

Embedded Systems
Building Blocks,

Second Edition

Complete and Ready-to-Use
ModulesinC

Jean J. Labrosse

R&D Books
Lawrence, KS 66046

····1

R&D Books
1601 West 23rd Street, Suite 200
Lawrence, Kansas 66046
USA

Designations used by companies to distinguish their products are often claimed as trademarks. In all
instances where R&D Books is aware of a trademark claim, the product name appears in initial capital
letters, in all capital letters, or in accordance with the vendor's capitalization preference. Readers should
contact the appropriate companies for more complete information on trademarks and trademark regis
trations. All trademarks and registered trademarks in this book are the property of their respective hold
ers.

Copyright © 2000 by Miller Freeman, Inc., except where noted otherwise. Published by R&D Books,
an imprint of Miller Freeman, Inc. All rights reserved. Printed in the United States of America. No part
of this publication may be reproduced or distributed in any form or by any means, or stored in a data
base or retrieval system, without the prior written permission of the publisher; with the exception that
the program listings may be entered, stored, and executed in a computer system, but they may not be
reproduced for publication.

The programs in this book are presented for instructional value. The programs have been carefully
tested, but they are not guaranteed for any particular purpose. The publisher does not offer any warran
ties and does not guarantee the accuracy, adequacy, or completeness of any information herein and is
not responsible for any errors or omissions. The publisher assumes no liablility for damages resulting
from the use of the information in this book or for any infringement of the intellectual property rights of
third parties which would result from the use of this information.

Cover art created by: Robert Ward.

Distributed in the U.S. and Canada by:
Publishers Group West
1700 Fourth Street
Berkeley, CA 94710
1-800-788-3123

ISBN 0-87930-604-1

To my loving and caring wife and best friend, Manon,
and to our two lovely children,

James and Sabrina.

Table of Contents
Preface . xiii

What's new in the Second Edition? xiii
Goals xiv
Intended Audience xiv
Portability xiv
What Will You Need to Use this Book? xiv
Acknowledgments xv

Introduction. .. xvii
Figure, Listing, and Table Conventions xviii
Source Code Conventions............... xviii
Chapter Contents xix
Web Site xxi
Bibliography xxii

Chapter 1 Sample Code 1
1.00 Installing Embedded Systems Building Blocks 1
1.01 How Each Chapter Is Organized 2
1.02 INCLUDES. H 3
1.03 Compiler Independent Data Types 3
1.04 CFG.C and CFG.H 4
1.05 Global Variables 4
1.06 OS_ENTER_CRITICAL () and

OS~IT_CRITICAL () 6
1.07 ESBB Sample Code 6
1.08 Bibliography 24

v

vi - Embedded Systems Building Blocks, Second Edition

Chapter 2 Real-Time Systems Concepts........................... 61
2.00 ForegroundlBackground Systems 62
2.01 Critical Section of Code 63
2.02 Resource 63
2.03 Shared Resource 63
2.04 Multitasking 63
2.05 Task 63
2.06 Context Switch (or Task Switch) 65
2.07 Kernel. 65
2.08 Scheduler. 66
2.09 Non-Preemptive Kernel 66
2.10 Preemptive Kernel 67
2.11 Reentrancy 68
2.12 Round-Robin Scheduling 70
2.13 Task Priority 70
2.14 Static Priorities 70
2.15 Dynamic Priorities 71
2.16 Priority Inversions 71
2.17 Assigning Task Priorities 73
2.18 Mutual Exclusion 75
2.19 Deadlock (or Deadly Embrace) 82
2.20 Synchronization 82
2.21 Event Flags 84
2.22 Intertask Communication 85
2.23 Message Mailboxes 86
2.24 Message Queues 87
2.25 Interrupts 88
2.26 Interrupt Latency 88
2.27 Interrupt Response 89
2.28 Interrupt Recovery 90
2.29 Interrupt Latency, Response, and Recovery 90
2.30 ISR Processing Time 91
2.31 Nonmaskable Interrupts (NMls) 91
2.32 Clock Tick 94
2.33 Memory Requirements 96
2.34 Advantages and Disadvantages of

Real-Time Kernels 97
2.35 Real-Time Systems Summary 98
2.36 Bibliography 99

Chapter 3

Chapter 4

Chapter 5

Table ofContents - vii

Keyboards 101
3.00 Keyboard Basics 101
3.01 Matrix Keyboard Scanning Algorithm 103
3.02 Matrix Keyboard Module 105
3.03 Internals 106
3.04 Interface Functions 109

KeyFlush () 110
KeyGetKey () 111
KeyGetKeyDownTime () 112
KeyHi t () 113
KeyIni t () 114

3.05 Configuration 114
3.06 How to Use the Matrix Keyboard Module 115
3.07 Bibliography 119

Multiplexed LED Displays............................. 133
4.00 LED Displays 133
4.01 Multiplexed LED Display Module 136
4.02 Internals 137
4.03 Interface Functions 140

DispClrScr () 141
DispIni t () 142
DispStatClr () 143
DispStatSet () 144
DispStr () 145

4.04 Configuration 146
4.05 How to Use the Multiplexed LED Display

Module 146
4.06 Bibliography 148

Character LCD Modules 161
5.00 Liquid Crystal Displays 161
5.01 Character LCD Modules 163
5.02 Character LCD Module, Internals 165
5.03 Interface Functions 167

DispChar () 168
DispClrLine () 169
DispClrScr () 170
DispDefChar () 171
DispHorBar () 173
DispHorBarIni t () 175

viii- Embedded Systems Building Blocks, Second Edition

Displnit () 176
DispStr () 177

5.04 LCD Module Display, Configuration 178
5.05 LCD Module Manufacturers 178

Chapter 6

Chapter 7

Time-of-Day Clock 191
6.00 Clocks/Calendars 191
6.01 Clock/Calendar Module 192
6.02 Internals 192
6.03 Interface Functions 195

ClkFormatDate () 196
ClkFormatTime () 198
ClkFormatTS () 199
ClkGetTS () 200
Clklnit () 201
ClkMakeTS () 202
ClkSetDate () 203
ClkSetDateTime () 204
ClkSetTime () 205

6.04 Clock/Calendar Module, Configuration 206
6.05 Bibliography 206

Timer Manager 229
7.00 Timer Manager Module 229
7.01 Timer Manager Moduler, Internals 230
7.02 Timer Manager Module, Interface Functions 233

TmrCfgFnct () 234
TmrChk () 236
TmrFormat () 237
Tmrlni t () 238
TmrReset () 239
TmrSetMST () 240
TmrSetT () 241
TmrStart () 242
TmrStop () 243

7.03 Timer Manager Module, Configuration 244
7.04 Bibliography 244

Chapter 8

Chapter 9

Chapter 10

Table ofContents - ix

Discrete 1I0s.. 255
8.00 Discrete Inputs 256
8.01 Discrete Outputs 259
8.02 Discrete I/O Module 263
8.03 Discrete I/O Module, Internals 263
8.04 Discrete I/O Module, Interface Functions 267

DICfgEdgeDetectFnct () 269
DICfgMode () 271
DIClr () 273
DIGet () 274
DIOInit () 275
DISetBypass () 276
DISetBypassEn () 277
lXlCfgBlink () 278
lXlCfgMode () 280
DOGet () 281
DOSet () 282
DOSetBypass () 283
DOSetBypassEn () 284
DOSetSyncCtrMax () 285

8.05 Configuration 286
8.06 How to Use the Discrete I/O Module 287

Fixed-Point Math 315
9.00 Fixed-Point Numbers 315
9.01 Fixed-Point Addition and Subtraction 319
9.02 Fixed-Point Multiplication 320
9.03 Fixed-Point Division 320
9.04 Fixed-Point Comparison 321
9.05 Using Fixed-Point Arithmetic, Example #1.. 321
9.06 Using Fixed-Point Arithmetic, Example #2 322
9.07 Using Fixed-Point Arithmetic, Example #3 325
9.08 Conclusion 326
9.09 Bibliography 326

Analog I10s 327
10.00 Analog Inputs 328
10.01 Reading an ADC 330
10.02 Temperature Measurement Example 336
10.03 Analog Outputs 340
10.04 Temperature Display Example 341

x - Embedded Systems Building Blocks, Second Edition

Chapter 11

10.05 Analog I/O Module 344
10.06 Internals 344
10.07 Interface Functions 348

AICfgCal () 349
AICfgConv () 350
AICfgScaling () ; 352
AIGet () 354
AIOIni t () 355
AISetBypass () 356
AISetBypassEn () 357
AOCfgCal () 358
AOCfgConv () 359
AOCfgScaling () 360
AOSet () 362
AOSetBypass () 363
AOSetBypassEn () 364

10.08 Analog I/O Module, Configuration 365
10.09 How to Use the Analog I/O Module 366
10.10 Bibliography 374

Asynchronous Serial Communications......... 399
11.00 Asynchronous Communications 400
11.01 RS-232C 403
11.02 RS-485 407
11.03 Sending and Receiving Data 411
11.04 Serial Ports on a PC 420
11.05 Low-Level PC Serial I/O Module (COMf'.LPC) 423

CommCfgPort () 425
ComrnRx:Flush () 427
ComrnRx:IntDis () 428
ComrnRx:IntEn () 429
CommTxIntDis () 430

• CommTxIntEn () 431
CommSetIntVect () 432
CorrrrnRclIntVect () 433

11.06 Buffered Serial I/O Module (COMMBGND) 434
CommGetChar () 437
CommIni t () ,. 438
CommIsEmpty () 439
CommIsFull () 440
CommPutChar () 441

Chapter 12

Appendix A

Table ofContents - xi

11.07 Buffered Serial I/O Module (COMMRTOS) 442
CommGetChar () 445
CommIni t () 447
CommIsEmpty () 448
CommIsFull () 449
CommPutChar () 450

11.08 Configuration 452
11.09 How to use the COr\1M_PC and the COMMBGND

Module 452
11.10 How to use the COMM_PC and the COMMRTOS

Module 453
11.11 Bibliography 455

PC Services.. 495
12.00 Character Based Display 495
12.01 Saving and Restoring DOS's Context.. 498
12.02 Elapsed Time Measurement.. 500
12.03 Miscellaneous 500
12.04 Interface Functions 501

PC_DispChar () 502
PC_DispClrCol () 503
PC_DispClrRow () 504
PC_DispClrScr () 505
PC_DispStr () 506
PC_DOSReturn () 508
PC_DOSSaveReturn () 509
PC_ElapsedIni t () 510
PC_ElapsedStart () 511
PC_ElapsedStop () 513
PC_GetDateTime() 514
PC_GetKey () 515
PC_SetTickRate () 516
PC_VectGet () 517
PC_VectSet () 518

12.05 Bibliography 519

,..C/OS-II, The Real-Time Kernel 535
OSInit () 537
OSSemCreate () 538
OSSemPend () 539
OSSemPos t () 541

xii - Embedded Systems Building Blocks, Second Edition

OSStart () 543
OSStatInit () : 544
OSTaskCreate () 545
OSTaskCreateExt () 548
OSTimeDly () 552
OSTimeDlyHMSM () 553
OSVersion () 555
OS_ENTER_CRITICAL () and

OS_EXIT_CRITICAL () 556

AppendixB

Appendix C

AppendixD

AppendixE

Programming Conventions 571
B.OO Directory Structure 571
B.Ol C Programming Style 573
B.02 Bibliography 585

Acronym, Abbreviation, and Mnemonic
Dictionary 587

HPLISTC and ro 595
D.OO HPLISTC 595
D.Ol TO 596

Companion CD-ROM 599
E.OO Hardware/Software Requirements '" 599
E.Ol Installation 599
E.02 Directory Structure 600
E.03 Finding Errors 602
E.04 Licensing 602

Index 603

Preface
This is the second edition of Embedded Systems Building Blocks, Complete and Ready-to-Use Modules
in C. This is a book of software modules that you can use to design embedded systems. The modules
are some of the most common building blocks of embedded systems: keyboard scanners, display inter
faces, timers, and JlOs. Most of the code is written in highly portable C.

Managers will like this book because it can reduce the amount of time, and thus money, required for
some of the more repetitive aspects of embedded systems design. Each chapter is independent of the
others, allowing you to use only the module(s) you need. Each chapter describes what the module does,
how it works and, what services it provides. This information will help you estimate the resources you'll
need to implement your product.

What's new in the Second Edition?
I made a number of changes from the first edition. The most notable one is, of course, the hard cover
which makes the book more durable. The second major change is that all of the code and examples
have been revised to use IJC/OS-ll. IJC/OS-ll is a Real-Time Operating System that I wrote and is fully
described in my other book, MieroC/OS-IL The Real- Time Kernel (ISBN 0-87930-543-6), R&D Books.
A scaled down version of IJC/OS-I1is provided in object form to allow you to run and change the sam
ple code.

I decided to use the Borland C/C++ compiler V4.51 instead ofV3.1 because some of you had indi
cated that the version 3 tools are no longer available. I also included a makefile to build the sample
code instead of relying on the IDE (Integrated Development Environment). The makefile can easily
be changed so the code can be compiled for just about any other target processor.

Chapter I, "Sample Code", has been completely revised. Chapter 2, "Real-Time Systems Con
cepts", now contains over 10 new pages. For all the building blocks, I now have a section that presents
the APls (Application Programming Interfaces) in a standard format. This allows you to better use the
interface functions of each building block. In the first edition, Appendix F contained all the data sheets
of electronic components I used. I decided to move the data sheets to the companion CD-ROM in PDF
form to reduce the book size by about 100 pages and save a few trees in the process.

In the first edition, I included the execution times of each of the building block interface functions
provided in the book. This process was quite tedious and so I decided to drop this in the second edition.
Also, the 80386 computer I had used to come up with the execution times was retired a few years ago.

xiii

xiv - Embedded Systems Building Blocks, Second Edition

Goals

This book is designed to aid embedded systems programmers by providing ready-to-use modules. If the
code in this book doesn't match your exact requirements, you can use the code as a starting point. In
other words, it is a lot easier to modify code than to start from scratch. The main objective of this book
is to save you time.

Intended Audience
This book is for embedded system programmers, consultants, and students interested in embedded sys
tems. I assume you know C and have a minimal knowledge of assembly language. You should also
understand microprocessors and have a basic electronics background. The hardware presented in this
book is, however, fairly easy to understand. Because the code is written in C, you can apply the concepts
presented in this book to a much broader range of microprocessors (assembly language would not be
portable).

Ifyou are a student interested in embedded systems, this book will take some of the mysteries out of
the unique requirements of embedded system software design by providing you with concrete program
ming examples. This book will also allow students to build much more complex embedded systems than
would otherwise be possible in the classroom.

Portability

The code presented in this book is written in ANSI C and is highly portable. C has been the language of
choice for embedded system designs because C has the following features:

C code is easier to write and understand than code in assembly language.

• The code generated by some C compilers approaches assembly language in efficiency.

Once written, C code often can be used on different processors. This is not the case for assembly
language code.

In many cases, less than 10% of the code uses more than 90% of the CPU time. You can always opti
mize this time-critical code by using assembly language. The non-time critical code (90% of the code),
can still be written in C. If you are still using assembly language to design embedded systems, you
should consider obtaining a C compiler and writing portions of your code in C.

Hardware interface functions have been carefully isolated to minimize the amount of work required
to adapt the module to your own hardware environment. I have kept the assembly language to a mini
mum, and in the places where I have used assembly language, I have kept the code as clear and simple
as possible.

What Will You Need to Use this Book?

The code supplied with this book assumes you will be using a PC (80486 minimum) computer running
under either Windows 95/98/NT or DOS v4.x and higher. The code was compiled with Borland Interna
tional's (now called Inprise) C++ v4.51 (see www.borland.com). You should have about 5 Mbytes of
free disk space on your hard drive.

Acknowledgments - xv

Acknowledgments
First and foremost, I would like to thank my wife for her encouragement, understanding, and patience.
This book would never have been possible without her. I would also like to thank my children James
(age 9) and Sabrina (age 6) for putting up with having just a mom for a few months while I was 'hiding'
in my office working on this new edition. I hope one day they will understand. Special thanks to Dr.
Bernard Williams and all the fine people at R&D Books for their help in making this book a reality.
Finally, I would like to thank you for buying this book and I hope it will live up to your expectations.

xvi - Embedded Systems Building Blocks, Second Edition

Introduction
I've been designing embedded systems for more than 17 years. During that time, I've noticed that some
of the pieces always seem to keep coming back. I have concluded that 80+ percent of the code for an
embedded product seems to be similar to the previous product. I always seem to need to read analog
and discrete inputs, output control signals on analog and discrete outputs, provide some form of user
interface and thus, I need to read/scan keys on a keyboard and put information on a display device of
some sort (7-segment numeric and/or to an LCD module). Most embedded controllers seem to have an
asynchronous serial port (i.e., DART, Universal Asynchronous Receiver Transmitter) and interfacing to
a laptop seems like a natural thing to do. I also find myself needing to trigger events when a certain
amount of time expires, and to keep track of the date and time. Although it was fun and challenging to
develop some of these modules at one point in my career, having to do the same thing over again for
each new project has become mundane and even unpleasant. I find that the real challenge is to develop
application code that makes my products unique. Over the years, I've written fairly generic modules to
accomplish some of the functions mentioned above. As I used these modules, I optimized and enhanced
them, giving me a good collection of Embedded Systems Building Blocks.

As Steve McConnell mentions in his book, Code Complete, "The single biggest way to improve
both the quality of your code and your productivity is to reuse good code." In his fine book, The Art of
Programming Embedded Systems, Jack Ganssle states that, "It's ludicrous that we software people rein-
vent the wheel with every project. Wise programmers make an ongoing effort to build an arsenal of
tools for current and future projects Collect algorithms!"

If you already write software for embedded systems, this book will provide you with portable,
ready-to-use code so that you can save time with your next embedded system design. Time to market is
becoming just as important (and in some instances, more important) than the cost of the product itself.
Reduced time-to-market provides a competitive advantage.

If I can save you days or even weeks of programming time on one of your products, I will have met
my objectives. You might decide to use the code provided in this book for rapid prototyping or as a per
manent addition to your final product. All of the modules presented in this book most likely have noth-

xvii

xviii - Embedded Systems Building Blocks, Second Edition

ing to do with what makes your product unique. In other words, your application code is what makes
your product different. For example, you may need a keyboard scanning routine and an LCD display
module in a FAX machine. What you provide in this product is your FAX machine expertise and you
shouldn't have to spend time with keyboard scanning and LCD display details.

It is very difficult to write 100% reusable code. This is especially true for embedded systems
because most embedded systems have very unique requirements and most likely limited memory to
hold both the executable portion of your code and its data. The code presented in this book is not
intended for embedded systems that will be sold in very large volume. This is because large volume
applications are very cost sensitive which means you must typically account for just about every single
byte of memory (ROM and RAM); my focus was not to save every single byte.

Figure, Listing, and Table Conventions

You will notice that when I reference a specific element in a figure, I use the letter 'F' followed by the
figure number. A number in parentheses following the figure number represents a specific element in
the figure that I am trying to bring your attention to. 'F1.2(3)' thus means look at the third item in Fig
ure 1.2.

Listings and tables work exactly the same way except that a listing starts with the letter 'L' and a
table starts with the letter 'T'.

Source Code Conventions
All of the building block objects (functions, variables, #define constants and macros) start with a pre
fix indicating that they are related to the specific building block. For example, all clock module func
tions and variables start with elk. Similarly, all timer manager functions and variables start with Tmr.

Functions are found in alphabetical order in all the source code files. This allows you to quickly
locate any function.

You will find the coding style I use is very consistent. I have been adopting the K&R style for many
years. However, I did add some of my own enhancements to make the code (I believe) easier to read
and maintain. Indention is always 4 spaces, tabs are never used, always at least one space around an
operator, comments are always to the right of code, comment blocks are used to describe functions, etc.

I also use and combine acronyms, abbreviations, and mnemonics (AAMs) to make function, vari
able, and #define names in a hierarchical way (see Appendix C).

Figure 1.1

Introduction - xix

A block diagram representing the key areas covered in
this book.

Asynchronous
Serial Communications

Rx ~B-TX
•Keyboard .L

1-1 KEY I~ J--------!---------l~ -.&ISPR~~jacc-YI CD
: : UOO _'_I, ,, ,
, I

Discrete Inputs: : Discrete Outputs, ,
Lir~its ------'0 : Your : ~ LampsSWItches------. :..: DO Motors
Statuses ------. 01 ...~ Application ... -+ Fans
Etc. ------.: Etc.,,

Analog Inputs: Analog Outputs

Temperatures ------'G : -tE Actuators
Pressures ------. AI ...-.l ... AO Valves
Levels ------. : : Meters
Etc. ------. t : Etc.

/'f t "'"",

888
Clock

Calendar
Operating

System
(Kernel)

Timer
Manager

Figure 1.1 is a block diagram representing the key areas covered by this book. Even though the
building blocks shown in the figure interact mostly with hardware, I have carefully isolated hard
ware-dependent code to a few easy-to-change functions or constants. This makes the code easy to port
to your own environment. Also, I avoided using assembly language except when absolutely necessary.

Chapter Contents

Each chapter describes one or more of the building blocks shown in the figure. The building blocks are
mostly independent of one another, so you can jump to any chapter you need. However, you should read

xx - Embedded Systems Building Blocks, Second Edition

at least Chapter 1 to familiarize yourself with some of my conventions. You will also need to understand
the material presented in Chapter 9 in order to understand Chapter 10.

Chapter 1 tells you how to install the software provided on the CD-ROM. The chapter also tells you
about some of the conventions I use and then provides you with an example on how to use some of the
modules presented in this book. I decided to include this information early in the book to allow you to
start using the code as soon as possible.

Chapter 2 introduces real-time systems concepts such as foreground/background systems, critical
sections, resources, multitasking, context switching, scheduling, reentrancy, task priorities, mutual
exclusion, semaphores, intertask communications, task synchronization, task coordination, interrupts,
clock ticks, etc.

Chapter 3 describes one of the building blocks shown in Figure 1.1, keyboards. Chapter 3 describes
keyboard basics and provides you with a general purpose module that can scan and decode any key
board matrix from a 3x3 to an 8x8 key arrangement. The keyboard module can buffer keystrokes, repeat
the same key if the key is held down for a certain length of time, keep track of how long the key has
been pressed, and allow you to define multiple scan codes for each key. The code can be easily
expanded to support larger keyboards.

Chapter 4 will show you how to control LED (Light Emitting Diode) displays. LED displays can
consist of discrete LEDs, seven-segment modules, or any combination of both. Chapter 4 provides you
with a module that can multiplex LEDs from a 3x3 to an 8x8 arrangement. The code can easily be
changed to accommodate larger displays.

Chapter 5 provides you with a software module that will control Character LCD Modules which are
based on the Hitachi HD44780 Dot Matrix LCD Controller & Driver chip. Character LCD (Liquid
Crystal Display) modules are display devices that can display alphanumeric data.

Chapter 6 describes a software-driven clock/calendar module that keeps track of hours, minutes, sec
onds, days, months, years (including leap years) and day-of-week. The code also provides you with a
32-bit timestamp which can be used to mark the occurrence of events.

Chapter 7 describes a module that manages up to 250 countdown timers. Each timer can be preset to
timeout after up to 100 hours with 0.1 second resolution. You can define a function that will be executed
when the timer expires (one for each timer).

Chapter 8 provides a module that can read discrete inputs and control discrete outputs (up to 250
each). For discrete inputs, the module will tell you whether the input is high, low, transitioned from low
to high, high to low or both. When a transition is detected, a user-definable function can be executed
(one for each input). Each discrete input can also simulate a toggle action (push-ON, push-OFF). Each
discrete output can be turned ON, turned OFF, or made to blink at a user-definable rate.

Chapter 9 will give you tools to improve the efficiency of mathematical calculations in embedded
processors. The concepts presented in this chapter will be used in Chapter 10.

Introduction - xxi

Chapter 10 describes how to read and scale analog inputs and how to scale and control analog out
puts. This chapter also provides you with code that will read and scale up to 250 analog inputs and scale
and update up to 250 analog outputs.

Chapter 11 discusses asynchronous serial communications and specifically provides you with code
that performs buffered serial I/O on a Pc. There are actually two versions of this code. One version can
be used by a DOS application while the other assumes the presence of a real-time kernel.

AppendixA describes how to use MicroCIOS-II, The Real-Time Kernel. /lCIOS-II (for short) is a
portable, ROM-able, preemptive, real-time, multitasking kernel. The internals of /lCIOS-II are fully
described in my other book, MicroC/OS-ll, The Real-Time Kernel, which is also available (along with a
diskette containing the source code) from R&D Books (see the ad at the back of the book). Most of the
code presented in Embedded Systems Building Blocks assumes the presence of a real-time kernel. Spe
cifically, I make use of semaphores and time delays which are available on most (if not all) commer
cially-available real-time kernels. To allow you to use the code in this book, I have included a compiled
version of /lCIOS-II (compiled using a Borland C++ v4.51 compiler for an Intel 80x86 Large Model).

Appendix B describes some of my programming conventions. Specifically, I describe my directory
structures and C programming style.

Appendix C lists the acronyms, abbreviations, and mnemonics that I used in the code presented in
this book.

Appendix D presents two DOS utilities that I use: TO and HPLISTC. TO is a utility that I use to
quickly move between MS-DOS directories without having to type the CD (change directory) com
mand. HPLISTC is a utility to print C source code in compressed mode (i.e., 17CPI) and allows you to
specify page breaks. The printout is assumed to be to a Hewlett Packard (HP) Laserjet type printer.

Appendix E describes how to install the source code provided on the companion CD-ROM included
with this book and describes the licensing policy with regards to using the code in commercial applica
tions.

Web Site

To provide better support to you, I created the /lCIOS-II web site (www.uCOS-II.com). You can obtain
information about:

news on /lCIOS, /lCIOS-II, and Embedded Systems Building Blocks,

upgrades,

bug fixes,

answers to frequently asked questions (FAQs),

application notes,

books,

classes,

links to other web sites, and more.

xxii - Embedded Systems Building Blocks, Second Edition

Bibliography
Ganssle, Jack G.
The Art ofProgramming Embedded Systems
San Diego, California
Academic Press, Inc.
ISBN 0-12-274880-8

McConnell, Steve
Code Complete, A Practical Handbook of Software Construction
Redmond, Washington
Microsoft Press
ISBN 1-55615-484-4

Chapter 1

Sample Code
This chapter provides you with an example on how to use some of the embedded systems building
blocks described in this book. I decided to include this chapter early in the book to allow you to start
using the code as soon as possible. Before getting into the sample code, I will describe some of the con
ventions I use throughout the book.

The sample code was compiled using the Borland International (now called Inprise) C/C++ com
piler V4.51 and options were selected to generate code for an Intel/AMD 80186 processor (large mem
ory model) although the compiler was also instructed to generate floating-point instructions. I realize
that the 80186 doesn't have hardware assisted but most PCs nowadays contain at least a 80486 proces
sor which has floating-point hardware. The code was actually run and tested on a 300 MHz Intel Pen
tium-Il based PC which can be viewed as a super fast 80186 processor (at least for my purpose). I chose
a PC as my target system for a number of reasons. First and foremost, it's a lot easier to test code on a
PC than on any other embedded environment (i.e., evaluation board, emulator etc.) - there are no
EPROMs to bum, no downloads to EPROM emulators, CPU emulators, etc. You simply compile, link,
and run. Second, the 80186 object code (Real Mode, Large Model) generated using the Borland C/C++
compiler is compatible with all 80x86 derivative processors from Intel or AMD.

Embedded Systems Building Blocks assumes the presence of a real-time kernel. For your conve
nience, I included a copy (in object form) of JiC/OS-I/, The Real-Time Kernel (see Appendix A for
details).

1.00 Installing Embedded Systems Building Blocks
R&D Books has included a companion CD-ROM to Embedded Systems Building Blocks (ESBB). The
CD-ROM is in MS-DOS format and contains all the source code provided in this book. It is assumed
that you have a DOS, Windows 95, Windows 98, or Windows NT-based computer system running on an
80x86, Pentium, or Pentium-ITprocessor. You will need less than about 10 Mbytes of free disk space to
install ESBB and its source files on your system.

~efore starting the installation, make a backup copy of the files found on the companion CD-ROM.
To install the code provided on the CD-ROM, follow these steps:

1

2 - Embedded Systems Building Blocks, Second Edition

1. Load DOS (or open a DOS box in Windows 95/98/NT) and specify the C: drive as the default drive

2. Insert the companion CD-ROM in your CD drive

3. Enter -ccddri.vec-: INSTALL <cddrive> [drive]

Note that «cddri ve» is the drive letter where your CD is found and, [drive] is an optional drive
letter indicating the destination disk on which the source code provided in this book will be installed. If
you do not specify a drive, the source code will be installed on the current drive.

INSTALL is a DOS batch file called INSTALL. BAT and is found in the root directory of the compan
ion CD-ROM. INSTALL. BAT will create a \SOFTWARE directory on the specified destination drive.
INSTALL. BAT will then change the directory to \ SOFTWARE and copy the file ESBB. EXE from the A:

drive to this directory. INSTALL. BAT will then execute ESBB. EXE, which will create all other directo
ries under \ SOFTWARE and transfer all source and executable files provided in this book. Upon comple
tion, INSTALL. BAT will delete ESBB . EXE and change the directory to
\ SOFTWARE \ BLOCKS\ SAMPLE\TEST where the example code executable is found.

Make sure you read the READ. ME file on the companion CD-ROM for last minute changes and
notes.

Also see Appendix E for a list of files and directories created.

1.01 How Each Chapter Is Organized
Each chapter in this book briefly introduces and describes the features of the "Embedded Systems
Building Block" provided in the chapter. A more detailed description generally follows the introduction.
Next, I describe the internals of the module. You will find:

the name of the directory where the module's files are located,

the name of the files for the building block,

the naming conventions related to the module, and

the step-by-step description of how the module works.

Your application interfaces with each module through functions. Interface functions allow the details
of the module to be hidden from your own code. This is called data abstraction. If done properly, data
abstraction allows you to change the implementation details of the module without affecting your appli
cation code. In other words, your application always sees the same module even though you may
change the internals of the module. Each interface function is presented along with a description of how
to use the function and what arguments are expected.

The modules provided in this book have been developed for use on fairly low-end 8-bit processors. I
purchased an IBM PC/AT compatible breadboard to test some of the hardware aspects of the modules
presented in this book. This breadboard made testing a breeze. The breadboard I used was the JDR
Microdevices (see bibliography) PDS-601 which cost only $80. The PDS-601 contains an ISA bus
interface, decoding logic, an Intel 8255A chip, an Intel 8253 (similar to an 82C54), and a large bread
board area.

In every building block, I tried to isolate target-specific code into a few functions and configuration
constants, i.e., #defines. This allows you to easily adapt the code to your own environment. Thus,
each chapter has a configuration section which describes how to change the code so that it can work in
your target system.

Some of the chapters, specifically Chapters 3,4, 8, 10 and 11, include a section called, "How to Use
the ??? Module." This section provides an example on how you can actually use the module in an appli-

Chapter 1: Sample Code-3

cation. The example describes how to properly initialize the code and how to invoke some of its ser- 1
vices.

Each chapter ends with a bibliography, source code listings, and pointers to one or more data sheets
(stored on the CD-ROM) of an electronic components mentioned in the chapter.

1.02 INCLUDES.H

You will notice that every. C file in this book contains the following declaration:

Listing 1.1 Master INCLUDEfile

#include "includes.h"

INCLUDES. H allows every . C file in your project to be written without concern about which header
file will actually be included. In other words, INCLUDES. H is a Master include file. The only drawback
is that INCLUDES. H includes header files that are not pertinent to some of the .C file being compiled.
This means that each file will require extra time to compile. This inconvenience is offset by code porta
bility. You can certainly edit INCLUDES. H to add your own header files. The actual INCLUDES. H I
used is found in Listing 1.24 at the end of this chapter.

1.03 Compiler Independent Data Types
Because different microprocessors have different word lengths, I have created a number of type defini
tions that ensures portability (see \SOFTWARE\uCOS-II\Ix86L-FP\OS_CPU.H (see Appendix A,
Listing A. I) for the 80x86 real-mode, large model). Specifically, ESBB and flC/OS-1I code never make
use of C's short, int, and long data types because they are inherently non-portable. Instead, I
defined integer data types that are both portable and intuitive as shown below.

Listing 1.2 Compiler independent data types

typedef unsigned char

typedef unsigned char

typedef signed char

typedef unsigned int

typedef signed int

typedef unsigned long

typedef signed long

typedef float

typedef double

BOOLEAN;

INTBU;

INTBS;

INT16U;

INT16S;

INT32U;

INT32S;

FP32;

FP64;

The INT16U data type, for example, always represents a 16-bit unsigned integer. ESBB, flClOS-II,
and your application code can now assume that the range of values for variables declared with this type
is from 0 to 65535. A compiler for a 32-bit processor could specify that an INT16U would be declared
as an unsigned short instead of an unsigned into Where the code is concerned, however, it still

4 - Embedded Systems Building Blocks, Second Edition

deals with an INT16U. The above code fragment provide the declarations for the 80x86 and the Bor
land C/C++ compiler as an example.

1.04 CFG.Cand CFG.H

To allow you to easily adapt the code in this book to your environment, I created two user-configurable
files called CFG. C and CFG. H. All the target-specific code has been conveniently located for you in
CFG. C and CFG. H.You don't have to edit every. C and . H file to use the code in this book. If you adapt
CFG. C and CFG. H to your environment, you can use every module 'as is'.

CFG. C (Listing 1.22) contains the hardware-specific functions of the modules presented in this
book. CFG.H (Listing 1.23) contains the configuration #defines for each module. CFG.C and CFG.H

are found in the \SOFTWARE\BLOCKS\SAMPLE\SOURCE directory. In order to use CFG. C and CFG. H,

you must 'tell' the compiler to ignore the same declarations in the code for the modules. You accom
plish this by defining the constants CFG_C and CFG_H in INCLUDES. H.

1.05 Global Variables
The following is a technique that I use to declare global variables. As you know, a global variable needs
to be allocated storage space in RAM and must be referenced by other modules using the C keyword
extern. Declarations must thus be placed in both the . C and the . H files. This duplication of declara
tions, however, can lead to mistakes. The technique described in this section only requires a single dec
laration in the header file, but is a little tricky to understand. However, once you know how this
technique works, you will apply it mechanically.

In all . H files that define global variables, you will find the following declaration:

Listing 1.3 External references

#ifdef xxx_GLOBALS

#define xxx_EXT

#else

#define XXX_EXT extern

#endif

Each variable that needs to be declared global will be prefixed with XXX_EXT in the . H file. 'xxx' rep
resents a prefix identifying the module name. The module's. C file will contain the following declara
tion:

Listing 1.4 •Cfile declarations ofglobal variables

#define xxx_GLOBALS

#include "includes.h"

When the compiler processes the . C file it forces XXX_EXT (found in the corresponding . H file) to
"nothing" (because XX2CGLOBALS is defined) and thus each global variable will be allocated storage
space. When the compiler processes the other .C files,)ooCGLOBALS will not be defined and thus

Chapter 1: Sample Code - 5

)ooCEXT will be set to extern, allowing you to reference the global variable. To illustrate the con
cept, let's look at DIO. H (from Chapter 8) which contains the following declarations:

Listing 1.5 Example using DIO. H
III

#ifdef OIO_GLOBALS

#define OIO_EXT

#else

#define OIO_EXT extern

#endif

DIO_EXT DIO_DI

DIO_EXT DIO_DO

OITbl[OIO_MAX_OI] ;

DOTbl[010_MAX_DO];

DIO. C contains the following declarations:

Listing 1.6 Example using DIO. C

#define OIO_GLOBALS

#include "includes.h"

When the compiler processes DIO. C, it makes the header file (DIO. H) appear as shown below
because DIO_EXT is set to "nothing":

Listing 1.7 Expanding DIO. H

010_01 OITbl[OIO_MAX_OI];

DIO_DO DOTbl [OIO_MAX_DO] ;

The compiler is thus told to allocate storage for these variables. When the compiler processes any
other . C files, the header file (DIO. H) looks as shown by the following code because DIO_GLOBALS is
not defined and thus DIO_EXT is set to extern.

Listing 1.8 Expanded . Hfile other than DIO.H

extern 01o_01 01Tbl[OIO_MAX_OI];

extern OIO_DO DOTbl[OIO_MAX_DO];

In this case, no storage is allocated and any . C file can access these variables. The nice thing about
this technique is that the declaration for the variables is done in only one file, the .H file.

6 - Embedded Systems Building Blocks, Second Edition

1.06 OS_ENTER_CRITICAL () and
OS_EXIT_CRITICAL ()

Throughout the source code provided in this book, you will see calls to the following macros:
OS_ENTER_CRITICAL () and OS_EXIT_CRITICAL (). OS_ENTER_CRITICAL () is a macro that
disables interrupts and OS_EXIT_CRITICAL () is a macro that enables interrupts. Disabling and
enabling interrupts is done to protect critical sections of code. These macros are obviously pro
cessor specific and are different for each processor. These macros are found in OS_CPU. H (see
Appendix A, Listing A.l) and for the code provided in this book, these macros are defined as fol
lows.

Listing 1.9 Critical section macros

#define OS_ENTER-CRITlCAL () asm {PUSHF; CLI}

#define OS_EXIT_CRITlCAL() asm POPF

Your application code can make use of these macros as long as you realize that they are used to disable
and enable interrupts. Disabling interrupts obviously affects interrupt latency so be careful. You can
also protect critical sections using semaphores.

1.07 ESBB Sample Code
The sample code is found in the \ SOFTWARE\ BLOCKS\ SAMPLE\ SOURCE of the installation directory.
This source directory contains the following files:

CFG. C (Listing 1.22)

CFG. H (Listing 1.23)

INCLUDES. H (Listing 1.24)

OS_CFG. H (Listing 1.26)

TEST. C (Listing 1.27)

TEST. LNK (Listing 1.28)

CFG . C and CFG. H were discussed in section 1.04. INCLUDES. H was discussed in section 1.02. OS

CFG. H is a configuration file needed by IlC/OS- II and should not be altered unless you obtain the full
source version of IlC/OS-II (see Appendix A for details). TEST. LNK is the linker command file and is
shown in Listing 1.28.

The sample code is actually found in TEST.C (see Listing 1.27) and will be described in this section.
The sample provided (along with the building blocks used) in this chapter was compiled using the

Borland C/C++ V4.51 compiler in a DOS box on a Windows 95 platform. To make the process easy, I
created a rnakefile called TEST.MAR (see Listing 1.29). The rnakefile is invoked by the batch file
MAKETEST. BAT (see Listing 1.25). Both files are found in the \ SOFTWARE\ BLOCKS\ SAMPLE\ TEST

directory. To build the sample code, you need to change your current directory (using the DOS CD
command) to \SOFTWARE\BLOCKS\SAMPLE\TEST and type:

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > MAKETEST

Chapter 1: Sample Code - 7

You should note that my Borland compiler is installed on my E: drive, but you can easily change 1
the makefile to have it point to the proper directory and drive by changing the following lines in
TEST.MAK:

Listing 1.10 Tool declarations in TEST.MAK

##

TOOLS

###

BORLAND=E:\BC45

BORLAND_EXE=E:\BC45\BIN

/lC/OS-II is a scalable operating system which means that the code size of /lC/OS-II can be reduced
if you are not using all of its services. However, because /lC/OS-1Iis not provided in source form in this
book, you will be limited to the features I needed to run the sample code. You can obtain the full source
version of /lC/OS-1Iby obtaining a copy of my other book, MicroC/OS-ll, The Real-Time Kernel, ISBN
0-87930-543-6.

Once built, you can run the sample code by typing:

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > TEST

The display on your PC should look as shown in Figure 1.1. You will notice that there is no sample
code for Chapter 3 "Keyboards", Chapter 4 "Multiplexed LED Displays", and Chapter 5 "Character
LCD Modules" because you would need some special hardware which I didn't want to assume.

8 - Embedded Systems Building Blocks, Second Edition

Figure 1.1 DOS Window display for Sample code

EMBEDDED SYSTEMS BUILDING BLOCKS
Complete and Ready-to-Use Modules in C

Jean J. Labrosse
SAMPLE CODE

Chapter 3, Keyboards
Chapter 4, Multiplexed LED Displays
Chapter 5. Character LCD Modules

-No Sample Code-

Chapter
DO #0:
DO #1:
DO #2:

8, Discrete IIOs
50% Duty Cycle (Async)
50% Duty Cycle (Async)
25% Duty Cycle (Sync)

Tmr1: 02:00.0

Chapter
Date:
Time:
TS
Date:

Chapter
TmrO:

6, Time-Of-Day Clock
Friday December 31, 1999
23:58:00
1999-12-31 23:58:00

11 uS Time: 4 uS
7, Timer Manager
01:03.0

Chapter 10, Analog IIOs
AI 110:

Chapter II, Async. Serial Comm.
Tx
Rx

MicroC/OS-II V2.00 #Tasks: 14 #Task switch/sec: 345
<-PRESS 'ESC' TO QUIT-)

CPU Usage: 1 %

The sample code basically consists of 13 tasks as listed in Table 1.1.

Table 1.1 Tasks in sample code
Module/File Task Priority

TEST.C Analog VO Test Task 10 (Highest)

TEST.C Clock Test Task 11

TEST.C Asynchronous Serial Comm. Tx Test Task 12

TEST.C Asynchronous Serial Comm. Rx Test Task 13

TEST.C Discrete I/O Test Task 14

TEST.C Timer Manager Test Task 15

TEST.C Statistic / PC Keyboard Test Task 16

CLK.C Time-of-Day Clock Task 51

TMR.C Timer Manager Task 52

DIO.C Discrete VO Manager Task 53

AIO.C Analog VO Manager Task 54

flC/OS-ll Statistic Task 62

flC/OS-ll Idle Task 63 (Lowest)

Chapter 1: Sample Code - 9

IlC/OS-1icreates two internal tasks: the idle task and a task that determines CPU usage. Four of the
building blocks each create a task and TEST. C creates the other 7 tasks.

As can be seen from the screen of Figure 1.1, there is no sample code for Chapters 3, 4, and 5
because they would require hardware not available on a regular Pc.

For Chapter 6, the test code sets up the CLKmodule's current date and time to December 31, 1999 at
11:58 PM to show you that the CLK module is year 2000 (Y2K) compliant by correctly rolling over to
Saturday, January 1,2000 in two minutes. However, by the time you get this book, the Y2K problem
should be a thing of the past. You should note that the CLK module doesn't change the actual date and
time of your PC. When you run the code, you will also see the timestamp being updated. Also, I used the
elapsed time measurement functions in PC. C to determine the execution time of ClkFormatDate ()
and ClkFormatTime ().

The sample code for Chapter 7 sets up 2 timers. The first timer expires after 1 minute and 3 seconds
and the second expires after 2 minutes. When the first timer expires, the message, "Timer #0 Timed
Ou t !" will be displayed just below the line showing timer fI(J. When the second timer expires, the mes
sage, "Timer #1 Timed Out!" below its timer. Instead of displaying messages, you could perform
any other operation including signaling a task.

For Chapter 8, although the DIO task continuously reads discrete inputs (DI), I don't actually make
use of that feature because it would require external hardware. Instead, I only set up 3 discrete outputs
(DO) for which I display the state of these outputs on the screen (TRUE or FALSE for DO fI(J, HIGH or
LOWfor DO #1 and, ON or OFF for DO #2). The first discrete output is setup to produce a 'blinking' out
put with a 50% duty-cycle (50% ON, 50% OFF) at a rate of 1 Hz. The second discrete output is also set
up to 'blink' but does so at half the rate of the first channel (0.5 Hz). Finally, the third output blinks with
a 25% duty cycle but runs in 'synchronous mode' (see Chapter 8).

There is no sample code provided for Chapter 9 because this chapter doesn't actually contain a
building block.

For Chapter 10, instead of having you come up with an ADC on a PC, I simply decided to 'simulate'
the ramping of an analog input which increases by 10 counts every time an ADC reading is required.
When the counts reach 32700 (assuming a simulated 15-bit ADC), the counts are reset back to O. Note
that there aren't too many commercial 15-bit ADCs but, as you will see in Chapter 10, you can fake
your software into thinking that all ADCs with less than 16 bits can actually look like they have 15 bits!

For Chapter 11, I created two tasks. One task sends the value of a counter to the other task. How
ever, this message is actually sent through the serial port (COMI on the PC). To see the operation of the
sample code, you'll need to truly run in DOS (i.e., not in a DOS box under Windows 95/98 or NT) and
connect the Tx and Rx lines of COMI on your PC together. In order to accomplish this, I used a
'LapLink' serial cable (you can buy this at any good computer store) that I plugged into my Pc. I then
shorted pins 2 and 3 of either the DB-9 female or DB25 female connector using a paper clip.

1.07.01 main ()

A flC/OS-1I application looks just like any other DOS application. You compile and link your code just
as if you would do a single threaded application running under DOS. The . EXE file that you create is
loaded and executed by DOS, and execution of your application starts from main () .

The sample code (TEST. EXE) serves two purposes. First, if you invoke the sample code from the
DOS prompt and specify either "display" or "DISPLAY' [L1.II(l)] as an argument, your screen will
display the corresponding characters that corresponds to each byte value from OxOO to OxFF. In other
words, to see the character mapping simply type:

TEST display

III

10 - Embedded Systems Building Blocks, Second Edition

or,

TEST DISPLAY
at the DOS prompt.

If you simply typed TEST at the DOS prompt, then main () clears the screen to ensure we don't
have any characters left over from the previous DOS session [L1.II(2)]. Note that I specified to use
white letters on a black background. Since the screen will be cleared, I could have simply specified to
use a black background and not specify a foreground. If I did this, and you decided to return to DOS
then you would not see anything on the screen! It's always better to specify a visible foreground just for
this reason.

Listing 1.11 main ()

void main (int argc, char *argv[])

if (argc > 1) {

if (strcrnp (argv[l], "display")

strcrnp (argv[l], "DISPLAY")

TestDispMap () ;

exit(O);

° I I
0) {

(1)

PC_DispClrScr{DISP_FGND_WHITE + DISP_BGND_BLACK);

OSInit () ;

OSFPlnit{);

PC_DOSSaveReturn{);

PC_VectSet(uCOS, OSCtxSw);

OSTaskCreateExt{TestStatTask,

{void *)0,

&TestStatTaskStk[TASK_STK_SIZE],

STAT_TASK_PRIO,

STAT_TASK_PRIO,

&TestStatTaskStk[O] ,

TASK_STK_SIZE,

(void *)0,

OS_TASK_OPT_SAVE_FP) ;

OSStart{);

(2)

(3)

(4)

(S)

(6)

(7)

(8)

A requirement of IJC/OS-II is that you call OSIni t () [Ll.II (3)] before you invoke any of its other
services. OSIni t () creates two tasks: an idle task which executes when no other task is ready-to-run
and a statistic task which computes CPU usage.

Chapter 1: Sample Code -11

Because the code is assumed to run on a 80486 or Pentium class computer, I decided to make use of 1
hardware assisted floating-point and thus, we need to invoke the code that will tellllC/OS-II to initialize
the floating-point support [L1.11(4)].

The current DOS environment is then saved by calling PC_IXJSSaveReturn () [Ll.l1(5)]. This
allows us to return to DOS as ifwe had never started llC/OS-IT. A lot happens in PC_IXJSSaveReturn ()
and this is all explained in Chapter 12 (section 12.01).

main () then calls PC_VectSet () [L1.1l(6)] to installllC/OS-II's context switch handler. Task
level context switching is done by issuing an 80x86 1NT instruction to this vector location. I decided to
use vector Ox80(i.e., 128) because it's not used by either DOS or the BIOS.

Before starting multitasking, I create one task [Ll.l1(7)] called TestStatTask (). It is very impor
tant that you create at least one task before multitasking begins with OSStart () [Ll.l1(8)]. Failure to
do this will certainly make your application crash. Once OSStart () is called, multitasking begins and
llC/OS-II runs the highest priority task that is ready-to-run. This happens to be TestStatTask ()
which will be described next.

1.07.02 TestStatTask()

Initialization of the sample code continues in TestStatTask (). llC/OS-II needs a little more setup
which is accomplished by 'installing' the tick handler [Ll.12(l)]. Next, I decided to change the tick
rate from the default DOS 18.2 Hz to 200 Hz [Ll.12(2)]. This allows better granularity when we need
to run tasks at regular intervals. You should note that a lot of setup has to be done to move from the
DOS environment to the llC/OS-ITenvironment. In an actual embedded system, there would be no need
to save the CPU registers to return back to DOS (see PC_IXJSSaveReturn ()) because we would most
likely not return back to DOS to begin with. We would, however, most likely need to install the tick ISR
handler and set a hardware timer which would provide a tick source.

Note that main () purposely didn't set the interrupt vector to llC/OS-II's tick handler because you
don't want a tick interrupt to occur before the operating system (llC/OS-II) is fully initialized and run
ning. If you run code in an embedded application, you should always enable the ticker (as I have done
here) from within the first task.

Before we create any other tasks, we need to determine how fast you particular PC is. This is done
by calling the llC/OS-II function OSStat1nit () [L l.l2(4)]. Calling OSStatInit () allows
llC/OS-II to determine the CPU usage (in percent) of your CPU while your application (in this case, the
test code) is running.

Once llC/OS-II knows about your CPU, we call TestInitModules () to initialize the building
blocks that are used in the sample code. The code for TestInitModules () is shown in Listing 1.13.

Listing 1.12 Beginning of TestStatTask ()

void TestStatTask (void *pdata)

INT8U i;

INT16S key;

char s[81];

pdata ; pdata;

12 - Embedded Systems Building Blocks, Second Edition

Listing 1.12 Beginning of TestStatTask ()

OS_ENTER_CRITlCAL();

PC_VectSet(Ox08, OSTickISR);

PC_SetTickRate(OS_TICKS_PER_SEC);

OS_EXIT_CRITlCAL();

PC_DispStr(O, 22, "Determining CPU's capacity ... ",

DISP_FGND_WHITE);

OSStatlnit();

PC_DispClrRow(22 t DISP_FGND_WHITE + DISP_BGND_BLACK);

TestlnitModules();

(1)

(2)

(3)

(4)

(5)

(6)

TestIni tModules () starts off by initializing the elapsed time measurement provided in the PC
services (see Chapter 12) [L1.l3(l)]. Because MODULE_KEY_MN [L1.l3(2)], and MODULE_LED

[L1.l3(3)] and MODULE_LCD [Ll.13(4)] are set to 0 in INCLUDES.H, the keyboard, LED, and LCD
building blocks are not initialized. All of the other building blocks, however, are initialized because
they are enabled in INCLUDES.H [L l.l3(5-8)]. The last building block (COMM) uses the RTOS version
(see Chapter 11) because it is used in conjunction with /lCIOS-II. In this case, I assume that COMMl on
your PC is used for the test and it is setup to communicate at 9600 baud [Ll.13(10-13)].

Listing 1.14 is part of TestStatTask () and is responsible for creating the test tasks which will exer
cise the building blocks used in the sample code. Each task that is to be managed by /lCIOS-II must be
created. This allows /lCIOS-II to know about where the task code resides, what stack is to be allocated to
the task, what priority is given to the task, and more. Youcan find out more about OSTaskCreateExt ()
in Appendix A.

Listing 1.13 TestIni tModules ()

static void TestlnitModules (void)

PC_Elapsedlnit();

#if MODULE_KEY_MN

Keylnit();

#endif

#if MODULE_LED

Displnit();

#endif

(1)

(2)

(3)

Listing 1.13 TestIni tModules ()

#if MODULE_LCD

Displnit(4, 20);

#endif

#if MODULE_CLK

Clklnit () ;

#endif

#if MODULE_TMR

Tmrlnit () ;

#endif

#if MODULE_DIO

DIOlnit();

#endif

#if MODULE_AIO

AIOlnit() ;

#endif

#if MODULE_COMM_BGND

Cornmlnit();

#endif

#if MODULE_COMM_RTOS

CornmInit () ;

#endif

#if MODULE_COMM_PC

CommcfgPort(COMMl, 9600, 8, COMM_PARITY_NONE, 1);

CornmSetlntVect(COMMl);

CornmRxlntEn(COMMl);

#endif

Chapter 1: Sample Code -13

(4)

(5)

(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

III

14 -Embedded Systems Building Blocks, Second Edition

Listing 1.14 Creation oftest tasks (TestStatTask())

OSTaskCreateExt(TestClkTask,

(void *)0,

&TestClkTaskStk[TASK_STK_SIZE],

TEST_CLK_TASK_PRIO, TEST_CLK_TASK_PRIO.

&TestClkTaskStk[O].

TASK_STK_SIZE,

(void *)0,

OS_TASK_OPI'_SAVE_FP) ;

OSTaskCreateExt(TestRxTask.

(void *)0.

&TestRxTaskStk[TASK_STK_SIZE1.

TEST_RX_TASICPRIO. TEST_RX_TASK_PRIO.

&TestRxTaskStk[Ol.

TASK_STK_SIZE.

(void *)0.

OS_TASK_OPI'_SAVE_FP) ;

OSTaskCreateExt(TestTxTask.

(void *)0.

&TestTxTaskStk[TASK_STK_SIZE].

TEST_TX_TASK_PRIO. TEST_TX_TASK_PRIO.

&TestTxTaskStk[O].

TASK_STK_SIZE.

(void *)0,

OS_TASK_OPI'_SAVE_FP) ;

OSTaskCreateExt(TestTmrTask,

(void *)0.

&TestTmrTaskStk[TASK_STK_SIZE].

TEST_'I'MR_TASK_PRIO. TEST_'I'MR_TASK_PRIO.

&TestTmrTaskStk[O] ,

TASK_STK_SIZE.

(void *)0.

OS_TASK_OPI'_SAVE_FP) ;

Chapter 1: Sample Code-IS

Listing 1.14 Creation oftest tasks (TestStatTask())

OSTaskCreateExt(TestDIOTask,

(void *)0,

&TestDIOTaskStk[TASK_S~SIZE],

TEST_DIO_TASK:-PRIO, TEST_DIO_TASK_PRIO,

&TestDIOTaskStk[O] ,

TASK_STK_SIZE,

(void *}O,

OS_TASK_OPI'_SAVE_FP) ;

OSTaskCreateExt(TestAIOTask,

(void *)0,

&TestAIOTaskStk[TASK:-STK_SIZEj,

TEST_AIO_TASK_PRIO, TEST_AIO_TASK_PRIO,

&TestAIOTaskStk[O] ,

TASK_STK_SIZE,

(void *}O,

OS_TASK:-OPI'_SAVE_FP) ;

Listing 1.15 is also part of TestStatTask (). The literals (i.e., text that doesn't change on the
screen) are displayed by calling TestDispLit () [L1.l5(l)]. This is done to avoid wasting CPU time
updating the display with information that doesn't change. Next, TestStatTask() displays the cur
rent version of !lCIOS-II at the bottom left hand corner of the screen [LI.15(2)].

TestStatTask () then enters an infinite loop. This is the main body of the task code. Every sec-
ond (you'll see why later) the following information is displayed at the bottom of the screen:

the number of tasks created (OSTaskCtr) [L1.l5(3)],

the number of context switches (i.e., task switches) per second (OSCtxSwCtr) [Ll.15(4)] and,

the percentage of the CPU used by the sample code (OSCPUUsage) [L1.l5(5)].

You may question why I am updating the display of the task counter every second since there are no
other tasks created from here on. The reason is to allow you to create other tasks which could be
delayed. In other words, you may decide to create a task only after some time has expired.

This task then checks to see if a key has been pressed [Ll.15(6)] and if so, determines whether the
key pressed was the Esc key [Ll.l5(7)]. If the Esc key is pressed, the sample code exits back to DOS.
Before we can return to DOS, though, we must reinstate the original DOS COMM1 ISR vector [L1.l5(8)].
Returning back to DOS is accomplished by calling PC_DOSReturn () [L1.15(9)] (see Chapter 12, sec
tion 12.01).

In order to display the number of context switches per second, the global variable OSCtxSwCtr
must be cleared every second [L1.l5(1O)].

To prevent this task from using all the CPU (remember that we are in an infinite loop), the task calls
the !lCIOS-II service OSTirneDlyHMSM() [L1.l5(1l)] (see Appendix A). This call suspends the cur
rent task until some time expires. In our case, the arguments 0, 0, 1, 0 specify a one second delay.
When one second expires, !lCIOS-II will resume execution of this task immediately after the call to
OSTirneDlyHMSM () or, at the top of the for () loop.

III

16 - Embedded Systems Building Blocks, Second Edition

Listing 1.15 Task portion of TestStatTask ()

TestDispLit () ;

sprintf(s, "V%ld.%02d",

OSVersion() / 100,

OSVersion() % 100);

PC_DispStr(13 , 23, s, DISP_FGND_YELLOW + DISP_BGND_BLUE);

(1)

(2)

for (;;) {

sprintf (s , "%5d", OSTaskCtr); (3)

PC_DispStr(3o, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN);

sprintf(s, "%5d", OSCtxSwCtr); (4)

PC_DispStr(56, 23, s, DISP_FGND_BLUE + DISP_BGND_CYAN);

sprintf (s, "%3d", OSCPUUsage);

PC_DispStr(75, 23, s, DISP_FGND_BLUE·+ DISP_BGND_CYAN);

if (PC_GetKey(&key) == TRUE) {

if (key == ox1B) {

#if MODULE_COMM_PC

CommRcllntVect(COMM1);

#endif

OSCtxSwCtr = 0;

OSTimeD1yHMSM(0, 0, 1, 0);

1.07.03 Test;ClkTask ()

(5)

(6)

(7)

(8)

(9)

(10)

(11)

TestClkTask () is shown in Listing 1.16 and this task shows some of the functions of the CLK build
ing block of Chapter 6 which consist of code to maintain a time-of-day clock.

We first set up the current time-of-day and date to December 31, 1999 at 12:58 PM (i.e., 2 minutes
before midnight) [Ll.I6(1)].

The task portion of the code (i.e., the infinite loop) is then entered and the function PC_
ElapsedStart () is invoked [L 1.16(2)] to setup the PC's timer #2 so that it can be used to mea
sure the execution time of ClkFormatDate() [Ll.I6(3)]. ClkFormatDate() formats the cur-

Chapter 1: Sample Code-I7

rent date maintained by the CLK building block into an ASCII string. The format selected (i.e., 2) III
is "Day Month DD, yyyy" where 'Day' is the day of the week (Monday, Tuesday ...), 'Month' is
the month of the year (January, February ...), 'DD' is the calendar day (1, 2, 3 ...), and 'yyyy' is
the current year using 4 digits. The execution time of ClkFormatDate () is captured by calling
PC_ElapsedStop () [L1.16(4)] which returns the time in microseconds. Both the current date
and the execution time are then displayed.

Listing 1.16 TestClkTask ()

void TestClkTask (void *data)

char s [81];

INT16U time;

TS ts;

data = data;

ClkSetDateTime(12, 31, 1999, 23, 58, 0);

for (;;) {

PC_ElapsedStart();

ClkFormatDate(2, s);

time = PC_ElapsedStop () ;

PC_DispStr(8, 11, "

PC_DispStr(8, 11, s, DISP_FGND_BLUE +

sprintf(s, "%3d uS', time);

PC_DispStr(8, 14, s, DISP_FGND_RED +

DISP_FGND_WHITE);

DISP_BGND_CYAN) ;

(1)

(2)

(3)

(4)

PC_ElapsedStart(); (5)

ClkFormatTime(l, s); (6)

time = PC_ElapsedStop(); (7)

PC_DispStr(8, 12, s , DISP_FGND...:.BLUE + DISP_BGND_CYAN);

sprintf(s, "%3d uS", time);

PC_DispStr(22, 14, s, DISP_FGND_RED + DISP_BGND_LIGHT_GRAY);

ts = ClkGetTS(); (8)

ClkFormatTS(2, ts, s); (9)

PC_DispStr(8, 13, s , DISP_FGND_BLUE + DISP_BGND_CYAN);

OSTimeDlyHMSM(O, 0, 0, 100); (10)

18 - Embedded Systems Building Blocks, Second Edition

The function PC_ElapsedStart () is called again [L1.l6(5)] to setup the PC's timer If2 so that it
can be used to measure the execution time of ClkFonnatTime () [L1.l6(6)]. ClkFonnatTime () for
mats the current time maintained by the CLK building block into an ASCII string. The format selected
(i.e., 1) is "HH: MM: SS" which consist of the current time in 24 hour format (i.e., up to 23:59:59). The
execution time of ClkFormatTime () is captured by also calling PC_ElapsedStop () [L1.l6(7)].
Both the current time and the execution time are then displayed.

The CLK building block also maintains a special format called a timestamp. A timestamp basically
captures the date and time in a single 32-bit variable as shown in Figure 1.2. This allows your applica
tion to mark an event such as the occurrence of an error or the reception of a message and capture when
that event occurred. You can thus obtain the current timestamp by calling ClkGetTS () [L1.l6(8)]. It
is easier to display the timestamp in ASCII which is why ClkFormatTS () is invoked [L1.l6(9)]. The
format selected "YY¥Y-MM-DD HH:MM: SS" is new to this second edition. I personally like this format
because it displays the year as 4 digits followed by the month and then the day. What's also convenient
about this ASCII format is that it can be sorted easily. OSTimeDlyHMSM () is then called to suspend
this task for 100 milliseconds. In other words, this task executes 10 times per second [L1.l6(1O)].

Figure 1.2 Timestamp format

L0..59

B25--·B22 B16----B12 B5-------BO
B31------B26 B21----B17 Bll-------B6

Year I Month I Day I Hours I Minutes I--S-e-c-on-d-s-I

l L L 0..59

0..23

0..31

1..12

l.07.fJ4 Test'lmrTask ()

Tes tTmrTask () is shown in Listing 1.17 and shows some of the functions of the TMR building block
of Chapter 7 which consists of code that maintains up to 250 down counters that can be set to any time
from 1 tenth of a second to 99 minutes, 59 seconds and 9 tenths of a second or, 99:59.9 (using the
nomenclature MM: SS. T). When a timer expires, it can optionally call a user-definable function.

We first start up by configuring timer lIO's timeout function [L1.l7(l)]. When timer 110 times out, it
will call TestTmrOTO () which simply displays "Timer #0 Timed OUt!". The timer is then initial
ized to 1:03.9 [L1.l7(2)] and then it's started [L1.l7(3)].

Chapter 1: Sample Code -19

We then configure a second timer, timer #l's timeout function [Ll.17(4)]. When timer #1 times out, 1
it will call TestTmr1TO () which also displays a similar message, "Timer #1 Timed Out!". The
timer is then initialized to 2:00.0 [L1.l7(5)] and then it's started [L1.l7(6)].

Listing 1.17 TestTmrTask()

void TestTmrTask (void *data)

char s [81];

INT16U time;

data = data;

TmrCfgFnct(O, TestTmrOTO, (void *)0); (1)

TmrSetMST(O, 1, 3, 9) ; (2)

TmrStart(O); (3)

TmrCfgFnct (1, TestTmr1TO, (void *)0); (4)

TmrSetMST (1, 2, 0, 0) ; (5) ~--
TmrStart (1) ; (6)

for (;;) {

TmrFormat(O, s);

PC_DispStr(8, 16, e , DISP_FGND_RED+DISP_BGND_LIGHT_GRAY);

(7)

TmrFormat(l, s); (8)

PC_DispStr(8, 18, s, DISP_FGND_RED+DISP_BGND_LIGHT_GRAY);

OSTimeDlyHMSM(O, 0, 0, 50); (9)

The time remaining for both timers is displayed [L1.17(7-8)] and the task body continuously loops
20 times per second (it doesn't really need to be this fast though) [L1.17(9)].

1.07.05 TestDIOTask ()

TestDIOTask () is shown in Listing 1.18 and shows some of the functions of the DIO building block
of Chapter 8. The DIO module reads and updates up to 256 discrete inputs and outputs. A discrete input
normally represents the state of an external switch (a pushbutton switch, a pressure switch, a tempera
ture switch, etc.). A discrete output generally consists of a single relay output to control a single light, a
valve, a motor, etc.

20 - Embedded Systems Building Blocks, Second Edition

Although the DIO task can read discrete inputs (DI), I don't actually make use of that feature
because it would require external hardware. Instead, I only set up 3 discrete outputs (DO) for which I
display the state of these outputs on the screen:

For DO 110 we will display TRUE or FALSE

For DO #1 we will display HIGH or LOW

• For DO #2 we will display ON or OFF

The DIO task [DIOTask () , see Chapter 8] which is responsible for updating the DIs and DOs will
execute 10 times per second (see CFG.H, DIO_TASK_DLY_TICKS). To get a 10 second synchronous
count value, we call DOSetSyncCtrMax () [Ll.I8(l)] which sets DOSyncCtrMax to 100 (l00 * 0.1
sec). Note that you wouldn't need to invoke this function if you didn't use the 'synchronous' mode of
the DIO module.

I then configure DO 110 to blink at a rate of 1 Hz with a 50% duty cycle [Ll.18(2)]. The values spec
ified as arguments to DOCfgBlink () do not correspond to RTOS ticks but instead, they correspond to
number of updates of the DIO module. In other words, if the DIO task is updated 10 times per second
then a value of 10 represents 1 second, a value of 20 represents 2 seconds, etc. To finalize the configu
ration of DO 110, I need to set the mode to asynchronous blinking and non-invert the output (see Chapter
8, Figure 8.9) [L1.18(3)]. Configuration of DO #1 is similar to DO 110 except that I set the blink at a rate
to 0.5 Hz (i.e., 2 seconds) [Ll.18(4)]. DO #1 is also set to asynchronous blinking and non-invert the
output [Ll.I8(5)]. Configuration of DO #2 is set to synchronous blinking and its output is also
non-inverted [L1.18(6-7)].

We then enter the task body which simply obtains the state of each discrete output and displays it on
the screen. This happens 10 times per second although this doesn't need to be done this fast considering
that none of the outputs change this quickly.

Listing 1.18 TestDIOTask{)

void TestDIOTask (void *data)

BOOLEAN state;

data = data;

DOSetSyncCtrMax(100);

DOCfgB1ink(0, DO_BLINK_EN, 5, 10);

DOCfgMode (0, DO_MODE_BLINK_ASYNC, FALSE);

DOCfgB1ink(1, DO_BLINK_EN, 10, 20);

DOCfgMode (1, DO_MODE_BLINK_ASYNC, FALSE);

DOCfgBlink(2, DO_BLINK_EN, 25. 0);

DOCfgMode(2, DO_MODE_BLINK_SYNC, FALSE);

(1)

(2)

(3)

(4)

(5)

(6)

(7)

Chapter 1: Sample Code -21

Listing 1.18 TestDIOTask(}

for (;;) {

state = DOGet(O);

if (state == TRUE)

pCJJispStr(49, 6, "TRUE ",

DISP_FGND_YELLOW + DISP_BGND_BLUE);

else {

PC_DispStr(49, 6, "FALSE",

DISP_FGND_YELLOW + DISP_BGND_BLUE);

state DOGet(l);

if (state == TRUE)

PC_DispStr (49, 7, "HIGH",

DISP_FGND_YELLOW + DISP_BGND_BLUE);

else {

PC_DispStr (49, 7, "LOW ",

DISP_FGND_YELLOW + DISP_BGND_BLUE);

state DOGet(2);

if (state == TRUE)

pCJJispStr(49, 8, "ON",

DISP_FGND_YELLOW + DISP_BGND_BLUE);

else {

PC_DispStr(49, 8, "OFF",

DISP_FGND_YELLOW + DISP_BGND_BLUE);

OSTimeDlyHMSM(O, 0, 0, 100);

1.07.06 TestAIOTask ()

TestAlOTask () is shown in Listing 1.19 and shows some of the functions of the AlO building block
of Chapter 10. The AlO module reads and updates up to 256 analog inputs and outputs. Each analog
input can be configured to read just about any type of sensor (temperature, pressure, position, flow, etc.).
An analog output can be made to control a large number of devices such as a valve, an actuator, a posi
tioner, etc.

It's difficult to show the operation of this building block without actually having an ADC (Analog
to Digital Converter) and a DAC (Digital to Analog Converter) on a Pc. What I decided to do is simply
simulate a ramping ADC and convert the value to some engineering units. I thought of using the
LM-34A (see Chapter 10, Figure 10.7) as my 'simulated' sensor and generate temperatures from -50 to

III

22 - Embedded Systems Building Blocks, Second Edition

about 300 degrees Farenheit. I assumed that my ADC would be made to look like a l6-bit signed ADC,
referenced at 10 volts, the gain would be set to 2.5 and, I have a 1.25 volt offset so that I could read
negative temperatures. From Equations 10.9 and 10.10, I obtain a gain of 0.01220740 and an offset of
--4095.875 and I configure AI #0 accordingly [L1.19(l)].

The task code simply consists of reading the current engineering value (i.e., the temperature of the
simulated LM34A) from the analog channel [L1.l9(2)] and displaying it on the screen. You should note
that I didn't need to display decimal places and thus, I converted the temperature to an integer.

The task code repeats 100 times per second [L1.l9(3)]. Again, this rate is not necessary and has
been chosen simply to make the CPU busy.

Listing 1.19 TestAIOTask ()

void TestAIOTask (void *data)

char s [81];

FP32 value;

INT16S temp;

INT8U err;

data = data;

AICfgConv(O, 0.01220740, -4095.875, 10);

AICfgCal(O, 1.00, 0.00);

for (;;)

err = AIGet(O, &value);

temp = (INT16S) value;

sprintf (s , "%5d", temp);

PC_DispStr(49, 11, s , DISP_FGND_YELLOW + DISP_BGND_BLUE);

OSTimeDlyHMSM(O, 0, 0, 10);

1.07.07 TestTxTask () and TestRxTask ()

(1)

(2)

(3)

It is assumed that you would connect a 'LapLink' serial cable on COMl and short the Tx line (pin #3) to
the Rx line (pin #2) on the free end of the DB9F connector.

TestTxTask () is shown in Listing 1.20 and shows some of the functions of the COMM building
block of Chapter 11. This task simply increments a l6-bit counter, converts it to ASCII [L1.20(l)] and
sends the string on COMI one character after the other [L1.20(2)]. A delay of 5 ticks is added in case
you run this code under Windows 95/98 or NT [L1.20(3)]. This is needed to accommodate overhead
imposed by Windows. If you were to run this code either in DOS or on an actual embedded system, you

Chapter 1: Sample Code - 23

would not need the delay. I actually tested this code on a DOS-based machine all the way to 38400 III
baud for a few hours without any glitches, however, it crashes with Windows 95/98.

Tes tRxTask () is shown in Listing 1.21 and is basically the receiving task for the transmitted mes
sages from TestTxTask (). This task waits for characters to be received on COM1 [Ll.21(l)]. As each
character is received, it is placed in a buffer [Ll.21(2)]. When the carriage return character ('\n' or
OxOD) is received, the string is terminated [L1.21(3)] and the string received is displayed [L1.21(4)]. Of
course both the transmitted and received messages should match.

Listing 1.20 TestTxTask ()

void TestTxTask (void *data)

INT16U ctr;

char s[81];

char *ps;

data ~ data;

ctr ~ 0;

for (;;) {

sprintf(s, "%05d\n", ctr); (1)

PC_DispStr(49, 16, s, DISP.c...FGND_YELWW + DISP_BGND_BLUE);

ps ~ s;

while (*ps ! ~ NUL)

CommPutChar(COMMl, *ps; OS_TICKS_PER_SEC);

OSTimeDly(5) ;

ps++;

ctr++;

(2)

(3)

24 - Embedded Systems Building Blocks, Second Edition

Listing 1.21 TestRxTask ()

void TestRxTask (void *data)

INT8U err;

INT8U nbytes;

INT8U c;

char s[81] ;

char *ps;

data ~ data;

for (;;) {

ps s r

nbytes 0;

do

*ps++ ~ c;

(1)

(2)

nbytes++;

while (c !~ '\n' && nbytes < 20);

*ps ~ NUL; (3)

PC_DispStr(49, 17, s, DISP_FGND_YELLOW + DISP_BGND_BLUE); (4)

1.08 Bibliography
JDR Microdevices
1850 South 10th Street
San Jose, CA 95112-4108
(800) 538-5000
(408) 494-1400

PDS-601 link:
http://www.jdr.com/interact/item.asp?itemno~gr-pds

Listing 1.22

/*

Chapter 1: Sample Code - 25

CFG.C

Einbedded Sys terns Building Blocks
Corrplete and Ready-to-Use Modules in C

Configuration File

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

III

* Filename : CFG.C
* Programner : Jean J. Labrosse

*/

#include "includes.h"

/*$PAGE*/

26 - Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued)

1*

CFG.C

KEYBOARD

=TIALIZE I/O FDRTS

***** ****** *** * ** * * * * ** * * * * ** * * * * * * *** ***** ** * * * *** * * ** * * * * * * * * * * * * **** * * * * ** ** * * * ** * * * ** * * * * * * * * * * * * * * * *
*1

#if MJIXJLE_KEY MN
void KeyInitPort (void)
{

1* Initialize 82C55A: x-oor, B=IN (COIS) , c-cor (RG'lS) *1

1*

KEYBOARD

SELEJ:'T A RG'I

* Description
* Arguments
* Returns
* Note

*1

This function is called to select a raw on the keylxlard.
, rON' is the rON number (0 .. 7) or KEY_ALL_RG'lS

none
The rON is selected by wri ting a IfltI.

void KeySelRON (INT8U row)

if (rON == KEY_ALL_RCWS) {
outp(KEY_FDRT_RG'I, OxOO);

else {
outp(KEY_FDRT_RG'I, -(1 « rON»;

1*

1* Force all rONS IfltI

1* Force desired rON IfltI

*1

*1

**************************** * ******* * ** * ****** *** ** * * * * * * * * * * * * ** *
KEYBOARD

READ COLUMNS

* Description
* Arguments
* Returns

*1

This function is called to read the column port.
none
the cCXTPlement of the column port thus, ones are keys pressed

INT8U KeyGetCol (void)
{

1* Ccmpl.ement, columns (ones indicate key is pressed) *1
}

#endif

I*$PAGE*I

Listing 1.22 (continued)

1*

CFG.C

Chapter 1: Sample Code -27

III

MULTIPLEXED LED DISPLAY

I/O PORI'S =TIALIZATICN

* Description: This is called by DispInit() to initialize the output ports used in the LED ITDJ.1tiplexing.
* Arguments none
* Returns none
* Notes 74HC573 8 bit latches are used for both the segments and digits outputs.

*1

#if M)IXJLE_LED

void DispInitPort (void)
{

outp (DISP_PORI'_SEl3, OxOO);
outp(DISP_PORI'_DIG, OxOO);

1*

1* Turn OFF segments
1* Turn OFF digits

*1
*1

MULTIPLEXED LED DISPLAY
SEl3MENI'S ou tput

* Description: This function outputs seven-segment patterns.
* Arguments seg is the seven-segment patterns to output
* Returns none

* I

void DiSP;)UtSeg (INI'8U seg)

1*

MULTIPLEXED LED DISPLAY
DIGIT output

* D2scription:
* Arguments
* Returns

This function outputs the digit selector.
rnsk is the nask used to select the current digi t.
none

*1

void DispOutDig (INI'8U rnsk)

}

#endif

I*$PAGE*I

28 - Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued)

I·

CFG.C

I£D DISPLAY MJruLE
=TIALIZE DISPLAY DRIVER 1/0 PORTS

• Description This initializes the I/O ports used by the display driver.
* Arguments none
* Returns none

* I

#if MJruLE_I£D
void DispInitPort (void)
{

1*

1* Set to Mode 0: A are output, B are inputs, C are outputs * I

I£D DISPLAY MJruLE
WRITE DATA TO DISPLAY DEVICE

* rescription
• Arguments

* Returns

* Notes

This function sends a single BYTE to the display device.
.data' is the BYTE to send to the display device

none
You will need to adjust the value of DISP_DLY_CNrS (I£D.H) to produce a delay l:etween
writes of at least 40 uS. The display I used for the test actually required a delay of
SO uS! If characters seem to appear randanly on the screen, you might want to increase
the value of DISP_DLY_CNrS.

*1
void DispDataWr (mrSU data)
{

mrsu dly;

outpIDISP_PORT_DATA, data);
outp(DISP_PORT_CMD, OxOl);

DispDunmy () ;
outpIDISP_PORT_CMD, OxOO);

for Idly = DISP_DLY_CNrS; dly > 0; dly--) {
DispDunmy () ;

1* Write data to display rrodule
1* Set E line HIGH
i· Delay about 1 uS

1* Set Eline I.IJtI

1* Delay for at least 40 uS

·1
* I

* I
* I
* I

Listing 1.22 (continued)

/*

CFG.C

Chapter 1: Sample Code - 29

III

ten DISPLAY MJOOLE
SELKT CXMIAND OR DATA REGISTER

* Description: This function read a BYTE from the display device.
* Arguments : none

**** ** ****** ****** ************** **** ** **** ****** *** ********** * *** ** ** * ** ***** ****** ****** ** **** ****** * ***
*/

void DispSel (INrBU sel)
{

/* Select the corrrrand register (RS low)
if (sel == DISP_SEL_CMD_REG) {

outp(DISP_roRT_CMD, Ox02);
else {

outp(DISP_roRT_CMD, Ox03);

}

#endif

/*

/* Select the data register (RS high)

*/

*/

* ** ***** ** *** * *** *** ** ****** *********** **** ** ** ********** ***** **** * ** ****** **** ******** ****** **** ** ** * ***
ClJX1</CALENDAR M::JOOLE

********** ** ** ** * ****** ****** ****** ****** ****** ********** **** * * **** ** ***** ****** ********* **** **** **** * ***
*/

/*

TlMER MANAGER

******************* ** *********** *** **** **** * *** ****** ******** **** ****** ******** **** ** ****** **** ****** * ***

*/

/*$PN;E* /

30 - Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued)

1*

CFG.C

DISCRErE 1/0 M:JruLE
=TIALIZE PHYSICAL 1I0s

* D:scription
* Arguments

* Returns
* Notes

* I

This function is by DIOInit () to initialze the physical 1/0 used by the DIO driver.

None.
None.
The physical 1/0 is assumed to be an 82C55A chip initialized as fo'LLcws ;

Port A our (Discrete outputs) (Address Ox0300)
Port B rn (Discrete inputs) (Address Ox030l)
Port C our (not used) (Address Ox0302)
Control Word (Address Ox0303)

Refer to the Intel 82C55A data sheet.

#if M:JruLE_DIO
void DIOIninO (void)

outp(Ox0303, Ox82);

1*

1* Port A = our, Port B rn, Port C our

DISCRErE 1/0 M:JruLE
READ PHYSICAL INPlJI'S

* I

* Description

* Arguments

* Returns

*1

This function is called to read and rrap all of the physical inputs used for discrete
inputs and map these inputs to their appropriate discrete input data structure.
None.
None.

void DIRd (void)

DIO_DI *pdi;

INrSU i;
INr8U in;
INr8U rnsk;

pdi = &DI'I'bl[O];
msk = OxOl;
in = inp(Ox0301);
for (i = 0; i < 8; i++) {

pdi->DIIn (BOOLEAN) (in & msk)

msk «= 1;
pdi++;

1 0;

1* Point at beginning of discrete inputs
1* Set rrask to extract bit 0
1* Read the physical port (8 bits)

1* Map all 8 bits to first 8 DI channels

* I
* I
* I
* I

Listing 1.22 (continued)

1*

CFG.C

Chapter 1: Sample Code - 31

III

DISCREI'E I/O MJIXJLE

UPDATE PHYSICAL ourPUI'S

* D2scription

* Argurrents
* Returns

This function is called to map all of the discrete output channels to their appropriate
physical destinations.
None.

None.

*1

void lXWr (void)

DIOJO *pdo;
INr8U ij
INr8U out;
INr8U rnsk;

pdo &WI'bl[O];
rnsk OxOl;
out OxOO;
for (i = 0; i < 8; i++) {

if {pdo->I:COut == TRUE)
out 1= rnsk;

rnsk «= 1;
pdO++i

)

outp(Ox0300, out);
)

#endif

I*$PAGE*I

1* Point at first discrete output channel
1* First 00 will be mapped to bit 0
1* Local 8 bit port inage
1* Map first 8 OOs to 8 bit port inage

1* OUtput port image to physical port

*1
*1
*1
*1

*1

32 - Embedded Systems Building Blocks, Second Edition

Listing 1.22 (continued)

f*

CFG.C

ANA"I.JX, I/O MJlXJLE
=TIALIZE PHYSICAL I/Os

* rescription

* Arguments

* Returns

*f

This function is called by AIOIni t () to ini tialize the physical I/O used by the AIO
driver.
None.
None.

#if MJlXJLE_AIO
void AIOInitIO (void)

f* This is where you will need to put you initialization code for the AI:Cs and DACs
f* You should also consider initializing the contents of your DAC(s) to a known value.

f*

*f
*f

ANA"I.JX, If0 MOI:ULE

READ PHYSICAL INPUI'S

* Description

* Arguments

* Returns

*f

This function is called to read a physical AI:C channel. The function is assumed to
also control a multiplexer if rrore than one analog input is connected to the AI:C.
ch is the AI:C logical channel mnnber (0 ..AIO_MAX_AI-1) .
The raw AI:C counts from the physical device.

INrl6S AIRd (INI'8U chi
(

f* This is where you will need to provide the code to read your AI:C(s). *f
f * AIRd () is passed a 'L03ICAL' channel nurrilJer. You will have to convert this logical channel *f
f* nurrilJer into actual physical port locations (or addresses) where your MUX. and AI:Cs are located. * f
f* AIRd{) is responsible for: *f
f* 1) selecting the proper MUX. channel, *f
f* 2) Waiting for the MUX. to stabilize, *f
f* 3) Starting the AI:C, *f
f* 4) Waiting for the AI:C to complete its conversion, *f
f* 5) Reading the counts from the AI:C and, * f
f* 6) Returning the counts to the calling function. * f

return (chr :

f*$PAGE*f

Listing 1.22 (continued)

1*

CFG.C

Chapter 1: Sample Code - 33

III

ANAl.CG 110 M:J[J(JLE

UPDATE PHYSICAL CUI'PUI'S

* Description This function is called to write the 'raw' counts to the proper analog output device
(i.e. DIIC). It is up to this function to direct the DAC counts to the proper DAC if rrore

than one DIIC is used.
* Argurrents ch is the DIIC logical channel number (0 ..AIO_MAX_AO-1) .

cnts are the DIIC counts to write to the DIIC

* Returns None.

*1

void AOtlr (INr8U ch, INr16S cnts)

ch Chi

cnts cnts;

1* This is where you will need to provide the code to update your DIIC (s) . * I
1* AOtlr() is passed a 'L03ICAL' channel number. You will have to convert this logical channel *1
1* number into actual physical port locations (or addresses) where your DllCs are located. *1
1* AONr() is responsible for writing the counts to the selected DIIC based on a logical number. * I

}

#endif

34 - Embedded Systems Building Blocks, Second Edition

Listing 1.23

1*

CFG.H

El11bedded Sys tans Building Blocks
Canplete and Ready-to-Use Modules in C

Configuration Header File

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : CFG.H
* Progranrner : Jean J. Labrosse

*1

1*

KEYOOARD CCNFIGURATICN CX1'ISTANI'S
(Chapter 3)

* Note: These #defines would normally reside in your application specific code.

1* Number of scan times before auto repeat executes again *1
1* Number of scan times before auto repeat function engages* I

*1

#if M:lOOLE_KEY_MN

#define KEY_BUF_SIZE 10

#define KEY_MAXYCWS 4
#define KEY_MAX_CXlIS 6

#define KEY_FDRT_RCW Ox03l2
#define KEY_FDRT_CXlL Ox03ll
#define KEY_FQRTJW Ox0313

#define KEY_RPr_DLY 20
#define KEY_RPr_START_DLY 100

#define KEY_SCAN_TASK_DLY 50
#define KEY_SCAN_TASK_PRIO 50
#define KEY_SCAN_TASK_SI'lCSIZE 1024

1* Size of the KEYBOARD illffer

1* The ll'aXimurn number of rows on the keyl:XJard
1* The ll'aXimurn number of columns on the keyl:XJard

1* The port address of the keyboard m3.trix RCWs
1* The port address of the keyboard mat.rix CXlWMNs
1* The port address of the 110 ports control word

1* Number of milliseconds between keyboard scans
1* Set priority of keyboard scan task
1* Size of keyboard scan task stack

*1

*1
*1

*1
*1
*1

*I
*1
*1

#define KEY_SHIFTl_MSK

#define KEY_SHIFTl_OFFSET

#define KEY_SHIFT2_MSK

#define KEY_SHIFT2_0FFSET

#define KEY_SHIFT3_MSK

#define KEY....SIlIFT3_0FFSET

#endif

I*$PAGE*I

Ox80 1* The SHIFTI key is on bi t B7 of the column input port *1
1* (A OxOO indicates that a SHIFTI key is not present) *1

24 1* The scan code offset to add when SHIFTI is pressed * I

Ox40 1* The SHIFT2 key is on bit B6 of the column input port *1
1* (A OxOO indicates that an SHIFT2 key is not present) *I

48 1* The scan code offset to add when SHIFT2 is pressed *1

OxOO 1* The SHIFT3 key is on bit B5 of the column input port *1
1* (A OxOO indicates that a SHIFT3 key is not present) *1

0 1* The scan code offset to add when SHIFT3 is pressed *1

Listing 1.23 (continued)

/*

CFG.H

Chapter 1: Sample Code - 35

MULTIPLEXED LED DISPLAY DRIVER o:.NFIGURATICN c::cNSTANI'S
(Chapter 4)

*/

#define DISP_PORT_SEl3

#define DISP_PORr_DIG

#define DISP_N_DIG

#define DISP_N_SS

#endif

/*

Ox0300 /* Port address of SEl3MENTS output */
Ox030l /* Port address of DIGITS output */

8 /* Total number of digits (including status indicators) */
7 /* Total number of seven-segment digits */

LCD DISPlAY MJruLE DRIVER o:.NFIGURATICN c::cNSI'ANI'S

(Chapter 5)

*/

#if MJruLEJ.CD

100 /* Number of iterations to delay for 40 US (software loop) */

#define DISP_PORr_I:lATA

#define DISP_PORr_CMD

#endif

/*$PAGE*/

Ox0300

Ox0303

/* Port address of the I:lATA port of the LCD rrodule

/* Address of the Control Word (82C55) to control RS & E
*/
*/

36 - Embedded Systems Building Blocks, Second Edition

Listing 1.23 (continued)

1*

CFG.H

CLCCK/CALENDAR MJOOLE CClNFlGURATICN aNsrANrS
(Chapter 6)

******* *** ** * ** * * * * * * * **** ** *** ***** *** * * * * * * * * **** * * * * *** * * ****** * * * *** ** ** * * * ** * * *** *** *** ******* * * * * * *
*1

#define
#define
#define

CLK_TASICPRIO 45
CLK_DLY_TICKS OS_TICKS_PER_SEX::
CLK_TASK_STI<_SIZE 512

1* This defines the priority of Clkrask()
1* # of clock ticks to obtain 1 second
1* Stack size in BYTEs for Clkrask ()

*1
*1
*1

#define CLK_DATE_EN
#define CLK_TS_EN
#define CLK_USE_DLY

#endif

1*

1

1
1

1* Enable DATE (when 1)
/* Enable TIME-srAMPS (when 1)
1* Task will use osr:imeDly() instead of pend on sem.

*1
*1
*I

TDlER MANAGER

(Chapter 7)

* I

#define 1MR_TASK_PRIO
#define 1MR_DLY_TICKS
#define 1MR_TASK_STI<_SIZE

#endif

I*$PAGE*I

40
(OS_TICKS_PER_SEX:: I 10)

512

20

o

Listing 1.23 (continued)

1*

CFG.H

Chapter 1: Sample Code - 37

III
** * * * * * * * *** *** * * * * ** * ~** ** * ***

DISCREI'E 110 MJ!XJLE cc:NFIGURATIOO ro;rsrANrS
(Chapter 8)

**** ** ** * * * ** * * * * * ***** * ** * * * *** ******* * * ** * * * * ****** * * * * * * ** *** * * * *** * *** * * * * * * ******* * * * *** *** *** * * * ** *
*1

#define DIO_TASICPRIO
#def ine DIO_TASICDLY_TICKS
#define DIO_TASK_SI'K_SIZE

35
(OS_TICKS_PER_SEX:: I 10)

512

#define DIO_MAX_DI
#define DIO_MAX_CO

#endif

1*

8
8

1

1

1* Maximum number of Discrete Input Channels (1. .255)
1* Maximum number of Discrete OUtput Channels (1. .255)

1* Enable code generation to support edge trig. (when 1)

1* Enable code generation to support blink rrode (when 1)

*1
*1

*1

*1

ANAID3 I/O MJ!XJLE cc:NFIGURATIOO ro;rsrANrS

(Chapter 10)

******** ** * ** *** * * * * * * ** *** * * * * ***** **** * * * ** ** ****** ** * * * * * * * **** * ** * *** ** * * * * ******* ** * * * * * **** * * ** * * **
*1

#define AIO_TASK_PRIO
#define AIO_TASK_DLY
#define AIO_TASK_SI'K_SIZE

#define AIO_MAX_AI
#define AIO_MAX_AO

#endif

I*$PAGE*I

30
100
512

8
8

1* Execute every 100 mS

1* Maximum number of Analog Input Channels (1. .250)
1* Maximum number of Analog OUtput Channels (1. .250)

*1

*1
*1

38 - Embedded Systems Building Blocks, Second Edition

Listing 1.23 (continued)

/*

CFG.H

ASYN::::HRCN:XJS SERIAL CCMMUNICATICINS MJruLE C'CW'IGURATICIN CCNSTANI'S

(Chapter 11)

*/

#define c:c:MMl_BllSE

#define CCMM2_BllSE

#endif

#if MJruLE_CXM1_1'13ND

#define c:c:MMl

#define CCMM2

#define CXM1_RX_BUF_SIZE

#define CXM1_TX_BUF_SIZE

#endif

#if MJruLE_CXM1_RIOS

#define C(}1M1

#define CCMM2

#define CXM1_RX_BUF_SIZE

#define aMLTX_BUF_SIZE

#endif

Ox03F8
Ox02F8

2

1
2

64
64

1

2

64
64

/* Base address of PC' s CXMl
/* Base address of PC's COM2

/* Maximum number of characters in Rx illffer of ...
/* ... NS16450 UART. 2 for 16450, 16 for 16550.

/* Number of characters in Rx ring illffer
/* Nurrber of characters in Tx ring illffer

/* Nurrber of characters in Rx ring illffer
/* Number of characters in Tx ring illffer

*/

*/

*/
*/

*/
*/

*/
*/

Listing 1.24

1*

INCLUDES.H

Chapter 1: Sample Code - 39

III
Elnbedded SystEmS Building Blocks

Carplete and Ready-to-Use Modules in C

Master Include File

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filenarre : =ES.H

* Prograrrrner : Jean J. Labrosse

*I

1*

CCNSTANrS

*1

lldefine
#define
#define
#define
#define
#define
#define
#define
#define
#define

MJIXJLE_KEY_MN I
M)IXJLE_LED 0
M)IXJLE_LCD 1

MJIXJLE_CLK 1
MJIXJLE_'IMR 1
M)IXJLE_DIO 1
M)IXJLE_AIO 1

MJIXJLE CXl-lM K: 1
M)IXJLE_CXl-lM_BGND 0
M)IXJLE_CXl-lM_RI'OS 1

1* KJruLE EN1\BLED (1) or DISABLED (0)
1* Keyboard roodule
1* Multiplexed LED roodule

1* LCD Character roodule
1* Clock/calendar roodule
1* Timer Manager rrodule
1* Discrete 1/0 roodule
1* Analog 1/0 roodule
1* Asynchronous serial ccmrunications roodule
1* Foreground/Background buffered serial I/O
1* Real-Time Kernel buffered serial 1/0

*1
*1
*1
* I
*1
*I
*1
*1
*1
*1
*1

#define
#define

1*

1* Elapsed time measurerrent. roodule

1* Indicate that application specific code is found in CFG.C
1* Indicate that configuration #defines is found in CFG.H

*1

*1
*1

CX:li1STANrS

*1

#define FALSE 0
#define TRUE 1

I*$PAGE*I

40 - Embedded Systems Building Blocks, Second Edition

Listing 1.24 (continued)

1*

INCLUDES.H

** ** **** ** * * * * ** ** **** * * ** * ***** * *** ** ** * * ** ** ******* * ***** * * * ** * * **** * * *** * ****** * * *** **** * **** **** * * ***
Standard Libraries (COS)

** * * ** * * ** * **** * * * * * * * * * * * * * * * * *** * * * * * * * * * * * * * * * ** * **** * * * * * *** ** * * ** * ** * * * * **** * * * * ***** *** * * *** ** * *** *
*1

#include
#include
#include
#include
#include
#include
#include

1*

<stdio.h>
<string.h>
<ctype.h>
-estdltb.h»
<conio.h>
-cdos vh»
<setjrnp.h>

**** ****** ****** ***** * ** * * * * * * * * * * 1<* ** * * * * * * ** * * * * * * * ********* * * * * * * ** * * * * * * * *** * * * ** ** * * * * ** * ****** * ** * *
uelOS Header Files

*1

#include
#include
#include
#include

!*$PAGE* I

"\software\ucos-ii \ix86l-fp\bc45\03_cpu.h"
"\software\blocks\sanple\source\os_cfg.h"
"\software\ucos-ii\source\ucos_ii.h"
"\software\blocks\pc\bc45\pc.h"

Listing 1.24 (continued)

/*

INCLUDES.H

Chapter 1: Sample Code - 41

III

Building Blocks Header Files

*/
#ifdef
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#include
#endif

#if
#inc1ude
#endif

#if
#inc1ude
#endif

CFG_H
"\software\blocks\sample\source\cfg.h'

M:)lXJLE_KEY_MN

"\software\blocks\key_mn\source\key.h"

M:)lXJLE_LCD

"\software\blocks\lcd\source\lcd.h"

M:)lXJLE_LED

"\software\blocks\led\source\led.h"

M:)lXJLE_CLK

"\software\blocks\clk\source\clk.h"

M:)lXJLE_ThIR

"\software\blocks\tmr\source\ tmr .h"

M:)lXJLE_DIO

"\software\blocks\dio\source\dio.h"

M:)lXJLE_AIO

"\software\blocks\aio\source\aio.h"

M:)lXJLE_cx::MM_FC

"\software\blocks\conm\source\conm....rx:. h"

M:)lXJLE_cx::MM_B:3ND

"\software\blocks\conm\source\ccmnbgnd. h"

M:)lXJLE_cx::MM_RIDS

"\software\blocks\conm\source\conmrtos.h"

42 - Embedded Systems Building Blocks, Second Edition

Listing 1.25 MAKETEST. BAT

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

.. \TESr

EOlOOFF

CLS
EOiO **** * * * * * *** * * * * * * * * ** * * * * * ** * * '** * * * ** * * '** * ** * * * * '** * * ** * * * '** * * * * ** * '** ** * * * * * * * *
EOlO * Einbedcled Systems Building Blocks

EOlO *
EOlO *
EOlO *
EOlO *
EOlO *
EOlO * FilenaIre MAKEI'EST. Bl\.T

EOlO * Description Batch file to create the application.

EOlO * OUtput TESr.EXE will contain the DJS executable

EOlO * Usage MAKEI'EST

EOlO * Note(s) 1) This file assume that we use a MAKE utility.

mIG * **** ********* ** * **** **** ** **** ******** ***** **** * ** ****** **** ** **** **** ***** ***
EOlO *
EOlO rn

MD .. \WJRK

MD .. \OBJ

MD .. \LST

CD •• \WJRK

COPY .. \TEST\TESr.MAK TEST.MAK

E: \UTILS\MAKE -R -C TESr .BI\.T -#4 -F TESr.MAK

IF N:JI' EXIST TEST.BI\.T OOIO END

COPY TEST.BI\.T ., \TESr Iy
CALL TESr . Bl\.T

:END

CD

Chapter 1: Sample Code - 43

Listing 1.26 OS_CFG.H

/*

uC/OS-II
The Real-Time Kernel

(c) Copyright 1992-1998, Jean J. Labrosse, Plantation, FL
All Rights Reserved

Configuration for Intel 80x86 (Large)

* File : OS_CFG.H
* By : Jean J. Labrosse

*/

/*
**** * *** * *** ***** * *** *** *** *** * * * **** **** ** * ** **** ** ** * ** ** ** * * ** * ** * * **

uC/OS-II c:a<FIGURATICN

*/

III

#define OS_MAX_EVENI'S 5

#define OS_LCWESI'_PRIO 63

#define OS_TASK_STAT_EN 1
#define OS_TASK_STAT_STK_SIZE 512

#define OS_CPU_HOOKS_EN 1
#define OS_MOOX_EN 0
#define OS_MilLEN 1
#define OS_~EN 1
#define OS_SEM_EN 1
#define OS_TASK_CHAN3E_PRIO_EN 0
#define OS_TASK_CREATE_EN 1
#define OS_TASK_CREATE_=_EN 1
#define OS_TASK_DEL_EN 0
#define OS_TASK_SUSPEND_EN 0

/* Max. number of event control blocks in your application... */
/* MUST be >= 2 * /
/* Max. number of rnerrory partitions ... */
/* ... MUST be 2 * /
/* Max. number of queue control blocks in your application */
/* ... MUST be >= 2 */
/* Max. number of tasks in your application '" */

/* ... MUST be >= 2 */

/* Defines the lowest priority that can be assigned */
/* ... MUST NEllER be higher than 63! * /

/* Idle task stack size (# of 16-bit wide entries) * /

/* Enable (1) or Disable(O) the statistics task */

/* Statistics task stack size (# of 16-bit wide entries) */

/* uC/OS-II hooks are found in the processor port files */
/* Include code for MAILBOXES * /
/* Include code for MEMORY MANAGER (fixed sized rnerrory blocks) */
/* Include code for QUEUES * /
/* Include code for SEMAPHORES */
/* Include code for OSTaskChangePrio () * /
/* Include code for OSTaskCreate 0 * /
/* Include code for OSTaskCreateExt () * /
/* Include code for OSTaskDelO * /
/* Include code for OSTaskSuspendO and OSTaskResurneO */

/* Set the number of ticks in one second */

44 - Embedded Systems Building Blocks, Second Edition

Listing 1.27

/*

TEST.C

Eh1bedded Systems Building Blocks
Complete and Reacly-to-Use Modules in C

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : TESr.C
* Prograrnner : Jean J. Labrosse

*/

#include "includes.h"

/*

*/

#define

#define
#define
#define

/*

*/

TESr_TASK_PRIO
STAT_TASK_PRIO
RND_TASK_PRIO

512

10
20
30

/* Size of each task's stacks (# of l6-bit words) */

/*

TestStatTaskStk[TASK_STK_SIZE];
TestTaskStk[TASK_STK_SIZE];
TestRndI'askStk[lOJ [TASK_STK_SlZE};

F"lJN2I'IOO PROTOI'YPES

*/

void
void
void

static void
static void
static void

/*$PAGE*/

TestStatTask(void *data);
TestTask(void *data);
TestRndrask(void *data);
TestInitMoclules (void) ;
Test'IhlrOTO(void *arg);
Test'IhlrlTO(void *arg);

Listing 1.27 (continued)

1*

TEST.C

Chapter 1: Sample Code - 45

III

MAIN

*1

void main (void)

FC_Disr:ClrScr(DISP_FGND_WHITE + DISP_PGND_BLACK); 1* Clear the screen *1
osInit(); 1* Initialize uC/OS-II *1
OSFPInit () ; 1* Initialize f loat.inq-po.int; support; *1
FC_OOSsaveReturn () ; 1* save environment to return to ros *1
FC_VectSet {uCOS, OSCtxSw); 1* Install uC/OS-II's context switch vector *1
osraskCreateExt {TestStatTask, (void *) 0, &TestStatTaskStk[TASK_SI'K_SIZE], srAT_TASK_PRIO,

srAT_TASK_PRIO, &TestStatTaskStk[OJ, TASK_SI'K_SlZE, (void *) 0, OS_TASK_OPT_SAVE_FP);

OSStart(); 1* Start multitasking *1

I*$PAGE*I

46 - Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued)

1*

TEST.C

srAT1sr1CS TASK

*1

void TestStatTask (void *pjata)

INr8U i;
INr16S key;

char s[lOOJ;

pdaca = pjata;

FC_DispStr (21,

FC_DispStr(2l,
FC_DispStr(2l,

1* Prevent canpiler warning

0, EMBEDDED SYSI'EMS BUILDIN3 BUX:KS

DISP_FGND_WH1'IE + DISP_B3ND_RED + DISP_BLINK);
1, "Canplete and Ready-to-Use Mcdules in C", DISP_FGND_WHI'IE);

2, Jean J. Labrosse", DISP_FGND_WH1'IE);
3, SAMPLE CODE", DISP_FGND_WHI'IE);

*1

OS_ENI'ER_CRIT1CAL () ;
FC_Vectset(Ox08, 05TickISR);

FC_SetTickRate(OS_T1CKS_PER_SEl:) ;
OS_EXIT_CRIT1CAL();

1* Install uC/OS-II's clock tick 1SR
1* Reprogram tick rate

*1
*1

FC_DispStr(O, 22, "Determining CPU's capacity ... , DISP_FGND_WH1'IE);

OSStatInit () ; 1* Initialize uC/OS-II' s statistics
FC_DispClrLine(22, DISP_FGND_WH1'IE + DISP_B3ND_BLIICK);

FC_DispStr(0, 22, "#Tasks : xxxxx CPU Usage: xxx %", DISP_FGND_WHI'IE);

FC_DispStr(0, 23, "#Task switch/sec: xxxxx·, DISP_FGND_WH1'IE);
FC_DispStr(28, 24, "<-PRESS 'FSC' 'ill CUIT->", DISP_FGND_WH1'IE + DISP_BLINK);

*1

OSTaskCreateExt(TestTask, (void *)0, &TestTaskStk[TASK_STK_S1ZE], 'IEsr_TASK_PRIO,
'IEsr_TASK_PRIO, &TestTaskStk[O] , TASK_STK_S1ZE, (void *)0, OS_TASK_OPT_SAVE]P);

for (i = 0; i < 10; i++) {

OsraskCreateExt (TestRndTask, (void *) 0, &TestRndTaskStk [iJ [TASK_STK_S1ZE] , RND_TASK_PRIO + i,
RND_TASK_PRIO + i, &TestRndTaskStk[i] [0], TASK_STK_S1ZE, (void *)0, OS_TASK_OPT_SAVE]P);

for (;;) {

sprintf (s. "%5d", 05TaskCtr);
FC_DispStr(18, 22, s , DISP_FGND_BUJE +

1* Display #tasks running
DISP_B3ND_CYAN) ;

*1

sprintf (s , "%3d", OSCPUUsage); 1* Display CPU usage in % *1
FC_DispStr(36, 22, s , DISP_FGND_BUJE + DISP_B3ND_CYAN);

sprintf (s , "%5d", =txs..ctr); 1* Display #context switches per second *1
FC_DispStr(18, 23, s. DISP_FGND_BUJE + DISP_B3ND_CYAN);

=txs..ctr = 0;
sprintf(s, "V%ld.%02d" , OSVersion() 1 100, OSVersion() % 100);
FC_DispStr(75, 24, s , DISP_FGND_YELIJ:::W + DISP_B3ND_BUJE);

Chapter 1: Sample Code - 47

Listing 1.27 (continued) TEST. C

FC_GetDateTime (s); 1* Get and display date and time

FC_DispStr(O, 24, s , DISPJGNILBLUE + DISP_IQID_CYAN);
*1 III

if (FC_GetKey(&key) == '!RUE)
if (key == OxlB) {

FC_IOSRetw:nO;

osrimeDlyHMSM(O, 0, 1, OJ;

j

I*$PAGE*I

1* See if key has been pressed
1* Yes, see if it's the ESCAPE key

1* Return to !XlS

1* wait one second

*1
*/

*1

*/

48 - Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued)

1*

TEST.C

TESl' TASK

* **** ****** ** **** ***** **** ***** *** ************ ***** **** ** *** ******** ********* ********* ***** *** *** **** ****
*1

void TestTask (void *data)

char s [81];

mr16U time;

Task that displays mnnbers randomly!",

ID_BLINICEN, 9, 18);

ID_BLINICEN, 45, 90);
ID_MJDE_BLINK_ASYN2, FAlSE);

ID_MJDE_BLINICASYN2, FAlSE);

1* Initialize Discrete Outputs #0 and #1 *1

data = data;
FC_DispStr(0, 6, "Date:", DISP_FGNILWHITE);

FC_DispStr(0, 7, "Time:", DISP_FGND_WHITE);
FC_DispStr(0, 8, '''I1nr#O:

DISP_FGND_WHITE);

FC_DispStr (0, 9, "'IInr#1:
DISP_FGND_WHITE);

FC_DispStr(0, 10, "ID #0:", DISP_FGND_WHITE);

FC_DispStr (0, 11, "ID #1:", DISP_FGND_WHITE);

TestInitModules () ;

C1kSetDateTime (12, 31, 1999, 23, 57, 55);
'IlnrCfgFnc t (0, Tes t'IlnrOTC, (void *) 0) ;
'IlnrCfgFnct(l, Test'IlnrlTC, (void *)0);

'Ilnr8etMSI'(0, L 3, 9);

'IlnrStart (0) ;
'IlnrSetMSI' (L 2, 0, 0);

'IlnrStart (1) ;

IXX:fgB1ink(0,
IXX:fgBlink(l,

IXX:fgM:lde (0,
IXX:fgM:lde (1 ,

1* Prevent canpi1er warning

1* Initialize all building blocks used

1* Set the c.lock/cajendar
I * Execute when Timer #0 times out

1* Execute when Timer #1 times out

1* Set timer #0 to 1 min., 3 sec. 9/10

1* Set timer #1 to 2 minutes

*I

*1

*1
*1
*1

sec. *1

*1

Chapter 1: Sample Code - 49

Listing 1.27 (continued) TEST. C

for (;;) {
K:_ElapsedStart () ;

ClkFormatDate(2, s);

time = K:_ElapsedStop () ;
K:_DispStr(lO, 6,
K:_DispStr(lO, 6, s. DISP]GND_WHlTE);

sprintf(s, "ClkFormatDate() takes %3d uS", time);
K:_DispStr(0, 15, s , DISP]GND_WHITE);

K:_ElapsedStart () ;

ClkFormatTime(l, s);

time = K:_ElapsedStop () ;
K:_DispStr (10, 7, s , DISP_FGND_WHlTE);

/* Get formatted date from clock/calendar */

/* Get formatted time from clock/calendar */

III

sprintf(s, "ClkFormatTime() takes %3d uS", time);
K:_DispStr(0, 16, s, DISP_FGND_WHlTE);

'IlnrFormat(O, s); /* Get formatted rEmlining time for'Ilnr#O */

K:_DispStr(lO, 8, s , DISP_FGND_WHlTE);

'IlnrFormat(l, s); /* Get formatted renaining time for'Ilnr#l */

K:_DispStr(lO, 9, s. DISP_FGND_WHITE);

K:_Disp:har(lO, 10, ro:::et (0) + '0', DISP_FGND_WHlTE);

K:_DispChar(lO, 11, ro:::et(l) + '0', DISP_FGND_WHITE);

osrimeDlyHMSM(O, 0, 0, 100);

/*$PAGE* /

/* Display state of discrete outputs */

/* Display state of discrete outputs */

50 - Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued)

/*

TEST.C

RANlXM NUMBER TASK

*/

void TestRndTask (void *data)

=su x;

=8U y;

nersu z;

data = data;
for (;;) {

Osr:imeDly (1) ;
x randan(36) ;
y = random(10);
z = randan(10) ;
RC_Disr;:Char (x + 43, y + 10, Z + '0',

}

/*$PAGE*/

/* Find X position where task mnllber will appear
/* Find Y position where task mnllber will appear
/* Find random number fran 0 to 9

DISP_FGND_WHlTE) ; /* Display number at randan locations

*/

*/

*/
*/

Listing 1.27 (continued)

1*

TEST.C

Chapter 1: Sample Code -51

III

EMBEDDED SYSTEMS BUILDIN3 BLCCKS

MOdules Initialization

*1

static void TestInitMbdules (void)
{

#if M:lIULE_ELAPSED
Fe_ElapsedInit () ;

#endif
1* Initialize the elapsed time nodule *1

#if M:lIULE_KEY....MN
KeyInit() ;

#endif

#if M:lIULE_LCD
DispInit(4, 20);

#endif

1* Initialize the keytoard scanning nodule *1

1* Initialize the LCD nodule (4 x 20 disp.) *1

#if M:lIULE_CLK
ClkInit() ;

#endif

#if M:lIULE_'IMR
'IlllrInit () ;

#endif

#if M:lIULE_DIO
DIOInit() ;

#endif

#if M:lIULE_AIO
AIOInit() ;

#endif

#if M:lCULILCCMLFe
CornrCfgPort(C'CMU, 9600, 8, C'CM1]ARITY_NJNE, 1);

#endif

1* Initialize the clock/calendar rrodule

1* Initialize the timer mmager rrodule

1* Initialize the discrete I/O nodule

1* Initialize the analog I/O m:xlule

1* Initialize CCMl on the Fe

*1

*1

*1

*1

*1

#if M:lIULE_C'CM1_B3ND
CcmnInit();

#endif

#if M:lIULE_C'CM1_R'IOS
CcmnInit () ;

#endif
}

I*$PAGE*I

/* Initialize the h.iffered serial I/O nodule* I

1* Initialize the h.iffered serial I/O rrodule* I

52 - Embedded Systems Building Blocks, Second Edition

Listing 1.27 (continued)

/*

TEST.C

Function executed when Tirrers T:ilne OUt

*/

static void Test1lnrOTO (void *arg)

arg = arg;
PC_DispStr(22 , 8, "T:ilner #0 Timed OUt!", DISP]Gl~LWHITE);

static void Test1lnr1TO (void 'arg)

arg = arg;
PC_DispStr(22, 9, "T:ilner #1 Timed OUt!", DISP]GNI:U'lHlTE);

Listing 1.28 TEST. LNK

Iv Is Ie IP- lLE:\BC45\LIB +

COL.OBJ +

· . \OBJ\CFG.OBJ

· . \OBJ\CLK.OBJ +

.. \OBJ\CC~11·LPC.OBJ +

., \OBJ\CD11·LPCA.OBJ +

· . \OBJ\c:c:M1R'IOS.OBJ +

.. \OBJ\AIO.OBJ

· . \OBJ\DIO.OBJ +

.. \OBJ\KEY.OBJ +

· . \OBJ\LCD.OBJ +

.. \OBJ\OS_CPU_A.OBJ +

.. \OBJ\OS_CPU_C.OBJ +

.. \OBJ\PC.OBJ +

· . \OBJ\TESI'. OBJ

· . \OBJ\ 'IMR.OBJ +

.. \OBJ\uCOS_II .OBJ, .. \OBJ\TESI' , .. \OBJ\TESI',CL.LIB +

FP87.LIB +

MATHL.LIB

Chapter 1: Sample Code - 53

III

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

54 - Embedded Systems Building Blocks, Second Edition

Listing 1.29 TEST. MAl{

###

Elnbedded Systems Building Blocks
#
#
#
#
#

Filename : TE'SI'.MAK
###

#

#/*$PAGE*/
###

'TCOLS
###

#

CC=E:\BC45\BIN\BCC

ASM=E:\BC45\BIN\TASM
LINK=E:\BC45\BIN\TLINK

###

DIRECTORIES

###

#

TARGET= • • \TE'SI'

SOURCE= .. \ SOURCE
TE'SI'=.. \ TE'SI'

IDRK=.. \IDRK
OBJ=.. \OBJ

1ST= .. \1ST

#

AlO=\ SOFIWARE\BLCCKS\AlO\SOURCE

CLK= \ SOFIWARE\BLCCKS\CLK\SOURCE

Cll1M= \SOFIWARE\BLCCKS\Cll1M\SOURCE
DIO=\SOFIWARE\BLOCKS\DIO\SOURCE
KEY=\SOFIWARE\BLOCKS\KEY_MN\SOURCE

!..CD= \ SOFIWARE\BLOCKS\LCD\SOURCE
LED: \SOFIWARE\BLCCKS\LED\SOURCE

OS=\SOFIWARE\uCOS-II\SOURCE
PC=\SOFIWARE\BLCCKS\ PC\BC45

PORT=\SOFIWARE\uCOS-II \ Ix86L-FP\BC45

'IMR= \SOFIWARE\BLCCKS\ 'IMR\ SOURCE

#

LIB_PATH = E:\BC45\LIB
INCLUDE_PATH = E: \BC45\'INCLUDE

#
#/*$PAGE* /

Chapter 1: Sample Code - 55

Listing 1.29 (continued) TEST.MAK

###

ASSEMBLER FLAGS
#
Irnl Large rrodel
Izi Full del:ug info
###

#

###

CX:MPILER FLI\GS

#
-1 Generate 80186 code
-8 Ccnpile and call assEmbler
-c Ccnpiler to .OBJ
-d Duplicate strings rrerged
-dc Put strings in code segrrent
-G Select code for speed
-I Path to include directory
-k- D:Jn' t use standard stack frame
-ml Large merory rrodel
-N- D:J not check for stack overflow
-n Path to object directory
-0 Optimize jurrps
-S Generate assanbler source
-v Source del:ugging CN
-vi Turn inline expansion CN
-wpro Error reporting: call to functions with no prototype
-z St.q:press redundant loads
###

#

CFLAGS=-f287 -c -ml, -1 -G -0 -Qganvll::pi -Z -d -no . \obj -k- -v -vi - -wpro -IS (IN::LUDE_PATH)

###

LINKER FLI\GS

###

#
LINICFLAGS=

#1*SPAGE* I

III

56 - Embedded Systems Building Blocks, Second Edition

Listing 1.29 (continued) TEST.MAX

###

CRFATICN OF .HEX FILE'S
###

$ (TARGEl')\TESI' .EXE: $ (OBJ) \AIO.OBJ \

$(OBJ)\CFG.OBJ \

$ (OBJ) \CLK.OBJ \

$ (OBJ) \CCMU'C.OBJ \

$ (OBJ) \CCMU'CA.OBJ \

$ (OBJ) \CCM1R'IOS.OBJ \

s (OBJ) \DIO.OBJ \

$(OBJ)\KEY.OBJ \

$(OBJ)\LCD.OBJ \

$ (OBJ) \LED.OBJ \

$(OBJ)\LED_IA.OBJ \

$(OBJ)\OS_CPU_A.OBJ \

s (OBJ) \OS_CPU_C.OBJ \

$ (OBJ) \PC.OBJ \

s (OBJ) \TESI'.OBJ \

$ (OBJ) \'IMR.OBJ \

$ (OBJ) \uCOS_ILOBJ \

s (SOORCE) \ TESI' . LNK

COPY s (SOORCE) \TESI'.LNK

DEL $(TARGEr)\TESI'.MAP

DEL $ (TARGEr) \TESI'.EXE

$ (LINK) s (LINK_J'IAGS) @TESI'.LNK

COPY $(OBJ)\TESI'.EXE $(\',QRK)\TESI'.EKE !y
E: \PD\PIX:ONVRT TESI'

COPY $(OBJ)\TESI'.MAP $(TARGEr)\TESI'.MAP !y
COPY s (OBJ) \TESI'.EKE $ (TARGEr) \TESI'.EKE !y
DEL TESI' .MAl<

###

CRFATICN OF .0 (Object) FILE'S
###

$ (OBJ) \AIO.OBJ:

$ (OBJ) \CFG.OBJ:

s (OBJ) \CLK.OBJ:

$ (AIO) \AIO.C

I!01JDES.H

COPY $ (AIO) \AIO.C

DEL $(OBJ)\AIO.OBJ

$ (CC) s (CJLAGS)

$ (SOORCE) \CFG.C

I!01JDES.H

COPY $(SOORCE)\CFG.C

DEL s (OBJ) \CFG.OBJ

$ (CC) $ (CJLAGS)

s (CLK)\CLK.C

IN2LUDES.H

COPY $ (CLK)\CLK.C

DEL $ (OBJ) \CLK.OBJ

s (CC) $ (CJLAGS)

AIO.C

AIO.C

CFG.C

CFG.C

CLK.C

CLK.C

Chapter 1: Sample Code - 57

Listing 1.29 (continued) TEST.MAX III
$ (OBJ) \CCM,U:C. OBJ:

$ (OBJ) \CCM'U:CA.OBJ:

$ (OBJ) \CCMMR'IDS. OBJ:

$ (OBJ) \DIO.OBJ:

$ (OBJ) \KEY.OBJ:

$ (OBJ) \LCD.OBJ:

$ (OBJ) \LED.OBJ:

$ (OBJ) \LED_IA.OBJ:

$ (CCM1) \CCM1_K:.C

IN:::LUDES.H

COP'{ $ (CCM1) \CCM1_K:. C CXM·LK:. C

DEL $(OBJ)\CCM1_K:.OBJ

$ (CC) $ (C]LAGS) CCM1_K:.C

$ (CCM1) \CCM1_K:A.ASM

COP'{ $ (CCM1) \CCM1_K:A.ASM CCM1_K:A.ASM

DEL $ (OBJ) \CCM1_K:A.OBJ

$ (ASM) $ (ASM]LAGS) $ (CCM1) \CCM1_K:A.ASM, $ (OBJ) \CCM1_K:A.OBJ

$ (CCM1) \CCM1R'IOS.C

IN:::LUDES. H

COP'{ $ (CCM1) \ CCM1R'IOS .C CCM1R'IOS .C

DEL $ (OBJ) \CCM1R'IOS.OBJ

$ (CC) $ (C]LAGS) CCM1R'IOS.C

$ (DIO)\DIO.C

IN:::LUDES.H

COP'{ $(DIO)\DIO.C DIO.C

DEL $ (OBJ) \DIO.OBJ

$ (CC) $ (C]LAGS) DIO.C

$ (KEY)\KEY.C

IN:::LUDES •H

COP'{ $ (KEY)\KEY.C KEY.C

DEL $(OBJ)\KEY.OBJ

$ (CC) $ (C]LAGS) KEY.C

$ (LCD)\LCD.C

IN:::LUDES. H

COP'{ $ (LCD)\LCD.C LCD.C

DEL $ (OBJ) \LCD.OBJ

$(CC) $ (C]LAGS) LCD.C

$ (LED) \LED.C

IN:::LUDES. H

COP'{ $ (LED) \LED.C LED.C

DEL $ (OBJ) \LED.OBJ

$ (CC) $ (C]LAGS) LED.C

$ (LED) \LED_IA.ASM

COP'{ $ (LED) \LED_IA.ASM LED_IA.ASM

DEL $(OBJ)\LED_IA.OBJ

$ (ASM) $ (ASM]LAGS) $ (LED) \LED_IA.ASM, $ (OBJ) \LED_IA.OBJ

58 - Embedded Systems Building Blocks, Second Edition

Listing 1.29 (continued) TEST.MAX

$ (OBJ) \FC.OBJ:

$ (OBJ) \TE'Sr .OBJ:

$ (OBJ) \'IMR.OBJ:

$ (OBJ)\uCOS_II.OBJ:

#/*$PAGE*/

$ (PORT) \OS_CFU_A.ASM

IN:LUDES.H

COPY $(PORT)\OS_CFU_A.ASM OS_CPU_A.ASM

DEL $ (OBJ) \OS_CPU_A.OBJ

$ (ASM) $ (ASM]LAGS) $ (PORT) \OS_CFU_A.ASM, $ (OBJ) \OS_CFU_A.OBJ

$ (PORT) \OS_CPU_C.C

IN:LUDES.H

COPY $ (PORT) \OS_CFU_C.C OS_CFU_C.C

DEL $ (OBJ) \OS_CFU_C.OBJ

$ (CC) $ (C_FLAGS) OS_CPU_C.C

$ (FC) \FC.C

IN:LUDES.H

COPY $(FC)\FC.C FC.C

DEL $(OBJ)\FC.OBJ

$ (CC) $ (C_FLAGS) FC.C

$ (SOURCE) \TE'Sr.C

IN:LUDES.H

COPY $ (SOURCE) \TE'Sr.C TE'Sr.C

DEL $(OBJ)\TE'Sr.OBJ

$ (CC) $ (CFLAGS) TE'Sr.C

$ ('IMR)\'IMR.C

IN:LUDES.H

COPY $ ('IMR)\'IMR.C 'IMR.C

DEL $ (OBJ) \'IMR.OBJ

$ (CC) $ (C]LAGS) 'IMR.C

$ (OS) \uCOS_II.C

IN:LUDES.H

COPY $ (OS) \uCOS_ILC uCOS_II.C

DEL $ (OBJ) \uCOS_II .OBJ

$ (CC) $ (CFLAGS) uCOS_II.C

Chapter 1: Sample Code - 59

Listing 1.29 (continued) TEST.MAK

###

HEADER FILES

###

III
INCLUDES. H:

AIO.H:

CLK.H:

CCMMR'IDS . H:

DIO.H:

KEY.H:

LCD.H:

LED.H:

K.H:

'IMR.H:

$(SOURCE)\INCLUDES.H \

AIO.H

CLK.H

C'CM1JC.H

CCMMR'IDS . H

DIO.H

KEY.H

LCD.H

LED.H

OS_CFG.H

OS_CPU.H

K.H

'IMR.H

uCOS_II.H

C: \ FOLYTRCN\FOLYMAKE\TOUCH -v $ (SOURCE) \ INCLUDES. H

COPY $(SCURCE)\INCLUDES.H INCLUDES.H

$ (AIO) \AIO.H

COPY $(AIO)\AIO.H AIO.H

$ (CLK) \CLK.H

COPY $(CLK)\CLK.H CLK.H

$ (C'CM1)\C'CM1_K.H

COPY $ (C'CM1) \C'CM1_K.H C'CM1_K.H

$(C'CM1)\COMMRTOS.H

COPY $ (C'CM1) \CCMMR'IDS.H CCMMRTOS.H

$ (DIO) \DIO.H

COPY $(DIO)\DIO.H DIO.H

$ (KEY) \ KEY. H

COPY $ (KEY) \KEY.H KEY.H

$ (LCD) \LCD.H

COPY $(LCD)\LCD.H LCD.H

$ (LED) \LED.H

COPY $ (LED) \LED.H LED.H

$(SOURCE)\OS_CFG.H

COPY $ (SOURCE) \OS_CFG.H OS_CFG.H

$ (FORr) \OS_CPU~H

COPY $ (FORr) \OS_CPU.H OS_CPU.H

$(K)\K.H

COPY $(K)\K.H K.H

$ ('IMR) \'IMR.H

COPY $('IMR)\'IMR.H 'IMR.H

$ (OS) \uCOS_II.H

COPY $(OS)\uCOS_II.H uCOS_II.H

60 - Embedded Systems Building Blocks, Second Edition

Chapter 2

Real-Time Systems Concepts
Real-time systems are characterized by the severe consequences that result if logical as well as timing
correctness properties of the system are not met. There are two types of real-time systems: SOFT and
HARD. In a SOFT real-time system, tasks are performed by the system as fast as possible, but the tasks
don't have to finish by specific times. In HARD real-time systems, tasks have to be performed not only
correctly but on time. Most real-time systems have a combination of SOFr and HARD requirements.
Real-time applications cover a wide range, but most real-time systems are embedded. This means that
the computer is built into a system and is not seen by the user as being a computer. The following list
shows a few examples of embedded systems.

Process control
Food processing
Chemical plants

Automotive
Engine controls
Antilock braking systems

Office automation
FAX machines
Copiers

Computer peripherals
Printers
Terminals
Scanners
Modems

Communication
Switches
Routers

Robots
Aerospace

Flight management systems
Weapons systems
Jet engine controls

Domestic
Microwave ovens
Dishwashers
Washing machines
Thermostats

Real-time software applications are typically more difficult to design than non-real-time applications.
This chapter describes real-time concepts.

61

62 - Embedded Systems Building Blocks, Second Edition

2.00 Foreground/Background Systems
Small systems of low complexity are generally designed as shown in Figure 2.1. These systems are
calledforegroundlbackground or super-loops. An application consists of an infinite loop that calls mod
ules (i.e., functions) to perform the desired operations (background). Interrupt Service Routines (ISRs)
handle asynchronous events (foreground). Foreground is also called interrupt level; background is
called task level. Critical operations must be performed by the ISRs to ensure that they are dealt with in
a timely fashion. Because of this, ISRs have a tendency to take longer than they should. Also, informa
tion for a background module made available by an ISR is not processed until the background routine
gets its turn to execute. This is called the task level response. The worst case task-level response time
depends on how long the background loop takes to execute. Because the execution time of typical code
is not constant, the time for successive passes through a portion of the loop is nondeterministic. Further
more, if a code change is made, the timing of the loop is affected.

Time

Figure 2.1 Foregroundlbackground systems.

Background ~- Foreground

1 __ ISR

. :.--~

I_~ ISR. ::=:[JUJII]
0>77"77"7777""'. .--~

Code execution

Most high-volumemicrocontroller-based applications (e.g., microwave ovens, telephones, toys, and
so on) are designed as foreground/background systems. Also, in microcontroller-based applications, it
may be better (from a power consumption point of view) to halt the processor and perform all of the
processing in ISRs.

Chapter 2: Real-Time Systems Concepts - 63

2.01 Critical Section of Code
A critical section of code, also called a critical region, is code that needs to be treated indivisibly. Once
the section of code starts executing, it must not be interrupted. To ensure this, interrupts are typically III
disabled before the critical code is executed and enabled when the critical code is finished (see also sec- .
tion 2.03, Shared Resource). c

2.02 Resource
A resource is any entity used by a task. A resource can thus be an VO device, such as a printer, a key
board, or a display, or a variable, a structure, or an array.

2.03 Shared Resource
A shared resource is a resource that can be used by more than one task. Each task should gain exclusive
access to the shared resource to prevent data corruption. This is called mutual exclusion, and techniques
to ensure mutual exclusion are discussed in section 2.18, Mutual Exclusion.

2.04 Multitasking
Multitasking is the process of scheduling and switching the CPU (Central Processing Unit) between
several tasks; a single CPU switches its attention between several sequential tasks. Multitasking is like
foregroundfbackground with multiple backgrounds. Multitasking maximizes the utilization of the CPU
and also provides for modular construction of applications. One of the most important aspects of multi
tasking is that it allows the application programmer to manage complexity inherent in real-time applica
tions. Application programs are typically easier to design and maintain if multitasking is used.

2.05 Task
A task, also called a thread, is a simple program that thinks it has the CPU all to itself. The design pro
cess for a real-time application involves splitting the work to be done into tasks responsible for a portion
of the problem. Each task is assigned a priority, its own set of CPU registers, and its own stack area (as
shown in Figure 2.2).

Each task typically is an infinite loop that can be in anyone of five states: DORMANT, READY,
RUNNING, WAITING (for an event), or ISR (interrupted) (Figure 2.3). The DORMANT state corre
sponds to a task that resides in memory but has not been made available to the multitasking kernel. A
task is READY when it can execute but its priority is less than the currently running task. A task is
RUNNING when it has control of the CPU. A task is WAITING when it requires the occurrence of an
event (waiting for an VO operation to complete, a shared resource to be available, a timing pulse to
occur, time to expire, etc.). Finally, a task is in the ISR state when an interrupt has occurred and the CPU
is in the process of servicing the interrupt. Figure 2.3 also shows the functions provided by fJ.C/OS-II to
make a task move from one state to another.

64 - Embedded Systems Building Blocks, Second Edition

Figure 2.2

TASK 1
Stack

Multiple tasks.

TASK 2
Stack

TASKn
Stack

Task Control Block

L p

Pri rit

~

Task Control
tatus

- ."p

Prioritv

Block

~

Task Control
_~atus

'---- sp

Prioritv

Block

MEMORY '~\ //
- - - - - - - - - ~ - - -\- -- -~ - -- -7-- - --- - - - - - - -
CPU -.~ \ -:

CPU Registers

-,_..- I
.. _SI'__ ;
.~__ i

-- -- -- Context

,-------,J

Figure 2.3 Task states.

Chapter 2: Real-Time Systems Concepts - 65

OSTaskDel ()

OSMBoxPost ()
OSQPost()
OSQPostFront()
OSSemPost ()
OSTaskResume()
OSTimeDlyResume()
OSTimeTick ()

OSMBoxPend ()
OSQPend()

OSSemPend()
OSTaskSuspend(
OSTimeDly()
OSTimeDlyHMSM(

OSStart()
OSIntExi t ()
os TASK SW()

Taskis Preempted

OSTaskDel ()

2.06 Context Switch (or Task Switch)
When a multitasking kernel decides to run a different task, it simply saves the current task's context
(CPU registers) in the current task's context storage area - its stack (Figure 2.2). Once this operation is
performed, the new task's context is restored from its storage area then resumes execution of the new
task's code. This process is called a context switch or a task switch. Context switching adds overhead to
the application. The more registers a CPU has, the higher the overhead. The time required to perform a
context switch is determined by how many registers have to be saved and restored by the CPU. Perfor
mance of a real-time kernel should not be judged by how many context switches the kernel is capable of
doing per second.

2.07 Kernel
The kernel is the part of a multitasking system responsible for the management of tasks (i.e., for manag
ing the CPU's time) and communication between tasks. The fundamental service provided by the kernel
is context switching. The use of a real-time kernel generally simplifies the design of systems by allow
ing the application to be divided into multiple tasks managed by the kernel. A kernel adds overhead to
your system because it requires extra ROM (code space) and additional RAM for the kernel data struc
tures. But most importantly, each task requires its own stack space, which has a tendency to eat up RAM
quite quickly. A kernel will also consume CPU time (typically between 2 and 5 percent).

Single-chip microcontrollers are generally not able to run a real-time kernel because they have very
little RAM. A kernel allows you to make better use of your CPU by providing you with indispensable

66 - Embedded Systems Building Blocks, Second Edition

services such as semaphore management, mailboxes, queues, time delays, etc. Once you design a sys
tem using a real-time kernel, you will not want to go back to a foreground/background system.

2.08 Scheduler
The scheduler, also called the dispatcher, is the part of the kernel responsible for determining which
task will run next. Most real-time kernels are priority based. Each task is assigned a priority based on its
importance. The priority for each task is application specific. In a priority-based kernel, control of the
CPU is always given to the highest priority task ready to run. When the highest priority task gets the
CPU, however, is determined by the type of kernel used. There are two types of priority-based kernels:
non-preemptive and preemptive.

2.09 Non-Preemptive Kernel
Non-preemptive kernels require that each task does something to explicitly give up control of the CPU.
To maintain the illusion of concurrency, this process must be done frequently. Non-preemptive schedul
ing is also called cooperative multitasking; tasks cooperate with each other to share the CPU. Asynchro
nous events are still handled by ISRs. An ISR can make a higher priority task ready to run, but the ISR
always returns to the interrupted task. The new higher priority task will gain control of the CPU only
when the current task gives up the CPU.

One of the advantages of a non-preemptive kernel is that interrupt latency is typically low (see the
later discussion on interrupts). At the task level, non-preemptive kernels can also use non-reentrant
functions (discussed later). Non-reentrant functions can be used by each task without fear of corruption
by another task. This is because each task can run to completion before it relinquishes the CPU. How
ever, non-reentrant functions should not be allowed to give up control of the CPU.

Task-level response using a non-preemptive kernel can be much lower than with foreground/back
ground systems because task-level response is now given by the time of the longest task.

Another advantage of non-preemptive kernels is the lesser need to guard shared data through the use
of semaphores. Each task owns the CPU, and you don't have to fear that a task will be preempted. This
is not an absolute rule, and in some instances, semaphores should still be used. Shared I/O devices may
still require the use of mutual exclusion semaphores; for example, a task might still need exclusive
access to a printer.

The execution profile of a non-preemptive kernel is shown in Figure 2.4. A task is executing
[F2.4(l)] but gets interrupted. If interrupts are enabled, the CPU vectors (jumps) to the ISR [L2.4(2)].
The ISR handles the event [F2.4(3)] and makes a higher priority task ready to run. Upon completion of
the ISR, a Return From Interrupt instruction is executed, and the CPU returns to the interrupted task
[F2.4(4)]. The task code resumes at the instruction following the interrupted instruction [F2.4(5)]. When
the task code completes, it calls a service provided by the kernel to relinquish the CPU to another task
[F2.4(6)]. The new higher priority task then executes to handle the event signaled by the ISR [F2.4(7)].

Chapter 2: Real-Time Systems Concepts - 67

III

Time

(7)

-,
ISR makes the
high-priority task ready

Non-preemptive kernel.

(6) High-Priority Task
--- ---.. ~-,,",""'''.:

Low-priority task
relinquishes the CPU

Low-Priority Task

(1) - --~ [J.::~J~~::-::l:-:.:-:-:-:-:-:. (3)
iT7"7"7777777l~ ::::Hjjl6h

(4)·· --~,

(5)

Figure 2.4

The most important drawback of a non-preemptive kernel is responsiveness. A higher priority task
that has been made ready to run may have to wait a long time to run because the current task must give
up the CPU when it is ready to do so. As with background execution in foreground/background systems,
task-level response time in a non-preemptive kernel is nondeterministic; you never really know when
the highest priority task will get control of the CPU. It is up to your application to relinquish control of
the CPU.

To summarize, a non-preemptive kernel allows each task to run until it voluntarily gives up control
of the CPU. An interrupt preempts a task. Upon completion of the ISR, the ISR returns to the interrupted
task. Task-level response is much better than with a foreground/background system but is still nondeter
ministic. Very few commercial kernels are non-preemptive.

2.10 Preemptive Kernel
A preemptive kernel is used when system responsiveness is important. Because of this, I-l-C/OS-ll and
most commercial real-time kernels are preemptive. The highest priority task ready to run is always
given control of the CPU. When a task makes a higher priority task ready to run, the current task is pre
empted (suspended) and the higher priority task is immediately given control of the CPU. If an ISR
makes a higher priority task ready, when the ISR completes, the interrupted task is suspended and the
new higher priority task is resumed. This is illustrated in Figure 2.5.

68 - Embedded Systems Building Blocks, Second Edition

Figure 2.5 PTeenzptivekernel

Low-Priority Task

_ ISR

• - ~ 171~-PriOrity Task

• • ISR makes the high-
· priority task ready Time

With a preemptive kernel, execution of the highest priority task is deterministic; you can deter
mine when it will get control of the CPU. Task-level response time is thus minimized by using a pre
emptive kernel.

Application code using a preemptive kernel should not use non-reentrant functions, unless exclusive
access to these functions is ensured through the use of mutual exclusion semaphores, because both a
low- and a high-priority task can use a common function. Corruption of data may occur if the higher pri
ority task preempts a lower priority task that is using the function.

To summarize, a preemptive kernel always executes the highest priority task that is ready to run. An
interrupt preempts a task. Upon completion of an ISR, the kernel resumes execution to the highest prior
ity task ready to run (not the interrupted task). Task-level response is optimum and deterministic.
l!C/OS-Il is a preemptive kernel.

2.11 Reentrancy
A reentrant function can be used by more than one task without fear of data corruption. A reentrant
function can be interrupted at any time and resumed at a later time without loss of data. Reentrant func
tions either use local variables (i.e., CPU registers or variables on the stack) or protect data when global
variables are used. An example of a reentrant function is shown in Listing 2.1.

Listing 2.1 Reentrant function.

Chapter 2: Real-Time Systems Concepts - 69

b-'--e------

void strcpy(char *dest, char *src)

while (*dest++ = *src++)

*dest NUL;

Because copies of the arguments to strcpy () are placed on the task's stack, strcpy () can be
invoked by multiple tasks without fear that the tasks will corrupt each other's pointers.

An example of a non-reentrant function is shown in Listing 2.2. swap () is a simple function that
swaps the contents of its two arguments. For the sake of discussion, I assume that you are using a pre
emptive kernel, that interrupts are enabled, and that Temp is declared as a global integer:

III

Listing 2.2

int Temp;

Non-reentrant function.

void swap(int *x, int *y)

Temp = *x;

*x *y;

*y = Temp;

The programmer intended to make swap () usable by any task. Figure 2.6 shows what could happen
if a low-priority task is interrupted while swap () [F2.6(l)] is executing. Note that at this point Temp
contains 1. The ISR makes the higher priority task ready to run, so at the completion of the ISR
[F2.6(2)], the kernel (assuming !le/OS-II) is invoked to switch to this task [F2.6(3)]. The high-priority
task sets Temp to 3 and swaps the contents of its variables correctly (i.e., z is 4 and tis 3). The high-pri
ority task eventually relinquishes control to the low-priority task [F2.6(4)] by calling a kernel service to
delay itself for one clock tick (described later). The lower priority task is thus resumed [F2.6(5)]. Note
that at this point, Temp is still set to 3! When the low-priority task resumes execution, it sets y to 3
instead of 1.

Note that this a simple example, so it is obvious how to make the code reentrant. However, other sit
uations are not as easy to solve. An error caused by a non-reentrant function may not show up in your
application during the testing phase; it will most likely occur once the product has been delivered! If
you are new to multitasking, you will need to be careful when using non-reentrant functions.

You can make swap () reentrant with one of the following techniques:

• Declare Temp local to swap () .

• Disable interrupts before the operation and enable them afterwards.

• Use a semaphore (described later).

70 - Embedded Systems Building Blocks, Second Edition

Figure 2.6 Non-reentrant function.

LOW-PRIORITY TASK HIGH-PRIORITY TASK

Temp = *z;
*z = *t;
*t = Temp;

OSTimeD1y () ;

swap(&z, &t);
{

while (1)
z 3;
t = 4;

---@]!fA\
r"

Temp==3J)

(5)

L Temp == 3!

*x
.-

*y;
*y = Temp;

OSTimeD1y(1);

iTemp== 1
/ OSIntExit ()

"'.~ (~': /. J(I).I ISR ~241 0.5. ~3)1 •

while (1)
x = 1;
y = 2;

If the interrupt occurs either before or after swap () , the x and y values for both tasks will becorrect.

2.12 Round-Robin Scheduling
When two or more tasks have the same priority, the kernel allows one task to run for a predetermined
amount of time, called a quantum, then selects another task. This is also called time slicing. The kernel
gives control to the next task in line if

the current task has no work to do during its time slice or

the current task completes before the end of its time slice.

IlC/OS-1I does not currently support round-robin scheduling. Each task must have a unique priority in
your application.

2.13 Task Priority

A priority is assigned to each task. The more important the task, the higher the priority given to it.

2.14 Static Priorities
Task priorities are said to be static when the priority of each task does not change during the applica
tion's execution. Each task is thus given a fixed priority at compile time. All the tasks and their timing
constraints are known at compile time in a system where priorities are static.

Chapter 2: Real-Time Systems Concepts -71

2.15 Dynamic Priorities
Task priorities are said to be dynamic if the priority of tasks can be changed during the application's
execution; each task can change its priority at run time. This is a desirable feature to have in a real-time III
kernel to avoid priority inversions. ;:

2.16 Priority Inversions
Priority inversion is a problem in real-time systems and occurs mostly when you use a real-time kernel.
Figure 2.7 illustrates a priority inversion scenario. Task 1 has a higher priority than Task 2, which in tum

has a higher priority than Task 3. Task 1 and Task 2 are both waiting for an event to occur and Task 3 is
executing [F2.7(1)]. At some point, Task 3 acquires a semaphore (see section 2.18.04, Semaphores),
which it needs before it can access a shared resource [F2.7(2)]. Task 3 performs some operations on the
acquired resource [F2.7(4)] until it is preempted by the high-priority task, Task 1 [F2.7(3)]. Task 1 exe
cutes for a while until it also wants to access the resource [F2.7(5)]. Because Task 3 owns the resource,
Task 1 has to wait until Task 3 releases the semaphore. As Task 1 tries to get the semaphore, the kernel
notices that the semaphore is already owned; thus, Task 1 is suspended and Task 3 is resumed [F2.7(6)].
Task 3 continues execution until it is preempted by Task 2 because the event that Task2 was waiting for
occurred [F2.7(7)]. Task 2 handles the event [F2.7(8)] and when it's done, Task 2 relinquishes the CPU
back to Task 3 [F2.7(9)]. Task 3 finishes working with the resource [F2.7(10)] and releases the sema
phore [F2.7(1l)]. At this point, the kernel knows that a higher priority task is waiting for the semaphore,
and a context switch is done to resume Task 1. At this point, Task 1 has the semaphore and can access
the shared resource [F2.7(12)].

The priority of Task 1 has been virtually reduced to that of Task 3 because it was waiting for the
resource that Task 3 owned. The situation was aggravated when Task 2 preempted Task 3, which further
delayed the execution of Task 1.

You can correct this situation by raising the priority of Task 3, just for the time it takes to access the
resource, then restoring the original priority level when the task is finished. The priority of Task 3 must
be raised up to or above the highest priority of the other tasks competing for the resource. A multitask
ing kernel should allow task priorities to change dynamically to help prevent priority inversions. How
ever, it takes some time to change a task's priority. What if Task 3 had completed access of the resource
before it was preempted by Task 1 and then by Task 2? Had you raised the priority of Task 3 before
accessing the resource and then lowered it back when done, you would have wasted valuable CPU time.
What is really needed to avoid priority inversion is a kernel that changes the priority of a task automati
cally. This is called priority inheritance, which /lC/OS-II unfortunately does not support. There are,
however, some commercial kernels that do.

72- Embedded Systems Building Blocks, Second Edition

Figure 2.7 Priority inversion problem.

Priority Inversion
*---------- .-1
I

I (4) I I I I (12)

Task 1 (H) ~-+~====-==========~==~
I I I I I

I I I (8) I I

Task 2 (M) I I
I I
I I

(1) I 1(6)1 1(10) I

Task 3 (L) C~=~_~====~==-======-=~==.
I I I

Task 3 Gets Semaphore I I I
(2). Task 3 Resumes

Task 1 Preempts Task 3 1 (9)
(3)

Task 1 Tries to get Semaphore Task 3 Releases the Semaphore
(5) (11)

Task 2 Preempts Task 3
(7)

Figure 2.8 illustrates what happens when a kernel supports priority inheritance. As with the previous
example, Task 3 is running [F2.8(l)] and acquires a semaphore to access a shared resource [F2.8(2)].
Task 3 accesses the resource [F2.8(3)] and then is preempted by Task I [F2.8(4)]. Task 1 executes
[F2.8(5)] and tries to obtain the semaphore [F2.8(6)]. The kernel sees that Task 3 has the semaphore but
has a lower priority than Task I. In this case, the kernel raises the priority of Task 3 to the same level as
Task 1. The kernel then switches back to Task 3 so that this task can continue with the resource
[F2.8(7)]. When Task 3 is done with the resource, it releases the semaphore [F2.8(8)]. At this point, the
kernel reduces the priority of Task 3 to its original value and gives the semaphore to Task 1 which is
now free to continue [F2.8(9)]. When Task 1 is done executing [F2.8(10)], the medium-priority task
(i.e., Task 2) gets the CPU [F2.8(l1)]. Note that Task 2 could have been ready to run any time between
F2.8(3) and (10) without affecting the outcome. There is still some level of priority inversion that cannot
be avoided.

Chapter 2: Real-Time Systems Concepts -73

Figure 2.8 Kernel that supports priority inheritance.

Priority Inversion,.. .1 III
Task 1 (H)

(5) (9)
r--T-~--~----~-~---

r--T---~~ ---------

(11)

Task I Tries to get Semaphore
(Priority of Task 3 is raised to Task l's)

(6)

Task 2 (M)

I
I
I
I

I I I I I

Task 3 (L) [jl)_~_=~~====::::=:==::::::::=====
I I I I I

I I! I I
Task 3 Gets Semaphore I I I I I

(2) I I I Task I Completes
Task 1 Preempts Task 3 I I (l0)

(4) I I

I

l'Iask 3 Releases the Semaphore
(Task I Resumes)

(8)

2.17 Assigning Task Priorities
Assigning task priorities is not a trivial undertaking because of the complex nature of real-time systems.
In most systems, not all tasks are considered critical. Noncritical tasks should obviously be given low
priorities. Most real-time systems have a combination of SOFT and HARD requirements. In a SOFT
real-time system, tasks are performed as quickly as possible, but they don't have to finish by specific
times. In HARD real-time systems, tasks have to be performed not only correctly, but on time.

74 - Embedded Systems Building Blocks, Second Edition

An interesting technique called Rate Monotonic Scheduling (RMS) has been established to assign
task priorities based on how often tasks execute. Simply put, tasks with the highest rate of execution are
given the highest priority (Figure 2.9).

Figure 2.9 Assigning task priorities based on task execution rate.

High

t

t
Low

-

r----.

-~
f--. -
~.

1-

Task Execution Rate (Hz)

RMS makes a number of assumptions:

All tasks are periodic (they occur at regular intervals).

• Tasks do not synchronize with one another, share resources, or exchange data.

The CPU must always execute the highest priority task that is ready to run. In other words, preemp
tive scheduling must be used.

Given a set of n tasks that are assigned RMS priorities, the basic RMS theorem states that all task
HARD real-time deadlines will always be met if the inequality in Equation [2.1] is verified.

[2.1]

where, E;corresponds to the maximum execution time of task i and T; corresponds to the execution period
of task i. In other words, E;IT; corresponds to the fraction of CPU time required to execute task i. Table
2.1 shows the value for size n(2 11n - 1) based on the number of tasks. The upper bound for an infinite num
ber of tasks is given by In(2), or 0.693. This means that to meet all HARD real-time deadlines based on
RMS, CPU utilization of all time-critical tasks should be less than 70 percent! Note that you can still have
non-time-critical tasks in a system and thus use 100 percent of the CPU's time. Using 100 percent of your
CPU's time is not a desirable goal because it does not allow for code changes and added features. As a
rule of thumb, you should always design a system to use less than 60 to 70 percent of your CPU.

RMS says that the highest rate task has the highest priority. In some cases, the highest rate task may
not be the most important task. Your application will thus dictate how you need to assign priorities.
However, RMS is an interesting starting point.

Table 2.1

Chapter 2: Real-Time Systems Concepts -75

Allowable CPU utilization based on number oftasks.

Number of Tasks

1

2

3

4

5

n(2 l1n - 1)

1.000

0.828

0.779

0.756

0.743

00 0.693

2.18 Mutual Exclusion
The easiest way for tasks to communicate with each other is through shared data structures. This is
especially easy when all tasks exist in a single address space and can reference global variables, point
ers, buffers, linked lists, ring buffers, etc. Although sharing data simplifies the exchange of information,
you must ensure that each task has exclusive access to the data to avoid contention and data corruption.
The most common methods of obtaining exclusive access to shared resources are

disabling interrupts,

performing test-and-set operations,

disabling scheduling, and

using semaphores.

2.18.01 Disablingand EnoblingInterrupts

The easiest and fastest way to gain exclusive access to a shared resource is by disabling and enabling
interrupts, as shown in the pseudocode in Listing 2.3.

Listing 2.3 Disabling and enabling interrupts.

Disable interrupts;

Access the resource (read/write from/to variables);

Reenable interrupts;

!J.C/OS-II uses this technique (as do most, if not all, kernels) to access internal variables and data struc
tures. In fact, !J.C/OS-IIprovides two macros that allow you to disable and then enable interrupts from
your C code: OS_ENTER_CRITlCAL () and OS_EXIT_CRITlCAL (), respectively. You need to use
these macros in tandem, as shown in Listing 2.4.

76 - Embedded Systems Building Blocks, Second Edition

Listing 2.4 Using pC/OS-II macros to disable and enable interrupts.

void Function (void)

/* You can access shared data in here */

You must be careful, however, not to disable interrupts for too long because this affects the response
of your system to interrupts. This is known as interrupt latency. You should consider this method when
you are changing or copying a few variables. Also, this is the only way that a task can share variables or
data structures with an ISR. In all cases, you should keep interrupts disabled for as little time as possible.

If you use a kernel, you are basically allowed to disable interrupts for as much time as the kernel
does without affecting interrupt latency. Obviously, you need to know how long the kernel will disable
interrupts. Any good kernel vendor will provide you with this information. After all, if they sell a
real-time kernel, time is important!

2.18.02 Test-And-Set

If you are not using a kernel, two functions could 'agree' that to access a resource, they must check a
global variable and if the variable is 0, the function has access to the resource. To prevent the other func
tion from accessing the resource, however, the first function that gets the resource simply sets the vari
able to 1. This is commonly called a Test-And-Set (or TAS) operation. Either the TAS operation must be
performed indivisibly (by the processor) or you must disable interrupts when doing the TAS on the vari
able, as shown in Listing 2.5.

Listing 2.5 Using Test-And-Set to access a resource.

Disable interrupts;

if ('Access Variable' is 0) {

Set variable to 1;

Reenable interrupts;

Access the resource;

Disable interrupts;

Set the 'Access Variable' back to 0;

Reenable interrupts;

else {

Reenable interrupts;

/* You don't have access to the resource, try back later; */

Chapter 2: Real-Time Systems Concepts -77

Some processors actually implement a TAS operation in hardware (e.g., the 68000 family of processors
have the TAS instruction).

2.18.03 DisablingandEnablingtheScheduler

If your task is not sharing variables or data structures with an ISR, you can disable and enable schedul
ing, as shown in Listing 2.6 (using IlC/OS-II as an example). In this case, two or more tasks can share
data without the possibility of contention. You should note that while the scheduler is locked, interrupts
are enabled, and if an interrupt occurs while in the critical section, the ISR is executed immediately. At
the end of the ISR, the kernel always returns to the interrupted task, even if a higher priority task has
been made ready to run by the ISR. The scheduler is invoked when OSSchedUnlock () is called to see
if a higher priority task has been made ready to run by the task or an ISR. A context switch results if a
higher priority task is ready to run. Although this method works well, you should avoid disabling the
scheduler because it defeats the purpose of having a kernel in the first place. The next method should be
chosen instead.

Listing 2.6 Accessing shared data by disabling and
enablingschedulin~

void Function (void)

OSSchedLock();

/* You can access shared data in here (interrupts are recognized) */

OSSchedUnlock();

2.18.04 Semaphores

The semaphore was invented by Edgser Dijkstra in the rnid-1960s. It is a protocol mechanism offered
by most multitasking kernels. Semaphores are used to

control access to a shared resource (mutual exclusion),

signal the occurrence of an event, and

allow two tasks to synchronize their activities.

A semaphore is a key that your code acquires in order to continue execution. If the semaphore is already
in use, the requesting task is suspended until the semaphore is released by its current owner. In other
words, the requesting task says: "Give me the key. If someone else is using it, I am willing to wait for it!"
There are two types of semaphores: binary semaphores and counting semaphores. As its name implies, a
binary semaphore can only take two values: aor 1. A counting semaphore allows values between aand
255,65535, or 4294967295, depending on whether the semaphore mechanism is implemented using
8, 16, or 32 bits, respectively. The actual size depends on the kernel used. Along with the semaphore's
value, the kernel also needs to keep track of tasks waiting for the semaphore's availability.

Generally, only three operations can be performed on a semaphore: INITIALIZE (also called CREATE),
WAIT (also called PEND), and SIGNAL (also called POST). The initial value of the semaphore must be
provided when the semaphore is initialized. The waiting list of tasks is always initially empty.

1--er------

78 - Embedded Systems Building Blocks, Second Edition

A task desiring the semaphore will perform a WAIT operation. If the semaphore is available (the
semaphore value is greater than 0), the semaphore value is decremented and the task continues execu
tion. If the semaphore's value is 0, the task performing a WAIT on the semaphore is placed in a waiting
list. Most kernels allow you to specify a timeout; if the semaphore is not available within a certain
amount of time, the requesting task is made ready to run and an error code (indicating that a timeout has
occurred) is returned to the caller.

A task releases a semaphore by performing a SIGNAL operation. If no task is waiting for the sema
phore, the semaphore value is simply incremented. If any task is waiting for the semaphore, however,
one of the tasks is made ready to run and the semaphore value is not incremented; the key is given to one
of the tasks waiting for it. Depending on the kernel, the task that receives the semaphore is either

the highest priority task waiting for the semaphore or

the first task that requested the semaphore (First In First Out, or FIFO).

Some kernels have an option that allows you to choose either method when the semaphore is initial
ized. /lCIOS-II only supports the first method. If the readied task has a higher priority than the current
task (the task releasing the semaphore), a context switch occurs (with a preemptive kernel) and the
higher priority task resumes execution; the current task is suspended until it again becomes the highest
priority task ready to run.

Listing 2.7 shows how you can share data using a semaphore (in /lCIOS-II). Any task needing access
to the same shared data calls OSSernPend (), and when the task is done with the data, the task calls
OSSernPost (). Both of these functions are described later. You should note that a semaphore is an
object that needs to be initialized before it's used; for mutual exclusion, a semaphore is initialized to a
value of 1. Using a semaphore to access shared data doesn't affect interrupt latency. If an ISR or the cur
rent task makes a higher priority task ready to run while accessing shared data, the higher priority task
executes immediately.

Listing 2.7 Accessing shared data by obtaining a semaphore.

OS_EVENT *SharedDataSem;

void Function (void)

INT8U err;

OSSernPend(SharedDataSem, 0, &err);

/* You can access shared data in here (interrupts are recognized) */

OSSernPost(SharedDataSem);

Semaphores are especially useful when tasks share I/O devices. Imagine what would happen if two
tasks were allowed to send characters to a printer at the same time. The printer would contain inter
leaved data from each task. For instance, the printout from Task I printing "I am Task I!" and Task 2
printing "I am Task 2!" could result in:

I Ia arnm T Tasask kl 12!

Chapter 2: Real-Time Systems Concepts -79

In this case, use a semaphore and initialize it to 1 (i.e., a binary semaphore). The rule is simple: to access
the printer each task first must obtain the resource's semaphore. Figure 2.10 shows tasks competing for a
semaphore to gain exclusive access to the printer. Note that the semaphore is represented symbolically
by a key, indicating that each task must obtain this key to use the printer.

Figure 2.10 Using a semaphore to get permission to access a printer.

8-_'ramTaskl!",
-,

~ Semaphore -, ..

t SEMAPHORE II""-P-R-IN-TE-R-'"

~Semo<phore / / JI8---------/"I am Task 2!"

The above example implies that each task must know about the existence of the semaphore in order
to access the resource. There are situations when it is better to encapsulate the semaphore. Each task
would thus not know that it is actually acquiring a semaphore when accessing the resource. For exam
ple, an RS-232C port is used by multiple tasks to send commands and receive responses from a device
connected at the other end (Figure 2.11).

The function CommSendOnd () is called with three arguments: the ASCII string containing the com
mand, a pointer to the response string from the device, and finally, a timeout in case the device doesn't
respond within a certain amount of time. The pseudocode for this function is shown in Listing 2.8.

II

Listing 2.8 Encapsulating a semaphore.

INT8U CorrnnSendOnd(char *ond. char *response. INT16U timeout)

Acquire port's semaphore;

Send command to device;

Wait for response (with timeout);

if (timed out) {

Release semaphore;

return (error code);

else {

80 - Embedded Systems Building Blocks, Second Edition

Listing 2.8 Encapsulating a semaphore. (Continued)

Release semaphore;

return (no error);

Each task that needs to send a command to the device has to call this function. The semaphore is
assumed to be initialized to 1 (i.e., available) by the communication driver initialization routine. The
first task that calls CorrrrnSendQnd () acquires the semaphore, proceeds to send the command, and waits
for a response. If another task attempts to send a command while the port is busy, this second task is sus
pended until the semaphore is released. The second task appears simply to have made a call to a normal
function that will not return until the function has performed its duty. When the semaphore is released
by the first task, the second task acquires the semaphore and is allowed to use the RS-232C port.

Figure 2.11 Hiding a semaphore from tasks.

DRIVER I....------...·1 RS-232C I

!t Semaphore

A counting semaphore is used when a resource can be used by more than one task at the same time.
For example, a counting semaphore is used in the management of a buffer pool as shown in Figure 2.12.
Assume that the buffer pool initially contains 10 buffers. A task would obtain a buffer from the buffer
manager by calling BufReq () . When the buffer is no longer needed, the task would return the buffer to
the buffer manager by calling BufRel () . The pseudocode for these functions is shown in Listing 2.9.

Listing 2.9

Chapter 2: Real-Time Systems Concepts - 81

Buffer management using a semaphore.

BUF *BufReq(void}

BUF *ptr;

Acquire a semaphore;

Disable interrupts;

ptr = BufFreeList;

BufFreeList = ptr->BufNext;

Enable interrupts;

return (ptr);

void BufRel(BUF *ptr)

Disable interrupts;

ptr->BufNext = BufFreeList;

BufFreeList = ptr;

Enable interrupts;

Release semaphore;

Figure 2.12 Using a counting semaphore.

BufFreeList

C3-DTr[1°
t 10 t

IBUfReq()I~ t ~IBUfRel()1
~ \ .. __ / __ Buffe':M~'

88

II

82 - Embedded Systems Building Blocks, Second Edition

The buffer manager will satisfy the first 10 buffer requests because there are 10 keys. When all
semaphores are used, a task requesting a buffer is suspended until a semaphore becomes available.
Interrupts are disabled to gain exclusive access to the linked list (this operation is very quick). When a
task is finished with the buffer it acquired, it calls BufRel () to return the buffer to the buffer manager;
the buffer is inserted into the linked list before the semaphore is released. By encapsulating the interface.
to the buffer manager in BufReq () and BufRel (), the caller doesn't need to be concerned with the
actual implementation details.

Semaphores are often overused. The use of a semaphore to access a simple shared variable is over
kill in most situations. The overhead involved in acquiring and releasing the semaphore can consume
valuable time. You can do the job just as efficiently by disabling and enabling interrupts (see section
2.18.01, Disabling and Enabling Interrupts). Suppose that two tasks are sharing a 32-bit integer vari
able. The first task increments the variable while the other task clears it. If you consider how long a pro
cessor takes to perform either operation, you will realize that you do not need a semaphore to gain
exclusive access to the variable. Each task simply needs to disable interrupts before performing its oper
ation on the variable and enable interrupts when the operation is complete. A semaphore should be used,
however, if the variable is a floating-point variable and the microprocessor doesn't support floating point
in hardware. In this case, the processing time involved in processing the floating-point variable could
have affected interrupt latency if you had disabled interrupts.

2.19 Deadlock (or Deadly Embrace)
A deadlock, also called a deadly embrace, is a situation in which two tasks are each unknowingly wait
ing for resources held by the other. Assume task TI has exclusive access to resource Rl and task T2 has
exclusive access to resource R2. If TI needs exclusive access to R2 and T2 needs exclusive access to
Rl, neither task can continue. They are deadlocked. The simplest way to avoid a deadlock is for tasks to

acquire all resources before proceeding,

acquire the resources in the same order, and

release the resources in the reverse order.

Most kernels allow you to specify a timeout when acquiring a semaphore. This feature allows a
deadlock to be broken. If the semaphore is not available within a certain amount of time, the task
requesting the resource resumes execution. Some form of error code must be returned to the task to
notify it that a timeout occurred. A return error code prevents the task from thinking it has obtained the
resource. Deadlocks generally occur in large multitasking systems, not in embedded systems.

2.20 Synchronization
A task can be synchronized with an ISR (or another task when no data is being exchanged) by using a
semaphore as shown in Figure 2.13. Note that, in this case, the semaphore is drawn as a flag to indicate
that it is used to signal the occurrence of an event (rather than to ensure mutual exclusion, in which case
it would be drawn as a key). When used as a synchronization mechanism, the semaphore is initialized to
O. Using a semaphore for this type of synchronization is called a unilateral rendezvous. A task initiates
an I/O operation and waits for the semaphore. When the I/O operation is complete, an ISR (or another
task) signals the semaphore and the task is resumed.

Chapter 2: Real-Time Systems Concepts - 83

Figure 2.13 Synchronizing tasks and ISRs.

If the kernel supports counting semaphores, the semaphore would accumulate events that have not
yet been processed. Note that more than one task can be waiting for an event to occur. In this case, the
kernel could signal the occurrence of the event either to

• the highest priority task waiting for the event to occur or

• the first task waiting for the event.

Depending on the application, more than one ISR or task could signal the occurrence of the event.
Two tasks can synchronize their activities by using two semaphores, as shown in Figure 2.14. This is

called a bilateral rendezvous. A bilateral rendezvous is similar to a unilateral rendezvous, except both
tasks must synchronize with one another before proceeding.

For example, two tasks are executing as shown in Listing 2.10. When the first task reaches a certain
point, it signals the second task [L2.1O(1)] then waits for a return signal [L2.1O(2)]. Similarly, when the
second task reaches a certain point, it signals the first task [L2.1O(3)] and waits for a return signal
[L2.1O(4)]. At this point, both tasks are synchronized with each other. A bilateral rendezvous cannot be
performed between a task and an ISR because an ISR cannot wait on a semaphore.

Figure 2.14 Tasks synchronizing their activities.

II

PEND

~E,
POST

84 - Embedded Systems Building Blocks, Second Edition

Listing 2.10 Bilateral rendezvous.

Task1 ()

for (;;) {

Perform operation;

Signal task #2;

Wait for signal from task #2;

Continue operation;

Task2 ()

for (;;) {

Perform operation;

Signal task #1;

Wait for signal from task #1;

Continue operation;

2.21 Event Flags

(1)

(2)

(3)

(4)

Event flags are used when a task needs to synchronize with the occurrence of multiple events. The task
can be synchronized when any of the events have occurred. This is called disjunctive synchronization
(logical OR). A task can also be synchronized when all events have occurred. This is called conjunctive
synchronization (logical AND). Disjunctive and conjunctive synchronization are shown in Figure 2.15.

Common events can be used to signal multiple tasks, as shown in Figure 2.16. Events are typically
grouped. Depending on the kernel, a group consists of 8, 16, or 32 events, each reprensnted by a bit.
(mostly 32 bits, though). Tasks and ISRs can set or clear any event in a group. A task is resumed when
all the events it requires are satisfied. The evaluation of which task will be resumed is performed when a
new set of events occurs (i.e., during a SET operation).

Kernels supporting event flags offer services to SET event flags, CLEAR event flags, and WAIT for
event flags (conjunctively or disjunctively). f..lC/OS-II does not currently support event flags.

Chapter 2: Real-Time Systems Concepts - 85

Figure 2.15 Disjunctive and conjunctive synchronization.

-"I
\ TASK'

/
<, - Events Semaphore a
(__ =lloRI POST ·ll-lpEND·v
\. IS~ J DISmNCTIVE SYNCHRONIZATION

-"I
\ TASK'
<, _ / Events Semaphore Q

(__ =tIANDIPOST·II-IPEND·v
\. IS~ J CONmNCTIVE SYNCHRONIZATION

2.22 Intertask Communication
It is sometimes necessary for a task or an ISR to communicate information to another task. This infor
mation transfer is called intertask communication. Information may be communicated between tasks in
two ways: through global data or by sending messages.

When using global variables, each task or ISR must ensure that it has exclusive access to the vari
ables. If an ISR is involved, the only way to ensure exclusive access to the common variables is to dis
able interrupts. If two tasks are sharing data, each can gain exclusive access to the variables either by
disabling and enabling interrupts or with the use of a semaphore (as we have seen). Note that a task can
only communicate information to an ISR by using global variables. A task is not aware when a global
variable is changed by an ISR, unless the ISR signals the task by using a semaphore or unless the task
polls the contents of the variable periodically. To correct this situation, you should consider using either
a message mailbox or a message queue.

/-,
I TASK \

" I<c >:

86 - Embedded Systems Building Blocks, Second Edition

Figure 2.16 Eventflags.

*Events
(8, 16, or 32 bits)

I I I I I I I I I

I
Even:t=t

Events
I::

~

2.23 Message Mailboxes
Messages can be sent to a task through kernel services. A Message Mailbox, also called a message
exchange, is typically a pointer-size variable. Through a service provided by the kernel, a task or an ISR
can deposit a message (the pointer) into this mailbox. Similarly, one or more tasks can receive messages
through a service provided by the kernel. Both the sending task and receiving task agree on what the
pointer is actually pointing to.

A waiting list is associated with each mailbox in case more than one task wants to receive messages
through the mailbox. A task desiring a message from an empty mailbox is suspended and placed on the
waiting list until a message is received. Typically, the kernel allows the task waiting for a message to
specify a timeout. If a message is not received before the timeout expires, the requesting task is made
ready to run and an error code (indicating that a timeout has occurred) is returned to it. When a message
is deposited into the mailbox, either the highest priority task waiting for the message is given the mes
sage (priority based) or the first task to request a message is given the message (First-In-First-Out, or
FIFO). Figure 2.17 shows a task depositing a message into a mailbox. Note that the mailbox is repre
sented by an I-beam and the timeout is represented by an hourglass. The number next to the hourglass
represents the number of clock ticks (described later) the task will wait for a message to arrive.

Chapter 2: Real-Time Systems Concepts - 87

Kernels typically provide the following mailbox services.

Initialize the contents of a mailbox. The mailbox initially mayor may not contain a message.

Deposit a message into the mailbox (POST).

Wait for a message to be deposited into the mailbox (PEND).

Get a message from a mailbox if one is present, but do not suspend the caller if the mailbox is empty
(ACCEPT). If the mailbox contains a message, the message is extracted from the mailbox. A return
code is used to notify the caller about the outcome of the call.

Message mailboxes can also simulate binary semaphores. A message in the mailbox indicates that the
resource is available, and an empty mailbox indicates that the resource is already in use by another task.

Figure 2.17 Message mailbox.

Mailbox C':::\
·h~j;NI)·O

POST

~~V'---------==----
2.24 Message Queues
A message queue is used to send one or more messages to a task. A message queue is basically an array
of mailboxes. Through a service provided by the kernel, a task or an ISR can deposit a message (the
pointer) into a message queue. Similarly, one or more tasks can receive messages through a service pro
vided by the kernel. Both the sending task and receiving task agree as to what the pointer is actually
pointing to. Generally, the first message inserted in the queue will be the first message extracted from
the queue (FIFO). In addition, to extract messages in a FIFO fashion, IlC/OS-II allows a task to get mes
sages Last-In-First-Out (LIFO).

As with the mailbox, a waiting list is associated with each message queue, in case more than one
task is to receive messages through the queue. A task desiring a message from an empty queue is sus
pended and placed on the waiting list until a message is received. Typically, the kernel allows the task
waiting for a message to specify a timeout. If a message is not received before the timeout expires, the
requesting task is made ready to run and an error code (indicating a timeout has occurred) is returned to
it. When a message is deposited into the queue, either the highest priority task or the first task to wait for
the message is given the message. Figure 2.18 shows an ISR (Interrupt Service Routine) depositing a
message into a queue. Note that the queue is represented graphically by a double I-beam. The "10" indi
cates the number of messages that can accumulate in the queue. A "0" next to the hourglass indicates
that the task will wait forever for a message to arrive.

88 - Embedded Systems Building Blocks, Second Edition

Kernels typically provide the message queue services listed below.

Initialize the queue. The queue is always assumed to be empty after initialization.

Deposit a message into the queue (POST).

Wait for a message to be deposited into the queue (PEND).

Get a message from a queue if one is present, but do not suspend the caller if the queue is empty
(ACCEPT). If the queue contains a message, the message is extracted from the queue. A return code
is used to notify the caller about the outcome of the call.

Figure 2.18 Message queue.

POSTISR

Queue

------"o..l JI-------=:::"":O'-.~ DIO IPoEND
Interrupt~~ _ _ ~

2.25 Interrupts
An interrupt is a hardware mechanism used to inform the CPU that an asynchronous event has occurred.
When an interrupt is recognized, the CPU saves part (or all) of its context (i.e., registers) andjurnps to a
special subroutine called an Interrupt Service Routine, or ISR. The ISR processes the event, and upon
completion of the ISR, the program returns to

the background for a foreground/background system,

the interrupted task for a non-preemptive kernel, or

the highest priority task ready to run for a preemptive kernel.

Interrupts allow a microprocessor to process events when they occur. This prevents the microproces
sor from continuously polling an event to see if it has occurred. Microprocessors allow interrupts to be
ignored and recognized through the use of two special instructions: disable interrupts and enable inter
rupts, respectively. In a real-time environment, interrupts should be disabled as little as possible. Dis
abling interrupts affects interrupt latency (see section 2.26, Interrupt Latency) and may cause interrupts
to be missed. Processors generally allow interrupts to be nested. This means that while servicing an inter
rupt, the processor will recognize and service other (more important) interrupts, as shown in Figure 2.19.

2.26 Interrupt Latency
Probably the most important specification of a real-time kernel is the amount of time interrupts are dis
abled. All real-time systems disable interrupts to manipulate critical sections of code and reenable inter
rupts when the critical section has executed. The longer interrupts are disabled, the higher the interrupt
latency. Interrupt latency is given by Equation [2.2].

[2.2] Maximum amount of time interrupts are disabled
+ Time to start executing the first instruction in the ISR

Chapter 2: Real-Time Systems Concepts - 89

Figure 2.19 Interrupt nesting.

TIME

TASK~ ~

I
ISRI ~ ~

I I
ISR 2 I ~r-T77TT77771 ~

I I I
ISR3 I I ~

I I I
I I I

) I I
/ I I

Interrupt1) I

Interrupt2 j
/

Interrupt 3

2.27 Interrupt Response
Interrupt response is defined as the time between the reception of the interrupt and the start of the user
code that handles the interrupt. The interrupt response time accounts for all the overhead involved in
handling an interrupt. Typically, the processor's context (CPU registers) is saved on the stack before the
user code is executed.

For a foreground/background system, the user ISR code is executed immediately after saving the
processor's context. The response time is given by Equation [2.3].

[2.3] Interrupt latency + Time to save the CPU's context

For a non-preemptive kernel, the user ISR code is executed immediately after the processor's con
text is saved. The response time to an interrupt for a non-preemptive kernel is given by Equation [2.4].

[2.4] Interrupt latency + Time to save the CPU's context

For a preemptive kernel, a special function provided by the kernel needs to be called. This function
notifies the kernel that an ISR is in progress and allows the kernel to keep track of interrupt nesting. For

[2.5]

[2.6]

90 - Embedded Systems Building Blocks, Second Edition

IlC/OS-II, this function is called OSIntEnter (). The response time to an interrupt for a preemptive
kernel is given by Equation [2.5].

Interrupt latency
+ Time to save the CPU's context
+ Execution time of the kernel ISR entry function

A system's worst case interrupt response time is its only response. Your system may respond to
interrupts in 50llS 99 percent of the time, but if it responds to interrupts in 250llS the other 1 percent,
you must assume a 250llS interrupt response time.

2.28 Interrupt Recovery
Interrupt recovery is defined as the time required for the processor to return to the interrupted code.
Interrupt recovery in a foregroundlbackground system simply involves restoring the processor's context
and returning to the interrupted task. Interrupt recovery is given by Equation [2.6].

Time to restore the CPU's context
+ Time to execute the return from interrupt instruction

As with a foregroundlbackground system, interrupt recovery with a non-preemptive kernel (Equa
tion [2.7]) simply involves restoring the processor's context and returning to the interrupted task.

[2.7] Time to restore the CPU's context
+ Time to execute the return from interrupt instruction

For a preemptive kernel, interrupt recovery is more complex. Typically, a function provided by the
kernel is called at the end of the ISR. For IlC/OS-II, this function is called OSIntExi t () and allows the
kernel to determine if all interrupts have nested. If they have nested (i.e., a return from interrupt would
return to task-level code), the kernel determines if a higher priority task has been made ready to run as a
result of the ISR. If a higher priority task is ready to run as a result of the ISR, this task is resumed. Note
that, in this case, the interrupted task will resume only when it again becomes the highest priority task
ready to run. For a preemptive kernel, interrupt recovery is given by Equation [2.8].

[2.8] Time to determine if a higher priority task is ready
+ Time to restore the CPU's context of the highest priority task
+ Time to execute the return from interrupt instruction

2.29 Interrupt Latency, Response, and Recovery
Figures 2.20 through 2.22 show the interrupt latency, response, and recovery for a foregroundlback
ground system, a non-preemptive kernel, and a preemptive kernel, respectively.

You should note that for a preemptive kernel, the exit function either decides to return to the inter
rupted task [F2.22(A)] or to a higher priority task that the ISR has made ready to run [F2.22(B)]. In the
later case, the execution time is slightly longer because the kernel has to perform a context switch. I
made the difference in execution time somewhat to scale assuming IlC/OS-II on an Intel 80186 proces
sor (see Table 9.3, Execution times of /lC/OS-II services on 33MHz 80186). This allows you to see the
cost (in execution time) of switching context.

Chapter 2: Real-Time Systems Concepts - 91

2.30 ISR Processing Time
Although ISRs should be as short as possible, there are no absolute limits on the amount of time for an
ISR. One cannot say that an ISR must always be less than lOO~s, 500~s, or lms. If the ISR code is the 2
most important code that needs to run at any given time, it could be as long as it needs to be. In most
cases, however, the ISR should recognize the interrupt, obtain data or a status from the interrupting c

device, and signal a task to perform the actual processing. You should also consider whether the over-
head involved in signaling a task is more than the processing of the interrupt. Signaling a task from an
ISR (i.e., through a semaphore, a mailbox, or a queue) requires some processing time. If processing
your interrupt requires less than the time required to signal a task, you should consider processing the
interrupt in the ISR itself and possibly enabling interrupts to allow higher priority interrupts to be recog-
nized and serviced.

Figure 2.20 Interrupt latency, response, and recovery
iforeground~ackground).

TIME

(Interrupt Request

~ BACKGROUND BACKGROUND
~/#$/~ Wj0//&

I I I
I I I
I ~ CPU Context Saved ~

{

I ~I ~
ISR I I I I I"--CPU context

I I I restored

: ~#$#dWM ~serI~R Cod~ Wff$~ :

I I I I
I I I I I

I I
I Interrupt Latency I I II" .1 ~

InterruptResponse I InterruptRecovery
:.. .1

2.31 Nonmaskable Interrupts (NMIs)
Sometimes, an interrupt must be serviced as quickly as possible and cannot afford to have the latency
imposed by a kernel. In these situations, you may be able to use the Nonmaskable Interrupt (NMI) pro
vided on most microprocessors. Because the NMI cannot be disabled, interrupt latency, response, and
recovery are minimal. The NMI is generally reserved for drastic measures such as saving important

92 - Embedded Systems Building Blocks, Second Edition

information during a power down. If, however, your application doesn't have this requirement, you
could use the NMI to service your most time-critical ISR. The following equations show how to deter
mine the interrupt latency [2.9], response [2.10], and recovery [2.11], respectively, of an NMI.

[2.9]

[2.10]

[2.11]

Time to execute longest instruction + Time to start executing the NMI ISR

Interrupt latency + Time to save the CPU's context

Time to restore the CPU's context
+ Time to execute the return from interrupt instruction

I have used the NMI in an application to respond to an interrupt that could occur every 150Jls. The
processing time of the ISR took from 80 to 125J.!S, and the kernel I used disabled interrupts for about
45Jls. As you can see, if I had used maskable interrupts, the ISR could have been late by 20Jls.

When you are servicing an NMI, you cannot use kernel services to signal a task because NMls can
not be disabled to access critical sections of code. However, you can still pass parameters to and from
the NMI. Parameters passed must be global variables and the size of these variables must be read or
written indivisibly; that is, not as separate byte read or write instructions.

Figure 2.21 Interrupt latency, response, and recovery
(non-preemptive kernel).

TIME

TASK
W,@/PA
I

Interrupt Response
~ ~

(Interrupt Request

• TASK
W'/##ffm~

I
I I
~. CPU Context Saved Ft

I I
I 1 I CPU context
I ' I
: ~Y§Z2~~~g-~~ W$P~ : restored

I I I I
I I I

I
Interrupt Latenc),1 I

I" 1 ~

Interrupt Recovery

Chapter 2: Real-Time Systems Concepts - 93

Figure 2.22 Interrupt latency, response, and recovery
(preemptive kernel).

TIME III
I
A
j

Interrupt Response
I'"

(

Interrupt Request
Interrupt Recovery
~

TASK I TASK
fW/#,$@'~/& ~$&

I I I
I I\ CPU Context Saved Kernel's ISR I
I l! Exit function 71
I f0iW,,@ ~

I Kernel's ISR I~ II II '--CPU context
restored

: Entry"?" kw##~ser~s~cft##ff~
I I I I
I I I I

lIn L: I ~h1@ ~I'" terrupt atenc~1 Kernel's ISR I~ ~CPU context I
Exit function------r I restored B: _& j

1 1 TASK

I'" .1
Interrupt Recovery

NMIs can be disabled by adding external circuitry, as shown in Figure 2.23. Assuming that both the
interrupt and the NMI are positive-going signals, a simple AND gate is inserted between the interrupt
source and the processor's NMI input. Interrupts are disabled by writing a 0 to an output port. You
wouldn't want to disable interrupts to use kernel services, but you could use this feature to pass parame
ters (i.e., larger variables) to and from the ISR and a task.

Figure 2.23 Disabling nonmaskable interrupts.

NMI Interrupt Source

Output t-------tPort L- _

To Processor's NMI Input

94 - Embedded Systems Building Blocks, Second Edition

Now, suppose that the NMI service routine needs to signal a task every 40 times it executes. If the
NMI occurs every 150Jls, a signal would be required every 6ms (40 x 150Jls). From a NMI ISR, you
cannot use the kernel to signal the task, but you could use the scheme shown in Figure 2.24. In this case,
the NMI service routine would generate a hardware interrupt through an output port (i.e., bring an out
put high). Since the NMI service routine typically has the highest priority and interrupt nesting is typi
cally not allowed while servicing the NMI ISR, the interrupt would not be recognized until the end of
the NMI service routine. At the completion of the NMI service routine, the processor would be inter
rupted to service this hardware interrupt. This ISR would clear the interrupt source (i.e., bring the port
output low) and post to a semaphore that would wake up the task. As long as the task services the sema
phore well within 6ms, your deadline would be met.

Figure 2.24 Signaling a task from a nonmaskable interrupt.

Issues interrupt by writing
to an output port 7

II Semaphore e
~ ~(ISR) .~ TASK

POST L!......JPENi)'NMI InterruPt~(
.......='--'

2.32 Clock Tick
A clock tick is a special interrupt that occurs periodically. This interrupt can be viewed as the system's
heartbeat. The time between interrupts is application specific and is generally between 10 and 2ooms.
The clock tick interrupt allows a kernel to delay tasks for an integral number of clock ticks and to pro
vide timeouts when tasks are waiting for events to occur. The faster the tick rate, the higher the overhead
imposed on the system.

All kernels allow tasks to be delayed for a certain number of clock ticks. The resolution of delayed
tasks is one clock tick; however, this does not mean that its accuracy is one clock tick.

Figures 2.25 through 2.27 are timing diagrams showing a task delaying itself for one clock tick. The
shaded areas indicate the execution time for each operation being performed. Note that the time for each
operation varies to reflect typical processing, which would include loops and conditional statements
(i.e., if/else, swi tell, and ?:). The processing time of the Tick ISR has been exaggerated to show
that it too is subject to varying execution times.

Case I (Figure 2.25) shows a situation where higher priority tasks and ISRs execute prior to the task,
which needs to delay for one tick. As you can see, the task attempts to delay for 20ms but because of its
priority, actually executes at varying intervals. This causes the execution of the task to jitter.

Chapter 2: Real-Time Systems Concepts -95

Figure 2.25 Delaying a taskfor one tick (Case 1).

.--20ms---"

Tick Interrupt__----L-I_ __--'1 .._-1-

o[JDTick ISR --'----'- --'---L-_

All higher priority tasks n ~- .-- - -~--_._.
Call to delay I tick (20ms) l Call to deltay I tick (20ms) I Call to delay I tick (20ms)

Delayed Task 0 n Cl D
I ! I I
~-tl~ ~---t3-~

(l9ms) ~-t2-~ (27ms)
(l7ms)

Case 2 (Figure 2.26) shows a situation where the execution times of all higher priority tasks and
ISRs are slightly less than one tick. ITthe task delays itself just before a clock tick, the task will execute
again almost immediately! Because of this, if you need to delay a task at least one clock tick, you must
specify one extra tick. In other words, if you need to delay a task for at least five ticks, you must specify
six ticks!

Figure 2.26 Delaying a taskfor one tick (Case 2).

.-- 20ms---'

1 ITick InteJ.'!l:!PL.._----L- ---L- -->-- --L- .L-

TickISR o o o D D

All higher priority tasks I n 0 r==J
Call to delay I tick (20ms)l Call tO

I
delay I tick (20ms) I Call to delay I tick (20ms)

Delayed Task DOD 0
~ L I

tI.......... t2- ----"o.J"'" t3 ~
.....---- ---,.., (27ms)

(6ms) (l9ms)

96 - Embedded Systems Building Blocks, Second Edition

Case 3 (Figure 2.27) shows a situation in which the execution times of all higher priority tasks and ISRs
extend beyond one clock tick. In this case, the task that tries to delay for one tick actually executes two
ticks later and misses its deadline. This might beacceptable in some applications, but in most cases it isn't.

These situations exist with all real-time kernels. They are related to CPU processing load and possi
bly incorrect system design. Here are some possible solutions to these problems:

Increase the clock rate of your microprocessor.

Increase the time between tick interrupts.

• Rearrange task priorities.

Avoid using floating-point math (if you must, use single precision).

Get a compiler that performs better code optimization.

• Write time-critical code in assembly language.

• If possible, upgrade to a faster microprocessor in the same family; that is, 8086 to 80186, 68000 to
68020, etc.

Regardless of what you do, jitter will always occur.

Figure 2.27 Delaying a taskfor one tick (Case 3).

Tick Interrupt
.---20ms------'

I ~I--__- ____L- L

Tick ISR o o o o D

Allhigh~priorit~=sk=s~[]~ ___ ___-'-.I ----'- .L.-_---L- _

Call to delay 1 tick (20ms)l Call to delay 1 tick (20ms)l
DelayedTask il ~____ ___---:n~____ 0

i I [
k-------- tl--- ----- __~i"Ill..t----(2J~-S)--~

(40ms)

2.33 Memory Requirements
If you are designing a foregroundlbackground system, the amount of memory required depends solely
on your application code.With a multitasking kernel, things are quite different. To begin with, a kernel
requires extra code space (ROM). The size of the kernel depends on many factors. Depending on the
features provided by the kernel, you can expect anywhere from 1 to lOOKb. A minimal kernel for an
8-bit CPU that provides only scheduling, context switching, semaphore management, delays, and time
outs should require about 1 to 3Kb of code space. The total code space is given by Equation [2.12].

[2.12] Application code size + Kernel code size

[2.13]

Chapter 2: Real-Time Systems Concepts - 97

Because each task runs independently of the others, it must be provided with its own stack area
(RAM). As a designer, you must determine the stack requirement of each task as closely as possible
(this is sometimes a difficult undertaking). The stack size must not only account for the task require-
ments (local variables, function calls, etc.), it must also account for maximum interrupt nesting (saved 2
registers, local storage in ISRs, etc.). Depending on the target processor and the kernel used, a separate .•..
stack can be used to handle all interrupt-level code. This is a desirable feature because the stack require- c

ment for each task can be substantially reduced. Another desirable feature is the ability to specify the
stack size of each task on an individual basis (/-I.C/OS-ll permits this). Conversely, some kernels require
that all task stacks be the same size. All kernels require extra RAM to maintain internal variables, data
structures, queues, etc. The total RAM required if the kernel does not support a separate interrupt stack
is given by Equation [2.13].

Application code requirements
+ Data space (i.e., RAM) needed by the kernel
+ SUM(task stacks + MAX(ISR nesting»

If the kernel supports a separate stack for interrupts, the total RAM required is given by Equation [2.14].

[2.14] Application code requirements
+ Data space (i.e., RAM) needed by the kernel
+ SUM(task stacks)
+ MAX(ISR nesting)

Unless you have large amounts of RAM to work with, you need to be careful how you use the stack
space. To reduce the amount of RAM needed in an application, you must be careful how you use each
task's stack for

large arrays and structures declared locally to functions and ISRs,

function (i.e., subroutine) nesting,

interrupt nesting,

library functions stack usage, and

function calls with many arguments.

To summarize, a multitasking system requires more code space (ROM) and data space (RAM) than
a foreground/background system. The amount of extra ROM depends only on the size of the kernel, and
the amount of RAM depends on the number of tasks in your system.

2.34 Advantages and Disadvantages of
Real-Time Kernels

A real-time kernel, also called a Real- Time Operating System, or RTOS, allows real-time applications to
be designed and expanded easily; functions can be added without requiring major changes to the soft
ware. The use of an RTOS simplifies the design process by splitting the application code into separate
tasks. With a preemptive RTOS, all time-critical events are handled as quickly and as efficiently as pos
sible. An RTOS allows you to make better use of your resources by providing you with valuable ser
vices, such as semaphores, mailboxes, queues, time delays, timeouts, etc.

You should consider using a real-time kernel if your application can afford the extra requirements:
extra cost of the kernel, more ROMIRAM, and 2 to 4 percent additional CPU overhead.

98 - Embedded Systems Building Blocks, Second Edition

The one factor I haven't mentioned so far is the cost associated with the use of a real-time kernel. In
some applications, cost is everything and would preclude you from even considering an RTOS.

There are currently about 80+ RTOS vendors. Products are available for 8-,16-,32-, and even 64-bit
microprocessors. Some of these packages are complete operating systems and include not only the
real-time kernel but also an input/output manager, windowing systems (display), a file system, network
ing, language interface libraries, debuggers, and cross-platform compilers. The cost of an RTOS varies
from $70 to well over $30,000. The RTOS vendor may also require royalties on a per-target-system
basis. This is like buying a chip from the RTOS vendor that you include with each unit sold. The RTOS
vendors call this silicon software. The royalty fee varies between $5 to about $250 per unit. Like any
other software package these days, you also need to consider the maintenance cost, which can set you
back another $100 to $5,000 per year!

2.35 Real-Time Systems Summary

Table 2.2 summarizes the three types of real-time systems: foreground/background, non-preemptive
kernel, and preemptive kernel.

Table 2.2 Real-time systems summary.

Foreground/ Non-Preemptive
Preemptive Kernel

Background Kernel

Interrupt
MAX(Longest instruction, MAX(Longest instruction, MAX(Longest instruction,

Userint disable) User int disable, Userint disable,
latency + Vectorto ISR Kemelint disable) Kernelint disable)
(Time)

+ Vector to ISR + Vector to ISR

Interrupt Int latency Int latency Interruptlatency

response + Save CPU's context + Save CPU's context + Save CPU's context

(Time) + KernelISR entryfunction

Interrupt
Restorebackground's Restore task's context Fmd highestprioritytask

context + Return from int + Restorehighestpriority
recovery + Return from int task's context
(Time)

+ Returnfromintenupt

Task Background Longesttask Find highestprioritytask

response + Fmd highestprioritytask + Context switch

(Time) + Context switch

ROM size
Applicationcode Applicationcode Applicationcode

-i-Kernel code +Kemelcode

Applicationcode Applicationcode Applicationcode

RAM size
+ KernelRAM + KernelRAM
+ SUM(fask stacks + SUM(fask stacks
+ MAX(lSR stack» + MAX(lSR stack)

Services Applicationcode nmst Yes Yes

available? provide

Chapter 2: Real-Time Systems Concepts - 99

2.36 Bibliography
Allworth, Steve T. 1981. Introduction To Real-Time Software Design. New York: Springer-Verlag. ISBN

0-387-91175-8.

Bal Sathe, Dhananjay. 1988. Fast Algorithm Determines Priority. EDN (India), September, p. 237.

Comer, Douglas. 1984.0perating System Design, The XINU Approach. Englewood Cliffs, New Jersey:
Prentice-Hall. ISBN 0-13-637539-1.

Deite1, Harvey M. and Michael S. Kogan. 1992. The Design Of OS/2. Reading, Massachusetts: Addi
son-Wesley. ISBN 0-201-54889-5.

Ganssle, Jack G. 1992. The Art ofProgramming Embedded Systems. San Diego: Academic Press. ISBN
0-122-748808.

Gareau, Jean L. 1998. Embedded x86 Programming: Protected Mode. Embedded Systems Program
ming,Apri1, p. 80-93.

Halang, Wolfgang A. and Alexander D. Stoyenko. 1991. Constructing Predictable Real Time Systems.
Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9202-7.

Hunter & Ready. 1986. VRTX Technical Tips. Palo Alto, California: Hunter & Ready.

Hunter & Ready. 1983. Dijkstra Semaphores, Application Note. Palo Alto, California: Hunter & Ready.

Hunter & Ready. 1986. VRTX and Event Flags. Palo Alto, California: Hunter & Ready.

Intel Corporation. 1986. iAPX 86/88, 186/188 User's Manual: Programmer's Reference. Santa Clara,
California: Intel Corporation.

Kernighan, Brian W. and Dennis M. Ritchie. 1988. The C Programming Language, 2nd edition. Engle
wood Cliffs, New Jersey: Prentice Hall. ISBN 0-13-110362-8.

Klein, Mark H., Thomas Ralya, Bill Pollak, Ray Harbour Obenza, and Michael Gonzlez. 1993. A Prac
tioner's Handbook for Real-Time Analysis: Guide to Rate Monotonic Analysis for Real-Time Sys
tems. Norwell, Massachusetts: Kluwer Academic Publishers Group. ISBN 0-7923-9361-9.

Labrosse, Jean J. 1992. flC/OS, The Real-Time Kernel. Lawrence, Kansas: R&D Publications. ISBN
0-87930-444-8.

Laplante, Phillip A. 1992. Real-Time Systems Design and Analysis, An Engineer's Handbook. Piscat
away, New Jersey: IEEE Computer Society Press. ISBN 0-780-334000.

Lehoczky, John, Lui Sha, and Ye Ding. 1989. The Rate Monotonic Scheduling Algorithm: Exact Char
acterization and Average Case Behavior. In: Proceedings of the IEEE Real-Time Systems Sympo
sium., Los Alamitos, California. Piscataway, New Jersey: IEEE Computer Society, p. 166-17l.

Madnick, E. Stuart and John J. Donovan. 1974. Operating Systems. New York: McGraw-Hill. ISBN
0-07-039455-5.

Ripps, David L. 1989. An Implementation Guide To Real-Time Programming. Englewood Cliffs, New
Jersey: Yourdon Press. ISBN 0-13-451873-X.

L~a-----

100 - Embedded Systems Building Blocks, Second Edition

Savitzky, Stephen R. 1985. Real-Time Microprocessor Systems. New York: Van Nostrand Reinhold.
ISBN 0-442-28048-3.

Wood, Mike and Tom Barrett. 1990. A Real-Time Primer. Embedded Systems Programming, February,
p.20-28.

Chapter 3

Keyboards
A large number of embedded products, such as microwave ovens, FAX machines, copiers, laser print
ers, Point Of Sale (POS) terminals, Programmable Logic Controls (PLCs), and so on, rely on a key
board or keypad interface for user input. The keyboard might be used to input numerical data as well as
to select the operating mode of the controlling device. As an embedded system designer, you are always
concerned with the cost of your products. Chips are currently available to perform keyboard scanning,
but a software approach to keyboard scanning has the benefit of reducing the recurring cost of a system
and requires very little CPU overhead.

In this chapter, I will describe how a microprocessor can scan a keyboard, and I will also provide
you with a complete, portable m x n matrix keyboard scanning module. The module can scan any key
board matrix arrangement up to an 8x8 matrix, but can easily be modified to handle a larger number of
keys. The matrix keyboard module code is an important building block for embedded systems. The key
board module presented in this chapter has the following features:

Scans any keyboard arrangement from a 3x3 to an 8x8 key matrix.

Provides buffering (user configurable buffer size).

Supports auto-repeat.

Keeps track of how long a key has been pressed.

Allows up to three Shift keys.

All you need to do to use this module is to write three simple hardware interface functions and set
the value of 17 #define constants. The keyboard module assumes the presence of a real-time kernel
but can easily be modified to work in a foregroundlbackground environment.

3.00 Keyboard Basics
A momentary contact switch is typically used in a keyboard, and a closure can easily be detected by a
microprocessor using the simple circuit shown in Figure 3.1. The pull-up resistor provides a logic 1
when the switch is opened and a logic 0 when the switch is closed. Unfortunately, switches are not per
fect in that they do not generate a crisp 1 or 0 when they are pressed or released. Although a contact

101

102 - Embedded Systems Building Blocks, Second Edition

may appear to close firmly and quickly, at the fast running speed of a microprocessor, the action is com
paratively slow. As the contact closes, the contact bounces like a ball. This bouncing effect produces
multiple pulses as shown in Figure 3.1. The duration of the bounce typically will last between 5 and 30
mS. If multiple keys are needed, each switch can be connected to its own input port on the microproces
sor. As the number of switches increases, however, this method quickly begins to use up all the input
ports.

Figure 3.1 Keyboard switch.

+5V

To microprocessor input port

t
~I

~ailing edge bounce

~ Switch open

10lll

Leading edge b7unce

Switch open+5 V (1)

GND (0) '--- ---'-.........;;;.;.;=;....;;.;.;='---_........._a.___---.

The most efficient way to layout the switches in a keyboard (when more than five keys are needed)
is to form a two-dimensional matrix as shown in Figure 3.2. The most optimum arrangement (where I/O
lines are concerned) occurs when there are as many rows as columns, that is, a square matrix. A momen
tary contact switch (push button) is placed at the intersection of each row and column. The number of
keys needed in the matrix is obviously application dependent. Each row is driven by a bit of an output
port, while each column is pulled up by a resistor and fed to a bit on an input port.

Figure 3.2 Keyboard matrix.

+5V

Chapter 3: Keyboards -103

Output Port

c>

Input Port

II

Keyboard scanning is the process of having the microprocessor look at the keyboard matrix at a reg
ular interval to see if a key has been pressed. Once the processor determines that a key has been pressed,
the keyboard scanning software filters out the bounce and determines which of the keys was pressed.
Each key is assigned a unique identifier called a scan code. The scan code is used by your application to
determine what action is to be taken based on the key pressed. In other words, the scan code tells your
application which key was pressed.

Pressing (accidentally or deliberately) more than one key at a time is called rollover. Any algorithm
that can correctly recognize that a new key has been pressed - even though n-l keys are already
pressed - is said to have n-key rollover capability. The matrix keyboard module presented in this chap
ter does not implement an n-key rollover algorithm because of the extra code required. The code pre
sented here is intended for small embedded systems where user input would occur one keystroke after
the other. Such systems typically do not require full-featured keyboards like the ones found on terminals
or computer systems.

3.01 Matrix Keyboard Scanning Algorithm
During initialization, all rows (output port) are forced low (see Figure 3.2). When no key is pressed, all
columns (input port) read high. Any key closure will cause one of the columns to go low. To see if a key
has been pressed, the microprocessor only needs to see if any of the input lines are low. Once the

104 - Embedded Systems Building Blocks, Second Edition

microprocessor has detected that a key has been pressed, it needs to find out which key it was. This pro
cess is quite simple. The microprocessor outputs a low on only one of the rows. If it finds a 0 on the
input port, the microprocessor knows that the key closure occurred on the selected row. Conversely, if
the input port had all highs, the key pressed was not on that row and the microprocessor selects the next
row, repeating the process until it finds the row. Once the row has been identified, the specific column
of the pressed key can be established by locating the position of the single low bit on the input port. The
time required for the microprocessor to perform these steps is very short compared to the minimum
switch closure time and it is thus assumed that the key will remain pressed during that interval.

To filter through the bouncing problem, the microprocessor samples the keyboard at regular inter
vals, typically between 20 mS and 100 mS (called the debounce period) depending on the bounce char
acteristics of the switches being used.

The scan code of the key pressed is typically placed in a buffer until the application is ready to pro
cess a keystroke. Buffering is a handy feature because it prevents losing keystrokes when the application
cannot process them as they occur. The size of the buffer depends on your application requirements. A
buffer size of 10 keystrokes is a good starting point. The buffer is generally implemented as a circular
queue. When a key is pressed, the scan code is placed at the next empty location in the queue. When
your application obtains a scan code from the keyboard module, the scan code is extracted from the old
est location in the queue. If the queue is full, any further keystrokes are lost.

Another nice feature is what is called auto-repeat or typematic. Auto-repeat allows the scan code of
a key pressed to be repeatedly inserted into the buffer for as long as you press the key or until the buffer
fills up. Auto-repeat capability is nice to have if you plan on incrementing or decrementing the value of
a parameter (i.e., a variable) without having to continuously press and release the key. The timing dia
gram of Figure 3.3 shows how auto-repeat works. The scan code of the key pressed is inserted in the
buffer as soon as the closure is detected. If the key is held down longer than the auto-repeat start delay,
the scan code is again inserted in the buffer. From then on, if the key remains pressed, the scan code will
be inserted in the buffer every auto-repeat delay.

Figure 3.3 Auto-repeat.

Scan code placed in buffer Auto repeat delay

~
~

I t t f f f
Key RELEASErl

I I I I I
Key RELEASEDI I I I I

I
I I I I I II I I I I

Key PRESSED 'V
I" .1

Auto repeat start delay

By also telling you how long the key has been pressed, your application can speed up the process of
incrementing or decrementing the value of a parameter based on how long the key has been pressed.

To reduce the recurring cost of your system, you can assign multiple functions to each key. To access
the alternate function of each key, you can either assign a prefix key (like calculators) or provide one or
more Shift keys. With a prefix key, you access the alternate function by pressing the prefix key followed
by the desired key. To execute another alternate function, you generally have to press the prefix key
again. With a Shift key, you access the alternate function by first pressing and holding down the Shift
key and then pressing the desired key. In both cases, the keyboard scanning code can keep track of the
operation and provide your application with a unique scan code for each type of key pressed. The matrix

Chapter 3: Keyboards -105

keyboard module supports the second method and allows you to have up to three Shift keys. Note that
you can still use the prefix keys with the keyboard module except that your user interface software will
have to keep track of them.

3.02 Matrix Keyboard Module
The source code for the matrix keyboard module is found in the \ SOF1WARE \ BLOCKS \KEY_MN \ SOURCE IIIc
directory. The source code is found in the files KEY. C and KEY. H.The source code is shown in Listing 3.1
(KEY.C) and Listing 3.2 (KEY.H). As a convention, all functions and variables related to the keyboard
module start with Key while all #define constants start with KEY_.

The code allows you to scan a keyboard having any number of rows and columns up to an 8x8
matrix. Rows are driven by an output port (up to 8 bits). The module assumes that rows are populated
starting with bit 0 on the output port. Columns are fed to an input port (up to 8 bits). As with the rows,
columns must be populated starting with bit O. You must sacrifice column inputs if your application
requires Shift keys. The module can accommodate up to three Shift keys. Shift keys must be populated
starting with bit 7 of the input port. In other words, your first Shift key should be placed on bit 7 of the
input port, the next one, on bit 6, and the third on bit 5.

The module in Listing 3.1 and 3.2 has been configured and tested assuming the keyboard layout
shown in Figure 3.4: a 4-row by 6-column keyboard matrix with two Shift keys. Each key in the matrix
has a scan code associated with it (see Figure 3.4). When no Shift key is pressed, the scan code for a key
is between 0 and 23 (incl.). When the SHlFfI key is pressed, the scan code for each is the number
shown in Figure 3.4 plus 24. Similarly, if the SHIFf2 key is pressed, 48 is added to the scan codes in
Figure 3.4. (See Table 3.1).

106 - Embedded Systems Building Blocks, Second Edition

Figure 3.4 Keyboard matrix.

ROWS
(Output port) +5V

ssed)

HlFf2

B3

~L ~L ~L ~L ~L ~L23 22 21 20 19 18...
B2 "!L ~L ~L ~L ~L "!L ~Scancode

17 16 15 14 13 12 (No SHIFT key pre
Bl

~.L ~L ~L ~L ~L ~L
11 10 9 8 7 6

BO

~L ~L ~L ~L ~L ~L
OLUMNS 5 4 3 2 1 0 +5V

(Input port)

B7
B6
B5

~ ~B4
B3 -=
B2 SHIFTI S
Bl

BO

c

Table 3.1 Scan codes for keyboard shown in Figure 3.4.

Scan code Shift keyes) pressed

O•• 23

24 .. 47

48 .. 71

72 .. 95

None

Shiftl

Shift2

Shiftl andShift2

3.03 Internals
Figure 3.5 shows a flow diagram of the matrix keyboard module. To use this module, all you need to do is
to adapt three hardware interface functions to your environment and change the value of 17 #define
constants. As shown in Figure 3.5, the code assumes the presence of a real-time kernel. The keyboard
scanning module only makes use of two kernel services: semaphores and time delays. You should refer to
Listing 3.1 and 3.2 for the following description. A single task, KeyScanTask () , is responsible for scan-

Chapter 3: Keyboards -107

ning the keyboard. KeyScanTask () is created when your application calls KeyIni t () . Once created,
KeyScanTask () executes every KEY_SCAN_TASK_DLY milliseconds. KEY_SCAN_TASK_DLY should
be set to produce a scan rate between 10 and 30 Hz (rate in Hertz is 1000 / KEY_SCAN_TASK_DLY).

IIKeyboard Driver

POST

Matrix keyboard driver flow diagram.

Application
Interface

KeyGetKeyDownTime()
IKeyDown Timer

.-..tl I
I ~

Keylni t () --------1...
1

1

1

I Hardware
I
I
I

XKEY_SCAN_TASK_DLY 1 M ,

1"",,,on"I.gatnxKeyboard

KeySelRaw () 1
KeyGe teal ()

I I
KeyGetKey ()I- ---+:IP-=E==-ND=~emaPhore t I

: XTimeout aKeYBUf[] ?KeYBUfOUtIX :

KeyFlush () •• 1

1

1 ~KeYNRead :

KeyHi t ()1------- '£ I
1 ~ KeyBufInlx I

I

Figure 3.5

The simplest method I have found to scan a keyboard and implement all the features described pre
viously is to build a simple state machine as shown in Figure 3.6. The state machine is executed every
debounce period. Only one of the four states is executed every KEY_SCAN_TASK_DLY milliseconds.

108 -Embedded Systems Building Blocks, Second Edition

Figure 3.6 Matrix keyboard driver state machine.

Initialization

DEBOUNCE

Key still pressed & Debounce time has expired:
Find which key was pressed
Place key code in buffer
Inc. key down timer

Key not pressed

WAIT TO
START AUTO

REPEAT

Key still pressed & delay to auto repeat not elapsed:
Inc. key down timer

WAIT FOR
NEXT REPEAT 1----1

Initially, the state machine is in the KEY_STATE_UP state. When a key is pressed, the state of the
state machine changes to KEY_STATE_DEBOUNCE, which will execute KEY_SCAN_TASK_DLY millisec
onds later. Notice that the operating system's (i.e., IlCIOS-II) function OSTirneDlyHMSM () provides a
convenient way to debounce and scan the keyboard at a regular interval.

After the delay, KeyScanTask () executes the code in the KEY_STATE_DEBOUNCE state, which
again checks to see if the key is pressed. The state machine returns to the KEY_STATE_UP state if the
key is released. If the key is still pressed, however, the scan code is found by calling KeyDecode ()

and inserted in the circular buffer through KeyBufIn (). KeyBufIn () discards the scan code if the
buffer is already full. KeyBufIn () also signals the keyboard semaphore, allowing your application to
obtain the scan code of the key through KeyGetKey (). The state machine is then changed to the
KEY_STATE_RPT_START_DLY state.

The auto-repeat function will engage if the key is pressed for more than KEY_RPT_START_DLY scan
times.In this case, the scancode is insertedin the bufferand the stateis changed to the KEY_STATE_RPT_DLY

state.If the key is no longer pressed, the stateof the state machine is changed to the KEY_STATE_DEBOUNCE

state to debounce the releasedkey.
After a scan period, KeyScanTask () executes the code in the KEY_STATE_RPT_DLY state, where

the scan code for a pressed key will be inserted into the buffer every KEY_RPT_DLY scan times. As with
the other states, debouncing will be required if the key is released.

Chapter 3: Keyboards -109

3.04 Interface Functions
Figure 3.7 shows a block diagram of the matrix keyboard module. Your application knows about the key
board module only through five functions: KeyFlush (), KeyGetKey (), KeyGetKeyDownTirne () ,
KeyHi t (), and Keylni t () .

Application Interface

Figure 3.7 Matrix keyboard driver block diagram.

Hardware III
Keylni t ()
KeyHit ()
KeyGe tKey ()I-----t~1
KeyFlush ()
KeyGetKeyDownTirne()

MxN
Matrix

Keyboard
Driver

M x N Matrix Keyboard

.....Hardware Interface
Keylni tPort ()
KeySelRow ()
KeyGetCol()

110 - Embedded Systems Building Blocks, Second Edition

KeyFlush()
void KeyFlush(void);

The matrix keyboard module buffers user keystrokes until they are consumed by your application. In
some instances, it may be useful to flush the buffer and start with fresh user input. In other words, you
may want to throwaway previously accumulated keystrokes and start with an empty keyboard buffer.
You can accomplish this by calling KeyFlush ().

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

KeyFlush(); /* Clear the keyboard buffer */

Chapter 3: Keyboards -109

3.04 Interface Functions
Figure 3.7 shows a block diagram of the matrix keyboard module. Your application knows about the key
board module only through five functions: KeyFlush (), KeyGetKey (), KeyGetKeyDownTime () ,
KeyHit (), and KeyInit ().

Application Interface

Figure 3.7 Matrix keyboard driver block diagram.

Hardware III
Keylni t ()
KeyHit ()
KeyGetKey ()I------I~I
KeyFlush ()
KeyGetKeyDownTirne()

MxN
Matrix

Keyboard
Driver

M x N Matrix Keyboard

011I ~IIHardware Interface
KeylnitPort ()
KeySelRow ()
KeyGetCol ()

110 - Embedded Systems Building Blocks, Second Edition

KeyFlush()
void KeyFlush(void);

The matrix keyboard module buffers user keystrokes until they are consumed by your application. In
some instances, it may be useful to flush the buffer and start with fresh user input. In other words, you
may want to throwaway previously accumulated keystrokes and start with an empty keyboard buffer.
You can accomplish this by calling KeyFlush ().

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

KeyFlush () ; /* Clear the keyboard buffer */

Chapter 3: Keyboards -111

KeyGetKey()
INT8U KeyGetKey(INTl6U to);

KeyGetKey () is called by your application to obtain a scan code from the keyboard module. If a key
has not been pressed, the calling task will be suspended until the user presses a key or until a user-spec
ified timeout expires; the timeout is passed as an argument to KeyGetKey (). If a timeout occurs,
KeyGetKey () returns OxFF.

Arguments

to is a user specified time out specified in 'clock ticks'. To wait for ever for a key press, specify a tim
eoutof O.

RetumValue

The scan code corresponding to the key pressed or OxFF if the specified timeout period expires. The
scan code returned by KeyGetKey () depends on whether or not any of the Shift keys are pressed, as

shown in .

NoteslWamings

This function will suspend the calling task until a key is pressed.

Example

void Task (void *pdata)

INT8U scancode;

II

for (;;) {

scancode ; KeyGetKey(10); /* Wait for key to be pressed */

/* _ up to 10 ticks */

112 - Embedded Systems Building Blocks, Second Edition

KeyGetKeyDownTime{)
INr16U KeyGetKeyDownTilne (void) ;

KeyGetKeyDownTime () returns the amount of time (in milliseconds) that a key has been pressed.
This function is useful to speed up the process of incrementing or decrementing the value of a parameter
based on how long a key has been pressed.

The key down time is not cleared when the pressed key is released. Instead, the key down time is
reset only when the next key is pressed. In other words, you can always obtain the amount of time that
the last key was pressed.

Arguments

None

Return Value

The amount of time that the current key is being pressed.

NoteslWarnings

The first edition of this book returned the time the key was pressed in number of clock ticks instead of
milliseconds. You will thus have to change your code if you used the previous version of this function.

Example

void Task (void *pdata)

INT16u time;

for (;;)

time = KeyGetKeyDownTime(); /* See how long last key was pressed */

Chapter 3: Keyboards -113

KeyHit()
BOOLEAN KeyHit (void);

KeyHi t () allows your application to determine if a key has been pressed. Unlike KeyGetKey () ,

KeyHi t () does not suspend the caller. KeyHi t () immediately returns TRUE if a key was pressed and
FALSE otherwise.

Arguments

None

Return Value

TRUE is a key is available from the keyboard buffer.
FALSE if no key has been pressed.

NoteslWarnings

None

Example

void Task (void *pdata)

INT8U scancode;

III

for (;;) {

if (KeyHit ())

scancode = KeyGetKey(O);

/ * See if a key has been pressed */

/* Yes, get scan code */

114 - Embedded Systems Building Blocks, Second Edition

KeyInit()
void Keylnit(void);

Keylni t () is the initialization code for the module and it must be called before you invoke any of the
other functions. Keylni t () is responsible for initializing internal variables used by the module, initial
izing the hardware ports, and creating a task that will be responsible for scanning the keyboard.

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void main (void)

KeyInit (); /* Initialize the keyboard handler */

3.05 Configuration
Configuration of the matrix keyboard module code involves changing the value of 17 #defines and
adapting three hardware-interface functions to your environment. The #defines are found in KEY. H

(section: User Defined Constants) and are also found in CFG.H. The #defines are fully described in
KEY. H. You should typically assign a low task priority to keyboard scanning.

WARNING:
In the previous edition of this book, you needed to specify KEY_SCAN_TASK_DLY in number of
ticks between execution of KeyScanTask (). Because IlC/OS-II provides a more convenient
function (i.e., OSTimeDlyHMSM ()) to specify the task execution period in hours, minutes, sec
onds, and milliseconds - KEY_SCAN_TASK_DLY now specifies the scan period in milliseconds
instead of ticks.

Chapter 3: Keyboards -115

WARNING
In the previous edition of this book, KEY_SCAN_TASK_STK_SIZE specified the size of the stack
for KeyScanTask () in number of bytes. IlC/OS-II assumes the stack is specified in stack width
elements.

To make this module as portable as possible, access to hardware ports has been isolated into three lIi_.•
functions: Keylni tPort () , KeySelRow () , and KeyGetCol () . The matrix keyboard module can be
adapted to just about any environment as long as you write these functions as described.

KeylnitPort () is responsible for initializing the I/O ports used for the rows and columns. I tested
the code using an Intel 82C55A PPI (Programmable Peripheral Interface). Keylni tPort () is called
by Keylnit ().

KeySelRow () is used to select rows. KeySelRow () expects a single argument that can either be
KEY_ALL_ROWS (to force all rows low) or a number between 0 and 7 (to force a specific row low).

KeyGetCol () reads and returns the complement of the columns input port (a 1 indicates a key
pressed).

3.06 How to Use the Matrix Keyboard Module
Let's suppose that your application needs a keyboard, as shown in Figure 3.8. This keyboard should
look somewhat familiar except for the four function keys: Fl to F4.

Before you can use any of the keyboard module's services, you must call Keylni t () :

void main(void)

OSInit() ;

Keylnit () ;

OSStart();

/* Initialize the O.S. (roC/OS-II)

/* Initialize the keyboard module

/* Start multitasking (roC/OS-II)

*/

*/

*/

116 - Embedded Systems Building Blocks, Second Edition

Figure 3.8 Using the keyboard module.

Keyboard
&

Scan Codes
15 14 3 4

7 8 9 Fl
11 10 9 8

4 5 6 F2
7 6 5 4

1 2 3 F3
3 2 1 0

* 0 # F4

Scan Code

utput port +SV
1

B3 7 8 9 Fl

B2 4 5 6 F2

Bl 1 2 3 F3

BO * 0 # F4

COLUMNS
(Input port)

B7
B6
BS
B4
B3
B2
Bl
BO

ROWS
(0

Once multitasking has started, the keyboard will bescanned at the rate defined by KEY_SCAN_TASK_DLY.

At this point, your application task (typically some type of user interface) will call one of the four keyboard
module services: KeyGetKey () , KeyHi t () , KeyFlush () , or KeyGetKeyDownTime () .

In the following code, the user interface task calls KeyGetKey () by specifying a timeout of O. In this
case, the user interface will be suspended until a key is pressed. When a key is pressed, KeyGetKey ()

returns the scan code of the key pressed. For example, if you pressed the 8 key, the scan code returned by
KeyGetKey () would be 14 (see Figure 3.8).

Chapter 3: Keyboards -117

void UserIFI'ask (void *data)

INT8U key;

data ~ data;

for (;;) {

key ~ KeyGetKey(O);

switch (key) {

/* Wait for user input (no timeout) */ II

You can map scan codes to anything you wantby defininga lookup table:

char UserKeyMapTbl [] ~ {

tAl, /* F4 key */
1# I, /* # key */

'0 I I /* 0 key */
'* , /* * key */
IBI, /* F3 key */
t 3 I, /* 3 key */

'2' , /* 2 key */

'1' , /* 1 key */

'C' r /* F2 key */

16 1
I /* 6 key */

151 I /* 5 key */

14 1
I /* 4 key */

IDI, /* FI key */

'9' , /* 9 key */

'8' , /* 8 key */

'7 ' /* 7 key */

} ;

Theuserinterface code wouldnowlook as shownfollowingthisparagraph. With UserKeyMapTbl [] ,
the 8 key wouldnowbereturned to yourapplication asASCn 8 or, '8', the # wouldbereturned asASCn
'#', etc.

118 - Embedded Systems Building Blocks, Second Edition

void UserIFTask (void *data)

INT8U code;

char key;

data = data;

for (;;)

code = KeyGetKey(O);

key = UserKeyMapTbl [code] ;

switch (key) {

1* Wait for user input *1

1* Get ASCII value of key *1

One of the disadvantages of the user interface code shown previously is that the user interface code
is suspended until a key is pressed. If your user interface also needs to display run-time information, you
can run the user interface code at a regular rate and poll the keyboard module:

void UserIFTask (void *data)

INT8U code;

char key;

data = data;

for (;;) {

OSTimeDlyHMSM(???);

if (KeyHit ()) {

code = KeyGetKey(O);

key = UserKeyMapTbl[code];

switch (key) {

1* Delay user I/F *1
1* See if key was pressed *1
1* Get user input *1
1* Convert to ASCII key *1

1* User interface display functions *1

3.07 Bibliography
Dybowski, John
"Negotiating a Keyboard Interface"
The Computer Applications Journal, October/November 1992, p.88-93

Lipovski, G. J.
Single- and Multiple-Chip Microcomputer Interfacing
Englewood Cliffs, NJ
Prentice Hall

Texas Instruments
TMS7000 Keyboard Interface (SPNA003)
Houston, TX
Texas Instruments, 1985

Zaks, Rodnay
Microprocessors, from Chips to Systems
Berkeley, CA
Sybex

Chapter 3: Keyboards -119

II

120 - Embedded Systems Building Blocks, Second Edition

Listing 3.1

1*

KEY.C

** ******* ** ****** ***** ** *** **** ****** ****** *** *** *** *** ***** **** *** ** ** *** ***** ***** *** ******* ***** * *****
Elntedded Systems Building Blocks

Complete and Ready-to-Use Modules in C

Matrix Keyboard Driver

(c) Copyright 1999, Jean J. Labrosse. Weston, FL
All Rights Reserved

* Filename : KEY.C
* Programner : Jean J. Labrosse

DE'SCRIPI'ICN

The keyboard is assumed to be a matrix having 4 raws by 6 columns.
* matrix arrangements up to an 8 x 8 matrix. By using fran one to three
* can support "SHIIT" keys. These keys are: SHIIT1, SHIIT2 and SHIIT3.

Your application software must declare (see KEY.H):

However, this code works for any
of the column inputs, the driver

KEY_RPI'_DLY
KEY_RPI'_srART_DLY

KEY_SCAI'CTASK_DLY
KEY_SCAN_TASK_PRIO
KEY_SCAN_TASK_STK_SIZE

KEY_PORT_RCW
KEY_PORT_COL
KEY_PORT_CW

Size of the KEYBOARD buffer

The waximurn number of rows on the keyboard
The waximurn number of columns on the keyboard

Number of scan times before auto repeat executes the function again
Number of scan times before auto repeat function engages

The nurriber of milliseconds between keyboard scans
Sets the priority of the keyboard scanning task
The size of the keyboard scanning task stack

The mask which determines which column input handles the SHIITl key
(A OxOO indicates that a SHIFTl key is not present)

The scan code offset to add when the SHIITl key is pressed

The mask which determines which column input handles the SHIIT2 key
(A OxOO indicates that an SHIIT2 key is not present)

The scan code offset to add when the SHIIT2 key is pressed

The mask which determines which column input handles the SHIIT3 key
(A OxOO indicates that a SHIIT3 key is not present)

The scan code offset to add when the SHIIT3 key is pressed

The port address of the keyboard matrix ROOs
The port address of the keyboard matrix COLUMNs
The port address of the keyboard I/O ports control word

KeylnitPort, KeySelRow() and KeyGetCol () are the only three hardware specific functions. This has
been done to localize the interface to the hardware in only these two functions and thus make is
easier to adapt to your application.

*1

I*$PAGE*I

Listing 3.1 (continued)

1*

KEY.C

Chapter 3: Keyboards -121

**** * ***** * * ** * * * *** * * * * ** * * * * * * * * * * * * ** ** * *** ** * ** * ** ** * * * ***** * *** * * * * * * ** * * ** * * ** ****** ****** **** * * * * *
=WOE FILE'S

*I

#include "includes.h"

1*

LCCAL c:c:NSTANTS

* I

#define KEY_STATE_UP

#define KEY_STATE_DEBJUN::E
#define KEY_STATE_RPr_START_DLY
#define KEY_STATE_RPr_DLY

1*

1

2

3
4

1* Key scanning states used in KeyScan() *1

GIDBAL VARIABLE"S

KeyScanTaskStk[KEY_SCAN_TASK_STK_SIZEJ; 1* KeyJ::oard scanning task stack

1* Number of scan times before auto repeat is started *I
1* Number of scan times before auto repeat executes again *1

* I

static INl'8U
static INl'8U
static INl'8U
static INl'16U
static INl'8U

static INl'8U
static INl'8U

static INl'8U

static OS_STK

KeyBuf [KEY_BUF_SIZE] ;

KeyBufInIx;
KeyBufOutIx;

KeyD::1.-Jn'Il11r ;
KeyNRead;

KeyRptStartDlyCtr;
KeyRptDlyCtr;

KeyScanState;

1* Keyboard bJffer

1* Index into key bof where next scan cede will be
1* Index into key ruf where next scan cede will be
1* Counts hew long key has been pressed

1* Number of keys read from the keyboard

1* Current state of key scanning function

* I
inserted*1

renoved *1
* I
*1

*1

*1

static OS_EVENT *KeySEmPtr;

1*

I * Pointer to keyboard semaphore *1

********* *** ***** ******* ******** * ****** * **** **** *** * * * ** * * * * ** ** ** * * ** ** * * * * * * * * * * *** * * * * * ** ** * * ** * * * * * **
LCCAL FUN::TICN PRarorYPES

*1

static void

static INl'8U
static BXJLEAN
static void

I*$PAGE*I

KeyBufIn(INl'8U cede);
KeyDecede (void) ;
KeyIsKeyD:Jwn (void) ;

KeyScanTask(void *data);

1* Insert scan cede into keyboard bJffer

1* Get scan cede from current key pressed
1* See if key has been pressed

1* Keyboard scanning task

*1
*I
*1
*1

122 - Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued) KEY.c
/*

INSERT KEY OJARACI'ER INID KEYBOARD BUFFER

* Description
* Arguments
* Returns

This function inserts a key character into the keyboard buffer
code is the keyboard scan code to insert into the buffer
none

*/

static void KeyBufIn (INT8D code)

*/
*/

*/

*/
in buffer*/

/* Start of critical section of code, disable ints
/* Make sure that we don't overflew the buffer
/* Increment the number of keys read
/* Store the scan code into the buffer
/* Adjust index to the next scan code to put

OS_ENI'ER_CRITlCAL () ;

if (KeyNRead < KEY_BUF_SlZE)
KeyNRead++;
KeyBuf[KeyBuflnIx++] = code;
if (KeyBufInIx >= KEY_BUF_SIZE)

KeyBufInrx = 0;
)

OS_EXIT_CRITlCAL();

OSSenPos t (KeySemPtr) ;
else (

OS_EXIT_CRITlCAL () ;

/* End of critical section of code
/* Signal sern if scan code inserted in the buffer
/* Buffer is full, key scan code is lost
/* End of critical section of code

*/

*/

*/
*/

/*$PAGE*/

Listing 3.1 (continued)

/*

KEY.C

Chapter 3: Keyboards -123

~IF'--=

DEXXlDE KEYBOARD

*/

* Description
* Arguments
* Returns

This function is called to determine the key scan code of the key pressed.
none

the key scan code

static INT8U KeyDecode (void)

INT8U col;
INT8U raw;
INT8U offset;
llCOLEAN done;

INT8U col_id;
INT8U rnsk;

done = FALSE;
raw = 0;
while (raw < KEY_MAX_RCWS && !done) {

KeySelRaw(raw) ;
if (KeyIsKeyD:Jwn ())

done = 'TRUE;
else {

rOil++ ;

col = KeyGetCol();
offset = 0;
if (col & KEY_SHIFIl_MSK) {

offset += KEY_SHIFIl_OFFSEr;
}

if (col & KEY_SHIFT2_MSK) {
offset += KEY_SHIFI2_0FFSEr;

}

if (col & KEY_SHIFI3_MSK) {
offset += KEY_SHIFI3_0FFSEr;

}

rnsk OxOl;
col_id = 0;
done FAlSE;
while (col_id < KEY_MAX_COIS && !done) {

if (col & rnsk) {
done = 'TRUE;

else {
col_id++;
rnsk «= 1;

return (raw * KEY_MAX_COIS + offset + col_id);

/*$PAGE* /

/* Find out in which raw key was pressed
/* Select a raw
/* See if key is pressed in this raw
/* We are done finding the raw

/* Select next raw

/* Read colurms
/* No SHIFIl, SHIFI2 or SHIFI3 key pressed
/ * See if SHIFIl key was also pressed

/* See if SHIFI2 key was also pressed

/ * See if SHIFI3 key was also pressed

/* Set bit mask to scan for the colunm
/* Set colunm value (0 .. 7)

/* Go through all colurms
/* See if key was pressed in this colurms
/ * COne, i has co.Iurm value of the key (0 .. 7)

/* Return scan code

*/
*/
*/
*/

*/

*/

*/
*/

*/

*/

*/

*/

*/
*/
*/

*/

124 - Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued)

/*

KEY.C

FLUSH KEYBOARD BUFFER

* Description '!his function clears the keyboard buffer
* Argurren.ts none
* Returns none

*/

void KeyFlush (void)

while (KeyHi t ()) {
KeyGetKey(O) ;

/*

/ * While there are keys in the buf fer ...
/* ... extract the next key fran the buffer

GET KEY

*/
*/

* Description
* Argurren.ts

* Returns

Get a keyl:oard scan code fran the keyboard driver.
'to' is the amount of t iroe KeyGetKey() will wait (in number of ticks) for a key to J:;e

pressed. A timeout of .0' means that the caller is willing to wait forever for
a key to J:;e pressed.

: ! = OxFF is the key scan code of the key pressed
== OxFF indicates that there is no key in the buffer within the specified timeout

*/

rnr8U KeyGetKey (rnr16U to)
{

rnr8U code;

nrrsn er'r r

OSSemPend(KeySemPtr, to. &err);

OS_ENI'ER_CRITlCAL () ;

if (KeyNRead > 0) {
KeyNRead-- :
code = KeyBuf [KeyBufOUtIx] ;
KeyBufOUtIx++ ;
if (KeyBufOUtIx >= KEY_BUF_SIZE)

KeyBufOUtIx = 0:
}

OS_EXIT_CRITlCAL () :

return (code);

else {
OS_EXIT_CRITlCAL () :

return (OxFF):

/*$PAGE*/

/* Wait for a key to J:;e pressed
/ * Start of cri tical section of code, disable ints
/ * See if we have keys in the buffer
/* Decrement the number of keys read
/* Get scan code fran the buffer

/* Adjust index into the keyboard buffer

/* End of critical section of code
/* Return the scan code of the key pressed

/* End of critical section of code

/ * No scan codes in the buffer, return -1

*/
*/
* /
* /
* /

* /

*/

*/

*/

*/

Listing 3.1 (continued)

/*

KEY.c

Chapter 3: Keyboards -125

*/

* Description
* Arguments
* Returns

GEl' HCW LeN} KEY HAS BEEN PRESSED

This function returns the arrount of t:i.rne the key has been pressed.
none
key d= t:i.rne in 'milliseconds' III

INr32U KeyGetKeylJoNnT:i.rne (void)
{

INr16U t:mr;

OS_ENI'ER_=TICAL () ;

t:mr = KeylJoNn'Ilnr;
OS_EXIT_=TICAL () ;

return (trnr * KEY_SCl\N_TASK_DLYl;

/*$PAGE*/
/*

** * * * ** * ** * * * * ** * * ** * * * * * * * * * * * * * * * * ** * '** * * * * * * * *** * * *** *** * * * * * ** ** * * * * * * ** ** **
SEE IF mi KEY IN BUFFER

This function checks to see if a key was pressed
none

* Description
* Arguments

* Returns TRUE

FALSE

if a key has been pressed
if no key pressed

******** ** '** * * ** * * * * * * * * * * ** * * * * *** * * * * * * ** * * *** * * * ** * * * * * * ** * * * * * * * * * * * ** * * *** * * * *** ** * * * * * * ** * * * * ** * * **
*/

BCOLEIIN KeyHit (void)
{

BCOLEIIN hi t;

OS_ENI'ER_CRITICAL() ;

hit = (BCOLEIIN) (KeyNRead > 0)
OS_EXIT_CRITICAL () ;
return (hit);

TRUE FALSE;

126 - Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued)

1*

KEY.c

*********** ***** ************************ * *** * * * *** * * *** * * * * * * * * ** * * * * ** **** ***** ** ** * *
KEYBOARD =TIALlZATICN

* Description: Keytoard initialization funct ion, KeyInit() rrnst be called before calling any other of
the user accessible fllilctions.

* Arguments none
* Returns none

*1

void KeyInit (void)

1* Key codes inserted at the beginning of the tuffer *I
1* Key codes rsroved fran the beginning of the tuffer *1
1* Initialize the keytoard serrapbore * I
1* Initialize IIO ports used in keyboard driver *1

&KeyScanTaskStk[KEY_SCl\N_TASK_STK_SlZE], KEY_SCl\N_TASlLPRIO);

KeySelRON(KEY_ALL_RCWS) ;
KeyScanState KEY_STA'IE_UP;
KeyNRead 0;
KeylX:1.-Jn'I'tnr 0 ;

KeyBufInIx 0;
KeyBufOUtIx 0;
KeySanPtr OSSffiCreate(O);
KeyInitPort() ;
OSTaskCreate(KeyScanTask, (void *) 0,

I*$PAGE*I
1*

1* Select all rON

1* Keytoard should not have a key pressed
1* Clear the rn.rrnber of keys read

*1
*1
*1

* ~scription

* Argurrents
* Returns

* Note

SEE IF KEY PRESSED

This function checks to see if a key is pressed
none
TRUE if a key is pressed
FAlSE if a key is not pressed
(1 «KEY_MAX_COlS) - 1 is used as a mask to isolate the colUITU1 inputs (i.e. mask off

the SHIFT keys) .

*1

static B:XlLEAN KeylsKeyI:Jo,.m (void)

if (KeyGetCol () & «1 « KEY_MAX_COIS) - 1» {
OS_ENI'ER_CRITlCAL () ;

KeyI:Jo,.m'I'tnr++ ;

OS_EXIT_CRITlCAL() ;
return (TRUE);

else {
return (FAISE);

I*$PAGE*I

1* Key not pressed if 0

1* Upjate key down count.er

*1

*1

Listing 3.1 (continued)

/*

KEY.c

Chapter 3: Keyboards -127

* Descri.pti.on

* Arguments

* Returns

* Notes

KEYOOARD SCANNIN3 TASK

This function contains the body of the keyboard scanning task. The task should be
assigned a law priority. The scanning period is determined by KEY_SCAN_TASK_DLY.
'data' is a pointer to data passed to t.ask when task is created (IDI' USED) .

KeyScanTask () never returns.

- An auto repeat of the key pressed will be executed after the key has been pressed for
rrore than KEY_RPI'_START_DLY scan times. once the auto repeat has started, the key will

be repeated every KEY_RPI'_DLY scan times as long as the key is pressed. For example,
if the scanning of the keyboard occurs every 50 rnS and KEY_RPI'_STARf_DLY is set to 40
and KEY_RPI'_DLY is set to 2, then the auto repeat function will engage after 2 seconds

and will repeat every 100 rnS (10 times per second).

III
* *** ** * **** ****** ***** ** ** ** **** ** ***** **** ** ** ** ***** *** *** ** **** *** ** ******* ** **** ***** *** ***** **** ****
*/

/*$PAGE*/

static void KeyScanTask (void *data)

mrsu code;

128 - Embedded Systems Building Blocks, Second Edition

Listing 3.1 (continued) KEY.c
data = data;
for (;;) {

osriIreDlyHMSM(O, 0, 0, KEY_SCAl'LTASK_DLY);
switch (KeyScanstate) {

case KEY_STATE_UP:
if (KeyIsKeyD::1Nn () {

KeyScan5tate KEY_STATE_DEOOUNCE;
KeyD::1Nn'Itnr = 0;

)

break;

/* Avoid corrpiler wanring (uC/OS-II req.) */

/* Delay between keyboard scans */

/ * See if need to look for a key pressed * /
/* See if key is pressed */

/ * Next call we will have debcunced the key * /
/ * Reset key down t:irrer * /

case KEY_STATE_DEOOUNCE: /* Key pressed, get scan code and buffer */
if (KeyIsKeyD::1Nn ()) / * See if key is pressed * /

code = KeyDecode(); /* Determine the key scan code */
KeyBufIn(code); /* Input scan code in buffer */
KeyRptStartDlyCtr = KEY_RPr_START_DLY; /* Start delay to auto-repeat function * /

KeyScanstate = KEY_STATE_RPr_STARI'_DLY;
else {

KeySelRow (KEYjJL_RCWS) ; / * Select all rem */
KeyScanstate = KEY_STATE_UP; /* Key was not pressed after all! */

)

break;

case KEY_STATE_RPr_STARI'_DLY:
if (KeyIsKeyD::1Nn () { / * See if key is still pressed */

if (KeyRptStartDlyCtr > 0) /* See if we need to delay before auto rpt */

KeyRptStartDlyCtr--; /* Yes, decrement counter to start of rpt */
if (KeyRptStartDlyCtr == 0) { /* If delay to auto repeat is corrpleted * /

code = KeyDecode () ; / * Determine the key scan code * /
KeyBufIn(code); /* Input scan code in buffer */

KeyRptDlyCtr KEY_RPr_DLY; /* Load delay before next repeat */
KeyScanstate = KEY_STATE_RPr_DLY;

else {
KeyScanstate = KEY_STATE_DEOOUNCE;

)

break;

/* Key was not pressed after all */

case KEY_STATE_RPr_DLY:
if (KeyIsKeyD::1Nn ()) {

if (KeyRptDlyCtr > 0)
KeyRptDlyCtr-- ;
if (KeyRptDlyCtr == 0) {

code = KeyDecode () ;
KeyBufIn(code) ;
KeyRptDlyCtr = KEY_RPr_DLY;

/* See if key is still pressed */

/* See if we need to wait before repeat key */
/* Yes, dec. wait time to next key repeat */

/* See if it's time to repeat key * /
/* Determine the key scan code */
/ * Input scan code in buffer */
/* Reload delay counter before auto repeat */

/*$PAGE*/

else {
KeyScanstate KEY_STATE_DEOOUNCE;

)

break;

/* Key was not pressed after all */

Listing 3.1 (continued)

1*

KEY.c

Chapter 3: Keyboards -129

**** ** ****** **** ** * **** ****** * ** ** ** ****** * * * * * ** * ** ** * * ***** ****** ***** ** * ** ******** ** ** ** * *** ** **** ****

* I

* Description
* Arguments

* Retw:ns

REI\D COWMNS

'Ihis funct.ion is called to read the colurm port.
none
the ccrnplerrent of the colurm port thus, ones are keys pressed III

#ifndef CFG_C
INI'8U K~tCol (void)
(

1* Cc:nplerrent colurms (ones indicate key is pressed) *1
}

#endif

1*

=TIALIZE 1/0 FORTS

*1

#ifndef CFG_C
void KeyInitPort (void)
(

1* Initialize 82C55: x-oor, l3=IN (COLS) , C=crJI' (RCWS) *1
)

#endif

1*

SELEn' A RCW

* Lescription
* Arguments

* Retw:ns
* Note

Thi.s function is called to select a TIM on the keyboard.
'HM' is the xo« number (0 .. 7) or KEY_ALL_RCWS
none
The xo« is selected by writing a J.J:M.

* I

#ifndef CFG_C
void KeySelRcM (INI'8U row)
(

if (TIM == KEY_ALL-F.CWS) (
outp(KEY_FORT_RCW, OxOO);

else (
autp(KEY_FORT_RCW, -(1 « reM);

}

#endif

I * Force all rows J.J:M

1* Force desired reM J.J:M

*1

*1

130 - Embedded Systems Building Blocks, Second Edition

Listing 3.2

1*

KEY.H

ElTIbedded Systems Building Blocks
Canplete and Ready-to-Use Modules in C

M3.trix Keytoard Driver

(c) Copyright 1999, Jean J. labrosse, Weston, FL
All Rights Reserved

* Filename : KEY. H
* Progranmer : Jean J. Labrosse

USER DEFINED =srANI'S

* Note: These #defines would norrrally reside in your application specific code.

*1

#ifndef CFG_H

#define KEY_BUF_SIZE

#define KEY_FORT_RCW
#define KEY_FORT_ffiL
#define KEY_FORT_CW

#define KEY_MAX_RCWS
#define KEY_MAX_ffiLS

10

Ox0312
Ox03ll
Ox0313

4
6

1* Size of the KEYIDARD illffer

1* The port address of the keytoard rratrix RCWs
1* The port address of the keytoard rratrix ffiUJMNs
1* The port address of the I/O ports control word

1* The maximum mnllber of rONS on the keyboard

1* The maximum number of columns on the keytoard

*1

*1
*1
*1

*1
*1

#define KEY_RPI'_DLY
#define KEY_RPI'_srARr_DLY

2

10
1* Number of scan times before auto repeat executes again *1
1* Number of scan times before auto repeat function engages* I

#define KEY_SCAN_TASK_DLY
#define KEY_SCAN_TASK_PRIO
#define KEY_SCAN_TASK_srK_SIZE

50
50

1024

1* Number of milliseconds between keyboard scans
1* Set priority of keytoard scan task
1* Size of keyboard scan task stack

*1
*1
*1

Ox80

24

Ox40

48

1* The SHIFI1 key is on bit B7 of the colurm input port *1
1* (A OxOO indicates that a SHIFI1 key is not present) *1
1* The scan code offset to add when SHIFI1 is pressed *I

1* The SHIFI2 key is on bit B6 of the colurm input port *1
1* (A OxOO indicates that an SHIFI2 key is not present) *I
1* The scan code offset to add when SHIFI2 is pressed *1

#define KEY_SHIFI3_0FFSEI'
#endif

OxOO

o

1* The

1*
1* The

SHIFI3 key is on bit B5 of the colurm input port *1
(A OxOO indicates that a SHIFI3 key is not present) *1
scan code offset to add when SHIFI3 is pressed *I

#define KEY_ALL_RCWS OxFF 1* Select all rONS (i.e. all rONS LCJH) *1

Listing 3.2 (continued) KEY.H

Chapter 3: Keyboards -131

/*

*/

void KeyFlush (void) ;
INr8U KeyCetKey(INrl6U to);
INr32U KeyCetKeyD:MnTime(void);
E(X)LE!\N KeyHi t (void) ;

void KeyInit(void);

FUN:::TlOO PROICfl'YPES

/* Flush the key!:x)ard tuffer * /
/* Get a key scan code from driver if one is present, -1 else */
/* Get how long key has been pressed (in milliseconds) */
/* See if a key has been pressed (TRUE if so, FALSE if not) */

/* Initialize the key!:x)ard handler * /

•
void
INr8U

void

KeyInitPort(void) ;

KeyCetCo1 (void) ;
KeySelRcM(INr8U row) ;

/* Initialize I/O ports

/* Read COLUMNs

/* Select a ROtI

*/

*/
*/

132 - Embedded Systems Building Blocks, Second Edition

Chapter 4

Multiplexed LEDDisplays
A large number of embedded systems offer some form of display device to convey information to the
user. The display can consist of anything from a light indicating that power is on, to a complex graphical
display showing a representation of the process. Simple control systems can be equipped with complex
displays while more complex systems can offer limited information to its user; there are no set rules as
to how much information has to be displayed or how it has to be presented. The world of information
display is becoming extremely complex, especially when you consider new technologies such as virtual
reality.

ill this chapter, I will take a very modest position and describe how to interface to LED (Light Emit
ting Diode) displays. Specifically, I provide you with a module that allows you to control up to 64 mul
tiplexed LEDs. The LEDs can either be seven-segment digits or discrete devices. The module presented
allows you to:

Display limited ASCII characters using seven-segment digits.

Display numbers.

• Turn ON or OFF individual (discrete) LEDs.

4.00 LED Displays
The Light Emitting Diode, or LED, is a semiconductor device that produces visible light when a current
flows through it as shown in the schematic of Figure 4.1. The intensity of the LED is proportional to the
current flowing through the LED. LEDs that produce either RED, YELLOW, GREEN, or BLUE light
are now commonly available. The most common color for LEDs is RED, while BLUE LEDs have just
been available in the past few years.

133

L~
1'!"-'--

134 - Embedded Systems Building Blocks, Second Edition

Figure 4.1 Turning ON an LED.

+V

~I
LED
~

+V -VLED
I:::: R

Cathode~

As shown in Figure 4.2, a microprocessor can easily control one or more LEDs by using an output
port. LEDs are turned on by writing a 0 to the appropriate bit position of the port. Here, I assume that
the port can sink the current required for each LED.

Figure 4.2 Controlling LEDs with a microprocessor.

+5

Microprocessor
Output Port

LED is ON when output is low.

B7
B6~----'

B5 ~----------'
I
I
I

BO ~_---===...::::....=.c:c....:.:.==:..::..:...::....:..:..:-,,-----.J

Numbers can be displayed by using what are called seven-segment LED displays as shown in Figure
4.3. Two types of seven-segment LED displays are available: common anode and common cathode. Fig
ure 4.2 shows a common anode arrangement, while Figure 4.3 shows a common cathode arrangement.

Figure 4.3

Chapter 4: Multiplexed LED Displays -135

Common cathode seven-segment LED display.

Each segment is a LED

a a
b d f d.p.b = a c e g

c f~ g ~bd
e = ~ ~ ~ ~ ~ ~ ~ ~
f e~ d ~c IIIg

d.p. =2.
COMMON

COMMON

Controlling LEDs using output ports becomes expensive when the number of digits in a display
increases. Fortunately, LEDs can be multiplexed. Multiplexing simply consists of connecting the LEDs
in a matrix as shown in Figure 4.4 and sending the information for each digit in succession. Each digit
must be updated very quickly to give the impression that all digits are turned on at the same time. Flick
ering will occur if the digit update rate is too low. Updating all digits at a rate of about 60 to 100 times
per second will produce good results. Multiplexing is not restricted to seven-segment LED displays. The
matrix shown in Figure 4.4 also includes discrete LEDs which can be used to display status information.
For example, if the display is used in an automobile, the status LEDs can indicate whether the number
being displayed represents engine RPM, vehicle speed, odometer reading, trip odometer, etc. Because
of the high refresh rate needed to avoid flickering, multiplexing consumes a fair amonnt of CPU time.

136 - Embedded Systems Building Blocks, Second Edition

Figure 4.4 Multiplexing LEDs.

Discrete LED8l

Digit #n - 1 Digit ~I

I-II-----.-H
1=II-----.-H

o

Digit #3

~ Digit ON when 1

871------'

861-----------'
851---------------'
84
83
82

81 t------------------------'
8DI------J

I
Resistors

DIGITS ~
Output port

SEGMENTS~ Segment ON when 1
Output port

a Digit #1 Digit #2

If you need additional seven-segment digits or discrete LEDs, you can add one or more 8-bit ports.
The additional port(s) can be used to control more DIGITS or SEGMENTS. Adding DIGIT ports will
increase the CPU overhead but will not increase the current consumption of your system. Similarly, you
can add SEGMENT ports if you prefer to reduce the overhead on the CPU. In this case, however, you
will be increasing the current consumption. The software presented in this chapter can be easily adapted
for either situation.

If the LED display matrix needs to be located some appreciable distance from the microprocessor,
you might consider using a hardware approach. In this case, a hardware solution might be less expen
sive, especially if you consider the cost of the connectors and cables needed to bring the control signals
to the display. The Maxim 7219 should be considered in this case. The Maxim 7219 is outlined by Jeff
Bachiochi in the article, "Seven-Segment LEDs Live ON" (see "Bibliography" on page 148). Using of
the Maxim 7219 would eliminate the need for a multiplexing ISR (thus reducing the CPU overhead) but
the segment manipulation functions would still be applicable.

4.01 Multiplexed LED Display Module
The source code for the multiplexed LED display module code is found in the \SOFT
WARE\BLOCKS\LED\SOURCE directory. The source code is found in three files: LED.C (Listing 4.1),
LED.H (Listing 4.2), and LED_IA.ASM (Listing 4.3). As a convention, all functions and variables
related to the display module start with Disp while all #defines constants start with DISP_.

The code allows you to multiplex up to 64 LEDs (using two 8-bit output ports). The LEDs can be
either be seven-segment displays, discrete LEDs, or any combination of both. The module can easily be
changed if you need to add more seven-segment digits or discrete LEDs.

Chapter 4: Multiplexed LED Displays -137

4.02 Internals
The software provided does not require the presence of a real-time kernel. LED_IA.ASM, however,
increments the global variable OSIntNesting and calls OSIntExit (). OSIntNesting is used to
notify IIC/OS-II that an ISR has started and OSIntExi t () is used to noitfy IIC/OS-II that the ISR has
completed. If you are not plarming on using IIC/OS-II in your application, you may delete these two
lines.

Implementing multiplexing in software is fairly straightforward, as shown in Figure 4.5. Here, I
assume you have less than eight digits (including status indicators). You will need a hardware timer that
will generate interrupts at a rate of about:

DISP_N_DIGx 60 (Hz)

Figure 4.5 LED multiplexing (block diagram).
III

Hardware

. I.
D1SPIrltport()

Seven-segments mapping
B7------BO

~

Interrupt rate:
DISP_N_DIG *

Multiplexed LED Display DriverApplication I
Interface I

I
I
IDispSegTbl [8

I [0]
I [l] J-------I-"'" DispSegTbIIx

1[2] +-j I~
I [3] _~ ~D~i~sp=°r.r~ts~eg ()

, SEGMENTS
I [4] Di spq., tDig () DIGITS

I [5]
I [6]~---I
I [7]~----i
I
I
I

DispIni t ()
DispClrScr ()
DispStr ()
DispStatSet ()
DispStatClr ()

The table DispSegTbl [] contains the segment pattern for the corresponding digit (a one indicates
that the segment will be turned on). The first entry in DispSegTbl [] contains the segment patterns for
the leftmost digit. DispSegTblIx is an index into the segment table that will point to the next digit to
be displayed. DispDigMsk is a mask used to select the next digit to be displayed. Note that only one of
the digits can be selected at any given time. The pseudocode for the ISR is:

138 - Embedded Systems Building Blocks, Second Edition

void DispMuxISR (void)

Save CPU registers;

Clear timer interrupt source;

Turn OFF the segments of the current digit;

Select the next digit to display;

Output the segments pattern for the digit to display;

Restore CPU registers;

Return from interrupt;

You should implement DispMuxISR () in assembly language to reduce CPU utilization. I tested a C
version of DispMuxISR () on an Intel 80386 running at 16 MHz. DispMuxISR () was using up 7 per
cent of the processor's time. Imagine how much time the C version of DispMuxISR () would use on an
8-bit CPU!

DispMuxISR () turns OFF the segments of the current digit before selecting the next digit. This
very important step is taken to prevent what is called ghosting. If the segments were not turned OFF
before the next digit is selected, the segments of the previous digit would appear briefly on the newly
selected digit. DispMuxISR () is only concerned with updating the display at the desired refresh rate.
How the segment patterns got into DispSegTbl [] is the responsibility of task-level code, specifically,
the application interface functions.

Conversion of decimal or hexadecimal numbers to seven-segment patterns is very straightforward
when using a lookup table, as shown in Figure 4.6. The number to convert is used as an index into Dis
pHexToSegTbl [] . Note that a limited number of alphabetical characters can also be displayed using
seven-segments. DispASCIItoSegTbl [], shown in Listing 4.1, provides an ASCII to seven-segment
conversion table. Note that the table starts with ASCII ' , (i.e., Ox20) and ends with ASCII "z ' (Ox7A).
To obtain the seven-segment pattern of an ASCII character, you must index the table after subtracting
Ox20 from the desired ASCII character as follows:

seg = DispASCIItoSegTbl[c - Ox20J:

Figure 4.6

Chapter 4: Multiplexed LED Displays -139

Hexadecimal to seven-segments lookup table.

DispHexToSegTbl[]

~ 011111100

~

~ 2 III~ :3
[ili]ili]iliIil y
~ 5
~ 5 a

fl Ib
~ l g

~ B el Ic

CiliI!I!JiliIil g d
e

dp

~ R
~ b
~ [

CiliIiliIiliJil d
~ E
~ F
B7 --- - - ----- -- -£0

The ASCII to seven-segments table is very useful when you combine it with standard library func
tions such as i toa (), ltoa (), sprint f 0 , etc. For example, you can easily display numbers (con
verted to ASCII with i toa ()) using thefunction DispStr () as:

140 - Embedded Systems Building Blocks, Second Edition

void DispStr (char *s, INTBU dig)

INTBU stat;

while (*s && dig < DISP_N_SS) {

Disable Interrupts;

stat

DispSegTbl[dig++]

Enable Interrupts;

DispSegTbl[dig] & OxOl;

DispASCIItoSegTbl[*s++ - Ox2O] I stat;

DispStr () needs to set the seven-segment pattern without changing the state of the status bit (i.e.,
bit 0) because a DispSegTbl [] entry contains both the pattern for a seven-segment digit and a status
bit. This is why I mask off the upper seven bits in order to isolate the state of the status. The bit pattern
for the ASCII character is then merged with the status information (ORed). Interrupts are disabled when
a DispSegTbl [] entry is changed because DispSegTbl [] is a critical section. DISP_N_SS defines
the number of seven-segment digits in the display. Seven-segment display patterns are also assumed to
be in DispSegTbl [0] through DispSegTbl [DISP_N_SS - 1].

4.03 Interface Functions
Figure 4.7 shows a block diagram of the multiplexed LED display module. Your application interfaces
to the module through five functions: DispInit (), DispClrScr (), DispStr (), DispStatSet (),
and DispStatClr ().

Figure 4.7 LED multiplexing driver block diagram.

Application Interface

DispInit ()
DispClrScr ()
DispStr () ------.
DispStatSet ()
DispStatClr ()

Hardware

Multiplexed ------. 8 digits

LED X
Matrix

~
8 segments

Driver LED Matrix

Chapter 4: Multiplexed LED Displays -141

DispClrScr ()
void DispClrScr(void);

DispClrScr () is called by your application to clear (i.e., tum off) the display. In other words,
DispClrScr () blanks the display.

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

III

DispClrScr(); /* Clear everything on the display */

142 -Embedded Systems Building Blocks, Second Edition

DispInit()
void DispInit (void) ;

Displni t () is the initialization code for the module and must be invoked before any of the other func
tions. Displni t () is responsible for initializing internal variables used by the module and initializing
the hardware ports.

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void main (void)

OSInit () ;

Displni t () ;

OSStart();

~
~

Chapter 4: Multiplexed LED Displays -143

DispStatClr()
void DispStatClr(INT8U dig, INT8U seg);

DispStatClr () is used to turn off a single LED. This function is the complement to DispStatSet ().
This function is useful when some of the LEDs are used as status indicators or decimal points for numeri
cal data.

Arguments

dig specifies the digit that will get its segment cleared.

seg specifies the specific segment to set. seg corresponds to the bit position in the digit as follows:

osets segment dp (bit 0)

1 sets segment g (bit I)

2 sets segment f (bit 2)

3 sets segment e (bit 3)

4 sets segment d (bit 4)

5 sets segment c (bit 5)

6 sets segment b (bit 6)

7 sets segment a (bit 7)

Return Value

None

NoteslWarnings

You can #define status indicators and icons to make your code clearer.

Example

void Task (void *pdata)

for (;;) {

III

144 - Embedded Systems Building Blocks, Second Edition

DispStatSet ()
void DispStatSet(INT8U dig, INT8U seg);

DispStatSet () is used to turn on a single LED. This function is useful when some of the LEDs are
used as status indicators or decimal points for numerical data.

Arguments

dig specifies the digit that will get its segment set.

seg specifies the specific segment to set. seg corresponds to the bit position in the digit as follows:

osets segment dp (bit 0)

1 sets segment g (bit 1)

2 sets segment f (bit 2)

3 sets segment e (bit 3)

4 sets segment d (bit 4)

5 sets segment c (bit 5)

6 sets segment b (bit 6)

7 sets segment a (bit 7)

Return Value

None

NotesfWarnings

You can #define status indicators and icons to make your code clearer.

Example

void Task (void *pdata)

for (;;) {

Chapter 4: Multiplexed LED Displays -145

DispStr()
void DispStr(INT8U dig, char *s);

DispStr () is called to display an ASCn string. Not all ASCII characters can be displayed using a
seven-segment display. Because of this, you must be careful in the selection of messages to display.

Arguments

dig is the starting position where the ASCII string will be displayed (0 is the first 7-segment digit, 1 is
the second digit, etc.).

s is a pointer to the ASCII string. The length of the ASCn string must not exceed the number of
seven-segment digits. For example, DispStr (2, "Hello") will display the string as HELLo starting
at the third seven-segments digit. Because of the limitation of seven-segments, only the last character
would appear in lower case (you should display" HELLO" instead).

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

DispStr(2, MHELLO n) ;

III

146 - Embedded Systems Building Blocks, Second Edition

4.04 Configuration
Configuring the multiplexed LED display module is fairly straightforward.

l. You need to change the value of four #defines. The #defines are found and described in LED.H
and are also found in CFG . H.

2. You need to adapt three hardware interface functions to your environment. To make this module
as portable as possible, access to hardware ports has been encapsulated into three functions:
DispInitPort (), DispOutSeg (), and DispOutDig () (described in the following para
graphs).

3. You will need a hardware timer that will interrupt the CPU at the desired multiplexing rate. The
interrupt should vector to DispMuxISR () which is defined in LED_IA.ASM.

DispInitPort () is responsible for initializing the output ports used for the segment and the digit
outputs. The code assumed two 8-bit latches such as the 74HC573. Initialization thus consists only of
turning off all the segment and digit outputs. I assumed 74HC573s over an 82C55 because of the higher
current drive capability of the 74HC573. DispIni tPort () is called by DispIni t ().

DispOutSeg () is used to output the segments while DispOutDig () is used to select the current
digit to display. Both functions are called by the multiplexing ISR handler, DispMuxHandler () .

To reduce the ISR processing time, the multiplexing ISR code should be written entirely in assembly
language and DispOutSeg () and DispOutDig () should be integrated in the ISR. The C code is very
inefficient and would not be used in an actual implementation, however, the C code is portable.

4.05 How to Use the Multiplexed LED Display Module
Let's suppose you have a four-digit LED display and four annunciator lights as shown in Figure 4.8.

Figure 4.8 Multiplexing LEDs.

Digit #4Dlgl1#3

d..

I
Resistors

DIGITS ~
Output port

:~ b

85 c
84 d
83 e

82 I---{:::J-~"

81 I---{:::J-~"

'--__80j--Cl-"''''-l-=::::::2J

SEGMENTS~ 5egment ON when 1
Output port

a Digit #1 Digit #2

871------'
861-----------'
851------------....J
841------------------J
831-----------------------'
82 "-
81 Digit ON when 1~

80

Chapter 4: Multiplexed LED Displays -147

As shown, you must call Displnit () before you can use any of the multiplexed LED module's
services:

void main (void)

Displnit();

Your application can use the services provided by the multiplexed LED module immediately after
Displnit (). Display multiplexing will start as soon as you enable interrupts. Your display should be
blank because Displni t () clears the display buffer DispSegTbl []. You can display the speed as fol
lows:

void UserDispSpeed (void)

char s[5];

DispClrScr () ; /* Erase what was being displayed */

sprintf(s, '%4d" , Speed) ; /* Format the speed into ASCII */

DispStr(O, s) ; /* ... and display */

DispStatSet(4, 1) ; /* Turn ON Speed indicator */

Similarly, you can display the current value of the trip odometer, as shown following this paragraph.
Note that the trip odometer is displayed as ###. # and thus, we also need to turn ON the decimal point:

void UserDispTripOdometer (void)

char s[5];

/* Note: Display as ###.# */

DispClrScr () ; /* Erase what was being displayed */

sprintf(s, '%4d" , TripOdometer) ; /* Format trip odo. to ASCII ... */

DispStr(O, s) ; /* ... and display */

DispStatSet(4, 2) ; /* Turn ON trip 000. indicator */

DispStatSet(2, 0); /* Turn ON decimal point */

III

148 - Embedded Systems Building Blocks, Second Edition

4.06 Bibliography
Artusi, Daniel
"LED display drivers interface to uCs on just three 110 lines"
EDN, November 14, 1985, p259-265

Bachiochi, Jeff
"Seven-Segment LEDs Live On"
The Computer Applications Journal, March 1993, p60-66

Cantrell, Tom
"Smart LEDs: The Hard Way, the Soft Way, and the Right Way"
The Computer Applications Journal, February 1993, p62-67

The Hewlett-Packard Applications Engineering Staff
Optoelectronics Applications Manual
McGraw-Hill Book Company, 1977, ISBN 0-07-028605-1

Listing 4.1

1*

LED.C

Chapter 4: Multiplexed LED Displays -149

*** 1<1<***** * * ****** * 1<****** '****** 1<***** **** **** ** * * * * * * 1<** * * * * ** * * ** * * * * * * ***** * * 1<* *** * * ** * *** * * * * ***** ** *
Embedded systems Building Blocks

Corrplete and Ready-to-Use Modules in C

Multiplexed LED Display Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, F1J

All Rights Reserved

* Filename : LED.C
* Prograrrmer : Jean J. Labrosse

DESCRIPI'ICN

* This rrodule provides an interface to a multiplexed "8 segments x N digits" LED matrix.

* To use this driver:

1) You must define (LED.H):

III

DISP_N_DIG
DISP_N_SS

DISP_FORT_DIG
DISP_FORT_SEl3

The total 'number of digits to display (up to 8)

The total number of seven-segment digits in the display (up to 8)
The address of the DIGITS output port
The address of the SEl:::MENI'S output port

2) You must allocate a hardware timer which will interrupt the CPU at a rate of at least:

The timer interrupt must vector to Dis[:M.lxISR (defined in LED_IA.ASM). You MUST write the
code to clear the interrupt source. The interrupt source must be cleared either in Dis[:M.lxISR

or in DiSp.1uxHandler () .

3) Adapt DispInitPort (), Dis];OutSeg () and Dis];OutDig () for your environment.

*1

I*$PAGE* I

150 - Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued)

/*

LED.C

=UDE FILES

*/

#include "includes.h"

/*

LCCAL VARIABLES

* **** ** ** **** ** * * * * * * * * ** * ** * ** * **** * * * * * * *** * * ** * ** * * * * **** * * ** * * ** * * * ** ** * * * **** * * * * * * *** * * * ** * * * * * * ** *
* /

static
static
static

/*$PAGE* /

INrSU DispDigMsk;
INrSU DispSegTbl (DISP_N_DIG] ;
INrSU DispSegTbllx;

/ * Bi t rrask used to point to next digi t to display
/* Segment pattern table for each digit to display
/* Index into DispSegTbl[] for next digit to display

*/
*/
* /

Listing 4.1 (continued)

1*

LED.C

Chapter 4: Multiplexed LED Displays -151

ASCII to SEIJEN-SEJ::MENI' conversion table
a

b
g

* Note: The segments are mapped as follows:

e I I c

IIIa b c d e f g I d I

B7 B6 B5 B4 B3 B2 B1 BO

*1

const; INrBU DispASCII toSegTbl [] 1* ASCII to SEIlEN-SEJ::MENI' conversion table *1
OxOO, 1* *1
OxOO, 1* '!' No seven-segment conversion for exclamation jXlint *1
Ox44, 1* Dcuble quote *1
OxOO, 1* '#' , Pound sign *1
OxOO, 1* '$' , No seven-segment conversion for dollar sign *1
OxOO, 1* '%' , No seven-segment conversion for percent sign *1
OxOO, 1* '&' , No seven-segment conversion for arrpersand *1
Ox40, 1* Single quote *1
oxsc. 1* ' (', same as '[' *1
OxFO, 1* ')', same as -r: *1
OxOO, 1* No seven-segment conversion for asterix *1
OxOO, 1* '+' , No seven-segment conversion for plus sign *1
OxOO, 1* No seven-segment conversion for carrra *1
Ox02, 1* Minus sign *1
OxOO, 1* No seven-segment conversion for period *1
OxOO, 1* 'I' , No seven-segment conversion for slash *1
OxFC, 1* , 0' *1
Ox60, 1* '1' *1
OxDA, 1* '2' *1
0xF2, 1* '3 ' *1
Ox66, 1* '4' *1
OxB6, 1* '5' *1
OxBE, 1* '6' *1
OxEO, 1* '7 ' *1
OxFE, 1* 'B' *1
OxF6, 1* '9' *1
OxOO, 1* '.' No seven-segment conversion for colon *1
OxOO, 1* '.' No seven-segment conversion for semi -col.on *1
OxOO, 1* '<' , No seven-segment conversion for less-than sign *1
Ox12, 1* = Equal sign *1
OxOO, 1* '>' , No seven-segment conversion for greater-than sign *1
OxCA, 1* '?' Question mark *1
OxOO, 1* '@', No seven-segment conversion for commercial at-sign *1
OxEE, /* 'A' *1
Ox3E, 1* 'B' , Actually displayed as 'b' *1
Ox9C, 1* 'C' *1
Ox7A, 1* 'D', Actually displayed as 'd' *1
Ox9E, 1* 'E' *1
OxBE, 1* 'F' *1

I*$PN;E*I

152 - Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued)

OxBC,
Ox6E,
Ox60,
Ox78,
OxOO,
OxlC,
OxOO,
0x2A,

OxFC,
OXCE,

OxOO,
OxOA,
OxB6,
OxlE,
Ox7C,
OxOO,
OxOO,
OxOO,

Ox76r

OxOO,
OxOO,
OxOO,
OxOO,
OxOO,
OxOO,
OxOO,
OxFA,
Ox3E,
OxlA,

Ox7A,
OxDE,
Ox8E,
OxBC,
Ox2E,
0x20,
Ox78,
OxOO,

oxic.
OxOO,
Ox2A,
Ox3A,
OxCE,
OxOO,
OxOA,
OxB6,
OxlE,
0x38,
OxOO,
OxOO,
OXOO,
Ox76,
OxOO

};

I*SPAGE* I

LED.C

1* 'G' , Actually displayed as 'g'

1* 'H'

1* '1' , same as '1 '

1* 'J'

1* 'K' , No seven-segment conversion
1* 'L'

1* 'M', No seven-segment conversion
1* 'N', Actually displayed as 'ri '

1* '0' , same as '0'

1* 'P'

1* 'Q' , No seven-segment conversion
1* 'R' , Actually displayed as 'r'
1* 'S' r same as '5'

1* 'T' , Actually displayed as 't'
1* 'U'

1* 'V', No seven-segment conversion
1* 'W', No seven-segment conversion

1* 'X' r No seven-segment conversion
1* 'Y'

1* 'Z' , No seven-segment conversion
1* , l '
1* '\' , No seven- segmen t conversion
1* 'J'
1* Na seven-segment conversion

1* - Underscore

1* No seven-segment conversion for reverse quote

1* 'a'

1* 'b:

1* 'c'

1* 'd'
1* "e '

1* "f ' r Actually displayed as 'F'

1* 'g'

1* "h '

1* I i I

1* 'j , , Actually displayed as 'J'

1* 'k' , No seven-segment conversion
1* '1' , Actually displayed as 'L'

1* 'm' , No seven-segment conversion

1* 'n:

1* '0'

1* 'p' , Actually displayed as 'P'

1* 'q' , No seven-segment conversion

1* "r '

1* 's' , Actually displayed as 'S'

1* ' t'

1* "u '

1* "v ", No seven-segment conversion
1* 'w", No seven-segment conversion
1* "x ' , No seven-segment conversion
1* 'v>, Actually displayed as 'Y'

1* 'z' , No seven-segment conversion

*1
*1
*1
* I
*1
*1
*1
*1
*1
*1
*1
*1
*1
* I
* I
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
* I
*1
*1
*1
*1
*1
*1
*1
*1
*1
*I
*1
*1
*I
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1
*1

Listing 4.1 (continued)

1*

LED.C

Chapter 4: Multiplexed LED Displays -153

I~-'--'ce----

HEXADEJ::::IMAL to SEVEN-SEJ3MENI' conversion table

a

*1

III
cons t nnsu DispHexToSegTbl []

OxFC,
Ox60,

OxDA,

OxF2,

Ox66 ,

OxB6,

OxBE,

OxEO,
OxFE,

OxF6,

OxEE,

Ox3E,

Ox9C,

Ox7A,

Ox9E,

Ox8E

);

I*$PAGE* I

1* HEXADEJ::::IMAL to SEVEN-SEJ3MENI' conversion table

1* '0'
1* '1'

1* '2'
1* '3'

1* '4'

1* '5'
1* '6'
1* '7'
1* '8'
1* '9'
1* 'A'

1* 'B', Actually displayed as "b '

1* 'C'

1* 'D', Actually displayed as "d '

1* 'E'

1* 'F'

*1
*1
*1
*I
*1
*1
*1
*1
*1
*1
*1
*1
*1
*I
*1
*1
*1

154 - Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued)

/*

LED.C

CLEAR THE DISPUlY

* Description: This function is called to clear the display.
* Arguments none

* Returns none
.*****.*************.********

*/

void Disp::lrScr (void)

rnrsu i;

for (i = 0; i < DISP...-N..JJIG; i++) {
OS_ENI'ER_CRITICAL () ;

DispSegTbl [i] = OxOO;

OS_EXIT_CRITICAL () ;

/*$PAGE*/

/*

/* Clear the screen l:Jy turning OFF all segments */

DISPUlY DRIVER =TIALIZATIOO

* rescription
* Arguments

* Returns

This function initializes the display driver.
None.

None.

*/

void DispInit (void)

DispInitrort () ;

DispDigMsk Ox80;

DispSegTblIx = 0;

DisfClrScr () ;

/*$PAGE*/

/* Initialize I/O ports used in display driver

/* Clear the Display

*/

*/

Listing 4.1 (continued)

r-

LED.C

Chapter 4: Multiplexed LED Displays -155

DISPLAY NEXT SEVEN-SEGMENT DIGIT

* Description: This function is called by DiSj:11uxISR() to output the segments and select the next digit
to be multiplexed. DispMuxHandleI() is called by DiSj:11uxISR() defined in LED_IA.ASM

* Argurrents

* Returns
* N:Jtes

none
none
- You MUST supply the code to clear the interrupt source. Note that: with scsre

microprocessors (i. e. Mot:orola' S M:68HCll), you mist clear the interrupt source before
enabling interrupts. III

*f

void Di~er (void)

DisPJutSeg(OxOO) ;
DisPJutDig(DispDigMsk) ;
DisPJutSeg(DispSegTbl[DispSegTblIx]);
if (DispSegTblIx == (DISP_I\LDIG - 1»

DispSegTb1Ix = 0;
DispDigMsk = Ox80;

else {
DispSegTblIx++ ;
DispDigMsk »= 1;

f*$PAGE*f

f* Insert code to CLEAR rnrERRUPI' SOURCE here

f* Turn OFF segments while changing digits
f* Select next digit: to display
f* Out:put digit:' s seven-segment pat:t:ern
f* Adjust: index to next seven-segment patt:ern
f* Index into first: segment:s pat:t:ern
f* Ox80 will select: the first seven-segment: digit

f* Select next digit

*f

*f
*f
*f
*f
*f
*f

*f

156 - Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued)

/*

LED.C

CLEAR STA'IUS SEGMENT

* Description:
* Arguments

'!his
dig

bit
* RetUlllS none

function is called to turn OFF a single segment on the display.
is the pos.i t i.on of the digit where the segment appears (0 .. DISP_N_DIG-l)
is the segment bit to turn OFF (O •• 7)

*/

void DispStatClr (=8U dig, =8U bit)

OS_ENI'ER_CRITlCAL () ;

DispSegTbl[dig] &= -(l « bit);
OS_EXIT_CRITlCAL () ;

/*

SET STA'IUS SEGMENT

* Description:
* Arguments

'!his
dig
bit

* Returns none

*/

function is called to turn ON a single segment on the display.
is the posi t ion of the digit where the segment appears (O •• DISP_N_DIG-l)
is the segment bit to turn ON (0 .. 7)

void DispStatSet (=8U dig, =8U bit)

OS_ENI'ER_CRITlCAL () ;

DispSegTbl [dig] 1= 1 « bit;
OS_EXIT_CRITlCAL () ;

/*$PAGE*/

1=Ei---

Chapter 4: Multiplexed LED Displays -157

Listing 4.1 (continued) LED.C

f*

DISPLAY ASCII SI'RJ:[iK; ON SEVEN-Sill1ENI' DISPLAY

IIIDISP~_SS - 1 is the last seven-segment digit.
is the ASCII string to display

function is called to display an ASCII string on the seven-segment display .
is the position of the first digit where the string will appear:

o for the first seven-segment digit.
1 for the second seven-segment digit.

s
none
- Not all ASCII characters can be displayed on a seven-segment display. Consult the

ASCII to seven-segment conversion table DispASCIItoSegTbl [] .

• Description: This
* Arguments dig

* Returns
* Notes

*f

void DispStr (INT8U dig, char Os)

INT8U stat;

while (*s && dig < DISP_N_SS) (
OS_ENrER_CRITICAL () ;

stat - DispSegTbl(dig] & OxOl;

DispSegTbl[dig++] = DispASCIItoSegTbl[*s++ - 0x20] I stat;
OS_EXIT_CRITICAL () ;

f* Save state of EO (i.e. status) *f

f*$PAGE*f

158 - Embedded Systems Building Blocks, Second Edition

Listing 4.1 (continued)

#ifndef CFG_C

1*

LED.C

1/0 roms INITIALIZATION

* Description: This is called by DispIni t () to ini tialize the output pcrts used in the LED Imll tiplexing .
* Argl.llTeI1ts none

* RetUIIlS none
* Notes 74HC573 8 bit latches are used for both the segments and digits outputs.

*1

void DispInitPort (void)

outp(DISP_roRr_SEJ3, OxOO);
outp(DISP_roRr_DIG, OxOO);

1*

1* TurrI OFF segments
1* TurrI OFF digits

*1
*1

DIGIT output

* Description:
* Arguments
* Returns

This function outputs the digi t selector.
msk is the ITBSk used to select the =ent digit.
none

*1

void Disp:lutDig (=8U msk)

1*

SEGMENrS output

* Description: This function outputs seven-segment patterns.
* Argurrents seg is the seven-segment pattern to output
* Returns none

*1

void Disp:lutSeg (=8U seg)

)

#endif

Listing 4.2

/*

LED.H

Chapter 4: Multiplexed LED Displays -159

Embedded Systems Building Blocks
Complete and Ready-to-Use Modules in C

Multiplexed LED Display Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : LED.H
* Programmer: Jean J. Labrosse

*/

/*

cewsrANrS

*/

III

#ifndef CFG_H
#define DISP_RJRT_DIG
#define DISP_RJRT_Sffi

#define DISP_N_DIG
#define DISP_N_SS

#endif

/*

Ox0301
Ox0300

8
7

/* Port address of DIGITS output */
/* Port address of SEl8MEN1'S output */

/* Total number of digits (including status indicators) */
/* Total nurnl:er of seven-segment digits */

*/

void DispClrScr(void);
void DispInit (void) ;
void DispMuxHandler(void);
void DispMuxISR(void);
void DispStr(INr8U dig, char *s);

void DispStatClr(INr8U dig, INrSU bit);
void DispStatSet(INr8U dig, INr8U bit);

/*
******* *** * * * * * ** * * * *** ** * * * * *** * ** * *** * * * ** * * ** * * * * * * * * * * * * * * ** * ** * * ** * * * * ** * * * * ** * * ** ** * * * *** * * ** * * * * * *

~ICNPR=ES

~ SPECIFIC

*/

void DisprnitPort (void) ;
void DispJutDig(INr8U msk);
void Disp::utSeg(INr8U seg);

160 - Embedded Systems Building Blocks, Second Edition

Listing 4.3 LED_IA.ASM

; **
Embedded SySt6T1S Building Blocks

Canplete and Ready-to-Use Modules in C

Multiplexed LED Display Driver

LED Mul tiplex ISR
Intel 80x86 (LARGE MODEL)

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

File : LED_IA.ASM
By : Jean J. Labrosse

; *** **** **** ***** ****** ****** **** **** ***** **** *** ****** ***** ***** *** ******** ** ** ***** *** **** *** ** *** *****

EXTRN _Dis;:MuxHandler: FAR
EXTRN _OSIntExit:FAR
EXTRN _OSIntNesting:BYTE

.MODEL

.CXJDE

.186

LARGE

; ***
QUrPUI' NEXT SID1ENI'S PATrERN 'IQ LED DISPLAY MA'IRIX

void DisrMuxISR(void)

i *** ** **** **** ** **** ****** ** ** ** **** ** ****** ** ******* * ** ** ** **** * ***** ** * *** ** ** ***** **** *** * ** ***** * **** *

_DisrMuxISR PRCC FAR

PUSHA

PUSH ES
PUSH DS

save processor's context

IN:::

CALL

CALL

BYTE
FAR
FAR

FIR _OSIntNesting
FIR _Dis;:MuxHandler
FIR _OSIntExit

Notify uC/OS-II of ISR
Ce.IL C routine to handle mrl.t.ipIexi.nq
Exit through uC/OS-II scheduler

POP DS
POP ES
POPA

IREI'

END

Restore processor's context

Return to interrupted code

ChapterS

Character LCD Modules
In this chapter, I provide you with a software module that will allow you to interface with character
LCD (Liquid Crystal Display) modules. This software package works with just about any character
module based on the Hitachi 0044780 Dot Matrix LCD Controller & Driver. The module allows you
to:

• Control LCD modules containing up to 80 characters.

• Display ASCII characters.

• Display ASCII strings.

Define up to eight symbols based on a 5x7 dot matrix.

• Display bargraphs.

5.00 Liquid Crystal Displays
Liquid Crystal Displays (LCDs) are a passive display technology. This means that LCDs do not emit
light but instead manipulate ambient light. By manipulating this light, LCDs can display images using
very little power. This characteristic has made LCDs the preferred technology whenever low power con
sumption is critical. An LCD is basically a reflective part. It needs ambient light to reflect back to a
user's eyes. In applications where ambient light is low or nonexistent, a light source can be placed
behind the LCD. This is known as backlighting.

Backlighting can be accomplished by either using electroluminescent (EL) or LED light sources. EL
backlights are very thin and lightweight and produce a very even light source. EL backlights for LeDs
are available in a variety of colors with white being the most popular. EL backlights consume very little
power but require high voltages (80 to 100 Vac). EL backlights also have a limited life of about 2,000 to
3,000 hours. LEDs are used for backlighting and are primarily used for character modules. LEDs offer a
much longer life (at least 50,000 hours) and are brighter than ELs. Unfortunately, LEDs consume more
power than ELs. LEDs are typically mounted in an array directly behind the display. LEDs come in a
variety of colors but yellow-green LEDs are the most common.

161

162 - Embedded Systems Building Blocks, Second Edition

Controlling LCDs is a little bit trickier than controlling LEDs. LCDs are almost always controlled
with dedicated hardware. Figure 5.1 shows the three types of LCDs currently available:

1. Custom displays with individual segment controls (similar to LED displays). LCDs lend themselves
very well to custom displays, as shown in Figure 5.1. You can design a display with just about any
type of annunciation. Where software is concerned, these types of displays are similar to LED dis
plays because each segment is controlled individually.

2. Alphanumeric or character displays. These types of displays are currently available in modules. A
module contains the LCD and the drive electronics. Character displays are composed of one to four
lines of 16 to 40 character blocks. Each character block consists of a 5x8 dot matrix that is used to
display any ASCII character and a limited number of symbols.

3. Full graphics displays. As with character displays, full graphics displays are available in modules.
Graphic modules offer the greatest flexibility in formatting data on the display. They allow for text,
graphics, pictures, or any combinations of these. Because character size is defined by software,
graphic modules allow any language or character font. Limitations are driven by the resolution.
Graphic modules are organized in rows (horizontal) and columns (vertical) of pixels. Each pixel is
addressed individually, which allows any pixel to be ON or OFF. Graphics displays are available in a
wide variety of configurations from 64x32 to 640x480 pixels (columns x rows). From a software
point of view, interfacing with graphics displays is at least an order of magnitude more complex than
interfacing with the other two types of displays. I will not be covering graphics displays in this book.

Figure 5.1 Types ofLCDs.

Custom Display 7

Your...
Appl.

LCD LCD
_ _ _ _ MileslHr

I I I I_I I I I KmlHr
Software ~ Interface ~ I-I 1-1-1-1 I-I ~es

Driver Hardware

- ______ e

Trip

LCD Graphics Display
Interface ~ 64x32 to 640x480 pixels
Hardware

LCD Dot Matrix
Interface -. Character Display
Hardware L4lines x 16..40 chars

MODULE-----------------------,
I
I

+-t
I IL ~

MODULE-----------------------,
I
I

+-t
I IL ~

LCD
Software
Driver

LCD
Software

Driver

Your..
Appl.

Your..
Appl.

Chapter 5: Character LCD Modules -163

5.01 Character LCD Modules
A character module contains the LCD and the drive electronics. Character displays are composed of one
to four lines each having between 16 and 40 character blocks. Each character block consists of a 5x8 dot
matrix which is used to display any ASCII character and a limited number of symbols. In this chapter, I
will be providing a software interface module for character display modules. Character modules are
finding their way into a large number of embedded systems such as:

air conditioners

audio amplifiers

FAX machines

laser printers

medical equipment II
security systems

telephones

Because of their popularity, character modules are available from an increasing number of manufac-
turers, including:

Densitron Corporation

Optrex Corp.

Seiko Instruments

Stanley Electric

Character modules generally have at least one thing in common: they pretty much all use the Hitachi
HD44780 LCD module controller. A subset of the Hitachi HD44780 data sheet can be found on the
CD-ROM, 44780 .pdf. The HD44780 can interface directly with any 4- or 8-bit data bus, draws very
little current (less than 1 rnA), is fully ASCII-compatible, can display up to 80 characters, and contains
eight user-programmable 5x8 symbols. The good news is that, where software is concerned, once a dis
play module is written, it can be used with just about any module based on the HD44780.

The hardware interface of an LCD module is quite straightforward. LCD modules can generally
interface directly with most microprocessor buses either as an I/O device or a memory mappedI/O. The
HD44780 has a 500 nS (nano-second) access time. Connecting the LCD module on the microprocessor
bus is economical but becomes problematic if the display is located some distance from the micropro
cessor bus. In this case, parallel I/O ports can be used to interface with the LCD module, as shown in
Figure 5.2. Here, I used an Intel 82C55 Programmable Peripheral Interface (PPI) controller. As shown
in Figure 5.2, only 11 parallel output lines are required to interface to the LCD module. Eight of the
lines are used for data transfer while the other three are used as control lines for the LCD module.

164 - Embedded Systems Building Blocks, Second Edition

Figure 5.2 Interfacing to an LCD module.

PA7..0 Data (8 bits) •
PCI Resister Select Character LCD Module

PCO E 4 lines X20 characters....
I
RfW

•

GND 3t
Note: Power, Gnd and Contrast Adj.

82C55

The HD44780 takes a certain amount of time to process commands or data sent to it. The Hitachi
data sheet provides you with the maximum amount of time required for each type of data transfer.
Because of this, the software can simply send a command or data and wait at least the amount of time
specified before sending the next command or data. Note that the HD44780 itself allows the micropro
cessor to read a BUSY status. The BUSY status can be read by the microprocessor to determine if the
HD44780 is ready to accept another command or more data. If you can, you should make use of the
BUSY capability of the HD44780 because this provides you with a true indication that the HD44780 is
ready to accept another command or more data. As a precaution, however, you should still provide a
timeout loop to prevent hanging up the microprocessor in case of a malfunction with the interface elec
tronics. Unless the LCD module is directly connected to the microprocessor bus, implementing read
capability with parallel l/O ports is more costly. Note that the 82C55 does have a bidirectional mode but
is more complex to use. This is why the circuit shown is implemented with output ports only instead of
a bidirectional data port and three control lines (i.e., RS, E, and R1W).

The interface circuit is simplified by choosing to have the CPU wait between commands and data. It
turns out that this scheme also makes the software easier to write. Waiting is done using a software loop.
You might be thinking that software loops should be avoided because they are not accurate. Well, in this
case, accuracy is not required. All you need to do is wait at least the amount of time specified by Hitachi
before sending the next command or data. A software loop also doesn't affect responsiveness to asyn
chronous events since interrupts are enabled while in the loop. (Besides, how else would you wait just
40 IlS with a low end processor?)

With the hardware interface shown, the LCD module appears as two write-only registers (note that
the RIW line is always low). The first write register is called the data register (when RS is high) while
the other write register is called the instruction register (when RS is low). The software presented in this
chapter calls the instruction register the control register. Characters to display are written to the data reg
ister. The control register allows the software to control the operating mode of the module: clear the dis
play, set the position of the cursor, tum the display ON or OFF, etc.

b~
~----

Chapter 5: Character LCD Modules - 165

5.02 Character LCD Module, Internals

The source code for the LCD module is found in the \SOF'IWARE\BLOCKS\LCD\SOURCE directory.
The source code is found in files LCD.C (Listing 5.1) and LCD.H (Listing 5.2). As a convention, all
functions and variables related to the display module start with Disp while all #defines constants
start with DISP_.

The code allows you to interface to just about any LCD module based on the Hitachi HD44780 LCD
module controller. At first view, you might think that writing a software module for an LCD module is a
trivial task. This is not quite the case because the HD44780 has its quirks. The HD44780 was originally
designed for a 40 characters by 2 lines display (40x2) and thus has internal memory to hold 80 charac
ters. The first 40 characters are stored at memory locations] Ox80 through OxA7 (128 to 167) while the
next 40 characters are stored at memory locations OxCO through OxE7 (192 to 23l)! Tables 5.1 through
5.4 show the memory mapping for different LCD module configurations. The addresses are shown in III
decimal and are actually based at Ox80. That is, address 00 actually corresponds to Ox80, address 64 is
actually OxCO (i.e., Ox80 + 64), etc.

Table 5.1 shows the memory organization for 16-character displays. Notice how the 16 characters by
1 line module appears as a two-line display. This is done by the LCD module manufacturers to reduce
the cost of their product by fully using the drive capability of the HD44780.

Table 5.1 lti-character LCD modules.

16 Characters x 1 lines

00 01 02 03 04 05 06 07 64 65 66 67 68 69 70 71

16 Characters x 2 lines

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

16 Characters x 4 lines

00 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

16 17 18 19 20 21 22 23 24 25 26 Z7 28 29 30 31

80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

Table 5.2 shows the memory organization for 20-character displays. Again, the single-line display
appears as a two-line module.

Table 5.2 20-character LCD modules.

20 Characters x 1 lines

00 01 02 03 04 05 06 (J7 08 09 64 65 66 67 68 69 70 71 72 73

20 Characters x 2 lines
00 01 02 03 04 05 06 (J7 08 09 10 11 12 13 14 15 16 17 18 19

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

1. Memory locations inside the HD44780 chip.

166 - Embedded Systems Building Blocks, Second Edition

Table 5.2 20-character LCD modules.

20 Characters x 4 lines

00 01 02 03 04 05 06 (J7 08 00 10 11 12 13 14 15 16 17 18 19

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

Table 5.3 shows the memory organization for 24-character displays. As with the 16- and 20-charac
ter displays, the single-line display appears as a two-line module.

Table 5.3 24-character LCD modules.

24-Charaders x 1 line

00 01 02 03 04 05 06 (J7 08 00 10 11 64 65 66 67 68 69 70 71 72 73 74 75

24-Characters x 2 lines
00 01 02 03 04 05 06 (J7 08 00 10 11 12 13 14 15 16 17 18 19 20 21 22 23

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87

Table 5.4 shows the memory organization for 40-character displays. As with the other module con
figurations, the single-line display appears as a two-line module. Note that each line of a 40-character
display is shown broken down into two separate lines; the second line is offset from the first. This has
been done to avoid reducing the character font in order to fit within the width of the page.

Table 5.4 40-character LCD modules.

40 Characters x 1 line

00 01 02 03 04 05 06 (J7 08 00 10 11 12 13 14 15 16 17 18 19

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

40 Characters x 2 lines

00 01 02 03 04 05 06 (J7 08 00 10 11 12 13 14 15 16 17 18 19

20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83

84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103

The software module presented in this book will support any LCD module that is organized as
shown in Tables 5.1 through 5.4. The software was actually tested with an Optrex DMC20434. Table 5.5
shows a list of available LCD module configurations and their manufacturer's part numbers.

Chapter 5: Character LCD Modules -167

Table 5.5 LCD module configurations available.

#Lines #Characters
Densitron

OptrexPIN
Seiko Stanley

FEMAPIN
PIN PIN PIN

1 16 LM4020 DMCI6117A MI641 GMD1610 MDL1611

2 16 LM4222 DMC16207 M1632 GMD1620 MDL1621

4 16 LM4443 DMC16433 M1614 GMDI640

1 20 LM432

2 20 LM4261 DMC20215 12012 GMD2020 MDL2021

4 20 LM4821 DMC20434 12014 GMD2040 MDU041

1 24 LM413 DMC24138 MD12411 III2 24 LM4227 DMC24227 12432 GMD2420 MD12421

1 40 LM414 IA041 MDIAOll

2 40 LM4218 DMC40218 IA042 GMD4020 MDIA021

5.03 Interface Functions

Figure 5.3 shows a block diagram of the LCD module. Your application knows about the display only
through the interface functions provided.

Figure 5.3 LCD module driver block diagram.

DisplnitPort ()

LCD
DispDataWr () 'n'lines
DispSel () by... ~ Module ...

Driver 'm' characters
LCD

()

Displnit ()
DispDefChar ()
DispClrScr ()
DispClrLine ()
DispStr ()
DispChar ()
DispHorBarlnit
DispHorBar ()

The module assumes the presence of a real-time kernel because it requires a semaphore and time
delay services. The display module makes use of a binary semaphore to prevent multiple tasks from
accessing the display at the same time. Use of the semaphore is encapsulated in the code, and thus, your
application doesn't have to worry about it.

168 - Embedded Systems Building Blocks, Second Edition

DispChar()
void DispChar(INTSU row, INTSU col, char c);

DispChar () allows you to display a single character anywhere on the display.

Arguments

row and col will specify the coordinates (row, col) where the character will appear. rows (i.e., lines) are
numbered from 0 to DispMaxRows - 1, and columns are numbered from 0 to DispMaxCols - 1.

c is the character to display. The Hitachi HD44780 allows you to specify up to eight characters or sym
bols numbered from 0 to 7 (i.e., its identification). You display a user-defined character or symbol by
calling DispChar () , the row/column position, and the character or symbol's identification number.

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

DispChar(l, 3, '$'};/* Display '$' on second row, 4th character */

Chapter 5: Character LCD Modules -169

DispClrLine ()
void nispClrLine(I:NT8U line);

DispClrLine () allows your application to clear one of the LCD module's lines. The line is basically
fined with the ASCII character " (i.e., Ox20).

Arguments

line is the line (i.e., row) to clear. Note that lines are numbered from 0 to DispMaxRows - 1.

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

III

DispClrLine (0) ; /* Clear the first line of the display */

170 - Embedded Systems Building Blocks, Second Edition

DispClrScr ()
void DispClrScr(void);

DispClrScr () allows you to clear the screen. The cursor is positioned on the top leftmost character.
The screen is basically filled with the ASCII character' , (i.e., Ox20).

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

DispClrScr () ; /* Clear everything on the display */

Chapter 5: Character LCD Modules -171

DispDefChar ()
void nispDefChar{INTBU id, INTBU *pat);

DispDefChar () allows you to define up to eight custom 5x8 pixel characters or symbols. This is one
of the most powerful features of the LCD modules because it allows you to create graphics such as
icons, bargraphs, arrows, etc.

Figure 5.4 shows how to define a character or a symbol. The 5x8 pixel matrix is organized as a bit
map table. The first entry of the table corresponds to pixels for the first row, the second entry, the pixels
for the second row, etc. A pixel is turned ON when its corresponding bit is set (i.e., 1).

Figure 5.4 Defining characters, or symbols.

IIB7 B6 B5 B4 B3 B2 BI BO ~ Bit Map Table

0 0 0 DDDDD [0]

0 0 0 DDDDD [1]

0 0 0 DDDDD [2]

0 0 0 DDDDD [3]

0 0 0 DDDDD [4]

0 0 0 DDDDD [5]

0 0 0 DDDDD [6]

0 0 0 DDDDD [7]

L PixelON when1, OFFwhen0

All you need to do to define a new character or symbol is to declare an initialized array of 1NT8Us
containing eight entries and call DispDefChar ().

Arguments

id specifies an identification number for the new character or symbol (a number between 0 and 7). The
identification number will be used to actually display the new character or symbol.

pat is a pointer to the bitmap table which defines what the character or symbol will look like.

Return Value

None

NoteslWarnings

None

172 - Embedded Systems Building Blocks, Second Edition

Example

const INT8U DispRightArrowChar[] = {

Ox08, OxOC, OxOE, OxlF, OxlF, OxOE, OxOC, Ox08

void Task (void *pdata)

for (;;) {

DispDefChar(O, &DispRightArrowChar[O]); /* Define arrow char. */

Figure 5.5 shows examples of bitmaps to create arrows and other symbols. Once symbols are cre
ated, you can display them by calling DispChar () .

Figure 5.5

UPArrow

Symbol examples.

RIGHT Arrow
87 86 85 84 B3 82 81 80 87 86 85 84 83 82 81 80 87 B6 85 84 B3 82 81 80

0 0 0 lJU.: l l __ I [OJ,ox04 0 0 0
I, J. !~J IJ [OJ,Ox08 0 0 0 .0••• [0]: Ox17

0 0 0 [I ••• : i [1]: OxOE 0 0 0 Ii •• [J [l]:OxOC 0 0 0 [J • 0 [lJ:Ox04

0 0 0 ••••• [2]: OxOF 0 0 0 ••• [2]:OxOE 0 0 0 ••• [2]:Ox06

0 0 0 U [:]. [J 11 (3]: 0x04 0 0 0 ••••• [3]: OxlF 0 0 0 00.00 [3]:OXll

0 0 0 [J:J.LJ iJ [4j: Ox04 0 0 0 ••••• [4J:OxlF 0 0 0 DO.[JO [4j: Ox04

0 D 0 [J [1.U [0 OJ [5]: Ox04 0 0 0 1••• LJ [5]: DxOE 0 0 0 o [[J on [5]: Ox04

0 0 0 !~U.IJ [6]: Ox04 0 0 0 I_-J •• I.. J Li [6]: DxOC 0 0 0 C!D[][][] [6]: OxOO

0 0 0 l=lO.U [7]: ox04 0 0 0 [J. UUeJ [7]: Ox08 0 0 0 OOO[J[] [7]: OxOO

DOWN Arrow LEFT Arrow FLAG
87 86 85 84 83 82 81 80 87 86 85 B4 B3 82 81 80 87 86 85 B4 B3 82 81 80

0 0 0 [J 101. [-J [1 [OJ: Ox04 0 0 0 I; i .: , [OJ:Ox02 0 0 0 ••••• [O]:OxlF

0 0 0 r • [] [1]: Ox04 0 0 o : i •• 11 [lJ:Ox06 0 0 0 ••••• [lj:OxlF

0 0 0 • [2]: Ox04 0 0 0 ••• [2]: DxOE 0 0 0 ••••• [2]:OxlF

0 0 0 UIJ.UU [3J: Ox04 0 0 0 ••••• [3J: OxlF 0 0 0 ••••• [3J: OxlF

0 0 0 UIJ.I] U (4): Ox04 0 0 0 ••••• [4j: OxlF 0 0 o • [J OD [4J:oxl0

0 0 0 ••••• [5]: OxlF 0 0 o l:J••• O [5]: OXOE 0 0 0.0 D[] [5j:Oxl0

0 0 0 1-]••• [J [6J: OxOE 0 0 o [JI1 •• n [6J: Ox06 0 0 o .OO[ll] [6): Oxl0

0 0 0 LJO.O [J [7]: Ox04 0 0 o r [J [J. 0 [7]: 0x02 0 0 o .00 [1 0 [7]:Oxl0

Chapter 5: Character LCD Modules -173

DispHorBar ()
void DispHorBar(INT8U row, INT8U col, INT8U val);

You can use the LCD module to create remarkably high quality bargraphs. The linear bargraph is an
excellent trend indicator and can greatly enhance operator feedback. Depending on the size of the mod
ule, many bargraphs can be simultaneously displayed. The LCD module software allows you to display
bargraphs of any size anywhere on the screen.

DispHorBar () is used to display horizontal bars anywhere on the screen.
Figure 5.6 also shows that a l6xN-character display can produce bargraphs with up to 80 bars (16 x

5 bars per character block). In Figure 5.6, I started the bargraph on the first column on a l6xN-character
display. Once scaled, bargraphs can represent just about anything. For example, the 38 bars shown in
Figure 5.6 can represent 47.5 percent (38 bars =47.5/100180), 100.7 degrees if the bargraph is used to II
represent temperatures from 0 to 212 degrees, etc.

Figure 5.6 Bargraphs with 16-character displays.

1 2

•••00 ••••0
•••00 ••••0
•••00 ••••0
•••00 ••••0
•••00 ••••0
•••00 ••••0
••aOD ••••0
•••00 ••••0

3 4

Bitmaps created by DispHorBarlni t ()

5
~ Symbol i.d. numbers

10lil

Arguments

80 bars (max.)

••••••••00
••••••••00
••••••••00
••••••••00
••••••••00
••••••••00
••••••••00
••••••••00

DispHorBar(O, 0, 38);

row and col will specify the coordinates (row, col) where the first character in the bargraph will appear.
rows (i.e., lines) are numbered from °to DispMaxRows - 1, and columns are numbered from 0 to
DispMaxCols - 1.

val is the number of bars you want to have turned on (a number between 0 to 80 in this example).

ReturnValue

None

174 - Embedded Systems Building Blocks, Second Edition

NoteslWarnings

Before you can use DispHorBar (), you must call DispHorBarInit () which defines 5 characters
used for bargraphs.

Example
You could actually use fewer bars and display the actual value next to the bargraph, as shown in Figure
5.7. In this example, I am displaying 100.7 degrees (28 bars) on a scale of 0 to 212 degrees (60 bars).

Figure 5.7 Bargraph with value.

I"
,..

void Task (void *pdata)

for (;;)

28 bars

60 bars (max.)

~I

4, 28) i

~I

000 00000 00000 00000
00000 00000 00000
00000 00000 00000
00000 00000 00000
00000 00000 0
00000 00000 0
00000 00000 0
00000 00000 0

DispHorBar{O, 4, 28); /* Display a 28 out of 60 bar bargraph */

Chapter 5: Character LCD Modules -175

DispHorBarIni t ()
void DispHorBarInit (void) ;

DispHorBarIni t () defines five special symbols with identification numbers I through 5 as shown in
Figure 5.6. You must be call before you use DispHorBar (). You only need to call DispHorBarIni t ()

once unless you intend to redefine the symbol identifiers dynamically for other purposes.

Arguments

None

Return Value

None

NoteslWarnings

Because DispHorBarIni t () defines the five symbols shown in Figure 5.6, you must use other identi
fication numbers (i.e., 0, 6, and 7) for your own symbols.

Example

void Task (void *pdata)

II

DispHorBarInit{);

for (;;) {

DispHorBar{O, 4, 28};

/* Initialize the bargraph capability */

/* Display a 28 out of 60 bar bargraph * /

176 - Embedded Systems Building Blocks, Second Edition

DispInit()
void Displnit(INT8U maxrows, INT8U maxcols);

DispIni t () is the initialization code for the module and must be invoked before any of the other func
tions. DispIni t () assumes that multitasking has started because it uses services provided by the
real-time kernel.

DispIni t () initializes the hardware, creates the semaphore, and sets the operating mode of the
LCD module.

Arguments

maxrows is the LCD module's maximum number of rows (lines), and maxcols is the maximum num
ber of columns (characters per line).

Return Value

None

NoteslWarnings

None

Example
You should call DispIni t () from your user interface task as follows:

void UserIFTask (void *data)

DispInit(4, 20);

for (;;)

User interface code;

/* Initialize the 4x20 LCD display */

Chapter 5: Character LCD Modules -177

DispStr()
void DispStr(INT8U row, :INT8U col, char *s);

DispStr () allows you to display ASCII strings anywhere on the display. You can easily display either
integer or floating-point numbers using the standard library functions itoa (), ltoa (), sprintf (),
etc. Of course, you should ensure that these functions are reentrant if you are using them in a multitask
ing environment.

Arguments

row and col will specify the coordinates (row, col) where the first character of the ASCII string will 5
appear. Note that rows (i.e., lines) are numbered from 0 to DispMaxRows - 1. Similarly, columns are
numbered from 0 to DispMaxCols - 1. The upper-left corner is coordinate 0, O.

s is a pointer to the ASCII string. The displayed string will be truncated if the string is longer than the
available space on the specified line.

Return Value

None

NoteslWarnings

None

Example

void UserIFTask(void *data)

DispInit(4, 20};

for (;;)

/* Initialize the 4x20 LCD display */

DispStr(O, 0, "Hello World"};

178 - Embedded Systems Building Blocks, Second Edition

5.04 LCD Module Display, Configuration
Configuring the LCD display module is quite straightforward.

1. You need to change the value of three #defines. The #defines are found and described in LCD. H
and also in CFG. H. DISP_DLY_CNTS is used to adjust delays between sending commands or data
to the HD44780. You will need to change this constant so that a delay of at least 40 ,..s occurs
between writes to the HD44780.

2. You need to adapt three hardware interface functions to your environment. To make this module as
portable as possible, access to hardware ports has been encapsulated into the following functions:
DispInitPort (), DispDataWr (), and DispSel () (described as follows).

DispIni tPort () is responsible for initializing the output ports used to interface with the LCD
module. I used an Intel 82C55 PPI to verify the code. DispInitPort () is called by DispInit ().

DispDataWr () is used to write a single byte to the LCD module. Depending on the state of the RS
line (see Figure 5.2), the byte will be either sent to the data (RS is 1) or control register (RS is 0).

Changing the state of the RS line is the responsibility of the function DispSel (). DispSel () is
called by the LCD display module with one argument that can either be set to DISP_SEL_CMD_REG or
DISP_SEL_DATA_REG.

5.05 LCD Module Manufacturers
Densitron Corporation
2039 HW 11
Camden, SC 29020
(803) 432-5008

Hitachi America, Ltd.
Electron Tube Division
3850 Holcomd Bridge Rd.
Norcross, GA 30092
(404) 409-3000

Optrex Corp.
23399-T Commerce Drive
Suite B-8
Farmington Hills, MI 48335
(313) 471-6220

Seiko Instruments USA, Inc.
Electronic Components Division
2990 West Lomita Blvd.
Torrance, CA 90505
(310) 517-7829

Stanley Electric
2660 Barranca Parkway
Irvine, CA 92714
(714) 222-0777

Listing 5.1

/*

LCD.C

Chapter 5: Character LCD Modules -179

Einbedded Systems Building Blocks
Complete and Ready-to-Use Modules in C

LCD Display Mcdule Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : LCD.C
* Prograrrmer : Jean J. Labrosse
~** * * * * * * * * * * *** * * ** * * ** * * * *** *

DESCRIPI'IClIl

* This rrodul.e provides an interface to an alphamnneric display rrodul.e.

* The current; version of this driver supports any alphanumeric LCD rocdule based on the:
Hitachi HD44780 ror MATRIX LCD controller.

* This driver supports LCD displays having the following configuration:

1 line x 16 characters 2 lines x 16 characters 4 lines x 16 characters
1 line x 20 characters 2 lines x 20 characters 4 lines x 20 characters
1 line x 24 characters 2 lines x 24 characters
1 line x 40 characters 2 lines x 40 characters

*/

/*$PAGE*/

II

180 - Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued)

1*

LCD.C

INCLUDE FILES

*1

#include "includes.h"

1*

LCCAL CDNSTANrS

** *** ***** * ****** **** ** ** * * * * * * * * * * * * * * ** * ** * ** * ** * * * * * * * *** * * * * * * ** * * * * * ** *** * * * * * * * * * * * * * * * * * ** * * *'** * * *
*1

#define DISP_CMD_CLS
#define DISP_CMD_FN:T
#define DISP_CMD_MODE
#define DISP_CMD_ON_OFF

1*

OxOl
Ox3B
Ox06
OxOC

1* ---------------------- HD44780 c:cMMANDS -------------------- *1

1* Clr display : clears display and returns cursor heme *1

1* Function Set: Set 8 bit data length, 1/16 duty, 5x8 dots *1
1* Entry mode Inc. display data address when writing *1

1* Disp OO/OFF : Display 00, cursor OFF and no BLINK character *1

**** ** ****** *** ** ***** ***** ** ***** **** * * * * *** ***** ************ * ***** *** ** ** ** ***** ****** **** *** ** ***** ***
LCCAL VARIABLES

*1

static
static
static

Dis[:MaxCols;

Disr:MaxRows ;
*DispSem;

1* Maximum number of columns li.e. characters per line)
1* Maximum number of rows for the display
1* Semaphore used to access display functions

*1
*1
*1

static INI8U DispBarl[] {OxlO, OxlO, OxlO, OxlO, OxlO, OxlO, o-ao. OxlO} ;
static INI8U DispBar2 [] {OxlS, Ox18, Oxl8, Oxl8, Oxl8, Oxl8, Oxl8, Oxl8} ;
static INI8U DispBar3(] (oxic. OxIC, OxIC, OxIC, Oxl.C, oxic. OxIC, OxlC} ;
static INI8U DispBar4[] {OxlE, OxlE, OxlE, OxlE, OxlE, OxlE, OxlE, OxlE} ;
static INI8U DispBar5[] {OxlF, OxlF, OxlF, OxlF, OxlF, OxlF, OxlF, OxlF} ;

1*

LCCAL FlJN2TIOO PRCIIOI'YPES

*1

static void

I*$PAGE*I

DispCursorSet IINI8U raw, INI8U ocl) ;

Listing 5.1 (continued)

/*

LCD.C

Chapter 5: Character LCD Modules -181

Ib~__
,,--

DISPLAY A 0lARACI'ER

*/

void DispChar (INT8U rOil, INT8U col, char c)

* Description
* Argurrents

* Returns

'Ibis function is used to display a single character on the display device
, rOil' is the xo» posi tion of the cursor in the LCD Display

,xo»: can be a value from 0 to 'DiS];:MaxROiIS - L'

'col' is the colunm posi tion of the cursor in the LCD Display
'col' can be a value from 0 to 'Disr:MaxCols - l'

'c' is the character to write to the display at the current RCM/COLUMN position.
none

III

/*

INT8U err;

if (rOil < DisI,:M3xROiIs && col < Disr:MaxCols) {
OSSernPend(DispSem, 0, &err); /* Obtain exclusive access to the display
DispCursorSet(rOil, col); /* Position cursor at RCM/COL
DispSel(DISP_SEL_DATA_REG);

DispIJataWr (c) ; /* Send character to display
OSSernPost(DispSem); /* Release access to display

*/
*/

*/
*/

CLEAR LINE

* Description 'Ibis function clears one line on the LCD display and positions the cursor at the
beginning of the line.

* Argurrents ' line' is the line number to clear and can take the value
o to 'DisI,:M3xROiIs - I.'

* Returns none

*/

void DispClrLine (INT8U line)

INT8U i;
INT8U err;

if (line < DisI,:M3xROilS) {
OSsemPend(DispSem, 0, &err);

DispCursorSet(line, 0);
DispSel (DISP_SEL_DATlLREG) ;

for (i = 0; i < Di~ols; i ...) {
DispIJataWr (' ');

}

DispClirsorSet(line, 0);

OSSernPost (DispSem) ;

/*$PAGE*/

/* Obtain exclusive access to the display
/* Position cursor at begin of the line to clear
/* Select the LCD Display DATA register
/* Write ' , into all colunm positions of that line

/* Write an ASCII space at current cursor position

/* Position cursor at begin of the line to clear
/* Release access to display

*/

*/
*/
*/

*/

*/
*/

182 - Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued)

1*

LCD.C

CLEAR THE SCREEN

* Description 'lliis function clears the display
* Argtunents none

* Returns none

*********** *** * ** * * * * ** * * * ** * * * * * ** ** * * * ** * * * * * * * ** * * ** * * * * * * * * * * * * * * * * * * ** * * * * **** * * ***** * ** * * * * * * * * * * **
*1

void DispClrScr (void)

INr8U e=;

OSSemPend(DispSem, 0, &err);
DispSel (DISP_SELJ:MD].ffi);
DispDatawr (DISP_CMD_CLS) ;
OST:imeDly(2) ;

OSSanJ?ost (DispSem) ;

I*$PAGE*I

1* Obtain exclusive access to the display
1* Select the LCD display COlTTl\3Ild register
1* Send corrrrand to LCD display to clear the display
1* Delay at least 2 mS (2 ticks ensures at least this rnrch)

1* Release access to display

*1
*1
*1
*1
*1

Listing 5.1 (continued)

/*

LCD.C

Chapter 5: Character LCD Modules -183

roSITICN THE CURSJR (Internal)

* Description
* Arguments

* Returns

This function positions the cursor into the LCD buffer
'rCM' is the rCM position of the cursor in the LCD Display

, rCM' can be a value fran 0 to 'Dis];MaxRCMS - l'

'col' is the col.urm position of the cursor in the LCD Display
'col' can be a value fran 0 to 'Dist:MaxCols - l'

: none

*/

/* Handle special case when only one line */

/* First half of the line starts at OxSO */
/* Second half of the line starts at oxeo */

» 1»;

static void DisJ;DrrsorSet (INrSU rCM, INrSU col)

DispSel (DISP_SEL_CMD_REl3) ; /* Select LCD display camand register
switch (rCM) (

case 0:

if (DispMaxRows == 1) {
if (col < (DiSf'MaxCols » 1»

DispIataWr(OxSO + COlli

else {
DispIataWr(Oxeo + col - (DiSf'MaxCols

*/ II

else {
DispIataWr(OxSO + col);

)

break;

case 1:
DispIataWr(oxeo + col);
break;

case 2:
DispIataWr (OxSO + Dist:MaxCols + col);
break;

case 3:
DispIataWr(OxeO + Dist:MaxCols + col);
break;

/*$PAGE*/

/* Select LCD'sdisplay line 1

/* Select LCD's display line 2

/* Select LCD's display line 3

/* Select LCD's display line 4

*/

*/

*/

*/

184 - Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued)

f*

LCD.C

DEFINE CHARACI'ER

* Description
* Arguments

* Returns

This function defines the dot pattern for a character.
"i.d ' is the identifier for the desired dct pattern.
'pat' is a point.er to an S BYTE array containing the dct pattern.

None.

*f

void DispDefChar (INrSU id, INrSU *pat)

INrSU err;
INrSU i;

OSSanPend(DispSem, 0, &err);
DispSel (DISP_SEL_=_Rffi) ;
DispDataWr(Ox40 + (id« 3));
DispSel(DISP_SEL_DATA_REG);
for (i = 0; i < S; i++) {

DispDataWr(*pat++);
}

OSSanPost (DispSem) ;

f*$PAGE*f

f* obtain exclusive access to the display
f* Select command register
f* Set address of CG RAM
f* Select the data register

f* Write pattern into CG RAM

f* Release access to display

*f
*f
*f

*f

* f

*f

Listing 5.1 (continued)

/*

LCD.C

Chapter 5: Character LCD Modules -185

*****'*** *** '*******..** ***** ** **** * * * *** *** * * * *** * * * * * * * * * * * ** * ** * * **** * * * *** * * * * **** * * * * *** * *** * * ** * * ** * * *

* Description This function doesn't do anything. It is used to act like a OOP (Le. No Operation) to
waste a f5'l CPU cycles and thus, act as a short delay.

* Arguments none
* Returns none

*/

void DispDurrmy (void)

/*

**** ******** ******* ** * * ** * * * * * *** * * * * *** * * * * * * * * * * * * * * ** ** * * ** ** * * * ** * * * * ***** * * * *** * * * * ** * * * *** ** * * * * * * *
DISPlAY A HORIZONTAL BAR

II
* Description
* Arguments

* Returns

* N'c>tes

This function allows you to display horizontal bars (bar graphs) on the LCD rrodule.
'rON' is the rON position of the cursor in the LCD Display

'rON' can be a value from 0 to 'Disr:M3XRows - l'
'val' is the value of the horizontal bar. This value cannot exceed:

DiS{:MaXCols * 5
: none
: Tc use this function, you must first call DispHorBarInit()

********************** ***** ******* * * * ***** * * * *** * * * * * * *** * * * ** * * * * * * * * * * * * ** * * * * ** * * * * * * * *** * * ** * * * * ** ** *
*/

void DispHorBar (INr8U xoa, INr8U col, INr8U val)

INr8U i;
INr8U full;
INr8U fract;
INrSU err;

/* Find out heM rrany 'full' blocks to turn rn * /
/* Compute portion of block * /

- 1) < DispMaxCols) {
/* Obtain exclusive access to the display */
/* Set counter to limit column to maxim.rrn allowable column * /
/* Position cursor at beginning of the bar graph */

/* Send custom character # 'fract' (Le. portion of block) */

full = val / 5;
fract = val % 5;
if (row < DiSr:M3XRows && (col + full

OSSanPend(DispSem, 0, &err);

i = 0;
Dis:r;CursorSet (rON, col);
DispSel (DISP_SEL_DATA_Rffi) ;
while (full > 0) {

DispDataWr(5) ;

i++;

full--;
}

if (fract > 0) {
DispDataWr(fract) ;

}

OSSemPost (DispSem) ;

/*$PAGE*/

/* Write all 'full' blocks
/* Send custom character #5 which is full block
/* Increrrent limit counter

/ * Release access to display

*/

*/
*/

*/

186 - Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued)

1*

LCD.C

=TIALIZE HORIZCNI'AL BAR

* Description This function is used to initialize the bar graph capability of this nodule. You must
call this function prior to calling DispHorBar() .

* Arguments none
* Returns none

*1

void DispHorBarInit (void)

DispDefChar(l, &DispBarl[O]);
DispDefChar (2, &DispBar2 [0]) ;
DispDefChar(3, &DispBar3[0]);
DispDefChar(4, &DispBar4[OJ);
DispDefChar(5, &DispBar5[0]);

1*

DISPLAY DRIVER =TIALIZATION

* Description
* Arguments

* Returns

* Notes

*1

This function initializes the display driver.
rnaxrows specifies the number of lines on the display (1 to 4)
maxco.ls specified the number of characters per line
None.

DispInit() MUST be called only when multitasking has started. This is because
DispInit () requires time delay services from the operating system.

- DispInit() MUST only be called once during initialization.

void DispInit (INr8U rnaxrows, INr8U naxcols)

DispIni tPort () ;
DisJ;MaxRows = rnaxrows;
DisP1aXCols = naxcols;
DispSem = OSSernCreate(l);

1* Initialize I/O ports used in display driver

1* Create display access serraphore

*I

* I

DispSel (DISP_SEldl·lIUlB3) ;
osrimeDlyHMSM(O, 0, 0, 50);
DispDataWr (DISP_CMD_FN:.T) ;
osrimeDly(2) ;
DispDataWr (DISP_CMD_FN:.T) ;
OSTimeDly(2) ;
DispDataWr (DISP_CMD_FN:.T) ;
OSTimeDly(2) ;
DispDataWr (DISP_CMD_FN:.T) ;
osrimeDly(2) ;

1* =TIALIZE THE DISPLAY MOIXJLE *1
1* Select cornrand register. *I
1* Delay rrore than 15 ms after power up (50 ms should be enough) * I
1* Function Set: Set 8 bit data length, 1/16 duty, 5x8 dots *1
1* Busy flag carmot be checked yet! *1
I * The above ccmrend is sent four times! *I
1* This is reccmne:nded by Hitachi in the HD44780 data sheet *1

DispDataWr (DISP_CMD_ON_OFF) ;
DispDataWr(DISP_CMD_MODE);
DispDataWr(DISP_CMD_ClS) ;
osrimeDly(2) ;

I*$PAGE*I

1* Disp ON/OFF: Display ON, cursor OFF and no BLINK character
1* Entry rrocle: Inc. display data address when writing
1* Send ccmrend to LCD display to clear the display
1* Delay at least 2 ms (2 ticks ensures at least this much)

* I
* I
* I
* I

Listing 5.1 (continued)

1*

LCD.C

Chapter 5: Character LCD Modules -187

DISPlAY AN ASCII SI'RIN3

* ************ ******* ****** ** ** **** * * ** *** ******* * * * ** * * * * ** * * * *** * * * * ** ** * ** * ** * * ** ** * * ** * * * * * * * ** * * * * ***
*1

void DispStr (INT8U rCM, INT8U col, char Os)

* C€scription
* Argurrents

* Returns

This function is used to display an ASCII string on a line of the LCD display
, rCM' is the rCM posi tion of the cursor in the LCD Display

'rCM' can be a value fran ° to 'Dis];:MaxRows - l'
'col' is the column position of the cursor in the LCD Display

'col' can te a value fran ° to 'DispMaxCols - l'
's' is a pointer to the string to wri te to the display at

the desired rCMlcol.

none

II
INT8U i;

INT8U err;

1* Set counter to limit column to maximum allCMable column *1
1* Write all chars within str + limit to DispMaxCols *1
1* send character to LCD display *1
1* Increment limit counter *I

if (rCM < DisrM3XRCM8 && col < DispMaxCols) {
OSSernPend(DispSem, 0, &e=); 1* Obtain exclusive access to
DiS];Cursor8et (rCM, col); 1* Position cursor at ROIVlCOL

DispSel (DISP_SEL_DATA_REl3) ;
i ~ col;
while (i < DispMaxCols && Os)

DispDataWr(*sHl;
i++;

the display *1

*1

)

OSSemPost (DispSem) ;

I*$PAGE*I

1* Release access to display *1

188 - Embedded Systems Building Blocks, Second Edition

Listing 5.1 (continued)

/*

LCD.C

WRITE DATA 'ill DISPLAY DEVICE

* Description
* Arguments

* Returns
* Notes

'!his function sends a single BYTE to the display device.
'data' is the BYTE to send to the display device
none
You will need to adjust the value of DISP_DLY_CNI'S (LCD.H) to pro::1uce a delay between
writes of at least 40 us. 'I11e display I used for the test actually required a delay of
80 US! If characters sean to appear randanly on the screen, you might want to increase
the value of DISP_DLY_CNl'S.

** *** *** * **** *** * * ... * * * * * * * * * * *** * * * * * * ** * ***** * * * * * * * * * * * * * * *** * **** * * * ** * * * * * * * * * * * **** **** ** * * *** * **** *
*/

#ifndef CFG_C
void DispDataWr (=8U data)
(

=8U dly;

outp(DISP_FORT_DATA, data);
outp(DISP_FORI'_=, OxOl);
DispDurrmy () ;
outp(DISP_FORI'_=, OxOO);
for (dly = DISP_DLY_CNl'S; dly > 0; dly--) (

DispDurrmy () ;

}

#endif

/*

/* Write data to display module
/* Set E line HIGH

/* Delay about 1 US
/* Set E line LOW
/* Delay for at least 40 US

*/
*/
*/

*/
*/

***** * ** ** * ** *** * *** * * * * ** * * * * * * ... * * * * * * * * ***** * * ** * * * * ** ** * ... * * **** * **** ***** * * * * * * * * ** * ** ** *** ** ** * * * * * * *
=TIALIZE DISPLAY DRIVER I/O FORTS

• Description '!his ini tializes the I/O ports used by the display driver.

* Arguments none

* Returns none

** ** * * * * * * *** *** * *** ** * * * * * * * * * * ** * * ** * * * ** ** * * * * * ** **** * * ** * * * * * * * **** * **** * * **** * ** * * * ****** * **** ** ** * *
*/

#ifndef CFG_C
void DispInitRJrt (void)
(

)

#endif

/* Set to Mcx:le 0: A are output, B are inputs, C are outputs */

Listing 5.1 (continued)

/*

LCD.C

Chapter 5: Character LCD Modules -189

SELKT ca-lMAND OR DATA RffiISI'ER

* Description: This function read a BYTE from the display device.
* Arguments : none

*/

/* Select the COl!I1\3Ild register (RS low)

#ifndef CFG_C

void DispSel (INl'SU sel)
{

if (sel == DISP_SEL_OI[LRffi) (
outp(DISP_PORl'_CMD, Ox02);

else (
outp(DISP_PORl'_CMD, Ox03);

)

#endif

/* Select the data register (RS high)

*/

*/ III

190 - Embedded Systems Building Blocks, Second Edition

Listing 5.2

/*

LCD.H

Elnbedded Systems Building Blocks
Ccmplete and Ready-to-Use Modules in C

LCD Display Module Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filenarre : LCD.H

* Prograrrrner : Jean J. Labrosse

*/

/*
****** ** ** * * * * ** ** * * * ** ** * * * * * ** * *** *** * ** * * * *** * * *** * * * ** ** * * * * ** ** *** * ** * * * ** ** **** *** ** * * ** * * ** * * * ** * *

coosrANrS

*/

#ifndef CFG_H

#define DISP_DLY_CNl'S 8 /* Number of iterations to delay for 40 US (software loop) */

#define DISP_RJRr_CMD

#define DISP_RJRCDATA

#erdif

#define DISP_SEL_CMD_1ill}
#define DISP_SEL_DATA_1ill}

/*

Ox0303

Ox0300

o
1

/* Address of the Control Word (82C55) to control RS & E

/* Port address of the DATA port of the LCD rrodule
*/
*/

*/

void DispChar(INT8U raw, INT8U col, char c);
void DispClrLine(INT8U line);

void DispC1rScr (void) ;
void DispDefChar{INT8U .id, INT8U *pat);

void DispDurrmy (void) ;
void DispHorBar(INT8U xo«, INT8U col, INT8U val);

void DispHorBarInit (void) ;

void DispInit(INT8U ffi3XT0IIS, INT8U maxcol.sj ,
void DispStr{INT8U raw, INT8U col, char *s);

/*

FUN::TICN PROIOI'YPES

HARJ:WARE SPEI::IFIC

*/

void DispDatawr(INT8U data);

void DispInitPort (void) ;
void DispSel{INT8U se1);

Chapter 6

Time-of-Day Clock
The management of time is important in many microprocessor-based embedded systems. For instance,
what would VCRs (Video Cassette Recorders) be without clock/calendars to schedule the recording of
television programs?

In this chapter, I will describe how I implemented a Y2K-compliant clock/calendar module. The
clock/calendar module offers the following features:

Maintains hours, minutes, and seconds.

Contains a calendar which keeps track of: month, day, year (including leap-years), and day-of-week.

Allows your application to obtain a timestamp to mark the occurrence of events. A timestamp is the
current date and time packed into a 32-bit integer.

6.00 Clocks/Calendars
A clock/calendar is a useful module for an embedded system. If you need a clock/calendar, you have to
decide whether to implement it in hardware or software.

Clock/calendar chips are readily available and most can directly interface with microprocessors.
These chips accurately maintain the time-of-day, and some chips even provide a built-in calendar. Some
chips include a battery and can continue to keep track of date and time even when power is removed
from the unit. Clock/calendar chips generally require a crystal, which further increases the recurring
cost of your system. Clock/calendar chips are manufactured by a large number of semiconductor com
panies such as Motorola, National Semiconductor, Maxim, Dallas Semiconductor, etc. Just because you
have a clock/calendar chip doesn't mean you don't need to write any software. Your application soft
ware will still need to:

program the clock/calendar chip with the correct date and time,

program any alarm clock functions, and

read the current date and time.

191

192 - Embedded Systems Building Blocks, Second Edition

A software-maintained clock/calendar is the best solution when your application cannot afford the
extra cost associated with a clock/calendar chip, a battery, and an extra crystal. A software-implemented
clock/calendar module can offer most of the benefits of a hardware approach (except that it can't main
tain date and time when power is removed). A software approach requires very little ROM, RAM, and
CPU time and does not add recurring cost to your system. Also, you can easily add features, such as
alarm clock functions (with many alarm setpoints), timestamps, string-formatting utilities to convert
date and time to ASCII, etc. Software-implemented clock/calendars are found in a number of familiar
appliances such as VCRs, stereos, FAX machines, microwave ovens, etc. If the microprocessor has a
low-power standby mode, the software-implemented clock/calendars can be made to maintain correct
date and time when the power is removed by also including a battery to power the microprocessor.

Maintaining a clock/calendar is a trivial task for a microprocessor. The first thing you will need is a
periodic time source that will interrupt the microprocessor at regular intervals. Such a time source is
easy to find. AC power line frequencies (50 or 60 Hz) are generally very accurate over long periods of
time. For short-term accuracy, the crystal used to clock the microprocessor is also a good candidate;
however, for such an application, the crystal frequency must be divided down. If your application soft
ware runs under a real-time multitasking operating system, the OS's clock tick is a convenient periodic
time source.

If we assumed that the microprocessor was interrupted every one-tenth (0.1) of a second, the soft
ware simply needs to maintain integer counters for tenths of a second, seconds, minutes, hours, day,
month, and year as follows. The tenths of a second is incremented every interrupt. If the counter over
flows from 9 to 0, the seconds counter is incremented. If the seconds counter overflows from 59 to 0, the
minutes counter is incremented, etc. Every 24 hours, the days counter is incremented. When the months
counter overflows depends on the current month and also, in the case of February, on whether the year is
a leap year. The following sections describe how I implemented the software for the clock/calendar
module.

6.01 Clock/Calendar Module
The source code for the clock/calendar module is found in the \SOFTWARE\BLOCKS\CLK\SOURCE

directory. The source code is found in the files CLK.C (Listing 6.1) and CLK.H (Listing 6.2). All
clock/calendar functions and variables related to this module start with Clk, while all #define con
stants start with CLK_.

6.02 Internals
Figure 6.1 shows a simplified flow diagram of the clock/calendar module. I assume the presence of a
real-time kernel but the code can easily be modified to work in a foreground/background environment.
Basically, the clock/calendar module consists of a task which executes every second. The task is respon
sible for updating eight variables that are maintained by the clock/calendar module. You should not
directly access these variables from your application. As you might have expected, the variables updated
by the clock/calendar module are:

Chapter 6: Time-of-Day Clock -193

ClkSec:

ClkMin·

ClkHr:

ClkDay:

ClkDOW:

ClkMonth:

ClkYear:

ClkTS:

Seconds (0..59)

Minutes (0..59)

Hours (0..23, i.e., military time)

Day (1..31, i.e., day-of-month)

Day-of-week (0..6, i.e., Sunday, Monday, etc.)

Month (1..12)

Year (2000..2063)

Timestamp

Figure 6.1 Clock/Calendarflow diagram.

Clock/Calendar ModuletClkSem III
I
I
I
I
I ...

ClkHr

ClkDay

ClkMin

ClkSec

ClkDOW

ClkMonth

I
I
I
I

I ClkYear I I
'- 1

1
I
1
1
1
I
I
1

-+-1-.

Application
Interface

ClkSetDateTime()
ClkSetTime ()
ClkSetDate ()
ClkFormatTime ()
ClkFormatDate ()

ClkGetTS ()

ClkMakeTS ()
ClkFormatTS ()

OIl ClkTS

The eighth variable (ClkTS) contains the current date and time in timestamp format (described
later).

The date and time counters of the clock/calendar are updated by the task (ClkTask ()), which exe
cutes every second. The date and time counters are considered shared resources, and thus a mutual
exclusion semaphore (ClkSem) must be acquired to access these counters.

ClkTask () calls ClkUpdateTime () to update the hours (ClkHr), minutes (ClkMin), and sec
onds (ClkSec) counters. ClkUpdateTime () returns TRUEwhen the clock rolls over from 23:59:59 to
00:00:00 indicating a new day. The Boolean result is used to determine whether the date-updating func
tion, ClkUpdateDate (), is called or not.

At the completion of a day, ClkUpdateDate () is called to update the month (ClkMonth), day
(ClkDay), year (ClkYear), and day-of-week (ClkDOW) counters. Updating the date is a little bit more
complicated because we need to keep track of the number of days in the current month. The current
day-of-week is obtained by calling ClkUpdateOOw (). The day-of-week is a number between 0 and 6,

194 - Embedded Systems Building Blocks, Second Edition

with 0 representing Sunday. The use of a table (ClkMonthTbl []) greatly simplifies the update of the
days in a month and day-of-week counters.

On a lightly loaded system, the clock module should maintain accurate time. As I explained in
Chapter 2, specifically in Figure 2.27 on page 96, the clock task could slowly lose track of time if all
higher priority tasks (and interrupts) require more processing time than I clock tick. In other words, on a
heavily loaded processor, ClkTask () cannot maintain time accurately the way it is currently imple
mented. There are two ways to fix this problem. The first and simplest way is to make the clock module
task a high priority task. This means that lower priority tasks will not be serviced while the clock task is
executing. In general, you should assign the highest priorities to your most critical task and not the clock
task because it requires a fair amount of processing time. The processor will maintain the time-of-day
correctly as long as the clock task and all high priority tasks can execute in the time between clock ticks.

The second way to fix the problem requires the use ofa counting semaphore, as shown in Figure 6.2. The
number of clock ticks will be "memorized" in the semaphore and thus, the clock task will eventually catch
up when the load of the processor is reduced. The clock tick ISR can signal the counting semaphore every
clock tick or when a whole second has elapsed. I generally prefer to encapsulate these kind of details, and
thus, I wrote a function called ClkSignalClk () that can be called by the clock tick ISR every time a tick
occurs. Note that you need to change OSTickISR (), which is found in the file OS_CPU_A. ASM located in
the \ SOFTWARE \ uCOS-II \ ?? \ compiler\SOURCEdirectory of the port you will use with flC/OS-II (see
www. uCOS- II. com for details on flClOS-II ports). To use the counting semaphore, you will need to set
CLK_USE_DLY to 0 and modify OSTickISR to call ClkSignalClk () . Setting CLK_USE_DLY to 1 tells
the compiler to use OSTimeDlyHMSM () .

Figure 6.2 Clock/Calendarflow diagram.

[E]end

Counting
~ Semaphore

Clock/Calendar ModuleI: t ClkSem

I
: :I-:k~e:--I:
I I I ClkMin I I
I I I~~------I".
I I I ClkHr I I
I I I

+------t-+-I I C1 kDa Y I

I I I ClkDOW I
I I I
: I I ClkMonth I

I ,I I OkYear I
I II '--------

.--1- ClkTS
I
I
I
I

Application
Interface

ClkGetTS ()

ClkMakeTS ()
ClkForma tTS ()

ClkSetDateTime()
ClkSetTime ()
ClkSetDate ()
ClkFormatTime ()
ClkFormatDate ()

A timestamp (data-type TS) packs;a date and time into a 32-bit variable. You can use timestamps to
mark when certain-eventshave.eccurred. "For example, a timestamp can be used to indicate when a tem
perature or pressure was exceeded. You :can also implement alarm clock type functions using times
tamps (described later).

Chapter 6: Time-oj-Day Clock -195

The format of a timestamp is shown in Figure 6.3. Even though I provide you with the fOIIDat, you
should not directly manipulate timestamps in your applications. Instead, you should make use of the
functions provided by this module or add functions to this module. This allows for the format to be
changed at a later time without affecting your code. You should note that the year uses six bits in the
timestamp fOIIDat and can thus represent only 64 years. The timestamp year is the actual year minus
2000. In other words, a year value of 5 represents 2005.

WARNING
In the previous edition of this book, the timestamp was based on 1990 instead of 2000. Ifyou need to
be backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR

back to 1990 which is found at the top of CLK •C.

Figure 6.3 Timestamp format.

B25---B22 B16----B12 B5-------BO
B31------B26 B21----B17 Bll-------B6

I Year IMonth I Day I Hours I Minutes '-S-e-c-on-d-s--'I

L L023 Los9 L
os9

1..31

1..12

0..63
(Actual year - CLK_TS_BAS C YEAR)

The timestamp fOIIDat guarantees that later dates and times have larger values. You can thus easily
compare timestamps for equality, greater-than, less-than, etc. This feature allows you to design an alarm
clock with as many alarm trips as needed.

6.03 Interface Functions
Your application knows about the clock/calendar through the interface functions shown in Figure 6.4.

Figure 6.4 Clock/Calendar module interface functions.

ClkInit ()

ClkSetTirne ()

ClkForrnatTirne I)

clkSetDateTime()

ClkSetDate() ~

ClkForrna tDate ()

ClkGetTS()

ClkMakeTS()

ClkForrnatTS()

Clock/
Calendar
Module

196 - Embedded Systems Building Blocks, Second Edition

ClkFonnatDate ()
void ClkFonnatDate(INT8U n, char *8);

ClkFormatDate () is also provided for display purposes. This function formats the current date into
an ASCII string.

Arguments

n specifies the desired format for the date. ClkFormatDate () currently supports two date formats:
n 1: a condensed date MM-DD-YY
n == 2: full date including:

day 0 f the week (" Sunday" .. "Saturday") ,
month ("January" .. "December"),
day of the month (1. .31) and
year (CLK_TS_BASE_YEAR .. CLK_TS_BASE_YEAR + 63).

The format is: "DayOfWeek Month Day, Year." For example, 11112000 would be displayed as: "Sat
urday January 1, 2000." For maximum flexibility, I implemented this function using a swi tch state
ment. This allows you to easily add code to support your own date formats. For instance, you could
display the date in other languages such as French, Spanish, German, etc.

8 is a pointer to the string that will receive the formatted date. You must thus allocate sufficient space for
your string. The condensed format (n == 1) requires 9 characters while the other format (n == 2)
requires 30 characters (including the NUL character).

Return Value

None

NoteslWarnings

If you are using a preemptive kernel, you should consider making the clock/calendar task priority lower
than the application software that will call ClkFormatTime () and C1kFormatDate (). Try to figure
out what would happen if you were to format the date and time (these are two separate functions) just
before midnight (i.e., 23:59:59)!

Example

void Task (void *pdata)

char s[20]:

for (:;)

ClkForrnatDate(l, s):

Chapter 6: Time-of-Day Clock -197

III

198 - Embedded Systems Building Blocks, Second Edition

ClkFormatTime ()
void ClkFormatTime(INT8U n, char *s);

ClkFormatTirne () is provided for display purposes. This function formats the current time into an
ASCII string.

Arguments

n specifies the desired format for the time. ClkFormatTirne () currently supports two time formats:
n == 1: 24 hour format, "HH:MM:SS"
n == 2: 12 hour with AM/PM indication, "HH:MM:SS AM"

For maximum flexibility, I implemented this function using a switch statement. This allows you to
easily add code to support your own formats.

s is a pointer to the string that will receive the formatted time. You must thus allocate sufficient space
for your string. The 24-hour format requires nine characters while the 12-hour format requires 12 char
acters (including the NUL character).

RetumValue

None

NoteslWarnings

None

Example

void Task (void *pdatal

char 5[20];

for (;;)

ClkFormatTirne(l, 5);

Chapter 6: Time-oj-Day Clock -199

ClkFonnatTS ()
void ClkFonoatTS(INT8U n, TS ts, char *s);

ClkFonnatTS () is provided for display purposes. TIlls function formats a timestamp into an ASCII string.

Arguments

n specifies the desired format for the timestamp. ClkFonnatTS () supports only one timestamp format:
n == 1: "MM-DD-YY HH:MM:SS".

n == 2: "YYYY-MM-DD HH:MM:SS".

The time is in 24-hour format. For maximum flexibility, I also implemented this function using a
switch statement. TIlls allows you to easily add code to support your own timestamp formats.

ts is the timestamp value that you want formatted into an ASCII string.

s is a pointer to the string that will receive the formatted timestamp. You must allocate sufficient space 11I
for your string. The timestamp format (n == 1) requires 18 characters (including the NUL character),
the timestamp requires 21 characters for format If2 (i.e., n == 2).

Return Value

None

NoteslWarnings

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to be
backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR back to
1990 which is found at the top of CLK.C.

Example

void Task (void *pdata)

TS timestamp;

char s [20];

for (;;)

timestamp = ClkGetTS();

ClkFormatTS (1, timestamp, s);

DispStr(O, 0, s);

200 - Embedded Systems Building Blocks, Second Edition

ClkGetTS()
TS ClkGetTS(void);

ClkGetTS () is called by your application to obtain the current date and time in timestamp format.
Recall that a timestamp is a 32-bit variable that contains the date and time in a packed format.

Arguments

None

Return Value

The current date and time in timestamp format.

NoteslWarnings

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to be
backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR back to
1990 which is found at the top of CLK. C.

Example

void Task (void *pdata)

TS timestamp;

for (;;)

timestamp; ClkGetTS();

}

Chapter 6: Time-of-Day Clock - 201

ClkInit()
void ClkInit(void);

Clklni t () is the initialization code for the clock/calendar. Clklni t () must be called before any of
the other functions provided in this module. Clklnit () is responsible for the initialization of the
clock/calendar variables and the creation of the clock/calendar task.

If you choose to have a clock/calendar chip maintain the correct date and time when power is
removed (using a battery), you can use Clklni t () to read the contents of the clock chip and load the
corresponding clock/calendar module variables when power is applied to your unit. Note that pes use
this schemee ,

Arguments

None

ReturnValue

None

NoteslWarnings

None

Example

void main (void)

ClkInit() ;

III

202 - Embedded Systems Building Blocks, Second Edition

ClkMakeTS ()
TS ClkMakeTS(INT8U month, INT8U day, INTl6U year, INT8U hr, INT8U min, INT8U sec);

ClkMakeTS () is called by your application to format a date and time into a timestamp. This function is
useful for comparing timestamps. You would use this function to implement an alarm clock feature.

Arguments"

month specifies the month of the year and must be a number between I and 12.

day corresponds to the day of the month and must be a number between I and 31.

year specifies the year. Here I assume you will specify a number between CLK_TS_BASE_YEAR (see
CLK.C) and CLK_TS_BASE_YEAR+63. Note that the year is limited to hold 64 years because the year is
stored in the timestamp using six bits.

hr specifies the hours and is entered in 24-hour format, i.e., a number between 0 and 23.

min specifies the number of minutes and must be between 0 and 59.

sec specifies the seconds and must also be a number between 0 and 59.

Return Value

The desired date and time in timestamp format,

NoteslWamings

In the previous edition of this book, the timestamp was based on 1990 instead of 2000. If you need to be
backwards compatible with the first edition, you can change the value of CLK_TS_BASE_YEAR back to
1990 which is found at the top of CLK •C.

Example

void Task (void *pdata)

TS alarm;

alarm = ClkMakeTS(12, 31, 1999, 23, 59, 59);

for (;;)

if (ClkGetTS() > alarm) {

DispStr(O, 0, UHappy New Year!");

Chapter 6: Time-of-Day Clock - 203

ClkSetDate ()
void ClkSetDate(INT8U month, INT8U day, INT16U year);

ClkSetDate () is used to set only the calendar portion of the clock/calendar. If you had a clock/calen
dar chip, you could use this function to also set the date of the chip.

Arguments

month specifies the month of the year and must be a number between I and 12.

day corresponds to the day of the month and must be a number between 1 and 31.

year specifies the year. Here I assumed that you will specify a number between CLK_TS_BASE_YEAR

and CLK_TS_BASE_YEAR+63.

Return Value

None

NoteslWarnings

None

Example

void main (void)

ClkSetDate(1, 1, 2000);

II

204 - Embedded Systems Building Blocks, Second Edition

ClkSetDateTime()
void ClkSetDateT:ilIle (INT8U lJIOIlth, INT8U day, INTl6U year,

INT8U hr, INT8U min, INT8U sec);

ClkSetDateTime () is used to set the clock/calendar to the desired date and time. If you had a
clock/calendar chip, you could use this function to also set the date and time of the chip.

Arguments

month specifies the month of the year and must be a number between I and 12.

day corresponds to the day of the month and must be a number between 1 and 31.

year specifies the year. Here I assumed that you will specify a number between CLK_TS_BASE_YEAR

and CLK_TS_BASE_YEAR+63.

hr specifies the hours and is entered in 24-hour format, i.e., a number between 0 and 23.

min specifies the number of minutes and must be between 0 and 59.

sec specifies the seconds and must also be a number between 0 and 59.

Return Value

None

NoteslWarnings

None

Example

void main (void)

ClkSetDateTime(l, 1, 2000, 23, 59, 59);

I~-

Chapter 6: Time-oj-Day Clock - 205

ClkSetTime ()
void ClkSetT:illle (INT8U hr, INT8U min, INT8U sec);

ClkSetTirne () is used to set only the clock portion of the clock/calendar. If you had a clock/calendar
chip, you could use this function to also set the time of the chip.

Arguments

hr specifies the hours and is entered in 24-hour format, i.e., a number between 0 and 23.

min specifies the number of minutes and must be between 0 and 59.

sec specifies the seconds and must also be a number between 0 and 59.

Return Value

None

NotesfWarnings

None

Example

void main (void)

ClkSetTime(23, 59, 59);

II

206 - Embedded Systems Building Blocks, Second Edition

6.04 Clock/Calendar Module, Configuration

All you need to do to use the clock/calendar module in your application is to define the value of five
#define constants (see file CLK.H and also CFG.H), call ClkInit (), and then initialize the current
date and time for the clock/calendar.

CLK_TASK_PRIO defines the priority of ClkTask () in the multitasking environment. The task pri
ority of the clock/calendar module would typically be set relatively low (i.e., a high number under
IlC/OS-II) because clocks and calendars are generally not considered critical.

CLK_DLY_TICKS defines the number of "clock ticks" needed to obtain one second. I tested the code
using an ffiM-PC and the tick rate was set to 200 Hz.

CLK_TASK_STK_SIZE defines the size of the stack allocated to the clock/calendar module task. The
number of bytes allocated for the stack is given by: CLK_TASK_STK_SIZE times sizeof (OS_STK).

WARNING
In the previous edition of this book, CLK_TAS:£CSTK_SIZE specified the size of the stack for
TaskTask () in number of bytes. IlC/OS-1i assumes the stack is specified in stack width ele
ments.

CLK_DATE_ENis used to allow your application to save ROM space by disabling (when set to 0) the
date updating feature of the clock/calendar module.

CLK_TS_EN is used to allow your application to save ROM space by disabling (when set to 0) the
timestamp feature of the clock/calendar module. Note that you need to enable the calendar when you
enable the timestamp capability.

CLK_USE_DLY is used to indicate that the clock/calendar module will use time delays to delay the
clock task every second (when set to 1). The clock/calendar module will be expecting signals from the
tick ISR (through ClkSignalClk ()) when CLK_USE_DLY is set to o.

6.05 Bibliography
Viscogliosi, Roberto R.
"C shortcuts and the day of the week"
PC Magazine, May 11, 1993, p.396,40l, & 406

Latham, Lance
Standard C DatefTime Library; Programming the World's Calendars and Clocks
R&D Books, Lawrence, KS, 1999
ISBN 0-87930-496-0

Listing 6.1

/*

CLK.C

Chapter 6: Time-ofDay Clock - 207

************ **** ***** ******** ***** ***** ************** ******* ** ** **** **** * * * ** * ** *** *
Clock/Calendar

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filename : CLK.C
* Programner : Jean J. Labrosse

*/

/*

INCUJDE FILES

*/

#define CLK GlDBALS
#include "includes. h"

/*

*/

/*

2000

/* CLK.H is informed to allocate storage for globals

/* T:iIre stamps start year

*/

*/

III

******** ** * * * ** * ** * * * * *** * * * * * * * * * * * * * * * * ** * * ** * ** ****** * * * * * * *** *** ** * * * ********* * * * * * * * * ** * * ******** * * *
LCCAL VARIABLES

*/

static OS_EVENT
static OS_EVENT

*ClkSem;
*ClkSEffiSec;

/ * 8erraphore used to access the t iroe of day clock
/* Counting saraphore used to keep track of seconds

*/
*/

static OS_SI'K

static INr8U

/*$PAGE*/

ClkTickCtr; /* Counter used to keep track of system clock ticks */

208 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

f*

CLK.C

I.CX:AL TABLES

***** ****** ** * * * ****** * ** * * ** * * * * * * * ***** * ** * * *** * *********** * * * * ***** * * * ** **** ******* * ******** * *** * * ****
*f

#if CLK_DATE_EN
static char *ClkIX:Wrbl []

"Sunday" ,
"M:mday",
"Tuesday" ,
"Wednesday ",
"Thursday ".
"Friday" ,
"saturday"

static CLK_M:lNI'H ClkMonth'ful []
{D, or.
{31, "January 6),

{28, "February 2).
{31, "March 2).

{3D, "April 5},
{31, "May", D},
{3D, "June", 3},

{31, "July ", 5},

{31, "August ", n.
{3D, "September 4},
{31, "October", 6).
{3D, "Novanber 2).
{31, "December 4}

};

#endif

f*

r- NAME FUR EAOl DAY OF THE WEEK

r- M:NI'HS TABLE

f* Invalid rronth
f* January

f* February (note leap years are handled by code}

f* March
f* April
f* May

f* June

f* July

f* August
f* September
f* October
f* November
f* Decanber

*f

*f
*f
*f
*f
* f

*f
*f
*f
*f
* f
*f
* f
* f
* f

* ********** **** * * * * * * ** * * * *** **** * * * * * * * * * * * * * *** * * * * * * * * *** * * ** * * ** ** * ** * * * * * * * * **** ** * * ******* * ** * * * * * *
I.CX:AL FUN:::TICN PROIOl'YPFS

* f

static

#if
static
static
static
#endif

void
BCOLEAN

CLK_DATE_EN

BCOLEAN

void
void

ClkTask(void *data);
ClkUpdateT:iJne (void) ;

ClkIsLeapYear(INI16U year);
ClkUpdateDate(void);
ClkUpdateIXJtl(void} ;

f*$PAGE*f

Chapter 6: Time-of-Day Clock - 209

Listing 6.1 (continued) CLK.C

/*

FORMAT CURRENI' DATE INro =

(needs at least 9 characters)
(needs at least 30 characters)
(needs at least 11 characters)

The destination string mist, be larges

Forrrats the =ent date into an ASCII string.
n is the forrrat type:

1 will format; the time as "MM-DD-YY"
2 will format; the time as "Day Month DD, YYYY"
3 will format; the time as "YYYY-MM-DD"

is a pointer to the destination string.
enough to hold the forrratted date.
contain

* Deecri.pti.on
* Arguments

***** * ***** * * ***** * * * *** **** ** * ***** * * ***** * * *** * * * * * * ** **** ** ** * **** * ** ** ** **** **** * * **** * * ** * * * * *** * ***
*/

* Returns

* Notes

None.
- A 'switch' statement has teen used to allow yeu to add yeur = date format.s , For

example, you could display the date in French, Spanish, Gerrran etc. by assigning
numbers for those types of conversions.

- This function assumes that strcpy() , strcat () and itoa () are reentrant. III
#if CLK DATE EN
void ClkForrratDate (INr8U n, char *s)

INr8U err;

INrl6U year;
char str[5] ;

OSSernPend (ClkSem, 0, &err);

switch (n) (

case 1:
strcpy(s, "MM-Dl)-YY");

s[O] ClkMonth /10 + '0';
s[l) ClkMonth % 10 + '0';
s[3] ClkDay /10 + '0';
s[4] ClkDay % 10 + '0';
year ClkYear % 100;
s[6] = year / 10 + '0';
s(7] = year % 10 + '0';
break;

/* Gain exclusive access to time-of-day clock

/* Create the template for the selected format;
/* Convert DATE to ASCII

*/

*/
*/

case 2:
strcpy(s, ClkI::CWI'bI[Clkl:X:M]);
strcat (s. ClkMonthTbI [ClkMonth] .McmthName) ;

if (ClkDay < 10) (
str[O] ClkDay + '0';
str[l] = 0;

else {
str[O] ClkDay / 10 + '0';
str[l] ClkDay % 10 + '0';
str[2] 0;

/* Get the day of the week
/* Get name of rronth

*/
*/

}

strcat (s , str);
strcat(s, ", ");
itoa(ClkYear, str, 10);
strcat (s , str);
break;

210 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued) CLK.C

case 3:
strcpy(s, "YYYY-MM-DD");

s[O] = year I 1000 + '0';
year = year % 1000;
s[l] = year I 100 + '0';
year = year % 100;
s[2] = year I 10 + '0';
s[3] = year % 10 + '0';
s[5] = ClkMonth 110 + '0';

s[6] = ClkMonth % 10 + '0';
s[8] = ClkDay 110 + '0';

s[9] = ClkDay % 10 + '0';
break;

default:
strcpy(s, "?");

break;
}

OSSemF\Js t (ClkSem) ;
}

#endif

I*$PAGE*I

1* Create the template for the selected format,

1* Convert DATE to ASCII

1* Release access to clock

*1

*1

*1

Chapter 6: Time-of-Day Clock - 211

Listing 6.1 (continued) CLK.C

/*

FORMAT CURRENl' TIME INI\J S'I'RIN3

* Description

* Arguments

Fonm.ts the current t:iJne into an ASCII string.
n is the format; type:

1 will fonm.t the t:iJne as "HH:MM:SS"

2 will format; the t:iJne as "HH:MM:SS AM"

s is a pointer to the destination string.

enough to hold the fonm.tted t:iJne.
contain

(24 Hour fonm.t)

(needs at least 9 characters)
(With AM/PM indication)

(needs at least 13 characters)
The destination string must be large

* Returns
* N:>tes

None.

- A 'switch' statement has been used to allow you to add your = t:iJne fonm.ts.
- This function assumes that strcpy() is reentrant.

*/

void C1kFonm.tT:iJne (INrBU n, char *s) III
INr8U err;

INr8U hr;

OSSenPend(C1kSan, 0, &err);

switch (n) {

case 1:
strcpy(s, "HH:MM:SS");

s[O] C1kHr /10 + '0';

s[lJ ClkHr %10+ '0';
s[3] ClkMin / 10 + '0';

s(4] C1kMin % 10 + '0';
s[6] C1kSec / 10 + '0';
s[7] ClkSec % 10 + '0';
break;

/* Gain exclusive access to t:iJne-of-day clock

/* create the template for the selected fonm.t
/* Convert TIME to ASCII

*/

*/
*/

case 2:
strcpy(s, "HH:MM:SS AM");

s[9] = (C1kHr >= 12) ? 'P' .. 'A';

if (C1kHr > 12) {

hr = C1kHr - 12;

else
hr ClkHr;

/* Create the template for the selected format;

/* Set AM or PM indicator
/* Adjust t:iJne to be displayed

*/

*/

*/

*// * Convert TIME to ASCII'0' ;

'0' ;

'0' ;

'0' ;
'0' ;

'0' ;

= hr / 10 +

hr % 10 +

ClkMin / 10 +
ClkMin % 10 +
ClkSec / 10 +

ClkSec % 10 +

}

s[O]
s[l]

s[3]
s[4]
s[6]
s[7]

break;

default:
strcpy(s, "?,,);

break;
}

OSSanPost (ClkSan) ; /* Release access to t:iJne-of-day clock */

/*$PAGE*/

212 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

1*

CLK.C

** ** * * ** *** ****** * ** * ** **** * * * * * * * * ** *** * * * ** * * * * * * * * * ** ** * * * *** * ** *** * * * * ** * * * * * * * ** * * * * ** *** * * * ** ** ** **
FORMAT TIME-STAMP

* Description
* Arguments

* Returns
* Notes

This function converts a time-stamp to an ASCII string.
n is the desired fOTIl\3.t number:

1 : "MM-DD-YY HH:MM:SS" (needs at least 18 characters)
2 : "YYYY-MM-DD HH:MM:SS" (needs at least 20 characters)

ts is the time-starrp value to fOTIl\3.t
s is the destination ASCII string
none
- The time starrp is a 32 bit unsigned integer as fo.LLcws :

Field: -------year------ ---M:lnth--- ------Day----- ----Hours----- ---Minutes--- --Seconds-

Bit# : 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- The year is based from CLlCTS_Jll\SE_YFAR. That is, if bits 31. .26 contain 0 it really
means that the year is really CLK_TS_Jll\SE_YFAR. If bits 31 .. 26 contain 13, the year
is CLK_TS_B.'ISE_YFAR + 13.

*1

#if CLK_TS_EN && CLK_Dl'iTE_EN

void c1kFoTIl\3.tTS (=8U n , TS t.s , char os)
{

=16U yr;

=00 m::mth;
=00 day;

=00 hr;
=aU min;
=00 sec;

yr CLJ<-TS_B.'ISE_YFAR + (ts » 26) ;
rronth (ts 22) & OxOF;
day (ts » 17) & OxlF;
hr (ts » 12) & OxlF;
min (ts 6) & Ox3F;
sec {ts & Ox3F);
switch (n) {

case 1:
strcpy(s, "MM-DD-YY HH:MM:SS");
yr = yr % 100;
s[0] = month I 10 + '0';
s[1] = rronth % 10 + '0';
s [3] = day I 10 + .0' ;

s [4 J = day % 10 + '0';
s [6] = yr I 10 + '0';
s [7] = yr % 10 + '0';
s [9 J = hr I 10 + '0';
s[10] = hr % 10 + '0';
s[12J = min 110 + '0';
s[13] = min % 10 + '0';
s[15] sec I 10 + '0';
s[16J sec % 10 + '0';
break;

1* Unpack time-stamp

1* Create the terrp1ate for the selected fOTIl\3.t

I * Convert DATE to ASCII

1* Convert TIME to ASCII

*1

*1

*1

*1

Listing 6.1 (continued) CLK.C

Chapter 6: Time-of-Day Clock - 213

case 2:
strcpy(s, "YYY¥-MM-DD HH:MM:SS"};
s(0] = yr /1000 + '0';
yr = yr % 1000;
s(1] = yr / 100 + '0';
yr = yr % 100;
s (2] = yr / 10 + '0';
s[3] = yr % 10 + '0';
s[5J = month /10 + '0';
s[6] = month % 10 + '0';
s[8J = day /10 + '0';
s [9] = day % 10 + '0';
s[l1) = hr /10 + '0';
s[12) = hr % 10 + '0';
s[14] = min /10 + '0';
s[15) = min % 10 + '0';
s[17] = sec /10+ '0';
s[18] = sec % 10 + '0';
break;

default:
strcpy(s, "7");
break;

}

#endif

/*$PAGE*/

/* create the template for the selected format
/ * Convert DA'IE to ASCII

/* Convert TIME to ASCII

*/
*/

*/

III

214 -Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

1*

CLK.C

GEl' TIME-srAMP

* Description This function is used to return a t:ilne-stamp to your application. The fornat of the
t:ilne-starrp is shown below:

Field: -------year------ ---Month--- ------Day----- ----Hours----- ---Minutes--- --Seconds-

Bit# 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

* Arguments
* Returns
* Notes

None.

None.
The year is based from CL!CTS_BASE_YElIR.
means that the year is CLK_TS_BASE_YElIR.
CLK_TS_BllSE_YElIR + 13.

That is, if bits 31. .26 contain 0 it really
If bits 31. .26 contain 13, the year is

*1

#if CLK_TS_EN && CLK_DATE_EN
TS ClkGetTS (void)
{

TS ts;

OS_ENI'ER_CRITlCAL () ;

ts = ClkTS;
OS_EXIT_CRITlCAL () ;

return (ts);
}

#endif

I*$PAGE*I

Listing 6.1 (continued)

/*

CLK.C

Chapter 6: Time-of-Day Clock - 215

TIME MJIXJLE =TIALlZATICN

TIME--{)F-DAY CI.CCK =TIALlZATICN

* Description

* Arguments

* Returns

This function initializes the time rrodule. The time of day clock task will be created
by this function.

None

None.

*/

void ClkInit (void)

1;
1;

1999;

OSSenCreate (1);

OSSenCreate(O) ;
0,
0;
0;

0;

ClkSen
ClkSem5ec

ClkTickCtr
ClkSec
ClkMin

ClkHr
#if CLK_lJATE_EN

ClkDay

ClkMonth
ClkYea.r

#endif
#if CLK_TS_EN && CLK_lJATE_EN

ClkTS = ClkM3keTS(C1J<M:mth,
#endif

asraskCreate(ClkTask, (void *)0,

/*$PAGE*/

/* Create time of day clock semaphore * /

/ * Create counting semaphore to signal the occurrence of 1 sec. */

ClJ<:Day, ClkYea.r, ClkHr, ClkMin, Cll<Sec);

II

216 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

1*

CLK.C

DEI'ERMINE IF WE HAVE A LEAP YEAR

* rescription
* Arguments
* Returns

This
year
TRUE

FALSE

function deterrrrines whether the 'year'
is the year to check for leap year,
if 'year' is a leap year,
if 'year' is NOT a leap year.

passed as an argument is a leap year.

*1
#if CLlCDATE_EN

static BCOLEIIN ClkIsLeapYear(INI'16U year)

if (! (year % 4) && (year % 100) I I ! (year % 400» {
return TRUE;

else {
return (FALSE);

}

#endif

I*$PAGE*I

Listing 6.1 (continued)

1*

CLK.C

Chapter 6: Time-oj-Day Clock - 217

MAKE TIME-srAMP

Field: -------year------ ---Month--- ------Il3.y----- ----Hours----- ---Minutes--- --Seconds-

Bit# : 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

- The year is based fran CLK_TS_BASE_YEl\R. That is, if bits 31. .26 contain 0 it really
rreans that the year is really CLK_TS_BllSE_YEl\R. If bits 31. .26 contain 13, the year is
CLK_TS_BI\SE_YEI\R + 13.

* n=scription

* Argurrents

* Returns
* Notes

'This function naps a user specified date and time into a 32 bit variable called a
time-stanp.
rronth is the desired rronth (1 .. 12)
day is the desired day (1. .31)
year is the desired year (CLK_TS_BASE_YEl\R .. CLK_TS_BASE_YEl\R+63)
hr is the desired hour (0 .. 23)
min is the desired minutes (0 .. 59)
sec is the desired seconds (0 .• 59)
A time-starrp based on the argurrents passed to the funct.i.on,
- The time starrp is forrratted as follows using a 32 bit unsigned integer:

III

*1

#if CLK_TS_EN && CLK_DATE_EN
TS ClkMakeTS (INl'BU rronth, INl'OO day, INl'16U yr, INrOO hr, INl'BU min, INl'BU sec)
{

TS ts;

yr CLK_TS_BI\SE_YEl\R;
ts «INl'32U)yr « 26)
ts 1= «INr32U)hr« 12)
return (ts);

)

#endif

I*$PAGE*I

((INl'32U)rronth « 22)
((INr32U)min « 6)

«INl'32U)day« 17);
(INr32U) sec;

218 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

1*

CLK.C

SEI' DATE ONLY

* Cescription
* Arguments

* Returns

* Notes

Set the date of the time-of-day clock
rronth is the desired rronth (1. .12)
day is the desired day (1. .31)
year is the desired year (CLlCTS_BllSE_YEllR .. CLK_TS_BllSE_YEllR+63)

None.
It is assumed that you are specifying a correct date (i.e. there is no range checking
done by this function).

*1

#if CLK DATE EN
void ClkSetDate IINT8U month, INT8U day, INT16U year)

INT8U errr

OSSanPendlClkSern, 0, &e=);

ClkMonth = rronth;
ClkDay = day;
ClkYear = year;
ClkUpdaterx:w ();
OSSemPost(ClkSern);

)

#endif

I*$PAGE*I

1* Gain exclusive access to time-of-day clock

1* Canpute the day of the week (i.e. Sunday ...)
1* Release access to time-of-day clock

*I

*I
*1

Listing 6.1 (continued)

/*

CLK.C

Chapter 6: Time-oj-Day Clock - 219

SET DATE AND TIME

*/

#if CLlCDATE_EN

void C1kSetD3.teTime (=8U nontn. =8U day, =16U year, =8U hr, =8U min, =8U sec)

* rescription
* Argurrents

* Returns

* Notes

Set the date and time of the time-of-day clock
rronth is the desired rronth (1. .12)
day is the desired day (1. .31)
year is the desired year (2xxx)
hr is the desired hour (0 .. 23)
min is the desired minutes (0 .. 59)

sec is the desired seconds (0 .. 59)

None.
It is assurred that you are specifying a correct date and time (i.e. there is no range
checking done by this function).

II
=8U err;

OSSernPend(C1kSen, 0, &err);

C1J<l.bnth = rronth;
C1kI:13.y = day;
C1kYear = year;
C1kHr = hr;

C1kMin = min;
C1kSec = sec;
C1kUpdateIXW () ;
OSSernPost (C1kSen) ;

}

#endif

/*$PAGE* /

/* Gain exclusive access to time-of-day clock

/* Cc:npute the day of the week (i.e. Sunday ...)
/* Release access to time-of-day clock

*/

*/
*/

220 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

/*

CLK.C

SET TIME CNLY

* Description Set the time-of-day clock
* Arguments hr is the desired hour (0 .. 23)

min is the desired minutes (0 •. 59)

sec is the desired seconds (0 .. 59)

* Returns

* Notes

None.
It is assumed that you are specifying a correct time (i.e. there is no range checking
done by this function) .

*/

void ClkSetTime (INr8U hr, INr8U min, INr8U sec)

OS_ENI'EFCCRITICAL () ;

ClkHr =hr;

ClkMin = min;
ClkSec = sec;
OS_EXIT_CRITICAL () ;

/*$PAGE*/

/*

/* Gain exclusive access to time-of-day clock

/* Release access to time-of-day clock

*/

*/

* Description

* Arguments
* Returns
* Note(s)

SIGNAL CLCCK M)IXJLE THAT A 'CLCCK TICK' HAS cx::cuRRED

This function is called by the 'clock tick' ISR on every tick. This function is thus
responsible for counting the number of clock ticks per second. When a second elapses,
this function will signal the time-af-day clock task.
None.
None.
CLK_DLY_TICKS must be set to the number of ticks to produce 1 second.
This would typically correspond to OS_TICKS_PER_SEl: if you use uC/OS-II.

**** *** * * * ** * * ** * * * ** * * * * * * * ** *** *** * * ** ** * * * * * * **** * * * * * * ** ****** *** * ** * * ** * ********* ** ** *** ***** * * * * * * *
*/

void ClkSignalClk (void)

ClkTickCtr++ ;
if (ClkTickCtr >= CLK_DLY_TICKS)

ClkTickCtr = 0;
OSSemPost(ClkSemSec);

/* count the number of 'clock ticks' for one second

/* Signal that one second elapsed

*/

*/

Listing 6.1 (continued)

f*

CLK.C

Chapter 6: Time-of-Day Clock - 221

TIME-OF-IlI\.Y CLCXJ< TASK

* Description This task is created by ClkInit() and is responsible for updating the tirre and date.
ClkTask() executes every second.

* Arguroonts

* Returns
* Notes

None.
None.
CLK_DLY_TIO<S must be set to produce 1 second delays.

*f

void ClkTask (void *data)

rnrsu err;

data = data;
for (;;) {

#if CLiCUSE_DLY
OSTirreDlyHMSM(O, 0, 1, 0);

#else
OSSernPend(ClkSEmSec, 0, &err);

#endif

OSSemPend(ClkSern, 0, &err);

if (ClkUpdateTirre () == '!RUE)
#if CLiCIlI\.TE_EN

ClkUpdateDate() ;
#endif

f* Avoid carpiler warning (uC/OS requirement)

f* Delay for one second

f* Wait for one second to elapse

f* Gain exclusive access to tirre-of-day clock
f* Update the TIME (i.e. HH:MM:SS)

f* And date if a new day (Le. MM-DD-YY)

*f

*f

*f

*f
*f

*f

III

}

#if CLK_TS_EN && CLiCIlI\.TE_EN
ClkTS = ClkMakeTS(ClkMonth, ClkDay, ClkYear, ClkHr, ClkMin, ClkSec);

#endif

OSSernPost (ClkSern) ;

f*$PJ\GE*f

f* Release access to time-of-day clock *f

222 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

/*

CLK.C

**** ******** ** ** **** ****** ***** **** ***** * * * * **** *** * * * ** *** * * * * * ** * ****** * ****** ***** * * ***** ** *** * * * ** ** *
UPDATE THE DATE

* I::.lE:=scription

* Argurrents
* Returns

* Notes

'This function is called to update the date (i.e. rronth, day and year)
None.
None.
'This function updates ClkDay, ClkMonth, ClkYear and ClkIXW.

*/

#if CLK_DATE_EN
static void ClkUpdateDate (void)
{

BXlLEAN n""""",nth;

n""""",nth = TRUE;
if (ClkDay >= ClkMonth1bl [ClkMonthj .M:mthI:l3.ys)

if (ClkMonth == 2) {
if (ClkIsLeapYear(ClkYear) == TRUE) {

if (ClkDay >= 29) {
ClkDay = 1;

else {
ClkDay++;
n""""",nth = FAlSE;

else {
ClkDay 1;

else {
ClkDay 1;

else {
ClkDay++;
n""""",nth FAlSE;

/* Last day of the month>
/* Is this February?
/* Yes, Is this a leap year?
/* Yes, Last day in february?
/* Yes, set to 1st day in March

*/
*/
*/
*/
*/

}

if (n""""",nth == TRUE) {

if (ClkMonth >= 12)

ClkMonth = 1;
ClkYear++;

else {
ClkMonth++ ;

}

ClkUpdate!Xl'l () ;
}

#endif

/*$PNlE*/

/* See if we have completed a rronth
/* Yes, Is this december?
/* Yes, set rronth to january...
/* ...we have a new year!

/* No, increment the rronth

/* Compute the day of the week {i.e. Sunday ...)

*/
*/
*/

*/

*/

*/

Listing 6.1 (continued)

1*

CLK.C

Chapter 6: Time-of-Day Clock - 223

CCMPUI'E DAY-OF-WEEK

* I::Escription

* Arguments

* Returns

* Notes

'Ibis function carrputes the day of the week (0
day and year.

None.
None.

- 'Ibis function updates ClkIXW.
- 'Ibis function is called by ClkUpdateDate I) .

SUnday) based on the current rronth,

*1
#if CLK_DATE_EN

static void ClkUpdater:cw (void)
{

dow = ClkD3y + ClkMonth'Ibl [ClkMonth] .MonthVal;

if IClkMonth < 3) {

if IClkIsLeapYear(ClkYear))
dow--;

}

dow += ClkYear + IClkYear I 4);
dow += (ClkYear I 400) - (ClkYear lIDO);
dow %= 7;
ClkIXW = dow;

}

#endif

I*$PAGE*I

II

224 - Embedded Systems Building Blocks, Second Edition

Listing 6.1 (continued)

/*

CLK.C

**** ************ ** ** *** **** * * * * * * * ****** *** * ** ** **** ** ** **** * *** * * * * ** ** ** * * * * * * * *** ******* *** * ****** * * * *
UPDATE THE TIME

* Description
* Arguments
* Returns

* Notes

*/

This function is called to update the ti.rre (Le. hours, minutes and seconds)
None.
TRUE if we have completed one day.
FAlSE otherwise
This function updates ClkSec, Cll<Min and ClkHr.

static B:X>LEAN ClkUpdateTi.rre (void)

B:X>LEAN newday:

newday = FAlSE;

if (ClkSec >= 59)

ClkSec = 0;
if (Cll<Min >= 59)

Cll<Min = 0;
if (ClkHr >= 23)

ClkHr = 0;
newday = TRUE;

else {
clkHr++j

/* Assume that we haven't completed one whole day yet
/* See if we have completed one minute yet
/* Yes, clear seconds
/* See if we have completed one hour yet
/* Yes, clear minutes
/* See if we have completed one day yet
/* Yes, clear hours .,.
/* change flag to indicate we have a new day

/* No, increment hours

*/
*/
*/
*/

*/
*/
*/
*/

*/

else
ClkMin++j /* No, increment minutes */

else
ClkSec++;

}

return (newday}:

/* No, increment seconds */

Listing 6.2

/*

CLK.H

Chapter 6: Time-oj-Day Clock - 225

Clock/Calendar

(c) Copyright 1999. Jean J. Labrosse. Weston, FL
All Rights Reserved

* Filename : CLK.H
* Prograrnrer : Jean J. Labrosse

*/

/*

************** ******* ** * * * * ***** * * * * *** * ** * * ****** * * * * ***** * * * **** * * * ** ****** * * ***** * * * ***** * * * ** * * * * * * * *
*/

#define CLK_DLY_TICKS
second */
#define CLK TASK FRIO

ClkTask() */

#define CLK_TASK_STK_SIZE
ClkTask()

#define CLK_IlI\.TEJN
*/

*/
#define CLK USE DLY
instead of pend on san. */

#endif

*/

OS_TICKS_PER_SEC /* # of clock ticks to obtain 1

50 /* This defines the priority of

512 /* Stack size in BYTEs for

1 /* Enable IlI\.TE (when 1)

1 /* Enable TIME-STAMPS (when 1)

1 /* Task will use OSTirneDly()

III

#ifdef
#define
#else
#define
#endif

CLK....EXT extern

226 - Embedded Systems Building Blocks, Second Edition

Listing 6.2 (continued)

/*

CLK.H

DATA TYPES

*/

cypedef INT32U TS;

*/

#if CLI<-DA'IE_EN
typedef struct clk_rronth

*/

INT8U M:mt:hD3.ys;

*/
char *M'lTIthNaIre;

*/
INT8U M:mthVal;

*/
} CLI<-M:NI'H;
#endif

/*

/* Definition of Time Stamp

/* M:NI'H RELATED VARIABLES

/* Nuniber of days in each rronth

/* Name of the rronth

/* Value used to compute day of the week

GIDBIIL VARIABLES

*/

ClkHr;

ClkMin;
ClkSec;

*/

#if CLlUlA'IE_EN

CLI<-EXT INTBU ClkLay;

*/
CLK_EXT INTBU ClkIXW;

*/
CLK_EXT INTBU ClkM::lTIth;
CLK_EXT INT16U ClkYear;

#endif

#if CLK_TS_EN
CLK_EXT TS Clk1'8;

*/
#endif

/* Counters for local TIME

/* Counters for local DA'IE

/* Day of week (0 is SUnday)

/* Current TIME-STAMP

Listing 6.2 (continued)

/*

CLK.H

Chapter 6: Time-of-Day Clock - 227

F'UN;:TI(N PROIOI'YPES

*/

void ClkInit(void);

void ClkFonratTiJre(rnr8U n, char *s);
void ClkSetTime(rnr8U hr, rnr8U min, rnr8U sec);

void ClkSignalClk(void);

#if CLlCDATE_EN

void ClkFonratDate(rnr8U n, char *s);
void ClkSetDate(rnr8U rronth, rnr8U clay, rnrl6U year);
void ClkSetDateTime(rnr8U rronth, rnr8U clay, rnr16U year, rnr8U hr, rnr8U min,
nersu sec);
#endif

#if
TS
TS
sec) ;
void
#endif

CLlCTS_EN

Clk.GetTS (void) ;
ClkMakeTS(rnr8U rrontn, nersn clay, rnrl6U year, nrrsu hr. rnroo min, nersu

ClkFonratTS (rnroo n, TS ts, char *s);

228 - Embedded Systems Building Blocks, Second Edition

Chapter 7

Timer Manager
Timers are useful in situations where you start an operation, wait a certain amount of time, and then stop
the operation. Usually the process looks like this:

1. Start an operation (tum on or tum off an output device).

2. Start the timer.

3. When the timer expires, stop the operation (tum OFF or tum ON the output device).

You can also use timers to detect timeout conditions. For example, you tum on a motor and then start
a timer. Here, you are expecting the speed of the motor (i.e., RPM) to increase. If the speed of the motor
doesn't exceed a threshold before the timer times out, then you might tum the motor off and notify an
operator. In these cases, you start an operation then monitor the process to see if conditions are met
before the timer expires:

1. Start an operation.

2. Start the timer.

3. Monitor for desired conditions. If conditions are met, stop the timer.

4. If timer times out, stop the operation and notify operator.

In this chapter, I will describe how I implemented a countdown timer module. The countdown timer
module provides your application with as many countdown timers as your application requires (up to
250). Each countdown timer has a resolution of 0.1 second and can be programmed to expire after 99
minutes, 59 seconds and 0.9 seconds. Each countdown timer can be individually started, stopped, set,
reset, and checked. Also a user-defined function can be executed when a countdown timer expires (one
for each timer).

7.00 Timer Manager Module
The source code for the timer manager module is in the \ SOFTWARE\ BLOCKS \ TMR\SOURCE directory.
The source code consist of two files: TMR.C (Listing 7.1) and TMR.H (Listing 7.2). All timer manager

229

230 - Embedded Systems Building Blocks, Second Edition

functions and variables related to this module start with Trnr while all #def ine constants start with
TMR_.

7.01 Timer Manager Moduler, Internals
Figure 7.1 shows the flow diagram of the timer manager module. Here, I assume the presence of a
real-time kernel. This module consists of a single task that executes every tenth of a second. The timer
manager task (TmrTask ()) is responsible for updating as many countdown timers as your application
requires (defined by TMR_MAX_TMR in TMR.H). You can have up to 250 timers.

Figure 7.1 Timer manager module flow diagram.

Application
Interface

Timer Manager
TMR TmrTbl [1

TmrInit ()

TmrSetFnct ()
TmrSetT()
TmrSetMST ()

TmrStart()
TmrStop()
TmrReset()

[0]
t--+-+--+-+---1

[1] f--I--f--I--+---I

[2] f--I-+-+--+-l
[3]

t--+-+--+-+---1
[4] I----'--"---,---L-----'---l

I TMR DLY TICKS
(1/10 second)

TmrFormat ()

Note: 'n' is TMR_MAX_TMR

The timer manager is designed around the TMR data structure (TMR •H) which is declared as follows:

typedef structillMR{

BOOLEAN!l.'InJ'jEni

INT16U 'I'Inr'Otr:i

INT16U '!l'rnrJ:ni t i

void (*'I'mrFnct) ,(:V:0id *) i

vo,id "*r:Em:tFnctArg i

} TMRi

~--

Chapter 7: Timer Manager - 231

. TrnrEn is used to enable and disable the countdown process. Countdown occurs when . TrnrEn is
set to TRUEby TrnrStart () . Countdown is suspended when. TrnrEn is set to FALSE by TrnrStop () .

When the timer is enabled, TrnrTask () decrements .TrnrCtr towards o. When . TrnrCtr reaches 0,
countdown stops. . TrnrCtr is loaded when either TrnrSetT (), TrnrSetMST (), or TrnrReset () is
called.

The initial value of TrnrCtr is stored in . Trnrlni t .. Trnrlni t is changed by either TrnrSetT () or
TmrSetMST () .

. TmrFnct is a pointer to a user-defined function that TmrTask () executes whenever its corre
sponding .TmrCtr reaches O. The called function is passed . TmrFnctArg (a pointer) as an argument.
Both. TmrFnct and . TmrFnctArg are set by TrnrCfgFnct () (described later). You must define your
timeout function as follows:

void UserFnct(void *arg):

Note that UserFnct () is passed .TmrFnctArg when it is called. This allows you to design a sin
gle function that can be used by more than one timer. The user-defined function will be called by the
timer task (TmrTask ()) when the timer expires. The execution time of the timer task is thus increased
by the execution time of all the functions that will execute when their respective timers expire. You may
defer processing of the timeout to another task because the function that executes when the timer _=_.
expires can signal another task through a semaphore, a mailbox, or even a message queue, as shown: _

void UserFnct(void *arg)

OSSemPost((OS_EVENT *)arg);

If you are using ~C/OS-II, the argument passed to the user function (in this example) is a pointer to
the semaphore.

Some applications do not require the execution of a function upon timeout. In these situations, you
will not have to set the pointer because its initial value is NULL. In other words, the timer manager will
not execute any function when pointing to NULL.

When the timer manager task executes, it scans all entries in TmrTbl [] for enabled timers. For each
timer that has been enabled, TrnrTask () decrements 'IInrTbl [i] . TmrCtr towards O. If the timer
reaches 0, the user-defined function (if specified) is executed.

On a lightly-loaded system, the timer manager module should maintain accurate time. As I
explained in Chapter 2, specifically Figure 2.27 on page 96, the timer manager task could miss clock
ticks if all higher-priority tasks (and interrupts) require more processing time than one clock tick. In
other words, on a heavily loaded processor, TrnrTask () cannot maintain track of time accurately the
way it is currently implemented. This is the same problem as with the time-of-day clock described in
Chapter 6. Unlike the clock task, however, there is really only one correct way to fix this problem. You
really don't want to increase the priority of the timer manager task because its processing time does not
depend only on the number of timers it has to manage. Instead, the execution time of the timer manager
task depends on the execution time of the functions that will be executed when each timer expires. To fix
this problem, you need to use a counting semaphore, as shown in Figure 7.2.

232 - Embedded Systems Building Blocks, Second Edition

Figure 7.2 Timer manager module flow diagram.

~
end

Countingr- Semaphore

Timer Manager

TMR TmrTbl []

[0] f--t--+-+--+---1
(l] f--t--+-+--+---1
[2] r--f--f--t-t------ir----. I

[3] t--t--+-+-+----i
[4] j---'--'-;-'---J'----I

Application
Interface

TmrSetFnct ()
TmrSetT()
TmrSetMST()~--~~

[n-l] '--:-'--:-'--:-'--:-'--7-'

TmrStart ()
TmrStop ()
TmrReset ()

TmrChk()
TmrFormat ()

Tmrlnit ()

The number of clock ticks will be "memorized" in the semaphore, and thus the timer manager task will
eventually catch up when the load of the processor is reduced. The clock tick ISR can signal the counting
semaphore every clock tick or when 0.1 second has elapsed. I generally prefer to encapsulate the details,
so I wrote a function called TmrSignalTmr () , which can be called by the clock tick ISR every time a
tick occurs. Note that you need to change OSTickISR (), which is found in the file OS_CPU_A.ASM
located in the \SOF'IWARE\uCOS-II\ ??\compiler\SOURCE directory of the port you will use with
~C/os-n (see www. uCOS-II. com for details on ~c/os-n ports). To use the counting semaphore, you
will need to set TMR_USE_SEMto 1 and modify OSTickISR () to call TmrSignalTmr () .' .

If you need to manage a large number of timers then you might consider changing the implementa
tion of the module provided in this chapter to a delta list. A delta list would maintain a linked list of only
the enabled timers. The list would be ordered so that the timer with the least amount of time to timeout
is first. TmrTask () would decrement the first entry in the list without scanning the list because the
remaining delays are relative to it. For example, if you had five enabled timers with values of 10, 14,21,
32 then, the list would contain 10, 4, 7, 11, and 7. The total time before the first timer would expire is
10, the second is 10+4, the third is 10+4+7, the fourth is 10+4+7+11, and finally, the fifth timer would
be 10+4+7+11+7. The use of a delta list is really only justified when you need many timers. One of the
drawbacks of the delta list is that you need one (for a singly-linked list) or two pointers (for a dou
bly-linked list). You can find a more complete discussion on delta lists in the excellent book by Douglas
Comer, Operating System Design, The XINU approach.

Chapter 7: Timer Manager - 233

7.02 Timer Manager Module, Interface Functions
Your application software interfaces with the timer manager through interface functions as shown in
Figure 7.3.

Figure 7.3 Timer manager module interface functions.

Tmrlnit ()

TmrCfgFnct ()
TmrSetT ()
TmrSetMST ()

TmrStart ()
TmrStop ()
TmrReset ()
TmrChk()
TmrForma t ()

Timer
Manager

-

--

234 - Embedded Systems Building Blocks, Second Edition

TmrCfgFnct ()
void TmrCfgFnct(INT8U n, void (*pfnct) (void*), void *arg);

Each timer can execute a user-defined function when it expires. In order to use this feature, you must
specify the address of the function to execute when the timer expires. This is accomplished by calling
TrnrCfgFnet () .

The execution time of the timer task is augmented by the execution time of all the functions that will
execute when their respective timers expire. Some applications do not require the execution of a func
tion upon timeout. In these situations, there is no need to call TrnrCfgFnet () because the initial value
of the pointer to a function for each timer is NULL. In other words, the timer manager will not execute
any function when pfnet is a NULL pointer.

Arguments

n is the timer number to set and must be a number between 0 and TMR_MAX_TMR - 1.

pfnct is a pointer to the function that you would like to execute when the timer expires. You must
define this function as follows:

void UserFnct(void *arg);

Note that UserFnet () is called with the argument you specify in TrnrCfgFnet () , that is, argo

This allows you to design a single function that can be used by more than one timer. The
user-defined function will be called by the timer task TrnrTask () when the timer expires.

Return Value

None

NoteslWarnings

UserFnet () is called with interrupts enabled and you thus need to protect any shared objects.

Chapter 7: Timer Manager - 235

Example

void main (void)

TmrCfgFnct(O, TmrOTimeoutFnct, (void *)0);

TmrSetMST(O, 1, 0, 0);

TmrStart(O);

/* Set timer #0 to expire in 1 minute */

/* Start timer #0 */

void TmrOTirneoutFnct (void *arg)

DispStr(O, 0, "Timer #0 expired!");

-

--

236 - Embedded Systems Building Blocks, Second Edition

'ImrChk()
INTl6U '1'mrChk(INT8U n);

TrnrChk () allows you to check the progress of the countdown timer. Basically, the function returns the
time remaining (in tenths of a second) until the timer expires. The timer expired if the returned value is
o.

Arguments

n is the timer number to start and must be a number between 0 and TMR_MAX_TMR - 1.

Return Value

The time remaining (in tenths of a second) of the desired timer.

NoteslWarnings

This function doesn't tell you whether the timer is running or not.

Example

void Task (void)

INT16U time_remaining;

for (;;)

time_remaining = TrnrChk(O); /* Get time left for timer #0 */

•

Chapter 7: Timer Manager - 237

'lmrFonnat ()
void TmrFonnat(INT8U n, char *8);

TmrFormat () is provided for display purposes. This function formats the time remaining of the speci
fied timer into an ASCn string. Timers are always formatted as follows: MM: SS . T where MM is the
remaining minutes to timeout, SS is the remaining seconds, and T is the tenths of a second.

Arguments

n is the timer number to format into an ASCII string and must be a number between 0 and
TMR_MAX_TMR - 1.

s is a pointer to the string that will receive the formatted timer. Your destination string must allocate at
least eight characters (including the NUL character).

Return Value

None

NoteslWarnings

None

Example

void Task (void)

char s[10];

for (;;)

TmrFormat(O, &s[O]); /* Get time left for timer #0 as MMM:SS.T U */

--

238 - Embedded Systems Building Blocks, Second Edition

TmrInit()
void 'l'mrlnit (void) ;

TmrIni t () is the initialization code for the timer manager module. You must call TmrIni t () before
any other functions provided by this module. TmrIni t () is responsible for the initialization of the
timer module variables and the creation of the timer manager task.

Arguments

None

Return Value

None

NoteslWarnings

The #define TMR_MAX_TMR (see section 7.03, "Timer Manager Module, Configuration" on page 244)
defines the number of timers managed by this module. All timers are disabled and in a non-configured
state following initialization.

Example

void main (void)

Trnrlni t () ;

Chapter 7: Timer Manager - 239

TmrReset()
void ~Reset(INT8Un);

You can restart the countdown process to its initial value (established by either TmrSetT () or
TmrSetMST ()) by calling TmrReset (). This is a convenient function to use if you don't need to
reprogram the timer with a new value every time you need to use the timer.

Arguments

n is the timer number to start and must be a number between 0 and TMR_MAX_TMR - 1.

Return Value

None

NoteslWarnings

None

Example

void Task (void).

for (;;)

TmrReset(O) ; j* Reload timer #0 */

240 - Embedded Systems Building Blocks, Second Edition

TmrSetMST ()
void TmrSetMST (INT8U n , INT8U min, INT8U sec I INT8U tenths) i

This function allows you to set a timer by specifying minutes, seconds, and tenths of a second.

Arguments

n is the timer number to set and must be a number between 0 and TMR_MAX_TMR - 1.

min is the desired number of minutes (0..99).

sec is the desired number of seconds (0..59).

tenths is the desired number of tenths of a second (0..9).

Return Value

None

NoteslWarnings

Note that changing the timer value does not enable the timer. This means that setting the timer value
does not initiate countdown. Countdown is initiated by calling TrnrStart (). If the timer is enabled,
however, TrnrSetMST () will reload the timer and countdown will start from the new value.

Example

void Task (void)

for (;;)

TmrSetMST(O, 0, 15, 0); /* Reset timer #0 to 15 seconds */

Chapter 7: Timer Manager - 241

TmrSetT()
void TmrSetT(INT8U n, INT16U tenths);

This function allows you to set a timer in tenths of a second.

Arguments

n is the timer number to set and must be a number between 0 and TMR_MAX_TMR - 1.

tenths is the desired timeout value of the timer and is specified in tenths of a second. For example, to
set a timer to 27.4 seconds, you would specify 274.

Return Value

None

NoteslWarnings

Note that changing the timer value does not enable the timer. This means that setting the timer value
does not initiate countdown. Countdown is initiated by calling TmrStart (). If the timer is enabled,
however, TmrSetT () will reload the timer and countdown will start from the new value.

Example

void Task (void)

for (;;)

TmrSetT(O, 150); /* Reset timer #0 to 15 seconds */

242 - Embedded Systems Building Blocks, Second Edition

TmrStart()
void TmrStart(INT8U n);

Countdown of a timer is initiated only when you call TrnrStart (). You should set the countdown time
prior to calling TrnrStart () with either TrnrSetT () or TrnrSetMST () .

Arguments

n is the timer number to start and must be a number between 0 and TMR_MAX_TMR - 1.

Return Value

None

NoteslWarnings

TrnrStart () will resume countdown of a timer that has been suspended by TrnrStop ().

Example

void Task (void)

for (;;)

TrnrSetT(O, ISO};

TrnrStart (O) ;

/* Reset timer #0 to 15 seconds */

/* Start timer #0 */

Chapter 7: Timer Manager - 243

TmrStop()
void TmrStop (INT8U n);

Countdown of a timer can be suspended by calling TmrStop (). You can later resume countdown by
calling TmrS tart () .

Arguments

n is the timer number to start and must be a number between 0 and TMR_MAX_TMR - 1.

Return Value

None

NoteslWarnings

TmrStop () doesn't reset the timer value, it simply suspends it.

Example

void Task (void)

for (;;)

--
TmrStop(O) ; /* Stop (i.e suspend) timer #0 */

244 - Embedded Systems Building Blocks, Second Edition

7.03 Timer Manager Module, Configuration
Configuration of the timer manager consists of defining the value of four #define constants (see file
TMR. H and also, CFG. H).

TMR_TASK_PRIO defines the priority of TmrTask () in the multitasking environment. The task pri
ority of the timer manager module would typically be set relatively low.

TMR_DLY_TICKS defines the number of clock ticks needed to obtain 0.1 second. If you use
IlC/OS-II, you can set this #define constant to OS_TICKS_PER_SEC / 10.

TMR_TASK_STK_SIZE defines the size of the stack (in bus width units) allocated to the timer man
ager module task. The number of bytes allocated for the stack is thus given by: TMR_TASK_STK_SIZE

times sizeof (OS_STK).

WARNING
In the previous edition of this book, TMR_TASK_STK_SIZE specified the size of the stack for
TmrTask () in number of bytes. IlC/OS-II assumes the stack is specified in stack width elements.

TMR_MAX_TMR defines the number of timers managed by TmrTask () . If you use this module, you
will need to have at least one timer. The timer manager can manage up to 250 timers. The limitation is
strictly dictated by the amount of memory available and by the addressing capability of the target micro
processor.

TMR_USE_SEM is used to indicate that the timer manager will be expecting a signal from the tick
ISR (through TrnrSigna1Tmr ()). When TMR_USE_SEM is set to 0, TrnrTask () will use the kernel's
time delay service (OSTirneD1yHMSM () for IlC/OS-II).

7.04 Bibliography
Comer, Douglas
Operating System Design, The XlNU Approach
Englewood Cliffs, New Jersey
Prentice-Hall, Inc., 1984

Listing 7.1

/*

TMR.C

Chapter 7: Timer Manager - 245

****** *"* *** **"*** * * **"** * * * * ** * * * * *"* * * * *"* * * * * * * * * * * * ** * * * ** * * * * * ** * * * * * * * * * * * * * * ** * * * * * * * *"* ** * * * * * ** * * * * ** *
Erobedded Sys terns Building Blocks

Complete and Reacly-to-Use M:>dules in C

Timer Manager

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : TMR.C
* Programner : Jean J. Labrosse

*/

/*

=UDE FILES

*/

#define TMR_GWBAlS
#include ..includes .h"

/*

*/

--
static
static
static

/*

*'I\nrSartrenths ;
'IlnrTaskStk [TMR_TASICSTICSIZE] ;
'IlnrTickCtr;

LCCAL FUN::.TlOO PRarorYPES

*/

static void

/*$PAGE* /

'IlnrTask (void *data);

246 - Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued)

1*

TMR.C

cx:NFlGURE TIMER TIMElJUl' F'Ul'K:TION

* ~scription

* Arguments

* Returns

Set the user defined function when the timer expires.
n is the timer number O.. 'IMR_MAX_'IMR-l
fnct is a poirit.ar to a function that will be executed when the timer expires
arg is a poiritar to an argument that is passed to 'met'
None.

**** ***** *** ** * * * * * * * * * * * * * * * 1<* ** ** * * * * * * * * * * * * * * ** * * * * * * * *
*1

void 'IlnrCfgFnct (INT8U n, void (*fnct) (void *), void *arg)

'IMR *ptmr;

if (n < 'IMR_MAX_'IMR) {
ptmr &1inr'I'bl [n] ;
OS_ENI'ER_=TlCAL();

ptmr-vrmrsnct = fnct;
ptmr->'ItnrFnctArg = arg;
OS_EXIT_=TlCAL () ;

I*$PAGE*I

1*

1* Store po.int.er to user function into timer
1* Store user's function arguments pointer

*1
*1

** * * * ** * 1<* * * * ** * * * * * * * * * * * * * 1<*** * * * * * * * * * * * * * * * * 1<*** * * * ** ** * * * * * * * * ** * * *** * * * * * * * * * * * * * * 1<* * * * * * * * * * * * * * * *
CHEO< TIMER

* Description
* Arguments
* Returns

*1

This function checks to see if a timer has expired
n is the timer to check
a if the timer has expired
'linrCtr the renaining time before the timer expires in 1110 second

INT16U 'IinrChk (INTSU n)

{

INT16U val;

val = 0;
if (n < 'IMR_MAX_'IMR) (

OS_ENI'ER_=TlCAL () ;

val = 1inr'I'bl [n] . 'linrCtr;
OS_EXIT_=TICAL () ;

}

return (val);

I*$PAGE*I

Listing 7.1 (continued)

/*

TMR.C

Chapter 7: Timer Manager - 247

FORMAT TIMER INID SI'RIN3

* D=scription
* ArguIT'eIlts

Formats a timer into an ASCII string.
n is the desired timer

s is a pointer to the destination string. The destination string must be large
enough to hold the formatted timer value which will have the follC!Ning format:

"MM:SS.T"

*/

void 'DnrFormat (INr8U n , char *s)

if (n < 'IMR_MAX_'IMR) {

OS_ENI'ER_CRITICAL () ;

val = ='I'bl [n] . 'Ihu:Ctr;
OS_EXIT_CRITlCAL () ;

min (INrBU) (val / 600);
sec = (=8U) ((val - min * 600) / 10);

tenths = (INr8U) (val % 10);
s[O] = min / 10 + '0';
s[l] = min % 10 + '0';
s[2] '.'.

s[3] sec / 10 + '0';

s[4] sec % 10 + '0';
s[5] ".

s[6] tenths + '0';

s[7] NUL;

INr8U

INr8U

INr8U

INrlW

min;
sec;
tenths;
val;

/* Get local copy of timer for conversion

/ * Convert TIMER to ASCII

*/

*/

II

/*$PAGE*/

248 - Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued)

1*

TMR.C

TIMER MANAGER =TIALlZATICN

* Description
* Arguments
* Retw:ns

This function initializes the timer manager rrcdule.
None
None.

*1

void 'IlnrInit (void)

INr8U e=;
INr8U i;
'IMR *ptInr ;

ptmr = &'Iinr'I'bl [0] ;
for (i = 0; i < 'IMR_MAX_'IMR; i++) (

ptmr->'IlnrEn FALSE;
ptmr-c-rmrct.r = 0;
ptmr-c-TmrIrii, t = 0;
ptmr-c-Trnr'Fnct; = NULL;

ptrnr++;

1* Clear and disable all timers *1

)

'IlnrTickCtr = 0;
'IlnrSenirenths = OSSenCreate (0) ;
OSTaskCreate('IlnrTask, (void *) 0,

I*$PAGE*I

1* Create counting semaphore to signal lila second
&'IlnrTaskStk['IMR_TASK_STK_SIZE], 'IMR_TASK_PRIO);

*1

Listing 7.1 (continued)

1*

TMR.C

Chapter 7: Timer Manager - 249

RESEr TIMER

* rescription
* Arguments
* Returns

This function reloads a t imar with its initial value
n is the tiner to reset
None.

*1

void TmrReset (INT8U n)

'IMR *ptJnr;

if (n < 'IMR_MAX_'IMR) {
ptmr e. &'I\m:'Ibl[n] ;

OS_ENI'ER_=TlCAL () ;
ptmr-c-TrnrCtr = ptmr-srmrtni t ,

OS_EXIT_=TICAL () ;

I*$PAGE* I

1*

1* Reload the counter *1

SEI' TIMER (SPEJ:ln-= MINlJI'ES, SEXXNDS and TEN:rIIS)

* rescription Set the timer with the specified number of minutes, seconds and 1/10 seconds. The
function converts the minutes, seconds and tenths into tenths.

* Arguments n is the t irner nurriJer o.. 'IMR_MAX_'IMR-l
min is the number of minutes
sec is the nurriJer of seconds
tenths is the number of tenths of a second

* Returns None.

* ******* ** * * ** *** * *** * * ** * *.,.** 'I<**"** * * ** ** ... ** * *** ***** * ** * * *** * ***** * **** ** ** * ** ***** * * ** ** ** ** ** ** ** * * ***
*1

void TmrSetMST (INTBU n, INT8U min, INTBU sec, INTBU tenths)

'IMR *ptJnr;
INrl6U val;

if In < 'IMR_MAlC'IMR) {
ptmr = &'I\m:'Ibl[n] ;

val = (INrl6Ulmin * 600 + (INr16U)sec * 10 + (INTl6U) tenths;
OS_ENI'ER_=TICALO;
ptmr-c-Imr'Irri t = val;
ptmr- :>'Il11rCtr = val;
OS_EXIT_=TIClIL () ;

I*$PAGE*I

250 - Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued)

1°

TMR.C

SEI' TIMER (SPECIFYlN3 TENTHS OF SEXXtID)

* rescription
° Arguments

° Returns

Set the

n

tenths
None.

timer with the specified number of 1/10 seconds.
is the timer number O.. 'IMR_MAX_'IMR-l

is the number of 1/10 second to load into the timer

°1

void 'linrSetT (INI'8U n, INI'16U tenths)

'IMR *ptrnr;

if (n < TMR_MAX_'IMR) {

ptmr = &'llnr'I'bl [n] ;

OS_ENIEIU::RITICAL () ;

ptmr-c-rmrrni t = tenths;

ptrnr->'llrrrCtr = tenths;
OS_EXIT_CRITICAL () ;

IO$PAGE*1

1*

SIGNAL TIMER MANAGER M)IXJLE THAT A 'CIJXK TID<' HAS cx::cuRRED

* Description

° Arguments

° Returns

* Notes

This function is called by the .clock tick' ISR on every tick. This
responsible for counting the number of clock ticks per 1/10 second.
elapses, this function will signal the timer rranager task.

None.
None.

'IMR_DLY_TIO<S must be set to produce 1/10 second delays.
This can be set to OS_TIO<S_PER_SEC I 10 if you use uC/OS-II.

function is thus

When 1/10 second

** * ** ** *********** * ** ***** * **** ** ** ** ***** * * *** ** * ** * * * *** * ** *** **** ** * * *** * * *** * **** * ****** * *** * * * * * *** *
*1

void 'linrSignal'linr (void)

'linrTickCtr++;

if ('linrTickCtr >= 'IMR_DLY_TIO<S)

'linrTickCtr = 0;
OSSE!11Post ('linrSentrenths) ;

IO$PAGEOI

Listing 7.1 (continued)

/*

TMR.C

Chapter 7: TimerManager-2SI

srARI' TIMER

* IEscription
* Argurrents
* Returns

This function s tart a tiJner
n is the timer to start
None.

*/

void TmrStart (INT8D n)

if (n < TMR_MAX_TMR) {

OS_ENI'ER_CRITICAL () ;
Tmr'TI:Jl [n] . 'IlnrEn = TRUE;
OS_EXIT_CRITlCAL();

/*$PN;E*/

/*

SIDP TIMER

* Description
* Arguments
* Returns

This function stops a tiJner
n is the timer to stop
None.

*/

void TmrStop (INT8D n)

if (n < TMR_MAX_TMRl {

OS_ENI'ER_CRITlCAL();
Tmr'TI:Jl [n] .TmrEn = FALSE;
OS_EXIT_CRITlCAL () ;

/*$PAGE*/

252 - Embedded Systems Building Blocks, Second Edition

Listing 7.1 (continued)

/*

TMR.C

TIMER MANAGER TASK

* I:::.l!2scription

* Arguments
* Returns
* Note(s)

'Ihis task is created by 'IlnrInit() and is responsible for updating the timers.
'IlnrTask() executes every 1/10 of a second.
None.
None.
1) The function to execute when a timer times out is executed outside the critical

section.
**** ** * * * * * * * * * * * * * * * * ** ** ** * **** * * ** * *** * * *** ** *** * **** * * * ** *** *** ***** ** * * * * *****
*/

static void 'IlnrTask (void *data)

'IMR *pUnr;

INr8U err;
INr8U i;
void (*pfnct) (void *) ;
void *parg;

/* Function to execute when timer times out */
/* Arguments to pass to above function */

data data;
pfnct (void (*) (void *»0;
parg (void *)0;
for (;;) {

#if 'IMR_USE_SEM
OSSemPend{'IlnrSerrtrenths, 0, &err);

#else
OSTimeDlyHMSM(O, 0, 0, 100);

#endif

/* Avoid carrpiler warning (uC/OS-II req.)
/* Start off with no function to execute

/* Wait for 1/10 second signal from TICK ISR

/* Delay for 1/10 second

*/
*/

*/

*/

ptmr = &'IiTlrTbl [0] ; / * Point at beginning of timer table */
for (i = 0; i < 'IMR_MAX_'IMR; i++)

OS_ENI'ER_CRITICAL () ;
if (ptmr-e-Tmr'En == TRUE) { /* Decrement timer only if it is enabled */

if (ptmr->TmrCtr > 0) {
ptmr->TmrCtr-- ;
if (ptmr->TmrCtr == 0) { /* See if timer expired */

ptmr->'IlnrEn = FAlSE; /* Yes, stop timer */
pfnct = ptmr-c-Imr'Fnot.: /* Get pointer to function to execute ... */
parg = ptmr--s'rmrrnctxrc: /* ... and its argurrent */

}

OS_EXIT_CRITICAL () ;
if {pfnct!= (void (*)(void *»O)

(*pfnct) (parg);
pfnct = (void (*) (void *»0;

ptmr++ ;

/* See if we need to execute function for ...
/* timed out timer.

*/
*/

Listing 7.2

/*

TMR.H

Chapter 7: Timer Manager- 253

* *** ****** ** *** ** ..** ******* ***** **** ** ********* ***** ******* ****** ****** **** ..***** ****** ***** *1<*** *** * ****
Einbedded systerrs Building Blocks

Cauplete and Reacly-to-Use Modules in C

T:iJner Manager

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filename : 'IMR.H
* Programner : Jean J. Labrosse

*/

/*

CCliISI'ANrS

**** **** ..** ******* ** ****** ******** ***** ******* *** ******* ***** **** ******* *** ..************ **** ***** **** *** ..
*/

#ifndef CFCLH

#define 'IMR_DLY_TICKS
#define 'IMR_TASK_PRIO
#define 'IMR_TASK_SI'K_SIZE

#define 'IMR_MAX_'IMR

#endif

#ifdef 'IMR_GLOB.'lliS
#define 'IMR_EXT
#else
#define 'IMR_EXT extern
#endif

/*

(OS_TICKS_PER_SOC / 10)

45
512

20

o

II

** ***** ***** ****** ** ****** ** ..** **** *** ..******** ..******* *** ..******* ** *** ****** ** ********** **** ** ** **** ****
DATA TYPES

..........................1<""""** ** * * * ** * * * * * ** * * **** ** * * *** * * *** ** * ** * ** * * ** * ***** * * * *** * *** * ** ****** * * *
*/

typedef struct tmr (
B:XlLEI\N 'IlnrEn;
INr16U TrnrCtr;

INr16U 'IlnrInit;
void (*'IlnrFnct) (void *);
void *'IlnrFnctArg;

'IMR;

/ * TlliER DATA SI'RUCIURE

/* Flag indicating whether t:iJner is enabled
/* Current value of timer (counting down)
/* Initial value of timer (i.e. when timer is set)
/* Function to execute when t:iJner times out
/ * ArguITEl1ts supplied to user defined function

*/
*/
*/

*/
*/
*/

254 - Embedded Systems Building Blocks, Second Edition

Listing 7.2 (continued)

f*

TMR.H

GIDBAL VARIABLES

*f

f*

f* Table of timers mmaged by this rrcdule *f

FUN:TION PROIOrYPE'S

*f

void 'IlnrCfgFhet(=8U n , void (*fnet) (void *), void *arg);
=160 'll11rChk(=8U n);

void 'IinrFontl3.t (=8U n, ehar *s);

void 'DnrInit (void) ;

void 'IinrReset(=8U n);

void 'IinrSetMST(=8U n, =8U min, =80 sec, =8U tenths);
void 'IinrSetT(=8U n, =16U tenths) ;
void =Signal'Dnr(void);
void 'DnrStart(=au n);
void 'DnrStop(=au n);

Chapter 8

Discrete uo.
Discrete inputs and outputs (lIOs) are found in most control and/or monitoring systems. The word dis
crete refers to the fact that the value taken by the input can take only one of two states. For example:

10rO

TRUE or FALSE

• ONorOFF

• ENABLED or DISABLED

PRESENT or ABSENT

• and so on.

Figure 8.1 Discrete inputs.

Pressure switch

Temperature switch

Limit switch

Relay contact

Proximity detector

Control!
Monitoring

System

As shown in Figure 8.1, discrete inputs are generally used to monitor the state of manual switches,
pressure switches (pressure exceeded or not), temperature switches (temperature exceeded or not), limit
switches (device has reach its limit or not), relay contact closures (open or closed), proximity detectors

255

256 - Embedded Systems Building Blocks, Second Edition

(there or not there), etc. Discrete inputs are generally used to determine the state of an input. In some
applications, however, you need to know whether a discrete input has changed state or not and, possibly,
how many times it did so.

Discrete outputs are used to control lamps, relays, fans, alarms, heaters, valves, etc. (See Figure 8.2.)
A discrete output is generally either in one state or the other. A blinking light versus a light that is
always ON, however, does a better job of attracting the attention of a user to an error condition.

Figure 8.2 Discrete outputs.

Control!
Monitoring

System

Lamp

Alarm

Hom

Relay

Motor

Fan

Valve

In this chapter, I will provide you with a module that jnonitors discrete inputs and controls discrete
outputs. The module allows you to have as many discrete inputs and outputs as you need (up to 250
each). For each discrete input, you will be able to:

Determine whether the input is I or O.

Determine whether a transition from I to 0 or from 0 to I occurred on the input.

Determine how many transitions from I to 0 or from 0 to I occurred on the input.

Simulate a toggle switch with a momentary closure switch.

Bypass the hardware for debug purposes.

For each discrete output, you will be able to:

Thm the output ON or OFF.

• Blink the output at a user-definable rate (one for each output).

• Bypass your application code to control the output during debugging.

8.00 Discrete Inputs
Reading discrete inputs is a fairly trivial task. You need only provide your microprocessor with as many
parallel input lines as you have discrete inputs to read. The microprocessor simply needs to read the
input ports, mask off unwanted inputs, and make a decision based on the state of the input.

I generally prefer to put a layer of software between my application code and the hardware so I can
change the hardware without affecting the application software. Putting a layer of software also allows
you to test your application before you get your hands on the hardware. I like to give a logical address

Chapter 8: Discrete UOs - 257

to each discrete input, typically from ato n. You can thus write a simple function that returns the state of
any logical discrete input to your application as shown in the following pseudocode:

BOOLEAN DlGet(INT8U n)

{

Read port where discrete input ~n is located;

Mask off unwanted bits;

Return the state of the discrete input (either TRUE or FALSE);

The mask is an 8-bit value that selects the desired bit to read. For example, to read the state of bit 4
(bits are numbered a to 7 from right to left), the mask would be Oxl.O,With such a function,your code
will be a little bit slower and your code size will increase but the benefits are enormous. Now you can
change the hardware as many times as you need and your application code will never know the differ
ence. By encapsulating access to the hardware we can also handle cases where some of the inputs are
inverted by the hardware and still return the proper state to the application code. In other words, if an
input is considered a logical awhen it is HIGH, then DIGet () can invert the value of the input read and
report a a to the application code.

If you have spare address space and a "say" about hardware design, you should consider using one
of my favorite chips for discrete inputs: the 74251 8-input data selector/multiplexer, shown in Figure
8.3. Note that you can have as many discrete inputs as needed by simply adding 74251s.

Figure 8.3 Discrete inputs using 74251.

74251

Discrete

Inputs

Rd
CS

A2 C
Al B
AO A

Y
To
Microprocessor's
DO

Basically, each discrete input has its own address in the microprocessor address space. Reading a
discrete input becomes trivial:

BOOLEAN DIGet(INT8U n)

return (Read value from address of port "n ' and mask with OxOl);

258 - Embedded Systems Building Blocks, Second Edition

Even with DIGet (), it is still up to your application to determine whether a discrete input has
changed state. To determine if an input has changed state, you will need to repeatedly call DIGet ()

(i.e., poll the input) and compare the previous value with the current one. The input has changed state
when both values are different. If you need to know whether the input changed from 0 to 1, you will fur
ther need to add code to ensure that the previous state was O.

What if you had a momentary closure switch connected to a discrete input and needed to simulate a
toggle switch? (That is, you press the switch once to turn a device ON and you press the switch again to
turn the device OFF.) To accomplish this, you need to change the state of a variable whenever a transi
tion from 0 to 1 is detected.

The discrete 110 module presented in this chapter allows you to configure any discrete input to han
dle all of the situations described earlier. Each discrete input is considered a logical channel. The dis
crete 110 module allows you to have as many logical channels as you need (up to 250). Figure 8.4 shows
a flow diagram of a discrete input channel. Note that I used electrical symbols to represent the functions
performed by each discrete input channel. Of course, all functions are handled in software.

Figure 8.4 Discrete input channel.

To
Your
Application

Hardware

These functions can be disabled
at compile time.

T' means toggle mode.

Mode
j- -Select

j Switch
j Bypass

From ---+-+--f~- - - - -~I/ I 0 L
Hardware ~

I I
I I

I
~ Bypass

Switch

Chapter 8: Discrete UOs - 259

As Figure 8.4 shows, each discrete input channel has the capability to be configured (at run-time) to
any of nine modes through the Mode Select Switch:

1. Always return a O.

2. Always return a 1.

3. Return the state of the hardware input.

4. Return the complement of the hardware input.

5. Detect negative-going transitions and return the number of transitions detected.

6. Detect positive-going transitions and return the number of transitions detected.

7. Detect both positive- and negative-going transitions and return the number of transitions detected.

8. Toggle between 0 and 1 when a negative transition is detected,

9. Toggle between 0 and 1 when a positive transition is detected.

To reduce the code size of your application, the edge detection features can be disabled at compile
time, as shown in Figure 8.4.

To provide the functionality described earlier, all discrete inputs are read and processed on a contin
uous basis. In other words, all inputs are polled. Because of this, the maximum rate at which discrete
inputs can change state is based on how often inputs are polled. Polling is handled by a task (described
later) which executes at a regular interval (you decide at compile time how often the task will execute).
Discrete inputs must not change state any faster than half the task execution rate of the discrete I/O
module. That is, the task must execute twice as fast as the expected rate of change of discrete inputs.

Your application knows about discrete input channels through interface functions. The interface __•
functions allow you to set the configuration mode of each channel through the Mode Select Switch, set
the state of the Bypass Switch and, if the bypass switch is open, bypass the hardware. Bypassing of the
hardware is accomplished by having an interface function deposit a value into the discrete channel.
Where your application is concerned, it doesn't know that the value received didn't come from the
actual hardware.

8.01 Discrete Outputs
Updating discrete outputs is a straightforward operation but a little trickier than updating discrete
inputs. All you need is to provide your microprocessor with enough latched parallel output lines as you
have discrete outputs to control. As with discrete inputs, I generally prefer to put a layer of software
between my application code and the hardware. This prevents the application code from knowing what
kind of hardware is involved and how it is accessed. I can thus port my application code to other envi
ronments by simply changing the hardware interface functions. I give a logical address to each discrete
output, typically from 0 to n. For discrete outputs connected to an 8-bit latched parallel output port, you
have two scenarios: either you can read back the contents of the output port (Intel 8255A or Motorola
6821) or else the port is write-only (74273, 74373, etc.). The pseudocode for a port that can be read
back would look like this:

260 - Embedded Systems Building Blocks, Second Edition

void DOSet (INT8U n , BOOLEAN val)

Disable interrupts;

Read the output port;

if (val == FALSE) {

AND the port data with complement of 'mask';

else

OR the port data with mask;

Write new data to port;

Enable Interrupts;

The mask is an 8-bit value that selects the desired bit to set or clear. For example, to set or clear bit 6
(bits are numbered 0 to 7 from right to left), the mask would be Ox40. Note that you also need to disable
interrupts because updating the discrete output is considered a critical section. Forgetting to disable
interrupts is a common mistake. The pseudocode for a port that cannot be read back follows this para
graph. In this case, an image of the output port's content is maintained in memory (i.e., RAM).

void DOSet{INT8U n, BOOLEAN val)

Disable interrupts;

if (val == FALSE) {

AND the memory image with the complement of the 'mask';

else '{

OR the memory image with the mask;

Wri te memory image to port;

Enable Interrupts;

If you have spare address space and a "say" about hardware design, you should consider using one
of my favorite chips for discrete outputs: the 74259 8-bit addressable latch, as shown in Figure 8.5.
Note that you can have as many discrete outputs as needed by simply adding 74259s.

Data In

Figure 8.5 Discrete outputs using 74259.

74259

From
Microprocessor's
DO

RESET --------qReset

Wr
CS

A2 C
Al B
AO A

Chapter 8: Discrete UOs - 261

Discrete
Outputs

Basically, each discrete output has its own address in the microprocessor address space. Updating a
discrete output becomes trivial:

void OOSet(INT8U n, BOOLEAN val)

Output value to address of port 'n';

What if you needed to blink one or more discrete outputs? Blinking outputs are quite useful when
connected to lights because they can be used to signal alarm conditions to users. To blink an output, you
could call DOSet () to change the state of an output at a regular interval from your application code.
This obviously complicates your application.

The discrete IJO module presented in this chapter allows you to control discrete outputs and also
blink any (or all) of the discrete outputs.

Each discrete output is considered a logical channel. The discrete IJO module allows you to have as
many logical channels as you need (up to 250). Figure 8.6 shows a flow diagram of a discrete output
channel. Note that I used electrical symbols to represent the functions performed by each discrete out
put channel. Of course, all functions are handled in software.

--

262 - Embedded Systems Building Blocks, Second Edition

Figure 8.6 Discrete output channel.

As nchronous

rL1L
"-B ---I

Synchronous

Application
Bypass
~From

Your----o1o-~.----------{)
Application I

I
Bypass
Switch

1------
I
I
I
I
I

As shown in Figure 8.6, each discrete output channel has the capability to be configured (at run
time) to any of five modes (through the Mode Select Switch):

1. Always output a O.

2. Always output a 1.

3. Directly output what your application desires to put out.

4. Blink the output asynchronously (described below).

5. Blink the output synchronously (described below).

Your application software can also complement (or invert) the output through the Invert Select
Switch.

If either of the two blinking modes is selected, your application can determine whether blinking will
be enabled through the Blink Enable Select Switch. To reduce the code size of your application, the
blinking feature can be disabled at compile time, as shown in Figure 8.6.

Your application knows about discrete output channels through interface functions. The interface
functions allow you to:

• Set the configuration mode of each channel through the Mode Select Switch.

• Set the Blink Enable Select Switch, which determines how to enable blinking.

• Determine whether the output will be inverted by setting the Invert Select Switch.

Set the blinking rate by specifying the values for A, B, and C (see Figure 8.6).

• Set the state of the Bypass Switch and, if the bypass switch is open, bypass your application code.
Bypassing of your application is accomplished by having an interface function deposit a value into
the discrete channel. Where your application is concerned, it still thinks it is controlling the discrete
output channel.

When you choose to blink a discrete output, you need to specify the type of blinking: either asyn
chronous or synchronous. In asynchronous mode, you need to specify the duty cycle through two

Chapter 8: Discrete lIOs - 263

variables: A (the ON time) and B (the total time). Because each discrete output can have different A
and B values, blinking occurs asynchronously. In synchronous mode, you specify the ON time (vari
able A) with respect to a common (to all 'synchronous discrete outputs) total time (variable C). The
ON time and total time are based on how often the discrete I/O module executes. If the discrete I/O
modules executes 10 times per second then, an ON time of one second requires A to be set to 10.

8.02 Discrete I/O Module
The source code for the discrete I/O module is found in the \ SOFTWARE\BLOCKS\DIO\ SOURCEdirec
tory. The source code is found in the files DIO . C (Listing 8.1) and DIO. H (Listing 8.2). As a convention,
all functions and variables related to the discrete I/O module start with either DIO (functions or vari
ables common to both discrete inputs and outputs), DI (discrete input functions or variables), or 00 (dis
crete output functions or variables). Similarly, #defines constants will either start with DIO~ DI~ or
00_.

8.03 Discrete I/O Module, Internals
Figure 8.7 shows a flow diagram of the discrete JlO module. (You can also refer to Listings 8.1 and 8.2 for
the following description.) The discrete JlO module consists of a single task (DIOTask () that executes at a
regular interval (DIO_TASK_DLY_TICKS). DIOTask () can manage as many discrete inputs and outputs as .-
your application requires (up to 250 each). The discrete I/O manager is initialized by calling DIOInit () . :'
Every DIO_TASK_DLY_TICKS, DIOTask () calls DIRd (), DIUpdate (), OOUpdate (), and OOWr().

264 - Embedded Systems Building Blocks, Second Edition

Figure 8.7 DIDmodule flow diagram.

Discrete
Output
Hardware

Discrete
Input
Hardware

HARDWARE

'------t.... 1 r
I
I

DOWr()

DIOMODULE
DITbl[]

I 1 I I

I I I
I I I

I 1 I I

I I I I

I

I
I
•
I

I •

I

I
•I
I

I

APPLICATION .
INTERFACE

DICfgMode()
DISetBypassEn()
DISetBypass() ~.~~~

DIGet()
DIClr()
DICfgEdgeDetectFnct()1

DOCfgMode()
DOSetBypassEn()
DOSetBypass()
DOSet() ~.~~~

DOGet()
DOCfgBlink()
DOSetSyncCtrMax()

DITbl [] is a table that contains configuration and run-time information for each discrete input
channel. An entry in DITbl [] is a structure defined in DIO. H and is called DIO_DI. Discrete inputs are
read and mapped to DITbl [i] . DI In by the hardware interface function DIRd (). DIRd () knows
about your hardware and thus can be easily changed to adapt to your environment.

Figure 8.8 shows a flow diagram of a discrete input channel. Note that I used electrical symbols to
represent functions performed in software for each discrete input channel. . DIIll, . DIModeSel,

. DIBypassEll, and . DIVal are structure members of DIO_DI (see DIO. H). DIUpdate () is responsi
ble for updating all the discrete input channels. Discrete input channels that are configured for edge
detection are processed by DIIsTrig (). DIIsTrig () keeps track of the previous state (. DIPrev) of
the discrete input and is used to determine if an input has changed state.

Figure 8.8

Chapter 8: Discrete UOs - 265

Discrete input channel.

o Set by DICfgMOd

7
e ()

I \ \ 1 "Mod"'"' :: To
your

.--------- application
DISetBypass () through

l
DIGet()

.om' .7
f------=--I 071

.DIBypassEn

Setby DISetBypassEn ()

Edge detection can be disabled at compile time.
For each Drchannel. a user definable function
can also be executed when an edge is detected.

'T' means toggle mode

OOTbl [] is a table that contains configuration and run-time information for each discrete output
channel. An entry in DOTbl [] is a structure defined in DIG . H and is called DIG_DO. Discrete outputs
are mapped from DOTbl [i] . DOOut to your hardware through the interface function DOWr () .
DOWr() knows about your hardware and thus can be easily changed to adapt to your environment.

Figure 8.9 shows a flow diagram of a discrete output channel. Note that I used electrical symbols to
represent functions performed in software for each discrete output channel. . DOCtrl, . DOBypassEn,
. DOBypass, . DOBl inkEnSel, . DOModeSel, . DOInv, and . DOOut are structure members of DIG_DO
(see DIG. H). DOUpdate () is responsible for updating all the discrete output channels.

266 - Embedded Systems Building Blocks, Second Edition

Figure 8.9 Discrete output channel.

.DQ~odeSeI

Set by DOCfgMode ()

~~~ TODO,\()

\ ~
\ I • DOOut
\ I

\

A is .COAI S nchronous I .
I I o-A-< B IS • DOB
I I ~ I Cis . DOSyncCtrMax

I ~,I ~iukKING ~These functions can be
I 4b

U

~OBllD~Ense I disabled at compile time.
L_~~~C~Blln~~ J

,\o:tOI Set by DOSetBypass ()

.DOCtrl I • DOBypass

~assEn
LSet by ~:::l':;:ypassEn ( )
,---------- ----

I As nchronous

III 1 rLIL
I--B ----I

As previously mentioned, there are two blinking modes: synchronous and asynchronous.
Synchronous blinking mode is shown in Figure 8.10. When a discrete output channel is in this mode,

its output is HIGH (or LOW depending on the state of .OOInv) when .OOA is less than OOSyncCtr.
OOSyncCtr counts from 0 to OOSyncCtrMax (set by OOSetSyncCtrMax ( ). OOSyncCtr is cleared
when it reaches OOSyncCtrMax. This mode is synchronous because all discrete output channels in this
mode are referenced to OOSyncCtr.

Figure 8.10 Synchronous blinking mode.

C

I

::t~Al----L---L------I------JL
Asynchronous blinking mode is shown in Figure 8.11. When a discrete output channel is in this

mode its output is HIGH (or LOW depending on the state of .OOInv) when. OOA is less than .OOBCtr.



Chapter 8: Discrete UOs - 267

. OOBCtr counts from 0 to .OOB (set by OOCfgBlink ( ) .. OOBCtr is cleared when it reaches .OOB.
TIIis mode is asynchronous because all discrete output channels maintain their own . OOBCtr and thus
can blink at different rates.

Figure 8.11 Asynchronous blinking mode.

8.04 Discrete I/O Module, Interface Functions
Your application software knows about the discrete I/O module through the interface functions shown in
Figure 8.12.

Figure 8.12 Discrete I/O module interface functions.

.-

': Functions available when
DI_EDGE_ENis setto 1.
#: Fun ctlons available when
DD_BLI NK_MDDE_EN is setto 1.

DIOln; t()

DICfgMode( )

DISetBypassEn( )

DISetBypass( )

DIGet() ......

*DICl r( )

*DICfgEdgeDetectFnct( )

DOCfgMode( )

DOSetBypassEn( )

DOSetBypass ()

DOSet ( )

DOGet() ......

II DOCfgBl i nk()

II DOSetSyncCtrMax()

-
~

~

~

.....- Discrete
~

I/O
Module

~

. ~

~-

Discrete Inputs
(From Hardware)

~Discrete Outputs
(From Hardware)



268 - Embedded Systems Building Blocks, Second Edition

To allow the code size in your application to be reduced, I have added two #defines, which are
used to enable/disable code generation for edge detection for discrete inputs (DI_EIX:E_EN) and
enable/disable code generation for blinking of discrete outputs (OOJ3LINK_MODE_EN). Setting these
#defines to 1 will enable code generation for the respective code.



Chapter 8: Discrete VOs - 269

DICfgEdgeDetectFnct ( )
void DICfgEdgeDetectFnct(INT8U n, void (*fnct) (void *), void *arg);

When a discrete input channel is configured for edge detection and a transition is detected, a user-defin
able function can be executed. The function to execute is specified to the discrete input channel by call
ing DICfgEdgeDeteetFnet ( ) .

Arguments

n is the discrete input channel you wish to configure. Discrete input channels are numbered from 0 to
DIO_MAX_DI - 1.

fnct is a pointer to the function that will be executed whenever a transition is detected. Note that pass
ing a NULL pointer indicates that no function is to be executed when a transition is detected. All discrete
input channels have NULL pointers by default. When the function is called, it is passed a pointer to void
(i.e., the arg). This allows different arguments to be passed to a reentrant function. You must declare the
function that will be called as follows:

void UserFnet (void *arg);

Note that UserFnet () is called with the argument that you specify in DICfgEdgeDeteet
Fnet (), that is, argo This allows you to design a single function that can be used by more than
one discrete input channel. The user-defined function will be called by the discrete I/O manager
task DIOTask () when a transition is detected on the input. The execution time of the discrete I/O
task is thus augmented by the execution time of all the functions that will execute when a transi
tion is detected in their respective inputs.

Return Value

None

NoteslWarnings

Some applications do not require the execution of a function upon detection of a transition. In these sit
uations, there is no need to call DICfgEdgeDeteetFnet () because the initial value of the pointer to a
function for each discrete input channel is NULL. In other words, the discrete I/O task will not execute
any function when pointing to NULL.

--



270 - Embedded Systems Building Blocks, Second Edition

Example
The function that executes when a transition is detected can signal another task through a semaphore, a
mailbox, or even a message queue. This would allow you to defer processing of input transition detec
tion to either a lower- or higher-priority task.

OS_EVENT *DISern;

void Task (void *pdata)

INT8u err;

DISern = OSSernCreate{O);

DICfgMode(O, DI_MODE_EIX;E_HIGH_GOING);

DICfgEdgeDetectFnct{O, DIEdgeFnct, (void *)DISern);

for (;;)

OSSemPend{DISern, 0, &err);

void DIEdgeFnct (void *arg)

/* Wait for DI to transition */

OSSemPost{ (OS_EVENT *)arg); /* DI transitioned */



Chapter 8: Discrete UOs - 271

DICfgMode ( )
void DICfgMode{INT8U n, INT8U mode);

DICfgMode () is used to set the operating mode of a discrete input channel.

Arguments

n is the desired discrete input channel to configure. Discrete input channels are numbered from 0 to
DIO_MAX_DI - 1.

mode determines the operating mode of 'the discrete input channel. The discrete IJamodule currently
supports nine modes:

1. DI_MODE_LOWallows DIGet () (described later) to always return o. This function basically simu
lates grounding an input.

2. DI_MODE_HIGH is similar to DI_MODE_LOW in that it allows DIGet () to always return 1. This
function basically simulates tying an input high.

3. DI_MODE_DIRECT allows the discrete input channel to read whatever is present on the hardware
input. This is the default mode for a discrete input channel.

4. DI_MODE_INV allows the discrete input channel to read the complement of whatever is present on
the hardware input. __

5. DI_MODE_EDGE_LOW_GOING allows the discrete input channel to detect and count transitions from : ..
I to 0 on the hardware input. The frequency of the input signal must be less than the scan rate of the
discrete IJamodule (determined by DIO_TASK_DLY_TICKS). DIGet () will return the number of I
to 0 transitions detected. Note that the number of transitions can be cleared by calling DIClr ()
(described later).

6. DI_MODE_EDGE_HIGH_GOING allows the discrete input channel to detect and count transitions
from 0 to I on the hardware input. The frequency of the input signal must be less than the scan rate
of the discrete IJamodule. DIGet () will return the number of 0 to I transitions detected. Note that
the number of transitions can be cleared by calling DIClr () (described later).

7. DI_MODE_EDGE_BOTH allows the discrete input channel to detect and count either transitions from
oto I or from I to 0 on the hardware input. The transition rate of the input signal must be less than
the scan rate of the discrete IJamodule. DIGet () will return the number of transitions detected.
Note that the number of transitions can be cleared by calling DIClr () (described later).

8. DI_MODE_TOGGLE_LOW_GOING allows the state of the discrete input channel to change whenever a
transition from a I to a 0 is detected. Again, the transition rate of the input signal must be less than
the scan rate of the discrete IJa module.

9. DI_MODE_TOGGLE_HIGH_GOING allows the state of the discrete input channel to change whenever
a transition from a 0 to a I is detected. Again, the transition rate of the input signal must be less than
the scan rate of the discrete IJamodule.



272 - Embedded Systems Building Blocks, Second Edition

RetumValue

None

NoteslWarnings

None

Example

void main (void)

DICfgMode(O, DI-MODE_DlRECT);



Chapter 8: Discrete IJOs - 273

DIClr()
void DIClr(INT8U n);

The only way to clear the number of transitions detected when the discrete input channel is configured
for edge detection is to call DrClr ( ) . The function has no effect if the channel is not configured for
edge detection.

Arguments

n is the discrete input channel you wish to clear. Discrete input channels are numbered from 0 to
DIO_MAX_DI - 1.

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

DICfgMode (0, DI_MODE_EDGE_HIGH_GOING);

for (;;)

DIClr(O) ; /* Clear the number of transitions of channel #0 */



274 - Embedded Systems Building Blocks, Second Edition

DIGet()
INTl6U D~Get(INT8U n);

The current value of the discrete input channel can be obtained by calling DIGet ( ) . If the discrete input
channel is configured for edge detection, the returned value will correspond to the number of transitions
detected by the channel. If the discrete input channel is not configured for edge detection, the returned
value will either be 0 or 1.

Arguments

n is the discrete input channel you wish to read. Discrete input channels are numbered from 0 to
DIO_MAX_DI - 1.

Return Value

The current value of the discrete input channel or the number of transitions.

NoteslWarnings

None

Example

void Task (void *pdata)

INT16U transitions;

DICfgMode(O, DI_MODE_EDGE_HIGH_GOING);

for (;;)

transitions DIGet(O); /* Get number of transitions on DI #1 */



Chapter 8: Discrete UOs - 275

DIOInit()
void DIOInit(void);

DIOlni t () is the initialization code for the discrete I/O module. DIOlni t () must be called before
you use any of the other discrete I/O module functions. DIOlni t () is responsible for initializing the
internal variables used by the module and for the creation of the task that will update the discrete inputs
and outputs.

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void main (void)

DIOlnit();



276 - Embedded Systems Building Blocks, Second Edition

DISetBypass()
void DISetBypass{INT8U n, INT16U val);

Your application software can bypass or override the discrete input channel value by using this function.
DISetBypass () doesn't do anything unless you have opened the bypass switch by calling DISetBy
passEn () as described earlier.

Arguments

n is the discrete input channel you wish to bypass. Discrete input channels are numbered from 0 to
DIO_MAX_DI - 1.

val is the value you want DIGet () to return to your application. Because val is a INTI6U, you can
set the number of transitions detected when the discrete input channel is configured for edge detection.

RetumValue

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

DOSetBypassEn(O, TRUE); /* Bypass channel #0 */

DOSetBypass(O, 1); /* Set value of channel #0 */



Chapter 8: Discrete UOs - 277

DISetBypassEn()
void DISetB¥PassEn(INT8U n, BOOLEAN state);

DISetBypassEn () allows your application code to prevent the 'physical' discrete input channel from
being updated. This permits your application to set the value returned by DIGet ( ) . The value of the
discrete input channel is set by DISetBypass ( ). DISetBypassEn () and DISetBypass () are very
useful for debugging.

Arguments

n is the discrete input channel you wish to bypass. Discrete input channels are numbered from 0 to
DIO_MAX_DI - 1.

state is the state of the bypass swi tch When TRUE, the bypass switch is open (i.e., the discrete input
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the discrete input channel is not
bypassed).

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;)

DISetBypassEn(O, TRUE); /* Bypass channel */

III



278 - Embedded Systems Building Blocks, Second Edition

OOCfgBlink ( )
void DICfgBlink{INTBU n, INTBU mode, INTBU a, INTBU b);

DOCfgBlink () allows you to configure the discrete output blinking mode.

Arguments

n is the discrete output channel you wish to configure for blink mode. Discrete output channels are num
bered from 0 to DIO_MAX_OO - 1.

IOOde sets the state of the Blink Enable Select Switch to one of three values:

1. OO_BLINI,-EN allows the discrete output to blink continuously.

2. OO_BLINK_EN_NORMAL allows the discrete output to blink only if the input to the discrete output
channel is set to 1. Blinking stops when the input to the discrete output channel is set to O. In this
case, the output is forced LOW unless it's inverted.

3. OO_BLINK_EN_INV allows the discrete output to blink only if the input to the discrete output chan
nel is set to O. Blinking stops when the input to the discrete output channel is set to 1. In this case,
the output is forced LOW unless it's inverted.

a specifies the ON time for either synchronous or asynchronous mode (the A value in Figures 8.9, 8.10,
and 8.11). The actual ON time is determined by the execution rate of the discrete VO module. a is given
by:

[8.1] a = ON time (sec.) x Task execution rate (Hz)

b specifies the total period when the discrete output is configured for asynchronous mode (the B value
of Figures 8.9 and 8.11). The period is determined by the execution rate of the discrete VO module. b is
given by:

[8.2]

Return Value

None

b =Period (sec.) x Task execution rate (Hz)

NoteslWarnings

None



Example

void Task (void *pdata)

{

DOCfgBl ink (0 , DO_BLINK_EN, 10, 20);

for (;;) {

Chapter 8: Discrete VOs - 279



280 - Embedded Systems Building Blocks, Second Edition

OOCfgMode ( )
void DOCfgMode(INT8U n, INT8U mode, BOOLEAN inv);

DOCfgMode () is used to set the operating mode of a discrete output channel. Each channel must be
individually configured.

Arguments

n is the desired discrete output channel to configure. Discrete output channels are numbered from 0 to
DIO_MAX_DO - 1.

mode determines the operating mode of the discrete output channel. The discrete l/O module currently
supports five modes:

1. DO_MaDE_LOW is the default mode and forces the discrete output LOW.

2. DO_MaDE_HIGH is similar to DO_MaDE_LOW, except that it forces the discrete output HIGH.

3. DO_MaDE_DIRECT allows the discrete output channel to output whatever state you set through
DOSet () or DOSetBypass ( ) .

4. DO_MODE_BLINK_SYNC allows the discrete output to continuously change from LOW to HIGH
and from HIGH to LOW. In this mode, you also need to specify how long the output will be HIGH
with respect to a continuously running counter, DOSyncCtr, which is specified through
DOSetSyncCtrMax ( ). If DOSyncCtr is allowed to count from 0 to 100 then, to get a 25 percent
duty-cycle, you need to set the HIGH time to 25. This is done by calling DOCfgBlink ().

5. DO_MODE_BLINK_ASYNC allows the discrete output to continuously change from LOW to HIGH
and from HIGH to LOW. In this mode, you also need to specify how long the output will be HIGH
and the total period of the signal. This is done through DOCfgBlink ( ) .

inv is used to complement the output. When inv is set to TRUE, the output is complemented as shown
in Figure 8.9.

Return Value

None

NoteslWarnings

None

Example

void main (void)

DOCfgMode (0, OO_MODE_BLINICSYNC, FALSE);



Chapter 8: Discrete UOs - 281

OOGet ()
BOOLEAN JXlGet(INT8U n) i

JX)Get () allows your application to get the state of the output that actually goes to the hardware.
JX)Get () returns either TRUE (the output is set to 1) or FALSE (the output is set to 0).

Arguments

n is the discrete output channel you wish to monitor. Discrete output channels are numbered from 0 to
DIO_MAX_DO - 1.

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

BOOLEAN state;

for (;;)

11-

state = DIGet(O); /* Get value of channel #0 */



282 - Embedded Systems Building Blocks, Second Edition

OOBet ()
void DOSet(I:NT8U n, BOOLEAN state);

DOSet () allows your application to set the state of the discrete output channel. If the discrete output
channel is configured for blink mode, the state passed to DOSet () is used to enable or disable blinking,
as shown in Figure 8.9.

Arguments

n is the discrete output channel you wish to set. Discrete output channels are numbered from 0 to
DIO_MAX_DO - 1.

state is the desired state of the discrete output and can be either TRUE or FALSE. Note that the state of
the discrete output occurs before any processing is performed on the discrete output channel, as shown
in Figure 8.9.

Return Value

None

Notes/Warnings

None

Example

void Task (void *pdata)

for (;;)

DISetBypass(O, 1); /* Set value of channel *O's .DIVal */



Chapter 8: Discrete UOs - 283

OOSetBypass ( )
void DOSetBypass(INT8U n, BOOLEAN state);

You can bypass what your application code is sending to the discrete output channel by using this func
tion. OOSetBypass () doesn't do anything unless you have opened the bypass switch by calling
OOSetBypassEn ( ) , as described earlier.

Arguments

n is the desired discrete output channel to override. Discrete output channels are numbered from 0 to
DIO_MAX_OO - 1.

state is the desired state of the discrete output and can be either TRUE or FALSE. Note that the bypass
occurs before any processing is performed on the discrete output channel, as shown in Figure 8.9.

Return Value

None

~otes/VVal1lUmgs

None

Example

void Task (void *pdata) .

for (;;)

--
DISetBypass(O, 1); /* Set value of channel #o's .DIVal */



284 - Embedded Systems Building Blocks, Second Edition

IXJSetBypassEn ( )
void DOSetBypassEn(INT8U n, BOOLEAN state);

OOSetBypassEn () allows your application code to bypass your application and set the state of the dis
crete output by calling OOSetBypass ( ). OOSetBypassEn () and OOSetBypass () are very useful
for debugging.

Arguments

n is the desired discrete output channel to bypass. Discrete output channels are numbered from 0 to
DIO_MAX_OO - 1.

state is the state of the bypass switch. When TRUE, the bypass switch is open (i.e., the discrete output
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the discrete output channel is not
bypassed).

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;)

DOSetBypassEn{O, TRUE); /* Bypass channel */



Chapter 8: Discrete UOs - 285

ro8etSyncCtrMax ( )
void OOSetSyncCtrMax{INT8U val);

OOSetSyncCtrMax () is used to set the period for the synchronous blinking mode. The synchronous
blinking mode is useful when you need to have lights blink at the same rate.

Arguments

val specifies the total period when the discrete output is configured for synchronous mode (the C value
of Figures 8.9 and 8.10). The period is determined by the execution rate of the discrete I/O module. val
is given by:

[8.3]

Return Value

None

val =Period (sec.) x Task execution rate (Hz)

NoteslWarnings

None

Example

void Task (void *pdata)

DOSetSynCCtrMax(lOO);

for (r r) {

III



286 - Embedded Systems Building Blocks, Second Edition

8.05 Configuration
I added two #defines (DI_EDGE_EN and OO_BLINICMODE_EN), which are used to enable/disable
some of the functions of the discrete I/O module in order to reduce the amount of ROM and RAM.
Specifically, DI_EDGE_EN allows you to remove edge detection for all discrete input channels, and
DO_BLINK_MODE_EN allows you to remove the blinking capability of discrete output channels.

You could reduce the amount of RAM for each discrete input or output by using bit fields in the
DIO_DI and DIO_DO structures. In this case, you would reduce the amount of RAM required at the
expense of more code space (manipulation of bit fields requires more code and is slower).

Configuring the discrete I/O module is fairly simple.

1. You need to define the value of seven #defines. The #defines are found in DIO. Hand CFG. H.

WARNING
In the previous edition of this book, DIO_TASK_STK_SIZE specified the size of the stack for
DIOTask () in number of bytes. ~C/OS-II assumes the stack is specified in stack width elements.

2. You will need to adapt DIRd ( ) , DIWr ( ) , and DIOIni tIO () to your specific environment.

All physical discrete inputs are read by DIRd () and are mapped to their corresponding DIO_DI
structures, as shown in Figure 8.13. In the code I provided in Listing 8.1, DIRd () obtains its discrete
inputs from an 8-bit parallel port. The least significant bit of the input port corresponds to discrete input
channel #0, the next-to-the-least significant bit is channel #1, and so on. Adding more discrete inputs
should be a trivial task.

Figure 8.13 Mapping ofphysical inputs to discrete input channels.

8-Bit Parallel Input Port
B7-------BO

=
II [I ~ ~i~~im :~ii~

DlTbl [2] . DIIn
DlTbl [3] . DIIn

L----------1~DITbl[4] .DIIn
L-- ~ DlTbl [5] . DIIn

L-- -+ DlTbl [6] . DIIn
L-- ---. DlTbl [7] . DIIn

Figure 8.14 shows how discrete output channels are mapped to physical outputs using DOWr (). In
the code provided in Listing 8.1, discrete output channels are mapped to an 8-bit parallel port. Discrete
output channel #0 is mapped to the least significant bit of the output port (i.e., bit 0), channel #1 is
mapped to bit 1, and so on. Adding more discrete outputs should be fairly simple.



Chapter 8: Discrete UOs - 287

Figure 8.14 Mapping ofdiscrete output channels to physical outputs.

DOTbl [0] . DOOut--------------,
DOTbl [1] . DOOut--------------,
DOTbl[2] . DOOut---------,
DOTbl[3] .DOOut-------~
DOTbl [4] . DOOut

DOTbl[5].Doout~
DOTbl[6] .DODue ~ 1
DOTbl[7] . DOOut t

ITIIIIDJ
B7- - - - - - -BO

8-Bit Parallel Output Port

DIOInitIO () is the initialization code which is called by DIOInit () and is used to initialize your
physical hardware ports. For example, if you are using Intel's 82C55A Programmable Peripheral Inter
face (PPI), you would initialize the 82C55A to the desired mode in DIOIni tIO ( ) .

8.06 How to Use the Discrete I/O Module
To use the discrete I/O module, you will need to call DIOIni t () prior to using any of the other func
tions. You would typically do this in main () as follows:

void main (void)

OSInit() ;

DIOInit() ;

OSStart();

/* Initialize the O.S. (uC/OS-II) */

/* Initialize the discrete I/O module */

/* Start multitasking (uC/OS-II) */

Once you have initialized the discrete I/O module, you can configure each one of the discrete
inputs and outputs by calling DICfgMode ( ), DICfgEdgeDetect ( ), DOCfgMode ( ), and DOCfg
Blink (). You will also need to call DOSetSyncCtrMax () if you are using any of the discrete outputs



288 - Embedded Systems Building Blocks, Second Edition

in synchronous blink mode. You can choose to configure discrete I/O channels immediately after the
call to DIOIni t () or in your application task, as shown:

void AppTask (void *data)

data = data;

/* Initialize discrete I/O channels here ... */

for (;;) {

/* Application task code ... */

A traffic light controller would be an ideal application for the discrete I/O module. For the intersec
tion shown in Figure 8.15, you would need eight discrete outputs to control the state of each traffic light
(four for North <-> South, four for East <-> West). Each set of four outputs would control:

• 1 green light

• 1 yellow light

• 1 red light

• 1 green light (for left turn arrow)

This traffic light controller caters to pedestrians. Two buttons are needed at each corner so pedestri
ans can request to cross the intersection. The controller, however, only needs to see two discrete inputs;
one to request an EastlWest crossing and another to request a North/South crossing. Additional lights
are required to inform the pedestrian when it is safe to cross the intersection: a walk light and a don't
walk light. The don't walk typically blinks when it is no longer safe to cross the intersection. You will
need four discrete outputs for pedestrian crossing lights.

Figure 8.16 shows a block diagram of the traffic light controller and the necessary discrete I/Os. The
code required to configure the discrete I/Os for the traffic controller follows this paragraph. All discrete
outputs are initially configured for direct mode. The mode of the discrete output controlling the don't
walk light can be changed to blinking mode when it is unsafe to cross the street.



Chapter 8: Discrete VOs - 289

Figure 8.15 Traffic light control using the discrete I/O module.

III

Pedestrian Walkway

-.:.:. ---EAST

I
I

SOUTH

NORTH
I
I

WEST - - - :::::

Traffic Light
(Left turn, Green, Yellow, Red)

Figure 8.16 Traffic light control block diagram.

Traffic
Light

Controller

LeftThrn I
~

Green
...L.

DI#O YI II North/South
e ow J

R~_roQoUt~ Red
LeftThrn I(North/South)
Green...L. EastlWest
Yellow

JRed

Walk I
~

North/South
...L.

DI#l Don'tWaIk J
1Wj- to Crosst~ DO#l Walk I(EastIWest)

...L. EastIWest

Don't Walk J



290 - Embedded Systems Building Blocks, Second Edition

void TrafficCtrllnitIO(void)

DICfgMode ( 0, DI_MODE_EDGE_LOW_GOING); 1* Pedestrian buttons *1
DICfgMode ( 1, DI_MODE_EDGE_LOW_GOING);

DOCfgMode( 0, DO_MODE_DIRECT) ;

DOCfgMode( 1, DO_MODE_DIRECT) ;

DOCfgMode( 2, DO_MODE_DIRECT) ;

DOCfgMode( 3, DO_MODE_DIRECT) ;

DOCfgMode( 4, DO_MODE_DIRECT) ;

DOCfgMode( 5, DO_MODE_DIRECT) ;

DOCfgMode( 6, DO_MODE_DIRECT) ;

DOCfgMode( 7, DO_MODE_DIRECT) ;

DOSet(1, ON) ;

DOSet(7, ON) ;

1* Traffic lights *1

1* Turn ON N/S Green light *1

1* Turn ON E/W Red light *1

DOCfgMode( 8, DO_MODE_DIRECT);

DOCfgMode ( 9, DO_MODE_DIRECT);

DOCfgMode(la, DO_MODE_DIRECT);

DOCfgMode (11, DO_MODE_DIRECT);

DOSet( 9, ON);

DOSet (11, ON);

1* Pedestrian lights

1* Turn ON "DON'T WALK"

*1

*1



Listing 8.1

/*

DIO.C

Chapter 8: Discrete UOs - 291

*********************************************************************************************************

Elntedded Systsns Building Blocks
CCI1plete and Ready-to-Use Modules in C

Discrete I/O Module

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : DIO.C
* Prograrrmer : Jean J. Labrosse
*********************************************************************************************************

*/

/*
*********************************************************************************************************

IN::::LUDE FILES

*********************************************************************************************************

*/

#define DIO GlDBIIIS

#include "includes.h"

/*
*********************************************************************************************************

*********************************************************************************************************

*/

.-
#if
static
static
#endif

[Q_BLINIU1JDE_EN

nersu [QSyncCtr;

rnr8U JX)SyncCtrMax;

/*

*********************************************************************************************************

*********************************************************************************************************

*/

static void

static void

static void

static OCOLEAN
static void

('$PAGE*/

DIIsTrig(DIO_DI *pdi);

DIOIask(void *data);

DIUpdate (void) ;

[QISBlinkEn(DIO_[Q *pjo);

I:XJUpjate (void) ;



292 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

* Returns

*********************************************************************************************************
CCM'IGURE DISCRETE INPUI' EI:GE DErEr:rIOO

* Description This function is used to configure the edge detection capability of the discrete input
channel.

* Arguments n is the discrete input channel to configure (0 ..DIO_MAX_DI-1).
fnct is a pointer to a function that will be executed if the desired edge has been

detected.
arg is a pointer to arguments that are passed to the function called.
None.

****** ********** ** * * ** * * * * *** * *** * * * * * * ** * * * * * ** * * ** ****** ** ** * * * * * * ** ** * *** * * *** * * *** * * ** * ***** * * * * * *** *
*/

#if DI EI:GE_EN
void DICfgEdgeDetectFnct (=SU n, void (*fnct) (void *), void *arg)
(

if (n < DIO_MAX_DI) (
OS_~CRITICAL () ;

DITbl [n] .DITrigFnct fnct;
DITbl[n].DITrigFnctArg arg;
OS_EXIT_CRITICAL () ;

}

#endif
/*$PNlE* /

/*

CCM'IGURE DISCRETE INIUr MJDE

* :D2:scription
* Arguments

* Returns
* Notes

This function is used to configure the rrode of a discrete input channel.
n is the discrete input channel to configure (0 ..DIO_MAX_DI-1).
rrode is the desired rrode and can be:

DI_MJDE_LCM input is forced LCM
DI_MJDE_HIGH input is forced HIGH
DI_MJDE_DIRECI' input is based on state of physical sensor (default)
DI_MJDE_INV input is based on the carplarent of physical sensor
DI_MJDE_EI:GE_LCM_GOIN3 a LCM-going transition is detected
DI_M:}DE_EI:GE_HIGH_GOIN3 a HIGH-going transition is detected
DI_MJDE_ED3E_BOI'H roth a LCM-going and a HIGH-going transition are detected
DI_M:}DE_'IC03LE_LCM_GOIN3 a LCM-going transition is detected in toggle rrode
DI_MJDE_'IC03LE_HIGH_GOIN3 a HIGH-going transition is detected in toggle rrode

: None.
: Edge detection is only available if the configuration constant DI_EI:GE_EN is set to 1.

*** *** * * *** * **** *** ** * ** * * * * ** *** * * * * * * * *** ** * * * * * * * * ** *** ** * * * * * * ** * ****** * ** * **** *** **** * * * *** *** * *** * *
*/

void DICfgMcde (=00 n, =SU node)

if (n < DIO_MAX_DII (
OS_ENI'ER_CRITlCAL ( ) ;

DITbl[n] .DIModeSel = rrode;
OS_EXIT_CRITICAL ( ) ;

}

/*$PN:iE* /



Listing 8.1 (continued)

1*

DIO.C

Chapter 8: Discrete UOs - 293

*********************************************************************************************************

CLEAR A O1SCREI'E INPlJI' CHANNEL

-It Description

* Arguments
* RetUD1S

This function clears the nurrU:ler of edges detected if the discrete input channel is
configured to count edges.
n is the discrete input channel (O..DIO_MAX_DI-l) to clear.
none

*********************************************************************************************************

*1

#if O1_ED3E EN

void O1Clr (=8U n)

if (n < DIO_MAX_01) {

pdi = &DITbl [n] ;

OS_ENIER_CRITICI\L();
if (pdi ->DIModeSel == O1_MJDE_ED3CLG'LGOIN3 I I

pdi ->DIModeSel == O1_MJDE_ED3E_HIQ-CGOIN3 I I

p:J.i->DIModeSel == DI_MJDE_ED3E_OOIH) {
pdi - >DIVal = 0;

}

#endif

I*$PAGE*I

1* See if edge detection rrode selected *1

1* Clear the number of edges detected *1

III



294 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

* I:escription

* Arguments

* Returns

*********************************************************************************************************

GEr THE srATE OF A DISCREI'E INPUI' CHANNEL

This function is used to get the cu=ent state of a discrete input charmel. If the input
node is set to one of the edge detection nodes, the number of edges detected is returned.
n is the discrete input channel (O..DIO_MAX_DI-l).

o if the discrete input is negated or, if an edge has not been detected
1 if the discrete input is asserted
> 0 if edges have been detected

*********************************************************************************************************

*/

=16U DIGet (=00 n)
{

=16U val;

if (n < DIO_MAX_DI) {
OS_ENIER_CRITICAL ( ) ;

val = DITbl[n].DIVal;
OS_EXIT_CRITICAL () ;

return (val);

else {
r'eturn (0);

/*$PAGE*/

/* Get state of DI channel

/ * Return negated for invalid channel

*/

*/



Listing 8.1 (continued)

/*

DIO.C

Chapter 8: Discrete UOs - 295

*********************************************************************************************************

DEI'ELT ECGE CN INPUI'

* Lescription

* Argurrents

* Returns

This function is called to detect an edge (low-going, high-going or both) on the selected
discrete input.
pdi is a pointer to the discrete input data structure.
none

*********************************************************************************************************

*/

#if DI_ED3E_EN
static void DIIsTrig (DIO_DI *pdi)

BCDLEAN trig;

trig ~ FALSE;
switch (pdi->DIMocleSel) {

case DI_M:lDE_ED3E_LCW_OOIN8:
if (pdi->DIPrev ~~ 1 && pdi->DIIn

trig ~ TRUE;
}

break;

case DI_M:lDE_ECGE_HIGH_OOIN8:
if (pdi->DIPrev ~~ 0 && pdi->DlIn

trig ~ TRUE;
}

break;

0) {

1) {

/* Negative going edge

/* Positive going edge

*/

*/

case DI_M:lDE_ED3E_BJI'H:
if «pdi->DIPrev

(pdi ->DIPrev
trig ~ TRUE;

)

break;

1 && pdi->DIIn
o && pdi->DIIn

0) I I

I}) {

/* Both positive and negative going */

)

if (trig == TRUE) {
if (pdi->DITrigFnct ! = NULL) (

(*pdi->DITrigFnct) (pdi ->DITrigFnctArg) ;
}

if (pdi->DIVal < 255)
pdi->DIVal++;

}

pdi ->DIPrev pdi->DIIn;
}

#endif

/*$PAGE*/

/ * See if edge detected
/* Yes, see used defined a function
/* Yes, execute the user function

/* Increrrent number of edges counted

/* Meroorize previous input state

*/

*/
*/

*/

*/



296 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

*********************************************************************************************************

UPDATE DISCREI'E IN OJANNE[S

* Description
* Arguments

* Returns

This function processes all of the discrete irput channels.
None.

None.
*********************************************************************************************************

*/



Listing 8.1 (continued)

static void DIUpdate (void)
{

INrSU i;
DIOJjI *pji;

Chapter 8: Discrete UOs - 297

DIO.C

pdi = &DI'I'bl [OJ;

for (i = 0; i < DID_MAX_DI; i++) {
if (pji->DIBypassEn == FALSE)

switch (pji->DIMcxJ.eSel) {

case DI_MJDE_LCW:
pdi->DIVal = 0;

break;

case DI_MJDEJlIGH:
pdi, ->DIVal = 1;
break;

/* See if discrete input channel is bypassed
/* No, process channel
/* Input is forced lew

/* Input is forced high

*/
*/
*/

*/

case DI_MJDE_DIRECr:

pji->DIVal = (INrSU)pji->DIIn;
break;

/* Input is based on state of physical input

/* Obtain the state of the sensor

*/

*/

case DI_MJDE_INV:
pji->DIVal
break;

/* Input is based on the carplement state of input
(INrSU) (pdi ->DIIn ? a : 1);

*/

III
#endif

case DI_MJDE_ECGE_LCW_GOIN3:
case DI_MJDE_ECGE_HIGH_GOIN3:
case DI_MJDE_ECGE_roIH:

DIIsTrig (pdi) ;

break;

/* Handle edge triggered node */

/*$PAGE*/

case DI_MJDE_~_LCW_mIN3:

if (pdi->DIPrev == 1 && pji->DIIn == 0) {

pji->DIVal = pdi->DIVal ? a : 1;
}

pdi-snrrrev = pdr ->DIIn;
break;

case DI_M:)DE_~_HIGH_mIN3:

if (pji->DIPrev == a && pdi->DlIn == 1) {
pji->DIVa1 = pji->DIVa1 ? a : 1;

}

pdi->DIPrev = pd.i-c-D'I'In r

break;

/* Point to next DID_DO element */



298 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

*********************************************************************************************************

DISCREI'E I/O MANAGER INITIALlZATICN

* ~scription

* Arguments

* Returns

This function initializes the discrete I/O manager rrodule.

None

None.
*********************************************************************************************************

*/

void DIOIni t (void)

INr8U err;
INrSU i;
DIO_DI *pdi;

DIO_IX> *pjOj

pdi = &DI'Ibl[O];

for (i = 0; i < DIO_M!\X_DI; i++)
pdi->DIVal 0;
pdi->DIBypassEn FALSE;

pdi->DIModeSel DI_M:JDE..J)IRECI';
#if DI_ED3E_EN

pdi->DITrigFnct (void *) 0;
pdi->DITrigFnctArg = (void *) 0;

#endif

IXli++i

/* Set the default rrode to direct input

/* No function to execute when transition detected

*/

*/

)

pdo = &IXJI'b1[0];

for (i = 0; i -c DIO_M!\X_IX>; i++)
pdo->IXDut 0;
pdo->IX>BypassEn FAlSE;

pdo->IXModeSel IX>_MJDE_DlRECI'; /* Set the default rrode to direct output
pdo-stotnv FAlSE;

#if IX>_BLINK_MJDE_EN

pdo->IX>BlinkEnSel IX>_BLINK_El'U-DRMAL, /* Blinking is enabled by direct user request
pdo->DOA I,
pdo->IX>B 2;
pdo->IX>OCtr 2;

#endif

I;Xb++i

)

#if IX>_BLINK_M:JDE_EN
DOSetSyncCb:Max{72) ,

#endif

DIoInitIOO,
OSTaskCreate (DIOTask, (void *) 0, &DIOTaskStk [DIO_TASK_SI'K_SlZE], DIO_TASK_PRIO);

/*$PAGE*/

*/

*/



Listing 8.1 (continued)

1*

DIO.C

Chapter 8: Discrete UOs - 299

*********************************************************************************************************

DISCREI'E I/O MANAGER TASK

* De:scription

* Argurrents

* RetUII1S

This task is created by DIOInit () and is responsible for up:lating the discrete irlputs and
discrete outputs.
DIOTask () executes every DIO_TASK_DLY_TICKS.
None.
None.

*********************************************************************************************************

*1

static void DIOTask (void *data)

*********************************************************************************************************

data = data;
for (;;) {

osrimeDly(DIO_TASK_DLY_TICKS) ;

DIRd() ;

DIUpjate () ;
IXJUpdate () ;

rx::wr ();

}

I*$PPGE*I

1*

1* Avoid canpiler warning (uelOS requiranent)

1* Delay between execution of DIO nanager
I * Read physical .input.s and rrap to DI channels
1* Update all DI channels

1* Update all to channels
1* Map ro channels to physical outputs

*1

*1
*1
*1
*1
*1

--SEl' THE SI'ATE OF THE BYPASSED SEN9JR

* Description This function is used to set the state of the bypassed sensor. This function is used to
sirmllate the presence of the sensor. This function is only valid if the bypass 'swi tch '
is open.

* Argurrents n is the discrete irlput channel (0 ..DIO_MAX_DI-l).

val is the state of the bypassed sensor:
o indicates a negated sensor
1 indicates an asserted sensor
> 0 indicates the number of edges detected in edge m::x:le

* Returns : None.

** ** *** * ** * * ** ** ** * *** * *** * * * * * * * * **** ** * * * * ** * * ** * *** * * * * * * * * * * * * ** * * * * * * * * * * ** * * * * * * * * ** * * * * * * * * ** * ** * *
*1

void DI5etBypass (mrSU n, mrl6U val)

if (n < DIO_MAX_DIl {
OS_ENI'ER_CRITICAL ( ) ;

if (DITbl[n] .DIBypassEn TRUE) {
DITbl[n}.DIVal = val;

I*$PNOE* I

1* see if sensor is bypassed
1* Yes, then set the new state of the DI channel

*1
*1



300 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

*********************************************************************************************************
SET THE STATE OF THE SENSOR BYPASS SWITCH

* Description This function is used to set the state of the sensor bypass switch. The sensor is
bypassed when the 'switch' is open (i.e. DIBypassEn is set to TRUE).

* Arguments n is the discrete input channel (0 ..DIO_MAX_DI-l) .
state is the state of the bypass switch:

FAlSE disables sensor bypass (i. e. the bypass 'swi tch' is closed)
TRUE enables sensor bypass (i. e. the bypass 'switch' is cpen)

* Returns : None.
*********************************************************************************************************
*/

void DISetBypassEn (INT8D n, BOOLEAN state)

if (n < DIO_MAX_DI) {
OS_ENI'ER_CRITlCAL () ;
DI'I'bl [n] .DIBypassEn state;
OS_EXIT_CRITlCAL();

/*$PAGE*/



Listing 8.1 (continued)

f*

DIO.C

Chapter 8: Discrete UOs - 301

*********************************************************************************************************

CCNFlGURE THE DIOCREI'E QUrPUI' BLINK IDDE

* r::escription
* Arguments

* Returns

This function is used to configure the blink IIDde of the discrete output channel.
n is the discrete output channel (0 •• DIO_MAX_CO-l) .

IIDde is the desired blink IIDde:
CO_BLINK_EN Blink is always enabled

CO_BLINK_EN_OORM1\L Blink depends on user request's state
DO_BLINK_EN_INV Blink depends on the carplemented user request's state

a is the number of 'ticks' rn (1. .250)
b is the number of 'ticks' for the period (in DO_IDDE_BLINKjSYN:::: IIDde) (1 .. 250)

None.

*********** * ** * * ** **** * * * * * * * * * *** * * * * ** * ** ** * **** * * ** ****** * * ******* * * * ** ** * * * * * ******* * * * * ** * * ** * * * * ***
*f

#if CO_BLINK_IDDE_EN

void DXfgBlink (=SU n, =aU IIDde, =SU a, =SU b)
{

if (n < DIO_MAX_CO)

pdo ~l[n];

a f= DIO_TASICDLY_TIO<S;

b f= DIO_TASICDLY_TIO<S;

OS_ENI'ER_CRITlCAL () ;

pjo->DOBlinkEnSel IIDde;
pjo->DOA a;

pjo->COB b;
OS_EXIT_CRITlCAL () ;

}

#endif

f*$PAGE*f

f* Adjust threshold based on hCM often DIO runs *f --



302 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

*********************************************************************************************************

cc::NFlGURE DISCREI'E OOI'PUI' M)DE

* rEscription
* Arguments

* Returns

This function is used to configure the rrode of a discrete output channel.
n is the discrete output channel to configure (O..DIO_MAX_DO-l).
rrode is the desired rrode and can be:

DO_M)DE_LCW output is forced LCW
DO_M)DE_HIGH output is forced HIGH
DO_M)DE_DIRKT output is based on state of DOBypass
DO_M)DE_BLINK_SYN:: output will be blinking synchronously with DOSyncCtr
DO_M)DE_BLINK_ASYN: output will be blinking based on DOA and DOB

inv indicates whether the output will be inverted:
'TRUE forces the output to be inverted
FALSE does not cause any inversion

: None.

** ***** ********** ** * * * * * * * * ** * * * * * * * * * * * * * *** * * * * ** * * *** * ** * * * * * * * * * * ** * * * * * * * ** 1<* * * * * * * * * * * * * * * * * * * * * * * *
*/

void IXCfgMocle (INI'8U n, INI'SU rrode , BCDLEI\N inv)

if (n < DIO_MAX_DO) {
OS_ENI'ER_CRITlCAL ( ) ;

DOTbl[n] .IXM:x1eSel = rrode;
DOTbl[n] .tornv inv;
OS_EXIT_CRITlCAL();

/*$PAGE*/

/*
*********************************************************************************************************

GET THE STATE OF THE DISCREI'E curPUT

* Description
* Arguments

* Returns

This function is used to obtain the state of the discrete output.
n is the discrete output channel (0 ..DIO_MAX_DO-l).
'TRUE if the output is asserted.
FALSE if the output is negated.

*** ** ** * * * * * * ** * * ** * ** * * * * ** * * * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * ** * * * * * * * * * * * * * * ** * * * ** * * * * * * ** * * * *** * * ** * *
*/

BCDLEI\N DOGet (INI'SU n)
{

BCDLEI\N out;

if (n < DIO_MAX_DO) {
OS_ENI'ER_CRITlCAL () ;

out = DOTbl[n].CCOut;
OS_EXIT_CRITlCAL () ;

return (out);
else {

return {FALSE);

/*$PAGE*/



Listing 8.1 (continued)

/*

DIO.C

Chapter 8: Discrete UOs - 303

*********************************************************************************************************

SEE IF BLINK IS ENABLED

* I:€scription
* Arguments
* Returns

See if blink node is enabled.
pclo is a pointer to the discrete output data structure.
TRUE if blinking is enabled
FAISE otherwise

*********************************************************************************************************

*/

#if OO_BLINK_MJDE_EN
static OCOLEllN OOIsBlinkEn (DIO_OO *pdo)

OCOLEllN en;

/* Blink depends on the carplemented user request's state */
TRUE;

en = FAISE;
switch (pdo->OOBlinkEnSel)

case OO_BLINK_EN:

en = TRUE;
break;

case OO_BLINK_EN_mRMAL:
en = pclo->OOBypass;
break;

case OO_BLINK_EN_INV:
en = pclo->OOBypass ? FAlSE
break;

return (en);
}

#endif

/*$PAGE*/

/* Blink is always enabled

/* Blink depends on user request's state

*/

*/



304 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

**** ***** ** * **** * * * * * * * **** ** * * * * * ***** * * * * ** **** * * **** * *** * * * * ** ** * * * * * * * *** ** ** * ****** * *** * * * * *** * *** * *
SEI' THE srATE OF THE DISCREI'E ourPUT

* Description
* Arguments

* Returns
* Notes

This function is used to set the state of the discrete output.
n is the discrete output channel (0 ..DIO_MAX_OO-l) .
state is the desired state of the output:

FALSE indicates a negated output
TRUE indicates an asserted output

: None.
: The actual output will be carplemented if 'DIInv' is set to TRUE.

**** *** ** * * * * ** * * * * ** * * * * * * * * ** ** **** * * * * * * * ** * * * * * * * * * *** * * * * * * ** * * * * * * * * * **** * * * * -Jr* * * * * * * * ** ** * * * * * ** * *
* /

void IOSet (mTSU n. BCOLEAN state)

if (n < DIO_MAX_OO) {
OS_ENI'ER_CRITICAL () ;

oarbl[n].DOCtrl = state;
OS_EXIT_CRITICAL();

/*$PAGE*/

/*

SEI' THE srATE OF THE BYPASSED rurPUr

* Description This function is used to set the state of the bypassed output. This function is used to
override (or bypass) the application software and allON the output to be controlled
directly. This function is only valid if the bypass switch is open.

* Arguments n is the discrete output channel (0 .. DIO_MAX_OO-l).
state is the desired state of the output:

FALSE indicates a negated output
TRUE indicates an asserted output

* Returns
* Notes

None.
1) The actual output will be cOl1Plemented if 'DIInv' is set to TRUE.
2) In blink rrode , this allows blinking to be enabled or not.

*********************************************************************************************************
*/

void DOSetBypass (mTSU n, BCOLEAN state)

if (n < DIO_MAX_OO) {
OS_ENI'ER_CRITICAL () ;

if (oarbl [nl .OOBypassEn == TRUE)
oarbl[n] .OOBypass = state;

/*$PAGE*/



Listing 8.1 (continued)

/*

DIO.C

Chapter 8: Discrete UOs - 305

b~..--

** * ..* * * *..** ** *..** *..* * * *...,. * * ** * ** * * **..* ..* * * * ***..** * * ** * ** *
SET THE SI'ATE OF THE CXJI'Pill BYPASS

* Description This function is used to set the state of the output bypass switch. The output is
bypassed when the 'switch' is open (i.e. IXJBypassEn is set to 'IRUE).

* Arguments n is the discrete output channel (0 ..DIO_MAX_IXJ-l) .

state is the state of the bypass switch:
FALSE disables output bypass (i.e. the switch is closed)
'IRUE enables output bypass (i.e. the switch is open)

.. Returns : None.

** ******* **** ****** ** ..** ****1<*** **** *** ** ..*** ..**** ** *11** ....*** ..** ** ....*** ....*** ....*** ** ** *1<" *** ....*** ....** ....***
*/

void JXJSet:Byp;issEn (INr8U n, BCOLE'AN state)

if (n < DIO_MAX_IXJ) {
OS_mrER_CRITICAL () ;

DDTbI[n].IXJBypassEn state;
OS_EXIT_CRITICAL ( ) ;

/*$PAGE*/

/*

*********************************************************************************************************
SET THE MAXIMUM VALUE FOR THE SY!'OlRCNXJS COUNI'ER

III
.. Description

* Arguments

* Returns

This function is used to set the IMXimurn value taken by the synchronous counter which is
used in the synchronous blink rrocle.

val is the IMXimurn value for the counter (1..255)

None .

..*** ** ** ..*** ......** ** ..**** *** ......*....* **** ** *..*** ..** ** ......** ..****** ..**** ..*** ....*** **** * *** *** *** ** *** * * ** ** * ** *
*/

#if IXJ_BLINIO'DDE_EN
void JXJSetSynct::trMax (INI'8U val)
{

OS_mrER_CRITlCAL ( ) ;

DOSynct::trMax = val;
OS_EXIT_CRITICAL ( ) ;

}

#endif

/*$PAGE*/



306 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued)

/*

DIO.C

*********************************************************************************************************

UPDllTE DISCREI'E OOT CHANNELS

* Description
* Arguments
* Returns

'Ihis function is called to process all of the discrete output channels.
None.
None.

*********************************************************************************************************

*/



Listing 8.1 (continued)

static void DQUpdate (void)

i;
out;

*pdo;

Chapter 8: Discrete UOs - 307

DIO.C

f * Assurre that the output will be Low unless changed *f

pdo • &OOTbl[Oj;

for (i • 0; i < DIO_MAX_OO; i++) {
if (pdo->OOBypassEn •• FAlSE) {

pdo->!X)Bypass • pdo->lXCtrl;
)

out = FAlSE;
switch (pdo->lXModeSel)

case OO_MJDE_LCW:
break;

case OO_MJDEJlIGH:
out = TRUE;
break;

case OO_MJDE_D=:
out. pdo->OOBypass;
break;

#if OO_BLINK_MJDE_EN
case OO_MJDE_BLINK_SYN::::

if (OOIsBlinkEn(pdo) (
if (pdo->IXlA >= IXlSyncCtr)

out· TRUE;

}

break;

case OO_MJDE_BLINK_ASYN::
if (OOIsBlinkEn(pdo» (

if (pdo->IXlA >= pdo->OOOCtr)
out. TRUE;

}

if (pdo->OOOCtr < pdo->OOB)
p:1o->OOOCtr++ ;

else {
pdo->OOOCtr • 0;

}

break;
#endif

}

if (pdo->OOInv •• TRUE) {
pdo->IXXJut = out ? FAlSE TRUE;

else (
pdo->IXXJut = out;

pdo++;

f* Process all discrete output channels
f* See if 00 channel is enabled
f* Obtain control state from application

f* Output will in fact be Low

f* Output will be high

f* Output is based on state of user supplied state

f* Sync. Blink rrode
f* See if Blink is enabled
f* ... yes, High when beIow threshold

f* Async. Blink rrode
f* See if Blink is enabled
f* ... yes, High when beLew threshold

f* Update the threshold counter

f* See if output needs to be inverted
f * yes, crnplement output

/* ... no, no inversion!

f* Point to next DIO_OO element

*f
*f
*f

* f

*f

*f

*f
*f
*f

*f
*f
*f

*f

*f
*f

*f

*f

--

)

#if OO_BLINK_MJDE__EN
if (IXlSyncCtr < OOSyncCtrMax)

OOSyncCtr++;
else (

OOSyncCtr 0;
)

#endif
}

f* Update the synchronous free running ctr * f



308 - Embedded Systems Building Blocks, Second Edition

Listing 8.1 (continued) DIO.C

*********************************************************************************************************
=TIALIZE PHYSICAL I/Os

82C55 chip initialized as fo.l.Lows :is assumed to be an
(Discrete outputs)
(Discrete inputs)
(not used)

This function is by DIOInit () to initialze the physical I/O used by the DIO driver.
None.
None.
~e physical 1/0

Port A = or:
Port B = IN

Port C = a:rr

* Description
* Arguments
* Returns

* Notes

*********************************************************************************************************
*1

void DIOInitIO (void)

outp(Ox0303, Ox82); /* Port A = a:rr, Port BIN, Port C = a:rr *1

1*
*'********************************************************************************************************

READ PHYSICAL INPUI'S

* Cescription

* Arguments
* Returns

This function is called to read and ITI3p all of the physical inputs used for discrete
inputs and nap these inputs to their appropriate discrete input data structure.
None.
None.

*********************************************************************************************************
*1

void DIRd (void)

DIO_DI *pdi;
INI'8U i;
INr8U in;
INr8U rnsk;

pdi &DIllil [0] ;
rnsk OxOl;
in inp(Ox030l);
for (i = 0; i < 8; i++) {

pdi->DIIn (BCXJLE'AN) (in & rnsk)
msk «= 1;
pdi++;

1 0;

1* Point at beginning of discrete inputs
1* Set rrask to extract bit 0
1* Read the physical port (8 bits)
1* Map all 8 bits to first 8 DI channels

*1
*I
*1
*1

}

I*$PAGE*I



Listing 8.1 (continued)

/*

DIO.C

Chapter 8: Discrete VOs - 309

************************************;1<:***************** * * ** * ** * * * * * * * ** * * ** ** * * * ** * * * * * * * * * * * * * * * * * * * * * ***
UPDATE PHYSICAL <XITP\JI'S

* D2scription

* Arguments
* Returns

This function is called to rrap all of the discrete output channels to their appropriate
physical destinations.
None.

None.

*********************************************************************************************************
*/

void !XWr (void)

*pdo;

i;
out;
rnsk;

pdo =bl(Ol;
rnsk Ox01;
out OxOO;
for (i = 0; i < 8; i++) {

if (pdo->IXD.lt == TRUE)

out 1= rnsk;

rnsk «= 1
pdo++,

}

outp(Ox0300, out);
}

#endif

/* Point at first discrete output channel
/* First OJ will be rrapped to bit 0
/* Local 8 bit port image
/* Map first 8 OJ to 8 bit port image

/* Output port image to physical port

*/

*/
*/
*/

*/

III



310 - Embedded Systems Building Blocks, Second Edition

Listing 8.2

f*

DIO.H

*********************************************************************************************************

Einbedded systems Building Blocks
Corrplete and Ready-to-Use Modules in C

Discrete I/O Module

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : DIO.H
* Proqranmar' : Jean J. Labrosse
*********************************************************************************************************

*f

f*
*********************************************************************************************************

CONFIGURATION CCtilsrANrS
*********************************************************************************************************

*f

#ifndef CFG_H

#define DIO_TASICPRIO 40

#define DIO_TASICDLY_TICKS 1
#define DIO_'rASICSTICSIZE 512

#define DIO_MAX_DI 8
#define DIO_MAX_OO 8

#define DI_ECGE_EN 1

#define OO_BLINICMJDE_EN 1

#endif

#ifdef DIO_GlDBIILS

#define DIO_=
#else
#define DIO_= extern
#endif

f* Maximum number of Discrete Input Channels (1 .. 255) *f
f* Maximum number of Discrete OUtput Channels (1. .255) * f

f* Enable erne generation to support; edge trig. (when 1) * f

f* Enable cede generation to support; blink m:xl.e (when 1) *f



Listing 8.2 (continued)

/*

DIO.H

Chapter 8: Discrete VOs - 311

*********************************************************************************************************

DISCRErE INPUI' CCNsrANrS
*********************************************************************************************************

*/

#define DI_MJDE_La'I 0
#define DI_MJDE_HIGH 1
#define DI_MJDE_DIREr::I' 2
#define DI_MJDE_INV 3
#define DI_MJDE_EIX:E_La'l_GJIN:; 4
#define DI_MJDE_EIX:E_HIGH_GJIN:; 5
#define DI_MJDE_EIX:E_OOffi 6
#define DI_MJDE_'IC03LE_La'l_GJIN:; 7
#define DI_MJDE_'IC03LE_HIGH_GJIN:; 8

/* DI MJDE SELECTOR VALUES * /
/* Input is forced lC>N * /
/* Input is forced high * /
/* Input is based on state of physical input * /
/* Input is based on the canplement of the physical input * /
/* L<::w going edge detection of input * /
/* High going edge detection of input */
/* Both law and high going edge detection of input * /
/* L<::w going edge detection of input * /
/* High going edge detection of input */

#define DI_EIX:E_La'l_GJIN:;
#define DI_EIX:E_HIGH_GJIN:;
#define DI_EIX:E_OOffi

/*$PlGE*/

o
1
2

/* DI EIX:E TRIG3ERIN:: MJDE SELEX::TOR VALUES
/* Negative going edge
/* Positive going edge
/* Both positive and negative going

*/
*/
*/

*/



312 -Embedded Systems Building Blocks, Second Edition

Listing 8.2 (continued)

/*

DIO.H

*********************************************************************************************************

DISCREI'E corarr CCNsrANrS

***** ** ** * * * * ** * * ** ** * * *** * ** ** * * ** **** * * * * * **** * * * **** * * ****** * ** * * * * * * *** * * * * * ************* * * ** ** * * * * * *
*/

#define ro_MJDE_La>I
#define ro_MJDE_HIGH
#define ro_MJDE_DIRECI'
#def ine ro-.-MJDE_BLINK_SYN:
#define ro_MJDE_BLINKj\SYN::

o
1
2

3

4

/* to MJDE SElEIOR VALUES
/* output will be 1=
/* output will be high
/* output is based on state of user supplied state
/* Sync. Blink rrode
/ * Async. Blink rrode

*/
*/
*/
*/
*/

*/

#define ro_BLINK_EN
#define ro_BLINK_EN_IDRMAL
#define ro_BLINK_EN_INV

/*

o
1

2

/* ro BLINK MJDE ENABLE SElEIOR VALUES */
/* Blink is always enabled */

/* Blink depends on user request's state */
/* Blink depends on the ccnplanented user request's state */

*********************************************************************************************************

DATA TYPES

*********************************************************************************************************

*/

typedef struct dio di
BCDLEAN DIIn;
INr16U DIVal ;

BCDLEAN DIPrev;
BCDLEAN DIBypassEn;

INr8U DIModeSel;
#if DI_ED3E_EN

void (*DITrigFnct) (void *J;

void *DITrigFnctArg;
#endif
) DIO_DI;

typedef struct dio_do
BCDLEAN lXOut;

BCDLEAN cectrl;
BCDLEl\N roBypass;
BCDLEAN IOBypassEn;

INr8U IXModeSel ;
INr8U roBlinkEnSel;
BCDLEAN rornv.

#if ro_BLINK_MJDE_EN
INr8U rnA;
INr8U !XlB;

INrBU roOCtr;
#endif
} DIo_ro;
/*$PAGE*/

/* DISCRErE INPUI' 0lANNEL DATA STRIrIURE

/* Current state of sensor input
/* State of discrete input channel (or # of transitions)
/* Previous state of DIIn for edge detection
/* Bypass enable switch (Bypass when TRUE)

/* Discrete input channel rrode selector

/* Function to execute if edge triggered
/* arguments passed to function when edge detected

/* DISCREI'E comrr 0lANNEL DATA STRUCIURE

/* Current st.ate of discrete output channel
/* Discrete output control request
/* Discrete output control bypass state
/* Bypass enable switch (Bypass when TRUE)

/* Discrete output charmel rrode selector
/* Blink enable mode selector
/* Discrete output inverter selector (Invert when TRUE)

/* Blink rrode CN time
/* Asynchronous blink node period
/* Asynchronous blink mode period ccunter

*/

*/
*/
*/
*/
*/

*/
*/

*/
*/
*/
*/

*/
*/

*/
*/

*/

*/
*/



Listing 8.2 (continued)

f*

DIO.H

Chapter 8: Discrete 1I0s - 313

******** ************ ****** ***** ******* * * * * * ******** * ****** ** ** * * * *** * * * * * * ** * * * ***** * * * * ** *** * ** * *** * * ***
GlDBI\L VARIABLES

*********************************************************************************************************

*f

DIO_= DIO_Dl

DIO_= DIO_DO

f*

DI'Ib1 [DIO_MAX_DI] ;

DO'IbI [DIO_MAX_DOJ ;

** * * ** * * ** * * * * * * ** ** ** * * * * *** * **** * * * * * * * * * * ** * ** * * * * ****** ** * * * ** ** * * * * * * ** *** * * * **** * **** * **** * * * * * * ** *
~ICl'! PROIOI'YPES

*********************************************************************************************************

*f

void

void

INrl6U

void

void

#if
void

void

#endif

void

B:XlLEAN

void

void

void

#if
void

void

#endif

f*

DIOInit (void) ;

DICfgMode(INr8U n, INr8U mxJ.e);

DIGet(INr8U n);

DISetBypassEn(INr8U n, B:XlLEAN state);

DISetBypass(INr8U n, INrl6U val);

DI_ECGE_EN

DIClr (INr8U n) ;

DICfgEJ:lgeDetectFnct(INr8U n, void (*fnct) (void *), void *arg);

DOCfgMode(INr8U n , INr8U rrode , B:XlLE!\N inv);

DOGet (INr8U n) ;

DOSet(INrBU n, B:XlLE!\N state);

DOSetBypass (INr8U n, EOJLE!\N state);

DOSetBypassEn(INrBU n , EOJLEAN state);

DO_BLlNIU.,JDE_EN

DOCfgBlink(INr8U n , INr8U node, INrBU a, INr8U b);

DOSetSyncCtrMax(INr8U val);

II

** ********** ** *** ********* * * * ********** ************ *** ******** * ** ************** ********* ** ** ******** * * * **
~ICl'! PROIOI'YPES

Iil\RIWIRE SPECIFIC

***** ********* ** * * * * * * * * ** * * * * * * * * ****** ** ** * * * * * * ** * * ** * ** * * * * * * * * * * * * *** *** * * * * * *** * * * * * * * ** * * *** * * * * * *
*f

void DIOInitlO(void);

void DIRd(void);

void ID'Ir(void);



314 - Embedded Systems Building Blocks, Second Edition



Chapterv

Fixed-Point Math
Most low-end microprocessors (typical of embedded processors) do not provide hardware-assisted
floating-point math. Microprocessor manufacturers unfortunately seem to feel that floating-point math
is not very important in embedded systems. This has not been my experience. Fortunately, ANSI C com
pilers allow you to use floating-point math but at a cost; floating-point libraries require extra ROM and
RAM but most importantly, they require more processing time than integer math. For example, float
ing-point addition could take hundreds of microseconds on a low-end, 8-bit microprocessor, whereas it
typically takes only a few microseconds to perform a 16-bit integer addition. Multiplications and espe
cially divisions are even worse. As an embedded system programmer, you are often confronted with the
task of writing the fastest and smallest possible code for real-time operations. This chapter will show
you how to perform basic arithmetic operations on fractional numbers by using only integers. In other
words, this chapter will answer the questions: "Without using floating-point arithmetic, how would you
add 12.34 and 987.654, multiply 3.1-H6 by 5.4, or divide 0.00456 by 98.7T'

Throughout this chapter. I will be using 16-bit integers, but most of the concepts presented here
apply to any integer size. This chapter will show you how to use the concept of fixed-point math to get
the most out of integer arithmetic. Chapter 10 will make use of the information presented in this chapter.

9.00 Fixed-Point Numbers
Fixed-point is an alternative form for expressing numerical values. Fixed-point math is integer math, but
because it allows fractions. it is much more versatile and often can substitute for slower and more cum
bersome floating-point operations. The idea of fixed-point math is to trick the computer into thinking
you are talking about an integer when in fact you. the programmer. know that you are dealing with a
number that has a fractional component.

Figure 9.1.a shows a 16-bit integer. The computer thinks only in bits. In integer arithmetic. the bit
positions are said to represent 2 to progressively higher powers starting from the right. The bit string
OOOOOOOOOOO IססOO. therefore, represents the number 16.

315



316 - Embedded Systems Building Blocks, Second Edition

Figure 9.l.a Signed and unsigned 16-bit integers.

Unsigned 16-bit integer

16-bit Integer
o 0 000 0 0 0 0 001 000 0

Signed 16-bit integer •
15-bit Integer

000 0 0 0 0 001 000 0

Sign~

0 x 2°

0 X 2 1

o X 2 2

0 X 2 3

0 X 24

0 X 2 5

0 X 2 6

Sum 16

o

o

o

o

16

o

o

A practitioner of fixed-point math would observe that there is an implied decimal point (called a
radix point) to the right of the rightmost bit position and would ask, "Why must it fall there? Why can't
I put the radix point somewhere else?" In other words, why must the rightmost bit represent 2°?

Figure 9.1.b shows the same 16-bit string. In this case, the programmer decides to place the radix
point between the 5th and 6th bit positions, which make the rightmost bit 2-5 • The string
0000000000010000 is now not 16, but 0.5. Another way to look at this is to say that the integer 16 has
been scaled by 2-5 (multiplied by 2-5, or .03125):

-516 x 2 = 0.5

Figure 9.l.b Signed and unsignedfixed-point numbers with radix
point between 5th and 6th bits.

Unsigned 16-bit integer

II bit Integer 5 bit Fraction
o 0 000 0 0 0 0 0 0 1 0 000

\ , \ \ \ " " '\ "
'\ \, \, " \, \, \, "\, -.

-------------23 22 2I 2° 2-1 2-2 '2-3 2-4 2-5

Decimal Point ---'
(Radix point)

(Defined by Programmer)

.. Signed 16-bit integer •
~Io

10 bit Integer 5 bit Fraction

0 0 0 0 0 0 0 o0 1 0 0 0 0

Sign~

0 x r 5
= 0

0 x 2-4 = 0

0 x r 3
= 0

0 X 2-2 = 0

1 X 2-1 = 0.5

0 x 2° 0

0 X 2 1 0

Sum 0.5



Chapter 9: Fixed-Point Math -317

The computer, then, thinks it is working with the integer 16, but the programmer independently main
tains a record of how the 16 should be scaled.

By manipulating the position of the radix point, a programmer can scale integers into fractional val
ues. The location of the radix point defines a convention for how the program will interpret a 16-bit
string. As the radix point moves to the left (increasing the fractional portion of the string) the fraction
becomes more precise and the overall range of the number diminishes (because there are fewer
whole-number places).

The unsigned integer of Figure 9.1.b can be used to represent numbers having a range of 0.0 to
2047.96875, while the signed integer can represent numbers between -1024.0 to 1023.96875 (assuming
twos complement). Both signed and unsigned numbers have a resolution of 1I32nd (0.03125). You can
used fixed-point to represent distances, surfaces, volumes, temperatures, pressures, etc. Depending on
the application, you can fix the position of the radix point elsewhere to suit the range of numbers you
have to deal with.

Figure 9.2 shows how you can represent temperatures from -459.67 OF (0° Kelvin, absolute 0) to
+2048 OF by using an l l-bit integer and a 4-bit fraction. An integer value of 11528 represents a temper

ature of 720.5 OF (11528 x 2-4). Using this format, temperatures can be represented with a 1/16th OF
resolution. The temperature scale is an ideal use for fixed-point math because the range is well defined,
so the programmer can easily set the location of the radix point in advance.

Figure 9.2 Representing temperatures from -459.67 OF to 2047 "F:

II
Signed 16-bit integer,...
f1 ~it Irtejer! ! !

Decimal Point~
(Radix point)

When your program performs arithmetic operations (add, subtract, multiply, or divide) on
fixed-point numbers, it actually manipulates integers. (Microprocessors do not provide mechanisms to
represent fixed-point numbers.) This means that the programmer must personally keep track of the posi
tion of the radix points. To represent fixed-point numbers, I will use the following notation:

Fixed-point number = «mantissaz-Seexponent»

where S means that the mantissa needs to be scaled by 2exponent to determine the value of the
fixed-point number. The exponent is sometimes called the scale factor. The mantissa is always an inte
ger number. I use this notation to differentiate the fixed-point notation from the floating-point notation
<mantissas-Ecexponent>. Following are some examples of the use of this notation.

58-3

318-8

-1238-16

represents 0.6250or, 5 x 2- 3 or,5 + 8

represents 0.1211 or, 31 x 2- 8 or,31+ 256

represents-o.OO1877 or, -123 x 2-16 or,-l23 + 65536

The mantissa is shown in bold to emphasize that the fixed-point number is actually represented using an
integer whereas the exponent is maintained mentally by the programmer.



318 - Embedded Systems Building Blocks, Second Edition

Scaling is done to allow almost any number to be represented using a 16-bit integer. The position of
the radix point is determined from the largest number that you need to represent. Equation [9.1] shows
how to obtain the mantissa and the exponent (scale factor) for any positive value x between 0.0 and
65535.0.

POSITIVE NUMBERS (0.0 < x :::; 65535.0):

[9.1]
(
6553~

[

log x)J
factor= -INT log(2)

mantissa = INT(2-!actor x x + 0.5)

where 1NT () means that you take the integer portion of the result. In other words, the result is trun
cated. log () is the logarithm of the number in parentheses (either Loqn () or 10g10 ()). When x is 0.0
both the mantissa and the factor are O. To represent the number 1.2345 using the fixed-point number
notation, you would substitute 1.2345 in Equation [9.1] as follows:

_ [log(~)J
-15- -INT log(2)

40452 = INT(2 15 x 1.2345 + 0.5)

Thus, the number 1.2345 is written as 40452S-15.
Equation [9.2] shows how to obtain the mantissa and the exponent for a positive value of x that is

greater than 65535.0.

POSITIVE NUMBERS(x > 65535.0):

[9.2]
[

lOg(65ili)J
factor= INT log(2) +1

mantissa = x
2!actor

Again, 1NT () means that we take the integer portion of the result. log () is the logarithm of the number
in parentheses. For example, the number 107573 is represented as:

10757~

[

log( 6ill5)J
1= INT log(2) +1



Chapter 9: Fixed-Point Math -319

53786 = 107573
21

Thus, the number 107573 is written as 53786S 1. Note that in this case, we lose resolution because we
would actually need 17 bits to represent 107573 but we only have 16-bits.

Equation [9.3] shows how to obtain the mantissa and the exponent for any signed value x between 
32767.0 to +32767.0 (inclusively).

SIGNED NUMBERS (-32767.0 ~ x s +32767, except 0.0):

~--

where 1NT () means that we take the integer portion of the result. In other words, the result is truncated.
Ix I means the absolute value of the number to scale. log () is the logarithm of the number in parenthe
ses. When x is 0.0, both the mantissa and the factor are O.

Equation [9.4] shows how to obtain the mantissa and the exponent for a signed integer that is less
than -32767.0 and greater than +32767.0.

SIGNED NUMBERS (-32767.0 > x > +32767):

[9.3]

[9.4]

[

lOg(y))
factor= -INT log (2)

mantissa = 2-factor x x

(
Ixl )

[

log 32767)
factor= INT log(2) +1 II
mantissa =

x
2factor

Again, 1NT () means that we take the integer portion of the result. Ix I is the absolute value of the num
ber to scale, and log () is the logarithm of the number in parentheses.

9.01 Fixed-Point Addition and Subtraction
To add or subtract two fixed-point numbers, the exponent of both numbers must be the same. For exam
ple, you could not add the signed fixed-point number 20480S-15 (0.6250) with 31745S-18 (0.1211)
because they do not represent the same order of magnitude. In order to add these numbers, you would
first convert the smaller number (31745S-18) to the order of magnitude of the larger number. Youwould
do this by adding 3 to the exponent (which is the same as multiplying by 23, or 8) and then dividing the
mantissa by 8. The number would be 3968S-15 (i.e., 3968/32768). The result of the addition is thus



320 - Embedded Systems Building Blocks, Second Edition

24448S-15 (0.746094). Pretty simple, right? Actually, things gets a little trickier when you add two
numbers and the result exceeds unity. For example:

0.99+ 0.99= 1.98or

32440S-15 + 32440S-15 = 64880S-15

What actually happens here is that the addition overflows because the maximum value for a signed
16-bit fixed-point number can only be 32767! In this case, you can avoid the overflow by scaling both
numbers to S-14 instead of S-15 as shown following this paragraph. You will thus need to be careful
when you add or subtract two fixed-point numbers.

0.99+ 0.99= 1.98or

16220S-14+ 16220S-14 = 32440S-14

9.02 Fixed-Point Multiplication
To multiply fixed-point numbers, you simply multiply the mantissa of the two numbers and add the
exponents. For example, we can multiply the two signed 16-bit fixed-point numbers:

0.6250X 0.1211 = 0.075688 or

20480S-15 X 3174SS-18 = 6S0137600S-33

One thing to note here is that when you multiply two signed 16-bit numbers, the result is a 30-bit
number. Because of this, your C compiler needs to support signed longs (32-bit numbers). In the previ
ous example, you must divide the number by 32768S-15 (i.e., this is a division by 1.0 and does not
change the result) to obtain a signed 16-bit result. A division by 32768S-15 simply involves shifting the
mantissa right 15 places. In this case, the result would be 19840S-18 (or 0.075684).

For unsigned fixed-point numbers, the multiplication yields a 32-bit result. For example, 0.6250 X
0.1211 looks like this:

40960S-16 X 63491S-19 = 2600S91360S-35

A division of 65536 would make the previous result fit back into an unsigned 16-bit integer:
39681S-19 (or 0.075686). Note that the result is more accurate than its signed version because more
bits were used in the unsigned multiplication.

9.03 Fixed-Point Division
Divisions are always trickier (and slower) than multiplications. For example, instead of dividing a num
ber by 10, you should consider multiplying the number by 0.1 (or 26214S-18, signed). If you have to
perform a division, however, you simply divide the mantissas and subtract the exponents as:

0.2345 + -10.987 = -0.021343or

30736S-17 + -22S01S-11 =-1s-6 (-0.015625)



Chapter 9: Fixed-Point Math - 321

Note how the result is totally incorrect. This is because the division produced a result of -1 and a
remainder of 8235. C compilers don't know what to do with remainders. To avoid this problem, you
simply need to scale the dividend by 32768S-l5 and remember that the final result has been multiplied
by 32768:

(30736S--l7 X 32768S--15)+-22501S--11=-44760S--2l (or-D.02l343)

Note that the mantissa of the result doesn't fit in a l6-bit signed number. Because of this, the result
needs to be adjusted as follows:

--44760S--21 + 2S--1 =-22380S--2O(or--O.021343)

The overflow problem will occur whenever the mantissa of the numerator is greater than the mantissa of
the denominator. Your code will have to check for this situation.

9.04 Fixed-Point Comparison
Comparing two fixed-point numbers presents a problem similar to the problem of adding and subtract
ing: the exponent of both numbers must be the same. For example, comparing 20480S-15 with
31745S-18 requires that you adjust the smaller of the two numbers to match the scale of the larger.
31745S-18 would thus become 3968S-15 (i.e., 3968/32768). Once both numbers represent the same
order of magnitude, comparing the two numbers is simply a matter of comparing the mantissas.

9.05 Using Fixed-Point Arithmetic, Example #1
Suppose you needed to compute the circumference of a circle that can vary in diameter from 1.22 to
20.8 inches. The circumference of a circle is given by:

III
[9.5] Circumference = 7t x Diameter

Because diameters are positive quantities, we will use unsigned fixed-point numbers. 11: can be repre
sented as 51472S-14 (actually 3.141602). As shown in Figure 9.3, we need a 5-bit integer to represent
the diameter of the circle; the other 11 bits of an unsigned 16-bit integer number are used to hold the
fraction. In other words, the diameter will be scaled by 211• Numbers for the diameter will be repre
sented as <mantissa>S-ll.



322 - Embedded Systems Building Blocks, Second Edition

Figure 9.3 Fixed-point representation for circle diameter.

Unsigned 16-bit integer

11 bit Fraction
! ! ! !

The circumference of the circle is computed in C as follows:

INT16U Circumference(INT16U diameter)

INT16U X;

X = (INT16S) ((51472L * (INT32U)diameter) » 16);

return (x);

Multiplying two 16-bit unsigned integers will yield a 32-bit result, so you must adjust the resultant
mantissa by dividing by 65536 (i.e., shifting right 16 places). The exponent of the result is determined
as follows. 1t has the exponent of S-14 and the diameter has an exponent of S-I1. However, the right
shift is the same as dividing by 65536S-l6 and thus, the exponent of the result is «-14) + (-11) - (-16))
::: S-9 (S-14 X S-l1 + S-16).

Our minimum circumference is obtained by substituting a 1.22 (2498S-11) inch diameter circle in
the previous code. The multiplication yields 128577056S-25. After the shift, the result is 1961S-9
(3.830078) which is within about 0.07 percent of the correct result of 3.832743. Our maximum circum
ference is obtained by substituting a 20.8 (42598S-11) inch diameter circle in the previous code. The
multiplication yields 2192604256S-25. After the shift, the result is 33456S-9 (65.343750) which is
within about 0.002 percent of the correct result of 65.345127.

9.06 Using Fixed-Point Arithmetic, Example #2
Computing the volume of a cylinder involves more multiplications. The formula for the volume of a cyl
inder is:

[9.6] V 1
1t x (Diameter)2 x Length

o ume = 4

Suppose the cylinder length varies from 9 to 24 inches, and the diameter varies from 1 to 12 inches.
To compute the volume of a cylinder, I will again use unsigned integer math because all arguments are
strictly positive. 1t can be represented as 51472S-14 (actually 3.141602). To represent the length of the
cylinder, we need 5 bits for the integer portion (up to 31 inches). The other 11 bits of an unsigned l S-bit
integer number are used to hold the fraction; in other words, the length will be scaled by 211• Similarly,
the diameter will require 4 bits for the integer portion and 12 bits for the fraction. This is shown in Fig-



Chapter 9: Fixed-Point Math - 323

ure 9.4. Numbers representing the length will be represented as <mantissa>S--llwhile numbers for the
diameter will be represented as <mantissa>S--12.

Figure 9.4 Fixed-point representation for cylinder length and
diameter.

Unsigned l6-bit integer

11 bit Fraction, , , ,

~I

Unsigned l6-bit integer

12 bit Fraction
! ! f I ,

The volume of the cylinder is computed in C as follows: 1-
...-,

INT16U Volume(INT16U length, INT16U diameter)

{

INT32U X;

INT32U dia;

dia (INT32U)diameter;

X (51472L * dial » 16; /* s- 10 Result */

x (x * dial » 16; /* s- 6 Result */

x (x * (INT32U) length) » 16; /* s- 1 Result */

return ((INT16U)x); /* s- 3 Result */

II

/ \.

51472S--l4X 4096S--l2~2)"29~~or3217S--lOafteI;,theshift
3217S--lOX 4096S--l2~31~ti832S--22or201S-6aftertheshift

201S-6X 18432S--11 is370~~2S--17or56S--l afterthe shift

1st Multiplication

2ndMultiplication

3rdMultiplication

Each multiplication is carried out separately because you must convert the resulting 32-bit mantissa
to a l6-bit mantissa. The exponent of the result is 8-10 (8-14 X 8-12 -;- 8- 16). The diameter is multi
plied by the intermediate result and again, the new result is adjusted. The exponent of this new result is
8-6 (8-10 X 8-12 -;- 8-16). Finally, the length is multiplied by the surface of the circle to obtain the
volume. The exponent of the result is 8-1 (5-6 X 8-11 -;- 8-16), however, you can avoid dividing by 4
simply by changing the scale of the result. Thus, the final exponent is 8-3.

Our minimum volume is obtained by substituting a 9-inch long (184328-11) l-inch diameter cylin
der (40968-12).



1stMultiplication

2ndMultiplication

3rdMultiplication

324 - Embedded Systems Building Blocks, Second Edition

The returned value is actually scaled 8-3 and thus, the final result is 568-3 (or 7.00). The real vol
ume should be 7.06858, which results in an error of 0.98 percent. Performing the same operations using
our maximum values (l2-inch diameter (491528-12) and a 24-inch length (491528-11)) will yield the
following results:

1stMultiplication 51472S--l4X 49152S--l2 is2529951744S--26or
38604S--1O afterthe shift.

2ndMultiplication 38604S--1O X 49152S--l2 is1897463808S--22or
28953S--6afterthe shift.

3rdMultiplication 28953S--6X 49152S--11 is1423097856S--l7 or21714S--l afterthe shift.

The returned value is then 217148-3 (2714.25). The actual volume is 2714.336 yielding an error of
only 0.003 percent. One thing to note is that the second multiplication produced a number that is less
than half of the full scale. In other words, 28953 is less than half the full range of an unsigned 16-bit
number (0 to 65535). By shifting left by 15 places instead of 16 places, you could actually obtain better
accuracy from that point on, as shown:

51472S--14X 49152S--12is 2529951744S--26 or
38604S--l0 afterthe shift.

38604S--1O X 49152S--12is 1897463808S--22or
57906S--7aftera shiftofonly15places.

57906S--7X 49152S--11 is2846195712S--18
or43429S--4aftertheshift.

The returned value is this case is 434298-4, which is 2714.3125, but the computation was per
formed with better accuracy throughout. This improvement in accuracy would help when computing
smaller volumes. The final code would be:

INT16U Volume (INT16U length, INT16U diameter)

INT32U x;

INT32U dia;

dia (INT32U)diameter;

x (51472L * dial » 16;

x (x * dial » 15;

x (x * (INT32U) length) » 16;

retuxn (( INT16U)x) ;

/* S- 10 Result

/* S- 7 Result

/ * s- 2 Result

/* S- 4 Result

*/

*/

*/

*/



Chapter 9: Fixed-Point Math - 325

9.07 Using Fixed-Point Arithmetic, Example #3
You can use fixed-point arithmetic to convert °C (degrees Celcius) to of (degrees Fahrenheit). The equa
tion for converting of to °C is:

[9.7]

In order to determine how to implement the conversion equation using fixed-point arithmetic, you
need to know the range of temperatures that you will be dealing with. Suppose that you are interested in
temperatures from --40 of to 250 "F. The range chosen forces you to use signed integer arithmetic. Also,
you need 8 bits to represent temperatures up to 250 of, and thus, 7 bits will be used to represent frac
tional degrees. The bias of 32 OF is represented as 4096S-7, while the constant multiplier 5/9 can be
represented as 18204S-15. The code to perform the conversion is:

The temperature in °C is scaled S-7 (i.e., S-7 X S-15 + S-15). Performing the conversion from °C
to of is just as simple. The equation is:

[9.8] OF = °C x 9 + 32
5 II

Again, the 32 OF constant is 4096S-7, while the constant multiplier 9/5 is 29491S-14. The conver
sion code is:

Note that to obtain an S-7 result, I had to divide the result of the multiplication by 16384 instead of
32768.



326 - Embedded Systems Building Blocks, Second Edition

9.08 Conclusion
To use fixed-point arithmetic, you need to know the range of values that the variables can take.
Fixed-point arithmetic operations will generally execute quickly because most microprocessors are
good at performing integer operations. This performance is at the expense of accuracy and complexity.
To improve the accuracy you have to use more bits. Using fixed-point arithmetic produces large errors
when using small numbers (i.e., numbers at the bottom of the scale) and decent results using large num
bers. For large numbers, the improvement in accuracy is a result of using more bits. Fixed-point works
very well when the dynamic range of the numbers is small.

9.09 Bibliography
Crowell, Charles
"Floating-Point Arithmetic with the TMS32010"
Houston, TX
Texas Instruments Inc., 1986

Institute of Electrical and Electronics Engineers, Inc.
ANSUlEEE Std 754-1985, IEEE Standardfor Binary Floating-Point Arithmetic
345 East 47th Street
New York, NY 10017

Knuth, Donald E.
The Art of Computer Programming, Vol. 2, Seminumerical Algorithms
Reading, Massachusetts
Addison-Wesley Publishing Company
ISBN 0-201-03822-6

Morgan, Don
Numerical Methods, Real-Time and Embedded Systems Programming
San Mateo, CA
M&T Publishing, Inc.
ISBN 1-55851-232-2

Prosise, Jeff
"Questions & Answer"
Microsoft Systems Journal
March 1993, p85,86

Simar, Ray Jr.
"Floating-Point Arithmetic with the TMS3201O"
Houston, TX
Texas Instruments Inc., 1986



Chapter 10

AnalogI/Os
Natural parameters such as temperature, pressure, displacement, altitude, humidity, flow, etc., are ana
log. In other words, the value taken by these parameters can change continuously instead of in discrete
steps. To be manipulated by a computer, these analog parameters must be converted to digital. This is
called analog-to-digital conversion.

Certain analog parameters can also be controlled. For example, the speed of an automobile is
adjusted by changing the position of the throttle. The exact position of the throttle depends on many fac
tors, such as wind resistance, whether you are going uphill or downhill, etc. You can control the flow of
liquids or gases by adjusting the opening of a valve. (Flow, in this case, is not necessarily proportional to
the opening of the valve, but this is a different issue.) The position of the heads in some hard disk drives
is controlled by voice coil type actuators. An actuator is a device that converts electrical or pneumatic
signals into linear motion. To be controlled by a computer, analog parameters must be converted from
their digital form to analog. This is called digital-to-analog conversion.

This chapter discusses software issues relating to analog-to-digital conversions and digital-to-analog
conversions. I will also describe how I implemented an analog 110 module. The analog 110 module
offers the following features:

Reads and scales from I to 250 analog inputs.

Updates and scales from 1 to 250 analog outputs.

• Each analog 110 channel can define its own scaling function.

Your application obtains Engineering Units from analog input channels instead of ADC counts.

• Your application provides Engineering Units to analog output channels instead of DAC counts.

This chapter assumes you understand the concept of fixed-point math, described in Chapter 9.

327



328 - Embedded Systems Building Blocks, Second Edition

10.00 Analog Inputs
A typical analog-to-digital system generally consists of the following circuit elements:

transducer

amplifier

filter

multiplexer

analog-to-digital converter (ADC)

The interconnection of these components is shown in Figure 10.1. The inputs to the system are the
physical parameters to measure (pressure, temperature, flow, position, etc.).

Figure 10.1 Analog-to-digital conversion.

...Channel Select

-- Analog input channel --

~~:~:tler---'ITranSducer~1Amplifier ~I Filter ~
I I
I I
I I
I I
I I
I I
I I
I I
I I

I
To/From

~icroprocessor

Multiplexer--'u J

The physical parameter is first converted into an electrical signal by a transducer. Transducers are
available to convert temperature, pressure, humidity, position, etc., to electrical signals. An amplifier is
generally used to increase the amplitude of the transducer output to a more usable level for further pro
cessing (typically between 1 and 10 volts); the output of a transducer may produce a signal in the micro
volt to millivolt range. The amplifier is frequently followed by a low pass filter, which is used to reduce
unwanted high-frequency electrical noise. The process described previously is usually called input con
ditioning and each conditioned input is also referred to as an analog input channel. Analog input chan
nels are multiplexed into an analog-to-digital converter (ADC) because ADCs are often expensive
devices. The ADC converts each analog input signal to digital fOnTI. The microprocessor is responsible
for selecting which analog input it wants to convert and also for initiating the conversion process for the
selected channel. The block diagram of Figure 10.1 can be augmented by adding a sample-and-hold
stage between the multiplexer and the ADC which would be used to ensure that the level of the signal is
constant while a conversion is taking place.

The process of converting analog signals to digital is a complex topic and is covered in great details
in many books (see "Bibliography" on page 374). In this book, I will concentrate mostly on some of the
software aspects. Analog-to-digital conversion basically consists of transforming a continuous analog
signal into a set of digital codes. This is called quantizing. Figure 10.2 shows how a D-to-lO volt signal
is quantized into a 3-bit code.



Chapter 10: Analog UOs - 329

Figure 10.2 Quantizing an analog signal.

o
-Q/2

Output Code
III

110

101

100

011

010

001

000

+Q/2
Quantizer
Error

rr,
I
I
I
I

+ + + + +
VI 0\ -.J 00

8 ~ ~ ~ ~
o

Input Voltage

There are several important points to note about Figure 10.2. First, the resolution of the quantizer is
defined by the number of bits it uses. An 8-bit quantizer will divide the input level into 256 steps. A
l2-bit quantizer will divide the input level into 4,096 steps. Thus, a l2-bit quantizer has a higher resolu
tion than an 8-bit quantizer. The number of steps for the quantizer is 2" where n corresponds to the num
ber of bits used. Quantizers (or ADCs) are commercially available from 4 to 24 bits. The required
resolution is dictated by the application. There are literally hundreds of ADCs to choose from, and gen- II
erally cost increases with resolution.

An important point to make is that the maximum value of the digital code of an ADC, namely all Is
(ones), does not correspond with the analog Full Scale (FS) but rather, one Least Significant Bit (LSB)
less than full scale or:

[10.1]

For example, a 12-bit ADC with a 0 to +10V analog range has a maximum digital code of OxOFFF

(4095) and a maximum analog value of +lOV X (1- 2-12) or +9.99756V. Inother words, the maximum
analog value of the converter never quite reaches the point defined as full scale. At any part of the input
range of the ADC, there is a small range of analog values within which the same code is produced. This
small range in values is known as the quantization size, or quantum, Q. The quantum in Figure 10.2 is
1.25V and is found by dividing the full scale analog range by the number of steps of the quantizer. Q is
thus given by the following equation:

[10.2] Q = FSV
2n

Q is the smallest analog difference that can be distinguished by the quantizer.
FSV is the full scale voltage range.
n corresponds to the number of bits used by the quantizer (i.e., ADC).



330 - Embedded Systems Building Blocks, Second Edition

As shown in Figure 10.2 (Quantizer Error), a sawtooth error function is obtained if the ADC input is
moved through its range of analog values and the difference between output and input is taken. For
example, any voltage between 1.875V and 3.l25V will produce the binary code 010.

All ADCs require a small but significant amount of time to quantize an analog signal. The time it
takes to make the conversion depends on several factors: the converter resolution, the conversion tech
nique, and the technology used to manufacture the ADe. The conversion speed (how fast an analog volt
age is converted to digital) required for a particular application depends on how fast the signal to be
converted is changing and on the desired accuracy. The conversion time (inverse of conversion speed) is
frequently called aperture time. If the analog signal to measure varies by more than the resolution of the
quantizer during the conversion time, then a sample-and-hold circuit should be used. ADCs are avail
able with conversion speeds ranging from about three conversions per second to well over 100 million
conversions per second.

10.01 ReadinganADC
The method used to read the ADC depends on how fast the ADC converts an analog voltage to a binary
code. In most cases, however, the ADC must be explicitly triggered to perform a conversion. In other
words, you must issue a command to the ADC to start the conversion process. Very fast ADCs, those
that can convert an analog signal in less than IllS, generally have dedicated hardware to handle the fast
conversion rate and will typically buffer the samples. When the buffer is full, the analog samples are
processed offiine. This is basically how a digital storage oscilloscope works. At the other end of the
spectrum, ADCs used in voltmeters are generally slow (about 200 mS) but accurate (4 1/2 digits, or
0.005 percent).

The actual method used to read an ADC depends on many factors: the conversion time of the ADC,
how often you need the analog value converted, how many channels you have to read, etc. The next
three sections describe some possible methods of reading an ADe.

10.01.01 Reading an~Method#1
The scheme shown in Figure 10.3 assumes that the ADC conversion time is relatively slow (greater than
about 5 mS). Here a driver (a function) reads an analog input channel and returns the result of the con
version to your application. Your application calls the driver in Figure 10.3 and passes it the desired
channel to read. The driver starts by selecting (through the multiplexer) the desired analog channel (CD)
to read. Before starting the conversion, you may want to wait a few microseconds to allow for the signal
to propagate through the multiplexer and stabilize. If you don't wait for the multiplexer's output to sta
bilize, your readings may be unstable. Next, the ADC is triggered to start the conversion (@). The driver
then delays to allow for the conversion to complete (@). Note that the delay time must be longer than the
conversion time of the ADC. After the delay, the driver assumes that the conversion is complete and
reads the ADC (®). The binary result is then returned to your application (®). The pseudocode is:



Chapter 10: Analog UOs - 331

ReadAnalogInputChannel(Channel#)

Select the desired analog input channel;

Wait for MUX output to stabilize;

Start ADC conversion;

Delay 'x' mS to allow for conversion to complete;

Read ADC and return result to the caller;

Figure 10.3 ReadinganADC (Method #1).

Analog
Inputs Your application

@I
<D The driver selects the analog input to read.

® The ADC is triggered to start the conversion.

@ The driver delays for longer than the duration of the conversion.

@ The ADC is read.

® The binary value of analog input is returned to your application.

This method is simple and can be used with slow-changing analog signals. For example, you can use
this method when measuring the temperature of a room (which doesn't change very quickly).

10.01.02 Readingan A.IX; Method#2
You can actually use a signal provided by most ADCs (i.e., the End Of Conversion (EOC) signal) to tell
your driver when the ADC has completed its conversion. The code and your hardware in this case will
be a little more complicated, but this method is more efficient.

II



332 - Embedded Systems Building Blocks, Second Edition

Figure 10.4 Reading an ADC (Method #2).

Analog
Inputs Yourapplication

@
Interrupt

( ISR

<D The driver selects the desired analog input to read. Semaphore

® The ADC is triggered to start the conversion.

@ The driver waits for the semaphore to be signalled (with timeout).

@ The end of conversion generates an interrupt.

® The end of conversion ISR signals the semaphore.

® The driver reads the ADC.

(l) The binary value of the analog input is returned to your application.

Again, your application calls the driver by passing it the analog input channel to read. The driver
shown in Figure 10.4 starts by selecting (through the multiplexer) the desired analog channel (ill). At
this point, you should again wait a few microseconds to allow for the signal to propagate through the
multiplexer and stabilize. The ADC is then triggered to start the conversion (~). The driver then waits
for a semaphore (@) with a timeout. A timeout is used to detect a hardware malfunction. In other words,
you don't want the driver to wait forever if the ADC fails (i.e., never finishes the conversion). When the
analog conversion completes, the ADC generates an interrupt (®). The ADC conversion-complete ISR
signals the semaphore (@), which notifies the driver that the ADC has completed its conversion. When
the driver gets to execute, it reads the ADC (®) and returns the binary result to your application (<V).

The pseudocode for both the driver and the ISR follows.
You would use this method if the conversion time of the ADC is greater than the execution time of

the ISR and the call to wait for the semaphore. For example, your ADC takes I mS to perform a conver
sion, and the total execution time of the ISR and the call to wait for the semaphore requires only about
50 lIS. If the execution time of the ISR and the call to wait for the semaphore is greater than the conver
sion time of the ADC, you might as well wait in a software loop (polling the ADC's EOC line) until the
ADC completes its conversion. This method will be discussed next.

~--



Chapter 10: Analog lIOs - 333

Rea<1AnaloglnputChannel (Channel#)

Select the desired analog input channel;

Wait for MUX output to stabilize;

Start ADC conversion;

Wait for signal from ADC ISR (with timeout);

if (Timed out) {

Signal error;

else {

Read ADC and return result to the caller;

Conversion complete ISR

signal conversion complete semaphore;

10.01.03 Reading an~Method#3
The third method can be used if the conversion time of the ADC is less than the time needed to process
the interrupt and wait for the semaphore, as described in the previous method. For example, depending
on the microprocessor, an ADC with a conversion time less than 25 JlScannot afford the overhead of an
interrupt and a semaphore which could take over 50 JlS. In other words, the execution time to handle the
interrupt overhead and the time to signal and wait for the semaphore can take more than 25 JlS. This is
true of most 8-bit and some l o-bit microprocessors.

Your application calls the driver shown in Figure 10.5 by passing it the desired analog input channel
to read. The driver starts by selecting (through the multiplexer) the channel to read ((1). Again, before
starting the conversion, you may want to wait a few microseconds to allow for the signal to propagate
through the multiplexer and stabilize. The ADC is then triggered to start the conversion (<2». The driver
then waits (@) in a software loop for the ADC to complete its conversion. While waiting in the loop, the
driver monitors the status (the EOC) or the BUSY signal of the ADe. You need to ensure that you have a
way to prevent an infinite loop if your hardware becomes defective. An infinite loop is avoided by using
a software counter which is decremented every time through the polling loop (see the pseudocode fol
lowing this paragraph). The initial value of the counter is determined from the execution time of each
iteration of the polling loop. For example, if you have an ADC that should perform a conversion in 50
JlS and each iteration through the polling loop takes 5 JlS, you will need to load the counter with a value
of at least 10. You want to use the loop counter as an indication of a hardware malfunction and not to
indicate when the ADC is done converting. Based on experience, you should load the loop counter so
that a timeout occurs when the polling time exceeds the ADC conversion by about 25 to 50 percent. In
other words, you would load the counter with a value between 13 and 15 in my example. When the ADC
finally signals an end of conversion, the driver reads the ADC (®) and returns the binary result to your
application (@).

II



334 - Embedded Systems Building Blocks, Second Edition

Figure 10.5 Reading an ADC (Method #3)

®r-r--r-: Your applicationMUXI--~
Analog
Inputs

End of Conversion "';T' t C t
Signal .A' irneou oun er

<D The driver selects the desired analog input to read.

® The ADC is triggered to start the conversion.

@ The driver waits for the ADC to complete its conversion (with timeout).

@ The driver reads the ADC.

® The binary value of analog input is returned to your application.

The pseudocode for the driver is:

ReadAnaloglnputChannel (Channel#)

Select the desired analog input channel (i.e. MUX);

Wait for MUX output to stabilize;

Start ADC conversion;

Load timeout counter;

while (AOC Busy && Counter-- > 0) /* Polling Loop */

if (Counter == 0) /* Check for hardware malfunction */

Signal error;

else {

Read ADC and return result to the caller;

Actually, I prefer this method because:

You can get fairly inexpensive fast ADCs (-25 IlS conversion time).

You don't have the added complexity of an ISR.

Your signal has Iess time tochangeduring a conversion.

This method imposes-very little overhead on your CPU.

The polling loop can 'be :interrupted'to 'service interrupts.



IO-Bit ADC
(5 Shifts Left)

Chapter 10: Analog VOs - 335

10.01.04Readingan ADl; Miscellaneous
The nice thing about reading analog input channels through drivers is that the implementation details
are hidden from your application. You can use any of the three drivers shown without changing your
application code.

By always returning the same number of bits to your application, you can make your application
insensitive to the actual number of bits of the ADC. In other words, if the ADC driver always returned a
signed 16-bit number irrespective of the actual number of bits for the ADC, your application would not
have to be adjusted every time you changed the word size of your ADC. This is actually quite easy to
accomplish, as shown in Figure 10.6. All you need to do is to shift left the binary value of the ADC until
the most significant bit of the ADC value is in bit position number 14 of the result. I use a 16-bit signed
result because the computations required to scale the result of the ADC need to be signed. This will be
described in the next section. If you deal with higher resolution ADCs, you may want to write your driv
ers and application code to assume signed 32-bit values.

Figure 10.6 ADC driver always returning a signed 16-bit result.

8-Bit ADC
(7 Shifts Left)

12-Bit ADC
(3 Shifts Left)

14-Bit ADC
(1 Shift Left)

For example, an 8-bit ADC can measure a voltage between 0 and 0.996094 (255/256) of the full
scale voltage (see Equation [l0.1]). This is the same as (255 « 7) / 32768, or 0.996094. Similarly, a
12-bit ADC can measure a voltage between 0 and 4095/4096 or 0.999756, which is the same as (4095
« 3) / 32768 (i.e., 0.999756). You can thus hide the details about how many bits each ADC has with
respect to your application without losing any accuracy.

II



336 - Embedded Systems Building Blocks, Second Edition

10.02 Temperature Measurement Example
As we have seen, an ADC produces a binary code based on a full scale voltage. If you are measuring a
temperature, for example, this information means very little to you. What you really want to know is the
temperature of what you are measuring. The circuit in Figure 10.7 shows a commonly used temperature
sensor Integrated Circuit (IC):the National Semiconductor LM34A.

Figure 10.7 Temperature measurement using an LM34A.

,-- From
CPU+Vs

Temperature
-50 to 300°F M34AI--""-4
~

-Vs +Vbias
(1.25 V)

Filter

MUX

10 V (Full Scale)

t

TolFrom
AID .. CPU

The LM34A produces a voltage that is directly proportional to the temperature surrounding it, spe
cifically, 10 mVI"F. Note that you can also obtain the temperature in degrees Celsius by using an
LM35A. The amplifier is designed to have a gain of 2.5, and thus -50 to 300 of will produce a voltage
of -1.25 to 7.50 volts. By using a 10-bit ADC, you can obtain a resolution of about 0.342 of (350
°F/l024). Note that the ADC can only convert positive voltages, and thus a bias of 1.25 volts is intro
duced following the amplification stage to ensure that a positive voltage is present at the input of the
ADC for the complete temperature range. With this bias, -50 OF will appear as 0 V, 0 OF will be 1.25 V
and 300 OF will be 8.75 V. The value obtained at the ADC is given by:

[10.3]

ADCcounts =

( Temp erature x 0.01 x 2.5A + 1.25v ) x 1023counts
(OF) V/(OF) V bia

10
V Ful/Scale

counts is an industry standard convention that means the binary value of the ADC.
O.OlVWFl corresponds to the transducer transfer function - 10 mVI"F - specified by National

Semiconductor.
2.5 is the gain of the amplifier stage and is established by the hardware designer.
1.25 is the bias voltage to ensure that the ADC always reads a positive voltage.
1023 is the maximum binary value taken by a lO-bit converter.
lOv is the full scale voltage.

FultScate

For example, a temperature of 100 OF would have a value of 383 counts (actually, 383.625). Note
that the ADC can produce only integer values, and thus the actual value of 383.625 is truncated to 383.
To obtain the temperature read at the sensor, you need to rearrange Equation [10.3] so that temperature



Chapter 10: Analog 1I0s - 337

is given as a function of ADC counts, as shown in Equation [10.4]. This process is often called convert
ing ADC counts to engineering units (E.D.):

[10.4] Temperature
(OF)

ADC x 10
counts YFull Scale

1023 - Vbias
counts

0.01 x 2.5 A
Y /(OF) v

The general form for this equation is:

[10.5]

ADCcounts x FSV
------- - Vbias

(2n - 1)
E.U = Transducer x A yY/(EU)

E.U is the engineering unit of the transducer (OF, PSI, Feet, etc.).
Vbios is the bias voltage added to the output of the amplifier stage to allow the ADC to read nega

tive values.
FSV is the full scale voltage of the ADC.
Transducer (VlEU) corresponds to the number of volts produced by the transducer per engineering

unit.
Av is the gain of the amplifier stage.
n is the resolution of the ADC (in number of bits).

You can also write Equation [10.5] as follows:

In this case, Biaseounrs corresponds to the ADC counts of the bias voltage as is given by the following
equation:

[10.6] E.U ==

(ADCcounts - Biascounts) x FSV

Transducer x A y x (2 n -1)
Y/(EU) II

[10.7]
. Vb ias x (2 n -1)

Blascounts = FSV

Note that most of the terms in Equation [10.6] are known when the system is designed, and thus, to
save processing time, they should not be evaluated at run time. In other words, you could rewrite the
equation as follows:

[10.8]

where:

E.U = (ADCcounts - ConvOffsetcounts) x ConvGain
(EU)/(count)

[10.9] ConvGain
(EU)/(count)

FSV

Transducer x A y x rz" - 1)
v/(EU)

Note that the units of the conversion gain (ConvGain) are E.U. per ADC count.



338 - Embedded Systems Building Blocks, Second Edition

[10.10] (

Vb ia s x (2 n
-I~

ConvOffsetcaunts == - FSV )

In the temperature measurement example, the conversion gain would be 0.391007 and the conver
sion offset would be 127.875. You can apply fixed-point arithmetic and scale factors (see Chapter 9) to
the temperature measurement example. The temperature of the LM34A sensor is given by:

[10.11]

Temperature == (ADCca tnts + ConvOffsetcOllntS) x ConvGain.
(oF) I (OF)/(count)

Remember that you have a IO-bit ADC, and thus the range of counts is from 0 to 1023. You can scale
this number by multiplying the ADC counts by 32 (shifting left five places). To perform the subtraction
with the bias, you need to scale the bias (i.e., conversion offset) by the same value, or 127.875 X 32 ==
4092S-5. The gain (0.391007) can be scaled by multiplying by 65536, and thus the conversion gain is
25625S-16. The temperature is thus given by:

[10.12]

or

[10.13]

Temperaturer'F) S-21 == «ADC counts « 5)S-5 - 4092S-5) X 25625S-16

Temperaturer'F) S-6 == «(ADC counts « 5)S-5 - 4092S-5) X 25625S-16) » 15

From Equation [10.3], 150 of would produce 511 ADC counts. Substituting 511 counts in Equation
[10.12] produces the following:

Temperature (OF) S-21 == (16352S-5 - 4092S-5) X 25625S-16, or
Temperature eF) S-21 == 314162500S-21 (i.e., 149.80)

or using Equation [10.13]:

Temperature (OF) S-6 == 9587S-6 (i.e., 149.80)

The C code to convert the ADC counts to temperature is:

Note that raw corresponds to the ADC counts (10 bits). The total counts (cnts) number is com
puted separately because a good compiler should perform this operation using 16-bit arithmetic instead
of 32-bit (which would be faster). Counts and gain are then converted to INT32S because the multipli
cation needs 30-bit precision. The result is divided by 32768 so that it fits back into a 16-bit signed vari-



Chapter 10: Analog VOs - 339

able. Finally, the temperature is returned in of scaled S--6. You could obtain the temperature to the
nearest degree by first adding 32 (0.5) and then dividing the result by 64. In other words, by rounding
the result.

The electronic components used to provide the amplication and the bias voltage are generally inac
curate. Oddly enough, extra components can be added to allow the amplification stage and bias voltage
to be precisely adjusted (that is, calibrated). Adding such components, however, adds recurring cost to
your system. Component inaccuracies easily can be compensated in software by modifying Equation
[10.8] as:

[10.14]

EU= (ADCcounts + ConvOffsetcounts + CalOffsetcounrs' x ConvGain x CalGain) (EU)/(count)

The calibration gain (CaIGain) and calibration offset (CalOffset) would be entered by a calibration
technician using a keyboard/display or through a communications port. Both calibration parameters could
then be stored in a non-volatile memory device such as battery backed-up RAM, EEPROM, or even a
floppy disk. The adjustment range of the calibration parameters is based on the accuracy of the electronic
components used. A 10 percent adjustment range should be sufficient for most situations. For the calibra
tion gain, all we need is an adjustment range between 0.90 (14745S-14) and 1.10 (18022S-14). In our
example, all we need is an adjustment range between -100 (-3200S--j) and +100 (3200S-5) for the cali
bration offset when using a 1O-bitADC. The new C code to convert raw ADC counts to a temperature is:

INT16S RdTemp(INT16S raw)

{

INT16S cnts,

INT16S temp,

cnts

temp

temp

return

(raw « 5) - 4092 + CalOffset;

(INT16S) (((INT32S)cnts * (INT32S) 25625) » 15L);

(INT16S) (((INT32S)temp * (INT32S)CalGain) » 14L);

(temp), /*Result is scaled S- 6 */

II

For example, if the actual gain of the amplification stage of our temperature measurement example
was 2.45 instead of 2.50 then, CalGain would be set to 1.020408 (16718S-14). Similarly, if the bias
voltage was 1.27V instead of 1.25V then, you would have to subtract 0.02V, or 65 counts (see Equation
[10.10]). In other words, CalOffset would be set to --65S-5.



340 - Embedded Systems Building Blocks, Second Edition

10.03 Analog Outputs
A typical digital to analog system generally consist of the following circuit elements:

digital to analog converter (DAC)

filter

amplifier

transducer

Digital-to-analog converters (DACs) are generally inexpensive devices, and thus each analog output
channel can have its own DAC, as shown in Figure 10.8. The DAC converts a binary value provided by
a microprocessor to either a current or a voltage (depending on the DAC). The voltage or current isfil
tered to smooth out the step 'changes. An amplifier stage is sometimes used to increase the amplitude or
power drive capability of the analog output channel in order to properly interface with the transducer.
The transducer is used to convert the electrical signal to a physical quantity. For example, transducers
are available to convert electrical signals to pressures (known as current-to-pressure transducers, or I to
P). These pressures can be - and often are - used to control other physical devices.

Figure 10.8 Digital-to-analog conversion.

--- A.na_og OutputChannel ---

r~ ,,~,,~'"'-I n<c I. - [~~"~-;~_I,-_"_n_,p_i,_'~_,,'-,l .J~;;n;eu:~r1-Ft.'i!:'\:td
~ ~. 11 . Pttr,~fi1Bl~i

l-rorn Mlc:cpr~=cr~'~·I 0.' ) -I ..,~ 1-....1 .....~ In!n!::luctlr1-~~r
I

I

I

,~"m,mm'_1 ~<I-I ,,,.. ~L.-__---,4~"L.-__---'- :~::::~
DACs are commercially available with resolutions from 4 to 16 bits. The resolution to choose from

is application specific. There are literally hundreds of DACs to choose from. Generally, the cost of
DACs increases with resolution and conversion speed. DACs are much faster than ADCs. Conversion
time (also called settling time) is always less than a few microseconds and can be as fast as 5 nS (nano-



Chapter lO: Analog llOs - 341

second). Very fast DACs are used in video applications, and because of their higher cost and lower reso
lution (8 bits), very fast DACs are seldom used in industrial applications.

A digital-to-analog conversion is handled exclusively in hardware. From a software standpoint,
updating a DAC is as simple as writing the binary value to one or more (if more than 8 bits) I/O port
locations or memory locations (when DACs are memory mapped).

10.04 Temperature Display Example
Suppose you wanted to display the temperature read by our LM34A (see Section 10.02) on a meter, as
shown in Figure 10.9.

An 8-bit DAC is deemed sufficient considering the accuracy of these types of meters. The DAC is
followed by a circuit that converts the voltage output of the DAC to a current (a V->l Converter). The
Full Scale Voltage (FSV) of the DAC is set to 2.5 volts. The current converter is designed to produce
about 42 J1AfV, and the meter requires 100~ for full scale. Your task is to write a function that takes
the temperature (-50 OF to +300 OF) as an input and produces the proper output current (0 to 100 ~) to
drive the meter.

Figure 10.9 Temperature display.

The relationship between the temperature and the meter current is shown in Figure 10.10.

FSV=2.5V-.

...----..,

Temperature Scaling-. .
-50 OF to 300 OF Function

V-.I
Converter
(42 JlAN)

cnts 8-Bit

DAC 11-----.-----1!
cnts * FSV1

256

Meter

II
Figure 10.10 Temperature to DAC counts scaling.

Meter current (f.lA)

100

Y-Intercept = 14.285714 JlA
(@XO=O) ~

(Xl, Yl) '4
<,
-50

_______ (X2, Y2)

I
I

2:J I
Slope = 0.285714 I

I
I

300

The graph can also be represented by the following linear equation:



342 - Embedded Systems Building Blocks, Second Edition

[10.15] y=mxx+b

where m is the slope and b is the Y-intercept (the value on the y-axis when x is 0). The slope gives us the
current per degree of temperature and is given by:

[10.16]
(Y2 - YI)

m = ----
(X2 -Xl)

In this case, the slope is 1oo~ /350 of , or 0.285714 ~F. The Y-intercept (i.e., Yo) is given by:

[10.17]

By substituting the values of m, Yj, Xl, and Xo(i.e., 0) in Equation [10.17], you obtain a Y-intercept
of 14.285714~. The meter current thus is given by:

[10.18] Meter llA = 0.285714 x Temperaturec; + 14.2857l411 Ar- (/lA)/(OF) r-

[10.19]

The meter current is also given by:

DACcounts x FSV

Meter /.lA = 256 x 42(/lA)/V

Combining Equations [10.18] and [10.19], I obtain:

[10.20]

DACcounts x 2.5
0.285714 x TemperatureOF + 14.285714 11 A = 256 x 42(IIA)/V

(/lA)/(OF) r- r-

Solving for DACcounls, I obtain:

[10.21] (

0.285714 x 256 14.285714 x 25lDACcounts = INT 2.5 x 42 x Temperatures s x 2.5 x 42
(/lA)/V (/lA)/V

Note that INTO means that only the integer portion of the result is retained. As you can see, Equation
[10.21] is also a linear equation, where m is 0.696598 and b is 34.829931. DACcounts thus are given by:

[10.22] DACcounts = INT(0.696598 x TemperatureoF+ 34.829931co ts'(counts)/(O F) un )

Substituting -50 OF in Equation [10.22], I obtain 0 counts (as I should). Similarly, substituting 300
OF in Equation [10.22], I obtain 243 counts, which should produce 100 ~.

As with analog inputs, the electronic components used in circuits such as the voltage-to-current con
verter are generally inaccurate. You can compensate for component inaccuracies in software by modify
ing Equation [10.22] as:



Chapter 10: Analog VOs - 343

[10.23]

DACco nts = INT(O.696598 x Temperaturess; x CalGain + 34.829931 counts + CALO!!set)u (counts)/(0F)

The effect of the calibration gain and offset is shown in Figure 10.11, which has been exaggerated
for sake of discussion. The actual curve that you get from an incorrect gain and offset needs to be
adjusted, as shown in Figure 10.11.

Figure 10.11 Calibration gain and offset adjustments (exaggerated).

Gain Adjustment
V
./~ .

./

)
..(

#
-:;:. Offset Adjustment

Actual ./.'
~~./

././
./ .:

./ ./
./ .:

./

The adjustment range of the calibration parameters is based on the accuracy of the electronic com-
ponents. Based on experience, a 10 percent adjustment range should be sufficient for most situations. II
For the calibration gain, you only need an adjustment range between 0.90 and 1.10. For the calibration
offset, you need an adjustment range between -25 and +25 for an 8-bit ADC. What would happen if the
voltage-to-current converter was actually putting out 40 !1AfV instead of 42 (a 5 percent error)? In this
case, the slope in Equation [10.23] (see Equation [10.21], substituting 40 instead of 42) would need to
be adjusted to 0.731428 and the intercept would need to be 36.571428. This can be accomplished by
setting CalGain and CalOffset to 1.05 and 1.741497 respectively.

The general form for Equation [10.23] is:

[10.24]

DACcount' = INT(conVGain x CalGain x InputEu + ConvO!!setcounts + CalO!!setcountsl. (counts)/(EU) )



344 - Embedded Systems Building Blocks, Second Edition

10.05 Analog I/O Module
In this chapter, I provide you with a complete analog I/O module that will allow you to read and scale up
to 250 analog inputs and scale and update up to 250 analog output channels. Each analog input channel
is scanned at a regular interval and the scan rate for each channel can be programmed individually. This
allows you to determine whether some analog inputs are scanned more often than others. Similarly, each
analog output channel is updated at a regular interval and the update rate for each channel can also be
programmed individually. This allows you to establish which analog outputs are to be updated more
often.

The source code for the analog I/O module is found in the \ SOFTWARE\ BLOCKS \AIO \ SOURCE
directory. The source code is found in the files AIO. C (Listing 10.1) and AIO. H (Listing 10.2). As a
convention, all functions and variables related to the analog I/O module start with either AIO (functions
and variables common to both analog inputs and outputs), AI (analog input functions and variables) or
AO (analog output functions and variables). Similarly, #defines constants will either start with AIO~
AI~orAO_.

10.06 Internals
The analog I/O module makes extensive use of floating-point arithmetic (additions, multiplications, and
divisions). The reason I chose to use floating-point instead of integer arithmetic is that it is very difficult
to make a general purpose analog I/O module using integer arithmetic. The analog I/O module can
become CPU-intensive unless you have hardware-assisted floating-point (i.e., a math coprocessor). The
analog I/O module, however, can be easily modified to make use of integer arithmetic if you have a ded
icated application.

Figure 10.12 shows a block diagram of the analog I/O module. You should also refer to
Listings 10.1 and 10.2 for the following description. As shown, the analog I/O module consists of a
single task (AIOTask () that executes at a regular interval (set by AIO_TASK_DLY). AIOTask () can
manage as many analog inputs and outputs as your application requires (up to 250 each). The analog
I/O module must be initialized by calling AIOlni t ( ) . AIOlni t () initializes all analog input chan
nels, all analog output channels, the hardware (ADCs and DACs), a semaphore used to ensure exclu
sive access to the internal data structures used by the analog I/O module, and finally, AIOlni t ( )
creates AIOTask () .

AITbl [] is a table that contains configuration and run-time information for each analog input
channel. An entry in AITbl [] is a structure defined in AIO. H and is called AIO. AIUpdate () is
charged with reading all of the analog input channels on a regular basis. AIUpdate () calls AIRd ()
and passes it a logical channel number (0 ..AIO_MAX_AI - 1). AIRd() is responsible for selecting
the proper analog input through one or more multiplexers (based on the logical channel number), start
ing and waiting for the proper ADC to convert (if more than one is used), and for returning raw counts
to AIUpdate () . AIRd () is the only function that knows about your hardware, and thus AIRd () can
easily be adapted to your environment.

AOTbl [] is a table that contains configuration and run-time information for each analog output
channel. An entry in AOTbl [] also uses the AIO structure. AOUpdate () is responsible for updating all
of the analog output channels on a regular basis. AOUpdate () calls AOWr () and passes it a logical
channel number (0 ..AIO_MAX_AO - 1) and the raw DAC counts. AOWr () is responsible for output
ing the raw counts to the proper DAC based on the logical channel. AOWr () is the only function that
knows about your hardware, and thus AOWr () can easily be adapted to your environment.



Chapter 10: Analog IIOs - 345

Figure 10.12 sao module ftow diagram.

I AIO AITbl [] I
APPLICATION AIO MODULE HARDWARE

INTERFACE I I
AICfgCal() I

..... "

AICfgConv() I AIUpdate() ADC(s) ..... Analog
~TASK_DLY_TICKS

AIRd( ) & InputAICfgScaling() OIl •
AISetBypassEn() I I I I I I MUX(s) ..... Hardware.....
AISetBypass()
AIGet() I I

~

~Analog

--Oufput
--Hardwara
~

DAC(s)
AOWr()AOUpdate()I I I I

1_' AIOTask()...r" .. AIOlnitIO() I

~.. ,~ JI

I
~

I

I

I AIO AOTbl []

AIOlnit() I
AIOCfgScaleLin()~
AIOScaleLin()

AOCfgCal()
AOCfgConv()
AOCfgScaling()
AOSetBypassEn()
AOSetBypass()
AOGet()

Figure 10.13 Analog input channel flow diagram.

Figure 10.13 shows a flow diagram of a single analog input channel. Note that I used electrical sym
bols to represent functions performed in software..AlO??? are all members of the AlO structure.
AlUpdate () updates each channel as described in the following paragraphs.

II
Obtained through

AIGet ()

Set by
Set by AISetBypassEn ()

AICfgScaling ()

.AIOScaleFnctArg

Forced by

AIsetBypass';J)

TRUE
.--- ---, ~@open)

,...-----, .AIOScaleOut I~----'

I \: FALSE
: (@closed)

.AIOBypassEn-.

Set by
AICfgCal ()

/ .A~OCalGain
.AIocal~ffsetl

. AIoconvtffsetj

"I,-A--ro-pa-ss""c-tc"l \.AIOConvGain

I.AIopassCnt::; I /
""- Set by

AICfgConv ()

From
AIRd( )

The raw counts obtained from AlRd () are placed in the channel's .AlORaw variable. The raw
counts are then added to .AlOCalOffset and .AlOConvOffset. The result of this operation is then
multiplied by .AlOCalGain and .AlOConvGain. These mathematical operations are basically used to
implement Equation [10.14]:



[10.25]

346 - Embedded Systems Building Blocks, Second Edition

.AIOScaleIN =(.AIORaw + .AIOConvOffset + .AIOCalOffset) X

. AIOConvGain X .AIOCalGain

.AIScaleFnct is a pointerto a function that is executed when the channel is updated. The function
allows you to apply further processing when reading an analog input. For example, a Resistance Tem
perature Detector (RTD) is a device that requires special processing. The temperature at the RID is pro
portional to the resistance of the RTD (but is nonlinear). A scaling function can thus be written to
convert .AIOScaleln (the resistance of the RID) to a temperature in degrees Fahrenheit (placed in
.AIOScaleOut). There are many types of RTDs, and thus you need to be able to specify the actual type
used. This is where .AIOScaleFnctArg comes in. .AIOScaleFnc tArg is a pointer to any arguments
that your scaling function requires. In the case of an RTD, this argument can specify the type of RID
used. The scaling function that you write must be declared as:

void AIOScale???{AIO *paio);

When called, your scaling function will receive a pointer to the AIO channel to scale (or lin
earize). The input to your function is available in paio->AIOScaleln, and your function must
place the result in paio->AIOScaleOUt. Any arguments to the scaling function are found
through paio->AIOScaleFnctArg. If you do not have any linearization function, the value of
.AIOScaleln is simply copied to .AIOScaleOUt by AIUpdate () .

.AIOBypassEn is a software switch that is used to prevent the analog input from being updated.
This feature allows your application code to "bypass" the channel and force a value into .AIOEU. When
another part of your application code tries to read the analog input channel, it will actually be getting the
forced value instead of what the sensor is measuring. I have found this feature to be invaluable.

. AIOEU is the value that your application code will obtain when it needs the latest value read by the
analog input channel (by calling AIGet ( ) ..AIOEU contains engineering units. This means that if the
analog input channel monitors a pressure, your application code will obtain a value in either PSI, KPa,
InHgg, etc.

. AIOPassCnts allows your application code to specify how often the analog input channel is to be
updated. In fact, .AIOPassCnts specifies how many analog input scans are needed before the channel
is updated. In other words, if analog inputs are read every 50 mS and you specify a pass count of 20,
then the analog input channel will be read every 1000 mS (i.e., 1 second).

Figure 10.14 shows a flow diagram of a single analog output channel. Note that I used electrical
symbols to represent functions performed in software. As with analog input channels, .AIO??? are all
members of the AIO structure. AOUpdate () updates each channel as described in the following para
graphs.



Chapter 10: Analog VOs - 347

Figure 10.14 Analog output channelflow diagram.

Output by
/ AOWr()

. AIOScaleOu

Established by
AOCfgScaling ()

/

Set by
AOCfgCal ()

.AIOCalGain~~

1 .AIO,+lOffset 1.._--,

I.AlOP.ssC,"lit
.AIOConvOffset

.AlOP.ssC",S I /
<, Alocon~ain

~ Set by
AOCfgConv ( )

Set by
AOSetBypassEn ()

'='", \
/'~ ~=-:-:-,

Changed by /' I
AOSet() I

I
.AIOBypassEn

Set by /
AOSetBypassEn ( )

Your application deposits the value for the analog output channel by calling AOSet ( ) . This value is II
passed in engineering units. This means that if the analog output channel controls a meter that displays
the RPM of a rotating device, you call AOSet () by specifying an RPM and the analog output channels
takes care of figuring out how much voltage or current is needed to display the RPM.

.AIOBypassEn is a software switch used to override the value that your application code is trying
to put out on the analog output channel. Another function provided by the analog I/O module is used to
load .AIOScaleIn. This feature is very useful for debugging purposes because it allows you to test
your output independently of the application code.

.AIScaleFnct is a pointer to a function that is executed when the analog output channel is
updated. The function allows you to apply further processing prior to updating an analog output. For
example, a 0 to 100 rnA output may be controlling a valve. If the flow through the valve is propor
tional to the output - but nonlinear, the function can make the valve action look linear with respect
to your application. If your software needs to support different types of valves, you can specify which
valve is being used through .AIOScaleFnctArg..AIOScaleFnctArg is a pointer to any arguments
that your scaling function requires. The scaling function that you write must be declared as follows:

void AIOScale???(AIO *paio);

When called, your scaling function will receive a pointer to the AIO channel to scale (or
linearize). The input to your function is available in paio->AIOScaleIn, and your function
must place the result in paio->AIOScale0ut. Any arguments to your function are found



348 - Embedded Systems Building Blocks, Second Edition

through paio->AIOScaleFnctArg. If you do not have any linearization function, the value of
.AIOScaleIn is simply copied to .AIOScaleOut by AOUpdate () .

. AIOScaleOUt is then multiplied by .AIOCalGain and .AIOConvGain. The result of the multi
plication is the added to .AIOCalOffset and .AIOConvOffset. The result of this operation is depos
ited in .AIORaw so that it can be sent to the proper DAC by AOWr ( ) .

[10.26] .AIORaw = .AIOScaleOUt X .AIOConvGain X .AIOCalGain +

.AIOConvOffset + .AIOCalOffset

.AIOLirn is used to ensure that .AIORaw does not exceed the maximum counts allowed by the
DAC. For example, an 8-bit DAC has a range of 0 to 255 counts. An output of 256 counts to a DAC
would appear to the DAC as 0 (the lower eight bits of 1000000002) .• AIOLirn contains the maximum
count that can be sent to the DAC (255 for an 8-bit DAC).

. AIOPassCnts allows your application code to specify how often the analog output channel is to
be updated. In fact, .AIOPassCnts specifies how many analog output scans are needed before the
channel is updated. In other words, if analog outputs are updated every 50 mS and you specify a pass
count of 5, the analog output channel will only be updated every 250 mS.

10.07 Interface Functions
Your application software knows about the analog 110 module through the interface functions shown in
Figure 10.15.

Figure 10.15 Analog I/O module interface functions.

AIOInit ()

AICfgCal ()

AICfgConv ()
AICfgScaling ( )
AISetBypassEn ( )

AISetBypass ()
AIGet ()

AOCfgCal ()
AOCfgConv ( )

AOCfgScaling ( )
AOSetBypassEn ()
AOSetBypass ()
AOSet ()

•
•••
• ..--
• Analog

.. I/O
Module

•••
••
•

Analog Inputs
(From Hardware)

Analog Outputs
(To Hardware)



Chapter 10: Analog 1iOs - 349

AICfgCal()
INT8U AICfgCal(INT8U n, FP32 gain, FP32 offset);

AICfgCal () is used to set the calibration gain and offset of an analog input channel. The analog 1/0
module implements Equation [10.14], and this function is used to set the value of CalGain and
CalOffset.

Arguments

n is the desired analog input channel to configure. Analog input channels are numbered from 0 to
AIO_MAX_AI - 1.

gain is a multiplying factor that is used to compensate for component inaccuracies and doesn't have
any units. The gain would be entered by a calibration technician and stored in some form of non-vola
tile memory device such as an EEPROM or battery-backed-up RAM.

offset is a value that is added to the raw counts of the ADC to compensate for offset type errors
caused by component inaccuracies. The offset would also be entered by a calibration technician and
stored in some form of non-volatile memory device such as an EEPROM or battery-backed-up RAM.

Return Value

AICfgCal () returns 0 upon success and 1 if the analog input channel you specified is not within 0 and
AIO_MAX_AI - 1.

Notes/Warnings

None

Example III



350 - Embedded Systems Building Blocks, Second Edition

AICfgConv()
INT8U AICfgConv(INT8U n, FP32 gain, FP32 offset, INT8U pass);

AICfgConv () is used to set the conversion gain, offset, and the value of the pass counter for an analog
input channel. The analog I/O module implements Equation [10.14], and this function is used to set the
value of ConvGain and ConvOffset.

Arguments

n is the desired analog input channel to configure. Analog input channels are numbered from 0 to
AIO_MAX_AI - 1.

gain is the conversion gain of the ADC channel in engineering units per count (E.U.lcount). gain is
given by Equation [10.9] which is repeated in Equation [10.27] for your convenience:

FSV[10.27] gain =
(EU)I(count) Transducer x A x (2 bits -1)

V/(EU) V

FSV is the Full Scale Voltage of the ADC and typically is the reference voltage used with the
ADC.

Transducer(VIEU) corresponds to the number of volts produced by the transducer per engineering
unit. For example, the LM34A produces 0.01 volt per degree Fahrenheit.

Av is the gain of the amplifier stage of an analog input channel (see Figure 10.1).
bits is the number of bits of the ADC.

FSV7!!setcounts =

offset is used to bias the ADC counts. offset is given by Equation [10.10] which is repeated in
Equation [10.28] for your convenience.

V. x (2
bits

- 1)bras[10.28]

Vbiar is the bias voltage added to the output of the amplifier stage to allow the ADC to read nega
tive values (see Figure 10.7 on page 336 for an example on how to use the bias).

pass is used to specify a pass count. The pass count specifies to the module how often the analog chan
nel will be read. The analog I/O module reads all analog input channels on a regular basis every so many
clock ticks. This is called scanning. pass specifies how many scans are needed to read the analog input
channel. For example, suppose the analog I/O module's scan rate is 10 Hz and you specify a pass count
of 5 for analog input channel #0. Analog input channel #0 will be read every half second. I included a
pass count because some analog input channels may not need to be read as often as others. For example,
if you wanted the program to read the temperature of a room, you could tell it to read the temperature
every 250 scans (or every 25 seconds, as in my example).

Return Value

AICfgConv () returns 0 upon success and 1 if the analog input channel you specified is not within 0
and AIO_MAX_AI - 1.



Chapter 10: Analog VOs - 351

NoteslWarnings

None

Example

void main (void)

/* Conversion gain and offset obtained by hardware engineer */

AICfgConv(O, (FP32)1.987, (FP32)123.0, 1);

II



352 - Embedded Systems Building Blocks, Second Edition

AICfgScaling ( )
INT8U AICfgScaling(INT8U n, void (fnct) (AIO *paio), void *arg);

AlCfgScaling () is used to specify a scaling function to be executed when the analog input channel is
read. The scaling function allows you to apply further processing when reading an analog input. There
is no need to call AlCfgScaling () if the analog input channel does not need a scaling function. In
fact, if you don't define a scaling function the member .AlOScalingln will simply be copied to
.AlOScalingOut by AlUpdate () (see code).

Arguments

n is the desired analog input channel to configure. Analog input channels are numbered from a to
AlO_MAX_Al - 1.

fnct is a pointer to the scaling function that will be executed when the analog input channel is read.
You must write fnct to expect an argument. Specifically, fnct must be written to receive a pointer to
the analog 110 data structure called AlO as shown in the code fragment following this paragraph. You
specify a NULL pointer to prevent a previously configured channel from using a scaling function:

void fnet (AlO *paio);

arg is a pointer to any arguments or parameters needed for the scaling function. This argument can be
used to specify specific options about the scaling being performed.

Return Value

AlCfgScaling () returns a upon success and 1 if the analog input channel you specified is not within
aand AlO_MAX_Al - 1.

NoteslWarnings

The scaling function is assumed to take its input from paio->Aloscaleln and produce its result in
paio->AlOScaleOut.



Chapter 10: Analog l/Os - 353

Example

void main (void)

AICfgScaling(O, ThermoLin, (void *)&ThermoType);

void ThermoLin (AlO *paio)

/* Function to linearize a thermocouple */

paio->AIOScaleln is assumed to contain the number of millivolts for

the thermocouple.

paio->AIOScaleOut is where the temperature of the thermocouple

is assumed to be saved to.

paio->AlOScaleFnctArg could have also indicated the type of

thermocouple used as well as whether the temperature is in

degrees F or C. •



354 - Embedded Systems Building Blocks, Second Edition

AIGet()
INTSU AIGet(INTSU 0, FP32 *pval);

The current value of the analog input channel can be obtained by calling AIGet ( ). The value obtained
is in engineering units or, physical units. For example, if the analog input channel is measuring a tem
perature from a thermocouple then the value returned is the number of degrees at the thermocouple.

Arguments

n is the desired analog input channel. Analog input channels are numbered from 0 to AIO_MAX_AI - 1.

pval is a pointer to where the value of the analog input channel will be stored.

Return Value

AIGet () returns 0 upon success and 1 if the analog input channel you specified is not within 0 and
AIO_MAX_AI - 1.

NoteslWarnings

The value returned is the last 'scanned' value. In other words, an ADC conversion is not performed
when you call this function - AIOTask () is responsible for 'scanning' the analog input on a continu
ous basis.

Example

void Task (void *pdata)

INT8U err;

FP32 eu;

for (;;)

err = AlGet(O, &eu); /* Get current value of analog input #0 */



Chapter 10: Analog VOs - 355

AIOInit()
void AIOInit (void) ;

AIOlni t () is the initialization code for the analog I/O module. AIOlni t () must be called before you
use any of the other analog I/O module functions. AIOlni t () is responsible for initializing the internal
variables used by the module and for creating the task that will update the analog inputs and outputs.

Arguments

None

Return Value

None

NoteslWarnings

You are expected to provide the value of the following compile-time configuration constants (see Sec
tion 10.08, "Analog I/O Module, Configuration"):

AIO_TASK_STK_SIZE
AIO_TASK_PRIO
AIO_MAX_AI
AIO_MAX_AO

Example

void main (void)

AIOlnit() ;

II



356 - Embedded Systems Building Blocks, Second Edition

AISetBypass ( )
INT8U AISetBypass(INT8U n, FP32 val);

Your application software can bypass or override the analog input channel value by using this function.
AISetBypass () doesn't do anything unless you open the bypass switch by calling AISetBypassEn ( ) .

Arguments

n is the desired analog input channel to override. Analog input channels are numbered from 0 to
AIO_MAX_AI - 1.

val is the value you want AIGet () to return to your application.The value you pass toto AISetBypass ( )

is in engineering units.

Return Value

AISetBypass () returns 0 upon success and 1 if the analog input channel you specified is not within 0
and AIO_MAX_AI - 1.

NoteslWarnings

AISetBypass () forces the value of .AIOEU in Figure 10.13 when .AIOBypassEn is set to TRUE.

Example

void Task (void *pdata)

FP32 val;

for (;;)

val = Get value from keyboard;

AISetBypass(O, (FP32)val);



Chapter lO: Analog l/Os - 357

AISetBypassEn ( )
INT8U AISetBypassEn(INT8U n, BOOLEAN state);

AISetBypassEn () allows your application code to prevent the analog input channel from being
updated. This permits another part of your application to set the value returned by AIGet ( ). In other
words, you can "fool" the application code that monitors the analog input channel into thinking that the
value is coming from a sensor, when in fact, the value returned by the analog input channel can come from
another source. The value of the analog input channel is set by AISetBypass ( ). AISetBypassEn ( )

and AISetBypass () are very useful functions for debugging.

Arguments

n is the desired analog input channel to bypass. Analog input channels are numbered from 0 to
AIO_MAX_AI - I.

state is the state of the bypass swi tch. When TRUE, the bypass switch is open (i.e., the analog input
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the analog input channel is not
bypassed).

Return Value

AISetBypassEn () returns 0 upon success and 1 if the analog input channel you specified is not within
oand AIO_MAX_AI - 1.

NoteslWarnings

AISetBypassEn() forces the value of .AIOBypassEn in Figure 10.13.

Example II



358 - Embedded Systems Building Blocks, Second Edition

AOCfgCal ()
INT8U AOCfgCal(INT8U n, FP32 gain, FP32 offset);

AOCfgCal () is used to set the calibration gain and offset of an analog output channel. An analog output
channel basically implements a generalization of Equation [10.23], as shown in Equation [10.29]:

[10.29] DACcaunls = 1NT (.A1OConvGaiI1(countslEU)X .A1OCalGain X .A10Scaleout<Eu) +
.A1OConvOffset(counls) + .A1OCalOffse4counlS»

You can specify a calibration gain (. A1OCalGain) and offset ( . A1OCalOffset) to compensate for
component inaccuracies.

Arguments

n is the desired analog output channel. Analog output channels are numbered from 0 to A10_MAX_AO 
1.

gain is a multiplying factor that is used to compensate for component inaccuracies and doesn't have
any units. gain sets the value of . A10CalGain in Figure 10.13. The gain would be entered by a cali
bration technician and stored in some form of non-volatile memory device such as an EEPROM or bat
tery-backed-up RAM.

offset is a value that is added to the raw counts before outputing to a DAC to compensate for off
set-type errors caused by component inaccuracies. offset sets the value of .A1OCalOffset in Figure
10.13. The offset would also be entered by a calibration technician and stored in some form of
non-volatile memory device such as an EEPROM or battery-backed-up RAM.

Return Value

AOCfgCal () returns 0 upon success and 1 if the analog output channel you specified is not within 0
and AIO_MAX_AO - 1.

NoteslWarnings

None

Example

void main (void)

AOCfgCal(O, (FP32)1.05, (FP32)10.6);



Chapter 10: Analog UOs - 359

AOCfgConv( )
INT8U AOCfgConv(INT8U n, FP32 gain, FP32 offset, INT16S lim, INT8U pass);

AOCfgConv () is used to set the conversion gain, conversion offset, and the value of the pass counter
for an analog output channel. An analog output channel basically implements a generalization of Equa
tion [10.20], as shown in Equation [10.29] (see page 358). AOCfgConv{) is used to set the value of
.AIOConvGain and .AIOConvOffset.

Arguments

n is the desired analog output channel to configure. Analog output channels are numbered from 0 to
AIO_MAX_AO - 1.

gain is the conversion gain for the analog output channel in counts per engineering unit (countslE.U.).
gain sets the .AIOConvGain field of Figure 10.14.

offset is used to bias the DAC counts and sets the .AIOConvOffset field of Figure 10.14.

lim is used to specify the maximum count that can be sent to the DAC. This argument ensures that the
DAC will never be written with a count larger than lim For example, an 8-bit DAC has a maximum
count of 255 (2" -1). lim sets the .AIOLimfield of Figure 10.14.

pass is used to specify a pass count. The pass count is used to specify to the module how often the ana
log channel will be updated. The analog 110 module updates all analog output channel on a regular basis
every so many clock ticks. This is called scanning. pass specifies how many scans are needed to update
the specific analog output channel. For example, suppose the analog I/O module scan rate is 10Hz and
you specify a pass count of 2 for analog output channel #4. In this case, analog output channel #4 will
be updated five times per second. I included a pass count because some analog output channels may not
need to be updated as often as others. pass sets the .AIOPassCnts field of Figure 10.14.

Return Value

AOCfgConv () returns 0 upon success and 1 if the analog output channel you specified is not within 0
and AIO_MAX_AO - 1.

NoteslWarnings

None

Example

void main (void)

AOCfgConv(O, (FP32)1.05, (FP32)10.6, OxOFFF, 1);

• n _

-----

II



360 - Embedded Systems Building Blocks, Second Edition

AOCfgScaling()
INT8U AOCfgScaling(INT8U n, void (*fnct) (AIO *paio), void *arg};

AOCfgSealing () is used to specify a scaling function to be executed when the analog output chan
nel is updated. The scaling function allows you to apply further processing before updating an analog
output. You don't need to call this function if your analog output channel doesn't need a scaling func
tion. In this case, the .AlOSealeln field will simply be copied to the .AlOSealingOut field by
AOUpdate () (see code).

Arguments

n is the desired analog output channel. Analog output channels are numbered from ato AlO_MAX_AO 
1.

fnct is a pointer to the scaling function that will be executed when the analog output channel is
updated. fnet sets the value of .AlOSealeFnet in Figure 10.14. fnet must be written to receive a
pointer to the analog I/O data structure called AlO as follows:

void fnet (AlO *paio);

arg is a pointer to any arguments or parameters needed for the scaling function. arg sets the value of
.AlOSealeFnetArg in Figure 10.14. This argument can be used to specify specific options about the
scaling being performed.

Return Value

AOCfgSealing () returns aupon success and 1 if the analog output channel you specified is not within
oand AIO_MAX_AO - 1.

NoteslWarnings

The scaling function is assumed to take its input from paio->AlOSealeln and produce its result in
paio->AlOSealeOut.



Chapter 10: Analog IIOs - 361

Example

void main (void)

AOCfgScaling{O, ActLin, (void *)0);

void ActLin (Ala *paio)

/* Linearize actuator function */

paio->AlOScaleln is the input value to the scaling function.

paio->AIOScaleOut is where the scaling function will place the result.

paio->AlOScaleFnctArg in this case is not used but could be made

to tell ActLin() the type of actuator to linearize.

II



362 - Embedded Systems Building Blocks, Second Edition

AOSet()
INT8U AOSet{INT8U n, FP32 val);

This function is used by your application software to set the value of the analog output channel. The
value you set the channel to is specified in engineering units. In other words, if your analog output
channel has been configured to control the position of a valve in percent then, you would pass the
desired percentage of position you desire (a number between 0.0 and 100.0).

Arguments

nis the desired analog output channel. Analog output channels are numbered from 0 to AIO_MAX_AO 

1.

val is the desired value for the analog output channel and is specified in engineering units.

Return Value

AOSet () returns 0 upon success and 1 if the analog output channel you specified is not within 0 and
AIO_MAX_AO - 1.

Notes/Warnings

None

Example

void Task (void *pdata)

FP32 valve;

for (;;)

valve = Get desired value position from user;

AOSet{O, (FP32)valve);



Chapter 10: Analog lIOs - 363

AOSetBypass()
INT8U AOSetB¥Pass(INT8U n, FP32 val);

Your application software can bypass or override the analog output channel value by using this function.
AOSetBypass () doesn't do anything unless you open the bypass switch by calling AOSetBypassEn (),

as described previously. As with AOSet ( ) , the value you set the channel to is specified in engineering
units.

Arguments

n is the desired analog output channel. Analog output channels are numbered from 0 to AIO_MAX_AO 

1.

val is the value that you want to force into the analog output channel (in engineering units).

Return Value

AOSetBypass () returns 0 upon success and 1 if the analog output channel you specified is not within
oand AIO_MAX_AO - 1.

NoteslWarnings

None

Example

void Task (void *pdata)

FP32 val;

for (;;)

val ~ Get value from keyboard;

AOSetBypass(O, (FP32)val);

II



364 - Embedded Systems Building Blocks, Second Edition

AOSetBypassEn ( )
INT8U AOSetBypasSEn{INT8U n, BOOLEAN state);

AOSetBypassEn () allows you to prevent your application from changing the value of an analog out
put channel. This allows you to gain control of the analog output channel from elsewhere in your
application code. This is a quite useful feature because it allows you to test your analog output chan
nels one by one. In other words, you can set an analog output to any desired value even though your
application software is trying to control the output. The value of the analog output channel is set by
AOSetBypass ( ). AOSetBypassEn () and AOSetBypass () are very useful for debugging.

Arguments

n is the desired analog output channel. Analog output channels are numbered from 0 to AIO_MAX_AO 

1.

state is the state of the bypass switch. When TRUE, the bypass switch is opened (i.e., the analog output
channel is bypassed). When FALSE, the bypass switch is closed (i.e., the analog output channel is not
bypassed).

Return Value

AOSetBypassEn () returns 0 upon success and 1 if the analog output channel you specified is not
within 0 and AIO_MAX_AO - 1.

NoteslWarnings

None

Example

void main (void)

AOSetBypassEn(O, TRUE);



Chapter 10: Analog lIOs - 365

10.08 Analog I/O Module, Configuration

Configuration of the analog I/O module is quite simple.

1. You need to define the value of five #defines. The #defines are found in AIO. H (or CFG. H).

AIO_TASK_PRIO is used to set the priority of the analog I/O module task.

AIO_TASK_DLY is used to establish how often the analog I/O module will be executed.
AIO_TASK_DLY determines the number of milliseconds to delay between execution of the ana-

log I/O task.

WARNING
In the previous edition of this book, you needed to specify AIO_TASK_DLY_TICKS which speci
fied the number of ticks between execution of AIOTask (). Because flC/OS-II provides a more
convenient function (i.e., OSTimeDlyHMSM ()) to specify the task execution period in hours, min
utes, seconds and milliseconds, AIO_TASK_DLY_TICKS is no longer used and AIO_TASK_DLY

now specifies the scan period in milliseconds instead of ticks.

AIO_TASK_STK_SIZE specifies the size of the stack (in bus width units) allocated to the analog
I/O task. The number of bytes allocated for the stack is thus given by: AIO_TASK_STK_SIZE times
sizeaf (OS_STK).

WARNING
In the previous edition of this book, AIO_TASK_STK_SIZE specified the size of the stack for
AIOTask () in number of bytes. flC/OS-II assumes the stack is specified in stack width elements.

AIO_MAX_AI determines the number of analog input channels that will be handled by the analog
I/O task.

AIO_MAX_AO determines the number of analog output channels handled by the analog I/O task.

2. You will need to define how analog inputs are read (i.e., how to read your ADC(s). ADCs must all be
handled through AIRd (). The function prototype for AIRd () is:

INT16S AIRd (INT8U ch) ;

AIRd () is called by AIUpdate () (see code) and is passed the logical channel number (0 to AIO_MAX_AI

- 1). You must translate this logical channel into code that selects the proper multiplexer for the desired
channel, start the ADC, wait for the conversion to complete, read the ADC, and finally, return the ADC's
counts.

II



366 - Embedded Systems Building Blocks, Second Edition

3. You will need to provide the code for the function that writes to all DACs (i.e., AOWr(). The func
tion prototype for AOWr() is:

void AOWr (INTBU ch, INT16S raw);

AOWr() is called by AOUpdate () (see code) and is passed the logical channel number (0 to AIO_MAX_AO
- 1). You must translate this logical channel into code that selects the proper DAC for the desired channel.
AOWr() is also passed the counts to send to the DAC. Your code must thus write the counts to the proper
DAC.

4. You will need to provide the hardware initialization function (AIOIni tIO ( ) ), which is called by
AIOIni t ( ) .The function prototype for AIOInit () is:

void AIOlnit (void);

10.09 How to Use the Analog I/O Module
Let's assume that you need to read the analog inputs and control the analog outputs shown in Figure
10.16.

Figure 10.16 Using the analog I/O module.

Analog Inputs
LM-34A
(1 sec.)

100 ohms RTD
(100 mS)

J-type Thermocouple'
(500 mS)

J-type Thermocouple
(500 mS)
Voltage
(1 sec.)

Pressure
(100 mS)

0

~ 1

----+ 2

AI
3

4

----+ 5

Your Application
Temperature

(-50 to 200 OF, 1° F)
Temperature

(-50 to 200 OF, 0.2%)
Temperature

(-50 to 750 OF, 1°F)
Temperature

(-50 to 1000 OF, 1°F)
Voltage

(0 to 15V, 0.1V)
Pressure

(0 to 30 PSI, 0.1 PSI)

21---'"

AO 11---+-

Your Application
Temperature

(-50 to 200 OF, 1°F, 100 mS)
Fuel Control

(0 to 100%, 0.1%,100 mS)
RPM

(0 to 6000 RPM, 1%,200 mS)

Analog Outputs
Temperature meter

ot-----.. (0 to 100 J,IA)
Fuel Valve

(4 to 20 mAl
RPM meter

(0 to 100 J,IA)

The analog I/O module has to read six analog inputs, and thus you will configure AIO_MAX_AI to 6.
Similarly, to update three analog outputs, you need to set AIO_MAX_AOto 3. We can set AIO_TASK~LY
to 100 (i.e., milliseconds) because all analog I/Os need to be read or updated in multiples of 100 mS.



Chapter 10: Analog l/Os - 367

Obviously, you need to allocate sufficient stack space (i.e., AIO_TASK_STK_SIZE) for AIOTask () as
well as determine what priority (i.e., AIO_TASK_PRIO) you want to give to that task.

To initialize the analog I/O module, you need to call AIOIni t () prior to using any of the analog
I/O module functions. You would typically do this in main ( ) :

void main (void)

OSInit () ;

AIOlnit();

OSStart() ;

/* Initialize the O.S. (mC/OS-II)

/* Initialize the analog I/O module

/* Start multitasking (mC/OS-II)

*/

*/

*/

You would initialize each one of the analog I/O channels from an application task, as shown in the
code fragment following this paragraph. It is important that you do this at the task level because some of
the analog I/O module services assume that the operating system is running in order to access the
mutual exclusion semaphore (AIOSem).

void AppTask (void *data)

data = data;

/* Initialize analog I/O channels here ... */

for (;;) {

/* Application task code ... */

Let's assume the hardware designer came up with the circuit shown in Figure 10.17 to read the ana
log inputs. As you can see, each input has signal conditioning circuitry which feeds into a multiplexer.
The multiplexer selects one of the analog inputs to be converted by a 12-bit analog-to-digital converter
(ADC).

II



368 - Embedded Systems Building Blocks, Second Edition

12-Bit
ADC

FSV =10V

Figure 10.17 Analog inputs.

MUX.Select
(From CPU)

Amplifier
(Gain =4)

0

Current 0.75V
Source RTD

(1 mAl
(100 ohms)

1

J-type
Amplifier

5.6V
Thermocouple

(-50 of = -2.223 mV) (Gain =400)

(750 of = 21.785 mV)

2

J-type 1.0V MUXThermocouple Amplifier

(-50 of = -2.223 mV) (Gain = 300)
(1000 of = 29.515 mV)

3

Amplifier
1.0V

(Gain = 0.5)

Voltage 4
(0 to 15V)

Pressure Amplifier
(2.6 mV/PSIG) (Gain = 100)

+10V
5

GND



Chapter 10: Analog IIOs - 369

10.09.01 How to Use theAnalogYO Module, AI#0

Analog input channel #0 is an LM-34A temperature sensor used to read temperatures from -50 to 200
P. Using Equation [10.9], the conversion gain is:

[10.30] ConvGain
(EU)/(count)

FSV

Transducer x A y x (2 n - 1)
Y /(EU)

10
ConvGain

(0F)/(count) 0.01 x4x(212_1)
v/(0 F)

ConvGain = 0.061050
(0F)/(count)

From Equation [10.10], the conversion offset is:

[10.31] (

V b ias x (2n-1~

ConvOffsetcounts = - FSV )

0.75 x (212_1~

ConvOffsetcounts = -( 10 )

ConvOffsetcounts = -307.125

The temperature at the LM34A is given by Equation [10.11] and is:

[10.32] Temperaturees. = (ADCcounts + ConvOffsetcounts' x ConvGain
) (EU)/(count)

Temperature-s. = (ADCcounts- 307.125) x 0.061050 II
Because the LM-34A only needs to be read once per second, the pass counter for the channel will be

set to 10 (i.e., 10 X 100 mS scan period).

10.09.02 Howto Use theAnalogYO Module, AI #1

Analog input channel #1 is a 100-ohm Resistance Temperature Device (RID). The RID has about 80
ohms of resistance when the temperature at the RID is -50 "F and 139 ohms when the temperature at
the RID is 200 oF. Unfortunately, the temperature at the RTD is not a linear function of resistance, and
thus you will have to write a linearization function (beyond the scope of this chapter). The current
source is used to develop a voltage across the RID so that the resistance of the RID can be measured.
The circuit produces 1 mV per ohm (which is before the amplifier). By using Equations [10.9], [10.10],
and [10.11], the resistance of the RTD is given by:

[10.33] ConvGain = 0.034886
(ohms)/(count)

ConvOffsetcounts = -2293.2



370 - Embedded Systems Building Blocks, Second Edition

Resistanceohms = (ADCcounts - 2293.2) x 0.034886

The pass counter for analog input channel #1 will be set to 1 in order to read the RID every 100 mS.

10.09.03 How fJJ Use the AnalogDOModule, AI #2

Analog input channel #2 is a f-Type thermocouple (another temperature measurement device). If you
want to get the official reference on thermocouples, you should get the NIST Monograph 175 (see "Bib
liography" on page 374). A thermocouple produces a small voltage (called the Seebeck voltage) that
varies as a function of temperature. The temperature at the thermocouple is not a linear function of the
voltage produced. To further complicate things, the temperature at the thermocouple is also a function
of a reference temperature called the Cold Junction. Determining the temperature at the thermocouple is
beyond the scope of this book. Let's say for now that all you need to do is to measure the voltage (actu
ally milli-volts) produced by the thermocouple. It is thus up to you to write a linearization function
(also called thermocouple compensation function). A f-'Iype thermocouple produces -2.223 mV at -50
of and 21.785 mV at 750 "E This voltage is amplified by 400 so that it can be read by the ADC. A bias
voltage is introduced to ensure that the ADC only sees positive voltages. From Equations [10.9],
[10.10], and [10.11], the number of milli-volts at the thermocouple is given by:

[10.34] ConvGain = 0.006105
(mV)/(count)

ConvOjjsetcounts = -409.5

Thermocouplemv = (ADCcounts- 409.5) X 0.006105

All you have to do is linearize the thermocouple based on the number of milli-volts read from the
thermocouple. The pass counter for analog input channel #2 will be set to 5 in order to read the thermo
couple every 500 mS.

10.09.fJ4How fJJ Use the AnalogDO Module, AI #3

Analog input channel #3 is also a f-'Iype thermocouple. A f-'Iype thermocouple produces -2.223 mVat
-50 OF and 29.515 mVat 1000 "E This voltage is amplified by 300 so that it can be read by the ADC.
The bias voltage is also introduced to ensure that the ADC only sees positive voltages. From Equations
[10.9], [10.10], and [10.11], the number of milli-volts at the thermocouple is given by:

[10.35] ConvGain = 0.008140
(mV)/(count)

ConvOf!setcounts = -409.5

Thermocouple.i.) = (ADCcounls - 409.5) x 0.008140

Again, all you have to do is linearize the thermocouple based on the number of milli-volts read from
the thermocouple. The pass counter for analog input channel #3 will also be set to 5 in order to read the
thermocouple every 500 mS.



Chapter 10: Analog VOs - 371

10.09.05 How to Use theAnalogDOModule, AI #4

Analog input channel #4 reads a voltage directly (maybe a battery). Because the voltage to read exceeds
the FSV of the ADC, the hardware designer decided to simply divide the voltage in half. From Equa
tions [10.9], [10.10], and [10.11], the voltage at the input is given by:

[10.36] ConvGain = 0.004884
(Y)/(count)

ConvOjjsetcounts = -0

Yoltages: = (ADCcounts- 0) X 0.004884

The pass counter for analog input channel #4 will also be set to lOin order to read the thermocouple
every second.

10.09.06How to Use theAnalogDOModule, AI #5

Analog input channel #5 reads a pressure from a pressure transducer which produces 2.6 mVIPSIG
(pounds per square inch gauge). From Equations [10.9], [10.10], and [10.11], the pressure read by the
transducer is given by:

[10.37] ConvGain = 0.009392
(PSIG)/(count)

ConvOfjsetcounts = -0

PressurepSIG = (ADCcounts-O) X 0.009392

The pass counter for analog input channel #5 will be set to 1 in order to read the pressure every 100
mS.

Let's assume that the hardware designer came up with the circuit shown in Figure 10.18 to update
the analog outputs.

III



372 - Embedded Systems Building Blocks, Second Edition

Figure 10.18 Analog outputs.

FSV = Iov lr----.,

Temperature ---. Scaling
-50 of to 200 of Function

cnts 8-Bit

DAC I!
cnts * FSV1

256

Meter

FSV = IOVl,..----,

Fuel Control ---. Scaling
o to 100% Function

cnts I2-Bit

DAC I!
cnts * FSV1

4096

VALVE

4 to 20 rnA

FSV= IOV
lr----..,

RPM Scaling
---. F .

o to 6000 unction

V-.I
Converter
(l°IlAIV)

cnts IO-Bit

DAC I!
cnts * FSV1

1024

o 6000

10lJ9.07How to UsetheAnalogYO Module, AO #0

Analog output channel #0 is used to display temperatures from -50 of to 200 of on a 0 to 100~ meter.
A display of -50 pF is obtained with 0 DAC counts (0 ~) while 200 OP is obtained with 255 DAC
counts (99.609 ~). The DAC counts are given by:

[10.38] ConvGain 1.02
(counts)/(O F)

ConvOjjsetcounts = 51

DACcolints = 1.02 x Temperature-s + 51

The pass counter for analog output channel #0 will be set to 1 in order to update the meter every 100
mS.



[10.39]

....

Chapter 10: Analog IIOs - 373

10.09.08 How to Use the AnalogYOModule, AO #1

Analog output channel #1 is used to control the opening of a valve. The valve is closed when the control
current is 4 rnA and wide open when the control current is 20 rnA. The counts vs. output current is given
by:

2n x OutmA
DACcounts = FSV x 2

(mA)/V

A 12-bit DAC is used because a lO-bit DAC would not have the required resolution. Using a lO-bit
DAC, 4 rnA would require 205 counts (Equation [10.36]), while 20 rnA would require 1023 counts, a
range of 818 counts, or 0.122 percent. Note that ll-bit DACs are not commercially available. A 12-bit
DAC requires 819.2 counts for a 4 rnA output and 4095 counts for 20 rnA (actually 19.995 rnA). The
DAC counts required to control the DAC are given by:

[10.40] ConvGain = 4095 - 819.2 = 32.758
(counts)l% 100% - 0%

ConvOffsetcounts = 819.2

DACcounts = 32.758 x lnput% + 819.2

The pass counter for analog output channel #1 will be set to 1 in order to update the valve every 100
mS.

10.09.09 How to Use the AnalogYO Module, AO #2

Analog output channel #2 is used to display the RPM of a rotating device on a 0 to 100 J.1A meter. A dis
play of 0 RPM is obtained with 0 DAC counts (0 J.1A), while 6000 RPM is obtained with 1023 DAC
counts (99.902 J.1A). The DAC counts are given by:

[10.41] ConvGain = 0.1705
(counts)/(RPM)

ConvOffsetcounts = 0

DACcounts = 0.1705 x RPM + 0

II

The pass counter for analog output channel #2 will be set to 2 in order to update the meter every 200
mS.

The code to initialize the analog I/O channels is:



374 - Embedded Systems Building Blocks, Second Edition

void AppInitAIO (void)

AICfgConv(O, 0.061050,

AICfgConv(l, 0.034886,

AICfgConv(2, 0.006105,

AICfgConv(3, 0.008140,

AICfgConv(4, 0.004884,

AICfgConv(5, 0.009392,

307.125,

2293.2,

409.5,

409.5,

0.0,

0.0,

10) ;

1) ;

5) ;

5) ;

10) ;

1) ;

/* Analog Inputs */

AICfgScaling(l, /* Pointer to RTD code */, /* Pointer to args */) ;

AICfgScaling(2, /* Pointer to TC code */, /* Pointer to args */} ;

AICfgScaling(3, /* Pointer to TC code */, /* Pointer to args */) ;

AOCfgConv(O, 1.02, 51.0, 255, 1) ; 1* Analog OUtputs */

AOCfgConv(l, 32.758, 819.2, 4095, 2) ;

AOCfgConv(2, 0.1705, 0.0, 1023, 2} ;

You can now obtain the value read by any analog input channels by using AIGet () and set any ana
log output channel by calling AOSet ( ) .

10.10 Bibliography
Bums, G.W., Scroger, M.G., Strouse, G.E, Croarkin, M.e. and Guthrie, W.E
Temperature-Electromotive Force Reference Functions and Tables for the Letter-Designated

Thermocouple Types Based on the ITS-90 (NIST Monograph 175)
United States Department of Commerce
National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899
(301) 975-3058

Morgan, Don
Numerical Methods, Real-Time and Embedded Systems Programming
San Mateo, CA
M&T Publishing, Inc.
ISBN 1-55851-232-2

U.S. Software
14215 NW Science Park Dr.
Portland, OR 97229
(503) 641-8446

Zuch, Eugene L.
Data Acquisition and Conversion Handbook
Mansfield, MA
Datel/Intersil, 1979



...

Chapter 10: Analog UOs - 315

Listing 10.1 AIO. C

1*
****************************************************** * * * * * * * * * * * * * * * * * * * * * * ** * ** * * * * * * * * * * ** * * * * * * * * *~ ~ *

Analog I/O M:Jdule

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filenarre : AIO.C

* Prograrrmer ; Jean J. Labrosse
*********************************************************************************************************

*I

1*
*********************************************************************************************************

llCLUDE FILES
*********************************************************************************************************

*1

#define AIO_GLOBALS

#include "includes.h"

1*
*********************************************************************************************************

*********************************************************************************************************

*1

static OS_SI'K

static OS_EIIENI'

AIaraskStk [AIO_TASICSI'K_SIZE] ;
*AIOSen;

1*
*********************************************************************************************************

*********************************************************************************************************

*1

void AIarask(void *data);

II
static void
static void

static void
static void

I*$PAGE*I

AIInit(void) ;
AIUpdate(void) ;

AOInit(void) ;
ACVpdate(void) ;



....

376 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

/*
*********************************************************************************************************

ffiWlGURE THE CALIBRATICN PARAMErERS OF AN ANAL03 INPUr CHANNEL

function is used to configure an analog input channel.
is the analog input channel to configure:
is the calibration gain
is the calibration offset
if successfull .
if you specified an invalid analog input channel number.

n

This

gain
offset

°1

* I:lescription
* Arguments

* Returns

***** ************ ***** **** * *** ***** ** ** ***** *** *** ** * **** *** ** *** ***** ***** ***** **** *** * ***** ** **.**** * ***
*/

INr8U AICfgCal (INr8U n, FP32 gain, FP32 offset)
{

INr8U err ,
AIO *paio;

/* Point to Analog Input; structure
/* Obtain exclusive access to AI channel
/* Store new cal. gain and offset into struct

if (n < AIO_MAX_AI) "{

paio
OSSemPend(AIOSem,
paio->AIOCalGain
paio->AIOCalOffset
paio->AIOGain
paio->AIOOffset
OSSemPost (AIOSem) ;
return (0);

else {
return (1);

&AITbl[n] ;
0, &e=);

gain;
offset;
paio->AIOCalGain
paio->AIOCalOffset

* paio->AICConvGain;
+ paio->AIOConvOffset;

/* Conpute overall gain
/* Conpute overall offset
/ * Release AI channel

*/
*/
*/

*/
*/

*/

/*$PAGE*/



Chapter 10: Analog lIOs - 377

Listing 10.1 (continued) AIO. C

f*
* ********* *** * ****** **** **** ** ** ****** * * **** * **** ***** ****** **** ** ** * *** **** ** **** ***** *** ****** **** * *** *

crnFlGURE THE crnvERSlOO PARAMETERS OF AN ANAL03 INPUI' 0lANNEL

~.

n

pass
o
1

* cescription
* Arguments

* Returns

This function is used to configure an analog input channel.
is the analog channel to configure (0 ..AIO_M)'JCAI-l).

gain is the conversion gain
offset is the conversion offset

is the value for the pass counts
if successfull.
if you specified an invalid analog input channel number.

*********************************************************************************************************
*f

=8U AICfgConv 1=8U n, FP32 gain, FP32 offset, =8U pass)
{

=8U err;
AID *paio;

gall;
= offset;
= paio->AICCalGain
= paio->AICCalOffset
= pass;

f* Point to Analog Input structure
f* Obtain exclusive access to AI channel
f* Store new conv. gain and offset into struct

if In < AIO_MAX_AII (
paio = &AI'I'bl[n] ;
OSSemPend(AIOSem, 0, &err);
paio->AICConvGain
paio->AICConvOffset
paio->AI03a.in
paio->AICXJffset
paio->AIOPassOnts
OSSemPost (AIOSem);
return (0);

else {

return Ill;

f*$PAGE*f

* paio->AICConvGain;
+ paio->AICConvOffset;

f* Compute overall gain
f* Canpute overall offset

f* Release AI channel

*f
*f
*f

*f
*f

*f

II



378 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

f*

CXlNFlGURE 'lliE SCALIN3 PARAMIITERS OF AN ANALCG INHJl' CHANNEL

* Description This function is used to configure the scaling parameters associated with an analog
input channel.

* Arguments n is the analog input channel to configure (D ••AIO_MAX_AI-l).
arg is a pointer to arguments needed by the scaling function
fnct is a pointer to a scaling function

* Returns 0 if successfull.
1 if you specified an invalid analog input channel number.

*********************************************************************************************************
*f

INr8U AICfgScaling (INr8U n, void (*fnct) (AIO *paio) , void *arg)
{

AIO *paio;

if (n < AIO_MAX_AI) (
paio
OS_ENI'ER_CRITlCAL () ;
paio->AIOScaleFnct
paio->AIOScaleFnctArg
OS_EXIT_CRITlCAL() ;
return (O);

else {
return (1);

f*$PAGE*f

&AITbl[n] ;

(void (*) () ) fnct;
arg;

f* Faster to use a pointer to the structure *f



Chapter 10: Analog UOs - 379

Listing 10.1 (continued) AID. C

/*
*****.***************************************************************************************************

GEl' '!HE VALUE OF AN ANALCG INPlJl' 0lANNEL

* Description '!his function is used to get the =ect value of an analog input channel (in engineering
units) .

* Argurrents

* Returns

n
pval
o
1

is the analog input channel (0 •.AIO_MllX_AI-l) .
is a pointer to the destination engineering units of the analog input charmel

if successfull.
if you specified an invalid analog input charmel nuniber.
In this case, the destination is not changed.

*******************************************************w*************************************************

*/

INI'BU AIGet (INI'8U n, FP32 *pval)

{

AlO *pa.iOi

if (n < AIO_MllX_AI) {
paio = &AITbl [n] ;

aLENI'ERJ:RITICAL() ;
*pval = paio->AIOEU;
aU'XIT_CRITlCAL () ;

return (0);

else {

/* Obtain exclusive access to AI channel
/* Get the engineering units of the analog input charmel
/* Release AI charmel

*/
*/

*/

return

/*$PAGE*/

(1) ;

II



380 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

/*
*********************************************************************************************************

ANAIJ::G INPUrS =TIALIZATICN

* rescription
* Argurrents
* Returns

This function ini tializes the analog input channels.
None
None.

** ** ** **** ** ***** * * * * * ** * * ******* * ** ** **** ** * * * * * * ** * ** ******* *** * ** **** * * ** * ** *** ***** *** * * * * *** * * * * * ***
*/

static void AIInit (void)

INr8U i;
AIO *paio;

paio = &AITbl[O];
for (i = 0; i < AIO_MAX_AI;

paio->AIOBypassEn
paio->AIORaw
paio->AIOEU
paio->AICGain
paio->AIOOffset
paio->AIOLim
paio->AIOPassCnts
paio->AIOPassCtr
paio->AIOCalGain
paio->AIOCalOffset
paio->AIOConvGain
paio->AIOConvOffset
paio->AIOScaleIn
paio->AIOScale0llt
paio->AIOScaleFnct
paio->AIOScaleFnctArg
paio++;

/*$PAGE* /

i++) {

FALSE;

OxOOOO;
(FP32) 0.0;

(FP32) 1.0;

(FP32)0.0;

0;
1;

1;
(FP32)1.0;

(FP32) 0.0;

(FP32)1.0;

(FP32) 0.0;

(FP32)0.0;

(FP32)0.0;

(void *) 0;
(void *) 0;

/* Analog channel is not bypassed
/* Raw counts of = or mc
/* Engineering units of AI channel
/* Total gain
/* Total offset

/* Pass counts

/* Pass counter
/* Calibration gain
/* calibration offset
1* Conversion gain
/* Conversion offset
/* Input to scaling function
/* Output of scaling function
/* No function to execute
/* No argurrents to scale function

*/

*/
*/
*/
*/

*/
*/

*/
*/
*/
*/
*/

*/
*/
*/



Chapter 10: Analog 1/0s - 381

Listing 10.1 (continued) AIO. C

/*
*********************************************************************************************************

!\NI\l.03 I/O MANAGER =TIALIZATICN

* Description
* Argurrents

* RetUIIlS

This function initializes the analog I/O rranager rrodule.
None
None.

*********************************************************************************************************

*/

void xrornit, (void)

AIlnit () ;
!\OInit () ;
AIOInitIO() ;
AIOSern = OSSernCreate(I);
osraskCreate (AIOTask, (void

/*$PAGE*/

/*

/* Create a mutual exclusion semaphore for AIOs
*) 0, &AIOTaskStk[AIO_TASK_SI'K_SIZE], AIO_TASK_PRIO);

*/

*********************************************************************************************************

!\NI\l.03 I/O MANAGER TASK

*********************************************************************************************************

*/

* Description This task is created by AIOIni t () and is responsible for updating the analog inputs and
analog outputs.
AIOTask () executes every AIO_TASK_DLY milliseconds.

* Argurrents

* RetUTIlS
None.
None. II

void AIOTask (void *data)

INl'SU err;

data = data;
for (;;) {

osr:i.meDlyHMSM (0, 0, 0, AIO_TASK_DLY);

/* Avoid ccnpiler warning

/* Delay between execution of AIO rranager

*/

*/

OSSernPend(AIOSern, 0, &err);
ATIJpdate () ;
OOSernPost (AIOSern) ;

OSSernPend(AIOSern, 0, &err);
!\OOp:la.te () ;
OSSernPost (AIOSern);

/*$PAGE*/

/* Obtain exclusive access to AI channels */
/* Update all AI channels */
/* Release AI channels (AlION high prio. task to run) */

/* Obtain exclusive access to !\O channels */
/ * Update all AO channels */
/* Release 1\0 channels (AlION high prio. task to run) */



382 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

f*

******** **** * * ** * * *** * * * ****** **** * * ******** **** * * *** * * ***** ** ** ** **** **** * * * * *** * * ***** * * ** ** **** * *** * **
SET 'lliE srATE OF 'lliE BYPASSED ANALCG INPUI' CHANNEL

* Description This function is used to set the engineering units of a bypassed analog input channel.
This function is used to simulate the presense of the sensor. This function is only
valid if the bypass 'switCh' is open.

* ArgtllTlel1ts n is the analog input channel (0 ..AIO_MAX_AI-l).
val is the value of the bypassed analog input channel:

* Returns 0 if successfull.
1 if you specified an invalid analog input channel n1lITUJer.
2 if AIOBypaSSEn was not set to TRUE

*********************************************************************************************************

*f

INr8U AISetBypass (INr8U n, FP32 val)
{

Ala *paio;

if (n < AIO_MAX_AI) {
paio = &AI'Ibl [n] ;
if (paio->AIOBypassEn TRUE) {

OS_ENI'ER_CRITlCAL () ;
paio->AIOEU = val;
OS_EXIT_CRITlCAL();
return (0);

else {
return (2);

else
return (l);

f*$PAGE* f

f* Faster to use a pointer to the structure
f* See if the analog input channel is bypassed

f* Yes, then set the new value of the channel

*f
*f

* f



Chapter 10: Analog VOs - 383

Listing 10.1 (continued) AIO. C

/*
******************************************************* ** * * ** **** **** ** ** * * * * * *** * * **** * * *** ******* * * ~ ***

SEI' 'TIlE SI'ATE OF 'TIlE BYPASS SWrIUl

* Description This function is used to set the state of the l:Jypass switch. 'Ibe analog input channel is
l:Jypassed when the 'switch' is open (i.e. AIOBypassEn is set to TRUE).

* ArgLlIlEIlts n is the analog input channel (0 ••AIO_MAX_AI-l).
state is the state of the bypass switch:

FAlSE disables the bypass (i.e. the l:Jypass 'switch' is closed)
TRUE enables the bypass (i.e. the l:Jypass 'switch' is open)

* Returns : 0 if successfull.
1 if you specified an invalid analog input channel number.

*********************************************************************************************************

*/

INI'8U AIsetBypassEn (INI'8U n, OCOLEIIN state)
{

if (n < AIO_MAX_AI) {
AI'Ibl [n] .AIOBypassEn state;
return (0);

else {
return (1);

/*SPAGE*/

II



384 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

1*
******************************************************** * * * ** * * ~ * *** * * * * ** ** ** * * ** * * * *** ** ** * * * * *** * * ** **

UPDATE ALL ANAL03 INP{JI' 0lANNELS

* Description
* Arguments
* Returns

*1

'This function processes all of the analog input channels.
None.
None.

static void AIUpdate (void)

INI'8U i;
AIO *paio;

paio
for (i

if

&AI'I'bl [0] ; 1* Point at first analog input channel
= 0; i < AIO_MAX_AI; i++) { 1* Process all analog inPut channels
(paio->AIOBypassEn == FAISE) 1* See if analog input channel is bypassed
paio->AIOPassCtr--; 1* D=crernent pass counter
if (paio->AIOPassCtr == 0) { 1* When pass counter reaches 0, read and scale AI

paio->AIOPassCtr paio->AIOPass01ts; 1* Reload pass counter
paio->AIORaw = AIRd(i); 1* Read = for this channel
paio->AIOScaleIn = ((FP32)paio->AIORaw + paio->AIOOffset) * paio->AIcx::ain;
if ((void *)paio->AICBcaleFnct != (void *)0) { 1* See if function defined

(*paio->AIOScaleFnct) (paio); 1* Yes, execute function
else {

paio->AIOScaleout = paio->AIOScaleIn; 1* No, just copy data

*1
*1
*1
*1
*1
*1
*1

*1
*1

*1
}

paio->AIOEU = paio->AIOScaleout; 1* Output of scaling fnct to E.U. *1

:Paio++;

I*$PAGE*I

1* Point at next AI channel *1



Chapter 10: Analog I/Os - 385

Listing 10.1 (continued) AIO. C

1*

*********************************************************************************************************
CXlNFlGURE THE CALIBRATICN PARAMErERS OF AN ANAl.((; OlJrRJT CHANNEL

function is used to configure an analog output channel.
is the analog output channel to configure (0 .. AlO_MAX_AO-l)
is the calibration gain
is the calibration offset
if successfull.
if you specified an invalid analog output channel number.

gain
offset
o
1

n

'Ibis

* Returns

.. Description
* Argurrents

*********************************************************************************************************
*1

INr8U AOCfgCal (INr8U n, FP32 gain, FP32 offset)
{

INr8U
AlO

errj
*paio;

1* Point to Analog Output structure
1* Obtain exclusive access to AO channel
1* Store new cal. gain and offset into struct

if (n < AlO_MAX_AD) {
paio
OS8anPend (AlOSem,
paio->AlocalGain
paio->AlOCalOffset
paio->AlOGain
paio->AlOOffset
OSSemPost (AlOSem);
return (0);

else (
return (1);

I*$PAGE*I

&AOI'bl[n] ;

0, &e=);

gam;
offset;

= paio->AlOCalGain * paio->AlOConvGain;
= paio->AlOCalOffset + paio->AlOConvOffset;

1* C=ute overall gain
1* Comput.e overall offset
1* Release AD channel

*1
*1
*1

*1
*1
*1

II



386 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

/*
*********************************************************************************************************

cnwlGURE THE c:cNVERSION PARAME:rERS OF AN ANALCG CXJI'PUr 0lANNEL

function is used to configure an analog output channel.
is the analog channel to configure (0 .• AIO_MAX_AD-l).
is the conversion gain
is the conversion offset
is the value for the pass counts
if successfull.
if you specified an invalid analog output channel number.

Thi.s
n

. gain

offset
pass
o
1

* Description
* Arguments

* Returns

************** ** * *** * ** * * ** * ** * ** *** *** * * * * * ** * * ***** **** * * * * * ** * * *** * ** * * ****** ** *** *** ***** ** ** *** * ** **
*/

=8U AD:fgConv (=8U n , FP32 gain, FP32 offset, =16S lim, =8U pass)
(

=8U err;
AIO *paio;

= gain;
= offset;
= paio->AIa:alGain
= paio->AID:alOffset
= lim;
= pass;

/* Point to Analog Output structure
/* Obtain exclusive access to AO channel
/* Store new conv. gain and offset into struct

paio = &AOI'bl[n] ;
OSSemPend(AIOSern, 0, &err);
paio->AID:onvGain
paio->AID:onvOffset
paio->AICX?ain
paio->AIOOffset
paio-sarot.Im
paio->AIOPass01ts
OSSemPost (AIOSern) ;
return (0);

else {

* paio->AIOConvGain;
+ paio->AID:onvOffset;

/* Canpute overall gain
/* Canpute overall offset

/* Release AD channel

*/
*/
*/

*/

*/

*/

return (1);

)

/*$PN;E*/



Chapter 10: Analog UOs - 387

Listing 10.1 (continued) AIO.C

/*
*********************************************************************************************************

CXXiIFlGURE THE SCALIJIl> PARAME:rERS OF AN ANI\UX) OOTPUI' 0lANNEL

* Description 'Uris function is used to configure the scaling parameters associated with an analog
output channel.

* Argurren.ts n is the analog output channel to configure (0 ..AIO_MAX_AO-l).
arg is a pointer to arguments needed by the scaling function
fnct is a pointer to a scaling function

* Returns 0 if successfull.
1 if you specified an invalid analog output channel number.

*********************************************************************************************************

*/

INr8U ACCfgScaling (INr8U n, void (*fnct) (AIO *paio), void *arg)
{

AID *paio;

if (n < AIO_MAX_AO) {

paio
OS_ENI'ER_CRITlCAL () ;
paio->AIOScaleFnct
paio->AIOScaleFnctArg
OS_EXIT_CRITlCAL();
return (0);

else {
return (1);

}

/*$PAGE*/

&AOI'bl[n] ;

(void (*) (» fnct;
arg;

/* Faster to use a pointer to the structure */

II



388 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

/*
** * * **** * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * *** * * ** * * * * ** * * ** * * * * ** * * * * ** * * * * * * * * * * * * * * * * * * ** * * * * * * *** * * * * ** * *

ANAL03 corrors =TIALlZATlOiI

* Description
* Arguments
* Returns

*/

This function initializes the analog output channels.
None
None.

static void ADlnit (void)

INr8U i;
AIO *paio;

paio = &AaI'bl [0] ;
for (i = 0; i < AIO_MAX_AD;

paio->AIOBypassEn
paio->AIORaw
paio->AIOEU
paio->AICGain
paio->AIOOffset
paio->AIOLim
paio->AIOPassCnts
paio->AIOPassCtr
paio->AIOCalGain
paio->AIOCalOffset
paio->AIOConvGain
paio->AIOConvOffset
paio->AIOScaleIn
paio->AIOScaleout
paio->AIOScaleFnct
paio->AIOSca1eFnctArg
pai.o-s :

)

/*$PAGE*/

i++) {

FALSE;
OxOOOO;

(FP32)0.0;
(FP32) 1.0;
(FP32)0.0;

0;
1;
1;

(FP32)l.0;
(FP32)0.0;
(FP32) 1.0;
(FP32)0.0;
(FP32)0.0;
(FP32)0.0;

(void *)0;
(void *) 0;

/ * Analog channel is not bypassecl
/* Raw counts of AD: or DAC
/* Engineering units of AI channel
/ * Total gain
/* Total offset
/* Maximum count of an analog output channel
/* Pass counts
/ * Pass counter
/* Calibration gain
/* calibration offset
/* Conversion gain
/* Conversion offset
/* Input, to scaling function
/* output of scaling function
/* No function to execute
/* No arguments to scale function

*/

*/
*/

*/
*/
*/
*/
*/
*/
*/
*/
*/
*/

*/

*/
*/



Chapter 10: Analog 110s - 389

Listing 10.1 (continued) AIO. C

1*

**** ** *** * ****"* * **** * * *** ** ******* ***** * ***** ***** ***** *** ** ******"* ** ***** ***** ****** ***"** ******* *** * ****
SEl' THE VALUE OF AN ANAL(X; OUTPUl' QlANNEL

* Descripti.on This function is used to set the currect value of an analog output channel
(in engineering units).

* Arguments n is the analog output channel 10..AIO_MAX_AO-l).
val is the desired analog output value in Engineering Units

* Returns 0 if successfull.
1 if you specified an invalid analog output channel number.

*********************************************************************************************************
*1

INr8U AOSet (INr8U n, FP32 val)
{

if (n < AIO_MAX_AO) {
OS_ENI'ER_CRITlCAL();
AOI'bl (n] .AIOEU = val;
OS_EXIT_CRITlCAL () ;
return (0);

else {
return (1);

I*$PAGE*I

1* Set the engineering units of the analog output charmel *I

II



390 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO.C

1*
*********************************************************************************************************

SEI' THE srATE OF THE BYPASSED ANALCG CUI'PUl' 0lANNEL

* Description
* Argurrents

* RetUInS

This function is used to set the engineering units of a bypassed analog output channel.
n is the analog output channel (0 ..AIO_MAX_AO-l).
val is the value of the bypassed analog output channel:
o if successfull.
1 if you specified an invalid analog output channel nurOOer.
2 if AIOllypassEh is not set to TRUE

*********************************************************************************************************

*1

lNI'8U AOSetBypass (INr8U n, FP32 val)
(

AIO *paio;

if (n < AIO_WlX_AO) {
paio = &AOI'bl[n) ;
if (paio->AIOllypassEh == TRUE)

OS_ENl'ER_CRITlCAL ( ) ;

paio->AIOScaleIn = val;
OS_EXIT_CRITlCALO;

return (0);
else {

return (2);

else
return (1);

I*$PAGE*I

1* Faster to use a pointer to the structure
1* See if the analog output channel. is bypassed

1* Yes, then set the new value of the charmel

*1
*1

*1



Chapter 10: Analog UOs - 391

Listing 10.1 (continued) AIO.C

1*

SEI' 'TIlEsrATE OF 'TIlE BYPASS SWITCH

* Description This function is used to set the state of the bypass switch. The analog output channel
is bypassed when the 'switch' is open (i.e. AIOBypassEn is set to TRUE).

* Arguments n is the analog output channel (0 ..AIO_MAX_AO-l).
state is the state of the bypass switch:

FAlSE disables the bypass (i.e. the bypass 'switch' is closed)
TRUE enables the bypass (i.e. the bypass 'switch' is open)

* Returns : 0 if successfull.
1 if you specified an invalid analog output channel mnnber.

*********************************************************************************************************

*1

INr8U AOSetBypassEn (INr8U n, B:XlLEI\N state)
{

INr8U err;

if (n < AIO_MAX_AO) {
AOI'bl [n] .AIOBypassEn state;
return (0);

else {
return (1);

I*$PAGE*1

II



392 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

1*
* ** ** * * * * * * * ** ** * * * * * * ** * * *** ** ** ** * * * * * ** * ***** *** ***** * * * **** *** ** * * * * * * ** ** * * * * ***** * *** ** * * ** * * * *** **

UPDATE ALL ANI\L03 CUI'PUI' CHANNELS

* Description
* Arguments
* Returns

'Ibis function processes all of the analog output channels.
None.
None.

*********************************************************************************************************
*1

static void ACUpdate (void)

=8U
AIO

=165

paio
for (i

if

i;
*paio;
raw;

&AOI'bl[ 0] ;

= 0; i < AIO_MAX_AO; i++) {
(paio->AIOBypassEn == FALSE)

paio->AIOScaleIn = paio->AIOEU;

1* Point at first analog output channel
1* Process all analog output channels
1* See if analog output channel is bypassed

1* No

*1
*1
*I
*1

paio->AIOPassCtr--; 1* Decrement pass counter * I
if (paio->AIOPassCtr == 0) { 1* When pass counter reaches 0, read and scale AI *1

paio->AIOPassCtr = paio->AIOPassCnts; 1* Reload pass counter *1
if (void *)paio->AIOScaleFnct ! = (void *) 0) { 1* See if function defined * I

(*paio->AIOScaleFnct) (paio); 1* Yes, execute function *1
else {

paio->AIOScaleout = paio->AIOScaleIn; 1* No, bypass scaling function * I
}

raw = (=165) (paio->AIOSCaleout
if (raw> paio->AIOLim) {

raw = paio->AIOLim;
else if (raw < 0) (

raw = 0;

paio->AIORaw = raw;
A(Wr(i, paio->AIORaw);

pa.iO++i

I*$PAGE*I

* paio->AIOGain + paio->AIOOffset);

1* Never output> rraximum DAC counts

1* DAC counts must always be >= 0

1* Write counts to DAC

1* Point at next AO channel

* I

*1

*1

*1



Chapter 10: Analog UOs - 393

Listing 10.1 (continued) AIO. C

#ifndef CFG_C

1*
*********************************************************************************************************

=TIALIZE PHYSICAL I/Os

* Description

* Argurrents

* Returns

This function is called by AIOInit () to initialize the physical I/O used by the AIO
driver.

None.

None.

*********************************************************************************************************
*I

void AIOInitIO (void)

1* This is where you will need to put you initialization code for the ArCs and Ql'£s

1* You should also consider initializing the contents of your Ql'£(s) to a !mown value.

1*

*1
*I

**** 11: 11: ******'**** 'Ie******* 11: ***** ****** ** * ** * * * * 11:* * * * * * * * * ** 11: ** * * ** * * * * ** * * * 11:** * * * * * ** * * * * * * * * * * ** * * * * * * * * * *
READ PHYSICAL INPUrS

* Description

* Arguments
* Returns

This function is called to read a physical ArC channel. The function is assurred to
also control a multiplexer if more than one analog input is connected to the =.
ch is the = logical channel number (0 .•AIO_MAX_AI-l) .

The raw = counts from the physical device.

*********************************************************************************************************
*1

INI'168 AIRd (INI'8U ch)

{

1* This is where you will need to provide the oode to read your =(s). *1
1* AIRd() is passed a 'LCGICAL' channel number. You will have to convert this logical channel *1
/* number into actual physical port locations (or addresses) where your MUX. and =s are located. *1
1* AIRd () is responsible for: *I
1* 1) Selecting the proper MUX. channel, *1
1* 2) Waiting for the MUX. to stabilize, *1
1* 3) Starting the ArC, *1
1* 4) Waiting for the = to corrplete its conversion, *1
1* 5) Reading the counts from the ArC and, *I
1* 6) Returning the counts to the calling function. *1

return (ch);

I*$PAGE*I

II



394 - Embedded Systems Building Blocks, Second Edition

Listing 10.1 (continued) AIO. C

1*
*********************************************************************************************************

UPDATE PHYSICAL aJI'PUI'S

* D2scription This function is called to write the 'raw' counts to the proper analog output device
(Le. DllCl. It is up to this function to direct the DIIC counts to the proper DIIC if rmre
than one DAC is used.

* Argurrents ch is the DAC logical charmel number (0 ..AIO_MAX_AO-l).
ents are the DIIC counts to wri te to the DAC

* Returns !'bne.
*********************************************************************************************************

*I

void AOtIr (INr8U ch, INr16S ents)

ch ch;
cnts cnta,

1* This is where you will need to provide the code to update your DAC(s). *1
1* AOtIr() is passed a 'L03ICAL' charmel number. You will have to convert this logical charmel *I
1* number into actual physical port locations (or addresses) where your DllCs are located. *I
1* ACJtIr() is responsible for writing the counts to the selected DAC based on a logical numl::er. *1

}

#endif



Chapter 10: Analog UOs - 395

Listing 10.2 AIO. H

/*

Analog I/O Module

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filenarre : AIO. H

* Prograrrmer : Jean J. Labrosse

*/

#ifdef

#define
#else

#define
#endif

/*

C(])IFlGURATICN CCNsrANrS

*/

#ifndef CFG_H

#define AIO_TASICPRIO 40

#define AIO_TASICDLY 100
#define AIO_TASK_SI'K_SIZE 512

#define AIO_MAX_AI

#define AIO_MAX_AO

#endif

/*$PNlE*/

8
8

/* Maximum number of Analog Input Channels (1. .250)

/* Maximum number of Analog OUtput Channels (1. .250)
*/
*/

II



396 - Embedded Systems Building Blocks, Second Edition

Listing 10.2 (continued) AIO.H

DATA TYPES
~~~********************************~**~*~~*****±****** * * * * * * * * * * * ** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** * * ** * *

typedef struct aio {
EOJLE!\N AIOBypassEn;
INr16S AIORa,,,;

FP32 AIOEU;

FP32 AIOGaon;
FP32 AICXJffset;

:L~16S AIOLi.'T1;
INr8U AIOPassCnts;

~~8U AIOPassCtr;
FP32 AIocalGain;
FP32 AIOCalOffset; .

FP32 AIOConvGain;

FP32 AIOConvOffset;

FP32 AIOScaleln;
FP32 AIOScaleout;

void (*AIOScaleFnct) (struct aio
void *AIOScaleFnctArg;

AIO;

/*

/* ANALCG I/O CHANNEL DATA STRUCTURE
/* Bypass enable switch (Bypass when TRUE)

/* Raw counts of AD: or DAC
/* Engineering units of AI channel

/* Total gain (AIOCalGain * AIOConvGain)
/* Total offset (AIOCalOffset + AIOConvOffset)

/* Maximum count of an analog output channel
/* Pass counts

/* Pass counter (loaded from PassCnts)
/* Calibration gain

/* Calibration offset
1* Conversion gain
/* Conversion offset

/* Input to scaling function
/* OUtput from scaling function

paio); / Function to execute for further processing

/ * Pointer to argument to pass to 'AIOScaleFnct'

*/

*/
*/

*/

*/
*/

*/
*/

*/

*/
*/

*/
*/
*/

*/

*/
*/

**** **** ** * ** ** * * *** * ** ** k* * * * * ** ** *** * ** ** ********* * ** ****** * * *** * ************* * ** ***** * ****** **** ******
GLOBAL VARIABLES

*/

AITb:,-[AIO--,'lAlCAI] ;

.'OOTb:. [AIO_MAX_AO] ;

/*$PAGE*/

Chapter 10: Analog IIOs - 397

Listing 10.2 (continued) AIO. H

1*

FUNcrrON PRarorYPES

*1

void

INI'SU
INI'SU
INI'SU
INI'SU
INI'SU
INI'SU

INI'SU
INI'SU
INI'SU
INI'SU
INI'SU
INI'SU

AIOInit (void) ;

AICfgCal(INI'SU n, FP32 gain, FP32 offset);
AICfgConv(INI'SU n, FP32 gain, FP32 offset, INI'SU pass);
AICfgScaling(INI'SU n, void (*fnct) (AIO *paio) , void *arg);
AISetBypass(INI'SU n, FP32 val);
AISetBypassEn(INI'SU n, BXJLEAN state);
AIGet(INrSU n, FP32 *pval);

AOCfgCal(INrSU n, FP32 gain, FP32 offset);
AOCfgConv(INrSU n, FP32 gain, FP32 offset, INI'16S lim, INrSU pass);
AOCfgScaling(INrSU n, void (*fnct) (AIO *paio) , void *arg);
AOSet(INrSU n, FP32 val);
AOSetBypass(INrSU n, FP32 val);
AOSetBypassEn(INrSU n, BXJLE'AN state);

void
INI'16S
void

AIOInitIO(void) ;
AIRd(=SU ch);
AOWr(INrSU ch, =16S cnts);

1* Hardware dependant functions *1

II

398 - Embedded Systems Building Blocks, Second Edition

Chapter 11

Asynchronous
Serial Communications
The world of data communications is very complex. A single book (let alone a chapter) cannot cover
everything. Data communication is concerned specifically with the issues that must be considered when
communicating data between two devices (generally computers). When computing elements are distant
from one another, in most cases data is transmitted serially. Because data in a computer is handled in
parallel (8 bits or more), it is necessary to convert this information from parallel to serial (when sending)
and from serial to parallel (when receiving). There are basically three modes of communication, as
shown in Figure 11.1:

1. Simplex: Data travels in one direction (from A to B). An example of a simplex link would be score
boards such as those used in hockey, basketball, or other sports. The information is entered at a con
sole by the score/timekeeper and sent 'Serially to large displays that everybody can see.

2. Half-duplex: Data travels in one direction (from A to B) and then the other direction (from B to A)
but not at the same time. The RS-485 interface (discussion starts on page 408) is half-duplex.

3. Full-duplex: Data can travel in both directions at the same time.

399

400 - Embedded Systems Building Blocks, Second Edition

Figure 11.1 Communication modes.

A--------..~
SIMPLEX

A sends to B only

BA
_____1.....1------- _

HALF-DUPLEX
Data travels one direction at a time.

A sends to B then, B sends to A

A B

FULL-DUPLEX
Data can travel in both directions simultaneously.

A sends to Band, B sends to A

In this chapter, I will briefly discuss asynchronous communications, the RS-232C standard, the
RS-485 standard, the serial ports on a PC, and how data is sent and received on an asynchronous com
munication port. This chapter is not concerned with what is actually sent and received. In other words,
in this chapter, I will not cover data communication protocols. This chapter provides three software
modules:

1. A low-level driver that allows characters to be sent and received on either of the two serial I/O ports
on a Pc. The driver is called COMM_PC and is interrupt-driven.

2. An interface to the low-level driver (described previously) which allows bytes sent and received to
be buffered. This interface allows you to use buffered serial I/O without requiring a real-time operat
ing system. This software module is called COMMBGND and is applicable to just about any Fore
ground/Background system.

3. An interface to the low-level driver which assumes the presence of a real-time operating system.
This software module (called COMMRTOS) allows you to use buffered serial I/O in a multitasking
environment.

The code provided in this chapter doesn't make any assumption about the communication mode,
i.e., simplex, half-duplex, or full-duplex.

11.00 Asynchronous Communications
You can find just about everything there is to know about asynchronous serial communications in the
excellent book from Joe Campbell, C Programmer's Guide to Serial Communications, which is now in
its second edition (see "Bibliography" on page 455). If you are further interested in the world of data
communications, you should also add the books from Andrew S. Tanenbaum and Fred Halsall to your
collection.

In asynchronous communication systems, the receiver clock is not synchronized to the transmitter
clock when data is being transmitted between two devices. Generally speaking, asynchronous transmission

Chapter 11.. Asynchronous Serial Communications - 401

is used to indicate that data is being transmitted as individual bytes. Each byte is preceded by a start signal
and terminated by one or more stop signals. The start and stop signals are used by the receiver for synchro
nization purposes. As shown in Figure 11.2, the transmission line is in a mark (binary 1) condition in its
idle state. As each byte is transmitted, it is preceded by a start bit which is a transition from a mark to a
space (binary 0). This transition indicates to the receiving device that a byte is being transmitted. The
receiving device detects the start bit and the data bits that make up the byte. At the end of the byte transmis
sion, the line is returned to a mark condition by one or more stop bites). At this point, the transmitter is
ready to send the next byte. The start and stop bits permit the receiving device to synchronize itself to the
transmitter on a byte-by-byte basis. From Figure 11.2, you should note that bytes are transmitted least-sig
nificant bit first. Also, each byte of data being transmitted requires at least two bits which are used for syn
chronization purpose. The synchronization bits thus impose an overhead of 20 percent.

Figure 11.2 Asynchronous communications timing diagram.

B7 I
I
I

I I

-------1--~Character Time (#Bits / Baud Rate)

B2 B4 B5 B6
"'--+_..I.....--IIL.---JI

I I I I I
"\ ~ I I I

1 Bit Time (1 / Baud Rate)..;

MARK_(:..;;,I):-....

It is assumed that the receiver knows how fast each bit is being transmitted. This transmission rate is
known as the baud rate. As long as the sender and the receiver agree to use the same baud rate, the
actual rate used is not important. The industry has, however, standardized baud rates, as shown in Table
11.1.

Table 11.1 Standard baud rates III#Bytes/sec. Time between
Baud rate Bit time (pS)

(note 1) bytes (pS) (note 1)

300 3,333.3 30 33,333

600 1,666.6 60 16,667

1200 833.3 120 8,333

2400 4166.7 240 4,167

4800 208.3 480 2,083

9600 104.2 960 1,042

19200 52.1 1920 521

38400 26.0 3840 260

56000 17.9 5600 179

Note 1: Assuming 1 start, 8 data bits, and 1 stop.

402 - Embedded Systems Building Blocks, Second Edition

Asynchronous communications is performed almost transparently by a device called a UART (Uni
versal Asynchronous Receiver Transmitter). To send and receive data, your program simply writes and
reads bytes to and from the UART. UARTs are generally capable of sending and receiving data at the
same time (i.e., they support full-duplex communication). A UART appears to the microprocessor as
one or more memory locations or I/O ports. UARTs generally contain one or more status register(s),
which are used to verify the progress and state of data transmission and reception. The microprocessor
can thus know when a byte has been received, whether a communication error occurred, or when a byte
has been sent. UARTs can also be configured through one or more control registers. Configuration of a
UART consists of setting the baud rate, setting the number of stop bits (1, 1-112 or 2), enabling inter
rupts when bytes are sent or received, etc.

Probably the most popular UART is the National Semiconductor NSI6550 (see 16450 .pdf on the
companion CD-ROM). There are many other UARTs available on the market and some of the more
popular ones are: the AMD Z8530, the Motorola 6850 ACIA, the Zilog Z-80 SIO, etc. The NSI6550
contains all the required functionality to send and receive characters, but the NSI6550 also is equipped
with an internal Baud Rate Generator, which makes it especially easy to interface to most microproces
sors. What is nice about UARTs is that they also are available on a large number of single chip CPUs.
Embedded systems can thus benefit from the capability of communicating with terminals, computers or
even other embedded microprocessors.

Data sent and received by UARTs can consist of anything that can be represented by eight bits (or
less) or any multiple of eight bits. You can thus send binary data, ASCII (American Standard Code for
Information Interchange) characters, EBCDIC (Extended Binary Coded Decimal Interchange Code),
BCD (Binary Coded Decimal) digits, etc. By far the most important character set used by the
English-speaking world is ASCII. ASCII is a 7-bit code. The mapping of a 7-bit binary value to an
ASCII code is shown in Figure 11.3. ASCII characters are used to represent strings in C. For example,
the string "HELLO" is represented by the following ASCII codes:

ASCII:

Binazy

H ELL 0 \0

Ox48 Ox45 Ox4C Ox4C Ox4F OxOO

The ASCII chart contains two columns of "special" characters. Some of these ASCII characters are
well known to C programmers: NUL (Nul character, OxOO), BEL(Bell, Ox07), BS (Back Space, OX08),
LF (Line Feed, OxOA), CR(Carriage Return, OxOC), FF (Fonn Feed, OxOF), ESC (Escape, Ox1B), and
SP (Space, Ox20). The first two columns also contain character codes that can be used in data communi
cation protocols (beyond the scope of this book).

Chapter 11: Asynchronous Serial Communications - 403

Figure 11.3 ASCII character set (7-bit code).

MSD

II
-:-:-:-:. ;:::;::: .

0101 :~@: :~4KHH

0110 ~#~: ~Y:~/~.:

0111 i!hit haH,;::::::=: :::;::-: .

:-:-:-:-: :-:-:-:-

0100 W(~~4ik...... -: :-:-:-:-' ..

:-:.:-:-: :-:-:-: :-

1001 ::~F :ijiiU?

. _ ... _. _ ..

1110 ::~~: H.k:-:-:-:-" :::!::::
:;:;"

......... ::::::-" .
1101 ::b~:: ;:$:«

2

3

4

5

6

7

B

C

D

8

9

A

E

F

o 1 2 3· 4 5
LSD 000 001 010 011 100 101

o 0000 :~~~: ·~(~:i~~

1 0001 :~~f ~~+H:
....

11.01 RS-232C
Dating all the way back to 1969, the RS-232C standard is probably the most widely used communica
tion interface in the world. RS-232C was defined by the Electronic Industries Association (EIA) and is
fonnaUy known as: "Interface between data terminal equipment and data communication equipment
employing serial binary data interchange." As shown in Figure 11.4, the RS-232C standard is a hard
ware protocol used to interface betweentwo devices: one is called the Data Terminal Equipment (DTE)
and the other, the Data Communication Equipment (DeE). The RS-232C standard defines:

1. The mechanical aspects of the interface.

2. The characteristics of the electrical :signals.

3. The functional aspects of the interchange.

404 - Embedded Systems Building Blocks, Second Edition

Figure 11.4 RS-232C interface.

DTE I ~Interface Cable. I DCE
(Terminal) (Modem)

....-----25-p-in-s...J(M~ Ls"-(p-e-m-a-Ie-)-----'

The RS-232C standard says that there should be two 25-pin connectors: the male connector is used
on the DTE while the female connector is used on the DCE. The actual type of connector is not defined
by the standard. The industry has, however, standardized on 25 pins D-shell type connectors.

Electrically speaking, the RS-232C standard specifies that:

the load capacitance on a driver is not to exceed 2500 picofarads (pF),

• the load resistance on a driver must be between 3000 and 7000 ohms,

the data signaling rate (or baud rate) must be below 20,000 bits per second (bps) under the specified
load,

• the maximum levels on the RS-232C lines are not to exceed 15 volts (with respect to signal ground),

• drivers must be able to produce between +5 and +15 volts (logic 1) and -5 to -15 volts (logic 0),

• inputs must be able to accept signals from +3 to +15 volts (logic 1) and -3 to -15 volts (logic 0).

Under the maximum load suggested by the RS-232C standard, the distance between the DTE and
the DCE should not exceed 50 feet. Simple math would have you conclude that at a distance of 25 feet
(half the capacitance) you should be able to increase the signaling rate to 40,000 bps, 80,000 bps at 12.5
feet, and about 160,000 bps at 6 feet. In fact, many communication packages allow you to interface two
computers at a data signaling rate of up to 115,200 bps. You should note that the RS-232C standard does
not define "standard" baud rates. The RS-232C standard allows data to be sent and received at the same
time (i.e., full-duplex).

From the 25 pins defined by the RS-232C standard only nine (9) lines are actually used in
"real-world" applications. Probably for that reason and to reduce cost, IBM started to use 9-pin connec
tors for RS-232C communication when they introduced the IBM PC/AT back in the mid-1980s. The
nine pins that are retained for RS-232C communications are shown in Table 11.2. You should note that
communication ports on PCs are generally connected as DTEs (i.e., male connectors).

Chapter 11: Asynchronous Serial Communications -405

Table 11.2 RS-232C connections.
Description Acronym DTE DTE

DB-25M DB-9M
Pin# Pin#

Direction DCE
DB-9F
Pin#

DCE
DB-25F
Pin#

Transmit

ReceiveData

RequestTo Send

ClearTo Send

Data Set Ready

DataCanier Detect

DataTerminal Ready

Ring Indicator

SignalGround

TxD

RxD

RTS

crs
DSR

OCD

DTR

RI

SG

2 3

3 2

4 7

5 8

6 6

8 1

20 4

22 9

7 5

-> 2

<- 3

-> 8

<- 7

<- 4

<- 1

-> 6

<- 9

5

3

2

5

4

20

8

6

22

7

A full description of the use of each of the pins is beyond the scope of this chapter because the code
presented in this chapter only assumes the presence of the TxD, RxD, and SG lines. You will find, how
ever, detailed information about these lines in Joe Campbell's book.

An RS-232C communications port generally consists of a DART and what are called EIA driv
ers/receivers. The EIA drivers and receivers are used to convert microprocessor levels (typically 0 to 5
volts) to RS-232C compatible levels: -3 to -15 volts (logic 0) to +3 to +15 volts (logic 1). An RS-232C
DTE using an NS16550 and EIA drivers/receivers is shown in Figure 11.5. Inverters are used for electri
cal reasons. For your convenience, Figure 11.5 shows the pinout for both the DB25 and DB9 connec
tors. (Note that the "M" in DB-25M and DB-9M stands for "Male.") Only one of the two connectors,
however, would actually be used.

Figure 11.5 RS-232C connections (DTE).

III
3

2

7

8

6

5

1

4

9

DB_~

RS-232C Levels
(+3/+15V to -3/-15V)

~2

TTL Levels
(0 to 5V)

I
RxD f------<:>(1-----13

RTS 4

CTS 5

DSR 1-----<:< 1----16

Signal GND 7

DCD 8

DTR1----1 :>O---f----I20

ID 22

EIA~e:er \

DB-25M~EIA Driver

TxD

DART
(NS16550)

406 - Embedded Systems Building Blocks, Second Edition

Connection between a DTE and a DCE is quite straightforward and is shown in Figure 11.6. A
readily available DB25F to DB25M (or DB9F to DB9M) cable is typically all that is required.

Figure 11.6 RS-232C connections (DTE to DCE).

DART
(NS16550) DB-9M DB-9F DB-25F

TxD 2 3 ------. 3 2 RxD

RxD 3 2 +--- 2 3 TxD

RTS 4 7 ------. 7 4 CTS

CTS 5 8 +--- 8 5 RTS

DSR 6 6 +--- 6 6 DTR DCE
(Modem)

7 5 +----+ 5 7

DCD -=8 I +--- I 8 CD

DTR 20 4 ------. 4 20 DSR

RI 22 9 +--- 9 22 RD

-=
DTE DCE Notes:

CD means Carrier Detection
RD means Ring Detection

There might be situations where you would need to connect two DTEs together. For example, you
may want to connect a terminal to a PC or even interface two PCs. Connecting two DTEs together is a
little tricky because:

Both DTEs have male connectors and,

outputs would be connected to outputs and, inputs would be connected to inputs on each DTE.

This situation can be resolved by using what-is called a Null Modem adapter (also known as a Gen
der Changer) or by using two female connectors and making the connections shown in Figure 11.7.

Figure 11.7 RS-232C NULL Model (DTE to DTE).

DART DART
(NSI6550) DB-9M DB-9M (NSI6550)

TxD 3 >< 3 TxD

RxD 2 2 RxD

RTS RTS

CTS CTS

DSR DSR

DCD DCD

DTR DTR

RI RI

DTE DTE

Chapter 11: Asynchronous Serial Communications - 407

Communication between DTEs is also possible by using only three wires as shown in Figure 11.8.
The unused inputs must be asserted to satisfy the DART (specifically, the TxD output line typically is
disabled when CTS is negated). This can be accomplished by asserting the DTR output on each DTE.
The software modules presented in this chapter assume that you are using a three-wire interface.

Figure 11.8 RS-232C 3-wire DTE to DTE.

RI

DART
(NSI6550)

TxD

RxD

RTS

CTS

DSR

DCD

DTR

DB-9M

~><~
7

8

6

5 I ~+---+-t"1

1

4

9

DB-9M

2

3

4

5

6

7

8

20

22

TxD

RxD

RTS

CTS

DSR

DTR

RI

DCD

DART
(NSI6550)

DTE DTE

11.02 RS-485

The RS-232C standard requires that a direct connection be made between two devices. This is known as
a point-to-point interface. If, for example, you need to communicate with many embedded microproces
sors, you would need to dedicate an RS-232C port for each embedded processor, as shown in Figure
11.9. This situation can become expensive if the embedded processors are located far from the PC. Also, 11_
RS-232C is fairly susceptible to noise because of its common ground arrangement.

408 - Embedded Systems Building Blocks, Second Edition

Figure 11.9 PC interfacing to multiple embedded processors.

RS-232C Embedded
'II • Processor

RS-232C Embedded
'II • Processor

PC 'II RS-232C • Embedded
Processor

I I
I I
I I
I I
I I
I I
I I

'II
RS-232C • Embedded

Processor

The RS-485 interface has been created to allow multiple (up to 32) processors to communicate with
each other on a common line. RS-485 is sometimes called a party-line or a multi-drop interface and is
shown in Figure 11.10. The RS-485 interface uses differential line driver/receiver chips (such as the
Texas Instruments SN75176A Differential Bus Transceiver) and only requires a single twisted pair of
wires. Communication on an RS-485 interface is, however, half-duplex. Each communicating element
on an RS-485 interface is called a node and communication generally follows a MASTER/SLAVE proto
col (but doesn't have to). One of the nodes is called the MASTER while all other nodes are called
SLAVEs. In a MASTER/SLAVE arrangement, all communication occurs between the MASTER and a
SLAVE (not between SLAVEs). Each node on an RS-485 is assigned a unique node J.D. number. Node
#() is generally assigned to the MASTER. The MASTER selectively communicates with one of the
SLAVEs at any given time. An RS-485 interface has the following features:

very noise immune,

maximum cable length of 4000 feet,

data signaling rate up to 10 Mbps (mega-bits per second),

capable of supporting up to 32 nodes, and

capable of supporting a multi-MASTER configuration.

Chapter 11: Asynchronous Serial Communications - 409

Figure 11.10 RS-485 interface.

Slave
(Node #n)

I
751761

TxEn
1
175176

_J

Slave
(Node #1)

Master

Differential (Node #0)
Line

Receiv~x Tx

I

Differential
Line

Driver

r---~---\-----j<I>----------------l--------,

':-:-_~~-----T------------------"'----'--'----'"

Communication on an RS-485 interface proceeds as shown in Figure 11.11. The MASTER enables
its transmit line driver and sends a command or data to a SLAVE (1)). The desired SLAVE J.D. number
is typically sent as one of the first bytes in the message from the MASTER. When all bytes of the com
mand or data are sent, the MASTER disables its transmit line driver (@) and waits for a reply from the
SLAVE. The SLAVE processes the command or data received and formulates a response for the MAS
TER (@). The SLAVE enables its transmit line driver (@) and sends the response back to the MASTER.
When all bytes which make up the response from the SLAVE are sent, the SLAVE disables its transmit
line driver (@). The MASTER analyzes the response from the SLAVE (®) and performs whatever
action is needed. The MASTER is then ready to initiate the next command or data transfer. You should
note that when either the MASTER or the SLAVE is sending data the respected receivers are monitoring
what is being sent. The data sent can be verified by the sender to ensure the integrity of the line, or the
sender can simply discard the same number of bytes received as sent. The sender can also ignore any
received data until it is done with the transmission.

II

410 - Embedded Systems Building Blocks, Second Edition

Figure 11.11 RS-485 timing diagram.

I.. 1Transaction ..I
When comri,andlData is sent, I

the Master disa:les its line d/:iver. The Master analyzesth~ response.

IGD ~ QV ~
MASTER ~commandIData~ Tx Disabledl I C

Master Sends Commanclfata I I.
<D I Slave enables its IinJ driver and I

I
sends the response. I

I @ J ISLAVE Tx Disabled;'" I ~ Response J

~ ~ :~ :
The Slave analyzes the Command/Datathen, When tht: respo~se .issel'!t,

it formulatesa response. the Slave disables Itshnedriver.

® ®
The NS16550 is not a good DART to use for RS-485 communication because it doesn't provide an

interrupt when the last byte has been transmitted. Instead, the NS16550 only tells you when it is ready
to send another byte. Figure 11.12(a) will help illustrate what happens. The NS16550 contains two reg
isters for data transmission: a Transmitter Holding Register (THR) and a Transmitter Shift Register
(TSR). When you write a data byte to the NS16550, the byte is actually deposited into the THR (<D) and
is then automatically transferred to the TSR (@). At this point, the bits in the TSR are shifted out at the
baud rate that you selected (@) and an interrupt is generated by the NS16550 to indicate that the THR
can accept another byte (@); the THR holds the byte while the previous byte is being transmitted. Ifyou
disable the RS-485 line driver in the THR Interrupt Service Routine (ISR), you will actually prevent the
last byte from being sent because it is still in the process of being shifted out.

Chapter 11: Asynchronous Serial Communications - 411

Figure 11.12 Disabling the RS-485 line driver.

~PBit Sillrt7
I'" 8 bits ~I

a) TSRQ] @]
®.@

I
THR I I

tCD~
Byte to send (fr~m CPU) @) Interrupt

the CPU

Line
Driver

~~TX

TX~~
Enable

?

b)

~Stop Bit Start 7Bit Line

• 1.....---- 8 bits ---..1 ~Driver Tx
TSR Q] 1]]----=------....

ICD~ Tx
Byte to send (from CPU) ® Interrupt Enable

the CPU @)

What you actually need is a DART that interrupts the processor when the STOP bit of the last byte
has been shifted out, as illustrated in Figure 11.12(b). In this case, there is no need for a TIIR. The CPU
writes a byte to the TSR (G:l), which then gets shifted out by the DART (@). When the start bit, the byte,
and the stop bit are sent, the DART interrupts the CPD (CID). If there are no more bytes to send, the ISR

disables the line driver(@)'II-..
The low-level code provided in this chapter is designed to work with the NS16550 and so it does not

support RS-485. It should, however, be fairly easy to port the code to another DART which supports the
scheme described in Figure 11.12(b).

11.03 Sending and Receiving Data
As previously mentioned, data is sent and received by a DART by writing and reading from memory or
I/O port locations. A bit in the DART's status register can be monitored to determine when a byte has
been received. Similarly, another bit can be examined to see when a byte has been transmitted through
the interface. This method of monitoring the UART status is called polling the VO device and generally
is used when the microprocessor can monitor the status register faster than bytes are sent and received.
Polling has serious shortcomings, especially for input, because bytes can be missed while the processor
is occupied with other duties. Because microprocessors have other things to do besides wait for serial
I/O ports, it is cornmon to resort to an interrupt-driven scheme to handle data reception and transmis
sion.

412 - Embedded Systems Building Blocks, Second Edition

11.03.01 ReceivingData

When using an interrupt-driven scheme, an interrupt is generated when a byte arrives through the serial
port. The interrupt handler reads the byte from the port, which generally clears the interrupt source. At
this point you have a choice of either processing the byte received in the ISR or putting the byte into
some sort of buffer to let a background process handle the data. When you use a buffer, the size of the
buffer depends on how quickly your background process can get control of the CPU to process the
information. For example, if the worst case latency of your background process is 200 mS, you should
plan for a buffer of at least 192 bytes if your serial port receives bytes at 9600 baud (960 bytes/sec. X
200 mS). A special type of buffer called a Ring Buffer (also called a Circular Buffer) is often used to
capture data from a serial port.

To avoid allocating very large buffers, you can resort to what is called flow control. Basically, the
interrupt receiving data can notify the sender that the receiver's buffer is getting full. The sender would
then hold off with its transmission until the receiver empties out the buffer and notifies the sender that it
can proceed. The most common flow control scheme is called XON-XOFF and it uses the ASCII char
acters DCl (Oxll) for XON (i.e., "send me more") and DC3 (Ox13) for XOFF (i.e., "don't send me any
more"). Using the XON-XOFF scheme precludes you from sending binary data because the data you
are sending could happen to be one of these two characters.

Flow control can also be performed by using some of the RS-232C lines. This would allow you to
send and receive binary data. Unfortunately, the RS-232C standard doesn't specify which lines to use
when you are not interfacing to a modem. Nothing prevents you from using the modem control lines
RTS, CTS, DSR, and DTR, but you will have to establish how flow control will work between your
devices.

Input buffering using a ring buffer is shown in Figure 11.3. When bytes are received, the ISR reads
the byte from the serial port (CD) and places the byte into the ring buffer (@). Your application code
(background) then monitors the ring buffer to see if bytes have been received (®). If the ring buffer is
not empty, the "oldest" byte (least recent byte) is extracted from the ring buffer.

Figure 11.13 Buffered serial lID, receiving bytes.

I Rx ~(ISR }-~-~ _-.9l_ -.. Your
Application

The following pseudocode for both the ISR and the interface function to your application follow.
Actual code for the ISR and the interface function will be described later.

Chapter 11: Asynchronous Serial Communications - 413

ISR CornmRxISR (void)

INT8U c;

Save processor context;

c = Get byte from RX port;

if (Rx Ring Buffer not full)

Put byte received into ring buffer;

Restore processor context;

Return from Interrupt;

INT8U CommGetChar (void)

INT8U c;

c = NUL;

Disable interrupts; /* Prevent INTs during aCcess */

if (Rx Ring Buffer not empty) {

c = Get byte from ring buffer;

Enable interrupts;

return (c);

You should note that interrupts are disabled when your application accesses the ring buffer to ensure
exclusive access to the ring buffer from either the ISR or the interface function.If your application
doesn't extract bytes from the ring buffer in time, the ring buffer will become full and received bytes
will be lost.

The response to incoming data depends on how soon your background process gets to execute. If
you are using a real-time kernel, you can process incoming data almost as quickly as you receive it with
out doing so in an ISR. To accomplish this, a semaphore is added to the management of the ring buffer
as shown in Figure 11.4. In this case, your application waits on the semaphore (CD). When a byte is
received, the ISR reads the byte from the serial port «(2)) and deposits it in the ring buffer (@). The ISR
then signals the semaphore to indicate to the waiting task that a byte was received (@). Signaling the
semaphore makes the waiting task ready to run. When the ISR completes, the kernel determines if your
waiting task is now the highest-priority task ready to get the CPU. If it is, the ISR resumes the task wait
ing for the byte (assuming a preemptive kernel). Your application code then extracts the byte from the
ring buffer and performs whatever processing is required.

-

III

414 - Embedded Systems Building Blocks, Second Edition

Figure 11.14 Buffered serial I/O with semaphore, receiving bytes.

IRx ~(ISR

Note: RxSem is initialized to 0

1-- ® _~__ -. Your<. - - ~ Application
, /~, /, /

rA\' /
~ <, //f}\

, / \.V
'4.1i;l//Lb I Timeout

RxSem

The following pseudocode for both the ISR and the interface function to your application follow.
Actual code for the ISR and the interface function will be described later. As with the previous scheme,
if your application doesn't extract bytes from the ring buffer in time, the ring buffer will become full and
bytes received will be lost. The use of a real-time kernel, however, reduces the chance of this situation
from happening.

Most real-time kernels allow you to specify the maximum amount of time your task is willing to
wait for a byte to be received. This gives your task a chance to take corrective action in case something
happened to the communication link. For example, a task can send a message and then wait for a
response. If the response doesn't arrive within a certain amount of time, the sender can conclude either
that there is nobody listening or that something happened to the transmission medium.

Chapter 11: Asynchronous Serial Communications - 415

ISR CommRxISR (void)

INTSU c;

Save processor context;

Tell OS that we are processing an ISR;

c = Get byte from RX port;

if (Rx Ring Buffer is not Full)

Put received byte into Ring Buffer;

Signal Rx Semaphore;

Tell OS that we are exiting an ISR;

Restore processor context;

Return from Interrupt;

INTSU CornrrGetChar (INrSU *err)

INrSU c;

Wait for byte to be received (using semaphore with T.O.);

if (timed out) {

*err = Time out error;

return (0);

Disable interrupts;

c = Get byte from Ring Buffer;

Enable interrupts;

*err = No error;

return (c);

Signalling the semaphore everytime a character is received can consume valuable CPU time. An
alternatemethod is to only signal the semaphore when a special character is received. For example, you
can signal the semaphore when a carriage return character (i.e., CR or OxOD) is received. You applica
tion can thus be notified once a full command is received which reduces the overhead. Of course, your
buffer needs to have sufficient storage to hold one or more commands. This alternate method is shown
in the following pseudocode.

II

416 - Embedded Systems Building Blocks, Second Edition

ISR CornmRxISR (void)

INTBU c;

Save processor context;

Tell as that we are processing an ISR;

c = Get byte from RX port;

if (Rx Ring Buffer is not Full)

Put received byte into Ring Buffer;

if (received byte is the end-of-command byte) {

Signal Rx Semaphore;

Tell as that we are exiting an ISR;

Restore processor context;

Return from Interrupt;

INTBU CommGetCommand (INTBU *command, INTBU *nbytes)

INTBU c;

INTBU nrx;

Wait for command to be received (using semaphore with T.O.);

if (timed out) {

*nbytes = 0;

return (Timeout error);

nrx = 0; /* Clear number of bytes received counter */

Disable interrupts;

c Get byte from Ring Buffer;

while (c ! = end-of-command byte)

command++ = c; / Save command byte */

nrx++; /* Clear number of bytes received counter */

c Get byte from Ring Buffer;

Enable interrupts;

nbytes = nrx error; / Set number of bytes received

return (No error);

*/

Chapter 11: Asynchronous Serial Communications - 417

11.03.02 TransmittingData
Transmission of bytes works somewhat like byte reception. Your background process deposits bytes in
an output buffer. When the transmitter on the DART is ready to send a byte, an interrupt is generated,
the byte is extracted from the buffer, and the ISR outputs the byte. There is, however, one small compli
cation: The serial port generates an interrupt only AFTER the port has finished sending the byte. The
most elegant way I found to resolve this dilemma is to disable interrupts from the transmitter until you
need to send bytes. Interrupts are enabled AFTER the output buffer is loaded with at least one byte. As
soon as you allow the transmitter to interrupt, the first byte to send will be removed by the transmit ISR
and output to the DART. The ISR then examines the buffer and, if there are no more bytes to send, the
ISR disables the transmit interrupt.

Buffering of data makes a lot of sense when you have to transmit a relatively large amount of data on
the serial port, such as the contents of a disk file. Output buffering using a ring buffer is shown in Figure
11.15. When one or more bytes need to be sent, they are placed in the ring buffer ((1)). Transmit inter
rupts are enabled after putting a byte into the buffer (@). If the DART is ready to send a byte, an inter
rupt occurs and the ISR extracts the "oldest" (least recent) byte from the ring buffer (@). The byte is
then output to the serial port (@). Transmit interrupts will be inhibited if the byte extracted from the
buffer makes the ring buffer empty.

Figure 11.15 Buffered serial /10, transmitting bytes.

The following pseudocode for both the ISR and the interface function to your application follows. II
Actual code for the ISR and the interface function will be described later.

418 - Embedded Systems Building Blocks, Second Edition

void CommPutChar (INT8U c)

Disable interrupts; /* Prevent INTs during access */

if (Tx Ring Buffer is not Full)

Put byte to send into ring buffer;

if (This is the first byte in the Ring Buffer)

Enable Tx Interrupts;

Enable interrupts;

ISR CommTxCharISR (void)

INT8U c;

/* Allow CPU interruptions */

Save processor context;

if (Tx Ring Buffer not empty)

c = Get next byte to send from ring buffer;

OUtput byte "c ' to TX port;

else {

Disable Tx Interrupts;

Restore processor context;

Return from Interrupt;

Figure 11.16 shows how you can make use of a real-time kernel's facilities. The semaphore is used
as a traffic light pausing the sending task when the ring buffer is full. To send data, the task waits for the
semaphore (CD). If the ring buffer is not full, the task proceeds to deposit the byte into the ring buffer
(®). Transmitter interrupts are enabled if the byte deposited is the first byte in the ring buffer (®). The
transmit interrupt ISR extracts the "oldest" byte from the ring buffer (@) and signals the semaphore (@)
to indicate that the ring buffer'has room to accept another character. The ISR then outputs the byte to the
UART.

Chapter 11: Asynchronous Serial Communications - 419

Figure 11.16 Buffered serial I/O with semaphore, transmitting bytes.

ISR

Note: TxSem is initialized to Tx Ring Buffer size.

®
~------ <,

/' ,
/' '

// '"
/ aJ ---.,,--- ® r:;::r

Your _~_~ _~__ --..(~ ~~
Application ..--..... ;-

~ ..--
o - <IJ..--"--"--, ..--, ..--

c-, »<

TimeoutI "[E].k"--
TxSem

It is important to note that TxSem needs to be a counting semaphore, and the semaphore must be ini
tialized to the size of the ring buffer. The pseudocode for both the interface function to your application
and the ISR follows. Actual code for the ISR and the interface function will be described later.

II

420 - Embedded Systems Building Blocks, Second Edition

ISR CommTxCharISR (void)

INT8U c;

Save processor context;

if (Tx Ring Buffer is not empty) {

c = Get next character to send from Tx Ring Buffer;

OUtput character 'c' to TX port;

Signal Tx semaphore;

else {

Disable TX Interrupts;

Restore processor context;

Return from Interrupt;

11.04 Serial Ports on a PC
The software modules provided in this chapter allow you to use both serial ports on an mM-PC/AT
compatible computer although it can be easily altered to support different hardware. A review of the
PC's architecture relating to the serial ports available on PCs is thus necessary in order to better under
stand the code.

PCs are typically equipped with two RS-232C communication ports that are referred to as COMI
and COM2. Both ports generally consist of a National Semiconductor NSl6550 or equivalent DART
and are capable of communicating at baud rates up to 115200 bps. The PC provides services through its
BIOS (Basic Input/Output System) but unfortunately, communications using the BIOS must be done by
polling (monitoring the port to see if bytes have been received or sent). This limitation means that com
munication effectively cannot exceed about 1200 baud. This shortcoming can be corrected by replacing
the BIOS services with interrupt-driven functions.

An mM-PC/AT computer contains two interrupt controllers (Intel 82C59A PIC) providing 15
sources of interrupts to the PC's microprocessor. Interrupts are labeled IRQOthrough IRQI5, as shown
in Figure 11.17. IRQ2 of the first i82C59A is actually the output of the second i82C59A interrupt con
troller.

Chapter 11: Asynchronous Serial Communications - 421

Figure 11.17 PC/AT interrupt controllers.

IRQ8 --.

IRQ9 --..

IRQlO --..

IRQll --..

IRQl2 --..

IRQl3 --..

IRQl4 --.

IRQl5 --.

BO

IRQO --. BO

Intel IRQl --.

82C59A Intel
(Second) IRQ3 --.

82C59A~IRQ4 --. (First)
IRQ5 --.

B7 IRQ6 --.

IRQ7 --. B7

To CPU

Table 11.3 shows what devices are typically connected to the interrupt controllers. The table lists the
interrupt sources in priority order (IRQOhas the highest priority). Table 11.3 also shows that each serial
I/O port is connected to its own IRQ line: COMI is connected to IRQ4 while COM2 is connected to
IRQ3.

II

422 - Embedded Systems Building Blocks, Second Edition

Table 11.3 PC/AT interrupts summary.

IRQU Description Interrupt Interrupt Mask Mask Clear IRQ
vector # vector address register bit#

address
IRQO Timer(i.e., ticker, Ox08 OxOOOO:OxOO20 OxOO2l 0 OxOO20

18.2 Hz)

IRQ 1 Keyboard Ox09 OxOOOO:OxOO24 OxOO2l 1 OxOO20

IRQ2 (Interrupts 8-15 OxOA OxOOOO:OxOO28 OxOO2l 2 OxOO20
shown below)

IRQ8 Real-Time Clock Ox70 OxOOOO:OxOlCO OxOOAl 0 OxOOAO then
OxOO20

IRQ9 Redirected toIRQ2 Ox7l OxOOOO:OxOlCO OxOOAl 1 OxOOAO then
OxOO20

IRQlO Unassigned Ox72 OxOOOO:OxOlC8 OxOOAl 2 OxOOAO then
OxOO20

IRQ 11 Unassigned Ox73 OxOOOO:OxOlCC OxOOAl 3 OxOOAO then
OxOO20

IRQ12 Unassigned Ox74 OxOOOO:OxOlDO OxOOAl 4 OxOOAO then
OxOO20

IRQ13 8Ox87co-processor Ox75 OxOOOO:OxOlD4 OxOOAl 5 OxOOAO then
OxOO20

IRQ14 HardDisk Ox76 OxOOOO:OxOlD8 OxOOAl 6 OxOOAO then
OxOO20

IRQ15 Unassigned Ox77 OxOOOO:OxOlDC OxOOAl 7 OxOOAO then
OxOO20

IRQ3 COM2 OxOB OxOOOO:OxOO2C OxOO2l 3 OxOO20

IRQ4 COMI OxOC OxOOOO:OxOO30 OxOO2l 4 OxOO20

IRQ5 LPT2 OxOD OxOOOO:OxOO34 OxOO2l 5 OxOO20

IRQ6 Floppy Disk OxOE OxOOOO:OxOO38 OxOO2l 6 OxOO20

IRQ7 LPTI OxOF OxOOOO:OxOO3C OxOO2l 7 OxOO20

IRQ4 is asserted whenever a byte is either received on COM1 or whenever COM1 has completed
the transmission of a byte. When an interrupt occurs, the CPU automatically vectors to the Interrupt
Vector Address shown in Table 11.3. The Interrupt Vector Address points to the Interrupt Service Rou-
tine (ISR) responsible for handling the source of the interrupt: either a byte was received, a byte was
sent, or both. IRQ3 works just like IRQ4 except that it uses a different vector.

As shown in Figure 11.18, COM port interrupts have to travel through many "doors" (gates) in order
to actually interrupt the CPU. First, interrupts must be allowed by the CPU by setting the IF bit in the
PSW (Processor Status Word). Second, the interrupt controller can inhibit interrupts from any device
connected to it through the i82C59A Interrupt Mask Register. Finally, the NS16550 UART is capable of
inhibiting either the Rx (byte received) or the Tx (byte sent) interrupts through its Interrupt Enable Reg-
ister.

Chapter 11: Asynchronous Serial Communications - 423

Figure 11.18 COM ports interrupt path.

r--------
, CPU, i80x86 I
I I
I I,
I~TO I
: CPU I

I I
I IF-Bit ,
I I
I I________ J

r-------------
I PIC, i82C59A I
I IRQ3 (First) :

I

I
I
I

I I I I I I I I I I I
7 43 0 I

~ _M~s~~~s~r J

I-COMl:-NS16550UART--:
I Byte Transmitted I
I I
I Byte Received >---;-,---;-------'=-----+---{
I I
I I
: I t I I I I I

7 10 I

L_~t:!~~e!~i~e~ ~

1-C-OM2,-NS 16550 DART--:
I Byte Transmitted I
I I
I Byte Received I
I I
I I
I I I I I I I I
I 7 10 I
, Int. Enable Register IL _

11.05 Low-Level PC Serial I/O Module (COMM_PC)

This section describes a driver that I wrote which makes much better use of the serial I/O ports provided
on a Pc. The code and the functionality of the driver easily can be ported to other environments. Your
application actually interfaces with two modules, as shown in Figure 11.19. Note that the term PC is
used generically to mean any PC having either an Intel 80286, 80386, 80486, or Pentium microproces
sor.

The low-level driver is responsible for interfacing with the National Semiconductor NS16550
UART. Functions are provided to your application to configure the two ports (COM1 or COM2), 11-.
enable/disable communication interrupts, and acquire/release the COM port interrupt vectors. The
interface functions will be described later.

Your application also interfaces to either one of two buffered serial I/O modules: COMMBGND or
COMMRTOS. You would use COMMBGND in a foregroundlbackground application and COMMRTOS if you
are running a real-time kernel such a IJC/OS-ll.

This section specifically describes the low-level driver interface functions. The source code for the
low-level code is found in the \ SOFTWARE\ BLOCKS \ COMM\ SOURCE directory, and specifically, in the
following files:

COMM_PCA •ASM (Listing 11.1)

COMM_PC •C (Listing 11.2)

COMf\LPC •H (Listing 11.3)

424 - Embedded Systems Building Blocks, Second Edition

Figure 11.19 PC/AT buffered serial I/O block diagram.

COMMBGND.C & COMMBGND.H
or

OMI

~

ITxl
mrnlISR ()

OMI

~

ITxl
mrn2 ISR ()

COMM_PC.C
COMM_PC.H

COMMRTOS.C & COMMRTOS.H
I

N I
I
I
I -,

CI

I CommPutRxChar ()
I Buffered
I • SerialI

I/O CommGetTxChar () -----.I
I
I • Co
I
I Low LevelI
I PC DriverI
I ••• C

••• ~() •
() I • /

Co
I
I

L;OMM_PCA.ASM
I,

ComrnGetChar ()
ComrnIsEmpty ()
ComrnPu tChar ()
ComrnIsFull ()

Comrnlni t ()

ComrnCfgPort ()
ComrnRxFlush()
ComrnRxlntEn ()
ComrnRxlntDis()
ComrnTxlntEn ()
ComrnTxlntDis ()
ComrnSetlntVect
ComrnRcllntVect

YOUR APPLICATIO

As a convention, all functions and variables related to the low-level serial I/O module start with
Commwhile all #define constants start with COMtC

CommlISR () and Comm2ISR () (COMtCPCA.ASM) are the functions that are executed when an
interrupt occurs on the PC's COMI or COM2, respectively. These functions start by saving the CPU
registers onto the current task stack or the background stack in a foregroundlbackground system. If you
are using COMMRTOS, CommlISR () needs to increment the /lCIOS-II global variable OSIntNes ting
after saving the CPU registers and call OSIntExi t () prior to restoring the registers. After increment
ing OSIntNesting, the ISRs call CommISRHandler ().

CommISRHandler () is responsible for doing most of the ISR processing and knows about the
NSl6550 UART internals. You can easily expand this function to support more than just two serial
ports. CommISRHandler () determines whether the interrupt was caused by the reception of a byte, the
completion of a byte transmission, or both.

If a byte is received, CommISRHandler () reads the UART's receive data register and calls
CommPutRxChar (). CommPutRxChar () (described later) is a function that knows what to do with
the byte just received. In our case, the byte received is placed in a ring buffer.

If the interrupt is caused by the completion of byte transmission, CommISRHandler () calls
CommGetTxChar () (described later) to see if anything else needs to be sent. When all bytes have
been sent, CommISRHandler () disables further transmit interrupts from the UART. The interrupt
source is not cleared because CommISRHandler () does not actually write to the UART's transmit
data register (there is nothing to send). The next time your application code puts something in the
ring buffer the transmit interrupt will be re-enabled and an interrupt will occur immediately. The ISR
will then extract the byte to send from the ring buffer and satisfy the UART.

Before returning to CommlISR () or Comm2ISR (), CommISRHandler () clears the interrupt from
the PC's i82C59A interrupt controller.

Chapter 11: Asynchronous Serial Communications - 425

CommCfgPort ()
INT8U CommcfgPort(INT8U ch, INT16U baud, INT8U bits, INT8U parity, INT8U stops);

(COMl·CPC. C)

CornmCfgPort () is used to establish the characteristics of a serial port. You will need to call this func
tion before calling any of the other services provided by this module for the specific port.

Arguments

ch specifies the channel and can be either COMM1 (for the PC's COMl) or COMM2 (for the PC's COM2).

baud specifies the desired baud rate. The NS16550 sets the baud rate (i.e., baud) according to the fol
lowing equation:

[1Ll] baudratejdivisor =115200 I baud;

You can specify just about any baud rate except that the baud rate divisor will be truncated to a l6-bit
integer. For example, you can specify 7500 baud, but you will actually get 7680, as shown:

115200 / 7500 = 15.36

Truncation produces a baud rate divisor of 15 and the NS16550 DART will actually be set to a baud
rate of 115200/15 = 7680.

bits specifies the number of bits used. The NS16550 supports either 5, 6, 7, or 8. Generally, you
would specify 7 bits with either ODD or EVEN parity or 8 bits with NO parity.

parity specifies the type of parity checking used by the serial port. You can specify either:
COMM_PARITY_NONE for no parity
COMM_PARITY_ODD for odd parity
COMM_PARITY_EVEN for even parity

stops specifies the number of stop bits used. The NS16550 supports either 1 or 2. You would typically
specify 1 stop bit, though.

Return Value

CornmCfgPort () returns either COMM_NO-pRR (if the channel you specified was either COMM1 or
COMM2)or COMM_BAD_CH.

NoteslWarnings

In the previous edition of this book, CornmCfgPort () only allowed you to configure the baud rate. The
number of bits was always assumed to be 8, the parity was always set to NONE, and the number of stop
bits 1.

•

426 - Embedded Systems Building Blocks, Second Edition

Example

void main (void)

INT8U err;

CommCfgPort(COMM1, 9600, 8, COMM_PARITY_NONE, 1);

Chapter 11: Asynchronous Serial Communications - 427

CommRxFlush ()
voidCammRxFlush(INTBU ch);

(COM1·CPC.C)

CommRxFlush () allows your application to clear the contents of the UART's receive register. The
receive register on the NS16550 UART can receive a byte while another byte waits for the CPU to be
processed. CommRxFlush () simply discards the last received byte. If you use the more powerful NS
16550 UART then you would set COMM_MAX_RX (in COMM_PC. H or CFG. G) to 16 because this chip can
buffer up to 16 characters.

Arguments

ch specifies the channel and can be either COMMl (for the PC's COMl) or COMM2 (for the PC's COM2).

Return Value

None

NoteslWarnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foregroundlbackground environment.

void Task (void *pdata)

for (;;) {

CommRxFlush(COMM2);

II

428 - Embedded Systems Building Blocks, Second Edition

ComrnRxIntDis ()
void CommRxIntDis(INTBU ch);

(COMtoCPC.C)

CormnRxlntDis () is used to prevent interrupts from the desired serial port when bytes are received.
CormnRxlntDis () hides the details of disabling interrupts for the selected serial port from your appli
cation. Note that CormnRxlntDis () will ensure that the interrupt controller bit will not be cleared (dis
abling the port's interrupts) if the DART's transmit interrupt is enabled.

Arguments

ch specifies the channel and can be either COMMl (for the PC's COMI) or COMM2 (for the PC's COM2).

Return Value

None

NoteslWarnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)

for (;;) {

CommRxlntDis(COMM2);

Chapter 11: Asynchronous Serial Communications - 429

CommRxIntEn ()
void COIDIDRxIntEn(INT8U ch);

(COMl·CPC •C)

CormnRxlntEn () is used to enable interrupts from the desired serial port when bytes are received.
CormnRxlntEn () hides the details of enabling interrupts for the selected serial port from your applica
tion. Enabling interrupts consist of setting bit 0 of the DART's Interrupt Enable Register (IER) and
clearing the appropriate bit on the PC's i82C59A interrupt controller.

Arguments

ch specifies the channel and can be either COMMI (for the PC's COM!) or COMM2 (for the PC's COM2).

Return Value

None

NoteslWarnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foregroundlbackground environment.

void Task (void *pdata)

for (;;) {

CornmRxIntEn(COMM2);
III

430 - Embedded Systems Building Blocks, Second Edition

CommTxIntDis ()
void CammTXIntDis(INT8U ch);

(COMl·CPC.C)

CormnTxlntDis () is used to prevent interrupts from the desired serial port when bytes are sent.
CormnTxlntDis () hides the details of disabling interrupts for the selected serial port from your
application. Note that CormnTxlntDis () will ensure that the interrupt controller bit will not be
cleared (disabling the port's interrupts) if the UART's receive interrupt is enabled.

Arguments

ch specifies the channel and can be either COMMl (for the PC's COMI) or COMM2 (for the PC's COM2).

Return Value

None

NoteslWarnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foregroundfbackground environment.

void Task (void *pclata)

for (;;) {

CommTxlntDis(COMM2);

Chapter 11: Asynchronous Serial Communications - 431

CommTxIntEn ()
void CammTxIntEn(INT8U ch) i

(COl-mCPC.C)

CormnTxlntEn () is used to enable intenupts when a byte is sent by the DART. CormnTxlntEn () hides
the details of enabling intenupts for the selected serial port from your application. Enabling transmis
sion intenupts consist of setting bit 1 of the DART's Interrupt Enable Register (IER) and clearing the
appropriate bit on the PC's i82C59A intenupt controller.

Arguments

ch specifies the channel and can be either COMMl (for the PC's COMl) or COMM2 (for the PC's COM2).

Return Value

None

NoteslWarnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)

for (;;) {

CornnTxlntEn (COMM2) ;

II

432 - Embedded Systems Building Blocks, Second Edition

CommSetIntVect ()
void CamrnSetlntVect (INTBU ch);

(Ca-!r-CPC _C)

CommSetIntVect () is used to set the contents of the Interrupt Vector Table (lVT) for the desired serial
port (see Table 11.3). CornmSetIntVect () saves the old contents of the IVT (i.e., a pointer to the
BIOS communication handler) so that it can be recovered when your application code returns to DOS.

Arguments

ch is the serial channel to process and can either be COMMl or COMM2. When you specify COMMl,
CommSetIntVect () places a pointer to CommlISR () at address OxOOOO: Ox0030 (see Table 11.3).
Similarly, when you specify COMM2, CommSetIntVect () places a pointer to Cormn2ISR () at address
OxOOOO: Ox002C (see Table 11.3).

Return Value

None

NoteslWarnings

None

Example

Chapter 11: Asynchronous Serial Communications - 433

CommRclIntVect ()
void CammRclIntVect(INT8U chl;

(COM!CPC.Cl

ComrnRclIntVect () is used to restore the original interrupt vectors of the desired serial port in the
NT (Interrupt Vector Table).

Arguments

ch is the serial channel to process and can either be COMMl or COMM2. When you specify COMM1,
ComrnRclIntVect () places the previous vector for the PC's COMI at address OxOOOO:Ox0030 (see
Table 11.3). Similarly, when you specify COMM2, ComrnRclIntVect () places the previous vector for
the PC's COM2 at address OxOOOO:Ox002C (see Table 11.3).

Return Value

None

NoteslWarnings

None

Example
The following code example assumes the presence of an RTOS but the function can just as easily be
used in a foreground/background environment.

void Task (void *pdata)

for (;;) {

if (done with serial port #1 and returning to DOS) {

CornmRcllntVect(COMMl);

•

434 - Embedded Systems Building Blocks, Second Edition

11.06 Buffered Serial I/O Module (COMMBGND)

The COMMBGND module allows data received from and sent to a UART to be buffered. Specifically, you
would use the COMMBGND module ifyou write an application destined for a foreground/background environ
ment. The COMMBGND module is designed to work in conjunction with the COMM_PC module described in
the previous section. COMMBGND allows you to do full-duplex communication on either serial port (concur
rently). The source code for the COMMBGND module is found in the \SOFTWARE\BLOCKS\COMM\SOURCE
directory and specifically, in COMMBGND. C (Listing 11.4) and COMMBGND. H(Listing 11.5).

WARNING
In the previous edition of this book, COMMBGND was called COMMBUF1. The file COMMBUFl . C is
now COMMBGND. C and, COMMBUFl . His now COMMBGND. H.

As a convention, all functions and variables related to the COMMBGND module start with Comrnwhile
all #define constants start with COMM_.

Each serial port is assigned two ring buffers: one for byte reception and another for byte transmis
sion. Both ring buffers are stored in a structure called COMM_RING_BUF (see COMMBGND. C on
page 473). Each ring buffer consists offour elements:

1. storage for data (an array of 1NT8Us)

2. a counter containing the number of bytes in the ring buffer

3. a pointer where the next byte will be placed in the ring buffer

4. a pointer where the next byte will be extracted from the ring buffer

Figure 11.20 shows a flow diagram for data reception using the COMMBGND module and how it inter
faces with the COMM_PC module. . RingBuf??? are elements of the COMM_RING_BUF data structure.
An intenupt occurs when a byte is received by the UART (CD). If intenupts are enabled, the CPU vec
tors to the appropriate ISR, i.e., Comm?ISR (). Comrn?ISR () saves the CPU's context (its registers),
and calls CommISRHandler () (@). CommISRHandler () gets the byte from the UART and calls
CornmPutRxChar () in order to save the byte 'into the ring buffer (@). Reading the byte from the UART
clears the intenupt from the UART. ITthe buffer is not already full, a counter, which keeps track of how
many bytes are in the buffer is incremented (. RingBufRxCtr). Next, the byte retrieved from the
UART is stored at the location pointed.to.by ..RingBufRxlnPtr (®). The pointer is then incremented
and checked to make sure that it still points somewhere in. RingBufRx []. IT . RingBufRxlnPtr
points past the array, it is re-initialized to point at . RingBufRx [0] .

Chapter 11: Asynchronous Serial Communications - 435

Figure 11.20 Buffered serial liD, receiving bytes.

COMMBGND

. RingBufRxCtr

. RingBufRxInPtr IL ~

. RingBufRxOutPtrI

Application
Interface

CorrnnPutRxChar () is an interface function between the COMMBGND module and the COM!'~LPC mod
ule. The COMM_PC module calls this function when a byte is received. CorrnnPutRxChar () deposits the
byte into the receive ring buffer - but only if the buffer is not already full. The byte is discarded if the
buffer is full.

Yourapplicationcode can findout whether there are bytes in the ring buffer by calling CormnIsEmpty () .

CormnIsEmpty () only needs to check the byte count to determine the state of the ring buffer. When data is 11
available, it is extracted from the ring buffer by calling CommGetChar () (@).

Figure 11.21 shows a flow diagram for data transmission using the COMMBGND module and how
COMMBGND interfaces with the COMM_PC module. Your application code inserts data to be sent to the
serial port into the ring buffer by calling CormnPutChar (). If the buffer is not already full, a
counter keeping track of how many bytes are in the buffer is incremented (. RingBufTxCtr). Next,
the byte you are sending is stored at the location pointed to by .RingBufTxlnPtr (CD). The pointer
is incremented and checked to make sure that it still points somewhere in .RingBufTx []. If
.RingBufTxlnPtr points past the array, it is re-initialized to point at the beginning of the array,
i.e., . RingBufTx [0]. If CormnPutChar () inserted the first character in the buffer, the UART's
transmit interrupt is enabled «2)). Because you called CorrnnPutChar () from the background, an
interrupt will immediately occur (@). The CPU then vectors to the appropriate ISR (Cormn?ISR ()),
saves the CPU's context! and calls CornmISRHandler () (®). CormnISRHandler () gets the byte
from the ring buffer by calling CommGetTxChar () (@). Note that CommGetTxChar () obtains the
byte from a different pointer than CormnPutChar () (®). This allows the bytes to be sent in the
same order as they were placed in the buffer (First In First Out, FIFO). Obviously, when a byte is
removed from the buffer, the byte count is decremented. Writing a byte to the UART clears the

Chapter 11: Asynchronous Serial Communications - 437

CammGetChar()
INT8U CommGetChar(INT8U ch, INT8U *err);

(COMMBGND. C)

CommGetChar () allows your application to extract data from the received data ring buffer.

Arguments

ch is the serial channel and can be either COMMI or COMM2.

err is a pointer to a variable that will hold status about the outcome of the function. CommGetChar ()
sets *err to one of the following:

COMM_NO_ERR. if a byte is available from the ring buffer.
COMM_RX_EMPTY if the ring buffer is empty.
COMM_BAD_CH if you do not specify either COMMI or COMM2.

Return Value

The function returns the oldest byte stored in the ring buffer if the buffer is not empty. If the buffer is
empty, CommGetChar () returns the NUL character (i.e., OxOO).

Notes/Warnings

None

Example

void BgndFnct (void)

INT8U err;

c ~ CornmGetChar(COMMl, &err);

if (err ~~ COMM_NO_ERR)

Process character;

II

438 - Embedded Systems Building Blocks, Second Edition

CommInit{)
void C01II1DInit(void);

(COMMBGND. C)

Cormnlni t () is used to initialize the COMMBGND module. This function must be called before any other
services provided by this module. Cormnlni t () clears the number of bytes in the ring buffer counter
and also initializes both the IN and OUT pointers of each ring buffer to point at the beginning of the data
storage area.

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void main (void)

CommInit () ;

Chapter 11: Asynchronous Serial Communications -439

CommIsEmpty()
BOOLEAN CommISEmpty{INT8U ch);

(COMMBGND. C)

CorrnnIsEmpty () allows your application to determine if a byte was received on the serial port.

Arguments

ch is the serial channel and can be either COMMl or COMM2.

Return Value

The function returns TRUE if no data was received and FALSE if data is available in the ring buffer.

NoteslWarnings

If you specify an incorrect channel number the function returns TRUE to prevent you from extracting
data from an invalid serial port.

Example

void BgndFnct (void)

INT8U err;

if (!CornmlsEmpty(COMM1) {

/* Characters have been received */ II

440 - Embedded Systems Building Blocks, Second Edition

CommIsFull ()
BOOLEAN CammIsFull (INT8U ch) i

(COMMBGND.C)

CommIsFull () allows your application code to check the status of the transmit ring buffer.

Arguments

ch is the serial channel and can be either COMMl or COMM2.

Return Value

The function returns TRUE when the buffer is full and FALSEotherwise.

NoteslWarnings

If you specify an incorrect channel number, the function returns TRUE to prevent you from sending data
to an invalid serial port.

Example

void BgndFnct (void)

INT8U err;

if (!CornrnIsFull(COMMl) {

/* Characters can be sent to serial port */

Chapter 11: Asynchronous Serial Communications - 441

CommPutChar()
UBYTE CammPutChar(INT8U ch, UBYTE ch);

(COMMBGND.C)

CorrrrnPutChar () allows your application to send data to a serial port (one byte at a time).

Arguments

ch is the serial channel and can be either COMMl or COMM2.

c is the byte that your application sends to the serial port. The byte can have any value between OxOO
and OxFF (i.e., you can send binary data).

Return Value

CorrrrnPutChar () returns a value representing the outcome of the function call as follows:

COMM_NO_ERR the byte was placed in the ring buffer and will eventually be sent by the DART if a
byte is available from the ring buffer.

COMM_BAD_CH if you do not specify either COMMl or COMM2.

COMM_TX_FULL indicates that you tried to send a byte to an already-full buffer.

NoteslWarnings

If you configured the serial port to 7 data bits then you will not be able to send binary data.

Example

char Message[] "Hello World!") ;

void BgndFnct (void)

INT8U err;

err ; COMM_NO_ERR;

s ; &Message[O];

while (*s && err =; COMM_NO_ERR) {

err; CommPutChar(COMMl, *s++);

442 - Embedded Systems Building Blocks, Second Edition

11.07 Buffered Serial I/O Module (COMMRTOS)

The COMMRTOS module works just like the COMMBGND module except that the COMMRTOS module uses
semaphores to indicate when bytes are inserted into the buffer. Semaphores allow your task-level code
to process incoming and outgoing data as quickly as possible. Furthermore, your application code no
longer needs to poll the receive buffer to see if bytes are available. Similarly, your application code also
will be suspended if the transmit buffer is full. This also prevents your code from having to check that
the transmit buffer is not full when you are sending data on a serial port.

The source code for the COMMRTOS module is found in the \SOFTWARE\BLOCKS\COMM\SOURCE

directory and, specifically, in COMMRTOS. C (Listing 11.6) and COMMRTOS. H (Listing 11.7).As a con
vention, all functions and variables related to the COMMRTOS module start with Corum while all #define
constants start with COMM_.

WARNING
In the previous edition of this book, COMMBGND was called COMMBUF2. The file COMMBUF2 . C is
now COMMRTOS . C and, COMMBUF2 . His now COMMRTOS . H.

Along with the two ring buffers, each serial port now has two semaphores: one to signal that a
byte was received and the other to signal that a byte was sent. The COMM_RING_BUF structure (see
COMMRTOS . C on page 484) is identical to the COMMBGND structure except for the addition of the
semaphores.

Figure 11.22 Buffered serial 110, receiving bytes.

Application
Interface

~ ~I.RingBUfRxCtr

COMMRTOS

Module

Chapter 11: Asynchronous Serial Communications - 443

Figure 11.22 shows a flow diagram for data reception using the COMMRTOS module and how
COMMRTOS interfaces with the COMr·LPC module. Your application still calls CormnGetChar () except
that your task will be suspended if the buffer is empty. You can specify to CormnGetChar () a
time-out value to prevent suspending your application task forever. When a byte is received, your
task will "wake-up" and will receive the byte from the serial port.

CormnPutRxChar () is an interface function between the COMMRTOS module and the COMr·LPC mod
ule. The COMM_PC module calls this function when a byte is received. CormnPutRxChar () deposits the
byte into the receive ring buffer but only if the buffer is not already full. The byte is discarded if the
buffer is full. When the byte is inserted in the buffer, CormnPutRxChar () signals the data reception
semaphore to indicate to any pending task that data was received.

To prevent suspending your application code, you can find out whether there are bytes in the ring
buffer by calling CormnIsEmpty ().

Figure 11.23 shows a flow diagram for data transmission using the COMMRTOS module and how it
interfaces with the COMM_PC module. Again, everything is identical to the COMMBGND module except for
the semaphore. When you want to send data to a serial port, CormnPutChar () waits for the semaphore.
Because the transmit semaphore is initialized to the size of the buffer when the COMMRTOS module is
initialized, CormnPutChar () will suspend your application code when there is no more room in the
buffer.The suspended task will resume as soon as the DART catches up sending the bytes.

Figure 11.23 Buffered serial I/O, transmitting bytes.

Application
Interface

I.RingBufTxCtr
'-=-----'

ComrnTxlntEn ()

CormnGetTxChar () is an interface function between the COMMRTOS module and the COMM_PC mod
ule. The COMM_PCmodule calls this function when a byte has been sent by the DART. Basically, this func
tion says, "Give me the next byte to send" CormnGetTxChar () returns the next byte to send from the
transmit ring bufferif there is at leastone byte in the ring buffer. If the bufferis empty,CormnGetTxChar ()

II

444 - Embedded Systems Building Blocks, Second Edition

returns the NUL character and tells the caller that there is no more data in the buffer. This allows the caller to
disable further transmit interrupts until there is more data to send. The data transmit semaphore is signaled
when a byte is extracted from the buffer. This indicates to the sending task that there is more room in the
transmit buffer.

Chapter 11: Asynchronous Serial Communications - 445

CommGetChar()
INTBU CammGetChar(INTBU ch, INT16U to, INTBU *err};

(COMMRTOS.C)

CormnGetChar () allows your application to extract data from the received data ring buffer.

Arguments

ch is the serial channel and can be either COMMl or COMM2.

to specifies a timeout (in "clock ticks"). If a byte is not received on the serial port within this time,
CormnGetChar () will return to your application. Your task will wait for a byte forever when you spec
ify a timeout of o.

err is a pointer to a variable that will hold status about the outcome of the function. CormnGetChar ()
sets *err to one of the following:

COMM_NO_ERR if a byte is available from the ring buffer within the timeout period.

COMM_RX_TIMEOUT if no data is received within the specified timeout.

COMM_BAD_CH if you do not specify either COMMl or COMM2.

Return Value

The function returns the oldest byte stored in the ring buffer if the buffer is not empty. If the function
times out, CormnGetChar () returns the NUL character (i.e., OxOO).

NoteslWarnings

None

II

446 - Embedded Systems Building Blocks, Second Edition

Example

void Task (void *pdata)

INT8U err;

for (;;) {

c = CommGetChar(COMMl, 0, &err);

if (err == COMM_NO_ERR)

Process character;

Chapter 11: Asynchronous Serial Communications - 447

CommInit()
void CommInit (void) ;

(COMMRTOS •C)

CormnIni t () is used to initialize the COMMRTOS module. This function must be called before any other
services provided by this module. CormnIni t () clears the number of bytes in the ring buffer counter
and also initializes both the IN and OUT pointers of each ring buffer to point at the beginning of the data
storage area. The data reception semaphore is initialized to 0, indicating that there is no data in the ring
buffer. The data transmission semaphore is initialized with the size of the transmit buffer, indicating that
the buffer is empty.

Arguments

None

Return Value

None

NoteslWarnings

None

Example

void main (void)

CorrrrnIni t () ; II

448 - Embedded Systems Building Blocks, Second Edition

CommISEmpty()
BOOLEAN CammIsEmpty(INT8U ch);

(COMMRTOS •C)

CorrunIsEmpty () allows your application to determine if a byte was received on the serial port. This
function allows you to avoid task suspension if no data is available.

Arguments

ch is the serial channel and can be either COMMl or COMM2.

Return Value

The function returns TRUE if no data wasreceived and FALSE if data is available in the ring buffer.

NoteslWarnings

If you specify an incorrect channel number, the function returns TRUE to prevent you from calling
CorrunGetChar () thinking that data is available from an invalid port.

Example

void Task (void *pdata)

INT8U err;

for (;;) {

if (CommlsEmpty(COMMl) == FALSE) {

c = CommGetChar(COMMl, 0, &err); /* Character available */

Process character;

Chapter 11: Asynchronous Serial Communications - 449

CommIsFull ()
BOOLEAN CammIsFull (INT8U ch);

(COMMRTOS •C)

CorrunIsFull () allows your application code to check the status of the transmit ring buffer. This func
tion allows you to avoid task suspension if the buffer is already full.

Arguments

ch is the serial channel and can be either COMMl or COMM2.

Return Value

The function returns TRUEwhen the buffer is full and FALSE otherwise.

NoteslWarnings

If you specify an incorrect channel number, the function returns TRUE to prevent you from calling
ComrnPutChar () thinking that data can be sent to the serial port.

Example

void Task (void *pdata)

INT8U err;

char *s;

for (;;) {

if (CommIsFull(COMMl) ~~ FALSE) {

err ~ CornmPutChar(COMMl, '$', 0);

II

450 - Embedded Systems Building Blocks, Second Edition

CommPutChar()
UBYTE COIIIIlPUtChar(INT8U ch, UBYTE ch, INT16U to);

(COMMRTOS •C)

CorrrrnPutChar () allows your application to send data to a serial port (one byte at a time). CorrrrnPutChar ()
suspends the calling task if the transmit ring buffer is full. CorrrrnPutChar () will resume when a byte is
removed from the ring bufferby the transmit ISR.

Arguments

ch is the serial channel and can be either COMMl or COMM2.

c is the byte that your application sends to the serial port. The byte sent can have any value between
OxOO and OxFF (i.e., you can send binary data).

to specifies the amount oftime (in "clock ticks") that CorrrrnPutChar () will wait for the buffer to clear
up. If a byte is not transmitted on the serial port within this time, CorrrrnPutChar () will return to your
application. Your task will wait forever when you specify a timeout of O.

Return Value

CorrrrnPutChar () returns a value representing the outcome of the function call as follows:

COMM_NO_ERR the byte was placed in the ring buffer and will be sent by the DART if a byte is avail
able from the ring buffer.

COMM_BAD_CH if you do not specify either COMMl or COMM2.

COMM_TX_TlMEOUT indicates that the buffer didn't clear up within the allowed time.

NoteslWarnings

Ifyou configured the serial port to 7 data bits then you will not be able to send binary data.

Chapter 11: Asynchronous Serial Communications - 451

Example

char Message []

void Task (void)

INT8U err:

char *s:

for (::)

MHello World!n:

s ~ &Message[O]:

err ~ COMM_NO_ERR:

while (*s && err ~~ COMM_NO_ERR) {

err ~ CommPutChar(COMMl. *s++. 0);

II

452 - Embedded Systems Building Blocks, Second Edition

11.08 Configuration
Configuration of the communications driver is very simple because all you have to do is change a few
#defines to accomodate your environment.

COMM_PC.H (or CFG.H) :

COMM1_BASE and COMM2_BASE are the base port address for the PC's COMI and COM2. In most
cases, you will not have to change these.

COMM_MAX_RX sets the number of bytes that the UART buffers internally. For the NS16550 UART,
you should set this constant to 16 because the NS16550 can be receiving a byte while another byte is
waiting to be processed by the CPU.

COMMBGND.H, COMMRTOS.H (or CFG.H) :

COMM_RX_BUF_SIZE sets the size of the receive ring buffer for both serial ports. The size of the
receive buffer can be as large as 65534 bytes.

COMr'LTX_BUF_SIZE sets the size of the transmit ring buffer for both serial ports. As with the
receive ring buffer, the size can be as large as 65534 bytes.

11.09 How to use the COMM_Pcand the COMMBGND
Module

If you write a foreground/background application you will need to use the COMM_PC (assuming you are
using a PC) and the COMMBGND modules. The first thing you need to do is to configure the module by
setting the value of the #defines described in section 11.08. Next, you will need to call functions to
initialize the modules and the serial port(s) that you are planning on using. For example, if you are using
the PC's COMI, you would need to have the following code:

void main(void)

CommInit(); /* Initialize COMMBGND */

CommCfgPort(COMM1, 9600, 8, COMM_PARITY_NONE, 1);

CommSetIntVect(COMM1); /* Install the interrupt vector */

CommRxIntEn(COMMl); /* Enable receive interrupts */

Chapter 11: Asynchronous Serial Communications - 453

You should note that you don't need to enable transmit interrupts because this is done automatically
when you send data on the serial port. When all your initialization is done, your background loop could
check for incoming data, as shown.

void rnain(void)

INT8U c;

INT8U err;

/* Initialization code described above ---------------------------*/

while (1) { /* Backgrmmd loop (infinite loop) */

if (!CommIsEmpty(COMM1)) {

c ~ CommGetChar(COMM1, &err);

if (err ~~ COMM_NO_ERR) {

/* Process received data -----------------------------*/

CorranPutChar(COMMl, ???); /* Send response */

else

/* Process communications error ----------------------*/

11.10 How to use the COMM_PCand the COMMRTOS

Module

Ifyou write an application using a real-time kernel you will need to use the COMM_PC (assuming you are
using a PC) and the COMMRTOS modules. Again, the first thing you need to do is to configure the module
by setting the value of the #defines described in section 11.08. Your startup code will need to create
the task(s) that will be responsible for servicing the serial port(s). You should have one task for each
serial port. The following segment of code is used to create the task that will handle COM1. You should
consult TEST. C (see Chapter 1) to see what else you need to properly initialize IlC/OS-II.

III

454 - Embedded Systems Building Blocks, Second Edition

/* Define the priority of the task */

OS_STK CommTaskStk[512];

void main (void)

OSInit() /* Initialize the O.S. (uC/OS-II) */

*/

OSTaskCreate(CommTask, (void *)0, &CommTaskStk[5ll1, COMM_TASK_PRIO);

OSStart();

You should initialize the serial communications code from within the task that will handle the
port(s). Using the PC's COMl, you would have the following code:

void CommTask(void *pdata)

INT8U c;

INT8U err;

CommInit(); /* Initialize COMMRTOS

CommcfgPort(COMMl, 9600, 8 COMM_PARITY_NONE, 1);

CommsetlntVect(COMMl); /* Install the interrupt vector */

CornmRxlntEn(COMM1); /* Enable receive interrupts */

for (;;) {

c = CornmGetChar(COMM1, 0, &err);

if (err == COMM_NO_ERR) {

/* Process received byte ---------------------------------*/

ComrnPutChar(COMMl, ..); /* Send response */

else

/* Process communication error ---------------------------*/

Chapter 11: Asynchronous Serial Communications - 455

11.11 Bibliography
Campbell, Joe
C Programmer's Guide to Serial Communications (Second Edition)
Sams Publishing, 1993
Indianapolis, Indiana
ISBN 0-672-30286-1

Choiser, John P., Foster, John O.
The XT-AT Handbook
Annabooks,1993
ISBN 0-929392-00-0

Erdelsky, Philip
"PC Interrupt-Driven Serial I/O"
From the book: MS-DOS System Programming
R&D Publications, 1990
ISBN 0-923667-20-2

Halsall, Fred
Data Communications, Computer Networks and Open Systems (Third Edition)
Addison-Wesley, 1992
ISBN 0-201-56506-4

Pippenger, D.E. and Tobaben, E.J.
Linear and Interface Circuits Applications
Volume 2: Line Circuits and Display Drivers
Texas Instruments, 1985
ISBN 0-89512-185-9

Tanenbaum, Andrew S.
Computer Networks (Second Edition)
PTR Prentice-Hall, Inc., 1989
ISBN 0-13-162959-X

III

456 - Embedded Systems Building Blocks, Second Edition

Listing 11.1

1*

Einbeclded Systems Building Blocks
Carplete and Ready-to-Use Modules in C

Asynchronous Serial Ccrnnunications
IBM-PC Serial 1/0 Low Level Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename CCl-ll·LPC.C
* Prograrrmer Jean J. Labrosse

* Notes 1) The code in this file assumes that you are using a National Semiconductor NS16450 (most
PCs do or, an Intel i82C50) serial ccrnnunications controller.

2) The functions (actually rracros) OS_ENI'ER_CRITlCAL() and OS_EXIT_CRITlCAL() are used to
disable and enable interrupts, respectively. If using the Borland C++ carpiler V3.1,
all you need to do is to define these rracros as follows:

#define OS_ENI'ER_CRITlCAL ()
#define OS_EXIT_CRITlCAL()

disable()
enable()

3) You will need to define the follONing constants:
is the base address of ea-n on your PC (typically Ox03F8)
is the base address of CCl'12 on your PC (typically Ox02F8)
is the number of characters buffer'ed by the UART

2 for the NS16450
16 for the NS16550

4) CCM·LB.l\ll_CH, CCM'LNO_ERR and CCM'LTIU,MPrY,
CCM'LNO_PARITY, CCMt-LODD_PARITY and ca1M_EVEN_PARITY

are all defined in other modules (i.e. CCMMl.H, COMM2.H or COMM3.H)

* I

1*

INCLUDES

***** ***** ** **** ** * ****** *** *** ***** ** ****** ****** *** * ** * * * ***** ****** * * ********************** * *** * ***** *
* I

#include "includes.h"

I *$PAGE* I

Listing 11.1 (continued)

1*

Chapter 11: Asynchronous Serial Communications - 457

COMlCPC.C

***** **** ******** ***** ***** ***** **** ***** * *** **** ********* ***** * ******** ***** ***** ***** **** **** **** ** *** *

*1

#define BITO OxOl

#define BITI Ox02

#define BIT2 Ox04

#define BIT3 Ox08

#define BIT4 OxlO

#define BIT5 0x20

#define BIT6 Ox40

#define BITI Ox80

#define PIC_=_REG_PORT Ox0020

#define PICMSK_REGJo.R.T Ox0021

#define CCMLUART_RBR 0

#define CCM-LUARl'_THR 0
#define ca-lI'LUART_DIV_LO 0

#define CX:MLUARl'_DIV_HI 1

#define CCMUJART_IER 1
#define C'C1'1M_UART_IIR 2

#define C'C1'1M_UARl'_LCR 3
#define C'C1'1M_UART_M:R 4

#define C'C1'1M_UARl'_ISR 5
#define C'C1'1M_UARl'_MSR 6
#define C'C1'1M_UARl'_SCR 7

1*
** * ** * * * * * ** ** * * *** * * * * * * * ** * * ** * * * * * ** * ** * ** * * * * * * * * ** * * **** * ** * ** * * * * * * * * * * ** * * * * * * * ** ** * * * * * * * * * * * * * **

***** **** ** * * * * * * * ** * * * * * * * * * * * * * * ** * * * *** * * * * * * * * * * * ** * * *** * * * * * * * ** * * * * ** ** * * * * * * ** * * * * * * * * * * * * ** * * * * **
*1

static

static

static

static

=16U CcmnlISROldOffset;

=16U CcmnlISROldSegnent;

=16U COllll'2ISROldOffset;

=16U COllll'2ISROldSegnent;

I*$PAGE*I

458 - Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued)

/*

COM1'LPC.C

CONFIGURE roRT

* D2scription This function is used to configure a serial I/O port. This code is for IBM-Fes and
compatibles and assumes a National Semiconductor NS16450.

* Arguments

* Returns

'ch:

'baud'
'bits'
'parity'

'stops'

is the CC!1M port channel number and can either be:

CC!1Ml
CCMM2

is the desired baud rate (anything, standard rates or not)
defines the number of bits used and can be either 5, 6, 7 or 8.
specifies the 'parity' to use:

CC!1M_PARITY'_=
CC!1M_PARITY'_ODD
CC!1M_PARITY'_EVEN

defines the number of stop bits used and can be either 1 or 2.

if the channel has been configured.
if you have specified an incorrect channel.

* Notes 1) Refer to the NS16450 Data sheet
2) The constant 115200 is based on a 1. 8432 MHz crystal oscillator and a 16 x Clock.
3) 'lcr' is the Line Control Register and is define as:

B7 B6 B5 B4 B3 B2 B1 BO
#Bits (00 = 5, 01 = 6, 10 = 7 and 11 8)
#Stops (0 = 1 stop, 1 = 2 stops)
Parity enable (1 = parity is enabled)
Even parity when set to 1.

Stick parity (see 16450 data sheet)
Break control (force break when 1)
Divisor access bit (set to 1 to access divisor)

4) This function enables Rx interrupts but not Tx interrupts.

***** * * *** * *** * * * * * * * ** * * * * * ******* * * * * * * * * * * * * * * * *** * * * * * * * * * * * ** * * * * ** * * * * * * ** * * *** * ** * * ** * * * * * *** ** ***
*/

Chapter 11: Asynchronous Serial Communications - 459

Listing 11.1 (continued) COMM_PC. C

INr8U CamcfgPort (INr8U ch, INrl6U baud, INr8U bits, INr8U parity, INr8U stops)
{

INr16U
INr8U
INr8U
INr8U
INrl6U

div;
divlo;
divhi;
lcrj
base;

/* Baud rate divisor

/* Line Control Register
/* C'I:M1 port base address

*/

*/
*/

switch (ch) {

case C'01Ml:
base = C'01Ml_BASE;
break;

case CQ1M2:
base = CQ1M2_BASE;
break:

default:
return (CCMLBlID_Oj);

div (INr16U) (115200L / (INr32U) baud) ;
divlo div & OxOOFF;
divhi (div » 8) & OxOOFF;
lcr «stops - 1) « 2) + (bits - 5'h
switch (parity) {

case O::MLPARITY_ODD:
lcr 1 = Ox08;
break;

case ca~~LPARITY_EVEN:

lcr 1 = 0x18;
break;

}

OS_ENl'ER_CRITlCAL();
outp(base + CCM~LUART_LCR, BIT'l);
outp(base + C'I:M1_UART_DIV_W, divlo);
outp(base + C'I:M1_UART_DIV_HI, divhi);
outp (base + C'I:M1_UART_LCR, lcr);
outp(base + C'I:M1_UART_M:R, BIT3 1 BIT1 'I BITO);
outp(base + C'I:M1_UART_IER, OxOO);
OS_EXIT_CRITlCAL () ;
CorrrnRxFlush (ch) ;
return (C'I:M1_ID_ERR);

/*$PAGE*/

/* Obtain base address of C'I:M1 port

/* Cat1JUte divisor for desired baud rate
/* Split divisor into I1JIV and HIGH bytes

/* Odd parity

/* Even parity

/* Set divisor access bit
/* Load divisor

/* Set line control register (Bit 8 is 0)

/* Assert lJI'R and RrS and, aHCM interrupts
/* Disable both Rx and Tx interrupts

/* Flush the Rx input

*/

*/
*/

*/

*/

*/
*/

*/

*/
*/

*/

II

460 - Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued)

/*

COlrJltLPC.C

<:n1M ISR HANDLER

* Description This function processes an interrupt frc:rn a <:n1M port. The function verifies whether the
interrupt cernes frc:rn a received character, the canpletion of a transmitted character or
roth.

* Argtrrnerlts ' ch' is the <:n1M port channel number and can either be:
C'CMMl.
CCMQ

* Notes : 'switch' statements are used for expansion.

*/
void CcrnnISRHandler (rnrau ch)

rnrau c;
rnrau iir;
rnroo stat;
nrnsu base;
rnrau err;
rnroo max;

/* Interrupt Identification Register (IIR) * /

/ * <:n1M port base address * /

/* Max. number of interrupts serviced * /

Chapter 11: Asynchronous Serial Communications - 461

Listing 11.1 (continued) COMloLPC.C

switch (ch) {

case CUlMl.:
base = CUlMl._BASE;
break:

case CCMM2:
base = CCt1M2_BllSE;
break;

default:
base = CUlMl._BASE;
break;

/* Obtain pointer to camnmications channel */

rnax = CCMLMAlCRX;
iir = (INr8U) inp (base + CXMLUART_IIR) & Ox07;

while (iir != 1 && max > 0) {
switch (iir)

case 0:
C (INr8U}inplbase + CCMUJARI'_MSR);
break;

/* Get contents of IIR
/ * Process ALL interrupts

/* See if we have a Modem Status interrupt
/* clear interrupt (do nothing about it!)

*/
*/

*/
*/

case 2: /* See if we have a Tx interrupt */
c = CamGetTxCharlch, &err); /* Get next character to send. */
if (err == CX:OO'LTJoLEMPrY) { /* D.:> we have anyrrore characters to send * /

/* No, Disable Tx interrupts * /
stat = (INroo) inp(base + CXMoLUARr_IER) & -BIT1;
outp(base + CX:MLUART_IER, stat);

else {
outp(base + CXMoLUARI'_TIlR, c); /* Yes, Send character */

}

break;

case 4:
c = (INr8U) inp (base + CCl'1!LUART_RBR);
CcmnPutRxChar(ch, c);

break;

case 6:
c = (INr8U) inp(base + CCMLUARI'_LSR);
break;

iir = (INr8U)inp(base + COMM_UARr_IIR) & Ox07;

rrax--;
}

switch (ch)

case CUlMl.:
case CCMM2:

outp(PICINr_REJ3_FDRI', 0x20j;
break;

default:
outp(PIC_INr_REJ3_FDRI', 0x20);
break;

/* See if we have an Rx interrupt
/* Process received character
/* Insert received character into buffer

/* See if we have a Line Status interrupt
/* Clear interrupt (do nothing about it!)

/* Get contents of IIR

/* Reset interrupt controller

*/

*/
*/

*/
*/

*/

*/

II

462 - Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued)

/*

COMltLPC.C

RE'SIDRE OLD INI'ERRUPI' VK'IOR

TI1is
"ch '

* Description
* Arguments

* Note(s)

function restores the old interrupt vector for the desired carrrnunications charmel.
is the C'CMM port charmel number and can either be:

C'CMMl

c:c:MM2
: TI1is function assurres that the 80x86 is running in REAL roode.

*/

void CarrnRclIntVect (INI'8U ch)

INI'16U *pvect;

switch (ch) {

case C'CMMl:

pvect = (INI'16U *)MICFP(OxOOOO, OxOC« 2);
O1:LENI'ER_CRITlCAL() ;

*pvec:t++ = CcmnlISROldOffset;
*pvec:t = CcmnlISROldSegrnent;
OS_EXIT_CRITlCALO;

break;

case c:c:MM2:
pvect = (INI'16U *)MICFP(OxOOOO, OxOB« 2);
O1LENI'ER_CRITlCAL () ;

*pvect++ = Camm2ISROldOffset;
*pvect = Camm2ISROldSegrnent;
OS_EXIT_CRITICAL 0 ;

break;

/*$PAGE*/

/* Point to proper IVT location

/* Restore saved vector

/* Point to proper IVT location

/* Restore saved vector

*/

*/

*/

*/

Listing 11.1 (continued)

1*

Chapter 11: Asynchronous Serial Communications - 463

COMM_PC.C

FLUSH RX FORI'

* Description 'This function is called to flush any input characters still in the receiver. 'This
function is useful when you replace the NS16450 with the rrore powerful NS16450.

* Arguments "ch ' is the CCMM port channel number and can either be:
CCMMl

C'CM12
~~****** ** * * * * * *** * * * * * * *** * * * * * ** ** * * * * * * ** * ** * * * * * ** * * * * *

*1

vcid CorrrnRxFlush (INr8U ch)

INr8U ctr;
INr16U base;

switch (ch) (

case cc:MMl:
base = CCMMl_B.'<SE;

break;

case C'CM12:

base = C'CM12_Bl\SE;

break;

ctr CCM'LMA1CRX;

OS_ENI'ER_CRITlCAL () ;

while (ctr-- > 0) (
inp(base + 0);

}

OS_EXIT_CRITlCAL () ;

I*$PAGE*I

1* Flush Rx input *1

II

464 - Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued)

/*

COMl·CPC.C

DISABLE RX illI'ERRUPrS

.. Description
* Arguments

This

'ell'

function disables the Rx interrupt.
is the CXM1 port charmel number and can either be:

CXM1l
a:MM2

*/

void CcmnRxIntDis (INrSU ell)

INrSU stat;

switch (ch) {
case CXM1l:

Oi'LENI'ER_CRITlCAL () ;

/ * Disable Rx interrupts * /
stat = (INrSU)inp(CCM1l_BASE + CXM1_UARI'_IER) & -BITO;
outp(CCM1l_BI\SE + CXM1_UART_IER, stat);
if (stat == OxOO) { /* Both Tx & Rx interrupts are disabled */

/ * Yes, disable IRQ4 on the Fe */
outp(PICMSK]EG_roRT, (INrSU)inp(PIC_MSK_REG_FDRT) I BIT4);

}

OS_EXIT_CRITlCAL () ;

break;

case <::n1M2:
OS_ENI'ER_CRITlCAL l) ;

/* Disable Rx interrupts */
stat = (INrSU)inp(<::n1M2_BASE + CXM1_UARI'_IIR) & -BITO;
outp (<::n1M2_BI\SE + CXM1_UARI'_IER, stat);
if (stat == OxOO) { /* Both Tx & Rx interrupts are disabled */

/* Yes, disable IRQ3 on the Fe * /
outp(PICMSK_REG_roRT, (INrSU)inp(PIC_MSK_REG_FDRT) I BIT3);

}

OS_EXIT_CRITlCAL () ;

break;

/*$PAGE*/

Listing 11.1 (continued)

f*

Chapter 11: Asynchronous Serial Communications - 465

COMltLPC.C

ENABLE RX INI'ERRUPI'S

* Description
* Arguments

'Uris
'ch'

function enables the Rx interrupt.
is the a:MM port channel number and can ei ther be:

coen
cc:MM2

*f

void CcmnRxIntEn (INI'8U ch)

INI'8U stat;

switch (ch) {

case a:MMl:
OS_ENI'ER_CRITlCAL () ;

f* Enable Rx interrupts
stat = (INI'8Ul inp(a:MMl_BIISE + a:MM_UART_IERl I BITO;
outp(a:MMl_BIISE + a:MM_UARI'_IER, stat);

f* Enable IRQ4 on the PC
outp(PICMSIUill3JORl', (INI'8U)inp(PIC_MSIU<ffi_PCRT) & -BIT4);
OS_EXIT_CRITlCALO;

break;

case cc:MM2:
OS_ENI'ER_CRITICAL () ;

f* Enable Rx interrupts
stat = (INr8Ul inp (cc:MM2_BASE + CCl1I-LUART_IER) I BITO;
outp(cc:MM2_BIISE + a:MM_UARI'_IER, stat);

f* Enable IRQ3 on the PC
out.p(PICMSK_Rffi_PCRI', (INI'8Ulinp(PICMSK_Rffi_PCRT) & -BIT3);
OS_EXIT_CRITICAL () ;

break;

f*$PAGE*f

*f

*f

*f

*f

III

466 - Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued)

1*

COMl'LPC.C

SET INI'ERRUPl' VECIOR

* rescription
* Arguments

* N:>te(s)

'!'his function installs the interrupt vector for the desired ccmnunications charmel.

'ch' is the CCM-l port channel IlllITlber and can either be:
CCM-ll

CCM-I2
: '!'his function assumes that the 80x86 is running in REAL mode.

*1

void ccmnSetIntVect (INr8U ch)

INrl6U

INrl6U
INrl6U

segment;

offset;

*pvecti

switch (ch) {

case CCM-ll:

pvect = (INrl6U *)MICFP(OxOOOO, OxOC « 2); 1* Point to proper IVr location *1
aU;NI'ER_CRITICAL () ;

Ccrm1lISROldOffset *pvect++; 1* save current vector *1
CcmnlISROldSegrrent *pvect;
pvect--;

pvect++ FP_OFF (CcmnlISR) ; 1 Set nB<' vector *1
*pvect FP_SEG(CcmnlISR);

OS_EXIT_CRITlCAL () ;

break;

case CCM-I2:
pvect = (INrl6U *)MK]P(OxOOOO, OxOB « 2); 1* Point to proper IVr location *1
OS_ENI'ER_CRITlCAL () ;

Ccrnn2ISROldOffset *pvect++; 1* save =rent vector *1
Ccrnn2ISROldSegrrent *pvect;
pvect--;

pvect++ FP_OFF(Ccrnn2ISR); 1 Set new vector *1
*pvect FP_SEG(Ccrnn2ISR);

OS_EXIT_CRITlCAL () ;

break;

I*$PAGE* 1

Chapter 11: Asynchronous Serial Communications - 467

Listing 11.1 (continued) COMJLPC.C

r-

DISI\BLE 'IX INI'ERRUPI'S

* Description
* Arguments

'Ibis
"ch '

function disables the character transmission.

is the CX:MM port channel number and can either be:
CX:MMl

CCMQ

*f

void CormiI'xIntDis (INr8O ch)

INrSU stat;

INrSU arrl;

switch (ch) {

case CCMMl:

OS_ENI'EfCCRITlCAL () ;

f* Disable Tx interrupts * f
stat = (INr8O)inp(CCMMl_BI\SE + CX:MM_UART_IER) & -BITl;

outp(CCMMl_BI\SE + CX:MM_UARI'_IER, stat);

if (stat == DxDD) { f* Both Tx & Rx interrupts are disabled? *f
arrl = (INrSU)inp(PICMSK_Rm_FORr) BIT4;

outp(PIC_MSK_Rm_FORr, arrl); f* Yes, disable IRQ4 on the PC *f
}

OS_EXIT_CRITICAL () ;

break;

case c::c:MM2:
OS_ENI'ER_CRITlCAL();

II
*f

*f

*f

Yes, disable IRQ3 on the PC

Both Tx & Rx interrupts are disabled ?

f* Disable Tx interrupts

& -BITl;

f*
BIT3;

f*

stat = (INr8O) inp(CCMQ_BI\SE + CX:MM_UARI'_IER)

outp (CCMQ_BI\SE + CX:MM_UARI'_IER, stat);

if (stat == DxDD) {
arrl = (INrSU)inp(PICMSK_Rm_FORr)

outp (PIC_MSK_Rm_FORr, arrl);
}

OS_EXIT_CRITlCAL() ;

break;

}

f*$PN:;E*f

468 - Embedded Systems Building Blocks, Second Edition

Listing 11.1 (continued)

1*

COMltLPC.C

rupts

*****************'**
ENABLE TX INI'ERRUPI'S

* Description This function enables transmission of characters. Transmission of characters is
interrupt driven. If you are using a multi-drop driver, the code must enable the driver
for transmission.

* Argt.nTlellts ' ch ' is the CCM1 port charmel number and can ei ther be:
CCMMl.

aM2

**** ******** * *** * **** *** ***** * ** * * * * *** ** * * * * * * ..* * *** * * * * * *** * * * * *** * *** ** * ** * *** ** *** * * ***** * * *.,.** * * ****
*1

void CarrriI'xIntEn (rnr8U ch)

nrrsu stat;
ncrso cm:l;

switch (ch) {

case CCMMl.:

OS_ENI'ER_CRITICAL () ;
stat = (rnr8U) inp(CCMM1_BIISE + CCM1_UARI'_IER) I BIT1; 1* Enable Tx inter-

*1
outp(CCMM1_BM>E + CCM1_UARI'_IER, stat);
cm:l = (rnr8U) inp (PIC_MSK_RKU'ORI') & -BIT4;

outp(PIC_MSK_=_I'ORI', cm:l); 1* Enable IRQ4 on the PC

*1
OS_EXIT_CRITICAL() ;
break;

rupts

*1

case aM2:
OS_ENI'ER....CRITICAL () ;
stat = (rnr8U) inp (aM2_BIISE + CCM1_UART_IER) I BIT1; 1* Enable Tx inter-

*1
outp(aM2_BM>E + CCM1_UART_IER, stat);
cm:l = (rnr8U) inp(PICMSK_=_I'ORI') & -BIT3;

outp(PIC_MSK_=_I'ORI', cm:l); 1* Enable IRQ3 on the PC

OS_EXIT_CRITICAL() ;
break;

Chapter 11: Asynchronous Serial Communications - 469

Listing 11.2

f*

EiOCedded Systans Building Blocks
Ccmplete and Ready-to-Use Mcdules in C

Asynchronous Serial Ccmmmications
IE'M-K: Serial I/O !J:M Level Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* Filenarre
* Prograrrmer

CCl·ll>LK:. H

Jean J. Labrosse

*f

f*

c:rnFlGURATICl'l iXNSTANrS

*f

#ifndef CFGJI

#define CCM1l_BI\SE
#define cc:M-l2_BI\SE

#define ce::M-lJ~A)CRX

#endif

r-

Ox03F8
Ox02F8

2

f* Base address of K:' s CCMl

f* Base address of K:' s a::M2

f* NS16450 has 2 byte buffer

*f
*f

*f

*f

void
void
INT8U
void
void
void
void
void
void
void
void

Cc:mnlISR(void) ;
Ccmn2ISR(void) ;
CornCfgPort(INT8U ch, INT16U baud, INT8U bits, INT8U parity, INT8U stops);
CrnrnISRHandler (INT8U ch);

CcmnRxFlush(INTBU ch);

CcmnRxIntDis (INT8U ch);

CcmnRxIntEn(INT8U ch);

CcrmtrxIntDis (INTBU ch);

CamtrxIntEn(INTBU ch);
CaTIllRclIntVect (INT8U ch);

CcmnSetIntVect (INT8U ch);

II

470 - Embedded Systems Building Blocks, Second Edition

Listing 11.3

;**

Embedded systems Building Blocks
CCi1lPlete and Ready-to-Use Mo::lules in C

Asynchronous Serial COITITlUIlications
IBM-PC Serial I/O Low Level Driver

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

Filename
Programner

Notes

CCMM]CA.ASM

Jean J. Labrosse
If you are not using uC/OS-II you will need to DELEI'E the increnents of OSIntNesting and
the calls to OSIntExit () .

;**

PUBLIC _CcmnlISR
PUBLIC _Carm2ISR

EXTRN _OSIntExit:FAR
EXTRN _CorrmISRHandler: FAR

EXTRN _OSIntNesting:BYTE

.M::lDEL

•CODE

.186

;/*$PAGE*/

Listing 11.3 (continued)

Chapter 11: Asynchronous Serial Communications - 471

COlol1·LPCA. ASM

;***************************************,**

HANDLE CCMl ISR
;***

_CcnrnlISR PRiX: FAR

PUSHA save interrupted task's context
PUSH FS
PUSH DS

MJV AX, LGRCUP Reload DS with D3RCXJP
MJV DS, AX

NJTE: Carment CXJI' the next line (i.e. IN:: _OSIntNesting) if you don't use uC/OS-II.
IN:: BYTE PI'R _OSIntNesting Notify uC/OS-II of ISR

PUSH

CALL
ADD

1
FAR PI'R _CcmnISRHandler
SP,2

Indicate o::MMl

Process CU1M interrupt

NJTE: Carment CXJI' the next line (Le. CALL _OSIntExit) if you don't use uC/OS-II.
CALL FAR PI'R _OSIntExit Notify OS of end of ISR

pop DS
pop FS

POPA

; /*$PAGE*/

Restore interrupted task's context

Return to interrupted task

II

472 - Embedded Systems Building Blocks, Second Edition

Listing 11.3 (continued) COld1tLPCA. ASM

i*** ** * * * ** * * * * * * * * * * * * *

HANDLE CCM2 ISR
;***

_Ccm:n2ISR PRCC FAR

PUSHA Save interrupted task's context
PUSH E'.S

PUSH DS

YDJ AX, IGROUP Reload DS with IGRCUP

YDJ DS, AX

!'DI'E: Ccnment our the next line (i.e. ne _OSIntNesting) if you don't use uC/OS-II.
ne BYTE Pm _OSIntNesting Notify uC/OS-II of ISR

PUSH

CALL
ADD

2
FAR Pm _CcmnISRHandler
SP,2

Indicate CCMM2
Process CXl1M interrupt

!'DI'E: Ccnment our the next line (i.e. CALL _OSIntExit) if you don't use uC/OS-II.
CALL FAR Pm _OSIntExit Notify OS of end of ISR

pop DS
pop E'.S

POPA

IREI'

_Ccm:n2ISR ENDP

END

Restore interrupted task's context

Return to interrupted task

Chapter 11: Asynchronous Serial Communications - 473

Listing 11.4 COMMBGND. C

1*

Einbedded Systems Building Blocks
Complete and Ready-to-Use Modules in C

Asynchronous Serial Ccmmmications
Buffered Serial I/O

(Foreground/Backgrotmd Systems)

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename
* Progranmer

* Notes

C01MPGND.C

Jean J. Labrosse

The functions (actually macros) OS_ENI'E:R.-CRITICALO and OS_EXIT_CRITICAL() are used to
disable and enable interrupts, respectively. If using the Borland C++ compiler V3.1,
all you need to do is to define these macros as follows:

*1

1*

#define OS_ENI'ER_CRITICAL ()
#define OS_EXIT_CRITICALO

disable()

enable 0

IN:LUDFS

**** *** * * * * * * * ** * * * * * ** *** * * * * * **** * * * * * * * * * * * ** * * ** * * ** * ******* *** * * * * * * * * * ** * * * * ** ****** * * ** ** * * ** * * ** *
*1

#include "includes.h"

I*$PAGE*I

II

474- Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued)

/*

COMMBGND.C

c:oosrANI'S
** ** * * * * * * * * * * * ** * * ** * * * * * *** * * * * * * * * * * * * ** * * ** * ** * * * ** **** ******* **** * * * ** * * ** **** ** *** * * *** * * ** * ** * ****
*/

/*

DATA TYPES

* ** * * ***** ********** * * * * * * * ** * * ** * * * * * ** ** * * * ****** ** * ** ** * ** * **** * * * ** * * * *** * ** * ** *** * * * * *** * * ** * * * * * ** *
*/

typedef struct {
INr16U RingBufRxCtr;
INr8U *RingBufRxInPtr;
INr8U *RingBufRxOutPtr;
INr8U RingBufRx[CCMLR1CBUF_SIZE];
INr16U RingBufTxCtr;
INr8U *RingBufTxInPtr;
INr8U *RingBufTxOutPtr;
INr8U RingBufT.x:[CCMLTlCBUF_SIZE];

CCM'UUN3_BUF;

/*

/* Number of characters in the Rx ring buffer
/* Pointer to where next character will be inserted
/* Pointer fran where next character will be extracted
/* Ring buffer character storage (Rx)
/* Number of characters in the Tx ring buffer
/* Pointer to where next character will be inserted
/* Pointer fran where next character will be extracted
/* Ring buffer character storage (Tx)

*/
*/

*/
*/

*/
*/
* /
* /

***** ** ** * * * ******* * ** * **** ** * * * * * * * * * * * *** ** * * * * * * * * * * * * * * * * * ** * * *** * **** * * * * * * * * * * * * ** * ** * * * * * *** ** *** *
GlDBAL VARIABLES

** *** * * ** * * * * * **** * * * * * ** * * * ** *** ** * * * * ** * * ** * * * * * * * * * * * ** ** * * * ** * * * * * * * * * * **
*/

C01M_RIN3_BUF ConmlBuf;
C01M_RIN3_BUF C0rrm2Buf;

/*$PAGE*/

Listing 11.4 (continued)

/*

Chapter 11: Asynchronous Serial Communications - 475

COMMBGND.C

* Returns

REM.lVE 0lARACI'ER FRCM RIN3 BUFFER

* Description '!his function is called by your eppli.cation to obtain a character f rcm the corrmurii.cati.ons

channel.
* Argurrents 'ch ' is the c:c:MM port channel number and can ei ther be:

CCM-1l
CCMM2

'err' is a pointer to where an error code will be placed:

*err is set to c:c:MM_NO_ERR if a character is avaiIabl.e
*err is set to c:c:MM_RX_EMPI'Y if the Rx blffer is empty
*err is set to c:c:MM_BI\O_CH if you have specified an invalid channel

'!he character in the buffer (or NUL if the buf fe'r is empty)

*/

INTau CamGetChar (INTaU ch, INTau *err)
{

INTau c;

c:c:MM_RIN3_BUF *prof;

switch (ch) {

case CCM-1l:
pbuf = &CarrnlBuf;
break;

case CCMM2:
prof = &Ccmn2Buf;
break;

/* Obtain pointer to camumications channel */

default:
*err = c:c:MM_BI\O_CH;
return (NUL);

)

OS_ENI'ER_CRITICAL () ;

if (prof->RingBufRxCtr > 0) { /* See if roffer

pillf->RingBufRxCtr--; /* No, decrement
c = *pblf->RingBufRxOutPtr++; /* Get character
if (prof->RingBufRxOutPtr == &pbuf->RingBufRx[c:c:MM_RX_BUF_SIZEJ)

prof->RingBufRxOutPtr = &prof->RingBufRx[O);

is empty

character count
frcxn roffer

/* Wrap cur pointer

*/
*/

*/

*/

II
)

OS_EXIT_CRITlCAL () ;

*err = c:c:MM_NO_ERR;
return (cl;

else {
OS_EXIT_CRITICAL () ;

*err = c:c:MM_RX_EMPI'Y;

c = NUL;
return {c);

/*$PAGE*/

/* Buffer is empty, return NUL */

476 - Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued)

/*

COMMBGND.C

* RetUD1s

GEl' TX CHARACI'ER FRCM RlN3 BUFFER

* Description This function is called by the Tx ISR to extract the next character fran the Tx ruffer.
The function returns FALSE if the ruffer is enpty after the character is extracted fran
the buffer. This is done to signal the Tx ISR to disable interrupts because this is the
last character to send.

* Arguments "ch ' is the C01M port channel number and can either be:

C01Ml
Cll1M2

'err' is a pointer to where an error code will be deposited:
*err is set to C01M_l-'::LERR if at least one character was left in the

ruffer.
*err is set to C01M_TX_EMPI'Y if the Tx buffer is enpty.
*err is set to C01M_filID_Ol if you have specified an incorrect channel

: The next character in the Tx buffer or NUL if the buffer is enpty.

*/

INrBU CamGetTxChar (INrBU ch, INrBU *err)
{

INrBU c:
C01M_RlN3_BUF *pbuf;

swi tch (ch) {

case C01Ml:
pbuf = &CcmnlBuf;
break;

case Cll1M2:
pbuf = &Carrn2Buf;
break;

default:
*err = C01M_filID_Ol;
return (NUL);

/* Obtain pointer to cannunications channel */

}

if (pbuf->RingBufTxCtr > 0) { /* See if buffer is E!lpty */
pbuf->RingBufTxCtr--; /* No, decrerent character count */
c = *pbuf->RingBufTxOutPtr++; /* Get character fran buffer */
if (pbuf->RingBufTxOutPtr == &pbuf->RingBufTx[CCM1_TX_BUF_SIZE]) /* Wrap our pointer */

pbuf->RingBufTxOutPtr = &pbuf->RingBufTx[O];

*err = CC!-1M_N',:LERR;
return (c);

else {
*err = C01M_TX_EMPI'Y;
return (NUL);

/*$PAGE*/

/* Characters are still available

/ * Buffer is E!lpty

*/

*/

.Listing 11.4 (continued)

1*

Chapter 11: Asynchronous Serial Communications - 477

COMMBGND.C

=TIALIZE CDMlNICATICNS MJruLE

* Description This function is called by your awlication to initialize the corrmunications nodule. You
must call this function before calling any other functions.

* Arguments none

*** *** * * * * ** * * * * * * * * ** ** * * * * * * * * * * * * * ** * * * * * * * * * * *** *** * * * * ** * * * * * * * * * ** * * ** * * * * * * * ** ** * ** * * * * * ** * * * * * * **
*1

void CamUnit (void)

prof
prof->RingBufRxCtr
prof->RingBufRxInFtr
prof->RingBufRxOutPtr
prof->RingBufTxCtr
prof->RingBuf'IXInPtr
pbuf->RingBufTxOutPtr

pbuf

pbJf->RingBufRxCtr
prof->RingBufRxInPtr
pbJf->RingBufRxOutPtr
pbJf->RingBufTxCtr
pbJf->RingBufTxInPtr
pbJf->RingBufTxOutPtr

I*$PAGE*I

&CamliBuf;
0;
&prof->RingBufRx[O];
&prof->RingBufRx[Oj;
0;
&prof->RingBufTx[Oj;
&pbJf->RingBufTx[O] ;

&Cc:mn2Buf;
O'
&prof->RingBufRx[Oj;
&prof->RingBufRx[O] ;
0;
&pbJf->RingBufTx[O];
&pbuf->RingBufTx[O] ;

1* Initialize the ring buffer for COMMl

1* Initialize the ring roffer for CCMM2

*1

*1

II

478 - Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued)

/*

COMMBGND.C

SEE IF RX CHARACI'ER BUFFER IS EMPl'Y

* Description This function is called by your application to see if any character is available frcrn the
carmunications channel. If at least one character is available, the function returns
FAISE otherwise, the function returns TRUE.

* Arguments 'ch' is the CCMol port channel m.nnber and can either be:

CCMoll
C'Cl-lM2

* Returns : TRUE if the buffer IS enpty.
FAISE if the buffer IS N:JI' enpty or you have specified an tncorrsct channel

*/

B:OLEAN CcmnIsEhTpty (JNr8U ch)
{

B:OLEAN enpty;
CCMol_RlN3_BUF *pbuf;

switch (ch) {

case CCMoll:
pblf = &CarmlBuf;

break;

case (XM.Q:

pbuf = &Carrn2Buf;
break;

default:
return (TRUE);

/* Obtain pointer to carmunications channel */

)

OtUNI'ER_CRITICAL () ;

if (pblf->RingBufRxCtr > OJ {
enpty = FAISE;

else {
errpty = TRUE;

}

OS_EXIT_CRITICAL () ;

return {enpty);

/*$PAGE*/

/* See if buffer is enpty
/* Buffer is N:JI' enpty

/ * Buffer is enpty

*/
*/

*/

Listing 11.4 (continued)

1*

Chapter 11: Asynchronous Serial Communications - 479

COMMBGND.C

SEE IF TX OJARACI'ER BUFFER IS FlJLL

* Description 'Ihis function is called by your application to see if any rrore characters can be placed

in the Tx buffer. In other words, this function check to see if the Tx buffer is full.
If the buffer is full, the function returns TRUE otherwise, the function returns FAlSE.

* Arguments "ch ' is the cc:MM port channel number and can either be:

CXM1l

CCM-12
* Returns : TRUE if the buffer IS full.

FALSE if the buffer IS = full or you have specified an .incorr-ect. channel

*1

J3CX)LEl\N CcmnIsFull (INI'8U ch)

{

J3CX)LEl\N full;
cc:MM_RIN3_BUF *pbuf;

switch (ch) {

case CXM1l:

pbuf = &CcmnlBuf;
break;

case CCM-12:
pbuf = &Carrn2Buf;
break;

default:
return (TRUE);

}

OS_ENI'ER_CRITICAL() ;

if (pbuf->RingBufTxCtr < cc:MM_TX_BUF_SlZE)

full = FAlSE;

else {

full = TRUE;
}

OSftIT_CRITICAL () ;

return (full);

I*$PAGE* I

1* Obtain pointer to camnmications channel *1

1* See if buffer is full *1 III1* Buffer is = full *1

1* Buffer is full * I

480 - Embedded Systems Building Blocks, Second Edition

Listing 11.4 (continued)

/*

COMMBGND.C

* **** ******** 1<*** ***** **** ** * * * * ** ** * * 1<* * * * *** * * * * * * * * * ** * 1<* * * * * * * * * * ** * ** * * * * *** * **** * * ** * * ** * * * * * * * ****
ourror CHARACTER

* Description This function is called by your application to send a character on the carrnunications
channel. The character to send is first inserted into the Tx blffer and will be sent by

the Tx ISR. If this is the first character placed into the blffer, the Tx ISR will be
enabled. If the Tx blffer is full, the character will not be sent (i.e. it will be lost)

* Arguments "ch ' is the CCMI port charmel number and can either be:

CCMIl

CCMI2
'c: is the character to send.

* Returns CCMI_N:LERR if the function was successful (the blffer was not full)
CCMI_TlCFULL if the blffer was full
CCMI_BAD_CH if you have specified an incorrect charmel

*/

=8U CarrnPutChar (=8U ch, =8U c)

{

switch (ch) {

case CCMIl:

pocf = &CcmnlBuf;
break;

case CCMI2:
pbuf = &Ccmn2Buf;
break;

default:
return (C."iliM_BAD_CH);

/* Obtain pointer to camnmications channel */

}

OS_ENI'ER_CRITICAL () ;

if (pblf->RingBufTxCtr < CCMI_TX_BUF_SIZE) /* See if buffer is full
pblf->RingBufTxCtr++; /* No, increment character count
pblf->RingBufTxInPtr++ = c. / Put character into blffer
if (pblf->RingBufTxInPtr == &pblf->RingBufTx[CCMI_TX_BUF_SIZE]) { /* Wrap IN pointer

pbuf->RingBufTxInPtr = &pblf->RingBufTx [0] ;

*/

*/
*/

*/

}

if (pblf->RingBufTxCtr == 1) (
ComtII'xIntEn (ch) ;

OS_EXIT_CRITlCAL () ;

else {
OS_EXIT_CRITlCAL () ;

}

return (CCMI_I-KLERR);
else (

OS_EXIT_CRITlCAL () ;

return (CCMI_TX_FULL);

/*$Pl\GE*/

/* See if this is the first character
/* Yes, Enable Tx interrupts

*/

*/

Listing 11.4 (continued)

/*

Chapter 11: Asynchronous Serial Communications - 481

COMMBGND.C

INSERI' CHARACI'ER INTO RIN3 BUFFER

* rescription
* Arqument.s

This
"ch '

"c '

function is called by the Rx ISR to insert a character into the receive ring buffer.
is the CCMM port; channel number and can either be:

CCJ.1Ml
o::M-l2

is the character to insert into the ring buffer. If the buffer is full, the
character will not be inserted, it will be lost.

*/

void CarrnPutRxChar (INrBU ch, INrBU c)

switch (ch) {

case CCJ.1Ml:
pbuf = &CcmnlBuf;
break;

case CCMM2:
pbuf = &Ccmn2Buf;
break;

default:
return;

/* Obtain pointer to ccmnunications channel */

if (pbuf->RingBufRxCtr < CCMM_RX_BUF_SlZEl /* see if buffer is full
pbuf->RingBufRxCtr++; /* No, incrarent character count
pbuf->RingBufRxInPtr++ = c; / Put character into buffer
if (pbuf->RingBufRxInPtr == &pbuf->RingBufRx(CCMM_RX_BUF_SlZE]) { /* Wrap IN point.ar

pbuf->RingBufRxInPtr = &pbuf->RingBufRx[O];

*/

*/
*/
*/

II

482 - Embedded Systems Building Blocks, Second Edition

Listing 11.5 COMMBGND. H

/*

Embedded Systems Building Blocks
Ccmplete and Ready-to-Use Modules in C

Asynchronous Serial Ccmnunications
Buffered Serial I/O

(Foreground/Background Systems)

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : crnMEGND.H

* Programner : Jean J. Labrosse

*/

/*

CCi'lFlGURATICN CCNSTANrS

*/

#ifndef CFG_H

#define CXM1_RX_BUF_SlZE
#define CXM1_TlCBUF_SlZE

#endif

/*

128
128

/* Nu!Ttler of characters in Rx ring buffer
/* Nu!Ttler of characters in 'IX ring buffer

*/
*/

CCNSTANrS

*/

#ifndef NUL

#define NUL

#endif

#define <D1Ml
#define CXM12

OxOO

1

2

#define CXM1_NJ3:RR
#define CXM1_BllD_CH
#define CXM1_RX_EMPI'Y
#define CXM1_TlCFULL
#define CXM1_TlCEMPI'Y

o
1

2
3
4

/* ERROR CODES

/* Function call was successful
/* Invalid conmmicationsportchannel
/* Rx buffer is erpty,no,character· available
/* 'IX buffer is fulL coLild not vdepos.i t; character
/* If the 'IX buffer is erpty.

*/
*/
*/./

*/
*/

#ifdef
#define
#else
#define
#endif
/*$PAGE* /

CXM1_GLOBIIlS

CXM1_=

CXM1_= .extern

Listing 11.5 (continued)

/*

Chapter 11: Asynchronous Serial Communications - 483

COMMBGND.H

FUN:.TICN PROIOI'YPE'S

*/

INr8U

INr8U

void

ECOLEAN

ECOLEAN

INr8U

void

CamGetChar(INr8U ch, INr8U *err);

CamGetTxChar (INr8U ch, INr8U *err);

CarmInit(void) ;

CrnmIsElJpty(INr8U ch);

CrnmIsFull (INr8U ch);

CannPutChar(INr8U en, INr8U c);

CannPut:FxChar(INr8U ch, INr8U c);

II

484 - Embedded Systems Building Blocks, Second Edition

Listing 11.6 COMMRTOS. C

1*

ElTIbedded Sys terns Building Blocks
Catplete and Reacly-to-Use Modules in C

Asynchronous Serial Ccrnnunications
Buffered Serial 1/0

(R'TOS)

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : CXM1R'IDS.C

* Progranrner : Jean J. Labrosse

* I

1*

INCLUDES

* I

#include "includes.h"

1*

J:l>.TA TYPES

********** ** **** ****** ********* ** * * * ** * * * ** * * * * * * * * * * * * *** * * * * * * * * * * * * ** * * * * * * * * * * * * *** * **** * * * * * * * * * ** **
* I

typedef struct {
mr16U RingBufRxCtr;
OS_EVENI' *RingBufRxSem;
mrsu *RingBufRxInPtr;
mrsu *RingBufRxOutPtr;
nrreu RingBufRx[CCMLRJCBUF_SIZE];
mr16U RingBufTxCtr;
OS_EVENI' *RingBufTxSem;
mrSu *RingBufTxlnPtr;
mrSu *RingBufTxOutPtr;
nrrsu RingBufTx[CC1-1t'LTlCBUF_SIZE];

CCMLRIN3_BUF;

1*

1* Number of characters in the Rx ring buffer
1* Pointer to Rx semaphore
1* Pointer to where next character will be inserted
1* Pointer from where next character will be extracted
1* Ring buffer character storage (Rx)
1* Number of characters in the Tx ring buffer
1* Pointer to Tx semaphore
1* Pointer to where next character will be inserted
1* Pointer from where next character will be extracted
1* Ring buffer character storage (Tx)

*1
*1
*1
*1
*1
*1
*1
*1
* I
*1

GWML VARIABLES

*1

CCMM_RIN3_BUF CcmnlBuf;
CCMM_RIN3_BUF Carrn2Buf;

1*$PN3E*I

Listing 11.6 (continued)

1*

Chapter 11: Asynchronous Serial Communications - 485

COMMR'l'OS. C

REMJVE CHARACI'ER FRCM RIN3 BUFFER

* Description This function is called by your appl.i.cat.i.on to obtain a character fram the conmunications

channel. '!he function will wait for a character to be received on the serial channel or
until the function times out.

* Argunents 'ch' is the CXMoI port channel number and can either be:
CXMoIl
CCMQ

. to ' is the arrount of tiIre (in clock ticks) that the calling function is willing to
wait for a character to arrive. If you specify a tiIreout of 0, the function will

wait forever for a character to arrive.
'e=' is a pointer to where an error code will be placed:

*e= is set to CXMoI_toKLERR if a character has been received

*e= is set to CXMoI_RlCTIMEOJr if a tiIreout occurred
*e= is set to CXMoI_BAD_Ol if you specify an invalid channel number

* Returns : '!he character in the buffer (or NUL if a tiIreout occurred)

*I

INr8U Camc:etChar (INr8U ch, INrl6U to. INrBU *e=)
{

INr8U c;
INr8U oserr-
CXMoI_RIN3J3UF *pbuf;

switch (ch) (

case CXMoIl:
pbuf = &CamllBuf;

break;

case CXM12:
pbuf ~ &CamQBuf;

break;

default:
*e= = CCl-tCBAD_Ol;
return (NUL);

1* Obtain pointer to ccmnunications channel *1

•
*1

tiIreout* I
*1

1* Wait for character to arrive
1* See if characters received within

1* No, return error code

)

08Se<nPend(pb,If->RingBufRxSan, to, &ose=);

if (oserr == OS_TIMEOJr) (
*e= = CXMoI_RX_TIMEOJr;
return (NUL);

else {
OS_ENI'ER_CRITlCAL () ;

pb,If->RingBufRxCtr--; 1* Yes, decrarent character count

c = *pb..if->RingBufR><C\ltPtr++; 1* Get character fram buffer
if (pb,If->RingBufR><C\ltPtr == &pblf->RingBufRx[CXMoI_RX_BUF'_SIZE]) 1* Wrap OJ!' pointer

pb,If->RingBufR><C\ltPtr = &pb,If->RingBufRx[O];

*1
*1
* I

}

OS_EXIT_CRITlCALO;

*e= = CXMoI_NJ_ERR;
return (c);

I*$PAGE*I

486 - Embedded Systems Building Blocks, Second Edition

Listing 11.6 (continued)

/*

COMMRTOS.C

= TX 0iARACI'ER FRCM RlN3 BUFFER

* Description 'I11is function is called by the Tx ISR to extract the next character fran the Tx buffer.
The function returns FALSE if the buffer is errpty after the character is extracted fran
the buffer. 'I11is is done to signal the Tx ISR to disable interrupts because this is the
last character to send.

* Arguments "ch ' is the CCM1 port channel number and can either be:

CCM1l
<:XMI2

'err' is a pointer to where an error code will be deposited:
*err is set to CCM1_1\I:LERR if at least one character was available

fran the buffer.
*err is set to CCM1_TX_EMPI'Y if the Tx buffer is 61Pty.

*err is set to CCM1_BI\ILOJ if you have specified an .incor'rect; channel
* Returns : The next character in the Tx buffer or NUL if the buffer is errpty ,

*/

INr8U CamGet'I'xChar (INr8U en, INr8U *err)
{

INr8U c;
CCM1_RlN3_BUF *pbuf;

switch (ch) {

case CCM1l:
pbuf ~ &Ccmn1Buf;
break;

case <:XMI2:
pbuf ~ &Ccmn2Buf;
break;

default:
*err ~ CCM1_BI\ILOl;
return (NUL);

/* Obtain pointer to camu.mications channel */

}

if (pbuf->RingBufTxCtr > 0) { /* See if buffer is arpty */
pbuf->RingBufTxCtr--; /* No, decrement character count; */
c = *pbuf->RingBufTxOJ.tPtr++; /* Get character fran buffer */
if (pbuf->RingBufTxOutPtr ~~ &pbuf->RingBufTx[CCM1_~BUF_SlZE1){ /* wrap cur pointer */

pbuf->RingBufTxOutPtr = &pbuf->RingBufTx[O];
}

OS8enPost (pbuf->RingBufTxSern) ;
*err ~ a:MU~:LERR;

return (c);
else {

*err ~ CCM1_TX_EMPI'Y;
return (NUL);

/*$PAGE*/

/* Indicate that character will be sent

/* Characters are still available

/* Buffer is arpty

*/

*/

*/

Listing 11.6 (continued)

f*

Chapter 11: Asynchronous Serial Communications - 487

COMMR'1'OS. C

INITIALIZE CCMMUNICATICNS MJU!LE

* Description This function is called by your awlication to initialize the cc:nmunications nodule. You

mist; call this function before calling any other functions.
* l\rguIrents none

*f

void CarmInit (void)

CXMl_RIN3_BUF *pbuf;

pbuf &CarrnlBuf; f* Initialize the ring buffer for CXM1l *f
pbuf->RingBufRxCtr 0;
pbuf->RingBufRxInPtr &pbuf->RingBufRx[O] ;

pbuf->RingBufRxOutPtr &pruf->RingBufRx[O];
pruf->RingBufRxSen = OSSaTCreate(O);

pbuf->RingBuf'IXCtr 0;
pbuf->RingBufTxInPtr = &pruf->RingBufTx[O];
pruf->RingBufTxOutPtr = &pbuf->RingBufTx[O];

pbuf->RingBufTxSem = OSSEmCreate (CXMl_TICBUF_SIZE) ;

pbuf
pbuf->RingBufRxCtr
pbuf->RingBufRxInPtr

pbuf->RingBufRxOutPtr
pruf->RingBufRxSem
pbuf->RingBuf'IXCtr
pruf->RingBufTxInPtr

pbuf->RingBufTxOutPtr
pbuf->RingBufTxSem

f*$PAGE*f

&Ccmn2Buf;
0;
&pbuf->RingBufRx[O] ;

&pruf->RingBufRx[O] ;
OSSE!tCrea te (0) .;

0;
&pruf->RingBufTx[O] ;

&pruf->RingBufTx[O] ;

= OSSE!tCreate(CXMl_TICBUF_SIZE);

f* Initialize the ring ruffer for CXMI2 * f

II

488 - Embedded Systems Building Blocks, Second Edition

Listing 11.6 (continued)

/*

COMMRTOS.C

SEE IF RX OIARACI'ER BUFFER IS EMPI'Y

* Description This function is called by your application to see if any character is available from the
conmunications channel. If at least one character is available, the function returns
FAlSE otherwise, the function returns '!RUE.

* Argurrents ' ch ' is the cc:MM port channel number and can ei ther be:
cc:MMl
c:c:MM2

* Returns : '!RUE if the buffer IS enpty.
FAlSE if the buffer IS NJI' enpty or you have specified an incc=ect channel.

* /

ECDLEAN CcmnIsEiTpty (INr8U chI

{

ECDLEAN enpty;
cc:MM_RThG_BUF *pbuf;

switch (ch) (

case cc:MMl:
pbuf = &CarrnlBuf;
break;

case c:c:MM2:
pbuf = &Ccmn2Buf;
break;

default:
return ('!RUE);

/* Obtain pointer to conmunications channel */

)

OS_ENI'ER_CRITICAL () ;

if (pbuf->P~ngBufRxCtr> 0) {

arpty FAlSE;

else (
arpty '!RUE;

)

OS_EXIT_CRITICAL () ;

return (arpty);

!*$PAGE*/

/ * see if buffer is arpty
/ * Buffer is NJI' arpty

/* Buffer is enpty

*/
* /

*/

Listing 11.6 (continued)

f*

Chapter 11: Asynchronous Serial Communications - 489

COMMRTOS.C

SEE IF TX CHARACI'ER BUFFER IS FULL

*. Description '!'his function is called by your awlication to see if any nore characters can be placed

in the Tx buffer , In other words, this function check to see if the Tx mffer is full.
If the mffer is fulL the function returns TRUE otherwise, the function returns FALSE.

* ArguIrents .ch ' is the C'CM1 port charmel number and can ei ther be:

C'CM1l
<XM12

* Returns : TRUE if the buff'er' IS full.
FAlSE if the mffer IS = full or you have specified an incorrect channel.

****************** ** * * * * * * * * * * * * * * * * * * ** * ** * * ** * * * ** * ** * * * ** * * * * * * * * * * * * * * * * * *** * ** ** * * * * * * * ** * * * * ** * * * * *
*f

OC'OLEAN CannIsFull (INr8U ch)

{

OC'OLEAN full;
C'CM1_R:IN3_BUF *pl::uf;

switch (ch) {

case C'CM1l:
pbuf = &Camili3uf;

break;

case <XM12:
pmf = &Carm2Buf;
break;

default:
return (TRUE);

J
OS_ENI'ER_CRITICAL () ;

if (pl::uf->RingBufTxCtr < C'CM1_TX_BUF_SIZE)

full = FAlSE;
else (

full = TRUE;

J
OS_EXIT_CRITICAL() ;

return (full);

f*$P!'CE*1

1* Obtain pointer to carrnunications channel *1

1* See if buffer' is full *1 II1* Buffer is = full *f

1* Buffer is full *1

490 - Embedded Systems Building Blocks, Second Edition

Listing 11.6 (continued)

/*

COMMRTOS.C

* Description 'I11is function is called by your application to send a character on the ccmrn.mications
channel. The function will wait for the illffer to errpty out if the illffer is full.
The function returns to your application if the illffer doesn't errpty within the specified
timeout. A t.irneout; value of 0 means that the calling function will wait forever for the
illffer to errpty out. The character to send is first inserted into the Tx illffer and will
be sent by the Tx ISR. If this is the first character placed into the illffer, the Tx ISR
will be enabled.

* Argurrents 'ch ' is the C'CMM port channel number and can ei ther be:

CC1'1Ml
cx:MM2

'c' is the character to send.
'to' is the timeout (in clock ticks) to wait in case the illffer is full. If you

specify a timeout of 0, the function will wait forever for the illffer to errpty.
* Returns C'CMM_NO_ERR if the character was placed in the Tx illffer

C'CMM_'TICTIMEDlJI' if the illffer didn't errpty within the specified timeout period
C'CMM_azlD_Oi if you specify an invalid channel number

**** ******** * ** * * * * * * ** ** *** **** * * * * * * * * ** **** ** * * * * * * ** ** ** ** ** *** * * * * * * * * * * * * *** * **** * * * * * * ** ** *** * * * * *
*/

INI'8U CcmnPutChar (INI'8U ch, INI'8U c, INI'16U to)

{

INI'8U oserr;
C'CMM_RJ:l\G_BUF *pillf;

switch (ch) (

case CC1'1Ml:
phlf = &CaTtnlBuf;
break;

case cx:MM2:
pbuf = &Carrn2Buf;
break;

default:
return ((X:M~LazID_Oi);

/* Obtain pointer to ccmrn.mications channel */

)

OSSemPend(phlf->RingBufTxSem, to, &oserr);
if (oserr == OS_JrIMEDlJI') (

return(C'CMM~TJCTIMEDlJI') ;

/* Wait for space in Tx illffer

/* Tllned out, return error code

*/

*/
}

OS_ENI'ER_CRITlCAL () ;
pillf->RingBufTxCtr++; /* No, increment character count
pillf->RingButTxInPtr++ = c; / Put character into buffer
if (pbuf->RingBlif.TxInptr ==-&phlf->RingBufTx[C'CMM_'TICBUF_SIZE]) /* Wrap IN pointer

pbuf->RingBtifT>:InFtr =&phlf->RingBufTx[O];

*/
*/
*/

}

if (pbuf->RingBufTxCtr == 1) (
CcmTlI'xIntEn (ch) ;

}

OS_EXIT_CRITlCAL();
return (C'CMM_NO_ERR);

/*$PllGE* /

/* See if this is the first character
/* Yes, Enable Tx interrupts

*/
*/

Listing 11.6 (continued)

/*

Chapter 11: Asynchronous Serial Communications - 491

COMMRTOS.C

INSERr CHARACI'ER INTO R= BUFFER

This
"ch '

* Description
* Arguments

function is called by the Rx ISR to insert a character into the receive ring buffer,
is the CCMM port; channel number and can either be:

CCMMl
C(M{2

, c ' is the character to insert into the ring buffer. If the buffer is full, the
character will not be inserted, it will be lost.

**** ******* ** * *** **** ** *** ** *********** ** ******* * * * *** *.,.; ** ** ** * *** ** *** * *** *** * * * ******** * ***** ***** ** ***
*/

void ConmPutRxChar (INT8U ch, INTBu c)

switch (ch) {
case CCMMl:

pbuf = &Ccrnn1 Buf;
break;

case C(M{2:

pbuf = &C0mn2Buf;
break;

default:
retUTI1;

/* Obtain poirit.er to corrmurn.cati.ons channel */

}

if (pbuf->RingBufRxCtr < CCMM_RX_BUF_SIZE) /* See if buffer is full
pbuf->RingBufRxCtr++; /* No, increment character count
pbuf->RingBufRxInPtr++ = c; / Put character into buffer
if (pbuf->RingBufRxInPtr == &pbuf->RingBufRx[CCMM_RX_BUF_SIZE]) { /* Wrap IN po.int.er

pbuf->RingBufRxlnPtr = &pbuf->RingBufRx[O];
}

OSSemPost{pbuf->RingBufRxSem); /* Indicate that character was received

*/

*/
* /
*/

*/ II

492 - Embedded Systems Building Blocks, Second Edition

Listing 11.7 COMMRTOS.H

1*

Embedded Systans Building Blocks
Complete and ReadY-to-Use MOdules in C

Asynchronous Serial Conmunications
Buffered Serial I/O

(RIDS)

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* Filename : CCMMR'IDS.H
* Programrer : Jean J. Labrosse

*1

1*

*1

#define a:MCRX....BUF_SIZE
#define CCMCTlCBUF_SIZE

64
64

1* Number of characters in Rx ring buffer
1* Number of characters in Tx ring buffer

*1
*1

#endif

1*

*1

*1
*1
*1
*1
*1
*1

for a character*1
to send a char.*1

1* Defines for setting parity

1* ERROR CODES

1* Function call was successful
1* Invalid conmunications port channel
1* Rx buffer is errpty, no character available
1* Tx buffer is full, could not deposit character
1* If the Tx buffer is errpty.
1* If a timeout occurred while waiting
1* If a timeout occurred while waiting

*1

#ifndef NUL
#define NUL oxoo
#endif

#define C'CMI1 1
#define o:::M-12 2

#define CCl'1f'U~::LE:RR a
#define a:»U31\D_CH 1
#define CCMLRlCEMPrY 2

#define a:MLTlCFULL 3
#define a:MCTlCEMPrY 4
#define CCMLRlCT= 5
#define CCMLTlCT= 6

#define CCM'LPARITY_N:lNE a
#define CCl-ll'LPARITY_ODD 1
#define CCMLPARITY_EITEN 2

Listing 11.7 (continued)

Chapter 11: Asynchronous Serial Communications - 493

COMMRTOS.H

#ifdef
#define
#else
#define
#endif
/*$PAGE* /

/*

a:f1l>LEX'r extern

************ ****** ** ** * * * * * * * * * * ** ** * * ** * * * * ** * * * * * ** * * * * * ** * * * * * ** * * * * * ** * * * * ** * * ** * ** * * * * * ** ** * * ** * * ** *
FIJJ.'l:::TION PRarorYPES

* ***** *** *** ******** *** *** ** ** * ***** **** **** **** ******* ****** ****** ***** **** ******** ** ** ** ** ** ** **** * * ***
*/

=8U
=8U
void
IJCX)LEAN

KDLEAN

=8U
void

CamGetChar(=8U ch, =16U to, =8U *err);
CamGetTxChar(=8U ch, =8U *err);
CcmnInit(voidl;
CcmnIsEllpty(=8U ch);
CcmnIsFull (=8U chi ;
Cc:mnPutChar(=SU ch, =8U c. =16U to);

Cc:mnPutRxChar(=8u ch, =8U c);

II

494 - Embedded Systems Building Blocks, Second Edition

Chapter 12

PC Services
The code in this book was tested on a PC. It was convenient to create a number of services (i.e., func
tions) to access some of the capabilities ofa Pc. These services are invoked from the test code and are
encapsulated in a file called PC. C. Because industrial PCs are so popular as embedded system plat
forms, the functions provided in this chapter could be of some use to you. These services assume that
you are running under DOS or a DOS box under Windows 95/98 or NT. You should note that under
Windows 95/98 or NT, you have an emulated DOS and not an actual one (i.e., a Virtual x86 session).
The behavior of some functions may be altered because of this.

The files PC. C (Listing 12.3) and PC. H (Listing 12.4) are found in the \SOFT

WARE\BLOCKS\PC\BC45 directory. Unlike the first edition of ESBB, I decided to encapsulate these
functions (as they should have been) to avoid defining them in the example code and also, to allow you
to easily adapt the code to a different compiler. PC. C basically contains three types of services: charac
ter based display, elapsed time measurement, and miscellaneous. All functions start with the prefix PC_.

12.00 Character Based Display
PC. C provides services to display ASCII'tand special) characters on a PC's VGA display. In normal
mode (i.e., character mode), a PC's display can hold up to 2000 characters organized as 25 rows (i.e., y)

by 80 columns (i.e., x) as shown in Figure 12.1. Please disregard the aspect ratio of the figure. The
actual aspect ratio of a monitor is generally4 x 3. Video memory on a PC is memory mapped and, on a
VGA monitor, video memory starts at absolute memory location OxOOOB8000 (or using a segmentoff
set notation, B800: 0000).

495

496 - Embedded Systems Building Blocks, Second Edition

Figure 12.1 80 x 25 characters on a VGA monitor.

B800:0000

---------... x

y

15

20

24

B800:0002

20 30 40 50 60 70 79

Attribute
87 80

111111111

Each displayable character requires two bytes to display. The first byte (lowest memory location) is
the character that you want to display while the second byte (next memory location) is an attribute that
determines the foreground/background color combination of the character. The foreground color is
specified in the lower 4 bits of the attribute while the background color appears in bits 4 to 6. Finally, the
most-significant bit determines whether the character will blink (when I) or not (when 0). The charac
ter and attribute bytes are shown in Figure 12.2.

Chapter 12: PC Services - 497

Figure 12.2 Character and attribute bytes on a VGA monitor.

1st Byte
(Mern + 0)

Character to display

2nd Byte
(Mem + 1)

~kgrOUnd Color

I ~undcolorLBlink (Character Color)
0= no blink
1 = blink

Table 12.1 shows the possible colors that can be obtained from the PC's VGA character mode.
You will note that you can only have 8 possible background colors but a choice of 16 foreground

colors. PC.H contains #defines which allow you to select the proper combination of foreground
and background colors. These #defines are shown in Table 12.1. For example, to obtain a
non-blinking WHITE character on a BLACK background, you would simply add DISP_FGND_WHITE

and DISP_BGND_BLACK (FGND means foreground and BGND is background). This corresponds to a
HEX value of Ox07 which happens to be the default video attribute of a displayable character on a
Pc. You should note that because DISP_BGND_BLACK has a value of OxOO, you don't actually need
to specify it and thus, the attribute for the same WHITE character could just as well have been speci
fied as DISP_FGND_WHITE. You should use the #define constants instead of the HEX values to
make your code more readable.

The display functions in PC. C are used to write ASCII (and special) characters anywhere on the
screen using x and y coordinates. The coordinate system of the display is shown in Figure 12.1. You
should note that position 0,0 is located at the upper left comer as opposed to the bottom left comer as
you may have expected. This makes the computation of the location of each character to display easier
to determine. The address in video memory for any character on the screen is given by:

Address of Character = OxOOOB8000 + Y * 160 + X * 2

The address of the attribute byte is at the next memory location or:

Address of Attribute = OxOOOB8000 + Y * 160 + X * 2 + 1

The display functions provided in PC. C perform direct writes to video RAM even though BIOS
(Basic Input Output System) services in most PCs can do the same thing but in a portable fashion. I
chose to write directly to video memory for performance reasons.

PC. C contains the following five functions which are further described in the interface section of
this chapter.

II

498 - Embedded Systems Building Blocks, Second Edition

PC_DispChar ()

PC_DispClrCol ()

PC_DispClrRow ()

PC_DispClrScr ()

PC_DispStr ()

To displaya singleASCII characteranywhereon the screen

To cleara singlecolumn

To cleara singlerow (orline)

To clear the screen

To displayan ASCII stringanywhereon the screen

Table 12.1 Attribute byte values.
Blink Background Color Foreground Color

(B7) (B6 B5 B4) (B3 B2 Bl BO)
Blink? #define HEX Color #define HEX Color #define HEX

No OxOO Black DISP_BGND_BLACK OxOO Black DISPJGND_BLACK OxOO

Yes DISP_BLINK Ox80 Blue DISP_BGND_BLUE OxlO Blue DISPJGND_BLUE OxOl

Green DISP_BGND_GREEN Ox20 Green DISPJGND_GREEN Ox02

Cyan DISP_BGND_CYAN Ox30 Cyan DISPJGND_CYAN Ox03

Red DISP_BGND_RED Ox40 Red DISPJGND_RED Ox04

Purple DISP_BGND_PURPLE Ox50 Purple DISPJGND_PURPLE Ox05

Brown DISP_BGND_BROWN Ox60 Brown DISPJGND_BROWN Ox06

light DISP_BGND_LIGHT_GRAY Ox70 light DISP_FGND_LIGHT_GRAY Ox07
Gray Gray

DarK DISP_FGND_DARK_GRAY Ox08
Gray

light DISP_FGND_LIGHT_BLUE Ox09
Blue

light DISP_FGND_LIGHT_GREEN OxOA
Green

light DISP_FGND_LIGHT_CYAN OxOB
Cyan

light DISP_FGND_LIGHT_RED OxOC
Red

light DISP_FGND_LIGHT_PURPLE OxOD
Purple

Yellow DISPJGND_YELLOW OxOE

White DISP_FGND_WHITE OxOF

12.01 Saving and Restoring DOS's Context
The current DOS environment is saved by calling PC_DOSSaveReturn () (see Listing 12.1) and would
becalled by main () to:

1. Setup IlC/OS-II's context switch vector,

2. Setup the tick ISR vector,

3. Save DOS's context so that we can return back to DOS when we need to terminate execution of a
IlC/OS- II based application.

Chapter 12: PC Services - 499

A lot happens in PC_DOSSaveRetUlll () so you may need to look at the code in Listing 12.1 to fol
low along. PC_DOSSaveRetUlll () starts by setting the flag PC_Exi tFlag to FALSE [L12.1(1)] indi
cating that we are not returning to OOS. Then, PC_DOSSaveRetUlll () initializes OSTickDOSCtr to 8
[L12.1(2)] because this variable will be decremented in OSTickISR (). A value of 0 would have caused
this value to wrap around to 255 when decremented by OSTickISR (). PC_DOSSaveRetUlll () then
saves DOS's tick handler in a free vector table [L12.1(3)-(4)] entry so it can be called by llaOS-II's tick
handler (this is called chaining the vectors). Next, PC_DOSSaveRetUlll () calls setjrnp () [L12.1(5)],
which captures the state of the processor (i.e., the contents of all important registers) into a structure called
PC_JumpBuf. Capturing the processor's context will allow us to return to PC_DOSSaveRetUlll () and
execute the code immediately following the call to setjrnp (). Because PC_Exi tFlag was initialized to
FALSE [L12.1(1)], PC_DOSSaveRetUlll () skips the code in the if statement [i.e., L12.1(6)-(9)] and
returns to the caller (i.e., main ()).

When you want to return to OOS, all you have to do is call PC_DOSRetUlll () (see Listing 12.2)
which sets PC_Exi tFlag to TRUE [L12.2(1)] and execute a longjrnp () [L12.2(2)]. This brings the pro
cessor back in PC_DOSSaveRetUlll () Gust after the call to setjrnp (» [L12.1(5)]. This time, however,
PC_Exi tFlag is TRUE and the code following the if statement is executed. PC_DOSSaveReturn ()
changes the tick rate back to 18.2 Hz [L12.1(6)], restores the PC's tick ISR handler [L12.1(7)], clears the
screen [L12.1(8)], and returns to the OOS prompt through the exit (0) function [L12.1(9)].

Listing 12.1 Saving the DOS environment.

void PC_OOSSaveRetw:n (void)

PC_ExitFlag = FALSE;

OSTickDOSCtr = 8;

PC_TickISR = Pc_VectGetlVECT_TICK);

OS_ENTER_CRITlCAL();

PC_VectSet (VECT_OOS_CHAIN, PC__TickISR);

OS_EXIT_CRITlCAL();

setjrnp(PC_JumpBuf);

if (PC_ExitFlag == TRUE)

OS_ENTER_CRITlCAL () ;

PC_SetTickRate(18);

PC_VectSet (VECT_TICK, PC.:..TickISR);

OS_EXIT_CRITICAL();

PC_DispClrScr (DISP':"FGNDi:.WHITE + DISP_BGND_BLACK);

exit(O);

(1)

. (2)

(3)

(4)

(5)

(6)

(7)

. (8)

(9)

II

500 - Embedded Systems Building Blocks, Second Edition

Listing 12.2 Setting up to return to DOS.

void PC_OOSReturn (void)

PC_ExitFlag = TRUE;

longjrnp(PC_JumpBuf, 1);

12.02 Elapsed Time Measurement

(1)

(2)

The elapsed time measurement functions are used to determine how much time a function takes to execute.
Time measurement is performed by using the PC's 82C54 timer #2. You make time measurement by
wrapping the code to measure by the two functions PC_ElapsedStart () and PC_ElapsedStop () .
However, before you can use these two functions, you need to call the function PC_ElapsedIni t () .
PC_ElapsedIni t () basically computes the overhead associated with the other two functions. This way,
the execution time (in microseconds) returned by PC_ElapsedStop () consist exclusively of the code
you are measuring. Note that none of these functions are reentrant and thus, you must be careful that you
do not invoke them from multiple tasks at the same time.

12.03 Miscellaneous
PC_GetDateTime () is a function that obtains the PC's current date and time, and formats this infor
mation into an ASCII string. The format is:

UYYYY-MM-DD HH:MM:SS"

and you will need at least 21 characters (including the NUL character) to hold this string. You should note
that there are 2 spaces between the date and the time which explains why you need 21 characters instead
of 20. PC_GetDateTime () uses the Borland C/C++ library functions gettime () and getdate ()
which should have their equivalent on other DOS compilers.

PC_GetKey () is a function that checks to see if a key was pressed and if so, obtains that key, and
returns it to the caller. PC_GetKey () uses the Borland C/C++ library functions kbhi t () and
getch () which again, have their equivalent on other DOS compilers.

PC_SetTickRate () allows you to change the tick rate for IlC/OS-II by specifying the desired fre
quency. Under DOS, a tick occurs 18.20648 times per second or, every 54.925 mS. This is because the
82C54 chip used didn't get its counter initialized and the default value of 65535 takes effect. Had the
chip been initialized with a divide by 59659, the tick rate would have been a very nice 20.000 Hz! I
decided to change the tick rate to something more 'exciting' and thus, decided to use about 200 Hz
(actually 199.9966). The code found in OS_CPU_A.OBJ calls the DOS tick handler one time out of 11.
This is done to ensure that some of the housekeeping needed in DOS is maintained. You would not need
to do this if you were to set the tick rate to 20 Hz. Before returning to DOS, PC_SetTickRate () is
called by specifying 18 as the desired frequency. PC_SetTickRate () will know that you actually
mean 18.2 Hz and will correctly set the 82C54.

Chapter 12: PC Services - 501

The last two functions in PC. C are used to get and set an interrupt vector. PC_VectGet () and
PC_vectSet () should be compiler independent as long as the compiler support the macros MK_FP ()

(make far pointer), FP_OFF () (get the offset portion of a far pointer) and, FP_SEG () (get the segment
of a far pointer).

12.04 Interface Functions
This section provides a reference section for the PC services.

II

502 - Embedded Systems Building Blocks, Second Edition

void PC_DispChar(INT8U x, INT8U y, INT8U c, INT8U color);

PC_DispChar () allows you to display a single ASCII (or special) character anywhere on the display.

Arguments

x and y specifies the coordinates (col, row) where the character will appear. rows (i.e., lines) are num
bered from 0 to DISP_MAX_Y - 1, and columns are numbered from 0 to DISP_MAX_X - 1 (see List
ing 12.3, PC. C).

c is the character to display. You can specify any ASCII characters and special characters if c has a
value higher than 128. You can see what characters (i.e., symbols) will be displayed based on the value
of c by running the test code provided in this book as follows:

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > TEST display

color specifies the contents of the attribute byte and thus the color combination of the character to be
displayed. You can add one DISP_FGND_??? (see Listing 12.4, PC. H) and one DISP_BGND_??? (see
Listing 12.4, PC. H) to obtain the desired color combination.

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdata)

for (;;) {

Chapter 12: PC Services ~ 503

void PC_DispClrCol (IN'l'8U x, IN'l'8U color);

PC_DispClrCol () allows you to clear the contents of a column (all 25 characters).

Arguments

x specifies which column will be cleared. Columns are numbered from 0 to DISP_MAX_X - 1 (see
Listing 12.3, PC. C).

color specifies the contents of the attribute byte. Because the character used to clear a column is the
space character (i.e.,' '), only the background color will appear. You can thus specify any of the
DISP_BGND_??? colors.

Return Value

None

NotesIWarnings

None

Example

void Task (void *pdata)

for (;;) {

PC_DispClrCol (0, DISP_BGND_BLACK);

II

504 - Embedded Systems Building Blocks, Second Edition

PC_DispClrRow()
void PC_DispClrRow(INT8U y, INT8U color);

PC_DispClrRow () allows you to clear the contents of a row (all 80 characters).

Arguments

y specifies which row (i.e., line) will be cleared. Rows are numbered from 0 to DISP_MAX_Y - 1 (see
Listing 12.3, PC. C).

color specifies the contents of the attribute byte. Because the character used to clear a row is the
space character (i.e., , '), only the background color will appear. You can thus specify any of the
DISP_BGND_??? colors.

Return Value

None

NoteslWarnings

None

Example

void Task (void *pdatal

for (;;) {

PC_DispClrRow(lO, DISP~GND_BLACK);

("o~..:c.e-r-r--"

Chapter 12: PC Services - 505

PC_DispClrScr ()
void PC_DispClrScr(INTSU color};

PC_DispClrScr () allows you to clear the entire display.

Arguments

color specifies the contents of the attribute byte. Because the character used to clear the screen is the
space character (i.e., , '), only the background color will appear. You can thus specify any of the
DISP_BGND_??? colors.

Return Value

None

NoteslWarnings

You should use DISP_FGND_WHITE instead of DISP_BGND_BLACK because you don't want to leave
the attribute field with black on black.

Example

void Task (void *pdata)

PC_DispClrScr(DISP_FGND_WHITE);

for (;;)

II

506 - Embedded Systems Building Blocks, Second Edition

void PC_DispStr(INT8U x, INT8U y, INT8U *s, INT8U color);

PC_DispStr () allows you to display an ASCII string. In fact, you could display an array containing
any of 255 characters as long as the array itself is NUL terminated.

Arguments

x and y specifies the coordinates (col, row) where the first character will appear. rows (i.e., lines) are
numbered from 0 to DISP_MA)CY - 1, and columns are numbered from 0 to DISP_MAX_X - 1 (see
Listing 12.3, PC. C).

s is a pointer to the array of characters to display. The array must be NUL terminated. Note that you can
display any characters from OxOl to OxFF. You can see what characters (i.e., symbols) will be dis
played based on the value of c by running the test code provided in this book as follows:

C:\SOFTWARE\BLOCKS\SAMPLE\TEST > TEST display

color specifies the contents of the attribute byte and thus the color combination of the characters to be
displayed. You can add one DISP_FGND_??? (see Listing 12.4, PC .H) and one DISP_BGND_??? (see
Listing 12.4, PC. H) to obtain the desired color combination.

Return Value

None

NotesfWarnings

All the characters of the string or array will be displayed with the same color attributes.

Example #1
The code below displays the current value of a global variable called Temperature. The color used
depends on whether the temperature is below 100 (white), below 200 (yellow) or if it exceeds 200
(blinking white on a red background).

Chapter 12: PC Services - 507

Example #2
The code below displays a square box IO characters wide by 7 characters high in the center of the
screen.

III

508 - Embedded Systems Building Blocks, Second Edition

void PC_OOSRetu.rn{void);

PC_DOSReturn () allows your application to return back to DOS. It is assumed that you have previ
ously called PC_DOSSaveReturn () in order to save the processor's important registers in order to
properly return to DOS. See section 12.01 for a description on how to use this function.

Arguments

None

Return Value

None

Notes/Warnings

You must have called PC_DOSSaveReturn () prior to calling PC_DOSReturn () .

Example

void Task (void *pdata)

INTl6U key;

for (;;)

if (PC_GetKey(&key) == TRUE)

if (key == OxlB) {

pc_008Return(); /* Return to 008 */

Chapter 12: PC Services - 509

PC_IJOSSaveReturn ()
void PC_DOSSaveReturn(void)i

PC_OOSSaveReturn () allows your application to save the processor's important registers in order to
properly return to DOS before you actually start multitasking with ~C/OS-II. You would normally call
this function from main () as shown in the example code provided below.

Arguments

None

Return Value

None

NoteslWarnings

You must call this function prior to setting ~C/OS-ll's context switch vector (as shown below).

Example

void main (void)

OSInit() ;

PC_DOSSaveReturn();

/* Initialize uC/OS-II

/* Save DOS's environment

*/

*/

PC_VectSet(uCOS, OSCtxSw); /* uC/OS-II's context switch vector */

OSTaskCreate(_);

OSStart(); /* Start multitasking */ II

510 - Embedded Systems Building Blocks, Second Edition

PC_ElapsedIni t ()
void PC_ElapsedInit (void);

PC_Elapsedlni t () is invoked to compute the overhead associated with the PC_ElapsedStart ()
and PC_ElapsedStop () calls. This allows PC_ElapsedStop () to return return the execution time
(in microseconds) of the code you are trying to measure.

Arguments

None

Return Value

None

NoteslWarnings

You must call this function prior to calling either PC_ElapsedStart () and PC_ElapsedStop () .

Example

void main (void)

OSInit () ; /* Initialize uC/OS-II */

PC_ElapsedInit(); /* Compute overhead of elapse meas. */

OSStart(); /* Start multitasking */

Chapter 12: PC Services - 511

PC_ElapsedStart ()
void PC_ElapsedStart (void) ;

PC_ElapsedStart () is used in conjunction with PC_ElapsedStop () to measure the execution time
of some of your application code.

Arguments

None

Return Value

None

NoteslWarnings

Youmust callPC_ElapsedIni t () beforeyouuse eitherPC_ElapsedStart () andPC_ElapsedStop () .
This function is non-reentrant and cannot be called by multiple tasks without proper protection

mechanisms (i.e., semaphores, locking the scheduler, etc.).
The execution time of your code must be less than 54.93 milliseconds in order for the elapsed time

measurement functions to work properly.

11-

512 - Embedded Systems Building Blocks, Second Edition

Example

void main (void)

OSInit(); /* Initialize uC/OS-II */

PC_ElapsedInit(); /* Compute overhead of elapse meas. */

OSStart{);

void Task (void *pdata)

for (;;)

/* Start multitasking */

PC_ElapsedStart();

/* Code you want to measure the execution time */

time_us = PC_ElaspedStop{);

Chapter 12: PC Services - 513

PC_ElapsedStop ()
INT16U PC_ElapsedStop(void};

PC_ElapsedStop () is used in conjunction with PC_ElapsedStart () to measure the execution time
of some of your application code.

Arguments

None

Return Value

The executiontimeof your code thatwas wrappedbetween PC_ElapsedStart () and PC_ElapsedStop () .
The executiontime is returnedin microseconds.

Notes/Warnings

Youmust callPC_Elapsedlni t () beforeyou use eitherPC_ElapsedStart () and PC_ElapsedStop () .
This function is non-reentrant and cannot be called by multiple tasks without proper protection

mechanisms (i.e., semaphores, locking the scheduler, etc.).
The execution time of your code must be less than 54.93 milliseconds in order for the elapsed time

measurement functions to work properly.

Example
See PC_ElapsedStart () on page 511.

II

514 - Embedded Systems Building Blocks, Second Edition

PC_GetDateTime ()
void PC_GetDateTime(char *8);

PC_GetDateTime () is used to obtain the current date and time from the PC's real-time clock chip and
return this information in an ASCII string that can hold at least 19 characters.

Arguments

s is a pointer to the storage area where the ASCII string will be deposited. The format of the ASCII
string is:

"YYYY-MM-DD HH:MM:SS"

and requires 21 bytes of storage (note that there is 2 spaces between the date and the time).

Return Value

None

NoteslWarnings

None

Example

void Task (void *pd.ata)

char s[80];

for (;;)

PC_GetDateTime(&s[O]);

PC_DispStr(O, 24, s, DISP_FGND_WHITE);

Chapter 12: PC Services -515

BOOLEAN PC_GetDateTime(INT16S *k.ey);

PC_GetKey () is used to see if a key was pressed at the PC's keyboard and if so, obtain the value of the
key pressed. You would normally invoke this function every so often (i.e., poll the keyboard) to see if a
key was pressed. Note that the PC actually obtains key presses through an ISR and buffers key presses.
Up to 10 keys are buffered by the PC.

Arguments

key is a pointer to where the key value will be stored. If no key has been pressed, the value will contain
OxOO.

Return Value

TRUE is a key was pressed and FALSE otherwise.

NoteslWarnings

None

Example

516 - Embedded Systems Building Blocks, Second Edition

PC_SetTickRate ()
void PC_SetTickRate(INTl6U freq);

PC_SetTickRate () is used to change the PC's tick rate from the standard 18.20648 Hz to something
faster. A tick rate of 200 Hz is a multiple of 18.20648 Hz (the multiple is 11).

Arguments

freq is the desired frequency of the ticker.

Return Value

None

NoteslWarnings

You can only make the ticker faster than 18.20648 Hz.
The higher the frequency, the more overhead you will impose on the CPU.
You will have to change OSTickISR () in order to account for the increased rate (see MicroC/OS-II,
The Real-Time Kernel, R&D Books, ISBN 0-87930-543-6).

void Task (void *pdata)

OS_ENTER_CRITICAL();

PC_VectSet(Ox08, OSTickISR);

PC_SetTickRate(400); /* Reprogram PC's tick rate to 400 Hz */

OS_EXIT_CRITICAL();

for (;;)

Chapter 12: PC Services -517

PC_VectGet ()
void *PC_VectGet (INT8U vect);

PC_VectGet () is used to obtain the address of the interrupt handler specified by the interrupt vector
number. An 80x86 processor supports up to 256 interrupt/exception handlers.

Arguments

vect is the interrupt vector number, a number between 0 and 255.

Return Value

The address of the current interrupt/exception handler for the specified interrupt vector number.

Notes/Warnings

Vector number 0 corresponds to the RESET handler.
It is assumed that the 80x86 code is compiled using the 'large model' option and thus all pointers

returned are 'far pointers'.
It is assumed that the 80x86 is running in 'real mode'.

Example

II

518 - Embedded Systems Building Blocks, Second Edition

PC_VectSet ()
void PC_VectSet(INT8U vect, void * (pisr) (void»;

PC_VectSet () is used to set the contents of an interrupt vector table location. An 80x86 processor
supports up to 256 interrupt/exception handlers.

Arguments

vect is the interrupt vector number, a number between 0 and 255.

pier is the address of the interrupt/exception handler.

RetumValue

None

NoteslWarnings

You should be careful when setting interrupt vectors. Some interrupt vectors are used by the operating
system (DOS and/or flC/OS-II).

It is assumed that the 80x86 code is compiled using the 'large model' option and thus all pointers
returned are 'far pointers' .

If your interrupt handler works in conjunction with flC/OS-II, it must follow the rules imposed by
flC/OS-II (see page 91 of MicroC/OS-II, The Real-Time Kernel, ISBN 0-87930-543-6).

Example

void InterruptHandler (void)

void Task (void *pdata)

PC_VectSet(64, InterruptHandler);

for (;;)

Chapter 12: PC Services - 519

12.05 Bibliography
Chappell, Geoff
DOS Internals
Reading,~assachusetts

Addison-Wesley, 1994
ISBN 0-201-60835-9

1rischer,~chae1

PC Intern, System Programming, 5th Edition
Grand Rapids, Michigan
Abacus, 1995
ISBN 1-55755-282-7

Villani, Pat
FreeDOS Kernel, An MS-DOS Emulatorfor Platform Independence & Embedded Systems Development
Lavvrence,EJansas
R&D Books, 1996
ISBN 0-87930-436-7

11-

520 - Embedded Systems Building Blocks, Second Edition

Listing 12.3

/*

pc.c

PC SUPFDRT FlJN:'I'ICNS

(c) copyright 1992-1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* File : PC.C
* By : Jean J. Labrosse

*/

#include "includes.h"

/*

** * ** ************ ******* ****** ***** *********** ****** * ***** ** ******** ***** ******* ************ * ***** ** *****
CCNSTANI'S

**** ** ** * * * * * * * * * * ** ** **** ** * * * * * * * * ** * * * * * **** * **** **** * * * * * * * * * * * ** ****** *** * * * * * * * * * * * * * * ** * * * *** * ** **
*/
#define DISP_BI\SE OxB800 / * Base segment of display (OxB800=VGA, OxBOOO=Mono) */
#define DISP_MAX_X 80 / * Maximum number of columns */
#define DISP_MAX_Y 25 /* Maximum number of rows */

#define TICK_TO_8254_CWR Ox43 /* 8254 PIT Control Word Register address. */
#define TICK_TO_8254_CTRO Ox40 /* 8254 PIT Timer 0 Register address. */
#define TICY~TO_8254_CTRl Ox41 /* 8254 PIT Timer 1 Register address. */
#define TICK_TO_8254_CTR2 Ox42 /* 8254 PIT Timer 2 Register address. */

#define TICK_TO_8254_CTRO_M:lDE3 0x36 /* 8254 PIT Binary Mode 3 for Counter 0 control word. */
#define TICK_TO_8254_CTR2_M:lDEO OxBO /* 8254 PIT Binary Mode 0 for Counter 2 control word. */
#define TICK_TO_8254_CTR2_LA'KH Ox80 /* 8254 PIT Latch CClT1l\3.l1d control word */

#define VE(:'CTICK Ox08 /* Vector number for 82C54 timer tick */
#define VE(:'COOS_OlAIN Ox81 /* Vector number used to chain OOS */

/*

LCCAL GLOBAL VARIABLES

*/

static INr16U
static jrrILbuf
static BCOLEAN
void

/*$PAGE*/

PC_ElapsedOverhead;
PC_JumpBuf;
PC_Exi tFlag;

(*PC_TickISR) (void);

Listing 12.3 (continued)

/*

pc.c

Chapter 12: PC Services - 521

** ** * * * * * * ** * * * * * * * * ** * * * * * * * * ** * * * '** * * * * ** * * * * * * * * * ** * ** * ** * * * * ** * ** * * * * * * ** * * * ** * * * * ** * * * * * * * * * * * ** * ***
DISPLAY A SIN::;LE QlARACI'ER AT 'X' & 'Y' CCORDINATE

* Description 'Ibis function writes a single character anywhere on the FC's screen. 'Ibis function
writes directly to video RAM instead of using the BIOS for speed reasons. It assumed
that the video adapter is VGA canpatible. video RAM starts at absolute address
OxOOOB8000. Each character on the screen is comoosed of two bytes: the ASCII character
to appear on the screen fol.Lowed try a video attribute. An attribute of Ox07 displays
the character in WHITE with a black background.

* Argurrents

* Retums

x corresponds to the desired column on the screen. Valid columns numbers are fran
o to 79. Column 0 corresponds to the leftmost column.

y corresponds to the desired raw on the screen. Valid raw numbers are from 0 to 24.
Line 0 corresponds to the topros t raw.

C Is the ASCII character to display. You can also specify a character with a
numeric value higher than 128. In this case. special character based graphics
will be displayed.

color specifies the foreground/background color to use (see FC.H for available choices)
and whether the character will blink or not.

: None

*/
void FC_DispChar (INT8U x, INT8U y, INT8U c, INT8U color)
{

INT8U
INT16U

offset
pscr
*pscr++
*pscr

}

/*SPAGE*/

far *pscr;
offset;

(INT16U)y * DISP_MAX-X * 2 + [INT16U)x * 2; /* Calculate position on the screen
(INT8U far *)MK]P(DISP_BllSE, offset);
c: 1* Put character in video RAM

color; /* Put video attribute in video RAM

*/

*/

*/

522 - Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued)

/*

pc.c

CLEAR A COLUMN

* Description This function clears one of the 80 columns on the K's screen by directly accessing video
RAM instead of using the BIOS. It assumed that the video adapter is VGA ccrrpat.i.bl.e ,
video RAM starts at absolute address OxOOOB8000. Each character on the screen is
ccmposed of two bytes: the ASCII character to appear on the screen followed by a video
attribute. An attribute of Ox07 displays the character in WHITE with a black background.

* Arguments

* RetUITIS

:x

color

: None

corresponds to the desired column to clear. Valid column numbers are frcxn
o to 79. Column 0 cor'respcods to the leftrrost column.

specifies the foreground/background color canbination to use
(see K.H for available choices)

*/
void K_DispClrCol (INT8U x, INT8U color)
{

INT8U far *pscr;
INT8U i;

pscr = (INT8U far *)MK_FP(DISP-BASE, (INT16U)x * 2);
for (i = 0; i < DISP_MAX_Y; i++) {

*pscr++
*pscr
pscr

}

/*$PN3E*/

color;
pscr + DISP_MAX_X * 2;

/* Put ' , character in video RAM
/* Put video attribute in video RAM
/ * Posi t i.on on next rCM

*/

*/
*/

Listing 12.3 (continued)

/*

pc.c

Chapter 12: PC Services - 521

DISPlAY A SINSLE D-lARACI'ER AT 'X' & 'Y' CCXlRDINATE

* Description This function wri tes a single character anywhere on the PC's screen. This function
wri tes directly to video RAM instead of using the BIOS for speed reasons. It assumed
that the video adapter is VGA carpatible. Video RAM starts at absolute address
OxOOOB8000. Each character on the screen is COlTPOsed of two bytes: the ASCII character
to appear on the screen fo l Iowed by a video attribute. An attribute of Ox07 displays
the character in WHITE with a black background.

* Arguments

* Returns

x corresponds to the desired column on the screen. Valid col.urms numbers are fran
o to 79. Column 0 corresponds to the leftmost column.

y corresponds to the desired rON on the screen. Valid rON numbers are from 0 to 24.
Line 0 corresponds to the toprost xo«.

c Is the ASCII character to display. You can also specify a character with a
numeric value higher than 128. In this case, special character based graphics
will be displayed.

=lor specifies the foreground/background color to use (see PC.H for available choices)
and whether the character will blink or not.

: None

*/

void PC_DispChar (INr8U x. INr8U y, INr8U c, INr8U color)
{

INr8U far *pscr;

INT16U offset;

offset
pscr
*pscr++
*pscr

}

/*$PAGE*/

(INT16U)y * DISP_MAX_X * 2 + (INr16U)x * 2;
(INT8U far *)MK]P(DISP_BASE, offset);

c;
color;

/* Calculate position on the screen

/* Put character in video RAM

/* Put video attribute in video RAM

*/

*/
*/

•

522 - Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued)

/*

pc.c

** * * * *** ** * * ** *** ** * * * *** * * * * ** * * ..* ** * *** * * * ** * * * * ** ** * * * 11: ** * ** * * * *** * * * ** *** * * * * ** * * * * ** * * * * * ..* ** * * * *** *
CLEAR A COLUMN

* Description This function clears one of the 80 columns on the PC's screen by directly accessing video
RAM instead of using the BIOS. It assumed that the video adapter is VGA ccrnpatible.
Video RAM starts at absolute address OxOOOB8000. Each character on the screen is
composed of two bytes: the ASCII character to appear on the screen followed by a video
attribute. An attribute of Ox07 displays the character in WHITE with a black background.

* Arguments

* Retw:ns

x

color

: None

corresponds to the desired column to clear. Valid colurm numbers are fran
o to 79. Column 0 corresponds to the leftmost column.

specifies the foreground/background color combination to use
(see PC.H for available choices)

*/

void PC_DispClrCol (INI'8U x, INI'8U color)
{

INI'8U far *pscr;
INI'8U i;

pscr = (INI'8U far *) M1CFP (DISP_BASE, (INI'l6U)x * 2);
for (i = 0; i < DISP_MAX_Y; i++) {

*pscr++
*pscr color;
pscr pscr + DISP_MAX_X * 2;

}

!*$PAGE*/

/* Put ' , character in video RAM
/* Put video attribute in video RAM
/* Position on next row

*/
*/
*/

Listing 12.3 (continued)

1*

pc.c

Chapter 12: PC Services - 523

CLEAR A ReM

* Description This function clears one of the 25 lines on the PC's screen by directly accessing video
RAM instead of using the BIOS. It assumed that the video adapter is VGA canpatible.
Video RAM starts at absolute address OxOOOB8000. Each character on the screen is
carposed of two bytes: the ASCII character to appear on the screen followed by a video
attribute. An attriblte of Ox07 displays the character in WHITE with a black backqround ,

* Argwnents

* Returns

y

color

: None

cor.responds to the desired row to clear. Valid row numbers are fran
o to 24. Row 0 correspcnds to the topmost line.

specifies the foreground/reckground color canbination to use
(see PC.H for available choices)

** * ~ * * * * * * * * * * * * * * ** *

*1
void PC_DispClrRow (INT8U y, INT8U color)
{

INT8U far *pscr;
INTSU i;

pscr = (INT8U far *)MK_FP(DISP_BASE, (INTl5U)y * DISP_MAX_X * 2);
for (i = 0; i < DISP_MAX_X; i++) (

*pscr++
*pscr++

)

I*$PAGE*I

color;
1* Put ' , character in video RAM

1* Put video attriblte in video RAM

*1
*1

II

524 - Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued)

/*

pc.c

CLEAR SCREEN

* Description This function clears the Fe's screen by directly accessing video RAM instead of using
the BIOS. It assumed that the video adapter is VGA carpatible. Video RAM starts at
absolute address OxOOOB8000. Each character on the screen is ccrnposed of two bytes:
the ASCII character to appear on the screen followed by a video attriblte. An attriblte
of Ox07 displays the character in WHITE with a black background.

* Arguments

* Returns

color specifies the foreground/background color canbination to use
(see Fe.H for available choices)

: None

** * * * * * *** * * * ** ** * * * * * * * * * * * * * * * * **** *** * ** * * ** * * *** * * * **** * ** * * * ** * *** * * ** ** * * * ***** * * * ** * * * *** * * ** * * * * *
*/
void Fe_DisJ;ClrScr (INr8U color)
{

INr8U
INr16U

far *pscr;
i;

pscr = (INr8U far *)MK_FP(DISP_azlSE, OxOOOO);
for (i = 0; i < (DISP_MAX_X * DISP_MAX_Y); i++)

*pscr++

*pscr++

}

/*$PAGE*/

color;

/* Fe display has 80 columns and 25 lines
/* Put ' , character in video RAM
/* Put video attriblte in video RAM

*/
*/

*/

Listing 12.3 (continued)

/*

pc.c

Chapter 12: PC Services - 525

DISPLAY A = AT -x & 'Y' =RDINATE

* Description This function writes an ASCII string anywhere on the Fe's screen. This function writes
directly to video RAM instead of using the BIOS for speed reasons. It assumed that the
video adapter is VGA ccmpatible. Video RAM starts at absolute address OxOOOB8000. Each

character on the screen is ccrrposed of two bytes: the ASCII character to appear on the
screen followed by a video attribute. An attribute of Ox07 displays the character in
WHITE with a black background.

* Argurrents

* Returns

x corresponds to the desired colurm on the screen. Valid columns mnnbers are from
o to 79. Colurm 0 co=esponds to the leftmost colurm.

y corresponds to the desired rCM on the screen. Valid rCM numbers are from 0 to 24.
Line 0 cor'responds to the toprost; rCM.

s Is the ASCII string to display. You can also specify a string containing
characters with nwreric values higher than 128. In this case, special character
based graphics will be displayed.

color specifies the foreground/background color to use (see Fe.H for available choices)
and whether the characters will blink or not.

: None

********* ***** ** * * ** * * * * * * ** * * * * * * ** * * * * * * * * * * * * * * * * ** *** * * * * * * ** * * * * * * * * * * ** ** * * * * ** *
*/

void Fe_DispStr (INr8U x, INrBU y, INrBU os, INrBU color)
{

INr8U
INr16U

far *pscr;
offset;

offset = (INr16U)y * DISP_MAX_X * 2 + (INr16U)x * 2;
pscr = (INr8U far *)MK_FP(DISP_BASE, offset);
while (*s) {

*pscr++ *8++;

*pscr+ + = color;

}

/*$PAGE*/

/* Calculate position of 1st character

/* Put character in video RAM

/* Put video attribute in video RAM

*/

*/

*/

II

526 - Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued)

/*

pc.c

REI'URN TO lXlS

* Description This funct.i.ons returns control back to IXJS by doing a 'long jurrp' back to the saved
location stored in 'FC_JurrpBuf'. The saved location was established by the functi.on
'FC_lXlSsaveReturn () '. After execution of the long jurrp, execution will resume at the
line fo.Ll.cwiriq the 'set jurrp' back in 'FC_lXlSsaveReturn () '. Setting the flag
'FC_ExitFlag' to TRUE ensures that the 'if' statement in 'FC_IXJSsaveReturn()' executes.

* Arguments None

* Returns None

*/
void FC_IXJSReturn (void)
{

FC_ExitFlag = TRUE;

10ngjrrp(FC_JurrpBuf, 1);
)

/*$PAGE*/

/*

/* Indicate we are returning to IXJS
/ * Jurrp back to saved environrrent

SAVE lXlS REI'URN LCCATICN

*/
*/

* Description This funct.ion saves the location of where we are in lXlS so that it can be recovered.
This allONS us to abort, multitasking under uC/OS-II and return back to IXJS as if we had
never left. When this function is called by 'rnai.nt) ", it sets 'FC_ExitFlag' to FAlSE
so that we don't take the 'if' branch. Instead, the CPU registers are saved in the
long jurrp buffer 'FC_JurrpBuf' and we simply return to the caller. If a 'long jurrp' is
perfonned using the jurrp buffer then, execution would resume at the 'if' statement and
this time, if 'FC_ExitFlag' is set to TRUE then we would execute the 'if' statements and
restore the lXlS environrrent.

* Arguments None

* Returns None
* ** ** * * ** ** ** *** * * * * * * * * * * *** * * * * *** * * * *** * * * ** * * ** ** * * * ***** * * * * * * * * ** ** * * ** * * * * *:It" * * * ***** * * * ** * * * * * 1t:***
*/
void FC_lXlSsaveReturn (void)
{

FC_ExitFlag

osrickJXJSCtr
FC_TickISR

FAlSE;
1;

FC_VectGet(=_TICK) ;

/* Indicate that we are not exiting yet!
/* Initialize the IXJS tick counter
/ * Get MS-lXlS' s tick vector

*/
*/

*/

OS_ENI'ER_CRITICAL () ;
FC_VectSet(=_lXlS_OJAIN, FC_TickISR);
OS_EXIT_CRITICAL () ;

setjrrp(FC_JurrpBuf);

if (FC_ExitFlag == TRUE)

OS_ENI'ER_CRITICAL () ;
FC_5etTickRate(18) ;
FC_Vectset (=_TICK, FC_TickISR);
OS_EXIT_CRITICAL();

FC_Disp:lrScr (DISP_FGND_WHITE + DISP_EGNIUliACK) ;
exi.t IO) ;

}

/*$PAGE*/

/* Store MS-IXJS's tick to chain

/* capture where we are in lXlS
/* See if we are exiting back to lXlS

/* Restore tick rate to 18.2 Hz
/* Restore lXlS's tick vector

/* Clear the display
/* Return to lXlS

*/

*/

*/

*/
*/

*/
* /

Listing 12.3 (continued)

/*

pc.c

Chapter 12: PC Services - 527

ELAPSED TIME =TIALI2ATION

* Description 'This function initialize the e.Lapsed time rrodule by detennining how long the STARr and
S'IDP functions take to execute. In other words, this function calibrates this rrodule
to account for the processing time of the START and S'IDP functions.

* Arguments None.

* Returns None.

*/
void PC_ElapsedInit(void)
{

PC_ElapsedOverhead 0;
PC_ElapsedStart () ;
PC_ElapsedOverhead PC_ElapsedStop();

)

/*$PAGE*/

/*

=TIALIZE PC'S TIMER #2

* Description This function initialize the PC's Timer #2 to be used to measure the time between events.
Timer #2 will be running when the function returns.

* Arguments None.

* Returns None.

* /
void PC_ElapsedStart(void)
{

INT8U data;

TICK_TO_8254_CI'R2_M:JDEO) ;
OxFF) ;

OxFF) ;

OS_ENI'ER_CRITICAL () ;

data = (INT8U)inp (Ox6l) ;

data &= OxFE;
outp(Ox6l, data);
outp (TICK_TO_8254_CWR.
outp(TICK_TO_8254_CTR2,
outp(TICK_TO_8254_CTR2,
data 1= OxOl;
outp(Ox6l, data);
OS_EXIT_OUTICAL () ;

)

/*$PAGE*/

/* Disable timer #2

/ * Program timer #2 for Mode 0

/* Start the timer

*/

*/

*/

II

528 - Embedded Systems Building Blocks, Second Edition

Jc_-

Listing 12.3 (continued)

/*

PC.c

SIDP THE PC' 5 TIMER #2 AND GEl' ELAPSED TIME

* Description This function stops the PC's Timer #2, obtains the elapsed counts fran when it was
started and converts the elapsed counts to micro-seconds.

* Arguments None.

* Retw::ns The number of micro-seconds since the timer was last started.

* Notes - The returned time accounts for the processing time of the START and SIDP functions.
- 54926 represents 549265-16 or, 0.838097 which is used to convert timer counts to

micro-seconds. The clock source for the PC' s timer #2 is 1.19318 MHz (or 0.838097 US)

************* ** ** **** * * **** ** * * ** ******* * ** *** * * * ** ** **** * * * ** ** ** ***** ** * **** **** * ********* * ** *** * * * ****
*/
INI'16U PC_ElapsedStop(void)
{

INI'8U
INI'8U
INI'8U
INI'16U

data;
1=;
high;
cnts;

OS_ENI'ER_=TlCAL () ;

data = (INI'8U)inp(Ox61); /* Disable the timer */

data &= OxFE;
outp(Ox61, data);
outp (TICICTO_8254_0ffi, TICK_TO_8254_CI'R2_IATCH); /* Latch the timer value */

1= inp(TICK_TO_8254_CI'R2);
high = inp(TICK_TO_8254_CI'R2);
cnts = (INI'16U)OxFFFF - «(INI'16U)high« 8) + (INI'16U)1=); /* Compute time it took for operation */
OS_EXIT_=TlCAL () ;

return ((INI'16U) ((UI.CN3) cnts * 54926L »16) - PC_ElapsedOverhead);
}

/*$PAGE*/

Listing 12.3 (continued)

1*

pc.c

GET THE ClJRRENI' DATE AND TIME

Chapter 12: PC Services - 529

* Description: 'I11is function obtains the current date and time from the FC.

* Argurrents

* Returns

s

: none

is a pointer to where the ASCII string of the current, date and time will be stored.
You must allocate at least 21 bytes (includes the NUL) of storage in the return
string. TIle date and time will be fonratted as follows:

"YYIT-MM-DD HH:MM:SS"

* ****** ** * * * * * * ** * * * * ** * * * * * * * ** ** * * * * * * * * ** * * * * * * ** * * ** * * * * * * * * ** *
*1
void FC_GetDateTime (char *s)
{

struct time now;

struct date today;

gettime(&naw) ;
getdate (&today) ;

sprintf(s, "%04d-%02d-%02d %02d:%02d:%02d" ,
today. da-year ,
today.da_rron,
today.da_day,

DI:M. ti_hour,
nON' • ti_min I

txs«. ti_sec) ;
}

I*$PAGE*1

II

530 - Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued)

/*

pc.c

0lK1< AND GET KEYBOARD KEY

* Description: This function checks to see if a key has been pressed at the keyboard and returns '!RUE if
so. Also, if a key is pressed, the key is read and copied where the argument is pointing
to.

* Arguments c is a pointer to where the read key will be stored.

* RetUTIlS '!RUE if a key was pressed
FAlSE otherwise

*/

B:X>LE'AN FC_GetKey <=16S *c)
{

if <kbhit()) {

*c = <=16S)getch():
return ('!RUE);

else {
*c = OxOO;
return (FALSE);

)

/*$PAGE*/

/* See if a key has been pressed
/* Get key pressed

/ * No key pressed

*/

*/

*/

Chapter 12: PC Services - 531

Listing 12.3 (continued) PC. C

/*

SRI' 'IHE PC' STICK FREX:)UEN::Y

* Description: '£his function is called to change the tick rate of a PC.

* Arguments freq is the desired frequency of the ticker (in Hz)

* Returns none

* lobtes 1) The nagic nuniber 2386360 is actually twice the input frequency of the 8254 chip which
is always 1.193180 MHz.

2) The equation Crnp..1tes the counts needed to load into the 8254. The strange equation
is actually used to round the number using integer arithrretic. '£his is equivalent to
the floating point equation:

1193180.0 Hz

COlIDt = ------------ + 0.5
freq

*/
void PC_8etTickRate (INrl.6U freq)

INrl. 6U count.,

if (freq == 18) (
count; = 0;

) else if (freq > 0) (

/* See if we need to restore the r::os frequency */

*/
*/

/* Corrpute 8254 COlIDts for desired frequency and
/* ... round to nearest count

(INI'16U) « (INI'32U) 2386360L / freq + 1) » 1);count;

else {
COlIDt 0;

}

Q'LENTER_CRITICAL() ;
outp(TICK_TO_8254_CWR,
outp (TICK_TO_8254_CIRO,
outp (TICK_TO_8254_CIRO,
aLEXIT_CRITICAL () ;

}

/*$PAGE*/

TICK_TO_8254_CIRO_MJDE3) ;
count & 0xFF);

(count; » 8) & '0xFF') ;

/* Load the 8254 with desired frequency

/ * l.c1N byte
/* High byte

*/
*/

*/

II

532 - Embedded Systems Building Blocks, Second Edition

Listing 12.3 (continued)

r-

PC.C

OBTAiN INI'ERRUPI' VB:TOR

* Description: This function reads the pointer stored at the specified vector.

* Arguments

* Returns

vect is the desired interrupt vector number, a number between 0 and 255.

The address of the Interrupt handler stored at the desired vector location.

***** ** ** '** * * * * * * * * * * * * * * * *"* * * * * '** * * * * * * * * '** '**
*f
void *FC_VectGet (INTSU vect)
{

*pvect:
off:
seg;

r-

pvect = (INT16U *)MK_FP(OxOOOO, vect * 4):
OS_ENI'ER_CRITICAL () :

off = *pvect++:
seg = *pvect:
OS_EXIT_CRITlCAL () ;

return (MK_FP(seg, off»:

f* Point into IVT at desired vector location

f* Obtain the vector's OFFSET
f* Obtain the vector's SEX:iMENI'

*f

*f
*f

INSTALL INI'ERRUPT VB:TOR

* Description: This function sets an interrupt vector in the interrupt vector table.

* Arguments vect is the desired interrupt vector number, a number between 0 and 255.
isr is a pointer to a function to execute when the interrupt or exception occurs.

* Returns none

"* ** ** * * ** *** * * *.,.* * * * * * * * * * * * * * * * * ** * * * * *** * * * * * +* -k* * * * * * * ** ** * * * * * * * * * * * * **
*f
void FC_VectSet (INTSU vect, void I*isr) (void»
{

INT16U *pvect:

pvect = (INT16U *IMK]P(OxOOOO, vect * 4);
OS_ENI'ER_CRITlCAL():

*pvect++ = (INT16U)FP_OFF(isr) ;
*pvect = (INT16U) FP_SEl3 (isr) ;
OS_EXIT_CRITICAL() :

f* Point into IVT at desired vector location

f* Store ISR offset
f* Store ISR segment

* f

*f
*f

Chapter 12: PC Services - 533

Listing 12.4 PC. H

/*

K: SUPEDRT FUN:TICNS

(c) Copyright 1992-1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

* File : K:.H
* By : Jean J. Labrosse

*/

/*

CCNSTANI'S
COLOR ATIRIBUI'ES FDR VGA M::M:TOR

* Description: These #defines are used in the K:_Disp??? () functions. The' color' argurrent in these
function MUST specify a 'foreground' color, a 'tackground' and whether the display will
blink or not. If you don't specify a backqround color, BLIIO< is assurred. You would
specify a color combination as follows:

K:_DispChar(O, 0, 'A', DISPJGNIUvHlTE + DISP_B3ND_BLUE + DISP,PLINK);

To have the ASCII character 'A' blink with a white letter on a blue backqround.

*/
#define DISP]GND_BLIICK
#define DISP_FGND_BLUE
#define DISP_FGND_GREEN
#define DISP_FGND_CYAN
#define DISP_FGND_RED
#define DISP_FGND_PURPLE
#define DISP_FGND_BRCWiI
#define DISP_FGND_LIGHT_GRAY
#define DISP_FGND_DllRK_GRAY
#define DISP_FGND_LIGHT_BLUE
#define DISP_FGND_LIGHT_GREEN
#define DISP_FGND_LIGHT_CYAN
#define DISP_FGND_LIGHT_RED
#define DISP_FGND_LIGHT_PURPLE
#define DISP_FGND_YELI..CW
#define DISP_FGND_WHlTE

OxOO
Ox01
Ox02
Ox03
Ox04
Ox05
Ox06
Ox07
Ox08
Ox09
OxOA
OxOB
OxOC
OxOD
OxOE
OxOF II

#define DISP_B3ND_BLIICK OXOO
#define DISP_B3ND_BLUE Ox10
#define DISP....ffi[IlI:LGREEN 0x20
#define DISP_B3ND_CYAN 0x30
#define DISP_B3NDJill) Ox40
#define DISPJ~:;[IlI:LPURPLE OxSO
#define DISP_B3ND_BRCWiI Ox60
#define DISP..JGIIDJ,IGHT_GRAY Ox70

#define DISP_BLINK Ox80

534 - Embedded Systems Building Blocks, Second Edition

Listing 12.4 (continued)

1*

PC.H

*1

void

void
void

void

void

void
void

void
void

INT16U

PC_DispChar(INTBU x, INTBU y, INTBU c, INTBU color);

PC_DispClrCol (INTBU x, INTBU bgnd_color);
PC_DispClrRON(INTBU y, INTBU bgnd_color);

PC_DispClrScr (INTBU bgnd_color) ;
PC_DispStr(~rBU x, INTBU y, INTBU *s, INTBU color);

PC_I::oSReturn(void) ;

PC_I::oSSaveReturn (void) ;

PC_Elapsed.Init (void) ;

PC_ElapsedStart(void) ;
PC_ElapsedStop(void) ;

void PC_GetDateTime(char *s);
BOJLEI\N PC_GetKey(INT16S *c);

void PC_SetTickRate(INT16U freq);

void *PC_VeetGet (INTBU vect) ;
void PC_VectSet (INTBU veet, void (*isr) (void));

AppendixA

pC/OS-II, The Real-Time Kernel
/lC/OS-II is a portable, ROM-able, preemptive, real-time, multitasking kernel that can manage up to 63
tasks. /lC/OS-II is comparable in performance to many commercially available kernels. /lC/OS-II was
written in C with microprocessor-specific code written in assembly language. Assembly language was
kept to a minimum so that /lC/OS-II can easily be ported to other target microprocessors.

Most modules presented in this book assume that services are provided by a real-time multitasking
kernel. Because of this, I have provided, in object form, a scaled down version of /lC/OS-II, The
Real-TIme Kernel v2.00 that will allow you to test all of the code in this book. In other words, only the
features needed to run the examples are provided.

The complete source code (along witha port for the Intel 8Ox86, large model) for /lC/OS-II is avail
able in my book: MicroC/OS-II, The Real-TIme Kernel (ISBN 0-87930-543-6), also published by R&D
Books (See the ad in the back of this book.) The source code for /lC/OS-II is available on a floppy dis
kette (MS-DOS format) which is included with the book. Along with providing the source code for
/lC/OS-II, the book describes the internals, explains how the kernel works, and allows you to port
/lC/OS-II to other microprocessors (if needed). You can also obtain port to many processors through the
official /lC/OS and /lC/OS-II web site at www.uCOS-II. COIlL /lClOS-II provides the following fea
tures:

• create and manage up to 63 tasks,

• create and manage a large number of semaphores,

• delay tasks for an integral number of ticks or a user-specified amount of time in hours, minutes, sec
onds, and milliseconds,

• lock/unlock the scheduler,

service interrupts,

• allows you to change the priority of tasks,

• lets you delete tasks,

• allows tasks to suspend and resume other tasks,

• manages a large number of message mailboxes and queues for intertask communications,

535

536 - Embedded Systems Building Blocks, Second Edition

provides fixed-sized memory block management,

manages a 32-bit system clock.

Even though Embedded Systems Building Blocks, Second Edition assumes the presence of ~C/OS-II,
you can easily adapt the code in this book to any other real-time kernel as long as the kernel provides the
same services (most other kernels do). If you do not have a real-time kernel, you can easily modify
some of the code to work in a Foreground/Background environment.

The version of ~C/OS-II in this book is provided in object form for the Intel 80x86 Large Model and
has been compiled with the Borland's C++ v4.51. The compiler was instructed to generate code for any
Intel 80x86 which has hardware floating-point support. You can thus use the code on any PC having
either an Intel 80486, Pentium, Pentium-II, Pentium-III and processors from AMD which have float
ing-point hardware.

I configured ~c/os-n to limit the number of tasks to 15 and the number of semaphores to 10. You
will not be able to invoke either the queue or memory management feature of ~C/OS-II because they
have been disabled in OS_CFG. H.

The object code for ~c/os-n is found in the \ SOFTWARE\ BLOCKS\ SAMPLE\OBJ directory in these
files:

uCOS_II .OBJ ~C/OS-II (compiled from the C source)

OS_CPU_C .OBJ 80x86 microprocessor specifics, large model with hardware floating-point
support(compiled from the C source)

OS_CPU_A.OBJ 80x86 microprocessor specifics (assembled from the ASM source)

:, You will need to link these files with your application if you are planning on using this version of
~c/os"n.

When you use ~c/os-n, you will need to include the following header files in your source code:

OS_CPU.H which is found in \SOFTWARE\uCOS-II\Ix86L-FP\BC45\SOURCE

UCOS_I I . H which is found in \ SOFTWARE\ uCOS - II \ SOURCE.

You should note that OS_CPU. H must be listed first. Also, you cannot change any of the #defines
that are provided in these files. If you do, your application may not work properly. The only way to
change the #defines is to obtain the full source code for ~C/OS-II (see forementioned ad).

I included a ~c/os-n mini-reference section which contains only the functions used in this book.

Appendix k JiC/OS-II, The Real-Time Kernel- 537

OSInit ()
void OSInit(void);

OSIni t () is used to initialize IlC/OS-II. OSIni t () must be called prior to calling OSStart () which
will actually start multitasking.

Arguments

None

Return Value

None

NoteslWarnings

OSIni t () must be called before OSStart () .

Example

void main (void)

OSInit() ;

OSStart();

1* Initialize uC/OS-II *1

1* Start Multitasking *1

II

538 - Embedded Systems Building Blocks, Second Edition

OSSernCreate()
OS_EVENT *OSSemcreate(WORD value);

OSSernCreate () is used to create and initialize a semaphore. A semaphore is used to:

I. Allow a task to synchronize with either an ISR or a task

2. Gain exclusive access to a resource

3. Signal the occurrence of an event

Arguments

value is the initial value of the semaphore. The initial value of the semaphore is allowed to be
between aand 65535.

Return Value

A pointer to the event control block allocated to the semaphore. If no event control block is available,
OSSernCreate () will return a NULL pointer.

Notes/Warnings

Semaphores must be created before they are used.

Example

Appendix A: j1C/OS-II, The Real-Time Kernel- 539

OSSemPend ()
void OSSemPend(OS_EVEN'l' *pevent, INT16U t:illleout, INT8U *err);

OSSernPend () is used when a task desires to get exclusive access to a resource, synchronize its activi
ties with an ISR, a task, or until an event occurs. If a task calls OSSernPend () and the value of the
semaphore is greater than 0, then OSSernPend () will decrement the semaphore and return to its caller.
However, if the value of the semaphore is equal to zero, OSSernPend () places the calling task in the
waiting list for the semaphore. The task will thus wait until a task or an ISR signals the semaphore or,
the specified timeout expires. If the semaphore is signaled before the timeout expires, flC/OS-II will
resume the highest priority task that is waiting for the semaphore. A pended task that has been sus
pended with OSTaskSuspend () can obtain the semaphore. The task will, however, remain suspended
until the task is resumed by calling OSTaskReswne () .

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created (see OSSemCreate () on page 538).

timeout is used to allow the task to resume execution if a message is not received from the mailbox
within the specified number of clock ticks. A timeout value of 0 indicates that the task desires to wait
forever for the message. The maximum timeout is 65535 clock ticks. The timeout value is not syn
chronized with the clock tick. The timeout count starts being decremented on the next clock tick which
could potentially occur immediately.

err is a pointer to a variable which will be used to hold an error code. OSSernPend () sets *err to
either:

1. OS_NO_ERR, the semaphore is available

2. OS_TIMEOUT, the semaphore was not signaled within the specified timeout

3. OS_ERR_PEND_ISR, you called this function from an ISR and JlC/OS-II would have to suspend the
ISR. In general, you should not call OSMboxPend (). flC/OS-II checks for this situation in case you
do anyway.

Return Value

None

NoteslWarnings

Semaphores must be created before they are used.
II

540 - Embedded Systems Building Blocks, Second Edition

Example

OS_EVENT *oispSern;

void OispTask(void *pdata)

INT8U err;

pdata = pdata;

for (;;)

OSSernPend(OispSern, 0, &err);

/* The only way this task continues is if _ */

/ * _ the semaphore is signaled! */

Appendix A: JiC/OS-II, The Real-Time Kernel-541

OSSemPost()
INT8U OSSemPost (OS_EVENT *pevent);

A semaphore is signaled by calling OSSernPos t (). If the semaphore value is greater than or equal to
zero, the semaphore is incremented and OSSernPost () returns to its caller. If tasks are waiting for the
semaphore to be signaled then, OSSernPost () removes the highest priority task pending (waiting) for
the semaphore from the waiting list and makes this task ready to run. The scheduler is then called to
determine if the awakened task is now the highest priority task ready to run.

Arguments

pevent is a pointer to the semaphore. This pointer is returned to your application when the semaphore
is created (see OSSernCreate () on page 538).

Return Value

OSSernPos t () returns one of these two error codes:

1. OS_NO_ERR, if the semaphore was successfully signaled

2. OS_SEM_OVF, if the semaphore count overflowed

NoteslWarnings

Semaphores must be created before they are used.

II

542 - Embedded Systems Building Blocks, Second Edition

Example

OS_EVENT *DispSem;

void TaskX(void *pdata)

INT8U err;

pdata = pdata;

for (;;)

err = OSSemPost(DispSem);

if (err == OS_NO_ERR)

/* Semaphore signaled */

else

/* Semaphore has overflowed */

Appendix A: uc/os-u, The Real-Time Kemel- 543

OSStart()
void OSStart (void) ;

OSStart () is used to start multitasking under flC/OS-II.

Arguments

None

Return Value

None

NoteslWarnings

OSIni t () must be called prior to calling OSStart (). OSStart () should only called once by your
application code. If you do call OSStart () more than once, OSStart () will not do anything on the
second and subsequent calls.

Example

void main (void)

/* User Code */

OSInit() ;

OSStart();

/* Initialize pC/OS-II */

/* User Code */

/* Start Multitasking */

II

544 - Embedded Systems Building Blocks, Second Edition

OSStatInit ()
void OSStatInit(void);

OSStatlni t () is used to have IlC/OS-II determine the maximum value that a 32-bit counter can reach
when no other task is executing. This function must be called when there is only one task created in
your application and, when multitasking has started. In other words, this function must be called from
the first, and only created task.

Arguments

None

Return Value

None

Notes/Warnings

None

Example

void FirstAndOnlyTask (void *pdata)

OSStatInit () ; /* Compute CPU capacity with no task running */

OSTaskCreate(_);

OSTaskCreate(_);

for (;;)

/* Create the other tasks */

Appendix A: J1C/OS-ll, The Real-Time Kemel- 545

OSTaskCreate()
INT8U OSTaskCreate{void (*task) (void *pd), void *pdata, OS_STK *ptos, INT8U prio);

OSTaskCreate () allows an application to create a task so it can be managed by fJC/OS-II. Tasks can
either be created prior to the start of multitasking or by a running task. A task cannot be created by an
ISR. A task must be written as an infinite loop as shown in the example below and, must not return.

OSTaskCreate () is used for backward compatibility with fJC/OS and when the added features of
OSTaskCreateExt () are not needed.

Depending on how the stack frame was built, your task will either have interrupts enabled or dis
abled. You will need to check with the processor specific code for details.

Arguments

task is a pointer to the task's code.

pdata is a pointer to an optional data area which can be used to pass parameters to the task when it is
created. Where the task is concerned, it thinks it was invoked and passed the argument pdata as fol
lows:

void Task (void *pdata)

for (;;)

/* Do something with 'pdata'

/* Task body, always an infinite loop.

*/

*/

/* Must call one of the following services:

/* OSMboxPend ()

/* OSQPend()

/* OSSemPend()

/* OSTimeDly ()

/* OSTimeDlyHMSM ()

/* OSTaskSuspend () (Suspend self)

/* OSTaskDel () (Delete self)

*/

*/

*/

*/

*/

*/

*/

*/

II
ptos is a pointer to the task's top of stack. The stack is used to store local variables, function parame
ters, return addresses, and CPU registers during an interrupt. The size of the stack is determined by the
task's requirements and, the anticipated interrupt nesting. Determining the size of the stack involves
knowing how many bytes are required for storage of local variables for the task itself, all nested func
tions, as well as requirements for interrupts (accounting for nesting). If the configuration constant
OS_STK_GROwrH is set to 1, the stack is assumed to grow downward (i.e., from high memory to low

546 - Embedded Systems Building Blocks, Second Edition

memory). ptos will thus need to point to the highest valid memory location on the stack. If
OS_STK_GROWTH is set to 0, the stack is assumed to grow in the opposite direction (i.e., from low mem
ory to high memory).

prio is the task priority. A unique priority number must be assigned to each task and the lower the
number, the higher the priority.

Return Value

OSTaskCreate () returns one of the following error codes:

1. OS_NO_ERR, if the function was successful

2. OS_PRIO_EXIST, if the requested priority already exist

NoteslWarnings

The stack must be declared with the OS_STK type.
A task must always invoke one of the services provided by ~C/OS-IT to either wait for time to expire,

suspend the task or, wait an event to occur (wait on a mailbox, queue, or semaphore). This will allow
other tasks to gain control of the CPU.

You should not use task priorities 0, 1, 2, 3 and OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1 and OS_LOWEST_PRIO because they are reserved for ~C/OS-IT's use. This thus
leaves you with up to 56 application tasks.

Example
This examples shows that the argument that Taskl () will receive is not used and thus, the pointer
pdata is set to NULL. Note that I assumed that the stack grows from high memory to low memory
because I passed the address of the highest valid memory location of the stack TasklStk []. If the
stack grows in the opposite direction for the processor you are using, you will need to pass
TasklStk [0] as the task's top-of-stack.

Appendix A: IlC/OS-II, The Real-TimeKemel- 547

OS_STK *TasklStk[1024];

INT8U TasklData;

void main (void)

INT8U err;

OSInit() ; /* Initialize ~C/OS-II */

OSTaskCreate(Taskl,

(void *)&TasklData,

&TasklStk[1023],

25) ;

OSStart() ;

void Taskl(void *pdata)

pdata = pdata;

for (;;)

/* Start Multitasking

/* Task code

*/

*/

II

548 - Embedded Systems Building Blocks, Second Edition

OSTaskCreateExt ()
INT8U OSTaskCreateExt(void (*task) (void *pd), void *pdata, OS_STK *ptos, INT8U prio,

INT16U id, OS_STK *pbos, INT32U stk_size, void *pext, INTl6U opt);

OSTaskCreateExt () allows an application to create a task so it can be managed by /lClOS-II. This
function serves the same purpose as OSTaskCreate () except that it allows you to specify additional
information about your task to /lCIOS-II. Tasks can either be created prior to the start of multitasking or
by a running task. A task cannot be created by an ISR. A task must be written as an infinite loop as
shown in the example code below and, must not return. Depending on how the stack frame was built,
your task will either have interrupts enabled or disabled. You will need to check with the processor spe
cific code for details. You should note that the first four arguments are exactly the same as the ones for
OSTaskCreate (). This was done to simplify the migration to this new, and more powerful function.

Arguments

task is a pointer to the task's code.

pdata is a pointer to an optional data area which can be used to pass parameters to the task when it is
created. Where the task is concerned, it thinks it was invoked and passed the argument pdata as fol
lows:

void Task (void *pdata)

for (;;)

/* Do something with 'pdata'

/* Task body, always an infinite loop.

*/

*/

/* Must call one of the following services: */

/* OSMboxPend() */

/* OSQPend() */

/* OSSemPend() */

/* OSTimeDly () */

/* OSTimeDlyHMSM () */

/* OSTaskSuspend () (Suspend self) */

/* OSTaskDel () (Delete self) */

ptos is a pointer to the task's top of stack. The stack is used to store local variables, function parame
ters, return addresses, and CPU registers during an interrupt. The size of this stack is determined by
the task's requirements, and the anticipated interrupt nesting. Determining the size of the stack
involves knowing how many bytes are required for storage of local variables for the task itself, all

Appendix A: J1C/OS-Il, The Real-Time Kemel- 549

nested functions, as well as requirements for interrupts (accounting for nesting). If the configuration
constant OS_STK_GROWTH is set to 1, the stack is assumed to grow downward (i.e., from high memory
to low memory). ptos will thus need to point to the highest valid memory location on the stack. If
OS_STK_GROWTH is set to 0, the stack is assumed to grow in the opposite direction (i.e., from low
memory to high memory).

prio is the task priority. A unique priority number must be assigned to each task and the lower the
number, the higher the priority (i.e., the importance) of the task.

id is the task's ill number. At this time, the ill is not currently used in any other function and has sim
ply been added in OSTaskCreateExt () for future expansion. You should set the id to the same value
as the task's priority.

pbos is a pointer to the task's bottom of stack. If the configuration constant OS_STK_GROWTH is set to
1, the stack is assumed to grow downward (i.e., from high memory to low memory) and thus, pbos
must point to the lowest valid stack location. If OS_STK_GROWTH is set to 0, the stack is assumed to
grow in the opposite direction (i.e., from low memory to high memory) and thus, pbos must point to the
highest valid stack location. pbos is used by the stack checking function OSTaskStkChk () .

stk_size is used to specify the size of the task's stack (in number of elements). If OS_STK is set to
INT8U, then s tk_size corresponds to the number of bytes available on the stack. If OS_STK is set to
INT16U, then stk_size contains the number of 16-bit entries available on the stack. Finally, if
OS_STK is set to INT32U, then stk_size contains the number of 32-bit entries available on the stack.

pext is a pointer to a user supplied memory location (typically a data structure) which is used as a TCB
extension. For example, this user memory can hold the contents of floating-point registers during a con
text switch, the time each task takes to execute, the number of times the task is switched-in, etc.

opt contains task specific options. The lower 8 bits are reserved by JlClOS-I1 but you can use the upper
8 bits for application specific options. Each option consist of a bit. The option is selected when the bit
is set. The current version of JlC/OS-I1 supports the following options:

• OS_TASK_OPT_STK_CHK specifies whether stack checking is allowed for the task.

• OS_TASK_OPT_STK_CLR specifies whether the stack needs to be cleared.

• OS_TASK_OPT_SAVE_FP specifies whether floating-point registers will be saved.

You should refer to uCOS_II.H for other options, i.e., OS_TASK_OPT_???

ReturnValue

OSTaskCreateExt () returns one of the following error codes:

I. OS_NO_ERR,if the function was successful

2. OS_PRIO_EXIST, if the requested priority already exist

NoteslWarnings

The stack must be declared with the OS_STK type.
A task must always invoke one of the services provided by JlC/OS-II to either wait for time to expire,

suspend the task or, wait an event to occur (wait on a mailbox, queue, or semaphore). This will allow
other tasks to gain control of the CPU.

II

550 - Embedded Systems Building Blocks, Second Edition

You should not use task priorities 0, 1, 2, 3 and OS_LOWEST_PRIO-3, OS_LOWEST_PRIO-2,
OS_LOWEST_PRIO-1 and OS_LOWEST_PRIO because they are reserved for /le/OS-I1's use. 'Ibis thus
leaves you with up to 56 application tasks.

Example
The task control block is extended (l) using a 'user defined' data structure called TASK_USER_DATA (2)
which, in this case, contains the name of the task as well as other fields. The task name is initialized
with the strcpy () standard library function (3). Note that stack checking has been enabled (4) for this
task and thus, you are allowed to call OSTaskStkChk (). Also, we assume here that the stack grown
downward (5) on the processor used (i.e., OS_STK_GROWI'His set to 1). TOS stands for 'Top-Of-Stack'
and BOS stands for 'Bottom-Of-Stack'.

typedef struct {

char TaskName[20];

INT16U TaskCtr;

INT16U TaskExecTime;

INT32U TaskTotExecTime;

TASK_USER-DATA;

OS_STK *TaskStk[1024];

TASK_USER_DATA TaskUserData;

void main (void)

INT8U err;

/* (2) User defined data structure */

OSInit(); /* Initialize ~C/OS-II */

strcpy(TaskUserData.TaskName, "MyTaskName"); /* (3) Name of task */

err ~ OSTaskCreateExt(Task,

(void *)0,

&TaskStk[l023] , /* (5) Stack grows down (TOS) */

10,

10,

&TaskStk [0] , /* (5) Stack grows down (OOS) */

1024,

(void *)&TaskUserData, /* (1) TCB Extension */

OS_TASK_OPT_STK_CHK) ; /* (4) Stack checking enabled */

OSStart(); /* Start Multitasking */

void Task(void *pdataJ

Appendix A: pC/OS-II, The Real-Time Kernel- 551

pdata = pdata;

for (;; J {

/* Avoid compiler warning

/* Task code

*/

*/

II

552 - Embedded Systems Building Blocks, Second Edition

OSTimeDly()
void OSTimeDly(INT16U ticks);

OSTirneDly () allows a tasl to delay itself for a number of clock ticks. Rescheduling always occurs
when the number of clock ticks is greater than zero. Valid delays range from 0 to 65535 ticks. A delay
of 0 means that the task will not be delayed and OSTirneDly () will return immediately to the caller.
The actual delay time depends on the tick rate (see OS_TICKS_PER_SEC in the configuration file
OS_CFG.H).

Arguments

ticks is the number of clock ticks to delay the current task.

Return Value

None

NoteslWarnings

Note that calling this function with a delay of a results in no delay and thus the function returns imme
diately to the caller. To ensure that a task delays for the specified number of ticks, you should consider
using a delay value that is one tick higher. For example, to delay a task for at least 10 ticks, you should
specify a value of 11.

Example

void TaskX(void *pdata)

for (;;)

OSTimeDly(10) ; /* Delay task for 10 clock ticks */

Appendix A: pC/OS-II, The Real-Time Kernel>- 553

OSTimeDlyHMSM()
void OSTimeDlyHMSM(INT8U hours, INT8U minutes, INT8U seconds, INT8U milli);

OSTimeDlyHMSM () allows a task to delay itself for a user-specified amount of time specified in hours,
minutes, seconds, and milliseconds. This is a more convenient and natural format than ticks. Resched
uling always occurs when at least one of the parameters is non-zero.

Arguments

hours is the number of hours that the task will be delayed. The valid range of values is from 0 to 255
hours.

minutes is the number of minutes that the task will be delayed. The valid range of values is from 0 to
59.

seconds is the number of seconds that the task will be delayed. The valid range of values is from 0 to
59.

milli is the number of milliseconds that the task will be delayed. The valid range of values is from 0
to 999. Note that the resolution of this argument is in multiples of the tick rate. For instance, if the tick
rate is set to 10 mS then a delay of 5 mS would result in no delay. The delay is actually rounded to the
nearest tick. Thus, a delay of 15 mS would actually result in a delay of 20 mS.

Return Value

OSTimeDlyHMSM () returns one of the following error codes:

I. OS_NO_ERR. if you specified valid arguments and the call was successful.

2. OS_TlME_INVALID_MINlJI'ES, if the minutes argument is greater than 59.

3. OS_TlME_INVALID_SECONDS, if the seconds argument is greater than 59.

4. OS_TlME_INVALID_MS, if the milliseconds argument is greater than 999.

5. OS_TlME_ZERO_DLY, if all four arguments are O.

NoteslWarnings

Note that calling this function with a delay of 0 hours, 0 minutes, 0 seconds, and 0 milliseconds results
in no delay and thus the function returns immediately to the caller. Also, if the total delay time ends up •
being larger than 65535 clock ticks then, you will not be able to abort the delay and resume the task by l

calling OSTimeDlyResume () .

554 - Embedded Systems Building Blocks, Second Edition

Example

void TaskX(void *pdata)

for (;;)

OSTimeDlyHMSM(O, 0, 1, 0); /* Delay task for 1 second */

Appendix A: pC/OS-II, The Real- Time Kemel- 555

OSVersion ()
INT16U OSVersion(void);

OSVersion () is used to obtain the current version of /le/OS-II.

Arguments

None

ReturnValue

The version is returned as x ,yy multiplied by 100. In other words, version 2.00 is returned as 200.

NotesIWarnings

None

Example

void TaskX(void *pdata)

INT16U os_version;

for (;;)

os_version = OSVersion (); /* Obtain uC/OS-II' s version */

II

556 - Embedded Systems Building Blocks, Second Edition

OS_ENTER_CRITICAL () and
OS_EXIT_CRITICAL ()

OS_ENTER_CRITICAL () and OS_EXIT_CRITICAL () are macros which are used to disable and
enable the processor's interrupts, respectively.

Arguments

None

Return Value

None

NoteslWarnings

These macros must be used in pair.

Example

INT32U Val;

void TaskX(void *pdata)

for (;;)

/* Disable interrupts */

/* Access critical code */

/* Enable interrupts */

Listing A.I

/*

OS_CPU.H

Appendix A: pC/OS-II, The Real-Time Kernel-s- 557

************** ** * ****..* * * * ** ** * * ** * *** * * **** ***** * * * ****** * * *** * * * * *** ** *** ** * * * *** * ** ** *** ** * * * ** ** * ..* **
uC/OS-II

The Real-TiIre Kernel

(c) Copyright 1992-1999, Jean J. Labrosse, Weston, FL

All Rights Reserved

80x86/80x88 specific code
LARGE MEmRY MJDEL

Borland C/C++ V4. 51

* File
*By
* Port Version

OS_CPU.H
Jean J. Labrosse
Vl.OO

..*..***** ** ** ** * * * ** * * * ** ** ** * * * * ** * * *** * * * * ** * -It** * * * * *..* * * * * * ** * * * ** *** * * * * ** * ** *** * ** * * *** * * * * * ***
*/

#ifdef OS_CPU_GLOBI\LS
#define OS_CPU_ElIT
#else
#define OS_CPU_ElIT extern
#endif

/*
** * *** * ** * ** * * * * * * * ** * * * * * ***** * *** ** * * * * ... *** * * * ** * * * *** * * * * * * * * * ** * ** * * *** * * * * * * * * * * * ** * * * * ** * *** * *** ** *

DATA TYPES

(Carpiler specific)

*/

typedef unsigned char
typedef unsigned char
typedef signed char
typedef unsigned int
typedef signed int
typedef unsigned long
typedef signed long
typedef float
typedef double

typedef unsigned int

#define BYTE
#define UBYTE
#define \\ORD
#define UWJRD
#def ine LON:;

#define lJL(N3

OCOLFJIN;

INr8U;
INr8S;
INr16U;
INr16S;
INr32U;
INr32S;
FP32;
FP64;

INr8S
INr8U
INr16S
INr16U
INr32S
INr32U

/* Unsigned 8 bit quantity
/* Signed 8 bit quantity
/* Unsigned 16 bit quantity
/* Signed 16 bit quantity
/* Unsigned 32 bit quantity
/* Signed 32 bit quantity
/* Single precision floating point
/* D:Juble precision floating point

/* Each stack entry is l6-bit wide

/* Define data types for backward crnpatibility
/* to uC/OS Vl.xx. Not actually needed for
/* ... uC/OS-II.

*/

*/
*/
*/
*/

*/
*/

*/

*/

*/
*/
*/ II

558 - Embedded Systems Building Blocks, Second Edition

Listing A.I (continued)

/*

OS_CPU.H

Intel 80x86 (Real-Mode, Large Model)

* Method #1: Disable/Enable interrupts using sirrple instructions. After critical section, interrupts
will be enabled even if they were disabled J:efore entering the critical section. You MUsr
change the constant in OS_CPlLA.ASM, function OSIntCtxSwO fran 10 to 8.

* Method #2: Disable/Enable interrupts by preserving the state of interrupts. In other words, if
interrupts were disabled J:efore entering the critical section, they will be disabled when
leaving the critical section. You MUsr change the constant in OS_CPll_A.ASM, function
OSIntCtxSw 0 fran 8 to 10.

*/
#define OS_CRITICAI,-MEIHOD 2

#if Oi:,-CRITlCAL_MEIHOD 1
#define OS_ENI'ER_CRITlCAL () asrn CLI
#define OS_EXIT_CRITlCAL () asrn srI
#endif

/* Disable interrupts
/* Enable interrupts

*/

*/

#if
#define
#define
#endif

/*

OS_CRITlCAL_MEIHOD ;; 2
OS_ENI'ER_CRITlCALO asm {PllSHF; CLI}
OS_EXIT_CRITICAL () asm FOPF

/* Disable interrupts
/* Enable interrupts

*/
*/

Intel 80x86 (Real-Mode, Large Model) Miscellaneous

*/

#define OS-SI'ICGRCWIH

#define uCOS

/*

1

Ox80

asrn = uCOS

/* Stack grONS fran HIGH to LQ),I rrarory on 80x86 */

/* Interrupt vector # used for context; switch */

GLOBAL VARIABLE'S

*/

/*

/* Counter used to invoke DOS's tick handler every 'n: ticks */

~ICN PROTOI'YPFS

*/

void OSFPInit(void);
void OSFPRestore(void *pblk);
void OSFPSave (void *pblk);

Appendix A: /lC/OS-II, The Real-Time Kemel- 559

ListingA.2

/*

uC/OS-II
'!he Real-Tllre Kernel

(c) Copyright 1999, Jean J. Labrosse, Weston, FL
All Rights Reserved

* File: uCOS_II.H

* By : Jean J. Labrosse

*/

/*$PAGE*/

11

560 - Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

/*

MISCELLANEDUS

(OS_LCWEST_PRIO - 1)
(OS_LCWEST_PRIO)

*/

#define OS_VERSIOO

#ifdef OS_GWBIILS
#define OS_EXT
#else
#define OS_EXT extem
#endif

#define OS_PRIO_SELF

hf OS_TASK_STAT_EN
#define OS_N_SYS_TASKS
#else
#define OS_N_SYS_TASKS
#endif

#define OS_STAT_PRIO
#define OS_IDLE_PRIO

200

OxFF

2

1

/* Version of uC/OS-II (VX.yy mil t ipl i.ed by 100)

/* Indicate SELF priority

/* Number of system tasks

/* Statistic task priority
/* IDLE task priority

*/

*/

*/

*/
*/

#define OS_EVENr_'I'BL_SIZE ((OS_LCWEST_PRIO) / 8 + 1)
#define OS_RDY_TBL_SIZE ((OS_LCWEST_PRIO) / 8 + 1)

/* Size of event table
/* Size of ready table

*/
*/

#define OS_TASK_IDLE_ID 65535 / * 1.D. numbers for Idle and Stat tasks
#define OS_TASK_STAT_ID 65534

/* TASK STATUS (Bit definition for OSTCBStat)
#define OS_STAT_ROY OxOO /* Ready to run
#define OS_STAT_SEM OxOl /* Pending on senaphore
#define OS_STAT_MBOX Ox02 /* Pending on mai Ibox
#define OS_STAT_Q Ox04 /* Pending on queue
#define OS_STAT_SUSPEND Ox08 /* Task is suspended

#define OS_EVENr_TYPE_MBOX 1
#define OS_EVENr_TYPE_Q 2
#define OS_EVENr_TYPE_SEM 3

!* TASK OPTICNS (see OSTaskCreateExt ())
#define OS_TASK_OPT_STK_OlK OxOOOl /* Enable stack checking for the task
#define OS_TASK_OPT_STK_CLR OxOO02 /* Clear the stack when the task is create
#define OS_TASK_OPT_SAVE_FP OxOO04 /* Save the contents of any floating-point registers

*/

*/
*/
*/
*/
*/
*/

*/
*/
*/

*/

hfndef FAlSE
#define FAlSE
#endif

hfndef TRUE
#define TRUE
#endif

o

1

Appendix A: JlC/OS-II, The Real-Time Kemel- 561

Listing A.2 (continued)

/'
** ** * ** ****** *."* * ** * * * * * * ** * ******* * * * * * * * * * * ** * **.*** * * * * * * **." * ** * * **** * * * *** **." **

ERROR CODES

** ** ** * * * ** * * * * * * ** * * * * ** * * * * ** * ** **** * * ** * * * * * * * * * * ** **** * * *** * * * ** * * **** * * * * * * *** * * * * ** ** * * * ***** * *****
'/

#define OS_NO_ERR 0
#define OS_ERR_EVENCTYPE 1
#define OS_ERR...-PEND_ISR 2

#define OS_TIMI'XlUI' 10
#define OS_TASIUUI'_EXISI' 11

#define aU'1BOX]UIL 20

#define OS_O-F1JLL 30

#define OS_PRIO_EXISI' 40
#define OS_PRIO_ERR 41
#define OS_PRIO_INVALID 42

#define OS_SDLOVF 50

#define OS_TASK_DEL_ERR 60
#define OS_TASlCDEL_IDLE 61
#define OS_TASK_DEL_REXl 62
#define OS_TASK_DEL_ISR 63

#define OS_NLMJRE_'TCB 70

#define OS_TIME_NJr_DLY 80
#define OS_TIME_INVALID_MINlJI'ES 81
#define OS_TIME_INVALID_SEXXJNDS 82
#define OS_TIME_INVALID_MIILI 83
#define OS_TIME_ZERO_DLY 84

#define OS_TASK_SUSPEND_PRIO 90
#define OS_TASK_SllSPEND_IDLE 91

#define OS_TASK_RESUME_PRIO 100
#define OS_TASlCNJr_SllSPENDED 101

#define OS_MEl'LINVALID_PART

#define OSjIE}LINVALID_BLKS

#define OS_MEM_INVALID_SIZE

#define OS_MEM_NO_FREE_BLKS

#define OS_MDLF1JLL

/'$PAGE' /

110
111
112
113
114

130

II

562 - Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

/*

*/

#if (OS_Mi'lX_EVENI'S >= 2)

typedef stIuct {
void *OSEventPtr;
INrSU OSEventTbl [OS_EVENI'_'l'BL_SlZE] ;
INr16U OSEventCnt;
INr8U OSEventType;
INr8U OSEventGrp;

} OS_EVENI';
#endif

/*$PAGE*/
/*

/* Pointer to rressage or queue structure */
/* List of tasks waiting for event to occur */
/* Count of used when event is a saraphore */
/* OS_EVENI'_T'fPE_MEDX, OS_EVENI'_TYPE-il or OS_EVENI'_TYPE_SEM */
/* Group cor'respondinq to tasks waiting for event to occur */

MESSAGE MAILOOX n>lTA

*/

#if OS_MEDX_EN
t:ypedef s tIuct {

void *0SMsg; /* Pointer to rressage in mailbox
INrSU OSEventTbl [OS_EVENI'_'I'BL_SIZE]; /* List of tasks waiting for event to occur
INrSU OSEventGrp; /* Group cozrespondinq to tasks waiting for event

} OS_MEDX_DATA;
#endif

/*

*/
*/

to occur */

MEMJRY PARrITICN n>lTA SIRlX:IURES

*/

#if OS_MEM_EN && (OS_Mi'lX_MEM_PARr >=

typedef s truct (
void *~;
void *OEMEmFreeList;
INr32U OSManBlkSize;
INr32U OSManNBlks;
INr32U OSManNFree;

OS_MEM;

t:ypedef stIuct {
void *0SI\ddr;
void *OSFreeList;
INr32U OSBlkSize;
INr32U OSNBlks;
INr32U OSNFree;
INr32U OSNUsed;

} OS_MEM_DATA;

#endif

/*$PAGE*/

2)

/ * MEMJRY CCl'Il'ROL BLCCK

/* Pointer to beginning of roerory partition
/* Pointer to list of free InEm:>ry blocks
/* Size (in bytes) of each block of merory

/* Total number of blocks in this partition
/* Number of roarory blocks rBUaining in this partition

/* Pointer to the beginning address of the marory partition
/* Pointer to the beginning of the free list of merory blocks
/* Size (in bytes) of each merory block
/* Total number of blocks in the partition
/* Number of InEm:>ry blocks free
/*Number of merory blocks used

*/
*/

*/
*/
*/
*/

*/
*/
*/

*/
*/

*/

Appendix A: jlC/OS-II, The Real-Time Kernel- 563

Listing A.2 (continued)

/*

MESSAGE QUEUE DATA

*/

#if OS_~EN

typedef struct
void *OSMsg;

INr16U OSNMsgs;
INr16U OSQSize;
INr8U OSEventTbl [OS_EVENI'_TBL_SlZE] ;
INr8U OSEventGrp;

} OS_~DATA;

#endif

/*

/ * Pointer to next message to be extracted frcrn queue */
/ * Number of messages in message queue */
/ * Size of message queue */
/* List of tasks waiting for event to occur */

/* Group cor'r'espondi.nq to tasks waiting for event to occur * /

SEMAPHORE DATA

*/

#if OS_SEM EN

typedef struct {
INr16U OSCnt;
INr8U OSEventTbl [OS_EVENI'_'I'BL_SIZE] ;
INr8U OSEventGrp;

} OS_SEM_DATA;

#endif

/*

/ * Serraphore count
/* List of tasks waiting for event to occur
/* Group correspondinq to tasks waiting for event

*/

*/
to occur */

TASK srACK DATA

*/

#if OS_TASK_CREATE_=_EN

typedef struct {
INr32U OSFree;
INr32U OSUsed;

} OS_SIK_DATA;

#endif

/*$PN;E*/

/* Number of free bytes on the stack
/* Number of bytes used on the stack

*/

*/

11

564 - Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

f*

TASK CCN.rROL BI..a:K

*f

typedef struct os_tcb {
OS_SI'K *OSTCBStkPtr;

#if OS_TASK_CREATE_EXT_EN

void *OSICBExtPtr;
OS_SI'K *OSTCBStkBottan;
INr32U OS'ICBStkSize;
INrl6U QSICB:pt;
INrl6U OSICBId;

#endif

struct os_tcb *OSICBNext;
struct os_tcb *OSICBPrev;

f* Pcinter to current top of stack

f* Pcinter to user definable data for 'ICE extension
f* Pointer to bot.con of stack
f* Size of task stack (in number of stack elerrents)
f* Task options as passed by osraskCreateExt ()
f* Task ID <0 .. 65535)

f* Pcinter to next 'ICE in the 'ICE list
f* Pointer to previous 'ICE in the 'ICE list

* f

*f
*f
*f
*f
*f

*f
*f

#if (OS...Q..EN &&

OS_EVENr

#endif

#if (OS_Q...EN &&

void
#endif

(OS_MAX-OS >= 2» II OS_M!'OX_EN I I OS_Sa-eEN

OSICBEventptr; f Pcinter to event control block

(OS_MAX_08 >= 2» II OS_MroX-EN

OSICI3Msg; f Message received fran OSMtoxPcst () or OSQPcst{)

*f

*f

INrl6U
INr8U
INr8U

INr8U
INr8U
INr8U
INr8U

OSTCBDly;
OSTCBStat;
OS'ICBPrio i

OS'ICBX;

OSICBY;
OS'ICB8itX;
QSTCBBitY;

f* Nbr ticks to delay task or, timeout waiting for event
/* Task status
f* Task priority (D == highest, 63 == lowest)

f* Bit position in group corresponding to task priority
f* Index into ready table corresponding to task priority
f* Bit mask to access bi t posi tion in ready table
f* Bit rrask to access bit position in readY group

*f
*f
*f

(D •• 7) *f
*f
*f
*f

#if OS_TASI\...DEL_EN

BCDL!':AN OS'ICBDelReq;

#endif
) OS_'ICE;

f*$PAGE*f

f* Indicates whether a task needs to delete itself *f

Appendix A: JiC/OS-ll, The Real-Time Kemel- 565

Listing A.2 (continued)

j'

GLOBAL VARIABLES

'j

OSCtx.S\>.Ctr; j' Counter of number of context switches 'j

(OS_MAX_EVENI'S >= 2)
OS_EVENI' 'OSEventFreeList; j' Pointer to list of free EVENr control blcx::ks
OS_EVENI' OSEventTbl [OS_MAX_EVENI'SJ ; j' Table of EVENr control blocks

'j
, j

OSIdleCtr; j' Idle counter 'j

#if
OS_EXT
OS_EXT
OS_EXT
OS_EXT
#endif

OS_TASK_STAT_EN
INrSS OSCPUUsage;
INr32U OSIdleCtrMax;
INr32U OSIdleCtrRun;
OCOLFAN OSStatRdy;

j' Percentage of CPU used
j' Maximum value that idle counter can take in 1 sec.
j' Value reached by idle counter at run time in 1 sec.
j' Flag indicating that the statistic task is ready

'j
, j

'j

'j

OS_EXT INrSU OSIntNesting; j' Interrupt nesting level

OS_EXT INrSU OSI.ockNes ting; j' Multitasking Lock nesting level

OS_EXT INrSU OSPriceur; j' Priority of current task
OS_EXT INrSU OSPrioHighRdy; j' Priority of highest priority task

OS_EXT INrau OSRdyGrp; j' Ready list group
OS_EXT INrSU OSRdyTbl [OS_RlJY_TBL_SIZEl ; j' Table of tasks which are ready to run

OS_EXT OCOLFAN OSRunning; j' Flag indicating that kernel is running

OS TASK CREATE EN I I OS_TASK_CREATE_EXT_EN I I OS_TASK_DEL_EN
INrSU OSTaskCtr; j' Number of tasks created

, j

, j

'j

'j

, j

'j

'j

'j

j' Current value of system time (in ticks)INr32U

*OSICECuri

'OSTCBFreeList;
'OSTCBHighRdy;
*OSK13List;
'OSTCBPrioTbl [OS_I.CMEST_PRIO +

OSTime;

j' Pointer to currently running TeE
j' Pointer to list of free TeEs
j' Pointer to highest priority TeE ready
j' Pointer to doubly linked list of TCBs

1] ; j' Table of pointers to created TCBs

'j

'j

to run 'j

'j

'j

'j II
extern INrSU const OSMapTbl[SJ;
extern INrSU canst OSUnMapTbl [256J ;

j'$PAGE'j

j' Priority->Bi t Melsk lookup table
j' Priority->Index lookup table

'j

'j

566 - Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

/*

F'UJ'.CI'ICN PROIOI'YPES

(Target Independant Functions)

*/

/*

MESSAGE MAIIIDX MANAGEMENT

*/
#if
void

OS_EVENI'

void

INraU

nrrsu
#endif
/*

OS_MOOXJN
*OSMboxAccept (OS_EVENI' *pevent) ;

*OSMboXCreate(void *msg);

*OSM!xJxPend(OS_EVENI' *pevent, INr16U t imeout , INraU *err);

OSMboxPost(OS_EVENT *pevent, void *msg);

OSMboxQuery(OS_EVENT *pevent, OSjlffiJUJATA *pdata);

MEMJRY MANAGEMENT

*/
#if
OS_MEM

void

INrau

nerau
#endif
/*

OS_MEM_EN && (OS_MAX_MEM]ART >= 2)

*OSMErrCreate(void *addr, INr32U nblks, INr32U blksize, INrau *err);

*OSMerrGet(OS_MEM *pran, INraU *err);

OSManPut (OS_MEM *pnan, void *pblk);

OSMarQ.lery(OS_MEM *pran, OS_MEM_DATA *pdata);

*/
#if
void
OS_EVENT

INrau

void

INrau

INrau

nrrso
#endif
/*$PAGE* /

OS_QJN && (OS_MAX_QS >= 2)

*OSQAccept(OS_EVENT *pevent);

*OSQCreate(void **start, INT16U size);

CJS;lFlush(OS_EVENT *pevent);

*CJS;lPend(OS_EVENT *pevent, INr16U t imeout , nsrsu *err);

CJS;lPost (OS_EVENT *pevent, void *msg);

CJS;lPostFront (OS...:.EVENT *pevent, void */lISg) ;

~ery(OS_EVENT *pevent, OS-CLDATA *pdata);

Appendix A: p.C/OS-IL The Real-Time Kemel- 567

Listing A.2 (continued)

/*

SEMAPHORE MANAGEMENI'

*/
#if

INr16U
OS_EVENI'

void
INr8U

INr8U
#endif

/*

OS_SEM_EN
OSSeml\ccept (OS_EVENI' *pevent);;

*OSSernCreate(INr16U value);

OSSemPend(OS_EVENI' *pevent, INr16U timeout, INr8U *e=);
OSSemPcst (OS_EIIENI' *pevent);

OSSerrQuery(OS_EIIENI' *pevent, OS_SEM_DATA *pjata);

TASK MANAGEMENI'

*/
#if
INr8U
#endif

INr8U

#if
INr8U

#endif

#if

INr8U
INr8U
#endif

#if
INr8U

INr8U
#endif

#if

INr8U
#endif

INr8U

OS_TASK_OfIIN3E_PRIO_EN

OSTaskC'hangePrio(INr8U oldprio, INr8U newprio);

OSTaskCreate(void (*task) (void *pd.), void *pjata, OS_SI'K *ptos, INr8U prio);

OS_TASK_CREATE_EXT_EN

OSTaskCreateExt(void (*task) (void *pd.),

void *pjata,

OS_SI'K *ptos,
INr8U prio,

INr16U id,

OS_SI'K *p!x>s,
INr32U stk_size,
void *pext,

INr16U opt);;

OS_TASK_DEL_EN
OSTaskDel(INr8U prio);

OSTaskDelReq(INrSU prio);

OS_TASK_SUSPEND_EN
OSTaskResurre(INr8U prio);

OSTaskSuspend(INr8U prio);

OS_TASK_CREATE_EXT_EN

OSTaskStkChk(INr8U prio, OS~Sl'K_DATA *pjata);

OSTaskQuery(INr8U pr.io, OS_'Iffi *pjata);

11

568 - Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

1*

*1
void
rnr8U
INr8U
INr32U
void
void

1*

OSTimeDly(rnr16U ticks);
OSTimeDlyHMSM(rnr8U hours, nrrsu minutes, rnr8U seconds, INrl6U milli);
OSTimeDlyResUJTe(INrBU prio) ;
osrimeGet (void) ;
Osr:iJreSet (rnr32U ticks);
OSTirneTick(void) ;

MISCELLl\NEJJUS

*1

void

void
void

void
void

void

void

rnr16U

I*$PAGE*I

OSInit(void) ;

OSIntEnter (void) ;
OSIntExit(void) ;

OSSchedLock(void) ;
OSSchedUnlock(void) ;

OSStart (void) ;

OSStatInit(void) ;

OSVersion (void) ;

Appendix A: JlC/OS-II, The Real-Time Kemel- 569

Listing A.2 (continued)

/*

INI'ERNAL F'UN::'TIC!\! PROIDI'YPES

(Your application MUsr = call these functions)

*/

#if
void
void
void
void
#endif

#if
void
#endif

#if
void
#endif

void

void

#if
void
#endif

OS_MOOX_EN I I OS_<LEN I I OS_SEM_EN
OSEventTaskRdy(OS_EVENI' *pevent, void *msg, INr8U mski ,
OSEventTaskWait(OS_EVENI' *pevent);
OSEvent'IO(OS_EVENI' *pevent);
OSEventWaitListInit(OS_EVENI' *pevent);

OS_MEMJN && (OS_MAX_MJ:l.LPART >= 2)

OSMernInit (void) ;

OS_<LEN
OSQlnit(void) ;

ossched (void) ;

osraskIdle(void *data);

OS_TASICsrAT_EN
osraskStat (void *datal;

INr8U OSTCBInit(INr8U prio, OS_S1'K *ptos, OS_S1'K *pros, INr16U Id, INr32U stk_size, void *pext,
INr16U opt) ;

/*$Pl'GE* /

II

570 - Embedded Systems Building Blocks, Second Edition

Listing A.2 (continued)

/*

FUN:TlOO PR01Ql'YPES

(Target Specific Functions)

*/

void OSCt:xSw(void) ;

void OSIntCt:xSw(void);

void OSStartHig!1Rdy(void);

void
void
void
OS_SI'K
void

OSTaskCreateHook(OS_'ICB *ptcb);
OSTaskDelHook(OS_'ICB *ptcb);
osraskStatHook(void) ;

*OSTaskStkInit(void (*task) (void *pd), void *pdata, OS_SI'K *ptos, INr16U opt);
OSTaskSwHook(void) ;

void OSTickISR (void) ;

void OSTiJreTickHook(void);

AppendixB

Programming Conventions
Conventions should be established early in a project. These conventions are necessary to maintain con
sistency throughout the project. Adopting conventions increases productivity and simplifies project
maintenance. A few years ago, I saw an article in the Hewlett-Packard Journal (see Bibliography on
page 585) about the processes used by a team of engineers to design the HP54720/10 oscilloscope. One
of the aspects of the design consisted of developing a coding convention. "A consistent format made the
code much easier to read and understand. At the completion of the project, all of the engineers involved
were enthusiastic about using the standard in developing the code". ITyou are serious about improving
your programming skills you should get Code Complete by Steve McConnell (see Bibliography on
page 585). Steve also highly recommends that you adopt a coding convention before you begin pro
gramming. As he says, "It's nearly impossible to change code to match your conventions after the code
is written".

In this section I will describe the conventions I have used to develop the software presented in this
book.

B.OO Directory Structure

Adopting a consistent directory structure avoids confusion when either more than one programmer is
involved in a project, or you are involved in many projects. This section shows the directory structure
that I use on a daily basis.

B.OO.01 Directory Structure, Products

All software development projects are placed in a \PRODUCTS subdirectory from the root directory. I
prefer to create the \ PRODUCTS subdirectory because it avoids having a large number of directories in
the root directory.

Each project is placed in a subdirectory by itself under the \PRODUCTS directory. Instead of having
all files in a project located in a single subdirectory, I like to split project related files in these subdirec
tories. (There is nothing like looking at a project subdirectory containing dozens of files!). Each prod
uct contains a number of subdirectories:

571

572 - Embedded Systems Building Blocks, Second Edition

\PRODUCTS\project\SOFTWARE
This subdirectory contains product specific software. It is assumed that you would use building
blocks and thus this directory contains code that is actually specific to the product. The SOFTWARE
directory further contains subdirectories such as:

\PRODUCTS\project\SOFTWARE\SOURCE
This subdirectory contains the actual product specific source code.

\PRODUCTS\project\SOFTWARE\TEST
This subdirectory contains the product build instructions (i.e., makefiles, scripts, batch files, etc.)
to create a 'test' version of the product to build.

\PRODUCTS\project\SOFTWARE\OBJ
This subdirectory contains the compiled and assembled code into relocatable object form of all
the files needed to make the product.

\PRODUCTS\project\SOFTWARE\VC
This subdirectory contains the version controlled product specific software.

\PRODUCTS\project\SOFTWARE\????
You can have additional subdirectories that would contain documentation about the software
aspects of your product (DOC directory), a directory where you could 'collect' all the source files
that make up your product in order to compile and assemble them (WORK directory), a directory
where you can 'rebuild' any version of a released product (PROD directory), and more.

\PRODUCTS\project\HARDWARE
This subdirectory could contain information about the product's hardware (schematics, PCBs, parts
list, wire lists, etc.).

\PRODUCTS\project\MECH
This subdirectory could contain information about the mechanical aspects of your product (enclo
sures, injection molds, parts list, etc.).

B.OO.02 Directory Structure, BuildingBlocks

Each building block is placed in a subdirectory by itself under the \SOFTWARE directory. The reason
the building blocks are placed in a directory from the root is because the building blocks are not sup
posed to be platform dependent. Below each building block, I have the following subdirectories:

\SOFTWARE\building-block\SOURCE
This subdirectory contains the source code of the building block.

\ SOFTWARE\ building-block \DOC
This subdirectory contains documentation specific to the building block.

\SOFTWARE\ building-block \VC
The VC (Version Control) subdirectory contains version controlled archive files generated by a ver
sion control software package such as the Merant PVCS Version Manager (previously called PVCS).
This subdirectory contains the revisions and versions of your source code, documentation, and exe
cutables. If you are new to version management and configuration building, consult the excellent
book by Wayne A. Babich called Software Configuration Management or, contact Merant about
their excellent software packages.

To remove the frustration of navigating through these subdirectories, I wrote a utility program that
allows you to jump to a directory without having to use the DOS change directory command. This util
ity is called TO. EXE and is described in Appendix D.

Appendix B: Programming Conventions - 573

B.O] C Programming Style

B.Ol.Ol Overview

There are many ways to code a program in C (or any other language). The style you use is just as good
as any other as long as you strive to attain the following goals:

• Portability

Consistency

• Neatness

Easy maintenance

Easy understanding

Simplicity

Whichever style you use, I would emphasize that it should be adopted consistently throughout all
your projects. I would further insist that a single style be adopted by all team members in a large
project. To this end, I would recommend that a C programming style document be formalized for your
organization. Adopting a common coding style reduces code maintenance headaches and costs. Adopt
ing a common style will avoid code rewrites. This section describes the C programming style I use.
The main emphasis on the programming style presented here is to make the source code easy to follow
and maintain.

I don't like to limit the width of my C source code to 80 characters just because today's monitors
only allow you to display 80 characters wide. My limitation is actually how many characters can be
printed on an 8.5" x 11" page using compressed mode (17 characters per inch). Using compressed
mode, you can accommodate up to 132 characters and have enough room on the left of the page for
holes for insertion in a three ring binder. Allowing 132 characters per line prevents having to interleave
source code with comments. The code provided in this book uses 105 characters per line. This limita
tion is imposed by the publisher.

B.Ol.02 Header

The header of a C source file looks as shown below. Your company name and address can be on the first
few lines followed by a title describing the contents of the file. A copyright notice is included to give
warning of the proprietary nature of the software.

•

574 - Embedded Systems Building Blocks, Second Edition

1*
**

*

*
*
*
*

*
*
* Filename

* Programmer (s l :

* Description

Company Name

Address

(cl Copyright 20xx, Company Name, City, State

All Rights Reserved

**

*1

I*$PAGE*I

The name of the file is supplied followed by the name of the progranuner(s). The name of the pro
grammer who created the file is given first. The last item in the header is a description of the contents of
the file.

I like to dictate when page breaks occur. This is done by inserting the special comment /*$PAGE* /
whenever you want a page break. The file is printed using a utility that I wrote called HPLISTC (see
Appendix D). When HPLISTC encounters this comment, it sends a form feed character to the printer.

8.01.03 Revision History

Because of the dynamic nature of software, I always include a section in the source file to describe
changes made to the file. You may either maintain version control manually or automate the process by
using a version control software package. I prefer to use version control software because it takes care
of a number of chores automatically. The version control section contains the different revision levels,
date and time and a short description of each of the different revision levels. Revision history should
start on a page boundary.

1*
**

* REVISION HISTORY

**

*1

I*$PAGE*/

8.01.04 IncludeFiles

The header files needed foryour project immediately follow the revision history section. You may
either list only the header 'files required for the module or combine header files in a single header file

Appendix B: Programming Conventions - 575

like I do in a file called INCLUDES. H. I like to use an INCLUDES. Hheader file because it prevents you
from having to remember which header file goes with which source file especially when new modules
are added. The only inconvenience is that it takes longer to compile each file.

/*

*** ******_* ** * *** ****** *** * * **** **--'k-* **** * * ** * **** ** * * ***** * ** * ** ***** * **** *** * * **

* INCLUDE FILES

**

*/

#include "INCLUDES. H"

/*$PAGE*/

B.Ol.05 Naming Identifiers

C compilers which conform to the ANSI X3Jll standard (most C compilers do by now) allow up to 32
characters for identifier names. Identifiers are variables, structure/union members, functions, macros,
#defines, and so on. Descriptive identifiers can be formulated using this 32 character feature and the
use of acronyms, abbreviations, and mnemonics (see the Acronym, Abbreviation, and Mnemonic Dic
tionary, Appendix C). Identifier names should reflect what the identifier is used for. I like to use a hier
archical method when creating an identifier. For instance, the function OSSernPend () indicates that it
is part of the operating system (OS), it is a semaphore (Sem) and the operation being performed is to
wait (Pend) for the semaphore. This method allows me to group all functions related to semaphores
together.

Variable names should be declared on separate lines rather than combining them on a single line.
Separate lines make it easy to provide a descriptive comment for each variable.

I use the filename as a prefix for variables that are either local (static) or global to the file. This
makes it clear that the variables are being used locally and globally. For example, local and global vari
ables of a file named KEY. C are declared as follows:

static INT16U KeyCharCnt;

static char KeyInBuf[lOO];

char KeyInChar;

/*$PAGE*/

/* Number of keys pressed */

/* Storage buffer to hold chars */

/* Character typed */

Uppercase characters are used to separate words in an identifier. I prefer to use this technique versus B
making use of the underscore character, CJ because underscores do not add any meaning to names and
also use up character spaces.

Global variables (external to the file) can use any name as long as they contain a mixture of upper
case and lowercase characters and are prefixed with the module/file name (i.e., all global keyboard
related variable names would be prefixed with the word Key).

Formal arguments to a function and local variables within a function are declared in lowercase. The
lowercase makes it obvious that such variables are local to a function; global variables will contain a

576 - Embedded Systems Building Blocks, Second Edition

mixture of upper- and lowercase characters. To make variables readable, you can use the underscore
character (i.e., _).

Within functions, certain variable names can be reserved to always have the same meaning. Some
examples are given below but others can be used as long as consistency is maintained.

i, j and k

p1, p2 ... pn

c, c1 ... en

s, sl '" sn

ix, iyand iz

fx, fyand fz

for loop counters.

for pointers.

for characters.

for strings.

for intermediate integer variables

for intermediate floating point variables

To summarize:

• formal parameters in a function declaration should only contain lowercase characters.

auto variable names should only contain lowercase characters.

static variables and functions should use the file/module name (or a portion of it) as a prefix and
should make use of upper- and lowercase characters.

extern variables and functions should use the file/module name (or a portion of it) as a prefix and
should make use of upper- and lowercase characters.

B.01.06 Acronyms, Abbreviations, & Mnemonics

When creating names for variables and functions (identifiers), it is often the practice to use acronyms
(e.g. as, ISR, TeB and so on), abbreviations (buf, doc, etc.) and mnemonics (clr, crnp, etc.). The use
of acronyms, abbreviations, and mnemonics allows an identifier to be descriptive while requiring fewer
characters. Unfortunately, if acronyms, abbreviations, and mnemonics are not used consistently, they
may add confusion. To ensure consistency, I have opted to create a list of acronyms, abbreviations, and
mnemonics that I use in all my projects. The same acronym, abbreviation, or mnemonic is used
throughout, once it is assigned. I call this list the Acronym, Abbreviation, and Mnemonic Dictionary
(see Appendix C). As I need more acronyms, abbreviations, or mnemonics, I simply add them to the
list.

There might be instances where one list for all products doesn't make sense. For instance, if you are
an engineering firm working on a project for different clients and the products that you develop are
totally unrelated, then a different list for each project would be more appropriate; the vocabulary for the
farming industry is not the same as the vocabulary for the defense industry. I use the rule that if all
products are similar, they use the same dictionary.

A common dictionary to a project team will also increase the team's productivity. It is important
that consistency be maintained throughout a project, irrespective of the individual programmer(s). Once
buf has been agreed to mean "buffer" it should be used by all project members instead of having some
individuals use buffer and others use bfr. To further this concept, you should always use buf even if
your identifier can accommodate the full name; stick to buf even if you can fully write the word
"buffer."

Appendix C provides the acronyms, abbreviations, and mnemonics dictionary that I used for this
book. Note that some of the words are the same in both columns. This is done to indicate that there is
no acronym, abbreviation, or mnemonic which would better describe the word on the left.

Appendix B: Programming Conventions - 577

B.Ol.07 Comments

I find it very difficult to mentally separate code from comments when code and comments are inter
leaved. Because of this, I never interleave code with comments. Comments are written to the right of
the actual C code. When large comments are necessary, they are written in the function description
header.

Comments are lined up as shown in the following example. The comment terminators (* /) do not
need to be lined up, but for neatness I prefer to do so. It is not necessary to have one comment per line
since a comment could apply to a few lines.

f*

**

atoi ()

* Description Function to convert string's' to an integer.

* Arguments ASCII string to convert to integer.

(All characters in the string must be decimal digits (0 .. 9»

* Returns String converted to an 'int'

**

*f

int atoi (char *s)

f* For all valid characters and not end of string *f

f* Convert char to int and add to partial result *f

f* position on next character to convert *f

int n;

n = 0;

while (*s >= '0' && *s <= '9' && *s) {

n = 10 * n + *8 - 10';

S++;

f* Partial result of conversion

f* Initialize result

*f

*f

return (n);

f*$PAGE* f

B.Ol.08#defines

f* Return the result of the converted string *f

Header files (.H) and C source files (.C) might require that constants and macros be defined. Constants
and macros are always written in uppercase with the underscore character used to separate words. Note B
that hexadecimal numbers are always written with a lowercase x and all uppercase letters for hexadeci-
mal A through F.

578 - Embedded Systems Building Blocks, Second Edition

/*

**

* CONSTANTS & MACROS

**

*/

#define KEY_FF

#define KEY_CR

#define KEY_BUF_FULL ()

/*$PAGE*/

B.Ol.09 Data Types

OxOF

OxOD
(KeyNRd > 0)

C allows you to create new data types using the typedef keyword. I declare all data types using upper
case characters, and thus follow the same rule used for constants and macros. There is never a problem
confusing constants, macros, and data types because of the context in which they are used. Since differ
ent microprocessors have different word length, I like to declare the following data types (assuming
Borland C++ V4.51):

/*

**

* DATA TYPES

**

*/

typedef unsigned char BOOLEAN; /* Boolean */

typedef unsigned char INT8U; /* 8 bit unsigned */

typedef char INT8S; /* 8 bit signed */

typedef unsigned int INTl6U; /* 16 bit unsigned */

typedef int INT16S; /* 16 bit signed */

typedef unsigned long INT32U; /* 32 bit unsigned */

typedef long INT32S; /* 32 bit signed */

typedef float FP; /* Floating Point */

/*$PAGE* /

Using these #defines, you will always know the size of each data type.

B.Ol.OIO LocalVariables

Some source modules will require that local variables be available. These variables are only needed for
the source file (file scope) and should thus be hidden from the other modules. Hiding these variables is

Appendix B: Programming Conventions - 579

accomplished in C by using the static keyword. Variables can either be listed in alphabetical order or
in functional order.

/*

**

* LOCAL VARIABLES

**

*/

static char KeyBuf[lOO];

static INT16S KeyNRd;

/*$PAGE*/

B.Ol.Oll Function Prototypes

This section contains the prototypes (or calling conventions) used by the functions declared in the file.
The order in which functions are prototyped should be the order in which the functions are declared in
the file. This order allows you to quickly locate the position of a function when the file is printed.

/*

**

* FUNCTION PRararYPES

**

*/

void KeyClrBuf (void) ;

static BOOLEAN KeyChkStat(void);

static INT16S KeyGetcnt(int ch);

/*$PAGE*/

Also note that the static keyword, the returned data type, and the function names are all aligned.

B.Ol.012 Function Declarations

As much as possible, there should only be one function per page when code listings are printed on a B
printer. A comment block should precede each function. All comment blocks should look as shown
below. A description of the function should be given and should include as much information as neces-
sary. If the combination of the comment block and the source code extends past a printed page, a page
break should be forced (preferably between the end of the comment block and the start of the function).
This allows the function to be on a page by itself and prevents having a page break in the middle of the
function. If the function itself is longer than a printed page then it should be broken by a page break
comment (I * $PAGE* I) in a logical location (i.e., at the end of an if statement instead of in the middle
of one).

580 - Embedded Systems Building Blocks, Second Edition

More than one small function can be declared on a single page. They should all, however, contain
the comment block describing the function. The beginning of a function should start at least two lines
after the end of the previous function.

1*

**

*
*

CLEAR KEYBOARD BUFFER

* Description Flush keyboard buffer

* Arguments none

* Returns none

* Notes none

**

*1

void KeyClrBuf (void)

I*$PAGE*I

Functions that are only used within the file should be declared static to hide them from other
functions in different files.

By convention, I always call all invocations of the function without a space between the function
name and the open parenthesis of the argument list. Because of this, I place a space between the name
of the function and the opening parenthesis of the argument list in the function declaration as shown
above. This is done so that I can quickly find the function definition using a grep utility.

Function names should make use of the filename as a prefix. This prefix makes it easy to locate
function declarations in medium to large projects. It also makes it very easy to know where these func
tions are declared. For example, all functions in a file named KEY. C and functions in a file named
VIDEO. C could be declared as follows:

• KEY.C
KeyGetChar ()
KeyGetLine ()
KeyGetFnctKey ()

• VIDEO.C
VideoGetAttr ()
VideoPutChar ()
VideoPutStr ()
VideoSetAttr ()

It's not necessary to use the whole file/module name as a prefix. For example, a file called KEYBOARD. C
could have functions starting with Key instead of Keyboard It is also preferable to use uppercase charac
ters to separate words in a function name instead of using underscores. Again, underscores don't add any
meaning to names and they use up character spaces. As mentioned previously,formal parameters and local
variables should be in lowercase. This makes it clear that such variables have a scope limited to the function.

Appendix B: Programming Conventions - 581

Each local variable name must be declared on its own line. This allows the programmer to comment
each one as needed. Local variables are indented four spaces. The statements for the function are sepa
rated from the local variables by three spaces. Declarations of local variables should be physically sep
arated from the statements because they are different.

B.Ol.013 Indentation

Indentation is important to show the flow of the function. The question is, how many spaces are needed
for indentation? One space is obviously not enough while 8 spaces is too much. The compromise I use
is four spaces. I also never use TABs, because various printers will interpret TABs differently; and your
code may not look as you want. Avoiding TABs does not mean that you can't use the TAB key on your
keyboard. A good editor will give you the option to replace TABs with spaces (in this case, 4 spaces).

A space follows the keywords if, for, while, and do. The keyword else has the privilege of hav
ing one before and one after it if curly braces are used. I write if (condition) on its own line and the
statement(s) to execute on the next following line(s) as follows:

instead of the following method:

There are two reasons for this method. The first is that I like to keep the decision portion apart from
the execution statement(s). The second reason is consistency with the method I use for while, for,
and do statements.

switch statements are treated as any other conditional statement. Note that the case statements are
lined up with the case label. The important point here is that swi tch statements must be easy to follow.
cases should also be separated from one another.

II

582 - Embedded Systems Building Blocks, Second Edition

if (z < LIM) {

x = y + z;

z = 10;

else {

x y - z;

z -25;

for (i = 0; i < MAX_ITER; i++) {

*p2++

xx[ij

*pl++;

0;

while (*pl)

*p2++ = *pl++;

cnt++;

switch (key) {

case KEY_BS

if (cnt > 0) {

p--;

cnt--;

break;

case KEY_CR :

*p = NUL;

break;

p++;

break;

default:

*p++ key;

cnt++;

break;

Appendix B: Programming Conventions - 583

do

ent--;

*p2++ = *p1++;

while lent> 0);

B.Ol.014 S1lltements & Expressions

All statements and expressions should be made to fit on a single source line. I never use more than one
assignment per line such as:

x = y = z = 1;

Even though this is correct in C, when the variable names get more complicated, the intent might not
be as obvious.

The following operators are written with no space around them:

->

[]

Structure pointer operator

Structure member operator

Array subscripting

p->m

s.m

a [i]

Parentheses after function names have no space(s) before them. A space should be introduced after
each comma to separate each actual argument in a function. Expressions within parentheses are written
with no space after the opening parenthesis and no space before the closing parenthesis. Commas and
semicolons should have one space after them.

strncat(t, s, n);

for Ii = 0; i < n; i++)

The unary operators are written with no space between them and their operands:

!p -b ++i --j (long)m *p &x sizeoflk)

The binary operators is preceded and followed by one or more spaces, as is the ternary operator:

c1 = c2 x + Y i += 2 n > 0 ? n : -n;

The keywords if, while, for, swi tell, and return are followed by one space.
For assignments, numbers are lined up in columns as if you were to add them (assuming you hard

code numbers). The equal signs are also lined up.

x 100.567;

temp 12.700;

var5 0.768;

variable 12;

storage &array[O];

II

584 - Embedded Systems Building Blocks, Second Edition

B.Ol.015 Structures and Unions

Structures are typedef since this allows a single name to represent the structure. The structure type is
declared using all uppercase characters with underscore characters used to separate words.

typedef struct line {

int LineStartX;

int LineStartY;

int LineEndX;

int LineEndY;

int LineColor;

} LINE;

typedef struct point {

int PointposX;

int PointPosY;

int PointColor;

POINT;

/* Structure that defines a LINE

/* 'X' & 'Y' starting coordinate

/* 'X' & 'Y' ending coordinate

/* Color of line to draw

/* Structure that defines a POINT

/* 'X' & 'Y' coordinate of point

/* Color of point

*/

*/

*/

*/

*/

*/

*/

Structure members start with the same prefix (as shown in the examples above). Member names
should start with the name of the structure type (or a portion of it). This makes it clear when pointers
are used to reference members of a structure such as:

p->LineColor;

B.Ol.016 ReservedKeywords

/* We know that 'p' is a pointer to LINE */

The following keywords should never be used for identifiers. These keywords are reserved in the C++
language as defined by Bjarne Stroustrup and are thus reserved for future compatibility.

asm

class

• delete

• overload

• private

• protected

public

• friend

• handle

• new

operator

• template

• this

• virtual

Appendix B: Programming Conventions - 585

B.02 Bibliography
Babich, Wayne A.
Software Configuration Management
Reading, Massachusetts
Addison-Wesley Publishing Company, 1986
ISBN 0-201-10161-0

Long, David W. and Duff, Christopher P.
A Survey ofProcesses Used in the Development ofFirmware for a

Multiprocessor Embedded System
Hewlett-Packard Journal, October 1993, p.59-65

McConnell, Steve
Code Complete
Redmond, Washington
Microsoft Press, 1993
ISBN 1-55615-484-4

Merant, Inc.
PVCS Version Manager
735 SW 158thAvenue
Beaverton, OR 97006
(503) 645-1150

Merant, Inc.
PVCS Configuration Builder
735 SW 158thAvenue
Beaverton, OR 97006
(503) 645-1150

II

586 - Embedded Systems Building Blocks, Second Edition

AppendixC

Acronym, Abbreviation, and
Mnemonic Dictionary
Naming functions and variables might seem trivial but good function and variable names are a sign of
superior programs. When creating names for variables and functions (identifiers), it is often the practice
to use acronyms (e.g., as, ISR, TCB), abbreviations (buf, doc, etc.), and mnemonics (clr, cmp, etc.).
The use of acronyms, abbreviations, and mnemonics allows an identifier to be descriptive while requir
ing fewer characters. Unfortunately, if acronyms, abbreviations, and mnemonics are not used consis
tently, they may add confusion. To ensure consistency, I created a list of acronyms, abbreviations, and
mnemonics that I use in all my projects. Once assigned, the same acronym, abbreviation, or mnemonic
is used consistently. I call this list the Acronym, Abbreviation, and Mnemonic Dictionary. As I need
more acronyms, abbreviations, or mnemonics, I simply add them to the list.

Table C.I shows the acronyms, abbreviations, and mnemonics dictionary that I used for this book.
Note that some of the words are the same in both columns. This is done to indicate that there is no acro
nym, abbreviation, or mnemonic which would better describe the word on the left. A shaded entry in
Table C.I indicates that an acronym, abbreviation, or mnemonic has been used.

You can combine acronyms, abbreviations, and mnemonics to make up a full function or variable
name. For example:

1. Calculate Cursor Position could be CurCalcPos.

2. Get Keyboard Buffer could be KeyBufGet.

3. Clear Counter Group could be ClrCtrGrp.

4. Clear Alarm Status could be AlmstatClr.

In fact, I prefer to group related items by their names. You may have noticed that all functions and
variables within each module in this book start with the acronym, abbreviation, or mnemonic of the
module (or file) name. This allows you to quickly know where each function or variable is declared.

587

Action Act

Analog Input(s) Al

Analog I/O AlO

All All

Alarm AIm

Analog Output(s) AO

Argument(s) Arg

Bar Bar

Bit Bit

Buffer Buf

Bypass Bypass

Calibration Cal

Calculate Calc

Configuration Cfg

Channel Ch

Change Change

Check Chk

Clock Clk

Clear Clr

Clear Screen CIs

Command Cmd

Compare Cmp

Count Cnt

Column Col

Communication Comm

Control Ctrl

Context Ctx

Current Cur

Cursor Cursor

Control Word CW

Date Date

Day Day

Debounce Debounce

Decimal Dec

588 - Embedded Systems Building Blocks, Second Edition

Table C.l Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic
1 Addition Add

2
3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20
21

22
23

24

25
26

27
28

29
30

31

32

33

34

35

~--~~~~

Appendix C: Acronym. Abbreviation, and Mnemonic Dictionary - 589

Table c.t Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic

36 Decode Decode

37 Define Def

38 Delete Del

39 DetectlDetection Detect

40 Discrete Input(s) DI

41 Digit Dig

42 Discrete I/O DlO

43 Disable Dis

44 Display Disp

45 Division Div

46 Divisor Div

47 Division Div

48 Delay DIy

49 Discrete Output(s) DO

50 Day-of-week DOW

51 Down Down

52 Dummy Dummy

53 Edge Edge

54 Empty Empty

55 Enable En

56 Enter Enter

57 Entries Entries

58 Error(s) Err

59 Engineering Units EU

60 Event(s) Event

61 Exit Exit

62 Exponent Exp

63 Flag Flag

64 Flush Flush

65 Function(s) Fnct

66 Format Format

67 Fraction Fract II68 Free Free

69 Full Full

70 Gain Gain

Group(s) Grp

Handler Handler

Hexadecimal Hex

High Hi

Hit Hit

High Priority Task HPT

Hour(s) Hr

I.D. Id

Idle Idle

Input(s) In

Initialization Init

Initialize Init

Interrupt Int

Invert Inv

Interrupt Service Routine ISR

Index Ix

Key Key

Keyboard Key

Limit Lim

List List

Low Lo

Lower Lo

Lowest Lo

Lock Lock

Low Priority Task LPT

Mantissa Man

Manual Man

Maximum Max

Mailbox Mbox

Minimum Min

Minute(s) Min

Mode Mode

Month Month

Message Msg

590 - Embedded Systems Building Blocks, Second Edition

Table C.l Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic

71 Get Get

72

73

74
75

76
77

78

79

80

81

82
83
84

85

86

87

88

89

90

91

92
93

94

95

96
97

98
99

100
101

102

103

104
105

Appendix C: Acronym, Abbreviation, and Mnemonic Dictionary - 591

Table C.1 Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic

106 Mask Msk

107 Multiplication Mul

108 Multiplex Mux

109 Number of N

110 Nesting Nesting

111 New New

112 Next Next

113 Offset Offset

114 Old Old

115 Operating System OS

116 Output Out

117 Overflow Ovf

118 Pass Pass

119 Port Port

120 Position Pos

121 Previous Prev

122 Priority Prio

123 Printer Prt

124 Pointer Ptr

125 Put Put

126 Queue Q

127 Raw Raw

128 Recall ReI

129 Read Rd

130 Ready Rdy

131 Register Reg

132 Reset Reset

133 Resume Resume

134 Ring Ring

135 Row Row

136 Repeat Rpt

137 Real-Time RT II138 Running Running

139 Receive Rx

140 Scale Scale

592 - Embedded Systems Building Blocks, Second Edition

Table C.l Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic

143 Schedule Sched

144 Scheduler Sched

145 Screen Scr

146 Second(s) Sec

147 Segment(s) Seg

148 Select Sel

149 Semaphore Sem

lSI Scale Factor SF

153 Seven-segments SS

ISS Statistic(s) Stat

156 Status Stat

158 Stack Stk

160 String Str

161 Subtraction Sub

163 Switch Sw

164 Synchronize Sync

166 Table Tbl

167 Threshold Th

170 Timer Tmr

171 Trigger Trig

172 Time-stamp TS

173 Transmit Tx

-------------- ------------

Appendix C: Acronym, Abbreviation, and Mnemonic Dictionary - 593

Table C.l Acronyms, abbreviations, and mnemonics dictionary.

Description Acronym, abbreviation, or mnemonic
176 Update Update

177 Value Val

178 Vector Vect

179 Write Wr

180 Year Year
181

182

183

184

185

186
187

188

189

190

191

192

193

194

195

196

197

198

199

II

594 - Embedded Systems Building Blocks, Second Edition

AppendixD

HPLISTC and TO
HPLISTC and TO are MS-DOS utilities that are provided in both executable and source form for your
convenience.

D.OO HPLISTC

HPLISTC is an MS-DOS utility to print C source files on an HP Laserjet printer. HPLISTC will print
your source code in compressed mode; 17 characters per inch (CPI). An 8 112" x l I" page (portrait)
will accommodate up to 132 characters. An 11" x 8 112" page (landscape) will accommodate up to 175
characters. Once the source code is printed, HPLISTC return the printer to its normal print mode.

The main directory for HPLISTC is C: \SOFTWARE\HPLISTC. HPLISTC is provided in two files:
HPLISTC. EXE (see C: \SOFTWARE\HPLISTC\EXE) is the MS-DOS executable and HPLISTC. C (see
C: \ SOFTWARE\HPLISTC \ SOURCE)is the source code.

HPLISTC prints the current date and time, the filename, its extension, and the page number at the top
of each page. An optional title can also be printed at the top of each page. As HPLISTC prints the source
code, it looks for two special comments: /*$TITLE=* / or /*$title=* / and /*$PAGE* / or
/*$page* /.

The / * $TITLE= * / comment is used to specify the title to be printed on the second line of each
page. You can define a new title for each page by using the / *$TITLE= * / comment. The new title will
be printed at the top of the next page. For example:

/*$TITLE=Matrix Keyboard Driver*/

will set the title for the next page to Matrix Keyboard Driver, and this title will be printed on each subse
quent page of your source code until the title is changed again.

The /*$PAGE* / comment is used to force a page break in your source code listing. HPLISTC will
not eject the page unless you specifically specify the /*$PAGE* / comment. If you do not force a page
break using the /*$PAGE* / comment, a short function may be printed on two separate pages if a page
break is forced by the printer when it reaches its maximum number of lines per page. The page number

595

596 - Embedded Systems Building Blocks, Second Edition

on the top of each page actually indicates the number of occurrences of the /*$PAGE* / comment
encountered by LISTC or HPLISTC.

Before each line is printed, HPLISTC prints a line count that can be used for reference purposes.
HPLISTCalso allows you to print source code in landscape mode. The programs are invoked as follows:

HPLISTC filename.ext [L I 1] [destination]

where filename. ext is the name of the file to print and destination is the destination of the print
out. Since HPLISTC sends the output to stdout, the printout can be redirected to a file, a printer (pRN,
LPTI, LPT2, etc.), or a COM port (COM1, COM2, etc.) by using the MS-DOS redirector >. By default,
HPLISTC outputs to the monitor.

Lor 1 (lowercase L) means to print the file in landscape mode, allowing you to print about 175 col
umns wide!

D.Ol TO

TOis an MS-DOS utility that allows you to go to a directory without having to type:

CD path

or

CD .. \path

TOis probably the MS-DOS utility I use the most because it allows me to move between directories
very quickly. At the DOS prompt, you simply type TO followed by the name you associated with a
directory and then press Enter as follows:

TO name

where name is a name you associated with a path. The names and paths are placed in an ASCII file
called TO. TBL, which resides in the root directory of the current drive. TOscans TO.TBLfor the name
you specified on the command line. If the name exists in TO.TBL, the directory is changed to the path
specified with the name. If name is not found in TO.TBL, the message Invalid NAME. is displayed.

The main directory for TO is C: \ SOFTWARE\ TO. TO is provided in three files: TO. EXE (see
C: \ SOFTWARE \TO\EXE) is the MS-DOS executable, TO.TBLis an example of the correspondance table
between your name and the desired directory associated with this name (see C: \ SOFTWARE\ TO\EXE),
and TO. C(see C: \ SOFTWARE\ TO\ SOURCE) is the source code.

The format of TO.TBL is shown in Listing D.l. Note that the name must be separated from the
desired path by a comma.

Appendix D: HPLISTCand w- 597

Listing D.l Format of TO. TBL

name, path

name, path

name, path

An example of TO.TBL is shown in Listing D.2.

Listing D.2 Example of TO. TBL

A,

C,

D,

L,

0,

P,

T,

W,

AIO,

CLK,

COMM,

DIO,

IX86L-FP,

KEY_MN,

LCD,

LED,

LISTC,

TMR,

TO,

UCOS,

UCOS-II,

.. \ SOURCE

.. \SOURCE

•• \DOC

.. \LST

.. \OID

.. \PROD

.. \TEST

.. \WORK

\SOFTWARE\BLOCKS\AIO\SOURCE

\ SOFTWARE\BLOCKS\CLK\SOURCE

\ SOFTWARE\BLOCKS\CQMM\SOURCE

\ SOFTWARE\BLOCKS\DIO\SOURCE

\SOFTWARE\UCOS-II\IX86L-FP

\ SOFTWARE\BLOCKS\ KEY_MN\ SOURCE

\ SOFTWARE\BLOCKS\ LCD\ SOURCE

\ SOFTWARE\BLOCKS\LED\SOURCE

\ SOFTWARE\BLOCKS\HPLISTC\ SOURCE

\ SOFTWARE\ BLOCKS\ TMR\SOURCE

\SOFTWARE\TO\SOURCE

\SOFTWARE\UCOS\SOURCE

\ SOFTWARE\UCOS-II \ SOURCE

You may optionally add an entry by typing the path associated with a name on the command line
prompt as follows:

TO name path
-

II

598 - Embedded Systems Building Blocks, Second Edition

In this case, TOwill append this new entry at the end of TO. TBL. This avoids having to use a text editor
to add a new entry to TO. TBL. If you type:

TO AIO

then TOwill change directory to \ SOFTWARE\ BLOCKS\AIO\ SOURCE. Similarly, if you type:

TO elk

then TO will change directory to \SOFTWARE\BLOCKS\CLK\SOURCE. TO. TBL can be as long as
needed, but each name must be unique. Note that two names can be associated with the same directory.
If you add entries in TO. TBL using a text editor, all entries must be entered in uppercase. When you
invoke TO at the DOS prompt, the name you specify is converted to uppercase before the program
searches through the table. TO. TBL is searched linearly from the first entry to the last. For faster
response, you may want to place your most frequently used directories at the beginning of the file.

AppendixE

Companion CD-ROM
R&D Books has included a companion CD-ROM to Embedded Systems Building Blocks, Complete and
Ready-to-Use Modules in C. The CD-ROM is in MS-DOS format and contains all the source code pro
vided in this book. The data sheets of the electronic components I have used are also on the companion
CD-ROM in PDF format,

E.OO Hardware/Software Requirements

Hardware:

Fixed Disk Capacity:

System Memory:

Operating System:

PCIAT compatible system

5 Megabytes free

640K bytes of RAM

MS-DOS, Windows 95, Windows 98, or Windows NT

E.01 Installation

Use the Install.bat file to decompress and transfer the ESBB files from the CD to your system.
Install.bat expects 2 arguments.

I. Load DOS or open a DOS window under Windows 95/98/NT and specify the C: drive as the default
drive.

2. Insert the CD-ROM in your CD drive.

3. Type: <cd-drive>:INSTALL <cd-drive> [destination].

where <cd-drive> is the drive letter of your CD-ROM and [destination] is the drive letter where
you want ESBB installed. For example, to install ESBB on your hard disk drive E: from a CD drive H: ,

you would type:

H: INSTALL H E

599

600 - Embedded Systems Building Blocks, Second Edition

INSTALL will create the following directory on the specified destination drive:

\SOF1WARE

INSTALL will then change the directory to \SOF1WARE and copy the file ESBB.EXE from drive

<cd-drive>: to this directory. INSTALL will then execute ESBB. EXE, which will create all other
directories under \SOF1WARE and transfer all source and executable files provided in this book (see
Directory Structure, below). Upon completion, INSTALL will delete ESBB. EXE and change the direc
tory to \ SOF1WARE\BLOCKS \ SAMPLE\TEST.

NOTE: Make sure you read the READ.ME file on the companion CD-ROM for last minute
changes and notes.

E.02 Directory Structure
Once INSTALL has completed, your destination drive will contain the following subdirectories:

\SOF1WARE

The main directory from the root where all software-related files are placed.

\ SOF1WARE \ BLOCKS

The main directory where all building blocks are located.

\ SOF1WARE\BLOCKS\AIO\ SOURCE

This directory contains the source code for the analog UO module (Chapter 10). The files in this
directory are AIO. C and AIO . H.

\ SOF1WARE\BLOCKS \CLK\ SOURCE

This directory contains the source code for the clock/calendar module (Chapter 6). The files in this
directory are CLK. C and CLK. H.

\ SOF1WARE\ BLOCKS\COMM\ SOURCE

This directory contains the source code for the asynchronous serial communication modules COMM_

PC, COMMBUFl, and COMMBUF2 (Chapter 11). The files in this directory are:

COMM_PC . C, COMM_PC . H and COMM_PCA.ASM.

COMMBGND. C and COMMBGND. H

COMMRTOS •C and COMMRTOS . H

\SOF1WARE\BLOCKS\DIO\SOURCE

This directory contains the source code for the discrete UO module (Chapter 8). The files in this
directory are DIO.C and DIO.H.

\ SOF1WARE\BLOCKS \KEY_MN\SOURCE

This directory contains the source code for the keyboard scanning module presented in Chapter 3.
The source files are KEY. C and KEY . H.

\SOF1WARE\BLOCKS\LCD\SOURCE

This directory contains the source code for the character LCD module presented in Chapter 5. The
source files are LCD. C and LCD. H.

\ SOF1WARE\BLOCKS\LED\ SOURCE

This directory contains the source code for the multiplexed LED module presented in Chapter 4. The
source files are LED. C, LED_IA. ASM, and LED. H.

Appendix E: Companion CD-ROM - 601

\SOFTWARE\BLOCKS\PC\BC45
This directory contains the source code for PC related services (see Chapter 1). The files in this
directory are PC. C and PC •H.

\ SOFTWARE \ BLOCKS\ SAMPLE\ SOURCE
This directory contains the source code for the sample code (see Chapter 1). The files in this direc
tory are: CFG. C, CFG. H, INCLUDES. H, OS_CFG. H, TEST. C, and TEST. LNK.

\ SOFTWARE \ BLOCKS\ SAMPLE\TEST
This directory contains the pre-compiled DOS executable TEST. EXE. You can run this executable
by opening a DOS window under either Windows 95, Windows 98, or Windows NT.

This dicrectory also contains a 'batch' file (MAKETEST•BAT) that will rebuild the object files
using the Borland 'MAKE' utility and the 'makefile' TEST. MAK. Note that the makefile assumes
that the Borland C/C++ compiler is located in the E: \BC45 \BIN directory but you can easily
change that by editing TEST. MAK (see BORLAND and BORLAND_EXE in TEST. MAK).

\ SOFTWARE\ BLOCKS\ SAMPLE\OBJ
This directory contains the compiled object files for the building blocks that are used in TEST. EXE.
You will find the following files in this directory:

AIO.OBJ
CFG.OBJ

CLK.OBJ
COMMRTOS .OBJ

COID:LPC. OBJ

COID:LPCA.OBJ
DIO.OBJ
KEY.OBJ

LCD.OBJ
OS_CPU_A.OBJ

OS_CPU_C.OBJ
PC.OBJ

TEST.OBJ

TMR.OBJ
UCOS_II.OBJ
TEST.EXE

TEST.MAP
UCOS_II .OBJ contains the pre-compiled object code for ~c/os-n. You can obtain the source code
for ~C/OS-II by obtaining a copy of my other book, MicroC/OS-ll, The Real-Time Kernel, ISBN
0-87930-543-6.

OS_CPU_A.OBJ, OS_CPU_C.OBJ are the processor specific code for ~c/os-n for an Intel (or
AMD) 80x86. The code also supports hardware floating-point.

• \ SOFTWARE\ BLOCKS\ TMR\ SOURCE
This directory contains the source code for the timer manager module (Chapter 7). The source files
are TMR. C and TMR.H.

• \SOFTWARE\HPLISTC
This directory contains HPLISTC (Appendix D). The source file HPLISTC. C is found in \SOFT

WARE\HPLISTC\SOURCE. The DOS executable file HPLISTC. EXE is found in the \SOFT

WARE\HPLISTC\EXE directory.

602 - Embedded Systems Building Blocks, Second Edition

\ SOFTWARE\TO
This directory contains the files for the TOutility (Appendix D). The source file is TO, C and is found
in the \SOFTWARE\TO\SOURCE directory. The DOS executable file (TO.EXE) is found in the
\ SOFTWARE\ TO\EXE directory. Note that TO requires a file called TO. TEL which must reside on
your root directory. A example of TO. TEL is also found in the . EXE directory. You will need to
move TO. TBLto the root directory if you are to use TO. EXE.

\ SOFTWARE\UCOS-II\ Ix86L-FP\BC45
This directory contains the file OS_CPU.Hwhich is the header file for the processor specific code for
~C/OS-I1 and the 80x86 processor which supports hardware floating-point support.

\ SOFTWARE\UCOS-II\ SOURCE
This directory contains the file uCOS_II . H which is the header file for ~C/OS-I1. This file is used
by your application code to gain access to ~C/OS-I1's API (Application Program Interface).

E.03 Finding Errors
I have done everything I could to test the code provided in this book. If you find errors, I would like to
know about them so that I can correct them or visit my web site at www.uCOS-II.com

You can reach me through e-mail at:Jean.Labrosse@uCOS-II.com
You can also contact me through R&D Books or by sending me a letter at:

Jean 1. Labrosse
949 Crestview Circle
Weston, FL 33327
U.S.A.

E.04 Licensing
Embedded Systems Building Blocks (ESBB) source code and object code can be freely distributed (to
students) by accredited colleges and universities without requiring a license, as long as there is no com
mercial application involved. In other words, no licensing is required if ESBB is used for educational
use.

You must obtain an Object Code Distribution License to embed any ESBB code (i.e., module) in a
commercial product. There will be a fee for such situations, and you will need to contact me for pricing.

You must obtain an Source Code Distribution License to distribute ESBB's source code. Again,
there is a fee for such a license, and you will need to contact me for pricing. You can contact me at
Jean. Labrosse@uCOS-II . com or visit my web site at www.uCOS-II.com

Write me at the address provided above, or call at:

(954) 217-2036
(954) 217-2037 (fax)

Index

Symbols
~C/OS-II xiii, xxi, 1, 7, 194,231-232,244, 286,

365, 423--424, 453, 498, 500, 509, 518, 535,
601--602

See also Appendix A

Numerics
8018690,96

A
ABSENT 255
abstraction

data 2
actuators 327
AUDC21, 328-331,336-338, 344, 350, 365
address

logical 256, 259
AICfgCal () 349
AICfgConv () 350
AICfgScaling() 352
AIGet () 346, 354, 356
AIOInit() 344,355,366
AISetBypass () 356
AISetBypassEn() 357
alarm clock 191-192, 194,202
alarm trips 195

American Standard Code for Information Inter
change

See ASCII
amplifier 328, 340
analog 327
analog input channel 328
analog-to-digital

converter
SeeADC

conversion 327-328
anode 134
AOCfgCal() 358
AOCfgConv() 359
AOCfgScaling() 360
AOSet () 347,362
AOSetBypass () 363
AOSetBypassEn() 364
aperture time 330
API xiii, 602
Application Programming Interfaces

See API
ASCII 79,402, 412
assembly language 96
asynchronous 62, 88, 278
asynchronous communications

See Chapter 11
asynchronous blinking 262, 266-267
auto-repeat 101, 104, 108

delay 104

603

604lndex-B

B
backlighting 161
bargraph 173
baud rate 401,404,425
Baud Rate Generator 402
BCD (Binary Coded Decimal) 402
bilateral rendezvous 83
Binary Coded Decimal

See BCD
BIOS 497
Blink Enable Select Switch 262, 278
blinking 261, 266, 278, 286

asynchronous 20, 262,266-267
synchronous 20, 266,285

breadboard 2
buffer 412

circular 412
ring 412--413, 417--418, 424, 434--436, 443

Bypass Switch 259, 262

c
calibrated

components 339
cathode 134--135
CFG.c4,6
CFG.H4,6
chaining the vectors 499
channel 328

analog input 344--346, 349
discrete input 258
discrete output 261
logical 258, 261

character 496
character LCD modules 163, 165
circular buffer 412
CLK.C 192
CLK.H 192, 206
CLK_DATE_EN 206
CLK_DLY_TICKS 206
CLK_TASK_PRIO 206
CLK_TS_EN 206
CLK_USE_DLY194,206
ClkFonnatDate () 196
ClkFormatTirne () 196,198
ClkFormatTS () 199

ClkGetTS () 200
ClkIni t () 201
ClkMakeTS () 202
ClkSetDate () 203
ClkSetDateTirne() 204
ClkSetTirne () 205
ClkSignalClk () 194,206
ClkTask () 193-194
ClkUpdateDate () 193
ClkUpdateDOW() 193
ClkUpdateTirne () 193
clock tick 69,86,94--96, 192, 194,231-232,244,

445,450
clock/calendar 191-195, 206
clocks 191-195,206
Cold Junction 370
COMM_Pc423

and COMMRTOS 453
and COMMBGND 452

CornrnlISR() 424,432
Cornrn2ISR() 424,432
COMMBGND 434

and COMM_PC 452
CornrnCfgPort () 425
CornrnGetChar() 435,437,443,445,448
CornrnGetTxChar () 424, 436, 443
CornrnIni t () 438, 447
CornrnIsErnpty() 435,439,448
CornrnIsFull() 440,449
CornrnISRHandler() 424,434--436
CornrnPutChar () 435,441,450
CornrnPutRxChar() 424,443
CornrnRclIntVect() 433
COMMRTOS 442

and COMM_PC 453
CornrnRxFlush () 427
CornrnRxIntDis() 428
CornrnRxIntEn () 429
CornrnSetIntVect() 432
CornrnTxIntDis() 430
CornrnTxIntEn () 431
communication 65, 80, 85

asynchronous
See Chapter 11

compensation
thermocouple 370

conditioning
input 328

configuration 2, 4, 6, 20
conjunctive synchronization 84-85
context switch 65, 71, 77-78, 90
control register 164,402
conversion

analog-to-digital327-328
digital-to-analog 327, 340
speed 330, 340
time 330, 340

cooperative multitasking 66
countdown 240-243

timer 230, 236
counting semaphore 77, 80-81
critical section of code 63
current-to-pressure transducer 340

D
DAC 21, 340-341, 344, 348, 359, 366
data

abstraction 2
communication protocols 400, 402
register 164

DCE 403-404, 406
deadlock 82
deadly embrace 82
debounce period 104, 107
delay 66,71,94-97

auto-repeat 104
delta list 232
deterministic 68
DI_EDGE_EN 268, 286
DI_MODE_DIRECT 271
DI_MODE_EDGE_BOTH 271
DI_MODE_EDGE_HIGH_GOING 271
DI_MODE_EDGE_LOW_GOING 271
DI_MODE_HIGH 271
DI_MODE_INV 271
DI_MODE_LOW 271
DI_MODE_TOGGLE_HIGH_GOING 271
DI_MODE_TOGGLE_LOW_GOING 271
DICfgEdgeDetectFnct() 269
DICfgMode () 271
DIClr () 273
DIGet () 257-258,271,274,276-277

D-Index 605

Digital to Analog Converter
SeeDAC

digital-to-analog conversion 327, 340
Dijkstra, Edsgar 77
DIO_TASK.-DLY_TICKS 263, 271
DIOIni t () 263, 275, 287
DIOIni tIO () 286-287
DIOTask () 263
DIRd () 263-264, 286
disable 75-76, 82, 85, 88, 93

scheduling 77
DISABLED 255
disabling interrupts 75, 82, 85, 88
discrete 255

input channel 258, 264-265, 286
inputs 255-259
output channel 261-262, 265-266, 287
outputs 256, 259-261, 263

DISetBypass() 276-277
DISetBypassEn () 276-277
disjunctive synchronization 84
DISP_DLY_CNTS178
DISP_SEL_CMD_REG178
DISP_SEL_DATA_REG 178
dispatcher 66
DispChar () 168
DispClrLine () 169
DispClrScr() 140-141,170
DispDataWr () 178
DispDefChar() 171
DispDigMsk 137
DispHorBar () 173
DispHorBarInit () 174-175
DispInit () 140,142,146,176
DispIni tPort () 146, 178
displays 133

alphanumeric 162
character 162
custom 162

DispMuxHandler() 146
DispMuxISR () 138, 146
DispOutDig () 146
DispOutSeg () 146
DispSegTblIx 137
DispSel () 178
DispStatClr () 140, 143
DispStatSet () 140, 144
DispStr() 139-140,145,177

606 Index-E

DIWr() 286
DO_BLINICEN 278
DO_BLINK_EN_INV 278
DO_BLINK_EN_NORMAL 278
DO_BLINK_MODE_EN 268, 286
DO_MODE_BLINK_ASYNC 280
DO_MODE_BLINK_SYNC280
DO_MODE_DIRECT 280
DO_MODE_HIGH280
DO_MODE_LOW 280
DOCfgBlink() 267,278,280,287
DOCfgMode() 280, 287
OOGet () 281
DORMANT 63
DOSet () 261,280,282
DOSetBypass () 280, 283
DOSetBypassEn(} 284
DOSetSyncCtrMax() 266,280,285,287
driver 80
drivers/receivers 405
DTE 403-404, 406-407
duty-cycle 9
dynamic 71

E
E.U.

See Engineering Units
EBCDIC (Extended Binary Coded Decimal Inter

change Code) 402
EIA (Electronic Industries Association) 403

drivers/receivers 405
EL 161
electroluminescent light

SeeEL
Electronic Industries Association

See EIA
enable scheduling 77
ENABLED 255
enabling interrupts 75-76,82,85,88,91
encapsulate 79,82
End Of Conversion signal

SeeEOC
Engineering Units (E.U.) 327,337,346
EOC 331-333
event flags 84
events 62, 66, 83-84, 88, 94, 97

exclusive access 63, 66, 68, 75, 79, 82, 85
execute 62-63, 66, 68-69, 71-72, 74, 77-78,83,

88-90,92,94-96
execution time 62,74,90,94-96
exponent 317-321
Extended Binary Coded Decimal Interchange

Code
See EBCDIC

F
FALSE 255
feature 71,82,93,97
FIFO 78, 86-87
filter 328, 340

low pass 328
fixed-point math

See Chapter 9
fixed-point numbers 315-317, 319-321
flag 82
flickering 135
floating-point 82, 96

arithmetic 344
hardware 1
math 315
numbers 177

flow control 412
FSV 341
full-duplex 399, 402, 434
functions

interface 2, 167

G
Gender Changer 406
ghosting 138
global variable 4

H
half-duplex 399, 408
heartbeat 94
Hitachi HD44780 LCD module controller 161,

163, 165, 168
HPLISTC

See Appendix D

I
Ito P 340
I/O device

polling 411
I/Os 255
IC 336

iIDE xiii
lIER<431
.HiIQJtIIDES. H 3-4, 6, 12
initialization 80, 88
inputs

analog::21
conditioning 328
.discrete 9, 19,256-259

.installation
ESBB 1

instruction register 164
Integrated Circuit 336
Integrated Development Environment

See IDE
interface

functions 2, 167
interrupt 63, 66, 69, 75-77,82,88,90-94,96-97

latency 66, 76, 78, 82, 88-93, 98
nesting 89,94,97
recovery 90, 98
response 89-90, 98
service routine 62, 87-88

Interrupt Vector Address 422
interrupt-driven 400,411,420
intertaskcommunication85
Invert Select Switch 262
ISR 62-63,66-69, 76-78, 82-83, 85-94,97,422
IVT 432-433

J
jitter 94, 96
I-Type thermocouple 370

I-Index 607

K
kernel 63, 65-73, 75-78,82-84,86-94,96-98
key

prefix 104-105
Shift 101, 104-106, 111

KECRPT_DLY 108
KEY~SCAN_TASK_DLY 107-108,114,116
keyboard

matrix 104-105, 109-110, 114-115
module 115
scanning 101, 103-104, 106, 114
switch 1l(tl2

KeyBufIn () ili08
KeyDecode () 1108
KeyFlush () 109-110,116
KeyGetCol () ars
KeyGetKey () 108-109,111,116
KeyGetKeyDoWEiTimeL) 109,H2, 116
KeyHit() 109,113,116
KeyInit () 107, 109, 114-115
KeyInitPort () 115
KeyScanTask() 106-108,114-115
KeySelRow () 115
keystroke 103-104

L
landscape 595
LCD xx, 161-167, 171,173,176,178

(defined) 161
straight line 618

LCD.C 165
LCD.H 165,178
LED xx, 133-136, 140, 143-144, 146-147

(defined) 133
displays, seven-segment 134-135
multiplexed 133
multiplexing 136
turning on 134

LED.C 136
LED.H 136,146
LED_IA.ASM136-137,146
Light Emitting Diode

See LED
linear bargraph 173
linked list 82

608 Index-M

Liquid Crystal Display
See LCD

list
delta 232

literals 15
locked 77
logical

address 256, 259
channel 258, 261

low pass filter 328

M
m x n matrix keyboard 101
macro 75
mailbox 66,85-87,91,97
mantissa 317-321, 323
mark 401
mask 257, 260
maskable 92
MASTER 408-409
MASTERlSLAVE 408
matrix keyboard 105-107, 109-110, ll4-ll5
Maxim 7219136
message

exchange 86
mailbox 86
queue 85, 87-88

MicroC/OS-II, The Real-Time Kernel 7
microprocessor 82,88,91,96,98
Mode Select Switch 259, 262
module 162

countdown timer 229
keyboard ll5
timer manager 230

momentary contact switch 101-102
multi-drop 408
multiplexer 328, 330, 332
multiplexing 137, 146--147

(defined) 135
LED 135

multitasking 63, 65--66, 69, 71, 77, 82, 96--97,
176--177

mutual exclusion 63, 66, 68, 75, 77-78, 82

N
n-key rollover 103
NMI91-94
node 408

I.D.408
nondeterministic 62, 67
nonmaskable interrupt 93-94
non-preemptive 66--67, 88-90, 92, 98
non-reentrant 66, 68--69
Null Modem adapter 406

o
OFF 255-256
offline 330
ON 255-256, 263
OS_CPU. H557
OS_ENTER_CRITICAL() 6,75,556
OS_EXIT_CRITICAL() 6,75,556
OSIni t () 537
OSIntEnter () 90
OSIntExit () 90
OSSemCreate () 538
OSSemPend() 78,539
OSSemPost() 78,541
OSStart() 543
OSStatInit () 544
OSTaskCreate() 545
OSTaskCreateExt() 548
OSTimeDly () 552
OSTimeDlyHMSM() 553
OSVersion () 555
outputs 256

analog 21
discrete 9, 19,256,259-261,263

overhead 65, 82, 89, 91, 94, 97

p
parameters

physical 328
party-line 408
pass count 350, 359
PC services

See Chapter I2
PC. C 495, 520

PC.H495
PC_DispChar () 502
PC_DispClrCol() 503
PC_DispClrRow() 504
PC_DispClrScr() 505
PC_DispStr() 506
PC_DOSReturn() 508
PC_DOSSaveReturn() 509
PC_Elapsedlnit() 510
PC_ElapsedStart () 16,18
PC_ElapsedStop () 17-18,513
PC_GetDateTime() 514
PC_GetKey () 515
PC_SetTickRate() 516
PC_VectGet() 517
PC_VectSet() 518
PEND 77,87-88
period

debounce 104
periodic 74
physical parameters 328
point-to-point interface 407
polling 420

the 1/0 device 411
portrait 595
POST 77,87-88
PPI 115, 163,287
preempted 71
preemptive 66-69, 71-72, 74,78,88-90,93,97-

98
prefix key 104-105
PRESENT 255
priority 63, 66-74, 77-78,83,86-88,90-91,94

96
inheritance 71-73
inversion 71-72

processing time 82, 91-92, 94
processor 62, 76, 82, 88, 90, 94, 97
Programmable Peripheral Interface

SeePPI
PSW 422
push button 102
PVCS 572

Q-Index 609

Q
quantization size 329
quantizing 328
quantum 329
queues 66, 97

R
radix point 316-317
READY 63
real-time 61, 63, 65-67,71,73-74,76,88,96-98
real-time kernel 414
reentrant function 68-69
registers 63, 65, 68, 88-89, 97, 410, 422, 424

control164,402
data 164
instruction 164
status 402

rendezvous 82-83
Resistance Temperature Device

SeeRTD
resolution 329,337,340
resource 63, 71-72, 74-77, 79-80,82,87,97
response 62, 66-68, 76, 79-80, 89-93
responsiveness 67
RMS74
rollover 103

n-key 103
round-robin scheduling 70
RS-232C 400, 403-404, 407, 412, 420
RS-485 399-400,407-411
RID (Resistance Temperature Device) 346, 369
RTOS 97-98
RUNNING 63

s
samp1e-and-hold328

circuit 330
samples 330
scale factor 317
scaled 316-317
scan code 103-106,108,111,116
scanning 350, 359

keyboard 101, 103-104, 106, 114

610 Index- T

scheduler 66, 77
disabling 77
enabling 77

Seebeck voltage 370
semaphore 66, 69, 71-72, 75, 77-83, 85, 87, 91,

94,96-97
services 66,84,86-88,90,92-94,97-98
settling time 340
seven-segment 140, 145

LED displays 134--135
lookup table 139

shared resource 63, 71-72, 75, 77
Shift key 101, 104--106, 111
signal 77, 82-84, 91-92, 94
simplex 399
SLAVE 408-409
space 401
speed

conversion 330
stack 63,65,68--69,89,97
start delay

auto-repeat 104
start signal 401
state 63
static priorities 70
status register 402, 411
stop signal 401
structures 65, 75-77, 97
suspend 87-88
switch 65, 69, 71, 77-78,90, 94, 284

blink enable select 262, 278
bypass 259
invert select 262
keyboard 102
mode select 259,262
statementI96,198-199

synchronization 82, 84--85
synchronize 74, 77, 82-84
synchronous blinking 262, 266, 285

T
TAS 76-77
tasks 62-63, 65-80, 82-88, 90--97

delayed 94
multiple 64-65,69,79,84
priority 70
response 98
states 65
switch 65

TEST. C 6, 8-9
TEST.EXE9
TEST. LNK 6
TEST.MAK7
TestAIOTask () 21
Test-And-Set 75-76
TestClkTask () 16
TestDIOTask () 19
TestDispLit () 15
TestInitModules () 11-12
TestRxTask () 22
TestStatTask() 11-12,15
TestTmrOTO() 18
TestTmrlTO() 19
TestTmrTask () 18
TestTxTask () 22
Texas Instruments 408
thermocouple compensation 370
THR (Transmitter Holding Register) 410-411
throttle 327
tick 94--96
time

aperture 330
conversion 330

timeout78-79,82,86-87
timers 229
timestamp 18, 191-195, 199-200,202,206

(defined) 191
TMR_DLY_TICKS 244
TMR_MAX_TMR 234, 244
TMR_TASK_PRI0244
TMR_TASK_STK_SIZE244
TMR_USE_SEM 244
TmrCfgFnct () 234
TmrChk () 236
TmrFormat () 237
Tmrlni t () 238
TmrReset () 239

TrnrSetMST () 240
TrnrSetT () 241
TrnrStart () 240, 242
TrnrStop() 242-243
TO

See Appendix D
transducer 328, 340
Transmitter Holding Register

SeeTHR
Transmitter Shift Register

SeeTSR
TRUE 255
TSR (Transmitter Shift Register) 410-411
typematic 104

u
UART 436, 441
UART (Universal Asynchronous Receiver Trans

mitter) xvii, 402,405,407,410-411,417-418,
422-424,434-435,443,452

uCGS_II .H559
unilateral rendezvous 82-83
Universal Asynchronous Receiver Transmitter

See UART
user interface

code 117-118

v
V->I Converter 341
variable

global 4
vcsn
Version Control

See VC
voice coil 327
voltage

Seebeck 370

w
WAIT 78
WAITING 63
waiting 77-78, 83, 86-87, 94
www.uCOS-II. com xxi

x
XON-XOFF 412
xxx_GLOBALS 4

U-Index 611

