
Linux Kernel Development
How Fast it is Going, Who is Doing It, What They are Doing,
and Who is Sponsoring It: An August 2009 Update

Greg Kroah-Hartman, SuSE Labs / Novell Inc.
Jonathan Corbet, LWN.net
Amanda McPherson, The Linux Foundation

page 1

Linux Kernel Development

The kernel which forms the core of the Linux system is the result of one of the largest cooperative

software projects ever attempted. Regular 2-3 month releases deliver stable updates to Linux

users, each with significant new features, added device support, and improved performance.

The rate of change in the kernel is high and increasing, with over 10,000 patches going into each

recent kernel release. These releases each contain the work of over 1000 developers representing

around 200 corporations.

Since 2005, over 5000 individual developers from nearly 500 different companies have contributed to the
kernel. The Linux kernel, thus, has become a common resource developed on a massive scale by companies
which are fierce competitors in other areas.

A number of changes have been noted since this paper was first published in 2008:

• We have seen a roughly 10% increase in the number of developers contributing to each kernel release
cycle.

• The rate of change has increased significantly; the number of lines of code added to the kernel
each day has nearly tripled.

• The kernel code base has grown by over 2.7 million lines

The overall picture shows a robust development community which continues to grow both in size and in
productivity.

INTRODUCTION

The Linux kernel is the lowest level of software running on a Linux system. It is charged with

managing the hardware, running user programs, and maintaining the overall security and integrity

of the whole system. It is this kernel which, after its initial release by Linus Torvalds in 1991, jump-

started the development of Linux as a whole. The kernel is a relatively small part of the software

on a full Linux system (many other large components come from the GNU project, the GNOME

and KDE desktop projects, the X.org project, and many other sources), but it is the core which

determines how well the system will work and is the piece which is truly unique to Linux.

The Linux kernel is an interesting project to study for a number of reasons. It is one of the largest individual
components on almost any Linux system. It also features one of the fastest-moving development processes
and involves more developers than any other open source project. Since 2005, kernel development history is
also quite well documented, thanks to the use of the Git source code management system.

This paper takes advantage of that development history to look at how the process works, focusing on over
four years of kernel history as represented by the 2.6.11 through 2.6.30 releases. This is the second version of
this paper, following up on http://www.linuxfoundation.org/publications/linuxkerneldevelopment.php
which was published in April, 2008, and covered development through the 2.6.24 kernel. A look at the six
kernel releases which have happened since then shows that, while many things remain the same, others are
changing. In particular, the pace of development of the Linux kernel continues to increase.

page 2

Linux Kernel Development

DEVELOPMENT MODEL

Linux kernel development proceeds under a loose, time-based release model, with a new major

kernel release occuring every 2–3 months. This model, which was first formalized in 2005, gets

new features into the mainline kernel and out to users with a minimum of delay. That, in turn,

speeds the pace of development and minimizes the number of external changes that distributors

need to apply. As a result, distributor kernels contain relatively few distribution-specific changes;

this leads to higher quality and fewer differences between distributions.

One significant change since the previous version of this paper is the establishment of the linux-next
tree. Linux-next serves as a staging area for the next kernel development cycle; as of this writing, 2.6.31 is in
the stabilization phase, so linux-next contains changes intended for 2.6.32. This repository gives developers a
better view of which changes are coming in the future and helps them to ensure that there will be a minimum
of integration problems when the next development cycle begins. Linux-next smooths out the development
cycle, helping it to scale to higher rates of change.

After each mainline 2.6 release, the kernel’s “stable team” (currently made up of Greg Kroah-Hartman
and Chris Wright) takes up short-term maintenance, applying important fixes as they are developed. The
stable process ensures that important fixes are made available to distributors and users and that they are
incorporated into future mainline releases as well. The stable maintenance period lasts a minimum of one
development cycle and, for specific kernel releases, can go significantly longer.

This paper focuses exclusively on the mainline 2.6.x releases, to the exclusion of the stable updates. Those
updates are small, and, in any case, the design of the development process requires that fixes accepted for
-stable also be accepted into the mainline for the next major release.

RELEASE FREQUENCY

The desired release period for a major kernel release is, by common consensus, 8–12 weeks. The

actual time between kernel releases tends to vary a bit, depending on the size of the release and

the difficulty encountered in tracking down the last regressions. Since 2.6.11, the actual kernel

release history looks like:

 TABLE 1

Kernel
Version

Release
Date

Days of
Development

2.6.11 2005-03-02 69
2.6.12 2005-05-17 108
2.6.13 2005-08-28 73
2.6.14 2005-10-27 61
2.6.15 2006-01-02 68
2.6.16 2006-03-19 77
2.6.17 2006-06-17 91
2.6.18 2006-09-19 95
2.6.19 2006-11-29 72
2.6.20 2007-02-04 68
2.6.21 2007-04-25 81
2.6.22 2007-07-08 75

page 3

Linux Kernel Development

Kernel
Version

Release
Date

Days of
Development

2.6.23 2007-10-09 94
2.6.24 2008-01-24 108
2.6.25 2008-04-16 83
2.6.26 2008-07-13 88
2.6.27 2008-10-09 88
2.6.28 2008-12-24 76
2.6.29 2009-03-23 89
2.6.30 2009-06-09 78

The average kernel development cycle currently runs for 81 days, just under twelve weeks.

Rate of Change

When preparing work for submission to the Linux kernel, developers break their changes down into small,
individual units, called patches. These patches usually do only one thing to the source code; they are built
on top of each other, modifying the source code by changing, adding, or removing lines of code. Each
patch should, when applied, yield a kernel which still builds and works properly. This discipline forces kernel
developers to break their changes down into small, logical pieces; as a result, each change can be reviewed
for code quality and correctness. One other result is that the number of individual changes that go into each
kernel release is very large, as can be seen in Table 2.

 TABLE 2

Kernel
Version

Changes
(patches)

2.6.11 3,616
2.6.12 5,047
2.6.13 3,904
2.6.14 3,627
2.6.15 4,959
2.6.16 5,369
2.6.17 5,727
2.6.18 6,323
2.6.19 6,685
2.6.20 4,768
2.6.21 5,016
2.6.22 6,526
2.6.23 6,662
2.6.24 9,836
2.6.25 12,243
2.6.26 9,941
2.6.27 10,628
2.6.28 9,048
2.6.29 11,678
2.6.30 11,989

page 4

Linux Kernel Development

By taking into account the amount of time required for each kernel release, one can arrive at the number of
changes accepted into the kernel per hour. The results can be seen in Table 3:

 TABLE 3

Kernel
Version

Changes
per Hour

2.6.11 2.18
2.6.12 1.95
2.6.13 2.23
2.6.14 2.48
2.6.15 3.04
2.6.16 2.91
2.6.17 2.62
2.6.18 2.22
2.6.19 3.87
2.6.20 2.92
2.6.21 2.58
2.6.22 3.63
2.6.23 2.95
2.6.24 3.79
2.6.25 6.15
2.6.26 4.71
2.6.27 5.03
2.6.28 4.96
2.6.29 5.47
2.6.30 6.40

So, between the 2.6.11 and 2.6.30 kernel releases (which were 1560 days apart), there were, on average, 3.83
patches applied to the kernel tree per hour. In the time since the publication of the first version of this paper,
that rate has been significantly higher: 5.45 patches per hour. As the Linux kernel grows, the rate of change is
growing with it.

page 5

Linux Kernel Development

KERNEL SOURCE SIZE

It is worth noting that this figure understates the total level of activity; most patches go through a

number of revisions before being accepted into the mainline kernel, and many are never accepted

at all. The ability to sustain this rate of change for years is unprecedented in any previous public

software project. The Linux kernel keeps growing in size over time as more hardware is supported

and new features are added. For the following numbers, we have counted everything in the

released Linux source package as “source code’’ even though a small percentage of the total is the

scripts used to configure and build the kernel, as well as a minor amount of documentation. Those

files, too, are part of the larger work, and thus merit being counted.

The information in the following table shows the number of files and lines in each kernel version.

 TABLE 4

Kernel
Version

Files Lines

2.6.11 17,090 6,624,076
2.6.12 17,360 6,777,860
2.6.13 18,090 6,988,800
2.6.14 18,434 7,143,233
2.6.15 18,811 7,290,070
2.6.16 19,251 7,480,062
2.6.17 19,553 7,588,014
2.6.18 20,208 7,752,846
2.6.19 20,936 7,976,221
2.6.20 21,280 8,102,533
2.6.21 21,614 8,246,517
2.6.22 22,411 8,499,410
2.6.23 22,530 8,566,606
2.6.24 23,062 8,859,683
2.6.25 23,813 9,232,592
2.6.26 24,273 9,411,841
2.6.27 24,356 9,630,074
2.6.28 25,276 10,118,757
2.6.29 26,702 10,934,554
2.6.30 27,911 11,560,971

Since the first version of this paper, the kernel has grown by over 2.7 million lines of code. The growth rate of
the kernel has always been high, but it increased significantly after the 2.6.27 kernel release. The main reason
for this change is the addition of the staging tree, which has brought over 800,000 lines of previously out-of-
tree code into the mainline kernel.

But the kernel is not just growing. With every change that is made to the kernel source tree, lines are added,
modified, and deleted in order to accomplish the needed changes. Looking at these numbers, broken down by
days, shows how quickly the kernel source tree is being worked on over time. This can be seen in Table 5:

page 6

Linux Kernel Development

 TABLE 5

Kernel
Version

Lines Added
per Day

Lines Deleted
per Day

Lines Modified
per Day

2.6.11 3,224 1,360 1,290
2.6.12 2,375 951 949
2.6.13 4,443 1,553 1,711
2.6.14 4,181 1,637 1,726
2.6.15 5,614 3,454 2,219
2.6.16 3,853 1,388 1,649
2.6.17 3,635 2,469 1,329
2.6.18 3,230 1,497 1,096
2.6.19 6,013 2,900 1,862
2.6.20 3,120 1,342 1,013
2.6.21 3,256 1,479 982
2.6.22 6,067 2,694 1,523
2.6.23 3,747 3,034 1,343
2.6.24 6,893 4,181 1,563
2.6.25 7,980 3,488 2,430
2.6.26 5,698 3,662 1,815
2.6.27 12,270 9,791 2,102
2.6.28 12,105 5,707 1,850
2.6.29 14,678 5,516 2,454
2.6.30 12,993 4,958 2,830

Summing up these numbers, it comes to an impressive 6,422 lines added, 3,285 lines removed, and 1,687
lines changed every day for the past 4 1/2 years. Since 2.6.24, those number jump to an amazing 10,923 lines
added, 5,547 lines removed, and 2,243 lines changed every day—weekends and holidays included. That rate
of change is larger than any other public software project of any size.

page 7

Linux Kernel Development

WHO IS DOING THE WORK

The number of different developers who are doing Linux kernel development and the identifiable

companies (the identification of the different companies is described in the next section) who are

sponsoring this work, have been increasing over the different kernel versions, as can be seen in the

following table. In fact, the individual development community has doubled in the last three years.

 TABLE 6

Kernel
Version

Number of
Developers

Number of
Known

Companies

2.6.11 389 68
2.6.12 566 90
2.6.13 545 94
2.6.14 553 90
2.6.15 612 108
2.6.16 709 111
2.6.17 726 120
2.6.18 815 133
2.6.19 801 128
2.6.20 673 138
2.6.21 767 143
2.6.22 870 180
2.6.23 912 181
2.6.24 1,057 194
2.6.25 1,123 228
2.6.26 1,027 203
2.6.27 1,021 188
2.6.28 1,075 213
2.6.29 1,180 230
2.6.30 1,150 240
All 4,910 532

These numbers show a consistent increase in the number of developers contributing to each kernel release
over a period of several years.

Despite the large number of individual developers, there is still a relatively small number who are doing the
majority of the work. In any given development cycle, approximately 1/3 of the developers involved contribute
exactly one patch. Over the past 4.5 years, the top 10 individual developers have contributed almost 12% of
the number of changes and the top 30 developers have contributed over 25%. The list of individual developers,
the number of changes they have contributed, and the percentage of the overall total can be seen in Table 7.

page 8

Linux Kernel Development

 TABLE 7

Name
Number of
Changes

Percent of
Total Changes

David S. Miller 2,239 1.5%
Ingo Molnar 2,125 1.5%
Al Viro 1,981 1.4%
Adrian Bunk 1,883 1.3%
Takashi Iwai 1,801 1.2%

Bartlomiej Zolnierkiewicz 1,651 1.1%
Ralf Baechle 1,471 1.0%
Tejun Heo 1,457 1.0%
Stephen Hemminger 1,408 1.0%
Andrew Morton 1,370 0.9%

Paul Mundt 1,331 0.9%
Russell King 1,173 0.8%
Thomas Gleixner 1,164 0.8%
Alan Cox 1,145 0.8%
Greg Kroah-Hartman 1,100 0.8%

Patrick McHardy 1,087 0.8%
Andi Kleen 1,030 0.7%
Jean Delvare 985 0.7%
Mauro Carvalho Chehab 972 0.7%
Christoph Hellwig 970 0.7%

Randy Dunlap 942 0.7%
Ben Dooks 906 0.6%
David Woodhouse 889 0.6%
Johannes Berg 880 0.6%
David Brownell 872 0.6%

Hans Verkuil 856 0.6%
Trond Myklebust 844 0.6%
Michael Krufky 814 0.6%
Alexey Dobriyan 806 0.6%
Herbert Xu 805 0.6%

The above numbers are drawn from the entire git repository history, starting with 2.6.12. If we look at
the commits since the first version of this paper (2.6.24) through 2.6.30, the picture is similar but
not identical (Table 8):

page 9

Linux Kernel Development

 TABLE 8

Name
Number of
Changes

Percent of
Total Changes

Bartlomiej Zolnierkiewicz 1,169 (1.8%)
Ingo Molnar 1,164 (1.8%)
David S. Miller 851 (1.3%)
Chris Mason 717 (1.1%)
Takashi Iwai 711 (1.1%)

Adrian Bunk 708 (1.1%)
Harvey Harrison 669 (1.0%)
Yinghai Lu 609 (0.9%)
Greg Kroah-Hartman 608 (0.9%)
Paul Mundt 570 (0.9%)

Al Viro 550 (0.8%)
Alan Cox 545 (0.8%)
Stephen Hemminger 522 (0.8%)
Hans Verkuil 517 (0.8%)
Steven Rostedt 511 (0.8%)

Mauro Carvalho Chehab 503 (0.8%)
Johannes Berg 483 (0.7%)
Jeremy Fitzhardinge 465 (0.7%)
Ben Dooks 438 (0.7%)
Tejun Heo 430 (0.7%)

Pavel Emelyanov 417 (0.6%)
Mike Frysinger 410 (0.6%)
Glauber Costa 406 (0.6%)
Patrick McHardy 404 (0.6%)
Michael Krufky 398 (0.6%)

Alexey Dobriyan 391 (0.6%)
Mark Brown 390 (0.6%)
Jean Delvare 389 (0.6%)
Thomas Gleixner 388 (0.6%)
Christoph Hellwig 385 (0.6%)

It is amusing to note that Linus Torvalds (729 total changes, 254 since 2.6.24) fell off the top-30 list since
the previous version of this report. Linus remains an active and crucial part of the development process;
his contribution cannot be measured just by the number of changes made. (Obscure technical detail: these
numbers do not count “merge commits,” where one set of changes is merged into another. Linus Torvalds
generates large numbers of merge commits; had these been counted he would have shown up on this list.)
Linus of course does a great deal of reviewing and sign offs of code. Please see the section “Who is Approving
the Work” for further explanation of this.

page 10

Linux Kernel Development

WHO IS SPONSORING THE WORK

The Linux kernel is a resource which is used by a large variety of companies. Many of those

companies never participate in the development of the kernel; they are content with the software

as it is and do not feel the need to help drive its development in any particular direction. But,

as can be seen in the table above, an increasing number of companies are working toward the

improvement of the kernel.

Below we look more closely at the companies which are employing kernel developers. For each developer,
corporate affiliation was obtained through one or more of: (1) the use of company email addresses, (2)
sponsorship information included in the code they submit, or (3) simply asking the developers directly. The
numbers presented are necessarily approximate; developers occasionally change employers, and they may do
personal work out of the office. But they will be close enough to support a number of conclusions.

There are a number of developers for whom we were unable to determine a corporate affiliation; those are
grouped under “unknown” in the table on the next page. With few exceptions, all of the people in this category
have contributed 10 or fewer changes to the kernel over the past three years, yet the large number of these
developers causes their total contribution to be quite high.

The category “None,” instead, represents developers who are known to be doing this work on their own, with
no financial contribution happening from any company.

The top 10 contributors, including the groups “unknown” and “none” make up nearly 70% of the total
contributions to the kernel. It is worth noting that, even if one assumes that all of the “unknown” contributors
were working on their own time, over 70% of all kernel development is demonstrably done by developers who
are being paid for their work.

page 11

Linux Kernel Development

 TABLE 9

Company Name
Number of
Changes

Percent of
Total

None 26,644 18.2%
Red Hat 17,981 12.3%
Unknown 11,164 7.6%
IBM 11,151 7.6%
Novell 11,046 7.6%

Intel 7,782 5.3%
Consultant 3,657 2.5%
Oracle 3,513 2.4%
Linux Foundation 2,345 1.6%
SGI 2,317 1.6%

Parallels 1,939 1.3%
Renesas Technology 1,925 1.3%
Academia 1,712 1.2%
Fujitsu 1,592 1.1%
MontaVista 1,564 1.1%

MIPS Technologies 1,537 1.1%
Analog Devices 1,467 1.0%
HP 1,415 1.0%
Freescale 1,375 0.9%
Google 1,261 0.9%

linutronix 1,246 0.9%
Astaro 1,109 0.8%
NetApp 1,049 0.7%
Marvell 894 0.6%
Nokia 842 0.6%

Simtec 820 0.6%
QLogic 808 0.6%
Movial 776 0.5%
AMD 775 0.5%
Sun 764 0.5%

What we see here is that a small number of companies is responsible for a large portion of the total changes
to the kernel. But there is a “long tail” of companies (500 of which do not appear in the above list) which
have made significant changes. There may be no other examples of such a large, common resource being
supported by such a large group of independent actors in such a collaborative way. The picture since 2.6.24
shows some interesting changes (Table 10):

page 12

Linux Kernel Development

 TABLE 10

Company Name
Number of
Changes

Percent of
Total

None 13,850 21.1%
Red Hat 7,897 12.0%
IBM 4,150 6.3%
Novell 4,021 6.1%
Intel 3,923 6.0%

Unknown 2,765 4.2%
Oracle 2,003 3.1%
Consultant 1,480 2.3%
Parallels 1,142 1.7%
Fujitsu 1,007 1.5%

Academia 992 1.5%
Analog Devices 889 1.4%
Renesas Technology 884 1.3%
SGI 755 1.2%
Movial 738 1.1%

Sun 639 1.0%
HP 628 1.0%
Freescale 613 0.9%
Marvell 601 0.9%
MontaVista 574 0.9%

AMD 552 0.8%
Nokia 549 0.8%
Vyatta 513 0.8%
Google 512 0.8%
Atheros Communications 494 0.8%

NTT 445 0.7%
linutronix 445 0.7%
XenSource 432 0.7%
Simtec 414 0.6%
Astaro 411 0.6%

The increase in the number of developers with no employer is most likely an artifact of better information in our
database—many of them were previously in the “unknown” category. The companies at the top of the listing
are almost the same, and Red Hat maintains its commanding lead here. But we see companies like Oracle
and Fujitsu working up to higher contribution levels and the welcome addition of companies like Atheros which
have made the decision to support their products in the mainline Linux kernel.

page 13

Linux Kernel Development

WHO IS REVIEWING THE WORK

Patches do not normally pass directly into the mainline kernel; instead, they pass through one of

one-hundred or so subsystem trees. Each subsystem tree is dedicated to a specific part of the

kernel (examples might be SCSI drivers, x86 architecture code, or networking) and is under the

control of a specific maintainer. When a subsystem maintainer accepts a patch into a subsystem

tree, he or she will attach a “Signed-off-by” line to it. This line is a statement that the patch can be

legally incorporated into the kernel; the sequence of signoff lines can be used to establish the path

by which each change got into the kernel.

An interesting (if approximate) view of kernel development can be had by looking at signoff lines, and, in
particular, at signoff lines added by developers who are not the original authors of the patches in question.
These additional signoffs are usually an indication of review by a subsystem maintainer. Analysis of signoff
lines gives a picture of who admits code into the kernel—who the gatekeepers are.

Since 2.6.24, the developers who added the most non-author signoff lines are (Table 11):

 TABLE 11

Andrew Morton 6,515 10.5%
Ingo Molnar 6,174 9.9%
David S. Miller 5,954 9.6%
John W. Linville 3,733 6.0%
Mauro Carvalho Chehab 3,363 5.4%

Greg Kroah-Hartman 2,394 3.8%
Jeff Garzik 1,879 3.0%
Thomas Gleixner 1,707 2.7%
Linus Torvalds 1,664 2.7%
James Bottomley 1,302 2.1%

Takashi Iwai 1,093 1.8%
Len Brown 1,033 1.7%
Russell King 891 1.4%
Paul Mackerras 876 1.4%
Bryan Wu 806 1.3%

Avi Kivity 739 1.2%
Jaroslav Kysela 660 1.1%
Martin Schwidefsky 504 0.8%
Ralf Baechle 495 0.8%
Bartlomiej Zolnierkiewicz 486 0.8%

Jesse Barnes 477 0.8%
David Woodhouse 474 0.8%
Roland Dreier 472 0.8%
Paul Mundt 467 0.8%
Jens Axboe 402 0.6%

page 14

Linux Kernel Development

Patrick McHardy 395 0.6%
Lachlan McIlroy 383 0.6%
Kumar Gala 381 0.6%
Benjamin Herrenschmidt 378 0.6%
Mark Fasheh 376 0.6%

From this table, we see that Linus Torvalds directly merges just under 3% of the total patch stream; everything
else comes in by way of the subsystem maintainers.

Associating signoffs with employers yields the following (Table 12):

 TABLE 12

Red Hat 22,652 36.4%
Google 6,530 10.5%
Novell 5,076 8.2%
None 4,717 7.6%
Intel 3,986 6.4%

IBM 3,321 5.3%
linutronix 1,741 2.8%
Linux Foundation 1,666 2.7%
Consultant 1,213 1.9%
Hansen Partnership 965 1.6%

Analog Devices 851 1.4%
SGI 793 1.3%
Oracle 725 1.2%
MIPS Technologies 497 0.8%
Renesas Technology 486 0.8%

Qumranet 477 0.8%
Cisco 474 0.8%
Unknown 452 0.7%
Freescale 447 0.7%
Astaro 395 0.6%

The signoff metric is a loose indication of review, so the above numbers need to be regarded as
approximations only. Still, one can clearly see that subsystem maintainers are rather more concentrated
than kernel developers as a whole; over half of the patches going into the kernel pass through the hands of
developers employed by just three companies.

page 15

Linux Kernel Development

WHY COMPANIES SUPPORT LINUX KERNEL DEVELOPMENT

The list of companies participating in Linux kernel development includes many of the most

successful technology firms in existence. None of these companies are supporting Linux

development as an act of charity; in each case, these companies find that improving the kernel

helps them to be more competitive in their markets. Some examples:

• Companies like IBM, Intel, SGI, MIPS, Freescale, HP, Fujitsu, etc. are all working to ensure that Linux
runs well on their hardware. That, in turn, makes their offerings more attractive to Linux users, resulting
in increased sales.

• Distributors like Red Hat, Novell, and MontaVista have a clear interest in making Linux as capable as it can
be. Though these firms compete strongly with each other for customers, they all work together to make the
Linux kernel better.

• Companies like Sony, Nokia, and Samsung ship Linux as a component of products like video cameras,
television sets, and mobile telephones. Working with the development process helps these companies
ensure that Linux will continue to be a solid base for their products in the future.

• Companies which are not in the information technology business can still find working with Linux
beneficial. The 2.6.25 kernel included an implementation of the PF_CAN network protocol which was
contributed by Volkswagen. 2.6.30 had a patch from Quantum Controls BV, which makes navigational
devices for yachts. These companies find Linux to be a solid platform upon which to build their products;
they contribute to the kernel to help ensure that Linux continues to meet their needs into the future. No
other operating system gives this power to influence future development to its users.

There are a number of good reasons for companies to support the Linux kernel. As a result, Linux has a broad
base of support which is not dependent on any single company. Even if the largest contributor were to cease
participation tomorrow, the Linux kernel would remain on a solid footing with a large and active development
community.

CONCLUSION

The Linux kernel is one of the largest and most successful open source projects that has ever come

about. The huge rate of change and number of individual contributors show that it has a vibrant

and active community, constantly causing the evolution of the kernel in response to number of

different environments it is used in. This rate of change continues to increase, as does the number

of developers and companies involved in the process; thus far, the development process has

proved that it is able to scale up to higher speeds without trouble.

There are enough companies participating to fund the bulk of the development effort, even if many
companies which could benefit from contributing to Linux have, thus far, chosen not to. With the current
expansion of Linux in the server, desktop and embedded markets, it’s reasonable to expect this number
of contributing companies—and individual developers—will continue to increase. The kernel development
community welcomes new developers; individuals or corporations interested in contributing to the Linux
kernel are encouraged to consult “How to participate in the Linux community” (which can be found at
http://ldn.linuxfoundation.org/book/how-participate-linux-community) or to contact the authors of this
paper or the Linux Foundation for more information.

page 16

Linux Kernel Development

THANKS

The authors would like to thank the thousands of individual kernel contributors, without them, papers like this
would not be interesting to anyone.

RESOURCES

Many of the statistics in this article were generated by the “gitdm” tool, written by Jonathan Corbet. Gitdm is
distributable under the GNU GPL; it can be obtained from git://git.lwn.net/gitdm.git.

The information for this paper was retrieved directly from the Linux kernel releases as found at the kernel.org
web site and from the git kernel repository. Some of the logs from the git repository were cleaned up by hand
due to email addresses changing over time, and minor typos in authorship information. A spreadsheet was
used to compute a number of the statistics. All of the logs, scripts, and spreadsheet can be found at
http://www.kernel.org/pub/linux/kernel/people/gregkh/kernel_history/

