok ok A A ke Ak AR R Ak kR A A Rk ko Rk Ak A ARk ko Rk kA A AR A Ak kR Rk ok Kk ko dk ko kA ke
* INITIALIZE I/O PORTS

e e 090 e 709k 9K Tk o 9 e Tk o g ok ok ok ok ke Ak ok ok ke 9 ok ke ok 3 ok ke ok ok ok ke ok ok vk 93k ke ok 0 3k ko ok o ok ko e ko ko ek e o ok ek ke ek ek e ok

*/

#ifndef CFG_C
void KeyInitPort (void)
{
outp (KEY_PORT CW, 0x82); /* Initialize 82C55: A=QUT, B=IN (COLS), C=CUT {(ROWS) */
}
#endif
/*
ok k *x * * kk ok ke k ok ke *, ok ke * * ek ok de gk A ok Kk ok ok kR Rk ok ok ok ke ok ke ook ok ok *
* SELECT A ROW
*

* Description : This function is called to select a row on the keyboard.
* Arguments : 'rod' 1s the row number (0..7) or KEY ALY, ROWS

* Returns + none
* Note : The row is selected by writing a LOW.
e e ke ok e vk ke ke ke ok I T ok ke 90 Fode ke ke e ke ke e ok ke ek 9o ok ok e ek e ek R Kk ok ok ok *k ok ke e ok ok oK ok ke ke e bk ok ok ok ok *k kX ok ke ke ok *k
*/
#ifndef CFG C
void KeySelRow (INTS8U row)
{
if (row == KEY_ALI, ROWS) {
outp (KEY_PORT ROW, 0x00); /* Force all rows LOW */
} else {
outp{KEY_PORT_ROW, ~(1 << row)); /* Force desired row LOW */

#endif

&

130 — Embedded Systems Building Blocks, Second Edition

Listing3.2 KEY.H

/*

*k * dk ok kok ok ke ok ok kK dededek ok ok dede Kk K e de A ek Ak Ak kA heA ok dedek kK

Hrbedded Systems Building Blocks
Canplete and Ready-to-Use Modules in C

Matrix Keyboard Driver

(c} Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : KEY.H
* Programmer : Jean J. Labrosse

*

*

ek ok kK dkkkkkk *k Kk ek

USER DEFINED CONSTANTS

* Note: These #defines would normally reside in your application specific code.

kkkk dok ok dedok Xk *kk * &k kg ok kok ok ok ok ok ok ke ko ok e oo
*/
#ifndef CFG_H
#define KEY BUF_SIZE 10 /* Size of the KEYBOARD buffer */
#define KEY_PCRT _ROW 0x0312 /* The port address of the keyboard matrix ROWs */
#define KEY PORT (OL 0x0311 /* The port address of the keyboard matrix COLUMNs */
#define KEY_PORT CW 0x0313 /* The port address of the I/0 ports control word */
#define KEY_MAX ROWS 4 /* The maximum number of rows on the keyboard */
#define KEY MAX COLS 6 /* The maximum nunber of columns on the keyboard */
#define KEY_RPT DLY 2 /* Number of scan times before auto repeat executes again */
#define KEY RPT START DLY 10 /* Number of scan times before auto repeat function engages*/
#define KEY_SCAN TASK DLY 50 /* Number of milliseconds between keyboard scans */
#define KEY_SCAN TASK_PRIO 50 /* Set priority of keyboard scan task */
#define KEY_SCAN TASK_STK_SIZE 1024 /* Size of keyboard scan task stack */
#define KEY_SHIFT1_MSK 0x80 /* The SHIFT1 key is on bit B7 of the colum input port */
/* (A 000 indicates that a SHIFT1 key is not present) */
#define KEY_SHIFT1 _QOFFSET 24 /* The scan code offset to add when SHIFT1 is pressed */
#define KEY_ SHIFT2_MSK 0x40 /* The SHIFT2 key is on bit B6 of the colum input port */
/* (A 0x00 indicates that an SHIFT2 key is not present)*/
#define KEY SHIFT2_ OFFSET 48 /* The scan code offset to add when SHIFT2 is pressed */
#define KEY_SHIFT3_MSK 0x00 /* The SHIFT3 key is on bit B5 of the colum input port */
/* (A 0x00 indicates that a SHIFT3 key is not present) */
#define KEY SHIFT3_OFFSET 0 /* The scan code offset to add when SHIFT3 is pressed */
#endif
#define KEY_ALL ROWS OXFF /* Select all rows (i.e. all rows LOW) */

£

Chapter 3: Keyboards — 131

Listing 3.2 (continued) KEY.H

/*
e 90k o ok k3 ok 7 ok o 9ok ok 9 ook o 33 ke ko ok ke ok ok T e ok O ok ok oA Tk ok ok o T ko Ik ok ok e o ok ok ek * * * K ok ke ek ok ok

* FUNCTION PROTOTYPES -

3 e Fe e o e gk ok e g ek ko ke ok o o ke ek kg ok 9k ok 3k ok 9 ok o T o o ok ok 9k ok ok 0k e I ok S A ok o 3ok Sk 3 3ok ek ok ok ok ok ok K

*/

void KeyFlugh (void) ; /* Flush the keyboard buffer */
INT8U KeyGetKey (INT16U to); /* Get a key scan code fram driver if one is present, -1 else */
INT32U KeyGetKeyDownTime (void) ; /* Get how long key has been pressed (in milliseconds) */
BOCLEAN KeyHit (void); /* See if a key has been pressed {TRUE if so, FALSE if not) */
void KeyInit(void); /* Initialize the keyboard handler */
void KeyInitPort (void) ; /* Initialize I/O ports */
INT8U KeyGetCol (void); /* Read COLUMNS */

void KeySelRow (INT8U row) ; /* Select a ROW */

132 — Embedded Systems Building Blocks, Second Edition

Chapter 4

Muiltiplexed LED Displays

A large number of embedded systems offer some form of display device to convey information to the
user. The display can consist of anything from a light indicating that power is on, to a complex graphical
display showing a representation of the process. Simple control systems can be equipped with complex
displays while more complex systems can offer limited information to its user; there are no set rules as
to how much information has to be displayed or how it has to be presented. The world of information
display is becoming extremely complex, especially when you consider new technologies such as virtual
reality.

In this chapter, I will take a very modest position and describe how to interface to LED (Light Emit-
ting Diode) displays. Specifically, I provide you with a module that allows you to control up to 64 mul-
tiplexed LEDs. The LEDs can either be seven-segment digits or discrete devices. The module presented
allows you to:

» Display limited ASCI characters using seven-segment digits.
¢ Display numbers.
* Turn ON or OFF individual (discrete) LEDs.

4.00 LED Displays

The Light Emitting Diode, or LED, is a semiconductor device that produces visible light when a current
flows through it as shown in the schematic of Figure 4.1. The intensity of the LED is proportional to the
current flowing through the LED. LEDs that produce either RED, YELLOW, GREEN, or BLUE light
are now commonly available. The most common color for LEDs is RED, while BLUE LEDs have just
been available in the past few years.

133

134 — Embedded Systems Building Blocks, Second Edition

Figure 4.1 Turning ON an LED.

+V
R I _
Anode A I= v VLED
LED R
A
Cathode -~

As shown in Figure 4.2, a microprocessor can easily control one or more LEDs by using an output
port. LEDs are turned on by writing a 0 to the appropriate bit position of the port. Here, I assume that
the port can sink the current required for each LED.

Figure 4.2 Controlling LEDs with a microprocessor.

+5
A A A A
Microprocessor
. Output Port
N B7
B6
B5
l .
|
BIO LED is ON when output is low.

Numbers can be displayed by using what are called seven-segment LED displays as shown in Figure ,
4.3. Two types of seven-segment LED displays are available: common anode and common cathode. Fig-
ure 4.2 shows a common anode arrangement, while Figure 4.3 shows a common cathode arrangement.

———

Chapter 4: Multiplexed LED Displays — 135

Figure 4.3 Common cathode seven-segment LED display.

S Each segment is a LED
a—-7 a |

b—1] /= a b c d e f g d.p. _
e
e CH'Z'HC *\'\A%\'\A%\'\A %N%N*N%N*N
LS R IR 4
| = COMMON
COMMON

Controlling LEDs using output ports becomes expensive when the number of digits in a display
increases. Fortunately, LEDs can be mulitiplexed. Multiplexing simply consists of connecting the LEDs
in a matrix as shown in Figure 4.4 and sending the information for each digit in succession. Each digit
must be updated very quickly to give the impression that all digits are turned on at the same time. Flick-
ering will occur if the digit update rate is too low. Updating all digits at a rate of about 60 to 100 times
per second will produce good results. Multiplexing is not restricted to seven-segment LED displays. The
matrix shown in Figure 4.4 also includes discrete LEDs which can be used to display status information.
For example, if the display is used in an automobile, the status LEDs can indicate whether the number
being displayed represents engine RPM, vehicle speed, odometer reading, trip odometer, etc. Because
of the high refresh rate needed to avoid flickering, multiplexing consumes a fair amount of CPU time.

136 — Embedded Systems Building Blocks, Second Edition

Figure 4.4 Multiplexing LED:s.

SESMFPNOIS Segment ON when 1 Discrete LEDs
/_a Digit #1 Diglt #2 Digit #3 Digit#n—1 Digit #n7

B7 1 L >t
B6 1 = m — — — >
B5 —< = = E—— >
p >

B4 —-——l:l—e— — m = — — =

B3 ——{}— — H —— — — >t
- N N E——— | | -
Lol 4

B1 2 = m —— — >

BO —19.p. oH oH ok — — | 0o >t

Resistors

DIGITS \

Output port

B7
B6
BS
B4 I
B3
B2 I
B1
Bo

N
-
- |
ll; —
-
I

i— Digit ON when 1

If you need additional seven-segment digits or discrete LEDs, you can add one or more 8-bit ports.
The additional port(s) can be used to control more DIGITS or SEGMENTS. Adding DIGIT ports will
increase the CPU overhead but will not increase the current consumption of your system. Similarly, you
can add SEGMENT ports if you prefer to reduce the overhead on the CPU. In this case, however, you
will be increasing the current consumption. The software presented in this chapter can be easily adapted
for either situation.

If the LED display matrix needs to be located some appreciable distance from the microprocessor,
you might consider using a hardware approach. In this case, a hardware solution might be less expen-
sive, especially if you consider the cost of the connectors and cables needed to bring the control signals
to the display. The Maxim 7219 should be considered in this case. The Maxim 7219 is outlined by Jeff
Bachiochi in the article, “Seven-Segment LEDs Live ON” (see “Bibliography” on page 148). Using of
the Maxim 7219 would eliminate the need for a multiplexing ISR (thus reducing the CPU overhead) but
the segment manipulation functions would still be applicable.

4.01 Multiplexed LED Display Module

The source code for the multiplexed LED display module code is found in the \SOFT-
WARE\BLOCKS\LED\SOURCE directory. The source code is found in three files: LED.C (Listing 4.1),
LED.H (Listing 4.2), and LED_TIA.ASM (Listing 4.3). As a convention, all functions and variables
related to the display module start with Disp while all #defines constants start with DISP_.

The code allows you to multiplex up to 64 LEDs (using two 8-bit output ports). The LEDs can be
either be seven-segment displays, discrete LEDs, or any combination of both. The module can easily be
changed if you need to add more seven-segment digits or discrete LEDs.

Chapter 4: Multiplexed LED Displays — 137

4.02 Internals

The software provided does not require the presence of a real-time kernel. LED TA.ASM, however,
increments the global variable OSIntNesting and calls OSIntExit (). OSIntNesting is used to
notify pC/OS-II that an ISR has started and OSIntExit () is used to noitfy uC/OS-II that the ISR has
completed. If you are not planning on using uC/OS-II in your application, you may delete these two
lines.

Implementing multiplexing in software is fairly straightforward, as shown in Figure 4.5. Here, I
assume you have less than eight digits (including status indicators). You will need a hardware timer that
will generate interrupts at a rate of about:

DISP_N_DIG x 60 (Hz)

Figure 4.5 LED multiplexing (block diagram).

Application l Multiplexed LED Display Driver | Hardware
Interface | |
| Seven-segments mapping l
| Bl ————— — BO |
lDispSegTbVl alblcld]ejf[ghpl |
[0] DispInitPort()
' [1] DispSegThbIIx r
| e |
D%Splrllit O | (2] DispOPtSeg()
gilzggtll:?)cr() [3] > DlSpOL\tDlg() SEGMENTS
DispStatSet () , 4 DIGITS
DispStatClr{() R .
5] DispDigMsk
L
| o —
((7]

Interrupt rate:

| DISP_N_DIG * 60 (Hz)

The table DispSegTbl [] contains the segment pattern for the corresponding digit (a one indicates
that the segment will be turned on). The first entry in DispSegTbl [] contains the segment patterns for
the leftmost digit. DispSegTblIx is an index into the segment table that will point to the next digit to
be displayed. DispDigMsk is a mask used to select the next digit to be displayed. Note that only one of
the digits can be selected at any given time. The pseudocode for the ISR is:

138 — Embedded Systems Building Blocks, Second Edition

void DispMuxISR (void)
{
Save CPU registers;
Clear timer interrupt source;
Turn OFF the segments of the current digit:;
Select the next digit to display:
Output the segments pattern for the digit to display:;
Restore CPU registers;

Return from interrupt;

You should implement DispMuxISR () in assembly language to reduce CPU utilization. I tested a C
version of DispMuxISR () on an Intel 80386 running at 16 MHz. DispMuxISR () was using up 7 per-
cent of the processor’s time. Imagine how much time the C version of DispMuxISR () would use on an
8-bit CPU!

DispMuxISR () turns OFF the segments of the current digit before selecting the next digit. This
very important step is taken to prevent what is called ghosting. If the segments were not turned OFF
before the next digit is selected, the segments of the previous digit would appear briefly on the newly
selected digit. DispMuxISR () is only concerned with updating the display at the desired refresh rate.
How the segment patterns got into DispSegTbl [] is the responsibility of task-level code, specifically,
the application interface functions.

Conversion of decimal or hexadecimal numbers to seven-segment patterns is very straightforward
when using a lookup table, as shown in Figure 4.6. The number to convert is used as an index into Dis-
pHexToSegTbl []. Note that a limited number of alphabetical characters can also be displayed using
seven-segments. DispASCITItoSegTbl[], shown in Listing 4.1, provides an ASCII to seven-segment
conversion table. Note that the table starts with ASCII ' ' (i.e., 0x20) and ends with ASCII 'z' (0x72).
To obtain the seven-segment pattern of an ASCII character, you must index the table after subtracting
0x20 from the desired ASCII character as follows:

seg = DispASCIItoSegTbl[c - 0x20];

Chapter 4: Multiplexed LED Displays — 139

Figure 4.6 Hexadecimal to seven-segments lookup table.

DispHexToSegTbl []
abcdefgd
11]1[1]1]1 0]0
loft]i]oJofofo]o]
[ftfofi]1Tof1]o]
[1[t]t]1]ofo]1]o]
lo]t]i]ofo]r]r]o]
[1]o]t]1]of1]1]o]
(fofaft]r]r]1]o]
[1]1]1]ofoofo o]
[ifafafife]e]r]o]
[fa]sfafofr o]
(frfifofafr]r]o]
lofolnfafiTa]rfo]
[1foJoft]1]1]o]o]
loft]1]i]r]o]1]o]
Lifofofr[1]r]1To]
[1]ofofofi 1]1]o]

B7-------------B0

TmTMmoaoMmo 3o oy W - .

The ASCII to seven-segments table is very useful when you combine it with standard library func-
tions such as itoa(), ltoa(), sprintf (), etc. For example, you can easily display numbers (con-
verted to ASCII with itoa ()) using the function DispStr () as:

140 — Embedded Systems Building Blocks, Second Edition

void DispStr (char *s, INT8U dig)
{
INT8U stat;

while (*s && dig < DISP_N_SS) {

Disable Interrupts;
stat

Enable Interrupts;

DispSegTbl [dig] & 0x01;
DispSegTbl [dig++] = DispASCIItoSegTbl[*s++ —

0x20] 1| stat;

DispStr () needs to set the seven-segment pattern without changing the state of the status bit (i.e.,
bit 0) because a DispSegTbl [] entry contains both the pattern for a seven-segment digit and a status
bit. This is why I mask off the upper seven bits in order to isolate the state of the status. The bit pattern
for the ASCII character is then merged with the status information (ORed). Interrupts are disabled when
a DispSegTbl[] entry is changed because DispSegTbl [] is a critical section. DISP_N_SS defines
the number of seven-segment digits in the display. Seven-segment display patterns are also assumed to

be in DispSegTbl [0] through DispSegTbl [DISP_N_SS - 1].

4.03 Interface Functions

Figure 4.7 shows a block diagram of the multiplexed LED display module. Your application interfaces
to the module through five functions: DispInit (), DispClrScr (), DispStr (), DispStatSet(),

and DispStatClr ().

Figure 4.7 LED multiplexing driver block diagram.

Application Interface
DispInit{)
DispClrScr()
DispStr () —
DispStatSet ()

DispStatClr ()

Hardware

Multiplexed
LED
Matrix
Driver

v

8 digits
X
8 segments
LED Matrix

|
il

Chapter 4: Multiplexed LED Displays — 141

DispClrScr()
void DispClrScr(void);

DispClrScr () is called by your application to clear (i.e., turn off) the display. In other words,
DispClrScr() blanks the display. -

Arguments

None

Return Value 4

None

Notes/Warnings

None
Example
void Task (void *pdata) -
{
for (::) {

DispClrScr(); /* Clear everything on the display */

142 — Embedded Systems Building Blocks, Second Edition

DispInit()
void DigpInit(void);

DispInit{() is the initialization code for the module and must be invoked before any of the other func-
tions. DispInit () is responsible for initializing internal variables used by the module and initializing
the hardware ports.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void main (void)
{

OSInit();

DispInit();

osstart();

I

Chapter 4: Multiplexed LED Displays — 143

DispStatClr()
void DispStatClr (INT8U dig, INTSU seg);

DispStatClr () is used to turn off a single LED. This function is the complement to DispStatSet ().
This function is useful when some of the LEDs are used as status indicators or decimal points for numeri-
cal data.

Arguments

dig specifies the digit that will get its segment cleared.

seg specifies the specific segment to set. seg corresponds to the bit position in the digit as follows:
¢ 0 sets segment dp (bit 0)
» 1 sets segment g (bit 1)
e 2 sets segment f (bit 2)
* 3 sets segment e (bit 3)
e 4 sets segment d (bit 4)
* 5 sets segment c (bit 5)
* 6 sets segment b (bit 6)
e 7 sets segment a (bit 7) -_—

Return Value

None

Notes/Warnings

You can #define status indicators and icons to make your code clearer.

Example

void Task (void *pdata)
{

for (;;) {

DispStatClr(5, USER_TRIP_ODOMETER ICON) ;

144 — Embedded Systems Building Blocks, Second Edition

DispStatSet ()
void DispStatSet (INT8U dig, INTS8U seg);

DispStatSet () is used to turn on a single LED. This function is useful when some of the LEDs are
used as status indicators or decimal points for numerical data.

Arguments

dig specifies the digit that will get its segment set.

seg specifies the specific segment to set. seg corresponds to the bit position in the digit as follows:
* 0 sets segment dp (bit 0)
* 1 sets segment g (bit 1)
* 2 sets segment f (bit 2)
e 3 sets segment e (bit 3)
* 4 sets segment d (bit 4)
« 5sets segment ¢ (bit 5)
* 6 sets segment b (bit 6)
* 7 sets segment a (bit 7)

Return Value

None

Notes/Warnings

You can #def ine status indicators and icons to make your code clearer.

Example -

void Task (void *pdata)
{

for (;;) {

DispStatSet (5, USER_TRIP_ODOMETER ICON);

Chapter 4: Multiplexed LED Displays — 145

DispStr()
void DisgpStr(INTS8U dig, char *s);

DispStr () is called to display an ASCII string. Not all ASCII characters can be displayed using a
seven-segment display. Because of this, you must be careful in the selection of messages to display.
Arguments

dig s the starting position where the ASCII string will be displayed (Q is the first 7-segment digit, 1 is
the second digit, etc.).

s is a pointer to the ASCII string. The length of the ASCII string must not exceed the number of
seven-segment digits. For example, DispStr (2, "Hello") will display the string as HELLo starting
at the third seven-segments digit. Because of the limitation of seven-segments, only the last character
would appear in lower case (you should display "HEIIO" instead).

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for {(;;) {

DispStr{2, “HELLO");

146 — Embedded Systems Building Blocks, Second Edition

4.04 Configuration

Configuring the multiplexed LED display module is fairly straightforward.

1. You need to change the value of four #defines. The #defines are found and described in LED.H
and are also found in CFG.H.

2. You need to adapt three hardware interface functions to your environment. To make this module
as portable as possible, access to hardware ports has been encapsulated into three functions:
DispInitPort ()}, DispOutSeg(), and DispOutDig() (described in the following para-
graphs). '

3. You will need a hardware timer that will interrupt the CPU at the desired multiplexing rate. The
interrupt should vector to DispMuxISR () which is defined in LED_TA.ASM.

DispInitPort () is responsible for initializing the output ports used for the segment and the digit
outputs. The code assumed two 8-bit latches such as the 74HC573. Initialization thus consists only of
turning off all the segment and digit outputs. I assumed 74HC573s over an 82C55 because of the higher
current drive capability of the 74HC573. DispInitPort () is called by DispInit().

DispOutSeg () is used to output the segments while DispOutDig{() is used to select the current
digit to display. Both functions are called by the multiplexing ISR handler, Di spMuxHandler ().

To reduce the ISR processing time, the multiplexing ISR code should be written entirely in assembly
language and DispOutSeg () and DispOutDig () should be integrated in the ISR. The C code is very
inefficient and would not be used in an actual implementation, however, the C code is portable.

4.05 How to Use the Multiplexed LED Display Module

Let’s suppose you have a four-digit LED display and four annunciator lights as shown in Figure 4.8.

Figure 4.8 Multiplexing LED:s.

SEGMENTS Segment ON when 1
Output port

Digit #1 Digit #2 Digit #3 Digit #4

DIGITS

Output port _JT_ J_ _L ﬁ—(J_

B7 - - -
B6
B4

TTT T TTTT

Digit #5

>

+—

Bs—IZI——I

O v—— —

(o]

\é

Resistors

e
=

BS

B3
B2

Bi Digit ON when 1 A
BO

Chapter 4: Multiplexed LED Displays — 147

As shown, you must call DispInit () before you can use any of the multiplexed LED module’s
services:

void main (void)

{

DispInit();

Your application can use the services provided by the multiplexed LED module immediately after
DispInit (). Display multiplexing will start as soon as you enable interrupts. Your display should be
blank because DispInit () clears the display buffer DispSegTbl []. You can display the speed as fol-
lows:

void UserDispSpeed (void)
{

char s[5]; -_—
DispClrScr () ; /* Erase what was being displayed */
sprintf(s, "%4d", Speed); /* Format the speed into ASCITI ... */
DispStr (0, s); /* ... and display */
DispStatSet (4, 1); /* Turn ON Speed indicator */

Similarly, you can display the current value of the trip odometer, as shown following this paragraph.
Note that the trip odometer is displayed as ##4 . # and thus, we also need to turn ON the decimal point:

void UserDispTripOdometer (void)
{

char s{5];

/* Note: Display as ###.# */
DispClrScr() ; /* Erase what was being digplayed */
sprintf(s, "%4d", TripOdometer); /* Format trip odo. to ASCII ... */
DispStr(0, s); /* ... and display */
DispStatSet (4, 2); /* Turn ON trip odo. indicator */

DispStatSet(2, 0); /* Turn ON decimal point */

148 — Embedded Systems Building Blocks, Second Edition

4.06 Bibliography

Artusi, Daniel
“LED display drivers interface to uCs on just three I/O lines”
EDN, November 14, 1985, p259-265

Bachiochi, Jeff
“Seven-Segment LEDs Live On”
The Computer Applications Journal, March 1993, p60-66

Cantrell, Tom
“Smart LEDs: The Hard Way, the Soft Way, and the Right Way”
The Computer Applications Journal, February 1993, p62—-67

The Hewlett-Packard Applications Engineering Staff
Optoelectronics Applications Manual
McGraw-Hill Book Company, 1977, ISBN 0-07-028605-1

Chapter 4: Multiplexed LED Displays — 149

Listing 41 LED.C

/*
Kk R kA AR A Ak kA AR A Ak kA ko kA kA ko kA ko kA A A A A A A A kA A A A A A A XA Ak X h A F AL A A X F I A Ak kX khdddkddrkk

* Brbedded Systems Building Blocks

* Complete and Ready-to-Use Modules in C :
. B}
* Multiplexed LED Display Driver

* .
* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : LED.C 4

* Programmer : Jean J. Labrosse
Ak R A A A A A A A kA Ak kA kA Ak kA Ak kA kA XA K A A KA F A A A A A A * A A kA kF Ak xkh ek hh

* DESCRIPTION
*x
* This module provides an interface to a multiplexed "8 segments x N digits" LED matrix.

*

* To use this driver:

* 1) You rust define (LED.H): ,
*

* DISP_M DIG The total number of digits to display (up to 8)

* DISP_N _SS The total number of seven-segment digits in the display (up to 8) -
* DISP_PORT DIG The address of the DIGITS output port

* DISP_PCRT_SEG The address of the SEGMENTS output port

*

* 2) You nust allocate a hardware timer which will interrupt the CPU at a rate of at least:

*

* DISP_N DIG * 60 (Hz)

*x

* The timer interrupt must vector to DispMuxISR (defined in LED_IA.ASM). You MUST write the

* code to clear the interrupt source. The interrupt source must be cleared either in DispMuxISR

* or in DispMuxHandler(}.

*

* 3) Adapt DispInitPort(), DispOutSeg() and DispOutDig()} for your environment.

R S e

*/

/*$SPAGE*/

150 — Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued) LED.C

Vad

* 323

* INCLUDE FILES

*/

#include "includes.h"

/*
* 10CAL VARIABLES

ok ko *ok ok ok k
*/
static INT8U DispDigMsk; /* Bit mask used to point to next digit to display */
static INT8U DispSegTbl {DISP_N_DIG]; /* Segment pattern table for each digit to display */
static INT8U DispSegTblIx; /* Index into DispSegTbl[] for next digit to display */

/*SPAGE*/

Chapter 4: Multiplexed LED Displays — 151

Listing 4.1 (continued) LED.C

/*

kkkkkhkhkkkkkhkhkkk * *
* ASCII to SEVEN-SHGMENT conversion table

* a
2

* fi I b

*
re}

* Note: The segments are mapped as follows: = ——————

* e | I c

* a b c da e £ a |

Do e e e e e 4

* B7 B6 BS B4 B3 B2 Bl BO

*hkkk Kk k ok kokokkkkkkk

*/

const INT8U DispASCIItoSegTbl[] = { /* ASCII to SEVEN-SEGMENT conversion table */
0x00, /* */
0x00, /* '!', No seven-segment conversion for exclamation point */
0x44, /* '°', Double guote */
0x00, /* '#', Pound sign */
0x00, /* '$', No seven-segment conversion for dollar sign */
0x00, /* '%', No seven-segment conversion for percent sign */
0x00, /* '&', No seven-segment conversion for ampersand */
0x40, /* ''', Single quote */ —_—
0xSC, /* '(', Same as '[' */
0xFO0, /* '), Same as ']’ */
0x00, /* '*', No seven-segment conversion for asterix */
0x00, /* '+', No seven-segment conversion for plus sign */
0x00, /* ',', No seven-segment conversion for comma */
0x02, /* '-', Minus sign */
0x00, /* '.', No seven-segment conversion for period */
0x00, /* /', No seven-segment conversion for slash */
OxFC, /* 0 */
0x60, /* 1 */
OxDa, /* 2 */
0xF2, /* '3 */ -
0x66, /* 4 */
0xB6, /* '5! */
OxBE, /* 6" */
OxEQ, /* */
OxFE, /* '8’ */
OxF6, /* 9 */ -
0x00, /* ':', No seven-segment conversion for colon */
0x00, /* ';', No seven-segment conversion for semi-colon */
0x00, . /* '<', No seven-segment conversion for less-than sign */
0x12, /* '=', BEqual sign */
0x00, /* '>', No seven-segment conversion for greater-than sign */
OxCa, /* '?', Question mark */
0x00, /* '@', No seven-segment conversion for cammercial at-sign */
OxEE, /* A’ */
0x3E, /* 'B', Actually displayed as 'b’ */
0x9C, /* 'C' */
0x7Aa, /* 'D', Actually displayed as 'd‘ */
Ox9E, /* 'E' */
0x8E, /* 'F' : */

/*$PAGE*/

152 — Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued) LED.C
OxBC, /* 'G', Actually displayed as 'g’ */
O0x6E, /* 'H' */
0x60, /* 'I', Same as 'l' */
0x78, /* ' J */
0x00, /* "K', No seven-segment conversion */
0x1C, /* 'Lt */
0x00, /* 'M', No seven-segment conversion */
0x2a, /* 'N', Actually displayed as 'n' */
OxFC, /* '0', Same as '0 x/
0xCE, /* 'P! */
0x00, /* 'Q', No seven-segment conversion */
0x0A, /* 'R', Actually displayed as 'r' */
0xB6, /* 'S', Same as '5' */
0x1E, /* 'T', Actually displayed as 't' */
ox7C, /* U’ */
0x00, /* 'V', No seven-segment conversion */
0x00, /* 'W', No seven-segment conversion */
0x00, /* 'X', No seven-segment conversion */
0x76, /* 'Y */
0x00, /* 'Z', No seven-segment conversion */
0x00, /o */
0x00, /* '\', No seven-segment conversion */
0x00, /* 1 */
0x00, /* '+, No seven-segment conversion */
0x00, /* '_', Underscore */
0x00, /* 7', No seven-segment conversion for reverse quote */
OxFA, /* 'a’ */
0x3E, /* ‘b */
0x1a, /* ‘¢ */
0x7A, /* ar */
OXDE, /* e’ */
0x8E, /* 'f', Actually displayed as 'F' */
0xBC, /* g’ */
O0x2E, /* 'h */
0x20, /* i */
0x78, /* 'j', Actually displayed as 'J"’ */
0x00, /* 'k', No seven-segment conversion */
0x1cC, /* '1', Actually displayed as 'L’ */
0x00, /* 'm', No seven-segment conversion */
0x2R, /* 'm' */
0x33, /* 'o! */
OxCE, /* 'p', Actually displayed as 'P' */
0x00, /* 'q’, No seven-segment conversion */
0x0A, /*oxe */
0xB6, /* 's', Actually displayed as 'S’ */
Ox1E, AR */
0x38, /* 'u! */
0x00, /* 'v', No seven-segment conversion */
0x00, /* 'w’, No seven-segment conversion */
0x00, /* 'x', No seven-segment conversion */
0x76, /* 'y', Actually displayed as 'Y’ */
0x00 /* 'z', No seven-segment conversion */

};

/*SPAGE*/

i

Chapter 4: Multiplexed LED Displays — 153

Listing 4.1 (continued) LED.C

/*

AR R A KA KKK A A KK kKA KK KK kA KK A A KA KA A A A KA A A A A A A KA A KA A KK A KA A KA KA KKK KA KK A A KK A KK AA KA AKX A AA KK
* HEXADECIMAL to SEVEN-SEGMENT conversion table
* a

2 g

* £ I'b

* g 1

* Note: The segments are mapped as follows: — -—=-—-

* el I c

* a b c d e £ g I a |

* e,

* B7 B6 B5 B4 B3 B2 Bl BO

T T S T I T e L T E L T T e e T

*/

const INT8U DispHexToSegTbl(] = {
OxFC,
0x60,
OxDA,
OxF2,
0x66,
0xB6,
OxBE,
OxEQ,
OxFE,
OxF6,

}i

/*$SPAGE*/

/%
/*
/*
/*
/*
/*
/*
/*
/%
/*
/*
/*
/*
YA
/*
/*
/*

HEXADECTMAL to SEVEN-SEGMENT conversion table

o
oy
iy
g
e
5
6
7
g
g
A
B
o
D
B
e

, Actually displayed as 'b'

, Actually displayed as 'd’

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

154 — Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued) LED.C

/*
R E R E B R A a s L R R 2 AL S R T T T ST T e s e
* CLEAR THE DISPLAY

*

* Description: This function is called to clear the display.
* Arguments : none
* Returns : none

E R R T T S R S S T T SR)

*/

void DispClrScr (void)

{
INT8U i;
for (i = 0; 1 < DISP N DIG; i++) { /* Clear the screen by turning OFF all segments */
OS_ENTER _CRITICAL({) ;
DispSegTbl {i] = 0x00;
OS_EXIT_CRITICAL() ;
}
) .
/*$SPAGE*/)
/‘k
FRA R A A kA A A Ak bk A A Ak A A A kA A A A A A AT A Ak Ak XA Ak ARk kAT Ak AT A AT A Ak kA A A Ak Ak kkhhhkkkhridhhkhth
* DISPLAY DRIVER INITIALIZATION
*

* Description : This function initializes the display driver.
* Arguments : None.
* Returns : None.

e e T T S S T e S E I T)

*/

void DispInit (void)

{ -
DispInitPort(); /* Initialize I/0 ports used in display driver */
DispDigMsk = 0x80;
DispSegThlIx = 0;
DispClrScr(); /* Clear the Display */
}

/*SPAGE*/

Chapter 4: Multiplexed LED Displays — 155

Listing 4.1 (continued) LED.C

/*

*AREK R T T T T LT LTI hk kKA KKK KKK IR KT K

* DISPLAY NEXT SEVEN-SEHGMENT DIGIT

*

* Description: This function is called by DispMuxISR() to output the segments and select the next digit

* to be multiplexed. DispMuxHandler () is called by DispMuxISR() defined in LED TA.ASM
* Arguments : none
* Returns : none
* Notes : - You MUST supply the code to clear the interrupt source. Note that with scme
* microprocessors (i.e. Motorola's MC68HC11), you must clear the interrupt source before 4
* enabling interrupts.
* %k * * %k *hk kK 3k 3k o ok % ok ok ok o ok K ok ok ok K ok kA k& ok ek % & & b o ok o ok e ok ok e ke ok ke
*/

void DispMuxHandler (void)

{
/* Insert code to CLEAR INTERRUPT SOURCE here */
DispOutSeg {0x00) ; /* Turn OFF segments while changing digits */
DigpOutDig{DispDigMsk) ; /* Select next digit to display */
DispOutSey (DispSegTbl [DispSegTblIx]) ; /* Cutput digit's seven-segment pattern */
if (DispSegTblIx == (DISP_N_DIG - 1)) { /* adjust index to next seven-segment pattern */)
DispSegTblIx = 0; /* Index into first segments pattern */
DispDigMsk = 0x80; /* 0x80 will select the first seven-segment digit */ -
} else {
DispSegThlIx++;
DispDigMsk >>= 1; /* Select next digit */
}
}

/*SPAGE*/

L

156 — Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued) LED.C

/>
Hok R KRRk R kAR KK KKKk ok Kk ok ok ok ok ok ko ok ok R ok ok e ok ok ok Rk ok ko ke ok
* CLEAR STATUS SHGMENT

*

* Description: This function is called to turn OFF a single segment on the display.

* Arguments : dig is the position of the digit where the segment appears (0..DISP_N DIG-1)
* bit is the segment bit to turn OFF (0..7) '

* Returns : none

B g L T R T L

*/

void DispStatClr (INT8U dig, INT8U bit)

{

OS_ENTER_CRITICAL() ;

DispSegTbl {dig] &= ~(1 << bit);

OS_EXIT CRITICAL();
}
/*
KA A A AR A A A A A A A A A AR A A A A AL A A AR AR A AR AR A AR AR A AR KA A AR LA A A A AR AR A A A kk K ok %k vk ok
* SET STATUS SEGMENT
*
* Description: This function is called to turn ON a single segment on the display. —_—
* Arquments : dig is the position of the digit where the segment appears (0..DISP_N_DIG-1)
* bit is the segment bit to turn ON (0..7)
* Returns : none
FAR KKk Ak ko d AR KA K Ik k k& k& ok drd b R Ak ko ke ok ok krk KK A % % ok &k ko * s ke vk ok ok ok kA kb
*/

void DispStatSet (INT8U dig, INTSU bit)

{
OS_ENTER CRITICAL() ;
DispSegTbl(dig] 1= 1 << bit;
OS_EXIT CRITICAL();

}

/*SPAGE*/

B

Chapter 4: Multiplexed LED Displays — 157

Listing 4.1 (continued) LED.C

/*
kA AKEA AR A Ak x Hokokok Aok ok * * AR AR KA KK KAk KK AR KRR K I A XA A KA KA KKK kA KK
* DISPLAY ASCII STRING ON SEVEN-SEGMENT DISPLAY

*

* Description: This function is called to display an ASCIT string on the seven-segment display.
* Arguments : dig is the position of the first digit where the string will appear:

* 0 for the first seven-segment digit.

* 1 for the second seven-segment digit.

*

* DISP_ N SS - 1 is the last seven-segment digit.

* s is the ASCII string to display

* Returns : none

* Notes : - Not all ASCIT characters can be displayed on a seven-segment display. Consult the
* ASCIT to seven-segment conversion table DispASCITtoSegTbli].

E L S T T T

*/

void DisgpStr (INT8U dig, char *s)

{ -
INT8U stat; -
while (*s && dig < DISP_N_SS} {

OS_ENTER_CRITICAL();
stat = DispSegTbli{dig] & 0x01; /* Save state of B0 (i.e. status) */
DispSegTbl [dig++] = DispASCIItoSeqTbl [*s++ - 0x20] | stat;
OS_EXTIT _CRITICAL();
}
}

/*SPRGE*/

158 — Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued) LED.C

#ifndef CFG C

/*

kR ok ok ok ke Kok ok 3k 3 ok ok ke ok ok ok ok ek ok ko R ok Tk Tk kR ok ok ko ok ok ok ok K Tk R ok Tk ok ke ok R Rk ok ok ko ok ko kR R
* I/0 PORTS INITIALIZATICN

*

* Description: This is called by DispInit() to initialize the output ports used in the LED multiplexing.
* Arguments : none

* Returns : none
* Notes : 74HC573 8 bit latches are used for both the segments and digits outputs.
*/

void DispInitPort (void)

{
outp (DISP_PORT_SHEG, 0x00); /* Turn OFF segments */
outp(DISP_PORT _DIG, 0x00); /* Turn OFF digits */
}
/*
33 3k 3k 5k sk ok ok 9k 3k 3k 3k S 5k sk sk o ok S ok o s ok sk sk sk sk sk ok ok ok b S sk sk sk ok ok ok S ok S S ok sk ok ok sk ok S S St sk S S ok sk s ok sk S S S e sk sk s sk i S S S S S o e ok ke ke i sk i sk s sk ok b ok sk ke ke 3 o sk ok ek ok
* DIGIT output
*x

* Description: This function ocutputs the digit selector.
* Arguments : msk is the mask used to select the current digit.
* Returns : none

e 3k sk e 3 30 3 30 ok ok ok ok ok ok 3 33 3 ok ok ok 30 ok ok ok ok 3 3ok vk sk Sk 3 3 e ok ok ok i e Sk 3 ok ok ok ok 3 ok 3 3 ok ok ok 33 3 e Sk ok ok ok sk ok ok 33 3 ok ok ok ke 3 e ok ok ok ok ok ok Sk 33k ok ok ok

*/

void DispOutDig (INT8U msk)

{
outp (DISP_FORT_DIG, msk);
}
/*
e sk vk vk vk sk Fo vk o e vk ok e vk ok vk o 3 e vk ok ok sk ok 3 3 e sk ok ok ok vk vk 3 e S e ok ok vk i e 3 e vk 3 e vk 0k ok e o vk sk vk sk ok vk vk ok vk e i vk vk vk sk g e ok vk vk 3 e e vk ok ok sk sk ok ok e e e ok ok ke ok
* SEGMENTS output
*x
* Description: This function outputs seven-segment patterns.
* Arguments : seg is the seven-segment pattern to output
*

Returns : none
e e e e vk vk vk vk e 3 3ok o e vk vk ok vk 3 e 3ok e vk i ok i i S ok e e vk vk ok vk sk ke e i ke ok vk ke e sk i S ok vk sk sk ok e sk vk vk vk vk S de e i ke vk sk vk 0 3 S e ke ok e vk S e vk vk gk ok ok vk vk sk i vk vk ok vk e e ok ek ot

*/

void DispOutSeg (INTBU seg)
{

outp (DISP_PORT _SEG, seg);
}
#endif

Chapter 4: Multiplexed LED Displays — 159

Listing 4.2 LED.H

/*

kK h kK kR k ok ok ko kk kb k ok ok kA h d ko k ok kA ok ok ko ko kb ok ok k ok kkdd ko k ok khkkkdkkhkkkdkkkkk kb khkhk kA Nk khokdk
* Erbedded Systems Building Blocks

* Carplete and Ready-to-Use Modules in C

. .

* Multiplexed LED Display Driver

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : LED.H
* Programmer : Jean J. Labrosse

Hkkdkk kA kK *% * * L R L L L T T 1
*/
/*

* *x% * FKR kKKK A Kk ok KKk A KKK AR EH Ak A AR KA K E A KA AR AT H A KR E Rk EE AT R AR A KKK EK
* CONSTANTS
L R R R e e T S LR] *kk Kk T T T T T
*/

#ifndef CFG.H

#define DISP_PORT DIG 0x0301 /* Port address of DIGITS output */
#define DISP_PORT SEG 0x0300 /* Port address of SEGMENTS output */
#define DISP N _DIG 8 /* Total number of digits (including status indicators) */
#define DISP N SS 7 /* Total number of seven-segment digits */
#endif

/ *

kkkhkAAAAAANKA K * * AAE A KA A A A AT A A A A AR AR A A AN T AR AN A A A A kk A dd ok kAR Ak kA dkk kA kA hhdkkhk
* FUNCTION PROTOTYPES

L L L S s T T

*/

void DispClrScr(void);

void DispInit(void);

void DispMuxHandler (void):

void DispMuxISR(void);

void DispStr(INT8U dig, char *s);

void DispStatClr (INT8U dig, INT8U bit);
void DispStatSet(INT8U dig, INT8U bit);

/*

R T R S LR R R R g L e Ld Lk T L LT Lo ar e
* FUNCTICN PROTOTYPES

* HARDWARE SPECTFIC

B e e L s e s T e 2T

*/

void DispInitPort(void);
void DispOutDig{INT8U msk);
void DispOutSeg(INT8U seg);

160 — Embedded Systems Building Blocks, Second Edition

Listing 4.3 LED TIA.ASM

FEEEKEIRKA KA KKK K KA AH IR KA X AR AR KKK KA A% *kK KK L A 2 T e

H Embedded Systems Building Blocks

H Complete and Ready-to-Use Modules in C

: Multiplexed LED Display Driver

H LED Multiplex ISR

H Intel 80x86 (LARGE MODEL)

; (c)} Copyright 1999, Jean J. Labrosse, Weston, FL
; All Rights Reserved

; File : LED TA.ASM
; By : Jean J. Labrosse

PR b e e R R et S e e S R R L A E e R R SR S R e

PUBLIC _DispMuxISR

EXTRN _ DispMuxHandler:FAR
EXTRN _OSIntExit:FAR
EXTRN _OSIntNesting:BYTE

.MODEL LARGE
.CODE
.186

T R R L T T T T T I T T s 2T
H

H QUTPUT NEXT SBEGMENTS PATTERN TO LED DISPLAY MATRIX
H void DispMuxISR(void)

B T T R T T L T T R T T T T e T L 2 T
H

_DispMuxISR PROC FAR

H

PUSHA ; Save processor's context
PUSH ES
FUSH DS

INC BYTE PIR _OSIntNesting Notify uC/0S-II of ISR

CALL, FAR PIR _DispMuxHandler ; Call C routine to handle multiplexing
CALL FAR PTR _OSIntExit ; Exit through uC/0S-II scheduler

POP DS ; Restore processor's context

POP ES

POPA

IRET ; Return to interrupted code

i

_DispMuxISR ENDP

END

i

Chapter 5

Character LCD Modules

In this chapter, I provide you with a software module that will allow you to interface with character
LCD (Liquid Crystal Display) modules. This software package works with just about any character
module based on the Hitachi HD44780 Dot Matrix LCD Controller & Driver. The module allows you
to:

* Control LCD modules containing up to 80 characters.
» Display ASCII characters.

» Display ASCII strings.

* Define up to eight symbols based on a 5x7 dot matrix.
» Display bargraphs.

5.00 Liquid Crystal Displays

Liquid Crystal Displays (LCDs) are a passive display technology. This means that LCDs do not emit
light but instead manipulate ambient light. By manipulating this light, LCDs can display images using
very little power. This characteristic has made L.CDs the preferred technology whenever low power con-
sumption is critical. An LCD is basically a reflective part. It needs ambient light to reflect back to a
user’s eyes. In applications where ambient light is low or nonexistent, a light source can be placed
behind the LCD. This is known as backlighting.

Backlighting can be accomplished by either using electroluminescent (EL) or LED light sources. EL
backlights are very thin and lightweight and produce a very even light source. EL backlights for LCDs
are available in a variety of colors with white being the most popular. EL backlights consume very little
power but require high voltages (80 to 100 Vac). EL backlights also have a limited life of about 2,000 to
3,000 hours. LEDs are used for backlighting and are primarily used for character modules. LEDs offer a
much longer life (at least 50,000 hours) and are brighter than ELs. Unfortunately, LEDs consume more
power than ELs. LEDs are typically mounted in an array directly behind the display. LEDs come in a
variety of colors but yellow-green LEDs are the most common.

161

162 — Embedded Systems Building Blocks, Second Edition

Controlling L.CDs is a little bit trickier than controlling LEDs. LCDs are almost always controlled
with dedicated hardware. Figure 5.1 shows the three types of LCDs curently available:

1. Custom displays with individual segment controls (similar to LED displays). LCDs lend themselves
very well to custom displays, as shown in Figure 5.1. You can design a display with just about any
type of annunciation. Where software is concerned, these types of displays are similar to LED dis-
plays because each segment is controlled individually.

2. Alphanumeric or character displays. These types of displays are currently available in modules. A
module contains the LCD and the drive electronics. Character displays are composed of one to four
lines of 16 to 40 character blocks. Each character block consists of a 5x8 dot matrix that is used to
display any ASCII character and a limited number of symbols.

3. Full graphics displays. As with character displays, full graphics displays are available in modules.
Graphic modules offer the greatest flexibility in formatting data on the display. They allow for text,
graphics, pictures, or any combinations of these. Because character size is defined by software,
graphic modules allow any language or character font. Limitations are driven by the resolution.
Graphic modules are organized in rows (horizontal) and columns (vertical) of pixels. Each pixel is
addressed individually, which allows any pixel to be ON or OFF. Graphics displays are available in a
wide variety of configurations from 64x32 to 640x480 pixels (columns x rows). From a software
point of view, interfacing with graphics displays is at least an order of magnitude more complex than
interfacing with the other two types of displays. I will not be covering graphics displays in this book.

Figure 5.1 Types of LCDs. -

Custom Display 7
LCD LCD — e e e Miles/Hr
Km/H
Zg;lrﬂ Software |—»| Interface > :—l I I:I : : { ?(d;esr
' Driver Hardware — 0 — 0 —® Trp
________MODULE__ _ _____ .
|
our LCD [Lop Dot Matrix :
Appl i Soﬁwme || Interface [» Cl¥aracter Display |
Driver | Hardware 1..4 lines x 16..40 chars |
e—_ _ |
MODULE .
____________________ 4
l |
LCD LCD . .
Your | Graphics Display |
Appl ¥ | Software [«—p| Interface 1> o435 1 640x480 pixels | |
Driver | Hardware |

Chapter 5: Character LCD Modules — 163

5.01 Character LCD Modules

A character module contains the LCD and the drive electronics. Character displays are composed of one
to four lines each having between 16 and 40 character blocks. Each character block consists of a 5x8 dot
matrix which is used to display any ASCII character and a limited number of symbols. In this chapter, I
will be providing a software interface module for character display modules. Character modules are
finding their way into a large number of embedded systems such as:

* air conditioners
* audio amplifiers
e FAX machines
* laser printers
* medical equipment
* security systems
¢ telephones
Because of their popularity, character modules are available from an increasing number of manufac-
turers, including:
¢ Densitron Corporation
¢ Optrex Corp.
* Seiko Instruments
» Stanley Electric

Character modules generally have at least one thing in common: they pretty much all use the Hitachi
HD44780 LCD module controller. A subset of the Hitachi HD44780 data sheet can be found on the
CD-ROM, 44780 .pdf. The HD44780 can interface directly with any 4- or 8-bit data bus, draws very
little current (less than 1 mA), is fully ASCII-compatible, can display up to 80 characters, and contains
eight user-programmable 5x8 symbols. The good news is that, where software is concerned, once a dis-
play module is written, it can be used with just about any module based on the HD44780.

The hardware interface of an LCD module is quite straightforward. LCD modules can generally
interface directly with most microprocessor buses either as an I/O device or a memory mapped I/O. The
HD44780 has a 500 nS (nano-second) access time. Connecting the LCD module on the microprocessor
bus is economical but becomes problematic if the display is located some distance from the micropro-
cessor bus. In this case, parallel I/O ports can be used to interface with the LCD module, as shown in
Figure 5.2. Here, I used an Inte] 82C55 Programmable Peripheral Interface (PPI) controller. As shown
in Figure 5.2, only 11 parallel output lines are required to interface to the LCD module. Eight of the
lines are used for data transfer while the other three are used as control lines for the LCD module.

164 — Embedded Systems Building Blocks, Second Edition

Figure 5.2 Interfacing to an LCD module.

PA7..0 Data (8 bits)

PC1 Register Select Character LCD Module
PCO E _» 4 lines X20 characters
R
GND
st
Note: Power, Gnd and Contrast Adj.

82C55

The HD44780 takes a certain amount of time to process commands or data sent to it. The Hitachi
data sheet provides you with the maximum amount of time required for each type of data transfer.
Because of this, the software can simply send a command or data and wait at least the amount of time
specified before sending the next command or data. Note that the HD44780 itself allows the micropro-
cessor to read a BUSY status. The BUSY status can be read by the microprocessor to determine if the
HD44780 is ready to accept another command or more data. If you can, you should make use of the
BUSY capability of the HD44780 because this provides you with a true indication that the HD44780 is
ready to accept another command or more data. As a precaution, however, you should still provide a
timeout loop to prevent hanging up the microprocessor in case of a malfunction with the interface elec-
tronics. Unless the LCD module is directly connected to the microprocessor bus, implementing read
capability with parallel I/O ports is more costly. Note that the 82C55 does have a bidirectional mode but
is more complex to use. This is why the circuit shown is implemented with output ports only instead of
a bidirectional data port and three control lines (i.e., RS, E, and R/W).

The interface circuit is simplified by choosing to have the CPU wait between commands and data. It
turns out that this scheme also makes the software easier to write. Waiting is done using a software loop.
You might be thinking that software loops should be avoided because they are not accurate. Well, in this
case, accuracy is not required. All you need to do is wait at least the amount of time specified by Hitachi
before sending the next command or data. A software loop also doesn’t affect responsiveness to asyn-
chronous events since interrupts are enabled while in the loop. (Besides, how else would you wait just
40 pS with a low end processor?)

With the hardware interface shown, the LCD module appears as two write-only registers (note that
the R/W line is always low). The first write register is called the data register (when RS is high) while
the other write register is called the instruction register (When RS is low). The software presented in this
chapter calls the instruction register the control register. Characters to display are written to the data reg-
ister. The control register allows the software to control the operating mode of the module: clear the dis-
play, set the position of the cursor, turn the display ON or OFF, etc.

Chapter 5: Character LCD Modules — 165

5.02 Character LCD Module, Internals

The source code for the LCD module is found in the \SOFTWARE\BLOCKS\LCD\SOURCE directory.
The source code is found in files LCD.C (Listing 5.1) and LCD.H (Listing 5.2). As a convention, all
functions and variables related to the display module start with Disp while all #defines constants
start with DISP_.

The code allows you to interface to just about any LCD module based on the Hitachi HD44780 LCD
module controller. At first view, you might think that writing a software module for an LCD module is a
trivial task. This is not quite the case because the HD44780 has its quirks. The HD44780 was originally
designed for a 40 characters by 2 lines display (40x2) and thus has internal memory to hold 80 charac-
ters. The first 40 characters are stored at memory locations! 0x80 through 0xa7 (128 to 167) while the
next 40 characters are stored at memory locations 0xCO through 0xE7 (192 to 231)! Tables 5.1 through
5.4 show the memory mapping for different LCD module configurations. The addresses are shown in
decimal and are actually based at 0x80. That is, address 00 actually corresponds to 0x80, address 64 is
actually 0xCO (i.e., 0x80 + 64), etc.

Table 5.1 shows the memory organization for 16-character displays. Notice how the 16 characters by
1 line module appears as a two-line display. This is done by the LCD module manufacturers to reduce
the cost of their product by fully using the drive capability of the HD44780.

Table 5.1 16-character LCD modules.

16 Characters x 1 lines
00 01 0 03 04 05 06 07 64 65 66 67 68 69 70 71

16 Characters x 2 lines
0 01 o 03 04 05 06 07 08 09 10 11 12 13 14 15
64 65 66 67 68 69 70 71 72 73 M 75 76 71 18 I

16 Characters x 4 lines

0 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
4 65 66 67 68 6 70 71 R 73 74 75 16 77 18 19
6 17 18 19 20 21 2 23 24 25 20 27 28 29 31 31
80 8 8 8 8 8 8 8 8 8 9 91 9N 93 94 95

Table 5.2 shows the memory organization for 20-character displays. Again, the single-line display
appears as a two-line module. :

Table 5.2 20-character LCD modules.

20 Characters x 1 lines
00 01 422 03 o4 05 06 o7 08 09 64 65 66 67 68 69 70 7 72

20 Characters x 2 lines
0 0 ® 03 o 05 06 07 08 09 10 11 12 13 14 15 16 17 18
64 65 66 67 68 69 70 7 3 73 74 75 7% 77 73 79 80 81 82

1. Memory locations inside the HD44780 chip.

73

19
33

166 — Embedded Systems Building Blocks, Second Edition

Table 5.2 20-character LCD modules.

20 Characters x 4 lines

00 2 03 04 05 0 07 08 0 10 11 12
65 6 6 68 €6 M 7 72 B 74 15 76
2002 23 24 25 2% 27 28 2 30 31 32
8 8 & 8 8 9 9 92 9 94 95 9

828

13
77
33
97

14
78
34
98

15
79
35
99

17
81
37

101

18

82 8
38 39
102 103

19 -

Table 5.3 shows the memory organization for 24-character displays. As with the 16- and 20-charac-

ter displays, the single-line display appears as a two-line module.

Table 5.3 24-character LCD modules.

24-Characters x 1 line
00 01 02 03 04 05 06 07 08 09 10 11 &4 65 66 67
24-Characters x 2 lines
00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15
64 65 66 67 68 69 70 71 72 73 74 75 76 71 78 19

68 6 70 7

16
80

17
81

18
82

72

73

19 20 21

83

74 75

2 23
8 8 8 87

Table 5.4 shows the memory organization for 40-character displays. As with the other module con-
figurations, the single-line display appears as a two-line module. Note that each line of a 40-character
display is shown broken down into two separate lines; the second line is offset from the first. This has
been done to avoid reducing the character font in order to fit within the width of the page.

Table 5.4 40-character LCD modules.

40 Characters x 1 line
00 01 02 03 04 05 06
64 65 66 671 68 6 70 71 72 T3 74 5

40 Characters x 2 lines

00 01 02 03 04 05 06 07 OB 09 10 11 12 13 14 15
21 22 23 24 25 26 27 28 29 30 31
69 70 71 T2 73 74 15 6 TI 18 19
8 8 87 8 8 9% 91 92 93 94 95

64 65 66 67

a8

16
76

16
32
80
9%

17

17
33
81
97

18
78

19

19
35
83
99

36

100

81

37

101

38

102

39

103

The software module presented in this book will support any LCD module that is organized as
shown in Tables 5.1 through 5.4. The software was actually tested with an Optrex DM(C20434. Table 5.5
shows a list of available LCD module configurations and their manufacturer’s part numbers.

Table 5.5 LCD module configurations available.

Chapter 5: Character LCD Modules — 167

#Lines #Characters gﬂ"g"" °% Optrex PIN f,jl’\’,“’ f,j‘l’\;”"y FEMA P/IN
1 16 1M4020 DMCI6117A __ MI64l GMDI6I0 MDLI6I1

2 16 LM4222 DMCI16207 MI632 GMDIE2 MDLI621

4 16 1M4443 DMC16433 Mi6l4 GMDIGO -

1 20 V432 ;] . ;

2 20 LM4261 DMC20215 12012 GMD2020 MDL2021

4 20 LM4821 DMC20434 12014 GMD2040 MDL2041

1 2% IM413 DMC24138 - ; MDL2411

2 % LM4227 DMC24227 12432 GMD2420 MDI2421 5
1 40 LM414 ; A4 - MDLAOL 1

2 40 LM4218 DMC40218 L4042 GMD4020 MDLAO21

5.03 Interface Functions

Figure 5.3 shows a block diagram of the LCD module. Your application knows about the display only

through the interface functions provided.

Figure 5.3 LCD module driver block diagram.

DispInit()

DispDefChar ()
DispClrScr ()
DispClrLine() 4——p
DispStr()

DispChar ()
DispHorBarInit ()
DispHorBar ()

LCD
Module

DispInitPort ()
DispDataWr ()
DispSel ()

Driver

[
>

'n’ lines
by
'm' characters
LCD

The module assumes the presence of a real-time kernel because it requires a semaphore and time
delay services. The display module makes use of a binary semaphore to prevent multiple tasks from
accessing the display at the same time. Use of the semaphore is encapsulated in the code, and thus, your
application doesn’t have to worry about it.

-

168 — Embedded Systems Building Blocks, Second Edition

DispChar/()

void DispChar (INT8U row, INT8U col, char c);

DispChar () allows you to display a single character anywhere on the display.

Arguments

row and col will specify the coordinates (row, col) where the character will appear. rows (i.e., lines) are
numbered from 0 to DispMaxRows — 1, and columns are numbered from 0 to DispMaxCols — 1.

c is the character to display. The Hitachi HD44780 allows you to specify up to eight characters or sym-
bols numbered from 0 to 7 (i.e., its identification). You display a user-defined character or symbol by
calling DispChar (), the row/column position, and the character or symbol’s identification number.

Return Value

None

Notes/Warnings

None -

Example

void Task (void *pdata)
{

for (;:) { -

DispChar(1l, 3, ‘$’);/* Display ‘$’' on second row, 4th character */

Chapter 5: Character LCD Modules — 169

DispClrLine()

void DispClrLine (INT8U line);

DispClrLine () allows your application to clear one of the LCD module’s lines. The line is basically
filled with the ASCII character ' ' (i.e., 0x20).

Arguments

line is the line (i.e., row) to clear. Note that lines are numbered from 0 to DispMaxRows - 1.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for (;;) {

DispClrLine(0); /* Clear the first line of the display */

LT

170 — Embedded Systems Building Blocks, Second Edition

DispClrScr()

void DispClrScr(void);

DispClrScr () allows you to clear the screen. The cursor is positioned on the top leftmost character.
The screen is basically filled with the ASCII character ' ' (i.e., 0x20).

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for (;;) {

DispClrScr () ; /* Clear everything on the display */

Chapter 5: Character LCD Modules — 171

DispDefChar()

void DispDefChar (INT8U id, INT8U *pat);

DigpDefChar () allows you to define up to eight custom 5x8 pixel characters or symbols. This is one
of the most powerful features of the LCD modules because it allows you to create graphics such as
icons, bargraphs, arrows, etc.

Figure 5.4 shows how to define a character or a symbol. The 5x8 pixel matrix is organized as a bit-
map table. The first entry of the table corresponds to pixels for the first row, the second entry, the pixels
for the second row, etc. A pixel is turned ON when its corresponding bit is set (i.e., 1).

Figure 5.4 Defining characters, or symbols.

B7 B6 B5 B4 B3 B2 Bl B0 < Bit Map Table

o o LT o
o LTI m
o LICICICIET
] I I | I N
CICI0IC00] @
IO ®
CICICICIE] 1
LI m

Pixel ON when 1, OFF when 0

S OO0 OO0 OO0 OO
[e R e B o B o B o N e)]
S O O O O

All you need to do to define a new character or symbol is to declare an initialized array of INT8Us
containing eight entries and call DispDefChar ().
Arguments

id specifies an identification number for the new character or symbol (a number between 0 and 7). The
identification number will be used to actually display the new character or symbol.

pat is a pointer to the bitmap table which defines what the character or symbol will look like.

Return Value

None

Notes/Warnings

None

172 — Embedded Systems Building Blocks, Second Edition

Example

const INT8U DispRightArrowCharl] = {
0x08, 0x0C, OxO0E, Ox1F, Ox1F, Ox0E, 0x0C, 0x08

void Task (void *pdata)
{
for (;;) {

DigpDefChar (0, &DispRightArrowChar{0}); /* Define arrow char. */

Figure 5.5 shows examples of bitméps to create arrows and other symbols. Once symbols are cre-
ated, you can display them by calling DispChar () .

Figure 5.5 Symbol examples.

UP Arrow RIGHT Arrow °F

B! 5 B 2 B7 B6 B5 B4 B3 B2 B1 B0
?;7 B: : fi] fj : ‘EmJ‘ *BO‘ [0]: 0x04 27 ? Bo \ 4] ; 8 E‘] [?j oroxos 0 o o MMM ©nox?
o o o [|MMM/ | 0roxE o o o ' [mroxec 0 0o o [[] [[] nroxea
o oo MENEN @oco o o o EEN [2:060E © 0 © N B W 2oxos
o o o | J[1TMI[]]] w©roes o o o NEIEEN proar o o o [W] mroxn
o o o [JIJHLII] Mmoo o o o NENENR wroar © o o [[} ML) 1mroxs
o o o [(J[MMI]] wsrwos o o o [IMEN] isroxee © © o [] [][_] rsioxoa
o o o [JIJMMIJ[; ®srooea o o o EREEI| i eroxoc 0 0 o [[[{T]{"][] rer-ox00
o o o [JJMIIL] moo o o o [[MIICIL) o o o o [J[J[J[1[] mrow

DOWN Arrow LEFT Arrow LAG

A fjl f?_a] ﬁ iﬂsjj} fagl orose s o o B? B‘a BzIm!,B;J 0}: 0x02 e IMIBGIBZIMIBO 10}: Ox1F
oo o] W U meexos 0 0 of | WML troxes 0 o oI m:o0F
o 0 o [] [2:0x04 0 0 © HEEN roxoe © o oI N 2:00F
o o o [J[IMLII] proecao o cEEEN proar © o o IR N :oar
o o o [JIJMIIL) proos o o o IEANENR proar 0 o o ML) []0] wroxo
oo o HNENEN sroar o o o [T srooe © o o W] (1) mroxe
oo o [JHENC] wroxoe 0 0 o [TN Eeroxos 0 o o WMTIC]] eroxto
o o o I JMMCIC] rroxes 0 o o [T 1] rroxez 0 o o MICIC]C][] mroxe

e

Chapter 5: Character LCD Modules — 173

DispHorBar ()

void DispHorBar (INT8U row, INTS8U col, INT8U val);

You can use the LCD module to create remarkably high quality bargraphs. The linear bargraph is an
excellent trend indicator and can greatly enhance operator feedback. Depending on the size of the mod-
ule, many bargraphs can be simultaneously displayed. The LCD module software allows you to display
bargraphs of any size anywhere on the screen.

DispHorBar () is used to display horizontal bars anywhere on the screen.

Figure 5.6 also shows that a 16xN-character display can produce bargraphs with up to 80 bars (16 x
5 bars per character block). In Figure 5.6, I started the bargraph on the first column on a 16xN-character
display. Once scaled, bargraphs can represent just about anything. For example, the 38 bars shown in
Figure 5.6 can represent 47.5 percent (38 bars = 47.5/ 100) 80), 100.7 degrees if the bargraph is used to
represent temperatures from 0 to 212 degrees, etc.

Figure 5.6 Bargraphs with 16-character displays.

B0000 [| [miw]s] [1] (m]m)]

EoO00 mEood mmmno a . . .

soood amooo wmECg = Bitmaps created by DispHorBarInit ()

BOO0OD ER000 [1] [mim] 3

anoog REDOD anenD]

| |a/n[u]m) WE000 NEEROD |]

1 2 3 5
AN Symbol i.d. numbers

¢« 80bars (max.) —

1]
0000000
0000000

DispHorBar {0, 0, 38);

Arguments

row and col will specify the coordinates (row, col) where the first character in the bargraph will appear.
rows (i.e., lines) are numbered from 0 to DispMaxRows - 1, and columns are numbered from 0 to
DispMaxCols - 1.

val is the number of bars you want to have turned on (a number between 0 to 80 in this example).

Return Value

None

174 — Embedded Systems Building Blocks, Second Edition

Notes/Warnings
Before you can use DispHorBar (), you must call DispHorBarInit () which defines 5 characters

used for bargraphs.

Example

You could actually use fewer bars and display the actual value next to the bargraph, as shown in Figure
5.7. In this example, I am displaying 100.7 degrees (28 bars) on a scale of 0 to 212 degrees (60 bars).

Figure 5.7 Bargraph with value.

00000000
D 0o0o0ooog
]|
]

)

]

i

000o00o0g
Osoooomo
ONEEEEER
Om000000

ODm O
m 1] [mgw| | | |w] 0
00000 00000 000a

8);

DispHorBar (0, 4,

void Task (void *pdata)
{

for (;;) {

DispHorBar (0, 4, 28); /* Display a 28 out of 60 bar bargraph */

AR5

Chapter 5: Character LCD Modules — 175

DispHorBarInit ()

void DispHorBarInit (void);

DispHorBarInit () defines five special symbols with identification numbers 1 through 5 as shown in
Figure 5.6. You must be call before you use Di spHorBar (). You only need to call DispHorBarInit ()
once unless you intend to redefine the symbol identifiers dynamically for other purposes.

Arguments

None

Return Value 5

None

Notes/Warnings

Because DispHorBarInit () defines the five symbols shown in Figure 5.6, you must use other identi-
fication numbers (i.e., 0, 6, and 7) for your own symbols.

Example

void Task (void *pdata)
{

DispHorBarInit () ; /* Initialize the bargraph capability */
for (;;) {

DispHorBar (0, 4, 28); /* Display a 28 out of 60 bar bargraph */

176 — Embedded Systems Building Blocks, Second Edition

DispInit ()

void DispInit (INT8U maxrows, INT8U maxcols);

DispInit () is the initialization code for the module and must be invoked before any of the other func-
tions. DispInit () assumes that multitasking has started because it uses services provided by the
real-time kernel.

DispInit () initializes the hardware, creates the semaphore, and sets the operating mode of the
LCD module.
Arguments
maxrows is the LCD module’s maximum number of rows (lines), and maxcols is the maximum num-
ber of columns (characters per line).

Return Value

None

Notes/Warnings
None

Example
You should call DispInit () from your user interface task as follows:

void UserIFTask (void *data)

{
DispInit(4, 20); /* Initialize the 4x20 LCD display */
for (;;) {

User interface code;

Chapter 5: Character LCD Modules — 177

DispStr()

void DispStr(INT8U row, INT8U col, char *s);

DispStr () allows you to display ASCII strings anywhere on the display. You can easily display either
integer or floating-point numbers using the standard library functions itoa(), 1toa(), sprintf (),
etc. Of course, you should ensure that these functions are reentrant if you are using them in a multitask-
ing environment.

Arguments

row and col will specify the coordinates (row, col) where the first character of the ASCII string will
appear. Note that rows (i.e., lines) are numbered from 0 to DispMaxRows — 1. Similarly, columns are
numbered from 0 to DispMaxCols - 1. The upper-left corer is coordinate 0, 0.

8 is a pointer to the ASCII string. The displayed string will be truncated if the string is longer than the
available space on the specified line.

Return Value

None

Notes/Warnings

None

Example

void UserIFTask{void *data)

{
DispInit(4, 20); /* Initialize the 4x20 LCD display */
for {(;;) {

DispStr{(0, 0, “Hello World”):;

i

178 — Embedded Systems Building Blocks, Second Edition

5.04 LCD Module Display, Configuration

Configuring the LCD display module is quite straightforward.

1. You need to change the value of three #defines. The #defines are found and described in ICD.H
and also in CFG.H. DISP_DLY_ CNTS is used to adjust delays between sending commands or data
to the HD44780. You will need to change this constant so that a delay of at least 40 pS occurs
between writes to the HD44780.

2. You need to adapt three hardware interface functions to your environment. To make this module as
portable as possible, access to hardware ports has been encapsulated into the following functions:
DispInitPort (), DispDataWr (), and DispSel () (described as follows).

DispInitPort () is responsible for initializing the output ports used to interface with the LCD
module. I used an Intel 82C55 PPI to verify the code. DispInitPort () is called by DispInit ().

DispDataWr () is used to write a single byte to the LCD module. Depending on the state of the RS
line (see Figure 5.2), the byte will be either sent to the data (RS is 1) or control register (RS is 0).

Changing the state of the RS line is the responsibility of the function DispSel (). DispSel () is
called by the LCD display module with one argument that can either be set to DISP_SEL_CMD_REG or
DISP_SEL_DATA REG.

5.05 LCD Module Manufacturers —

Densitron Corporation
2039 HW 11

Camden, SC 29020
(803) 432-5008

Hitachi America, Ltd.
Electron Tube Division
3850 Holcomd Bridge Rd.
Norcross, GA 30092
(404) 409-3000

Optrex Corp.

23399-T Comumerce Drive -
Suite B-8

Farmington Hills, MI 48335

(313) 471-6220

Seiko Instruments USA, Inc.
Electronic Components Division
2990 West Lomita Blvd.
Torrance, CA 90505

(310) 517-7829

Stanley Electric

2660 Barranca Parkway
Irvine, CA 92714

(714) 222-0777

Chapter 5: Character LCD Modules — 179

Listing 5.1 LCD.C

/*

* kK sk ek *kk ok ok ok o ok ke ok k * kK * %k

* Fmbedded Systems Building Blocks

* Carplete and Ready-to-Use Modules in C

* -
* 1LCD Display Module Driver

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : LCD.C

* Programmer : Jean J. Labrosse

hkkkkkhkhkhkhkhkkhkkikk * ok kkkkkkkkk Kk ok * kkkkhkkkhkhkhkhhkhkkhkhkhhkkdkkkx

* DESCRIPTION 5

*
*

* This module provides an interface to an alphanumeric display module.

*

* The current version of this driver supports any alphanumeric LCD module based on the:
* Hitachi HD44780 DOT MATRIX ILCD controller.

* -

* This driver supports LCD displays having the following configuration:

* 1 line x 16 characters 2 lines x 16 characters 4 lines x 16 characters -

* 1 line x 20 characters 2 lines x 20 characters 4 lines x 20 characters -
* 1 line x 24 characters 2 lines x 24 characters

* 1 line x 40 characters 2 lines x 40 characters

& ok ok ke ek ke kkkk * * *kk kkkkkk kkKkk * ek ok ok

*/

/*SPAGE*/

180 — Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued) LCD.C

/*
B R T R e R T N Rt B T T 2 L S LR Rk R R R L R R R T L T e
* INCLUDE FILES

L T g T L T T X2 T L T T ey 2y -

*/ z

#include "includes.h"

/*
B L T R LR S R E et R L g Rt R L £ 2 Et s LR R L L LT e T ST 4
* LOCAL CONSTANTS

R e L g T T T]

*/

/* HD44780 COMMANDS —-——-=-——=======-——— */
#define DISP_CMD CLS 0x01 /* Clr display : clears display and returns cursor hame */
#define DISP CMD FNCT 0x3B /* Function Set: Set 8 bit data length, 1/16 duty, 5x8 dots */
#define DISP_CMD MODE 0x06 /* Entry mode : Inc. display data address when writing */
#define DISP CMD_ON OFF 0x0C /* Disp ON/OFF : Display ON, cursor OFF and no BLINK character */
r* :
Thhkhk Ak kA A A A AR A I A AT A A A A kA A A * A dhhhkkhhhhhhh Ak hkkhhhkhkh Ak kkkkhkhhhkhkhhkhhhhhkhkhhkkhkhkhkhkhkkhrkhkhhkhkhkkhthkhkhkxkkx
* LOCAL VARIABLES
KA KA A A A A kI kIR E A KT A kAT A A KK A AR KA A A KR T KA KA KA A AR R KA KA AR A KNI Kk khhhhkhhkhkhhk kA Xk XXk hkhkkhhkhkhhkkhkkkhkk —
*/
static INT8U DispMaxCols; /* Maximum number of colums (i.e. characters per line) */
static INT8U DispMaxRows ; /* Maximum number of rows for the display */
static OS_EVENT *DispSem; /* Semaphore used to access display functions */
static INT8U DispBarl[] = {0x10, 0x10, 0x10, 0x10, 0x10, Ox10, 0x10, 0x10};
static INT8U DispBar2[] = {0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18, 0x18};
static INT8U DispBar3{] = {0xl1C, Ox1C, Ox1C, 0x1C, OxlC, 0x1C, Ox1C, Ox1C};
static INT8U DispBard[] = {Ox1E, Ox1E, Ox1E, Ox1E, Ox1E, Ox1E, Ox1E, Ox1E};
static INT8U DispBar5[] = {0x1F, Ox1F, Ox1F, Ox1F, Oxl1F, Ox1F, Ox1F, Ox1F};
/*
A KK AT AR kA KA AA R TR R A A A AK R AR R A A KA A KA A AR AR AR KA A KR ARk kA A KAk KA KA kAR hkAhXkAhkhhhkhkkhkhkhkkhhkhkkhhkhkhkhkkkk
* 1OCAL FUNCTION FROTOTYPES

B T g T T e L T T T s T 2]

*/
static void DispCursorSet (INT8U row, INT8U col};

/*$PAGE*/

Chapter 5: Character LCD Modules — 181

Listing 5.1 (continued) LCD.C

/*

T T e T 2 2L

* DISPLAY A CHARACTER

*

* Description : This function is used to display a single character on the display device

* Arguments : 'row! is the row position of the cursor in the I1CD Display

* 'row' can be a value from 0 to 'DispMaxRows - 1'

* ‘col’ is the column position of the cursor in the LCD Display

* ‘col’ can be a value from 0 to 'DigpMaxCols - 1'

* e’ is the character to write to the display at the current ROW/COLUMN position.
* Returns : none

Hh Ak R Rk kA ko ok Ak ok Ak ok KAk ok Ak kA A KA Rk kR kA ko kAR A A Ak kA kkk kR kkk ok kk kR kkk kR kkkhkk kkkkk

*/

void DispChar (INT8U row, INT8U col, char c)

{
INT8U err;
if {(row < DigpMaxRows && col < DispMaxCols) {
OSSemPend (DispSem, 0, &err); /* Obtain exclusive access to the display */
DispCursorSet (row, col); /* Position cursor at ROW/COL */
DispSel (DISP_SEI,_DATA REG) ;
DispDataWr (c) ; /* Send character to display */
OSSemPost {DispSem) ; /* Release access to display */
}
}
/*
KA A A A KA A Ak kA kA A A A A A kA A A A A A Ak kA A A A Ak Ak A Ak ARk h Ak kA Ak Ak k kA A Ak ko dk ki k ke k kk kv ko
* CLEAR LINE
*
* Description : This function clears one line on the ICD display and positions the cursor at the
* beginning of the line.
* Arguments : 'line' is the line number to clear and can take the value
* 0 to 'DispMaxRows - 1'
* Returns : none

B L g o e L e T e I I T

*/

void DispClrLine (INT8U line)

{
INT8U 1i;
INT8U err;
if (line < DispMaxRows) {
OSSemPend (DispSem, 0, &err); /* Obtain exclusive access to the display */
DispCursorSet{line, 0); /* Position cursor at begin of the line to clear */
DispSel (DISP_SEL. DATA REG) ; /* Select the ICD Display DATA register */
for (1 = 0; i « DispMaxCols; i++) { /* Write ' * into all column positions of that line */
DispDataWr(' '); /* Write an ASCIT space at current cursor position */
}
DispCursorSet (line, 0); /* Position cursor at begin of the line to clear */
OSSemPost (DispSem) ; /* Release access to display */
}
}

/*SPAGE*/

182 — Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued) LCD.C

/*
L R Rt R R R g g L b 2 £t A T T g e E e
* CLEAR THE SCREEN

* —
* Description : This function clears the display

* Arguments : none

* Returns : none
Kk kKA KA A kI E A A A KK AT A I Ak E A A KA A Ak KA KK A A A A A A A A A KA A A A A A A A KA A A KRR A A KA A A A A A KKK A A XA KR AA KA A A A kA hkhhkkk

*/

void DispClrScr (void)

{

INT8U err;

OSSemPend (DispSem, 0, &err); /* Obtain exclusive access to the display */

DispSel (DISP_SEIL, CMD_REG) ; /* Select the 1CD display command register */

DispDataWr (DISP_CMD_CLS) ; /* Send command to LCD display to clear the display */

OSTimeDly (2} ; /* Delay at least 2 mS (2 ticks ensures at least this much) */

OSSemPost (DispSem) ; /* Release access to display */ B
} .

/*SPAGE* /

Chapter 5: Character LCD Modules — 183

Listing 5.1 (continued) ICD.C

/*
ok ko ok ok K ok ok bk kA ko kR Ak A AR ARk b ook R Aok A A Aok ok A ARk ok & KKK Kk o KKk ok ok ok KKk ok ok Kk kKK Ak KA KKK KA KKK
* POSITION THE CURSOR (Internal)

*

* Description : This function positions the cursor into the LCD buffer

* Arguments ‘row' is the row position of the cursor in the ICD Display
* ‘row' can be a value from 0 to ‘DispMaxRows - 1°

* ‘col! is the colum position of the cursor in the LCD Display
* ‘col' can be a value from 0 to 'DispMaxCols - 1'

* Returns : none

33 e Tk e Kok k9 % 3 ok ok ok 3k ke ok o Tk 0 3 ok ok 7 9 ok ok ok o ok koK kT ok ok 9 ok ok ok o ok ok 3 ok ok ok ok Tk ok ok Sk Tk Tk ok ok ke ko ok Tk ok kK kK K

*/

static void DispCursorSet (INT8U row, INTS8U col)

{
DisgpSel (DISP_SEL, CMD REG); /* Select 1CD display command register */
switch (row) {
case 0:

if (DispMaxRows == 1} { /* Handle special case when only one line */

if {col < (DispMaxCols >> 1)) {
DispbataWr (0x80 + col); /* First half of the line starts at 0x80 */
} else { /* Second half of the line starts at OxCQ */

DispDataWr (0xCO + col — (DispMaxCols >> 1));
}
} else {
DispDataWr (0x80 + col); /* Select LCD's digplay line 1 */
}
break;

case 1:
DispDataWr (0xCO + col);
break;

~

* Select ICD's digplay line 2 */

case 2:
DispDataWr (0x80 + DispMaxCols + c¢ol); /* Select LCD's display line 3 */
break;

case 3:

DispDataWr (0xCO + DispMaxCols + c<ol); /* Select ICD's display line 4 */
break;

/*SPAGE*/

pEE:

184 — Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued) LCD.C

/%
Kok Khok K *okk ko kk Ak ok ok Ak AR ok ok ok ok kK ok o ke (e
* DEFINE CHARACTER

* -

* Description : This function defines the dot pattern for a character.

* Arguments :otide is the identifier for the desired dot patterm.

* ‘pat’ is a pointer to an 8 BYTE array containing the dot pattern.

* Returns : None.

Heok Aok ok ok Aok ok ok kok 7 ok K Uk vk ok ok ke ok e o ok e ok ek ok 2 vk ok ok T ok e o o ok ok ok 7 o o o ok e oA ok o ok ok ok ok ok e o ok ok e ke ok ok gk ok e ok ok ok ok ok
*/

void DisgpDefChar (INT8U id, INT8U *pat)

{
INT8U err;
INT8U 1i;
OSSemPend (DispSem, 0, &err); /* Obtain exclusive access to the display */
DispSel (DISP_SEL, CMD REG) ; /* Select command register */
DispDataWr (0x40 + (id << 3)); /* Set address of CG RAM */ :
DispSel (DISP_SEL,_DATA_REG) ; /* Select the data register */
for (i = 0; 1 < 8; i++) {
DispDataWr (*pat++} ; /* Write pattern into CG RAM */
}
OSSemPost (DispSem) ; /* Release access to display */
¥

/*SPAGE*/

Chapter 5: Character LCD Modules — 185

Listing 5.1 (continued) LCD.C

/*
ek ok ook ko ok ok ko o ok ko o o 5k ko o o ok kot ok ok ok K ok ok K ok ok ok kK ok ok K ok ok ok ok ok ok ok kK ok ok ok K ok ok ok o ok ok ok kK K
* DUMMY FUNCTION

*

* Description : This function doesn't do anything. It is used to act like a NOP (i.e. No Operation) to :

* waste a few CPU cycles and thus, act as a short delay.
* Arguments : none
* Returns : none

T L T T T e T e T T

*/

void DispDumy (void)
{

) 5
/*

KAk A A AR A A A A A AR AR A A A A A AR A A Rk Ak A AR A A A A A A A A A kA A A KA AR kA A Ak kA kA kA ATk Ak ARk kA h ko kkkkk ko dkkkkkkkk

* ‘ DISPLAY A HORIZONTAL BAR

*

* Description : This function allows you to display horizontal bars (bar graphs) on the LCD module.

* Arquments @ 'row' is the row position of the cursor in the LCD Display

* ‘row' can be a value from 0 to 'DispMaxRows - 1!

* ‘val’ is the value of the horizontal bar. This value cannot exceed: .
* DispMaxCols * 5 R
* Returns T none

* Notes : To use this function, you must first call DispHorBarInit()

B L g T T 2 i T

*/

void DispHorBar (INTS8U row, INT8U col, INT8U val)

{
INT8U i;
INT8U full;
INT8U fract;
INT8U err;
full =val / 5; /* Find out how many 'full' blocks to turn ON */
fract = val % 5; /* Campute portion of block */
if (row < DispMaxRows && (col + full - 1) < DispMaxCols) {
OSSemPend (DispSem, 0, &err); /* Obtain exclusive access to the display */
i=0; /* Set counter to limit colum to maximum allowable colurm */ B
DispCursorSet (row, col); /* Position cursor at beginning of the bar graph */
DispSel (DISP_SEL_DATA REG);
while (full > 0} { /* Write all 'full’ blocks */
DispDataWr (5) ; /* Send custom character #5 which is full block */
iv+; /* Increment limit counter */
full--;
}
if (fract » 0) {
DispDatawr (fract) ; /* Send custam character # 'fract' (i.e. portion of block) */
}
OSSamPost (DispSem) ; /* Release access to display */
}
}

/*SPAGE*/

186 — Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued) LCD.C

/*

kkkkokkkhkkkhkkkAAh Ak hkhAkhhkkkkdkkkkk okt kkkkkdhdkdkkkkkd ok ke ok ok ok * *kk * %k ek
* INITIALIZE HORIZONTAL BAR

*

* Description : This function is used to initialize the bar graph capability of this module. You must

* call this function prior to calling DispHorBar() .

* Arguments : none

* Returns : none

*/

void DispHorBarInit (void)

{
DispDefChar (1, &DispBarl(0]);
DispDefChar (2, &DispBar2(0]);
DispDefChar (3, &DispBar3(0});
DispDefChar (4, &DispBar4[0]);
DispDefChar(5, &DispBar5(0]);

/*
*k Akkkk Fk KAk ok ok Aok ok ok Aok Ak ok ok ok R Ak ok sk Rk ok ok ok ok ok ke Ak Rk ok ok Ak Rk kA ke ek kR
* DISPLAY DRIVER INITIALIZATION

* Description : This function initializes the display driver.

* Arguments I MAXTOWS specifies the mumber of lines on the display (1 to 4)

* maxcols specified the nmumber of characters per line

* Returns : Neone.

* Notes : — DispInit() MUST be called only when multitasking has started. This is because

* DispInit() requires time delay services fram the operating system.

* - DispInit() MUST only be called once during initialization.

e dek khkhkhkhkhkhkdkkhkhkkhhkkdkhhhhhkdkhhhkdkdkkhkdkdkdkhkkhkkhhkdkhhdkkihdhdhkdkkkkdhdkkkhhkkkhhih
*/

void DispInit (INT8U maxrows, INT8U maxcols)

{

DispInitPort(); /* Initialize I/0 ports used in display driver */

DispMaxRows = MaxXrows;

DispMaxCols = maxcols;

DispSem = OSSemCreate(l); /* Create display access semaphore */
/* INITIALIZE THE DISPLAY MODULE */

DispSel (DISP_SEL,_CMD REG) ; /* Select command register. */

OSTimeDlyHMSM(0, O, 0, 50); /* Delay more than 15 mS after power up (50 mS should be enocugh)*/

DispDataWr (DISP_CMD FNCT) ; /* Function Set: Set 8 bit data length, 1/16 duty, 5x8 dots */

OSTimeDly (2) ; /* Busy flag cannot be checked yet! */

DispDataWr (DISP_CMD_FNCT) ; /* The above camand is sent four times! */

OSTimeDly (2) ; /* This is recamrended by Hitachi in the HD44780 data sheet */

DispDataWr (DISP_CMD_FNCT) ;

OSTimeDly (2) ;

DispDataWr (DISP_CMD_FNCT) ;

OSTimeDly (2) ;

DispDataWr (DISP_CMD_ON_OFF) ; /* Disp ON/OFF: Display ON, cursor OFF and no BLINK character */

DispDataWr (DISP_CMD_MODE) ; /* Entry mode: Inc. display data address when writing */

DispDataWr (DISP_CMD CLS); /* Send command to LCD display to clear the display */

OSTimeDly (2) ; /* Delay at least 2 mS (2 ticks ensures at least this much) */

}

/*SPAGE*/

Chapter 5: Character LCD Modules — 187

Listing 5.1 (continued) LCD.C

/*
* & *k *hkk Jodedeok vk * *hkk
* DISPLAY AN ASCII STRING
*
* Description : This function is used to display an ASCIT string on a line of the ILCD display
*

Arguments : 'row' is the row position of the cursor in the LCD Display
'row' can be a value fram 0 to 'DigpMaxRows - 1°
'col' is the colum position of the cursor in the LCD Display

*

*

* ‘col' can be a value from 0 to 'DispMaxCols - 1°'
* ‘s’ is a pointer to the string to write to the display at
* the desired row/col.
* Returns : none
* kX ek Aok A X * Kk Ahkkkkkk kAt ik *kk kkkkkkk kkkkkkkkkkkkkhkhkhx
*/

void DigpStr (INT8U row, INT8U col, char *s)
{

INT8U i;

INT8U err;

if (row < DispMaxRows && col < DispMaxCols) {

OSSemPend (DispSem, 0, &err); /* Obtain exclusive access to the display */

DispCursorSet (row, col); /* Position cursor at ROW/COL */

DispSel (DISP_SEI, DATA REG) ;

i = col; /* Set counter to limit column to maximum allowable columm */

while (i < DispMaxCols && *s) { /* Write all chars within str + limit to DispMaxCols */
DispDataWr (*s++) ; /* Send character to LCD display */
i+4; /* Increment limit counter */

}

OSSemPost (DispSem) ; /* Release access to display */

/*$PAGE*/

188 — Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued) LCD.C

/*
L L R R R R R R d R Bt R L g R R R R at LR R R L g L L B 2.1
* WRITE DATA TO DISPLAY DEVICE

*

* Description : This function sends a single BYTE to the display device.

* Arquments : 'data' is the BYTE to send to the display device
* Returns : none
* Notes : You will need to adjust the value of DISP_DLY CNTS (LCD.H) to produce a delay between
* writes of at least 40 uS. The display I used for the test actually required a delay of
* 80 uS! If characters seem to appear randomly on the screen, you might want to increase
* the value of DISP_DLY_CNTS.
dededkk kokk *hkddkkkdkk khkkkkkkkkk Kk * *kkk *hkhkkkkdk
*/

#ifndef CFG C
void DispDataWr (INT8U data)
{

INT8U dly;

outp (DISP_PORT DATA, data); /* Write data to display module */
outp (DISP_PORT _CMD, 0x01); /* Set E line HIGH */
DispDummy () ; /* Delay about 1 uS */
outp (DISP_PORT_CMD, 0x00}; /* Set E line LOW */
for (dly = DISP_DLY CNTS; dly > 0; dly--) { /* Delay for at least 40 uS */
DispDummy () ;
}
}
#endif
/*
*hkkkkkkk * *%* F*hkkkkdk *% Fhkkkkkkhdkdodkkkkdkk
* INITIALIZE DISPLAY DRIVER I/O PORTS

* Description : This initializes the 1/0 ports used by the display driver.
* Arguments : none -

* Returns : none
KhkkkhkkkkhkkkkhkkhxkhkrkEAr Ak kdhkhhrdkhkrrhkhhkhhkhhkhdhxrdhkrhhkkdrkhkdkxx * % *kkkk * % * *hkkkkk
*/

#ifndef CFG_C
void DispInitPort (void)
{
outp (DISP_PORT_CMD, 0x82); /* Set to Mode 0: A are output, B are inputs, C are outputs */
}

#endif

Listing 5.1 (continued)

Chapter 5: Character LCD Modules — 189

LCD.C

/*

L T T

*

*

SELECT COMMAND OR DATA REGISTER

* Description : This function read a BYTE from the display device.

* Arguments ¢ none

EE R L L L L L T T T]

*/

#ifndef CFG C
void DispSel (INT8U sel)
{
if (sel == DISP_SEL,_CMD REG) {
outp (DISP_PORT_CMD, 0x02) ;
} else {
outp (DISP_PORT _CMD, 0x03);

#endif

/* Select the comand register (RS low) */ 5

/* Select the data register (RS high) */

190 — Embedded Systems Building Blocks, Second Edition

Listing 5.2 LCD.H

/*

ARk kK Kk xRk kK kX L2 22 82 233 Akt Ak kot Akt okt ok ok sk ok ot ot
* BEmbedded Systems Building Blocks

* Camplete and Ready-to-Use Modules in C

*

* 1CD Display Module Driver

*

* {c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

* Filename : ICD.H
* Programmer : Jean J. Labrosse

Foh ok hk Ak ok ok ke kK *kk ok ko hkdk ok Hkkk Ak kAK K *kk *kkkkokRrK
*/

/*

R R R R R R T T 2 T T TR A T T Y Tk kk kA k * ke * *kkkk kA Ak
* CONSTANTS

B R a2 At s X T o e * kKK kK ke kKK
*/

#ifndef CFG_H

#define DISP DLY_CNTS 8 /* Number of iterations to delay for 40 uS (software loop) */
#define DISP_PORT CMD 0x0303 /* Address of the Control Word (82C55) to control RS & E */
#define DISP_PORT DATA 0x0300 /* Port address of the DATA port of the LCD module */
#endif

#define DISP_SEL (MD REG : 0

#define DISP_SEL, DATA REG 1

/*

Kk Aok ke ok ok ok Akkkkk xkkk*k * *kkk *kk *kk *k*k

* FUNCTION PROTOTYPES

AEEA KK KA A AKX IA AKX AR AKR A A A KA A A A A XA XA AR A XA A N X * *kkk ok dk ok ok kA d
*/

void DispChar (INT8U row, INT8U col, char c);

void DispClrLine (INT8U line);

void DispClrScr(void);

void DispDefChar (INT8U id, INT8U *pat);

void DispDummy (void); -
void DispHorBar (INT8U row, INT8U col, INTSU val);

void DispHorBarInit(void);

void DispInit(INT8U maxxrows, INT8U maxcols);

void DispStr(INT8U row, INTSU col, char *s);

/*

A A KKK AR AA A A A A A A A AT A AT A A TR AR Ak Ak kA AT A A Ak bk Ak k kA A A XA Ak kA XA hh & *hkhkhkkkhk *

* FUNCTION PROTOTYPES

* HARDWARE SPECIFIC

*hkkhkdkokk *kkk ** * * *x *ok ok *kkkkk *hkkhkhkkkhd
*/

void DispDatawr (INT8U data) ;
void DispInitPort(void);
void DispSel (INT8U sel);

Chaptér 6

Time-of-Day Clock

The management of time is important in many microprocessor-based embedded systems. For instance,
what would VCRs (Video Cassette Recorders) be without clock/calendars to schedule the recording of
television programs?

In this chapter, I will describe how I implemented a Y2K-compliant clock/calendar module. The
clock/calendar module offers the following features:

* Maintains hours, minutes, and seconds.
* Contains a calendar which keeps track of: month, day, year (includihg leap-years), and day-of-week.

» Allows your application to obtain a fimestamp to mark the occurrence of events. A timestamp is the
current date and time packed into a 32-bit integer.

6.00 Clocks/Calendars

A clock/calendar is a useful module for an embedded system. If you need a clock/calendar, you have to
decide whether to implement it in hardware or software.

Clock/calendar chips are readily available and most can directly interface with microprocessors.
These chips accurately maintain the time-of-day, and some chips even provide a built-in calendar. Some
chips include a battery and can continue to keep track of date and time even when power is removed
from the unit. Clock/calendar chips generally require a crystal, which further increases the recurring
cost of your system. Clock/calendar chips are manufactured by a large number of semiconductor com-
panies such as Motorola, National Semiconductor, Maxim, Dallas Semiconductor, etc. Just because you
have a clock/calendar chip doesn’t mean-you don’t need to write any software. Your application soft-
ware will still need to:

» program the clock/calendar chip with the correct date and time,
e program any alarm clock functions, and
¢ read the current date and time.

191

192 — Embedded Systems Building Blocks, Second Edition

A software-maintained clock/calendar is the best solution when your application cannot afford the
extra cost associated with a clock/calendar chip, a battery, and an extra crystal. A software-implemented
clock/calendar module can offer most of the benefits of a hardware approach (except that it can’t main-
tain date and time when power is removed). A software approach requires very little ROM, RAM, and
CPU time and does not add recurring cost to your system. Also, you can easily add features, such as
alarm clock functions (with many alarm setpoints), timestamps, string-formatting utilities to convert
date and time to ASCII, etc. Software-implemented clock/calendars are found in a number of familiar
appliances such as VCRs, stereos, FAX machines, microwave ovens, etc. If the microprocessor has a
low-power standby mode, the software-implemented clock/calendars can be made to maintain correct
date and time when the power is removed by also including a battery to power the microprocessor.

Maintaining a clock/calendar is a trivial task for a microprocessor. The first thing you will need is a
periodic time source that will interrupt the microprocessor at regular intervals. Such a time source is
easy to find. AC power line frequencies (50 or 60 Hz) are generally very accurate over long periods of
time. For short-term accuracy, the crystal used to clock the microprocessor is also a good candidate;
however, for such an application, the crystal frequency must be divided down. If your application soft-
ware runs under a real-time multitasking operating system, the OS’s clock tick is a convenient periodic
time source.

If we assumed that the microprocessor was interrupted every one-tenth (0.1) of a second, the soft-
ware simply needs to maintain integer counters for tenths of a second, seconds, minutes, hours, day,
month, and year as follows. The tenths of a second is incremented every interrupt. If the counter over-
flows from 9 to 0, the seconds counter is incremented. If the seconds counter overflows from 59 to 0, the
minutes counter is incremented, etc. Every 24 hours, the days counter is incremented. When the months
counter overflows depends on the current month and also, in the case of February, on whether the year is
a leap year. The following sections describe how I implemented the software for the clock/calendar
module.

6.01 Clock/Calendar Module

The source code for the clock/calendar module is found in the \SOFTWARE\BLOCKS\CLK\ SOURCE
directory. The source code is found in the files CLK.C (Listing 6.1) and CLK.H (Listing 6.2). All
clock/calendar functions and variables related to this module start with C1k, while all #define con-
stants start with CLK_.

6.02 Internals

Figure 6.1 shows a simplified flow diagram of the clock/calendar module. I assume the presence of a
real-time kernel but the code can easily be modified to work in a foreground/background environment.
Basically, the clock/calendar module consists of a task which executes every second. The task is respon-
sible for updating eight variables that are maintained by the clock/calendar module. You should not
directly access these variables from your application. As you might have expected, the variables updated
by the clock/calendar module are:

Chapter 6: Time-of-Day Clock — 193

ClkSec: Seconds (0..59)

ClkMin- Minutes (0..59)

ClkHr: Hours (0..23, i.e., military time)

ClkDay: Day (1..31, i.e., day-of-month)

C1kDOW: Day-of-week (0..6, i.e:, Sunday, Monday, etc.)

ClkMonth: Month (1..12)
ClkYear: Year (2000..2063)
C1kTs: Timestamp

Figure 6.1 Clock/Calendar flow diagram.

Application
Interface

Clock/Calendar Module

ClkSem

—_—— e _——

CLK_DLY_TICKS

|
| [ciksee], @ sceond)
| |
|
ClisstDatetine () | ,
ClkSetTime () | l
Cservarel) 4w -
ClkFormatTime () [| |
CiNFormatoate () | |
|
| |
C1kGetTs () I |
|
ClkMakeTs () — - |
ClkFormatTS ()

|
|
|
|
i
|
1 C1kTS
[
|
|

The eighth variable (C1kTS) contains the current date and time in timestamp format (described
later).

The date and time counters of the clock/calendar are updated by the task (C1kTask ()), which exe-
cutes every second. The date and time counters are considered shared resources, and thus a mutual
exclusion semaphore (C1kSem) must be acquired to access these counters.

ClkTask() calls C1kUpdateTime() to update the hours (C1kHr), minutes (C1kMin), and sec-
onds (C1kSec) counters. ClkUpdateTime () returns TRUE when the clock rolls over from 23:59:59 to
00:00:00 indicating a new day. The Boolean result is used to determine whether the date-updating func-
tion, ClkUpdateDate (}, is called or not.

At the completion of a day, ClkUpdateDate () is called to update the month (C1kMonth), day
(ClkDay), year (ClkYear), and day-of-week (C1kDOW) counters. Updating the date is a little bit more
complicated because we need to keep track of the number of days in the current month. The current
day-of-week is obtained by calling C1kUpdateDOW (). The day-of-week is a number between 0 and 6,

194 — Embedded Systems Building Blocks, Second Edition

with O representing Sunday. The use of a table (C1kMonthTbl []) greatly simplifies the update of the
days in a month and day-of-week counters.

On a lightly loaded system, the clock module should maintain accurate time. As I explained in
Chapter 2, specifically in Figure 2.27 on page 96, the clock task could slowly lose track of time if all
higher priority tasks (and interrupts) require more processing time than 1 clock tick. In other words, on a
heavily loaded processor, C1kTask () cannot maintain time accurately the way it is currently imple-
mented. There are two ways to fix this problem. The first and simplest way is to make the clock module
task a high priority task. This means that lower priority tasks will not be serviced while the clock task is
executing. In general, you should assign the highest priorities to your most critical task and not the clock
task because it requires a fair amount of processing time. The processor will maintain the time-of-day
correctly as long as the clock task and all high priority tasks can execute in the time between clock ticks.

The second way to fix the problem requires the use of a counting semaphore, as shown in Figure 6.2. The
number of clock ticks will be “memorized” in the semaphore and thus, the clock task will eventually catch
up when the load of the processor is reduced. The clock tick ISR can signal the counting semaphore every
clock tick or when a whole second has elapsed. I generally prefer to encapsulate these kind of details, and
thus, I wrote a function called C1kSignalClk () that can be called by the clock tick ISR every time a tick
occurs. Note that you need to change OSTickISR (), which is found in the file 0S_CPU_A . ASM located in
the \ SOFTWARE\uCOS-IT\??\compiler\SOURCE directory of the port you will use with nC/OS-IT (see
www . uCOS-ITI. com for details on pC/OS-II ports). To use the counting semaphore, you will need to set
CLK _USE_DLY to 0 and modify OSTickISRto call C1kSignalClk (). Setting CLK_USE DLY to 1 tells
the compiler to use OSTimeD1yHMSM ().

Figure 6.2 Clock/Calendar flow diagram.

Application Clock/Calendar Module
Interface

| |
| |
! | —>
ClkSetDateTime () | |
ClkSetTime () | |
ClkSetDate() <«
ClkFormatTime () I |
ClkFormatDate({) | I | TPend
| |
| : [r Counting
b } Semaphore
A
1 ————— Post
oot e .
CLiGetrs) 1 Clock Tick
ClkMakeTS () I ISR
ClkFormatTs () |
1

A timestamp (data‘type TS) packs:a‘date and time into a 32-bit variable. You can use timestamps to
mark when certain‘events: have:occurred. For example, a timestamp can be used to indicate when a tem-
perature or pressure was exceeded. You:can also implement alarm clock type functions using times-
tamps (described later).

Chapter 6: Time-of-Day Clock — 195

The format of a timestamp is shown in Figure 6.3. Even though I provide you with the format, you
should not directly manipulate timestamps in your applications. Instead, you should make use of the
functions provided by this module or add functions to this module. This allows for the format to be
changed at a later time without affecting your code. You should note that the year uses six bits in the
timestamp format and can thus represent only 64 years. The timestamp year is the actual year minus
2000. In other words, a year value of 5 represents 2005.

WARNING

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to
be backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR
back to 1990 which is found at the top of CLK.C.

Figure 6.3 Timestamp format.

B25 - B22
B31------: B26 B21----B17

B16--- —1312B B5------- BO -

l Year]Monthl Day

| Hours

Minutes ’ Seconds I

—0..63
(Actual year - CLK_TS_BASE_YEAR)

R

The timestamp format guarantees that later dates and times have larger values. You can thus easily
compare timestamps for equality, greater-than, less-than, etc. This feature allows you to design an alarm

clock with as many alarm trips as needed.

6.03 Interface Functions

Your application knows about the clock/calendar through the interface functions shown in Figure 6.4.
Figure 6.4 Clock/Calendar module interface functions.

ClkInit()

ClkSetTime ()
ClkFormatTime ()

ClkSetDateTime ()
ClkSetDate ()
ClkFormatDate ()

ClkGetTS()
ClkMakeTS ()
ClkFormatTS (}

<+——>

Clock/
Calendar
Module

196 — Embedded Systems Building Blocks, Second Edition

ClkFormatDate()

void ClkFormatDate (INT8U n, char *s);

ClkFormatDate () is also provided for display purposes. This function formats the current date into
an ASCII string.

Arguments

n specifies the desired format for the date. CILkFormatDate () currently supports two date formats:

n == 1: a condensed date MM-DD-YY

n == 2: full date including:

day of the week ("Sunday" .. "Saturday"),

month ("January" .. "December"),

day of the month (1..31) and

year (CLK_TS_BASE YEAR .. CLK TS BASE YEAR + 63).

The format is: “DayOfWeek Month Day, Year.” For example, 1/1/2000 would be displayed as: “Sat-
urday January 1, 2000.” For maximum flexibility, I implemented this function using a switch state-
ment. This allows you to easily add code to support your own date formats. For instance, you could
display the date in other languages such as French, Spanish, German, etc.

8 is a pointer to the string that will receive the formatted date. You must thus allocate sufficient space for
your string. The condensed format (n == 1) requires 9 characters while the other format (n == 2)
requires 30 characters (including the NUL character).

Return Value

None

Notes/Warnings

If you are using a preemptive kernel, you should consider making the clock/calendar task priority lower
than the application software that will call C1kFormatTime () and C1kFormatDate (). Try to figure
out what would happen if you were to format the date and time (these are two separate functions) just
before midnight (i.e., 23:59:59)!

Chapter 6: Time-of-Day Clock — 197

Example

void Task (void *pdata)
{
char s{201;

for (i) {

ClkFormatDate(l, s):

198 — Embedded Systems Building Blocks, Second Edition

ClkFormatTime ()

void ClkFormatTime (INT8U n, char *s);

ClkFormatTime () is provided for display purposes. This function formats the current time into an
ASCI string.
Arguments

n specifies the desired format for the time. ClkFormatTime () currently supports two time formats:

n == 1: 24 hour format, "HH:MM:SS"

n == 2: 12 hour with AM/PM indication, "HH:MM:SS AM"
For maximum flexibility, I implemented this function using a switch statement. This allows you to
easily add code to support your own formats.

8 is a pointer to the string that will receive the formatted time. You must thus allocate sufficient space
for your string. The 24-hour format requires nine characters while the 12-hour format requires 12 char-
acters (including the NUL character).

Return Value

None

Notes/Warnings

None
Example
void Task (void *pdata)

{
char s[20];

for (;;) {

ClkFormatTime(l, s);

e

Chapter 6: Time-of-Day Clock — 199

ClkFormatTsS()

void ClkFormatTS(INT8U n, TS ts, char *s);

ClkFormatTs () is provided for display purposes. This function formats a timestamp into an ASCII string.

Arguments

n specifies the desired format for the timestamp. C1kFormatTsS () supports only one timestamp format:

The time

1l: "MM-DD-YY HH:MM:SS".
2: "YYYY-MM-DD HH:MM:SS".
is in 24-hour format. For maximum flexibility, I also implemented this function using a

switch statement. This allows you to easily add code to support your own timestamp formats.

ts is the timestamp value that you want formatted into an ASCII string.

8 is a pointer to the string that will receive the formatted timestamp. You must allocate sufficient space
for your string. The timestamp format (n == 1) requires 18 characters (including the NUL character),
the timestamp requires 21 characters for format #2 (i.e.,n == 2).

Return Value

None

Notes/Warnings

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to be
backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR back to
1990 which is found at the top of CLK.C.

Example

void Task (void *pdata)

{

TS timestamp;
char s[20]1;
for (;;) {

timestamp = ClkGetTS();
ClkFormatTS (1, timestamp, s);
DispStr{(0, 0, s):

AE

200 — Embedded Systems Building Blocks, Second Edition

ClkGetTS ()

TS ClkGetTS(void);

ClkGetTS () is called by your application to obtain the current date and time in timestamp format.
Recall that a timestamp is a 32-bit variable that contains the date and time in a packed format.

Arguments

None

Return Value

The current date and time in timestamp format.

Notes/Warnings

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to be
backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR back to
1990 which is found at the top of CLK.C.

Example

void Task (void *pdata)
{
TS timestamp;

for (;;) {

timestamp = ClkGetTS():

Chapter 6: Time-of-Day Clock — 201

ClkInit()

void ClkInit(void);

ClkInit () is the initialization code for the clock/calendar. C1kInit () must be called before any of
the other functions provided in this module. ClkInit () is responsible for the initialization of the
clock/calendar variables and the creation of the clock/calendar task.

If you choose to have a clock/calendar chip maintain the correct date and time when power is
removed (using a battery), you can use ClkInit () to read the contents of the clock chip and load the
corresponding clock/calendar module variables when power is applied to your unit. Note that PCs use
this scheme.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void main({void)
{

ClkInit();

ki
I

202 — Embedded Systems Building Blocks, Second Edition

ClkMakeTS()

TS ClkMakeTS (INT8U month, INTS8U day, INT16U year, INTS8U hr, INT8U min, INT8U sec):;

ClkMakeTS () is called by your application to format a date and time into a timestamp. This function is
useful for comparing timestamps. You would use this function to implement an alarm clock feature.

Arguments
month specifies the month of the year and must be a number between 1 and 12.
day corresponds to the day of the month and must be a number between 1 and 31.

year specifies the year. Here I assume you will specify a number between CLK_TS_BASE_YEAR (see
CLK.C) and CLK_TS_BASE_YEAR+63. Note that the year is limited to hold 64 years because the year is
stored in the timestamp using six bits.

hr specifies the hours and is entered in 24-hour format, i.e., a number between 0 and 23.
min specifies the number of minutes and must be between 0 and 59.

sec specifies the seconds and must also be a number between 0 and 59.

Return Value -

The desired date and time in timestamp format.

Notes/Warnings

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to be
backwards compatible with the first edition, you can change the value of CLK_TS BASE YEAR back to
1990 which is found at the top of CLK.C.

Example

void Task (void *pdata)
{
TS alarm;

alarm = ClkMakeTS(12, 31, 1999, 23, 59, 59);
for (;;) {

if (ClkGetTS({) > alarm) {
DispStr(0, 0, “Happy New Year!”);

Chapter 6: Time-of-Day Clock — 203

ClkSetDate()

void ClkSetDate (INT8U month, INT8U day, INT16U year);

ClkSetDate () is used to set only the calendar portion of the clock/calendar. If you had a clock/calen-
dar chip, you could use this function to also set the date of the chip.

Arguments
month specifies the month of the year and must be a number between 1 and 12.
day corresponds to the day of the month and must be a number between 1 and 31.

year specifies the year. Here I assumed that you will specify a number between CLK_TS_BASE_YEAR
and CLK_TS_BASE YEAR+63.

Return Value

None

Notes/Warnings

None

Example

void main(void)

{

ClkSetDate(1l, 1, 2000);

204 — Embedded Systems Building Blocks, Second Edition

ClkSetDateTime ()

void ClkSetDateTime (INTS8U month, INTS8U day, INT16U year,
INT8U hr, INT8U min, INT8U sec);

ClkSetDateTime () is used to set the clock/calendar to the desired date and time. If you had a
clock/calendar chip, you could use this function to also set the date and time of the chip.

Arguments

month specifies the month of the year and must be a number between 1 and 12.

day corresponds to the day of the month and must be a number between 1 and 31.

year specifies the year. Here I assumed that you will specify a number between CLK_TS_BASE_YEAR
and CLK_TS_BASE YEAR+63.

hr specifies the hours and is entered in 24-hour format, i.e., a number between 0 and 23.
min specifies the number of minutes and must be between 0 and 59.

sec specifies the seconds and must also be a number between 0 and 59.

Return Value

None

Notes/Warnings

None

Example

void main(void)
{

ClkSetbateTime(l, 1, 2000, 23, 53, 59});

Chapter 6: Time-of-Day Clock — 205

ClkSetTime ()

void ClkSetTime (INT8U hr, INT8U min, INT8U sec);

ClkSetTime () is used to set only the clock portion of the clock/calendar. If you had a clock/calendar
chip, you could use this function to also set the time of the chip.

Arguments

hr specifies the hours and is entered in 24-hour format, i.e., a number between 0 and 23.

min specifies the number of minutes and must be between 0 and 59.

sec specifies the seconds and must also be a number between 0 and 59.

Return Value

None

Notes/Warnings

None

Example

void main(void)

{

ClkSetTime (23, 59, 59);

206 — Embedded Systems Building Blocks, Second Edition

6.04 Clock/Calendar Module, Configuration

All you need to do to use the clock/calendar module in your application is to define the value of five
#define constants (see file CLK.H and also CFG.H), call ClkInit (), and then initialize the current
date and time for the clock/calendar.

CLK_TASK_PRIO defines the priority of C1kTask () in the multitasking environment. The task pri-
ority of the clock/calendar module would typically be set relatively low (i.e., a high number under
pC/OS-II) because clocks and calendars are generally not considered critical.

CLK_DLY_TICKS defines the number of “clock ticks” needed to obtain one second. I tested the code
using an IBM-PC and the tick rate was set to 200 Hz.

CLK_TASK_STK_SIZE defines the size of the stack allocated to the clock/calendar module task. The
number of bytes allocated for the stack is given by: CLK_TASK_STK_SIZE times sizeof (OS_STK).

WARNING

In the previous edition of this book, CLK_TASK_STK_SIZE specified the size of the stack for
TaskTask () in number of bytes. uC/OS-II assumes the stack is specified in stack width ele-
ments.

CLK_DATE_EN s used to allow your application to save ROM space by disabling (when set to 0) the
date updating feature of the clock/calendar module.

CLK_TS_EN is used to allow your application to save ROM space by disabling (when set to 0) the
timestamp feature of the clock/calendar module. Note that you need to enable the calendar when you
enable the timestamp capability.

CLK_USE_DLY is used to indicate that the clock/calendar module will use time delays to delay the
clock task every second (when set to 1). The clock/calendar module will be expecting signals from the
tick ISR (through C1kSignalClk ()) when CLK_USE_DLY is set to 0.

6.05 Bibliography

Viscogliosi, Roberto R.
“C shortcuts and the day of the week”
PC Magazine, May 11, 1993, p.396,401, & 406

Latham, Lance

Standard C Date/Time Library; Programming the World’s Calendars and Clocks
R&D Books, Lawrence, KS, 1999

ISBN 0-87930-496-0

Chapter 6: Time-of-Day Clock — 207

Listing 6.1 CLK.C

*
i*** *k * *hk
* Clock/Calendar

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename ¢ CIK.C
* Programmer : Jean J. Labrosse

L e e e e e T e e e e e T S ST T a]

*/

/*
B L R L L L T T T T T Ty
* INCLUDE FILES

LR L T e e L e e e T s 2 e

*/

#define CLK_GLORALS /* CIK.H is informed to allocate storage for globals */
#include "includes.h"

/*
Ak AR A R A A A AR A A R A A A A A A A A A A A kA A A A A A A AR A A A A A A A A A AR A A A A AR A A A AR A A A A A A A A AR A A AR A A AR AR A kr ko k kA Ak kkkhkkkx
* LOCAL CONSTANTS

Ahhkkkhkk * ok ok * AR K AR A A kA AR A A A AR A AR A AR AR A A A A AR AR XA A AR R AR A Ak kA ok ke kA khkkk kK
*/
#define CLK TS BASE YEAR 2000 /* Time stamps start year */
/*
EAKE AR AR A A KR A KRR AA A KA AR A AR KRNI Ak Ak kA Ak ARk d kT hhhkhkkkdk * %k ok Rk ke ko devk ok ke ke *
* LOCAL VARTABLES

LR R L e e e e e e e L e e e e s T]

*/

static OS_EVENT *ClkSem; /* Semaphore used to access the time of day clock */
static OS_EVENT *ClkSemSec; /* Counting semaphore used to keep track of seconds */
static OS_STK ClkTaskStk[CLK _TASK_STK SIZE];

static INT8U ClkTickCtr; /* Counter used to keep track of system clock ticks */

/*SPAGE* /

208 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/*
B R LR R R R Rl E T g L L L bt L L L L L LR Ry p g |
* LOCAL TABLES -

kA kA AR A ke Tk ok ek ARk R R e A T ok ke ok ke vk ok ok e ok ok ok e T vk ok vk ok ok e ok ek ok ke ok e e e ok ok ok ok o ke R ke ek e R ok ek T ek ok

*/

#if CLK_DATE EN

static char *ClkDOWIbL([] = { /* NAME FOR EACH DAY OF THE WEEK */
"Sunday ",
"Monday °,
‘Tuesday ',
"Wednesday ",
"Thursday ",
"Friday ",
"Saturday *

};

static CLK MONTH ClkMonthTbl[l = { /* MONTHS TABLE */
{0, v, 0}, /* Invalid month */)
{31, '"January ", 6}, /* January */
{28, 'February ", 2}, /* February (note leap years are handled by code} */
{31, "March *, 2}, /* March */ -
{30, "April *, 5}, /* April */
{31, "™May ", 0}, /* May */
{30, "June ", 3}, /* June */
{31, "July ', . 5}, /* July */
{31, "August ", 1}, /* Bugust */
{30, "September ", 4}, /* September */
{31, "October ", 6}, /* October */
{30, "November ", 2}, /* Novemrber */
{31, "Decexrber ', 4} /* December */

}i

#endif

/*
kkkkkkkhkk kkkkkkkkkkkkkk *kkk kkkkkkkkkhhkhhhkhkhkhhkkhhhkkkkkkkkhkkkhhhhhkkkrkrkks

* LOCAL FUNCTION PROTOTYPES

KA A AR AAAARR A AT AR A A AR L AR A AR AR T A AR AR A A A A A A A AT A A K ok kA ke k ek ok ok ok okk khkkk Ak kkkhkkk

*/

void ClkTask(void *data);
static BOOLEAN ClkUpdateTime (void) ;

#if CLK_DATE_EN

static BOOLEAN ClkIsLeapYear (INT16U year);
static wvoid ClkUpdateDate (void) ;

static wvoid ClkUpdateDOW (void} ;

#endif

/*$SPAGE*/

Chapter 6: Time-of-Day Clock — 209

Listing 6.1 (continued) CLK.C

/*
* o e e L d * *hkk kK

* FORMAT CURRENT DATE INTO STRING
* .
* Description : Formats the current date into an ASCII string.
* Arguments rn is the format type:
* 1 will format the time as "MM-DD-YY" (needs at least 9 characters)
* 2 will format the time as “Day Month DD, YYYY" (needs at least 30 characters)
* 3 will format the time as “YYYY-MM-DD" (needs at least 11 characters)
* s is a pointer to the destinmation string. The destination string must be large
* enough to hold the formatted date.
* contain
* Returns : None.
* Notes : - A 'switch' statement has been used to allow you to add your own date formats. For
* example, you could display the date in French, Spanish, German etc. by assigning
* nunbers for those types of conversions.
* - This function assumes that strcpy(), strcat() and itoa() are reentrant.

e s e 7 e o e ke e e o o o ook ok ook % *k * %k * *
*/

#if CLK_DATE_EN
void ClkFormatDate (INT8U n, char *s)
{

INT8U err;

INT16U year;

char str(5]);

OSSemPend (C1kSem, 0, &err); /* Gain exclusive access to time-of-day clock */
switch (n) (
case 1:
strcpy (s, "MM-DD-YY'); /* Create the template for the selected format */
s(0] = ClkMonth / 10 + '0'; /* Canvert DATE to ASCIT */
s[1) = ClkMonth % 10 + '0';
s3] = Clkbay / 10 + '0'; .
s[4] = ClkDay % 10 + '0';
year = ClkYear % 100;
s{6] = year / 10 + '0';
s{7] = year % 10 + '0';
break;
case 2:
strcpy (s, CLKkDOWTDL {C1kDOW]) ; /* Get the day of the week */
streat (s, ClkMonthTbl [ClkMonth] .MonthName) ; /* Get name of month */

if (ClkDay < 10)
str[0] = ClkDay + '0';
str(l] = 0;

} else {
str[0] = ClkDay / 10 + '0';
str(l] = Clkbay % 10 + '0';

str{2] = 0;
}
strcat (s, str);
strcat(s, ", ");

itoa{ClkYear, str, 10);
strcat(s, str);
break;

L

210 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

case 3:

strcpy(s, "YYYY-MM-DD'}; /* Create the template for the selected format */
s[0] = year / 1000 + '0';

year = year % 1000;

s[l) = year / 100 + '0’;

year = year % 100;

s[2) =year / 10 + '0’;

s[3] = year % 10 + '0';

s[5] = ClkMonth / 10 + '0'; /* Convert DATE to ASCIT */
s[6] = ClkMonth % 10 + '0';
s[8] = Clkbay / 10 + '0';
s[9] = Clkbay % 10 + '0°;
break;
default:

strcpy (s, "?");
break;

}

OSSemPost (C1kSem) ; /* Release access to clock */

}
#endif

/*SPAGE* / —_—

Chapter 6: Time-of-Day Clock — 211

Listing 6.1 (continued) CLK.C

/*

* ek ok ok xRk k *% *hkkkhkkk * * * *% * * %k *kk * *dkokok ko * * dkkkkkokkk
* FORMAT CURRENT TIME INTO SIRING

*

* Description : Formats the current time into an ASCII string.

* Arguments :n is the format type:

* 1 will format the time as "HH:MM:SS" (24 Hour format)

* (needs at least 9 characters)

* 2 will format the time as "HH:MM:SS AM' (With AM/PM indication)

* (needs at least 13 characters)

* s is a pointer to the destination string. The destination string must be large
* enough to hold the formatted time.

* contain

* Returns : None.

* Notes : - A 'switch' statement has been used to allow you to add your own time formats.

*

- This function assumes that strcpy() is reentrant.

L T e e L e R e e e e e S e L

*/

wvoid ClkFormatTime (INT8U n, char *s)
{

INT8U err;

INT8U hr;

OSSemPend (ClkSem, 0, &err);

switch (n) {

case 1:
strepy (s, "HH:MM:SS");
s{0] = Clkdr / 10 + '0';
s[1l) = ClkHr % 10 + '0';
s{3] = ClkMin / 10 + '0';
s[4] = ClkMin % 10 + '0';
s{6] = ClkSec / 10 + '0';
s[7] = ClkSec % 10 + '0';
break;

case 2:

strcpy (s, "HH:MM:SS aM");
s[9] = (ClkHr >= 12) ? 'P' :
if (ClkHr > 12} {

hr = ClkHr - 12;

} else {
hr = ClkHr;
}
s[0] = hr /10 + '0';
s[1] = hr %10 + '0';
s{3] = ClkMin / 10 + '0';
s[4] = ClkMin % 10 + '0';
s[6) = ClkSec / 10 + '0%;
s[7] = ClkSec % 10 + '0';
break;
default:
strcpy (s, °?");
break;
}
GSSemPost (C1kSem) ;

/*SPAGE* /

/* Gain exclusive access to time-of-day clock

/* Create the template for the selected format
/* Convert TIME to ASCII

/* Create the template for the selected format
‘A'; /* Set AM or PM indicator
/* Adjust time to be displayed

/* Convert TIME to ASCII

/* Release access to time-of-day clock

*/

*/
*/

*/
*/
*/

*/

*/

i

212 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/*
sk e ek ek ok o R ko ok e ook ok Tk ok ok ok ke ok ok ok ok ok ok ok R ok ok ok ek ok ok R e ok ok ok ok Rk ok ok ok R ok ok e R R ok Ak R R
* FORMAT TIME-STAMP -

*

* Description : This function converts a time-stamp to an ASCII string.

* Arguments : n is the desired format mumber:

* 1 : "MM-DD-YY HH:MM:SS" (needs at least 18 characters)

* 2 : "YYYY-MM-DD HH:MM:SS" (needs at least 20 characters)

* ts is the time-stamp value to format

* s is the destination ASCII string

* Returns : none

* Notes : - The time stamp is a 32 bit unsigned integer as follows:

*

* Field: ————--- Year-——--- —-- Menth--- -~---- Day----~ —-—-! Hours----- —-- Mimites--- ~- Seconds--
* Bit# : 31 30 29 28 27 26 252423 222120191817 161514 13 1211109876543210
%

* - The year is based from CLK_TS BASE YEAR. That is, if bits 31..26 contain 0 it really
* means that the year is really CLK_TS BASF, _YEAR. If bits 31..26 contain 13, the year
* is CIK_TS_RASE YFAR + 13.

L e s e T

*/

#if CIK TS_EN && CIK DATE_EN _—
void ClkFormatTS (INT8U n, TS ts, char *s)
{

INT16U yr;

INT8U month;

INTSU day;

INT8U hr;

INT8U min;

. INT8U sec;

yr = CLK_TS_BASE_VEAR + (ts >> 26); /* Unpack time-stamp */
month = (ts >> 22) & OxOF; -

day = (ts >> 17) & Ox1F;

hr = {ts >> 12) & Ox1F;

min = (ts >> 6) & 0X3F;

sec = {ts & 0x3F);

switch (n) {

case 1: -

strcpy{s, "MM-DD-YY HH:MM:SS"); /* Create the template for the selected format */
yr = yr % 100;
s(0] =month / 10 + '0'; /* Convert DATE to ASCII) */
s{ 1] = month % 10 + '0';
s[3] = day / 10 + '0';
s{ 4) = day %10 + '0*;
s 6] = yr /10 + '0';
s[7) = yr % 10 + '0';
s[9] = hr /10 + '0°; /* Convert TIME to ASCII */
s[10] = hr % 10 + '0';
s{12) =min / 10 + '0°;
s[13] =min % 10 + '0';
s[15] = sec / 10 + '0';
s[16} = sec %10 + '0;

Chapter 6: Time-of-Day Clock — 213

Listing 6.1 (continued) CLK.C

case 2:
strcpy(s, "YYYY-MM-DD HH:MM:SS"); /* Create the tamplate for the selected format */
s[0] = yr / 1000 + '0'; /* Convert DATE to ASCII */ o
yr = yr % 1000; :
sl 1] = yr / 100 + '0';
yr = yr % 100;
s[2] =yr / 10 + '0';
s[3) = yr % 10 + '0';
s[5] = month / 10 + '0';
s[6] = month % 10 + '0';
s[8] =day /10 + '0';
s[9] =day %10 + '0';
s{11] = hr /10 + '0"; /* Convert TIME to ASCII */
s[12} = hr %10 + '0';
s[14] =min /10 + '0';
s[15] = min % 10 + '0';
${17) = sec /10 + '0';
s(18] = sec % 10 + '0';
break;
default:
strcpy(s. "?"); .
break; PR

}
}
#endif

/*$PAGE*/

214 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/*

* GET TIME-STAMP

*

* Description : This function is used to return a time-stamp to your application. The format of the
* time-stamp is shown below:

*

* Field: -—------ Year-—---— ——-] Month--— —-———- Day ---—Hours ——-Minuteg--- -~ Seconds——
* Bit# : 31 30 29 28 27 26 2524 23 22 21 20 1918 17 16 1514 13 121110 9876543210
*

* Arguments : None.

* Returns : None.

* Notes : The year is based from CLX_TS BASE YEAR. That is, if bits 31..26 contain 0 it really
* means that the year is CILK TS_RBASE YEAR. If bits 31..26 contain 13, the year is

* CLK TS_RASE_YEAR + 13.

Khkhkhkhkhkhhkkhkkhuwkhkhkhhhkhhhkhk *k * ek * * * * *k *k * &

*/

#if CLK_TS EN & CLK DATE EN -
TS ClkGetTS (void) .

{
TS ts; JE——
OS_ENTER_CRITICAL() ;
ts = C1kTS;
OS_EXIT CRITICAL(};
return (ts);
}
#endif

/*SPAGE*/

Chapter 6: Time-of-Day Clock — 215

Listing 6.1 (continued) CLK.C

*
i*****‘k******************‘k******************‘k*************************************‘k**********************
* TIME MODULE INITIALIZATION

* TIME-OF-DAY CLOCK INITIALIZATION

*

* Description : This function initializes the time module. The time of day clock task will be created

*

by this function.
* Arguments : None
* Returns : None.

LR L L e g R e e e T e e ey et g g e s e e s R e et s

*/

void ClkInit (void)

{
ClkSem = OSSemCreate(l); /* Create time of day clock semaphore */
ClkSemSec = OSSemCreate(0); /* Create counting semaphore to signal the occurrence of 1 sec. */
ClkTickCtr = 0;
ClkSec = 0;
ClkMin = 0;
ClkHr = 0;
#if CLK DATE EN
Clkbay = 1;
ClkMonth = 1;
ClkYear = 1999;
#tendif
#if CIK_TS_EN && CLK_DATE_EN
C1kTS = ClkMakeTS(ClkMonth, ClkDay, ClkYear, ClkHr, ClkMin, ClkSec);
#endif
OSTaskCreate (ClkTask, (void *)0, &ClkTaskStk([CLK TASK_STK_SIZE], CLK TASK PRIO);
}

/*SPAGE*/

i

216 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/*

* e ke e deok d kK *x * * * L L L L e T S St e T e

* DETERMINE IF WE HAVE A LEAP YEAR
*

* Description : This function determines whether the 'vear’ passed as an argument is a leap year.

* Arquments : year is the year to check for leap year.

* Returns : TRUE if 'year' is a leap year.

* FALSE if ‘year' is NOT a leap year.

hkkkRk kA Ak A AT A Ak kkkkkk kAT hhkkhkkkhhhkkkkhhhhkhhkhkhkkbhhhhhkhhhhkhhkhhhkhkhhhkhhhkhkhkhhkkxkRhkhkrkkkkkhrrhdkd
*/

#if CLK DATE_EN
static BOOLEAN ClkIsLeapYear (INT16U year)

{
if (!{year % 4) && (year % 100) |1 !{year % 400})) {
return TRUE;
} else {
return (FALSE) ;
}
}
#endif

/*SPAGE*/

Chapter 6: Time-of-Day Clock — 217

Listing 6.1 (continued) CLK.C

/*

hhkkkk* kkkkkk*k ** x 5 % K X * Kk kE Ak A KR IR I XAk A A kAR X T Tk A Xk hkhkkhhkkkkhkxhhkk
* MAKE TIME-STAMP

*

* Description : This function maps a user specified date and time into a 32 bit variable called a

* time-stamp.

* Arguments : month is the desired month (1..12)

* day is the desired day (1..31)

* vear is the desired year (CLK_TS_BASE YEAR .. CLK_TS_BASE YEAR+63)

* hr is the desired hour (0..23)

* min is the desired minutes (0..59)

* sec is the desired seconds (0..59)

* Returns : A time-stamp based on the arguments passed to the function.

* Notes : - The time stamp is formatted as follows using a 32 bit unsigned integer:

*

* Field: --———-- Year—----- ——-] Month--- -—---- Day----- —-=- Hours—--~~ --- Minutes--~ - Seconds--

* Bit# : 31 30 29 2827 26252423 222120191817 161514131211 109876543210
*

* - The year is based from CLK_TS_BASE, YEAR. That is, if bits 31..26 contain 0 it really
* means that the year is really CLK TS BASE YEAR. If bits 31..26 contain 13, the year is .
*

CLK_TS_BASE, YEAR + 13.

303k 903k ok o 3 ok ok ok ok ok ok e ok ok ok o ki ko ok ok ok ok 5k 9 ok ok ok ok o ok ok ok ok ki o ok ok ok o ok ok o ok ke ok ok ok dkkokokok dokkok ok kk ok ke ke ok e d ok Kk

*/ ——

#if CLK TS_FN && CLK DATE EN
TS ClkMakeTS (INT8U mcnth, INT8U day, INT16U yr, INTS8U hr, INT8U min, INT8U sec)

{

TS ts;

-= CLK_TS_BASE YEAR;

ts = ({(INT32U)yr << 26} | ((INT32U)month << 22) | ({INT32U)day << 17);

s 1= ({INT32U)hr << 12) | ({INT32U)min << 6) | (INT32U)sec;

return (ts);
) -
#endif

/*$PAGE*/

218 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/*

dk kA ddok dkded ok kokdeok ko kR Ak ok k kA gk dk ke kkdok PR Ly *kkkkk * FkkRIhk KKk khkk Ak kkk*x

*

*

*

SET DATE ONLY

Description : Set the date of the time-of-day clock

* Arguments : month is the desired month (1..12)

* day is the desired day (1..31))

* year is the desired year (CLK TS BASE YEAR .. CLK TS RASE YEAR+63)

* Returns : None.

* Notes : It is assumed that you are specifying a correct date (i.e. there is no range checking

* done by this function).

ThhkAAkhkhk kA kA ARk AAA Ak A dhAdhdkkdkdkdkhkhhkhkdddkkkk % ek e e e ek o ke ek ok ok *%k Fddeodkd gk ok gk kA kA kok
*/

#if CLK DATE_EN
void ClkSetDate (INT8U month, INT8U day, INT16U year)

{

INT8U err;

0SSemPend (ClkSem, 0, &err); /* Gain exclusive access to time-of-day clock
ClkMonth = month;

ClkbDay = day;

ClkYear = year;

ClkUpdateDOW () ; /* Carmpute the day of the week (i.e. Sunday ...}
0SSemPost (ClkSem) ; /* Release access to time-of-day clock

}

#endif

/*$PAGE*/

*/

*/
*/

Chapter 6: Time-of-Day Clock — 219

Listing 6.1 (continued) CLK.C

/*

*kkk dkkkkkkhkkkkkkkhkhkkkkk

* SET DATE AND TIME

*

* Description : Set the date and time of the time-of-day clock

* Arguments : month is the desired month (1..12)
* day is the desired day (1..31)
* year is the desired year (2x0¢x)
* hr is the desired hour {0..23)
* min is the desired minutes (0..59)
* sec is the desired seconds (0..59)
* Returns : None.
* Notes : It is assumed that you are specifying a correct date and time (i.e. there is no range
* checking done by this function).
*hkkk * * * * % *TAhkkAAkAhkkAhkhhkkhhhdd
*/
#if CLK DATE EN 6

void ClkSetDateTime (INT8U month, INT8U day, INT16U year, INTS8U hr, INT8U min, INT8U sec)
{ _
INT8U err; -

OSSemPend (ClkSem, 0, &err): /* Gain exclusive access to time-of-day clock */
ClkMonth = month;

ClkDay = day;

ClkYear = year;

ClkHr = hr;
ClkMin = min;
ClkSec = sec;
ClkUpdateDOW() ; /* Campute the day of the week (i.e. Sunday ...) */
OSSemPost (C1kSem) ; /* Release access to time-of-day clock */
}
#endif

/*SPAGE* /

220 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/%
Fkkd kR R Rk R ok Ak gk ok Rk ok ok ok ok ko Rk Rk Kok Kk kAR okkok ok ok ok kR ok kAR kKA KKK
* SET TIME ONLY

*

* Description : Set the time-of-day clock

* Arguments : hr is the desired hour (0..23)

* min is the desired minutes (0..59)

* sec is the desired seconds (0..59)

* Returns : None.

* Notes : It is assumed that you are specifying a correct time (i.e. there is no range checking

* done by this function).

e 7 7 vk ok ok ok Ak ok ek ek e ok ke ek hkkkkkkkkkk L 2L R RS RS SRt s R RSl s td
*/

void ClkSetTime (INT8U hr, INT8U min, INT8U sec)

{
OS_ENTER_CRITICAL() ; /* Gain exclusive access to time-of-day clock */
ClkHr = hr;
ClkMin = min;
ClkSec = sec;
OS_EXIT_CRITICAL({);) /* Release access to time-of-day clock */
}
/*SPAGE*/
/*
FhA Tk kA A kA A A AR kI Ak kA Ak kkh * kk Ik A E A A A A A kIR K * A A KA A A A A A A A A AR A AKX A AT T A ATk Ik k ko kk ok
* SIGNAL CLOCK MODULE THAT A 'CLOCK TICK' HAS OCCURRED
*
* Description : This function is called by the 'clock tick' ISR on every tick. This function is thus
* responsible for counting the number of clock ticks per second. When a second elapses,
* this function will signal the time-of-day clock task.
* Arguments : None.
* Returns : None.
* Note(s) : CLK DLY TICKS must be set to the number of ticks to produce 1 second.
* This would typically correspond to CS_TICKS PER SEC if you use uC/0S-II. -
* ok * ko kk Ak kKKK de ek ke ke kR ok * ok ke Fe vk vk ke ok gk ok ok kA ek kR Rk
*/
void ClkSignalClk (void)
{
ClkTickCtr++; /* count the number of 'clock ticks' for one second */ -
if (ClkTickCtr »>= CLK_DLY_TICKS) {
ClkTickCtr = 0;
0SSemPost (ClkSemSec) ; /* Signal that one second elapsed */

Chapter 6: Time-of-Day Clock — 221

Listing 6.1 (continued) CLK.C

/*
* * * e e e e g e e e e ke e e ke ke ok de ke ke ok ke ke ke ok Yok ok ok Yok ok ok ok ok okok ok *kk ok ok ke ok & kokok
* TIME-OF-DAY CLOCK TASK)
*
* Description : This task is created by ClkInit() and is responsible for updating the time and date.
* ClkTask() executes every second. :
* Arguments : None.
* Returns : None.
* Notes : CLK _DLY_TICKS must be set to produce 1 second delays.
*/

void ClkTask (void *data)
{

INT8U err;
data = data; /* Avoid compiler warning (uC/0S requirement) */ 6
for (;;) {

#if CLK USE_DLY

OSTimeDlyHMSM(0, 0, 1, 0); /* Delay for one second */
#else
OSSemPend (ClkSemSec, 0, &err); /* Wait for one second to elapse */
#endif
OSSemPend (ClkSem, 0, &err); /* Gain exclusive access to time-of-day clock */
if (ClkUpdateTime() == TRUE) { /* Update the TIME (i.e. HH:MM:SS) */
#if CLK DATE EN
ClkUpdateDate() ; /* And date if a new day (i.e. MM-DD-YY) */
#endif

}

#if CLK _TS_EN && CLK_DATE EN
ClkTS = ClkMakeTS(ClkMonth, Clkbay, ClkYear, ClkHr, ClkMin, ClkSec);

#endif -
OSSeamPost (ClkSem) ; /* Release access to time-of-day clock */

/*SPAGE*/

222 Embedded Systems Building Blocks, Second Fdition

Listing 6.1 (continued)

CLK.C

/*

Kkk R IR I kR IIkA kA kkkkkkkkkkhkkkkkkkkkhkhk

*
*
* Description :
* Arguments : None.

*dkk

*k KKKk

UPDATE THE DATE

This function is called to update the date (i.e. month, day and year)

* Returns : None.

* Notes : This function updates ClkDay, ClkMonth, ClkYear and C1kDOW.

ok k ok * * khkkkkkkkkkkkkkkkkk kkk KKKk k%
*/

#if CLX_DATE EN

static woid ClkUpdateDate (void)

{
BOOLEAN newmonth;

newmonth = TRUE;

if (ClkDay »>= ClkMonthTbl [ClkMonth] .MonthDays) {

if (ClkMonth == 2) {

if {(ClkIslLeapYear (ClkYear) == TRUE) {

if (ClkDay »= 29) {

ClkDay = 1;
} else {
ClkDay++;
newronth = FAISE;
}
} else {
ClkDay = 1;
}
} else {
ClkDay = 1;
}
} else {
ClkDay++;

newronth = FAISE;

}

if (newmonth == TRUE) {
if (ClkMonth »>= 12) {

ClkMonth = 1;
ClkYear++;
} else {
ClkMonth++;
}
}
ClkUpdateDOW{) ;
}
#endif

/*$PAGE*/

/*
/*
/*
/*

/*

/*

/*
/*
/*

Last day of the month?

Is this February?

Yes, Is this a leap year?
Yes, Last day in february?
Yes, Set to lst day in March

See if we have corpleted a month

Yes,
Yes,

No,

Compute the day of the week {i.e. Sunday ...

Is this december ?
set month to january...
...we have a new year!

increment the month

dkkk ok

kokkk ok kkh Ak

)

*/
*/

*/
*/

*/
*/
*/
*/ —

*/

*/

E

Chapter 6: Time-of-Day Clock — 223

Listing 6.1 (continued) CLK.C

/*

dedkk ok kk ok * *kkkkk * ke kk

* COMPUTE DAY-OF-WEEK

* Description : This function camputes the day of the week (0 == Sunday) based on the current month,

* day and year.

* Arguments : None.

* Retums : None.

* Notes : -~ This function updates C1kDOW.

* - This function is called by ClkUpdateDate() .

* Jdok ok e ek k ok * Fdkk
*/

#if CLK_DATE EN
static void ClkUpdateDOW (void)
{

INT16U dow;

dow = ClkDay + ClkMonthTbl (ClkMonth] .Monthival ;
if (ClkMonth < 3) { .
if (ClkIsLeapYear (ClkYear)) { -
dow--;

dow += ClkYear + (ClkYear / 4);
dow += {ClkYear / 400) - (ClkYear /.100);

dow %= 7;
CIkDOW = dow;
}
#endif

/*$SPAGE*/

224 — Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

/*
B L LR R R L g L LR e L R Bt T LT T T e TP e e e S
* UFPDATE THE TIME

*

* Description : This function is called to update the time (i.e. hours, minutes and seconds)
* Arguments : None.

* Returns : TRUE if we have completed one day.

* FALSE otherwise

* Notes : This function updates ClkSec, ClkMin and ClkHr.

Ahkh A I kA KA A AKX A AKET AKX hkAhKx LRSS L s s R st st sttt sttt s sl st s
*/

static BOOLEAN ClkUpdateTime (void)
{
BOOLEAN newday;

newday = FALSE; /* Assume that we haven't completed one whole day yet */
if (ClkSec »= 59} { /* See if we have completed one minute yet */
ClkSec = 0; /* Yes, clear seconds */
if (ClMin »>= 59) { /* See if we have completed one hour yet */
ClkMin = 0; /* Yes, clear minutes */
if (CldHr >= 23) { /* See if we have completed one day yet */
ClkHr = 0; /* Yes, clear hours ... */
newday = TRUE; /* ... change flag to indicate we have a new day */
} else {
ClKHr++; /* No, increment hours */
}
} else {
ClkMin++; /* No, increment minutes */
}
} else {
ClkSec++; /* No, increment seconds */

}
return (newday};

Chapter 6: Time-of-Day Clock — 225

Listing 6.2 CLK.H

/*

kkkkokkkkk kA ok ko kdkkkkhkhkh ok kkkkhkhkh ok kkkdhkhh ko ko k Ak kA ok ok kkkkkhkk ok k ko hkk kb khkdkkkkkkkkkk ko kkkkkkhkhkkkkkkhkkhkkk
* Clock/Calendar

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : CIK.H

* Programmer : Jean J. Labrosse

ek e e ok e ok e e ek ok vk ok o e ok ok ok O ok ok e ke e ok ok ok ok ke e ek ok ok ok ok ek e R ok ok ok e e ok ok ok ok ok Rk ek kR ek ko Ak ek ek ok A Ak Rk

*/

/*
KAk RA AR RIRAA I RRARA KRR A RA AR R A A A AR R IR R AR AAER R R AR AR AR RIR AR A AR R AR AR RN RE AR A A AR KRR AR AR R AR IR AR AR AR RA A Ak kR Rk
* CCNSTANTS

ke ok ke de oK ke ok ok dode de kR gk ok ok dek deokodeokododeok deded dedeok e dekok dodokodekododok dededededeokok ok dede ko ok ok ok Ak d deok ke ok kAR R Rk kR kR AR Rk kA kA AR R Ak ok kh kR Kok

*/

#ifndef CFG_H

#define CLK_DLY_TICKS OS_TICKS PER_SEC /* # of clock ticks to obtain 1
second */
#define CLK_TASK_FPRIO 50 /* This defines the priority of
ClkTask () */
#define CLK_TASK STK SIZE 512 /* Stack size in BYTEs for
ClkTask() */
#define CLK_DATE EN 1 /* Enable DATE (when 1)
*/
#define CIK_TS_EN 1 /* Enable TIME-STAMPS (when 1)
*/
#define CLK USE_DLY 1 /* Task will use OSTimeDly()

instead of pend on sem. */

#endif -

#ifdef CLK _GLOBRALS

#define CLK_EXT

#else

#define CLK_EXT extern

#endif -

226 — Embedded Systems Building Blocks, Second Edition

Listing 6.2 (continued) CLK.H

/*
ek ke e ke ek L * ek ok L e e e I K e ok ek ok k dkdk A AR AR A A A ARk kA A A kk Ak
* DATA TYPES
*k Fkk ok o ok ok ko % ok ok e & vk T T ok ok ok o ok vk 7 o b b 9k ok 3 3k 3k ok ok ok o o ot b ok ok ok ok ok o b b ook ok b ok b sk ok s b b b o b s b A ok
*/
typedef INT32U TS; /* Definition of Time Stamp
*/

#if CLK DATE EN

typedef struct clk month { /* MONTH RELATED VARIABLES
*/
INT8U Monthbays; /* Number of days in each month
*/
char *MonthName; /* Name of the month
*/
INT8U Monthval; /* Value used to compute day of the week
*/
} CLK MONTH;
#endif
/*
* ko ok k ok ok Aok * * %k * ok &k kkkk Ak hhkkkhkhkkk
* GLOBAL VARTABLES
* %k * %k Ak k W ke ke ok e vk 7 T vk 7o o ek ke ok vk g Tk P o o ok ok ok v vk vk ke kkkkkkkkhkkkkhkhh
*/

CLK_EXT INTSU ClkHr;

CLK_EXT INT8U ClkMin;

CLK_EXT INT8U ClkSec; /* Counters for local TIME
*/

#if CLK_DATE_EN

CLK_EXT INTS8U ClkDay; /* Counters for local DATE
*/

CLK_EXT INTS8U ClkDOW; /* Day of week (0 is Sunday)
*/

CLK_EXT INTS8U ClkMonth;

CLK_EXT INT16U ClkYear;
#endif

#if CLK_TS_EN
CLK_EXT TS C1kTS; /* Current TIME-STAMP

*/
#endif

Chapter 6: Time-of-Day Clock — 227

Listing 6.2 (continued) CLK.H

/*
*hkkK * * A A KA A Ak kA E K A A A A A A A AR A A A A KRKE KA A AR A KKK KRR AKX A XTIk *kkkkhkkk
* FUNCTION PROTOTYPES
* % *k KX ** % %k k ok k ok ok kk ok *k Kk %k * * %
*/
void ClkInit(void);
void ClkFormatTime(INT8U n, char *s);
void ClkSetTime(INT8U hr, INT8U mjin, INT8U sec);
void ClkSignalClk(void);
#if CLK_DATE_EN
void ClkFormatDate (INT8U n, char *s);
void ClkSetDate(INT8U month, INT8U day, INT16U year);
void ClkSetDateTime (INT8U month, INT8U day, INT16U year, INTSU hr, INT8U min,
INT8U sec);
#endif
#if CLK_TS EN
TS ClkGetTS (void) ;
S ClkMakeTS (INTSU month, INT8U day, INT16U year, INTS8U hr, INT8U min, INT8U
sec);
void ClkFormatTS(INT8U n, TS ts, char *s);

228 — Embedded Systems Building Blocks, Second Edition

Chapter 7

Timer Manager

Timers are useful in situations where you start an operation, wait a certain amount of time, and then stop
the operation. Usually the process looks like this:

1. Start an operation (turn on or turn off an output device).
2. Start the timer.
3. When the timer expires, stop the operation (turn OFF or turn ON the output device).

You can also use timers to detect timeout conditions. For example, you turn on a motor and then start
a timer. Here, you are expecting the speed of the motor (i.e., RPM) to increase. If the speed of the motor
doesn’t exceed a threshold before the timer times out, then you might turn the motor off and notify an
operator. In these cases, you start an operation then monitor the process to see if conditions are met
before the timer expires:

1. Start an operation.

2. Start the timer.

3. Monitor for desired conditions. If conditions are met, stop the timer.
4. If timer times out, stop the operation and notify operator.

In this chapter, I will describe how I implemented a countdown timer module. The countdown timer
module provides your application with as many countdown timers as your application requires (up to
250). Each countdown timer bhas a resolution of 0.1 second and can be programmed to expire after 99
minutes, 59 seconds and 0.9 seconds. Each countdown timer can be individually started, stopped, set,
reset, and checked. Also a user-defined function can be executed when a countdown timer expires (one
for each timer).

7.00 Timer Manager Module

The source code for the timer manager module is in the \ SOFTWARE\BLOCKS\TMR\ SOURCE directory.
The source code consist of two files: TMR. C (Listing 7.1) and TMR. H (Listing 7.2). All timer manager

229

230 — Embedded Systems Building Blocks, Second Edition

functions and variables related to this module start with Tmr while all #define constants start with
T™MR_.

7.01 Timer Manager Moduler, Internals

Figure 7.1 shows the flow diagram of the timer manager module. Here, I assume the presence of a
real-time kernel. This module consists of a single task that executes every tenth of a second. The timer
manager task (TmrTask ()) is responsible for updating as many countdown timers as your application
requires (defined by TMR_MAX_TMR in TMR . H). You can have up to 250 timers.

Figure 7.1 Timer manager module flow diagram.

Application

Interface Timer Manager

TMR TmrTbl []

|
|
(U
bm
v
|
|
!
|

TMR_DLY_ TICKS
(1/10 second)

(3]
[4] —

TmrInit ()

TmrSetFnct ()
TmrSetT()

TmrSetMST () D B

TmrStart ()
TmrStop ()
TmrReset ()

TmrFormat ()

[n-1]

L p Tmrarg
TmrFnct
TmrInit

TmrCtr
TmrEn

Note: 'n' is TMR_MAX_TMR

The timer manager is designed around the TMR data structure (TMR . H) which is declared as follows:

typedef struct TMR
BOOLEAN ‘TmrEn;

IN'I'16U TmrCtr;
INT16U TrmrInit;
void {*TmrFnct) ‘(’maid *);

.. void “™BurFnctArg;
} T™MR; S

Chapter 7: Timer Manager — 231

.TmrEn is used to enable and disable the countdown process. Countdown occurs when . TmrEn is
set to TRUE by TmrStart (). Countdown is suspended when . TmrEn is set to FALSE by TmrStop ().

When the timer is enabled, TmrTask () decrements . TmrCtr towards 0. When . TmrCtr reaches 0,
countdown stops. .TmrCtr is loaded when either TmrSetT (), TmrSetMST (), or TmrReset () is
called.

The initial value of TmrCtr is stored in . TmrInit. .TmrInit is changed by either TmrSetT () or
TmrSetMST ().

.TmrFnct is a pointer to a user-defined function that TmrTask () executes whenever its corre-
sponding . TmrCtr reaches 0. The called function is passed . TmrFrictArg (a pointer) as an argument.
Both . TmrFnct and . TmrFnctArg are set by TmrCfgFnct () (described later). You must define your
timeout function as follows:

void UserFnct(void *arg);

Note that UserFnct () is passed . TmrFnctArg when it is called. This allows you to design a sin-
gle function that can be used by more than one timer. The user-defined function will be called by the
timer task (TmrTask ()) when the timer expires. The execution time of the timer task is thus increased
by the execution time of all the functions that will execute when their respective timers expire. You may
defer processing of the timeout to another task because the function that executes when the timer
expires can signal another task through a semaphore, a mailbox, or even a message queue, as shown:

void UserFnct(veid: *arg)
{
0OSSemPost ((OS_EVENT *)arg) ;

If you are using pC/OS-11, the argument passed to the user function (in this example) is a pointer to
the semaphore.

Some applications do not require the execution of a function upon timeout. In these situations, you
will not have to set the pointer because its initial value is NULL. In other words, the timer manager will
not execute any function when pointing to NULL.

‘When the timer manager task executes, it scans all entries in TmrTbl [] for enabled timers. For each
timer that has been enabled, TmrTask () decrements TrrTbl [i] . TmrCtr towards 0. If the timer
reaches 0, the user-defined function (if specified) is executed.

On a lightly-loaded system, the timer manager module should maintain accurate time. As I
explained in Chapter 2, specifically Figure 2.27 on page 96, the timer manager task could miss clock
ticks if all higher-priority tasks (and interrupts) require more processing time than one clock tick. In
other words, on a heavily loaded processor, TmxrTask () cannot maintain track of time accurately the
way it is currently implemented. This is the same problem as with the time-of-day clock described in
Chapter 6. Unlike the clock task, however, there is really only one correct way to fix this problem. You
really don’t want to increase the priority of the timer manager task because its processing time does not
depend only on the number of timers it has to manage. Instead, the execution time of the timer manager
task depends on the execution time of the functions that will be executed when each timer expires. To fix
this problem, you need to use a counting semaphore, as shown in Figure 7.2.

232 — Embedded Systems Building Blocks, Second Edition

Figure 7.2 Timer manager module flow diagram.

Application Timer Manager

Interface
TMR TmrTbl{]

|

I

| [
| W
I

|

I

21 e
[3]

(4]

TmrInit ()

TmrSetFnct ()
TmrSetT()

TmrSetMST () 4——l—>
TmrStart ()

TmrStop ()
TmrReset ()

Pend
Counting
Semaphore

Post

Clock Tick
ISR

TmrChk ()
TmrFormat ()

[n-1]

L .TmrArg
.TmrFnct
.TmrInit
.TmrCtr
;——b .TmrEn

The number of clock ticks will be “memorized” in the semaphore, and thus the timer manager task will
eventually catch up when the load of the processor is reduced. The clock tick ISR can signal the counting
semaphore every clock tick or when 0.1 second has elapsed. I generally prefer to encapsulate the details,
so I wrote a function called TmrSignalTmr (), which can be called by the clock tick ISR every time a
tick occurs. Note that you need to change OSTickISR (), which is found in the file OS_CPU_A.ASM
located in the \ SOFTWARE\uCOS-IT\??\compiler\SOURCE directory of the port you will use with
pC/OS-I (see www.uCOS-II .com for details on pC/OS-H ports). To use the counting semaphore you
will need to set TMR_USE,_SFEM to 1 and modify OSTickISR () to call TmrSignalTmr ().

If you need to manage a large number of timers then you might consider changing the implementa-
tion of the module provided in this chapter to a delta list. A delta list would maintain a linked list of only
the enabled timers. The list would be ordered so that the timer with the least amount of time to timeout
is first. TmrTask () would decrement the first entry in the list without scanning the list because the
remaining delays are relative to it. For example, if you had five enabled timers with values of 10, 14, 21,
32 then, the list would contain 10, 4, 7, 11, and 7. The total time before the first timer would expire is
10, the second is 10+4, the third is 10+4+7, the fourth is 10+4+7+11, and finally, the fifth timer would
be 10+4+7+11+7. The use of a delta list is really only justified when you need many timers. One of the
drawbacks of the delta list is that you need one (for a singly-linked list) or two pointers (for a dou-
bly-linked list). You can find a more complete discussion on delta lists in the excellent book by Douglas
Comer, Operating System Design, The XINU approach.

Chapter 7: Timer Manager — 233

7. 02 Timer Manager Module, Interface Functions

Your application software interfaces with the timer manager through interface functions as shown in
Figure 7.3.

Figure 7.3 Timer manager module interface functions.

TmrInit ()

TmrCfgFnct ()
TmrSetT ()

Timer
TmrSetMST ()

<4—»| Manager

TmrStart ()
TmrStop ()

TmrReset ()
TmrChk () -
TmrFormat ()

234 — Embedded Systems Building Blocks, Second Edition

TmrCfgFnct ()

void TmrCfgFnct (INT8U n, void (*pfnct) (void*), void *arg);

Each timer can execute a user-defined function when it expires. In order to use this feature, you must
specify the address of the function to execute when the timer expires. This is accomplished by calling
TmrCfgFnct ().

The execution time of the timer task is augmented by the execution time of all the functions that will
execute when their respective timers expire. Some applications do not require the execution of a func-
tion upon timeout. In these situations, there is no need to call TmrCfgFnct () because the initial value
of the pointer to a function for each timer is NULL. In other words, the timer manager will not execute
any function when pfnct is a NULL pointer.

Arguments
n is the timer number to set and must be a number between 0 and TMR_MAX_TMR — 1.

pfnct is a pointer to the function that you would like to execute when the timer expires. You must
define this function as follows:

void UserFnct (void *arg);

Note that UserFnct () is called with the argument you specify in TmrCfgFnct (), that is, arg.
This allows you to design a single function that can be used by more than one timer. The
user-defined function will be called by the timer task TmrTask ()} when the timer expires.

Return Value

None

Notes/Warnings

UserFnct () is called with interrupts enabled and you thus need to protect any shared objects.

e

&

Chapter 7: Timer Manager — 235

Example

void main (void)

{
TmrCfgFnct (0, TmrO0TimeoutFnct, (void *)0);
TmrSetMST (0, 1, 0, 0); /* Set timer #0 to expire in 1 minute */
TmrStart (0) ; /* Start timer #0 */
}

void TmrOTimeoutFnct (void *arg)
{

DispStr(0, 0, “Timer #0 expired!”);

was

236 — Embedded Systems Building Blocks, Second Edition

TmrChk ()

INT16U TmrChk (INTS8U n);

TmrChk () allows you to check the progress of the countdown timer. Basically, the function returns the
time remaining (in tenths of a second) until the timer expires. The timer expired if the returned value is
0.

Arguments

nis the timer number to start and must be a number between 0 and TMR_MAX_TMR - 1.

Return Value

The time remaining (in tenths of a second) of the desired timer.

Notes/Warnings

This function doesn’t tell you whether the timer is running or not.

Example S

void Task {(void)
{
INT16U time_remaining;

for (;:) [

time_remaining = TmrChk(0) ; /* Get time left for timer #0 */

I

r

|

Chapter 7: Timer Manager — 237

TmrFormat ()

void TmrFormat (INT8U n, char *s);

TmrFormat () is provided for display purposes. This function formats the time remaining of the speci-
fied timer into an ASCII string. Timers are always formatted as follows: MM:SS.T where MM is the
remaining minutes to timeout, SS is the remaining seconds, and T is the tenths of a second.

Arguments

n is the timer number to format into an ASCII string and must be a number between 0 and
TMR_MAX TMR - 1.

s is a pointer to the string that will receive the formatted timer. Your destination string must allocate at
least eight characters (including the NUL character).

Return Value

None

Notes/Warnings

None
Example

void Task {(void)
{
char s[10];

for (;;) [

TmrFormat (0, &s[0]1); /* Get time left for timer #0 as “MM:SS.T7 */

238 — Embedded Systems Building Blocks, Second Edition

TmrInit ()

void TmrInit (void);

TmrInit () is the initialization code for the timer manager module. You must call TmrInit () before
any other functions provided by this module. TmrInit () is responsible for the initialization of the
timer module variables and the creation of the timer manager task.

Arguments

None

Return Value

None

Notes/Warnings

The #define TMR_MAX_TMR (see section 7.03, “Timer Manager Module, Configuration” on page 244)
defines the number of timers managed by this module. All timers are disabled and in a non-configured
state following initialization.

Example

void main (void)

{

TmrInit();

Chapter 7: Timer Manager — 239

TmrReset ()

void TmrReset (INT8U n);

You can restart the countdown process to its initial value (established by either TmrSetT() or
TmrSetMST ()) by calling TmrReset (). This is a convenient function to use if you don’t need to
reprogram the timer with a new value every time you need to use the timer.

Arguments

n is the timer number to start and must be a number between 0 and TMR_MAX_TMR — 1.

Return Value

None

Notes/Warnings

None

Example

void Task (void)

{

for (;;) [

TrReset (0) ; "% /% Reload timer #0 */

T

240 — Embedded Systems Building Blocks, Second Edition

TmrSetMST()

void TmrSetMST(INT8U n, INTS8U min, INTS8U sec, INT8U tenths);

This function allows you to set a timer by specifying minutes, seconds, and tenths of a second.

Arguments

n is the timer number to set and must be a number between 0 and TMR_MAX_TMR - 1.
min is the desired number of minutes (0..99).

sec is the desired number of seconds (0..59).

tenths is the desired number of tenths of a second (0..9).

Return Value

None

Notes/Warnings

Note that changing the timer value does not enable the timer. This means that setting the timer value
does not initiate countdown. Countdown is initiated by calling TmrStart (). If the timer is enabled,
however, TmrSetMST () will reload the timer and countdown will start from the new value.

Example

void Task (void)

{
for (;;) [

TmrSetMST{(0, 0, 15, 0); /* Reset timer #0 to 15 seconds */

I

T

Chapter 7: Timer Manager — 241

TmrSetT ()

void TmrSetT (INTS8U n, INT16U tenths);

This function allows you to set a timer in tenths of a second.

Arguments
n is the timer number to set and must be a number between 0 and TMR_MAX_TMR - 1.

tenths is the desired timeout value of the timer and is specified in tenths of a second. For example, to
set a timer to 27.4 seconds, you would specify 274.

Return Value

None

Notes/Warnings

Note that changing the timer value does not enable the timer. This means that setting the timer value 7 -
does not initiate countdown. Countdown is initiated by calling TmrStart (). If the timer is enabled, B
however, TmrSetT () will reload the timer and countdown will start from the new value. —

Example

void Task (void)
{
for (;;) [

TmrSetrT (0, 150); /* Reset timer #0 to 15 seconds */

242 — Embedded Systems Building Blocks, Second Edition

TmrStart()

void TmrStart(INT8U n);

Countdown of a timer is initiated only when you call TmrStart (). You should set the countdown time
prior to calling TmrStart () with either TmrSetT () or TmrSetMST ().

Arguments

n is the timer number to start and must be a number between 0 and TMR_MAX_TMR - 1.

Return Value

None

Notes/Warnings

TmrStart () will resume countdown of a timer that has been suspended by TmrStop ().
Example
void Task (void)

{
for (;;) [

TmrSetT(0, 150); /* Reset timer #0 to 15 seconds */
TmrStart (0) ; /* Start timer #0 */

Chapter 7: Timer Manager — 243

TmrStop()

void TmrStop (INTS8U n);

Countdown of a timer can be suspended by calling TmrStop (). You can later resume countdown by
calling TmrStart ().

Arguments

n is the timer number to start and must be a number between 0 and TMR_ MAX TMR - 1.

Return Value

None

Notes/Warnings

TmrStop () doesn’t reset the timer value, it simply suspends it.

Example

void Task (void)
{
for (;;) {

TmrStop (0) ; /% Stop (i.e suspend) timer #0 */

P

244 — Embedded Systems Building Blocks, Second Edition

7.03 Timer Manager Module, Configuration

Configuration of the timer manager consists of defining the value of four #define constants (see file
TMR.H and also, CFG.H).

TMR_TASK_PRIO defines the priority of TmrTask () in the multitasking environment. The task pri-
ority of the timer manager module would typically be set relatively low.

TMR_DLY_TICKS defines the number of clock ticks needed to obtain 0.1 second. If you use
pC/OS-14, you can set this #define constant to OS_TICKS_PER_SEC / 10.

TMR_TASK_STK_SIZE defines the size of the stack (in bus width units) allocated to the timer man-
ager module task. The number of bytes allocated for the stack is thus given by: TMR_TASK_STK_SIZE
times sizeof (OS_STK).

WARNING
In the previous edition of this book, TMR_TASK_STK SIZE specified the size of the stack for
TmrTask () in number of bytes. pC/OS-II assumes the stack is specified in stack width elements.

TMR_MAX_TMR defines the number of timers managed by TrmrTask (). If you use this module, you
will need to have at least one timer. The timer manager can manage up to 250 timers. The limitation is
strictly dictated by the amount of memory available and by the addressing capability of the target micro-
Pprocessor. _

TMR_USE_SEM is used to indicate that the timer manager will be expecting a signal from the tick
ISR (through TmrSignalTmr ()). When TMR_USE_SEM is set to 0, TmrTask () will use the kernel’s
time delay service (OSTimeDlyHMSM() for uC/OS-II).

7.04 Bibliography

Comer, Douglas

Operating System Design, The XINU Approach
Englewood Cliffs, New Jersey

Prentice-Hall, Inc., 1984

e

I

B

Chapter 7: Timer Manager — 245

Listing 7.1 TMR.C

*
i**
* Embedded Systems Building Blocks
* Complete and Ready-to-Use Modules in C
*

* Timer Manager

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved

*

* Filename : TMR.C
* Programmer : Jean J. Labrosse

o3k e o e e ok e o ok ok ok ok ok Ok e ok ok Sk ok ok ke s e ok ook o ok ok ok ok ok ok ook ek e ook e Sk ook ok o e ok ok o ook ek ek ok ok ok ok ok ek Aok ok ok e Kbk ok ek ke

*/

/*
ook ok ek ke ok ok ok ok ek ok ok e ok ok o ek ok ok ok ok ok kb ok ok ok ok A o AR R ok ok ok ok sk ek Ak kb ok kXA K R Kk Ak
* INCLUDE FILES

e 3k ok 0k ok 3k ke ke ok ok ke ke 30 ok ok 3k e ke 3030k Sk ok ke ok ok ok ok ok ok ok 30 e ke ok ok 3k ok ok e e ok ok 3k ok e ok ok 3k ok ke 3ok ok Sk ok ok 3k ok e ok ok 3k ok o ok 303k 30 ok ke e ok ok o o e e ok ok ke e e ok kR ok e ek ok

*/ .

#define TMR_GLOBALS
#include "includes.h’

/%
3k e 3 ok ok ok ok ko kel ok ok kb 3ok ok 3k ok ok ok ok 3k ok ek ok ok Sk ok ok ok ok ok ok ke ok ok ok ok ok Sk ok ok ok ok ok ek ok ek ke ke ek A K
* LOCAL VARIABLES

e 3k e 30 ok o ok 3 e ok ok ok T e ke ok ek ok ok ok ok ok ok e e ok ok ok sk ok 3 ok ok e o ok ok e ke ok e e Aok ok e K Kk e ok K e ek ok Sk kR ok e kb Sk e ek ek kb ok e ek ek ok

*/

static OS_EVENT *TmrSemTenths;

static OS_STK TrarTaskStk [TMR_TASK_STK_SIZE];

static INT8U TmrTickCtr;

/*

gk dkk ke h kR R KRk Ik Ik kAT R IR Ak Ekh kA ARk IR Rk h kA AR AR K kIR K TR Rk I I R I khdkkkddaxkkdkdhkddkddkhkddkhkdkdkiddihki
* LOCAL FUNCTION PROTOTYPES

L L L e L S e P e T T

*/

static void TmrTask (void *data);

/*SPAGE* /

246 — Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued) TMR.C

J*
D R R R R d E R R R R R L S R R R S R R R T T e
* CONFIGURE TIMER TIMEOUT FUNCTION

*

* Description : Set the user defined function when the timer expires.

* Arguments : n is the timer number 0..TMR MAX TMR-1

* fnct is a pointer to a function that will be executed when the timer expires

* arg is a pointer to an argument that is passed to 'fnct’

* Returns : None.

KAk kAEIAEA kA kb kA kA kAT h* % K ek Kok kK k Rk xhkhkhdkk * * % * %k dek dk ok kkh kK
*/

void TmrCfgFnct (INT8U n, void (*fnct) (void *), void *arg)

{
TMR *ptmr;
if (n < ™R MAX T™R) {
ptmr = &TmrThl [n];
OS_ENTER_CRITICAL({) ;
ptmr->TmrFnct = fnect; /* Store pointer to user function into timer */
ptmr->TmrFnctArg = arg; /* Store user's function arguments pointer */
OS_EXIT_CRITICAL();
}
}
/*$SPAGE*/
/*
Akhkkkhkdkhkhkhkkhkkhkhkkxitih k& dkkok AKEAKEAKE KKK A AA AR AKAKT A KA A A A kA Ak kAR X k% *hkkKkk & % vk Kk

*

CHECK TIMER

*

* Description : This function checks to see if a timer has expired

* Arguments :n is the timer to check

* Returns : 0 if the timer has expired

* TrrCtr the remaining time before the timer expires in 1/10 second

LR e e e ST a2 a T

*/

ok *hhkkkrEIk

INT16U TmrChk (INT8U n}
{
INT16U val;

val = 0;

if (n < ™R _MAX TMR) {
OS_ENTER_CRITICAL() ;
val = TmrThl(n] .TrrCtr;
OS_EXIT_CRITICAL(};

}

return (val);

/*SPAGE*/

Chapter 7: Timer Manager — 247

Listing 7.1 (continued) TMR.C

/%
B L LR R R L L R R R T L E L ey R 2 L R R LR L L2 T LT T T T T e S e
* FORMAT TIMER INTO STRING

* Description : Formats a timer into an ASCIT string.

* Arguments :n is the desired timer

* s is a pointer to the destination string. The destination string must be large
* enough to hold the formatted timer value which will have the following format:
* "MM:SS.T"

e T L T e T e e T

*/

void TmrFormat (INT8U n, char *s)

{

INT8U min;

INT8U sec;

INT8U tenths;

INT16U wval;

if (n < T™MR_MAX TMR) {
OS_ENTER_CRITICAL() ;
val = TmrTbl [n] . TmrCtr; /* Get local copy of timer for conversion */
OS_EXIT_CRITICAL();
min = (INT8U) (val / 600);
sec = (INT8U) ({val - min * 600) / 10);
tenths = (INT8U) (val % 10);
s[0] =min / 10 + '0'; /* Convert TIMER to ASCII */
s[1] =min % 10 + '0*;
s(2] = ':';
s{3] =sec / 10 + '0';
s{4) =sec %10 + '0*;
s[5] ="'.';
s[6] = tenths + '0';
s[7] = NUL;

}

}

/*SPAGE*/

248 — Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued) TMR.C

/*
BE 2 T g s R R 2 R Rt R R AR 2 T T T T T R e
* TIMER MANAGER INITTALIZATTON

*

* Description : This function initializes the timer manager module.
* Arguments : None

* Returns : None.

ek K K ok kK K kK ok T3k ok ok ke ke ke ok ok sk ke ok ke ok e ok ok ke ek ke ke ek ek ke ke ok kK kK kK ok ok Kk ok K ok ke ok ke ok ok

*/

void TmrInit (void)

{
INT8U erx;
INTS8U 1i;
TMR *ptir;
ptr = &TeTbl [0];
for (1 = 0; i <« TMR MAX_TMR; i++) { /* Clear and disable all timers */
ptrr->TnrEn = FALSE;
ptr->TmrCtr = 0;
ptmr->TrrInit = 0;
ptr->TrrFnct = NULL;
ptmr++;
}
TmeTickCtr = 0;
TmrSemlenths = OSSemCreate(0); /* Create counting semaphore to signal 1/10 second */
OSTaskCreate(TrTask, (void *)0, &TmrTaskStk([TMR TASK STK SIZE], TMR_TASK_PRIO);
}

/*SPAGE*/

Chapter 7: Timer Manager — 249

Listing 7.1 (continued) TMR.C

/*
L e e Lt AR LRt R L L S R R S T T T LT T S T T
* RESET TIMER

*

* Description : This function reloads a timer with its initial value

* Arquments : n is the timer to reset

* Returns : None.

e e e o e de 90 9 & I e ol ok % Fe o K ek k9 ke Kk e ke e e e e e ek e ke Kok o ek e ke * * * * * * * * * e v e e Fede ek ok Wk ke okeokok ok ok
*/

void TmrReset (INT8U n)

{
TMR *ptmr;
if (n < T™MR MBX TMR) {
jluicia = &TmrThl (n] ;
OS_ENTER_CRITICAL();
ptnr->TrCtr = ptnr->TmrInit; /* Reload the counter */
OS_EXIT_CRITICAL();
}
}
/*$PAGE*/
/*
o 0 7 & Fe ok ok e e 3 F K A0 Ik e e 9 7 vk e ok ek e 90 5 e e e ek e e ok 9 9 v 7 T e 9 ke ok e e v T ok o e ok o e v 3 e o e e ok e e ol e o e o ok e e ok e vk o e o ok e vle e ke Ik e ok ek e de ke e de de ek
* SET TIMER (SPECIFYING MINUTES, SECOMNDS and TENTHS)
*
* Description : Set the timer with the specified number of minutes, seconds and 1/10 seconds. The
* function converts the minutes, seconds and tenths into tenths.
* Arguments :n is the timer number 0..TMR MAX TMR-1
* nin is the number of minutes
* sec is the nunber of seconds
* tenths is the number of tenths of a second
* Returns : None.
AEKKHEKEE IR KKK I AN KA IRKEKKAN A KA h ARk kh ko kk Ik khkkhkhhhkk * * * * * * * * KAk AkK AT HKK I AN Ik dhk
*/

void TmrSetMST (INT8U n, INT8U min, INT8U sec, INT8U tenths)

{
MR *ptor;
INTL6U val;
if (n < MR MAX TMR) {
ptmr = &TmrTbln};
val = (INT16U)min * 600 + (INT16U)sec * 10 + (INT16U)tenths;
CS_ENTER_CRITICAL(};
ptr—>TmrInit = val;
pumr->TmrCtr = val;
OS_EXIT_CRITICAL() ;
}
}

/*SPAGE*/

250 — Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued) TMR.C

J*
e ek e e ek e kKK ok Kk ek ek ek ke ok ok ok ok ko ok kR ko ok ok ok ok e ek ok ok ok ok ok ok ke ok ok ke ok ok
* SET TIMER (SPECIFYING TENTHS OF SECOND)

*

* Description : Set the timer with the specified number of 1/10 seconds.

* Arguments :n is the timer number 0..TMR MAX TMR-1
* tenths is the number of 1/10 second to load into the timer
* Returns : None.

e ¢ e ke ke vk ek ok 9 e e o e e o e e e e ke 9k ke ke ok koo ok 9 ok ok 9 ke ok ke ok ke ke o 3 e e O e ok ke ok o e ok e o o ke ke ek ke ook kR ke ok ok ke ko

*/

void TmrSetT (INT8U n, INT16U tenths)

{
MR *ptmr;
if (n < MR MAX TMR) {
ptmr = &TmxrTbl [n] ;
OS_ENTER CRITICAL();
ptmr->TmrInit = tenths;
par->TneCtr = tenths;
OS_EXIT CRITICAL();
}
}
/*$PAGE*/
/*

T Ko o 33k 2k ok T ok k3 33k 2k 3 3k 5 ok ok 5k 3 3k 3k ok ok sk 3 3k ok sk 3 3 3 s ke sk 3 Sk ke ok o ke ok sk sk 9 ke ok 3 9 9 o ke sk ke 9 sk ok ok 33k o ok ke ok ok o o ok o ok Rk Tk ok ok e ke ke ke

* SIGNAL TIMER MANAGER MODULE THAT A 'CLOCK TICK' HAS OCCURRED

*

* Description : This function is called by the 'clock tick' ISR on every tick. This function is thus
* responsible for counting the number of clock ticks per 1/10 second. Wwhen 1/10 second
* elapses, this function will signal the timer manager task.

* Arguments : None.

* Returns : None.

* Notes : TMR_DLY_TICKS must be set to produce 1/10 second delays.

* This can be set to OS_TICKS_PER_SEC / 10 if you use uC/0OS-II.

30 3k 9 e e e 90 3k e 9090 ke ok ke o vk 3k 30 ke 9k s ok e sk ke 9 3k ke ok 9 ok 9 3ok e ok ke 9 3ok ok ok 903k ke 9 3k ke vk ko ok ok 9 ok o ko e ok ke ok ke ok ek ke ke

*/

void TmrSignalTmr (void}

{
TrrTickCEr++;
if (TmrTickCtr »>= TMR DLY TICKS) {
TrTickCtr = 0;
OSSemPost (TmrSenTenths) ;
}
}

/*$PAGE*/

Listing 7.1 (continued)

Chapter 7: Timer Manager — 251

T™™R.C

B L e L L T L I L P L T e

START TIMER

R e T L e S T s BT T S 2 L]

/*

*

*

* Description : This function start a timer

* Arguments : n "is the timer to start
* Returns : None.

Khhkkkhkrkhkhkhkhkhkhkhkkk *k * & * & bk k]

*/

void TmrStart (INT8U n)
{
if (n < TMR MAX TMR) {
OS_ENTER_CRITICAL();
TrThl [n) . TmrEn = TRUE;
OS_EXIT CRITICAL();

B S E L T S e L e T e I S T s L R S T S T S R S e a e e]

STOP TIMER

T e s S T S T e S 2 22

}
}
/*SPAGE*/
/*
*
*
* Description : This function stops a timer
* Arguments : n is the timer to stop
* Returns : None.
khkkkdkkkkk Fdkkkdkdkkhkhkk *
*/

void TmrStop (INTS8U n)

{
if (n < ™MR_MAX_TMR) {
OS_ENTER_CRITICAL();
TmrTbl (n] . TmrEn = FALSE;
OS_EXIT CRITICAL(};
}
}

/*$SPAGE*/

i

252 — Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued) TMR.C

/*
B 2 T B g g LR L e L R R d L Lt &
* TIMER MANAGER TASK

* Description : This task is created by TmrInit() and is responsible for updating the timers.

* TmrTask () executes every 1/10 of a second.

* Arguments : None.

* Returns : None.

* Note(s) : 1) The function to execute when a timer times out is executed cutside the critical
* section.

e e ke e ok ok ok o ok ko ok ok ke e vk ok ok vk ok ok ke ok o ok ok vk Tk ok e ok ok ok ok sk ok ok ok ke ok ok ok ok ok ook ok ke vk ok ek e ok ek sk ek ok

*/

static wvoid TmrTask (void *data)
{
™R *ptmr;

INT8U err;

INT8U i;

void (*pfnct) (void *); /* Function to execute when timer times out */

void ‘*parg; /* Arquments to pass to above function */)
data = data; /* Avoid campiler warning (uC/0S-II req.) */ -—
pfnct = (void (*)(void *})0; /* Start off with no function to execute */

parg = (void *)0;

for (;:) {

#if TMR USE_SEM

OSSeamPend {TmrSemTenths, 0, &err); /* Wait for 1/10 second signal from TICK ISR */
#else

OSTimeDlyHMSM(0, 0, 0, 100); /* Delay for 1/10 second */
#endif

ptmr = &TmrThl [0] ; /* Point at beginning of timer table */

for (i = 0; i « ™MR MAX TMR; i++) {
OS_ENTER_CRITICAL();

if (ptmr->TmrEn == TRUE} { /* Decrement timer only if it is enabled */
if (ptr->TmeCtr > 0) {
ptmr->TmrCtr--;
if (ptr->TmrCtr == 0} { /* See if timer expired */
ptrr->TrrEn = FALSE; /* Yes, stop timer */ -
pinct = ptmr->TmrFnct; /* Get pointer to function to execute ... */
parg = ptmr->TmrFnctArg; /* ... and its argument */
}
}
}
OS_EXTIT CRITICAL();
if {pfnct != (void (*)(void *))0} { /* See if we need to execute function for ... */
(*pfnct) (parg) ; /* ... timed out timer. */
pfnct = (void (*) (void *))0;
}
ptmr++;

Chapter 7: Timer Manager — 253

Listing7.2 TMR.H

*
i**
* Embedded Systems Building Blocks
* Camplete and Ready-to-Use Modules in C
* .

* Timey Manager

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved

*

* Filename : T™R.H
* Programmer : Jean J. Labrosse

B e T T L L R L e e R R e R E s e e T e s 2

*/

/*
Kk Kok kKA KK A KK Ak AR AK KRR KK KK A KKK AK KKK AR R KA KKK K KA KR KK KK AR KK KA KA KKK KKK AR KK AK AR KA K AR KKKk k KKk khk %
* CONSTANTS

B E L L Rt R E R R it R R T T g R R R S T R R e T L T e T e T 2
*/

#ifndef CFG_H

#define TMR DLY_TICKS (OS_TICKS_PER SEC / 10)

#define TMR_TASK PRIO 45
#define TMR TASK STK SIZE 512

#define TMR MAX_TMR 20
#define TMR USE SEM 0
#endif

#ifdef TMR GLOBALS
#define TMR_EXT

#else

#define ™R_EXT extern
#endif

/*
L L L e L e R e e e S e e e T s TR T T S R T T

* DATA TYPES

B T g L T L e T L

*/

typedef struct tmr { /* TIMER DATA STRUCTURE */
BOOLEAN TmrEn; /* Flag indicating whether timer is enabled */
INT16U T Cty; /* Current value of timer (counting down) */
INT16U TmrInit; /* Initial value of timer (i.e. when timer is set) */
void {(*TmrFrict) (void *); /* Function to execute when timer times out */
void *TmrFnctArg; /* Arguments supplied to user defined function */

} TMR;

254 — Embedded Systems Building Blocks, Second Edition

Listing 7.2 (continued) TMR.H

/*
A kk ok ok ko ok * *kkkk *hkkkk hkkkkkhhhkkhkhhkkhkhkkhkhkkhkhkhkdhkhkhkhkhkhkkhhkhdhkhkhkkkhkhkkhhkhhrrhkhkhkhhkx
* GLOBAL VARTABLES

ok ok ok ok %k k ok * ok kdok *kk * ok ok ok Jodedeok ok okk ok ok ke ok ke A F ok &k ok ok ok ke ok ok ok ek ko ok ke
*/ -
TMR_EXT TMR TrThl [TMR_MAX TMR] ; /* Table of timers managed by this module */
/‘k
Thkkkkhkhkkkhkhkkhhhkhkkkhkhkhkhhkhhkkhkhkhhkhhkhkhkhhhkhkhkhhkkhokkhrkkhkk * ko *kok ok ok * k% * %k
* FUNCTION PROTOTYPES
A & & ko ok ok ok ok ok ok A e ok ek ke ke Ao ok ok ok ok ok ok ok e ok ok ke ok ok ok ok &k ko ok ok % ok ok ok ok ok %%k ok ke ok ok * & kk ok ok *
*/

void TrrCEgFnct (INT8U n, void (*fnct) (void *), void *arg);
INT16U TmrChk (INT8U n) ;

void TmrFormat (INT8U r, char *s);

void TmrInit(void) ;

void TmrReset (INT8U n) ;

void TmrSetMST (INT8U i, INT8U min, INT8U sec, INT8U tenths);
void TrrSetT(INT8U n, INT16U tenths);

void TnrSignal T (void) ;

void TmrStart (INT8U n) ;
void TmrStop (INT8U n) ;

Discrete 1/Os

Discrete inputs and outputs (I/Os) are found in most control and/or monitoring systems. The word dis-
crete refers to the fact that the value taken by the input can take only one of two states. For example:

lor0

TRUE or FALSE

ON or OFF

ENABLED or DISABLED
PRESENT or ABSENT
and so on.

Figure 8.1 Discrete inputs.

Chapter 8

Pressure switch
Temperature switch
Limit switch

Relay contact

Proximity detector

As shown in Figure 8.1, discrete inputs are generally used to monitor the state of manual switches,’

SRERERRE.

Control/
Monitoring
System

pressure switches (pressure exceeded or not), temperature switches (temperature exceeded or not), limit
switches (device has reach its limit or pot), relay contact closures (open or closed), proximity detectors

255

256 — Embedded Systems Building Blocks, Second Edition

(there or not there), etc. Discrete inputs are generally used to determine the state of an input. In some
applications, however, you need to know whether a discrete input has changed state or not and, possibly,
how many times it did so.

Discrete outputs are used to control lamps, relays, fans, alarms, heaters, valves, etc. (See Figure 8.2.)
A discrete output is generally either in one state or the other. A blinking light versus a light that is
always ON, however, does a better job of attracting the attention of a user to an error condition.

Figure 8.2 Discrete outputs.

Lamp
Alarm
Horn
Control/
Monitoring
System

Relay
Motor
Fan

Valve

YYYYYYYY

In this chapter, I will provide you with a module that monitors discrete inputs and controls discrete
outputs. The module allows you to have as many discrete inputs and outputs as you need (up to 250
each). For each discrete input, you will be able to:

* Determine whether the input is 1 or 0.
* Determine whether a transition from 1 to 0 or from 0 to 1 occurred on the input.
¢ Determine how many transitions from 1 to 0 or from 0 to 1 occurred on the input.
* Simulate a toggle switch with a momentary closure switch.
* Bypass the hardware for debug purposes.
For each discrete output, you will be able to:
¢ Turn the output ON or OFE.
* Blink the output at a user-definable rate (one for each output).
* Bypass your application code to control the output during debugging.

8.00 Discrete Inputs

Reading discrete inputs is a fairly trivial task. You need only provide your microprocessor with as many
parallel input lines as you have discrete inputs to read. The microprocessor simply needs to read the
input ports, mask off unwanted inputs, and make a decision based on the state of the input.

I generally prefer to put a layer of software between my application code and the hardware so I can
change the hardware without affecting the application software. Putting a layer of software also allows
you to test your application before you get your hands on the hardware. I like to give a logical address

Chapter 8: Discrete /Os — 257

to each discrete input, typically from 0 to n. You can thus write a simple function that returns the state of
any logical discrete input to your application as shown in the following pseudocode:

BOOLEAN DIGet (INT8U n)
{
Read port where discrete input #n is located;
Mask off unwanted bits; .
Return the state of the discrete input (either TRUE or FALSE);

The mask is an 8-bit value that selects the desired bit to read. For example, to read the state of bit 4

(bits are numbered 0 to 7 from right to left), the mask would be 0x10. With such a function,your code

will be a little bit slower and your code size will increase but the benefits are enormous. Now you can

change the hardware as many times as you need and your application code will never know the differ-

ence. By encapsulating access to the hardware we can also handle cases where some of the inputs are

inverted by the hardware and still return the proper state to the application code. In other words, if an

input is considered a logical 0 when it is HIGH, then DIGet () can invert the value of the input read and

report a 0 to the application code. -
If you have spare address space and a “say” about hardware design, you should consider using one .

of my favorite chips for discrete inputs: the 74251 8-input data selector/multiplexer, shown in Figure

8.3. Note that you can have as many discrete inputs as needed by simply adding 74251s.

Figure 8.3 Discrete inputs using 74251.

—» 74251
—>
Discrete
—>
Inputs
.' To -
_ Y [Microprocessor’s
Bﬂ Strobe DO
CS
A2 C
Al———— B -
A0—A

Basically, each discrete input has its own address in the microprocessor address space. Reading a
discrete input becomes trivial:

BOOLEAN DIGet (INT8U n)
{) .
return (Read value from address of port 'n' and mask with 0x01);

258 — Embedded Systems Building Blocks, Second Edition

Even with DIGet ()}, it is still up to your application to determine whether a discrete input has
changed state. To determine if an input has changed state, you will need to repeatedly call DIGet ()
(i-e., poll the input) and compare the previous value with the current one. The input has changed state
when both values are different. If you need to know whether the input changed from 0 to 1, you will fur-
ther need to add code to ensure that the previous state was 0.

What if you had a momentary closure switch connected to a discrete input and needed to simulate a
toggle switch? (That is, you press the switch once to turn a device ON and you press the switch again to
turn the device OFF.) To accomplish this, you need to change the state of a variable whenever a transi-
tion from O to 1 is detected.

The discrete I/O module presented in this chapter allows you to configure any discrete input to han-
dle all of the situations described earlier. Each discrete input is considered a logical channel. The dis-
crete I/O module allows you to have as many logical channels as you need (up to 250). Figure 8.4 shows
a flow diagram of a discrete input channel. Note that I used electrical symbols to represent the functions
performed by each discrete input channel. Of course, all functions are handled in software.

Figure 8.4 Discrete input channel.
0
1 Mode
/~ “Select
/ Switch Hardware
/ Bypass

\<® '
M —_ 1 To
From __ 14 7 o | ofo Your

| | Application
+F P ,
' Bypass

I
f l
')
| -
Switch
HE
L= /
1¥T
These functions can be disabled
o f T at compile time.

“T” means toggle mode.

Chapter 8: Discrete I/0s — 259

As Figure 8.4 shows, each discrete input channel has the capability to be configured (at run-time) to
any of nine modes through the Mode Select Switch:

1. Always return a 0.

Always return a 1.

Return the state of the hardware input.

Return the complement of the hardware input.

Detect negative-going transitions and return the number of transitions detected.

Detect positive-going transitions and return the number of transitions detected.

Detect both positive- and negative-going transitions and return the number of transitions detected.
Toggle between 0 and 1 when a negative transition is detected.

© 0 N R W

Toggle between O and 1 when a positive transition is detected.

To reduce the code size of your application, the edge detection features can be disabled at compile
time, as shown in Figure 8.4.

To provide the functionality described earlier, all discrete inputs are read and processed on a contin-
uous basis. In other words, all inputs are polled. Because of this, the maximum rate at which discrete
inputs can change state is based on how often inputs are polled. Polling is handled by a task (described
later) which executes at a regular interval (you decide at compile time how often the task will execute).
Discrete inputs must not change state any faster than half the task execution rate of the discrete VO
module. That is, the task must execute twice as fast as the expected rate of change of discrete inputs.

Your application knows about discrete input channels through interface functions. The interface
functions allow you to set the configuration mode of each channel through the Mode Select Switch, set
the state of the Bypass Swifch and, if the bypass switch is open, bypass the hardware. Bypassing of the
hardware is accomplished by having an interface function deposit a value into the discrete channel.
Where your application is concerned, it doesn’t know that the value received didn’t come from the
actual hardware. w

8.01 Discrete Outputs

Updating discrete outputs is a straightforward operation but a little trickier than updating discrete
inputs. All you need is to provide your microprocessor with enough latched parallel output lines as you
have discrete outputs to control. As with discrete inputs, I generally prefer to put a layer of software
between my application code and the hardware. This prevents the application code from knowing what
kind of hardware is involved and how it is accessed. I can thus port my application code to other envi-
ronments by simply changing the hardware interface functions. I give a logical address to each discrete
output, typically from 0 to n. For discrete outputs connected to an 8-bit latched parallel output port, you
have two scenarios: either you can read back the contents of the output port (Intel 8255A or Motorola
6821) or else the port is write-only (74273, 74373, etc.). The pseudocode for a port that can be read
back would look like this:

EUNS

260 — Embedded Systems Building Blocks, Second Edition

void DOSet (INT8U n, BOOLEAN val)
{
Disable interrupts;
Read the output port;
if (val == FALSE) {
AND the port data with complement of 'mask';
} else {
OR the port data with mask;
}
Write new data to port;
Enable Interrupts;

The mask is an 8-bit value that selects the desired bit to set or clear. For example, to set or clear bit 6
(bits are numbered 0 to 7 from right to left), the mask would be 0x40. Note that you also need to disable
interrupts because updating the discrete output is considered a critical section. Forgetting to disable
interrupts is a common mistake. The pseudocode for a port that cannot be read back follows this para-
graph. In this case, an image of the output port’s content is maintained in memory (i.e., RAM).

void DOSet (INT8U n, BOOLEAN val)
) B
Disable interrupts;
if {(val == FALSE) {
AND the memory image with the complement of the . 'mask';
} else *{
OR the memory image with the mask;
}
Write memory image to port;
Enable Interrupts;

If you have spare address space and a “say” about hardware design, you should consider using one
of my favorite chips for discrete outputs: the 74259 8-bit addressable latch, as shown in Figure 8.5.
Note that you can have as many discrete outputs as needed by simply adding 74259s.

Figure 8.5 Discrete outputs using 74259.

Chapter 8: Discrete I/Os — 261

From
Microprocessor’ s—
DO

RESET ———
Wr :D
CS
A2—

Al——
A0——

74259

Data In

Reset

Enable

C
B
A

Yy

Discrete
Outputs

Basically, each discrete output has its own address in the microprocessor address space. Updating a

discrete output becomes trivial:

void DOSet (INT8U n, BOOLEAN val)
{
Output value to address of port 'n'

7

What if you needed to blink one or more discrete outputs? Blinking outputs are quite useful when
connected to lights because they can be used to signal alarm conditions to users. To blink an output, you
could call DOSet () to change the state of an output at a regular interval from your application code.

This obviously complicates your application.

The discrete I/O module presented in this chapter allows you to control discrete outputs and also

blink any (or all) of the discrete outputs,

Each discrete output is considered a logical channel. The discrete I/O module allows you to have as
many logical channels as you need (up to 250). Figure 8.6 shows a flow diagram of a discrete output
channel. Note that I used electrical symbols to represent the functions performed by each discrete out-

put channel. Of course, all functions are handled in software.

262 — Embedded Systems Building Blocks, Second Edition

Figure 8.6 Discrete output channel.

Application 0 —oO
Bypass 1—0
From To
Your ——O/l —0 | < Hardware
Application | | |
By[')ass | !
Switch I |
______________ Mode Invert
[Asynchronous I Select Select
: Ad { Switch Switch
| —B — |
| | Synchronous |
(} A r
[Blink J |
| Enable - =C - .
These functions can be
I SCI.CCt BLINKING I disabled at compile time
| __ Swith _ '

As shown in Figure 8.6, each discrete output channel has the capability to be configured (at run-

time) to any of five modes (through the Mode Select Switch):

1.

SATIE I B

Always output a 0.

Always output a 1.

Directly output what your application desires to put out.

Blink the output asynchronously (described below).

Blink the output synchronously (described below).

Your application software can also complement (or invert) the output through the Invert Select

Switch.

If either of the two blinking modes is selected, your application can determine whether blinking will

be enabled through the Blink Enable Select Switch. To reduce the code size of your application, the
blinking feature can be disabled at compile time, as shown in Figure 8.6.

Your application knows about discrete output channels through interface functions. The interface

functions allow you to:

Set the configuration mode of each channel through the Mode Select Switch.

Set the Blink Enable Select Switch, which determines how to enable blinking.
Determine whether the output will be inverted by setting the Inverz Select Switch.
Set the blinking rate by specifying the values for A, B, and C (see Figure 8.6).

Set the state of the Bypass Switch and, if the bypass switch is open, bypass your application code.
Bypassing of your application is accomplished by having an interface function deposit a value into
the discrete channel. Where your application is concerned, it still thinks it is controlling the discrete
output channel.

When you choose to blink a discrete output, you need to specify the type of blinking: either asyn-

chronous or synchronous. In asynchronous mode, you need to specify the duty cycle through two

Chapter 8: Discrete I/Os — 263

variables: A (the ON time) and B (the total time). Because each discrete output can have different A
and B values, blinking occurs asynchronously. In synchronous mode, you specify the ON time (vari-
able A) with respect to a common (to all synchronous discrete outputs) total time (variable C). The
ON time and total time are based on how often the discrete I/O module executes. If the discrete I/O
modules executes 10 times per second then, an ON time of one second requires A to be set to 10.

8.02 Discrete 1/0 Module

The source code for the discrete I/O module is found in the \ SOFTWARE\ BLOCKS\ DIO\ SOURCE direc-
tory. The source code is found in the files DIO.C (Listing 8.1) and DIO. H (Listing 8.2). As a convention,
all functions and variables related to the discrete I/O module start with either DIO (functions or vari-
ables common to both discrete inputs and outputs), DI (discrete input functions or variables), or DO (dis-
crete output functions or variables). Similarly, #defines constants will either start with DIQ_, DI_, or
DO

8.03 Discrete 1/0 Module, Internals

Figure 8.7 shows a flow diagram of the discrete I/O module. (You can also refer to Listings 8.1 and 8.2 for
the following description.) The discrete I/O module consists of a single task (DIOTask ()) that executes at a
regular interval (DIO_TASK DLY_TTCKS). DIOTask () can manage as many discrete inputs and outputs as
your application requires (up to 250 each). The discrete I/O manager is initialized by calling DIOInit ().
Every DIO_TASK_DLY_TICKS, DIOTask () calls DTRA (), DIUpdate (), DOUpdate (), and DOWr ().

264 — Embedded Systems Building Blocks, Second Edition

Figure 8.7 DIOmodule flow diagram.

DITPIL] |
APPLICATION DIO MODULE r HARDWARE
INTERFACE | I
DICfgMode() | Discrete
DISetBypassEn() I DIUpdate() DIRA() InPUt
DISetBypass() <—|’ DIO_TASK_DLY_TICKS I Hardware
DIGet()
DICIr()
DICfgEdgeDetectFnct ()l L

e
DIOINit() - 1. DIOINnitI00) |
DOTHT[]

DOCFgMode() | |
DOSetBypassEn()

DOSetBypass() | I - .
D0Set() -~ | Discrete
DOGet() I Output
DOCFgBIink() I DOUpdate () powr() || Hardware
DOSetSyncCtrMax() |

I I |

DITbl[] is a table that contains configuration and run-time information for each discrete input
channel. An entry in DITb1] is a structure defined in DIO. H and is called DIO_DI. Discrete inputs are
read and mapped to DITbl[i] .DIIn by the hardware interface function DIRA() . DIRA() knows
about your hardware and thus can be easily changed to adapt to your environment.

Figure 8.8 shows a flow diagram of a discrete input channel. Note that I used electrical symbols to
represent functions performed in software for each discrete input channel. .DIIn, .DIModeSel,
.DIBypassEn, and .DIVal are structure members of DIO_DI (see DIC.H). DIUpdate () is responsi-
ble for updating all the discrete input channels. Discrete input channels that are configured for edge
detection are processed by DIIsTrig (). DIIsTrig() keeps track of the previous state (. DIPrev) of
the discrete input and is used to determine if an input has changed state.

Chapter 8: Discrete I/Os — 265

Figure 8.8 Discrete input channel.

Set by DICfgMode ()

0
1 To
\ 7 your

/ application
From / DISetBypass () through
DIRA() .L__1 >o0—— \/xo DIGet ()
.DIIn M — = 1 .DIVal
- o | ofo
|]]
|)
|
.DIBypassEn
iy
T Set by DISetBypassEn ()
gk
Edge detection can be disabled at compile time.
For each DI channel, a user definable function
— _f T can also be executed when an edge is detected.

‘T’ means toggle mode

DOTb1[] is a table that contains configuration and run-time information for each discrete output
channel. An entry in DOTb1 [] is a structure defined in DIO.H and is called DIO_DO. Discrete outputs
are mapped from DOTbl[i].DOOut to your hardware through the interface function DOWr ().
DOWr () knows about your hardware and thus can be easily changed to adapt to your environment.

Figure 8.9 shows a flow diagram of a discrete output channel. Note that I used electrical symbols to
represent functions performed in software for each discrete output channel. .DOCtrl, .DOBypassEn,
.DOBypass, .DOBlinkEnSel, .DOModeSel, .DOTInv, and . DOOut are structure members of DIO_DO
(see DIO.H). DOUpdate () is responsible for updating all the discrete output channels.

266 — Embedded Systems Building Blocks, Second Edition

Figure 8.9 Discrete output channel.

From DOSet () 0—O To DOWr ()

Setby DOSetBypass() | _o

.Doctrl L .DOBypass
.DOBypassEn O
Set by DOSetBypassEn ()

r]
| Asynchronous |

Aq
: I l Set by DOCfgMode ()
| 1 —B —] : .

| Ais .COA

| | Synchronous | Bis . DOB

AL is .
{ | I Cis .DOSyncCtrMax
|
l
L

—C \ .
DOBIInkEnsel BMNKING | These functions can be
) | disabled at compile time.
Set by DOCfgBlink ()

As previously mentioned, there are two blinking modes: synchronous and asynchronous.

Synchronous blinking mode is shown in Figure 8.10. When a discrete output channel is in this mode,
its output is HIGH (or LOW depending on the state of .DOInv) when .DOA is less than DOSyncCtr.
DOSyncCtr counts from 0 to DOSyncCtrMax (set by DOSetSyncCtrMax ()). DOSyncCtr is cleared
when it reaches DOSyncCtrMax. This mode is synchronous because all discrete output channels in this
mode are referenced to DOSyncCtr.

Figure 8.10 Synchronous blinking mode.

DOSyncCtrMax—
DOSyncCtr
& R
DA,/] L _
A i i |
! I T
| | | |
HIGH A
LOW

«——Cc—»

Asynchronous blinking mode is shown in Figure 8.11. When a discrete output channel is in this
mode its output is HIGH (or LOW depending on the state of . DOInv) when .DOAis less than . DOBCtr.

Chapter 8: Discrete I/Os — 267

.DOBCtr counts from 0 to . DOB (set by DOCfgBlink ()). .DOBCtr is cleared when it reaches . DOB.
This mode is asynchronous because all discrete output channels maintain their own .DOBCtr and thus
can blink at different rates.

Figure 8.11 Asynchronous blinking mode.

.DOB—~

.DOBCtr

.DOA

A VAV A YA R

v
>
P e

<+«—B—>»

8.04 Discrete 1/0 Module, Interface Functions

Your application software knows about the discrete I/O module through the interface functions shown in
Figure 8.12.

Figure 8.12 Discrete 1/0 module interface functions.

DIOInit() -—
DICfgMode() -
DISetBypassEn() »-
DISetBypass{() >
DIGet() —u - Discrete Inputs
*DICTr() ~| Di (From Hardware)
*DICfgEdgeDetectFnct() - lscrete

Module
DOC fgMode() »-
DOSetBypassEn() s .. Discrete Outputs
DOSetBypass() » (From Hardware)
D0Set () -—
D0Get() -
DOCFgB1ink() L *: Functions available when
DOSetSyncCtrMax() - DI_EDGE_ENis setto 1.

#: Fun ctions available when

DO_BLINK_MODE_ENis setto 1.

mﬂ'
‘l
i

268 — Embedded Systems Building Blocks, Second Edition

To allow the code size in your application to be reduced, I have added two #defines, which are
used to enable/disable code generation for edge detection for discrete inputs (DI_EDGE_EN) and
enable/disable code generation for blinking of discrete outputs (DO_BLINK_MODE_EN). Setting these
#defines to 1 will enable code generation for the respective code.

Chapter 8: Discrete I/Os — 269

DICfgEdgeDetectFnct ()

void DICfgEdgeDetectFnct (INT8U n, void (*fnct)(void *), wvoid *argqg);

When a discrete input channel is configured for edge detection and a transition is detected, a user-defin-
able function can be executed. The function to execute is specified to the discrete input channel by call-
ing DICfgEdgeDetectFnct ().

Arguments

n is the discrete input channel you wish to configure. Discrete input channels are numbered from 0 to
DIO_MAX DI - 1.

fnct is a pointer to the function that will be executed whenever a transition is detected. Note that pass-
ing a NULL pointer indicates that no function is to be executed when a transition is detected. All discrete
input channels have NULL pointers by default. When the function is called, it is passed a pointer to void
(i.e., the arg). This allows different arguments to be passed to a reentrant function. You must declare the
function that will be called as follows:

void UserFnct (void *arg);

Note that UserFnct () is called with the argument that you specify in DICfgEdgeDetect-
Fnct (), that is, arg. This allows you to design a single function that can be used by more than
one discrete input channel. The user-defined function will be called by the discrete /O manager
task DIOTask () when a transition is detected on the input. The execution time of the discrete /O
task is thus augmented by the execution time of all the functions that will execute when a transi-
tion is detected in their respective inputs.

Return Value

None

Notes/Warnings

Some applications do not require the execution of a function upon detection of a transition. In these sit-
uations, there is no need to call DICfgEdgeDetectFnct () because the initial value of the pointer to a
function for each discrete input channel is NULL. In other words, the discrete I/O task will not execute
any function when pointing to NULL.

R

|
|

g

270 — Embedded Systems Building Blocks, Second Edition

Example

The function that executes when a transition is detected can signal another task through a semaphore, a
mailbox, or even a message queue. This would allow you to defer processing of input transition detec-
tion to either a lower- or higher-priority task.

OS_EVENT *DISem;

void Task (void *pdata)
{
INT8U err;

DISem = OSSemCreate(0);

DICfgMode (0, DI_MODE_EDGE HIGH _GOING) ;
DICfgEdgeDetectFnct (0, DIEdgeFnct, (void *)DISem);
for (;:) {

0OSSemPend (DISem, 0, &err); /* Wait for DI to transition */

void DIEdgeFnct (void *arg) ~
{
0OSSemPost ((OS_EVENT *)arg); /* DI transitioned */

Chapter 8: Discrete /Os — 271

DICfgMode ()

void DICfgMode (INT8U n, INT8U mode);

DICfgMode () is used to set the operating mode of a discrete input channel.

Arguments

n is the desired discrete input channel to configure. Discrete input channels are numbered from 0 to
DIO_MAX DI - 1.

mode determines the operating mode of the discrete input channel. The discrete I/O module currently
supports nine modes:

1.

DI_MODE_LOW allows DIGet () (described later) to always return 0. This function basically simu-

lates grounding an input. ‘
DI_MODE._HIGH is similar to DI_MODE_LOW in that it allows DIGet () to always return 1. This
function basically simulates tying an input high.

DI_MODE_DIRECT allows the discrete input channel to read whatever is present on the hardware
input. This is the default mode for a discrete input channel.

DI_MODE_INV allows the discrete input channel to read the complement of whatever is present on
the hardware input.

DI_MODE_EDGE_LOW_GOING allows the discrete input channel to detect and count transitions from
1 to 0 on the hardware input. The frequency of the input signal must be less than the scan rate of the
discrete I/O module (determined by DIO_TASK_DLY_TICKS). DIGet () will return the number of 1
to O transitions detected. Note that the number of transitions can be cleared by calling DIC1r ()
(described later).

DI_MODE_EDGE_HIGH _GOING allows the discrete input channel to detect and count transitions
from O to 1 on the hardware input. The frequency of the input signal must be less than the scan rate
of the discrete I/O module. DIGet () will return the number of 0 to 1 transitions detected. Note that
the number of transitions can be cleared by calling DIC1r () (described later).

DI_MODE_EDGE _BOTH allows the discrete input channel to detect and count either transitions from
0 to 1 or from 1 to 0 on the hardware input. The transition rate of the input signal must be less than
the scan rate of the discrete I/O module. DIGet () will return the number of transitions detected.
Note that the number of transitions can be cleared by calling DIC1r () (described later).
DI_MODE_TOGGLE_LOW_GOING allows the state of the discrete input channel to change whenever a
transition from a 1 to a 0 is detected. Again, the transition rate of the input signal must be less than
the scan rate of the discrete I/O module.

DI_MODE_TOGGLE_HIGH_GOING allows the state of the discrete input channel to change whenever

a transition from a 0 to a 1 is detected. Again, the transition rate of the input signal must be less than
the scan rate of the discrete /O module.

272 — Embedded Systems Building Blocks, Second Edition

Return Value

None

Notes/Warnings

None

Example

void main (void)
{

DICfgMode (0, DI_MODE_DIRECT);

Chapter 8: Discrete /Os — 273

DIClr()

void DIClr (INT8U n);

The only way to clear the number of transitions detected when the discrete input channel is configured
for edge detection is to call DIC1r (). The function has no effect if the channel is not configured for
edge detection.

Arguments

n is the discrete input channel you wish to clear. Discrete input channels are numbered from 0 to
DIO_MAX DI - L.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)

{
DICfgMode (0, DI_MODE EDGE HIGH GOING) ;
for (;;) {

DIC1r(0); /* Clear the number of transitions of channel #0 */

T

T

a
lil

274 — Embedded Systems Building Blocks, Second Edition

DIGet ()

INT16U DIGet (INT8U n);

The current value of the discrete input channel can be obtained by calling DIGet (). If the discrete input
channel is configured for edge detection, the returned value will correspond to the number of transitions
detected by the channel. If the discrete input channel is not configured for edge detection, the returned
value will either be 0 or 1.

Arguments

n is the discrete input channel you wish to read. Discrete input channels are numbered from 0 to
DIO_MAX DI - 1.

Return Value

The current value of the discrete input channel or the number of transitions.

Notes/Warnings

None

Example
void Task (void *pdata)

{
INT16U transitions;

DICfgMode (0, DI_MODE_EDGE_HIGH_GOING) ;
for (;;) {

transitions = DIGet (0); /* Get number of transitions on DI #1 */

Chapter 8: Discrete I/Os — 275

DIOInit ()

void DIOInit(void);

DIOInit () is the initialization code for the discrete /O module. DIOInit () must be called before

you use any of the other discrete YO module functions. DIOInit () is responsible for initializing the.

internal variables used by the module and for the creation of the task that will update the discrete inputs
and outputs.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void main (void)
{

DIOInit();

276 — Embedded Systems Building Blocks, Second Edition

DISetBypass/()

void DISetBypass (INTS8U n, INT16U val);

Your application software can bypass or override the discrete input channel value by using this function.
DISetBypass () doesn’t do anything unless you have opened the bypass switch by calling DISetBy-
passEn () as described earlier.

Arguments

n is the discrete input channel you wish to bypass. Discrete input channels are numbered from 0 to
DIO_MAX DI - 1.

val is the value you want DIGet () to return to your application. Because val is a INT16U, you can
set the number of transitions detected when the discrete input channel is configured for edge detection.

Return Value

None

Notes/Warnings

None

Example
void Task (void *pdata)
{
for (:;) {

DOSetBypassEn (0, TRUE); /* Bypass channel #0 */

DOSetBypass (0, 1); /* Set value of chamnel #0 */

T

q

Chapter 8: Discrete I/Os — 277

DISetBypassEn/()

void DISetBypassEn(INTS8U n, BOOLEAN state);

DISetBypassEn () allows your application code to prevent the ‘physical’ discrete input channel from
being updated. This permits your application to set the value returned by DIGet (). The value of the
discrete input channel is set by DISetBypass (). DISetBypassEn () and DISetBypass () are very
useful for debugging.

Arguments

n is the discrete input channel you wish to bypass. Discrete input channels are numbered from 0 to
DIO MAX DT - 1.

state is the state of the bypass switch. When TRUE, the bypass switch is open (i.e., the discrete input
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the discrete input channel is not
bypassed).

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{
for (:;) {

DISetBypassEn(0, TRUE); /* Bypass channel */

278 — Embedded Systems Building Blocks, Second Edition

DOCfgBlink ()

void DICf£gBlink (INT8U n, INT8U mode, INT8U a, INT8U b);

DOCfgBlink () allows you to configure the discrete output blinking mode.

Arguments

n is the discrete output channel you wish to configure for blink mode. Discrete output channels are num-
bered from 0 to DIO_MAX_DO - 1.

mode sets the state of the Blink Enable Select Switch to one of three values:

1. DO_BLINK_EN allows the discrete output to blink continuously.

2. DO_BLINK_EN_NORMAL allows the discrete output to blink only if the input to the discrete output
channel is set to 1. Blinking stops when the input to the discrete output channel is set to 0. In this
case, the output is forced LOW unless it’s inverted.

3. DO_BLINK_EN_INV allows the discrete output to blink only if the input to the discrete output chan-
nel is set to 0. Blinking stops when the input to the discrete output channel is set to 1. In this case,
the output is forced LOW unless it’s inverted.

a specifies the ON time for either synchronous or asynchronous mode (the A value in Figures 8.9, 8.10,
and 8.11). The actual ON time is determined by the execution rate of the discrete I/O module. a is given
by:

[8.1] a = ON time (sec.) x Task execution rate (Hz)

b specifies the total period when the discrete output is configured for asynchronous mode (the B value
of Figures 8.9 and 8.11). The period is determined by the execution rate of the discrete I/O module. b is
given by:

[8.2] b = Period (sec.) x Task execution rate (Hz)

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)

{
DOCfgBlink {0, DO_BLINK EN, 10, 20);
for (;;) {

Chapter 8: Discrete I/Os — 279

280 — Embedded Systems Building Blocks, Second Edition

DOCfgMode ()
void DOCfgMode (INT8U n, INTS8U mode, BOOLEAN inv);

DOCfgMode () is used to set the operating mode of a discrete output channel. Each channel must be
individually configured.

Arguments

n is the desired discrete output channel to configure. Discrete output channels are numbered from 0 to
DIO_MAX DO - 1.

mode determines the operating mode of the discrete output channel. The discrete I/O module currently
supports five modes:

1. DO_MODE_LOW is the default mode and forces the discrete output LOW.

2. DO_MODE_HIGH is similar to DO_MODE_LOW, except that it forces the discrete output HIGH.

3. DO_MODE_DIRECT allows the discrete output channel to output whatever state you set through
DOSet () or DOSetBypass ().

4. DO_MODE_BLINK_SYNC allows the discrete output to continuously change from LOW to HIGH
and from HIGH to LOW. In this mode, you also need to specify how long the output will be HIGH
with respect to a continuously running counter, DOSyncCtr, which is specified through
DOSetSyncCtrMax (). If DOSyncCtr is allowed to count from O to 100 then, to get a 25 percent
duty-cycle, you need to set the HIGH time to 25. This is done by calling DOC£gBlink ().

5. DO_MODE_BLINK_ASYNC allows the discrete output to continuously change from LOW to HIGH
and from HIGH to LOW. In this mode, you also need to specify how long the output will be HIGH
and the total period of the signal. This is done through DOCfgBlink ().

inv is used to complement the output. When inv is set to TRUE, the output is complemented as shown
in Figure 8.9.

Return Value

None

Notes/Warnings

None

Example

void main (void)

{

DOCfgMode (0, DO_MODE_BLINK_SYNC, FALSE);

Chapter 8: Discrete I/Os — 281

DOGet ()

BOOLEAN DOGet (INT8U n) ;

DOGet () allows your application to get the state of the output that actually goes to the hardware.
DOGet () returns either TRUE (the output is set to 1) or FALSE (the output is set to 0).

Arguments

n is the discrete output channel you wish to monitor. Discrete output channels are numbered from 0 to
DIO_MAX DO - 1.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{
BOOLEAN state;

for (;:) |

state = DIGet(0); /* Get value of channel #0 */

IR

282 — Embedded Systems Building Blocks, Second Edition

DOSet ()

void DOSet (INTS8U n, BOOLEAN state);

DOSet () allows your application to set the state of the discrete output channel. If the discrete output
channel is configured for blink mode, the state passed to DOSet () is used to enable or disable blinking,
as shown in Figure 8.9.

Arguments

n is the discrete output channel you wish to set. Discrete output channels are numbered from 0 to
DIO_MAX DO - 1.

state is the desired state of the discrete output and can be either TRUE or FALSE. Note that the state of
the discrete output occurs before any processing is performed on the discrete output channel, as shown
in Figure 8.9.

Return Value

None . _

Notes/Warnings

None

Example

void Task (void *pdata)
{
for (:;) {

DISetBypass(0, 1); /* Set value of channel #0‘'s .DIVal */

Chapter 8: Discrete I/Os — 283

DOSetBypass ()

void DOSetBypass(INT8U n, BOOLEAN state);

You can bypass what your application code is sending to the discrete output channel by using this func-
tion. DOSetBypass () doesn’t do anything unless you have opened the bypass switch by calling
DOSetBypassEn (), as described earlier.

Arguments

n is the desired discrete output channel to override. Discrete output channels are numbered from 0 to
DIO_ MAX DO - 1.

state is the desired state of the discrete output and can be either TRUE or FALSE. Note that the bypass
occurs before any processing is performed on the discrete output channel, as shown in Figure 8.9.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata) .
{
for (;;) {

DISetBypass(0, 1); /* Se_i':‘ value of chamnel #0‘s .DIVal */

284 — Embedded Systems Building Blocks, Second Edition

DOSetBypassEn()

void DOSetBypassEn(INT8U n, BOOLEAN state):;

DOSetBypassEn () allows your application code to bypass your application and set the state of the dis-
crete output by calling DOSetBypass (). DOSetBypassEn () and DOSetBypass () are very useful
for debugging.
Arguments

n is the desired discrete output channel to bypass. Discrete output channels are numbered from 0 to
DIO_MAX DO - 1.

state is the state of the bypass switch. When TRUE, the bypass switch is open (i.e., the discrete output
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the discrete output channel is not
bypassed).

Return Value

None

Notes/Warnings

None
Example
void Task (void *pdata)

{
for (;;) {

DOSetBypasskEn (0, TRUE); /* Bypass channel */

Chapter 8: Discrete I/Os — 285

DOSetSyncCtrMax ()

void DOSetSyncCtrMax (INT8U val);

DOSetSyncCtrMax () is used to set the period for the synchronous blinking mode. The synchronous
blinking mode is useful when you need to have lights blink at the same rate.
Arguments

wval specifies the total period when the discrete outi)ut is configured for synchronous mode (the C value
of Figures 8.9 and 8.10). The period is determined by the execution rate of the discrete I/O module. val
is given by:

[8.3] val = Period (sec.) x Task execution rate (Hz)

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{ . :
DOSetSyncCtrMax (100) ;
for {;:} {

286 — Embedded Systems Building Blocks, Second Edition

8.05 Configuration

I added two #defines (DI_EDGE_EN and DO_BLINK_MODE_EN), which are used to enable/disable
some of the functions of the discrete I/O module in order to reduce the amount of ROM and RAM.
Specifically, DT_EDGE_EN allows you to remove edge detection for all discrete input channels, and
DO_BLINK_MODE_EN allows you to remove the blinking capability of discrete output channels.

You could reduce the amount of RAM for each discrete input or output by using bit fields in the
DIO_DT and DIO_DO structures. In this case, you would reduce the amount of RAM required at the
expense of more code space (manipulation of bit fields requires more code and is slower).

Configuring the discrete I/0 module is fairly simple.

1. You need to define the value of seven #defines. The #defines are found in DIO.H and CFG.H.

WARNING
In the previous edition of this book, DIO_TASK_STK_SIZE specified the size of the stack for
DIOTask () in number of bytes. pC/OS-II assumes the stack is specified in stack width elements.

2. You will need to adapt DIRA (), DIWr (), and DIOInitIO() to your specific environment.

All physical discrete inputs are read by DIRA() and are mapped to their corresponding DIO_DI
structures, as shown in Figure 8.13. In the code I provided in Listing 8.1, DTRA () obtains its discrete
inputs from an 8-bit parallel port. The least significant bit of the input port corresponds to discrete input
channel #0, the next-to-the-least significant bit is channel #1, and so on. Adding more discrete inputs
should be a trivial task.

Figure 8.13 Mapping of physical inputs to discrete input channels.

8-Bit Parallel Input Port
——————— B0

B7
HEEREEEE

l |—->D1Tbl [0].DIIn
D1Tbl[1].DIIn
D1Tb1l[2].DIIn
D1Tb1([3].DIIn
» D1Tbl[4] .DIIn
» D1Tb1(5].DIIn

—» D1Tbl1[6] .DIIn
—» D1Tp1{7].DIIn

Figure 8.14 shows how discrete output channels are mapped to physical outputs using DOWr (). In
the code provided in Listing 8.1, discrete output channels are mapped to an 8-bit parallel port. Discrete
output channel #0 is mapped to the least significant bit of the output port (i.e., bit 0), channel #1 is
mapped to bit 1, and so on. Adding more discrete outputs should be fairly simple.

Chapter 8: Discrete I/Os — 287

Figure 8.14 Mapping of discrete output channels to physical outputs.

DOTb1[0] .DOOut
DOTb1[1] .DOOuUt
DOTb1[2] .DO0Out
DOTb1{3].DOOut
DOTbl[4].DOOut
DOTb1l[5] .DOOut

DOTb1l[6].D0O0Out
DOTb1[7] .DOOuUt
i l . vy

DIOInitIO() is the initialization code which is called by DIOInit () and is used to initialize your
physical hardware ports. For example, if you are using Intel’s 82C55A Programmable Peripheral Inter-
face (PPI), you would initialize the 82C55A to the desired mode in DIOInitIO().

8.06 How to Use the Discrete 1/0 Module

To use the discrete I/O module, you will need to call DIOInit () prior to using any of the other func-
tions. You would typically do this in main () as follows:

void main (void)

{
0OSInit(); /* Initialize the 0.S8. (uC/08-II) */
DIOTnit(); /* Initialize the discrete I/O module */
osstart(); /* Start multitasking (uC/0S-II) */

Once you have initialized the discrete I/O module, you can configure each one of the discrete
inputs and outputs by calling DICfgMode (), DICfgEdgeDetect (), DOCfgMode (), and DOCEg-
Blink (). You will also need to call DOSetSyncCtrMax () if you are using any of the discrete outputs

Vo

288 — Embedded Systems Building Blocks, Second Edition

in synchronous blink mode. You can choose to configure discrete I/O channels immediately after the
call to DIOInit () or in your application task, as shown:

void AppTask (void *data)
{

data = data;
/* Initialize discrete I/0 channels here ...*/
for (;;) {

/* Application task code ... */

A traffic light controller would be an ideal application for the discrete I/O module. For the intersec-
tion shown in Figure 8.15, you would need eight discrete outputs to control the state of each traffic light
(four for North <-> South, four for East <-> West). Each set of four outputs would control:

* 1 green light

* 1 yellow light

*] red light

¢ 1 green light (for left turn arrow)

This traffic light controller caters to pedestrians. Two buttons are needed at each comer so pedestri-
ans can request to cross the intersection. The controller, however, only needs to see two discrete inputs;
one to request an East/West crossing and another to request a North/South crossing. Additional lights
are required to inform the pedestrian when it is safe to cross the intersection: a walk light and a don’t
walk light. The don’t walk typically blinks when it is no longer safe to cross the intersection. You will
need four discrete outputs for pedestrian crossing lights.

Figure 8.16 shows a block diagram of the traffic light controller and the necessary discrete I/Os. The
code required to configure the discrete I/Os for the traffic controller follows this paragraph. All discrete
outputs are initially configured for direct mode. The mode of the discrete output controlling the don’t
walk light can be changed to blinking mode when it is unsafe to cross the street.

Chapter 8: Discrete /Os — 289

Figure 8.15 Traffic light control using the discrete I/O module.

NOI?TH

|
Hgﬂgﬂﬂﬂﬂﬂﬂﬂé_”

BONT,

Button to request to cross Pedestrian Lights: WALK

&/

WEST- — —

AHHHHHHHHE

Traffic Light HIBIRIENRIE
(Left turn, Green, Yellow, Red) I

l
SOUTH

Figure 8.16 Traffic light control block diagram.

Traffic
Light
Controller

DO #———__ Left Turn
DO #1}———__ Green 1

DI #0 DO #2——1{"_ Yellow
DO #3—{__Red -
DO #4f—_ Left Turn
DO #5p——__ Green

I 1

jﬂ 1
East/West

R 1

North/South
Request to Cross

(North/South)

DO #6|—1__ Yellow J
DO #7—{"Red

DO#S—EWaJk 1

North/South

DI #1 DO#9—EDon’tWaJkJ
pom— v |

East/West

DO #1} —E Don’t Walk J

Request to Cross
(East/West)

290 — Embedded Systems Building Blocks, Second Edition

void TrafficCtrlInitIO(void)

o

DICfgMode(O,
DICfgMode (- 1,

DOCEgMode (
DOCEgMode (
DOCfgMode (
DOCfgMode (
DoCcfgMode (
DOCfgMode (
DOCfgMode (
DOCEgMode (

~ -~ ~

~

~

~

~N N W N PO

~

DOSet (1, ON);
DOSet (7, ON);

DOCfgMode(8,
DOCfgMode(9,
DOCfgMode (10,
DoCcfgMode (11,

DOSet(9, ON);
DOSet (11, ON);

DI_MODE_EDGE_IOW_GOING); /* Pedestrian buttons

DI_MODE_EDGE_LOW_GOING) ;

DO_MODE_DIRECT) ;

DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;
DO_MODE,_DIRECT) ;
DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;

DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;
DO_MODE_DIRECT) ;

/*

/*
/*

/*

/*

Traffic lights

Turn ON N/S Green light
Turnn ON E/W Red light

Pedestrian lights

Turnn ON "DON'T WALK"

*/

*/

*/

*/

*/

Chapter 8: Discrete I/Os — 291

Listing8.1 DIO.C

/*

* *k ok k kK * * * ko *hk Kk ek k ok *kk kkkk kA K
* Erbedded Systems Building Blocks

* Camplete and Ready-to-Use Modules in C

*

* Discrete I/0 Module

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : DIO.C

* Programmer : Jean J. Labrosse

Kkok ko k vk ok ok ok ok ok e ek ok ek kA AT AT A A A A A A A AT I AT A AR A AR T A AE R IR Ak kA TR TR K
*/

/*

* L L * *k * we vk ke ke k ko * wekk e e ok ke ke
* INCLUDE FILES

* %k * ok * ek dkeok sk ko ek ke ok ok ok ok ke ke kkxkkK * % kK ko ke kK

*/

#define DIO _GLOBALS
#include "includes.h"

/ *

Fhkkkk kK Kk ok kk kAKX hkhhkdk kkkkkx * dkkk ok kg ok ok k ok ok ok ek ok ok ko sk ok ke ko
* LOCAL VARIARLES

KE KA Ak K I I KKK KA ARk ok k ko kkkdkkkdkkkokkk ok dk ki dkdkkdkkdkdkkk kxk sk k ke ddek ok ok k ok ke k

*/

#if DO_BLINK_MODE_EN

static INT8SU DOSyncCtr;

static INT8U DOSyncCtrMax;

#endif

static OS_STK DIOTaskStk[DIO_TASK_STK SIZE];

/*

KA A A KA AE AR A I A I I IRk Ak kAT kAT TAXA A AT kX TR AR R * * ok ke ok koK kdkkk FkkkkhkkHEE K AR Kk kkkkkxkhkxk XXk k%
* LOCAL FUNCTION PROTOTYPES

Fe ko ke ek s %k %k K Fede ok ke ke kR Ak ok Ak kR A R A Ak AR KA KA A A Ak kA A KA A Ak A Ak K I IR KA A A KA AT KKK AKX
*/

static woid DIIsTrig(DIO DI *pdi);

static wvoid DIOTask (void *data);

static wvoid DIUpdate (void) ;

static BOOLEAN DOIsBlinkEn (DIO DO *pdo) ;

static void DOUpdate (void) ;

/*$SPAGE*/

292 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*
D LR T Ty L e R L D g L g T S L R S L S L L]
* CONFIGURE DISCRETE INPUT EDGE DETECTICN

*

* Description : This function is used to configure the edge detection capability of the discrete input =
* chamnel.

* Arguments :n is the discrete input channel to configure (0..DIO MAX DI-1).

* fnct is a pointer to a function that will be executed if the desired edge has been

* detected.

* arg 1s a pointer to arguments that are passed to the function called.

* Returns : None.

Thkkkkkkkkhkhkkikkkhkk *kkk * ok khk ok ok ok ok ook kkok kkkkk hkkkkkdkdkkdhhkkkkdhkkikk
*/

#if DI_EDGE_EN
void DICfgEdgeDetectFnct (INT8U n, void (*fnct) (void *), void *arg)
{
if (n < DIOQ MBX DI) {

OS_ENTER_CRITICAL() ;

DITbl [n} .DITrigFnct = fnct;

DITbl [n] .DITrigFnctArg = arg;

OS_EXTIT_CRITICAL() ;

}
} J—
#endif
/*SPAGE*/
/*
Fedk kg ke ok ok ok ok ok okok * ok k kkk *okok khkkkkhkhkkkkhkkhkhkkk * *k *
* CONFIGURE DISCRETE INPUT MODE
*
* Description : This function is used to configure the mode of a discrete input chamnel.
* Arguments :n is the discrete input chammel to configure (0..DIO MAX DI-1).
* mode is the desired mode and can be:
* DI_MODE_LOW input is forced LOW
* DI_MODE_HIGH input is forced HIGH -
* DI_MCODE_DIRECT input is based on state of physical sensor (default)
* DI_MCDE_TNV input is based on the complement of physical sensor
* DI_MODE_FEDGE LOW_GOING a LOW~going transition is detected
* DI_MCDE _FDGE _HIGH GOING a HIGH-going transition is detected
* DI_MCDE_EDGE_BOTH both a IOW-going and a HIGH-going transition are detected
* DI_MODE_TOGGLE _LOW _GOING a LOW-going transition is detected in toggle mode -
* DI_MODE,_TOGGLE_HIGH GOING a HIGH-going transition is detected in toggle mode
* Returns : None.
* Notes : Edge detection is only available if the configuration constant DI_EDGE EN is set to 1.
khkkkhkhkkkkhkhkhkkkkhkkhkhkhkkhkhkkkkkkkkkk hokkokk kkkkkkk hkkkhkhkkhkkkkhkkkhkkkkkkrxhkhkkkkhhktxkhkhkik
*/

void DICfgMode (INTS8U n, INTSU mode}

{
if (n < DIO_MAX DI) {
OS_ENTER_CRITICAL();
DITbl[n]} .DIModeSel = mode;
OS_EXTT_CRITICAL();
} -
}

/*SPAGE*/

Chapter 8: Discrete I/Os — 293

Listing 8.1 (continued) DIO.C

/*
* *% * Xk Kk *kx * Kok dok * *% Tk Ak kA KKK ERE KA KRR R KA KA KA A KA AR AK
* CLEAR A DISCRETE INPUT CHANNEL

* Description : This function clears the number of edges detected if the discrete imput charmel is

* configured to count edges.
* Arguments :n is the discrete input channel (0..DIO_MAX DI-1) to clear.
* Returns : none

L L R e e T T T e e]

*/

#if DI _EDGE_EN
void DIClr (INT8U n)

{
DIO_DI *pdi;
if (n < DIQ_MAX DI) {
pdi = &DITbl[n];
OS_ENTER CRITICAL({);
if (pdi->DIModeSel == DI_MODE,_EDGE_LOW_GOING || /* See if edge detection mode selected */
pdi->DIModeSel == DI_MODE_EDGE HIGH GOING | |
pdi->DIModeSel == DI_MODE EDGE BOTH) {
pdi->DIval = 0; /* Clear the mmber of edges detected */
}
OS_EXIT CRITICAL();
}
}
#endif

/*SPAGE*/

294 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*

Ekhok KERK KK Ak R T I KK ok dok T ook sk w9k ok ok ok o 9k 3k ok ok ok sk ok ok 3k ok ok s ok A 3ot ok sk ok S o ok sk gk 0 o o ok gk ok sk b T ok sk sk ok sk ok ke s ok ok ok sk ok O Tk ok sk sk ok e

Description :

Arguments
Returns

GET THE STATE OF A DISCRETE INPUT CHANNEL

This function is used to get the current state of a discrete input charmnel. If the input -
mode is set to one of the edge detection modes, the mmber of edges detected is returned.

:n is the discrete input chammel (0..DIO MAX DI-1).
: 0 if the discrete input is negated or, if an edge has not been detected

1 if the discrete input is asserted
> 0 if edges have been detected

e g e e T g e s T T S T T S T 2 2 T

*/

INT16U DIGet (INT8U n)

{

INTL6U val;

if (n <« DIO.MAX DI) {
0S_ENTER CRITICAL();

val = DITbl(n]).DIval; /* Get state of DI chammel */
OS_EXIT CRITICAL();)
retum (val);)

} else { J—
returm (0); /* Return negated for invalid channel */

/*$PAGE*/

i

Chapter 8: Discrete I/Os — 295

Listing 8.1 (continued) DIO.C

/%
*k R L R a i t R R R La T T a2
* DETECT EDGE ON INPUT

* Description : This function is called to detect an edge (low-going, high-going or both) on the selected

* discrete input.
* Arguments : pdi is a pointer to the discrete input data structure.
* Returns : none

L T T L T R R e T s s T e 2 2t

*/

#if DI_EDGE_EN
static wvoid DIIsTrig (DIO DI *pdi)

{
BOOLEAN trig;
trig = FALSE;
switch (pdi->DIModeSel) {
case DI_MODE _FEDGE IOW_GOING: /* Negative going edge */
if (pdi->DIPrev == 1 && pdi->DIIn == 0) { -
trig = TRUE; -
}
break; —
case DI_MODE _FDGE HIGH GOING: /* Pogitive going edge */
if (pdi~->DIPrev == 0 && pdi->DIIn == 1) {
trig = TRUE;
}
break;
case DI_MODE _FDGE BOTH: /* Both positive and negative going */
if ((pdi->DIPrev == 1 && pdi->DIIn == Q) ||
(pdi->DIPrev == 0 && pdi—>DIIn == 1}) {
trig = TRUE;
} -
break;
}
if (trig == TRUE) { /* See if edge detected */
if (pdi->DITrigFnct != NULL) { /* Yes, see used defined a function */
(*pdi->DITrigFnct) (pdi->DITrigFnctArg) ; /* Yes, execute the user function */
} .
if (pdi->DIval < 255) { /* Increment number of edges counted */
pdi->DIVal++;
}
}
pdi->DIPrev = pdi->DIIn; /* Memorize previous imput state */
}
#endif

/*SPAGE*/

296 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*

* *kk Fokok ok * kkkkhkkXkkkkhkkhkhkrhhkkkhhhkk kkkok Ahkhkhkkhkkhkhkhkthkk
* UPDATE DISCRETE IN CHANNELS
* =
* Description : This function processes all of the discrete input chamnels.
* Arguments : None.
* Returns : None.

T

*/

Chapter 8: Discrete I/Os — 297

Listing 8.1 (continued) DIO.C

static void DIUpdate (void)
{

INT8U i;

DIO_DI *pdi;

pdi = &DITb1{0];
for (i = 0; 1 < DIOMAX DI; i++) {

if (pdi->DIBypassEn == FALSE) { /* See if discrete input channel is bypassed */
switch (pdi->DiModeSel) { /* No, process channel */
case DI_MODE_LOW: /* Input is forced low */
pdi->DIval = 0;
break;
case DI_MODE_HIGH: /* Input is forced high */
pdi->DIval = 1;
break;
case DI_MODE DIRECT: /* Input is based on state of physical input */ -
pdi->DIVal = (INT8U)pdi->DIIn; /* Obtain the state of the sensor */
break;
case DI_MODE_TINV: /* Input is based on the complement state of input */ -
pdi->DIvVal = (INT8U) (pdi->DIIn ? O : 1);
break;

#if DI_EDGE EN
case DI_MODE EDGE IOW_GOING:
case DI _MODE_EDGE HIGH GOING:
case DI_MODE_FDGE_BOTH:
DIIsTrig(pdi): /* Handle edge triggered mode */
break;
#endif

case DI_MODE_TOGGLE_LOW_GOING:

if (pdi->DIPrev == 1 && pdi-»>DIIn == 0) {
pdi->DIval = pdi->DIval ? 0 : 1;
}
pdi->DIPrev = pdi->DIIn;
break; _
case DI_MODE_TOGGLE HIGH GOING:
if (pdi->DIPrev == 0 && pdi->DIIn == 1) {
pdi->DIVal = pdi->DIVal ? 0 : 1;
}
pdi->DIPrev = pdi-»DIIn;
break;
}
}
pdi++; /* Point to next DIO_DO element */

/*SPAGE*/ -

298 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*

Ak A A A A A A A A A A A A A A A A A A AR A A A A Ak AR AT A A A A A A A A AR A A A A A A AAA A XA XN A AR A A A A AT kAKX,

* DISCRETE I/0O MANAGER INITIALIZATION

*

* Description : This function initializes the discrete I/Q manager module. -
* Arguments : None

* Returns : Nore.

Kk ok ok * Kk *k *k * ok * Kk Kk * * * AEEKAKATATAAAAEEAREAAAEEAA A A TA AN XA AR AT AN A A Aok kxd

*/

void DIOInit (void)
{
INT8U err;
INTSU i;
DIO DI *pdi;
DIO DO *pdo;

pdi = &DITH1{0];
for (i = 0; 1 < DIO.MAX DI; i++) {
pdi->DIval = 0; -
pdi->DIBypassEn = FALSE;
pdi~>DIModeSel = DI_MODE_DIRECT; /* Set the default mode to direct input */
#if DI_EDGE EN
pdi->DITrigFnct = (void *)0; /* No function to execute when transition detected */
pdi->DITrigFnctArg = (void *)0;
#endif
pdi++;

}
pdo = &DOTD1[0];
for (i = 0; 1 <« DIO_MAX DO; i++) {
pdo->D00ut = 0;
pdo->DOBypassEn = FALSE;
pdo—>DModeSel = DO MODE_DIRECT; /* Set the default mode to direct output */
pdo->D0Inv = FALSE;
#if DO_BLINK MODE_EN -
pdo->DOBlinkEnSel = DO _BLINK EN NORMAL; /* Blinking is enabled by direct user request */
pdo->D0OA =1;
pdo—>DOB = 2;
pdo->DOBCtr = 2;
#endif
pdo++; -
}
#if DO_BLINK_MODE_EN
DOSetSyncCtrMax{72) ;
#endif
DIOInitIO() ;
OSTaskCreate (DIQTask, (void *)0, &DIOTaskStk{DIO_TASK STK_SIZE], DIO_TASK PRIO);

/*$SPAGE*/

Chapter 8: Discrete I/Os — 299

Listing 8.1 (continued) DIO.C

/%

Rk ARk ARk ok ok ok ok ARk Aok ok ok ek ok ok *k B T T T R e T
* DISCRETE I1/0 MANAGER TASK
*

* Description : This task is created by DIOInit() and is responsible for updating the discrete inputs and

* discrete outputs.

* DICTask() executes every DIO_TASK DLY_ TICKS.

* Arguments : None.

* Returns : None.

ko kd ok kkkkk ok kokk * o ke ok * Kk kkkdhkkkkkdhk * * ok Foo ok ok & ok ke ok
*/

static wvoid DIOTask (void *data)

{
data = data; /* avoid campiler warning (uC/0S requirement) */
for (;:) {
OSTimeDly (DIO_TASK DLY TICKS); /* Delay between execution of DIO manager */
DIRA() ; /* Read physical inputs and map to DI channels */
DIUpdate(); /* Update all DI channels */
DOUpdate () ; /* Update all DO channels */
DOWr () ; /* Map DO channels to physical outputs */
}
}
/*$PAGE*/
/*
dkdkkkkkkkkokkk ok okokk * * ok * khkkkkkhkhkhkhkhkdkdkhkkkdkrdhdthkrrhittd
* SET THE STATE OF THE BYPASSED SENSOR
*
* Description : This function is used to set the state of the bypassed sensor. This function is used to
* simulate the presence of the sensor. This function is only valid if the bypass 'switch'
* is open.
* Arguments :n is the discrete input channel (0..DIO_MAX DI-1).
* val is the state of the bypassed sensor:
* 0 indicates a negated sensor
* 1 indicates an asserted sensor
* > 0 indicates the number of edges detected in edge mode
* Returns : None.
Fhkkkkkkkkk ok kkkdkk ok ko kkrk bk dhhhhodkkkkk *okokkokkdkd dkkdkkdokhhkokkhkhk *hkkkkkkk

*/

void DISetBypass (INT8U n, INT16U val)

{
if (n < DIO_MAX DI) {
OS_ENTER_CRITICAL() ;
if (DITbl[n] .DIBypassEn == TRUE) { /* See if sensor is bypassed */
DITbl(n}.DIval = val; /* Yes, then set the new state of the DI chamnel */
}
OS_EXIT_CRITICAL();
}
}

/*$SPAGE*/

300 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*

L e e e e e e e e s e e e e e e e L e e e e e s e L e e e Ty

*

*

* Description :

*
* Arquments
*
*

*

* Returns

SET THE STATE OF THE SENSOR BYPASS SWITCH

This function is used to set the state of the sensor bypass switch. The sensor is
bypassed when the ‘switch' is open (i.e. DIBypassEn is set to TRUE).

rn is the discrete input channel (0..DIO_MAX DI-1).

state is the state of the bypass switch:
FALSE disables sensor bypass (i.e. the bypass 'switch' is closed)
TRUE enables sensor bypass (i.e. the bypass 'switch' is open)

: None.

S R R s s s L e e et e

*/

void DISetBypassEn (INT8U n, BCOLEAN state)

{

if (n < DIO MAX DI) {
OS_ENTER_CRITICAL();
DITbl [nn] .DIBypasskn = state;
OS_EXIT CRITICAL();

/*SPAGE*/

Chapter 8: Discrete I/Os — 301

Listing 8.1 (continued) DIO.C

/*
Kk *k *kkk Rk Ak Ak R R g ok ok ok kR R Rk ok Kok Rk ok ok ok K R e ok ok ok kR K ko kA A Aok ok A A R Rk
* CONFIGURE THE DISCRETE OUTPUT BLINK MODE

* Description : This function is used to configure the blink mode of the discrete output channel.

* Arguments :n is the discrete output channel (0..DIO MAX _DO-1).

* mode is the desired blink mode:

* DO_BLINK_EN Blink is always enabled

* DO_BLINK_EN NORMAL Blink depends on user request's state

* DO_BLINK_EN TNV Blink depends on the complemented user request‘s state

* a is the number of 'ticks' ON (1..250)

* b is the number of 'ticks' for the period {in DO_MODE BLINK ASYNC mode) {1..250)
* Returns : None.

L T T 2 T s

*/

#if DO BLINK_MODE EN
void DOCfgBlink (INT8U n, INT8U mode, INT8U a, INTSU b)
{

DIO_ DO *pdo;

if (n < DIO_MAX DO) {

pdo = &DOTbl [n];
a /= DIQ_TASK_DLY TICKS; /* Adjust threshold based on how often DIO runs */
b /= DIO_TASK DLY TICKS;

OS_ENTER_CRITICAL() ;
pdo->DOBlinkEnSel = mode;

pdo->DOA = a;
pdo->DOB = b;
0OS_EXIT _CRITICAL() ;
}
}
#endif

/*SPAGE*/

302 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/%
DR R R T S Lt R Rt R R el E R R R R R R R R S S S 2 2 2
* CONFIGURE DISCRETE OUTFUT MCDE

*

* Description : This function is used to configure the mode of a discrete output chammel.

* Arguments :n is the discrete output channel to configure (0..DIO MAX DO-1).

* mode 1is the desired mode and can be: '

* _ DO_MODE_LOW output is forced LOW

* DO_MODE_HIGH output is forced HIGH

* DO_MODE_DIRECT output is based on state of DOBypass

* DO_MODE_BLINK_SYNC output will be blinking synchronously with DOSyncCtr
* DO_MODE_BLINK_ASYNC output will be blinking based on DOA and DOB
* inv indicates whether the output will be inverted:

* TRUE forces the output to be inverted

* FALSE does not cause any inversion

* Returns : None.

L s L L I T L

*/

void DOCfgMode (INTSU n, INT8U mode, BOOLEAN inv)

{
if (n < DIO MAX DO) {
OS_ENTER CRTTICAL(};
DOTbl(n] .DOModeSel = mode;
DOTb1 {n] .DOInv = inv;
OS_EXIT CRITICAL();
}
}
/*SPAGE*/
/*
KEKA A A XA EAAAA XA A AKX AKX A AKX A AR XAk KA A KA KAk Atk dbakdobsbAdsbababotabababotabab otk ok sb sk sbotobob ok obab st b bbb sk ok ot ot b sk b sk sk sk st sk b ok ok ok ok o
* GET THE STATE OF THE DISCRETE OUTFUT

*

* Description : This function is used to obtain the state of the discrete output.

* Arguments : n is the discrete output channel (0..DIO_MAX DO-1).
* Returnis : TRUE if the output is asserted.
* FALSE if the output is negated.

E T R L T e e e T T e L

*/

BOOLEAN DOGet (INT8U n)

{
BOOLEAN out;
if (n < DIO_MAX DO) {
OS_ENTER CRITICAL() ;
out = DOIbl(n].DOCut;
OS_EXIT_CRITICAL();
return (out);
} else {
return {FALSE);
}
}

/*$PAGE*/

Chapter 8: Discrete I/0Os — 303

Listing 8.1 (continued) DIO.C

/%
ek ek ok ok ok ok ok ok ok K Kk ok ok Ak ok K ok ok Aok K Kk ke ek Kk ok ok kK Kok Ak ok Kk kKK KKk ok Ak ok Kk Kk ek ok ko
* SEE IF BLINK IS ENABLED

*

* Description : See if blink mode is enabled. .
* Arguments : pdo is a pointer to the discrete output data structure.

* Returns : TRUE if blinking is enabled

* FALSE otherwise

Fhkdkkhhkhkhkhkkhhhdhhdkhkkhkkhkhkhkhhxdhkhhkxdkhkkhkhkrhkhdkhhkdkkkkk Kk dekodeok Fokkkk %k ko
*/

#if DO_BLINK_MODE EN
static BOOLEAN DOIsBlinkEn (DIO DO *pdo)

{
BOOLEAN en;
en = FALSE;
switch (pdo->DOBlinkEnSel) {
case DO _BLINK_EN: /* Blink is always enabled */
en = TRUE;
break;
case DO_BLINK EN NORMAL: /* Blink depends on user request's state */
en = pdo->DOBypass;
break;
case DO_BLINK_EN_TINV: /* Blink depends on the complemented user request's state */
en = pdo->DOBypass ? FALSE : TRUE;
break;
}
return {(en);
}
#endif

/*SPAGE*/

304 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*
khk EkEkETEEK * ok ok ok ko ok ok ke ok kok sk ok Ak ok ok ok ok ok
* SET THE STATE OF THE DISCRETE OUTPUT

*

* Description : This function is used to set the state of the discrete output.

* Arguments :n is the discrete output channel (0..DIO MAX DO-1).

* state is the desired state of the output:

* FALSE indicates a negated output

* TRUE indicates an asserted output

* Returns : None.

* Notes : The actual ocutput will be complemented if 'DIInv' is set to TRUE.

* * LA ok ok ke *kkk kkk kA Ik khkkkk *okok kkdkkkhkr Ak kk A kdxhkhhdidk
*/

void DOSet (INT8U n, BOOLEAN state)

{
if (n < DIO MAX DO} {
OS_ENTER_CRITICAL();
DOTbl [n] .DOCErl = state;
OS_EXIT_CRITICAL() ; -
} .
}
/*$PAGE*/
/*
A AT A A A AR ATk Ak A XA A A AR A Ak kA A AR A AT A A A AT AR AT A AR AR AR A IR AL kA AR AR AL AT R kA A A A AT Ak A A AT AR AT A Ak kAR Rk hh*x
* SET THE STATE COF THE BYPASSED OUTPUT

*

* Description : This function is used to set the state of the bypassed output. This function is used to

* override (or bypass} the application software and allow the output to be controlled

* directly. This function is only valid if the bypass switch is open.

* Arguments :n is the discrete output channel (0..DIO_MAX DO-1).

* state is the desired state of the output:

* FALSE indicates a negated output

* TRUE indicates an asserted output "
* Returns : None.

* Notes : 1) The actual output will be complemented if ‘DIInv’ is set to TRUE.

* 2) In blink mode, this allows blinking to be enabled or not.

E L L s)

*/

void DOSetBypass (INT8U n, BOOLEAN state)

{
if (n < DIO MAX DO)
OS_ENTER_CRITICAL() ;
if (DOTbl [n) .DOBypassEn == TRUE) {
DOThl (n] .DOBypass = state;
}
OS_EXTIT_CRITICAL();
}
}

/*SPAGE*/

Chapter 8: Discrete /Os — 305

Listing 8.1 (continued) DIO.C

/*
Sk ok ok Kk ok ok ok ok ok Kk ok ok R ok ok Kok ok ok Kk kK ok ok ok ok ok ok Ok ok ok ok ok ok kA ok ok ok ko ok ok ok ok ok kK kK Kk Rk ok
* SET THE STATE OF THE OUTPUT BYPASS

*

* Description : This function is used to set the state of the output bypass switch. The output is

* bypassed when the 'switch' is open (i.e. DOBypassEn is set to TRUE).
* Arguments rn is the discrete output charmmel (Q..DIO MAX DO-1).

* state is the state of the bypass switch:

* FALSE disables output bypass (i.e. the switch is closed)

* TRUE enables output bypass (i.e. the switch is open)

* Returns : None.

L L T A e T e I T T T 22 2

*/

void DOSetBypassEn (INT8U n, BOOLEAN state)

{
if (n < DIO_MAX DO) {
OS_ENTER _CRITICAL() ;
DOTkl [n] .DOBypagsEn = state; _
OS_EXIT CRITICAL(};
}
}
/*SPAGE*/
/'i(
ek kA Rk AR Ak kA KRk ok Rk kA Ak kA Ak Ak Ak kA xRk ok ok ok ko sk bk kA kA Ak A A Ak kA A A A A KA A A F ok kA kk Ak ok ko kx ko kk kkx
* SET THE MAXTMUM VALUE FOR THE SYNCHRONCUS COUNTER

*

* Description : This function is used to set the maximum value taken by the synchronous counter which is

* used in the synchronous blink mode.
* Arguments : val is the mexinum value for the counter (1..255)
* Returns : None.

Fedk gk A ko kA Aok ok Kk Aok ok kK ok ook sk ko Ak A ko ko kR kA Rk ARk Nk ko kA bk kA kb ok ko ko ko kR

*/

#if DO_BLINK _MODE EN
void DOSetSyncCtrMax (INT8U val)

{
OS_ENTER _CRITICAL(};
DOSyncCtrMax = val; _
OS_EXTIT_CRITICAL() ;

}

#endif

/*SPAGE*/

i

306 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

/*
HhAKAARRR KRR KRR KRR IR ALK E AR AR IR A *ok *ok * Hohk A AR AR K IR KA R IAR I AR KRR KRR RR R KRR R AR RR A ARk
* UPDATE DISCRETE OUT CHANNELS

*

* Description : This function is called to process all of the discrete output channels.
* Arguments : None.

* Returns . None.

E R e e L e e S T L

*/

Listing 8.1 (continued) DIO.C

Chapter 8: Discrete I/Os — 307

static wvoid DOUpdate (void)
{

INTSU i;

BCOLEAN out;

DIO_DO *pdo;

pdo = &DOTL1[0];
for (i = 0; 1 < DIO MAX DO; i++) {
if (pdo->DOBypassEn == FALSE) {
pdo->D0Bypass = pdo->DOCtrl;
}
out = FALSE;
switch {(pdo->DModeSel) {
case DO_MODE_LOW:
break;

case DO_MODE_HIGH:
out = TRUE;
break;

case DO_MODE DIRECT:
out = pdo->DOBypass;
break;
#if DO_BLINK_MODE_EN
case DO_MODE_BLINK _SYNC:
if (DOIsBlinkEn(pdo)} {
if (pdo->DOA »= DOSyncCtr) {
out = TRUE;

}
break;

case DO_MODE_BLINK_ASYNC:
if (DOIsBlinkEn(pdo))} {
if (pdo->DOA >= pdo->DOBCtr)
out = TRUE;

}
if (pdo->DOBCtr < pdo->DOB) {
pdo~->DOBCtY++;
} else {
pdo->DOBCtr = 0;
}
break;
#endif
}
if (pdo~>DOInv == TRUE) {
pdo->DOOut = out ? FALSE : TRUE;
} else {
pdo->DO0ut = out;
}
pd0++ H
}
#if DO_BLINK MODE_EN
if (DOSyneCtr < DOSyncCtrMax) {
DOSyncCtr++;
} else {
DoSyncCtr = 0;

#endif

/*
/*
/*

/*

/*

/*

{

Process all discrete output channels

See if
Obtain

Assume

OCutput

Output

Output

DO channel is enabled
control state from application

that the output will be low unless changed

will in fact be low

will be high

is based on state of user supplied state

/* Sync. Blink mode
/* See if Blink is enabled ...
/* ... yes, High when below threshold

/* Async. Blink mode
/* See if Blink is enabled ...
/* ... yes, High when below threshold

/* Update the threshold counter

/* See if output needs to be inverted ...
/* ... yes, cawplement output

/* ... no, no inversion!

/* Point to next DIO_DO element

/* Update the synchronous free rumning ctr

*/
*/
*/
*/

*/

*/

*/

*/
*/
*/

*/
*/
*/

*/

*/
*/

*/

*/

*/

;i

308 — Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

#ifndef CFG_C

/*

EE RS ST s R s E s sl s RS T R TS S RS RS SRS TSRS RS RS TE S ST
* INITIALIZE PHYSICAL I/Os

*

* Description : This function is by DIOInit() to initialze the physical I/0 used by the DIO driver.
* Arguments : None.

* Returns : None.

* Notes : The physical I/0 is assumed to be an 82C55 chip initialized as follows:
* Port A = OUT (Discrete outputs)

* Port B = IN (Discrete inputs)

* Port C = OUT (not used)

R g s T R T L T i R T T T T T L T T T L)

*/

void DIOInitIO (void)

{

outp(0x0303, 0x82); /* Port A = OUT, Port B = IN, Port C = OUT */
}
/*
Fd kg ok kA ko r ok ok kA ko kA Ak ko kA A Ak k kA Ak ko kA Ak kA Ak kkkwkkkk kA kkkkkkkkkkhkkkkkkkkkkhdhhkkdhkhhhkkdxh
* READ PHYSICAL INPUTS

*

* Description : This function is called to read and map all of the physical imputs used for discrete

* inputs and map these inputs to their appropriate discrete input data structure.
* Arguments : None.
* Returns : None.

T e R L T T L T T e

*/

void DIRd (void)
{
DIO_DI *pdi;
INT8U i;
INTSU in;
INT8U msk;

pdi = &DITH1(0]; /* Point at beginning of discrete inputs */
msk = 0x01; /* Set mask to extract bit 0 */
in = inp(0x0301); /* Read the physical port (8 bits) */
for (1 = 0; 1 < 8; 1i++) { /* Map all 8 bits to first 8 DI charmels */

pdi->DIIn = {(BOOLEAN) (in & msk) ? 1 : 0;

msk <<= 1;

pdi++:

}
/*$PAGE*/

Chapter 8: Discrete I/Os — 309

Listing 8.1 (continued) DIO.C

/%
R ARk AR kR ARk R ko AR Kk ook kK Kk ok ok kR ok ok ok ok ok ko ok ok ok ok o ook ok ok ok ok ok ok ok Kok ook ok ok ok ok ok ok ok ok ok ok ok
* UPDATE PHYSICAL OUTPUTS

* Description : This function is called to mep all of the discrete output channels to their appropriate
* physical destinations.

* Arguments : None.

* Returns : None.

L L L L T T T T T e]

*/

void DOWr (void)
{
DIO DO *pdo;
INT8U i;
INT8U out;
INT8U msk;

It

pdo = &DOTLL{0]; /* Point at first discrete output charnel */ ”
msk = 0x01; /* First DO will be mapped to bit 0 */ -
out = 0x00; /* Local 8 bit port image */
for (i = 0; 1 < 8; i++) { /* Map first 8 DO to 8 bit port image */

if (pdo->DOOut == TRUE) {

out 1= msk;

}

msk <<= 1;

pdo++;

}

outp(0x0300, out); /* Output port image to physical port */
}
#endif

310 — Embedded Systems Building Blocks, Second Edition

Listing 8.2 DIO.H

/*
* kK *k *k Ak Ak kA AR A AR AR A AL AR AK A A A A KA A A A AR A AR A KA KA A hhkhhkhhhhhhhhK
* Enmbedded Systems Building Blocks,
* Caplete and Ready-to-Use Modules in C
*
* Discrete I/0 Module
* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved
*
* Filename : DIO.H

* Programmer : Jean J. Labrosse

* e eI ek Ak e ok o e ok e *k *

*/
/*

% e ke * * *hkhk & & dodok ok ok ok % %k
* CONFIGURATION CONSTANTS

e ke ke e ke ok o ok ok ddok k&

*/
#ifndef CFGH
#define DIO TASK PRIO 40
#define DIQ TASK DLY TICKS 1
#define DIO_TASK STK SIZE 512
#define DIO_MAX DI 8 /* Maximum number of Discrete Inmput Channels (1..255) | */
#define DIO MAX DO 8 /* Maximum number of Discrete Output Chamnels (1..255) */
#define DI_EDGE EN 1 /* Enable code generation to support edge trig. (when 1) */
#define DO _BLINK MCODE_EN 1 /* Enable code generation to support blink mode (when 1) */
#endif

#ifdef DIO_GLOBALS
#define DIOQ EXT

#else

#define DIQ_EXT extern
#endif

Chapter 8: Discrete I/0s — 311

Listing 8.2 (continued) DIO.H

/*
kK Ak kA kR KA KA A A AR A A A KK KK KA KA KK A AR AAAA A ok ko k Ak A A A AhkRAEAARAA A AAAXAKKRK A kkdd
* DISCRETE INPUT CCNSTANTS

Tkkh * ke * *k Yotk ke *kk *x EEE T

*/

/* DI MODE SELECTCR VALUES

/* Input is forced low

/* Input is forced high

/* Input is based on state of physical irnput

/* Input is based on the camplement of the physical input
Low going edge detection of input

/* High going edge detection of input

/* Both low and high going edge detection of input

/* Low going edge detection of input

/* High going edge detection of input

#define DI_MODE LOW

#define DI_MODE HIGH

#define DI_MODE_DIRECT

#define DI _MODE INV

#define DI_MODE FEDGE LOW GOING
#define DI_MODE_EDGE HIGH GOING
#define DI_MODE EDGE_BOTH

#define DI_MODE_TOGGLE_LOW_GOING
#define DI_MODE_TOGGLE HIGH GOING

2 W E o
~
*

/* DI EDGE TRIGGERING MCDE SELECTCR VALUES
#define DI_EDGE_LOW GOING 0 /* Negative going edge
#define DI_EDGE HIGH GOING Positive going edge
#define DI_EDGE BOTH 2 /* Both positive and negative going

=
~
*

/*SPAGE*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

312 — Embedded Systems Building Blocks, Second Edition

Listing 8.2 (continued) DIO.H

/*
* % P 7K F ok F ok oAk Pk ok ok A kR A A Ak Ak A A A A A kA AT A A A A A A A AR AR A A A A A A A AR A A A A A A A Ak Ak A XA *AAh*
* DISCRETE OUTPUT CONSTANTS _
e 3 ok vk 709 vk ok vk ok o ook ok b vk i A A o vk ok vk b 2 i vk ok e 2 d ok ok vk ok ok o 2 2 o ok ok ok ok i e ok ok o A A ok ok K e e R ok ok L g ok k ok k sk ok ok 9 3 ok ok ok
*/
/* DO MODE SELECTOR VALUES */
#define DO MODE ILOW 0 /* Output will be low */
#define DO _MCDE_HIGH 1 /* Output will be high */
#define DO_MODE DIRECT 2 /* Output is based on state of user supplied state */
#define DO _MODE BLINK_SYNC 3 /* Sync. Blink mode */
#define DO MODE_BLINK ASYNC 4 /* Async. Blink mode */
/* DO BLINK MODE ENABLE SELECTOR VALUES */
#define DO _BLINK _EN 0 /* Blink is always enabled */
#define DO _BLINK_EN NORMAL 1 /* Blink depends on user request's state */
#define DO _BLINK_EN INV 2 /* Blink depends on the canplemented user request's state */
/*
Ak A kA Ak kA A A I A Ak kA A A A A A A A A A A A A A A A A AT A A A A A AN A XA A A AR AE A AR ANk Ak k kA Ak kA A A A dk kA kA h A K -
* DATA TYPES
AAAA KT AR A A kA kA kAR ARk kA A A A kk kA kA A h kA kdk ki * w* ke *kk * kK *
*/ b
typedef struct dio @i { /* DISCRETE INPUT CHANNEL. DATA STRUCTURE */
BOOLEAN DIIn; /* Current state of sensor input */
INT16U DIval; /* State of discrete input chamnel (or # of transitions) */
BOOLEAN DIPrev; /* Previous state of DIIn for edge detection */
BOOLEAN DIBypassEn; /* Bypass enable switch (Bypass when TRUE) */
INT8U DiModeSel ; /* Discrete input chamnel mode selector */
#if DI_FDGE EN
void (*DITrigFnct) (void *); /* Function to execute if edge triggered */
void *DITrigFnctarg; /* arguments passed to function when edge detected */
#endif
} DIO DI; -
typedef struct dio_do { /* DISCRETE OUTPUT CHANNEL DATA STRUCTURE */
BOOLEAN DOOut; /* Current state of discrete output chamnel */
BOOLEAN DOCtrl; /* Discrete output control request */
BOOLEAN DOBypass; /* Discrete output control bypass state */ -
BOOLEAN DOBypassEn; /* Bypass enable switch (Bypass when TRUE) */
INT8U DModeSel ; /* Discrete output channel mode selector */
INT8U DOBlinkEnSel ; /* Blink enable mode selector */
BOOLEAN DOInv; /* Discrete output inverter selector (Invert when TRUE) */
#1f DO_BLINK_MODE_EN
INT8U DOA; /* Blink mode ON time */
INT8U DOB; /* Asynchronous blink mode period */
INT8U DOBCEr; /* Asynchronous blink mode period counter */
#endif
} DIO _DO;

/*SPAGE*/

s

Chapter 8: Discrete I/Os — 313

Listing 8.2 (continued) DIO.H

/*

A A AR AR A A Ak Ak A A kA kA A A A A A A A A A A A A A A Ak A A A A A AN A A AR A A A A A I AR AR AR A NI AR A A A Ak kAR A ARk ok kA A A Ak k Ak
* GLOBAL VARIABLES

* % kkkk ok ko ok ok ok kHkkkkAkhk kA hhkkkkk ok kok ok khkkkkk ok koK o ke ok
*/

DIO_EXT DIO PI DITbl [DIO MAX DI];

DIO_EXT DIO DO DOTbhl [DIO _MAX DOJ ;

/*

AhkEkA Ak khkhkkrhkhhhhdkhkkhhkrrrhtkrrkkdkkd kkkkkkk dkkk *kkk *kkkk * ko ko *kk
* FUNCTICN PROTOTYPES

Ahkkkhkkkkkk khkk sk ek ke kK ddkdkkkk ko hhdkkodkkokkkdkk kK o ok ko ok kA k K ok ke
*/

void DIOInit {void) ;

void DICfgMode (INT8U n, INT8U mode);
INT16U DIGet(INT8U n);

void DISetBypassEn (INTSU n, BOOLEAN state);
void DISetBypass (INT8U n, INT16U val};

#if DI_EDGE_EN

void DICIr (INT8U n);

void DICfgEdgeDetectFnct (INTSU n, void (*fnct) (void *), void *arg);
#endif

void DOCEgMode (INTSU n, INTSU mode, BOOLEAN inv);
BOOLEAN DOGet (INT8U n);

void DOSet {INT8U n, BOOLEAN state);

void DOSetBypass (INT8U n, BOCOLEAN state);

void DOSetBypassEn (INT8U n, BOOLEAN state);

#$if DO_BLINK_MODE_EN -
void DOCfgBlink (INT8U n, INTSU mode, INT8U a, INTSU b);
void DOSetSyncCtrMax (INT8U val) ;

#endif

/*

AhkkhkhkkhhkhhkdkdkkhhdhhrhhddhhddkdkkdhhrdddkhddkdkkdrdrrrdkdkkkdkkrrArh ok kkd kA hdhdddkdkkkdrrrrdkkdkhdhdhhhdddkdkdk kkkd - i
* FUNCTICON PROTOTYPES

* HARDWARE. SPECIFIC

KEAEAA KA AAXE Ak kAA A Ak ko kA kdhkdkAd ok kkkkakdrdhkdrkkkhdtdrrdhrkhkhk ki * e gk e ke ok e de Kok ok ke ok ke ok ok ok

*/

void DIOInitIO(void);

void DIRd(void) ;
void DOWr (void) ;

314 — Embedded Systems Building Blocks, Second Edition

Chapter 9

Fixed-Point Math

Most low-end microprocessors (typical of embedded processors) do not provide hardware-assisted
floating-point math. Microprocessor manufacturers unfortunately seem to feel that floating-point math
is not very important in embedded systems. This has not been my experience. Fortunately, ANSI C com-
pilers allow you to use floating-point math but at a cost; floating-point libraries require extra ROM and
RAM but most importantly, they require more processing time than integer math. For example, float-
ing-point addition could take hundreds of microseconds on a low-end, 8-bit microprocessor, whereas it
typically takes only a few microseconds to perform a 16-bit integer addition. Multiplications and espe-
cially divisions are even worse. As an embedded system programmer, you are often confronted with the
task of writing the fastest and smallest possible code for real-time operations. This chapter will show
you how to perform basic arithmetic operations on fractional numbers by using only integers. In other
words, this chapter will answer the questions: “Without using floating-point arithmetic, how would you
add 12.34 and 987.654, multiply 3.1416 by 5.4, or divide 0.00456 by 98.77”

Throughout this chapter. I will be using 16-bit integers, but most of the concepts presented here
apply to any integer size. This chapter will show you how to use the concept of fixed-point math to get
the most out of integer arithmetic. Chapter 10 will make use of the information presented in this chapter.

9.00 Fixed-Point Numbers

Fixed-point is an alternative form for expressing numerical vatues. Fixed-point math is integer math, but
because it allows fractions. it is much more versatile and often can substitute for slower and more cum-
bersome floating-point operations. The idea of fixed-point math is to trick the computer into thinking
you are talking about an integer when in fact you. the programmer. know that you are dealing with a
number that has a fractional component.

Figure 9.1.a shows a 16-bit integer. The computer thinks only in bits. In integer arithmetic. the bit
positions are said to represent 2 to progressively higher powers starting from the right. The bit string
0000000000010000. therefore, represents the number 16.

315

316 — Embedded Systems Building Blocks, Second Edition

Figure 9.1.a Signed and unsigned 16-bit integers.

———— Unsigned 16-bit integer ——p

16-bit Integer
000000,00,0001.,0000

x 2t =

D
S

2% =

___________________ \6\5‘4\3\-2\1 \0
2°2°2° 2 202 2 x 23 =

o o o o o
%

x 2% =

o B O O ©oO ©

<4— Signed 16-bit integer ——»
S 15-bit Integer
0{0,0,0,0,0,0,0,0,0,01 0,0,0,0

Sign 5 Sum = 16

A practitioner of fixed-point math would observe that there is an implied decimal point (called a
radix point) to the right of the rightmost bit position and would ask, “Why must it fall there? Why can’t
I put the radix point somewhere else?” In other words, why must the rightmost bit represent 2°?

Figure 9.1.b shows the same 16-bit string. In this case, the programmer decides to place the radix
point between the 5th and 6th bit positions, which make the rightmost bit 2-5. The string
0000000000010000 is now not 16, but 0.5. Another way to look at this is to say that the integer 16 has
been scaled by 2-° (multiplied by 2+, or .03125):

16x27> =05

Figure 9.1.b Signed and unsigned fixed-point numbers with radix
point between 5th and 6th bits.

«——— Unsigned 16-bit integer ———p» 0x23%=0
11 bit Integer 5 bit Fraction 0x 2% = g
0,0,00,0,0,0,0,000(10,00.,0
_____________ 3 52 A1 [0 Aol 72 43 4 S
2°2°2 "2 2727 2 0x22. 0
Decimal Point 1 x21=0.5
(Radix point) 0
(Defined by Programmer) 0x2 =0
0x 2t -0

«4—— Signed 16-bit integer ———» ,
S 10 bit Integer 5 bit Fraction
0/0,0,0.0,0,00,0.0,0[1.0,00 0 5

Y !

\ ' |
Sign Sum

Chapter 9: Fixed-Point Math — 317

The computer, then, thinks it is working with the integer 16, but the programmer independently main-
tains a record of how the 16 should be scaled.

By manipulating the position of the radix point, a programmer can scale integers into fractional val-
ues. The location of the radix point defines a convention for how the program will interpret a 16-bit
string. As the radix point moves to the left (increasing the fractional portion of the string) the fraction
becomes more precise and the overall range of the number diminishes (because there are fewer
whole-number places).

The unsigned integer of Figure 9.1.b can be used to represent numbers having a range of 0.0 to
2047.96875, while the signed integer can represent numbers between —1024.0 to 1023.96875 (assuming
twos complement). Both signed and unsigned numbers have a resolution of 1/32nd (0.03125). You can
used fixed-point to represent distances, surfaces, volumes, temperatures, pressures, etc. Depending on
the application, you can fix the position of the radix point elsewhere to suit the range of numbers you
have to deal with.

Figure 9.2 shows how you can represent temperatures from —459.67 °F (0° Kelvin, absolute 0) to
+2048 °F by using an 11-bit integer and a 4-bit fraction. An integer value of 11528 represents a temper-

ature of 720.5 °F (11528 x 2~4). Using this format, temperatures can be represented with a 1/16th °F

resolution. The temperature scale is an ideal use for fixed-point math because the range is well defined,
so the programmer can easily set the location of the radix point in advance.

Figure 9.2 Representing temperatures from —459.67 °F to 2047 °F.

l¢———— Signed 16-bit integer —p

SJ . L L 111 blLt Ipte§fr [1 IjJEitlFl'aIC.
Signl Decimal Pointl
(Radix point)

When your program performs arithmetic operations (add, subtract, multiply, or divide) on
fixed-point numbers, it actually manipulates integers. (Microprocessors do not provide mechanisms to
represent fixed-point numbers.) This means that the programmer must personally keep track of the posi-
tion of the radix points. To represent fixed-point numbers, I will use the following notation:

Fixed-point number = <mantissa>S<exponent>

where S means that the mantissa needs to be scaled by 2exeerent to determine the value of the
fixed-point number. The exponent is sometimes called the scale factor. The mantissa is always an inte-
ger number. I use this notation to differentiate the fixed-point notation from the floating-point notation
<mantissa>E<exponent>. Following are some examples of the use of this notation.

583 represents 06250 or, 5 x 273 or,5+8
3188 represents 0.1211 or, 31 x 28 or, 31 + 256
-1235-16 represents ~0.001877 or, —123 x 2-16 or,—123 + 65536

The mantissa is shown in bold to emphasize that the fixed-point number is actually represented using an
integer whereas the exponent is maintained mentally by the programmer.

318 — Embedded Systems Building Blocks, Second Edition

Scaling is done to allow almost any number to be represented using a 16-bit integer. The position of
the radix point is determined from the largest number that you need to represent. Equation [9.1] shows
how to obtain the mantissa and the exponent (scale factor) for any positive value x between 0.0 and
65535.0.

POSITIVE NUMBERS (0.0 < x < 65535.0):

[9.11 Jactor= —INT log(2)

mantissa = INT(27/actor x x 1+ 0.5)

where INT () means that you take the integer portion of the result. In other words, the result is trun-
cated. log () is the logarithm of the number in parentheses (either 1ogn () or 1og10 ()). When x is 0.0
both the mantissa and the factor are 0. To represent the number 1.2345 using the fixed-point number
notation, you would substitute 1.2345 in Equation [9.1] as follows:

65535
log 1.2345)

—~15= —INT log(2)

40452 = INT(215x 1.2345 +0.5)

Thus, the number 1.2345 is written as 40452S-15.
Equation [9.2] shows how to obtain the mantissa and the exponent for a positive value of x that is
greater than 65535.0.

POSITIVE NUMBERS(x > 65535.0): -

_*
log (65535)
[9.2] Jactor= INT log(2) +1 -
mantissa = X
2 factor

Again, INT () means that we take the integer portion of the result. 1og () is the logarithm of the number
in parentheses. For example, the number 107573 is represented as:

107573
10g(65535
1= INT| ™" ooy |+ :

Chapter 9: Fixed-Point Math— 319

107573

53786 =
21

Thus, the number 107573 is written as 53786S 1. Note that in this case, we lose resolution because we
would actually need 17 bits to represent 107573 but we only have 16-bits.

Equation [9.3] shows how to obtain the mantissa and the exponent for any signed value x between —
32767.0 to +32767.0 (inclusively).

SIGNED NUMBERS (-32767.0 < x < +32767, except 0.0):

log (:%)

[9.3] factor= —INT log(2)

mantissa = 2-factor x x

where INT () means that we take the integer portion of the result. In other words, the result is truncated.
ix! means the absolute value of the number to scale. log () is the logarithm of the number in parenthe-
ses. When x is 0.0, both the mantissa and the factor are 0.

Equation [9.4] shows how to obtain the mantissa and the exponent for a signed integer that is less
than —32767.0 and greater than +32767.0.

SIGNED NUMBERS (-32767.0 > x > +32767):

|x]
10g(32767)
[9.4] factor= INT log(2) +1
mantissa = _x
2 factor

Again, INT () means that we take the integer portion of the result. |x 1 is the absolute value of the num-
ber to scale, and 1og () is the logarithm of the number in parentheses.

9.01 Fixed-Point Addition and Subtraction

To add or subtract two fixed-point numbers, the exponent of both numbers must be the same. For exam-
ple, you could not add the signed fixed-point number 20480S—15 (0.6250) with 31745S-18 (0.1211)
because they do not represent the same order of magnitude. In order to add these numbers, you would
first convert the smaller number (317455-18) to the order of magnitude of the larger number. You would
do this by adding 3 to the exponent (which is the same as multiplying by 23, or 8) and then dividing the
mantissa by 8. The number would be 3968S-15 (i.e., 3968/32768). The result of the addition is thus

T

320 — Embedded Systems Building Blocks, Second Edition

24448S5-15 (0.746094). Pretty simple, right? Actually, things gets a little trickier when you add two
numbers and the result exceeds unity. For example:

099+099=198or
32440S-15 + 324405-15 = 64880S-15
What actually happens here is that the addition overflows because the maximum value for a signed
16-bit fixed-point number can only be 32767! In this case, you can avoid the overflow by scaling both

numbers to S—14 instead of S—15 as shown following this paragraph. You will thus need to be careful
when you add or subtract two fixed-point numbers.

099+0.99=1.98 or
16220S-14 + 16220S-14 =32440S-14

9.02 Fixed-Point Multiplication

To multiply fixed-point numbers, you simply multiply the mantissa of the two numbers and add the
exponents. For example, we can multiply the two signed 16-bit fixed-point numbers:

06250 X 0.1211=0.075688 or
20480S-15 X 317455-18 =6501376005-33

One thing to note here is that when you multiply two signed 16-bit numbers, the result is a 30-bit
number. Because of this, your C compiler needs to support signed longs (32-bit numbers). In the previ-
ous example, you must divide the number by 32768S-15 (i.e., this is a division by 1.0 and does not
change the result) to obtain a signed 16-bit result. A division by 327685-15 simply involves shifting the
mantissa right 15 places. In this case, the result would be 19840518 (or 0.075684).

For unsigned fixed-point numbers, the multiplication yields a 32-bit result. For example, 0.6250 X
0.1211 looks like this:

40960S-16 X 63491S-19 =2600591360S-35

A division of 65536 would make the previous result fit back into an unsigned 16-bit integer:
39681S-19 (or 0.075686). Note that the result is more accurate than its signed version because more
bits were used in the unsigned multiplication.

9.03 Fixed-Point Division

Divisions are always trickier (and slower) than multiplications. For example, instead of dividing a num-
ber by 10, you should consider multiplying the number by 0.1 (or 262145-18, signed). If you have to
perform a division, however, you simply divide the mantissas and subtract the exponents as:

0.2345 +-10.987=-0.021343 or
30736517 +-225015-11 =-15-6 (-0.015625)

o mrr‘ .
“
I

Chapter 9: Fixed-Point Math — 321

Note how the result is totally incorrect. This is because the division produced a result of —1 and a
remainder of 8235. C compilers don’t know what to do with remainders. To avoid this problem, you
simply need to scale the dividend by 327685-15 and remember that the final result has been multiplied
by 32768:

(30736517 X 327685-15) + ~225015-11 =-44760S-21 (or-0.021343)

Note that the mantissa of the result doesn’t fit in a 16-bit signed number. Because of this, the result
needs to be adjusted as follows:

—44760S-21 + 25-1=-223805-20 (or-0.021343)

The overflow problem will occur whenever the mantissa of the numerator is greater than the mantissa of
the denominator. Your code will have to check for this situation.

9.04 Fixed-Point Comparison

Comparing two fixed-point numbers presents a problem similar to the problem of adding and subtract-
ing: the exponent of both numbers must be the same. For example, comparing 20480S-15 with
31745S5-18 requires that you adjust the smaller of the two numbers to match the scale of the larger.
317455-18 would thus become 3968S—15 (i.e., 3968/32768). Once both numbers represent the same
order of magnitude, comparing the two numbers is simply a matter of comparing the mantissas.

9.05 Using Fixed-Point Arithmetic, Example #1

Suppose you needed to compute the circumference of a circle that can vary in diameter from 1.22 to
20.8 inches. The circumference of a circle is given by:

[9.5] Circumference = n x Diameter

Because diameters are positive quantities, we will use unsigned fixed-point numbers. & can be repre-
sented as 514725-14 (actually 3.141602). As shown in Figure 9.3, we need a 5-bit integer to represent
the diameter of the circle; the other 11 bits of an unsigned 16-bit integer number are used to hold the
fraction. In other words, the diameter will be scaled by 2!'. Numbers for the diameter will be repre-
sented as <mantissa>S—11.

322 — Embedded Systems Building Blocks, Second Edition

Figure 9.3 Fixed-point representation for circle diameter.

l«——— Unsigned 16-bit integer ——p

SbitInteger | 11 bitFraction Diameter

The circumference of the circle is computed in C as follows:

INT16U Circumference (INT16U diameter)
{
INT16U x;

x = (INT16S) ((51472L * (INT32U)diameter) >> 16);

return (Xx);

Multiplying two 16-bit unsigned integers will yield a 32-bit result, so you must adjust the resultant
mantissa by dividing by 65536 (i.e., shifting right 16 places). The exponent of the result is determined
as follows. 7 has the exponent of S—14 and the diameter has an exponent of S—11. However, the right
shift is the same as dividing by 65536516 and thus, the exponent of the result is ((—14) + (~11) — (-16))
=5-9 (S5-14 X S-11 + S—16).

Our minimum circumference is obtained by substituting a 1.22 (2498S-11) inch diameter circle in
the previous code. The multiplication yields 128577056S-25. After the shift, the result is 19615-9
(3.830078) which is within about 0.07 percent of the correct result of 3.832743. Our maximum circum-
ference is obtained by substituting a 20.8 (425985-11) inch diameter circle in the previous code. The
multiplication yields 2192604256S-25. After the shift, the result is 33456S—-9 (65.343750) which is
within about 0.002 percent of the correct result of 65.345127.

9.06 Using Fixed-Point Arithmetic, Example #2

Computing the volume of a cylinder involves more multiplications. The formula for the volume of a cyl-
inder is:

T X (Diameter)2 x Length

[9.6] Volume = 7

Suppose the cylinder length varies from 9 to 24 inches, and the diameter varies from 1 to 12 inches.
To compute the volume of a cylinder, I will again use unsigned integer math because all arguments are
strictly positive. T can be represented as 51472S—-14 (actually 3.141602). To represent the length of the
cylinder, we need 5 bits for the integer portion (up to 31 inches). The other 11 bits of an unsigned 16-bit
integer number are used to hold the fraction; in other words, the length will be scaled by 2!'. Similarly,
the diameter will require 4 bits for the integer portion and 12 bits for the fraction. This is shown in Fig-

Chapter 9: Fixed-Point Math — 323

ure 9.4. Numbers representing the length will be represented as <mantissa>S—11while numbers for the
diameter will be represented as <mantissa>S—12.

Figure 9.4 Fixed-point representation for cylinder length and
diameter.

l¢———— Unsigned 16-bit integer ——p

SbitInteger | = 11bitFraction =~ Length

l|——— Unsigned 16-bit integer —»

abitfat | |, [2pitfraction | Diameter
The volume of the cylinder is computed in C as follows: . §
TN\

4
INT16U Volume (INT16U length, INT16U diameter)
{

e

INT32U x; ; I

INT32U dia;

dia = (INT32U)diameter;

X = (514721 * dia) >> 16; /* S— 10 Result */
X = {(x * dia) >> 16; /* 5— 6 Result */
X = (x * (INT32U)length) >> 16; /* S- 1 Result */
return ((INT1l6U)x); /* 85— 3 Result */

Each multiplication is carried out separately because you must convert the resulting 32-bit mantissa
to a 16-bit mantissa. The exponent of the result is S-10 (S~14 X S—12 + S- 16). The diameter is multi-
plied by the intermediate result and again, the new result is adjusted. The exponent of this new result is
S-6 (S-10 X S-12 + S-16). Finally, the length is multiplied by the surface of the circle to obtain the
volume. The exponent of the result is S—1 (S—6 X S-11 + S-16), however, you can avoid dividing by 4
simply by changing the scale of the result. Thus, the final exponent is S-3.

Our minimum volume is obtained by substituting a 9-inch long (18432S-11) 1-inch diameter cylin-
der (40965-12).

1st Multiplication 51472514 X 4096S-12iis ?%293@&26 or 3217510 aftex the shift.
2nd Multiplication 3217S-10 X 4096S-12 1;1 768325-22 or 20156 after the shift
3rd Multiplication 201S-6% 18432S-11is 37048325—17 or 5651 after the shift.

324 — Embedded Systems Building Blocks, Second Edition

The returned value is actually scaled S—3 and thus, the final result is 56S—3 (or 7.00). The real vol-
ume should be 7.06858, which results in an error of 0.98 percent. Performing the same operations using
our maximum values (12-inch diameter (49152S-12) and a 24-inch length (49152S-11)) will yield the

following results:

1st Multiplication 51472514 X 49152512 is 2529951744526 or

38604S-10 after the shift.

2nd Multiplication 38604510 X 491525-12 is 1897463808522 or

28953S-6 after the shift.

3rd Multiplication 2895356 X 49152S-11 is 1423097856517 or 2171451 after the shift.

The returned value is then 21714S-3 (2714.25). The actual volume is 2714.336 yielding an error of
only 0.003 percent. One thing to note is that the second multiplication produced a number that is less
than half of the full scale. In other words, 28953 is less than half the full range of an unsigned 16-bit
number (0 to 65535). By shifting left by 15 places instead of 16 places, you could actually obtain better

accuracy from that point on, as shown:

1st Multiplication 51472514 X 49152512 is 2529951744526 or

38604510 after the shift.

2nd Multiplication 38604S5-10 X 49152512 is 1897463808522 or

57906S-7 after a shift of only 15 places.

3rd Multiplication 57906S-7 X 49152511 is2846195712S5-18
or 4342954 after the shift.

The returned value is this case is 43429S—4, which is 2714.3125, but the computation was per-
formed with better accuracy throughout. This improvement in accuracy would help when computing

smaller volumes. The final code would be:

INT16U Volume (INT16U length, INT16U diameter)
{

INT32U X;

INT32U dia;

dia = (INT32U)diameter;

X = (51472L * dia) >> 16; /* S~ 10 Result
X = (X * dia) >> 15; /* S—~ 7 Result
b’ = (x * (INT32U)length) >> 16; /* S— 2 Result

return ((INT16U)Xx); /* S- 4 Result

*/
*/
*/
*/

Chapter 9: Fixed-Point Math — 325

9.07 Using Fixed-Point Arithmetic, Example #3

You can use fixed-point arithmetic to convert °C (degrees Celcius) to °F (degrees Fahrenheit). The equa-
tion for converting °F to °C is:

(°F-32)x5

{9.7} C = 9

In order to determine how to implement the conversion equation using fixed-point arithmetic, you
need to know the range of temperatures that you will be dealing with. Suppose that you are interested in
temperatures from —40 °F to 250 °F. The range chosen forces you to use signed integer arithmetic. Also,
you need 8 bits to represent temperatures up to 250 °F, and thus, 7 bits will be used to represent frac-
tional degrees. The bias of 32 °F is represented as 4096S—7, while the constant multiplier 5/9 can be
represented as 18204S—15. The code to perform the conversion is:

INT165 FtoC{INT16S £)

The temperature in °C is scaled S— 7 (i.e., S=7 X S~15 + S-15). Performing the conversion from °C

to °F is just as simple. The equation is:

°Cx9
5

Again, the 32 °F constant is 4096S—7, while the constant multiplier 9/5 is 29491S—-14. The conver-
sion code is:

[9.8) °F = +32

Note that to obtain an S-7 result, I had to divide the result of the multiplication by 16384 instead of
32768.

326 — Embedded Systems Building Blocks, Second Edition

9.08 Conclusion

To use fixed-point arithmetic, you need to know the range of values that the variables can take.
Fixed-point arithmetic operations will generally execute quickly because most microprocessors are
good at performing integer operations. This performance is at the expense of accuracy and complexity.
To improve the accuracy you have to use more bits. Using fixed-point arithmetic produces large errors
when using small numbers (i.e., numbers at the bottom of the scale) and decent results using large num-
bers. For large numbers, the improvement in accuracy is a result of using more bits. Fixed-point works
very well when the dynamic range of the numbers is small.

9.09 Bibliography

Crowell, Charles

“Floating-Point Arithmetic with the TMS32010”
Houston, TX

Texas Instruments Inc., 1986

Institute of Electrical and Electronics Engineers, Inc.

ANSI/IEEE Std 754-1985, IEEE Standard for Binary Floating-Point Arithmetic
345 East 47th Street

New York, NY 10017

Knuth, Donald E.

The Art of Computer Programming, Vol. 2, Seminumerical Algorithms
Reading, Massachusetts

Addison-Wesley Publishing Company

ISBN 0-201-03822-6

Morgan, Don

Numerical Methods, Real-Time and Embedded Systems Programming
San Mateo, CA

M&T Publishing, Inc.

ISBN 1-55851-232-2

Prosise, Jeff

“Questions & Answer”
Microsoft Systems Journal
March 1993, p85,86

Simar, Ray Jr.

“Floating-Point Arithmetic with the TMS32010”
Houston, TX

Texas Instruments Inc., 1986

Chapter 10

Analog I/Os

Natural parameters such as temperature, pressure, displacement, altitude, humidity, flow, etc., are ana-
log. In other words, the value taken by these parameters can change continuously instead of in discrete
steps. To be manipulated by a computer, these analog parameters must be converted to digital. This is
called analog-to-digital conversion.

Certain analog parameters can also be controlled. For example, the speed of an automobile is
adjusted by changing the position of the throttle. The exact position of the throttle depends on many fac-
tors, such as wind resistance, whether you are going uphill or downhill, etc. You can control the flow of
liquids or gases by adjusting the opening of a valve. (Flow, in this case, is not necessarily proportional to
the opening of the valve, but this is a different issue.) The position of the heads in some hard disk drives
is controlled by voice coil type actuators. An actuator is a device that converts electrical or pneumatic
signals into linear motion. To be controlled by a computer, analog parameters must be converted from
their digital form to analog. This is called digital-to-analog conversion.

This chapter discusses software issues relating to analog-to-digital conversions and digital-to-analog
conversions. I will also describe how I implemented an analog I/O module. The analog I/O module
offers the following features:

* Reads and scales from 1 to 250 analog inputs.

» Updates and scales from 1 to 250 analog outputs.

» Each analog I/O channel can define its own scaling function.

* Your application obtains Engineering Units from analog input channels instead of ADC counts.

» Your application provides Engineering Units to analog output channels instead of DAC counts.
This chapter assumes you understand the concept of fixed-point math, described in Chapter 9.

327

328 — Embedded Systems Building Blocks, Second Edition

10.00 Analog Inputs

A typical analog-to-digital system generally consists of the following circuit elements:
» transducer

* amplifier

* filter

e multiplexer

e analog-to-digital converter (ADC)

The interconnection of these components is shown in Figure 10.1. The inputs to the system are the
physical parameters to measure (pressure, temperature, flow, position, etc.).

Figure 10.1 Analog-to-digital conversion.

—— Analog input channel

Physical —bITransducerI-—Vl Amplifier |—>L Filter |-> Channel Select
Parameter <
| | |
| | | g To/From
Microprocessor
I I | >
| | | Multiplexer 9| ADC |4
—»
| | |
| | I
| | |
l I [—»
I I I

The physical parameter is first converted into an electrical signal by a transducer. Transducers are
available to convert temperature, pressure, humidity, position, etc., to electrical signals. An amplifier is
generally used to increase the amplitude of the transducer output to a more usable level for further pro-
cessing (typically between 1 and 10 volts); the output of a transducer may produce a signal in the micro-
volt to millivolt range. The amplifier is frequently followed by a low pass filter, which is used to reduce
unwanted high-frequency electrical noise. The process described previously is usually called input con-
ditioning and each conditioned input is also referred to as an analog input channel. Analog input chan-
nels are multiplexed into an analog-to-digital converter (ADC) because ADCs are often expensive
devices. The ADC converts each analog input signal to digital form. The microprocessor is responsible
for selecting which analog input it wants to convert and also for initiating the conversion process for the
selected channel. The block diagram of Figure 10.1 can be augmented by adding a sample-and-hold
stage between the multiplexer and the ADC which would be used to ensure that the level of the signal is
constant while a conversion is taking place.

The process of converting analog signals to digital is a complex topic and is covered in great details
in many books (see “Bibliography” on page 374). In this book, I will concentrate mostly on some of the
software aspects. Analog-to-digital conversion basically consists of transforming a continuous analog
signal into a set of digital codes. This is called quantizing. Figure 10.2 shows how a 0-to-10 volt signal
is quantized into a 3-bit code.

Chapter 10: Analog I/Os — 329

Figure 10.2 Quantizing an analog signal.

Output Code
111

[

110 }

101 |

100 |
011
010 |
001 T
000 1
+ + + + + + + o+
_— k) W L N] 00—
(SRR IS IS SRR S
“hh © L ©O L © L 8
Input Voltage
Q R +Q/2 .L
uantizer
Error 0 Q

-Qn2

There are several important points to note about Figure 10.2. First, the resolution of the quantizer is
defined by the number of bits it uses. An 8-bit quantizer will divide the input level into 256 steps. A
12-bit quantizer will divide the input level into 4,096 steps. Thus, a 12-bit quantizer has a higher resolu-
tion than an 8-bit quantizer. The number of steps for the quantizer is 2" where n corresponds to the num-
ber of bits used. Quantizers (or ADCs) are commercially available from 4 to 24 bits. The required
resolution is dictated by the application. There are literally hundreds of ADCs to choose from, and gen-
erally cost increases with resolution.

An important point to make is that the maximum value of the digital code of an ADC, namely all 1s
(ones), does not correspond with the analog Full Scale (FS) but rather, one Least Significant Bit (LSB)
less than full scale or:

[10.1] Maximum_value_of_digital_code = FS x (1 -27")

For example, a 12-bit ADC with a 0 to +10V analog range has a maximum digital code of 0xOFFF
(4095) and a maximum analog value of +10V X (1 — 2-12) or +9.99756V. In other words, the maximum
analog value of the converter never quite reaches the point defined as full scale. At any part of the input
range of the ADC, there is a small range of analog values within which the same code is produced. This
small range in values is known as the quantization size, or quantum, Q. The quantum in Figure 10.2 is
1.25V and is found by dividing the full scale analog range by the number of steps of the quantizer. Q is
thus given by the following equation:

FSv

10.2 =
[10.2] 0=

Q is the smallest analog difference that can be distinguished by the quantizer.
FSV is the full scale voltage range.
n corresponds to the number of bits used by the quantizer (i.e., ADC).

330 — Embedded Systems Building Blocks, Second Edition

As shown in Figure 10.2 (Quantizer Error), a sawtooth error function is obtained if the ADC input is
moved through its range of analog values and the difference between output and input is taken. For
example, any voltage between 1.875V and 3.125V will produce the binary code 010.

All ADCs require a small but significant amount of time to quantize an analog signal. The time it
takes to make the conversion depends on several factors: the converter resolution, the conversion tech-
nique, and the technology used to manufacture the ADC. The conversion speed (how fast an analog volt-
age is converted to digital) required for a particular application depends on how fast the signal to be
converted is changing and on the desired accuracy. The conversion time (inverse of conversion speed) is
frequently called aperture time. If the analog signal to measure varies by more than the resolution of the
quantizer during the conversion time, then a sample-and-hold circuit should be used. ADCs are avail-
able with conversion speeds ranging from about three conversions per second to well over 100 million
conversions per second.

10.01 Reading an ADC

The method used to read the ADC depends on how fast the ADC converts an analog voltage to a binary
code. In most cases, however, the ADC must be explicitly triggered to perform a conversion. In other
words, you must issue a command to the ADC to start the conversion process. Very fast ADCs, those
that can convert an analog signal in less than 1 uS, generally have dedicated hardware to handle the fast
conversion rate and will typically buffer the samples. When the buffer is full, the analog samples are
processed offline. This is basically how a digital storage oscilloscope works. At the other end of the
spectrum, ADCs used in voltmeters are generally slow (about 200 mS) but accurate (4 1/2 digits, or
0.005 percent).

The actual method used to read an ADC depends on many factors: the conversion time of the ADC,
how often you need the analog value converted, how many channels you have to read, etc. The next
three sections describe some possible methods of reading an ADC.

10.01.01 Reading an ADC, Method #1

The scheme shown in Figure 10.3 assumes that the ADC conversion time is relatively slow (greater than
about 5 mS). Here a driver (a function) reads an analog input channel and returns the result of the con-
version to your application. Your application calls the driver in Figure 10.3 and passes it the desired
channel to read. The driver starts by selecting (through the multiplexer) the desired analog channel (@)
to read. Before starting the conversion, you may want to wait a few microseconds to allow for the signal
to propagate through the multiplexer and stabilize. If you don’t wait for the multiplexer’s output to sta-
bilize, your readings may be unstable. Next, the ADC is triggered to start the conversion (@). The driver
then delays to allow for the conversion to complete (®). Note that the delay time must be longer than the
conversion time of the ADC. After the delay, the driver assumes that the conversion is complete and
reads the ADC (®@). The binary result is then returned to your application (®). The pseudocode is:

Chapter 10: Analog I/Os — 331

ReadAnalogInputChannel (Channel #)
{
Select the desired analog input channel;
Wait for MUX output to stabilize;
Start ADC conversion;
Delay 'x' mS to allow for conversion to complete;

Read ADC and return result to the caller;

Figure 10.3 Reading an ADC (Method #1).

Analog

Inputs —IMUX

@

@ Your application

h 4

@ The driver selects the analog input to read.

@ The ADC is triggered to start the conversion.

@ The driver delays for longer than the duration of the conversion.
(@) The ADC is read.

@ The binary value of analog input is returned to your application.

This method is simple and can be used with slow-changing analog signals. For example, you can use
this method when measuring the temperature of a room (which doesn’t change very quickly).

10.01.02 Reading an ADC, Method #2

You can actually use a signal provided by most ADCs (i.e., the End Of Conversion (EOC) signal) to tell
your driver when the ADC has completed its conversion. The code and your hardware in this case will
be a little more complicated, but this method is more efficient.

332 — Embedded Systems Building Blocks, Second Edition

Figure 10.4 Reading an ADC (Method #2).

@
e ®
Analog @ @
Inputs ——p{MUX » ADC | = Your application
Interrupt
©)
XTimeout
®
ISR)— |
Semaphore

@ The driver selects the desired analog input to read.
@ The ADC is triggered to start the conversion.

@ The driver waits for the semaphore to be signalled (with timeout).
@ The end of conversion generates an interrupt.

@ The end of conversion ISR signals the semaphore.

(§) The driver reads the ADC.

@ The binary value of the analog input is returned to your application.

Again, your application calls the driver by passing it the analog input channel to read. The driver
shown in Figure 10.4 starts by selecting (through the multiplexer) the desired analog channel (©). At
this point, you should again wait a few microseconds to allow for the signal to propagate through the
multiplexer and stabilize. The ADC is then triggered to start the conversion (®). The driver then waits
for a semaphore (®) with a timeout. A timeout is used to detect a hardware malfunction. In other words,
you don’t want the driver to wait forever if the ADC fails (i.e., never finishes the conversion). When the
analog conversion completes, the ADC generates an interrupt (@). The ADC conversion-complete ISR
signals the semaphore (®), which notifies the driver that the ADC has completed its conversion. When
the driver gets to execute, it reads the ADC (®) and returns the binary result to your application (@).

The pseudocode for both the driver and the ISR follows.

You would use this method if the conversion time of the ADC is greater than the execution time of
the ISR and the call to wait for the semaphore. For example, your ADC takes 1 mS to perform a conver-
sion, and the total execution time of the ISR and the call to wait for the semaphore requires only about
50 pS. If the execution time of the ISR and the call to wait for the semaphore is greater than the conver-
sion time of the ADC, you might as well wait in a software loop (poiling the ADC’s EOC line) until the
ADC completes its conversion. This method will be discussed next.

)
|

Chapter 10: Analog I/Os — 333

ReadAnalogInputChannel (Channel#)
{
Select the desired analog input channel;
Wait for MUX output to stabilize;
Start ADC conversion;
Wait for signal from ADC ISR (with timeout);
if (Timed out) {
Signal error;
} else {
Read ADC and return result to the caller;

}
Conversion complete ISR
{
Signal conversion complete semaphore;

10.01.03 Reading an ADC, Method #3

The third method can be used if the conversion time of the ADC is less than the time needed to process
the interrupt and wait for the semaphore, as described in the previous method. For example, depending
on the microprocessor, an ADC with a conversion time less than 25 uS cannot afford the overhead of an
interrupt and a semaphore which could take over 50 uS. In other words, the execution time to handle the
interrupt overhead and the time to signal and wait for the semaphore can take more than 25 pS. This is
true of most §-bit and some 16-bit microprocessors.

Your application calls the driver shown in Figure 10.5 by passing it the desired analog input channel
to read. The driver starts by selecting (through the multiplexer) the channel to read (®). Again, before
starting the conversion, you may want to wait a few microseconds to allow for the signal to propagate
through the multiplexer and stabilize. The ADC is then triggered to start the conversion (®). The driver
then waits (®) in a software loop for the ADC to complete its conversion. While waiting in the loop, the
driver monitors the status (the EOC) or the BUSY signal of the ADC. You need to ensure that you have a
way to prevent an infinite loop if your hardware becomes defective. An infinite loop is avoided by using
a software counter which is decremented every time through the polling loop (see the pseudocode fol-
lowing this paragraph). The initial value of the counter is determined from the execution time of each
iteration of the polling loop. For example, if you have an ADC that should perform a conversion in 50
uS and each iteration through the polling loop takes 5 uS, you will need to load the counter with a value
of at least 10. You want to use the loop counter as an indication of a hardware malfunction and not to
indicate when the ADC is done converting. Based on experience, you should load the loop counter so
that a timeout occurs when the polling time exceeds the ADC conversion by about 25 to 50 percent. In
other words, you would load the counter with a value between 13 and 15 in my example. When the ADC
finally signals an end of conversion, the driver reads the ADC (@) and returns the binary result to your
application (®).

334 — Embedded Systems Building Blocks, Second Edition

Figure 10.5 Reading an ADC (Method #3)

e

@
Anal |
lnr;‘)?;sg —»MUX » ADC __@l, ® Your application

@

©)

E,’gﬁ,gf Conversion XTimeout Counter

@ The driver selects the desired analog input to read.

@ The ADC is triggered to start the conversion.

@ The driver waits for the ADC to complete its conversion (with timeout).
@ The driver reads the ADC.

@ The binary value of analog input is returned to your application.

The pseudocode for the driver is:

ReadAnalogInputChannel (Channeli#)
{
Select the desired analog input channel (i.e. MUX);
Wait for MUX output to stabilize;
Start ADC conversion;
Load timeout counter;
while (ADC Busy && Counter-- > 0) /* Polling Loop */ -
_ if (Counter == 0) { /* Check for hardware malfunction */
Signal error;
} else { -
Read ADC and return result to the caller;

Actually, I prefer this method because:
* You can get fairly inexpensive fast ADCs (~25 puS conversion time).
* You don’t have the:added complexity of an ISR.
* Your signal hasiess time to-.change -during a conversion.
» This method imposes very little-overhead on your CPU. -
* The polling loop-can’be:interrupted to service interrupts.

Chapter 10: Analog I/Os — 335

10.01.04 Reading an ADC, Miscellaneous

The nice thing about reading analog input channels through drivers is that the implementation details
are hidden from your application. You can use any of the three drivers shown without changing your
application code.

By always returning the same number of bits to your application, you can make your application
insensitive to the actual number of bits of the ADC. In other words, if the ADC driver always returned a
signed 16-bit number irrespective of the actual number of bits for the ADC, your application would not
have to be adjusted every time you changed the word size of your ADC. This is actually quite easy to
accomplish, as shown in Figure 10.6. All you need to do is to shift left the binary value of the ADC until
the most significant bit of the ADC value is in bit position number 14 of the result. I use a 16-bit signed
result because the computations required to scale the result of the ADC need to be signed. This will be
described in the next section. If you deal with higher resolution ADCs, you may want to write your driv-
ers and application code to assume signed 32-bit values.

Figure 10.6 ADC driver always returning a signed 16-bit result.

. B7 BO
A LIITTTTT]

(7 Shifts Left) A A A A A

Signed 16-BitResult[o| | | | | | | | [o]o]o]o]o{o]o]
B15 BO

10-Bit ADC B __BO
-131
(5 Shifts Loft HEEREEEREE

Signed 16—BitResu1t]|3(:J HEEEEEEE |0|‘0|0|0|1(3)0|

12:Bit ADC EEEEEEEEEEE
TI VYT IT VT Y VY Y
Signed 16-BitResult]|3(1)Sl HERERERER |o|o[§0|

14-Bit ADC
(1 Shift Left)

EEEEEEEEEEEEEE
TI VI IV Vv YVIveey
Signed 16-BitResultfo| [| | [[[[[[[[[| |o]

B15 BO

For example, an 8-bit ADC can measure a voltage between 0 and 0.996094 (255/256) of the full
scale voltage (see Equation [10.1]). This is the same as (255 << 7) / 32768, or 0.996094. Similarly, a
12-bit ADC can measure a voltage between 0 and 4095/4096 or 0.999756, which is the same as (4095
<< 3) /32768 (i.e., 0.999756). You can thus hide the details about how many bits each ADC has with
respect to your application without losing any accuracy.

i

336 — Embedded Systems Building Blocks, Second Edition

10.02 Temperature Measurement Example

As we have seen, an ADC produces a binary code based on a full scale voltage. If you are measuring a
temperature, for example, this information means very little to you. What you really want to know is the
temperature of what you are measuring. The circuit in Figure 10.7 shows a commonly used temperature
sensor Integrated Circuit (IC), the National Semiconductor LM34A.)

Figure 10.7 Temperature measurement using an LM34A.

From
+Vs 10 mV/°F CPU
10 V (Full Scale)
Temperature ‘
—50 to 300°F |f M34A Filter
> To/From
T MUX A/D CPU
= _Vs +Vbias
(1.25V) | |

The EM34A produces a voltage that is directly proportional to the temperature surrounding it, spe-
cifically, 10 mV/°F. Note that you can also obtain the temperature in degrees Celsius by using an
LM35A. The amplifier is designed to have a gain of 2.5, and thus —50 to 300 °F will produce a voltage
of —1.25 to 7.50 volts. By using a 10-bit ADC, you can obtain a resolution of about 0.342 °F (350
°F/1024). Note that the ADC can only convert positive voltages, and thus a bias of 1.25 volts is intro-
duced following the amplification stage to ensure that a positive voltage is present at the input of the
ADC for the complete temperature range. With this bias, —50 °F will appear as 0V, 0 °F will be 1.25 V
and 300 °F will be 8.75 V. The value obtained at the ADC is given by:

[10.3]

(Temperature W X001 x25, +125) x 1023
ADC _ (°F) V/(°F) v bia

counts —

counts

VFuHScale

counts is an industry standard convention that means the binary value of the ADC.

0.01v,er, corresponds to the transducer transfer function — 10 mV/°F — specified by National
Semiconductor.

2.5 is the gain of the amplifier stage and is established by the hardware designer.

1.25 is the bias voltage to ensure that the ADC always reads a positive voltage.

1023 is the maximum binary value taken by a 10-bit converter.

10, isthe full scale voltage.

For example, a temperature of 100 °F would have a value of 383 counts (actually, 383.625). Note
that the ADC can produce only integer values, and thus the actual value of 383.625 is truncated to 383.
To obtain the temperature read at the sensor, you need to rearrange Equation [10.3] so that temperature

Chapter 10: Analog /Os — 337

is given as a function of ADC counts, as shown in Equation [10.4]. This process is often called convert-
ing ADC counts to engineering units (E.U.):

ADC oypis IOVFuIlScale v
104 T 1023count: - bias
[10.4] emperature(OF) = 001 X2‘5A
V/(°F) v
The genera] form for this equation is:
ADCcounts x FSV
~ Vbias
(2"-1)
[10.5] EU. = Transducer XAy
V/(EU)

E.U. is the engineering unit of the transducer (°F, PSI, Feet, etc.).
Viias 18 the bias voltage added to the output of the amplifier stage to allow the ADC to read nega-
tive values.
FSV is the full scale voltage of the ADC.
Transducer (veu) corresponds to the number of volts produced by the transducer per engineering
unit.
Ay is the gain of the amplifier stage. —_—
n is the resolution of the ADC (in number of bits).

You can also write Equation [10.5] as follows:

(Apcwum - Biaswum) x FSV
(10.6] EU-= Iransducer xAyx(2"-1)

V/(EU) 10

In this case, Biasc..ms corresponds to the ADC counts of the bias voltage as is given by the following _
equation:

V.. .x(2"=1)
s bias
[10.7] Bias,,, .. = — sV
Note that most of the terms in Equation [10.6] are known when the system is designed, and thus, to
save processing time, they should not be evaluated at run time. In other words, you could rewrite the
equation as follows:

[10.8] EU. = (ADCCO“M: - ConvOffsetcoums) X ConvGain(EU)/(wunt)
where:
[10.9] ConvGain - FSv
(BU)/(county Trapsducer x Ay x(2"-1) ,
V/(EU)

Note that the units of the conversion gain (ConvGain) are E.U. per ADC count.

338 — Embedded Systems Building Blocks, Second Edition

Vbias x(2"—-1
[10.10] ConvOffset, p.e = —(FSV

In the temperature measurement example, the conversion gain would be 0.391007 and the conver-
sion offset would be 127.875. You can apply fixed-point arithmetic and scale factors (see Chapter 9) to
the temperature measurement example. The temperature of the LM34A sensor is given by:

[10.11]

) x ConvGain

counts

Temperature(OF) = (ADC + ConvOffset

counts (°F)/(count)

Remember that you have a 10-bit ADC, and thus the range of counts is from 0 to 1023. You can scale
this number by multiplying the ADC counts by 32 (shifting left five places). To perform the subtraction
with the bias, you need to scale the bias (i.e., conversion offset) by the same value, or 127.875 X 32 =
4092S-5. The gain (0.391007) can be scaled by multiplying by 65536, and thus the conversion gain is
256255-16. The temperature is thus given by:

[10.12] Temperature(°F) S-21 = ((ADC counts << 5)S-5 — 40925-5) X 256255-16
or
[10.13] Temperature(°F) S—6 = ((ADC counts << 5)S-5 — 40928-5) X 256255-16) >> 15

From Equation [10.3], 150 °F would produce 511 ADC counts. Substituting 511 counts in Equation
[10.12] produces the following:
Temperature (°F) S-21 = (163525-5 — 40925-5) X 256255-16, or
Temperature (°F) S-21 = 314162500S-21 (i.e., 149.80)

or using Equation [10.13]:
Temperature (°F) S-6 = 9587S-6 (i.e., 149.80)
The C code to convert the ADC counts to temperature is:

Note that raw corresponds to the ADC counts (10 bits). The total counts (cnts) number is com-
puted separately because a good compiler should perform this operation using 16-bit arithmetic instead
of 32-bit (which would be faster). Counts and'gain are then converted to INT32S because the multipli- -
cation needs 30-bit precision. The result is divided by 32768 so that it fits back into a 16-bit signed vari-

Chapter 10: Analog I/Os — 339

able. Finally, the temperature is returned in °F scaled S—6. You could obtain the temperature to the
nearest degree by first adding 32 (0.5) and then dividing the result by 64. In other words, by rounding
the result.

The electronic components used to provide the amplication and the bias voltage are generally inac-
curate. Oddly enough, extra components can be added to allow the amplification stage and bias voltage
to be precisely adjusted (that is, calibrated). Adding such components, however, adds recurring cost to
your system. Component inaccuracies easily can be compensated in software by modifying Equation
[10.8] as:

[10.14]

+ ConvOffset + CalOffset) x ConvGain x CalGain

EU= (ADC counts (EU)Y/(count)

counts counts

The calibration gain (CalGain) and calibration offset (CalOffset) would be entered by a calibration
technician using a keyboard/display or through a communications port. Both calibration parameters could
then be stored in a non-volatile memory device such as battery backed-up RAM, EEPROM, or even a
floppy disk. The adjustment range of the calibration parameters is based on the accuracy of the electronic
components used. A 10 percent adjustment range should be sufficient for most situations. For the calibra-
tion gain, all we need is an adjustment range between 0.90 (147455~-14) and 1.10 (180225-14). In our
example, all we need is an adjustment range between —100 (-3200S-5) and +100 (3200S--5) for the cali-
bration offset when using a 10-bit ADC. The new C code to convert raw ADC counts to a temperature is:

INT16S RdTemp (INT16S raw)
{
INT16S cnts;

INT16S temp;

cnts = (raw << 5) - 4092 3+ CalOffset;

temp = (INT16S) (((INT32S)cnts * (INT32S)25625) >> 15L);
temp = (INT16S) (({INT32S)temp * (INT32S)CalGain) >> 14L);
return (temp); /* Result is scaled S- 6 */

For example, if the actual gain of the amplification stage of our temperature measurement example
was 2.45 instead of 2.50 then, CalGain would be set to 1.020408 (16718S-14). Similarly, if the bias
voltage was 1.27V instead of 1.25V then, you would have to subtract 0.02V, or 65 counts (see Equation
[10.10]). In other words, CalOffset would be set to -65S-5.

340 — Embedded Systems Building Blocks, Second Edition

10.03 Analog Outputs

A typical digital to analog system generally consist of the following circuit elements:

« digital to analog converter (DAC)

e filter
e amplifier
¢ transducer

Digital-to-analog converters (DACs) are generally inexpensive devices, and thus each analog output
channel can have its own DAC, as shown in Figure 10.8. The DAC converts a binary value provided by
a microprocessor to either a current or a voltage (depending on the DAC). The voltage or current is fil-
tered to smooth out the step changes. An amplifier stage is sometimes used to increase the amplitude or
power drive capability of the analog output channel in order to properly interface with the transducer.
The transducer is used to convert the electrical signal to a physical quantity. For example, transducers
are available to convert electrical signals to pressures (known as current-to-pressure transducers, or I to

P). These pressures can be — and often are — used to control other physical devices.

Figure 10.8 Digital-to-analog conversion.

Froem Meraproceasar ——

Feam MIDICECII0SECr ——m

From MOnaproceast ———is

Analag Outpul Channel ———

1607

Trarscer

Cal

D1

— Tldm: —| AnrpEile ;i!—p—
—a ¢ der —v% Srptiienr » Vransducer
£ I !
i | !
| |
I |
i I J
—= Filgsar — | Arcpiilee |ocee| fransducor

Frys ol
Paraiaier

Ptesical

—
Pamrmeter

| Pregaeal
Paramatar

DACs are commercially available with resolutions from 4 to 16 bits. The resolution to choose from
is application specific. There are literally hundreds of DACs to choose from. Generally, the cost of
DACs increases with resolution and conversion speed. DACs are much faster than ADCs. Conversion
time (also called settling time) is always less than a few microseconds and can be as fast as 5 nS (nano-

Chapter 10: Analog I/0s — 341

second). Very fast DACs are used in video applications, and because of their higher cost and lower reso-
lution (8 bits), very fast DACs are seldom used in industrial applications.

A digital-to-analog conversion is handled exclusively in hardware. From a software standpoint,
updating a DAC is as simple as writing the binary value to one or more (if more than 8 bits) I/O port
locations or memory locations (when DACs are memory mapped).

10.04 Temperature Display Example

Suppose you wanted to display the temperature read by our LM34A (see Section 10.02) on a meter, as
shown in Figure 10.9.

An 8-bit DAC is deemed sufficient considering the accuracy of these types of meters. The DAC is
followed by a circuit that converts the voltage output of the DAC to a current (a V—>I Converter). The
Full Scale Voltage (FSV) of the DAC is set to 2.5 volts. The current converter is designed to produce
about 42 pA/V, and the meter requires 100 uA for full scale. Your task is to write a function that takes
the temperature (50 °F to +300 °F) as an input and produces the proper output current (0 to 100 pA) to
drive the meter.

Figure 10.9 Temperature display.

FSV=2.5V }
VI _—
1 Converter Meter
42 pA/V)
Temperature _, Scaling cnts 8-Bit
-50 °F to 300 °F | Function DAC
cnts * FSV

The relationship between the temperature and the meter current is shown in Figure 10.10.

Figure 10.10 Temperature to DAC counts scaling.

Meter current (LA) -

100 — — —— — — — F2¥2

Y-Intercept = 14.285714 pA

(@X0=0)
1, YN
~

Temperature (°F
-50 300 P ()

The graph can also be represented by the following linear equation:

342 — Embedded Systems Building Blocks, Second Edition

[10.15] y=mxx+b

where m is the slope and b is the Y-intercept (the value on the y-axis when x is 0). The slope gives us the
current per degree of temperature and is given by:

(,-x)

In this case, the slope is 100pA / 350 °F , or 0.285714 nA/°F. The Y-intercept (i.e., Yo) is given by:

[10.16] m =

[10.17] Yo = mx(Xo-X,)+7,

By substituting the values of m, ¥y, X1, and X, (i.e., 0) in Equation {10.17], you obtain a Y-intercept
of 14.285714 pA. The meter current thus is given by:

[10.18] Meter”A = 0.285714 x Temperature. + 14.285714”A

(n4)/(°F)
The meter current is also given by:

DAC,,,, . x FSV

[10.19] MeterHA = 256 X 42(pA)/V

Combining Equations [10.18] and [10.19], I obtain:

[10.20]

DAC s %25

0.285714 x Temperature.y + 14.2857 14;1,4 = 256 x 4

2
(nA)/(°F) (pA)/v

Solving for DAC.suus, I obtain:
0.285714 x 256 14.285714 x 25
[10.21] DAC

= INT|25x%x42 x Temperature.p x 7.
counts (X (nA)/V P FX 25x% 42(;,1A)/V

Note that INT() means that only the integer portion of the result is retained. As you can see, Equation
[10.21] is also a linear equation, where m is 0.696598 and b is 34.829931. DACouns thus are given by:

[10.22] DAC = INT(0.696598 x Temperature.y + 34.82993160“13)

counts

(counts)/(°F)

Substituting —-50 °F in Equation [10.22], I obtain O counts (as I should). Similarly, substituting 300
°F in Equation {10.22], T obtain 243 counts, which should produce 100 pA.

As with analog inputs, the electronic components used in circuits such as the voltage-to-current con-
verter are generally inaccurate. You can compensate for component inaccuracies in software by modify-
ing Equation [10.22] as:

Chapter 10: Analog I/Os — 343

[10.23]
DAC = INT(0.696598

counts

x Temperature. x CalGain + 34.829931 + CAIOffset)

(counts)/(°F) counts
The effect of the calibration gain and offset is shown in Figure 10.11, which has been exaggeréted
for sake of discussion. The actual curve that you get from an incorrect gain and offset needs to be

adjusted, as shown in Figure 10.11. g

Figure 10.11 Calibration gain and offset adjustments (exaggerated).

Gain Adjustment | . .
’ Desired

44—t tt——t————t—p

The adjustment range of the calibration parameters is based on the accuracy of the electronic com-
ponents. Based on experience, a 10 percent adjustment range should be sufficient for most situations.
For the calibration gain, you only need an adjustment range between 0.90 and 1.10. For the calibration
offset, you need an adjustment range between —25 and +25 for an 8-bit ADC. What would happen if the
voltage-to-current converter was actually putting out 40 pA/V instead of 42 (a 5 percent error)? In this
case, the slope in Equation [10.23] (see Equation [10.21], substituting 40 instead of 42) would need to
be adjusted to 0.731428 and the intercept would need to be 36.571428. This can be accomplished by
setting CalGain and CalOffset to 1.05 and 1.741497 respectively.

The general form for Equation [10.23] is:

[10.24] -

DAC

counts

= INT(ConvGain x CalGain x Inputg;, + ConvOffset ...+ CalOffsetcoums)

(counts)/(EU)

344 — Embedded Systems Building Blocks, Second Edition

10.05 Analog 1/0 Module

In this chapter, I provide you with a complete analog 1/O module that will allow you to read and scale up
to 250 analog inputs and scale and update up to 250 analog output channels. Each analog input channel
is scanned at a regular interval and the scan rate for each channel can be programmed individually. This
allows you to determine whether some analog inputs are scanned more often than others. Similarly, each
analog output channel is updated at a regular interval and the update rate for each channel can also be
programmed individually. This allows you to establish which analog outputs are to be updated more
often.

The source code for the analog I/O module is found in the \SOFTWARE\BLOCKS\AIO\SOURCE
directory. The source code is found in the files ATO.C (Listing 10.1) and AIO.H (Listing 10.2). As a
convention, all functions and variables related to the analog I/O module start with either ATO (functions
and variables common to both analog inputs and outputs), AT (analog input functions and variables) or
AO (analog output functions and variables). Similarly, #defines constants will either start with ATO_,
ATl _,orAQ .

10.06 Internals

The analog I/O module makes extensive use of floating-point arithmetic (additions, multiplications, and
divisions). The reason I chose to use floating-point instead of integer arithmetic is that it is very difficult
to make a general purpose analog 1/O module using integer arithmetic. The analog I/O module can
become CPU-intensive unless you have hardware-assisted floating-point (i.e., a math coprocessor). The
analog I/0 module, however, can be easily modified to make use of integer arithmetic if you have a ded-
icated application.

Figure 10.12 shows a block diagram of the analog I/O module. You should also refer to
Listings 10.1 and 10.2 for the following description. As shown, the analog I/O module consists of a
single task (ATOTask ()) that executes at a regular interval (set by ATO_TASK_DLY). AIQOTask () can
manage as many analog inputs and outputs as your application requires (up to 250 each). The analog
I/0O module must be initialized by calling ATOInit (). ATOInit() initializes all analog input chan-
nels, all analog output channels, the hardware (ADCs and DACs), a semaphore used to ensure exclu-
sive access to the internal data structures used by the analog I/O module, and finally, AIOInit ()
creates AIOTask ().

AITb1[] is a table that contains configuration and run-time information for each analog input
channel. An entry in AITbl [] is a structure defined in ATO.H and is called ATO. ATUpdate () is
charged with reading all of the analog input channels on a regular basis. ATUpdate () calls ATRA()
and passes it a logical channel number (0. .ATO_MAX AT - 1). ATRA() is responsible for selecting
the proper analog input through one or more multiplexers (based on the logical channel number), start-
ing and waiting for the proper ADC to convert (if more than one is used), and for returning raw counts
to ATUpdate (). ATRA() is the only function that knows about your hardware, and thus ATRd () can
easily be adapted to your environment.

AQOTb1[] is a table that contains configuration and run-time information for each analog output
channel. An entry in AOTb1 [] also uses the ATO structure. AQUpdate () is responsible for updating all
of the analog output channels on a regular basis. AOUpdate () calls AOWr () and passes it a logical
channel number (0. .ATO_MAX_AO - 1) and the raw DAC counts. AOWr () is responsible for output-
ing the raw counts to the proper DAC based on the logical channel. AOWr () is the only function that
knows about your hardware, and thus AOWr () can easily be adapted to your environment.

g

Chapter 10: Analog /Os — 345

Figure 10.12 Ao module flow diagram.

| AIO AITb1[]

APPLICATION AlO MODULE HARDWARE
INTERFACE |
-
ALCfoCal () | AlUpdate() || ADC(s) | Analog
AICfgConv() AIRd() & = | t
AICfgScaling() <——|’ Ll ATO_TASK_DLY_TICKS T MUX(s) < g
AlSetBypassEn() (s) - ardware
AlSetBypass()
AlGet() | |
——————

AIOInit() F - AI0InitI0()
AI0CfgScalelin() —L> l
AlOScaleLin() | Semaphore |
A0CfgCal() | | -
AOCfgConv() » Analo
AOCfgScaling() |' DAC(s) | »Outpu
A0SetBypassEn() P ADMr() s) » Hardware
AOSetBypass() ADUpdate() | -
AOGet () |

| ATO AOTDI[1 |

Figure 10.13 shows a flow diagram of a single analog input channel. Note that I used electrical sym-
bols to represent functions performed in software. .AIO??? are all members of the ATO structure.
ATUpdate () updates each channel as described in the following paragraphs.

Figure 10.13 Analog input channel flow diagram.

Set by
AICfgCal ()
\ Forced by
.AIOCalGain AlSetBypass()
.AIOCalOffset TRUE
+ \(@open) -
From —p[7ioRav] ‘ ° AIOScaleF‘TIct-I.A105ca190ucl—/|o—l.mogu —» Obtained through
ATRA () | _ AIGet ()
+ . | FALSE
@closed)
.AIOConvOffsetT T ' (
. . onvGain
Set by
\ / Set by AISetBypassEn()
Set by AICfgScaling()

AICfgConv ()

The raw counts obtained from ATIRA() are placed in the channel’s .ATORaw variable. The raw
counts are then added to .ATOCalOffset and .ATOConvOffset. The result of this operation is then
multiplied by .ATOCalGain and .ATIOConvGain. These mathematical operations are basically used to
implement Equation [10.14]:

346 — Embedded Systems Building Blocks, Second Edition

[10.25] .ATOScaleIN =(.AIORaw + .AIOConvOffset + .AIOCalOffset) X
.ATOConvGain X .AIOCalGain

.ATScaleFnct is a pointer to a function that is executed when the channel is updated. The function
allows you to apply further processing when reading an analog input. For example, a Resistance Tem-
perature Detector (RTD) is a device that requires special processing. The temperature at the RTD is pro-
portional to the resistance of the RTD (but is nonlinear). A scaling function can thus be written to
convert .ATOScaleIn (the resistance of the RTD) to a temperature in degrees Fahrenheit (placed in

.ATOScaleOut). There are many types of RTDs, and thus you need to be able to specify the actual type
used. This is where . ATOScaleFnctArg comes in. .ATOScaleFnctArg is a pointer to any arguments
that your scaling function requires. In the case of an RTD, this argument can specify the type of RTD
used. The scaling function that you write must be declared as:

void AIOScale??? (AIO *paio);

When called, your scaling function will receive a pointer to the ATO channel to scale (or lin-
earize). The input to your function is available in paio->ATIOScaleIn, and your function must
place the result in paio->ATOScaleCut. Any arguments to the scaling function are found
through paio->ATOScaleFnctArg. If you do not have any linearization function, the value of
.ATIOScaleInis simply copied to .ATOScaleCut by ATUpdate ().

.ATOBypassEn is a software switch that is used to prevent the analog input from being updated.
This feature allows your application code to “bypass” the channel and force a value into . ATOEU. When
another part of your application code tries to read the analog input channel, it will actually be getting the
forced value instead of what the sensor is measuring. I have found this feature to be invaluable.

.ATOEU is the value that your application code will obtain when it needs the latest value read by the
analog input channel (by calling ATGet ()). .ATOEU contains engineering units. This means that if the
analog input channel monitors a pressure, your application code will obtain a value in either PSI, KPa,
InHgg, etc.

.AIOPassCnts allows your application code to specify how often the analog input channel is to be
updated. In fact, . ATOPassCnts specifies how many analog input scans are needed before the channel
is updated. In other words, if analog inputs are read every 50 mS and you specify a pass count of 20,
then the analog input channel will be read every 1000 mS (i.e., 1 second).

Figure 10.14 shows a flow diagram of a single analog output channel. Note that I used electrical
symbols to represent functions performed in software. As with analog input channels, . ATI0??? are all
members of the ATO structure. AOUpdate () updates each channel as described in the following para-

graphs.

Chapter 10: Analog /Os — 347

Figure 10.14 Analog output channel flow diagram.

Set by Established by
AOSetBypassEn () AQOCfgScaling(}

/
TRUE .AIOScaleFnctArg
(@open) \ ¢

[Crroey_J-+{e—{Aroscatein}— ATOScaleFncy
Changed by / |

A0Set () }
.ATOBypassEn
Set by / Set by
AQSetBypassEn () aoCfgcal()
.AIOCalGain
.AIOLim
.AIOCaloffset ¢ Output by
/ AOWr ()
IQ
¥
.AIOConvOffset 0
.AIOConvGain //
\\ Set by
AO0CfgConv ()

Your application deposits the value for the analog output channel by calling A0Set (). This value is
passed in engineering units. This means that if the analog output channel controls a meter that displays
the RPM of a rotating device, you call AOSet () by specifying an RPM and the analog output channels
takes care of figuring out how much voltage or current is needed to display the RPM.

.AIOBypassEn is a software switch used to override the value that your application code is trying
to put out on the analog output channel. Another function provided by the analog I/O module is used to
load .ATOScalelIn. This feature is very useful for debugging purposes because it allows you to test
your output independently of the application code.

.AIScaleFnct is a pointer to a function that is executed when the analog output channel is
updated. The function allows you to apply further processing prior to updating an analog output. For
example, a 0 to 100 mA output may be controlling a valve. If the flow through the valve is propor-
tional to the output — but nonlinear, the function can make the valve action look linear with respect
to your application. If your software needs to support different types of valves, you can specify which
valve is being used through .ATOScaleFnctArg. .AIOScaleFnctArg is a pointer to any arguments
that your scaling function requires. The scaling function that you write must be declared as follows:

void ATOScale??? (AIO *paio);
When called, your scaling function will receive a pointer to the ATO channel to scale (or

linearize). The input to your function is available in paio->AIOScaleIn, and your function
must place the result in paio->ATOScaleOut. Any arguments to your function are found

348 — Embedded Systems Building Blocks, Second Edition

through paio->AIOScaleFnctArg. If you do not have any linearization function, the value of
.ATOScalelInis simply copied to .ATOScaleOut by AOUpdate().

.AIOScaleOut is then multiplied by .ATOCalGain and .ATIOConvGain. The result of the multi-
plication is the added to . ATOCalOf fset and . ATOConvOffset. The result of this operation is depos-
ited in . ATORaw so that it can be sent to the proper DAC by AOWx ().

[10.26] .ATORaw = .AIOScaleOut X .ATOConvGain X .AIOCalGain +
.ATOConvOffset + .AIOCalOffset

.AIOLim is used to ensure that .ATORaw does not exceed the maximum counts allowed by the
DAC. For example, an 8-bit DAC has a range of 0 to 255 counts. An output of 256 counts to a DAC
would appear to the DAC as 0 (the lower eight bits of 100000000,). . ATOLim contains the maximum
count that can be sent to the DAC (255 for an 8-bit DAC).

.AIOPassCnts allows your application code to specify how often the analog output channel is to
be updated. In fact, .ATOPassCnts specifies how many analog output scans are needed before the
channel is updated. In other words, if analog outputs are updated every 50 mS and you specify a pass
count of 5, the analog output channel will only be updated every 250 mS.

10.07 Interface Functions

Your application software knows about the analog I/O module through the interface functions shown in
Figure 10.15.

Figure 10.15 Analog 1I/0 module interface functions.

ATOInit () EE—
AICfgCal() EE—
AICfgConv () g

AICfgScaling() —————»

Analog Inputs
ATISetBypassEn() ———p

(From Hardware)

AISetBypass() ————» Analog
AIGet () «— 70
Module
AOCfgCal () _— >
AOCfgConv () - ») Analog Outputs

) (To Hardware)
AOCfgScaling () ——p

AOSetBypassEn() ————p
AQOSetBypass () —
AQSet () —P

3o

Chapter 10: Analog I/Os — 349

AICfgCal()

INTS8U AICfgCal (INT8U n, FP32 gain, FP32 offset);

ATICfgCal () is used to set the calibration gain and offset of an analog input channel. The analog I/O
module implements Equation [10.14], and this function is used to set the value of CalGain and
CalOffset.

Arguments

n is the desired analog input channel to configure. Analog input channels are numbered from 0 to
ATIO_MAX AT - 1.

gain is a multiplying factor that is used to compensate for component inaccuracies and doesn’t have
any units. The gain would be entered by a calibration technician and stored in some form of non-vola-
tile memory device such as an EEPROM or battery-backed-up RAM.

offset is a value that is added to the raw counts of the ADC to compensate for offset type errors
caused by component inaccuracies. The offset would also be entered by a calibration technician and
stored in some form of non-volatile memory device such as an EEPROM or battery-backed-up RAM.
Return Value

AICfgCal () returns 0 upon success and 1 if the analog input channel you specified is not within 0 and
AIO_MAX AT - 1.

Notes/Warnings

None

Example

350 — Embedded Systems Building Blocks, Second Edition

AICfgConv()

INT8U AICfgConv(INT8U n, FP32 gain, FP32 offset, INT8U pass);

ATICfgConv () is used to set the conversion gain, offset, and the value of the pass counter for an analog
input channel. The analog I/O module implements Equation [10.14], and this function is used to set the
value of ConvGain and ConvOffset.

Arguments

n is the desired analog input channel to configure. Analog input channels are numbered from 0 to
ATO MAX AT - 1.

gain is the conversion gain of the ADC channel in engineering units per count (E.U./count). gain is
given by Equation [10.9] which is repeated in Equation [10.27] for your convenience:
FSv

Transducer x Ay x (2bits — 1)
V/(EU)

[1027] MM UV (county

FSYV is the Full Scale Voltage of the ADC and typically is the reference voltage used with the
ADC.

Transducerysy) corresponds to the number of volts produced by the transducer per engineering
unit. For example, the LM34A produces 0.01 volt per degree Fahrenheit.

Ay is the gain of the amplifier stage of an analog input channel (see Figure 10.1).

bits is the number of bits of the ADC.

offset is used to bias the ADC counts. offset is given by Equation [10.10] which is repeated in
Equation {10.28] for your convenience.

bit.
Vbiasx(2 l 3_1)

[1028] 7ffsetcount3 = FSV

Visias is the bias voltage added to the output of the amplifier stage to allow the ADC to read nega-
tive values (see Figure 10.7 on page 336 for an example on how to use the bias).

pass is used to specify a pass count. The pass count specifies to the module how often the analog chan-
nel will be read. The analog I/O module reads all analog input channels on a regular basis every so many
clock ticks. This is called scanning. pass specifies how many scans are needed to read the analog input
channel. For example, suppose the analog /O module’s scan rate is 10 Hz and you specify a pass count
of 5 for analog input channel #0. Analog input channel #0 will be read every half second. I included a
pass count because some analog input channels may not need to be read as often as others. For example,
if you wanted the program to read the temperature of a room, you could tell it to read the temperature
every 250 scans (or every 25 seconds, as in my example).

Return Value

AICfgConv () returns O upon success and 1 if the analog input channel you specified is not within 0
and ATO_MAX AT - 1,

T

Chapter 10: Analog I/0s — 351
Notes/Warnings
None
Example
void main (void)

{ S

/* Conversion gain and offset obtained by hardware engineer */
AICfgConv (0, (FP32)1.987, (FP32)123.0, 1);

i

352 — Embedded Systems Building Blocks, Second Edition

AICfgScaling()

INT8U AICfgScaling (INT8U n, void (fnct) (AIO *paio), void *arg);

AICfgScaling () is used to specify a scaling function to be executed when the analog input channel is
read. The scaling function allows you to apply further processing when reading an analog input. There
is no need to call AICfgScaling () if the analog input channel does not need a scaling function. In
fact, if you don’t define a scaling function the member .ATOScalingIn will simply be copied to
.AIOScalingOut by ATUpdate () (see code).

Arguments

n is the desired analog input channel to configure. Analog input channels are numbered from 0 to
ATIO _MAX AT - 1.

fnct is a pointer to the scaling function that will be executed when the analog input channel is read.
You must write fnct to expect an argument. Specifically, fnct must be written to receive a pointer to
the analog I/0 data structure called ATO as shown in the code fragment following this paragraph. You
specify a NULL pointer to prevent a previously configured channel from using a scaling function:

void fnct (AIO *paio);

arg is a pointer to any arguments or parameters needed for the scaling function. This argument can be
used to specify specific options about the scaling being performed.

Return Value

AICfgScaling () returns O upon success and 1 if the analog input channel you specified is not within
0 and ATO MAX_ AT - 1.

Notes/Warnings

The scaling function is assumed to take its input from paio->AIOScaleIn and produce its result in
paio->AIOScalelOut.

Chapter 10: Analog I/Os — 353

Example

INT8U ThermoType = THERMO TYPE J;

void mgin (void)

{

AICfgScaling (0, ThermoLin, (void *)&ThermoType) ;

void ThermoLin (AIO *paio)
{
/* Function to linearize a thermocouple */
paio->AI0ScaleIn is assumed to contain the number of millivolts for
the thermocouple.
paio->AI0ScaleOut is where the temperature of the thermocouple
is assumed to be saved to.
paio->AI0ScaleFnctArg could have also indicated the type of
thermocouple used as well as whether the temperature is in 1()
degrees F or C.

354 — Embedded Systems Building Blocks, Second Edition

ATIGet ()

INT8U ATGet (INT8U n, FP32 *pval);

The current value of the analog input channel can be obtained by calling ATGet (). The value obtained
is in engineering units or, physical units. For example, if the analog input channel is measuring a tem-
perature from a thermocouple then the value returned is the number of degrees at the thermocouple.
Arguments

nis the desired analog input channel. Analog input channels are numbered from 0 to ATO_MAX_ AT — 1.

pval is a pointer to where the value of the analog input channel will be stored.

Return Value

AIGet () returns 0 upon success and 1 if the analog input channel you specified is not within 0 and
ATO_MAX_AT - 1.

Notes/Warnings

The value returned is the last ‘scanned’ value. In other words, an ADC conversion is not performed
when you call this function — ATIOTask () is responsible for ‘scanning’ the analog input on a continu-
ous basis.

Example
void Task (void *pdata)
{

INT8U err;
FP32 eu;

for (:;) {

err = AIGet (0, &eu); /* Get current value of analog input #0 */

Chapter 10: Analog I/0s — 355

ATOInit ()

void AIOInit(void);

AIOInit() is the initialization code for the analog I/O module. ATOInit () must be called before you
use any of the other analog I/O module functions. ATOTInit () is responsible for initializing the internal
variables used by the module and for creating the task that will update the analog inputs and outputs.
Arguments

None

Return Value

None

Notes/Warnings

You are expected to provide the value of the following compile-time configuration constants (see Sec-
tion 10.08, “Analog I/O Module, Configuration™):

ATO_TASK_STK_SIZE

AIQ_TASK PRIO

ATIO_MAX AT

ATO_MAX AO

Example

void main (void)
{

ATOInit();

356 — Embedded Systems Building Blocks, Second Edition

AISetBypass()

INT8U ATSetBypass (INT8U n, FP32 val);

Your application software can bypass or override the analog input channel value by using this function.
AISetBypass () doesn’t do anything unless you open the bypass switch by calling ATSetBypassEn ().
Arguments

n is the desired analog input channel to override. Analog input channels are numbered from 0 to
ATO_MAX_AI - 1.

val is the value you want ATIGet () to return to your application. The value you pass to'to AISetBypass ()

is in engineering units.

Return Value

AISetBypass () returns 0 upon success and 1 if the analog input channel you specified is not within 0
and ATO_MAX_AT - 1.

Notes/Warnings

AISetBypass () forces the value of . ATOEU in Figure 10.13 when .AIOBypassEn is set to TRUE.

Example

void Task (void *pdata)

{
FP32 val;

for (;;) |

val = Get value from keyboard;
AISetBypass (0, (FP32)val);

Chapter 10: Analog 1/0s — 357

AISetBypassEn()

INTS8U AlISetBypassEn(INT8U n, BOOLEAN state):;

AISetBypassEn() allows your application code to prevent the analog input channel from being
updated. This permits another part of your application to set the value returned by ATGet (). In other
words, you can “fool” the application code that monitors the analog input channel into thinking that the
value is coming from a sensor, when in fact, the value returned by the analog input channel can come from
another source. The value of the analog input channel is set by AISetBypass (). AISetBypassEn()
and ATSetBypass () are very useful functions for debugging.

Arguments

n is the desired analog input channel to bypass. Analog input channels are numbered from 0 to
ATO_MAX AT - 1.

state is the state of the bypass switch. When TRUE, the bypass switch is open (i.e., the analog input
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the analog input channel is not
bypassed).

Return Value

ATISetBypassEn () returns 0 upon success and 1 if the analog input channel you specified is not within
0 and ATO MAX AT - 1.

Notes/Warnings

ATISetBypassEn () forces the value of . ATOBypassEn in Figure 10.13.

Example

I

358 — Embedded Systems Building Blocks, Second Edition

AoCfgCal ()

INT8U AOCfgCal (INT8U n, FP32 gain, FP32 offset);

AOCfgCal () is used to set the calibration gain and offset of an analog output channel. An analog output
channel basically implements a generalization of Equation [10.23], as shown in Equation [10.29]:

[10.29] DACeomis = INT (.ATOConvGainemmseyy X -AIOCalGain X .ATIOScaleOuty +
.ATOConvOf fsetous + -AT0CalOf fsetcounts)

You can specify a calibration gain (. ATOCalGain) and offset (.AI0CalOf fset) to compensate for
component inaccuracies.
Arguments

nis the desired analog output channel. Analog output channels are numbered from 0 to ATO_MAX_AOQ —
1.

gain is a multiplying factor that is used to compensate for component inaccuracies and doesn’t have
any units. gain sets the value of .ATI0CalGainin Figure 10.13. The gain would be entered by a cali-
bration technician and stored in some form of non-volatile memory device such as an EEPROM or bat-
tery-backed-up RAM.

offset is a value that is added to the raw counts before outputing to a DAC to compensate for off-
set-type errors caused by component inaccuracies. of fset sets the value of . AT0CalOffset in Figure
10.13. The offset would also be entered by a calibration technician and stored in some form of
non-volatile memory device such as an EEPROM or battery-backed-up RAM.

Return Value

AQCfgCal () returns O upon success and 1 if the analog output channel you specified is not within 0
and ATO_MAX_AO - 1.

Notes/Warnings

None

Example

void main (void)

{

AOCfgCal(0, (FP32)1.05, (FP32)10.6);

Chapter 10: Analog I/Os — 359

AOCfgConv ()

INT8U AOCfgConv(INT8U n, FP32 gain, FP32 offset, INT16S lim, INTS8U pass);

AOCfgConv () is used to set the conversion gain, conversion offset, and the value of the pass counter
for an analog output channel. An analog output channel basically implements a generalization of Equa-
tion [10.20], as shown in Equation [10.29] (see page 358). AOCfgConv () is used to set the value of
.ATOConvGain and .AIOConvOffset.

Arguments

n is the desired analog output channel to configure. Analog output channels are numbered from 0 to
ATO_MAX_AO - 1.

gain is the conversion gain for the analog output channel in counts per engineering unit (counts/E.U.).
gain sets the . ATOConvGain field of Figure 10.14.

offset is used to bias the DAC counts and sets the . ATOConvOffset field of Figure 10.14.

1limis used to specify the maximum count that can be sent to the DAC. This argument ensures that the
DAC will never be written with a count larger than 1im. For example, an 8-bit DAC has a maximum
count of 255 (2" — 1). 1im sets the . ATOLim field of Figure 10.14. .

pass is used to specify a pass count. The pass count is used to specify to the module how often the ana-
log channel will be updated. The analog I/0 module updates all analog output channel on a regular basis
every so many clock ticks. This is called scanning. pass specifies how many scans are needed to update
the specific analog output channel. For example, suppose the analog I/O module scan rate is 10 Hz and
you specify a pass count of 2 for analog output channel #4. In this case, analog output channel #4 will

be updated five times per second. I included a pass count because some analog output channels may not

need to be updated as often as others. pass sets the . ATOPassCnts field of Figure 10.14.
Return Value

AOCfgConv () returns 0 upon success and 1 if the analog output channel you specified is not within 0
and ATO_MAX A0 - 1.

Notes/Warnings

None

Example

void main (void)

{

AOCfgConv (0, (FP32)1.05, (FP32)10.6, OxOFFF, 1):

360 — Embedded Systems Building Blocks, Second Edition

AOCfgScaling()

INT8U AOCfgScaling(INT8U n, void (*fnct)(AIO *paio), void *arg);

AOCfgScaling () is used to specify a scaling function to be executed when the analog output chan-
nel is updated. The scaling function allows you to apply further processing before updating an analog
output. You don’t need to call this function if your analog output channel doesn’t need a scaling func-
tion. In this case, the .ATIOScaleIn field will simply be copied to the .ATOScalingOut fieldby
AOUpdate () (see code).

Arguments

nis the desired analog output channel. Analog output channels are numbered from 0 to ATO_MAX_AO -
1.

fnct is a pointer to the scaling function that will be executed when the analog output channel is
updated. fnct sets the value of .ATOScaleFnct in Figure 10.14. fnct must be written to receive a
pointer to the analog I/O data structure called ATO as follows:

void fnct (AIO *paio);

arg is a pointer to any arguments or parameters needed for the scaling function. arg sets the value of
.ATOScaleFnctArg in Figure 10.14. This argument can be used to specify specific options about the
scaling being performed.

Return Value

AOCfgScaling () returns 0 upon success and 1 if the analog output channel you specified is not within
0 and ATO_MAX_AO - 1.

Notes/Warnings

The scaling function is assumed to take its input from paio->AIOScaleIn and produce its result in
paio->AIOScaleOut.

| R s
!Wr»
|

Chapter 10: Analog I/Os — 361

Example
void main (void)

{

AOCfgScaling{0, ActLin, (void *)0);

void ActLin (AIO *paio)

{
/* Linearize actuator function */
paio->AI0Scaleln is the input value to the scaling function.
paio->AT0ScaleQut is where the scaling function will place the result.
paio->AI0ScaleFnctArg in this case is not used but could be made o
to tell ActLin() the type of actuator to linearize.
}

10

362 — Embedded Systems Building Blocks, Second Edition

AOSet ()

INT8U AOSet (INT8U n, FP32 val);

This function is used by your application software to set the value of the analog output channel. The
value you set the channel to is specified in engineering units. In other words, if your analog output
channel has been configured to control the position of a valve in percent then, you would pass the
desired percentage of position you desire (a number between 0.0 and 100.0).

Arguments

n s the desired analog output channel. Analog output channels are numbered from 0 to ATO_MAX_AO —
1.

val is the desired value for the analog output channel and is specified in engineering units.

Return Value

AOSet () returns 0 upon success and 1 if the analog output channel you specified is not within 0 and
AIO_MAX AO - 1

Notes/Warnings

None

Example
void Task (void *pdata)

{
FP32 valve;

for (;;) {

valve = Get desired value position from user;
AQSet (0, (FP32)valve);

Chapter 10: Analog I/Os — 363

AOSetBypass ()

INT8U AOSetBypass (INT8U n, FP32 val);

Your application software can bypass or override the analog output channel value by using this function.
AOSetBypass () doesn’t do anything unless you open the bypass switch by calling AOSetBypassEn(),
as described previously. As with AOSet (), the value you set the channel to is specified in engineering
units.

Arguments

n is the desired analog output channel. Analog output channels are numbered from 0 to ATO_ MAX_AO —
1.

val is the value that you want to force into the analog output channel (in engineering units).

Return Value

AOSetBypass () returns 0 upon success and 1 if the analog output channel you specified is not within
0 and ATO_MAX_20 - 1.

Notes/Warnings

None

Example

void Task (void *pdata)

{
FP32 val;

for (;:) {

val = Get value from keyboard;
AOSetBypass (0, (FP32)val);

364 — Embedded Systems Building Blocks, Second Edition

AOSetBypassEn()

INT8U AOSetBypassEn(INT8U n, BOOLEAN state);

AOSetBypassEn () allows you to prevent your application from changing the value of an analog out-
put channel. This allows you to gain control of the analog output channel from elsewhere in your
application code. This is a quite useful feature because it allows you to test your analog output chan-
nels one by one. In other words, you can set an analog output to any desired value even though your
application software is trying to control the output. The value of the analog output channel is set by
AOSetBypass (). AOSetBypassEn () and AOSetBypass () are very useful for debugging.
Arguments

nis the desired analog output channel. Analog output channels are numbered from 0 to ATO_MAX_20 -
1.

state is the state of the bypass switch. When TRUE, the bypass switch is opened (i.e., the analog output
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the analog output channel is not
bypassed).

Return Value

AOSetBypassEn () returns 0 upon success and 1 if the analog output channel you specified is not
within 0 and ATO_MAX 2O — 1.

Notes/Warnings

None

Example

void main (void)

{

AOSetBypassEn (0, TRUE);

Chapter 10: Analog I/Os — 365

10.08 Analog 1/0 Module, Configuration

Configuration of the analog I/O module is quite simple.

1. You need to define the value of five #defines. The #defines are found in ATO.H (or CFG.H).
ATO_TASK_PRIOis used to set the priority of the analog I/O module task.

ATO_TASK_DLY is used to establish how often the analog I/O module will be executed.

ATO_TASK_DLY determines the number of milliseconds to delay between execution of the ana-
log I/O task.

WARNING

In the previous edition of this book, you needed to specify ATO_TASK_DLY_TICKS which speci-
fied the number of ticks between execution of ATOTask (). Because uC/OS-II provides a more
convenient function (i.e., OSTimeD1yHMSM ()) to specify the task execution period in hours, min-
utes, seconds and milliseconds, ATO_TASK_DLY_TICKS is no longer used and ATO_TASK_DLY
now specifies the scan period in milliseconds instead of ticks.

ATO_TASK_ STK_SIZE specifies the size of the stack (in bus width units) allocated to the analog
I/0 task. The number of bytes allocated for the stack is thus given by: ATO_TASK_STK_SIZE times
sizeof (OS_STK).

WARNING
In the previous edition of this book, ATO_TASK_STK_SIZE specified the size of the stack for
AIOTask () in number of bytes. uC/OS-II assumes the stack is specified in stack width elements.

ATO_MAX_ AT determines the number of analog input channels that will be handled by the analog
I/0 task.

ATO_MAX_A0 determines the number of analog output channels handled by the analog I/O task.

2. You will need to define how analog inputs are read (i.e., how to read your ADC(s). ADCs must all be
handled through ATRd (). The function prototype for ATRA () is:

INT16S ATRd (INT8U ch);

ATIRA() iscalled by ATUpdate () (see code) and is passed the logical channel number (0 to ATO_MAX_AT
— 1). You must translate this logical channel into code that selects the proper multiplexer for the desired
channel, start the ADC, wait for the conversion to complete, read the ADC, and finally, return the ADC’s
counts.

10

366 — Embedded Systems Building Blocks, Second Edition
3. You will need to provide the code for the function that writes to all DACs (i.e., AOWr ()). The func-
tion prototype for AOWr () is:

void AOWr (INT8U ch, INT16S raw);

AOWr () is called by AOUpdate () (see code) and is passed the logical channel number (0 to ATO_MAX AO
— 1). You must translate this logical channel into code that selects the proper DAC for the desired channel.
AOWr () is also passed the counts to send to the DAC. Your code must thus write the counts to the proper
DAC.

4. You will need to provide the hardware initialization function (ATOInitIO()), which is called by
AIOInit ().The function prototype for ATOInit () is:

void AIOInit (void);

10.09 How to Use the Analog I/0 Module

Let’s assume that you need to read the analog inputs and control the analog outputs shown in Figure
10.16.

Figure 10.16 Using the analog 1/0 module.

Analog Inputs Your Application
LM-34A > N Temperature
(1 sec.) 0 (-50 to 200 °F, 1° F)
100ohms RTD > Temperature
(100 mS) ! (50 to 200 °F, 0.2%)
J-type Thermocouple' — p 2 L - Temperature
(500 mS) A' (—5(>T to 750 °tF, 1 °F)
J-type Thermocouple ———m{ 3 L » emperature
(500 mS) (-50 to 1000 °F, 1 °F)
Voltage — 4 N Voltage
(1 sec.) (0 to 15V, 0.1V)
Pressure —w|5 L Pressure
(100 mS) {0 to 30 PSI, 0.1 PSI)
Your Application Analog Outputs
Temperature Temperature meter
(50 t0 200 °F, 1 °F, 100 mS) — ™| 0F—" (0to 100 pA)
Fuel Control Fuel Valve
(0 to 100%, 0.1%, 100 mS) — ™| AQ — (4 10 20 mA)
RPM RPM meter
(0 to 6000 RPM, 1%, 200 mS) —”| 2" (010 100 pA)

The analog I/O module has to read six analog inputs, and thus you will configure ATO_MAX_AT to 6.
Similarly, to update three analog outputs, you need to set ATO_MAX_A0 to 3. We can set ATO_TASK_DLY
to 100 (i.e., milliseconds) because all analog I/Os need to be read or updated in multiples of 100 mS.

Chapter 10: Analog I/Os — 367

Obviously, you need to allocate sufficient stack space (i.e., ATO_TASK_STK_SIZE) for AIOTask () as
well as determine what priority (i.e., ATO_TASK_PRTO) you want to give to that task.

To initialize the analog I/O module, you need to call ATOInit () prior to using any of the analog
1/0 module functions. You would typically do this in main{):

void main (void)
{

0SInit{); /* Initialize the 0.S. (mC/0S-IT) */

AIOInit(); /* Initialize the analog I/0 module */
OSStart{(); /* Start multitasking (mC/0S-II) */

You would initialize each one of the analog I/O channels from an application task, as shown in the
code fragment following this paragraph. It is important that you do this at the task level because some of
the analog 1/0 module services assume that the operating system is running in order to access the
mutual exclusion semaphore (AI0Sem).

void AppTask (void *data)
{

data = data;
/* Initialize analog I/O channels here ...*/
for (;:) {

/* Application task code ... */

Let’s assume the hardware designer came up with the circuit shown in Figure 10.17 to read the ana-
log inputs. As you can see, each input has signal conditioning circuitry which feeds into a multiplexer.
The multiplexer selects one of the analog inputs to be converted by a 12-bit analog-to-digital converter
(ADC).

368 — Embedded Systems Building Blocks, Second Edition

Figure 10.17 Analog inputs.

MUX. Select
(From CPU)

Amplifier
LM34A
o (Gain = 4)
(10 mV/°F) Adder

+
..,%
[=]

Current 0.75V
Source RTD Amplifier
(100 ohms)
(1 mA) (Gain = 70)
Adder
+ + 1
Jtype - 5.6V FSV =10V
Thermocouple Amplifier L

(=50 °F = —2.223 mV) (Gain = 400) Adder

(750 °F = 21.785 mV) .

o«]
12-Bit
Thegr;tzgguple Amplifier v M UX ADC

(-50 °F = —2.223 mV) (Gain = 300)
(1000 °F = 29.515 mV) Adder

v+
+
..,%
N

.+
+
+
)

Amplifier 1oV
{Gain = 0.5)
Voitage \ 4
(Oto 15V) v
Pressure Amplifier

(2.6 MV/PSIG) (Gain = 100)

GND

[

Chapter 10: Analog I/0s — 369

10.09.01 How to Use the Analog I/O Module, A1#0

Analog input channel #0 is an LM-34A temperature sensor used to read temperatures from —50 to 200
F°. Using Equation [10.9], the conversion gain is:

[10.30] ConvGain - ESV
(BU)/(count) Transducer xAyx(2"-1)
V/(EU)
ConvGain = 10 -
(°F)/(count) 0.01 X 4 x (212 -1
V/(°F)
ConvGain = 0.061050
(°F)/(count)
From Equation [10.10], the conversion offset is:
Vbiax x(2"-1
[10.31] ConvOffset ... = ‘[FSV

0.75 x (2121
ConvOffset .. = —(10

ConvOffset = -307.125

counts

The temperature at the LM34A is given by Equation [10.11] and is:

[10.32] Temperature.p = (ADCCOWM + C0nv0ffsetcoum5) x C0nvGain(EU)/(coum)

counts

Temperature.p, = (ADC - 307.125) x 0.061050
Because the LM-34A only needs to be read once per second, the pass counter for the channel will be
set to 10 (i.e., 10 X 100 mS scan period).

10.09.02 How to Use the Analog I/O Module, AT #1

Analog input channel #1 is a 100-ohm Resistance Temperature Device (RTD). The RTD has about 80
ohms of resistance when the temperature at the RTD is —50 °F and 139 ohms when the temperature at
the RTD is 200 °F. Unfortunately, the temperature at the RTD is not a linear function of resistance, and
thus you will have to write a linearization function (beyond the scope of this chapter). The current
source is used to develop a voltage across the RTD so that the resistance of the RTD can be measured.
The circuit produces 1 mV per ohm (which is before the amplifier). By using Equations [10.9], [10.10],
and [10.11], the resistance of the RTD is given by:

[10.33] ConvGain = 0.034886
, (ohms)/(count)

ConvOffset = -2293.2

counts

10

370 — Embedded Systems Building Blocks, Second Edition

Resistance . = (ADC —2293.2) x 0.034886

counts

The pass counter for analog input channel #1 will be set to 1 in order to read the RTD every 100 mS.

10.09.03 How to Use the Analog I/0 Module, AT #2

Analog input channel #2 is a J-Type thermocouple (another temperature measurement device). If you
want to get the official reference on thermocouples, you should get the NIST Monograph 175 (see “Bib-
liography” on page 374). A thermocouple produces a small voltage (called the Seebeck voltage) that
varies as a function of temperature. The temperature at the thermocouple is not a linear function of the
voltage produced. To further complicate things, the temperature at the thermocouple is also a function
of a reference temperature called the Cold Junction. Determining the temperature at the thermocouple is
beyond the scope of this book. Let’s say for now that all you need to do is to measure the voltage (actu-
ally milli-volts) produced by the thermocouple. It is thus up to you to write a linearization function
(also called thermocouple compensation function). A J-Type thermocouple produces —-2.223 mV at —50
°F and 21.785 mV at 750 °F. This voltage is amplified by 400 so that it can be read by the ADC. A bias
voltage is introduced to ensure that the ADC only sees positive voltages. From Equations [10.9],
[10.10], and [10.11], the number of milli-volts at the thermocouple is given by:

[10.34] ConvGain = 0.006105
(mV)/(count)

ConvOffset = —409.5

counts

counts

Thermocouple,,y,; = (ADC - 409.5) x 0.006105

All you have to do is linearize the thermocouple based on the number of milli-volts read from the
thermocouple. The pass counter for analog input channel #2 will be set to 5 in order to read the thermo-
couple every 500 mS.

10.09.04 How to Use the Analog I/0 Module, AT #3

Analog input channel #3 is also a J-Type thermocouple. A J-Type thermocouple produces —2.223 mV at

—50 °F and 29.515 mV at 1000 °F. This voltage is amplified by 300 so that it can be read by the ADC.

The bias voltage is also introduced to ensure that the ADC only sees positive voltages. From Equations -
[10.9], [10.10], and [10.11], the number of milli-volts at the thermocouple is given by:

[10.35] ConvGain = 0.008140
(mV)/(count)

ConvOffset = —409.5

counts

counts

Thermocouple,,y, = (ADC - 409.5) x 0.008140

Again, all you have to do is linearize the thermocouple based on the number of milli-volts read from
the thermocouple. The pass counter for analog input channel #3 will also be set to 5 in order to read the -
thermocouple every 500 mS.

[

Chapter 10: Analog I/Os — 371

10.09.05 How to Use the Analog I/0 Module, A1 #4

Analog input channel #4 reads a voltage directly (maybe a battery). Because the voltage to read exceeds
the FSV of the ADC, the hardware designer decided to simply divide the voltage in half. From Equa-
tions [10.9], [10.10], and [10.11], the voltage at the input is given by:

[10.36] ConvGain = 0.004884
(V)/(count)

ConvOffset = -0

counts

Voltagey, = (ADCcoums—) x 0.004884

The pass counter for analog input channel #4 will also be set to 10 in order to read the thermocouple
every second.

10.09.06 How to Use the Analog I/0 Module, AT #5

Analog input channel #5 reads a pressure from a pressure transducer which produces 2.6 mV/PSIG
(pounds per square inch gauge). From Equations [10.9], [10.10], and [10.11], the pressure read by the
transducer is given by:

[10.37] ConvGain = 0.009392
(PSIG)/(count)

ConvOlffset = -0

counts

Pressurepgi = (ADCCOMMS—O) x 0.009392

The pass counter for analog input channel #5 will be set to 1 in order to read the pressure every 100 f O
mS.

Let’s assume that the hardware designer came up with the circuit shown in Figure 10.18 to update
the analog outputs.

372 — Embedded Systems Building Blocks, Second Edition

Figure 10.18 Analog outputs.

FSV =10V
Vel
1 Converter Meter
(10 pA/V) -50° +200°
Temperature Scaling | cnts | 8-Bit
-50 °Fpto 200 °F | Function[*| DAC / / Temperature
cnts * FSV
T 0 to 100),LA
FSV = 10V—¢ VI
Converter
(2 mA/V) VALVE
Fuel Control > Scaling | cnts . | 12-Bit 4 to 20 mA
0 to 100% Function “| DAC
cnts * FSV
4096
FSV =10V
Vi
1 Converter Meter
(10 pA/V)
4] 6000

RPM _, Scaling cnts 10-Bit

0 to 6000 Function DAC
cnts * FSV

1024

/:to 100 pA

10.09.07 How to Use the Analog I/0 Module, A0 #0

Analog output channel #0 is used to display temperatures from —50 °F to 200 °F on a 0 to 100 pA meter.
A display of —50 pF is obtained with 0 DAC counts (0 pA) while 200 °F is obtained with 255 DAC

counts (99.609 pA). The DAC counts are given by:

[10.38] ConvGain = 1.02
(counts)/(°F)
COﬂVOffSetwumS =51
DACcounts = 1.02 x Temperatureop + 51

The pass counter for analog output channel #0 will be set to 1 in order to update the meter every 100

mS.

Chapter 10: Analog I/Os — 373

10.09.08 How to Use the Analog I/0 Module, A0 #1

Analog output channel #1 is used to control the opening of a valve. The valve is closed when the control
current is 4 mA and wide open when the control current is 20 mA. The counts vs. output current is given
by:

2" x Out, 4
[10.39] DAC s = Vs
(mA)/V
A 12-bit DAC is used because a 10-bit DAC would not have the required resolution. Using a 10-bit
DAC, 4 mA would require 205 counts (Equation [10.36]), while 20 mA would require 1023 counts, a
range of 818 counts, or 0.122 percent. Note that 11-bit DACs are not commercially available. A 12-bit
DAC requires 819.2 counts for a 4 mA output and 4095 counts for 20 mA (actually 19.995 mA). The
DAC counts required to control the DAC are given by:

4095 -819.2

. C ' = 200 —0ld2 455
[10.40] onvGam(coumS)/% T00% - 0% 32,758
ConvOffset,,, ... = 819.2
DAC, s = 327158 x Inputg + 819.2

The pass counter for analog output channel #1 will be set to 1 in order to update the valve every 100
mS.

10.09.09 How to Use the Analog I/0 Module, a0 #2

Analog output channel #2 is used to display the RPM of a rotating device on a 0 to 100 pA meter. A dis-
play of 0 RPM is obtained with 0 DAC counts (0 pA), while 6000 RPM is obtained with 1023 DAC
counts (99.902 puA). The DAC counts are given by:

[10.41] ConvGain = 0.1705
(counts)/(RPM)
ConvOffset,,, ... = 0
DAC = 0.1705xRPM + 0

counts

The pass counter for analog output channel #2 will be set to 2 in order to update the meter every 200
mS.
The code to initialize the analog I/O channels is:

10

374 — Embedded Systems Building Blocks, Second Edition

void AppInitATO (void)
{

ATICfgConv (0, 0.061050, 307.125, 10); /* Analog Inputs */
AICfgConv(l, 0.034886, 2293.2, 1);
AICfgConv(2, 0.006105, 409.5, 5);
AICfgConv(3, 0.008140, 409.5, 5);
AICfgConv (4, 0.004884, 0.0, 10);
AICfgConv (5, 0.009392, 0.0, 1);

AICfgScaling(l, /* Pointer to RID code */, /* Pointer to args */);
ATCfgScaling(2, /* Pointer to TC code */, /* Pointer to args */);
AICfgScaling(3, /* Pointer to TC code */, /* Pointer to args */);

AOCfgConv(0, 1.02, 51.0, 255, 1); /* Analog Outputs */
AOCfgConv(l, 32.758, 819.2, 4095, 2);
AQCfgConv (2, 0.1705, 0.0, 1023, 2);

You can now obtain the value read by any analog input channels by using ATIGet () and set any ana-
log output channel by calling 20Set ().

10.10 Bibliography

Burmns, G.W., Scroger, M.G., Strouse, G.F., Croarkin, M.C. and Guthrie, W.F.

Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated
Thermocouple Types Based on the ITS-90 (NIST Monograph 175)

United States Department of Commerce

National Institute of Standards and Technology (NIST)

Gaithersburg, MD 20899

(301) 975-3058

Morgan, Don

Numerical Methods, Real-Time and Embedded Systems Programming
San Mateo, CA

M&T Publishing, Inc.

ISBN 1-55851-232-2

U.S. Software

14215 NW Science Park Dr.
Portland, OR 97229

(503) 641-8446

Zuch, Eugene L.

Data Acquisition and Conversion Handbook
Mansfield, MA

Datel/Intersil, 1979

Chapter 10: Analog I/0s — 375

Listing 10.1 AIO.C

/*
i—**l
* Analog I/0 Module

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : ATO.C
* Programmer : Jean J. Labrosse

D R R L R R R E T G T Rt T T T T T e ey ok ok ok ok ok *
*/

/%

L g E et L L R L R L L et T E T P L S e Kkkkkh Rk KKK *kkk Kk
* INCLUDE FILES

*k *kok * ok kk * D L T L A S S R 2
*/

#define ATO GLOBALS
#include "includes.h"

J*
R B b e L R g S L T
* LOCAL VARTABLES

* *hkhk Hkkdkk *kdk & Rkdkkh Rk kkh Rk kh KRk kh kR kK kkdkkkk kk ok hhk A
*/

static OS_STK ATOTaskStk[ATO TASK STKR SIZE];

static OS_EVENT *ATOSem;

/*
AAE kR kA E A * * HAEKFFEIFERFEFFRIAF R KRR Ak ok h Rk hkhk * ke k ok Fkk ok kkk ko kkdkk
* LOCAL FUNCTION PROTCTYPES

T T e L]

*/

void ATQTask (void *data);
static wvoid ATInit(void);
static wvoid ATUpdate(void) ;
static void AOTnit (void) ;
static wvoid AOUpdate(void) ;

/*$PAGE*/

376 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*

R 2 L s e T T

*

*

*

*

*

*

*

*

CONFIGURE THE CALIBRATION PARAMETERS OF AN ANALOG INPUT CHANNEL

Description : This function is used to configure an analog input chamnel.

Arguments : n is the analog input chamnel to configure:
gain is the calibration gain
offset is the calibration offset
Returns : 0 if successfull.
1 if you specified an invalid analog input channel number.

R L L e T e e R T e

*/

INT8U AICfgCal (INT8U n, FP32 gain, FP32 offset)

{

INT8U erx;
ATO *paio;

if (n < ATO MAX AT) *{

paio = &AITHhl[nl; /* Point to Analog Imput structure
OSSemPend (ATOSem, 0, &erx); /* Obtain exclusive access to AI channel
paio-»>AICCalGain = gain; /* Store new cal. gain and offset into struct
pailo->AICCalOffset = offset;
paio->AI0Gain = palo—»AICCalGain * paio->AICConvGain; /* Compute overall gain
paio->AIQOffset = paio-»AICCalOffset + paio->ATOConvOffset; /* Compute overall offset
OSSemPost (AIOSem) ; /* Release AI channel
retum (0);

} else {
return (1);

/*SPAGE*/

*/
*/
*/

*/
*/
*/

Chapter 10: Analog I/Os — 377

Listing 10.1 (continued) AIO.C

/*
S o ok kK ok e ok ok ko ok ok kK kK ok ok ook ok ok ok ok ok ook ok ok okt ok ook o ok ko ok ook ok ok Tk ko e ko o ok ek Rk ko ko ko
* CONFIGURE THE CONVERSION PARAMETERS OF AN ANALCG INPUT CHANNEL

* :

* Description : This function is used to configure an analog input chamnel.

* Arguments : n is the analog channel to configure (0..AIO MAX AT-1).

* gain is the conversion gain

* offset is the conversion offset

* pass is the value. for the pass counts

* Returns : 0 if successfull.

* 1 if you specified an invalid analog input channel number.

R L L L L T T L T e o e

*/

INT8U AICfgConv (INT8U n, FP32 gain, FP32 offset, INT8U pass)

{
INT8U err;
ATO *paio;
if (n < ATO MAX_AT) {
paio = &ATITHl(n]; /* Point to Analog Input structure */
0OSSemPend (ATOSem, 0, &err); /* Obtain exclusive access to AT charnel */ —-_—
paio-»AICConvGain = gain; /* Store new conv. gain and offset into struct */
paio->ATOConvOffset = offset;
paio->ATOGain = paio->AT0CalGain * paio->ATOConvGain; /* Campute overall gain */
paio->ATO0ffset = palo->AIOCalOffset + paio->AICConvOffset; /* Campute overall offset */
paio->AIOPassCnts = pass;
OSSemPost (ATOSem) ; /* Release AI chamnel */
return (0);
} else {
return (1);
) 10
}

/*$PAGE*/

378 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*

B R T R T S T T

* CONFIGURE THE SCALING PARAMETERS OF AN ANAICG INPUT CHANNEL

*

* Description : This function is used to configure the scaling parameters associated with an analog

* input channel.

* Arguments :n is the analog input chamnel to configure (0..ATO_MAX AI-1).
* arg is a pointer to arguments needed by the scaling function

* fnct is a pointer to a scaling function

* Returns : 0 if successfull.

* 1 if you specified an invalid analog input channel number.

ek 5 9k 5k 9 5k K3 5k ke ok ke ok 3 9k ke 9 ok ke ok ok ok ke 5 9 K 5k K 9k ke ok 5 K 5 K3 5 ok 9 3k gk e ok ok ok 3 9 5 5k 9 3 ok ok ok 3k 9 3 9k ok 9 9 3 ok ok ok ke ok 3 ok ke o o ok ek ok ok ok ke ok e Rk Sk ek ok ek

*/

INT8U AICfgScaling (INT8U n,
{
AIO *paio;

if (n < ATO MAX AT) {
paio
OS_ENTER_CRITICAL() ;
paio~->AIOScaleFnct
paio~>ATOScaleFnctarg
OS_EXTIT_CRITICAL();

return (0);
} else {
return (1);

/*SPAGE*/

void (*fnct) (ATO *paio), void *arg)

&ATTb1 (1] ;

(void (*) ())fnct;
arg;

/* Faster to use a pointer to the structure

*/

Chapter 10: Analog I/Os — 379

Listing 10.1 (continued) AIO.C

/*

Hekokokokdekok * Yok ok ok ok * % * koK %k * Kk ok ke ¥k % ok *
* GET THE VALUE OF AN ANALOG INPUT CHANNEL

* 0

* Description : This function is used to get the currect value of an analog input chammel (in engineering
* units) .

* Arguments :n is the analog input chamnel (0..ATO MAX AT-1).

* pval 1is a pointer to the destination engineering units of the analcg input charmel

* Returns : 0 if successfull.

* 1 if you specified an invalid analog input channel number.

* In this case, the destination is not changed.

kkkddddkdk Ak hkhkk Rk kkhkhkhkk ko kkkkkkkhkhkrkdkhkkkhkhkkhkhdhhkxkhdk ik ikik Yok kk ok *okk

*/

INTS8U AIGet (INTSU n, FP32 *pval)

{
ATO *paio;
if (n < ATO_MAX AT) {
paio = &AITbl[n];
OS_ENTER_CRITICAL() ; /* Obtain exclusive access to AT channel */
pval = paio->ATOEU; / Get the engineering units of the analog input channel */
OS_EXIT CRITICAL(); /* Release AT channel */
return (0);
} else {
return (1);
)
}

/*SPAGE*/

380 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*

dedkdek ok dkkkkdkkk ok k kK kR Kk

*kdk kK kkkkok ddk ko

* ANALOG INPUTS INITIALIZATION
*

* Description : This function initializes the analog input channels.
* Arguments : None

* Returns : None.

*hkhkkkdkkkhkkk *hkhkkkhkk sk *k*E
*/

static void AIInit (void)

{

INT8U i

ATO *paio;

paio = &AITb1[0];

for (1 = 0; 1 < ATO MAX AT; i++) {
paio->AI0BypassEn = FALSE; /*
paio->ATIORaw = 0x0000; /*
paio->ATOEY = (FP32)0.0; /*
paio->ATOGain = (FP32)1.0; /*
paio->ATOOffset = (FP32)0.0; /*
paio->AIO0Lim = 0;
paio—>AIQPassCnts = 1; /*
paio->ATOPassCtr = 1; /*
paio—>AI0CalGain = (FP32)1.0; /*
paio—>AI0CalOffset = (FP32)0.0; /*
paio->ATI0ConvGain = (FP32)1.0; /*
paio->AIOConvOffset = (FP32)0.0; /*
paio->ATIOScaleIn = (FP32)0.0; /*
paio->ATOScaleQut = (FP32)0.0; /*
paio->AIOScaleFnct = (void *)0; /*
paio—>AI0ScaleFnctArg = (void *)0; /*
pPaio++;

}

}

/*SPAGE™*/

Analog channel is not bypassed
Raw counts of ADC or DAC
Engineering units of AT channel
Total gain

Total offset

Pass counts

Pass counter

Calibration gain

Calibration offset

Conversion gain

Conversion offset

Input to scaling function
Output of scaling function

No function to execute

No arguments to scale function

*kkhhKK

R TS Lt

*/
*/
*/
*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

Chapter 10: Analog I/Os — 381

Listing 10.1 (continued) AIO.C

/*
e e T o e T g e e e e o ok e e 3o 3 7 T T T I ok o e ok T o ok ol ok ok ke ok ol ok ok o ok ok R e 3k ok o i e T gk T Tk ok ok ok ok g ke o e S A0 70 0 T 9 ok ok e o sk ke ok ok ok ok ke ke ok ke ok 9 0 i e e ok ke ok ok ok ke ok ok ke ke ok
* ANALOG I/0 MANAGER INITIALIZATION
*
* Description : This function initializes the analog I/0 manager module.
* Arguments : None
* Returns . None.
o e ke ke k K * ok ok ke ke ok ok kok 4 &k %
*/

void AIOInit {(void}

{
INT8U err;
ATInit();
ADInit();
ATOINLtIO();
ATOSem = OSSemCreate(l); /* Create a mutual exclusion semaphore for AIOs */
OSTaskCreate (ATOTask, (void *)0, &AIOTaskStk[AIO TASK STK SIZE], AIO TASK PRIO);
}
/*SPAGE*/
/*
ke ko g A A ok ok ok ok ok ok * &k e ke ke ek ke ke &k ok ek ok hokokdkekdkkkkkhhkkkk
* ANALCG I/0 MANAGER TASK

*

* Description : This task is created by ATOInit() and is responsible for updating the analog inputs and

* analog outputs.
* ATQTask () executes every ATO_TASK DLY milliseconds.
* Arguments : None.
* Returns : None.
&k ok e e ke ke ke ko koK ke ke * KA KT EE KA AAAATA A A AT E A A Ak kA kA XAk hkxhkhkxhk
*/

void AIOTask (void *data)

{
INT8U err;
data = data; /* Avoid campiler warning */
for (;:) {
OSTimeDlyHMSM(0, O, 0, ATO_TASK_DLY); /* Delay between execution of ATO manager */
OSSemPend (ATOSem, 0, &err); /* Obtain exclusive access to AI channels */
ATUpdate() ; /* Update all AT channels */
OSSemPost (ATOSem) ; /* Release AT channels (Allow high prio. task to run) */
OSSemPend (ATOSem, 0, &err); /* Obtain exclusive access to AO channels */
AUpdate() ; /* Update all AO charmels */
OSSemPost (ATOSem) ; /* Release AQ chamnels {Allow high prio. task to run) */
}
}

/*$SPAGE*/

i

10

382 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*
ek kk ko ok k ok
*

*

E R L T T e e e T E T 22

SET THE STATE OF THE BYPASSED ANALOG INPUT CHANNEL:

* Description : This function is used to set the engineering units of a bypassed analog input channel.

Fkkkkkkkkkk

*/

INT8U AlSet
{

This function is used to simulate the presense of the sensor. This function is only
valid if the bypass 'switch' is open.

:n is the analog input channel (0..ATO MAX AI-1).
val 1is the value of the bypassed analog input channel:

: 0 if successfull.
1 if you specified an invalid analog input channel number.
2 if AIOBypassEn was not set to TRUE

B L R e

Bypass (INT8U n, FP32 val)

ATO *paio;

if (n < ATO MAX AT) {

paio = &AITbl[n]; /* Faster to use a pointer to the structure */

if (paio->AIOBypassEn == TRUE) { /* See if the analog input channel is bypassed */
OS_ENTER_CRITICAL(};
paio-»ATOEU = val; /* Yes, then set the new value of the channel */
OS_EXIT CRITICAL();
return (0);

} else {
return (2);

}

} else {
return (1);

/*SPAGE*/

Chapter 10: Analog I/Os — 383

Listing 10.1 (continued) AIO.C

/*

*% * *k * *kkhk

* SET THE STATE OF THE BYPASS SWITCH

* Description : This function is used to set the state of the bypass switch. The analog input channel is

* bypassed when the 'switch' is open (i.e. AIOBypassEn is set to TRUE).

* Arguments :n is the analog inmput channel (0..ATO MAX AT-1).

* state is the state of the bypass switch:

* FAISE disables the bypass (i.e. the bypass 'switch' is closed)

* TRUE enables the bypass (i.e. the bypass 'switch' is open)

* Returns : 0 if successfull.

* 1 if you specified an invalid analog input channel number.

sk dkk *kokk dokkk Y¥dk ok ok okok * % ¥k * * dddkk
*/

INTS8U AlSetBypassEn (INT8U n, BOOLEAN state)

{
if (n < ATO_MAX AT) {
AITDl [n] .ATOBypassEn = state;
return (0); -
} else { -
return {1);
} -
) -—

/*SPAGE* /

384 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*

* UPDATE ALL ANALOG INPUT CHANNELS

*

* Description : This function processes all of the analog input channels.

* Arguments : None.

* Returns : None.

kK e
*/

static wvoid ATIUpdate (void)
{

INT8U i;

ATO *paio;

paio = &ATITb1(0]; /* Point at first analog input channel
for (1 = 0; 1 <« ATQO MAX AT; i++) { /* Process all analog input channels
if (paio->AIOBypassEn == FALSE) { /* See if analog input channel is bypassed
pailo->ATOPassCtr--~; /* Decrement pass counter
if (paio->ATOPassCtr == 0} { /* When pass counter reaches 0, read and scale AT
paio->ATOPassCtr = paio->ATOPassCnts; /* Reload pass counter
paio~>ATORaw = ATRA(i); /* Read AIC for this channel
paio->AI0Scaleln = ((FP32)paio->AlORaw + paio->AIQ0ffset) * paio->AICGain;
if ((void *)paio->AIOScaleFnct != (void *)0) { /* See if function defined
(*paio->ATOScaleFnct) (paio) ; /* Yes, execute function
} else {
paio->AT0ScaleCut = paio->»ATOScaleln; /* No, Jjust copy data
}
paio->ATOEU = paio->AIOScaleOut; /* Output of scaling fnct to E.U.
}
}
paio++; /* Point at next AT channel
}

/*SPAGE*/

*/
*/
*/
*/
*/
*/
*/

*/
*/

*/

*/

*/

Listing 10.1 (continued) AIO.C

Chapter 10: Analog I/Os — 385

/*

L R L s T e S e T e S S S 2 S 22 s

* CONFIGURE THE CALIBRATION PARAMETERS OF AN ANAILCG OUTPUT CHANNEL -

*

* Description : This function is used to configure an analog output chamnel.

* Arguments :n is the analog output channel to configure (0..AI0 MAX AO-1)
* gain is the calibration gain

* offset is the calibration offset

* Returns : 0 if successfull.

* 1 if you specified an invalid analog output channel nuxber.

L e R e e S L e e TS 2222]

*/

INT8U ACCfgCal (INT8U n, FP32 gain, FP32 offset)

{
INT8U erx;
ATO *paio;

if (n < ATO MAX 20) {
paio
0OSSemPend (ATOSem, 0
paio->AICCalGain
paio->ATCCalOffset
paio->AI0Gain
paio->AICOffset
OSSemPost (ATOSem) ;
return (0);

} else {
return (1);

/*SPAGE*/

‘

&A0Tbl(n]; . /* Point to Analog Output structure */
&err) ; /* Obtain exclusive access to AO chamnel */)
gain; /* Store new cal. gain and offset into struct */ _—
offset;
paioc->ATC0CalGain * paio->»ATCConvGain; /* Compute overall gain */
paio->AT0CalOffset + paio->ATOConvOffset; /* Compute coverall offset */

/* Release AD chamnel */

10

386 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*
e ok ok ok 9k ok ok o ok ok ok ok ok ok ok ok ok ok ok ok Kk ko ook ok ok ok ok ok K Kk ok ok o ok ok ok Kk ko
* CONFIGURE THE CONVERSION PARAMETERS OF AN ANALOG OUTPUT CHANNEL

*

* Description : This function is used to configure an analog output channel.

* Arguments :n is the analog channel to configure (0..ATO MAX AD-1).

* ‘ gain is the conversion gain

* offset 1is the conversion offset

* pass is the value for the pass counts

* Returms : 0 if successfull.

* 1 if you specified an invalid analog output channel number.

e e e vk ok vk ok ke vk 3ok ke 30k e ok ok ek e ke ok e vk ok ok ok ok ok ke ok ke ok 3 3 3k e ok ok ook i vk ok ke ok ke ok ok ke 330 3k ok ke ok vk sk ke ok ok vk ok T e ok ik ok ke ok vk ok ok 0 9k ok ok e ok e

*/

INT8U ACCfgConv (INT8U n, FP32 gain, FP32 offset, INT16S lim, INT8U pass)

{
INT8U err;
AIO *paio;

if (n < AIO MAX_AO) { -

paio = &A0Tbl [n]; /* Point to Analog Output structure */
OSSemPend (ATOSam, 0, &err); /* Obtain exclusive access to AO charmel */ -
paio->AI0ConvGain = gain; /* Store new conv. gain and offset into struct */ —
paio->AICConvOffset = offset;
paio->AI0Gain = paio-»AICCalGain * paio->AICCorvGain; /* Campute overall gain */
paio->ATIQ0ffset = palo->ATCCalOffset + paio->AIOCorvOffset; /* Campute overall offset */
paio~>AIOLim = lim;
paio->AIQOPass(nts = pass;
OSSemPost (ATOSam) ; /* Release A0 channel */
return (0);
} else {
return (1);

)
/*SPAGE*/

Chapter 10: Analog /Os — 387

Listing 10.1 (continued) AIO.C

*
:—**
* CONFIGURE THE SCALING PARAMETERS OF AN ANALOG OUTPUT CHANNEL
*

* Description : This function is used to canfigure the scaling parameters associated with an analog

* output chamel.

* Arguments :n is the analog output chamnel to configure (0..AIO MAX AO-1}.

* arg is a pointer to arguments needed by the scaling function

* fnct is a pointer to a scaling function

* Returns : 0 if successfull.

* 1 if you specified an invalid analog ocutput chamnel number.

AAKAAK A AAA AT RAARAAAA AR A A KAAA AR AAKNAA AR AR AR R A AL Ak kkk ok *kk o %k kK Ak A Ak ok kkk ok kk * %
*/

INT8U ACCfgScaling (INT8U n, void (*fnct) (ATO *paio), wvoid *arg)
{
ATIO *paio;

if (n « ATO MAX 20) {
paio = &A0Tbl[n); /* Faster to use a pointer to the structure */
OS_ENTER_CRITICAL() ;
paio->AIOScaleFnct = (void (*) ())fnct;
paio->AI0ScaleFnctArg = arg;
OS_EXIT_CRITICAL();
return (0);
} else {
return (1);

}
/*SPAGE*/

388 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*

*hKx P e]

* ANALOG OUTPUTS INITIALIZATICN

* —
* Description : This function initializes the analog output channels.

* Arguments : None

* Returms : None.
*hhkKkKk K *hKhK *hKkkK *hKK

*/

static void AOInit (void)
{

INT8U i;

ATO *paio;

paio = &AOTb1[0];
for (i = 0; i < ATO MAX AQ; i++) {

paio->ATOBypassEn = FALSE; /* Analog channel is not bypassed */

paio->ATORaw = 0x0000; /* Raw counts of ADC or DAC */ -
paio->AICOEU = (FP32)0.0; /* Engineering units of AI charnel */ -
paio->AT0Gain = (FP32)1.0; /* Total gain */
paio->ATOOffset = (FP32)0.0; /* Total offset */ -
paio->ATOLim = 0; /* Maximum count of an analog output channel */
pailo~->ATOPassCnts = 1; /* Pass counts */
paio->ATOPassCtr = 1; /* Pass counter */
paio—>AI0CalGain = (FP32)1.0; /* Calibration gain */

paio->AIOCalOf fset = (FP32)0.0; /* Calibration offset */
paio->AIOConvGain = (FP32)1.0; /* Conversion gain */
paio->ATOConvOffset = (FP32)0.0; /* Conversion offset */
paio->AT0ScalelIn = (FP32)0.0; /* Input to scaling function */
paio->AT0ScaleCut = (FP32)0.0; /* Output of scaling function */
paio->ATOScaleFnct = (void *)0; /* No function to execute */
paio->AT0ScaleFnctArg = (void *)0; /* No arguments to scale function */

palo++; -

}
/*SPAGE*/

Chapter 10: Analog 1/0s — 389

Listing 10.1 (continued) AIO.C

/¥

R R R e]

*

*

*

*

*

SET THE VALUE OF AN ANALOG OUTPUT CHANNEL

Description : This function is used to set the currect value of an analog output channel
(in engineering units).

Arguments :n is the analog output channel (0..ATO MAX AO0-1).

val 1is the desired analog ocutput value in Engineering Units
Returns : 0 if successfull.

1 if you specified an invalid analog output channel number.

B R e R T g T L TS e T2

*/

INT8U AOSet (INTS8U n, FP32 val)

{

if (n < ATO MAX 20) {
OS_ENTER_CRITICAL() ;

ACTP1(n) .ATOEU = val; /* Set the engineering units of the analog output channel */
OS_EXIT CRITICAL();
return (0);
} else {
retum (1);

/*SPAGE*/

390 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*
* * *k ok . * L R L LR L L e P S R B g

* SET THE STATE OF THE BYPASSED ANAIOG OUTPUT CHANNEL

*

. -

Description : This function is used to set the engineering units of a bypassed analog output channel. -
Arguments : n is the analog output channel (0..AIO MAX AO-1).
val is the value of the bypassed analog output channel:

*

*

* Returns : 0 if successfull.

* 1 if you specified an invalid analog output channel number.

* 2 if ATOBypassEn is not set to TRUE

ARKEEE KA A ARA KR AKR A AT A AR AR A A A A A AR AR AR AR AAARARRARARA AR AR KRR h & e ode de A Aok kok ok * ok k- *kk * %
*/

INT8U AOSetBypass (INT8U n, FP32 val)
{
ATO *paio;

if {n < ATO MAX AO) {

paio = &A0Tbl([n]; /* Faster to use a pointer to the structure */

if (paio->AIOBypassEn == TRUE) { /* See if the analog output channel is bypassed */ -
0S_ENTER CRITICAL(); N
paio->AI0ScaleIn = val; /* Yes, then set the new value of the channel */

OS_EXTT_CRITICAL() ;
return (0);
} else {
return (2);
}
} else {
return (1);

/*SPAGE*/

Chapter 10: Analog I/Os — 391

Listing 10.1 (continued) AIO.C

/*
R kR Rk Rk KRR AR AR R AR AR Rk Ak Ak kR Rk ok o Rk o de o ok ook ok ok ok ko R ke * *kkk
* SET THE STATE OF THE BYPASS SWITCH

*

* Description : This function is used to set the state of the bypass switch. The analog output channel

* is bypassed when the 'switch' is open (i.e. AIOBypassEn is set to TRUE).

* Arguments :n is the analog ocutput channel (0..ATO MAX _AO-1).

* state is the state of the bypass switch:

* FALSE disables the bypass (i.e. the bypass 'switch' is closed)

* TRUE enables the bypass (i.e. the bypass 'switch' is open)

* Returns : 0 if successfull.

* 1 if you specified an imvalid analog output channel number.

ek ok ok kok ok kokkkkk * *kk * kkkokok ok * Kk
*/

INT8U AOSetBypassEn (INT8U n, BOOLEAN state)
{
INT8U err;

if (n < ATO MAX A0) {
AOTH] [n] .ATOBypassEn = state;
return (0);

} else {
return (1);

/*$PAGE*/

392 — Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/%
Kk * dkk Ak * Kok Aok A ek ek ok ok ok ek ko Kk k kA hkk A HE Kk kA kAR ATk Rk ko k AR AR TRk k ok ke
* UPDATE ALL ANALOG OUTPUT CHANMNELS

*

* Description : This function processes all of the analog output channels.
* Arguments : None.

* Returns : None.

L R P e s s

*/

static void AOUpdate (void)
{

INT8U i

ATO *paio;

INT16S raw;

paio = &AOTL1[0]; /* Point at first analog output channel */
for (i = 0; 1 < ATO MAX AO; i++) { /* Process all analog output chamnels */
if (paio->AIOBypassEn == FALSE)} { /* See if analog output channel is bypassed x/ -
paio->AIOScaleIn = paio—>AIOEU; /* No */ -
}
paio->AIOPassCtr--; /* Decrement pass counter */ -
if (paio->AIOPassCtr == 0) { /* When pass counter reaches 0, read and scale AT */ -
paio->AI0PassCtr = palo->AIOPassCnts; /* Reload pass counter */
if ({void *)paio->AI0ScaleFnct != (void *)0) { /* See if function defined */
(*paio—>ATOScaleFnct) {paio) ; /* Yes, execute function */
} else {
paio—>AI0ScaleOut = paio—->AIOScaleln; /* No, bypass scaling function */
}
raw = (INT16S) (paio->AIOScaleOut * paio->AIOGain + paio->AICOffset);
if {raw > paio~->AIOLim) { /* Never output > maximum DAC counts */
raw = paio->AIOLim;
} else if (raw < 0} { /* DAC counts must always be >= 0 */
raw = 0; _
}
palo->AIORaw = raw;
AOWr (1, paio->AIORaw); /* Write counts to DAC */
}
paio++; /* Point at next 20 channel */
} _

/*SPAGE*/

Chapter 10: Analog I/Os — 393

Listing 10.1 (continued) AIO.C

#ifndef CFG.C

/*

B L L R L L T B R S Lt S L E T S e T T P T R L T ot
* INITIALIZE PHYSICAL I/Os

* Description : This function is called by ATOInit() to initialize the physical I/0 used by the AIO
* driver.

* Argumerts : None.

* Returns : None.

E T L I T T T e T S T

*/

void AIOInitIO (void)

{
/* This is where you will need to put you initialization code for the ADCs and DACs */
/* You should also consider initializing the contents of your DAC(s) to a known value. */
}
/*
KA AKX A A A kA XA A AKX R XA Ak RA kAR Ak khhhkhkhkhhkhdhhkhkhkhkhkkhkhkhkhkhhkhkhhhkhkkhkhkik hkkkk * ok *hkkk
* READ PHYSICAL INPUTS

* Description : This function is called to read a physical ADC channel. The function is assumed to

* also control a multiplexer if more than one analog input is connected to the AIC.

* Arguments : ¢ch is the ADC logical channel number (0..ATQ MAX AT-1).

* Returns : The raw ADC counts from the physical device.
hhkkhkRhkkkhkhkhhkkhkkhkkhkhkhkhkkhkhkhkhkhkkhhkhkhkhkhkkhhkkhkkrhkhkhkhkhhkhkhkhhkrhhhkhkhrhhkkhhkhithhkkhk Fook Aok k& * * khkkkkhkhkkk
*/

INT16S ATRd (INT8U ch)

{
/* This is where you will need to provide the code to read your ADC{s). */
/* ATRA() is passed a 'LOGICAL' channel number. You will have to convert this logical channel */
/* number into actual physical port locations (or addresses) where your MUX. and ALCs are located. */
/* ATRA() is responsible for: */
/* 1) Selecting the proper MUX. channel, */
/* 2) Waiting for the MUX. to stabilize, */
/* 3) Starting the ADC, */
/* 4) Waiting for the ADC to complete its conversion, */
/* 5) Reading the counts from the ADC and, */
/* 6) Returning the counts to the calling function. */
return (ch);

}

/*SPAGE*/

10

394 — Embedded Systems Building Blocks, Second Edition

Listing 10.

1 (continued) AIO.C

/*

7 3k e e ke ke ok ek ok ok ok ok 9 ko o ke ok ko o e ke ok o e ke ok ke ke ok ok ok 9k ok ke ok T ok ke ok Tk ok ok ok ke ok ok ok ke ok ook ok I o sk ek ko ek ok ok ko ek ok ke ok

*
*
* Description :
*
*

* Arguments

*

* Returns

UPDATE PHYSTICAL OUTPUTS

This function is called to write the 'raw' counts to the proper analog output device -
(i.e. DAC). It is up to this function to direct the DAC counts to the proper DAC if more
than one DAC is used.

: ch is the DAC logical channel number (0..AIQ MAX AO-1).

cnts are the DAC counts to write to the DAC

: None.

e ke ok ok e 3k o K e 9k ko ok ok ok ke T e ke ok ke ko e ok ke ok ok o ok ok ok 9 ke ok ok Tk ok ok Tk ke ook o T ok ok ok ok 9 ok ok ok ok ok ok T e ok ke ok ok ke ok o ek ok ek ok

*/

void AOWr (INT8U ch, INT16S cnts)

{

ch = ch;

cnts ‘= ents;

/* This is where you will need to provide the code to update your DAC(s). */

/* AOWr() is passed a 'LOGICAL' chamnel number. You will have to convert this logical charnel */

/* number into actual physical port locations (or addresses) where your DACs are located. */

/* AOWr{) is responsible for writing the counts to the selected DAC based on a logical mumber. */)
}

#endif

Chapter 10: Analog I/Os — 395

Listing 10.2 AIO.H

/*

% kK kR AR KA KK Ak A A AR AL LA AL AT AL A A A AL AR A A A A A A A A XA AAAAKRAAKAAR AR AN A Ak Ak kdkkkk
* Analog I/0 Module

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* Filename : ATO.H

* Programmer : Jean J. lLabrosse

Fkk % KAAK K AT KA A I T * Ik KK E K Ik kdkkdkkdokdrkkkk ki kkkhkkkkkkkdkkdkxk %k ok ko k ok
*/

#ifdef ATO_GLORALS
#define ATO_EXT

#else

#define AIO_EXT extern
#endif

/*
B R O R R R R a A E e R R R a A h A L L

* CONFIGURATION CONSTANTS

3k ke ok sk ok kA ok ok Tk Tk ok ok ok sk ko e s ok Kok ke W ok ek ok * *okkk kR * ok A ded ok sk gk ok ok ok

*/

#ifndef CFG_H

#define ATO_TASK_PRIO 40

#define ATO TASK DLY 100

#define AIO_TASK STK SIZE 512

#define ATO MAX AT 8 /* Maximum number of Analog Input Channels (1..250) */
#define ATO_MAX AO 8 /* Maximum number of Analog Output Channels (1..250) */
#endif

/*$PAGE*/

396 — Embedded Systems Building Blocks, Second Edition

Listing 10.2 (continued) AIO.H

*
T Y e Y ke ek ke e o o o 3 d 3 e e e gk gk % gk ok 30 e 3k ok e o A 30 9 ok ok 0 ok ok ok ok ok ok e 9 3 e e ke i e ok 3k 9 9 3 ok ko e o 3 e 3 e e e e e A e e vk % e ok o e o g e g e e ok ok
* DATA TYPES

T TR R IR R R AT AR R AR AR A E R AR AR At A A AR R R X R R A AR AN A AR AR KR AT R KRR RRARNRKC AN LI N A A A kAT ddk kAo dk A hod*dkrdh

*

typedef struct aio { /* ANALOG I/0 CHANNEL DATA STRUCTURE */
BOOLEAN AIOBypassEn; /* Bypass enable switch (Bypass when TRUE) */
INT16S ATORaw; /* Raw counts of ADC or DAC */
FP32 ATOEU; /* Engineering units of AI channel */
FP32 ATICGain; /* Total gain (AIOCalGain * AICConvGain) */
FP32 ATICOffset; /* Total offset (ATOCalOffset + ATOConvOffset) */
INT16S ATOLim; /* Maximum count of an analog output channel */
INT8U ATOPassCnts; /* Pass counts */
INT8U ATOPassCtr; /* Pass counter (loaded from PassCnts) */
FP32 AICCalGain; /* Calibration gain */
FP32 ATCCalOffset; ' /* Calibration offset */
FP32 ATOCornvGain; /* Conversion gain */
FP32 ATOConvOffset; /* Conwversion offset */
FP32 AJIOScaleIn; /* Input to scaling function */ -
FP32 AJIOScaleCut; /* Output from scaling function */
void (*AIOScaleFnct) (struct aio *paio); /* Function to execute for further processing */
void *ATOScaleFnctArg; /* Pointer to argument to pass to 'ATOScaleFnct* */ -

} AIO;

/*

KKK KRR KRR KRR AR T ITI KRR AR R XA RN XX R ARNKN I I Nk x xRk KH AR KX XXX I %K %K J0d 5k & & X %k X % 0K 30 dc o dodc & dedc de 3¢ 3 dcdc 9 5 % Je & & dc do e dc dc de e de e dode koo

* GLOBAL VARIABLES

LR g s e L S e T e s L s T

*/

AIO_EXT AIO ATTb: (ATO MAX AI];
ATO EXT AIO ZOTbl {ATO_MAX AO] ;

/*SPAGE™*/ -

Chapter 10: Analog I/0s — 397

Listing 10.2 (continued) AIO.H

/7
B R L S R g R R R Rt S AR SRR]
* FUNCTION PROTOTYPES =

L L L L s e e s T R e e e T T L e e e e e

*/
void ATOInit (void) ;

INT8U ATCfgCal (INT8U n, FP32 gain, FP32 offset);

INT8U AICfgConv (INT8U n, FP32 gain, FP32 offget, INT8U pass);
INT8U ATICfgScaling (INT8U n, void (*fnct) (ATO *paio), void *arg);
INT8U ATSetBypass (INT8U n, FP32 val);

INT8U ATSetBypassEn (INT8U n, BOOLEAN state);

INTSU ATGet (INT8U n, FP32 *pval);

INT8U AOCEgCal (INT8U n, FP32 gain, FP32 offset);

INT8U ACCfgConv (INT8U n, FP32 gain, FP32 offset, INT16S lim, INT8U pass);

NT8U ACCEgScaling {INT8U n, void {*fnct) (ATO *paio), void *arg);

INT8U AOSet (INT8U n, FP32 val); -
INT8U AOSetBypass (INT8U n, FP32 val); _
INT8U AOSetBypassEn (INT8U n, BOOLEAN state);

void ATOInitIO(void) ; /* Hardware dependant functions */

INT16S ATIRA({INTBU ch);
void ACWr (INT8U ch, INT16S cnts);

10

398 — Embedded Systems Building Blocks, Second Edition

Chapter 11

Asynchronous
Serial Communications

The world of data communications is very complex. A single book (let alone a chapter) cannot cover
everything. Data communication is concerned specifically with the issues that must be considered when
communicating data between two devices (generally computers). When computing elements are distant
from one another, in most cases data is transmitted serially. Because data in a computer is handled in
parallel (8 bits or more), it is necessary to convert this information from parallel to serial (when sending)
and from serial to parallel (when receiving). There are basically three modes of communication, as
shown in Figure 11.1:

1. Simplex: Data travels in one direction (from A to B). An example of a simplex link would be score-
boards such as those used in hockey, basketball, or other sports. The information is entered at a con-
sole by the score/timekeeper and sent serially to large displays that everybody can see.

2. Half-duplex: Data travels in one direction (from A to B) and then the other direction (from B to A)
but not at the same time. The RS-485 interface (discussion starts on page 408) is half-duplex.

3. Full-duplex: Data can travel in both directions at the same time.

399

400 — Embedded Systems Building Blocks, Second Edition

Figure 11.1 Communication modes.

A > B

SIMPLEX
A sends to B only

v

A B

A
«

HALF-DUPLEX
Data travels one direction at a time.
A sends to B then, B sends to A

»
>

A B

P
«

FULL-DUPLEX
Data can travel in both directions simultaneously.
A sends to B and, B sends to A

In this chapter, I will briefly discuss asynchronous communications, the RS-232C standard, the
RS-485 standard, the serial ports on a PC, and how data is sent and received on an asynchronous com-
munication port. This chapter is not concerned with what is actually sent and received. In other words,
in this chapter, I will not cover data communication protocols. This chapter provides three software
modules:

1. Alow-level driver that allows characters to be sent and received on either of the two serial 1/O ports
on a PC. The driver is called COMM_PC and is interrupt-driven.

2. An interface to the low-level driver (described previously) which allows bytes sent and received to
be buffered. This interface allows you to use buffered serial I/O without requiring a real-time operat-
ing system. This software module is called COMMBGND and is applicable to just about any Fore-
ground/Background system. :

3. An interface to the low-level driver which assumes the presence of a real-time operating system.
This software module (called COMMRTOS) allows you to use buffered serial I/O in a multitasking
environment.

The code provided in this chapter doesn’t make any assumption about the communication mode,
i.e., simplex, half-duplex, or full-duplex.

11.00 Asynchronous Communications

You can find just about everything there is to know about asynchronous serial communications in the
excellent book from Joe Campbell, C Programmer’s Guide to Serial Communications, which is now in
its second edition (see “Bibliography” on page 455). If you are further interested in the world of data
communications, you should also add the books from Andrew S. Tanenbaum and Fred Halsall to your
collection.

In asynchronous communication systems, the receiver clock is not synchronized to the transmitter
clock when data is being transmitted between two devices. Generally speaking, asynchronous transmission

Chapter 11: Asynchronous Serial Communications — 401

is used to indicate that data is being transmitted as individual bytes. Each byte is preceded by a start signal
and terminated by one or more stop signals. The start and stop signals are used by the receiver for synchro-
nization purposes. As shown in Figure 11.2, the transmission line is in a mark (binary 1) condition in its
idle state. As each byte is transmitted, it is preceded by a start bit which is a transition from a mark to a
space (binary 0). This transition indicates to the receiving device that a byte is being transmitted. The
receiving device detects the start bit and the data bits that make up the byte. At the end of the byte transmis-
sion, the line is returned to a mark condition by one or more stop bit(s). At this point, the transmitter is
ready to send the next byte. The start and stop bits permit the receiving device to synchronize itself to the
transmitter on a byte-by-byte basis. From Figure 11.2, you should note that bytes are transmitted least-sig-
nificant bit first. Also, each byte of data being transmitted requires at least two bits which are used for syn-
chronization purpose. The synchronization bits thus impose an overhead of 20 percent.

Figure 11.2 Asynchronous communications timing diagram.

Start Bit Stop Bit (1 or 2)

MARK (1) ! !

I | | | | | | |
SPACE (0) BO 'I B1 ‘ BZIXB?} II BS n B6 ! B7
________ |
| | | | | | |
| | | | | |

T1 Bit Time (1 / Baud Rate)
Character Time (#Bits / Baud Rate) —
It is assumed that the receiver knows how fast each bit is being transmitted. This transmission rate is
known as the baud rate. As long as the sender and the receiver agree to use the same baud rate, the

actual rate used is not important. The industry has, however, standardized baud rates, as shown in Table
11.1.

I
f
l
I
l
|

Table 11.1 Standard baud rates
#Bytes/sec. Time between

Baud rate Bit time (uS)

(note 1) bytes (uS) (note 1)

300 3,333.3 30 33,333
600 1,666.6 60 16,667
1200 833.3 120 8,333
2400 4166.7 240 4,167
4800 208.3 480 2,083
9600 104.2 960 1,042
19200 52.1 1920 521
38400 26.0 3840 260
56000 17.9 5600 179

Note 1: Assuming 1 start, 8 data bits, and 1 stop.

402 — Embedded Systems Building Blocks, Second Edition

Asynchronous communications is performed almost transparently by a device called a UART (Uni-
versal Asynchronous Receiver Transmitter). To send and receive data, your program simply writes and
reads bytes to and from the UART. UARTSs are generally capable of sending and receiving data at the
same time (i.e., they support full-duplex communication). A UART appears to the microprocessor as
one or more memory locations or I/O ports. UARTSs generally contain one or more status register(s),
which are used to verify the progress and state of data transmission and reception. The microprocessor
can thus know when a byte has been received, whether a communication error occurred, or when a byte
has been sent. UARTs can also be configured through one or more control registers. Configuration of a
UART consists of setting the baud rate, setting the number of stop bits (1, 1-1/2 or 2), enabling inter-
rupts when bytes are sent or received, etc.

Probably the most popular UART is the National Semiconductor NS16550 (see 16450 .pdf on the
companion CD-ROM). There are many other UART's available on the market and some of the more
popular ones are: the AMD Z8530, the Motorola 6850 ACIA, the Zilog Z-80 SIO, etc. The NS16550
contains all the required functionality to send and receive characters, but the NS16550 also is equipped
with an internal Baud Rate Generator, which makes it especially easy to interface to most microproces-
sors. What is nice about UART is that they also are available on a large number of single chip CPUs.
Embedded systems can thus benefit from the capability of communicating with terminals, computers or
even other embedded microprocessors.

Data sent and received by UARTS can consist of anything that can be represented by eight bits (or
less) or any multiple of eight bits. You can thus send binary data, ASCII (American Standard Code for
Information Interchange) characters, EBCDIC (Extended Binary Coded Decimal Interchange Code),
BCD (Binary Coded Decimal) digits, etc. By far the most important character set used by the
English-speaking world is ASCIL. ASCII is a 7-bit code. The mapping of a 7-bit binary value to an
ASCII code is shown in Figure 11.3. ASCII characters are used to represent strings in C. For example,
the string “HELLO” is represented by the following ASCII codes:

ASCIT: H E L L o} \O
Binary 0x48 0x45 O0x4C 0x4C Ox4F 0x00

The ASCII chart contains two columns of “special” characters. Some of these ASCII characters are
well known to C programmers: NUL (Nul character, 0x00), BEL (Bell, 0x07), BS (Back Space, 0x08),
LF (Line Feed, 0x0A), CR (Carriage Return, 0x0C), FF (Form Feed, 0x0F), ESC (Escape, 0x1B), and
SP (Space, 0x20). The first two columns also contain character codes that can be used in data communi-
cation protocols (beyond the scope of this book).

Chapter 11: Asynchronous Serial Communications — 403

Figure 11.3 ASCII character set (7-bit code).

MSD

0 1 2 314 5 6 7
LSD jooo oo1 010 011|100 101 110 111

0 |oooof

1 |oo01}

001

0011

0100

0101 [

0110}

o111}

1000

1001|:

101

101

1100}

1101§

1110}

M m O OB » © e|~w & o £&|lw N

111}

11.01 RS-232C .

Dating all the way back to 1969, the RS-232C standard is probably the most widely used communica-
tion interface in the world. RS-232C was defined by the Electronic Industries Association (EIA) and is
formally known as: “Interface between data terminal equipment and data communication equipment
employing serial binary data interchange.” As shown in Figure 11.4, the RS-232C standard is a hard-
ware protocol used to interface between two devices: one is called the Data Terminal Equipment (DTE)
and the other, the Data Communication Equipment (DCE). The RS-232C standard defines:

1. The mechanical aspects of the interface.
2. The characteristics of the electrical signals.
3. The functional aspects of the interchange.

404 — Embedded Systems Building Blocks, Second Edition

Figure 11.4 RS-232C interface.

DTE IM. DCE

(Terminal) \ (Modem)
25 pins (Male) 25 pins (Female)

The RS-232C standard says that there should be two 25-pin connectors: the male connector is used
on the DTE while the female connector is used on the DCE. The actual type of connector is not defined
by the standard. The industry has, however, standardized on 25 pins D-shell type connectors.

Electrically speaking, the RS-232C standard specifies that:

* the load capacitance on a driver is not to exceed 2500 picofarads (pF),
¢ the load resistance on a driver must be between 3000 and 7000 ohms,

* the data signaling rate (or baud rate) must be below 20,000 bits per second (bps) under the specified
load,

» the maximum levels on the RS-232C lines are not to exceed 15 volts (with respect to signal ground),

* drivers must be able to produce between +5 and +15 volts (logic 1) and -5 to —15 volts (logic 0),
* inputs must be able to accept signals from +3 to +15 volts (logic 1) and -3 to —15 volts (logic 0).

Under the maximum load suggested by the RS-232C standard, the distance between the DTE and
the DCE should not exceed 50 feet. Simple math would have you conclude that at a distance of 25 feet
(half the capacitance) you should be able to increase the signaling rate to 40,000 bps, 80,000 bps at 12.5
feet, and about 160,000 bps at 6 feet. In fact, many communication packages allow you to interface two
computers at a data signaling rate of up to 115,200 bps. You should note that the RS-232C standard does
not define “standard” baud rates. The RS-232C standard allows data to be sent and received at the same
time (i.e., full-duplex).

From the 25 pins defined by the RS-232C standard only nine (9) lines are actually used in
“real-world” applications. Probably for that reason and to reduce cost, IBM started to use 9-pin connec-
tors for RS-232C communication when they introduced the IBM PC/AT back in the mid-1980s. The
nine pins that are retained for RS-232C communications are shown in Table 11.2. You should note that
communication ports on PCs are generally connected as DTEs (i.e., male connectors).

Chapter 11: Asynchronous Serial Communications — 405

Table 11.2 RS-232C connections.

Description Acronym DTE DTE Direction DCE DCE
DB-25M DB-IM DB-9F DB-25F
Pin# Pin# Pin# Pin#
Transmit TxD 2 3 - 2 3
Receive Data RxD 3 2 <— 3 2
Request To Send RTS 4 7 - 8 5
Clear To Send CIS 5 8 <— 7 4
Data Set Ready DSR 6 6 <— 4 20
Data Carrier Detect DCD 8 1 <— 1 8
Data Terminal Ready DTR 20 4 - 6 6
Ring Indicator Rl 22 9 < 9 22
Signal Ground SG 7 5 - 5 7

A full description of the use of each of the pins is beyond the scope of this chapter because the code
presented in this chapter only assumes the presence of the TxD, RxD, and SG lines. You will find, how-
ever, detailed information about these lines in Joe Campbell’s book.

An RS-232C communications port generally consists of a UART and what are called EIA driv-
ers/receivers. The EIA drivers and receivers are used to convert microprocessor levels (typically 0 to 5
volts) to RS-232C compatible levels: —3 to —15 volts (logic 0) to +3 to +15 volts (logic 1). An RS-232C
DTE using an NS16550 and EIA drivers/receivers is shown in Figure 11.5. Inverters are used for electri-
cal reasons. For your convenience, Figure 11.5 shows the pinout for both the DB25 and DB9 connec-
tors. (Note that the “M” in DB-25M and DB-9M stands for “Male.”) Only one of the two connectors,
however, would actually be used.

Figure 11.5 RS-232C connections (DTE).

TTL Levels RS-232C Levels
UART 0to5V) (+3/+15V to -3/-15V)

(NS16550) / /
] —
TxD ’__{>0__ E_ &
RxD ——o 3 2
R_% __Do___f 7
e p——oJ—|s| 5]
Bk |——<] 6 p
Signal GND ’_E E
DCD °<} 8 1
DTR Dc 20 4
RI 52 i]
EIA Driver EIA Receiver

DB-25M DB-9M

406 — Embedded Systems Building Blocks, Second Edition

Connection between a DTE and a DCE is quite straightforward and is shown in Figure 11.6. A
readily available DB25F to DB25M (or DBIF to DB9M) cable is typically all that is required.

Figure 11.6 RS-232C connections (DTE to DCE).

UART
(NS16550) DB-25M DB-9M DBSF DB-25F
TXD —Do—?] — [3] [2] RxD
RxD -—o<)—? ? <4+ ? 3_ TxD
—R—T_S—(>°———T [7] — [7] [4] CTS
ﬁ—oﬂ—? 5] «— |3 z RTS DCE
DSR [—o<— 6| ﬁ6— «— |s| |[¢] DT (Modem)
—17 5| «—» |5 7
DCD—<} 8] [1| «—[1] [sF— o
DRl {>e——to| [4| —> [4] po|—]psr
sp<fldl Ble—bl e
" DITE DCE Notes

CD means Carrier Detection
RD means Ring Detection

There might be situations where you would need to connect two DTEs together. For example, you
may want to connect a terminal to a PC or even interface two PCs. Connecting two DTEs together is a
little tricky because:

¢ Both DTEs have male connectors and,
e outputs would be connected to outputs and, inputs would be connected to inputs on each DTE.

This situation can be resolved by using what is called a Null Modem adapter (also known as a Gen-
der Changer) or by using two female connectors and making the connections shown in Figure 11.7.

Figure 11.7 RS-232C NULL Model (DTE to DTE).

UART UART
(NS16550) DB-25M DB-9M DB-9M DB-25M (NS16550)
TxD —[>o——E E 3 z—o<]— TxD B
RxD —o<}—i 2] >< 2] il_——{>c>4 RxD
RIS >o— 4 7 7 4 p—o< RS
ersf——|s] [s] 3] |5
psRf-<}—6| 6]« —> 6] E—Do— DSR
— 7| [5]< > _j 71
DCD|—o<H— 8 1| > 1 8 | >—{bcp
FR|->e——po} [1|—T<-[4] [2}<E®
sl (e BBl RboeE f

DTE DTE

Chapter 11: Asynchronous Serial Communications — 407

Communication between DTEs is also possible by using only three wires as shown in Figure 11.8.
The unused inputs must be asserted to satisfy the UART (specifically, the TxD output line typically is
disabled when CTS is negated). This can be accomplished by asserting the DTR output on each DTE.
The software modules presented in this chapter assume that you are using a three-wire interface.

Figure 11.8 RS-232C 3-wire DTE to DTE.

UART UART
(NS16550) DB-25M DB-9M DB-OM DB-25M (NS16530)
ol [5] 3] [2 <m0
RxD ——o<}-——3_ Z >< z Z—Do— RxD
RTSH{>—4 7 7 4 [——<HRTS
ors[—<—5 8 8 s—"Dcs
psRi—<}—6| 6] 6] |6 —>{p%%
—7] |5 s| |71+
boo| 15| [1] T el e
PR bo| |4 4| ole<Hpm
Nianc o b o

11.02 RS-485

The RS-232C standard requires that a direct connection be made between two devices. This is known as
a point-to-point interface. If, for example, you need to communicate with many embedded microproces-
sors, you would need to dedicate an RS-232C port for each embedded processor, as shown in Figure
11.9. This situation can become expensive if the embedded processors are located far from the PC. Also,
RS-232C is fairly susceptible to noise because of its common ground arrangement.

408 — Embedded Systems Building Blocks, Second Edition

Figure 11.9 PC interfacing to multiple embedded processors.

P RS-232C .| Embedded
Nl "1 Processor
P RS-232C _ Embedded
il "1 Processor
PC P RS-232C 1 Embedded
Processor
: |
l —
! |
! |
l -
|
| |
| i
P RS-232C .| Embedded
Processor

The RS-485 interface has been created to allow multiple (up to 32) processors to communicate with
each other on a common line. RS-485 is sometimes called a party-line or a multi-drop interface and is
shown in Figure 11.10. The RS-485 interface uses differential line driver/receiver chips (such as the -
Texas Instruments SN75176A Differential Bus Transceiver) and only requires a single twisted pair of
wires. Communication on an RS-485 interface is, however, half-duplex. Each communicating element
on an RS-485 interface is called a node and communication generally follows a MASTER/SLAVE proto-
col (but doesn’t have to). One of the nodes is called the MASTER while all other nodes are called
SLAVEs. In a MASTER/SLAVE arrangement, all communication occurs between the MASTER and a
SLAVE (not between SLAVEs). Each node on an RS-485 is assigned a unique node I.D. number. Node
#0 is generally assigned to the MASTER. The MASTER selectively communicates with one of the
SLAVEs at any given time. An RS-485 interface has the following features:

* Vvery noise imrmune,

¢ maximum cable length of 4000 feet,

* data signaling rate up to 10 Mbps (mega-bits per second),
* capable of supporting up to 32 nodes, and

* capable of supporting a multi-MASTER configuration.

Chapter 11: Asynchronous Serial Communications — 409

Figure 11.10 RS-485 interface.

Master Slave | Slave
Differential | (Node #0) (Node #1) ' (Node #n)
Line
Receiver TxEn Rx lx ilern

I
[75176 75176 |
—_ _— J

120 Ohms Differential 120 Ohms
Line
Driver

Communication on an RS-485 interface proceeds as shown in Figure 11.11. The MASTER enables
its transmit line driver and sends a command or data to a SLAVE (®). The desired SLAVE 1LD. number
is typically sent as one of the first bytes in the message from the MASTER. When all bytes of the com-
mand or data are sent, the MASTER disables its transmit line driver (®) and waits for a reply from the
SLAVE. The SLAVE processes the command or data received and formulates a response for the MAS-
TER (®). The SLAVE enables its transmit line driver (®) and sends the response back to the MASTER.
When all bytes which make up the response from the SLAVE are sent, the SLAVE disables its transmit
line driver (®). The MASTER analyzes the response from the SLAVE (®) and performs whatever
action is needed. The MASTER is then ready to initiate the next command or data transfer. You should
note that when either the MASTER or the SLAVE is sending data the respected receivers are monitoring
what is being sent. The data sent can be verified by the sender to ensure the integrity of the line, or the
sender can simply discard the same number of bytes received as sent. The sender can also ignore any
received data until it is done with the transmission.

410 — Embedded Systems Building Blocks, Second Edition

Figure 11.11 RS-485 timing diagram.

!‘# 1 Transaction ﬁuj
When Command/Data is sent, |
the Master disables its line driver. The Master analyzes th ¢'3 response.
) ‘" Tx Disabled - ®
MASTER —{Commendpa —TxDisabledy | =

Master Sends CommandPata |

| Slave enables its IinJ driver and
sends the resppnse.

, l |
SLAVE Tx Dlsab@] L (R_GS%S?{*

>4 ; ((Response

!
o
|

I

|

> - |
The Slave analyzes the Command/Data then,
it formulates a response.

When the response is sent,
the Slave disables itsline driver.

The NS16550 is not a good UART to use for RS-485 communication because it doesn’t provide an
interrupt when the last byte has been transmitted. Instead, the NS16550 only tells you when it is ready
to send another byte. Figure 11.12(a) will help illustrate what happens. The NS16550 contains two reg-
isters for data transmission: a Transmitter Holding Register (THR) and a Transmitter Shift Register
(TSR). When you write a data byte to the NS16550, the byte is actually deposited into the THR (®) and
is then automatically transferred to the TSR (@). At this point, the bits in the TSR are shifted out at the
baud rate that you selected (®) and an interrupt is generated by the NS16550 to indicate that the THR
can accept another byte (@); the THR holds the byte while the previous byte is being transmitted. If you
disable the RS-485 line driver in the THR Interrupt Service Routine (ISR), you will actually prevent the
last byte from being sent because it is still in the process of being shifted out.

Chapter 11: Asynchronous Serial Communications — 411

Figure 11.12 Disabling the RS-485 line driver.

Stop Bit Start Bit Line
\ [«——— 8 bits ———» Driver)

TSR |1 [0]———> Tx
) ®
e
THR | |

?

Byte to send (from CPU) @ Interrupt

the CPU

ﬁp Bit Start Bit Line
. Driver

8 bits ———p / -

b) < .

TSR |1 0]——®—> Tx
4
I @ Tx
Byte to send (from CPU) Interrupt Enable
the CPU

What you actually need is a UART that interrupts the processor when the STOP bit of the last byte
has been shifted out, as illustrated in Figure 11.12(b). In this case, there is no need for a THR. The CPU
writes a byte to the TSR (@), which then gets shifted out by the UART (@). When the start bit, the byte,
and the stop bit are sent, the UART interrupts the CPU (®). If there are no more bytes to send, the ISR
disables the line driver (®).

The low-level code provided in this chapter is designed to work with the NS16550 and so it does not
support RS-485. It should, however, be fairly easy to port the code to another UART which supports the
scheme described in Figure 11.12(b).

11.03 Sending and Receiving Data

As previously mentioned, data is sent and received by a UART by writing and reading from memory or
I/O port locations. A bit in the UART’s status register can be monitored to determine when a byte has
been received. Similarly, another bit can be examined to see when a byte has been transmitted through
the interface. This method of monitoring the UART status is called polling the I/O device and generally
is used when the microprocessor can monitor the status register faster than bytes are sent and received.
Polling has serious shortcomings, especially for input, because bytes can be missed while the processor
is occupied with other duties. Because microprocessors have other things to do besides wait for serial
/O ports, it is common to resort to an interrupt-driven scheme to handle data reception and transmis-
sion.

412 — Embedded Systems Building Blocks, Second Edition

11.03.01 Receiving Data

When using an interrupt-driven scheme, an interrupt is generated when a byte arrives through the serial
port. The interrupt handler reads the byte from the port, which generally clears the interrupt source. At
this point you have a choice of either processing the byte received in the ISR or putting the byte into
some sort of buffer to let a background process handle the data. When you use a buffer, the size of the
buffer depends on how quickly your background process can get control of the CPU to process the
information. For example, if the worst case latency of your background process is 200 mS, you should
plan for a buffer of at least 192 bytes if your serial port receives bytes at 9600 baud (960 bytes/sec. X
200 mS). A special type of buffer called a Ring Buffer (also called a Circular Buffer) is often used to
capture data from a serial port.

To avoid allocating very large buffers, you can resort to what is called flow control. Basically, the
interrupt receiving data can notify the sender that the receiver’s buffer is getting full. The sender would
then hold off with its transmission until the receiver empties out the buffer and notifies the sender that it
can proceed. The most common flow control scheme is called XON-XOFF and it uses the ASCII char-
acters DC1 (0x11) for XON (i.e., “send me more”) and DC3 (0x13) for XOFF (i.e., “don’t send me any
more”). Using the XON-XOFF scheme precludes you from sending binary data because the data you
are sending could happen to be one of these two characters.

Flow control can also be performed by using some of the RS-232C lines. This would allow you to
send and receive binary data. Unfortunately, the RS-232C standard doesn’t specify which lines to use
when you are not interfacing to a modem. Nothing prevents you from using the modem control lines
RTS, CTS, DSR, and DTR, but you will have to establish how flow control will work between your
devices.

Input buffering using a ring buffer is shown in Figure 11.3. When bytes are received, the ISR reads
the byte from the serial port (&) and places the byte into the ring buffer (®). Your application code
(background) then monitors the ring buffer to see if bytes have been received (®). If the ring buffer is
not empty, the “oldest” byte (least recent byte) is extracted from the ring buffer.

Figure 11.13 Buffered serial 1/0, receiving bytes.

Application

The following pseudocode for both the ISR and the interface function to your application follow.
Actual code for the ISR and the interface function will be described later.

Chapter 11: Asynchronous Serial Communications — 413

ISR CommRxISR (void)
{
INT8U c;

Save processor context;
¢ = Get byte from RX port;
if (Rx Ring Buffer not full) {
Put byte received into ring buffer;
}
Restore processor context;

Return from Interrupt;

INT8U CommGetChar (void)

{
INT8U c;

¢ = NUL;
Disable interrupts; /* Prevent INTs during access */
if (Rx Ring Buffer not empty) {
Cc = Get byte from ring buffer;
}
Enable interrupts;
return (c);

You should note that interrupts are disabled when your application accesses the ring buffer to ensure
exclusive access to the ring buffer from either the ISR or the interface function.If your application
doesn’t extract bytes from the ring buffer in time, the ring buffer will become full and received bytes
will be lost.

The response to incoming data depends on how soon your background process gets to execute. If
you are using a real-time kernel, you can process incoming data almost as quickly as you receive it with-
out doing so in an ISR. To accomplish this, a semaphore is added to the management of the ring buffer
as shown in Figure 11.4. In this case, your application waits on the semaphore (®). When a byte is
received, the ISR reads the byte from the serial port (®) and deposits it in the ring buffer (®). The ISR
then signals the semaphore to indicate to the waiting task that a byte was received (@). Signaling the
semaphore makes the waiting task ready to run. When the ISR completes, the kernel determines if your
waiting task is now the highest-priority task ready to get the CPU. If it is, the ISR resumes the task wait-
ing for the byte (assuming a preemptive kernel). Your application code then extracts the byte from the
ring buffer and performs whatever processing is required.

11

414 — Embedded Systems Building Blocks, Second Edition

Figure 11.14 Buffered serial I/0 with semaphore, receiving bytes.

Your

- Application

‘ -
F /X Timeout
Note: RxSem is initialized to 0 RxSem

The following pseudocode for both the ISR and the interface function to your application follow.
Actual code for the ISR and the interface function will be described later. As with the previous scheme,
if your application doesn’t extract bytes from the ring buffer in time, the ring buffer will become full and
bytes received will be lost. The use of a real-time kernel, however, reduces the chance of this situation
from happening.

Most real-time kernels allow you to specify the maximum amount of time your task is willing to
wait for a byte to be received. This gives your task a chance to take corrective action in case something
happened to the communication link. For example, a task can send a message and then wait for a
response. If the response doesn’t arrive within a certain amount of time, the sender can conclude either
that there is nobody listening or that something happened to the transmission medium.

3

Chapter 11: Asynchronous Serial Communications — 415

ISR CommRxISR (void)

{ ,
INT8U c;

Save processor context;
Tell OS that we are processing an ISR;
c = Get byte from RX port;
if (Rx Ring Buffer is not Full) {
Put received byte into Ring Buffer;
Signal Rx Semaphore;
}
Tell OS that we are exiting an ISR;
Restore processor context;

Return from Interrupt;

INT8U CommGetChar (INT8U *err)

{
INT8U c;

Wait for byte to be received (using semaphore with T.O.);
if (timed out) {
*err = Time out error;
return (0);
}
Disable interrupts;
c = Get byte from Ring Buffer;
Enable interrupts;
*err = No error;

return (c);

Signalling the semaphore everytime a character is received can consume valuable CPU time. An
alternate method is to only signal the semaphore when a special character is received. For example, you
can signal the semaphore when a carriage return character (i.e., CR or 0x0D) is received. You applica-
tion can thus be notified once a full command is received which reduces the overhead. Of course, your
buffer needs to have sufficient storage to hold one or more commands. This alternate method is shown
in the following pseudocode.

416 — Embedded Systems Building Blocks, Second Edition

ISR CommRxISR (void)

{
INT8U c;

Save processor context;
Tell OS that we are processing an ISR;
c = Get byte from RX port;
if (Rx Ring Buffer is not Full) {
Put received byte into Ring Buffer;
if (received byte is the end-of-command byte) {
Signal Rx Semaphore;

}

Tell OS that we are exiting an ISR;

Restore processor context;

Return from Interrupt; -
}
INT8U CommGetCommand (INT8U *command, INT8U *nbytes)
{

INT8U c;

INT8U nrx;

Wait for command to be received (using semaphore with T.O.);
if (timed out)
*nbytes = 0;
return (Timeout error);
}
nrx = 0; /* Clear number of bytes received counter */

Disable interrupts;

c = Get byte from Ring Buffer; B
while {c !'= end-of-command byte) {

command++ = C; / Save command byte */

Nrx++; /* Clear number of bytes received counter */

c = Get byte from Ring Buffer;

}
Enable interrupts;
nbytes = nrx error; / Set number of bytes received */

return (No error);

Chapter 11: Asynchronous Serial Communications — 417

11.03.02 Transmitting Data

Transmission of bytes works somewhat like byte reception. Your background process deposits bytes in
an output buffer. When the transmitter on the UART is ready to send a byte, an interrupt is generated,
the byte is extracted from the buffer, and the ISR outputs the byte. There is, however, one small compli-
cation: The serial port generates an interrupt only AFTER the port has finished sending the byte. The
most elegant way I found to resolve this dilemma is to disable interrupts from the transmitter until you
need to send bytes. Interrupts are enabled AFTER the output buffer is loaded with at least one byte. As
soon as you allow the transmitter to interrupt, the first byte to send will be removed by the transmit ISR
and output to the UART. The ISR then examines the buffer and, if there are no more bytes to send, the
ISR disables the transmit interrupt.

Buffering of data makes a lot of sense when you have to transmit a relatively large amount of data on
the serial port, such as the contents of a disk file. Output buffering using a ring buffer is shown in Figure
11.15. When one or more bytes need to be sent, they are placed in the ring buffer (®). Transmit inter-
rupts are enabled after putting a byte into the buffer (®). If the UART is ready to send a byte, an inter-
rupt occurs and the ISR extracts the “oldest™ (least recent) byte from the ring buffer (®). The byte is
then output to the serial port (®). Transmit interrupts will be inhibited if the byte extracted from the
buffer makes the ring buffer empty.

Figure 11.15 Buffered serial I/0, transmitting bytes.

Tx

Your
Application

The following pseudocode for both the ISR and the interface function to your application follows.
Actual code for the ISR and the interface function will be described later.

11

418 — Embedded Systems Building Blocks, Second Edition

void CommPutChar (INT8U c)
{
Disable interrupts; /* Prevent INTs during access */
if (Tx Ring Buffer is not Full) {
Put byte to send into ring buffer;
if (This is the first byte in the Ring Buffer) {
Enable Tx Interrupts; ’
}

}
Enable interrupts; /* Allow CPU interruptions */

ISR CommTxCharISR (void)

INT8U c;

Save processor context;

if (Tx Ring Buffer not empty) {
c = Get next byte to send from ring buffer;
Output byte 'c' to TX port;

} else {
Disable Tx Interrupts;

}

Restore processor context;

Return from Interrupt:

Figure 11.16 shows how you can make use of a real-time kernel’s facilities. The semaphore is used
as a traffic light pausing the sending task when the ring buffer is full. To send data, the task waits for the -
semaphore (®). If the ring buffer is not full, the task proceeds to deposit the byte into the ring buffer
(®). Transmitter interrupts are enabled if the byte deposited is the first byte in the ring buffer (®). The
transmit interrupt ISR extracts the “oldest” byte from the ring buffer (@) and signals the semaphore (®)
to indicate that the ring buffer has room to accept another character. The ISR then outputs the byte to the
UART.

Chapter 11: Asynchronous Serial Communications — 419

Figure 11.16 Buffered serial I/0O with semaphore, transmitting bytes.

~
~
e ~ \ @
Your @ (R Tx
Application \
w e
Optad
= -

Note: TxSem is initialized to Tx Ring Buffer size.

It is important to note that TxSem needs to be a counting semaphore, and the semaphore must be ini-
tialized to the size of the ring buffer. The pseudocode for both the interface function to your application
and the ISR follows. Actual code for the ISR and the interface function will be described later.

420 — Embedded Systems Building Blocks, Second Edition

ISR CommTxCharISR (void)
{
INT8U c;

Save processor context;
if (Tx Ring Buffer is not empty) {
Cc = Get next character to send from Tx Ring Buffer;
Output character '¢' to TX port;
Signal Tx semaphore;
} else {
Disable TX Interrupts;
}
Restore processor context;

Return from Interrupt;

11.04 Serial Ports on a PC

The software modules provided in this chapter allow you to use both serial ports on an IBM-PC/AT
compatible computer although it can be easily altered to support different hardware. A review of the
PC’s architecture relating to the serial ports available on PCs is thus necessary in order to better under-
stand the code.

PCs are typically equipped with two RS-232C communication ports that are referred to as COM1
and COM2. Both ports generally consist of a National Semiconductor NS16550 or equivalent UART
and are capable of communicating at baud rates up to 115200 bps. The PC provides services through its
BIOS (Basic Input/Output System) but unfortunately, communications using the BIOS must be done by
polling (monitoring the port to see if bytes have been received or sent). This limitation means that com-
munication effectively cannot exceed about 1200 baud. This shortcoming can be corrected by replacing
the BIOS services with interrupt-driven functions.

An IBM-PC/AT computer contains two interrupt controllers (Intel 82C59A PIC) providing 15
sources of interrupts to the PC’s microprocessor. Interrupts are labeled IRQO through IRQ15, as shown
in Figure 11.17. IRQ2 of the first i82C59A is actually the output of the second i82C59A interrupt con-
troller.

Chapter 11: Asynchronous Serial Communications — 421

Figure 11.17 PC/AT interrupt controllers.

IRQ8 ——|BO
e
RQIl —) Intel | R —»
IRQ12 — | 82C59A “1 Intel
IRQ13 ——| (Second) IRQ3 82C59A—» To CPU
IRQ14 —p IRQ4E P Firery
IRQ15 —» 7 IRQ3
IRQ6 —»
IRQ7 —| o4

Table 11.3 shows what devices are typically connected to the interrupt controllers. The table lists the
interrupt sources in priority order (IRQO has the highest priority). Table 11.3 also shows that each serial
1/O port is connected to its own IRQ line: COM1 is connected to IRQ4 while COM2 is connected to

IRQ3.

422 — Embedded Systems Building Blocks, Second Edition

Table 11.3 PC/AT interrupts summary.

IRQ# Description Interrupt Interrupt Mask Mask Clear IRQ
vector # vector address register bit#
address
IRQO Timer (i.e, ticker, 0x08 0x0000:0x0020 0x0021 0 0x0020
18.2 Hz)
IRQ1 Keyboard 0x09 0x0000:0x0024 0x0021 0x0020
IRQ2 (Interrupts 8-15 0x0A 0x0000:0x0028 0x0021 0x0020
shown below)

IRQ8 Real-Time Clock 0x70 0x0000:0x01C0 0x00A1 0 0x00A0 then
0x0020

IRQ9 RedirectedtoIRQ2 0x71 0x0000:0x01C0 0x00A1 1 0x00A0 then
0x0020

IRQ10 Unassigned 0x72 0x0000:0x01C8 Ox00Al 2 0x00A0 then
0x0020

IRQ11 Unassigned 0x73 0x0000:0x01CC 0x00A1 3 0x00A0 then
0x0020

IRQ12 Unassigned 0x74 0x0000:0x01D0 0Ox00Al 4 0x00A0 then
0x0020

IRQI3 80x87 co-processor 0x75 0x0000:0x01D4 0xO0AL 5 0x00A0 then
0x0020

IRQ14 Hard Disk 0x76 0x0000:0x01D8 0x00A1 6 0x00A0 then
0x0020

IRQ15 Unassigned 0x77 0x0000:0x01DC 0x00A1 7 0x00A0 then
0x0020

IRQ3 COM2 0x0B 0x0000:0x002C 0x0021 3 0x0020

IRQ4 COoM1 0x0C 0x0000:0x0030 0x0021 4 0x0020

IRQ5 LPT2 0x0D 0x0000:0x0034 0x0021 5 0x0020

IRQ6 Floppy Disk O0x0E 0x0000:0x0038 0x0021 6 0x0020

IRQ7 LPT1 0xOF 0x0000:0x003C 0x0021 7 0x0020

IRQ4 is asserted whenever a byte is either received on COM1 or whenever COM1 has completed
the transmission of a byte. When an interrupt occurs, the CPU automatically vectors to the Interrupt
Vector Address shown in Table 11.3. The Interrupt Vector Address points to the Interrupt Service Rou-
tine (ISR) responsible for handling the source of the interrupt: either a byte was received, a byte was
sent, or both. IRQ3 works just like IRQ4 except that it uses a different vector.

As shown in Figure 11.18, COM port interrupts have to travel through many “doors” (gates) in order
to actually interrupt the CPU. First, interrupts must be allowed by the CPU by setting the IF bit in the
PSW (Processor Status Word). Second, the interrupt controller can inhibit interrupts from any device
connected to it through the i82C59A Interrupt Mask Register. Finally, the NS16550 UART is capable of
inhibiting either the Rx (byte received) or the Tx (byte sent) interrupts through its Interrupt Enable Reg-

ister.

Chapter 11: Asynchronous Serial Communications — 423

Figure 11.18 COM ports interrupt path.

| COM2, NS16550 UART |
| Byte Transmitted

Byte Received

|
I
|
{
|
I

7 10
Int. Enable Register F—_———————— — — — — f————————

b | PIC, i82C59A || CPU, i80x86 |

| COMI, NS16550 TJXET_": o3 Firs) | | |

| Byte Transmitted | |

' I : IRQ4 :T_.) To '

{ Byte Received]I T , l | CPU {
| ! bod

I I IF-Bit |
! D oo !

| T I A N |

| 7 10 | | _Mask Register N J
|

Int. Enable Register

11.05 Low-Level PC Serial 1/0 Module (COMM _PC)

This section describes a driver that I wrote which makes much better use of the serial I/O ports provided
on a PC. The code and the functionality of the driver easily can be ported to other environments. Your
application actually interfaces with two modules, as shown in Figure 11.19. Note that the term PC is
used generically to mean any PC having either an Intel 80286, 80386, 80486, or Pentium microproces-
SOT.

The low-level driver is responsible for interfacing with the National Semiconductor NS16550
UART. Functions are provided to your application to configure the two ports (COM1 or COM2),
enable/disable communication interrupts, and acquire/release the COM port interrupt vectors. The
interface functions will be described later.

Your application also interfaces to either one of two buffered serial /O modules: COMMBGND or
COMMRTOS. You would use COMMBGND in a foreground/background application and COMMRTOS if you
are running a real-time kernel such a uC/OS-IIL.

This section specifically describes the low-level driver interface functions. The source code for the
low-level code is found in the \ SOFTWARE\ BLOCKS\COMM\SOURCE directory, and specifically, in the
following files:

¢ COMM_PCA.ASM (Listing 11.1)
e COMM_PC.C (Listing 11.2)
e COMM_PC.H (Listing 11.3)

424 — Embedded Systems Building Blocks, Second Edition

Figure 11.19 PC/AT buffered serial 1/0 block diagram.

COMMBGND.C & COMMBGND.H
or
COMMRTOS.C & COMMRTOS.H

1
YOUR APPLICATION i
1
1
CommGetChar() 4——— | o) COM1
! CommPutRxChar
goﬁésfﬁﬁg E ; <4———| Buffered |«
CO IuF 110 ——»| Serial
ommIsku -« /O CommGe tTxChar ()
1
CommInit () _— CommlISR()
| Low Level
| PC Driver
CommCfgPort () ; >
CommRxFlush () 1 »
CommRxIntEn () . » COM1
CommRxIntDis () : »
CommTxIntEn() : >
© CommTxIntDis () ! »
CommSetIntVect () ; > ’
CommRcllntVect () — > Comm2 ISR ()
1
: i COMM_PCA .ASM
COMM_PC.C
COMM_PC.H

As a convention, all functions and variables related to the low-level serial I/O module start with
Comm while all #define constants start with COMM_.

Comm1ISR() and Comm2TISR() (COMM_PCA.ASM) are the functions that are executed when an
interrupt occurs on the PC’s COM1 or COM2, respectively. These functions start by saving the CPU
registers onto the current task stack or the background stack in a foreground/background system. If you
are using COMMRTOS, Comm1ISR ()} needs to increment the uC/OS-II global variable OSIntNesting
after saving the CPU registers and call OSIntExit () prior to restoring the registers. After increment-
ing OSIntNesting, the ISRs call CommISRHandler ().

CommISRHandler () is responsible for doing most of the ISR processing and knows about the
NS16550 UART internals. You can easily expand this function to support more than just two serial
ports. CommISRHandler () determines whether the interrupt was caused by the reception of a byte, the
completion of a byte transmission, or both.

If a byte is received, CommISRHandler () reads the UART’s receive data register and calls
CommPutRxChar (). CommPutRxChar () (described later) is a function that knows what to do with
the byte just received. In our case, the byte received is placed in a ring buffer.

If the interrupt is caused by the completion of byte transmission, CommISRHandler () calls
CommGetTxChar () (described later) to see if anything else needs to be sent. When all bytes have
been sent, CommISRHandler () disables further transmit interrupts from the UART. The interrupt
source is not cleared because CommISRHandler () does not actually write to the UART’s transmit
data register (there is nothing to send). The next time your application code puts something in the
ring buffer the transmit interrupt will be re-enabled and an interrupt will occur immediately. The ISR
will then extract the byte to send from the ring buffer and satisfy the UART.

Before returning to Comm1ISR () or Comm2ISR (), CommISRHandler () clears the interrupt from
the PC’s i82C59A interrupt controller.

Chapter 11: Asynchronous Serial Communications — 425

CommCfgPort ()

INT8U CommCfgPort (INTS8U ch, INT16U baud, INTS8U bits, INT8U parity, INTS8U stops):;
(CoMM_PC.C)

CommCEfgPort () is used to establish the characteristics of a serial port. You will need to call this func-
tion before calling any of the other services provided by this module for the specific port.

Arguments
ch specifies the channel and can be either COMM1 (for the PC’s COM1) or COMM2 (for the PC’s COM2).

baud specifies the desired baud rate. The NS16550 sets the baud rate (i.e., baud) according to the fol-
lowing equation:
[11.1] baud_rate_divisor = 115200 / baud,

You can specify just about any baud rate except that the baud rate divisor will be truncated to a 16-bit
integer. For example, you can specify 7500 baud, but you will actually get 7680, as shown:

115200 / 7500 = 15.36

Truncation produces a baud rate divisor of 15 and the NS16550 UART will actually be set to a baud
rate of 115200 / 15 = 7680.

bits specifies the number of bits used. The NS16550 supports either 5, 6, 7, or 8. Generally, you
would specify 7 bits with either ODD or EVEN parity or 8 bits with NO parity.

parity specifies the type of parity checking used by the serial port. You can specify either:
COMM_PARITY NONE for no parity
COMM_PARITY_ODD for odd parity
COMM_PARITY_EVEN for even parity

stops specifies the number of stop bits used. The NS16550 supports either 1 or 2. You would typically
specify 1 stop bit, though.

Return Value

CommCfgPort () returns either COMM NO_ERR (if the channel you specified was either COMM1 or
COMM2) or COMM_BAD_ CH.

Notes/Warnings

In the previous edition of this book, CommCfgPort () only allowed you to configure the baud rate. The
number of bits was always assumed to be 8, the parity was always set to NONE, and the number of stop
bits 1.

11

426 — Embedded Systems Building Blocks, Second Edition

Example
void main (void)

{
INT8U err;

CommCfgPort (COMM1, 9600, 8, COMM_PARITY NONE, 1);

Chapter 11: Asynchronous Serial Communications — 427

CommRxFlush ()

void ‘CommRxFlush (INT8U ch);
(CoMM PC.C)

CommRxFlush () allows your application to clear the contents of the UART’s receive register. The
receive register on the NS16550 UART can receive a byte while another byte waits for the CPU to be
processed. CommRxFlush () simply discards the last received byte. If you use the more powerful NS
16550 UART then you would set COMM_MAX_RX (in COMM_PC.H or CFG.G) to 16 because this chip can
buffer up to 16 characters.

Arguments
ch specifies the channel and can be either COMM1 (for the PC’s COM1) or COMM2 (for the PC’s COM?2).

Return Value

None

Notes/Warnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)
{

for (;:) {

CommRxFlush (COMM2) ;

428 — Embedded Systems Building Blocks, Second Edition

CommRxIntDis ()

void CommRxIntDis (INT8U ch);
(COMM_PC.C)

CommRxIntDis () is used to prevent interrupts from the desired serial port when bytes are received.
CommRxIntDis () hides the details of disabling interrupts for the selected serial port from your appli-
cation. Note that CommRxIntDis () will ensure that the interrupt controller bit will not be cleared (dis-
abling the port’s interrupts) if the UART’s transmit interrupt is enabled.

Arguments
ch specifies the channel and can be either COMM1 (for the PC’s COM1) or COMM2 (for the PC’s COM2).

Return Value

None

Notes/Warnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)
{

for (;;) {

CommRxIntDis (COMM2) ;

Chapter 11: Asynchronous Serial Communications — 429

CommRxIntEn ()

void CommRxIntEn(INTS8U ch);
(COMM_PC.C)

CommRxIntEn () is used to enable interrupts from the desired serial port when bytes are received.
CommRxIntEn () hides the details of enabling interrupts for the selected serial port from your applica-
tion. Enabling interrupts consist of setting bit 0 of the UART’s Interrupt Enable Register (IER) and
clearing the appropriate bit on the PC’s i82C59A interrupt controller.

Arguments

ch specifies the channel and can be either COMM1 (for the PC’s COM1) or COMM2 (for the PC’s COM2).

Return Value

None

Notes/Warnings

None -
Example
The following code example assumes the presence of an RTOS but the function can just as easily be

used in a foreground/background environment.

void Task (void *pdata)
{

for (;;) { 11

CommRxIntEn (COMM2) ;

430 — Embedded Systems Building Blocks, Second Edition

CommTxIntDis ()

void ComTxIntDis (INT8U ch);
(COMM_PC.C)

CommTxIntDis () is used to prevent interrupts from the desired serial port when bytes are sent.
CommTxIntDis () hides the details of disabling interrupts for the selected serial port from your
application. Note that CommTxIntDis() will ensure that the interrupt controller bit will not be
cleared (disabling the port’s interrupts) if the UART’s receive interrupt is enabled.

Arguments
ch specifies the channel and can be either COMM1 (for the PC’s COM1) or COMM2 (for the PC’s COM2).

Return Value

None

Notes/Warnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)
{

for (;;) {

CommTxIntDis (COMM2) ;

Chapter 11: Asynchronous Serial Communications — 431

CommTxIntEn()

void ComTxIntEn (INT8U ch);
(COMM_PC.C)

CommTxIntEn () is used to enable interrupts when a byte is sent by the UART. CommTxIntEn () hides -
the details of enabling interrupts for the selected serial port from your application. Enabling transmis-
sion interrupts consist of setting bit 1 of the UART’s Interrupt Enable Register (IER) and clearing the
appropriate bit on the PC’s i82C59A interrupt controller.

Arguments

ch specifies the channel and can be either COMM1 (for the PC’s COM1) or COMM2 (for the PC’s COM2).

Return Value

None

Notes/Warnings -

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)
{

for (;:) {

CommTxIntEn (COMM2) ;

432 — Embedded Systems Building Blocks, Second Edition

CommSetIntVect ()

void CommSetIntVect (INT8U ch);
(coMM _PC.C)

CommSetIntVect () is used to set the contents of the Interrupt Vector Table (IVT) for the desired serial
port (see Table 11.3). CommSetIntVect () saves the old contents of the IVT (i.e., a pointer to the
BIOS communication handler) so that it can be recovered when your application code returns to DOS.

Arguments

ch is the serial channel to process and can either be COMM1 or COMM2. When you specify COMM1,
CommSetIntVect () places a pointer to ConmlISR() at address 0x0000:0x0030 (see Table 11.3).
Similarly, when you specify COMM2, CommSetIntVect () places a pointer to Comm2ISR () at address
0x0000:0x002C (see Table 11.3).

Return Value

None

Notes/Warnings

None

Example

void ain (void)

Chapter 11: Asynchronous Serial Communications — 433

CommRclIntVect ()

void CommRclIntVect (INTS8U ch);
(COMM_PC.C)

CommRclIntVect () is used to restore the original interrupt vectors of the desired serial port in the
IVT (Interrupt Vector Table).
Arguments

ch is the serial channel to process and can either be COMM1 or COMM2. When you specify COMMI,
CommRclIntVect () places the previous vector for the PC’s COM1 at address 0x0000: 0x0030 (see
Table 11.3). Similarly, when you specify COMM2, CormRclIntVect () places the previous vector for
the PC’s COM2 at address 0x0000: 0x002C (see Table 11.3).

Return Value

None

Notes/Warnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)
{
for (;;) |

if (done with serial port #1 and returning to DOS) {
CommReclIntVect (COMM1) ;

434 — Embedded Systems Building Blocks, Second Edition

11.06 Buffered Serial I/0 Module (COMMBGND)

The COMMBGND module allows data received from and sent to a UART to be buffered. Specifically, you
would use the COMMBGND module if you write an application destined for a foreground/background environ-
ment. The COMMBGND module is designed to work in conjunction with the COMM_PC module described in
the previous section. COMMBGND allows you to do full-duplex communication on either serial port (concur-
rently). The source code for the COMMBGND module is found in the \ SOFTWARE\ BLOCKS\COMM\ SOURCE
directory and specifically, in COMMBGND. C (Listing 11.4) and COMMBGND . H (Listing 11.5).

WARNING
In the previous edition of this book, COMMBGND was called COMMBUF1. The file COMMBUF1.C is
now COMMBGND. C and, COMMBUF1 . H is now COMMBGND . H.

As a convention, all functions and variables related to the COMMBGND module start with Comm while
all #define constants start with COMM_.

Each serial port is assigned two ring buffers: one for byte reception and another for byte transmis-
sion. Both ring buffers are stored in a structure called COMM _RING _BUF (see COMMBGND.C on
page 473). Each ring buffer consists of four elements:

1. storage for data (an array of INT8Us)

2. acounter containing the number of bytes in the ring buffer

3. a pointer where the next byte will be placed in the ring buffer

4. apointer where the next byte will be extracted from the ring buffer

Figure 11.20 shows a flow diagram for data reception using the COMMBGND module and how it inter-
faces with the COMM_PC module. .RingBuf??? are elements of the COMM_RING_BUF data structure.
An interrupt occurs when a byte is received by the UART (®). If interrupts are enabled, the CPU vec-
tors to the appropriate ISR, i.e., Comm?ISR (). Comm?ISR() saves the CPU’s context (its registers),
and calls CommISRHandler () (@). CommISRHandler () gets the byte from the UART and calls
CommPutRxChar () in order to save the byte into the ring buffer (®). Reading the byte from the UART
clears the interrupt from the UART. If the buffer is not already full, a counter, which keeps track of how
many bytes are in the buffer is incremented (.RingBufRxCtr). Next, the byte retrieved from the
UART is stored at the location pointed to.by .RingBufRxInPtr (®). The pointer is then incremented
and checked to make sure that it:still points somewhere in ..RingBufRx[]. If .RingBufRxInPtr
points past the array, it is re-initialized to-point at .RingBufRx[0].

Chapter 11: Asynchronous Serial Communications — 435

Figure 11.20 Buffered serial 1/0, receiving bytes.

Application
Interface

; ;

[] .ringBufRxCtr

COMMBGND
Module
+®
CommISRHandler () COMM_PC
f® Module
—————————————— Comm?ISR{) - ————————— — — — — — —
@®

CommPutRxChar () is an interface function between the COMMBGND module and the COMM_PC mod-
ule. The COMM_PC module calls this function when a byte is received. CommPutRxChar () deposits the
byte into the receive ring buffer — but only if the buffer is not already full. The byte is discarded if the
buffer is full.

Your application code can find out whether there are bytes in the ring buffer by calling CommIsEmpty ().
CommIsEmpty () only needs to check the byte count to determine the state of the ring buffer. When data is
available, it is extracted from the ring buffer by calling CommGetChar () (®).

Figure 11.21 shows a flow diagram for data transmission using the COMMBGND module and how
COMMBGND interfaces with the COMM_PC module. Your application code inserts data to be sent to the
serial port into the ring buffer by calling CommPutChar (). If the buffer is not already full, a
counter keeping track of how many bytes are in the buffer is incremented (. RingBufTxCtr). Next,
the byte you are sending is stored at the location pointed to by .RingBufTxInPtr (®). The pointer
is incremented and checked to make sure that it still points somewhere in .RingBufTx([]. If
.RingBufTxInPtx points past the array, it is re-initialized to point at the beginning of the array,
i.e., .RingBufTx[0]. If CommPutChar ()} inserted the first character in the buffer, the UART’s
transmit interrupt is enabled (®). Because you called CommPutChar () from the background, an
interrupt will immediately occur (®). The CPU then vectors to the appropriate ISR (Comm?ISR(}),
saves the CPU’s context, and calls CommISRHandler () (@). CommISRHandler () gets the byte
from the ring buffer by calling CommGetTxChar () (®). Note that CommGetTxChar () obtains the
byte from a different pointer than CommPutChar () (®). This allows the bytes to be sent in the
same order as they were placed in the buffer (First In First Out, FIFO). Obviously, when a byte is
removed from the buffer, the byte count is decremented. Writing a byte to the UART clears the

Chapter 11: Asynchronous Serial Communications — 437

CommGetChar ()

INT8U CommGetChar (INT8U ch, INT8U *err);
(COMMBGND.C)

CommGetChar () allows your application to extract data from the received data ring buffer.

Arguments
ch is the serial channel and can be either COMM1 or COMM2.

err is a pointer to a variable that will hold status about the outcome of the function. CommGetChar ()
sets *err to one of the following:

COMM_NO_ERR. if a byte is available from the ring buffer.
COMM_RX_EMPTY if the ring buffer is empty.
COMM_BAD_CH if you do not specify either COMM1 or COMM2.
Return Value
The function returns the oldest byte stored in the ring buffer if the buffer is not empty. If the buffer is
empty, CommGetChar () returns the NUL character (i.e., 0x00).
Notes/Warnings

None

Example

void BgndFnct (void)
{
INT8U err;

¢ = CommGetChar (COMM1, &err);
if (err == COMM_NO_ERR) {

Process character;

11

438 — Embedded Systems Building Blocks, Second Edition

CommTInit ()

void CommInit(void);
{COMMBGND.C)

CommInit () is used to initialize the COMMBGND module. This function must be called before any other
services provided by this module. CommInit () clears the number of bytes in the ring buffer counter
and also initializes both the IN and OUT pointers of each ring buffer to point at the beginning of the data
storage area.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void main (void)

{

CommInit () ;

Chapter 11: Asynchronous Serial Communications — 439

CommIsEmpty ()

BOOLEAN CommIsEmpty (INT8U ch);
(COMMBGND.C)

CommIsEmpty () allows your application to determine if a byte was received on the serial port.

Arguments

ch is the serial channel and can be either COMM1 or COMM2.

Return Value

The function returns TRUE if no data was received and FALSE if data is available in the ring buffer.

Notes/Warnings
If you specify an incorrect channel number the function returns TRUE to prevent you from extracting

data from an invalid serial port.

Example

void Bgndfnct (void)
{
INT8U err;

if (!CommIsEmpty (COMML1)) {
/* Characters have been received */

440 — Embedded Systems Building Blocks, Second Edition

CommIsFull ()

BOOLEAN CommIsFull (INT8U ch);
(COMMBGND. C)

CommIsFull () allows your application code to check the status of the transmit ring buffer.

Arguments

ch is the serial channel and can be either COMM1 or COMM2.

Return Value

The function returns TRUE when the buffer is full and FALSE otherwise.

Notes/Warnings
If you specify an incorrect channel number, the function returns TRUE to prevent you from sending data
to an invalid serial port.

Example

void BgndFnct {void)
{
INT8U err;

if (!CommIsFull (CoMM1)) {
/* Characters can be sent to serial port */

Chapter 11: Asynchronous Serial Communications — 441

CommPutChar ()

UBYTE CommPutChar (INT8U ch, UBYTE ch);
(COMMBGND.C)

CommPutChar () allows your application to send data to a serial port (one byte at a time).

Arguments

ch s the serial channel and can be either COMM1 or COMM2.

c is the byte that your application sends to the serial port. The byte can have any value between 0x00
and OxFF (i.e., you can send binary data).

Return Value

CommPutChar () returns a value representing the outcome of the function call as follows:

COMM_NO_ERR the byte was placed in the ring buffer and will eventually be sent by the UART if a
byte is available from the ring buffer.

COMM_BRAD CH if you do not specify either COMM1 or COMM2.
COMM_TX_FULL indicates that you tried to send a byte to an already-full buffer.

Notes/Warnings

If you configured the serial port to 7 data bits then you will not be able to send binary data.

Example

char Message[] = “Hello World!”);

void BgndFnct (void)
{
INT8U err;

err

COMM_NO_ERR;

&Message[0];

while (*s && err == COMM _NO_ERR) {
err = CommPutChar (COMML, *s++);

S

442 — Embedded Systems Building Blocks, Second Edition

11.07 Buffered Serial 1I/0 Module (COMMRTOS)

The COMMRTOS module works just like the COMMBGND module except that the COMMRTOS module uses
semaphores to indicate when bytes are inserted into the buffer. Semaphores allow your task-level code
to process incoming and outgoing data as quickly as possible. Furthermore, your application code no
longer needs to poll the receive buffer to see if bytes are available. Similarly, your application code also
will be suspended if the transmit buffer is full. This also prevents your code from having to check that
the transmit buffer is not full when you are sending data on a serial port.

The source code for the COMMRTOS module is found in the \SOFTWARE\BLOCKS\COMM\ SOURCE
directory and, specifically, in COMMRTOS . C (Listing 11.6) and COMMRTOS . H (Listing 11.7). As a con-
vention, all functions and variables related to the COMMRTOS module start with Comm while all #define
constants start with COMM_.

WARNING
In the previous edition of this book, COMMBGND was called COMMBUF2. The file COMMBUF2.C is
now COMMRTOS.C and, COMMBUF2 . H is now COMMRTOS . H.

Along with the two ring buffers, each serial port now has two semaphores: one to signal that a
byte was received and the other to signal that a byte was sent. The COMM_RING_BUF structire (see
COMMRTOS.C on page 484) is identical to the COMMBGND structure except for the addition of the
semaphores.

Figure 11.22 Buffered serial 1/0, receiving bytes.

Application
Interface ¢
——————————— CommGetChar() — — —CommIsEmpty () — —— —— ——

|:| .RingBufRxCtr

COMMRTOS
Module
————————————— CommPutRxChar(} ———————————————
e
CommISRHandler () COMM PC
f® Module
—————————————— Comm?ISR() ————————————————
@

.Chapter 11: Asynchronous Serial Communications — 443

Figure 11.22 shows a flow diagram for data reception using the COMMRTOS module and how
COMMRTOS interfaces with the COMM_PC module. Your application still calls CommGetChar () except
that your task will be suspended if the buffer is empty. You can specify to CommGetChar () a
time-out value to prevent suspending your application task forever. When a byte is received, your
task will “wake-up” and will receive the byte from the serial port.

CommPutRxChar () is an interface function between the COMMRTOS module and the COMM_PC mod-
ule. The COMM_PC module calls this function when a byte is received. CommPutRxChar () deposits the
byte into the receive ring buffer but only if the buffer is not already full. The byte is discarded if the
buffer is full. When the byte is inserted in the buffer, CommPutRxChar () signals the data reception
semaphore to indicate to any pending task that data was received.

To prevent suspending your application code, you can find out whether there are bytes in the ring
buffer by calling CommIsEmpty ().

Figure 11.23 shows a flow diagram for data transmission using the COMMRTOS module and how it
interfaces with the COMM_PC module. Again, everything is identical to the COMMBGND module except for
the semaphore. When you want to send data to a serial port, CommPutChar () waits for the semaphore.
Because the transmit semaphore is initialized to the size of the buffer when the COMMRTOS module is
initialized, CommPutChar () will suspend your application code when there is no more room in the
buffer. The suspended task will resume as soon as the UART catches up sending the bytes.

Figure 11.23 Buffered serial 1/0, transmitting bytes.

Application _ —
Interface

.RingBufTxInPtr
.RingBufTx[]

|:] .RingBufTxCtr

.RingBufTxOutPtr

COMMRTOS
D Sy
—_————t————————— CommGetTxChar()——————————— Mgdglg
v 1®
CommTxIntEn () CommISRHaédler 0 COMM_PC
—_—_—_——————_— Comm?ISR() ————————— — — — Module

@

CommGetTxChar () is an interface function between the COMMRTOS module and the COMM_PC mod-
ule. The COMM_PC module calls this function when a byte has been sent by the UART. Basically, this func-
tion says, “Give me the next byte to send.” CommGetTxChar () returns the next byte to send from the
transmit ring buffer if there is at least one byte in the ring buffer. If the buffer is empty, CommGe tTxChar ()

444 — Embedded Systems Building Blocks, Second Edition

returns the NUT, character and tells the caller that there is no more data in the buffer. This allows the caller to
disable further transmit interrupts until there is more data to send. The data transmit semaphore is signaled
when a byte is extracted from the buffer. This indicates to the sending task that there is more room in the
transmit buffer.

Chapter 11: Asynchronous Serial Communications — 445

CommGetChar ()

INT8U CommGetChar (INT8U ch, INT16U to, INT8U *err);
(COMMRTOS.C)

CommGetChar () allows your application to extract data from the received data ring buffer.

Arguments
ch is the serial channel and can be either COMM1 or COMM2.

to specifies a timeout (in “clock ticks™). If a byte is not received on the serial port within this time,
CommGetChar () will return to your application. Your task will wait for a byte forever when you spec-
ify a timeout of 0.

err is a pointer to a variable that will hold status about the outcome of the function. CommGetChar ()
sets *err to one of the following:

COMM_NO_ERR if a byte is available from the ring buffer within the timeout period.
COMM_RX_TIMEQUT if no data is received within the specified timeout.
COMM BAD_CH if you do not specify either COMM1 or COMM2.

Return Value

The function returns the oldest byte stored in the ring buffer if the buffer is not empty. If the function
times out, CommGetChar () returns the NUL character (i.e., 0x00).

Notes/Warnings

None

11

446 — Embedded Systems Building Blocks, Second Edition

Example

void Task (void *pdata)
{
INT8U err;

for (;;) {
¢ = CommGetChar (COMM1, 0, &err);

if (err == COMM _NO_ERR) {

Process character;

Chapter 11: Asynchronous Serial Communications — 447

CommInit ()

void CommInit (void):;
(COMMRTOS .C)

CommInit () is used to initialize the COMMRTOS module. This function must be called before any other
services provided by this module. CommInit () clears the number of bytes in the ring buffer counter
and also initializes both the IN and OUT pointers of each ring buffer to point at the beginning of the data
storage area. The data reception semaphore is initialized to 0, indicating that there is no data in the ring
buffer. The data transmission semaphore is initialized with the size of the transmit buffer, indicating that
the buffer is empty.

Arguments

None

Return Value

None

Notes/Warnings S

None

Example

void main (void)
{

CommInit () ;

448 — Embedded Systems Building Blocks, Second Edition

CommIsEmpty ()

BOOLEAN CommIsEmpty (INT8U ch);
(COMMRTOS .C)

CommIsEmpty () allows your application to determine if a byte was received on the serial port. This
function allows you to avoid task suspension if no data is available.

Arguments

ch is the serial channel and can be either COMM1 or COMM2.

Return Value

The function returns TRUE if no data was received and FALSE if data is available in the ring buffer.

Notes/Warnings

If you specify an incorrect channel number, the function returns TRUE to prevent you from calling
CommGetChar () thinking that data is available from an invalid port.

Example

void Task (void *pdata)
{

INT8U err;
for (;;) {
if (CommIsEmpty (COMM1) == FALSE) {

¢ = CommGetChar (COMM1, 0, &err); /* Character available */

Process character;

Chapter 11: Asynchronous Serial Communications — 449

CommIsFull ()

BOOLEAN CommIsFull (INT8U ch);
(COMMRTOS .C)

CommIsFull () allows your application code to check the status of the transmit ring buffer. This func-
tion allows you to avoid task suspension if the buffer is already full.
Arguments

ch is the serial channel and can be either COMM1 or COMM2.

Return Value

The function returns TRUE when the buffer is full and FALSE otherwise.

Notes/Warnings
If you specify an incorrect channel number, the function returns TRUE to prevent you from calling

CommPutChar () thinking that data can be sent to the serial port.

Example

void Task (void *pdata)
{

INT8U err;

char *s;

for (;;) {

if (CommIsFull (COMM1) == FALSE) {
err = CommPutChar (COMMLi, ‘$‘, 0);

11

g

le‘

450 — Embedded Systems Building Blocks, Second Edition

CommPutChar ()

UBYTE CommPutChar (INT8U ch, UBYTE ch, INT16U to);
(COMMRTOS.C)

CommPutChar () allows your application to send data to a serial port (one byte at a time). CommPutChar ()
suspends the calling task if the transmit ring buffer is full. CommPutChar () will resume when a byte is
removed from the ring buffer by the transmit ISR.

Arguments

ch is the serial channel and can be either COMM1 or COMM2.

c is the byte that your application sends to the serial port. The byte sent can have any value between
0x00 and OxFF (i.e., you can send binary data).

to specifies the amount of time (in “clock ticks”) that CommPutChar () will wait for the buffer to clear
up. If a byte is not transmitted on the serial port within this time, CommPutChar () will return to your
application. Your task will wait forever when you specify a timeout of 0.

Return Value

CommPutChar () returns a value representing the outcome of the function call as follows:

COMM_NO_ERR the byte was placed in the ring buffer and will be sent by the UART if a byte is avail-
able from the ring buffer.

COMM_BAD_CH if you do not specify either COMM1 or COMM2.
COMM_TX_TIMEQOUT indicates that the buffer didn’t clear up within the allowed time.

Notes/Warnings

If you configured the serial port to 7 data bits then you will not be able to send binary data.

Chapter 11: Asynchronous Serial Communications — 451

Example

char Messagel[] = “Hello World!”;

void Task (void) -
{

INT8U err;

char *s;

for (;;) {

sMessage[0] ;

err COMM_NO_ERR:

while (*s && err == COMM_NO_ERR) {
err = CommPutChar (COMMI, *S++, 0);

s

452 — Embedded Systems Building Blocks, Second Edition

11.08 Configuration

Configuration of the communications driver is very simple because all you have to do is change a few
#defines to accomodate your environment.

COMM_PC.H (or CFG.H):

COMM1_BASE and COMM2_BASE are the base port address for the PC’s COM1 and COM2. In most
cases, you will not have to change these.

COMM_MAX_RX sets the number of bytes that the UART buffers internally. For the NS16550 UART,
you should set this constant to 16 because the NS16550 can be receiving a byte while another byte is
waiting to be processed by the CPU.

COMMBGND.H, COMMRTOS.H (or CFG.H):

COMM_RX_BUF_SIZE sets the size of the receive ring buffer for both serial ports. The size of the
receive buffer can be as large as 65534 bytes.

COMM_TX_BUF_SIZE sets the size of the transmit ring buffer for both serial ports. As with the
receive ring buffer, the size can be as large as 65534 bytes.

11.09 How to use the COMM_PC and the COMMBGND
Module

If you write a foreground/background application you will need to use the COMM_PC (assuming you are
using a PC) and the COMMBGND modules. The first thing you need to do is to configure the module by
setting the value of the #defines described in section 11.08. Next, you will need to call functions to
initialize the modules and the serial port(s) that you are planning on using. For example, if you are using
the PC’s COM1, you would need to have the following code:

void main(void)
{

CommInit{); /* Initialize COMMBGND */

CommCfgPort (COMM1, 9600, 8, COMM_PARITY NONE, 1);
CommSetIntVect (COMML) ; /* Install the interrupt vector */
CommRxIntEn (COMML) ; /* Enable receive interrupts */

Chapter 11: Asynchronous Serial Communications — 453

You should note that you don’t need to enable transmit interrupts because this is done automatically
when you send data on the serial port. When all your initialization is done, your background loop could
check for incoming data, as shown.

void main(void)

{

INT8U c;

INT8U err;

/* Initialization code described above -~-———~———mme e */
while (1) { /* Background loop (infinite loop) */

if (!CommIsEmpty (COMM1)) { B
C¢ = CommGetChar (COMM1, &erxr);
if (err == COMM NO_ERR) { -—

/* Process received data ----——---—-—————-———m-— o */

CommPutChar (COMM1, ???); /* Send response */
} else {

/* Process communications error ---------————————————- */

11.10 How to use the COMM_PCand the COMMRTOS
Module

If you write an application using a real-time kernel you will need to use the COMM_PC (assuming you are
using a PC) and the COMMRTOS modules. Again, the first thing you need to do is to configure the module
by setting the value of the #defines described in section 11.08. Your startup code will need to create
the task(s) that will be responsible for servicing the serial port(s). You should have one task for each
serial port. The following segment of code is used to create the task that will handle COM1. You should
consult TEST. C (see Chapter 1) to see what else you need to properly initialize pC/OS-II. -

454 — Embedded Systems Building Blocks, Second Edition

#define COMM TASK_PRIO 20 /* Define the priority of the task */
0OS_STK CommTaskStk([512];

void main(void)

{

0SInit () /* Initialize the 0.S. (uC/0S-II) */

OSTaskCreate (CommTask, (void *)0, &CommTaskStk(511], COMM_TASK_PRIO);:

Osstart () ;

You should initialize the serial communications code from within the task that will handle the
port(s). Using the PC’s COM1, you would have the following code:

void CommTask (void *pdata)

{
INT8U c;
INT8U err;
CommInit () ; /* Initialize COMMRTOS */
CommCfgPort (COMM1, 960G, 8 COMM_PARITY_NONE, 1);
CommSetIntVect (COMML) ; /* Install the interrupt vector */)
CommRxIntEn (COMML) ; /* Enable receive interrupts */
for (;;) {

¢ = CommGetChar (COMM1, 0, &err);
if (err == COMM_NO_ERR) {

/* Process received byte -——------—vrmm e */

CommPutChar (COMM1, ..); /* Send response */
} else {

/* Process communication error ---—---~---——mm-—om——mm - */

Chapter 11: Asynchronous Serial Communications — 455

11.11 Bibliography

Campbell, Joe

C Programmer’s Guide to Serial Communications (Second Edition)
Sams Publishing, 1993

Indianapolis, Indiana

ISBN 0-672-30286-1

Choiser, John P., Foster, John O.
The XT-AT Handbook
Annabooks, 1993

ISBN 0-929392-00-0

Erdelsky, Philip

“PC Interrupt-Driven Serial I/O”

From the book: MS-DOS System Programming
R&D Publications, 1990

ISBN 0-923667-20-2

Halsall, Fred

Data Communications, Computer Networks and Open Systems (Third Edition)
Addison-Wesley, 1992

ISBN 0-201-56506-4

Pippenger, D.E. and Tobaben, E.J.

Linear and Interface Circuits Applications
Volume 2: Line Circuits and Display Drivers
Texas Instruments, 1985

ISBN 0-89512-185-9

Tanenbaum, Andrew S.

Computer Networks (Second Edition)
PTR Prentice-Hall, Inc., 1989

ISBN 0-13-162959-X

456 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 COMM PC.C

/*

R L T L e Ea A 2 TS T e s T

*

*

*

*

*

Embedded Systems Building Blocks
Camplete and Ready-to-Use Modules in C

Asynchronous Serial Cammnications
IBM-PC Serial I/O Low Level Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

: COM.PC.C
: Jean J. Labrosse

: 1) The code in this file assumes that you are using a National Semiconductor NS16450 (most

PCs do or, an Intel i82C50) serial communications controller.

2) The functions (actually macros) OS_ENTER CRITICAL()} and OS_EXIT CRITICAL{) are used to
disable and enable interrupts, respectively. If using the Borland C++ campiler V3.1,
all you need to do is to define these macros as follows:

#define OS_ENTER CRITICAL() disable()
#define OS_EXIT CRITICAL({) enable()

3) You will need to define the following constants:
COMML_RASE is the base address of CQM1 on your PC (typically 0x03F8)
COMM2_RASE is the base address of COM2 on your PC (typically 0x02F8)
COMM MAX_RX is the number of characters buffered by the UART
2 for the NS16450
16 for the NS16550

4) COMM_BAD CH, COMM NO FERR and COMM TX EMPTY,
COMM_NO_PARITY, COMM_ODD PARITY and COMM_EVEN PARITY
are all defined in other modules {(i.e. COMML.H, COMZ.H or COMM3.H)

L L L g e T e AT e T g

*/

/*

R L L e E e S I L E e e S e e e e e e

*

INCLUDES

TR AR KRR IR R KAk Ak KT AT R Ik Ak ok k dekF IR IR Ik ok ko kAR Aok A Aok ok ek s e A Ak e A o ok ok ok A o o o e ok ok ok e ot e e ok ok ok ok ok e e A ok o ok

*/

#include "includes.h"

/*SPAGE*/

Chapter 11: Asynchronous Serial Communications — 457

Listing 11.1 (continued) COMM PC.C

/*
E T T R T Y e r L AR s b

* CONSTANTS T

E R S L T s)

*/

#define BITO 0x01

#define BIT1 0x02

#define BIT2 0x04

#define BIT3 0x08

#define BIT4 0x10

#define BITS 0x20

#define BITE 0x40

#define BIT7 0x80

#define PIC_INT REG_PCRT 0x0020

#define PIC_MSK REG_PORT 0x0021

#define COMM UART RER 0

#define COMM_UART THR 0)
#define COMM UART DIV_IO 0)
#define COMM_UART DIV_HI 1

#define COMM_UART IER 1 -_—
#define COMM UART IIR 2

#define OOMM_UART ICR 3

#define COMM_UART MCR 4

#define COOMM_UART _LSR 5

#define COMM _UART MSR 6

#define COMM_UART._SCR 7

/*

Hk Kk kA KA KA kKA kK kK ko Rk kA Ak kA Ak kA kA A Ak Ak kA Ak kA A A KAk kA AT I AR R A A A I ARk kAR ARk kkk* hd kX

* LOCAL GLOBAL VARIABLES

L T T L L L T T T T T2

*/ -~

static INT16U CommlISROldOffset; 11 -
static INT16U CommlISROldSegment;

static INT16U Comm2ISRO1dOffset;
static INT16U Comm2ISROldSegment;

/*SPAGE*/

458 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued) COMM PC.C

/*
kR A A A AR A Ak kA A kA A AT R A A A A AT R A A kAT A AR A Ak A A A A A A A Ak A A A A AR AR A A AT AR Ak Ak ke hh kA h ki dkk ok khhhdkdkkhhxk
* CONFIGURE PORT

*

* Description : This function is used to configure a serial I/0 port. This code is for IEM-KCs and

* compatibles and assumes a National Semiconductor NS16450.

*

* Arguments : 'ch' is the COMM port charmel number and can either be:

* oMl

* o2

* "baud' is the desired baud rate (anything, standard rates or not)

* ‘bits® defines the number of bits used and can be either 5, 6, 7 or 8.

* 'parity’ specifies the 'parity’ to use:

* COMM_PARITY_NONE

* COMM_PARITY_ QDD

* COMM_PARITY_EVEN

* 'stops’ defines the mumber of stop bits used and can be either 1 or 2.

*

* Returns : COM NO_ERR if the channel has been configured.

* COMM BAD CH if you have specified an incorrect channel.)
*

* Notes : 1) Refer to the NS16450 Data sheet

* 2) The constant 115200 is based on a 1.8432 MHz crystal oscillator and a 16 x Clock. .
* 3) 'ler' is the Line Control Register and is define as: -—
*

* B7 B6 B5S B4 B3 B2 Bl BO

s #Bits (00 = 5, 01 = 6, 10 = 7 and 11 = 8)

* ~= #stops (0 = 1 stop, 1 = 2 stops)

* - Parity enable (1 = parity is enabled)

* - Even parity when set to 1.

* - Stick parity (see 16450 data sheet)

* -- Break control (force break when 1)

* ~= Divisor access bit (set to 1 to access divisor)

* 4) This function enables Rx interrupts but not Tx interrupts.

L R L Y S e e e e e s

*/ -

Chapter 11: Asynchronous Serial Communications — 459

Listing 11.1 (continued) COMM PC.C

INT8U CommCfgPort (INT8U ch, INT16U baud, INT8U bits, INT8U parity, INT8U stops)

{

INT16U div;
INT8U divlo;
INT8U divhi;
INT8U lcr;
INT16U base;

switch (ch) {
case COMML:
base = COMML_BASE;
break;

case COMM2:
base = COMM2_BASE;
break;

default:
return (COMM RAD CH);

/*

/*
/*

/*

div = (INT16U) (115200L / (INT32U)baud); /*

divlo = div & 0x00FF;
divhi = (div >> 8) & Ox00FF;

ler = ((stops - 1) << 2) + (bits - 5);

switch (parity) {
case COMM_PARITY_ODD:
ler 1= 0x08;
break;

case COMM_PARITY_ EVEN:

ler 1= 0x18;

break;
}
OS_ENTER_CRITICAL{) ;
outp(base + COMM UART ICR, BIT7);
outp(base + COMM_UART DIV_IO, divlo);
outp(base + COMM UART_DIV_HI, divhi);
outp (base + COMM_UART ICR, lcr);

/*

Vid

/*

/*
/*

/*

outp(base + COMM_UART_MCR, BIT3 | BIT1 'I BITO); /*

outp{base + COMM_UART_IER, 0x00);
0S_EXIT_CRITICAL{) ;
CommRxFlush(ch) ;

retum (COMM _NO_ERR) ;

/*SPAGE™*/

/*

/%

Baud rate divisor

Line Control Register
MM port base address

Obtain base address of COMM port

Compute divisor for desired baud rate
Split divisor into LOW and HIGH bytes

O0dd parity

Even parity

Set divisor access bit
Load divisor

Set line control register (Bit 8 is 0)

Assert DIR and RTS and, allow interrupts

Disable both Rx and Tx interrupts

Flush the Rx input

*/

*/
*/

*/

*/
*/

*/

*/

*/
*/
*/
*/
*/

*/

460 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued) COMM PC.C

/*

vk ok kdkkok * ok *k * ke ke ok ok ke ok ok ke ke ok ke ke ke ke ke ok ok ok ok ok ke ke ke Yo dede ok ok Yok ok kok ok ok ok ok kkk *k kokokok

* COMM ISR HANDLER

*

* Description : This function processes an interrupt from a COMM port. The function verifies whether the
* interrupt comes from a received character, the completion of a transmitted character or
* both.

* Arguments : 'ch! is the COMM port channel number and can either be:

* coMMl

* a2

* Notes : 'switch' statements are used for expansion.

ke ke ke ke ke ok ok ok ok ok ok ok ok kok ok ok ok ok ok Yok ok *k kkk * e e o e ke ke e e ke ke ke ke I ok e T ok ok e v ok ok ke ok Y e dok ok e

*/
void CommISRHandler (INT8U ch)
{

INT8U c;
INT8U 1ir;
INT8U stat;
INT16U base;
INT8U err;
INT8U max;

/* Interrupt Identification Register (IIR)
/* COMM port base address

/* Max. mmber of interrupts serviced

*/

*/

*/

Chapter 11: Asynchronous Serial Communications — 461

Listing 11.1 (continued) COMM PC.C

switch (ch) { /*
case COMML:
base = COMML_BASE;
break;

case COMM2:
base = COMM2_BASE;
break;

default:

base = COMML_RASE;
break H

max = COMM MAX RX;

iir = (INT8U)inp(base + COMM_UART IIR) & 0x07; /*
while (iir != 1 && max > 0) { /*
switch (iir) {
case 0: /*
¢ = (INT8U)inp(base + COMM UART MSR}; /*
break;
case 2: /*
¢ = ComnGetTxChar (ch, &err); /*
if (erxr == COMM TX_EMPTY) { /*

/‘k
stat = (INT8U) inp(base + COMM_UART IER)
outp(base + COMM UART IER, stat);

} else {
outp(base + COMM UART THR, <); /*

}
break;

case 4: /*
c = (INT8U)inp(base + COMM_UART_REBR); /*
CamPutRxChar (ch, ¢); /*
break;

case 6: /*
¢ = (INT8U)inp(base + COMM UART LSR); /*
break;

}
iir = (INT8U)inp(base + COMM UART IIR) & 0x07; /*
max--~;
}
switch (ch) {
case COMML:
case COMM2:
outp (PIC_INT REG PORT, 0x20); /
break;

*

default:
outp (PIC_INT_REG_PORT, 0x20);
break;

Obtain pointer to commnications charnnel

Get contents of IIR
Process ALL interrupts

See if we have a Modem Status interrupt
Clear interrupt (do nothing about it!)

See if we have a TX interrupt

Get next character to send.

Do we have anymore characters to send ?
No, Disable TX interrupts

& ~BIT1;

Yes, Send character

See if we have an Rx interrupt
Process received character
Insert received character into buffer

See if we have a Line Status interrupt
Clear interrupt (do nothing about it!)

Get contents of TIR

Reset interrupt controller

*/

*/
*/

*/
*/

*/
*/
*/
*/

*/

*/
*/
*/

*/
*/

*/

*/

462 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued) COMM _PC.C

/*
e ke ke o ok ok e e e e ook ok ok ok ook ok ok ok Fok g ddok &k ok ok ok dokokok ok gk d*k

* RESTORE OLD INTERRUPT VECTOR
*
* Description : This function restores the old interrupt vector for the desired camunications channel. -
* Arguments : 'ch’ is the COMM port channel number and can either be:
* comil
* ca
* Note(s) : This function assumes that the 80x86 is running in REAL mode.

*k ok *, ok sk ok * dkok dkkokdokok dwkokk ook ok ok okokok ook k
*/

void CamRclIntVect (INT8U ch)
{
INT16U *pvect;

switch (ch) {

case COMML:
pvect = (INT16U *)MK_FP(0x0000, 0x0C << 2); /* Point to proper IVT location */ N
OS_ENTER_(CRTTICAL(} ; -
pvect++ = CamlISRO1dOffset; / Restore saved vector */
*pvect = CamnlISROldSegment; .
0S_EXTT_CRITICAL() ; T
break;

case COMM2:
pvect = (INT16U *)MK_FP(0x0000, OxOB << 2); /* Point to proper IVT location */
OS_ENTER_CRITICAL() ;
pvect++ = Cam2ISRO1dOffset; / Restore saved vector */

*pvect = Cam2ISRO1dSegment;
OS_EXIT CRITICAL() ;
break;

/*$PAGE*/

Chapter 11: Asynchronous Serial Communications — 463

Listing 11.1 (continued) COMM PC.C

/*
*k *kkkk ok kkK koK * *
* FLUSH RX PORT

*

* Degcription : This function is called to flush any imput characters still in the receiver. This CT

* dkdk ok kFkk Ak kK

* function is useful when you replace the NS16450 with the more powerful NS16450.
* Arguments : 'ch’ is the COMM port channel number and can either be:
* oMMl
* coMM2
khkhkhkkhkkhkhkkkhhhhhhkhhkhhh

R e T P e T2 *k ok * R L *kk kkkkkh

*/

void CamRxFlush {INTSU ch)
{

INT8U ctr;
INT16U base;
switch (ch) {
case COMML: -
base = COMMI_BASE; =
break;
case COMM2: -
base = COMM2_PRASE;
break;
}
ctr = CoMM MAX RX; /* Flush Rx input */

OS_ENTER_CRITICAL() ;

while (ctr-- > 0} {
inp(base + 0);

}

OS_EXIT CRITICAL({};

/*$PAGE*/ 1 1

464 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued) COMM_PC.C

/*
Kok Kk ok ok kK Kk kK kK Kk ok ok kok kK kh Rk ko ok ok Rk K D) ook e kR ok ok ok KK R Rk X KKk KKk
* DISABLE RX INTERRUPTS

*

* Description : This function disables the Rx interrupt.

* Arguments : 'ch’ is the COMM port channel number and can either be:
* oL
* caar

L L g T A A e L e T

*/

void CamRxIntDis (INT8U ch)

{
INT8U stat;

switch (ch) {
case COMML:
OS_ENTER_CRITICAL{);
/* Disable Rx interrupts */ -
stat = (INT8U)inp(COMML_BASE + COMM_UART_IER) & ~BITO;
outp (COMML_BASE + COMM_UART IER, stat);

if (stat == 0x00) { /* Both Tx & Rx interrupts are disabled ? */ -
/* Yes, disable IRQ4 on the PC */
outp (PIC_MSK REG_PORT, (INT8U)inp(PIC_MSK_REG_PORT) | BIT4);
}
OS_EXIT_CRITICAL();
break;
case COMM2:

OS_ENTER_CRITICAL() ;
/* Disable Rx interrupts */

stat = (INT8U)inp (COMM2_BASE + COMM_UART_IIR) & ~BITO;

outp (COMM2_RASE + COMM_UART_IFR, stat);

if (stat == 0x00) { /* Both Tx & Rx interrupts are disabled ? */ -
/* Yes, disable IRQ3 on the PC */

outp (PIC_MSK RBEG_PORT, (INT8U)inp(PIC_MSK REG PORT) | BIT3);

}

OS_EXIT CRITICAL();

break;

/*SPAGE*/

Chapter 11: Asynchronous Serial Communications — 465

Listing 11.1 (continued) COMM_PC.C

/*

KKK KKK E R KK AR AT TR R A AR KA KA AR R R R A R R A AR R R AR A A AR A A KA A A A A A A A A A A AR AR R A A A A A AR A AR A A A A A AR A A A A KA KRR AN A AR Ak kA kA XAk RTKh

* ENABLE RX INTERRUPTS -
* z
* Description : This function enables the Rx interrupt.

* Arguments : 'ch' is the COM port chamnel number and can either be:

* [a.0. 1

* e liiv]

Fe o ke ke ok kK ok kK %ok ok o 3k ok ke A3k 3k ok o 9 ok ok ke 9k 3 ko ok ok ok ok e e ok ok 3k e e ok ok 3k o 3k ok ok ok ok ke ok ok ok 3k ok ke ok ok ok ko ok o ok ke ok ok ek R ok ok e ok ko

*/

void CommRxIntEn (INT8U ch)

{
INT8U stat;
switch (ch) {
case COMML:
OS_ENTER_CRITICAL({);

/* Enable Rx interrupts */ -
stat = (INT8U)inp{COMML_BASE + COMM UART IER) i BITO; -
outp (COMML_BASE + COMM _UART IER, stat);

/* Enable IRQ4 on the FC */ _
outp (PIC_ MSK_REG _PORT, (INT8U)inp{PIC_MSK REG_PORT) & ~BIT4);

OS_EXIT CRITICAL();
break;

case COM2:
OS_ENTER_CRITICAL() ;

/* Enable Rx interrupts */
stat = (INT8U)inp{COMM2_BRASE + COMM UART IER) | BITO;
outp (COMM2_BASE + COMM UART IER, stat);

/* Enable IRD3 on the PC */
outp (PIC_MSK_REG_PORT, (INT8U)inp(PIC MSK_REG PORT) & ~BIT3);

OS_EXIT_CRITICAL{); [~
break;
) 11
}

/*$PAGE*/

466 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued) COMM PC.C

/*
S ek ok ok ok ok ok ook ok ok ok ok ok ok ook ok ok ok ok ok ok ok ok ok ok ok ko Rk ok ko k ook ok ok ok ok K ko ok ok ok kK kAR
* SET INTERRUPT VECTOR

*

* Description : This function installs the interrupt vector for the desired cammnications channel.

* Arguments : 'ch’ is the COMM port channel mumber and can either be:

* oMl

* R

* Note(s) : This function assumes that the 80x86 is running in REAL mode.

ek e ke e ok ok ok e e ook ok ok ok ok S ke Aok T ok ok ok o Sk ke o i ok ok ok ok o ok Ik o ok ke ok ok o ok ok T ke ko e ok ok 3ok I o o ok ok R T ok ok ok e ok

*/

void ComSetIntVect (INT8U ch)
{

INT16U segment;

INT16U offset;

INT16U *pvect;

switch (ch) {
case COMML:

pvect = (INT16U *)MK_FP(0x0000, Ox0C << 2); /* Point to proper IVT location */
OS_ENTER_CRITICAL() ;
Comm1 ISRO1dOffset *pvect++; /* Save current vector */
CommlISROldSegment = *pvect;
pvect--;
*pvect++
*pvect
OS_EXIT._CRITICAL() ;
break;

FP_OFF (CommlISR) ; /* Set new vector */
FP_SEG(CommlISR) ;

case COMM2:
pvect = (INT16U *)MK_FP(0x0000, OxOB << 2); /* Point to proper IVT location */
OS_ENTER_CRITICAL() ;
Comm2ISRO1dOf fset = *pvect++; /* Save current vector */
Comm2ISRO1dSegment = *pvect;
pvect--;
pvect++ FP_OFF (Comm2ISR) ; / Set new vector */
*pvect = FP_SEG(Comm2ISR) ;
OS_EXIT_CRITICAL();
break;

/*$SPAGE* /

Chapter 11: Asynchronous Serial Communications — 467

Listing 11.1 (continued) COMM PC.C

/*

* DISABLE TX INTERRUPTS

* Description : This function disables the character transmission.

* Arguments : 'ch’ is the COMM port channel number and can either be:
* caaal
* 00.0.:23
*hkkKh
*/

void ComTxIntDis (INT8U ch)
{

INT8U stat;

INT8U cmd;

switch (ch) {
case COMML:
OS_ENTER CRITICAL();
/* Disable Tx interrupts */
stat = (INT8U)inp (COMML_BASE + COMM_UART IER) & ~BIT1;
outp (COMM1_RASE + COMM UART _TFR, stat);

if (stat == 0x00) { /* Both Tx & Rx interrupts are disabled ? */
card = (INT8U)inp(PIC_MSK _REG_PORT) | BIT4;
outp (PIC_MSK_REG_PORT, cnd); /* Yes, disable IRQ4 on the PC */

}
OS_EXIT_CRITICAL() ;
break;

case COMM2:
OS_ENTER_CRITICAL();
/* Disable Tx interrupts */
stat = (INTSU)inp(COMM2_BASE + COMM_UART_IER) & ~BITL;
outp (COMM2_BASE + COMM UART IFR, stat);

if (stat == 0x00) { /* Both Tx & Rx interrupts are disabled ? */
card = (INT8U)inp (PIC_MSK REG_PORT) | BIT3;
outp (PIC_MSK_RBG_FORT, cmd); /* Yes, disable IRQ3 on the PC */

}
OS_EXIT_CRITICAL() ;
break;

}
/*SPAGE*/

468 — Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued) COMM_PC.C

/%

e 3k 9 e e 3k ek ok 3k o 9 3k 3k 5k 3k ke o 369 9k 3 e ke ok ok ok 9 ok 3k ok ok 3k ok ok ke ok 3 ok ok ok ok ok ok ke ok ok ok ok ok ok i ok o ok ok ok ok ok 3k o ok ok ok ok ke ki ok T ok ok ok ok ok ke ok ok

* ENABLE TX INTERRUPTS

*

* Description : This function enebles transmission of characters. Transmission of characters is

* interrupt driven. If you are using a multi-drop driver, the code must enable the driver
* for transmission.

* Arguments : 'ch' is the COMM port chamnel number and can either be:

* comML

* [e0:7:573

vk e % 7 ok ok ok vk ok Aok e ok ok e e e A ok ok ke sk vk ok Sk ok kA K ok e sk ok e ok e e A e ok Ak ek ok ok k kK dkk ok kTR T Ak k ok kX KKK I I hhkkokk

*/

void ComIxIntEn (INT8U ch)

{
INT8U stat;
INT8U and;
switch (ch) {
case COMM1:
OS_ENTER_CRITICAL();
stat = (INT8U)inp(COMMI_RASE + COMM_UART IER) | BIT1; /* Enable Tx inter-
rupts */
outp (COMM1_RASE + COMM UART TER, stat):
cand = (INT8U)inp(PIC MSK RBG_PORT) & ~BIT4;
outp({PIC_MSK REG_PORT, and}; /* Enable IRQ4 on the PC
*/
OS_EXTT CRITICAL();
break;
case COMM2:
OS_ENTER_CRITICALA) ;
stat = (INT8U)inp(COMM2_RASE + COMM_UART TER) | BIT1; /* Enable Tx inter-
rupts */
outp (CMM2_BASE + COMM_UART IER, stat);
cmd = (INT8U) inp{PIC_MSK_REG_PCRT) & ~BIT3;
outp(PIC_MSK REG PORT, cmd); /* Enable IRQ3 on the PC
*/

OS_EXIT _CRITICAL();
break;

Chapter 11: Asynchronous Serial Communications — 469

Listing 11.2 COMM _PC.H

/*

* Erbedded Systems Building Blocks

* Camplete and Ready-to-Use Modules in C
*

* Asynchronous Serial Cammnications

* IBM-PC Serial I/0 Low Level Driver

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved

*

* Filename : COMM PC.H

* Programmer : Jean J. Labrosse

*

* *k K * * Tk dekedokk

*/
/*

ok Tk *k kR ek Hkk ek kK ok ko KR ek ke ek ek ko K Rk ek ko ok ok ok ok
* CONFIGURATION CONSTANTS
Hodkdedk ek ok ek ok ok kK *k e ok K ke e ek ok ek ok kR ok ok ok kR ok ok R ek ek ko ok ko ok ek
*/

#ifndef CFG_H

#define COMMI_BASE 0x03F8 /* Base address of PC's COML */
#define COMM2_BASE 0x02F8 /* Base address of PC's COM2 */
#define COMM _MAX RX 2 /* NS16450 has 2 byte buffer */
#endif
/i

* * ok ok Jokokok * * *okkkkk *k *k *okok * ok ok *k okok ok okok ok
* FUNCTION PROTOTYPES
o e Je de ok kg v ek ke ok ok ok o dode e ok ok ok ok ,kk ok ok ke ok k ok ok ke ok *k ok ke ke e ke de d de ke ok ke ok v v e ke ok ok de g dek e okok ke ook ok
*/

void Carml ISR (void) ;

void Carm2ISR (void) ;

INT8U CamCfgPort (INT8U ch, INT16U baud, INT8U bits, INTSU parity, INTSU stops);
void CammiSRHandler (INT8U ch);
void CamRxFlush (INT8U ch) ;
void CammRxIntDis (INT8U ch) ;
void ConrRxIntEn (INT8U ch) ;
void CammTXIntDis (INT8U ch) ;
void CammIxIntEn (INT8U ch) ;
void CamRclIntVect (INT8U ch) ;
void CommSetIntVect (INT8U ch);

470 — Embedded Systems Building Blocks, Second Edition

Listing 11.3 COMM_ PCA.ASM

S REHRHFRIAK AR A IHHH AR IR KK EIAEA IR KREIRA IR IR A I A K IR AR IA KK AR AR R KA A KRR R A KRk K kA A Kk hk ok k Kok ek ok ok ok kokkoke

;

H

; Filename

Enbedded Systems Building Blocks
Complete and Ready-to-Use Modules in C

Asynchronous Serial Communications
IBM-FC Serial I/O Low Level Driver

(¢) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

: COMM_PCA.ASM

; Programmer : Jean J. Labrosse

; Notes

i

: If you are not using uC/0S-II you will need to DELETE the increments of OSIntNesting and
the calls to OSIntExit().

3 KRR KRR ok ok ok ok ok ok ok ok ko ok kKR ok ok ok ok K kR kR ok R R kR ok Rk ok ok ok ek ek sk ok ok ok kR ok ke ok ok ko ok ok ko ok ke ko

.MODEL
.CODE
.186

;/ *SPAGE*/

PUBLIC _CommlISR
PUBLIC _Comm2ISR

EXTRN _OSIntExit:FAR
EXTRN _CannISRHandler :FAR

EXTRN _OSIntNesting:BYTE

Chapter 11: Asynchronous Serial Communications — 471

Listing 11.3 (continued) COMM_PCA.ASM

T e T X * *hHK L]
i

_CamlISR PROC FAR

PUSHA ; Save interrupted task's context
PUSH ES

PUSH DS

MoV AX, DGROUP ; Reload DS with DGROUP

; NOTE: Camment OUT the next line {(i.e. INC _OSIntNesting) if you don't use uC/0S-II.

INC BYTE PTR _OSIntNesting ; Notify uC/OS-II of ISR
PUSH 1 ; Indicate COML

CALL FAR PIR _CommISRHandler ; Process COMM interrupt
ADD Sp,2

; NOTE: Comment OUT the next line (i.e. CALL _OSIntExit) if you don't use uC/0S-II.

CALI, FAR PIR _OSIntExit ; Notify OS of end of ISR

POP DS ; Restore interrupted task's context
POP ES

POPA

IRET ; Return to interrupted task

_ComilISR ENDP

H

; /*SPAGE*/

472 — Embedded Systems Building Blocks, Second Edition

Listing 11.3 (continued) COMM _PCA.ASM

5 3k 3 3k ek 5 3k sk k3 3k 3k 3k % Tk ke ke 3k ek ok 3k K sk ko Sk ok ok 3 ok 3k ok 3k ok Sk 3k ok e Sk ok Tk ok ok ok Tk ek ok o Tk ke Kk Kk ko ke Ak ok ke ke R ke
i

i HANDLE COM2 ISR

oAk AR Ak kA Ak Ak kA Ak A ok K e AR A A kR Kk A kKA kA Ak KA Rk Rk R kK kA Rk Rk Ak kA kR Ak dkk ke Rk kR ke kK ok Rk kR ke ke
;

_Camm2ISR PROC FAR

;

PUSHA ; Save interrupted task's context
PUSH ES

PUSH DS

MoV AX, DGROUP ; Reload DS with DGROUP

MoV DS, AX

; NOTE: Camment OUT the next line (i.e. INC _OSIntNesting) if you don't use uC/0S-II.

INC BYTE PTR _OSIntNesting ; Notify uC/0S-II of ISR
PUSH 2 ; Indicate COMM2

CALL: FAR PIR _CommISRHandler ; Process COMM interrupt
ADD SP,2

3 NOTE: Camment OUT the next line (i.e. CALL _OSIntExit) if you don't use uC/CS-II. -

CALL: FAR PTR _OSIntExit ; Notify OS of end of ISR

POP DS ; Restore interrupted task's context
POP ES

POPA

IRET ; Return to interrupted task

_Comm2ISR ENDP

Chapter 11: Asynchronous Serial Communications — 473

Listing 11.4 COMMBGND.C

/*

% %k kK *, ok ok *k * * * * * , K * * ok ko k *

* Hrbedded Systems Building Blocks

* Camplete and Ready-to-Use Modules in C =
* =
* Asynchronous Serial Cammnications

* Buffered Serial I/O

* (Foreground/Background Systems)

*

* (c) Copyright 1999, Jean J. Labrosse, Weston, FL

*

All Rights Reserved

* Filename : COMMBGND.C
* Programmer : Jean J. Labrosse

* Notes : The functions (actually macros) OS_ENTER CRITICAL() and OS _EXIT CRITICAL() are used to

* disable and enable interrupts, respectively. If using the Borland C++ campiler V3.1,

* all you need to do is to define these macros as follows:

*

* #define OS_ENTER CRITICAL() disable() -
* #define OS EXIT CRITICAL({) enable() -
ke de d & ek vk deok ko * * Rk * ok EEEEL 2T T * kK kK Jr e gk

*/ -
/*

Jede ke * % ok k hkkkkhdk ok hkkhhd ok ki hdddrkhkddkhddrkkkrkhddkkdhhddkkdhhhhkkidk khdkkkhkxhdkdkkkihhidikkk

* INCLUDES

FhK KA kA K Ik A Ik kkkdhhkkhkhkhkkkhkhkhkhkhkhkkhhhkhhkhkhk ok ke ek X ok Je ok A ko e g Je Je ok ok e d ok Ik ok ok e e 9 ok ok ke g A ek ok ke ke

*/

#include "includes.h"

/*SPAGE* /

474 — Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued) COMMBGND.C

/*
B R T e * ok ok ok ok ok kk *kkk * kKKK

* CONSTANTS

EE e E AT T *kk Akkkkkkkk * Ak ok ko ko *%k *E KK -
*/

/*

dkkkk * * LR T e R A T T T e L

* DATA TYPES

Kkk kR ok kK AA KKK I KK Ak Py A T e a2 s T]

*/

typedef struct {

INT16U RingBufRxCtr; /* Number of characters in the Rx ring buffer */
INT8U *RingBufRxInPtr; /* Pointer to where next character will be inserted */
INTS8U *RingBufRxQutPtr; /* Pointer from where next character will be extracted */
INT8U RingBufRx[COMM _RX BUF_SIZE]; /* Ring buffer character storage (Rx) */
INT16U RingBufTxCtr; /* Number of characters in the Tx ring buffer */
INTS8U *RingBufTxInPtr; /* Poilnter to where next character will be inserted */
INT8U *RingBufTxOutPtr; /* Pointer from where next character will be extracted */)
INT8U RingBufTx[COMM TX BUF_SIZE]; /* Ring buffer character storage (Tx) */

} COMM_RING BUF;

/*
L T g T e g s T e T L)

* GLOBAL VARIABLES

L T R g T T g T T e

*/

QOMM_RING_BUF CammlBuf;
COMM_RING_BUF Comm2Buf;

/*$PAGE*/

Chapter 11: Asynchronous Serial Communications — 475

Listing 11.4 (continued) COMMBGND.C

/*
R S S R S St] * * *k L R A R T T T TP
* REMOVE CHARACTER FROM RING BUFFER

*
* =

* Description : This function is called by your application to obtain a character from the communications

* channel .

* Arguments < 'ch' is the COMM port channel number and can either be:

* oL

* covMM2

* ‘err’ is a pointer to where an error code will be placed:

* *err is set to COMM_NO ERR if a character is available

* *err is set to COMM RX_FMPTY if the Rx buffer is empty

* *err is set to COM BAD CH if you have gpecified an invalid chamnel
* Returns : The character in the buffer (or NUL if the buffer is empty)

ER T T e e S T e s s e e

*/

INT8U ComGetChar (INT8U ch, INT8U *err)
{

INTSU c;

QoMM _RING_BUF *phuf;

switch (ch) { /* Obtain pointer to communications chamnel */
case COMML:
pouf = &CammlBuf;
break;

case COMM2:
pbuf = &Comm2Buf;
break;

default:
*err = COMM_BAD CH;
return (NUL);
}
OS_ENTER _CRITICAL(} ;

if {puf->RingBufRxCtr > 0) { /* See if huffer is amty */
pbuf ~>RingBufRxCtr--; /* No, decrement character count */
c = *pbuf->RingBufRxQuLPLr++; /* Get character from buffexr */
if (pbuf->RingBufRxOutPtr == &pbuf~>RingBufRx [(COMM_RX_BUF_SIZE]) { /* Wrap OUT pointer */ -

puf->RingBufRxOutPtr = &pbuf->RingBufRx(0];
}
OS_EXIT _CRITICAL();
*err = COMM NO_ERR;
return (c);
} else {
OS_EXIT_CRITICAL();
*err = COMM_RX EMPTY;
c = NUL; /* Buffer is empty, return NUL */
return {c);

/*SPAGE*/

476 — Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued) COMMBGND.C

/*
FA kKK kKK kR KK Kk Rk Rk kKK kK KKKk kK Kk okt kR ok ko Rk Rk ok ok ket ko ok ok ok ok ok K Kk
* GET T¥ CHARACTER FROM RING BUFFER

* Description : This function is called by the Tx ISR to extract the next character fram the Tx buffer.

* The function returns FALSE if the buffer is empty after the character is extracted fram
* the buffer. This is done to signal the Tx ISR to disable interrupts because this is the
* last character to send.

* Arguments : ‘ch' is the COMM port channel number and can either be:

* ol

* ca2

* ‘err’ is a pointer to where an error code will be deposited:

* *err is set to COMM NO_ERR if at least one character was left in the
* ffer.

* *err is set to COMM_TX EMPTY if the Tx buffer is emty.

* *err is set to COMM_BAD CH if you have specified an incorrect channel
* Returns : The next character in the Tx buffer or NUL if the buffer is empty.

o d TRk ok k Kk ko Kk ek kR R Ak kK Aok ek ok k ok ok Kt ko ok Aok ok ok ok ko kK ok ok ok Sk ok ok ek ek ke k ok ke e ko ok ook ok ok ok ok ok e

*/

INT8U CammGetTxChar (INT8U ch, INT8U *err)

{ .
INT8U c; _
COMM_RING_BUF *phuf;

switch (ch) { /* Obtain pointer to cammnications channel */
case COMML:
pouf = &CommlBuf;
break;

case COMM2:
pouf = &Comm2Buf;
break;

default:
*err = COMM_BAD CH;
return (NUL);
}
if (pbuf->RingBufTxCtr > 0) { /* See if buffer is empty */
phuf->RingBuf TxCtr--; /* No, decrement character count */
c = *pbuf->RingBufTxOutPtr++; /* Get character fram buffer */
if (phuf->RingBufTXOutPtr == &pbuf->RingBufTx[COMM T¥X_BUF_SIZE]) { /* Wrap OUT pointer */
pbuf->RingBufTxOutPtr = &pbuf->RingBufTx[0];
}
*err = COMM_NO_ERR;
return (c); /* Characters are still available */
} else {
*err = COMM_TX_EMPTY;
return (NUL); /* Buffer is empty */

/*$PAGE* / -

Chapter 11: Asynchronous Serial Communications — 477

-Listing 11.4 (continued) COMMBGND.C

/*
ke ek ek ok ok ok ok ok sk o ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ko ok ok ok ok ok ok ok ko ok ook ok ks ok ok ok ok ok ok ok ok ok ok ok
* INITTIALIZE COMMUNICATIONS MODULE -~

* -
*

* Description : This function is called by your application to initialize the cammunications module. You

* must call this function before calling any other functions.

* Arguments : none

g g e e e e e I g e P I e I T I TR s e s I e ST

*/

void ComInit (void)

{
COMM_RING_BUF *phbuf;
pouf = &CommiBuf; /* Initialize the ring buffer for COMML */
pbuf->RingBufRxCtr = 0;
pouf->RingBufRXInPtr = &pbuf->RingBufRx[0];
pbuf->RingBufRxOutPtr = &pbuf->RingBufRx[0]; -
pbuf->RingBUfTxCtr = 0;)
pbuf->RingBuf TxInPtr = &pbuf->RingBufTx[0];
pbuf->RingBufTxOutPtr = &pbuf->RingBufTx[0]; -
pbuf = &Comm2Buf; /* Initialize the ring buffer for COMM2 */
phuf->RingBufRxCtr = 0;
pouf->RingBufRxInPtr = &pbuf->RingBufRx{0];
pouf->RingBufRxOutPtr = &pbuf->RingBufRx[0];
pbhuf->RingBufTxCtr = 0;
pbuf->RingBufTXInPtr = &pbuf->RingBufTx[0];
pouf ->RingBuf TxOutPtr = &pbuf->RingBufTx[01;

}

/*$PAGE*/

478 — Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued) COMMBGND.C

/*

o de ke * * 73 g gk Kk % ¥ e ok Kk dek K L3 ke * * ¢ g ¥ Je d Kk Kk * e de ke
* SEE IF RX CHARACTER BUFFER IS EMPTY

*

*

* Description : This function is called by your application to see if any character is available fram the
* communications channel. If at least one character is available, the function returns

* FALSE otherwise, the function returns TRUE.

* Arguments : 'cht is the COMM port channel number and can either be:

* ol

* o2

* Returns : TRUE if the buffer IS enpty.

* FAISE if the buffer IS NOT empty or you have specified an incorrect channel

ke e e e e F T I e g 3k e Ao F P ke vk e Ik ok ok ok ok ok * ok * e 3 3k 7 o e e g % Fe g e e de e e K I o e e ok de K d o e de g ek e kede ke ke

*/

BOOLEAN CamIsBEnpty (INTSU ch)
{
BOOLEAN empty;
COMM_RING_BUF *pbuf;

switch (ch) { /* Obtain pointer to coammunications channel */
case COMML: '
phuf = &ComlBuf;
break;

case COMM2:
phuf = &Comm2Buf;
break;

default:
return (TRUE);
}
COS_ENTER_CRITICAL() ;

if (pbuf->RingBufRxCtr > 0) { /* See if buffer is empty */
enpty = FALSE; /* Buffer is NOT empty */
} else {
ampty = TRUE; /* Buffer is empty */
}

OS_EXIT CRITICAL();
return {empty);

/*$PAGE*/

Chapter 11: Asynchronous Serial Communications — 479

Listing 11.4 (continued) COMMBGND.C

/*

AR Ak AR AR AR Ik kA Ak A A A A A A KA A A AT A LA A AT AR AR A AL A A A AR AT KA A KA AT A A AL AT AAA LA A A A K ATk A ATk hkxk
* SEE IF TX CHARACTER BUFFER IS FULL

*x

* Description : This function is called by your application to see if any more characters can be placed
* in the Tx buffer. In other words, this function check to see if the Tx huffer is full.
* If the buffer is full, the function returns TRUE otherwise, the function returns FALSE.
* Arguments : ‘ch is the COMM port channel number and can either be:

* [ee il

* comM2

* Returns : TRUE if the buffer IS full.

* FALSE if the buffer IS NOT full or you have specified an incorrect channel

Sk khhh Kk xkkhdkhhdrkkhdhd % kK * *kkkk sk ok
*/

BOOLEAN CaommisFull (INT8U ch)
{
BOOLEAN full;
COMM_RING_BUF *pbuf;

switch {ch) { /* Obtain pointer to communications channel */
case COMML:
pouf = &CommlBuf;
break;
case COMM2:
pbuf = &Comm2Buf;
break;
default:

return (TRUE) ;
}
OS_ENTER_CRITICAL() ;

if (pbuf->RingBufTxCtr < COMM_TX BUF_SIZE) { /* See if buffer is full */
full = FALSE; /* Buffer is NOT full */
} else {
full = TRUE; /* Buffer is full */
}

OS_EXIT_CRITICAL) ;
return (full);

/*$SPAGE*/

480 — Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued) COMMBGND.C

/%
ThER A RE R ARk AR IR i) AEHEKK Hkk Ak % TS * kK
* OUTPUT CHARACTER

*

*

* Description : This function is called by your application to send a character on the cammnications

* channel. The character to send is first inserted into the Tx buffer and will be sent by
* the Tx ISR. If this is the first character placed into the buffer, the Tx ISR will be

* enabled. If the Tx buffer is full, the character will not be sent (i.e. it will be lost)
* Arguments : 'ch! is the COMM port channel number and can either be:

* covl

* o2

* ‘c! is the character to send.

* Returns : COMM NO_ERR if the function was successful (the buffer was not full)

* COMM_TX_FULL if the buffer was full

* COMM BAD CH if you have specified an incorrect channel

KHE Ak Ak A AR A AR A A RKA AT kKA Ak kA XAk kAKX AhkhkhkhhAhhkkkhkhkhkhkhhkhhhkhhkhkkhkk * kK *kk A LEE 2 *
*/

INT8U CommPutChar (INT8U ch, INT8U c)
{
COMM_RING _BUF *pbuf;

switch (ch) { /* Obtain peinter to cammunications channel */
case COMML:
pouf = &CammlBuf;
break;
case COMM2:
pouf = &Cam2Buf;
break;
default:

return (COMM_BAD CH);
}
OS_ENTER_CRTITICAL();

if (pbuf->RingBufTxCtr < COMM_TX BUF_SIZE) { /* See if buffer is full */
pbuf->RingBuf TXCtr++; /* No, increment character count */
pluf->RingBufTXInPtr++ = ¢; / Put character into buffer */
if (pbuf->RingBufTXInPtr == &pbuf->RingBufTx (COMM TX BUF_SIZE])} { /* Wrap IN pointer */

pbuf ->RingBufTxInPtr = &pbuf->RingBufTx[0];

}

if (phuf->RingBufTxCtr == 1) { /* See if this is the first character */
CommT<IntEn (ch) ; /* Yes, Enable Tx interrupts */
OS_EXIT CRITICAL(};

} else {
OS_EXIT_CRITICAL();

}

return (COMM_NO_ERR) ;

} else {
OS_EXIT_CRITICAL();
return (COMM TX FULL);

/*$SPAGE*/

Chapter 11: Asynchronous Serial Communications — 481

Listing 11.4 (continued) COMMBGND.C

/*

3Tk ke e o ke e ok ok T o ok e o ke ok ok ke o ke ko ok ok ok ok ko ok ok ok ok ok ok ok ok ke ok ok o ok ok ok ok ok kT ok ke ek Tk ok ek ok ek ek ko ok ok ok ek

* INSERT CHARACTER INTO RING BUFFER

*

*

* Description : This function is called by the Rx ISR to insert a character into the receive ring buffer.
* Arguments . 'ch’ is the COMM port channel number and can either be:

* ol

* o2

* ‘¢! is the character to insert into the ring buffer. If the buffer is full, the

*

character will not be inserted, it will be lost.

e L g T T L L L e T Ly T

*/

void CommPutRxChar (INT8U ch, INT8U c)
{
CQMM_RING BUF *pbuf;

switch (ch) { /* Obtain pointer to cammnications channel */
case COMML:
pouf = &CommliBuf;
break;
case COMM2:
pbuf = &Comm2Buf;
break;
default:
return;
}
if {pbuf->RingBufRxCtr < COMM_RX_BUF_SIZE) { /* See if buffer is full */
phuf->RingBufRxCtr++; /* No, increment character count */
pouf->RingBufRXINPtr++ = c; / Put character into buffer */
if (pbuf->RingBufRxInPtr == &pbuf->RingBufRx{COMY RX_BUF_SIZE]) { /* Wrap IN pointer */

pbuf->RingBufRxInPtr = &pbuf->RingBufRx(0];

11

482 — Embedded Systems Building Blocks, Second Edition

Listing 11.5 COMMBGND.H

/t
* %k Kk * ddkkddkkkk * * * e de oo de s gk ok e ek ke gk ok ke de ok de bk ok kb ke ok ko ok ko k ke k ok k
* Erbedded Systems Building Blocks
* Complete and Ready-to-Use Modules in C B
*
* Asynchronous Serial Communications
* Buffered Serial I/O
* (Foreground/Background Systems)
*
* {c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved
*

* Filename : COMMBGND.H
* Programmer : Jean J. Labrosse
e e e e 3 e e v 3 3 3 7k e e 3 g e ok 3 3 gk e ok k3 ok 3 3 ok 3 g g o i g ok o 3 o e 3 e sk s 3 sk o 3 i ke 5 9 ok 9 3 3 o s ok 9 g k3 ok e ok 3ok 9 o ok S i kg o o 3 3k e e ok e e ok ok e e e ek ok

*/

/*

ke e ok e ek ok ok 3k ok ok ok ke ok ok kb ok ok ok ok ok ok ok ko ok 3k ok ko ok ok kb ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ek ok ok kb ok

* ' CONFIGURATION CONSTANTS

ek e ek ok ok sk ok ok ok e ko Ak * * * *hkkk kK * * L2222 224 -
*/ -

#ifndef CFG_H

#define COMM RX_BUF SIZE 128 /* Number of characters in Rx ring buffer */
#define COMM_TX_BUF_SIZE 128 /* Number of characters in Tx ring buffer */
#endif

/*

7 3 3 v e % 3 3 vk 3 v 3 3k e 3 vk vk v 33k e e ok 33 vk vk 3 3k e s 3 3 vk 3 ok e ok 3 99 3 vk vk 3 9 o e S ok vk 33 vk ok o ok e e ok o ok vk 5 3k o e o i 9 9 3 vk vk o o e ok e vk ok o ok e ek ok
* CONSTANTS

e e e de 3 e o o o ke o 3 ok ok 3k ke 3 ok ke o ok 3k ok o ke sk ok o ok ko ke S ok o ok ke ok ok 3 ok ok ok ok o ok ook ok ok o o o ok ok ke ok o o ok o ok ek ko ok ke ok e ek ek e ek ek

*/

#ifndef NUL

#define NUL 0x00

#endif

#define COML 1

#define COMM2 2 -
/* ERROR CODES */

fdefine COMM_NO_ERR 0 /* Function call was.successful */

#define COMM BAD_CH 1 /* Invalid communications:port -channel */

#define COMM_RX_EMPTY 2 /* Rx buffer is empty, no.character available */

#define COMM TX_FULL 3 /* Tx buffer is full, codld not.deposit character */

#define COMM TX_EMPTY 4 /* If the Tx buffer is empty. */

#ifdef COMM GLORALS
#define OCCOMM_EXT

#else

#define COMM_EXT extern
fendif

/*SPAGE*/

Chapter 11: Asynchronous Serial Communications — 483

Listing 11.5 (continued) COMMBGND.H

/%
B T T S R T L T e 2 Lt L R R L Lt S LRt Rt L e T LT T ey
* FUNCTION PROTOTYPES

FRRARKKARAAAKARRAKRRAR KA KA KA IR AR KA AR A AR A AR R hA AR A AR *k * *x AARAK KK I
*/

INT8U CamrGetChar (INTS8U ch, INTS8U *err);
INT8U CammGetTxChar (INT8U c¢h, INT8U *err);
void CarmnInit (void) ;

BOCLEAN CommIsEmpty (INT8U ch) ;

BOOLEAN CommIsFull (INT8U ch);

INT8U ConmPutChar (INT8U ¢h, INT8U c);
void CammPutRxChar (INT8U ch, INT8U c);

484 — Embedded Systems Building Blocks, Second Edition

Listing 11.6 COMMRTOS.C

/*
* *hkhkkkk *kk ok *kk *kkk * & *hkkk L2 kkkk * &k ok *odrkkkk
* Enmbedded Systems Building Blocks
* Camplete and Ready-to-Use Modules in C
*
* Asynchronous Serial Commnications
* Buffered Serial I/0
* (RTOS)
*
* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* Al] Rights Reserved
*
* Filename : COMMRTOS.C
* Programmer : Jean J. Labrosse
*kk *hkhkkkdkk khkkkkhkkkhkhkhkkhhkk o ke ke k- kAo o kok Kk dkk kK * ok *hkdkkkd
*/
/*
ek kk * * ek hAkK A KA AKAK KKK AT I ARk A A kA AKRIAkAkhAkhhkhkhk RN hkkhkhhkhkhhkhkhkhhhkhkhkhkhhkhkhkhkkkkkk
* INCLUDES
* e e kg ke %k & * * *kk -
* -
#include “includes.h" _
/*
* * * * & hkkkkkkhkhhkhkhkhkkhkhkhkkkk
* DATA TYPES
e Y 7 e d v % %k ok 3k ok % %k %k kR kv ke d ke ke %k Ak AkkkkEkhkkdk hkAkAkKkhkAkKkhkhkhkhhkhkhkhkAhkhkhkhkhkhkhkhhhkhkkhhkkhhkhkhkhkhkhkhkhkkhkhhkkhkhki
*/
typedef struct {
INT16U RingBufRxCtr; /* Number of characters in the Rx ring buffer */
OS_EVENT *RingBufRxSem; /* Pointer to Rx semaphore */
INT8U *RingBufRxInPtr; /* Pointer to where next character will be inserted */
INT8U *RingBufRxOutPtr; /* Pointer from where next character will be extracted */ -
INT8U RingBufRx[COMM_RX BUF_SIZE]; /* Ring buffer character storage (Rx) */
INT16U RingBufTxCtr; /* Number of characters in the Tx ring buffer */
OS_EVENT *RingBufTxSem; /* Pointer to Tx semaphore */
INT8U *RingBufTXInPtr; /* Pointer to where next character will be inserted */
INT8U *RingBuf TxCutPtr; /* Pointer from where next character will be extracted */
INT8U RingBufTx[COMM_TX_BUF_SIZE]; /* Ring buffer character storage (TX) */ -

} COMM_RING BUF;

/*
HeR ke TRk kR R KR AR AR AR R kR AR ok kR kR Uk kKA Kk Aok ok kA K ek ok kR Kk ek kR KA kA A kKR KA A A KA Rk kR ARk Rk ok kKK KK AR Kk
* GLOBRAL VARIABLES

L L L L e I T T S s T T L]

*/

COMM_RING BUF CammlBuf;
COMM_RING BUF Camm2Buf;

/*$SPAGE*/

Chapter 11: Asynchronous Serial Communications — 485

Listing 11.6 (continued) COMMRTOS.C

/*

303 ok ok ok ke ok ok o ke ok e 3k ok ok ke ok 9k 3k ok K 9k ok 30 ok 3 ok ok ok 9 ok ko ok o 339 ok ok 9 9ok ok 33k e 3k ok 3 ok ok 3 ok ek ok o ok e e ok ok ok ok ke

*

*

*

* Description :

REMOVE CHARACTER FROM RING BUFFER

This function is called by your application to cbtain a character from the commmications

* channel. The function will wait for a character to be received on the serial channel or
* until the function times out.
* Arguments : 'ch’ is the QMM port channel number and can either be:
coml
o2
* ‘to! is the amount of time (in clock ticks) that the calling function is willing to
* wait for a character to arrive. If you specify a timecut of 0, the function will
* wait forever for a character to arrive.
* ‘err’ is a pointer to where an error code will be placed:
* *err is set to COMM_NO_ERR if a character has been received
* *err is set to COMM RX TIMEOUT if a timeout occurred
* *err is set to COMM_RAD CH if you specify an invalid channel number
* Returns : The character in the buffer (or NUL if a timeout occurred)
* * * % * * * K * * K * * Kk * % ok 9 e ok ok * * * * % % 7 0k ok v o ok ok o ok
*/

INT8U CamGetChar (INT8U ch, INT16U to, INT8U *err)

{

/*

INT8U c;
INT8U OSerr;
COMM_RING_BUF *pbuf;

switch (ch) (
case COMML:
pouf = &CamilBuf;
break;

case COMM2:
puf = &Cam2Buf;
break;

default:
*err = COMM _RBAD CH;
return {NUL);
}

/*

Obtain pointer tc cammnications chamnel */

OSSemPend {pouf->RingBufRxSem, to, &oserr); /* Wait for character to arrive */
if (oserr == OS_TIMEOUT) (/* See if characters received within timeout*/
err = COMM_RX TIMECUT; / No, return error code */
return (NUL);
} else {
OS_ENTER_CRITICAL() ;
pouf->RingBufRxCtr--; /* Yes, decrement character count */
¢ = *pbuf->RingBufRXOUtPtr++; /* Get character from buffer */

if (phuf->RingBufRxOutPtr == &pbuf->RingBufRx[COMM _RX BUF_SIZE]) (
pbuf->RingBufRxOUtPtr = &pbuf->RingBufRx{0];

}
OS_EXIT_CRITICAL();
*err = COMM NO_ERR;
return (c);

SPAGE*/

/* Wrap OUT pointer */

486 — Embedded Systems Building Blocks, Second Edition

Listing 11.6 (continued) COMMRTOS.C

/*

L s S L L T L L R e T e T S

* GET TX CHARACTER FROM RING BUFFER

*

* -
* Description : This function is called by the Tx ISR to extract the next character fram the Tx buffer.

* The function returns FALSE if the buffer is empty after the character is extracted fram
* the buffer. This is done to signal the Tx ISR to disable interrupts because this is the
* last character to send. N

* Arguments : 'ch' is the COMM port channel number and can either be:

* COMML

* COMM2

* ‘err’ is a pointer to where an error code will be deposited:

* *err 1s set to COMM_NO ERR if at least one character was available

* from the buffer.

* ‘*err is set to COMM_TX_EMPTY if the Tx buffer is empty.

* *err is set to COMM_BAD CH if you have specified an incorrect channel
* Returns : The next character in the Tx buffer or NUL if the buffer is empty.

L T T T SR e g e e e e 2

*/

INT8U ComGetTxChar (INTSU ch, INT8U *err)

{

INTSU c;
COMM_RING_BUF *pbuf;

switch (ch) {
case COMML:
pbuf = &CommlBuf;
break;

case COMM2:
pbuf = &Camm2Buf;
break;

default:
*err = COMM_BAD CH;
return (NUL);

/* Obtain pointer to commmnications channel */

}
if (pbuf->RingBufTxCtr > 0) { /* See if buffer is empty */
pbuf->RingBufTxCtr--; /* No, decrement character count */
c = *pbuf->RingBufTxOutPty++; /* Get character from buffer */
if (pbuf->RingBufTxOutPtr == &pbuf->RingBufTx[COMM TX_BUF_SIZE]) { /* Wrap OUT pointer */
pbuf->RingBufTxOutPtr = &pbuf->RingBufTx{0};
}
0OSSenmPost (pbuf->RingBufTxSem) ; /* Indicate that character will be sent */
*err = COMM_NO _ERR;
retum (c); /* Characters are still available */
} else {
*err = COMM TX EMPTY;
return (NUL); /* Buffer is eampty */

/*SPAGE*/

Chapter 11: Asynchronous Serial Communications — 487

Listing 11.6 (continued) COMMRTOS.C

/%
B R R R S h b b bl L L Rt R L T]
* INITIALIZE COMMUNICATIONS MODULE

*

*

* Description : This function is called by your application to initialize the cammnications module. You
* must call this function before calling any other functions.

* Arquments : none

R e e Ll

*/

void ComiInit {void)
{
QMM _RING_BUF *pbuf;

pbuf = &CammlBuf; /* Initialize the ring buffer for CoMML */
pbuf->RingBufRxCtr =0;

pbuf->RingBufRxInPtr = &pbuf->RingBufRx[0];

phuf->RingBufRxOutPtr = &pbuf->RingBufRx[0];

pouf->RingBufRxSem = OSSemCreate(0);

pbuf->RingBufTxCtr = 0;

pbuf->RingBuf TXInPtr = &pbuf->RingBufTx(0];

pbuf->RingBuf TxOutPtr = &pbuf->RingBufTx[0] ;

pouf ->RingBufTxSem = OSSemCreate (COMM_TX_BUF _SIZE) ;
phuf = &Cami2Buf; /* Initialize the ring buffer for COMM2 */
pbuf->RingBufRxCtr = 0;

pouf->RingBufRxTnPtr = &pbuf->RingBufRx[0];
phuf->RingBufRxOutPtr = &pbuf->RingBufRx([0};
phuf->RingBufRxSem = OSSemCreate(0);
pbuf->RingBufTxCtr = 0;

pouf->RingBufTxInPtr = &pbuf->RingBufTx(0];
pouf->RingBufTxOutPtr = &pbuf->RingBufTx[0];
pbuf->RingBufTxSem = OSSemCreate (COMM_TX BUF_SIZE) ;

/*SPAGE*/

488 — Embedded Systems Building Blocks, Second Edition

Listing 11.6 (continued) COMMRTOS.C

/*
R g T g T R R T T R T T T T T 2 E 2 g e a1
* SEE IF RX CHARACTER BUFFER IS EMPTY

*

*

* Description : This function is called by your application to see if any character is available fram the

* comunications channel. If at least one character is available, the function returns
* FALSE otherwise, the function returns TRUE.

* Arguments : 'ch' is the COMM port channel number and can either be:

* ol

* coaR

* Returns : TRUE if the buffer IS empty.

* FAISE if the buffer IS NOT' empty or you have specified an incorrect charmnel.

R L L L e Tt

*/

BOOLEAN CommIsEmpty (INT8U ch)
{
BOOLEAN empty;
COMM_RING_BUF *pbuf;

switch (ch) { /* Obtain pointer to camunications channel */
case COMML:
pouf = &CommlBuf;
break;
case COMM2:
pbuf = & Comm2Buf;
break;
default:

return (TRUE);
}
OS_ENTER CRITICAL();

if {(pbuf->RingBufRxCtr > 0) { /* See if buffer is empty */
erpty = FALSE; /* Buffer is NOT empty */
} else {
erpty = TRUE; /* Buffer is empty */
}

OS_EXTIT CRITICAL();
return (empty);

/*SPRGE*/

Chapter 11: Asynchronous Serial Communications — 489

Listing 11.6 (continued) COMMRTOS.C

/*
ok ook ok ok ok o ok ok ok o ok ok ok ook ok ok ok ok ok ok sk ok ok ok ok ok Ak ok ok ok ok ok ok ok ok o ok ok ek ook ok ok ok ok ok ok Aok ok ok ok ok e Rk
* SEE IF TX CHARACTER BUFTER IS FULL

* Description : This function is called by your application to see if any more characters can be placed

* in the Tx buffer. In other words, this function check to see if the Tx buffer is full.
* If the buffer ig full, the function returns TRUE otherwise, the function returns FALSE.
* Arguments : ‘ch’ is the COMM port channel number and can either be:

* col

* o2

* Returms : TRUE if the buffer IS full.

* FAISE if the buffer IS NOT full or you have specified an incorrect channel.

g T S T e 2 T e s e L T

*/

BOOLEAN CommIsFull (INT8U ch)
{
BOOLEAN full;
CCOMM_RING_BUF *pbuf; -

switch (ch) { . /* Obtain pointer to commumications channel */
case COMML:
pbuf = &CommlBuf;
break;

case COMM2:
pouf = &Comm2Buf;
break;

default:
return (TRUE);

}
OS_ENTER_CRITICAL() ; _
if (pbuf->RingBufTxCtr <« COMM_TX_BUF_SIZE) { /* See if buffer is full */

full = FALSE; /* Buffer is NOT full */ l 1
} else {

full = TRUE; /* Buffer is full */
}

OS_EXIT CRITICAL(); [

return (full);

/*$PAGE*/

490 — Embedded Systems Building Blocks, Second Edition

Listing 11.6 (continued) COMMRTOS.C

/*
L 2 T 5 hdkkok Aok *kk Kk
* OUTPUT CHARACTER

*

*

* Description : This function is called by your application to send a character on the camunications

* chamnel. The function will wait for the buffer to empty out if the buffer is full.

* The function retums to your application if the buffer doesn't empty within the specified
* timeout. A timeout value of 0 means that the calling function will wait forever for the

* buffer to enpty out. The character to send is first inserted into the Tx buffer and will
* be sent by the Tx ISR. If this is the first character placed into the buffer, the Tx ISR
* will be enabled.

* Arguments : ‘ch' is the COMM port channel number and can either be:

* ol

* coMM2

* ‘¢! is the character to send.

* 'to’ is the timeout (in clock ticks) to wait in case the buffer is full. If you

* specify a timeout of 0, the function will wait forever for the buffer to empty.

* Returns : OOMM_NO_ERR if the character was placed in the Tx buffer

* COMM_TX_TIMEOUT if the buffer didn't ampty within the specified timeout period

* COMM_BRAD CH if you specify an invalid channel nurber

AEAAKXEAAAA AN EAAAAE AR AA AL AR A AAAAAA A A AR A AR A A A A Ak kA d o & kk ok ke ok * ok dok vk ok ok * gk

*/

INT8U CammPutChar (INT8U ch, INT8U c, INT16U to)
{

INT8U oserr;

COMM_RING_BUF *pbuf;

switch (ch) (/* Obtain pointer to cammnications charmel */
case COMML:
pbuf = &CommlBuf;
break;
case COMM2: -
phuf = &Comm2Buf;
break;
default:
returm .(CGMM _BAD CH) ; _
}
0OSSemPend (phuf->RingBufTxSem, to, &oserr); /* Wait for space in Tx buffer */
if (oserr == OS_TTMEOUT) (
return {COMM TX_TIMEOUT) ; /* Timed out, return error code */
}
OS_ENTER _CRITICAL();
phuf->RingBufTxCtr++; /* No, increment character count */
phuf->RingBuf TXInPtr++ = C; / Put character into buffer */
if (puf->RingBUfPXInPtr == &pbuf->RingBufTx{COMM TX BUF_SIZE]) { /* Wrap IN pointer */
phuf->RingBUFPXInPtr = &pbuf->RingBufTx(0];
}
if (pouf->RingBufTxCtr == 1) { /* See if this is the first character */
CommTxIntEn (ch) ; /* Yes, Enable Tx interrupts */
) -

OS_EXIT_CRITICAL();
return (CCMM_NO_ERR) ;

/*SPAGE*/

Chapter 11: Asynchronous Serial Communications — 491

Listing 11.6 (continued) COMMRTOS.C

/*
B Rt R L s Rt et *k Ak kA I AAKA
* INSERT CHARACTER INTO RING BUFFER

*

*

* Description : This function is called by the Rx ISR to insert a character into the receive ring buffer.

* Arguments : 'ch is the COMM port chamnel number and can either be:

* COMML

* CoMM2

* i is the character to insert into the ring buffer. If the buffer is full, the

* character will not be inserted, it will be lost.

L I T T Y

*/

void CommPutRxChar (INT8U ch, INT8U c)
{
COMM_RING BUF *pbuf;

switch (ch) { /* Obtain pointer to communications channel */

case COMML:
pbuf = &CoamlBuf;
break;

case COMM2:
pouf = &Comm2Buf;
break;

default:
return;
}
if (pbuf->RingBufRxCtr < COMM RX BUF_SIZE} { /* See if buffer is full
pouf->RingBufRxCtr++; /* No, increment character count
phuf->RingBufRxINPLr++ = C; / Put character into buffer
if (pbuf->RingBufRxInPtr == &pbuf->RingBufRx[COMM_RX BUF_SIZE]) { /* Wrap IN pointer
pbuf->RingBufRxInPtr = &pbuf->RingBufRx{0];
}
0OSSemPost {pbuf->RingBufRxSem) ; /* Indicate that character was received

*/
*/
*/
*/

*/

492 — Embedded Systems Building Blocks, Second Edition

Listing 11.7 COMMRTOS.H

/*

KK ko Kk ok ok Kok AR A A A AN AR A A A XA A I KA AT A A A AR A A AT I Ik hh ok k kA hhhh ek hk ok
* Embedded Systems Building Blocks
* Camplete and Ready-to-Use Modules in C
*
* Asynchronous Serial Communications
* Buffered Serial I/0
* (RTOS)
*
* (c) Copyright 1999, Jean J. Labrosse, Weston, FL
* All Rights Reserved
*
* Filename : COMMRIOS.H
* Programmer : Jean J. Labrosse
AR ARk ok kkhk ok Rk Kk kK kKK Kk Kk hodok * ok LA A sk ok %k ok ok ok kK
*/
/*
Ak A A A AR AT A A kA A Rk A A A A A A A A I kA A A A A kA A A A A A A A A A AN A A A A A A R AR A A AA A A A XA A AA AR A A A A A ok kX
* CONFIGURATION CONSTANTS

& kok ok ok dk ok e T K ok ok ok ko ke ke ke ke ke ke hhokkk kK hkkxhkkk kK -
*/
#ifndef CFG H -
#define COMM RX_BUF_SIZE 64 /* Number of characters in Rx ring buffer */
#define COMM TX BUF_SIZE 64 /* Number of characters in Tx ring buffer */
#endif
/*
Ak ko kA KA A A A A AT A AT A A A A A Ak A A AR A A A A A AT A A I I I Ak dkdkkk * Jede ok ok ek ok ok ok k *
* CONSTANTS
AAEA KA AKX A AL A AR A A Ak kdkkk kAR Ak A AR A AT AT A A AT A A A AT AT A Ak Ak A Ak kA A XA AR ATk Ak k ok hk
*/
#ifndef NUL
#define NUL 0x00
#endif
#define COMML 1
#define COM2 2 -

/* ERRCR CODES */

#define COMM NO_ERR 0 /* Function call was successful */
#define COMM BAD_CH 1 /* Invalid cammunications port chamnel */
#define COMM_RX_EMPTY 2 /* Rx buffer is empty, no character available */
#define COMM TX FULL 3 /* Tx buffer is full, could not deposit character */
#define COMM TX_EMPTY 4 /* 1f the Tx buffer is empty. */
#define COMM RX_TTIMEOUT 5 /* If a timeout occurred while waiting for a character*/
#define COMM_TX_TIMEOUT 6 /* If a timeout occurred while waiting to send a char.*/

#define COMM_PARITY NONE 0 /* Defines for setting parity */
#define COOMM_PARITY_ODD 1
#define COMM _PARITY_EVEN 2

Chapter 11: Asynchronous Serial Communications — 493

Listing 11.7 (continued) COMMRTOS.H

#ifdef COMM GLOBALS

#define COMM_EXT

#else

#define COMM EXT extern

#endif

/*$SPAGE*/

/*

EE R RS RS RS R SR R S L RS R RS E RS S RS R RS LR RS RS RS TR R ES SRR RS A LSRR S

* FUNCTICN PROTOTYPES

R T L e R e s E S T R L L T

*/

INT8U CamGetChar (INT8U ch, INT16U to, INT8U *erx);
INT8U CamGetTxChar (INT8U ch, INI8U *err);

void CormInit (void) ;

BOOLEAN CommIsEmpty (INT8U ch);

BOOLEAN CarmIsFull (INT8U ch);

INT8U CommPutChar (INT8U ch, INT8U ¢, INT16U to);
void CommPutRxChar (INT8U ch, INT8U ¢);

11

494 — Embedded Systems Building Blocks, Second Edition

Chapter 12

PC Services

The code in this book was tested on a PC. It was convenient to create a number of services (i.e., func-
tions) to access some of the capabilities of a PC. These services are invoked from the test code and are
encapsulated in a file called PC.C. Because industrial PCs are so popular as embedded system plat-
forms, the functions provided in this chapter could be of some use to you. These services assume that
you are running under DOS or a DOS box under Windows 95/98 or NT. You should note that under
Windows 95/98 or NT, you have an emulated DOS and not an actual one (i.e., a Virtual x86 session).
The behavior of some functions may be altered because of this. '

The files PC.C (Listing 12.3) and PpC.H (Listing 12.4) are found in the \SOFT-
WARE\BLOCKS\PC\BC45 directory. Unlike the first edition of ESBB, I decided to encapsulate these
functions (as they should have been) to avoid defining them in the example code and also, to allow you
to easily adapt the code to a different compiler. PC.C basically contains three types of services: charac-
ter based display, elapsed time measurement, and miscellaneous. All functions start with the prefix PC_.

12.00 Character Based Display

PC.C provides services to display ASCH {¢and special) characters on a PC’s VGA display. In normal
mode (i.e., character mode), a PC’s display-can hold up to 2000 characters organized as 25 rows (i.e., ¥)
by 80 columns (i.e., x) as shown in Figure 12.1. Please disregard the aspect ratio of the figure. The
actual aspect ratio of a monitor is generally-4 x 3. Video memory on a PC is memory mapped and, on a
VGA monitor, video memory starts at absclute memory location 0x000B8000 (or using a segment:off-
set notation, B800 : 0000).

495

496 — Embedded Systems Building Blocks, Second Edition

Figure 12.1 80 x 25 characters on a VGA monitor.

B800:0000

B800:0002
» X
0 10 20 30 40 50 60 70 79

20 =

24 H

Character Attribute

(o] (e

Each displayable character requires two bytes to display. The first byte (lowest memory location) is
the character that you want to display while the second byte (next memory location) is an attribute that
determines the foreground/background color combination of the character. The foreground color is
specified in the lower 4 bits of the attribute while the background color appears in bits 4 to 6. Finally, the
most-significant bit determines whether the character will blink (when 1) or not (when 0). The charac-
ter and attribute bytes are shown in Figure 12.2.

Chapter 12: PC Services — 497

Figure 12.2 Character and attribute bytes on a VGA monitor.

1st Byte 2nd Byte
(Mem + 0) (Mem + 1)

Background Color
Character to display

B7'B6’B5\B4‘B3'B2 Bl‘BO‘ \B7‘B6|B5 B4J£3‘B2|B1 BO‘

Foreground Color

Blink (Character Color)
0 =no blink
1 =blink

Table 12.1 shows the possible colors that can be obtained from the PC’s VGA character mode.

You will note that you can only have 8 possible background colors but a choice of 16 foreground
colors. PC.H contains #defines which allow you to select the proper combination of foreground
and background colors. These #defines are shown in Table 12.1. For example, to obtain a
non-blinking WHITE character on a BLACK background, you would simply add DISP_FGND_WHITE
and DISP_BGND_BLACK (FGND means foreground and BGND is background). This corresponds to a
HEX value of 0x07 which happens to be the default video attribute of a displayable character on a
PC. You should note that because DISP_BGND _BLACK has a value of 0x00, you don’t actually need
to specify it and thus, the attribute for the same WHITE character could just as well have been speci-
fied as DISP_FGND_WHITE. You should use the #define constants instead of the HEX values to
make your code more readable.

The display functions in PC.C are used to write ASCII (and special) characters anywhere on the
screen using x and y coordinates. The coordinate system of the display is shown in Figure 12.1. You
should note that position 0,0 is located at the upper left corner as opposed to the bottom left corner as
you may have expected. This makes the computation of the location of each character to display easier
to determine. The address in video memory for any character on the screen is given by:

Address of Character = 0x000B8000 + Y * 160 + X * 2
The address of the attribute byte is at the next memory location or:
Address of Attribute = 0x000B8000 + Y * 160 + X * 2 + 1

The display functions provided in PC.C perform direct writes to video RAM even though BIOS
(Basic Input Output System) services in most PCs can do the same thing but in a portable fashion. I
chose to write directly to video memory for performance reasons.

PC.C contains the following five functions which are further described in the interface section of
this chapter.

498 — Embedded Systems Building Blocks, Second Edition

PC_DispChar () To display a single ASCH character anywhere on the screen

PC_DispClrCol () To clear a single column

PC_DispClrRow () To clear a single row (or line)

PC_DispClrScr() To clear the screen

PC_DispStr () To display an ASCH string anywhere on the screen B

Table 12.1 Attribute byte values.

Blink Background Color Foreground Color
®B7 (B6 BS B4) (B3 B2 B1 B0)
Blink? #lefine HEX | Color #define HEX | Color #define HEX
No 0x00 |Black DISP_BGND_BLACK 0x00 |Black DISP_FGND_BLACK 0x00
Yes DISP_BLINK 0x80 |Blue DISP_BGND_BLUE 0x10 |Ble DISP_FGND_BLUE 0x01
Green DISP_BGND_GREEN 0x20 |Green DISP_FGND_GREEN 0x02
Cyan DISP_BGND_CYAN 0x30 |{Cyan DISP_FGND_CYAN 0x03
Red DISP_BGND_RED 0x40 |Red DISP_FGND_RED 0x04
Puple DISP_BGND_PURPLE 0x50 |Purple DISP_FGND_PURPLE 0x05
Brown DISP_BGND_BROWN = 0x60 |Brown DISP_FGND_BROWN 0x06
Light DISP_BGND_LIGHT_GRAY Ox70 |Light DISP_FGND_LIGHT_GRAY 0x07 A
Gray Gray
Dak DISP_FGND_DARK_GRAY 0x08
Gray
Light DISP_FGND_LIGHT_BLUE 0x09
Blue
Light ~ DISP_FGND_LIGHT_GREEN OxOA
Green
Light DISP_FGND_LIGHT_CYAN 0x08
Cyan
Light ~ DISP_FGND_LIGHT_RED 0x0C -
Red
Light ~ DISP_FGND_LIGHT_PURPLE 0xOD
Purple
Yellow DISP_FGND_YELLOW 0X0E
White DISP_FGND_WHITE OXOF B

12.01 Saving and Restoring DOS’s Context

The current DOS environment is saved by calling PC_DOSSaveReturn () (see Listing 12.1) and would
be called by main () to:

1. Setup pC/OS-II’s context switch vector,
2. Setup the tick ISR vector,

3. Save DOS’s context so-that we can return back to DOS when we need to terminate execution of a
puC/OS-II based-application.

Chapter 12: PC Services — 499

A lot happens in PC_DOSSaveReturn () so you may need to look at the code 1n Listing 12.1 to fol-
low along. PC_DOSSaveReturm () starts by setting the flag PC_FExitFlag to FALSE [L12.1(1)] indi-
cating that we are not returning to DOS. Then, PC_DOSSaveReturn () initializes OSTickDOSCtr to 8
[L.12.1(2)] because this variable will be decremented in OSTickISR (). A value of O would have caused
this value to wrap around to 255 when decremented by OSTickISR(). PC_DOSSaveReturm() then
saves DOS’s tick handler in a free vector table [L12.1(3)~(4)] entry so it can be called by pC/OS-II's tick
handler (this is called chaining the vectors). Next, PC_DOSSaveReturn () calls setjmp () [L12.1(5)],
which captures the state of the processor (i.e., the contents of all important registers) into a structure called
PC_JumpBuf. Capturing the processor’s context will allow us to return to PC_DOSSaveReturn () and
execute the code immediately following the call to setjmp (). Because PC_ExitFlag was initialized to
FALSE [L12.1(1)], PC_DOSSaveReturn () skips the code in the if statement [i.e., L12.1(6)~(9)] and
returns to the caller (i.e., main()).

When you want to return to DOS, all you have to do is call PC_DOSReturmi() (see Listing 12.2)
which sets PC_Exi tFlag to TRUE [L12.2(1)] and execute a longjmp () [L12.2(2)]. This brings the pro-
cessor back in PC_DOSSaveReturn () (just after the call to setjmp ()) [L12.1(5)]. This time, however,
PC_ExitFlag is TRUE and the code following the if statement is executed. PC_DOSSaveReturn()
changes the tick rate back to 18.2 Hz [L12.1(6)], restores the PC’s tick ISR handler [L.12.1(7)], clears the
screen [L12.1(8)], and returns to the DOS prompt through the exit (0) function [L12.1(9)]).

Listing 12.1 Saving the DOS environment.

void PC_DOSSaveReturn (void)
{

PC_ExitFlag = FALSE; o (1)
OSTickDOSCtr = 8; - i -{2)
PC_TickISR = PC_VectGet(VECT _TICK); (3)

OS_ENTER_CRITICAL() ;
PC_VectSet (VECT_DOS_CHAIN, PC TickISR); (4)
OS_EXIT CRITICAL();

setjmp (PC_JumpBuf) ; (5) 7
if (PC_ExitFlag == TRUE) { ’
OS_ENTER_CRITICAL();

PC_SetTickRate(18); : (6)
PC_VectSet (VECT_TICK, PC_TickISR); m
0S_EXIT_CRITICAL(); ° j f) S
PC_DispClrScr (DISP. FGND/WHITE + DISP_BGND BLACK); - {8)

exit(0); Sl R Sl e (9

500 — Embedded Systems Building Blocks, Second Edition

Listing 12.2 Setting up to return to DOS.

void PC_DOSReturn (void)
{
PC_ExitFlag = TRUE; (1)
longjmp (PC_JumpBuf, 1); (2)
}

12.02 Elapsed Time Measurement

The elapsed time measurement functions are used to determine how much time a function takes to execute.
Time measurement is performed by using the PC’s 82C54 timer #2. You make time measurement by
wrapping the code to measure by the two functions PC_ElapsedStart () and PC_ElapsedStop ().
However, before you can use these two functions, you need to call the function PC_ElapsedTInit ().
PC_ElapsedInit () basically computes the overhead associated with the other two functions. This way,
the execution time (in microseconds) returned by PC_ElapsedStop () consist exclusively of the code
you are measuring. Note that none of these functions are reentrant and thus, you must be careful that you
do not invoke them from multiple tasks at the same time.

12.03 Miscellaneous

PC_GetDateTime () is a function that obtains the PC’s current date and time, and formats this infor-
mation into an ASCII string. The format is:

“YYYY-MM-DD HH:MM:SS”

and you will need at least 21 characters (including the NUL character) to hold this string. You should note
that there are 2 spaces between the date and the time which explains why you need 21 characters instead
of 20. PC_GetDateTime () uses the Borland C/C++ library functions gettime () and getdate ()
. which should have their equivalent on other DOS compilers.

PC_GetKey () is a function that checks to see if a key was pressed and if so, obtains that key, and
returns it to the callerr PC_GetKey () uses the Borland C/C++ library functions kibhit () and
getch () which again, have their equivalent on other DOS compilers.

PC_SetTickRate () allows you to change the tick rate for pC/OS-II by specifying the desired fre-
quency. Under DOS, a tick occurs 18.20648 times per second or, every 54.925 mS. This is because the
82C54 chip used didn’t get its counter initialized and the default value of 65535 takes effect. Had the
chip been initialized with a divide by 59659, the tick rate would have been a very nice 20.000 Hz! I
decided to change the tick rate to something more ‘exciting’ and thus, decided to use about 200 Hz
(actually 199.9966). The code found in OS_CPU_A.OBJ calls the DOS tick handler one time out of 11.
This is done to ensure that some of the housekeeping needed in DOS is maintained. You would not need
to do this if you were to set the tick rate to 20 Hz. Before returning to DOS, PC_SetTickRate () is
called by specifying 18 as the desired frequency. PC_SetTickRate() will know that you actually
mean 18.2 Hz and will correctly set the 82C54.

o

Chapter 12: PC Services — 501

The last two functions in PC.C are used to get and set an interrupt vector. PC_VectGet () and
PC_VectSet () should be compiler independent as long as the compiler support the macros MK_FP ()
(make far pointer), FP_OFF () (get the offset portion of a far pointer) and, FP_SEG () (get the segment
of a far pointer).

12.04 Interface Functions

This section provides a reference section for the PC services.

502 — Embedded Systems Building Blocks, Second Edition

PC DispChar()

void PC_DispChar (INT8U x, INT8U y, INT8U c, INT8U color);

PC_DispChar () allows you to display a single ASCII (or special) character anywhere on the display.

Arguments

x and y specifies the coordinates (col, row) where the character will appear. rows (i.e., lines) are num-
bered from 0 to DISP_MAX_Y - 1, and columns are numbered from O to DISP_MAX_X - 1 (see List-
ing 12.3, PC.C).

¢ is the character to display. You can specify any ASCII characters and special characters if ¢ has a
value higher than 128. You can see what characters (i.e., symbols) will be displayed based on the value
of ¢ by running the test code provided in this book as follows:

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > TEST display

color specifies the contents of the attribute byte and thus the color combination of the character to be
displayed. You can add one DISP_FGND_?7?? (see Listing 12.4, PC.H) and one DISP_BGND_??? (see
Listing 12.4, PC.H) to obtain the desired color combination.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for (;:) {

PC_DispChar (0, 0, ‘$’', DISP_FGND_WHITE);

Chapter 12: PC Services — 503

PC_DispClrCol ()

void PC DispClrCol (INT8U x, INT8U color):;

PC_DispClrCol () allows you to clear the contents of a column (all 25 characters).

Arguments

x specifies which column will be cleared. Columns are numbered from 0 to DISP_MAX X — 1 (see
Listing 12.3, PC.C).

color specifies the contents of the attribute byte. Because the character used to clear a column is the
space character (i.e., ©), only the background color will appear. You can thus specify any of the
DISP_BGND_??? colors.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)
{

for (;;) {

PC_DispClrCol (0, DISP_BGND_BLACK) ;

504 — Embedded Systems Building Blocks, Second Edition

PC _DispClrRow()

void PC DispClrRow(INTS8U y, INTS8U color);

PC_DispClrRow () allows you to clear the contents of a row (all 80 characters).

Arguments

y specifies which row (i.e., line) will be cleared. Rows are numbered from 0 to DISP_MAX_Y - 1 (see
Listing 12.3, pC.0).

color specifies the contents of the attribute byte. Because the character used to clear a row is the
space character (i.e., ¢ ‘), only the background color will appear. You can thus specify any of the
DISP_BGND_??? colors.

Return Value

None

Notes/Warnings

None

Example

void Task {void *pdata)
{

for (;;) {

PC_DispClrRow(10, DISP_BGND_BLACK) ;

Chapter 12: PC Services — 505

PC DispClrScr()

void PC DispClrScr (INT8U color);

PC_DispClrScr () allows you to clear the entire display.

Arguments

color specifies the contents of the attribute byte. Because the character used to clear the screen is the
space character (i.e., ‘ ‘), only the background color will appear. You can thus specify any of the
DISP_BGND_??7? colors.

Return Value

None

Notes/Warnings

You should use DISP_FGND_WHITE instead of DISP_BGND_BLACK because you don’t want to leave
the attribute field with black on black.

Example

void Task (void *pdata)
{

PC_DispClrScr (DISP_FGND_WHITE) ;
for (;;) {

506 — Embedded Systems Building Blocks, Second Edition

PC DispStr()

void PC_DispStr (INT8U x, INTSU y, INT8U *s, INT8U color):;

PC_DispStx () allows you to display an ASCII string. In fact, you could display an array containing
any of 255 characters as long as the array itself is NUL terminated.
Arguments

x and y specifies the coordinates (col, row) where the first character will appear. rows (i.e., lines) are
numbered from 0 to DISP_MAX_Y - 1, and columns are numbered from 0 to DISP_MAX_X - 1 (see
Listing 12.3, PC.C).

s is a pointer to the array of characters to display. The array must be NUL terminated. Note that you can
display any characters from 0x01 to OxFF. You can see what characters (i.e., symbols) will be dis-
played based on the value of ¢ by running the test code provided in this book as follows:

C: \SOFTWARE\BLOCKS\SAMPLE\TEST > TEST display

color specifies the contents of the attribute byte and thus the color combination of the characters to be -
displayed. You can add one DISP_FGND_7??2? (see Listing 12.4, PC.H) and one DISP_BGND_??? (see -
Listing 12.4, PC.H) to obtain the desired color combination.

Return Value

None

Notes/Warnings

All the characters of the string or array will be displayed with the same color attributes.

Example #1 -
The code below displays the current value of a global variable called Temperature. The color used

depends on whether the temperature is below 100 (white), below 200 (yellow) or if it exceeds 200

(blinking white on a red background).

Chapter 12: PC Services — 507

Example #2

The code below displays a square box 10 characters wide by 7 characters high in the center of the
screen.

508 — Embedded Systems Building Blocks, Second Edition

PC_DOSReturn()

void PC_DOSReturn(void);

PC_DOSReturn () allows your application to return back to DOS. It is assumed that you have previ-
ously called PC_DOSSaveReturn () in order to save the processor’s important registers in order to
properly return to DOS. See section 12.01 for a description on how to use this function.

Arguments

None

Return Value

None

Notes/Warnings

‘You must have called PC_DOSSaveReturmn () prior to calling PC_DOSReturn ().
Example
void Task (void *pdata)

{
INT16U key;

for (;;) {

if (PC_GetKey (&key) == TRUE) {
if (key == OxiB) {
PC_DOSReturn() ; /* Return to DOS */

Chapter 12: PC Services — 509

PC_DOSSaveReturn()

void PC_DOSSaveReturn(void);

PC_DOSSaveReturn () allows your application to save the processor’s important registers in order to
properly return to DOS before you actually start multitasking with pC/OS-II. You would normally call
this function from main () as shown in the example code provided below.

Arguments

None

Return Value

None

Notes/Warnings

You must call this function prior to setting uC/OS-II’s context switch vector (as shown below).

Example

void main (void)

{
OSInit(); /* Initialize uC/0S-II */
PC_DOSSaveReturn() ; /* Save DOS’s environment */
PC_VectSet (uC0S, 0OSCtxSw); /* uC/0S-II's context switch vector */

OSTaskCreate (..) ;

Osstart(); /* Start multitasking */

12

510 — Embedded Systems Building Blocks, Second Edition

PC _ElapsedInit ()

void PC_ElapsedInit(void);

PC_ElapsedInit () is invoked to compute the overhead associated with the PC_ElapsedStart ()
and PC_ElapsedStop () calls. This allows PC_ElapsedStop () to return return the execution time
(in microseconds) of the code you are trying to measure.

Arguments

None

Return Value

None

Notes/Warnings

You must call this function prior to calling either PC_ElapsedStart () and PC_ElapsedStop ().

Example

void main (void)
{
OSInit(); /* Initialize uC/0S-I1 */

PC_ElapsedInit(); /* Compute overhead of elapse meas. */

Oosstart() ; /* Start multitasking */

Chapter 12: PC Services — 511

PC_ElapsedS’tart ()

void PC_ElapsedStart(void);

PC_FElapsedStart () is used in conjunction with PC_ElapsedStop () to measure the execution time
of some of your application code.
Arguments

None

Return Value

None

Notes/Warnings

Youmust call PC_ElapsedInit () before youuseeither PC_ElapsedStart () and PC_ElapsedStop().
This function is non-reentrant and cannot be called by multiple tasks without proper protection
mechanisms (i.e., semaphores, locking the scheduler, etc.).
The execution time of your code must be less than 54.93 milliseconds in order for the elapsed time
measurement functions to work properly.

512 — Embedded Systems Building Blocks, Second Edition

Example

void main (void)

{
0SInit () ; ' /* Initialize uC/0S-II
PC_ElapsedInit(); /* Compute overhead of elapse meas.
Osstart(); /* Start.multitasking

}

void Task (void *pdata)
{
INT16U time_us;

for (;:) {

PC_ElapsedStart();
/* Code you want to measure the execution time */

time_us = PC_ElaspedStop();

*/

*/

*/

Chapter 12: PC Services — 513

PC _ElapsedStop()

INT16U PC_ElapsedStop (void);

PC_ElapsedStop () is used in conjunction with PC_ElapsedStart () to measure the execution time
of some of your application code.
Arguments

None

Return Value

The execution time of your code that was wrapped between PC_ElapsedStart () and PC_ElapsedStop ().
The execution time is refumed in microseconds.

Notes/Warnings

You rmust call PC_ElapsedInit () before you use either PC_ElapsedStart () and PC_ElapsedStop().
This function is non-reentrant and cannot be called by multiple tasks without proper protection
mechanisms (i.e., semaphores, locking the scheduler, etc.).
The execution time of your code must be less than 54.93 milliseconds in order for the elapsed time
measurement functions to work properly.

Example
See PC_ElapsedStart () on page 511.

12

514 — Embedded Systems Building Blocks, Second Edition

PC _GetDateTime ()

void PC_GetDateTime(char *s);

PC_GetDateTime () is used to obtain the current date and time from the PC’s real-time clock chip and
return this information in an ASCII string that can hold at least 19 characters.

Arguments

8 is a pointer to the storage area where the ASCII string will be deposited. The format of the ASCII
string is:

"YYYY-MM-DD HH:MM:SS"
and requires 21 bytes of storage (note that there is 2 spaces between the date and the time).

Return Value

None

Notes/Warnings

None

Example

void Task {void *pdata)

{
char s[80];

for (;;) {

PC_GetDateTime (&s[0]) ;s
PC_DispStr(0, 24, s, DISP_FGND_WHITE);

Chapter 12: PC Services — 515

PC_GetKey ()

BOOLEAN PC_GetDateTime (INT16S *key);

PC_GetKey () is used to see if a key was pressed at the PC’s keyboard and if so, obtain the value of the
key pressed. You would normally invoke this function every so often (i.e., poll the keyboard) to see if a
key was pressed. Note that the PC actually obtains key presses through an ISR and buffers key presses.
Up to 10 keys are buffered by the PC.

Arguments

key is a pointer to where the key value will be stored. If no key has been pressed, the value will contain
0x00.

Return Value

TRUE is a key was pressed and FALSE otherwise.

Notes/Warnings

None

Example

516 — Embedded Systems Building Blocks, Second Edition

PC SetTickRate()

void PC_SetTickRate (INT16U freq);

PC_SetTickRate () is used to change the PC’s tick rate from the standard 18.20648 Hz to something
faster. A tick rate of 200 Hz is a multiple of 18.20648 Hz (the muitiple is 11).
Arguments

freq is the desired frequency of the ticker.

Return Value

None

Notes/Warnings

You can only make the ticker faster than 18.20648 Hz.

The higher the frequency, the more overhead you will impose on the CPU.

You will have to change OSTickISR () in order to account for the increased rate (see MicroC/OS-11,
The Real-Time Kernel, R&D Books, ISBN 0-87930-543-6).

void Task (void *pdata)
{

OS_ENTER_CRITICAL() ;

PC_VectSet (0x08, OSTickISR);

PC_SetTickRate (400) ; /* Reprogram PC’s tick rate to 400 Hz */
OS_EXIT CRITICAL();

for (;:) |

Chapter 12: PC Services — 517

PC VectGet ()

void *PC_VectGet (INT8U vect);

PC_VectGet () is used to obtain the address of the interrupt handler specified by the interrupt vector
number. An 80x86 processor supports up to 256 interrupt/exception handlers.
Arguments

vect is the interrupt vector number, a number between € and 255.

Return Value

The address of the current interrupt/exception handler for the specified interrupt vector number.

Notes/Warnings

Vector number O corresponds to the RESET handler.

It is assumed that the 80x86 code is compiled using the ‘large model’ option and thus all pointers
returned are ‘far pointers’.

It is assumed that the 80x86 is running in ‘real mode’.

Example

12

518 — Embedded Systems Building Blocks, Second Edition

PC VectSet ()

void PC_VectSet (INT8U vect, void *(pisr) (void));

PC_VectSet () is used to set the contents of an interrupt vector table location. An 80x86 processor
supports up to 256 interrupt/exception handlers.

Arguments

vect is the interrupt vector number, a number between 0 and 255.

pisr is the address of the interrupt/exception handler.

Return Value

None

Notes/Warnings

You should be careful when setting interrupt vectors. Some interrupt vectors are used by the operating
system (DOS and/or pC/OS-1II).

It is assumed that the 80x86 code is compiled uvsing the ‘large model’ option and thus all pointers
returned are ‘far pointers’.

If your interrupt handler works in conjunction with pC/OS-II, it must follow the rules imposed by
pC/OS-1I1 (see page 91 of MicroC/OS-1I, The Real-Time Kernel, ISBN 0-8§7930-543-6).

Example

void InterruptHandler (void)
{
}

void Task (void *pdata)
{

PC_VectSet (64, InterruptHandler);

for (;;) {

Chapter 12: PC Services — 519

12.05 Bibliography

Chappell, Geoff

DOS Internals
Reading, Massachusetts
Addison-Wesley, 1994 -
ISBN 0-201-60835-9

Tischer, Michael

PC Intern, System Programming, 5th Edition
Grand Rapids, Michigan

Abacus, 1995

ISBN 1-55755-282-7

Villani, Pat

FreeDOS Kernel, An MS-DOS Emulator for Platform Independence & Embedded Systems Development
Lawrence, Kansas

R&D Books, 1996

ISBN 0-87930-436-7

520 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 PC.C

/*

R R R e R R e e R R e e R e L e R L e R e L R R L e L]

PC SUPPORT FUNCTIONS

*

*

*

*

*

* File :

* By

{c) Copyright 1992-1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

PC.C

: Jean J. Labrosse

R L R L R R S e R e e R R L T T Ty e]

*/

#include "includes.h"

/*

* ok de ok ok

*

*kkk

* % E R L L L R e T ey

CONSTANTS

LR R e R R e e S e R T R RS T T T e

*/

#define
#define
#define

#define
#define
#define
#define

#define
#define

#define

#define
#define

/*

dkkok kK k ok ok ok ok

DISP_BASE
DISP_MAX X
DISP_MAX Y

TICK_T0_8254_CWR

TICK_T0_8254_CTRO
TICK _TO_8254 CTR1
TICK TO_8254_CTR2

TICK_T0_8254_CTRO_MODE3
TICK_T0_8254_CTR2_MODEO
TICK_T0_8254_CTR2_LATCH

VECT_TICK
VECT_DOS_CHATN

0xB800
80
25

0x43
0x40
0x41
0x42

0xBO

0x80

0x08
0x81

/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

*

/
/*

Base segment of display (0xB800=VGA, 0xB000=Mono)
Maximum number of colunms
Maximum runber of rows

8254 PIT Control Word Register address.
8254 PIT Timer 0 Register address.
8254 PIT Timer 1 Register address.
8254 PIT Timer 2 Register address.

8254 PIT Binary Mode 3 for Counter O control word.
8254 PIT Binary Mode 0 for Counter 2 control word.
8254 PIT Latch cammand control word

Vector number for 82C54 timer tick
Vector number used to chain DOS

*/
*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/

L L L R L R e Ly s e e L s R L e L e L T T]

LOCAL GLOBAL VARIABLES

L L L R R L T R e T e R L e B T e Ty

*

*/

static INT16U

static jmp buf PC_JumpBuf;
static BOOLEAN PC_ExitFlag;
(*PC_TickISR) (void);

void

/*$PAGE*/

PC_ElapsedOverhead;

Chapter 12: PC Services — 521

Listing 12.3 (continued) PC.C

/*
ok ok ko ko ok ok ok ok o kK ook ok okok Kok kK ok ok ok ok kK ok Kok ook o ok ok ook o ok ok ok ook ok ok ok ok ok ko Kok ok ok ok o ko ok ok ok ok
* DISPLAY A SINGLE CHARACTER AT 'X' & 'Y' COORDINATE -

x -

* Description : This function writes a single character anywhere on the PC's screen. This function

* writes directly to video RAM instead of using the BIOS for speed reasons. It assumed

* that the video adapter is VGA compatible. video RAM starts at absolute address

* 0x000B8000. Each character on the screen is camposed of two bytes: the ASCII character
* to appear on the screen followed by a video attribute. 2n attribute of 0x07 displays

* the character in WHITE with a black background.

*

* Arguments X corresponds to the desired column on the screen. Valid columns numbers are fram
* 0 to 79. Colum 0 corresponds to the leftmost column.

* 3% corresponds to the desired row on the screen. Valid row numbers are from 0 to 24.
* Line 0 corresponds to the topmost row.

* c Is the ASCII character to display. You can also specify a character with a

* nuneric value higher than 128. In this case, special character based graphics

* will be displayed.

* color specifies the foreground/background color to use (see PC.H for available choices)
* and whether the character will blink or not. -

*

* Returns : None B
KR A K A A KA AR AR AR A A A A A A A A A A A A A A AR A A A A A KA A A A AR AR A AR AR A AR AR A KA A AR A AR KA ARk A A A ARk kA hhhok kb kdhx ki —
*/
void PC_DispChar (INTSU x, INT8U y, INT8U ¢, INTRU color)
{
INT8U far *pscr;
INT160 offset;
offset = (INT16U)y * DISP MAX X * 2 + (INT16U)X * 2; /* Calculate position on the screen */ -
pscr = (INT8U far *)MK_FP(DISP_BASE, offset);
DSCr++ = C; / Put character in video RAM */
pscr = color; / Put video attribute in video RAM */
} -
/*$SPAGE*/

522 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued) PC.C

/*
KR KKK KA KKE KA K KR K KRR AA K KR KA AR KA KK KRR KA KRR KA A KRR KA KK KE KK AR KR A KKK AR KRR KA KA AR KK AR KA KK Kk KAk KA KK A AR AR Kk K kK
* CLEAR A COLUMN

*

* Degcription : This function clears one of the 80 colums on the PC's screen by directly accessing video

* RAM instead of using the BIOS. It assumed that the video adapter is VGA campatible.

* Video RAM starts at absolute address 0x000B8000. Each character on the screen is

* camposed of two bytes: the ASCIT character to appear on the screen followed by a video

* attribute. An attribute of 0x07 displays the character in WHITE with a black background.
*

* Arguments : X corresponds to the desired colum to clear. Valid colum numbers are from
* 0 to 79. Colum 0 corresponds to the leftmost columm.

* N

* color specifies the foreground/background color cambination to use

* (see PC.H for available choices)

*

* Returns : None

Kk kR Ak kA kA A A A Ak Ak kAR kA kA kR ko kKA Ak Ak kA Ak A A K A A A A A A A A A KA A A A A AR AR A A KA KA A A AR A Ak kAR KA A A AR A KA kXXX Rk *** K
*/ '

void PC_DigpClrCol (INT8U x, INT8U color) _
{

INT8U far *pscr;
INT8U i; _

pscr = (INT8U far *)MK_FP(DISP_BASE, (INT16U)x * 2);
for (1 = 0; i <« DISP MAX Y; i++) {

pscr++ =t / Put ' ' character in video RAM */
pscr = color; / Put video attribute in video RaM */
pscr = pscr + DISP_MAX X * 2; /* Position on next row */

}
/*$SPAGE*/

Chapter 12: PC Services — 521

Listing 12.3 (continued) PC.C

Vad
R L T T L L T T T T

* DISPLAY A SINGLE CHARACTER AT 'X' & 'Y' COORDINATE -

* Description : This function writes a single character anywhere on the PC's screen. This function

* writes directly to video RAM instead of using the BIOS for speed reasons. It assumed

* that the video adapter is VGA compatible. Video RAM starts at absolute address

* 0x000B8000. Each character on the screen is composed of two bytes: the ASCII character

* to appear on the screen followed by a video attribute. An attribute of 0x07 displays

* the character in WHITE with a black background.

*

* Arguments : X corresponds to the desired column on the screen. Valid colums numbers are fram

* 0 to 79. Column O corresponds to the leftmost columm.

* 1% corresponds to the desired row on the screen. Valid row numbers are from 0 to 24.

* Line 0 corresponds to the topmost row.

* c Is the ASCII character to display. You can also specify a character with a

* numeric value higher than 128. 1In this case, special character based graphics

* will be displayed.

* color specifies the foreground/background color to use (see PC.H for available choices)

* and whether the character will blink or not. -
*

* Returns : None :
hA A A RR A A AR AR AR A AR A kA A kAR AR A A A A AR AR AR A A Ak Ak AR dhh A kAR ARk A Ak dh A A A A h ko kkhh Ak hhhkkkkkhhkkk kA k Ak ik ——
*/

void PC_DispChar (INT8U x, INTQU y, INT8U ¢, INTSU color)
{
INT8U far *pscr;

INT16U offset;

offset = (INT16U)y * DISP MAX X * 2 + {(INT1l6U}x * 2; /* Calculate position on the screen */

pscr = (INT8U far *)MK _FP(DISP_PRASE, offset);

PDSCr++ = C; / Put character in video RaM */

pscr = color; / Put video attribute in video RAM */
} -
/*SPAGE* /

522 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued) PC.C

/*
P R L R R R R T TR T TR Kok kkAkk B R R R L L L T TR p g e
* CLEAR A COLUMN

*

* Description : This function clears one of the 80 colums on the PC's screen by directly accessing video

* RAM instead of using the BIOS. It assumed that the video adapter is VGA campatible.

* Video RAM starts at absolute address 0x000B8000. Each character on the screen is

* conposed of two bytes: the ASCII character to appear on the screen followed by a video

* attribute. An attribute of 0x07 displays the character in WHITE with a black background.
*

* Arguments X corresponds to the desired column to clear. Valid colum numbers are fram
* 0 to 79. Column 0 correspords to the leftmost column.

*

* color specifies the foreground/background color cambination to use

* (see PC.H for available choices)

*

* Returns : None

kA hhA AR * khkkkhkkkhhhkhkkdkhkhkhhhkkkdkhhhhkk *khkkk *kk ok ook *k Heok ke ke * ok kkkk ok
*/

void PC_DispClrCol (INT8U x, INT8U color) -
{ -
INT8U far *pscr;
INT8U i;

pscr = (INT8U far *)MK FP(DISP_RASE, (INT16U)x * 2);
for (i = 0; 1 « DISP MAX_Y; i++) {

pscr++ = ¢ ¢ / Put ' * character in video RAM */
pscr = color; / Put video attribute in video RAM */
pscr = pscr + DISP MAX X * 2; /* Position on next row */

}
/*SPAGE*/

Chapter 12: PC Services — 523

Listing 12.3 (continued) PC.C

/*
*okedkkk *x dekk ok ok Ak Ak
* CLEAR A RCW

* -
* Description : This function clears one of the 25 lines on the PC's screen by directly accessing video
* R2M instead of using the BIOS. It assumed that the video adapter is VGA carpatible.

* Video RAM starts at absolute address 0x0COB8000. Each character on the screen is

* conposed of two bytes: the ASCII character to appear on the screen followed by a video

* attribute. 2An attribute of 0x07 displays the character in WHITE with a black background.
*

* Arguments Ty corregponds to the desired row to clear. Valid row numbers are from

* 0 to 24. Row 0 corresponds to the topmost line.

*

* color specifies the foreground/background color combination to use

* {see PC.H for available choices)

*

* Returns : None

hhkhkhkhkkkhkhkhkkhkhkkhkhhkkk kA hkhkkhkhkxhkkhkhk kA kkkhkhkkkhkkkkx*k AEAKEE A A KKK KA KRR A I A kA A AL A AL AAEA kA AAXT
*/

void PC_DispClrRow (INT8U y, INT8U color)
{

INT8U far *pscr;

INT8U i;

pscr = (INT8U far *)MK FP(DISP_BASE, (INT16U)y * DISP MAX X * 2);

for (1 = 0; 1 < DISP_MAX X; i++) {
pscr++ = ' ' / Put ' ' character in video RAM */
pscr++ = color; / Put video attribute in video RAM */

}
/*SPAGE*/

524 — Embedded Systems Building Blocks, Second Edition

Listing 12.

3 (continued) PC.C

/*

R R T T T A T T 2 e g T T L T L T *kkk * ek k ek kKKK

*

*

* Description

CLEAR SCREEN

: This function clears the PC's screen by directly accessing video RAM instead of using

* the BIOS. It assumed that the video adapter is VGA carpatible. Video RAM starts at
* absolute address 0x000B8000. Each character on the screen is camposed of two bytes:
* the ASCII character to appear on the screen followed by a video attribute. An attribute
* of 0x07 displays the character in WHITE with a black background.
*
* Arguments : color specifies the foreground/background color cambination to use
* (see PC.H for available choices)
*
* Returns : None
ek g g 7 P vk &k ok ok e Rk ok I % % % K K % ok %k ok ok ke ok ok I gk ok %k ok & K %k 99 7 ok ok 3k ke ki ok e 7 3k ok ke ok ok & 7 9k 9 3 3 ok ok ok o % o gk ok ok ok k07 ok ok ok ok A ek ke ok ke ok
*/
void PC_DispClrScr (INT8U color)
{
INT8U far *pscr;
INT16U i;
pscr = (INT8U far *)MK_FP(DISP BASE, 0x0000);
for (i = 0; i < (DISP_MAX X * DISP MAX Y); i++) { /* PC display has 80 colums and 25 lines */
pscr++ = ' ' / Put ' ' character in video RAM */
psCr++ = Color; / Put video attribute in video RaM */
}
}

/*$PAGE*/

Chapter 12: PC Services — 525

Listing 12.3 (continued) PC.C

J*
AR K KRR KKK KK HH KK AR * kK Kk DR g R R R TR L 2 2 2 T TR e e g e
* DISPLAY A STRING AT 'X' & 'Y' COORDINATE _

* -

*

Description : This function writes an ASCII string anywhere on the PC's screen. This function writes

* directly to video RAM instead of using the BIOS for speed reasons. It assumed that the

* video adapter is VGA campatible. Video RAM starts at absolute address 0x000B8000. Each
* character on the screen is camposed of two bytes: the ASCII character to appear on the

* screen followed by a video attribute. An attribute of 0x07 displays the character in

* WHITE with a black background.

*

* Arguments : X corresponds to the desired colum on the screen. Valid colums nunbers are from
* 0 to 79. Colum 0 corresponds to the leftmost column.

* Y corresponds to the desired row on the screen. Valid row numbers are from 0 to 24.
* Line 0 corresponds to the topmost row.

* S Is the ASCIT string to display. You can also specify a string containing

* characters with numeric values higher than 128. 1In this case, special character
* based graphics will be displayed.

* color specifies the foreground/background color to use (see PC.H for available choices)
* and whether the characters will blink or not. -
*

* Returms : None

K 9 ok vk 9 % o o vk 9 ok Tk o 9 ok vk gk o vk ok ko 99k ok ok 9 9k ok 9k o ok 3 9k 9k ok ok ok 9 9 ok 9 3 9 9k Sk ok 3 9 9 vk ok ok o 9 3 ok 3 3 ok ok o 9k o ok vk 9k 9k Sk ok ok ok 9 i ok ok 9 9 ok ok 3 9 i ok ok o ok ok ok ok ok e ok ok ok ok
*/

void PC_DispStr (INT8U x, INT8U y, INT8U *s, INT8U color)

{
INT8U0 far *pscr;

INT16U offset;
offset = (INTl6U)y * DISP MAX X * 2 + (INT16U)x * 2; /* Calculate position of lst character */
pscr = (INT8U far *)MK FP(DISP_BASE, offset);
while (*s) {
*DSCr++ = *St+; /* Put character in video RAM */
pscr++ = color; / Put video attribute in video RAM */ -
}
}
/*$SPAGE*/

526 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued) PC.C

/%
B L f R R R R R R R R R R Rt 2 A T R T P e s
* RETURN TO DOS

*
* Description : This functions returns control back to DOS by doing a 'long jump' back to the saved

* location stored in 'PC_JumpBuf'. The saved location was established by the function
'PC_DOSSaveReturn()'. After execution of the long jump, execution will resume at the

*

* line following the 'set jump' back in 'PC DOSSaveReturn()'. Setting the flag
* 'PC_ExitFlag' to TRUE ensures that the 'if' statement in 'PC_DOSSaveReturn{)' executes.
*
* Arguments : None
*
* Returns : None
AR K& Ak K kok ok ok ok ok ok ok ok ok * ok ok ok & ok ok ok AEAEKEEEEAKK KKK A AKX EAXR R AR AKRKTER A A Ak hkhkkk Ak hxhKk
*/
void PC_DOSReturn (void)
{
PC_ExitFlag = TRUE; /* Indicate we are returning to DOS */
longjm (PC_JurmpBuf, 1); /* Jump back to saved enviromment */
}
/*$SPAGE*/
/*
ok ok ok ok ok ok ke oIk ok ok ok ok ok * & & &k ok ok ok ok &k ok ok ok Kok ok AEAKEAKAAEERARE LA EKRKEKR KKK AKX AN A XX KA KA A A* K
* SAVE DOS RETURN LOCATION

*

* Description : This function saves the location of where we are in DOS so that it can be recovered.

* This allows us to abort multitasking under uC/OS-II and return back to DOS as if we had

* never left. When this function is called by 'main()', it sets 'PC_ExitFlag' to FALSE

* so that we don't take the 'if' branch. Instead, the CPU registers are saved in the

* long jump buffer 'PC_JumpBuf' and we simply return to the caller. If a 'long jump' is

* performed using the jump buffer then, execution would resume at the 'if' statement and

* this time, if 'PC_ExitFlag' is set to TRUE then we would execute the 'if' statements and

* restore the DOS environment.

*

* Arguments : None

*

* Returns : Nene

AT A KKK RA TR AR AR A AR AR A AR AR R AT KKK A EKEE A KA A AT AREREERKAA AR A LA KRR AR RRRKRAAAAAARNR AR R AR KRN RK

*/

void PC_DOSSaveReturn (void)

{
PC_ExitFlag = FALSE; /* Indicate that we are not exiting yet! */
OSTickDOSCtr = 1; /* Initialize the DOS tick counter */
PC_TickISR = PC_VectGet (VECT_TICK); /* Get MS-DOS's tick vector */

OS_ENTER_CRITICAL() ;
PC_VectSet (VECT_DOS_CHATN, PC_TickISR); /* Store MS-DOS's tick to chain */
OS_EXIT CRITICAL(); ’

setjmp (PC_JumpBuf) ; /* Capture where we are in DOS */
if (PC_ExitFlag == TRUE) { /* See if we are exiting back to DOS */
OS_ENTER_CRTTICAL({) ;
PC_SetTickRate(18); /* Restore tick rate to 18.2 Hz */
PC_VectSet (VECT_TICK, PC_TickISR); /* Restore DOS's tick vector */
OS_EXIT CRITICAL(});
PC_DispClrScr (DISP_FGND WHITE + DISP_BGND BLACK); /* Clear the display */
exit(0); /* Return to DOS */

}
/*SPAGE*/

Chapter 12: PC Services — 527

Listing 12.3 (continued) PC.C

/*
L S S R s S T T TS VY Ekkkk Rk ek Rk ke ok Rk kR kA K
* ELAPSED TIME INITIALIZATION

*
* Description : This function initialize the elapsed time module by determining how long the START and
* STOP functions take to execute. In other words, this function calibrates this module
* to account for the processing time of the START and STOP functions.

* Arguments : None.

*

* Returns 1 None.

Fhkhkkhkkdhkhhkhkhkhhkhhkrhhkdhkhhkhkdkdkdhdhhkhhkhhkkhhhhk kdkkkkk *kk khkkkkkkkhkkhkkhkhkhhkhkkh
*/

void PC_ElapsedInit (void)

{

PC_ElapsedOverhead
PC_ElapsedStart();
BC_FElapsedOverhead = PC_ElapsedStop();

0;

}

/*$PAGE*/

/*

I L L L S R L T S * * kA kR A ARk A R R AR EkRkE
* INITIALIZE PC'S TIMER #2

*

* Description : This function initialize the PC's Timer #2 to be used to measure the time between events.

* Timer #2 will be running when the function returns.

*

* Arguments : None.

*

* Returms : None.

hhkkkhkhkhkAhkhkhkhknokhhkhhkrkhkhhhhkhkhkhkhhhkhkhhhkkkkxhhkkkhkkk *hkkk * & k% ok koK ok
*/

void PC_ElapsedStart (void)
{
INT8U data;

OS_ENTER_CRITICAL() ;

data = (INT8U)inp(0x61); /* Disable timer #2 */
data &= OxFE;

outp(0x6l, data);

outp(TICK_T0_8254_CWR, TICK_TO0_8254_CTR2 MODEO) ; /* Program timer #2 for Mode 0 */

outp(TICK T0_8254_CTR2, OXFF);
outp(TICK TO_8254_CTR2, OXFF};
data 1= 0x01; /* Start the timer */
outp(0x61l, data);
OS_EXIT CRITICAL();
}
/*$SPAGE*/

528 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued) PC.C

/*

HH I I I I I I IR T I T A A TR I E I I I I I A K I A AR R IR AR AT I *d Ak kA dhkkkhxx ke ok ok ek * e e ke e e ke ke ke ke K e e ok ok e gk ok Kok ek ok kok ke ok ok ok ke

* STOP THE PC'S TIMER #2 AND GET ELAPSED TIME

* -
* Description : This function stops the PC's Timer #2, obtains the elapsed counts from when it was

*

started and converts the elapsed counts to micro-seconds.

*

* Arguments : None.

* Returns : The number of micro-seconds since the timer was last started.

*

* Notes : - The returned time accounts for the processing time of the START and STOP functions.

* - 54926 represents 54926S-16 or, 0.838097 which is used to convert timer counts to

* micro-seconds. The clock source for the RC's timer #2 is 1.19318 MHz (or 0.838097 uS)

ok e ke ke e ke kokok ok kokok ok *hk & ko * ok ok dedeokok ok *k o ke ke ke ke ok ke e ok ok ok de ok ok kok

*/

INT16U PC_ElapsedStop (void)

{
INT8U data;
INT8U low; -
INT8U high; -
INT16U cnts;

OS_ENTER _CRITICAL() ;

data = (INT8U)inp(0x61); /* Disable the timer */
data &= OxFE;

outp (0x61, data);

outp (TICK_TO0_8254_CWR, TICK TO_ 8254 _CTR2_LATCH) ; /* Latch the timer value */

low = inp(TICK TO_8254 CTR2);
high = inp(TTCK_T0_8254_CTR2);
cnts = (INT16U)OXFFFF - (((INT16U)high << 8) + (INT16U)low); /* Campute time it took for operation */
OS_EXIT_CRITICAL () ;
return ((INT16U) ((ULONG)cnts * 54926L >> 16) - PC_ElapsedOverhead) ;
} -
/*SPAGE*/

Chapter 12: PC Services — 529

Listing 12.3 (continued) PC.C

/*
e e 3k 3 ek ok ok o 3ok ok ok ok 3 o Kk ok ok ok ok ke 3k ok ek ok ok ok ko ek ok Aok ok ok ko kb ok K Rk kA kR Rk kAR kAR Rk Kk k kAR kA Rk ko Ak
* GET THE CURRENT DATE AND TIME -

* -

* Description: This function obtains the current date and time from the FC.

* Arguments : s is a pointer to where the ASCIT string of the current date and time will be stored.
* You rmust allocate at least 21 bytes (includes the NUL) of storage in the return

* string. The date and time will be formatted as follows:

*

* "YYYY-MM-DD HH:MM:SS"

*

* Returns 1 none

dkhkkkhkhkkkkkkhkkhkk Ak Ak Ak Ahkkhkhkhhkkhkhkhhkhkkhhhkhhkkkhkhkhkhkhkrhhhhkbkhhrhhrhhhrhrhhrarrxrroddrdrrrrdrrrdradrhrdridhkdrdrrinx
*/

void PC_GetDateTime (char *s)

{

struct time now;
struct date today;

gettime (&now) ;
getdate (&today) ; -
sprintf(s, "$04d-%02d-%02d %02d:%02d:%02d",
today.da_year,
today.da_mon,
today.da_day,
now.ti_hour,
now.ti_min,
now.ti_sec);
¥
/*$PAGE*/

530 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued) PC.C

/*
o o o ke ok ok ke Fe ke Fd e ok ke ok e ok ke ke ke 9 e e 3 3 9 o 9 o e ok ok o o ok ok ok T ok ok ok ok i ok ok ok ok ok vk ok ok ok ok ok 9k i 9 9 9 9 9 3 i ok 9 i 9 9 i i o o o 9 o o o o ok o ok ok ok ok ok ok ok ok ke o
* CHECK 2ND GET KEYBOARD KEY
*
* Description: This function checks to see if a key has been pressed at the keyboard and returns TRUE if
* so. Also, if a key is pressed, the key is read and copied where the argument is pointing
* to.
*
* Arguments : C is a pointer to where the read key will be stored.
*
* Returns : TRUE if a key was pressed
* FALSE otherwise
AR A KK A KK KA K KKK AT AR KKK KKK KR KK kA A A A A A A A A A A A A A AR A A AR A A RKR KRR KA R AR AR A AR A AR KRR A A AT KAk A T A A A AT AR AAA AR Ahk Kk
*/
BOOLEAN PC_GetKey (INT16S *c)
{
if (kbhit()) { /* See if a key has been pressed */
c = (INT16S)getch(); / Get key pressed */
return (TRUE);
} else {
c = 0x00; / No key pressed */
return (FALSE);
}
}

/*SPAGE™/

Chapter 12: PC Services — 531

Listing 12.3 (continued) PC.C

/*

* AkAAFAAA FkkRx

* SET THE PC'S TICK FREQUENCY

* Description: This function is called to change the tick rate of a PC. =

* Arguments : freg is the desired frequency of the ticker (in Hz)

*

* Returns : none

*

* Notes : 1) The magic mmber 2386360 is actually twice the input frequency of the 8254 chip which
* is always 1.193180 MHz.

* 2) The equation camputes the counts needed to load into the 8254. The strange equation
* is actually used to round the number using integer aritlmetic. This is equivalent to
* the fleating point equation:

*

* 1193180.0 Hz

* count = -=~-s--—--—- + 0.5

* freq

e v ok ok ek ke ok ke ok *hkkk *k

by -

void PC_SetTickRate (INT16U freq)
{

INT16U count; -
if (freq == 18) {(/* See if we need to restore the DOS frequency */
count = 0;
} else if (freq > 0} (
/* Carmpute 8254 counts for desired frequency and ... */
/* ... round to nearest count */
count = (INT16U) ({(INT32U)2386360L / freq + 1) >> 1);
} else {
count = 0;

}
OS_ENTER_CRITICAL() ;)

outp(TICK TO_8254 CWR, TICK TO_8254 CTRO MODE3); /* Load the 8254 with desired freguency */
outp (TICK_T0_8254_CTRO, count & OxFF); /* Low byte */
outp (TICK TO 8254 CTRO, {count >> 8) & :OXFF); /* High byte */

OS_EXIT_CRITICAL() ;
}
/*$PAGE* /

532 — Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued) PC.C

/*
B R L R R L L T B R S b d L d E T T T e L Lt T T T T T e
* OBTAIN INTERRUPT VECTCR

*

* Description: This function reads the pointer stored at the specified vector.

*

* Arguments : vect is the desired interrupt vector rumber, a number between O and 255.

*

* Retwrns : The address of the Interrupt handler stored at the desired vector location.
kA A AR T Ak A A A A AT A A A A A A A A A A A A AR A A A A A A A A A AR A T AR A A A A A A A A A A A A A A A A A AT A AT A * A Ak dh Ak d A xhok
*/
void *PC_VectGet (INT8U vect)
{
INT16U *pvect;
INT16U off;
INT16U seg;
pvect = (INT16U *)}MK_FP{0x0000, vect * 4); /* Point into IVT at desired vector location */
OS_ENTER _CRITICAL() ; -
off = *pvect++; /* Obtain the vector's OFFSET */ N
seg = *pvect; /* Obtain the vector's SEGMENT */

OS_EXIT_CRITICAL();
return (MK _FP(seg, off));

/*
B R L R L Rl L E r e et L S L LR T S T T T
* INSTALI, INTERRUPT VECTOR

*

* Description: This function sets an interrupt vector in the interrupt vector table.
*

* Arguments : vect 1is the desired interrupt vector number, a number between 0 and 255.

* isr is a pointer to a function to execute when the interrupt or exception occurs.

* —_
* Retuns : none

KAk A A KA AT I kA h kI kAT Ak Kk dhhr A dF Ak hkhkhkhrddkhrhhkhdkrxrhxx * % * Kk * *hkkkk

*/

void PC VectSet (INT8U vect, void (*isr) (void))

{

INT16U *pvect;) _

pvect = (INT16U *)MK_FP(0x0000, vect * 4); /* Point into IVT at desired vector location */
OS_ENTER CRITICAL() ;

pvect++ = (INT16U)FP_OFF (isr); / Store ISR offset */
pvect = (INT16U}FP_SEG(isr); / Store ISR segment *x/

OS_EXIT_CRITICAL();

Chapter 12: PC Services — 533

Listing 12.4 PC.H

*
:*****it*****ttt***itttk**ii***i****iii*****i****i****ii*********ii***i********ii********t****t**********

* PC SUPEORT FUNCTICNS]
* N
* (c) Copyright 1992-1999, Jean J. Labrosse, Weston, FL)
* 211 Rights Reserved

* File : PC.H
* By : Jean J. Labrosse

e 3k 3k vk e 3k e e e 3k 3 3 e 3k ok e ke ke 3 3 o 3 ok ke ok o ok 3 ok o ok ok ok e o ko 3 ok ks 3 ok ok ok ko ek ok ke 3 o ok ok ke ke ok sk ok S ek ke ko ok

*/

/*

e 3 e o e e e o e % ok g g ok e o ok 9 ok e e 3 3 ok vk 9k g e ol 3k vk e sk vk 9 ok sk 9 3l ok o e ol 3 vk 9 s e 3 ok sk 9k ok 3 9 ok o ok g e e ok sk sk 3 3 ok e ko o v 3k ok e ok e i ok vk ok gk g o o o e o o ok ke ek
* CONSTANTS

* COLOR ATTRIBUTES FOR VGA MONITOR

*

* Description: These #defines are used in the PC Disp???() functions. The ‘color' argument in these

* function MUST specify a 'foreground' color, a 'background' and whether the display will

* blink or not. If you don't specify a background color, BLACK is assumed. You would -
* specify a color cavbination as follows: -
*

* PC_DispChar (0, 0, 'A‘', DISP_FGND_WHITE + DISP_BGND BLUE + DISP_BLINK);)
*

* To have the ASCII character 'A' blink with a white letter on a blue background.

dedr ko dkk gk ke k dk ok dr stk sk ko kb sk ki kst ok ko de ok ko ko ko k ek ko k ok k ok ko ko kk ok ko dk kdk ok ok ok k ok

*/

#define DISP_FGND BLACK 0x00

#define DISP_FGND BLUE 0x01

#define DISP_FGND_GREEN 0x02

#define DISP_FGND_CYAN 0x03

#define DISP_FGND_RED 0x04

#define DISP_FGND_PURPLE 0x05

#define DISP_FGND_BROWN 0x06

#define DISP_FGND _LIGHT GRAY 0x07 ~
#define DISP FGND_DARK GRAY 0x08

#define DISP_FGND_LIGHT BLUE 0x09

#define DISP_FGND_LIGHT GREEN 0x0A

#define DISP_FGND LIGHT_CYAN 0x0B

#define DISP_FGND LIGHT RED 0xQC -
#define DISP_FGND_LIGHT PURPLE 0x0D l 2 - -
#define DISP_FGND YELLOW 0x0E

#define DISP FGND WHITE 0x0F -
#define DISP BGND BIACK 0x00

#define DISP BGND BLUE 0x10

#define DISP_BED_GREEN 0x20

#define DISP_BGND CYAN 0x30

#define DISP_BGND RED 0x40

#define DISP_BGND_PURPLE 0x50

#define DISP_BGND BROWN 0x60

#define DISP_BGND_LIGHT. GRAY 0x70

#define DISP_BLINK 0x80

534 — Embedded Systems Building Blocks, Second Edition

Listing 12.4 (continued) PC.H

/*

LR e T T g s e T e s 2 T I L e T e T s T)

*

FUNCTION PROTOTYPES

LR L e e e e e e R L e T e eI e e e e e st seds

*/

void
void
void
void

void
void
void
void

INT16U

void
BOOLEAN

void

void
void

PC_DispChar (INT8U x, INT8U y, INT8U ¢, INT8U color);
PC_DispClrCol (INT8U x, INT8U bgnd color);
PC_DispClrRow (INT8U y, INT8U bgnd color);
PC_DispClrScr (INT8U bgnd_color) ;

PC_DispStr (INT8U x, INT8U y, INT8U *s, INT8U color);

PC_DOSReturn (void) ;
PC_DOSSaveReturn (void) ;

PC_ElapsedInit {void) ;
PC_ElapsedStart (void) ;
PC_ElapsedStop (void) ;

PC_GetDateTime(char *s);
PC_GetKey (INT16S *C);

PC_SetTickRate (INT16U freq);

*PC_VectGet (INT8U vect) ;

PC_VectSet (INT8U vect, void (*isr) (void));

Appendix A

uC/OS-II, The Real-Time Kernel

uC/OS-II is a portable, ROM-able, preemptive, real-time, multitasking kernel that can manage up to 63
tasks. pC/OS-II is comparable in performance to many commercially available kernels. nC/OS-II was
written in C with microprocessor-specific code written in assembly language. Assembly language was
kept to a minimum so that pC/OS-II can easily be ported to other target microprocessors.

Most modules presented in this book assume that services are provided by a real-time multitasking
kernel. Because of this, I have provided, in object form, a scaled down version of uC/OS-II, The
Real-Time Kernel v2.00 that will allow you to test all of the code in this book. In other words, only the
features needed to run the examples are provided.

The complete source code (along with:a port for the Intel 80x86, large model) for pC/OS-1I is avail-
able in my book: MicroC/OS-II, The Real-Time Kernel (ISBN 0-87930-543-6), also published by R&D
Books (See the ad in the back of this book.) The source code for pC/OS-II is available on a floppy dis-
kette (MS-DOS format) which is included with the book. Along with providing the source code for
pC/OS-10, the book describes the internals, explains how the kernel works, and allows you to port
pC/OS-1I to other microprocessors (if needed). You can also obtain port to many processors through the
official pC/OS and pC/OS-II web site at www.uCOS-II.com MC/OS-II provides the following fea-
tures:

* create and manage up to 63 tasks,
¢ create and manage a large number of semaphores,

* delay tasks for an integral number of ticks or a user-specified amount of time in hours, minutes, sec-
onds, and milliseconds,

¢ lock/unlock the scheduler,

* service interrupts,

» allows you to change the priority of tasks,

¢ lets you delete tasks,

» allows tasks to suspend and resume other tasks,

e manages a large number of message mailboxes and queues for intertask communications,

535

536 — Embedded Systems Building Blocks, Second Edition

» provides fixed-sized memory block management,
¢ manages a 32-bit system clock.

Even though Embedded Systems Building Blocks, Second Edition assumes the presence of nC/OS-11,
you can easily adapt the code in this book to any other real-time kernel as long as the kernel provides the
same services (most other kernels do). If you do not have a real-time kernel, you can easily modify
some of the code to work in a Foreground/Background environment.

The version of pC/OS-II in this book is provided in object form for the Intel 80x86 Large Model and
has been compiled with the Borland’s C++ v4.51. The compiler was instructed to generate code for any
Intel 80x86 which has hardware floating-point support. You can thus use the code on any PC having
either an Intel 80486, Pentium, Pentium-II, Pentium-III and processors from AMD which have float-
ing-point hardware. .

I configured nC/OS-II to limit the number of tasks to 15 and the number of semaphores to 10. You
will not be able to invoke either the queue or memory management feature of pC/OS-II because they
have been disabled in 0OS_CFG.H.

The object code for pC/OS-1 is found in the \ SOFTWARE\BLOCKS\ SAMPLE\OBJ directory in these
files: : ‘

uCOS_TII.ORJ UC/OS-II (compiled from the C source)

0S_CPU_C.OBJ 80x86 microprocessor specifics, large model with hardware floating-point
support(compiled from the C source)

0S_CPU_A.OBJ 80x86 microprocessor specifics (assembled from the ASM source)

‘. You will need to link these files with your application if you are planning on using this version of
pC/0S-H.

When you use nC/OS-II, you will need to include the following header files in your source code:

* (OS_CPU.H which is found in \SOFTWARE\UCOS-II\Ix86L~-FP\BCA5\SOURCE
* UCOS_II.H whichis foundin \SOFTWARE\uCOS-II\SOURCE.

You should note that OS_CPU.H must be listed first. Also, you cannot change any of the #defines
that are provided in these files. If you do, your application may not work properly. The only way to
change the #defines is to obtain the full source code for pC/OS-II (see forementioned ad).

Iincluded a pC/OS-H mini-reference section which contains only the functions used in this book.

Appendix A: uC/OS-1I, The Real-Time Kernel — 537

OSInit()

void OSInit(void):

0SInit () is used to initialize pC/OS-II. OSInit () must be called prior to calling OSStart () which
will actually start multitasking.

Arguments

None

Return Value

None

Notes/Warnings

0SInit () must be called before OSStart ().
Example

void main (void)
{

OSInit(); /* Initialize uC/0S-ITI */

osStart(); /* Start Multitasking */

538 — Embedded Systems Building Blocks, Second Edition

OSSemCreate ()

OS_EVENT *0OSSemCreate (WORD value);

OSSemCreate () is used to create and initialize a ssmaphore. A semaphore is used to:
1. Allow a task to synchronize with either an ISR or a task
2. Gain exclusive access to a resource

3. Signal the occurrence of an event

Arguments

value is the imtial value of the semaphore. The initial value of the semaphore is allowed to be
between 0 and 65535.

Return Value

A pointer to the event control block allocated to the semaphore. If no event control block is available,
OSSemCreate () will return a NULL pointer.

Notes/Warnings

Semaphores must be created before they are used.

Example

Appendix A: uC/OS-1I, The Real-Time Kernel — 539

OSSemPend ()

void OSSemPend(OS _EVENT *pevent, INT16U timeout, INT8U *err);

OSSemPend () is used when a task desires to get exclusive access to a resource, synchronize its activi-
ties with an ISR, a task, or until an event occurs. If a task calls OSSemPend () and the value of the
semaphore is greater than 0, then OSSemPend () will decrement the semaphore and return to its caller.
However, if the value of the semaphore is equal to zero, OSSemPend () places the calling task in the
waiting list for the semaphore. The task will thus wait until a task or an ISR signals the semaphore or,
the specified timeout expires. If the semaphore is signaled before the timeout expires, pC/OS-II will
resume the highest priority task that is waiting for the semaphore. A pended task that has been sus-
pended with OSTaskSuspend () can obtain the semaphore. The task will, however, remain suspended
until the task is resumed by calling OSTaskResume ().

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created (see OSSemCreate () on page 538).

timeout is used to allow the task to resume execution if a message is not received from the mailbox
within the specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait
forever for the message. The maximum timeout is 65535 clock ticks. The timeout value is not syn-
chronized with the clock tick. The timeout count starts being decremented on the next clock tick which
could potentially occur immediately.

err is a pointer to a variable which will be used to hold an error code. OSSemPend () sets *err to
either:

1. OS_NO_ERR, the semaphore is available

2. OS_TIMEOUT, the semaphore was not signaled within the specified timeout

3. OS_ERR_PEND_ISR, you called this function from an ISR and pC/OS-II would have to suspend the
ISR. In general, you should not call OSMboxPend (). uC/OS-II checks for this situation in case you
do anyway.

Return Value

None

Notes/Warnings

Semaphores must be created before they are used.

540 — Embedded Systems Building Blocks, Second Edition

Example

OS_EVENT *DispSem;

void DispTask(void *pdata)
{
INT8U err;

pdata = pdata:
for (;;) {

0OssemPend (DispSem, 0, &err);
/* The only way this task continues is if .. */
/* . the semaphore is signaled! */

Appendix A: uC/OS-11I, The Real-Time Kernel — 541

OSSemPost ()

INT8U OSSemPost (OS_EVENT *pevent);

A semaphore is signaled by calling OSSemPost (). If the semaphore value is greater than or equal to
zero, the semaphore is incremented and OSSemPost () returns to its caller. If tasks are waiting for the
semaphore to be signaled then, OSSemPost () removes the highest priority task pending (waiting) for
the semaphore from the waiting list and makes this task ready to run. The scheduler is then called to
determine if the awakened task is now the highest priority task ready to run.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created (see OSSemCreate () on page 538).

Return Value

OSSemPost () returns one of these two error codes:

1. OS_NO_ERR, if the semaphore was successfully signaled
2. 0OS_SEM_OVF, if the semaphore count overflowed
Notes/Warnings

Semaphores must be created before they are used.

542 — Embedded Systems Building Blocks, Second Edition

Example

OS_EVENT *DispSem;

void TaskX(void *pdata)

{
INT8U err;
pdata = pdata;
for (;;) {

err = 0OSSemPost (DispSem) ;
if (err == OS_NO_ERR) { B
/* Semaphore signaled */)

} else {
/* Semaphore has overflowed */

Appendix A: uC/0S-Hl, The Real-Time Kernel — 543

osStart ()

void OSStart (void);

OSStart () is used to start multitasking under nC/OS-I1.

Arguments

None

Return Value

None

Notes/Warnings

OSInit () must be called prior to calling OSStart (). 0SStart() should only called once by your
application code. If you do call OSStart () more than once, OSStart () will not do anything on the
second and subsequent calls.

Example

void main{void)

{

/* User Code */
OSInit(); /* Initialize pC/08-II */
/* User Code */

OsStart () ; /* Start Multitasking */

544 — Embedded Systems Building Blocks, Second Edition

OSStatInit()

void OSStatInit(void);

OSStatInit () is used to have pC/OS-II determine the maximum value that a 32-bit counter can reach
when no other task is executing. This function must be called when there is only one task created in
your application and, when multitasking has started. In other words, this function must be called from
the first, and only created task.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void FirstAndOnlyTask {(void *pdata)
{

0SStatInit(); /* Compute CPU capacity with no task running */
OSTaskCreate(.) ; /* Create the other tasks */
OSTaskCreate(..);

for (;:) {

Appendix A: uC/OS-II, The Real-Time Kernel — 545

OSTaskCreate ()

INTBU OSTaskCreate(void (*task)(void *pd), void *pdata, O0S_STK *ptos, INT8U prio);

OSTaskCreate () allows an application to create a task so it can be managed by pC/OS-1I. Tasks can
either be created prior to the start of multitasking or by a running task. A task cannot be created by an
ISR. A task must be written as an infinite loop as shown in the example below and, must not return.
OSTaskCreate() is used for backward compatibility with pC/OS and when the added features of
OSTaskCreateExt () are not needed.
Depending on how the stack frame was built, your task will either have interrupts enabled or dis-
abled. You will need to check with the processor specific code for details.

Arguments

task is a pointer to the task’s code.

pdata is a pointer to an optional data area which can be used to pass parameters to the task when it is
created. Where the task is concerned, it thinks it was invoked and passed the argument pdata as fol-
lows: :

void Task (void *pdata)
{

/* Do something with 'pdata’ */

for (;;) { /* Task body, always an infinite loop. */
/* Must call one of the following services: */
/* OSMboxPend () */
/* 0SQPend () */
/* 0SSemPend () */
/* OSTimeDly () */
/* OSTimeD]lyHMSM () */
/* OSTaskSuspend () (Suspend self) */
/* OSTaskDel () (Delete self) */

ptos is a pointer to the task’s top of stack. The stack is used to store local variables, function parame-
ters, return addresses, and CPU registers during an interrupt. The size of the stack is determined by the
task’s requirements and, the anticipated interrupt nesting. Determining the size of the stack involves
knowing how many bytes are required for storage of local variables for the task itself, all nested func-
tions, as well as requirements for interrupts (accounting for nesting). If the configuration constant
OS_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e., from high memory to low

546 — Embedded Systems Building Blocks, Second Edition

memory). ptos will thus need to point to the highest valid memory location on the stack. If
OS_STK_GROWTH is set to 0, the stack is assumed to grow in the opposite direction (i.e., from low mem-
ory to high memory).

prio is the task priority. A unique priority number must be assigned to each task and the lower the
number, the higher the priority.

Return Value

OSTaskCreate () returns one of the following error codes:
1. OS_NO_ERR, if the function was successful
2. OS_PRIO_EXIST, if the requested priority already exist

Notes/Warnings

The stack must be declared with the OS_STK type.

A task must always invoke one of the services provided by pC/OS-1I to either wait for time to expire,
suspend the task or, wait an event to occur (wait on a mailbox, queue, or semaphore). This will allow
other tasks to gain control of the CPU. -

You should not use task priorities 0, 1, 2, 3 and OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1 and OS_LOWEST_PRTIO because they are reserved for pC/OS-II’s use. This thus S
leaves you with up to 56 application tasks.

Example

This examples shows that the argument that Task1 () will receive is not used and thus, the pointer
pdata is set to NULL. Note that I assumed that the stack grows from high memory to low memory
because I passed the address of the highest valid memory location of the stack Task1Stk({]. If the
stack grows in the opposite direction for the processor you are using, you will need to pass
Task1Stk[0] as the task’s top-of-stack.

e

Appendix A: uC/OS-II, The Real-Time Kernel — 547

OS_STK *Tasklstk[1024];
INT8U TasklData;

void main(void)

{
INT8U err;
0OSInit(); /* Initialize pC/0S-IT */
OSTaskCreate(Taskl,
(void *)&TasklData,
&Task1Stk([1023],
25);
OSStart(); /* Start Multitasking */
) w —

void Taskl (void *pdata)

{
pdata = pdata;
for (;;) {
/* Task code */
}

548 — Embedded Systems Building Blocks, Second Edition

OSTaskCreateExt ()

INT8U OSTaskCreateExt (void (*task) (void *pd), void *pdata, OS_STK *ptos, INT8U prio,
INT16U id, OS_STK *pbos, INT32U stk size, void *pext, INT16U opt);

OSTaskCreateExt () allows an application to create a task so it can be managed by nC/OS-IL. This
function serves the same purpose as OSTaskCreate () except that it allows you to specify additional
information about your task to pC/OS-II. Tasks can either be created prior to the start of multitasking or
by a running task. A task cannot be created by an ISR. A task must be written as an infinite loop as
shown in the example code below and, must not return. Depending on how the stack frame was built,
your task will either have interrupts enabled or disabled. You will need to check with the processor spe-
cific code for details. You should note that the first four arguments are exactly the same as the ones for
OSTaskCreate (). This was done to simplify the migration to this new, and more powerful function.

Arguments

task is a pointer to the task’s code.

pdata is a pointer to an optional data area which can be used to pass parameters to the task when it is
created. Where the task is concerned, it thinks it was invoked and passed the argument pdata as fol-
lows:

void Task (void *pdata)

{

/* Do something with ‘'pdata’ */

for (;;) { /* Task body, always an infinite loop. */
/* Must call one of the following services: */

/* OSMboxPend () */

/* 0OsSQPend () */

/* OSSemPend () */

/* OSTimeDly () */

/* OSTimeDlyHMSM () */

/* OSTaskSuspend () (Suspend self) */

/* OSTaskDel () (Delete self) */

ptos is a pointer to the task’s top of stack. The stack is used to store local variables, function parame-
ters, return addresses, and CPU registers during an interrupt. The size of this stack is determined by
the task’s requirements, and the anticipated interrupt nesting. Determining the size of the stack
involves knowing how many bytes are required for storage of local variables for the task itself, all

Appendix A: uC/OS-1I, The Real-Time Kernel — 549

nested functions, as well as requirements for interrupts (accounting for nesting). If the configuration
constant OS_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e., from high memory
to low memory). ptos will thus need to point to the highest valid memory location on the stack. If
0OS_STK_GROWTH is set to 0, the stack is assumed to grow in the opposite direction (i.e., from low
memory to high memory).

prio is the task priority. A unique priority number must be assigned to each task and the lower the
number, the higher the priority (i.e., the importance) of the task.

id is the task’s ID number. At this time, the ID is not currently used in any other function and has sim-
ply been added in OSTaskCreateExt () for future expansion. You should set the id to the same value
as the task’s priority.

pbos is a pointer to the task’s bottom of stack. If the configuration constant 0S_STK_GROWTH is set to
1, the stack is assumed to grow downward (i.e., from high memory to low memory) and thus, pbos
must point to the lowest valid stack location. If OS_STK_GROWTH is set to 0, the stack is assumed to
grow in the opposite direction (i.e., from low memory to high memory) and thus, plbos must point to the
highest valid stack location. pbos is used by the stack checking function 0STaskStkChk ().

stk_size is used to specify the size of the task’s stack (in number of elements). If OS_STK is set to
INT8U, then stk_size corresponds to the number of bytes available on the stack. If OS_STK is set to
INT16U, then stk_size contains the number of 16-bit entries available on the stack. Finally, if
OS_STK is set to INT32U, then stk_size contains the number of 32-bit entries available on the stack.

pext is a pointer to a user supplied memory location (typically a data structure) which is used as a TCB
extension. For example, this user memory can hold the contents of floating-point registers during a con-
text switch, the time each task takes to execute, the number of times the task is switched-in, etc.

opt contains task specific options. The lower 8 bits are reserved by pC/OS-II but you can use the upper
8 bits for application specific options. Each option consist of a bit. The option is selected when the bit
is set. The current version of pC/OS-II supports the following options:

* OS_TASK_OPT STK_CHK specifies whether stack checking is allowed for the task.
* OS_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.

* OS_TASK_OPT SAVE_FP specifies whether floating-point registers will be saved.
You should refer to uCOS_1I1I.H for other options, i.e., OS_TASK_OPT_??7?.

Return Value

OSTaskCreateExt () returns one of the following error codes:
1. OS_NO_ERR, if the function was successful
2. OS_PRIO_EXIST, if the requested priority already exist

Notes/Warnings

The stack must be declared with the OS_STK type.

A task must always invoke one of the services provided by pC/OS-II to either wait for time to expire,
suspend the task or, wait an event to occur (wait on a mailbox, queue, or semaphore). This will allow
other tasks to gain control of the CPU.

-
I
I

550 — Embedded Systems Building Blocks, Second Edition

You should not use task priorities 0, 1, 2, 3 and OS_LOWEST PRIO-3, OS_LOWEST PRIO-2,
OS_LOWEST_PRIO-1 and OS_LOWEST_PRIO because they are reserved for pC/OS-II's use. This thus
leaves you with up to 56 application tasks.

Example

The task control block is extended (1) using a ‘user defined’ data structure called TASK_USER_DATA (2)
which, in this case, contains the name of the task as well as other fields. The task name is initialized
with the strcpy () standard library function (3). Note that stack checking has been enabled (4) for this
task and thus, you are allowed to call 0OSTaskStkChk (). Also, we assume here that the stack grown
downward (5) on the processor used (i.e., OS_STK_GROWTH is set to 1). TOS stands for “Top-Of-Stack’
and BOS stands for ‘Bottom-Of-Stack’.

typedef struct { /* (2) User defined data structure */
char TaskNare [20] ;
INT16U TaskCtr;
INT16U TaskExecTime;
INT32U TaskTotExecTime;
} TASK_USER_DATA;

0OS_STK *TaskStk[1024] ;

TASK_USER_DATA TaskUserData;

void main(void)
{

INT8U err;
0SInit(); /* Initialize uC/0S-1I */
strcpy (TaskUserData.TaskName, "MyTaskName"); /* (3) Name of task */
err = OSTaskCreateExt (Task, B
(void *)0,
&TaskStk([1023], /* (5) Stack grows down (TOS) */
10,
10,
&TaskStk[0], /* (5) Stack grows down (BOS) */
1024,
(void *)&TaskUserData, /* (1) TCR Extension */
OS_TASK_OPT_STK_CHK) ; /* (4) Stack checking enabled */

OSStart () ; /* Start Multitasking */

Appendix A: uC/OS-II, The Real-Time Kernel — 551

void Task(void *pdata)

{
pdata = pdata; /* Avoid compiler warning */
for (::) { ‘
/* Task code . Y
}

552 — Embedded Systems Building Blocks, Second Edition

OSTimeDly ()

void OSTimeDly (INT16U ticks);

OSTimeDly () allows a tasi to delay itself for a number of clock ticks. Rescheduling always occurs
when the number of clock ticks is greater than zero. Valid delays range from 0 to 65535 ticks. A delay
of 0 means that the task will not be delayed and OSTimeDly () will return immediately to the caller.
The actual delay time depends on the tick rate (see OS_TICKS_PER_SEC in the configuration file
0S_CFG.H).

Arguments

ticks is the number of clock ticks to delay the current task.

Return Value

None

Notes/Warnings

Note that calling this function with a delay of 0 results in no delay and thus the function returns imme-
diately to the caller. To ensure that a task delays for the specified number of ticks, you should consider
using a delay value that is one tick higher. For example, to delay a task for at least 10 ticks, you should
specify a value of 11.

Example

voild TaskX (void *pdata)
{
for (;;) {

OSTimeDly (10) ; /* Delay task for 10 clock ticks */

Appendix A: uC/OS-II, The Real-Time Kernel — 553

OSTimeD1yHMSM()

void OSTimeDlyHMSM(INT8U hours, INTS8U minutes, INT8U seconds, INTS8U milli);

OSTimeD1yHMSM() allows a task to delay itself for a user-specified amount of time specified in hours,
minutes, seconds, and milliseconds. This is a more convenient and natural format than ticks. Resched-
uling always occurs when at least one of the parameters is non-zero.

Arguments

hours is the number of hours that the task will be delayed. The valid range of values is from 0 to 255
hours.

minutes is the number of minutes that the task will be delayed. The valid range of values is from O to
59.

seconds is the number of seconds that the task will be delayed. The valid range of values is from O to
59.

milli is the number of milliseconds that the task will be delayed. The valid range of values is from 0
to 999. Note that the resolution of this argument is in multiples of the tick rate. For instance, if the tick
rate is set to 10 mS then a delay of 5 mS would result in no delay. The delay is actually rounded to the
nearest tick. Thus, a delay of 15 mS would actually result in a delay of 20 mS.

Return Value

OSTimeD1yHMSM () returns one of the following error codes:

1. OS_NO_ERR, if you specified valid arguments and the call was successful.
2. OS_TIME_INVALID_MINUTES, if the minutes argument is greater than 59.
3. OS_TIME_INVALID SECONDS, if the seconds argument is greater than 59.
4. OS_TIME_TINVALID_MS, if the milliseconds argument is greater than 999.
5. OS_TIME_ZERO_DLY, if all four arguments are 0.

Notes/Warnings

Note that calling this function with a delay of 0 hours, O minutes, 0 seconds, and 0 milliseconds results
in no delay and thus the function returns immediately to the caller. Also, if the total delay time ends up
being larger than 65535 clock ticks then, you will not be able to abort the delay and resume the task by
calling OSTimeDlyResume ().

554 — Embedded Systems Building Blocks, Second Edition

Example

void TagkX(void *pdata)

{
for (;:) {

OSTimeDlyHMSM(0, 0, 1, 0); /* Delay task for 1 second */

Appendix A: uC/OS-II, The Real-Time Kernel — 555

OSVersion()

INT16U OSVersion(void);

OSVersion () is used to obtain the current version of pC/OS-II.

Arguments

None

Return Value

The version is returned as x . yy multiplied by 100. In other words, version 2.00 is returned as 200.

Notes/Warnings

None

Example

void TaskX(void *pdata)
{
INT16U os_version;

for (;;) {

os_version = OSVersion(); /* Obtain uC/0S-II's version */

556 — Embedded Systems Building Blocks, Second Edition

OS_ENTER CRITICAL() and
OS _EXIT CRITICAL()

OS_ENTER_CRITICAL() and OS_EXIT CRITICAL() are macros which are used to disable and -
enable the processor’s interrupts, respectively.

Arguments

None

Return Value

None

Notes/Warnings

These macros must be used in pair.
Example S

INT32U Val;

void TaskX(void *pdata)

{

for (;;) {
OS_ENTER_CRITICAL(); /* Disable interrupts */
/* Access critical code *x/ _

OS_EXIT CRITICAL(); /* Enable interrupts */

Appendix A: uC/OS-II, The Real-Time Kernel — 557

ListingA.1 OS CPU.H

/*

KKk hF Ak kA A Ak kR k kA Ak kh Ak ok odkkdx ook Kk o+ K HHKKK I IRARIATRIAKN KRR RN A A K kIR Ik hhk A A xh ok h Rk kx

* uC/0s-II -
* The Real-Time Kernel B
*

* (c) Copyright 1992-1999, Jean J. Labrosse, Weston, FL

* All Rights Reserved

*

* 80x86/80x88 Specific code

* LARGE MEMORY MODEL

*

* Borland C/C++ V4.51

*

* File : OS_CPU.H

* By : Jean J. Labrosse

* Port Version : V1.00

E T T T T T e

*/

#ifdef OS_CPU_GLOBALS

#define OS_CPU_EXT

#else .
#define OS_CPU_EXT extern —
#endif

/*

L2222 RSt s st s st R s st Rt s TRt
* DATA TYPES

* (Campiler Specific)

E e L L S A T)

*/

typedef unsigned char BOOLEAN;

typedef unsigned char INT8U; /* Unsigned 8 bit quantity */

typedef signed c¢har INTSS; /* Signed 8 bit quantity */ N
typedef unsigned int INT16U; /* Unsigned 16 bit quantity */

typedef signed int INT16S; /* Signed 16 bit quantity */

typedef unsigned long INT32U; /* Unsigned 32 bit quantity */

typedef signed long INT32S; /* Signed 32 bit quantity */

typedef float FP32; /* Single precision floating point */

typedef double FP64; /* Double precision floating point */ T
typedef unsigned int 0OS_STK; /* Each stack entry is 16-bit wide */

#define BYTE INT8S /* Define data types for backward campatibility ... */ A
#define UBYTE INT8U /* ... to uC/0S V1.xx. Not actually needed for ... */

#define WORD INT16S /* ... uC/0S-1I. */

#define UWORD INT16U

#idefine LONG INT32S

#define ULONG INT32U

558 — Embedded Systems Building Blocks, Second Edition

Listing A.1 (continued) 0S CPU.H

/i

e e e 7k 7 ok ok b ok ok 2 gk ok ok ok ok ok ok sk ok 3k ok ok ok ok ok ok ok ok e ok sk sk ok kT 7 b ok vk ok o gk ok ok e o ok ok ke ok ok ke ok o ke ok ok ke ok e ok ke vl ok o ke ok ke ok ke vl ok ok ok o ok ok ke ok ok gk ok ok ok e ok ok ok ok ok ok ok ke ek ok
* Intel 80x86 (Real-Mode, Large Model)

*

* Method #1: Disable/Enable interrupts using simple instructions. After critical section, interrupts

* will be enabled even if they were disabled before entering the critical section. You MUST
* change the constant in OS_CPU A.ASM, function OSIntCtxSw()} fram 10 to 8.

*

* Method #2: Disable/Enable interrupts by preserving the state of intexrrupts. In other words, if

* interrupts were disabled before entering the critical section, they will be disabled when

* leaving the critical section. You MUST change the constant in OS_CPU_A.ASM, function

* OSIntCtxSw() frem 8 to 10.

AAA A A A A AR AR RA A AA A A A AL A AL A A A AR A AL A A A AR AT A A A A AAA AR AR A A A A A AR A A h kK o e e e ok vk ek
*/

#define OS _CRITICAL METHOD 2

#if OS_CRITICAL METHOD == 1

#define OS_ENTER CRITICAL() asm CLI /* Disable interrupts */

#define OS_EXIT CRITICAL() asm STI /* Enable interrupts */

#endif -
#if OS_CRITICAL METHOD == 7
#define OS_ENTER CRITICAL() asm {PUSHF; CLI} /* Disable interrupts */ -
#define OS_EXIT CRITICAL() asm POPF /* Enable interrupts */

#endif

/i

AR A AR A A A A A AR A A A A AL AR A A A A A A A A AR AT A AL LA AR A A A AR A A A A AR A A A A A AR AR A A A A A AR AR A A A A A AR AAA AN A AR AR A A h ok kk ok d

* Intel 80x86 (Real-Mode, Large Model) Miscellaneous

B L R R L s e e S s s s s e R T

*/

#define OS_STK_GROWTH 1 /* Stack grows fram HIGH to LOW memory on 80x86 */

#define uC0S 0x80 /* Interrupt vector # used for context switch */ -
#define OS_TASK SW() asm INT uCOS

/*

A A AR AR A A A A A A A AL IR T A A A KA AR AL AR A A KA A A A A A AR A AR AR A A A A A AR A AR A A AR AR A A A AR A AR A A h ko kk Ak hkkkkk kkkhkkk

* GLOBAL VARIABLES -

e s e e e e R s T e e e s S 2

*/

OS_CPU_EXT 1INT8U OSTickDOSCtr; /* Counter used to invoke DOS's tick handler every 'n' ticks */
/*

KAEKAAAAA A A A A A A A AR A A AR A AA A AA A A A A A AL AR AR A A A AL A A AR A A A kA h kA kA A A hdhdh ok h bk hhhhhhkdkhrrkhhkhhhkhrtkhhhhk kit
* FUNCTION PROTCTYPES

*k ThAAAL AAAAAKAAAREL LA A AAAAAA AR A A A AAAA AL A AN A AL AR A AR AL AL A A AR A Ak hhkhkhkhkh Rk
*/

void OSFPInit(void);
void OSFPRestore(void *pblk);
void OSFPSave(void *pblk);

Appendix A: uC/0S-II, The Real-Time Kernel — 559

Listing A.2 uCos II.H

/*

ek drkdrdrdrk ek ok kA ik kA kA A AR A AR A A AR A A A A A A A A A A A A AR AR A AR A A Ak A A AR A ARk h kA A A A A Ak ARk kA hhkdkk Xk ddrdd
* uc/08-II

* The Real-Time Kernel

*

* (c} Copyright 1999, Jean J. Labrosse, Weston, FL

* All Rights Resexrved

*

* File : uCOS_II.H
* By : Jean J. Labrosse

L R L L g T e 2 22

*/

/*SPAGE*/

560 — Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

uCos II.H

Vad

R L T L T T T 2 L)

*

MISCELLANECUS

ke e de g e gk dee e e e g K O or ok o R ke ke kR e kA e r Ak Kk R o kK ok ok ko kK ko Kk ok kA

*/

#define

#ifdef
#define
#else
#define
#endif

#define

#if
#define
#else
#define
#endif

#define
#define

#define
#define

#define
#define

#define
#define
#define
#define
#define

#define
#define
#define

#define
#define
#define

#ifndef
#define
#endif

#ifndef
#define
#endif

OS_VERSION 200

QS_GLOBALS
OS_EXT

OS_EXT extern

OS_PRIO_SELF OxXFF

OS_TASK_STAT_EN

/*

/*

Version of uC/0S-II (Vx.yy multiplied by 100)

Indicate SELF priority

0S_N_SYS TASKS 2 /* Number of system tasks
OS_N_SYS_TASKS 1

OS_STAT PRIO (OS_LOWEST _PRIO - 1) /* Statistic task priority
OS_IDLE PRIO (OS_LOWEST_PRIO) /* IDLE task priority

OS_EVENT_TBL_SIZE ((OS_LCOWEST PRIO) / 8 + 1) /* Size of event table -
OS_RDY_TBI, SIZE ((OS_LOWEST PRIO) / 8 + 1) /* Size of ready table

QOS_TASK_IDLE_ID 65535
OS_TASK_STAT_ID 65534
OS_STAT RDY 0x00
OS_STAT_SEM 0x01
OS_STAT_MBOX 0x02
OS_STAT Q 0x04
OS_STAT_SUSPEND 0x08
OS_EVENT._TYPE, MBOX 1
OS_EVENT_TYPE_Q 2
OS_EVENT_TYPE,_SEM 3

OS_TASK_OPT STK_CHK 0x0001
OS_TASK_OPT_STK_CLR 0x0002
OS_TASK_OPT_SAVE FP (0x0004

FALSE

FALSE 0
TRUE

TRUE 1

/*

/*
/*
/*
/*
/*

Vad
/*
/*

I.D. numbers for Idle and Stat tasks

TASK STATUS (Bit definition for OSTCBStat)
Ready to run

Pending on semaphore

Pending on mailbox

Pending orl queue

Task is suspended

TASK OPTIONS (see OSTaskCreateExt())

Enable stack checking for the task

Clear the stack when the task is create

Save the contents of any floating-point registers

*/

*/

*/

*/
*/

*/
*/

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/
*/

Appendix A: uC/OS-II, The Real-Time Kernel — 561

Listing A.2 (continued) uCOS II.H

/*
* * * kR kA Kk Rk N Rk AR A A A A AR R R AR A R kA A AR R A A kA AT Ak dh ok k kA kA rh ke kdk ok kkdkkk
* ERRCR CCDES
* % kkAkkkhkkx * kK * kK * K KA A A A ARk A A ARk A AR A A h Ak kA Ak kA kA hd ok krddd ko kkkdokk ko kk %k

*/

#define OS_NO_ERR 0

#define OS_ERR _EVENT TYPE 1

#define OS_ERR_PEND ISR 2

f#idefine OS_TIMEOUT 10

#define OS_TASK NOT_EXIST 11

#define OS_MBOX_FULL 20

#define OS_Q FULL 30

#define OS_PRIO_EXIST 40

#define OS_PRIO ERR 41

#define OS_PRIQ_INVALID 42

#define OS_SEM OVF 50

#define O3S TASK DEIL, ERR 60

#define OS_TASK_DEL_IDLE 61

#define OS_TASK_DEL_REQ 62

#define OS_TASK DEL ISR 63

#define OS_NO_MORE_TCB 70

#define 0S8 TIME NOT DLY 80

#define OS_TIME INVALID MINUTES 81
#define OS_TIME INVALID SECONDS 82
#define OS_TIME INVALID MILLI 83

#define OS_TIME_ZERO DLY 84
#define OS_TASK SUSPEND_PRIO 90
#define OS_TASK_SUSPEND_IDLE 91
#define 0S_TASK RESUME_PRIO 100

#define OS_TASK NOT_SUSPENDED 101

#define OS_MEM_INVALID_PART 110
#define OS_MEM INVALID_BLKS 111

#define OS_MEM_INVALID SIZE 112
#define OS_MEM NO_FREE BLKS 113
#define 0OS_MEM FULL 114
#define OS_TASK OPT ERR 130

/*SPAGE*/

562 — Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued) uCOS II.H

Vad

e Kok kAR Kok KAk Rk KRk KK Aok R Ak KRR AR Kok Aok ok R A R Rk R K e Aok Aok KR ok Kok R R kR Rk Rk ke
* EVENT CONTROL BLOCK

* * L L LRt R e e R R et R L LRt STy
*/

#if (OS_MAX_EVENTS »>= 2)

typedef struct {
void *OSEventPtr; /* Pointer to message or queue structure */
INTS8U OSEventTbl [OS_EVENT TBL_SIZE); /* List of tasks waiting for event to occur */
INT16U OSEventCnt; /* Count of used when event is a semaphore */
INT8U OSEventType; /* OS_EVENT_TYPE MBOX, OS_EVENT TYPE Q or OS_EVENT TYPE SEM */
INT8U OSEventGrp; /* Group corresponding to tasks waiting for event to occur */

} OS_EVENT;

#endif

/*$PAGE*/

/*

hkkkkhkkhkikkkkkhkhkkkkkk * * kkkkkik *hkk * ,k ok

* MESSAGE MATLBOX DATA

*hkkk ke okeok ok ok ok ok hokokokokokk kkokokok ok * ok kK kX * ok ok dk ok ok ok

*/

#if OS_MBOX EN

typedef struct {
void *O8Msg; /* Pointer to message in mailbox */
INT8U OSEventTbl[OS_EVENT TBL_SIZE]; /* List of tasks waiting for event to occur */
INT8U OSEventGrp; /* Group corresponding to tasks waiting for event to occur */

} OS_MBOX DATA;

#endif

/*

* MEMORY PARTITION DATA STRUCTURES

kkokkkk * * hkkkkk dokkokkkk *k

*/

#if OS MEM EN && (0OS MAX MEM PART >= 2)

typedef struct { /* MEMORY CONTROL BLOCK */
void *OSMemAddr; /* Pointer to beginning of memory partition */
void *OSMemFreelist; /* Pointer to list of free memory blocks */
INT32U OSMemBlkSize; /* Size (in bytes) of each block of memory */
INT32U QOSMemNBlks; /* Total number of blocks in this partition */
INT32U OSMemnFree; /* Nurber of memory blocks remaining in this partition */

} OS_MEM;

typedef struct {
void *OSAddr; /* Pointer to the begimning address of the memory partition */
void *OSFreelist; ‘ /* Pointer to the beginning of the free list of meamory blocks */
INT32U OSBlkSize; /* Size (in bytes) of each memory block */
INT32U OSNBlks; /* Total number of blocks in the partition */
INT32U OSNFree; /* 'Number of memory blocks free */
INT32U OSNUsed; /* Number of memory blocks used */

} OS_MEM DATA;

#endif

/*$PAGE*/

Appendix A: uC/0S-II, The Real-Time Kernel — 563

Listing A.2 (continued) uCOS II.H

/*
ok okk &k ok ok ok Yok ok ke ke ke ek Kk Kok ke ok ke ok ok ok okokok ok *
* MESSAGE QUEUE DATA
ke ok ok ke ok ke ke ok ok ek kkk kokokok ok ik ok
*/
#if 0S Q EN
typedef struct {
void *OSMsg; /* Pointer to next message to be extracted from queue *x/
INT16U OSNMsgs; /* Number of messages in message queue */
INT16U OSQSize; /* Size of message queue */
INT8U OSEventTbl {OS_EVENT_TBL_SIZE]; /* List of tasks waiting for event to occur */
INT8U OSEventGrp; /* Group corresponding to tasks waiting for event to occur */
} OS_Q DATA;
#endif
/*
kdkhkkhkhkk XXXk AKXK Tk Ik %k k ke ok ok ok ok ok ok ok ek ke
* SEMAPHORE DATA
ke okk kkkkkkk kkdkkdkkkk kkk ok ok Kk ke ok ok ke ok kok ok ok ok ok ok kok %k
*/
#if OS_SFM_EN
typedef struct {
INT16U OSCnt; /* Semaphore count */
INT8U OSEventTbl [OS_EVENT _TBL, SIZE]; /* List of tasks waiting for event to occur */
INT8U OSEventGrp; /* Group corresponding to tasks waiting for event to occur */
} OS_SEM DATA;
#endif
/*
9 7 70 30 90 9 30 % o AR e ek K ek ok ke ok ok ok ok ke ok ok ek ok ok ok ok ok * *kk & dok ok ok ke
* TASK STACK DATA
o ok ke ke do ok kokok ok Kok dedededdok deok dek ok ok ok *okkokok &k ok ok Fodokok ok
*/
#if OS_TASK CREATE_EXT EN
typedef struct {
INT32U OSFree; /* Number of free bytes on the stack */
INT32U OSUsed; /* Number of bytes used on the stack */
} OS_STK DATA;
#endif

/*SPAGE*/

564 — Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

uCos_II.H

/*

*

TASK CONTROL BLOCK

L T e T e L

*/

typedef struct os_tcb {
0OS_STK *OSTCBStkPtr;

#if OS_TASK CREATE EXT EN

void *OSTCBEXtPLr;
0OS_STK *OSTCBStkBottam;
INT32U OSTCBStkSize;
INT16U OSTCBOpt;
INT16U OSTCBId;

#endif

struct os_tcb *OSTCENext;
struct os_tcb *OSTCBPrev;

#if (0S_Q EN && (0S MAX QS >= 2))
OS_EVENT *OSTCBEventPtr;
#endif

#if (0S_Q EN && (OS_MAX QS >= 2))

void *OSTCEMsg;
$endif
INT16U OSTCBDly;
INT8U OSTCBStat;
INTSU OSTCBPrio;
INTSU OSTCEX;
INTSU OSTCBY;
INTSU OSTCBBitX;
INTSU OSTCBBitY;
#if OS_TASK_DEL_EN
BOOLEAN OSTCEDelReq;
#endif
} OS_TCB;

/*SPAGE*/

L e T s L s 2

ok ke kR kR ok ok kR kdok k ok ok *dk kK dkk ek *

Pointer to current top of stack

Pointer to user definable data for TCB extension
Pointer to bottam of stack

Size of task stack (in number of stack elements)
Task options as passed by OSTaskCreateExt ()

Task ID (0..65535)

/*
/*
/*

*

/

/* Pointer to next TCB in the TCB list
/* Pointer to previous TCB in the TCB list

[l OS_MBOX EN |1 OS_SEM EN
/* Pointer to event control block

11 OS_MBOX_EN
/* Message received fram OSMooxPost () or OSQPost{)

Nbr ticks to delay task or, timeout waiting for event
Task status
Task priority (0 == highest, 63 == lowest)

/i
/*
/* Bit position in group corresponding to task priority (0..7)
Index into ready table corresponding to task priority

Bit mask to access bit position in ready table

Bit mask to access bit position in ready group

/*
/*

/* Indicates whether a task needs to delete itself

*/

*/
*/
*/
*/
*/

*/
*/

*/

*/

*/
*/
*/

*/
*/

*/

*/

Appendix A: uC/OS-II, The Real-Time Kernel — 565

Listing A.2 (continued) uCOS_II.H

/*

F T g L e S 2 R I e e

*

GLOBAL VARIABLES

* *kkkKn * dkkkkkhkhhkhhhkhkhkhkdhhkhkdkhkkhkhkhhkhhhhhhhkhkhik khhkhkkhk *

*/

OS_EXT INT32U OSCEXSWCET ; /* Counter of number of context switches */
#if (OS_MAX_EVENTS >= 2)

OS_EXT OS_EVENT *OSEventFreelist; /* Pointer to list of free EVENT control blocks */
OS_EXT OS_EVENT OSEventTbl [OS_MAX_EVENTS] ; /* Table of EVENT control blocks */
#endif

OS_EXT INT32U OSIdleCtr; /* Idle counter */
#if OS_TASK_STAT_EN

OS_EXT INT8S OSCPUUsage; /* Percentage of CPU used */
OS_EXT INT32U 0SIdleCtrMax; /* Maximum value that idle counter can take in 1 sec. */
OS_EXT INT32U OSIdleCtrRun; /* Value reached by idle counter at run time in 1 sec. */
OS_EXT BOOLEAN OSStatRdy; /* Flag indicating that the statistic task is ready */
#endif

OS_EXT INTBU OSIntNesting; /* Interrupt nesting level */
OS_EXT INTBU OSLockNesting; /* Multitasking lock nesting level */
OS_EXT INTBU 0OSPrioCur; /* Priority of current task */
QOS_EXT INTBU OSPricHighRdy; /* Priority of highest priority task */
OS_EXT INTSU OSRAYGrp; /* Ready list group */
OS_EXT INT8U OSRAyThl [OS_RDY_TBI, SIZE]; /* Table of tasks which are ready to run */
OS_EXT BOOLEAN OSRunning; /* Flag indicating that kernel is running */
#if OS_TASK CREATE FN || OS_TASK CREATE EXT EN 1} OS_TASK DFL,_EN

OS_EXT INTSU OSTaskCtr; /* Number of tasks created */
#endif

OS_EXT OS_TCB *OSTCBCur; /* Pointer to currently rumning TCB */
OS_EXT OS_TCB *OSTCBFreelist; /* Pointer to list of free TCBs */
OS_EXT OS_TCB *OSTCBHighRdy; /* Pointer to highest priority TCB ready to run */
OS_EXT OS_TCB *OSTCBList; /* Pointer to doubly linked list of TCBs */
OS_EXT OS_TCB *OSTCBPrioTbl [0S_LOWEST_PRIO + 1];/* Table of pointers to created TCBs */
OS_EXT INT32U OSTime; /* Current value of system time (in ticks) */
extern INTSU const OSMapTbl[8]; /* Priority->Bit Mask lookup table */
extern INTBU const OSUnMapTbl(256]; /* Priority->Index lookup table */

/*SPAGE*/

566 — Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued) uCOS_II.H

/t
o %k ke ke ok dede gk ok ok ko ok ok *kok ok *okokdok *k *k W kk *kok 24 * kW kkkk
* FUNCTION PROTOTYPES
* (Target Independant Functions)
*kokokokk ok kkok *kok ok *kk *% *k *kk Kk k kkkk W kkokok
*/
/*
% Je e 3 e ok gk Ak eI e e ek ok ok ok ke 9 g e dek o ok ok ok ke 9 ke e deie ke ke ok e 3 e ok e ok ke % 3 3 e 3 v e ok e 3 et e ok ok ke 9 ok e s e g e ok ke ke e o de ol e ek e ok ke ok e dede e ek ok ko ek ke
* MESSAGE MATLBOX MANAGEMENT
* *k *k *k *okok * *okdkddkkkkkkdkkd
*/
#if 0S_MBOX _EN
void *OSMboxAccept (OS_EVENT *pevent) ;
OS_EVENT *OsMboxCreate (void *msg);
void *OSMboxPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U OSMboxPost (OS_EVENT *pevent, void *msg);
INT8U OsMboxQuery (OS_EVENT *pevent, OS_MBOX_DATA *pdata);
#endif
/t
* %k *kk * vk k kdk *kk * *kk * * * * N k¥ k
* MEMORY MANAGEMENT
ok ke ok ke de ok Jede g ok kK ok e ok e e e dede ok ok ok ek ok *kkok *k Kk *kkk *kk *okkdk o ok sk e e v e de g Ik ok ok ok e ok ok ok
*/
#if OS_MEM EN && (OS_MAX MEM _PART >= 2)
OS_MEM *OSMemCreate (void *addr, INT32U nblks, INT32U blksize, INT8U *err);
void *OSMenGet (OS_MEM *pmem, INT8U *err);
INTSU OSMemPut (OS_MEM *pmem, void *pblk);
INT8U OsMemQuery (0S_MEM *pmem, OS_MEM DATA *pdata);
#endif
/t
ok e v e e e de e e e e ok ke ok ke ok ok e e 3 ke e ok ok e e ok e e e v ke e ke ke ok e e g e ok e ok ok e e g e ok ok ke e e v s deie ek ke ke ok e ke e s e ok ke ke e e e ok ek ke e de ko ek ok ok ek ek ok ke ke
* MESSAGE QUEUE MANAGEMENT
3 9 e & ok vk ek I de I v ek ok ke ke 9 e o e e ok ke ke ok e e v e e ok ok ke ko e e vk e e ok ke g9 e e e e ok ok e e e g e v e ek ok ok g e ok e g ek ok ke ok ok ke e e e e g o ke de g de ke ke e dek de e dede ok o
*/
#if 0S_ O FEN && (0OS MAX QS >= 2)
void *QSQAccept (OS_EVENT *pevent) ;
OS_EVENT *OSQCreate(void **start, INT16U size);
INTSU OSQFlush (0S_EVENT *pevent) ;
void *0OSQPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U OSQPost (OS_EVENT *pevent, void *msg};
INTSU 0SQPostFront (0S_EVENT *pevent, void *msg);
INT8U OSpQuery (OS_EVENT *pevent, OS_Q DATA *pdata);
#endif

/*SPAGE*/

Appendix A: uC/OS-II, The Real-Time Kernel — 567

Listing A.2 (continued) uCOS _II.H

*
i***i************************
* SEMAPHORE, MANAGEMENT -
KA A A I I A A A A KA AR A A A A AT A A A A A I AT A A A A A XA A A AR A A KA Ak ko kdddkhdkhhkrkhkhkhkhkkrkhkhkhhkhhhkhkkhkhkhkdhkkhhkhkdkkkkkdkhkhkhkkdkhkid =
*/
#if OS_SFM_EN
INT16U OSSemAccept (OS_EVENT *pevent):;
OS_EVENT *OSSemCreate (INT16U value);
void 0SSemPend (OS_EVENT *pevent, INT16U timeout, INT8U *err);
INT8U OSSemPost (OS_EVENT *pevent) ;
INTSU OSSemQuery (OS_EVENT *pevent, OS_SEM DATA *pdata);
#endif
/*
* * % *k odkok A Kk
* TASK MANAGEMENT
ok %k ¥k ddkkk kAT I A Ak k kA A A A A A AL AT A A* *hKk

*/
#if OS_TASK_CHANGE_PRIO EN
INT8U OSTaskChangePrio (INTS8U oldprio, INTS8U newprio); ~
#endi f .
INTSU OSTaskCreate(void (*task) (void *pd), void *pdata, OS_STK *ptos, INT8U prio); B
#if OS_TASK CREATE EXT EN
INT8U OSTaskCreatebExt (void (*task) (void *pd),

void *pdata,

0S_STK *ptos,

INT8U prio,

INT16U id,

0S_STK *pbos,

INT32U stk _size,

void *pext,

INT16U opt};
#endif
#if OS_TASK_DEIL,_EN
INT8U OSTaskDel (INT8U prio);
INT8U OSTaskDelReq {INT8U prio);
#endif
#E 0S_TASK_SUSPEND_EN o
INTSU OSTaskResume (INT8U prio) ;
INTSU OSTaskSuspend (INT8U prio);
#endi £ A
#if OS_TASK CREATE_EXT EN
INT8U OSTaskStkChk (INT8U prio, OS_STK _DATA *pdata);
#endif

INT8U OSTaskQuery (INT8U prio, OS_TCB *pdata);

568 — Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued) uCOS_II.H

/*

drkk * *k ok *k * k& kkk * e e ke ok e ke ke ok ok de ke e ook ke ok T de g ok ok ok J ek ok ke ke ke K e ok ek ke ke dede I ok ok ok ok ke ke

* . TIME MANAGEMENT _
Khkhkhkkkhkkhhkhhkhkhhkkkhhkhhhkhkhkihhkhkhkhkhkhkhkhhkhkkhhhkkhhkhhkhhkdkhhkkkkhhhkhkhhkikkhhkhihkhkkihhkkhhkkhkhhhhhkhihkkkhhikhkhkkihkhkkikk

*/

void OSTimeDly (INT16U ticks);

INT8U OSTimeDlyHMSM (INT8U hours, INT8U minutes, INT8U seconds, INT16U milli);

INT8U OSTimeDlyResume (INT8U prio) ;

INT32U OSTimeGet {void) ;

void OSTimeSet (INT32U ticks) ;

void OSTimeTick (void) ;

/*

**‘*xxx *k Xk kkkk

* MISCELIANBOUS

*kk * * o % ok ok ok e e ek de ok K g Fe ok ok e ok e dede T T T ok ok vk ke Fo e ke ok ke e e e ke ok ke de de o de ok ok ke ke e ik ok ok e e de ok ok ok kk ok ke R ke ke ke ok ok ok ok

*/

void 0SInit(void); -
void OSIntEnter (void);

void OSIntExit (void): N
void 0sschedLock (void) ;

void 0SschedUnlock (void) ;

void OSStart (void) ;

void OSStatInit (void) ;

INT16U OSversion (void) ;

/*SPAGE* /

Appendix A: uC/OS-II, The Real-Time Kernel — 569

Listing A.2 (continued) uCOS II.H

/*

KRR I KKk hkhkh kA hkkkhhdkhkhhkkkdkdddhdkhkhkdddhhkrhhkdhkdhkdhrhhkhkdkhhhkrkdhdid % ek ok ok ok * o e e ok Aok ke
* INTERNAL: FUNCTION PFROTOTYPES

* (Your application MUST NOT call these functions)

L L s T L L s I e e T T e T T s T s 2 2

*/

#if OS_MBCOX EN || OS_Q EN il OS_SEM EN

void OSEventTaskRdy (0OS _EVENT *pevent, void *msg, INT8U msk);
void OSEventTaskWait (OS_EVENT *pevent) ;

void OSEventTO(OS_EVENT *pevent) ;

void OSEventWaitListInit (OS_EVENT *pevent);

#endif

#if OS_MEM_EN && (OS_MAX _MEM_PART >= 2)

void OSMemInit (void) ;

#endif

#if 0S_Q EN

void 0SQInit (void) ;

#endif

void 0SSched (void) ;

void OSTaskIdle (void *data);

#if OS_TASK_STAT_EN

void OSTaskStat (void *data);

#endif

INT8U OSTCBInit (INT8U prio, OS_STK *ptos, OS_STK *pbos, INT16U id, INT32U stk _size, void *pext,
TNT16U opt) ;

/*$PAGE*/

3

570 — Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued) uCOS II.H

/'k

e Je de % e e e dede T K e e e e de e e e T ok de g e e e de de de e e o 3 o o e g e e e T e de e g o e e T g % % I e sk e o o o e o e e 3 ok e ok g e 9 g e o e e e e K o e e e ek ke ok e Aok Rk b e ek ok

* FUNCTIGN PROTOTYPES 7
* (Target Specific Functions) .
e o e e e de de de e de o W T T o de de e e d I ok o ok e o e e o 7 R e ok o ok g e e o ok o e ke ke e ok ok e ok b bk R ok * e e ok % o *k o e e g kg e kR

*/

void OSCtxSw(void) ;

void OSIntCtxSw (void) ;

void OSStartHighRdy (void) ;

void OSTaskCreateHook (OS_TCB *ptcb) ;

void OSTaskDelHook (OS_TCB *ptcb) ;

void OSTaskStatHook (void) ;

0S_STK *0STaskStkInit (void (*task) (void *pd), void *pdata, OS_STK *ptos, INT16U opt):

void OSTaskSwHook (void) ;

void OSTickISR (void) ;

void OSTimeTickHook (void) ;

Appendix B

Programming Conyventions

Conventions should be established early in a project. These conventions are necessary to maintain con-
sistency throughout the project. Adopting conventions increases productivity and simplifies project
maintenance. A few years ago, I saw an article in the Hewlett-Packard Journal (see Bibliography on
page 585) about the processes used by a team of engineers to design the HP54720/10 oscilloscope. One
of the aspects of the design consisted of developing a coding convention. “A consistent format made the
code much easier to read and understand. At the completion of the project, all of the engineers involved
were enthusiastic about using the standard in developing the code”. If you are serious about improving
your programming skills you should get Code Complete by Steve McConnell (see Bibliography on
page 585). Steve also highly recommends that you adopt a coding convention before you begin pro-
gramming. As he says, “It’s nearly impossible to change code to match your conventions after the code
is written”.

In this section I will describe the conventions I have used to develop the software presented in this
book.

B.00 Directory Structure

Adopting a consistent directory structure avoids confusion when either more than one programmer is
involved in a project, or you are involved in many projects. This section shows the directory structure
that I use on a daily basis.

B.00.01 Directory Structure, Products

All software development projects are placed in a \PRODUCTS subdirectory from the root directory. I
prefer to create the \ PRODUCTS subdirectory because it avoids having a large number of directories in
the root directory.

Each project is placed in a subdirectory by itself under the \ PRODUCTS directory. Instead of having
all files in a project located in a single subdirectory, I like to split project related files in these subdirec-
tories. (There is nothing like looking at a project subdirectory containing dozens of files!). Each prod-
uct contains a number of subdirectories:

571

572 — Embedded Systems Building Blocks, Second Edition

* \PRODUCTS\project\SOFTWARE
This subdirectory contains product specific software. It is assumed that you would use building
blocks and thus this directory contains code that is actually specific to the product. The SOFTWARE
directory further contains subdirectories such as:

* \PRODUCTS\project\SOFTWARE\ SOURCE ' : -
This subdirectory contains the actual product specific source code.

* \PRODUCTS\project\SOFTWARE\TEST
This subdirectory contains the product build instructions (i.e., makefiles, scripts, batch files, etc.)
to create a ‘test’ version of the product to build.

* \PRODUCTS\project\SOFTWARE\OBJ
This subdirectory contains the compiled and assembled code into relocatable object form of all
the files needed to make the product.

* \PRODUCTS\project \SOFTWARE\VC
This subdirectory contains the version controlled product specific software.

* \PRODUCTS\project\SOFTWARE\????
You can have additional subdirectories that would contain documentation about the software
aspects of your product (DOC directory), a directory where you could ‘collect’ all the source files
that make up your product in order to compile and assemble them (WORK directory), a directory
where you can ‘rebuild’ any version of a released product (PROD directory), and more.

* \PRODUCTS\project\HARDWARE
This subdirectory could contain information about the product’s hardware (schematics, PCBs, parts
list, wire lists, etc.).

* \PRODUCTS\project\MECH
This subdirectory could contain information about the mechanical aspects of your product (enclo-
sures, injection molds, parts list, etc.).

B.00.02 Directory Structure, Building Blocks

Each building block is placed in a subdirectory by itself under the \ SOFTWARE directory. The reason -
the building blocks are placed in a directory from the root is because the building blocks are not sup-
posed to be platform dependent. Below each building block, I have the following subdirectories:

* . \SOFTWARE\building-block\SOURCE
This subdirectory contains the source code of the building block.

* \SOFTWARE\ building-block \DOC
This subdirectory contains documentation specific to the building block.

* \SOFTWARE\ building-block \VC
The VC (Version Control) subdirectory contains version controlled archive files generated by a ver-
sion control software package such as the Merant PVCS Version Manager (previously called PVCS).
This subdirectory contains the revisions and versions of your source code, documentation, and exe-
cutables. If you are new to version management and configuration building, consult the excellent
book by Wayne A. Babich called Software Configuration Management or, contact Merant about
their excellent software packages.
To remove the frustration of navigating through these subdirectories, I wrote a utility program that
allows you to jump to a directory without having to use the DOS change directory command. This util-
ity is called TO.EXE and is described in Appendix D.

Appendix B: Programming Conventions — 573

B.01 C Programming Style

B.01.01 Overview

There are many ways to code a program in C (or any other language). The style you use is just as good
as any other as long as you strive to attain the following goals:

e Portability

» Consistency

* Neatness

* [Easy maintenance

e Easy understanding

* Simplicity

Whichever style you use, I would emphasize that it should be adopted consistently throughout all
your projects. I would further insist that a single style be adopted by all team members in a large
project. To this end, I would recommend that a C programming style document be formalized for your
organization. Adopting a common coding style reduces code maintenance headaches and costs. Adopt-
ing a common style will avoid code rewrites. This section describes the C programming style I use.
The main emphasis on the programming style presented here is to make the source code easy to follow
and maintain.

I don’t like to limit the width of my C source code to 80 characters just because today’s monitors
only allow you to display 80 characters wide. My limitation is actually how many characters can be
printed on an 8.5" x 11" page using compressed mode (17 characters per inch). Using compressed
mode, you can accommodate up to 132 characters and have enough room on the left of the page for
holes for insertion in a three ring binder. Allowing 132 characters per line prevents having to interleave
source code with comments. The code provided in this book uses 105 characters per line. This limita-
tion is imposed by the publisher.

B.01.02 Header

The header of a C source file looks as shown below. Your company name and address can be on the first
few lines followed by a title describing the contents of the file. A copyright notice is included to give
warning of the proprietary nature of the software.

574 — Embedded Systems Building Blocks, Second Edition

/*
dkkkhkdkhkkdhkhkkhkdkhkhkhkhkhkhkkhkhkhkhkkdhkhkhkhkhkhkkhkhkhddkhhkhkkhkhhkdhkdkhkhkhkhkhkhkkhkdkhkdkhkkhkhkhhkhkhhkhhkhkhkhhkkhkhkk
* Company Name

* Address

*

* (¢) Copyright 20xx, Company Name, City, State

* All Rights Reserved

*

*

* Filename
* Programmer (s) :

* Description

hkkkhkhkhkhkhkhkkhdkkhkhkhkhkhkhkhkkhkhkkhkhkhkhkhkhhkhkkkhkkhkhhhhkhkhkhkkhkhkhkhkhkhkhhkhkkhkhkhkhkhkhkhkhkhhkhkhkhkhhkhkhkhkhk

*/
/*SPAGE*/

The name of the file is supplied followed by the name of the programmer(s). The name of the pro-
grammer who created the file is given first. The last item in the header is a description of the contents of
the file.

I like to dictate when page breaks occur. This is done by inserting the special comment /*$PAGE* /
whenever you want a page break. The file is printed using a utility that I wrote called HPLISTC (see
Appendix D). When HPLISTC encounters this comment, it sends a form feed character to the printer.

B.01.03 Revision History

Because of the dynamic nature of software, I always include a section in the source file to describe
changes made to the file. You may either maintain version control manually or automate the process by
using a version control software package. I prefer to use version control software because it takes care
of a number of chores automatically. The version control section contains the different revision levels,
date and time and a short description of each of the different revision levels. Revision history should
start on a page boundary.

/*

i*************

* REVISION HISTORY

hkdkhkkhkkhkkhkhkkhkhkhkkhkhkhkhkkhkhkhkhkkhkhkhkhhkhkhkhkhkhhkhkhkkhkkhkhkhkkhkkhkkhkkhk

*/
/*$PAGE*/

B.01.04 Include Files

The header files needed for your project immediately follow the revision history section. You may
either list only the header ‘files:required for the module or combine header files in a single header file

Appendix B: Programming Conventions — 575

like I do in a file called INCLUDES. H. I like to use an INCLUDES. H header file because it prevents you
from having to remember which header file goes with which source file especially when new modules
are added. The only inconvenience is that it takes longer to compile each file.

/*
AAA KA AR A A A A AR A A AR A AR A A AR A AR A AR A AT A AA A A AR A A KA AR A AR A AR AARAA A AL AR AR AT AR AR ARk A A K kK

* INCLUDE FILES

LR RS E R R L R R s R R R RS RN LSRR R ST LSRR S EEEE R EEEE SRR TR]

*/
#include "INCLUDES.H"
/*$SPAGE*/

B.01.05 Naming Identifiers

C compilers which conform to the ANSI X3J11 standard (most C compilers do by now) allow up to 32
characters for identifier names. Identifiers are variables, structure/union members, functions, macros,
#defines, and so on. Descriptive identifiers can be formulated using this 32 character feature and the
use of acronyms, abbreviations, and mnemonics (see the Acronym, Abbreviation, and Mnemonic Dic-
tionary, Appendix C). Identifier names should reflect what the identifier is used for. I like to use a hier-
archical method when creating an identifier. For instance, the function OSSemPend () indicates that it
is part of the operating system (OS), it is a semaphore (Sem) and the operation being performed is to
wait (Pend) for the semaphore. This method allows me to group all functions related to semaphores
together.

Variable names should be declared on separate lines rather than combining them on a single line.
Separate lines make it easy to provide a descriptive comment for each variable.

I use the filename as a prefix for variables that are either local (static) or global to the file. This
makes it clear that the variables are being used locally and globally. For example, local and global vari-
ables of a file named KEY . C are declared as follows:

static INT16U KeyCharCnt; /* Number of keys pressed */
static char KeyInBuf[100]; /* Storage buffer to hold chars */

char KeyInChar; /* Character typed */
/*SPAGE*/

Uppercase characters are used to separate words in an identifier. I prefer to use this technique versus
making use of the underscore character, (_) because underscores do not add any meaning to names and
also use up character spaces.

Global variables (external to the file) can use any name as long as they contain a mixture of upper-
case and lowercase characters and are prefixed with the module/file name (i.e., all global keyboard
related variable names would be prefixed with the word Key). S

Formal arguments to a function and local variables within a function are declared in lowercase. The
lowercase makes it obvious that such variables are local to a function; global variables will contain a

576 — Embedded Systems Building Blocks, Second Edition

mixture of upper- and lowercase characters. To make variables readable, you can use the underscore
character (i.e., _).

Within functions, certain variable names can be reserved to always have the same meaning. Some
examples are given below but others can be used as long as consistency is maintained.

i, j andk for loop counters.

pl, P2..pn for pointers.

c cl ..cn for characters.

s, sl ...sn for strings.

ix,iyand iz for intermediate integer variables

fx, fyand £z for intermediate floating point variables

To summarize:
* formal parameters in a function declaration should only contain lowercase characters.
* auto variable names should only contain lowercase characters.

* static variables and functions should use the file/module name (or a portion of it) as a prefix and
should make use of upper- and lowercase characters.

* extern variables and functions should use the file/module name (or a portion of it) as a prefix and
should make use of upper- and lowercase characters.

B.01.06 Acronyms, Abbreviations, & Mnemonics

When creating names for variables and functions (identifiers), it is often the practice to use acronyms
(e.g. 0S, ISR, TCB and so on), abbreviations (buf, doc, etc.) and mnemonics (clr, cmp, etc.). The use
of acronyms, abbreviations, and mnemonics allows an identifier to be descriptive while requiring fewer
characters. Unfortunately, if acronyms, abbreviations, and mnemonics are not used consistently, they
may add confusion. To ensure consistency, I have opted to create a list of acronyms, abbreviations, and
mnemonics that I use in all my projects. The same acronym, abbreviation, or mnemonic is used
throughout, once it is assigned. I call this list the Acronym, Abbreviation, and Mnemonic Dictionary
(see Appendix C). As I need more acronyms, abbreviations, or mnemonics, I simply add them to the
list.

There might be instances where one list for all products doesn’t make sense. For instance, if you are
an engineering firm working on a project for different clients and the products that you develop are
totally unrelated, then a different list for each project would be more appropriate; the vocabulary for the
farming industry is not the same as the vocabulary for the defense industry. I use the rule that if all
products are similar, they use the same dictionary.

A common dictionary to a project team will also increase the team’s productivity. It is important
that consistency be maintained throughout a project, irrespective of the individual programmer(s). Once
buf has been agreed to mean “buffer” it should be used by all project members instead of having some
individuals use buffer and others use bfr. To further this concept, you should always use buf even if
your identifier can accommodate the full name; stick to buf even if you can fully write the word
“buffer”’

Appendix C provides the acronyms, abbreviations, and mnemonics dictionary that I used for this
book. Note that some of the words are the same in both columns. This is done to indicate that there is
no acronym, abbreviation, or mnemonic which would better describe the word on the left.

s

Appendix B: Programming Conventions — 577

B.01.07 Comments

I find it very difficult to mentally separate code from comments when code and comments are inter-

leaved. Because of this, I never interleave code with comments. Comments are written to the right of

the actual C code. When large comments are necessary, they are written in the function description 7

header. -
Comments are lined up as shown in the following example. The comment terminators (* /) do not

need to be lined up, but for neatness I prefer to do so. It is not necessary to have one comment per line

since a comment could apply to a few lines.

/*

L R R L A A T e

* atoi()

*

* Description : Function to convert string 's' to an integer.

* Arguments : ASCII string to convert to integer.

* {All characters in the string must be decimal digits (0..9))

* Returns : String converted to an 'int' ‘ -
AR A A IR AR I H A A AR A A A A AT A AR AR AT A H AR A Ak kAT A kAR A kA Ak Ak kA kA ek kA k kA Ak kA A Ak ok kA h ko hkhkhhkk -
*/

int atoi (char *s)
{

int n; /* Partial result of conversion */

n = 0; /* Initialize result */

while (*s »>= '0' && *s <= '9' && *s) { /* For all valid characters and not end of string */

n=10*n+ *s - '0'; /* Convert char to int and add to partial result */
S++; /* Position on next character to convert */ -
}
return (n); /* Return the result of the converted string */
}
/*$PAGE*/
B.01.08#defines

Header files (. H) and C source files (. C) might require that constants and macros be defined. Constants
and macros are always written in uppercase with the underscore character used to separate words. Note
that hexadecimal numbers are always written with a lowercase x and all uppercase letters for hexadeci-
mal A through F.

578 — Embedded Systems Building Blocks, Second Edition

/*
KA KA KA A AR KA A A AR AR A I A AR AR A A AL A A AR A A A A A A A A A AR AL AARA AR AT AR A AR AR AR AR A Ak kA Ak khk

o CONSTANTS & MACROS

L L L R R R L R T R T

*/

#define KEY FF 0x0F
#define KEY_CR 0x0D
#define KEY BUF_FULL({) (KeyNRd > 0)

/*SPAGE*/

B.01.09 Data Types

C allows you to create new data types using the typedef keyword. I declare all data types using upper-
case characters, and thus follow the same rule used for constants and macros. There is never a problem
confusing constants, macros, and data types because of the context in which they are used. Since differ-
ent microprocessors have different word length, I like to declare the following data types (assuming
Borland C++ V4.51):

/*
kR RS E RS R R SRR RS RS ER R EE R SRR SRR RS EER SRR ERESEEEEE SRR ST

* DATA TYPES

KA AT AR R AT I A A A A A A A A AT A A A AR A A AR AR AR AL A A AR A A AA AT A AR A AR RA R AT AR A A A AR AR AR A AR Ak A%k

*/

typedef unsigned char BOOLEAN; /* Boolean */
typedef unsigned char INT8U; /* 8 bit unsigned */
typedef char INT8S; /* 8 bit signed */
typedef unsigned int INT16U; /* 16 bit unsigned */
typedef int INT16S; /* 16 bit signed */
typedef unsigned long INT32U; /* 32 bit unsigned */
typedef long INT32S; /* 32 bit signed */
typedef float FP; /* Floating Point */
/*$PAGE*/

Using these #defines, you will always know the size of each data type.

B.01.010 Local Variables

Some source modules will require that local variables be available. ‘These variables are only needed for
the source file (file scope) and should thus be hidden from the other modules. Hiding these variables is

Appendix B: Programming Conventions — 579

accomplished in C by using the static keyword. Variables can either be listed in alphabetical order or
in functional order.

/*
kkkkkkkkhkhhhkhhkhhhhhhhkkhkhhhhkhhhkhhkhkkhkhrhkkhkkkhhhhhkhhhhhhhkhhkkhhkkhrkhhhkhkhkhhhhkkkx

* LOCAL VARIABLES

hkhkhkhkkkhkhkkhkhhhkhkkhkhhkhkkhkhhkhkhhhkhhkhkkkhkhkkhkkhhhhkhkhhkhkhkhkhhkhkkhhhhkhhkhkhkkkhkkhkhkkhhkhhhkkhhkhkhkkkkhkkkhk

*/

static char KeyBuf[100];
static INT16S KeyNRd;

/*$SPAGE* /

B.01.011 Function Prototypes

This section contains the prototypes (or calling conventions) used by the functions declared in the file.
The order in which functions are prototyped should be the order in which the functions are declared in
the file. This order allows you to quickly locate the position of a function when the file is printed.

/~k
hhkhkhkhkhkkhhkkhhhhhhhkhkhkhkhhhkkhhkhkhkkhhkhkhkkkkhhhhkhhhkhkhkhkhhhkkhkkhkhhkkkhhhkhkhkkhhhkhkhkhkkhkhhkkhkkhhkkkk

* FUNCTION PROTOTYPES

khkhkkhkkhkkhkhhkkkhhkhhhhhkhkhkkhkhkhhkkkkhkkhkhkkkhhkhkkkkkhkhkhkkhkhhhkkhkhhhkhkkhhhkhkhkkhkhhkkhkkhkhhhhhhkhkhkkkkhkhkk

*/

void KeyClrBuf (void) ;
static BOCLEAN XKeyChkStat(void);
static INT16S KeyGetCnt (int ch);

/*$SPAGE*/

Also note that the static keyword, the returned data type, and the function names are all aligned.

B.01.012 Function Declarations

As much as possible, there should only be one function per page when code listings are printed on a
printer. A comment block should precede each function. All comment blocks should look as shown
below. A description of the function should be given and should include as much information as neces-
sary. If the combination of the comment block and the source code extends past a printed page, a page
break should be forced (preferably between the end of the comment block and the start of the function).
This allows the function to be on a page by itself and prevents having a page break in the middle of the
function. If the function itself is longer than a printed page then it should be broken by a page break
comment (/*$PAGE* /) in a logical location (i.e., at the end of an if statement instead of in the middle
of one).

580 — Embedded Systems Building Blocks, Second Edition

More than one small function can be declared on a single page. They should all, however, contain
the comment block describing the function. The beginning of a function should start at least two lines
after the end of the previous function.

/*
EEEE SRS R EE AR A LR SR SRS AR RS RS RS ST EREE R AR AT LRSS TR R TR S

* CLEAR KEYBOARD BUFFER

*

* Description : Flush keyboard buffer

* Arguments : none
* Returns : none
* Notes : none

AAEEAA A A AR ATA AR A A A AN AL A AR AA AR LA A A AA A A AAKAAR A A A A AL AR AR A KA AR AR A A KA Ak kdhkdkkhkhhkhkhkhhhrk

*/

void KeyClrBuf (void)
{

}
/*$PAGE*/

Functions that are only used within the file should be declared static to hide them from other
functions in different files.

By convention, I always call all invocations of the function without a space between the function
name and the open parenthesis of the argument list. Because of this, I place a space between the name
of the function and the opening parenthesis of the argument list in the function declaration as shown
above. This is done so that I can quickly find the function definition using a grep utility.

Function names should make use of the filename as a prefix. This prefix makes it easy to locate
function declarations in medium to large projects. It also makes it very easy to know where these func-
tions are declared. For example, all functions in a file named KEY.C and functions in a file named
VIDEO.C could be declared as follows:

¢ KEY.C
KeyGetChar ()
KeyGetLine ()
KeyGetFnctKey ()

e VIDEO.C
VideoGetAttr ()
VideoPutChar ()
VideoPutStr()
VideoSetAttr ()

It’s not necessary to use the whole file/module name as a prefix. For example, a file called KEYBOARD. C
could have functions starting with Key instead of Keyboard. It is also preferable to use uppercase charac-
ters to separate words in a function name instead of using underscores. Again, underscores don’t add any
meaning to names and they use up character spaces. As mentioned previously, formal parameters and local
variables should be in lowercase. This makes it clear that such variables have a scope limited to the function.

Appendix B: Programming Conventions — 581

Each local variable name must be declared on its own line. This allows the programmer to comment
each one as needed. Local variables are indented four spaces. The statements for the function are sepa-
rated from the local variables by three spaces. Declarations of local variables should be physically sep-
arated from the statements because they are different.

B.01.013 Indentation

Indentation is important to show the flow of the function. The question is, how many spaces are needed
for indentation? One space is obviously not enough while 8 spaces is too much. The compromise I use
is four spaces. I also never use TABs, because various printers will interpret TABs differently; and your
code may not look as you want. Avoiding TABs does not mean that you can’t use the TAB key on your
keyboard. A good editor will give you the option to replace TABs with spaces (in this case, 4 spaces).

A space follows the keywords if, for, while, and do. The keyword else has the privilege of hav-
ing one before and one after it if curly braces are used. I write 1f (condition) on its own line and the
statement(s) to execute on the next following line(s) as follows:

instead of the following method:

There are two reasons for this method. The first is that I like to keep the decision portion apart from
the execution statement(s). The second reason is consistency with the method I use for while, for,
and do statements.

switch statements are treated as any other conditional statement. Note that the case statements are
lined up with the case label. The important point here is that switch statements must be easy to follow.
cases should also be separated from one another.

e

582 — Embedded Systems Building Blocks, Second Edition

X =Y +-Z;
z = 10;

} else {
X =y - 2; -
z = -25;

for (i = 0; i < MAX ITER; i++) {
*D2++ = *pl++;
xx[i] = 0;

while (*pl) {
*D2++ = *pl++;

cnt++;

switch (key) {
case KEY_BS :
if (ent > 0) {
b=
cnt--;
}
break;

case KEY_CR :
*p = NUL;
break;

case KEY_LINE_FEED :
D++;

break;

default:
*p++ = key;
CNnt++;

break;

Appendix B: Programming Conventions — 583

do {

cnt-—;

*P2++ = *pl+s+;
} while (cnt > 0);

B.01.014 Statements & Expressions

All statements and expressions should be made to fit on a single source line. I never use more than one
assignment per line such as:

Even though this is correct in C, when the variable names get more complicated, the intent might not
be as obvious.
The following operators are written with no space around them:

-> Structure pointer operator p->m
Structure member operator s.m -
[Array subscripting ali]

Parentheses after function names have no space(s) before them. A space should be introduced after _—
each comma to separate each actual argument in a function. Expressions within parentheses are written
with no space after the opening parenthesis and no space before the closing parenthesis. Commas and
semicolons should have one space after them.

strncat(t, s, n);

for (1 = 0; 1 < n; i++)

The unary operators are written with no space between them and their operands:
p ~b ++1 --3 (long)m *p &X sizeof (k)

The binary operators is preceded and followed by one or more spaces, as is the ternary operator:
cl = c2 X +Y i+=2 n>07?n: -n;

The keywords if, while, for, switch, and return are followed by one space.
For assignments, numbers are lined up in columns as if you were to add them (assuming you hard-
code numbers). The equal signs are also lined up.

X = 100.567;
temp = 12.700;
varb = 0.768;

variable = 12; _
storage = &array[0];

584 — Embedded Systems Building Blocks, Second Edition

B.01.015 Structures and Unions

Structures are typedef since this allows a single name to represent the structure. The structure type is
declared using all uppercase characters with underscore characters used to separate words.

typedef struct line { /* Structure that defines a LINE */

int LineStartX; /* 'X' & 'Y' starting coordinate */
int LineStartyY;

int LineEndX; /* 'X' & 'Y' ending coordinate */
int ILineEndY;

int LineColor; /* Color of line to draw */
} LINE;
typedef struct point { /* Structure that defines a POINT */
int PointPosX; /* 'X' & 'Y' coordinate of point */
int PointPosY;
int PointColor; /* Color of point */
} POINT;

Structure members start with the same prefix (as shown in the examples above). Member names
should start with the name of the structure type (or a portion of it). This makes it clear when pointers
are used to reference members of a structure such as:

p->LineColor; /* We know that 'p' is a pointer to LINE */

B.01.016 Reserved Keywords

The following keywords should never be used for identifiers. These keywords are reserved in the C++
language as defined by Bjarne Stroustrup and are thus reserved for future compatibility.

asm
class
delete
overload
private
protected
public
friend
handle
new
operator
template
this

virtual

Appendix B: Programming Conventions — 585

B.02 Bibliography

Babich, Wayne A.

Software Configuration Management
Reading, Massachusetts

Addison-Wesley Publishing Company, 1986
ISBN 0-201-10161-0

Long, David W. and Duff, Christopher P.

A Survey of Processes Used in the Development of Firmware for a
Multiprocessor Embedded System

Hewlett-Packard Journal, October 1993, p.59-65

McConnell, Steve
Code Complete
Redmond, Washington
Microsoft Press, 1993
ISBN 1-55615-484-4

Merant, Inc.

PVCS Version Manager
735 SW 158th Avenue
Beaverton, OR 97006
(503) 645-1150

Merant, Inc.

PVCS Configuration Builder
735 SW 158th Avenue
Beaverton, OR 97006

(503) 645-1150

sk

I

586 — Embedded Systems Building Blocks, Second Edition

Appendix C

Acronym, Abbreviation, and
Mnemonic Dictionary

Naming functions and variables might seem trivial but good function and variable names are a sign of
superior programs. When creating names for variables and functions (identifiers), it is often the practice
to use acronyms (e.g., OS, ISR, TCB), abbreviations (buf, doc, etc.), and mnemonics (clr, cmp, etc.).
The use of acronyms, abbreviations, and mnemonics allows an identifier to be descriptive while requir-
ing fewer characters. Unfortunately, if acronyms, abbreviations, and mnemonics are not used consis-
tently, they may add confusion. To ensure consistency, I created a list of acronyms, abbreviations, and
mnemonics that I use in all my projects. Once assigned, the same acronym, abbreviation, or mnemonic
is used consistently. I call this list the Acronym, Abbreviation, and Mnemonic Dictionary. As I need
more acronyms, abbreviations, or mnemonics, I simply add them to the list.

Table C.1 shows the acronyms, abbreviations, and mnemonics dictionary that I used for this book.
Note that some of the words are the same in both columns. This is done to indicate that there is no acro-
nym, abbreviation, or mnemonic which would better describe the word on the left. A shaded entry in
Table C.1 indicates that an acronym, abbreviation, or mnemonic has been used.

You can combine acronyms, abbreviations, and mnemonics to make up a full function or variable
name. For example:

1. Calculate Cursor Position could be CurCalcPos.
2. Get Keyboard Buffer could be KeyBufGet.

3. Clear Counter Group could be C1rCtrGrp.

4. Clear Alarm Status could be AlmStatClr.

In fact, I prefer to group related items by their names. You may have noticed that all functions and
variables within each module in this book start with the acronym, abbreviation, or mnemonic of the
module (or file) name. This allows you to quickly know where each function or variable is declared.

587

588 — Embedded Systems Building Blocks, Second Edition

Table C.1 Acronyms, abbreviations, and mnemonics dictionary.
Description Acronym, abbreviation, or mnemonic

1 Addition Add

2 Action Act

3 Analog Input(s) Al

4 Analog I/O AIO

5 All All

6 Alarm Alm

7 Analog Output(s) AO

8 Argument(s) Arg

9 Bar Bar

10 Bit Bit

11 Buffer Buf

12 Bypass Bypass

13 Calibration Cal

14 Calculate Calc

15 Configuration Cfg

16 Channel Ch

17 Change Change

18 Check Chk

19 Clock Clk

20 Clear Clr

21 Clear Screen Cls

22 Command Cmd

23 Compare Cmp

24 Count Cnt

25 Column Col

26 Communication Comm

27 Control Cud

28 Context Cx

29 Current Cur

30 Cursor Cursor

31 Control Word Cw

32 Date Date

33 Day Day

34 Debounce Debounce

35 Decimal Dec

Appendix C: Acronym, Abbreviation, and Mnemonic Dictionary — 589

Table C.1 Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic
36 Decode Decode
37 Define Def)
38 Delete Del
39 Detect/Detection Detect
40 Discrete Input(s) DI
41 Digit Dig
42 Discrete /O DIO
43 Disable Dis
44 Display Disp
45 Division Div
46 Divisor Div
47 Division Div
48 Delay Dly 7
49 Discrete Output(s) DO -
50 Day-of-week DOW
51 Down Down
52 Dummy Dummy
53 Edge Edge
54 Empty Empty
55 Enable En
56 Enter Enter B}
57 Entries Entries
58 Error(s) Err
59 Engineering Units EU
60 Event(s) Event e
61 Exit Exit
62 Exponent Exp
63 Flag Flag
64 Flush Flush
65 Function(s) Fnct
66 Format Format
67 Fraction Fract
68 Free Free
69 Full Full

70 Gain Gain

590 — Embedded Systems Building Blocks, Second Edition

Table C.1 Acronyms, abbreviations, and mnemonics dictionary.
Description Acronym, abbreviation, or mnemonic

71 Get Get

72 Group(s) Grp

73 Handler Handier

74 Hexadecimal Hex

75 High Hi

76 Hit Hit

77 High Priority Task HPT

78 Hour(s) Hr

79 ID. Id

80 Idle Idie

81 Input(s) In

82 Initialization Init

83 Initialize Init

84 Interrupt Int

85 Invert Inv

86 Interrupt Service Routine ISR

87 Index Ix

88 Key Key

89 Keyboard Key

90 Limit Lim

91 List List

92 Low Lo

93 Lower Lo

94 Lowest Lo

95 Lock Lock

96 Low Priority Task LPT

97 Mantissa Man

98 Manual Man

99 Maximum Max

100 Mailbox Mbox

101 Minimum Min

102 Minute(s) Min

103 _ Mode Mode

104 Month Month

105 Message Msg

Appendix C: Acronym, Abbreviation, and Mnemonic Dictionary — 591

Table C.1 Acronyms, abbreviations, and mnemonics dictionary.
Description Acronym, abbreviation, or mnemonic

106 Mask Msk

107 Multiplication Mul

108 Multiplex Mux

109 Number of N

110 Nesting Nesting

111 New New

112 Next Next

113 Offset Offset

114 O1d o1d

115 Operating System (O

116 Output Out

117 Overflow Ovf

118 Pass Pass

119 Port Port

120 Position Pos

121 Previous Prev

122 Priority Prio

123 Printer Prt

124 Pointer Ptr

125 Put Put

126 Queue Q

127 Raw Raw

128 Recall Rcl

129 Read Rd

130 Ready Rdy

131 Register Reg

132 Reset Reset

133 Resume Resume

134 Ring Ring

135 Row Row

136 Repeat Rpt

137 Real-Time RT

138 Running Running

139 Receive Rx

140 Scale Scale

592 — Embedded Systems Building Blocks, Second Edition

Table C.1 Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic

chedule
Scheduler
Screen
Second(s)
Segment(s)
Select

Semaphore

151 Scale Factor SF

155 Statistic(s) Stat
156 Status Stat

158 Stack Stk

op.
160 String Str
161 Subtraction Sub

Swi
164 Synchronize Sync

a:l)ie . Tbl
167 Threshold Th

171 Trigger Trig
172 Time-stamp TS
173 Transmit Tx

Table C.1

Appendix C: Acronym, Abbreviation, and Mnemonic Dictionary — 593

Acronyms, abbreviations, and mnemonics dictionary.

176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

Description
Update

Value

Vector

Write

Year

Acronym, abbreviation, or mnemonic
Update

Val

Vect

Wr

Year

594 — Embedded Systems Building Blocks, Second Edition

Appendix D

HPLISTC and TO

HPLISTC and TO are MS-DOS utilities that are provided in both executable and source form for your
convenience.

D.00 HPLISTC

HPLISTC is an MS-DOS utility to print C source files on an HP Laserjet printer. HPLISTC will print
your source code in compressed mode; 17 characters per inch (CPI). An 8 1/2" x 11" page (portrait)
will accommodate up to 132 characters. An 11" x 8 1/2" page (landscape) will accommodate up to 175
characters. Once the source code is printed, HPL.ISTC return the printer to its normal print mode.

The main directory for HPLISTC is C:\SOFTWARE\HPLISTC. HPLISTC is provided in two files:
HPLISTC.EXE (see C: \SOFTWARE\HPLISTC\EXE) is the MS-DOS executable and HPLISTC.C (see
C: \SOFTWARE\HPLISTC\SOURCE) is the source code.

HPLISTC prints the current date and time, the filename, its extension, and the page number at the top
of each page. An optional title can also be printed at the top of each page. As HPLISTC prints the source
code, it looks for two special comments: /*$STITLE=*/ or /*$title=*/ and /*$PAGE*/ or
/*Spage*/.

The /*STITLE=*/ comment is used to specify the title to be printed on the second line of each
page. You can define a new title for each page by using the /*$TITLE=*/ comment. The new title will
be printed at the top of the next page. For example:

/*$TITLE=Matrix Keyboard Driver*/" = ..

will set the title for the next page to Matrix Keyboard Driver, and this title will be printed on each subse-
quent page of your source code until the title is changed again.

The /*$SPAGE*/ comment is used to force a page break in your source code listing. HPLISTC will
not eject the page unless you specifically specify the /*$PAGE*/ comment. If you do not force a page
break using the /*$PAGE*/ comment, a short function may be printed on two separate pages if a page
break is forced by the printer when it reaches its maximum number of lines per page. The page number

595

596 — Embedded Systems Building Blocks, Second Edition

on the top of each page actually indicates the number of occurrences of the /*$PAGE*/ comment
encountered by LISTC or HPLISTC.

Before each line is printed, HPLISTC prints a line count that can be used for reference purposes.
HPLISTC also allows you to print source code in landscape mode. The programs are invoked as follows:

HPLISTC filename.ext [L | 1] [destination]

where filename.ext is the name of the file to print and destination is the destination of the print-
out. Since HPL, ISTC sends the output to stdout, the printout can be redirected to a file, a printer (PRN,
LPT1, LPT2, etc.), or a COM port (COM1, COM2, etc.) by using the MS-DOS redirector >. By default,
HPLISTC outputs to the monitor.

L or 1 (lowercase L) means to print the file in landscape mode, allowing you to print about 175 col-
umns wide!

D.01 TO

TO is an MS-DOS utility that allows you to go to a directory without having to type:

CD path
or
CD ..\path

TO is probably the MS-DOS utility I use the most because it allows me to move between directories
very quickly. At the DOS prompt, you simply type TO followed by the name you associated with a
directory and then press Enter as follows:

TO name

where name is a name you associated with a path. The names and paths are placed in an ASCII file
called TO. TBL, which resides in the root directory of the current drive. TO scans TO. TBL for the name
you specified on the command line. If the name exists in TO.TBL, the directory is changed to the path
specified with the name. If name is not found in TO.TBL, the message Invalid NAME. is displayed.

The main directory for TO is C:\SOFTWARE\TO. TO is provided in three files: TO.EXE (see
C: \SOFTWARE\TO\EXE) is the MS-DOS executable, TO. TBL is an example of the correspondance table
between your name and the desired directory associated with this name (see C: \ SOFTWARE\TO\ EXE),
and TO. C (see C: \ SOFTWARE\TO\SOURCE) is the source code.

The format of TO.TBL is shown in Listing D.1. Note that the name must be separated from the
desired path by a comma.

Appendix D: HPLISTC and TO— 597

Listing D.1 Format of TO.TBL

name, path
name, path

name, path

An example of TO. TBL is shown in Listing D.2.

Listing D.2 Example of TO.TBL

A, . . \SOURCE

C, . . \SOURCE

D, ..\DOC

L, . .\LST

0, ..\OBJ

P, . . \PROD

T, . .\TEST

W, . . \WORK

AIO, \SOFTWARE\BLOCKS\AIO\ SOURCE
CLK, \SOFTWARE\BLOCKS\CLK\ SOURCE
COoMM, \ SOFTWARE\ BLOCKS\COMM\ SOURCE
DIO, \SOFTWARE\ BLOCKS\ DIO\ SOURCE
IX86L-FP, \SOFTWARE\UCOS-II\IX86L-FP
KEY_MN, \ SOFTWARE\BLOCKS\KEY_MN\ SOURCE
1CD, \SOFTWARE \BLOCKS\LCD\ SOURCE
LED, \SOFTWARE\ BLOCKS\LED\ SOURCE
LISTC, \SOFTWARE\ BLOCKS\HPLISTC\SOURCE
™R, \ SOFTWARE \ BLOCKS\ TMR \ SOURCE
TO, \ SOFTWARE\TO\ SOURCE

ucaos, \SOFTWARE\UCOS\ SOURCE
UCOS-11, \ SOFTWARE\UCOS~-II\SOURCE

You may optionally add an entry by typing the path associated with a name on the command line
prompt as follows:

TO name path

598 — Embedded Systems Building Blocks, Second Edition

In this case, TO will append this new entry at the end of TO. TBL. This avoids having to use a text editor
to add a new entry to TO.TBL. If you type:

TO . AIO
then TO will change directory to \ SOFTWARE\BLOCKS\ATO\ SOURCE. Similarly, if you type:
TO clk

then TO will change directory to \SOFTWARE\BLOCKS\CLK\SOURCE. TO.TBL can be as long as
needed, but each name must be unique. Note that two names can be associated with the same directory.
If you add entries in TO.TBL using a text editor, all entries must be entered in uppercase. When you
invoke TO at the DOS prompt, the name you specify is converted to uppercase before the program
searches through the table. TO.TBL is searched linearly from the first entry to the last. For faster
response, you may want to place your most frequently used directories at the beginning of the file.

Appendix E

Companion CD-ROM

R&D Books has included a companion CD-ROM to Embedded Systems Building Blocks, Complete and
Ready-to-Use Modules in C. The CD-ROM is in MS-DOS format and contains all the source code pro-
vided in this book. The data sheets of the electronic components I have used are also on the companion
CD-ROM in PDF format.

E.00 Hardware/Software Requirements

Hardware: PC/AT compatible system

Fixed Disk Capacity: 5 Megabytes free

System Memory: 640K bytes of RAM

Operating System: MS-DOS, Windows 95, Windows 98, or Windows NT

E.01 Installation

Use the Install.bat file to decompress and transfer the ESBB files from the CD to your system.
Install.bat expects 2 arguments.

1. Load DOS or open a DOS window under Windows 95/98/NT and specify the C: drive as the default
drive.

2. Insert the CD-ROM in your CD drive.
3. Type: <cd-drive>:INSTALL <cd-drive> [destination].

where <cd-drives is the drive letter of your CD-ROM and [destination] is the drive letter where
you want ESBB installed. For example, to install ESBB on your hard disk drive E: from a CD drive H:,
you would type:

H:INSTALL H E

599

600 — Embedded Systems Building Blocks, Second Edition

INSTALL will create the following directory on the specified destination drive:
\SOFTWARE

INSTALL will then change the directory to \SOFTWARE and copy the file ESBB.EXE from drive
<cd-drives: to this directory. INSTALL will then execute ESBB.EXE, which will create all other
directories under \SOFTWARE and transfer all source and executable files provided in this book (see
Directory Structure, below). Upon completion, INSTALL will delete ESBB.EXE and change the direc-
tory to \SOFTWARE\ BLOCKS\ SAMPLE\TEST.

NOTE: Make sure you read the READ.ME file on the companion. CD-ROM for last minute
changes and notes.

E.02 Directory Structure

Once INSTALL has completed, your destination drive will contain the following subdirectories:

\SOFTWARE
The main directory from the root where all software-related files are placed.

\ SOFTWARE\BLOCKS
The main directory where all building blocks are located.

\SOFTWARE\BLOCKS\ATO\ SOURCE
This directory contains the source code for the analog I/O module (Chapter 10). The files in this
directory are AT0.C and ATO.H.

\ SOFTWARE\BLOCKS\CLK\ SOURCE
This directory contains the source code for the clock/calendar module (Chapter 6). The files in this
directory are CLK.C and CLK.H.

\SOFTWARE\ BLOCKS\COMM\ SOURCE
This directory contains the source code for the asynchronous serial communication modules COMM_
PC, COMMBUF1, and COMMBUF2 (Chapter 11). The files in this directory are:

CcoMM_PC.C, COMM_PC.Hand COMM_PCA.ASM

COMMBGND. C and COMMBGND . H

COMMRTOS. C and COMMRTOS . H
\SOFTWARE\BLOCKS\DIO\SOURCE
This directory contains the source code for the discrete I/O module (Chapter 8). The files in this
directory are DIO.C and DIO.H.
\SOFTWARE\BLOCKS\KEY_MN\SOURCE
This directory contains the source code for the keyboard scanning module presented in Chapter 3.
The source files are KEY.C and KEY . H.
\SOFTWARE\BLOCKS\LCD\ SOURCE
This directory contains the source code for the character LCD module presented in Chapter 5. The
source files are LCD.C and LCD. H.
\ SOFTWARE\BLOCKS\LED\ SOURCE
This directory contains the source code for the multiplexed LED module presented in Chapter 4. The
source files are LED.C, LED_TIA.ASM, and LED.H.

Appendix E: Companion CD-ROM — 601

\ SOFTWARE\BLOCKS \ PC\BC45
This directory contains the source code for PC related services (see Chapter 1). The files in this
directory are PC.C and PC.H.

\ SOFTWARE \ BLOCKS\ SAMPLE\ SOURCE
This directory contains the source code for the sample code (see Chapter 1). The files in this direc-
tory are: CFG.C, CFG.H, INCLUDES .H, OS_CFG.H, TEST.C, and TEST . LNK.

\SOFTWARE \BLOCKS\ SAMPLE\TEST
This. directory contains the pre-compiled DOS executable TEST.EXE. You can run this executable
by opening a DOS window under either Windows 95, Windows 98, or Windows NT.

This dicrectory also contains a ‘batch’ file (MAKETEST .BAT) that will rebuild the object files
using the Borland ‘MAKE’ utility and the ‘makefile’ TEST.MAK. Note that the makefile assumes
that the Borland C/C++ compiler is located in the E:\BC45\BIN directory but you can easily
change that by editing TEST . MAK (see BORLAND and BORLAND_EXE in TEST . MAK).

\ SOFTWARE\ BLOCKS\ SAMPLE\ OBJ
This directory contains the compiled object files for the building blocks that are used in TEST . EXE.
You will find the following files in this directory:

ATO.0OBJ

CFG.OBJ

CLK.OBJ

COMMRTOS . OBJ

COMM_PC.OBJ

COMM_PCA.OBJ

DIO.OBJ

KEY.OBJ

ICD.OBJ

OS_CPU_A.OBJ

OS_CPU_C.OBJ

PC.OBJ

TEST.OBJ

TMR.OBJ

UCOS_TII.OBJ

TEST.EXE

TEST.MAP
UCOS_T1I.0BJ contains the pre-compiled object code for pC/OS-II. You can obtain the source code
for uC/OS-II by obtaining a copy of my other book, MicroC/OS-II, The Real-Time Kernel, ISBN
0-87930-543-6.

0S_CPU_A.0BJ, OS_CPU_C.OBJ are the processor specific code for uC/OS-II for an Intel (or
AMD) 80x86. The code also supports hardware floating-point.
\ SOFTWARE\ BLOCKS\TMR \ SOURCE
This directory contains the source code for the timer manager module (Chapter 7). The source files
are TMR.C and TMR . H.
\SOFTWARE\HPLISTC
This directory contains HPLISTC (Appendix D). The source file HPLISTC.C is found in \SOFT-
WARE\HPLISTC\SOURCE. The DOS executable file HPLISTC.EXE is found in the \SOFT-
WARE\HPLISTC\EXE directory.

602 — Embedded Systems Building Blocks, Second Edition

* \SOFTWARE\TO
This directory contains the files for the TO utility (Appendix D). The source file is TO.C and is found
in the \SOFTWARE\TO\SOURCE directory. The DOS executable file (TO.EXE) is found in the
\SOFTWARE\TO\EXE directory. Note that TO requires a file called TO.TBL which must reside on
your root directory. A example of TO.TBL is also found in the .EXE directory. You will need to
move TO. TBL to the root directory if you are to use TO . EXE.

* \SOFTWARE\UCOS-IT\Ix86L-FP\BC45
This directory contains the file OS_CPU. H which is the header file for the processor specific code for
pC/OS-II and the 80x86 processor which supports hardware floating-point support.

* \SOFTWARE\UCOS-II\SOURCE
This directory contains the file uCOS_TT.H which is the header file for pC/OS-II. This file is used
by your application code to gain access to uC/OS-II’'s API (Application Program Interface).

E.03 Finding Errors

I have done everything I could to test the code provided in this book. If you find errors, I would like to
know about them so that I can correct them or visit my web site at www.uCOS-II.com

You can reach me through e-mail at: Jean.Labrosse@uCOS-II.com

You can also contact me through R&D Books or by sending me a letter at:

Jean J. Labrosse

949 Crestview Circle
Weston, FL. 33327
US.A.

E.04 Licensing

Embedded Systems Building Blocks (ESBB) source code and object code can be freely distributed (to’
students) by accredited colleges and universities without requiring a license, as long as there is no com-
mercial application involved. In other words, no licensing is required if ESBB is used for educational
use.

You must obtain an Object Code Distribution License to embed any ESBB code (i.e., module) in a
commercial product. There will be a fee for such situations, and you will need to contact me for pricing.

You must obtain an Source Code Distribution License to distribute ESBB’s source code. Again,
there is a fee for such a license, and you will need to contact me for pricing. You can contact me at
Jean. Labrosse@uCOS-II.comor visit my web site at www.uCOS-II.com

Write me at the address provided above, or call at:

(954) 2172036
(954) 217-2037 (fax)

Index

Symbols

puC/0S-II xiii, xxi, 1, 7, 194, 231-232, 244, 286,
365, 423-424, 453, 498, 500, 509, 518, 535,
601-602

See also Appendix A

Numerics
80186 90, 96

A

ABSENT 255
abstraction

data 2
actuators 327
ADC 21, 328-331, 336338, 344, 350, 365
address

logical 256, 259
AICfgCal () 349
AICfgConv () 350
AICEgScaling() 352
AIGet () 346, 354, 356
ATOInit () 344, 355, 366
AISetBypass () 356
AlSetBypassEn () 357
alarm clock 191-192, 194, 202
alarm trips 195

American Standard Code for Information Inter-
change
See ASCII
amplifier 328, 340
analog 327
analog input channel 328
analog-to-digital
converter
See ADC
conversion 327-328
anode 134
AOCfgCal () 358
AOCfgConv () 359
AOCfgScaling () 360
nOSet () 347,362
AOSetBypass () 363
AOSetBypassEn () 364
aperture time 330
API xiii, 602
Application Programming Interfaces
See API
ASCII 79, 402, 412
assembly language 96
asynchronous 62, 88,278
asynchronous communications
See Chapter 11
asynchronous blinking 262, 266-267
auto-repeat 101, 104, 108
delay 104

603

604 Index — B

B

backlighting 161
bargraph 173
baud rate 401, 404, 425
Baud Rate Generator 402
BCD (Binary Coded Decimal) 402
bilateral rendezvous 83
Binary Coded Decimal
See BCD
BIOS 497
Blink Enable Select Switch 262, 278
blinking 261, 266, 278, 286
asynchronous 20, 262, 266267
synchronous 20, 266, 285
breadboard 2
buffer 412
circular 412
ring 412413, 417418, 424, 434-436, 443
Bypass Switch 259, 262

C

calibrated
components 339
cathode 134-135
CFG.C4,6
CFG.H4,6
chaining the vectors 499
channel 328
analog input 344346, 349
discrete input 258
discrete output 261
logical 258, 261
character 496
character LCD modules 163, 165
circular buffer 412
CLK.C 192
CLK.H 192, 206
CLK_DATE_EN 206
CLK_DLY_TICKS 206
CLK_TASK_PRIO 206
CLK_TS_EN 206
CLK_USE_DLY 194, 206
ClkFormatDate() 196
ClkFormatTime () 196, 198
ClkFormatTsS () 199

ClkGetTs () 200
ClkInit () 201
ClkMakeTS () 202
ClkSetDate () 203
ClkSetDateTime () 204
ClkSetTime () 205
ClkSignalClk() 194,206
ClkTask () 193-194
ClkUpdateDate () 193
ClkUpdateDOW () 193
ClkUpdateTime () 193
clock tick 69, 86, 94-96, 192, 194, 231-232, 244,
445, 450

clock/calendar 191-195, 206
clocks 191-195, 206
Cold Junction 370
COMM_PC 423

and COMMRTOS 453

and COMMBGND 452
CommlISR{) 424,432
Comm2ISR{) 424, 432
COMMBGND 434

and COMM_PC 452
CommCfgPort () 425
CommGetChar () 435, 437, 443, 445, 448
CommGetTxChar () 424, 436, 443
CommInit () 438, 447
CommIsEmpty () 435,439, 448
CommIsFull () 440, 449
CommISRHandler () 424, 434-436
CommPutChar () 435, 441, 450
CommPutRxChar () 424, 443
CommReclIntVect () 433
COMMRTOS 442

and COMM_PC 453
CommRxFlush () 427
CommRxIntDis () 428
CommRxIntEn () 429
CommSetIntVect () 432
CommTxIntDis () 430
CommTxIntEn () 431
communication 65, 80, 85

asynchronous

See Chapter 11

compensation

thermocouple 370

conditioning
input 328
configuration 2, 4, 6, 20
conjunctive synchronization 84-85
context switch 65, 71, 77-78, 90
control register 164, 402
conversion
analog-to-digital 327-328
digital-to-analog 327, 340
speed 330, 340
time 330, 340
cooperative multitasking 66
countdown 240-243
timer 230, 236
counting semaphore 77, 80-81
critical section of code 63
current-to-pressure transducer 340

D

DAC 21, 340-341, 344, 348, 359, 366
data
abstraction 2
communication protocols 400, 402
register 164
DCE 403404, 406
deadlock 82
deadly embrace 82
debounce period 104, 107
delay 66, 71, 94-97
auto-repeat 104
delta list 232
deterministic 68
DI_EDGE_EN 268, 286
DI_MODE _DIRECT 271
DI_MODE_EDGE_BOTH 271
DI_MODE_EDGE_HIGH_GOING 271
DI_MODE_EDGE_TOW_GOING 271
DI_MODE_HIGH 271
DI_MODE_INV 271
DI_MODE_LOW 271
DI_MODE_TOGGLE_HIGH _GOING 271
DI_MODE_TOGGLE_LOW_GOING 271
DICfgEdgeDetectFnct () 269
DICfgMode () 271
DIClr () 273
DIGet () 257-258,271,274,276-277

D — Index 605

Digital to Analog Converter

See DAC
digital-to-analog conversion 327, 340
Dijkstra, Edsgar 77
DIO_TASK_DLY_ TICKS 263, 271
DIOInit () 263,275, 287
DIOInitIO() 286287
DIOTask () 263
DIRA() 263-264, 286
disable 75-76, 82, 85, 88, 93

scheduling 77
DISABLED 255
disabling interrupts 75, 82, 85, 88
discrete 255

input channel 258, 264-265, 286

inputs 255-259

output channel 261-262, 265-266, 287

outputs 256, 259-261, 263
DISetBypass () 276277
DISetBypassEn () 276-277
disjunctive synchronization §4
DISP_DLY CNTS 178
DISP_SFEIL,_CMD_REG 178
DISP_SEL,_DATA REG 178
dispatcher 66
DispChar () 168
DispClrLine() 169
DispClrScr() 140-141, 170
DispDataWr () 178
DispDefChar () 171
DispDigMsk 137
DispHorBar () 173
DispHorBarInit () 174-175
DispInit () 140, 142, 146, 176
DispInitPort () 146, 178
displays 133

alphanumeric 162

character 162

custom 162
DispMuxHandler () 146
DispMuxISR () 138, 146
DispOutDig () 146
DispOutSeg() 146
DispSegTblIx 137
DispSel () 178
DispStatClr () 140, 143
DispStatSet () 140, 144
DispStr () 139-140, 145, 177

606 Index—E

DIWr () 286
DO_BLINK_EN278
DO_BLINK_EN_INV 278
DO_BLINK_EN_NORMAT, 278
DO_BLINK_MODE_EN 268, 286
DO_MODE_BLINK_ASYNC 280
DO_MODE_BLINK_SYNC 280
DO_MODE_DIRECT 280
DO_MODE_HIGH 280
DO_MODE_I1.0W 280
DOCfgBlink () 267, 278, 280, 287
DOCfgMode () 280, 287
DOGet () 281

DORMANT 63

DOSet () 261, 280, 282
DOSetBypass () 280, 283
DOSetBypassEn () 284
DOSetSyncCtrMax () 266, 280, 285, 287
driver 80

drivers/receivers 405

DTE 403404, 406407
duty-cycle 9

dynamic 71

E

E.U.
See Engineering Units
EBCDIC (Extended Binary Coded Decimal Inter-
change Code) 402
EIA (Electronic Industries Association) 403
drivers/receivers 405
EL 161
electroluminescent light
See EL
Electronic Industries Association
See EIA
enable scheduling 77
ENABLED 255
enabling interrupts 75-76, 82, 85, 88, 91
encapsulate 79, 82
End Of Conversion signal
See EOC
Engineering Units (E.U.) 327, 337, 346
EOC 331-333
event flags 84
events 62, 66, 83-84, 88, 94, 97

exclusive access 63, 66, 68, 75, 79, 82, 85
execute 6263, 66, 68—69, 71-72, 74, 7778, 83,
88-90, 92, 94-96
execution time 62, 74, 90, 94-96
exponent 317-321
Extended Binary Coded Decimal Interchange
Code
See EBCDIC

F

FALSE 255
feature 71, 82, 93, 97
FIFO 78, 86-87
filter 328, 340
Iow pass 328
fixed-point math
See Chapter 9
fixed-point numbers 315-317, 319-321
flag 82
flickering 135
floating-point 82, 96
arithmetic 344
hardware 1
math 315
numbers 177
flow control 412
FSV 341
full-duplex 399, 402, 434
functions
interface 2, 167

G

Gender Changer 406
ghosting 138
global variable 4

H

half-duplex 399, 408
heartbeat 94
Hitachi HD44780 LCD module controller 161,
163, 165, 168
HPLISTC
See Appendix D

1

Ito P 340
1/O device
polling 411
1/0s 255
IC 336
1IDE xiii
iIBR431
-INGLUDES.H 34, 6, 12
‘initialization 80, 88
-inputs
;analog21
conditioning 328
.discrete 9, 19, 256-259
‘instdllation
ESBB 1
instruction register 164
Integrated Circuit 336
Integrated Development Environment
See IDE
interface
functions 2, 167
interrupt 63, 66, 69, 75-77, 82, 88, 90-94, 96-97
latency 66, 76, 78, 82, 88-93, 98
nesting 89, 94, 97
recovery 90, 98
response 89-90, 98
service routine 62, 87-88
Interrupt Vector Address 422
interrupt-driven 400, 411, 420
intertask communication 85
Invert Select Switch 262
ISR 62-63, 6669, 76-78, 82-83, 85-94, 97,422
IVT 432433

J

jitter 94, 96
J-Type thermocouple 370

1 — Index 607

K

kernel 63, 65-73, 75-78, 82-84, 86-94, 96-98
key
prefix 104-105
‘Shift 101, 104106, 111
KEY_RPT _DLY 108
KEY SCAN_TASK_DLY 107-108, 114, 116
keyboard
matrix 104-105, 109-110, 114-115
module 115
scanning 101, 103-104, 106, 114
switch 102
KeyBuflIn() 108
KeyDecode () 108
KeyFlush() 109-110, 116
KeyGetCol () 115
KeyGetKey () 108-109, 111, 116
KeyGetKeyDowriTime () 109,112, 116
KeyHit () 109, 113,116
KeyInit() 107, 109, 114-115
KeyInitPort () 115
KeyScanTask () 106-108, 114-115
KeySelRow () 115
keystroke 103-104

L

landscape 595

LCD xx, 161-167, 171, 173, 176, 178
(defined) 161
straight line 618

LCD.C 165

LCD.H 165, 178

LED xx, 133-136, 140, 143-144, 146~-147
(defined) 133
displays, seven-segment 134—135
multiplexed 133
multiplexing 136
turning on 134

LED.C 136

LED.H 136, 146

LED _IA.ASM136-137, 146

Light Emitting Diode
See LED

linear bargraph 173

linked list 82

608 Index — M

Liquid Crystal Display
See LCD

list
delta 232

literals 15

locked 77

logical
address 256, 259
channel 258, 261

low pass filter 328

M

m x n matrix keyboard 101
macro 75
mailbox 66, 85-87, 91, 97
mantissa 317-321, 323
mark 401
mask 257, 260
maskable 92
MASTER 408—409
MASTER/SLAVE 408
matrix keyboard 105-107, 109-110, 114-115
Maxim 7219 136
message
exchange 86
mailbox 86
queue 85, 87-88
MicroC/OS-1I, The Real-Time Kernel 7
microprocessor 82, 88, 91, 96, 98
Mode Select Switch 259, 262
module 162
countdown timer 229
keyboard 115
timer manager 230
momentary contact switch 101-102
multi-drop 408
multiplexer 328, 330, 332
multiplexing 137, 146-147
(defined) 135
LED 135
multitasking 63, 65-66, 69, 71, 77, 82, 96-97,
176-177
mutual exclusion 63, 66, 68, 75, 77-78, 82

[

N

n-key rollover 103
NMI 91-94
node 408
LD. 408
nondeterministic 62, 67
nonmaskable interrupt 93-94
non-preemptive 6667, 88-90, 92, 98
non-reentrant 66, 68—69
Null Modem adapter 406

o

OFF 255-256
offline 330
ON 255-256, 263
0OS_CPU.H 557 -
OS_ENTER_CRITICAL() 6,75, 556
OS_EXIT CRITICAL() 6,75, 556
0SInit () 537
OSIntEnter () 90
OSIntExit () 90
OSSemCreate () 538
0SSemPend () 78, 539
0SSemPost () 78, 541
OSStart () 543
OSStatInit () 544
OSTaskCreate () 545
OSTaskCreateExt () 548 -
OSTimeDly () 552
0OSTimeD1yHMSM () 553
OSversion() 555
outputs 256

analog 21

discrete 9, 19, 256, 259-261, 263
overhead 65, 82, 89, 91, 94, 97

P

parameters
physical 328
party-line 408
pass count 350, 359
PC services
See Chapter 12
PC.C 495, 520

PC.H495
PC_DisgpChar () 502
PC_DispClxCol () 503
PC_DispClrRow () 504
PC_DispClrScr () 505
PC_DispStr () 506
PC_DOSReturn () 508
PC_DOSSaveReturn () 509
PC_FElapsedInit () 510
PC_ElapsedStart () 16, 18
PC_ElapsedStop () 17-18, 513
PC_GetDateTime() 514
PC_GetKey () 515
PC_SetTickRate() 516
PC_VectGet () 517
PC_VectSet () 518
PEND 77, 87-88
period
debounce 104
periodic 74
physical parameters 328
point-to-point interface 407
polling 420
the /O device 411
portrait 595
POST 77, 87-88
PPI 115, 163, 287
preempted 71
preemptive 6669, 71-72, 74, 78, 88-90, 93, 97—
98
prefix key 104-105
PRESENT 255
priority 63, 66-74, 77-78, 83, 86-88, 90-91, 94—
96
inheritance 71-73
inversion 71-72
processing time 82, 91-92, 94
processor 62, 76, 82, 88, 90, 94, 97
Programmable Peripheral Interface
See PPI
PSW 422
push button 102
PVCS 572

-

Q — Index 609

Q

quantization size 329
quantizing 328
quantum 329

queues 66, 97

R

radix point 316-317
READY 63
real-time 61, 63, 65-67,71, 73-74, 76, 88, 96-98
real-time kernel 414
reentrant function 68-69
registers 63, 65, 68, 88-89, 97, 410, 422, 424
control 164, 402
data 164
instruction 164
status 402
rendezvous 82-83
Resistance Temperature Device
See RTD
resolution 329, 337, 340
resource 63, 71-72, 74-77, 79-80, 82, 87, 97
response 62, 6668, 76, 79-80, 89-93
responsiveness 67
RMS 74
rollover 103
n-key 103
round-robin scheduling 70
RS-232C 400, 403-404, 407, 412, 420
RS-485 399400, 407411
RTD (Resistance Temperature Device) 346, 369
RTOS 97-98 -
RUNNING 63

S

sample-and-hold 328
circuit 330
samples 330
scale factor 317
scaled 316-317
scan code 103-106, 108, 111, 116 -
scanning 350, 359
keyboard 101, 103-104, 106, 114

610 Index—T

scheduler 66, 77
disabling 77
enabling 77
Seebeck voltage 370
semaphore 66, 69, 71-72, 75, 77-83, 85, 87, 91,
94, 96-97
services 66, 84, 86-88, 90, 92-94, 97-98
settling time 340
seven-segment 140, 145
LED displays 134-135
lookup table 139
shared resource 63, 71-72, 75, 77
Shift key 101, 104-106, 111
signal 77, 82-84, 91-92, 94
simplex 399
SLAVE 408-409
space 401
speed
conversion 330
stack 63, 65, 68-69, 89, 97
start delay
auto-repeat 104
start signal 401
state 63
static priorities 70
status register 402, 411
stop signal 401
structures 65, 75-77, 97
suspend 87-88
switch 65, 69, 71, 77-78, 90, 94, 284
blink enable select 262, 278
bypass 259
invert select 262
keyboard 102
mode select 259, 262
statement 196, 198-199
synchronization 82, 8485
synchronize 74, 77, 82-84
synchronous blinking 262, 266, 285

T

TAS 76-77
tasks 62-63, 65-80, 82-88, 90-97
delayed 94
multiple 64-65, 69, 79, 84
priority 70
response 98
states 65
switch 65
TEST.C 6, 89
TEST.EXE 9
TEST.LNK 6
TEST.MAK 7
TestAIOTask () 21
Test-And-Set 75-76
TestClkTask () 16
TestDIOTask () 19 -
TestDispLit () 15
TestInitModules () 11-12
TestRxTask() 22
TestStatTask() 11-12, 15
TestTmr0TO() 18
TestTmrlTO() 19
TestTmrTask () 18
TestTxTask () 22
Texas Instruments 408
thermocouple compensation 370
THR (Transmitter Holding Register) 410411
throttle 327 -
tick 94-96
time
aperture 330
conversion 330
timeout 78-79, 82, 86-87 -
timers 229
timestamp 18, 191-195, 199--200, 202, 206
(defined) 191
TMR_DLY_TICKS 244
TMR_MAX_TMR 234, 244
TMR_TASK_PRIO 244
TMR_TASK_STK_SIZE?244
TMR_USE_SEM 244
TmrCfgFnct () 234
TmrChk () 236
TmrFormat () 237
TmrInit () 238
TmrReset () 239

TmrSetMST () 240
TmrSetT() 241
TmrStart () 240, 242
TmrStop () 242-243
TO
See Appendix D
transducer 328, 340
Transmitter Holding Register
See THR
Transmitter Shift Register
See TSR
TRUE 255
TSR (Transmitter Shift Register) 410-411
typematic 104

U

UART 436, 441
UART (Universal Asynchronous Receiver Trans-
mitter) xvii, 402, 405, 407, 410411, 417418,
422424, 434435, 443, 452
uCOS_IT.H 559
unilateral rendezvous 82-83
Universal Asynchronous Receiver Transmitter
See UART
user interface
code 117-118

| 4

V—>I Converter 341
variable
global 4
VC572
Version Control
See VC
voice coil 327
voltage
Seebeck 370

w

WAIT 78

WAITING 63

waiting 77-78, 83, 86-87, 94
www .uCOS-I1.com Xxi

X

XON-XOFF 412
xxx_GLOBALS 4

U—Index 611

