
J A N A X E L S O N
author of USB Complete

Embedded
ETHERNET

AND

INTERNET
COMPLETE

Designing and
Programming
Small Devices
for Networking
Create tiny Web servers and use TCP/IP to
communicate over local networks & the Internet

Designing and Programming

Small Devices for Networking

Jan Axelson

Lakeview Research LLC

Madison, WI 53704

copyright 2003 by Jan Axelson. All rights reserved.
Published by Lakeview Research LLC
Cover by Rattray Design. Cover Photo by Bill Bilsley Photography.
Index by Lucie Haskins

Lakeview Research LLC info@Lvr.com
5310 Chinook Ln. www.Lvr.com
Madison, WI 53704

Rights

All rights reserved. No part of this book except the programs and program listings may be
reproduced in any form, or stored in a database or retrieval system, or transmitted or dis-
tributed in any form, by any means, electronic, mechanical photocopying, recording, or
otherwise, without the prior written permission of Lakeview Research LLC or the author.
The programs and program listings, or any portion of these, may be stored and executed in
a computer system and may be incorporated into computer programs developed by the
reader.

Warranty

The information, computer programs, schematic diagrams, documentation, and other
material in this book are provided “as is,” without warranty of any kind, expressed or
implied, including without limitation any warranty concerning the accuracy, adequacy, or
completeness of the material or the results obtained from using the material. Neither the
publisher nor the author shall be responsible for any claims attributable to errors, omis-
sions, or other inaccuracies in the material in this book. In no event shall the publisher or
author be liable for direct, indirect, special, incidental, or consequential damages in con-
nection with, or arising out of, the construction, performance, or other use of the materials
contained herein.

Trademarks

This book contains references to product designations that are claimed as trademarks. In
all instances where Lakeview Research LLC was aware of a trademark claim, the product
designation appears as requested by the trademark owner. All trademarks and registered
trademarks in this book are the property of their respective holders.

ISBN 1-931448-01-9

Contents

 iii

Introduction ix

1. Networking Basics 1
Quick Start:
The Elements of a Network 2

Components 2
Modular Design 4
The Network Protocol Stack 4
Clients and Servers 11
Requirements for Internet Communications 13
A Word about Web Servers 14

In Depth:
Inside Ethernet 14

Advantages 15
Limits 17
Using a PC for Network Communications 19
The IEEE 802.3 Standard 20
Frames 22

Contents

iv

Media Access Control: Deciding When to Transmit 26
Physical Addresses 31
Using a Protocol Analyzer to View Ethernet Traffic 32

2. Building a Network: Hardware Options 35
Quick Start:
Connecting to a PC 36

Components and Configurations 36
Other Options 40

In Depth:
Cables, Connections and Network Speed 41

Cable Types for Different Uses 41
Twisted Pair Cable 44
Fiber Optic Cable 53
Coaxial Cable 61
Connections for Harsh Environments 63
Supplying Power 65
Going Wireless 67
Media Systems 68
Interfacing to Ethernet Controllers 76
Using Repeater Hubs, Ethernet Switches, and Routers 79

3. Design Choices 91
Quick Start:
Selecting Components 92

Complete Solutions 92
Special-Purpose Modules 111

In Depth:
Ethernet Controllers 118

What the Hardware Does 118
Ethernet Controller Basics 120
The ASIX AX88796 122
Realtek RTL8019AS 128
SMSC LAN91C96 130
Cirrus Logic CS8900A 131

4. Using the Internet Protocol
in Local and Internet Communications 133

Quick Start:
Connecting to the Internet 134

Considerations in Obtaining Internet Service 134
Technologies for Connecting 136

Contents

 v

Static and Dynamic IP Addresses 142
Connecting Multiple Computers to the Internet 143
Communicating through a Firewall 144
Obtaining and Using a Domain Name 147

In Depth:
Inside the Internet Protocol 153

What IP Does 153
IP Addresses 156
The IP Header 166
Assigning an IP Address to a Host 170
Matching an IP Address to an Ethernet Interface 175
How a Datagram Finds Its Way to Its Destination 178
The Internet Control Message Protocol (ICMP) 180

5. Exchanging Messages Using UDP and TCP 183
Quick Start:
Basic Communications 183

Configuring a Device for Network Communications 184
Sending UDP Datagrams 191
Receiving UDP Datagrams 201
Exchanging Messages using TCP 208
UDP and TCP from PC Applications 218

In Depth:
Inside UDP and TCP 221

About Sockets and Ports 221
UDP: Just the Basics 225
TCP: Adding Handshaking and Flow Control 229

6. Serving Web Pages with Dynamic Data 243
Quick Start:
Two Approaches 244

Serving a Page with Dynamic Data 245
Rabbit Real-time Web Page 247
TINI Real-time Web Page 254

In Depth:
Protocols for Serving Web Pages 264

Using the Hypertext Transfer Protocol 265
HTTP Versions 266
Elements of an HTTP Message 267
Inside the Hypertext Markup Language 273
Server Side Include Directives 280

Contents

vi

7. Serving Web Pages that Respond to User Input 285
Quick Start:
Device Controller 286

The Device Controller’s Web Page 286
Rabbit Device Controller 288
TINI Device Controller 295

In Depth:
Using CGI and Servlets 312

CGI for Embedded Systems 312
Servlets for Embedded Systems 315
Receiving Form Data 316

8. E-mail for Embedded Systems 339
Quick Start:
Sending and Receiving Messages 340

Sending an E-mail from a Rabbit 341
Sending an E-mail from a TINI 344
Receiving E-mail on a Rabbit 348
Receiving E-mail on a TINI 352

In Depth:
E-mail Protocols 359

How E-mail Works 359
Using the Simple Mail Transfer Protocol 362
Sending E-mail with a URL 371
Using the Post Office Protocol 372

9. Using the File Transfer Protocol 381
Quick Start:
FTP Clients and Servers 382

Rabbit FTP Client 382
TINI FTP Client 389
Rabbit FTP Server 402
TINI FTP Server 407

In Depth:
Inside the File Transfer Protocol 408

Requirements 408
Transferring a File 410
Commands 411
Requesting a File with a URL 418

Contents

 vii

10. Keeping Your Devices and Network Secure 421
Quick Start:
Limiting Access with Passwords 422

Using Basic Authentication 423
Basic Authentication on the Rabbit 425
Basic Authentication on the TINI 428

In Depth:
Four Rules for Securing Your Devices and Local Network 430

Use a Firewall 431
Restrict Access with User Names and Passwords 435
Validate User Data 437
Encrypt Private Data 439

Index 443

Contents

viii

Introduction

 ix

This is a guide to designing and programming embedded systems to com-
municate in local Ethernet networks and on the Internet.

An embedded system is a device that has computer intelligence and is dedi-
cated to performing a single task, or a group of related tasks. Embedded sys-
tems often perform monitoring and control functions such as gathering and
reporting sensor readings or controlling motors and switches. They’re called
embedded systems because the program code is an integral part of, or
embedded in, the devices.

Ethernet is the networking technology used in many offices and homes to
enable computers to communicate and share resources. Many Ethernet net-
works also connect to a router that provides access to the Internet.

For many years, embedded systems and Ethernet networks existed in sepa-
rate worlds. Ethernet was available only to desktop computers and other
large computers. Embedded systems that needed to exchange information

Introduction

x

with other computers were limited to interfaces with low speed, limited
range, or lack of standard application protocols.

But developments in technology and the marketplace now make it possible
for embedded systems to communicate in local Ethernet networks as well as
on the Internet. Network communications can make an embedded system
more powerful and easier to monitor and control. An embedded system can
host a Web site, send and receive e-mail, upload and download files, and
exchange information of any kind with other computers connected via a
network interface.

One development that has made Ethernet feasible for embedded systems is
the availability of inexpensive controller chips to handle the details of Ether-
net communications. The CPUs that provide the processing power for
embedded systems have also gotten faster and more capable of handling the
demands of communicating with the controllers. Internet protocols provide
standard, well-documented ways of exchanging data. Both Ethernet and the
Internet protocols are free and open standards available for use without roy-
alties or licensing fees.

Technologies and Protocols

Designing and programming an embedded system for networking can
require skills and knowledge in a variety of areas in electronics, program-
ming, and networking.

To interface an Ethernet controller to a CPU, you’ll need to know about
hardware design.

To write the program code that controls the system, you’ll need to know
how to write and debug code for your system’s CPU.

To build the network, you’ll need to know how to select and use cables,
repeater hubs, switches, and other network hardware.

To enable sending and receiving data over the local network, you’ll need to
be familiar with the Ethernet protocol.

Introduction

 xi

To enable sending and receiving data over the Internet and some local net-
works, you’ll need to be familiar with Internet protocols.

To serve Web pages, you’ll need to know about Web-page design.

To keep your system and its data safe, you’ll need to know how to imple-
ment measures that provide network security.

This book brings together all of these fields of knowledge with a focus on
how they relate to the networking of embedded systems. Creating a Web
page for a major corporation’s Web site is very different from creating a
home page for a device with limited resources. But designing for small sys-
tems isn’t just a matter of scaling back. For example, a Web page hosted by
an embedded system will almost certainly want to display more than basic
pages with static, unchanging text. Instead, the pages typically provide
real-time information and may want to accept and act on user input as well.

This book shows how to meet the networking and application needs of
embedded systems in spite of their hardware and software limitations of
small devices. In many cases, you can choose to simplify the tasks involved
by using hardware and software modules that do much of the work for you.

Who should read this book?

This book is for anyone who wants to design, program, or learn about net-
working with embedded systems.

These are some of the questions this book answers:

What are the advantages and limits of using Ethernet with embedded
systems? Find out whether Ethernet is the right technology for your project.

What hardware and program code do I need to connect an embedded
system to an Ethernet network? There are many options for creating an
Ethernet-capable embedded controller, from buying a module with hard-
ware and software support for networking to putting it all together from
scratch. This book will help in selecting the components for your systems.

Introduction

xii

How do I build a network? An Ethernet-capable device can’t communicate
if it doesn’t have a network to connect to. Find out how to select network
cables and hubs and use them to put together an Ethernet network

How can I connect my device or network to the Internet? An Internet
connection can extend a device’s reach to the entire Internet. Find out how
to obtain an Internet connection for your device and ensure that your net-
work is configured to enable your device to perform the communications it
requires.

How can my devices send and receive messages over the local network
or the Internet? The Internet and many local networks use the TCP/IP
suite of Internet protocols to send and receive messages of all types. This
book will show you how embedded systems can use these protocols to
exchange messages.

How can I host a Web site on my embedded system? Even a very basic
embedded system can function as a Web server, which responds to requests
from other computers for Web pages. Find out what a device requires to
function as a Web server and how to create the pages your device will serve.

How can my Web server’s pages include dynamic, real-time content and
respond to user input? This book will show how an embedded system can
display up-to-date information and respond to text and other input from
users.

How can my embedded system send and receive e-mail, exchange files
with an FTP server, or host an FTP server that other computers can
access? This book includes examples for each of these applications.

How can I ensure that the programming and other information in my
devices is secure on the Internet? Good security practices can ensure that
unauthorized users can’t change configuration settings or view private infor-
mation in your device. Security practices can also help to prevent problems
due to careless or accidental mistakes. Find out what you need to do to keep
your device and the local network it resides in secure and functioning prop-
erly.

Introduction

 xiii

This book assumes you have a basic knowledge of digital circuit design and
microcontroller or microprocessor programming for embedded systems. I
don’t assume any knowledge of networking.

About the Example Applications

The example applications in this book use two Ethernet-capable modules: a
TINI module from Dallas Semiconductor and a RabbitCore module from
Rabbit Semiconductor. Both are capable and well-supported products that
will enable you to get your projects up and running quickly. You won’t go
wrong using either of these modules.

The TINI examples use the Java programming language. The Rabbit exam-
ples use Dynamic C, Rabbit Semiconductor’s implementation of the C pro-
gramming language for embedded systems. Every application in the book
has both a TINI and RabbitCore example. The book also discusses a num-
ber of other components that are suitable for many projects.

How This Book Is Organized

Each of the chapters in this book has two sections: Quick Start and In
Depth. The Quick Start section gives practical information and examples
that you can put to work right away. The In Depth section has more detail
about the protocols and technologies used in the Quick Start examples.

The order that you read the sections may vary depending on your needs and
preferences. You can read the book straight through for an understanding of
each of the topics in turn. Or to get something up and running quickly, you
might read the Quick Start sections first, referring to the In Depth material
as needed. Or if you prefer to gain a background in a topic before delving
into implementation details, you can read a chapter’s In Depth section
before the Quick Start.

Introduction

xiv

Updates, Corrections, and Additional Resources

The first place to look for more information on the topics covered in this
book is my Embedded Ethernet page at www.Lvr.com, which is the Web site
of this book’s publisher, Lakeview Research. At this location, you’ll find the
following:

• Complete source code for all of the TINI and Rabbit applications in the
book.

• Windows applications for communicating with the TINI and Rabbit
applications.

• Corrections and updates to the book.

• Links to additional resources relating to Ethernet networks and embed-
ded systems.

The text of this book refers to many other information sources, including
standard and specification documents and books with more information
about the topics covered.

Acknowledgments

This book would not be the same without the advice, suggestions, correc-
tions, additions, and other input provided by many capable experts. In par-
ticular, I want to thank Carrie Maha, Owen Magee, and Norman Rogers of
Rabbit Semiconductor; Kris Ardis and Don Loomis of Dallas Semiconduc-
tor; Bruce Boyes of Systronix; Fred Eady of EDTP Electronics; Pete Loshin,
author of TCP/IP Clearly Explained; Shawn Silverman, creator of the
Tynamo Web server; and Charles Spurgeon, author of Ethernet: The Defini-
tive Guide.

I hope you find the book useful! Comments invited.

Jan Axelson

jan@Lvr.com

Networking Basics

 1

Some computers are independent units, with little need to exchange infor-
mation with other computers near or far. At most, these computers may use
local interfaces such as USB or RS-232 to communicate with printers or
other devices close at hand.

But with a network connection, a computer can reach beyond its local inter-
faces to send and receive information of any kind, over distances large and
small, via wires or through the air. Computers of different types can com-
municate using network protocols supported by all. In a network of embed-
ded systems, each system can communicate with the other systems in the
network, sharing information and sending and responding to requests as
needed. Desktop computers in the network can monitor and control the
operation of the embedded systems.

Many local networks follow the networking standard popularly known as
Ethernet. Ethernet networks are capable and flexible. Many products
designed for use in networks have support for Ethernet built in. A router, or

Chapter 1

2

gateway, enables an Ethernet network to communicate with computers in
other networks, including computers on the Internet.

Two or more computers that share a network connection form a local area
network, or LAN. The smallest network links just two computers. For
example, a data logger might connect to a remote computer that receives
and displays the logger’s data. Or a personal computer (PC) may use a net-
work connection to monitor and control a piece of equipment. At the other
extreme, the Internet is the largest network. With an Internet connection,
the computers in a local network can access resources on the Internet and
make local resources available to any computer on the Internet.

To design and program embedded systems for networking, you need to
understand the elements that make up a network, so this chapter begins
with the basics of how networks are structured. Following this is an intro-
duction to Ethernet, including its capabilities and how Ethernet networks
manage network traffic.

Quick Start:
The Elements of a Network

All computer networks have some things in common. Every network must
have the physical components that enable the computers in the network to
exchange data. And in every network, the computers must agree about how
to share the data path that connects the computers, to help ensure that
transmitted data gets to its destination.

Components
All networks include the following physical components:

• Two or more computers that need to communicate with each other. In
the networks described in this book, at least one of the computers is an
embedded system, which is a device that contains a computer dedicated
to a specific task or a series of related tasks.

Networking Basics

 3

• A defined physical interface, to ensure that the output of a transmitting
computer is compatible with the inputs of the receiving computers. For
Ethernet networks, the Ethernet standard specifies this interface.

• Cables or wireless transceivers to connect the computers. Ethernet net-
works have several options for cables. An Ethernet interface may also
connect to a device called a wireless access point, which enables the
embedded system to access a wireless network.

The computers in the network must also agree on the following aspects of
sharing the network:

• Rules for deciding when a computer may transmit on the network.
When multiple computers share a data path, whether in a cable or wire-
less medium, the computers need to know when the path is available for
transmitting. The Ethernet standard contains rules that specify when a
computer may transmit.

• A way of identifying a transmission’s intended destination. In Ethernet
networks, multiple computers may receive a message intended for one
computer in the network. When a message arrives at a computer’s net-
work interface, the computer needs to know whether the message is
intended for itself or another computer. Every communication in an
Ethernet network includes a hardware address that identifies the Ethernet
interface of the intended receiver. Some communications also use Inter-
net protocols that contain additional addressing information, such as an
addresses that identify the sending and receiving computers on the Inter-
net and a port, or process, that receives the communication at the desti-
nation computer.

• A defined format for the information sent on the network, so a computer
can understand and use the information it receives from the network. In
Ethernet networks, all data travels in structures called frames. Each frame
includes fields for data, addressing, and other information that helps the
data reach its destination without errors. The information in a frame’s
data field may also use protocols that help the receiver of the frame
decide what to do with the received data.

Chapter 1

4

Modular Design
To make designing and maintaining a network as easy as possible, most net-
worked computers use modules, or components, that work together to han-
dle the job of network communications. Each module is responsible for a
single task or a small set of related tasks. Each module knows how to
exchange information with one or more of the other modules, but the mod-
ules don’t need to know details about how the other modules accomplish
their tasks.

The modular approach has a couple of benefits. If each module is as inde-
pendent as possible, it’s easier to make changes when needed, possibly even
swapping in a different module entirely, without requiring changes in the
other modules. And isolating problems is easier when a single module con-
tains all of the code to perform a function.

A module may consist of hardware, software, or a combination. A software
module may be as small as a procedure or subroutine within a larger applica-
tion or unit of code. Or a module may be a library of routines or a class or
package of classes in a separate file.

In an embedded system, the program code may be referred to as firmware,
which typically means that the code is stored in Flash memory or another
nonvolatile memory chip, rather than on a disk drive. In general, with soft-
ware stored on a drive, users can install, run, and uninstall applications as
needed. In contrast, firmware tends to be an integral, seldom-changing part
of the device. Users may have the ability to load new firmware into a device,
but the new firmware is typically an update or upgrade to existing code,
rather than an entirely different type of application.

The Network Protocol Stack
You can think of the modules used in networking as being stacked in layers,
one above another. A computer’s network protocol stack consists of the
modules involved with networking. Figure 1-1 shows an example of a net-

Networking Basics

 5

work protocol stack for a computer that connects to an Ethernet network
and supports common Internet protocols.

(To prevent confusion, I should point out that this use of the term stack has
nothing to do with the internal stack of a computer’s central processing unit
(CPU). A CPU’s stack is a special area of memory for temporary storage.
This type of stack has no direct relation to networking.)

At the bottom of the stack is the hardware interface to the network cable. At
the top of the stack is a module or modules that provide data to send on the
network and use the data received from the network. In the middle there

Figure 1-1: The networking support in most computers uses a layered model,
where a variety of components each manage a portion of the job of network
communications.

Chapter 1

6

may be one or more modules involved with addressing, error-checking, and
providing and using status and control information.

In transmitting, a message travels down the stack from the application layer
that initiates the message to the network interface that places the message on
the network. In receiving, the message travels up the stack from the network
interface to the application layer that uses the data in the received message.

The number of layers a message passes through can vary. For some messages
that travel only within a local network, the application layer can communi-
cate directly with the Ethernet driver. Messages that travel on the Internet
must use the Internet Protocol. Messages that use the Internet Protocol can
also use the User Datagram Protocol or the Transmission Control Protocol
to add error checking or flow-control capabilities.

The Application: Providing and Using Network Data

The application provides data to send on the network and uses data received
from the network. An application often has a user interface that enables
users to request data from a computer on the network or provide data to
send on the network. In an embedded system, the user interface may just
enable basic configuring and monitoring functions, while the system per-
forms its network communications without user intervention.

The data that the application sends and receives may be anything: a single
byte; a line of text; a request for a Web page; the contents of a Web page; a
file containing text, an image, binary data, or program code; or anything
that a computer wants to send to another computer in the network.

The data sent by an application follows a protocol, or set of rules, that
enables the application at the receiving computer to understand what to do
with the received data. An application may use a standard protocol such as
the hypertext transfer protocol (HTTP) for requesting and sending Web
pages, the file transfer protocol (FTP) for transferring files, or the simple
mail transfer protocol (SMTP) or Post Office Protocol (POP3) for e-mail
messages. Applications may also send and receive data using application-spe-
cific protocols.

Networking Basics

 7

In an embedded system, the application might be a module that periodically
reads and stores sensor readings or the states of other external signals, or an
application might use received data to control motors, relays, or other cir-
cuits. An embedded system can function as a Web server that receives and
responds to requests for Web pages, which may enable users to provide
input or view real-time data. Embedded systems can send and receive infor-
mation via e-mail and in files via FTP.

An application layer may support multiple processes, or tasks. For example,
a single system might host a Web page and also provide an FTP server that
makes files available for downloading. Port numbers can identify specific
processes at the destination computer.

TCP and UDP: Error Checking, Flow Control, and Ports

A network communication often includes additional information to help
data get to its destination efficiently and without errors. A module that sup-
ports the Transmission Control Protocol (TCP) can add information for use
in error checking, flow control, and identifying an application-level process
at the source and destination computers.

Error-checking values help the receiver detect when received data doesn’t
match what was sent. Flow-control information helps the sender determine
when the receiver is ready for more data. And a value that identifies an
application-level port, or process, can help in routing received data to the
correct process in the application layer.

TCP performs all of these functions. Many Internet and local-network com-
munications such as requests for Web pages and sending and receiving
e-mail use TCP. Windows and other operating systems have support for
TCP built in. Development kits for network-capable embedded systems
often include libraries or packages with TCP support.

In sending data using TCP, the application layer passes the data to send and
values that identify the data’s source and destination to a TCP layer. The
TCP layer creates a TCP segment that consists of a header followed by the
application data (Figure 1-2). The header is a defined structure with fields

Chapter 1

8

containing information used in error checking, flow control, and routing
the message to the correct port at the destination. The TCP layer doesn’t
change the message to be sent. It just places the message in the data portion
of the TCP segment. The TCP segment encapsulates, or provides a con-
tainer for, the data received from the application layer. The TCP layer then
passes the segment to the IP layer for transmitting on the network.

In the other direction, the TCP layer receives a segment from the IP layer,
strips the TCP header, and passes the segment to the port specified in the
TCP header.

A simpler alternative to TCP is the User Datagram Protocol (UDP). Like a
TCP segment, a UDP datagram has a header, followed by a data portion
that contains the application data. UDP includes fields for specifying ports
and optional error-checking, but no support for flow control. Windows and
many development kits for embedded systems include support for UDP.

Chapter 5 has more about TCP and UDP.

In some networks, communications may skip the TCP/UDP layer entirely.
For example, a local network of embedded systems may have no need for

Application Data

UDP Header

UDP
Datagram

Application Data

TCP Header

TCP
Segment

Figure 1-2: The UDP and TCP layers add a header to the data payload before
passing the data down the stack. In the opposite direction, the UDP and TCP
layers strip the headers before passing the data up the stack.

Networking Basics

 9

flow control or additional error-checking beyond what the Ethernet frame
provides. In these cases, an application may communicate directly with a
lower layer in the network protocol stack, such as the IP layer or Ethernet
driver.

IP: Internet Addressing and Routing

The Internet Protocol (IP) layer can help data get to its destination even if
the source and destination computers are on different local networks. As the
name suggests, the Internet Protocol enables computers on the Internet to
communicate with each other. Because IP is closely tied to TCP and UDP,
local networks that use TCP and UDP also use IP.

The term TCP/IP refers to communications that use TCP and IP. The term
can also refer more broadly to the suite of protocols that includes TCP, IP,
and related protocols such as UDP.

In Ethernet networks, a unique hardware address identifies each interface on
the network. IP addresses are more flexible because they aren’t specific to a
network type. A message that uses IP can travel through different types of
networks, including Ethernet, token-ring, and wireless networks, as long as
all of the networks support IP.

In sending a message, the TCP layer passes the TCP segment and the source
and destination addresses to the IP layer. The IP layer encapsulates the TCP
segment in an IP datagram, which consists of a header followed by a data
portion that may contain a UDP datagram or a TCP segment (Figure 1-3).
The header has fields for the source and destination IP addresses, error
checking of the header, routing, and a value that identifies the protocol,
such as TCP or UDP, used by the data portion.

In a similar way, a UDP layer may pass a UDP datagram to the IP layer.

In receiving a message, the IP layer receives an IP datagram from a lower
level in the network stack. The IP layer performs error-checking and uses
the protocol value to determine where to pass the contents of the data por-
tion.

Chapter 1

10

In the IP header, the source and destination IP addresses identify the send-
ing and receiving computers. Each computer in a network that uses IP
addresses must have an address that is unique within the network or net-
works that the sending computer can communicate with. Local networks
can use addresses in three blocks reserved for local networks. A computer
that communicates over the Internet must have an address that is different
from the address of every other computer on the Internet. The Internet Cor-
poration for Assigned Names and Numbers (ICANN) assigns blocks of
addresses to Internet Service Providers and others who may in turn assign
portions of their addresses to other users.

Three protocols often used along with IP for assigning and learning IP
addresses are the dynamic host configuration protocol (DHCP), the domain
name system (DNS) protocol, and the Address Resolution Protocol (ARP).

Application Data

UDP Header

IP Header

UDP
Datagram

IP
Datagram

Application Data

TCP Header

IP Header

TCP
Segment

IP
Datagram

Figure 1-3: The IP layer adds a header to a UDP datagram or TCP segment
before passing the data down the stack. In the opposite direction, the IP layer
strips the IP header before passing a UDP datagram or TCP segment up the
stack.

Networking Basics

 11

A computer functioning as a DHCP server can use DHCP to assign IP
addresses to the computers in a local network. A computer that wants to
learn the IP address of a domain such as Lvr.com can use the DNS protocol
to request the information from a computer functioning as a DNS server.
And a computer that wants to learn the Ethernet hardware address that cor-
responds to an IP address in a local network can broadcast an ARP request
for this information.

Chapter 4 has more details about IP and related protocols.

A communication in a local network that doesn’t use TCP or UDP may not
require IP. Instead, the application layer may communicate directly with a
lower layer such as the Ethernet driver.

The Ethernet Driver and Controller: The Hardware Interface

In an Ethernet network, the interface to the network is an Ethernet control-
ler chip and its driver. The Ethernet driver contains program code that man-
ages communications between the controller chip and a higher level in the
network protocol stack. To send an IP datagram over an Ethernet network,
the IP layer passes the datagram to the Ethernet controller’s driver. The
driver instructs the Ethernet controller to transmit an Ethernet frame con-
taining the datagram, preceded by a header that contains addressing and
error-checking information (Figure 1-4).

In receiving an IP datagram from the network, the Ethernet controller
checks to see if the destination address matches the interface’s hardware
address or a multicast or broadcast address that the controller is configured
to accept. If there is a match, the controller checks for errors and the driver
passes the datagram or an error indication to the IP layer.

Chapter 3 has more about Ethernet controllers.

Clients and Servers
In some networks, the computers may send messages to other computers in
the network at any time. For example, a computer that performs monitoring
functions might send an alarm notification to a master computer as soon as

Chapter 1

12

the condition causing the alarm occurs. The computer doesn’t have to wait
for the master computer to request the information.

In contrast, many other network communications are between a client com-
puter, which requests resources, and a server computer, which provides the
resources on request. A resource may be a Web page, a file, or any other
information the server makes available. By running multiple processes, a sin-
gle computer can function as both a client and a server.

The client and server must agree on a protocol for requesting and sending
resources. For common tasks, there are standard protocols such as HTTP,

Application Data

TCP Header

IP Header

Ethernet Header

TCP
Segment

IP
Datagram

Ethernet
Frame

Application Data

UDP Header

IP Header

Ethernet Header

UDP
Datagram

IP
Datagram

Ethernet
Frame

Figure 1-4: The Ethernet controller adds a header to an IP datagram before
sending the datagram on the network. In the opposite direction, the Ethernet
controller strips the Ethernet header before passing a datagram to the IP layer.

Networking Basics

 13

FTP, and SMTP, and POP3. The computers typically send the requests and
responses in the data portions of TCP segments.

When you use a browser to view Web pages, the browser is functioning as a
client, requesting pages from server computers that store Web pages. To
function as a server that provides Web pages on request, a computer must be
running server software. Server software for PCs includes Apache Software
Foundation’s Apache HTTP Server and Microsoft’s Personal Web Server.
Embedded systems can function as servers with the addition of program
code that decodes and responds to received requests.

Another use for the terms client and server is to refer to computers that have
established a TCP connection, which enables the computers to exchange
messages using TCP. The client is the computer that initiated the connec-
tion, while the server is the computer that accepted the request to connect.
Once the connection is established, either computer can send messages to
the other, though a higher-level protocol may limit what each computer can
do.

Requirements for Internet Communications
To communicate on the Internet, a computer in an Ethernet network has
additional requirements. Internet communications of course require a phys-
ical connection to the Internet. And messages sent on the Internet must use
the Internet Protocol.

Large businesses and schools are likely to have Internet access available. For
others, obtaining an Internet connection involves contracting with an Inter-
net Service Provider (ISP). The ISP provides an IP address that identifies the
computer on the Internet.

Domain names such as rabbitsemiconductor.com and dalsemi.com provide a
more user-friendly way to request a resource on the Internet, compared to
using numeric IP addresses. Domain names are available from a variety of
registrars for a yearly fee.

Local networks that connect to the Internet typically have a firewall, which
is hardware, software, or a combination that protects the local network by

Chapter 1

14

limiting the types of communications that local computers can send and
receive. To make a server or other resource available on the Internet, you
may need to configure your firewall to permit receiving requests or other
communications from outside the local network.

The focus of this book is Ethernet networks, but a computer doesn’t have to
have an Ethernet connection to connect to the Internet. Another option is
to use a modem and a dial-up connection to an ISP, using the Point-to-Point
Protocol (PPP).

Chapter 4 has more about obtaining an Internet connection.

A Word about Web Servers
Many networked embedded systems function as Web servers, which
respond to requests for Web pages from browsers in the network. The pages
hosted by embedded systems are likely to display dynamic content that can
change each time the page is requested. Examples of dynamic content
include sensor readings, date and time information, or counts of Web-page
visitors. Some pages may also enable users to provide data to the server,
which can process the data and perhaps return a result on a Web page.

There are several ways to support dynamic content in Web pages. Applica-
tions programmed in C often use common gateway interface (CGI) and
server side include (SSI) programming. Applications programmed in Java
often use Java servlets. A few products, such as Netmedia’s SitePlayer, sup-
port product-specific methods that may involve defining variables and
inserting codes in the Web page to cause the values of the variables to dis-
play on the page. Chapter 6 and Chapter 7 have more about Web pages and
dynamic content.

In Depth:
Inside Ethernet

Ethernet isn’t the only way to network embedded devices, but it’s a popular
choice. It’s possible to put together and use an Ethernet network without
knowing much about its inner workings. Hardware and software compo-

Networking Basics

 15

nents with built-in Ethernet support can shield you from the details. But a
little knowledge about Ethernet can help in selecting network components,
writing the software that exchanges data over the network, and trouble-
shooting any problems that come up.

This section discusses Ethernet’s advantages and limits and how Ethernet
uses frames and media-access control to help get data to its destination.
Chapter 2 covers Ethernet’s media systems (such as 10BASE-T), which
allow a choice of cable type and network speed.

Advantages
There are many reasons why Ethernet is popular and useful for networks of
embedded systems and other computers.

It’s Versatile

Ethernet is versatile enough to suit many purposes. Probably the best known
use for Ethernet is in linking desktop computers in offices, but that’s not its
only use. Ethernet can transfer any kind of data, from short messages to
huge files. An Ethernet communication can take advantage of existing
higher-level protocols such as TCP and IP, or it can use an application-spe-
cific protocol. Ethernet doesn’t require a large or fast computer. With the
addition of an Ethernet controller chip, even an 8-bit microcontroller can
communicate in an Ethernet network.

It’s Easy to Use

With Ethernet, much of the work has been done for you. All of the comput-
ers in the network follow standard Ethernet specifications for interconnect-
ing, managing network traffic, and exchanging data. You don’t have to
design the hardware interface or invent the rules from scratch. Yet Ethernet
is flexible enough to allow choices. For example, a network may use twisted
pair, fiber-optic, or coaxial cable. The requirements for each cable type and
speed are specified, so all you need to do is decide which cable type best fits
your application and select cable of that type.

Chapter 1

16

A Wide Selection of Products Is Available

Hardware, software, and debugging tools for Ethernet are readily available.
Ethernet’s popularity means that components and tools are easy to find and
inexpensive. Many PCs and other desktop computers have Ethernet support
built in. At most, a PC requires an expansion card or adapter to provide the
hardware interface. Windows and other operating systems include software
support for Ethernet networking.

Designers of embedded systems have a good selection of modules with
Ethernet capability. Many modules include a CPU, while others contain just
a controller chip and an interface that you connect to your own CPU. Or
you can put together your own circuits by selecting a CPU, Ethernet con-
troller, and related components. Code to support TCP/IP, and related pro-
tocols is available from a variety of sources. Many vendors of
Ethernet-capable modules also provide support for TCP/IP. Debugging
tools such as bus analyzers are readily available.

The Hardware Controls Network Access

With Ethernet, the hardware manages the network traffic, so there’s no need
for software to control network access. In a network that uses half-duplex
interfaces, the computers share a transmission path, and all computers have
equal access when the network is idle. When a computer has something to
send, its Ethernet controller waits for the network to be idle and then
attempts to transmit. If two or more interfaces try to transmit at the same
time, the interfaces detect a collision and each delays a random amount of
time, then tries again. In a network that uses full-duplex interfaces, each
computer has its own transmission path to an Ethernet switch, which man-
ages the traffic to each connected computer.

It’s Fast

Ethernet is fast. It supports speeds from 10 Megabits per second (Mb/s) to
10 Gigabits per second (Gb/s). Ten Mb/s is adequate for many embedded
systems. The hardware to support slower speeds is generally less expensive,
but the higher speeds are there if needed.

Networking Basics

 17

It Can Span Long Distances

A single twisted-pair cable between two computers or between a repeater
hub or switch and a computer can be 100 meters. A half-duplex segment of
fiber-optic cable in a 10-Mb/s system can be as long as 2000 meters, while a
full-duplex segment can be as long as 5 kilometers. With repeater hubs or
switches, a network can span even longer distances. A router can enable a
network to communicate with other networks, including the entire Internet.

Interfaces are Electrically Isolated

Every Ethernet interface must be electrically isolated from its network cable.
The isolation protects the computer’s circuits from damaging voltages that
may occur on the network. Isolation transformers meeting the standard’s
requirements are readily available. Fiber-optic cable doesn’t conduct electric-
ity, so connections to fiber-optic networks are isolated by definition.

The Cost Is Reasonable

Because Ethernet and TCP/IP are popular, hardware and software are avail-
able from a variety of sources at reasonable cost, and sometimes for free.
Support for Ethernet and TCP/IP is built into or easily added to computers
of all types, including development boards for embedded systems.

Limits
Ethernet isn’t the answer for every embedded system’s communications
needs. For some systems, there are simpler, cheaper, or otherwise more
appropriate ways to network.

Cost

If keeping the cost to an absolute minimum is essential, there are cheaper
interfaces that are suitable for some applications. For example, the EIA-485
interface, popularly known as RS-485, requires only very inexpensive trans-
ceivers and can use the asynchronous communications port available in
most microcontrollers. RS-485 supports communications at up to 10 Mb/s
and distances of up to 4000 feet, though the maximum distance decreases
with speed.

Chapter 1

18

A downside is that the RS-485 specification doesn’t define protocols for
addressing or for determining when a computer can transmit on the net-
work, so the developer needs to provide these.

Another alternative for inexpensive short-distance networks is synchronous
interfaces such as I2C, Microwire, and Serial Peripheral Interface (SPI). Phil-
ips Semiconductor’s P82B715 I2C bus extender chip adds buffering that
enables longer cables in an I2C network. Maxim Semiconductor’s 1-Wire
network is another option for shorter links. Interfaces such as the Universal
Serial Bus (USB) and IEEE-1394 (Firewire) provide a way for PCs to com-
municate with multiple peripherals.

While each of these interfaces is appropriate for some applications, none
matches the combination of flexibility, speed, ease of use, and wide support
that Ethernet offers.

Real-time Limits

Ethernet alone doesn’t guarantee real-time transfers, or transfers that will
occur with minimal delay or at precise times or intervals. Because a device
may have to wait to transmit on the network, a device can’t know exactly
when a message will transmit. Generally though, Ethernet transmissions
have minimal delays unless the network is extremely busy.

If an application requires greater control over when a transmission takes
place, there’s nothing in the Ethernet standard that prevents adding a proto-
col to support greater control within a local network. For example, a master
interface could query each of the other interfaces in a local network in turn,
with these interfaces transmitting only when requested by the master. With
this arrangement, the master can ensure that the network is idle when an
interface tries to transmit.

For some applications, the computers in the network must collect or act on
data with minimal delays, but the transfer of the data in the network doesn’t
have to be in real time. For example, an embedded system may collect peri-
odic measurements, then transmit a block of measurements at its leisure to a
PC.

Networking Basics

 19

Efficiency

Ethernet isn’t very efficient when transferring small amounts of data. All
Ethernet data travels in structures called frames. Each frame must have
between 46 and 1500 data bytes. Along with the data, each frame includes
26 bytes of synchronizing, addressing, error-detecting, and other identifying
information. So to transmit a single byte of data, the frame that contains the
byte must also include 26 bytes of overhead plus 45 bytes of padding. Other
protocols such as TCP and IP add more overhead that a specific application
may not need.

Still, all that really matters is that messages get to their destination on time,
and unless the network traffic is very heavy, it generally doesn’t matter if the
data format isn’t as efficient as possible.

Power Consumption

Ethernet isn’t the best solution if your device must be extremely low power.
Power consumption for an Ethernet controller chip can be 50 milliamperes
or more at 5 volts. Most chips support a low-power mode that can reduce
power consumption when data isn’t transmitting. Still, I2C and some
EIA-485 interfaces can have much lower power consumption overall.

Using a PC for Network Communications
An option worth considering for some embedded systems is to let a PC han-
dle the network communications. The embedded system can connect to the
PC using any appropriate local interface (USB, RS-232, or parallel port).
The PC can then provide the network connection and an application that
transfers data between the embedded system and the network. For example,
an embedded system might monitor environmental conditions and use a
USB connection to send the readings to a PC. The PC might host a Web
page that displays the readings. With this arrangement, the embedded sys-
tem doesn’t have to directly support network communications at all.

Chapter 1

20

The IEEE 802.3 Standard
Just about every popular computer interface has a standard, or specification
document, that serves as an ultimate reference that defines what circuit
designers and programmers need to know in order to use the interface. At
minimum, a standard defines the electrical characteristics of the interface’s
signals. A standard may also specify data formats, software protocols, con-
nectors, and cables.

The Institute of Electrical and Electronics Engineers (IEEE) is responsible
for the specification popularly known as Ethernet. The IEEE’s members
participate in developing and maintaining many computer-related stan-
dards. The Ethernet standard and related documents are available from
www.ieee.org.

A Brief History

Ethernet originated at Xerox Corporation in the 1970s. An early description
appeared in the article Ethernet: Distributed Packet Switching for Local Com-
puter Networks, in the July 1976 issue of Communications of the ACM, a
publication of the Association for Computing Machinery. The article was by
Robert M. Metcalfe and David R. Boggs of the Xerox Palo Alto Research
Center.

In 1980, Digital Equipment Corporation (DEC), Intel Corporation, and
Xerox Corporation formalized Ethernet’s description in a document titled
The Ethernet, a Local Area Network: Data Link Layer and Physical Layer Spec-
ifications. Another name for this standard is DIX Ethernet, from the first let-
ters of the companies involved. Xerox gave up its trademark rights to
Ethernet, allowing the DIX standard to be an open standard not under the
control of a single company.

In 1985, the IEEE released its own edition of the standard. The interface
described in the IEEE standard is very similar to the DIX interface and is
backward-compatible with it, so networks that comply with the DIX stan-
dard also comply with the IEEE standard.

The Ether in Ethernet refers to luminiferous ether, which is the name given
to a hypothetical medium that was once thought to serve as the propagation

Networking Basics

 21

medium for electromagnetic waves. The existence of ether has since been
disproved, but the name lives on in the term Ethernet.

The 802.x Series

Although the Ethernet name continues in popular use, the IEEE standard
uses the word sparingly. The document that describes Ethernet is IEEE Std.
802.3, with the unwieldy title of Part 3: Carrier sense multiple access with col-
lision detection (CSMA/CD) access method and physical layer specifications.
CSMA/CD is the method Ethernet uses for sharing the network, as
described later in this chapter.

Ethernet is one in a group of IEEE standards that describe technologies for
use in local and metropolitan area networks. A local network typically exists
in a single room or building, while a metropolitan area network (MAN)
might span a campus or city. Ethernet’s main use is in local networks,
though recent standards and usage have expanded its scope to larger net-
works such as MANs and Wide Area Networks (WANs).

All of the standards in the 802 series share the numbering convention of
802.x. The 802 signifies that the standard relates to local or metropolitan
area networking, and x represents one or more digits that identify the spe-
cific standard.

The Ethernet standard is one of several 802-series standards that define
alternate approaches for a network’s physical layer and method of
media-access control, which defines how computers share a network. The
physical layer described in the standard includes the electrical specifications
of the transceivers and the electrical and physical specifications of the con-
nectors and cables. Media-access control includes how each computer
knows when it can transmit and how the computers identify the intended
receiver of a transmission.

Over the years, the IEEE has published a variety of supplements to the orig-
inal Ethernet standard. In periodic updates of the main standard, the IEEE
incorporates the supplements into the main standard. For example, the sup-
plement for Gigabit Ethernet, 802.3z, is now part of the 802.3 standard.

Chapter 1

22

The 802.3ae amendment, approved in 2002, adds support for 10-Gigabit
Ethernet.

Options for Ethernet cables in the 802.3 standard include coaxial,
twisted-pair, and fiber-optic cables. The 802.11 standard is a separate docu-
ment that covers methods of wireless networking.

The 802.3 standard allows four network speeds. The original standard sup-
ported only 10 Mb/s. The standard now also supports 100 Mb/s, often
called Fast Ethernet, 1 Gb/s (Gigabit Ethernet), and 10 Gb/s (10-Gigabit
Ethernet, also called 10GbE).

Frames
All data in an Ethernet network travels in structures called frames. An Ether-
net frame has defined fields for data and other information to help the data
get to its destination and to help the destination computer determine
whether the data has arrived intact.

The Ethernet controller’s hardware places information to be sent in frames
for transmitting, and extracts and stores the information in received frames.

Table 1-1 shows the fields in an IEEE 802.3 Ethernet frame. The fields add
synchronizing bits, addressing information, an error-checking sequence, and
additional identifying information to the data being sent.

Preamble and Start Frame Delimiter

The Preamble and Start Frame Delimiter fields function together. They pro-
vide a predictable bit pattern that enables the interfaces on a 10-Mb/s net-
work to synchronize to, or match the timing of, a new frame being
transmitted.

In any data link, the receiving interface needs to know when to read the bits
in the transmitted data. Some interfaces, such as I2C, are synchronous inter-
faces that include a clock line shared by all of the devices. With I2C, the
transmitting device writes bits when the clock is low, and a receiving device
reads the bits when the clock is high.

Networking Basics

 23

Other interfaces, such as Ethernet, are asynchronous, which means that the
interfaces don’t share a clock. RS-232 and other serial interfaces that use a
UART (universal asynchronous receiver transmitter) are asynchronous. Each
transmitted word begins with a Start bit. The receiver uses the leading edge
of the Start bit as a timing reference to predict when to read each of the bits
that will follow. An RS-232 character typically has eight or nine bits that fol-
low the Start bit.

In contrast, a single Ethernet frame may contain over 1000 bits. Detecting a
single voltage change at the beginning of a frame isn’t enough to enable the
interface to reliably predict when to read all of the bits that follow.

For 10-Mb/s Ethernet, the solution is to begin each frame with a known bit
pattern that contains many transitions. Receiving interfaces use the pattern
to synchronize to, or lock onto, the transmitted frame’s clock.

The Preamble and Start of Frame Delimiter fields provide this pattern. The
Preamble consists of seven identical bytes, each with the value 10101010.
The Start Frame Delimiter follows the Preamble, and consists of the byte
10101011. After detecting the first transition in the Preamble, a receiving
interface uses the transitions of the following bits to synchronize to the tim-
ing of the transmitting interface. The final two bits in the Start Frame
Delimiter indicate the end of the Preamble.

Table 1-1: An IEEE 802.3 Ethernet frame has seven fields.
Field Length in

bytes
Purpose

Preamble 7 Synchronization pattern.

Start Frame Delimiter 1 End of synchronization pattern.

Destination Address 6 Ethernet hardware address the frame is directed to.

Source Address 6 Ethernet hardware address of the sender.

Length or Type 2 If 1500 (05DCh) or less, the length of the data field
in bytes. If 1536 (0600h) or greater, the protocol
used by the contents of the data field.

Data 46 to 1500 The information the source wants to send to the
destination.

Frame Check Sequence 4 Error-checking value.

Chapter 1

24

The faster Ethernet interfaces use different methods to synchronize, but
include the Preamble for compatibility.

In the earlier DIX standard, the Preamble frame is 64 bits and includes the
Start-of-Frame byte, while the 802.3 standard defines the Start of Frame as a
separate field. The transmitted bit patterns are the same in both cases.

Destination Address

Every Ethernet interface has a 48-bit physical, or hardware, address that
identifies the interface on the network. The Destination Address field con-
tains the physical address of the intended receiver of the frame. The receiver
may be an individual interface, a group of interfaces identified by a multi-
cast address, or a broadcast address to all interfaces in the network.

Every interface in the network reads the destination address of a received
frame. If the address doesn’t match the interface’s physical address or a mul-
ticast or broadcast address the interface has been configured to accept, the
interface ignores the rest of the frame.

The first two transmitted bits in the address have special meanings. The first
bit is 0 if the address is for a single interface, and 1 if the address is a multi-
cast or broadcast address. A broadcast address is all 1s and is directed to
every interface in the network. Multicasting provides a way for an interface
to communicate with a selected group of interfaces. The interfaces in the
multicast group are configured to accept frames sent to a specific multicast
address.

The second bit of the destination address is zero if the address was assigned
by the manufacturer of the interface, which is the usual case. In the 802.3
standard, the second bit is 1 if the address is administered locally. In the
DIX standard, the second bit is always zero.

Chapter 4 has more about how a sending interface learns the destination’s
address.

Networking Basics

 25

Source Address

The Source Address field contains the 48-bit physical address of the trans-
mitting interface. See Destination Address above for more about Ethernet
addresses.

Length/Type

The Length/Type field is 16 bits that can have one of two meanings. The
field can indicate the number of bytes of valid data in the data field or the
protocol used by the data in the field that follows.

If the value is less than or equal to 1500 decimal (5DCh), the value indicates
length. The data field must contain between 46 and 1500 bytes. If there are
less than 46 bytes of valid, or usable, data, the length field can indicate how
many of the bytes are valid data.

If the value is greater than or equal to 1536 decimal (600h), the
Length/Type field indicates the protocol that the contents of the data field
use. On on-line database at the Internet Assigned Numbers Authority’s Web
site (www.iana.org) specifies values for different protocols. The value for the
Internet Protocol (IP) is 800h.

Values from 1501 to 1535 decimal are undefined.

The DIX standard defined this field as a type field only. The original IEEE
802.3 standard defined the field as a length field only. The current 802.3
standard allows either use.

Data

The contents of the data field are the reason why the frame exists. The data
is the information that the transmitting interface wants to send.

The data field must be between 46 and 1500 bytes. If there are fewer than
46 bytes of data, the field must include pad bytes to increase the size to 46
bytes. If the transmitting interface has more than 1500 bytes to send, it uses
multiple frames.

As explained earlier in this chapter, the data field often contains additional
information besides the raw data being sent. This information is typically in

Chapter 1

26

headers that precede the data. The Ethernet frame doesn’t care what’s in the
data field, as long as it meets the length requirements.

Another term for the contents of the data field is the message. The data pay-
load, or message body, is the message minus any headers or other supple-
mental information in the data field.

Frames with a full 1500 data bytes are the most efficient because they have
just 26 bytes, or less than 2 percent, of overhead. At the other extreme, a
frame with just one data byte plus 26 bytes of headers and the required 45
bytes of padding has 71 bytes of overhead.

An Ethernet frame must be at least 512 bits (64 bytes) not including the
Preamble and Start-of-Frame bits. This is the size of a frame with the mini-
mum 46 data bytes. Receiving interfaces ignore frames that are shorter than
this minimum size.

Frame Check Sequence

The Frame Check Sequence (FCS) field enables the receiving interface to
detect errors in a received frame.

Electrical noise or other problems in the network can corrupt a frame’s con-
tents. A receiving interface can detect corrupted data by using the 32-bit
cyclic redundancy check (CRC) value in the frame check sequence field.
The transmitting interface performs a calculation, called the cyclic redun-
dancy check, on the bytes to be sent and places the result in the frame check
sequence field. The receiving interface performs the same calculation on the
received bytes. If the results match, the frame’s contents are almost certain to
be identical to what was sent.

The Ethernet controller’s hardware typically performs the CRC calculations
on both ends. On detecting an error in a received frame, the controller typi-
cally sets a bit in a status register.

Media Access Control: Deciding When to Transmit
In Ethernet networks that use half-duplex interfaces, only one interface at a
time can transmit, so the interfaces need a way of deciding when it’s OK to

Networking Basics

 27

transmit. The Ethernet standard refers to the method of deciding who gets
to transmit as media access control.

There are several ways to achieve media access control. In some networks,
one computer is the master, and the other computers transmit only after
receiving permission from the master. The USB interface uses this type of
media-access control. In a token-passing network, the computers take turns.
The token can be as basic as a register bit or sequence of bits that a com-
puter sets to indicate possession. Only the computer holding the token can
transmit. When a computer finishes transmitting, it passes the token to
another computer. The token-ring network described in IEEE standard
802.5 is an example of a token-passing network.

Ethernet uses a media-access control method called carrier sense multiple
access with collision detection, or CSMA/CD. This method allows any inter-
face to attempt to transmit any time the network is idle. If two or more
interfaces try to transmit at the same time, both wait a bit, then retry.

One way to understand how CSMA/CD works is to examine the words that
make up the term. Carrier comes from the world of radio, where audio
broadcasts ride on, or are carried by, a higher frequency called the carrier.
Ethernet doesn’t have a carrier in this sense. Instead, the carrier is said to be
present whenever an interface is transmitting. Carrier sense means that an
interface that wants to transmit must monitor the network and sense, or
detect, when the network is idle, indicated by the absence of a carrier.

Multiple access means that no single interface controls the network traffic.
Any interface can attempt to transmit on a network that has been idle for at
least the amount of time defined as the interframe gap (IFG). In a 10Mb/s
network, the IFG equals 96 bit times, or 9.6 microseconds.

The Ethernet controller’s hardware normally handles the sending and receiv-
ing of frames, including detecting collisions and deciding when to try again
after a collision. The CPU writes the data to send into memory that the
controller can access, and the controller stores received data in memory that
the CPU can access. The CPU uses interrupts or polling to learn of the suc-
cess or failure of a transmission and the arrival of received data.

Chapter 1

28

Responding to Collisions

A collision results when two interfaces in the same collision domain try to
transmit at the same time. In half-duplex Ethernet networks, the computers
connect to repeater hubs that provide attachment points for multiple inter-
faces. All of the interfaces that connect via repeater hubs share a collision
domain, which means that every network transmission goes out to all of the
interfaces. Interfaces that connect directly via coaxial cable also share a colli-
sion domain.

Another option for connecting interfaces is to use switching hubs, popularly
called Ethernet switches, or just switches. Like repeater hubs, Ethernet
switches provide attachment points for multiple interfaces, but interfaces
that connect via switches don’t share a collision domain. Instead, the
switches are responsible for managing the storing and forwarding of traffic
received from connected interfaces. Chapter 2 has more about repeater hubs
and switches and the options for connecting interfaces.

On detecting a collision, the transmitting interface doesn’t stop transmitting
immediately. Instead, it continues long enough to be sure that the other
transmitting interface(s) have time to detect the collision. A transmitting
interface that has detected a collision always finishes sending the 64 bits of
the Preamble and Start of Frame Delimiter if these haven’t transmitted yet.
Following these, the interface sends an additional 32 bits called the jam sig-
nal, then stops transmitting. The jam signal can be any arbitrary data except
the previous frame’s CRC value.

Delaying before Retransmitting

After an interface stops transmitting due to a collision, the next task is
deciding when to try again. If two interfaces wait the same amount of time
and then retry, another collision will occur. Instead, the Ethernet standard
defines a backoff process where each interface selects a randomly chosen
delay time before attempting to retransmit. This reduces the chance that
two interfaces will retry at the same time, although multiple retries may be
needed at times.

Networking Basics

 29

The delays before retrying are multiples of the interface’s slot time, which is
specified in units of bit times. For 10-Mb/s and Fast Ethernet, the slot time
is 512 bit times, which works out to 51.2 microseconds at 10 Mb/s and 5.12
microseconds at 100 Mb/s. For Gigabit Ethernet, the slot time is 4096 bit
times, or 4.096 microseconds.

For the first retry, an interface chooses randomly between retrying immedi-
ately or waiting one slot time before retrying. If the first retry results in a
collision, the interface tries again, randomly selecting a delay of 0, 1, 2, or 3
slot times.

Each new attempt, up to ten tries, selects from a larger range of backoff
times, as Table 1-2 shows. The formula for determining the number of slot
times to choose from is 2x, where x is the number of the retry. In the first
retry, the interface selects between 21, or 2, slot times (0 or 1). The second
retry selects from 22, or 4, slot times (0, 1, 2, or 3). And so on up to 210, or
1024 slot times (0 to 1023), which the interface uses for the final seven
retries if needed. After 16 tries, the interface gives up and reports a failure,
typically with an interrupt.

Network Limits to Ensure Collision Detection

To prevent an interface from trying to use a frame that has experienced a
collision, a transmitting interface must be able to detect the collision and
abandon the frame before transmitting for one slot time. The IEEE 802.3
standard specifies slot times and maximum cable lengths to ensure that a
transmitting interface will always be able to detect a collision in time.

For 10-Mb/s and Fast Ethernet, one slot time equals the time required to
transmit 512 bits, which is the minimum frame size minus the Preamble
and Start Frame Delimiter.

For Gigabit Ethernet, the minimum frame size is still 512 bits, but the slot
time is 4096 bits and a valid transmission must have at least 4096 bits. To
extend a short frame to 4096 bits, the transmitting interface has two
options. It can follow the frame with carrier extension bits, which are
non-data symbols that keep the carrier present for the required time. Or for

Chapter 1

30

all frames after the first, the interface may send a burst of additional frames
to fill the slot time.

Full-duplex Interfaces

An Ethernet interface can be half duplex or full duplex. With a half-duplex
interface, the computer can’t send data while receiving. With a full-duplex
interface, the computer can transmit and receive at the same time.

Full duplex has several advantages. A full-duplex Ethernet segment doesn’t
need to support collision detecting because there are no collisions to detect.
With two data paths available, a full-duplex segment can theoretically sup-
port twice the traffic of a half-duplex segment at the same speed. For
fiber-optic links, the maximum allowed segment lengths are much greater

Table 1-2: For each retry after a collision, the Ethernet controller selects from
a larger number of delay times.
Retry number Possible delay times, in units of slot time, chosen randomly

1 0 or 1

2 0, 1, 2, 3

3 0 to, 1, 2, 3, 4, 5, 6, 7

4 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15

5 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....30, 31

6 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15.... 62, 63

7 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....126, 127

8 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....254, 255

9 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....510, 511

10 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....1022, 1023

11 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....1022, 1023

12 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15...1022, 1023

13 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....1022, 1023

14 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....1022, 1023

15 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....1022, 1023

16 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15....1022, 1023

17 report failure

Networking Basics

 31

for full duplex. In half-duplex segments, the data’s round-trip travel time
must be short enough to ensure that collisions are detected in time. The
length of full-duplex fiber-optic segments are limited only by optical losses
in the fiber.

A full-duplex segment can link two computers, a computer and a switch, or
two switches. Full-duplex segments are common in high-speed links
between switches. Inexpensive Ethernet switches have made full-duplex
links popular for segments that connect computers to their networks as well.

The cabling to support full duplex is present in all of the popular
twisted-pair and fiber-optic media systems. Most full-duplex Ethernet
media systems use a separate cable pair or fiber strand for each direction.
Twisted-pair Gigabit Ethernet systems use hybrid circuits that enable simul-
taneous transmitting and receiving on the same wires.

To use full duplex, the interface’s Ethernet controller must support
full-duplex mode. Many controllers have options to configure the controller
to support half or full duplex or to auto-negotiate, using full duplex if possi-
ble and half duplex otherwise. If you’re using a module with provided Ether-
net-controller software, the software will need to support full-duplex mode
and auto-negotiation if you want to use these capabilities in the controller.

Physical Addresses
To send an Ethernet frame on the network, a computer places its physical
address in the Source Address field and the places destination’s physical
address in the Destination Address field. The physical address has two parts,
a 24-bit Organizationally Unique Identifier (OUI) that identifies the inter-
face’s manufacturer and an additional 24 bits that are unique to the piece of
hardware.

For a fee, the IEEE grants the rights to use an OUI. At this writing, it’s a
one-time fee of $1650. An interface card purchased for a PC or an embed-
ded-system module with an Ethernet interface typically has a physical
address programmed into the hardware. If you use an address provided in
this way, you can be just about 100% sure that the physical address won’t

Chapter 1

32

match the address of any other interface your interface might communicate
with. (And if it does, it’s not your fault.)

If you want to assign a different, locally administered address, some prod-
ucts enable changing the address.

The physical address is often expressed as a series of six hexadecimal bytes:

00-90-C2-C0-D3-EA

In the above example, 00-90-C2 is the OUI and C0-D3-EA is the unique
value assigned by the owner of the OUI to a specific piece of hardware.

Each byte has a decimal value from 0 to 255. The IEEE 802.3 standard and
other network standards use the more precise term octet instead of byte. In
common usage, both terms refer to 8-bit values, but an alternate definition
for byte is “the data size sufficient to hold a character,” and this value can
vary with the computer system.

Sometimes the sending computer doesn’t know the receiving computer’s
physical address. To learn the physical address that corresponds to an IP
address in the local network, a computer can send a broadcast message using
the address resolution protocol (ARP). To obtain the IP address that corre-
sponds to an Internet domain name, the sending computer can use the
DNS protocol to send a request to a domain name server.

When transmitting to a computer outside its local network, including on
the Internet, an interface sends the Ethernet frames to a router in the local
network, and the router does what is needed to send the message on its way.
Chapter 4 has more on ARP, domain name servers, and routers.

Using a Protocol Analyzer to View Ethernet Traffic
In troubleshooting network problems, it’s often helpful to be able to view
the network traffic to find out exactly what is (and isn’t) transmitting. A pro-
tocol analyzer makes this possible and can be extremely helpful in tracking
down problems. A protocol analyzer may be software only or it may be a
hardware device that runs analyzer software.

Networking Basics

 33

The Ethereal Network Protocol Analyzer

The Ethereal Network Protocol Analyzer is a full-featured and free protocol
analyzer from Gerald Combs and others, available from www.ethereal.com.
You can use Ethereal to view the contents of Ethernet frames along with
timing and other information. The software decodes data for over 300 net-
work protocols. Figure 1-5 shows data captured by Ethereal during a
response to an ARP request for a computer’s Ethernet hardware address.

You can run Ethereal from any PC in the network you’re monitoring. To
ensure that the frames you want to see are visible, the PC running Ethereal
should be in the same collision domain as the computer whose traffic you’re
monitoring.

Figure 1-5: The Ethereal Network Protocol Analyzer decodes and displays
Ethernet traffic.

Chapter 1

34

Other Options

Ethereal is one of a variety of software-based protocol analyzers for Ethernet.
Another option for viewing network traffic is to use a hardware analyzer that
you plug into an available port in the network. An example is Agilent Tech-
nology’s J6800A Network Analyzer. The J6800A is a portable system that
contains an embedded PC running network analyzer software. You can con-
trol the analyzer remotely over a network or dial-up connection. A traffic
generator enables you to specify traffic to place on the network. Two
time-synchronized data acquisition systems enable comparing two locations
at once.

Building a Network: Hardware Options

 35

Putting together an Ethernet network requires making choices about net-
work speed, cable type, and methods of connecting the computers to the
network. The options are the same whether the network connects PCs,
embedded systems, or a combination. If you’re adding an embedded system
to an existing network, you need to ensure that your system’s speed and
cabling are compatible with the network.

In developing a networked embedded system, it’s likely that you’ll want to
connect the system to a PC at some point. A Web browser or other applica-
tin on a PC can provide a handy way to monitor and control the operation
of embedded systems. Even if the final configuration doesn’t require PC
communications, a PC can be useful for testing device firmware before you
add other network computers or an Internet connection.

This chapter begins with a guide to using Ethernet to connect an embedded
system to a PC. Following this is a discussion of the options for cable types,

Chapter 2

36

network speeds, and methods of interconnecting computers in Ethernet net-
works.

Quick Start:
Connecting to a PC

If you don’t yet have an embedded system with an Ethernet interface, learn-
ing how to connect a system to a PC may seem to be a little ahead of the
game. But understanding something about network configurations and
options can be useful in deciding what cable type and speed an embedded
system’s interface should support.

Components and Configurations
A popular configuration for networked embedded systems follows the speci-
fication for the 10BASE-T media system in the Ethernet standard. A
10BASE-T network uses twisted-pair cables with a network speed of 10
Mb/s. Many Ethernet-capable modules have built-in support for 10BASE-T
networking, and any recent-vintage standard PC with Ethernet support will
support 10BASE-T as well.

To connect a PC to an embedded system in a 10BASE-T network, you need
the following components:

A PC with Ethernet support and a 10BASE-T interface. To find out what
kind of network support a PC has, look in Windows’ Device Manager under
Network adapters (Figure 2-1). To view the Device Manager in Windows
XP, click in order Start, Settings, Control Panel, System, Hardware, and
Device Manager. Or in any recent Windows edition, from the Windows
desktop, press F1 and search for Device Manager. The adapter’s name usually
includes the supported speed or speeds. An Advanced tab may also offer
choices under Media Type. For example, you may be able to configure a
multi-speed, autoswitching card to use one speed only. (This option can be
useful if your PC connects to a multi-speed repeater hub and you want to
view network traffic at another speed in a protocol analyzer.)

Building a Network: Hardware Options

 37

For PCs that don’t already have a 10BASE-T interface, there are several
options. You can add a network interface card that plugs into the computer’s
internal PCI bus. Or you can use a USB/Ethernet adapter that attaches to a
USB port or an Ethernet/PC Card adapter that plugs into a PC Card
(PCMCIA) slot.

Figure 2-1: In Windows’ Device Manager, the Network adapters category
shows any installed Ethernet adapters.

Chapter 2

38

Most 10BASE-T interfaces, like other twisted-pair Ethernet interfaces, use
RJ-45 connectors (Figure 2-2). These are similar in design to modular tele-
phone connectors, but with eight contacts instead of four.

An embedded system with a 10BASE-T Ethernet interface. The embed-
ded system must have an Ethernet controller, which may be a discrete chip
or a portion of a chip that performs other functions. The Realtek
RTL8019AS is an example of a popular controller chip for 10BASE-T sys-
tems, but there are others, as described in Chapter 3.

Chapter 3 also describes several Ethernet-capable modules that each have an
Ethernet controller and related components. If you’re designing your own
circuit from the ground up, the companies that produce controller chips
generally provide example schematics and application hints for using the
chips.

A cable to connect the PC and embedded system or a repeater hub or
Ethernet switch and cables to connect to it. The number and type of
cables depends on whether you’re connecting the PC and embedded system

Figure 2-2: Twisted-pair media systems use 8-conductor RJ-45 connectors.

Building a Network: Hardware Options

 39

to each other directly or through a repeater hub or switch. Figure 2-3 shows
both options.

Twisted-pair Ethernet cable is available in two wiring configurations:
straight-through, also called 1-to-1, and crossover. In a straight-through
cable, the connections on both connectors are the same. For example, on
both connectors, pin 6 connects to the green wire, and pin 2 connects to the
orange wire. In a crossover cable, the pin connections for some of the wires
are swapped from one of the cable to the other. For example, on one connec-
tor, pin 2 connects to the orange wire and pin 6 connects to the green wire,
while at the other end of the cable, pin 2 connects to the green wire and pin
6 connects to the orange wire. The In Depth section of this chapter has
more about crossover cables.

To connect an embedded system directly to a PC, all you need is a crossover
cable rated as Category 3 or higher. For use at higher speeds, the IEEE 802.3
standard recommends Category 5e cable, and Category 5e or Category 6

Figure 2-3: To connect an embedded system to a PC’s 10BASE-T Ethernet
interface, you can use a direct connection with a crossover cable or a repeater
hub or switch with straight-through, or 1-to-1, cables.

Chapter 2

40

cable can be a good investment if you might eventually use a higher speed.
Category 5 cable is also acceptable. In some electrically noisy environments,
Category 5 may be preferable, as explained later in this chapter.

Crossover cables are widely available. The cable should have an RJ-45 plug
at each end and can be up to 100 meters long.

If your PC is already in a network, or if you want to connect more than one
embedded system to the PC, use a repeater hub or Ethernet switch. These
are devices with connection points for multiple cables (Figure 2-4). To con-
nect an embedded system to a PC through a repeater hub or Ethernet
switch, use straight-through cables rated as Category 3 or higher. Again,
Category 5, Category 5e, or Category 6 cable is also acceptable.

Additional PCs or embedded systems can attach to the remaining ports of
the repeater hub or Ethernet switch. Repeater hubs and switches are widely
available. Generally, to use a repeater hub or switch, you just attach the
cables, apply power, and the device is ready for use.

Other Options
Although 10BASE-T networks are popular, they don’t suit every purpose.
Some networks require faster communications or a different cable type.

If 10 Mb/s isn’t fast enough, you can upgrade to Fast Ethernet, at 100 Mb/s.
Use cables rated as Category 5 or better. Gigabit Ethernet uses the same
cables, but because the interface is newer, the selection of controller chips

Figure 2-4: A hub has multiple ports for connecting interfaces to a network.

Building a Network: Hardware Options

 41

and other hardware is more limited. To gain the full advantage of a higher
speed, any repeater hubs or switches between the computers that are com-
municating must support the higher speed as well.

Fiber-optic cable has advantages over twisted-pair cable, including immu-
nity to electrical interference and lightning damage, immunity to security
breaches due to monitoring by direct or magnetic coupling, and greater
maximum cable length. The down side is more expensive cables, repeater
hubs, switches, and interfaces. Converter modules are available if you need
to connect an embedded system with a twisted-pair interface to a repeater
hub or switch with fiber-optic connectors.

Another option for 10 Mb/s networks is coaxial cable. Coaxial cable has
fallen out of favor for Ethernet because it’s limited to 10 Mb/s and because
twisted-pair networks are less expensive and easier to work with. But if
you’re adding to an existing network that uses coaxial cable, you’ll need
compatible interfaces for the devices you connect to the network. Some
repeater hubs include a BNC connector for coaxial cable in addition to
RJ-45 jacks, to make it easy to add twisted-pair interfaces to a coaxial net-
work.

Cables, Connections and Network Speed
A network interface can’t do much without a connection to the other com-
puters in the network. This section has more detail about the choices for
cabling and other hardware required for interconnecting computers in net-
works of different speeds.

Cable Types for Different Uses
The Ethernet standard allows the use of three cable types: twisted-pair,
fiber-optic, and coaxial cable. Table 2-1 summarizes the features of each
cable type.

Chapter 2

42

Twisted-pair cable is popular because it’s inexpensive yet performs well.
Fiber-optic cable is immune to electromagnetic interference and can carry
signals much longer distances, but at higher cost. Coaxial cable was the orig-
inal cable type for Ethernet and isn’t recommended for new networks.
Transceivers for coaxial-cable systems can be hard to find.

The IEEE 802.3 standard defines a variety of media systems that each use a
particular cable type at a specific bit rate. For example, the 10BASE-T
media system uses unshielded twisted pair cable at 10 Mb/s.

If you’re connecting your embedded systems to an existing network, and if
the embedded system uses a different media system than the network, cable
converters and multi-speed repeater hubs and switches are available.

Cable Categories

To simplify the task of selecting a cable type, various documents define cable
categories according to performance, interconnection method, and other
characteristics. The IEEE 802.3 standard in turn references these categories.
This way, instead of having to find a match between a manufacturer’s prod-
ucts and a series of specifications, you can just look for cable of the category
recommended for your network’s cable type and speed. Many cable manu-
facturers specify when a product is suitable for a specific media system, such
as fiber-optic cable that meets the requirements for a 10BASE-FL media sys-
tem.

Table 2-1: Ethernet allows a choice of three types of cable.
Cable Type Twisted Pair Fiber Optic Coaxial

Maximum data rate
(Mb/sec.)

1000 10,000 10

Maximum length per
segment (meters)

100+ 2000 (half duplex, 10 Mb/s),
5000 (full duplex, 10 Mb/s)

500 (thick coax),
185 (thin coax)

Cost low high moderate

Noise
immunity

good excellent good

Ease of
Installation

excellent good with prefabricated
cables, fair/poor if attaching
connectors on raw cable

fair/poor

Building a Network: Hardware Options

 43

An important document for specifying networking cable is TIA/EIA 568:
Commercial Building Telecommunications Cabling Standards. The docu-
ment’s sponsors are two trade groups: the Telecommunications Industry
Association (TIA) and the Electronic Industries Association (EIA).

The TIA/EIA-568-B edition of the standard, released in 2001, covers
fiber-optic and twisted-pair cable. The earlier (-A) edition also covered coax-
ial cable, but the new edition doesn’t recommend coaxial cable for new
installations.

The IEEE 802.3 standard also references ISO-IEC 11801: Information Tech-
nology - Generic Cabling For Customer Premises. This standard is a product of
the International Organization for Standardization (ISO) and the Interna-
tional Electrotechnical Commission (IEC). The standard duplicates much
of the contents of TIA/EIA 568, with minor differences and the addition of
information relating to components used primarily in Europe.

For fiber-optic cable, the IEEE 802.3 standard references documents from
the IEC and the American National Standards Institute (ANSI).

All of the documents are available from Global Engineering Documents
(www.global.ihs.com).

In addition to these standards, for fire safety, the U.S. National Electric
Code (NEC) rates cables according to flammability, heat resistance, and vis-
ible smoke on exposure to flame. Three categories specify permitted uses.
General-purpose cable is for use on a single floor, but not for routing
through floors or ceilings. Riser cable may pass between floors but may not
be routed through a plenum, which is any area that functions as a part of the
heating, ventilation, and air conditioning (HVAC) system. Plenum cable is
suitable for all locations, including routing through plenums. Non-plenum
cable may be allowed in plenum spaces if enclosed in metal conduit. Local
building codes may have additional requirements.

This book doesn’t attempt to cover the craft of cable routing. A good guide
is Cabling: the Complete Guide to Network Wiring by David Grott, Jim
McBee, and David Barnett (Sybex).

Chapter 2

44

Attaching Connectors

For all cable types, you can buy cables with connectors attached or attach
connectors to raw cable yourself. Attaching connectors to twisted-pair cable
is fairly straightforward and requires just a few tools. Attaching connectors
to fiber-optic cable is more complicated and requires a greater investment in
materials and equipment.

Twisted Pair Cable
Twisted-pair cable is popular because it’s inexpensive, yet it can carry signals
over long distances. The twists reduce noise in the cable in two ways: by
reducing the size of the magnetic field that emanates from the wires and by
canceling any noise the wires pick up via magnetic coupling.

Cable Categories

Networks of all three speeds can use cable that meets the Category 5e speci-
fication defined in EIA/TIA-568-B. A Category 5e cable contains four
unshielded twisted pairs (UTPs) of wires. Each pair consists of two insulated
conductors that spiral, or twist, around each other, with about one to three
twists per inch (Figure 2-5). Varying the number of twists per inch from pair
to pair helps to reduce noise in the wires. The wire diameter is 24 or 22
AWG. An outer layer of insulation surrounds the pairs.

The conductors may be solid or stranded. A stranded conductor, which con-
sists of many small-diameter wires, can withstand repeated flexing and is a
good choice for patch cords and other uses where you’re likely to move or
reroute the cable frequently. A solid conductor, which is a single,
larger-diameter wire, has better electrical performance but may break after
repeated flexing. Solid conductors are a good choice inside walls and in
other locations where the wiring doesn’t move once installed.

In the EIA/TIA-568-B standard, Category 5e cable replaces the Category 5
cable recommended in earlier editions of the standard. Although Category 5
cable is acceptable for all three Ethernet speeds, Category 5e cable has

Building a Network: Hardware Options

 45

stricter manufacturing and testing specifications, and the standard recom-
mends it for new installations. In 2002, an addendum to the standard
defined a new cable type, Category 6 cable, which has improved perfor-
mance over Category 5e. Category 6 cable is suitable for all twisted-pair
Ethernet networks with the exception of some networks in industrial envi-
ronments, as explained later in this chapter.

For 10-Mb/s Ethernet, you can use lower-quality Category 3 cable, but Cat-
egory 5 or greater doesn’t cost much more and won’t need changing if you
later upgrade to a faster speed.

A 10-Mb/s or Fast Ethernet cable segment uses two of the four pairs in a
cable. One pair carries data in each direction. In a 10-Mb/s segment, phone
wiring can use the other two pairs, though there is some risk of interference
and the wires will need to be moved if you upgrade to a higher speed. So it’s
best to use separate cables for phone lines and networking if possible. Giga-
bit Ethernet uses all four wire pairs in a complex signaling protocol that
enables all eight wires to transmit and receive at the same time.

Figure 2-5: Twisted-pair cable for Ethernet contains four pairs of wires, with the
wires in each pair twisted around each other.

Chapter 2

46

All three speeds can use twisted-pair cable segments of up to 100 meters.

The usual connectors for twisted-pair Ethernet are RJ-45 plugs and jacks. A
cable segment’s performance is no greater than the lowest rating of the cable,
its connectors, and the jacks the connectors plug into. To gain the benefit of
a cable’s rated performance, the cable should use connectors with the same
or better rating, and the connectors should plug into jacks with the same or
better rating. For example, Category 5e cable should use connectors and
jacks rated as Category 5e or Category 6.

Ethernet transceivers are designed to work with cables that have a character-
istic impedance of 100 ohms. A cable’s characteristic impedance is the input
impedance of an infinite, open line. The value varies with the wire diameter,
the spacing of the wires in relation to each other in the cable, and the insula-
tion type. A line’s physical length has no effect on its characteristic imped-
ance. There are techniques for calculating or measuring characteristic
impedance, but you shouldn’t have to resort to these. Cable manufacturers
specify the characteristic impedance of cables suitable for networking.

Category 3 through Category 6 cable all have 100-ohm characteristic
impedance. Using cable with a different characteristic impedance can
degrade signal quality and result in data errors.

The wires in the twisted-pair cables are color-coded (Table 2-2), with a color
(blue, orange, green, or brown) assigned to each twisted pair. One wire in
the pair is predominantly white with colored stripes or splashes and the
other wire in the pair is predominantly colored, with optional white stripes
or splashes. For example, if one wire in a pair is blue, the other wire in the
pair is predominantly white with blue stripes.

The electrical interface for twisted-pair cable uses differential signaling,
which requires two wires to carry a signal. The voltage on one wire is the
negative, or complement, of the voltage on the other wire. The receiver
detects the difference between the voltages, and any noise that is common to
both wires cancels out. A line that uses differential signaling is called a bal-
anced line.

Building a Network: Hardware Options

 47

Shielded Twisted-pair Cable

Unshielded cables aren’t the only choices available for twisted-pair cables.
Ethernet networks can also use shielded cable. A shield can reduce noise due
to capacitive, electromagnetic, and high-frequency magnetic coupling. The
TIA-EIA-568 standard specifies requirements for two shielded-cable types
suitable for Ethernet networks: 100-ohm screened twisted-pair (ScTP) cable
and 150-ohm shielded twisted-pair (STP) cable.

In ScTP cable, the shielding consists of a layer of plastic and metal tape sur-
rounding the pairs and a conductive drain wire or braid contacting the
metal side of the tape. In STP cable, each pair has its own shield as well.
STP cable requires 100Ω:150Ω transformers for impedance matching
between the 150-ohm cable and the 100-ohm network interface.

Connectors for shielded cable must also be shielded, with a continuous
shield from the cable to the connector. The shield should be grounded at
one end only.

Shielded cable is more expensive and many networks don’t need it. For
10-Mb/s networks, the IEEE 802.3 standard doesn’t forbid shielded cable
but says that unshielded twisted pairs meet most networks’ requirements. A
Fast Ethernet cable segment may use unshielded or shielded twisted-pair
cable. For Gigabit Ethernet, the standard just says that the use of shielded
cable is outside the scope of the document.

Table 2-2: Category 5 cable contains four color-coded twisted pairs.
Pair Number Predominant Color Stripe or Splash Color

1 White Blue

Blue White or none

2 White Orange

Orange White or none

3 White Green

Green White or none

4 White Brown

Brown White or none

Chapter 2

48

Connector Wiring

There are two common pinouts for the RJ-45 connectors used with
twisted-pair cable: T568A and T568B (Table 2-3). The TIA/EIA-568-B
standard allows either, but recommends T568A. (The similarity in names
between the TIA/EIA-568-B standard and the T568B pinout is coinciden-
tal.)

As the illustration shows, the only difference between the two pinouts is the
swapping of the wires in pairs 2 and 3.

Within a cable (except for crossover cables), both ends must use the same
pinout. The only difference between the two pinouts is the color of the
wires at the pins. With T568A, pins 1 and 2 are the green pair and pins 3
and 6 are the orange pair, while with T568B, pins 1 and 2 are the orange
pair and pins 3 and 6 are the green pair. At 10 and 100 Mb/sec., pins 1 and
2 always carry traffic from an interface, and pins 3 and 6 always carry traffic
to an interface. You can use cables with different pinouts in a network, but
to avoid confusion when troubleshooting, it’s best to standardize on a single
pinout and use it throughout if possible.

Most RJ-45 connectors are designed for use with either solid or stranded
conductors, but not both. If you’re making your own cables, be sure to use
connectors that match the conductor type and are rated for your cable cate-
gory or better. If you use shielded cable, use shielded connectors as well.

Crossover Cables

A crossover cable enables connecting two twisted-pair 10-Mb/s or Fast
Ethernet interfaces directly, without going through a repeater hub or switch.
Another use for crossover cables is to connect two repeater hubs or switches
when neither has an available uplink port, as described later in this chapter.
The cable swaps the green and orange pairs. In other words, at one end of
the cable, pins 1 and 2 are the green pair and pins 3 and 6 are the orange
pair, and at the other end, pins 1 and 2 are the orange pair and pins 3 and 6
are the green pair. This also happens to be the only difference between the
T568A and T568B pinouts, so if you wire one connector as T568A and the
other as T568B, you have a crossover cable.

Building a Network: Hardware Options

 49

To avoid mix-ups, label crossover cables prominently. You can avoid having
to use crossover cables by using switches that have auto-crossover capability.
These switches detect the need for a crossover and perform the crossover
internally and automatically when needed.

Adding Connectors to Twisted-pair Cables

Category 5 and higher cables with connectors attached are readily available
in a variety of lengths. Some vendors will make cables of custom lengths.
Manufactured cables are convenient and reliable. But there are occasions
when adding your own connectors to raw cable is quicker or less expensive.
For example, you may need a cable quickly and don’t have the desired length
on hand, or you may need to replace a bad connector on a cable that runs
inside walls and is inconvenient to replace.

To make cables, you’ll need the following:

• Cable of the desired type and fire rating, such as Category 5e, solid con-
ductor, general-purpose.

• Connectors with the same or better rating as the cable, and suited for
solid or stranded cable as needed.

• A cable crimper for attaching the connectors.

Table 2-3: The only difference between the wiring of a T568A and T568B
connector is which pairs connect to pins 1 and 2 and pins 3 and 6.
Pin Number Wire Color

T568A T568B

1 white with green stripe/splash white with orange stripe/splash

2 green orange

3 white with orange stripe/splash white with green stripe/splash

4 blue blue

5 white with blue stripe/splash white with blue stripe/splash

6 orange green

7 white with brown stripe/splash white with brown stripe/splash

8 brown brown

Chapter 2

50

• A cable stripper for removing the outer cable jacket. In a pinch, a utility
knife will do.

• A cable cutter to cut the cable and trim the conductors in the cable.

• A cable tester to verify the connections.

These are the steps in attaching connectors to a cable:

1. Cut a length of cable equal to the needed length plus an appropriate
amount of slack to allow for changes or rerouting and a few inches to allow
for attaching the connectors.

2. Use the cable stripper to remove about an inch of the outer jacket from
the end of the cable (Figure 2-6). After stripping, inspect to be sure you
didn’t nick the insulation on the conductors. If you did, cut off the ends and

Figure 2-6: Stripping the outer jacket reveals the four twisted pairs.

Building a Network: Hardware Options

 51

start over. You don’t need to strip the insulation on the individual conduc-
tors.

3. Separate and straighten the conductors (Figure 2-7). Align the conductors
in a row to match the connector pinout you’ll be using, such as the 568A
pinout.

4. Keeping the conductors aligned, trim the ends so about 1/2 inch of each
extends beyond the jacket (Figure 2-8). To prevent crosstalk, no more than
half an inch of the conductors should be untwisted.

5. With the conductors aligned, push the conductors all the way into the
connector. Each conductor fits into a groove in the connector. All of the
conductors should reach the end of the connector and at least 1/4 inch of
the jacket should be inside the connector. Even though 10-Mb/s and Fast
Ethernet systems don’t use all eight wires, connect them all to allow for
upgrades, to avoid unterminated wires that can lead to crosstalk, and
because it’s easier to crimp them all. Examine the connector to be sure that

Figure 2-7: Separate and straighten the wires for inserting in a connector.

Chapter 2

52

the conductors are lined up properly and that all extend to the end of the
connector. If not, remove the cable from the connector, realign or trim the
conductors as needed, and try again.

6. Insert the connector into the crimping tool and squeeze the handle to
crimp the connector to the cable (Figure 2-9).

7. Examine the result (Figure 2-10). If the conductors aren’t aligned cor-
rectly, cut off the connector and try again.

8. Repeat these steps for the cable’s other end. A cable tester (Figure 2-11)
can verify that all of the connections are good. Some testers perform addi-
tional tests of cable quality.

Figure 2-8: Trim the wires to fit the RJ-45 connector.

Building a Network: Hardware Options

 53

Fiber Optic Cable
In the copper wires of twisted-pair cable, the data signals are electrical volt-
ages. In fiber-optic cable, signals transmit as pulses of light. In this book, the
term light refers to electromagnetic radiation of visible wavelengths as well as
the slightly longer, invisible wavelengths of infrared energy. Fiber-optic com-
munications may use visible or infrared light.

As with twisted-pair networks, fiber-optic networks use repeater hubs and
switches to connect interfaces to the network.

Figure 2-9: A crimping tool attaches the connector to the cable.

Chapter 2

54

Advantages

Using light instead of electrical signals to transmit data has several advan-
tages:

Ability to carry data long distances. For twisted-pair media systems, the
maximum length of a cable segment is around 100 meters. For fiber-optic
media systems, the maximum length of a segment ranges from a few hun-
dred meters to 2000 meters for half duplex and 5000 meters for full duplex.

Immunity to electromagnetic interference. When a copper wire carries
data, the varying currents in the wire cause a magnetic field to emanate from
the cable. If a conductor’s magnetic field overlaps another conductor’s mag-
netic field, the signals couple, or link together via magnetic induction. This
in turn induces currents that appear as noise in the signals being transmit-
ted. Fiber-optic cables don’t use electrical current, so there are no magnetic
fields or magnetic coupling.

Figure 2-10: A cable with RJ-45 connector attached.

Building a Network: Hardware Options

 55

Security from eavesdropping. Signals in copper wire can be monitored
either by tapping into the cable directly or by coupling to the cable’s mag-
netic field. Neither of these methods works with fiber-optic cable.

Small diameter. For a cable that carries traffic between two interfaces, the
cable diameter is likely to be the same (around 5mm) whether using
twisted-pair or fiber-optic cable. But if you need to route a dozen or more
connections along a common path, a single fiber-optic cable that contains
many strands will have a much smaller diameter than the equivalent in
twisted-pair cables.

Immunity to damage from lightning or other sources of large voltages
or currents. Electrical signals in the environment have no effect on the sig-

Figure 2-11: A cable tester can verify the correct wiring in a cable.

Chapter 2

56

nals in fiber-optic cable. Fiber-optic cable can be routed next to power
cables with no ill effects.

Disadvantages

The main disadvantage to fiber-optic cable is the added cost, in dollars and
in time if you attach your own connectors rather than buying fabricated
cables or hiring someone to make the cables for you.

In addition to paying more for the cables themselves, components such as
repeater hubs, switches, routers, and interface cards tend to be expensive in
comparison to equivalent components for twisted-pair networks. Many
Ethernet controller chips can interface to twisted-pair cable with few addi-
tional components, while an interface to fiber-optic cable requires an added
media attachment unit (MAU) or physical layer device (PHY), as described
later in this chapter.

Adding connectors to fiber-optic cables is more difficult than crimping con-
nectors on twisted-pair cables. The process can involve many steps, includ-
ing stripping the cable, filling the connector with epoxy, inserting the fiber
in the connector, crimping the cable onto the connector, drying the epoxy,
removing excess fiber from the tip, and polishing.

Some manufacturers offer connectors that take varying approaches to sim-
plifying or speeding up the process of attaching fibers. Some connectors use
a fast-curing adhesive in place of epoxy. Others use crimp-on connections
with no epoxy or adhesive at all. A connector may have pre-injected epoxy
that only requires heating of the connector to soften the epoxy before insert-
ing a fiber. Yet another approach is a connector that contains a fiber stub
and a built-in crimping mechanism that enables the installer to easily splice
the stub to a fiber strand. The down sides to these time-saving methods can
be reduced reliability and greater expense.

For short cable runs, an alternative to all of these methods is to buy standard
or custom cables with connectors attached. The cables will be more expen-
sive, but you won’t have to buy tools, equipment, and supplies for attaching
connectors or spend time making the cables.

Building a Network: Hardware Options

 57

Construction

A typical fiber-optic cable with one fiber strand contains a flexible glass or
plastic core surrounded by a reflective cladding and a protective coating
(Figure 2-12). The protective coating contains a buffer to protect the core
and its cladding, a strength material to enable pulling cable during installa-
tion without stretching the fiber, and an outer jacket to protect the entire
assembly.

A single cable may contain multiple strands of fiber in a single jacket.
Duplex cable has two strands and is useful for Ethernet segments, which
require a strand for each direction.

At each end of an Ethernet fiber-optic cable segment are a transmitter and
receiver (Figure 2-13). A transceiver module contains a transmitter and a
receiver in a single unit.

The transmitter converts electrical signals to optical signals to be carried by a
strand of fiber. The module contains a light source, an electrical interface,
and either a connector or a fiber pigtail (a short length of fiber) for splicing
to a strand of fiber.

Figure 2-12: A fiber-optic cable has several protective layers surrounding the
core and cladding.

Chapter 2

58

The light source may be a light-emitting diode (LED) or a semiconductor
laser. Lasers generally have faster switching times, while LEDs are cheaper.
The transmitter may generate pulses of light in either of two ways. The
transmitter may switch the light source on and off by switching the input
current to the light source. Or the light source may be on all of the time,
with circuits that modulate, or control, the transmitter’s output by alter-
nately blocking the light and letting it pass. Modulated outputs are more
complex but can have very fast switching times.

Figure 2-13: A typical fiber-optic transmitter module converts differential data to
light, while a receiver module converts light to differential data and a
signal-detect output. Each module has a fiber-optic connector and pins that
connect to inputs or outputs and power and ground.

Building a Network: Hardware Options

 59

A fiber-optic receiver contains a photodetector, an electrical interface, and a
connector, sometimes with a fiber pigtail attached. The photodetector is a
photodiode or phototransistor that converts received optical signals to elec-
tric current. Additional circuits in the module convert the current to volt-
ages.

Sources for transmitter, receiver, and transceiver modules include Agilent
Technologies and Micro Linear Corporation. The vendors provide docu-
mentation, evaluation kits, and application notes, often with complete sche-
matic diagrams and even circuit-board layouts for Ethernet interfaces.

Length limits for fiber-optic cable are due to attenuation and dispersion of
the signals in the cable. Causes of attenuation are absorption, scattering, and
leakage of the light as it travels in the fiber. Dispersion is the gradual widen-
ing of pulses as they travel along a fiber, eventually making it hard to distin-
guish the transitions between pulses. In half-duplex segments, the need to
detect collisions limits the round-trip travel time of data and further limits
the maximum segment length.

Specifications

Specifications for fiber-optic cable include whether the cable is single mode
or multimode and the diameters of the core and cladding.

A mode is a stable pattern, or path, that light may take as it propagates
through a fiber. The diameter of a fiber strand and the composition of the
fiber’s core and cladding limit the number of paths. Single-mode fiber has
just one path and can carry signals at high bit rates and over long distances.
In multimode fiber, a signal may use any of multiple modes to travel in the
fiber. Multimode fiber is less expensive and is adequate for most Ethernet
networks. The IEEE 802.3 standard requires multimode fiber for 10-Mb/s
and Fast Ethernet. Gigabit Ethernet may use multimode or single-mode
fiber.

The diameters recommended by the IEEE 802.3 standard for multimode
fiber are 62.5 µm for the core and 125 µm for the cladding. This type of
cable is referred to as 62.5/125 cable. The standard also provides guidelines
for systems that use 50/125 cable, which can have better performance at a

Chapter 2

60

similar price. The single-mode fiber available as an option for Gigabit Ether-
net is 10/125 cable.

Connectors

The IEEE 802.3 standard recommends specific connector types for use in
segments of different speeds. For 10-Mb/s segments, the standard requires
the BFOC/2.5 connectors commonly known by the trademarked name ST
connector (Figure 2-14). For Fast Ethernet, the standard recommends using
Low Cost Fibre Optical Interface Connectors, known by the trademarked
name of duplex SC connector. The publication Connectors for optical fibres
and cables (IEC 60874) contains specifications for these connectors. The

Figure 2-14: Two popular connectors for fiber-optic cables are the Low Cost
Fibre Optical Interface, or SC, connector (left) and the BFOC/2.5, or ST,
connector (right).

Building a Network: Hardware Options

 61

document Fiber Optic Connector Intermateability Standard Type SC
(TIA/EIA-604-3) uses the term 568SC connectors to refer to the SC connec-
tors.

The ST connectors are also acceptable for Fast Ethernet. Gigabit Ethernet
segments use SC connectors.

Where saving space is important, small-form-factor (SFF) connectors are
available. The SFF LC connectors introduced by Lucent Technologies are
available from a variety of sources. In a duplex connection, LC connectors
are half the size of SC connectors. The connectors use the same latching
mechanism as RJ-45 connectors. The LC Alliance Web site at www.lcalli-
ance.com has more information about the connectors and where to obtain
them. Another option is MT-RJ connectors, which are about one third the
size of SC connectors and also use a latching mechanism.

For permanent connections between two strands, splicing kits contain the
tools and materials for joining two strands by melting, gluing, or clamping
the ends together.

Coaxial Cable
The third option for Ethernet cabling is coaxial cable (Figure 2-15). A coax-
ial cable, or coax for short, consists of a copper core surrounded by an insu-
lating sleeve, a solid or braided metal shield, and a protective jacket. The
copper core is the conductor, and the shield serves as a ground return. The
term coaxial refers to the way that the core and the shield that surrounds it
are symmetrical around a line, or axis.

Coaxial cable was the only cable type specified in the original Ethernet stan-
dard, but coax isn’t common in new networks for several reasons. First, you
can use coaxial cable only in 10-Mb/s networks. If you use coax and later
want to upgrade to a faster speed, you’ll need new cables. With twisted-pair
or fiber-optic cable, you can use the same cables if you change speeds.

Also, compared to coaxial cable, twisted-pair cabling is cheaper and easier to
connect, and fiber-optic cable allows longer cable segments and has other

Chapter 2

62

benefits. So about the only reason for using coaxial cable is for compatibility
with an existing system.

With that said, the IEEE 802.3 standard allows the use of two types of coax-
ial cable, commonly known as thick coax, at about 10mm in diameter and
thin coax, at about 5mm in diameter. For each, the standard specifies maxi-
mum segment length, methods of attaching interfaces, and other require-
ments.

Of the two, thin coax was more popular. A segment of thin coax can be
between 0.5 and 185 meters long. The cables use BNC connectors (Figure
2-15).

To attach interfaces to thin coax, a network may use a single cable segment
with “T” connectors, multiple segments that connect to repeaters, or a com-
bination. A segment of thin coax may consist of multiple lengths of cable
connected in series via T connectors, with the third leg of each T connector

Figure 2-15: Coaxial cable was the original cable type used in Ethernet
networks. Of Ethernet’s two options for coaxial cable, the thin coax above was
easier to use and more popular than thick coax.

Building a Network: Hardware Options

 63

attached to an interface. A segment may have up to 30 interfaces connected
in this way. The stub from a T connector to an interface must be no more
than 4 cm. A network can also use a repeater with attachment points for
multiple cables.

Thick coax is much less convenient to set up. Each interface must have a
transceiver that attaches directly to the cable, typically via a “vampire” tap
that clamps onto the cable. A stub of up to 50 meters connects the trans-
ceiver to the interface. To reduce reflected voltages, the taps must be
attached at multiples of 2.5 meters along the cable. The cable is bulky com-
pared to thin coax. A segment of thick coax can be up to 500 meters, how-
ever, with up to 100 interfaces attached to it.

Both types of coaxial cable have a characteristic impedance of 50 ohms and
require a 50-ohm termination at each end of a cable segment. For both, the
shield is grounded at one end only. The IEEE 802.3 standard has additional
specifications for coaxial cable.

Connections for Harsh Environments
The recommendations so far have all assumed that the cabling and other
equipment will be in an office or equivalent setting where the environment
doesn’t present any special challenges to the cables, connections, and data
being transmitted. But some embedded systems must function where the
components are subjected to one or more of the following:

• Electromagnetic interference (EMI) from motors and other industrial
equipment.

• Extreme temperatures (hot or cold).

• Vibration.

• Liquids, including water, oil, and corrosive substances.

• Dust or dirt.

For these environments, industrial-grade cables and connectors are available.

Chapter 2

64

Cables

To reduce problems caused by electromagnetic interference, use fiber-optic
cable or shielded twisted-pair cable. In environments where there is high-fre-
quency electrical noise, Category 5 cable may be a better choice than Cate-
gory 5e or Category 6 cable, which are more sensitive to high-frequency
noise.

The TIA is developing a standard for industrial-grade twisted-pair cable,
tentatively called Category 5i cable.

Connectors

Harsh environments may also require ruggedized connectors to replace the
usual office-grade RJ-45 connectors. One option is the M12 connector (Fig-
ure 2-16) available from Lumberg Inc. and others. The connector is about
12mm in diameter and has four or eight contacts, with one contact in the
center and the rest arranged in a circle around the center. A threaded hous-
ing secures the connector on the enclosure and protects the contacts from
environmental hazards. For use with systems that use RJ-45 connectors,
there are adapters that connect an RJ-45 jack to an M12 connector and
cables that have an RJ-45 plug on one end and an M12 connector on the
other. Another option is to place an RJ-45 connection in a sealed housing.

Figure 2-16: The M12 connector provides a secure connection for harsh
environments.

Building a Network: Hardware Options

 65

The Siemon Company’s Industrial MAX plug and outlet is an example of
this type of connection.

Enclosures

A system that operates in a harsh environment will also need an enclosure
that shields the circuits from electrical noise and environmental hazards.
Circuits in dusty environments often can’t use fans for cooling, but
low-power components and circuits can eliminate the need for a fan.

Supplying Power
Many embedded systems are located near reliable power sources. At most, a
system near a power source needs a rectifier to convert alternating current
(AC) to direct current (DC) and one or more voltage regulators to provide
the DC voltages required by CPU and other components.

For systems that aren’t located near a power source, one option is to use bat-
tery power and either replace the batteries as needed or recharge the batteries
via solar cells or another energy source. Another option is to provide power
over the same cabling that connects the system to the network.

For systems that want to receive power over the network cables, the 802.3af
amendment to the IEEE 802.3 standard specifies methods of providing
moderate amounts of power over the same twisted-pair cabling used for net-
work data. This amendment, titled Data Terminal Equipment (DTE) Power
via Media Dependent Interface (MDI) was approved in 2003. A term often
used to describe the technology in the amendment is Power Over Ethernet.

Twisted-pair interfaces at 10, 100, and 1000 Mb/sec. can use the methods
described in the amendment. As Figure 2-17 shows, the Power Sourcing
Equipment (PSE) that provides power can be in either of two locations. An
Endpoint PSE is inside the repeater hub or switch that connects to the pow-
ered device (PD). A Midspan PSE is a separate device that connects between
a repeater or switch and the powered device. Segments at 1000 Mb/s can use
Endpoint PSEs only.

Chapter 2

66

Figure 2-17: Ethernet devices can receive power over the same twisted-pair
cables that carry data.

Building a Network: Hardware Options

 67

The PSE can supply power over unused wire pairs in a cable or on the same
wire pairs used for data. Only 10- and 100-Mb/sec. systems have unused
pairs. To use data wires, the PSE applies a DC voltage to the center tap of a
pair’s isolation transformer.

The PSE detects a device that requires power, supplies power as needed,
monitors power use, and reduces or removes power when no longer
required. A PSE can supply about 13 Watts (350 milliamperes at 37V).

For information about products that implement the 802.3af amendment,
see www.poweroverethernet.com.

Going Wireless
Sometimes you don’t want to use cables at all. This book’s focus is Ethernet,
which by definition is a wired interface. It’s possible, however, to connect a
system with an Ethernet interface to a wireless network.

The term wireless Ethernet usually refers to a network that follows one of the
IEEE 802.11 standards. The main 802.11 standard, like Ethernet’s 802.3
standard, specifies a physical layer and a method of media-access control for
networking. The physical layer may use radio-frequency (RF) transmissions
in the 2.4 Gigahertz frequency band or infrared transmissions. Both allow
transmitting data at 1 or 2 Mb/s.

A variety of supplements to the standard describe additional options for the
physical layer at higher speeds. A popular standard for wireless networks has
been the 802-11b supplement, which describes the interface known as
Wi-Fi, for wireless fidelity. An 802-11b interface transmits at up to 11 Mb/s
in the 2.4 Gigahertz band. The 802-11g supplement approved in 2003
enables transmitting at 54 Mb/s in the same band and can fall back to the
802-11b rate when needed. Networks that use the physical layer described
in the 802-11a supplement transmit at up to 54 Mb/s in the 5 Gigahertz
band.

The easiest way to connect a device with an Ethernet interface to a wireless
network is to use a wireless access point. The access point has an 802-11b or
other wireless interface and connects via a cable to an interface that wants to

Chapter 2

68

communicate over the wireless network. Initial configuration of the access
point typically requires a PC, but once the access point is configured, the
network administrator can usually change the configuration via a Web page
hosted by the access point.

Media Systems
The media systems defined in the IEEE 802.3 standard each use a particular
cable type at a specific network speed. So for example, a 10-Mb/s
twisted-pair network uses a different media system than a Fast Ethernet
twisted-pair network or a 10-Mb/s fiber-optic network. For each media sys-
tem, the standard specifies the electrical characteristics, signaling protocol,
and methods of connecting to an interface.

Some of the media systems defined in the standard are rarely used. This
chapter focuses on the more popular ones, which Table 2-4 lists.

The standard uses a system of identifiers to distinguish the media systems.
Each identifier has three elements. The first number is the network speed in
Megabits per second (10, 100, 1000) or bits per second (10G). Then the
word BASE or BROAD indicates the type of signaling used, baseband or
broadband. All of the popular media systems use baseband signaling, which
means that the cable carries only Ethernet data and signaling. A broadband
media system carries multiple types of data and signaling.

The final value identifies either the cable type or the maximum length of a
cable segment. In more recently defined media systems, the value indicates
the cable type. For example, in the identifier 10BASE-T, the T signifies
twisted-pair cable. The maximum cable length per segment as specified by
the standard is 100 meters, but the identifier doesn’t contain this informa-
tion. In identifiers defined earlier in Ethernet’s history, the third value indi-
cates maximum cable length. For example, in the identifier 10BASE-5, the
maximum segment length is 500 meters. The media type is coaxial cable,
but the identifier doesn’t contain this information.

Building a Network: Hardware Options

 69

Encoding

One of the characteristics specified by the media system is how the data is
encoded for transmitting. The encoding method helps to ensure that the
data reaches its destination without errors. The encoding defines what volt-
ages or light levels correspond to different values. In addition, for some
media systems, the encoding defines code symbols to represent groups of
bits. The controller chip’s hardware handles the encoding and decoding. You
don’t need to understand how the encoding works to design and program a
network, so this book includes only brief descriptions of the methods and
the reasons for their use.

Block Encoding

Fast Ethernet and Gigabit Ethernet media systems use methods of block
encoding. Block encoding groups bits to be transmitted into blocks that are
typically 4 or 8 bits each, then converts each block into a set of bits called a
code symbol.

Block encoding can ensure frequent transitions in transmitted data, to help
in keeping the transmitting and receiving interfaces synchronized. Another
advantage is the availability of additional code symbols. After assigning code
symbols to all of the possible groups of bits, extra symbols remain. A proto-
col can specify any use for these, and typically uses the symbols to provide
status or control information.

Table 2-4: Each media system uses a particular cable type and data rate.
Media System Cable Type Speed (Mb/s)

10BASE-T twisted pair, Category 3 or higher 10

100BASE-TX twisted pair, Category 5 or higher 100

1000BASE-T twisted pair, Category 5 or higher 1000

10BASE-FL fiber optic, multimode 10

100BASE-FX fiber optic, multimode 100

1000BASE-SX fiber optic, multimode 1000

1000BASE-LX fiber optic, multimode or single mode 1000

10BASE-2 thin coax 10

10BASE-5 thick coax 10

Chapter 2

70

A code symbol is longer than the bits it represents. In the 4B/5B block
encoding used in Fast Ethernet, a 5-bit code symbol represents 4 data bits.
Each code symbol contains one or more transitions. In the 8B/10B block
encoding used in fiber-optic Gigabit Ethernet, a 10-bit code symbol repre-
sents 8 data bits. In both cases, the extra bits increase the maximum transi-
tion rate in the cable by 25 percent.

In addition to ensuring that there are sufficient transitions, 8B/10B encod-
ing attempts to maintain a DC balance by ensuring that the number of
transmitted zeros is roughly the same as the number of transmitted ones
over time. The encoding accomplishes this by assigning two possible code
symbols to some 8-bit values, with the two symbols containing different
numbers of zeros and ones. The transmitter maintains a disparity value that
is a measure of the number of transmitted zeros versus ones over time.
When the ratio of transmitted zeros to ones gets out of balance, the trans-
mitter switches to the set of code symbols that will restore the balance.

Twisted-pair Gigabit Ethernet uses block encoding along with pulse ampli-
tude modulation and transmitting on all four wire pairs at once. The result
is an interface that can transmit at a very high bit rate without requiring a
very high bit rate in the cable. The code symbols are 5 bits, with each sym-
bol representing 2 bits.

Transmitting the Bits

The different media systems use different encoding methods in transmitting
the data bits or code symbols that represent the data bits.

Ten-Mb/s systems use a method called Manchester encoding (Figure 2-18).
In a logic 1, the signal is a low voltage or low light level for the first half of
the bit period and a high voltage or high light level for the second half of the
bit period. A logic 0 is the reverse: the signal is high for the first half of the
bit period and low for the second half.

The advantage to Manchester encoding is that it guarantees a transition in
each bit, and this makes signals easy to synchronize to. The down side is that
the maximum rate of transitions is twice the bit rate, and hardware that can
handle higher bit rates tends to be more expensive.

Building a Network: Hardware Options

 71

In Fast Ethernet systems, the bits in a code symbol transmit using a method
of encoding called multi-level transition 3, or MLT-3. Instead of specifying
two voltage ranges that correspond to logic 0 and logic 1, MLT-3 uses three
voltage ranges. For each bit time, a change from one logic level to the next
signifies a logic 1, while no change signifies a logic 0. The data in Fast Ether-
net systems is also scrambled before transmitting to provide bit patterns that
reduce electromagnetic emissions.

In twisted-pair Gigabit Ethernet, instead of serially transmitting the bits in
the code symbols, which would take five bit times, the transmissions use a

0 0 11 1 1 0 1

0 0 11 1 1 0 1

Manchester

MLT-3

0 0 11 1 1 0 1

Non Return To Zero (NRZ)

0 0 11 1 1 0 1

Non Return To Zero, Invert
on Ones (NRZI)

Figure 2-18: Different media systems use different methods of encoding data
before sending it on the network.

Chapter 2

72

system of 5-level pulse-amplitude modulation. A code symbol is one of five
defined voltage levels, and each level represents a 2-bit value. In this way,
two bits of data transmit in one bit time on each pair of wires.

With each transition representing two bits and four signal pairs transmitting
at once, each bit time transmits 8 bits of information. Transmitting a Giga-
bit per second, the maximum transition rate is 125 transitions per microsec-
ond, which is the same maximum transition rate as in Fast Ethernet.

Twisted-pair Gigabit systems also uses error correcting, digital signal pro-
cessing, and other techniques to ensure signal quality. An Idle symbol trans-
mits when there is no other traffic.

Fiber-optic segments for Fast Ethernet transmit the individual bits in a code
symbol using a method of encoding called non-return to zero, invert on
ones (NRZI). A logic 0 results in no change in light level; if light transmit-
ted during the previous bit’s time period, light continues to transmit for the
logic-0 bit that follows. A logic 1 results in a change in light level: if light
transmitted during the previous bit’s time period, light doesn’t transmit for
the logic-1 bit that follows, and if light didn’t transmit during the previous
bit’s time period, light does transmit for the logic-1 bit that follows.

Gigabit fiber-optic segments transmit the individual bits in the code sym-
bols using non-return-to-zero (NRZ) encoding. NRZ is the simplest encod-
ing: light transmits to indicate a logic 1 and light doesn’t transmit to indicate
a logic 0.

Twisted-pair Media Systems

The identifiers for popular twisted-pair media systems are 10BASE-T,
100-BASE-TX, and 1000BASE-T. Below is basic information about each.

10BASE-T

Bit rate: 10 Mb/s.

Cable Type: Category 3 (also known as telephone twisted pair) or higher.
Category 5e or higher recommended.

Connector Type: RJ-45.

Building a Network: Hardware Options

 73

Maximum length of a cable segment: A 10BASE-T cable segment can be
100 meters or more. The main limiting factor for the cable is attenuation as
signals travel through the cable and connectors. The maximum allowed
attenuation is 11.5 decibels. The exact length limit varies with the cables
and components, but generally, a segment that uses cables and connectors
rated as Category 3 or better should have no trouble transmitting 100
meters.

Maximum number of transceivers per cable segment: 2.

Encoding: Manchester.

Comments: A workhorse for low-cost communications.

100BASE-TX

Bit rate: 100 Mb/s.

Cable Type: Category 5 or higher. Category 5e or higher recommended.

Connector Type: RJ-45.

Maximum length of a cable segment: 100 meters

Maximum number of transceivers per cable segment: 2.

Encoding: 4B/5B block encoding.

Comments: Also known as twisted-pair Fast Ethernet.

1000BASE-T

Bit rate: 1000 Mb/s.

Cable Type: Category 5 or higher. Category 5e or higher recommended.

Connector Type: RJ-45.

Maximum length of a cable segment: 100 meters.

Maximum number of transceivers per cable segment: 2.

Encoding: block encoding with pulse amplitude modulation. All four wire
pairs carry data at the same time.

Comments: Also known as twisted-pair Gigabit Ethernet.

Chapter 2

74

Fiber-optic Media Systems

The identifiers for popular fiber-optic media systems are 10BASE-FL,
100-BASE-FX, 1000BASE-SX, and 1000BASE-LX. Below is basic informa-
tion about each.

10BASE-FL

Bit rate: 10 Mb/s

Cable Type: multimode, 62.5/125 (recommended), 50/125 and other
cables allowed.

Connector Type: BFOC/2.5, also known as ST connectors.

Maximum length of a cable segment, half duplex: 2000 meters (with two or
fewer repeaters); full duplex: 5 kilometers. Cables under 5 meters may
require filters or attenuators.

Maximum number of transceivers per cable segment: 2.

Encoding: Manchester.

Comments: Allows very long cable segments in half- and full-duplex modes.

100BASE-FX

Bit rate: 100 Mb/s

Cable Type: 62.5/125 or 50/125 multimode.

Connector Type: Low Cost Fibre Optical Interface Connectors (SC or
568SC type) recommended. BFOC/2.5 (ST type) Media Interface Connec-
tor (MIC) also permitted.

Maximum length of a cable segment: half duplex: 412 meters; full duplex: 2
kilometers.

Maximum number of transceivers per cable segment: 2.

Encoding: 4B/5B block encoding.

Comments: Full duplex allows very long segments.

Building a Network: Hardware Options

 75

1000BASE-SX

Bit rate: 1000 Mb/s.

Cable Type: 62.5/125 or 50/125 multimode.

Connector Type: Low Cost Fibre Optical Interface Connectors (SC type).

Maximum length of a cable segment, half duplex: 220 to 316 meters,
depending on cable type; full duplex: 220 to 550 meters, depending on
cable type. Minimum: 2 meters.

Maximum number of transceivers per cable segment: 2.

Encoding: 8B/10B block encoding.

Comments: Because of the encoding, the maximum transition rate is 1.25
Gigabaud for a data rate of 1 Gigbit per second. This high rate requires the
use of lasers as the light source. The SX in the name refers to a short-wave-
length light source.

1000BASE-LX

Bit rate: 1000 Mb/s.

Cable Type: 62.5/125 or 50/125 multimode or 10/125 single-mode.

Connector Type: Low Cost Fibre Optical Interface Connectors (SC type).

Maximum length of a cable segment, half duplex: 316 meters; full duplex:
5000 meters with single-mode fiber, 550 meters with multimode fiber. Min-
imum: 2 meters.

Maximum number of transceivers per cable segment: 2.

Encoding: 8B/10B block encoding.

Comments: Because of the encoding, the maximum transition rate is 1.25
Gigabaud for a data rate of 1 Gigabit per second. This high rate requires the
use of lasers as the light source. The LX in the name refers to a long-wave-
length light source.

Chapter 2

76

Coaxial-cable Media Systems

The identifiers for coaxial-cable media systems are 10BASE-5 and
10BASE-2. Below is basic information about each:

10BASE5

Bit rate: 10 Mb/s.

Cable type: 50-ohm coaxial cable rated for use in 10BASE-5 networks,
approximately 10mm in diameter.

Connector Type: Type N connectors (IEC 60169-16) or coaxial tap connec-
tors.

Maximum length of a cable segment, half duplex: 500 meters. Minimum
2.5 meters.

Maximum number of transceivers per cable segment: 100.

Encoding: Manchester.

Comments: Not recommended for new networks.

10BASE-2

Bit rate: 10 Mb/s.

Cable type: 50-ohm coaxial cable rated for use in 10BASE-2 networks,
approximately 5mm in diameter.

Connector Type: BNC.

Maximum length of a cable segment, half duplex: 185 meters. Minimum
0.5 meter.

Maximum number of transceivers per cable segment: 30.

Encoding: Manchester.

Comments: Not recommended for new networks.

Interfacing to Ethernet Controllers
The different cable types and speeds require different hardware interfaces to
Ethernet controller chips. The Ethernet standard defines several types of

Building a Network: Hardware Options

 77

interfaces for connecting a computer’s media access control (MAC) layer,
which manages the sending and receiving of network data, to the physical
layer, which contains the components that are specific to a cable type or
speed.

Depending on the cable type and network speed, the physical layer may
contain little more than transceivers, some filtering, and a connector, or the
layer may include circuits that encode and decode data and convert between
serial and parallel interfaces.

Many Ethernet controllers have an on-chip interface for twisted-pair cables
and require only filtering circuits and a connection to an RJ-45 connector.

Figure 2-19 shows some options for cable connections.

In Figure 2-19A, a 10-Mb/s controller uses an attachment unit interface
(AUI) that connects to a media attachment unit (MAU) that in turn inter-
faces to the network cable. The MAU is a separate unit that attaches to the
controller’s 15-pin AUI interface. The MAU provides an interface to an
Ethernet connector, a collision-detect output, and jabber-detection circuits
to prevent a malfunctioning interface from continuously transmitting. With
an AUI, you can switch between coaxial, twisted-pair, and fiber-optic cable
by swapping the MAU.

In Figure 2-19B, a 10- or 100-Mb/s Ethernet controller uses a
medium-independent interface (MII) that connects to a physical layer
device (PHY), which in turn connects to the network cable. The PHY may
be on the same circuit board as the Ethernet controller or a separate unit.
The MII converts between the network’s serial data and a 4-bit data bus that
connects to the Ethernet controller. Some Ethernet controller chips include
a PHY core for twisted-pair interfaces. An Ethernet controller that includes
an embedded PHY typically requires external filtering circuits between the
PHY and network connector.

In Figure 2-19C, a Gigabit Ethernet controller uses a Gigabit medium-inde-
pendent interface (GMII) that connects to a Gigabit PHY, which connects
to the network cable. Because of Gigabit Ethernet’s speed, the GMII can’t
use a cable to connect to the Ethernet controller, but must be on the same

Chapter 2

78

Figure 2-19: Ethernet controllers can use a variety of interfaces to connect to
the network cable.

Building a Network: Hardware Options

 79

circuit board or a daughter board. The GMII converts between the network
data and an 8-bit data bus that connects to the Ethernet controller.

Another option for a Gigabit Ethernet controller used with fiber-optic cable
is a Ten-Bit Interface (TBI) (Figure 2-19D), which connects to a Gigabit
PHY, which connects to the network cable. The TBI converts between the
network data and a 10-bit data bus that connects to the Ethernet controller.

Figure 2-19E shows an Ethernet controller that contains an embedded PHY
for use with twisted-pair cable.

Using Repeater Hubs, Ethernet Switches, and Routers
Ethernet networks have several options for interconnecting the computers in
a network.

As Chapter 1 explained, repeater hubs and switches have attachment points
for two or more cables that can connect to other interfaces in a local net-
work. Both repeater hubs and switches repeat, or regenerate, traffic received
on one port to the other ports. A repeater hub repeats all traffic to all ports,
with the exception of some multi-speed repeater hubs that convert traffic
between speeds only when necessary. A switch examines the destination of
all received traffic and when possible, forwards the traffic only to the port on
the path to the destination.

A note on terminology: the Ethernet standard uses the terms repeater hub
and switching hub to distinguish between the two device types. However, in
popular use, hub by itself generally refers only to repeater hubs, while switch
refers to switching hubs. To prevent confusion, this book uses the standard’s
term repeater hub but avoids using switching hub in favor of switch or Ether-
net switch.

Repeater hubs and switches make it easy to add and remove network inter-
faces. Each repeater hub or switch has multiple ports. To add an interface,
you just attach the interface’s cable to an available port on the repeater hub
or switch. With most media systems, you can add more ports by connecting
additional repeater hubs or switches to available ports on existing repeater
hubs and switches. As explained earlier, networks that use coaxial cable have

Chapter 2

80

other options such as T connectors, but twisted-pair and fiber-optic net-
works must use repeater hubs or switches to connect more than two inter-
faces.

Communicating with other networks, including the Internet, requires an
additional piece of equipment: a router.

Repeater hubs, switches, and routers are readily available as off-the-shelf
products. A network of embedded systems can use the same devices as net-
works that link PCs. For Internet communications, a local computer may
connect via a modem to a router at an Internet Service Provider.

Repeater Hubs

A repeater hub can connect multiple interfaces and helps to ensure reliable
communications by detecting collisions, regenerating missing preamble bits,
and blocking traffic from failed interfaces. The IEEE 802.3 standard speci-
fies the functions of repeater hubs that support a single speed but doesn’t
forbid hubs that support multiple speeds. On receiving traffic from an inter-
face, the repeater hub repeats the traffic, passing it to each of the other
attached interfaces. In a network that uses repeater hubs, each interface sees
all of the traffic from the other interfaces, with two exceptions. Repeater
hubs block traffic from failed interfaces. And a multi-speed hub may convert
between speeds only when necessary.

Connecting Interfaces

Ethernet cable segments have maximum permitted lengths, depending on
the media system. Repeater hubs enable increasing the distance between
interfaces by connecting two or more segments in series. The hub regener-
ates the signals, enabling them to travel farther than the maximum length of
a single segment.

Besides repeating what it receives, a repeater hub also detects and responds
to collisions and prevents traffic from misbehaving interfaces from reaching
the other interfaces in the network.

As Chapter 1 explained, when two or more interfaces try to transmit at the
same time, the transmitting interfaces have to be able to detect the collision

Building a Network: Hardware Options

 81

before the number of bits in a minimum-size frame has transmitted. When a
repeater hub increases the distance between interfaces, the time it takes for
signals to travel from one end of the network to the other increases as well.
This longer travel time means that it can take longer for a transmitting
interface to detect a collision. So to ensure that interfaces can detect colli-
sions in time, repeater hubs must detect collisions and on detecting a colli-
sion, send a jam signal to all attached interfaces. A repeater hub also extends
received frame fragments when necessary by adding alternating 1s and 0s to
the end of the fragment.

A repeater hub cuts off traffic from a failed interface or network segment so
the rest of the network can continue to operate normally. The hub stops
repeating an interface’s traffic if the port has either a large number of colli-
sions or collisions that persist longer than normal. When the hub is no
longer repeating the traffic from an interface, the offending interface is said
to be partitioned from the rest of the network. Meanwhile, the rest of the
network can communicate.

After partitioning an interface, a repeater hub continues to attempt to send
traffic to the interface. If the interface begins working properly again, the
hub resumes repeating traffic from the interface.

In a similar way, a repeater hub also cuts off communications with an inter-
face that is jabbering, or continuing to transmit longer than the maximum
time allowed for a frame.

How Many Repeater Hubs?

In addition to limiting the length of cable segments, the IEEE 802.3 stan-
dard limits the number of repeater hubs allowed between two interfaces.
The two factors that determine the maximum number of repeater hubs and
the maximum length of cable segments are the interframe gap, or time
between frames, and the round-trip propagation delay, or how long it takes a
bit to travel the length of the network and back.

As cable length increases, the time required for a bit to travel the length of
the network increases, so the time required to detect a collision in the worst
case increases as well. Also, the interframe gap may shrink as signals pass

Chapter 2

82

through repeater hubs. If for any reason a repeater hub doesn’t receive all of
a frame’s Preamble bits, the hub regenerates the bits when it repeats the
frame, and these added bits shorten the gap between the current and next
frames.

The maximum number of repeater hubs varies with the media system. For
10BASE-FL networks, adding repeaters can also shorten the maximum
allowed segment length. Ethernet switches, described later in this chapter,
can extend a network beyond what’s possible with repeater hubs.

The IEEE 802.3 standard provides two transmission-system models to use
as guides in configuring a system that meets the requirements. Model 1
specifies maximum numbers of repeater hubs and maximum segment
lengths for different media systems. The guidelines are conservative. If you
want to exceed what Model 1 allows, Model 2 has calculation aids for deter-
mining whether a particular configuration meets the requirements.

The Model 1 guidelines say the following:

In a 10BASE-T or 10BASE-FL network, the transmission path between two
interfaces may contain up to five segments and four repeater hubs (Figure
2-20). A network may have more than four repeater hubs as long as the path
between any two interfaces has no more than four repeater hubs.

A 10BASE-FL network has additional restrictions on segment length in
some configurations. With two or fewer repeater hubs, the maximum seg-
ment length is 2000 meters. With three repeater hubs, the maximum seg-
ment length between repeaters is 1000 meters, and the maximum distance
between a repeater hub and an interface is 400 meters. With four repeater
hubs, the maximum length of each segment is 500 meters. So using repeater
hubs, the maximum distance between interfaces in a 10BASE-FL network is
6000 meters, using two repeaters hub and three 2000-meter segments.

In a 100BASE-TX or 100BASE-FX network, a transmission path between
two interfaces can have one Class I repeater hub or up to two Class II
repeater hubs. A Class I repeater hub converts as needed between encoding
methods. A network that contains only 100BASE-TX and 100BASE-FX

Building a Network: Hardware Options

 83

interfaces doesn’t need converting because both media systems use the same
encoding.

In a 1000BASE-TX or 1000BASE-FX network, a transmission path
between two interfaces can have only one repeater hub. Virtually all Gigabit
Ethernet systems use switches instead of repeater hubs.

Auto-negotiating

With the addition of 10-Gb/s Ethernet, an Ethernet interface can support
up to four speeds, as well as half duplex and full duplex communications.
The IEEE 802.3 standard defines a protocol for auto-negotiating that
enables an interface to automatically use the fastest speed and duplex mode
available without requiring manual configuring in hardware or software.

Figure 2-20: The Model 1 guidelines specify the maximum number of repeaters
between interfaces in different media systems

Chapter 2

84

When two interfaces that support auto-negotiating connect to each other,
they exchange a series of handshaking signals to determine the fastest config-
uration supported by both.

When an interface that supports auto-negotiating connects to an interface
that doesn’t support auto-negotiating, the auto-negotiating interface detects
and matches the speed and duplex mode of the other interface.

To use auto-negotiating, the Ethernet interface’s hardware must support the
protocol and auto-negotiating must be enabled, typically in configuration
registers, and supported by the Ethernet controller’s driver software. The
hardware then handles the details of auto-negotiating.

Crossover and Straight-through Cables

For all Ethernet media systems except twisted-pair Gigabit systems, each
interface has a dedicated pair of wires or a fiber strand for communicating in
each direction. When a computer transmits on the network, the transmit-
ting wires or fibers need to be routed to the receivers on the receiving com-
puters.

For twisted-pair media systems, the repeater hub or switch normally per-
forms the crossover. The interfaces that connect to the repeater hub or
switch transmit on pins 1 and 2 and receive on pins 3 and 6. The repeater
hub or switch routes data received on pins 1 and 2 to pins 3 and 6 at the
hub or switch’s ports.

But what if you need to add ports or extend a 10- or 100-Mb/s network by
connecting two repeater hubs or switches in series? If the first device’s port
transmits on pins 3 and 6 and the second device’s port expects to receive on
pins 1 and 2, a connection between the devices requires a crossover cable.
An alternative is to use the uplink port available on many repeater hubs and
switches. An uplink port is identical to the device’s other ports except that it
doesn’t have an internal crossover. So if you connect two repeater hubs or
switches using an uplink port on one of the devices, you can use a
straight-through cable. Figure 2-21 illustrates.

Building a Network: Hardware Options

 85

Some switches have auto-crossover capability and will swap the pairs auto-
matically as needed.

Multi-speed Repeater Hubs

An enhancement to the single-speed repeater hub is the multi-speed hub,
which can connect interfaces of different speeds. A popular type of
multi-speed repeater hub supports 10BASE-T and 100BASE-TX media sys-
tems. The ports typically configure themselves automatically for the speed
of an attached interface. A multi-speed repeater hub contains a repeater hub
for 10 Mb/s and a repeater hub for 100 Mb/s, with an internal switch that
connects the hubs.

Figure 2-21: To connect two repeater hubs or switches in a twisted-pair
network at 10 or 100 Mb/s, use a crossover cable or a straight-through cable
with an uplink port.

Chapter 2

86

Most multi-speed repeater hubs convert between speeds only as needed. In
Figure 2-22, the interfaces at ports A, B, and C are 10 Mb/s and the inter-
faces at ports D, E, and F are 100 Mb/s. If the interface at port A sends a
frame to the interface at port B, the repeater hub may detect that the frame
is destined for a 10-Mb/s interface and thus may decide not to convert and
pass the traffic on to ports D, E, and F. If the interface at port A sends a
frame to the interface at port D, the repeater hub must do the conversion.

Ethernet Switches

Like a repeater hub, an Ethernet switch provides attachment points for con-
necting interfaces to a network. A switch can do everything a repeater hub
can, with one big advantage. Instead of sending all frames to all ports, a

Figure 2-22: A multi-speed hub can connect to interfaces of different speeds
and will convert traffic to another speed as needed.

Building a Network: Hardware Options

 87

switch examines each received frame and if possible, sends the frame only to
the port that connects directly to the frame’s destination or to a repeater
hub, switch, or router on the way to the destination. Switches generally cost
little more than repeater hubs and can improve network performance by iso-
lating some of the network traffic.

Ethernet switches use the bridging technology and protocols described in
IEEE 802.1D: Part 3: Media Access Control (MAC) Bridges.

Understanding the benefits of Ethernet switches requires understanding the
concept of collision domains. As Chapter 1 explained, a collision domain
consists of all of the interfaces connected either via repeater hubs or on the
same segment of coaxial cable. If two interfaces in a collision domain try to
transmit at the same time, a collision results and both must retry later. On a
switch, each port is in a separate collision domain, so the interfaces con-
nected to one port don’t see traffic between the switch’s other ports.

In many networks, the multiple collision domains provided by switches
result in a less congested network. In Figure 2-23, when Interface 1 sends a
frame to Interface 2, Repeater Hub 1 repeats the frame to Interfaces 2 and 3
and to Port A on the switch. If the switch determines that the destination
interface is available from Port A, the switch doesn’t send the frame out Port
B or C. Interfaces 4–7 don’t see the frame and are free to exchange other
traffic. If Interface 4 and Interface 7 both attempt to send a frame at the
same time to Interface 1, neither interface sees a collision. The switch
receives the frames on its Port B and Port C and forwards the frames in
sequence out Port A.

On receiving a frame, a switch uses the frame’s destination address to decide
where to send the frame. To make this decision, the switch has to know
which ports correspond to which addresses.

The IEEE 802.1D standard defines a way for an Ethernet switch to learn
recently used addresses without requiring any user setup or configuring. The
switch learns addresses by reading the source address of every frame it
receives. The switch stores these addresses in a table, with each entry con-
taining the source address, the port that received the frame, and when the

Chapter 2

88

switch received the frame. In some cases, the source address will match the
address of one of the interfaces that connects directly or via a repeater hub to
one of the switch’s ports. In other cases, the source address will be for an
interface that is one or more switches or repeater hubs away.

When a frame arrives, the switch looks for a match between the frame’s des-
tination address and the addresses in the switch’s table. On finding a match,
the switch sends the frame only to the designated port. If there is no match,
the switch sends the frame to all of its ports, in a process called flooding.

This method of learning addresses and filtering traffic according to their
destination addresses can dramatically reduce the amount of traffic that an
individual interface sees. To keep the table from overflowing, the switch
removes entries that have had no recent traffic.

Figure 2-23: On an Ethernet switch, each port is in a different collision domain.

Building a Network: Hardware Options

 89

A switch may also connect interfaces of different speeds. On a typical
switch, the ports use auto-negotiation to automatically configure themselves
to support the speed of an attached interface.

Handling Traffic

Because each port on a switch has its own collision domain, a switch may at
times receive more traffic than it can handle right away. For example, if two
ports on a switch each receive a frame destined for a third port, the switch
can only transmit one frame immediately, and must store the other.
Switches contain buffer memory for this purpose.

No matter how big the buffer memory is, it’s possible that on a busy net-
work, the buffer will be full when a new frame arrives. When this happens,
the switch drops, or ignores, the frames it can’t handle. The IEEE 802.1D
standard doesn’t specify a way to notify the sending interface when a frame
is dropped. If the sending interface needs to know that the data arrived at its
destination, the sender can use a higher-level protocol such as TCP, which
requires the receiver to return an acknowledgment on receiving a frame. The
acknowledgment travels in a new frame sent by the receiver of the original
data. Chapter 5 has more on TCP.

How Many Switches?

The IEEE 802.1D standard recommends a maximum of seven switches
between interfaces, to limit the total time required for a transmission to
reach its destination. In practice, messages that use the Internet Protocol
(IP) are likely to get to their destinations even if there are more switches
between the interfaces.

Routers

A router can do everything an Ethernet switch can do, including providing
attachment points for interfaces and forwarding traffic. But an Ethernet
switch can only work with Ethernet frames. If your Ethernet network wants
to communicate with a different kind of network, or with another Ethernet
network, or over the Internet, a router can provide access beyond the local
network. Another term for a router is gateway.

Chapter 2

90

When a computer with an Ethernet interface wants to send a message on the
Internet, the computer places the message in an Ethernet frame and sends it
to a router that can communicate on the Internet. The router does what’s
needed to send the message toward its destination. In the opposite direction,
the router receives messages from the Internet and sends them in Ethernet
frames onto the local network.

Messages that travel on the Internet uses the Internet Protocol to identify
the receiving interface. As Chapter 1 explained, an Ethernet frame’s data
field can contain an IP datagram. When a router receives an Ethernet frame
from the local network, it looks inside the IP datagram’s header in the
frame’s data field to read the destination’s IP address.

Like switches, routers maintain tables of recently used addresses and where
to route traffic to them. For an unfamiliar address, the router sends the data
to a designated default router.

Routers don’t forward broadcast data. Chapter 4 has more about using a
router to connect a device to the Internet.

For more details about the hardware in Ethernet networks, a good reference
is Ethernet: The Definitive Guide by Charles Spurgeon (O’Reilly).

Design Choices

 91

When you’re ready to begin designing an embedded system for networking,
you’ll need to make some decisions about the device hardware and the pro-
gramming code that will control the hardware. At one extreme, you can do
it all yourself, interfacing an Ethernet controller chip to a CPU and writing
code to support Ethernet communications and the Internet protocols the
device uses. Or you can save a lot of time by starting with a module that
contains a CPU, Ethernet interface, and software support for Ethernet com-
munications and Internet protocols. Or you can choose a middle path, such
as using a provided software library but designing your own circuits.

This chapter begins by introducing a sampling of products available for net-
working embedded systems. Whether or not you ultimately select one of the
products described, reviewing the options can help in determining how to
approach a project.

Every computer in an Ethernet network must have an Ethernet controller,
and there are choices here as well. This chapter’s In Depth discussion
describes the capabilities and operation of popular Ethernet controllers.

Chapter 3

92

Quick Start:
Selecting Components

As with any project, familiarity can make a big difference in how easy it is to
get something up and running. On the software side, both C and Java are
popular languages for programming networked embedded systems. If you
have experience in one of these languages, it makes sense to stick with it. On
the hardware side, if you have experience with a particular CPU family, it
often makes sense to stay with it if possible as well. At the same time, if there
is a product that suits your purpose perfectly but will take some time to
master, it may be worthwhile to dig in and learn something new, especially if
you can use the knowledge in additional projects in the future.

This book doesn’t have room to describe every possibility, and new and
updated products continually become available. For links to the latest infor-
mation about the products described and others, visit Lakeview Research’s
Embedded Ethernet page at www.Lvr.com.

Complete Solutions
Some products are complete solutions that provide both the hardware and
program code for Ethernet and Internet communications. The hardware
typically includes a circuit board with a CPU, Ethernet controller, and
related components. The program code includes support for Ethernet,
TCP/IP, and other Internet protocols.

Beyond these basics, the options vary. Different products use different
CPUs, and the type and amount of memory and I/O options vary. A prod-
uct may support programming in assembler, C, Java, or a combination of
languages. Some circuit boards are suitable for use in projects as-is, while
others are designed mainly as development systems for projects that will
eventually be moved to a project-specific circuit board. Some products may
require additional investments in programming hardware and debugging
tools, while others include these or enable using free software tools.

The documentation and other sources of help and examples provided by a
vendor or other parties can make a big difference in how easy it is to get a

Design Choices

 93

project up and running. For the hardware, complete schematic diagrams
help in interfacing to the module and troubleshooting. For programming,
some vendors make the source code available so you can examine and
change or adapt the code if you wish. Others offer only the rights to use pro-
vided code in executable form.

In this book, I’ve included example programs for two popular modules that
provide complete solutions: Rabbit Semiconductor’s RCM3200 RabbitCore
C-programmable Module with Ethernet and Dallas Semiconductor’s
DSTINIm400 Networked Microcontroller Evaluation Kit. The capabilities
of the modules are similar in many ways, but each takes a different approach
both in the included hardware components and in programming. The fol-
lowing descriptions summarize the features and capabilities of these and a
selection of additional modules.

Rabbit Semiconductor RCM3200

At a glance: A fast Z80-derivative CPU with plenty of I/O, low EMI, and a
complete development system, including a C compiler.

Ethernet support: 10BASE-T and 100BASE-TX.

Source: Rabbit Semiconductor (www.rabbitsemiconductor.com).

Hardware. The RCM3200 RabbitCore C-programmable Module with
Ethernet (Figure 3-1) is a circuit board that contains Rabbit Semiconduc-
tor’s Rabbit 3000 microprocessor, which is a much improved and enhanced
derivative of ZiLOG, Inc.’s venerable Z80 microprocessor. The circuit board
is smaller than a business card and supports a variety of I/O interfaces.

The Rabbit 3000 microprocessor has seven 8-bit I/O ports. Many of the bits
can have special functions, including six serial ports for asynchronous and
synchronous communications and Infrared Data Association (IrDA) proto-
cols, a bidirectional parallel port, two input-capture channels, four
pulse-width-modulation (PWM) outputs, and two quadrature decoder
units with inputs for optical incremental encoder modules.

In addition to the I/O ports, there is an external memory bus with 8 data
bits and 20 address lines. The power supply can range from +3.6V to as low

Chapter 3

94

as +1.8V. A counter that functions as a real-time clock has a separate power
pin to make it easy to provide battery backup. The chip is available in a
128-pin LQFP (low profile quad flat pack) or 128-ball TFBGA (thin-profile
fine-pitch ball grid array) package.

The Rabbit 3000 is an obvious choice for systems that must obtain Federal
Communications Commission (FCC) certification or comply with other
regulations that limit electromagnetic interference (EMI). The chip’s design-
ers have gone to great lengths to create a CPU whose internal architecture
and external interfaces make it easy to design systems that pass EMI tests.
An article on Rabbit Semiconductor’s Web site has details.

The Rabbit 3000 also has several features for applications that must con-
serve power. Lowering the supply voltage can reduce power consumption by
75 percent. Slowing the clock reduces power consumption as well. The
CPU can switch between a fast clock (up to 54 Megahertz) and a second
clock that can run at 32 kilohertz. The CPU can use the slow clock while
waiting for a specified time to elapse or an event to occur, then switch to the
faster clock when processing power is needed. With a low supply voltage

Figure 3-1: Rabbit Semiconductor’s RCM3200 Ethernet Core Module contains
a CPU, Ethernet controller, and RJ-45 connector. (Photo courtesy of Rabbit
Semiconductor.)

Design Choices

 95

and a slow clock, current consumption can be as low as a few hundredths of
a milliampere.

The RCM3200 module contains a Rabbit 3000 clocked at 44.2 Megahertz
along with memory and components to support Ethernet communications.
There are 512 kilobytes of Flash memory for storing programs, 512 kilo-
bytes of fast RAM for loading code for execution, and 256 kilobytes of
RAM for storing data. One of the serial ports uses a special programming
cable to load firmware from a PC into RAM or Flash memory.

The module’s Ethernet controller is an ASIX AS88796 3-in-1 Local Bus Fast
Ethernet Controller, which interfaces to the CPU’s external data bus. The
module has an RJ-45 connector for 10BASE-T and 100BASE-TX Ethernet
media systems. Two headers on the bottom of the board provide access to
the I/O bits and other signals.

The RCM3200’s development kit includes an RCM3200 module and a
prototyping board with a power-supply connector, a voltage regulator, a
prototyping area, and switches and LEDs for experimenting (Figure 3-2).
The RCM3200’s headers plug into sockets on the board.

Figure 3-2: For project development, the RCM3200 attaches to a prototyping
board. (Photo courtesy of Rabbit Semiconductor.)

Chapter 3

96

The RCM3200 is one of several modules offered by Rabbit Semiconductor.
If you don’t need the speed of 100BASE-TX, take a look at the RCM2100
module, which supports only 10BASE-T Ethernet. The RCM2100 contains
a Rabbit 2000 microprocessor, a slower but still very serviceable CPU with
the same instruction set at the Rabbit 3000. The module’s Ethernet control-
ler is a Realtek RTL8019AS Full Duplex Ethernet Controller. The Rabbit
3000 and 2000 microprocessors are also available for use on circuit boards
of your own design.

Software. Rabbit Semiconductor’s Dynamic C is a complete environment
for writing and editing code, compiling and linking, loading compiled code
into the RCM3200’s RAM or Flash memory, and debugging (Figure 3-3).
The compiler also supports in-line assembly code.

For networking, Dynamic C includes drivers for the Ethernet controller and
libraries that support TCP/IP communications and other networking proto-
cols. The libraries provide support for an HTTP server, an FTP client and
server, and sending and receiving e-mail with SMTP and POP3. A file sys-
tem supports storing information in files in Flash memory or battery-backed
RAM.

Additional library modules are available, including a module that imple-
ments the open-source, real-time MicroC/OS-II operating system. An
Advanced Encryption Standard (AES) module supports encrypting network
data using the Rijndael Advanced Encryption Standard cipher. (See Chapter
10 for more about encryption.) Other modules support the Point-to-Point
protocol (PPP) and Simple Network Management Protocol (SNMP).

Source code for all of the libraries is provided. Dozens of short, well-com-
mented example programs illustrate how to use the functions in the librar-
ies.

Two code modules perform basic functions for all Dynamic C programs.
Compiled code automatically includes the Virtual Driver module, which
performs initialization and timer functions. The Rabbit BIOS is compiled
separately and handles startup, shutdown, debugging communications, and
other basic tasks. Dynamic C loads the BIOS into the RCM3200’s memory

Design Choices

 97

automatically using the Rabbit 3000’s bootstrap mode and programming
cable. The Virtual Driver and Rabbit BIOS are fully documented, with
source code available.

Dynamic C has built-in support for multitasking for tasks that each require
CPU time on a regular basis. A system may use cooperative or preemptive
multitasking.

In cooperative multitasking, the tasks must agree to cooperate to not use
more than their share of processor time. Dynamic C achieves cooperative
multitasking through the use of costatements and cofunctions.

Figure 3-3: Rabbit Semiconductor’s Dynamic C is a complete environment for
programming, loading and running programs, and debugging.

Chapter 3

98

A costatement is a list of statements with a pointer that keeps track of which
statement to execute next. A costatement typically functions as one state-
ment in a list of statements that execute in sequence in a loop.

Within a costatement, a waitfor control statement can test to find out if a
function has completed or a timeout has occurred. If waitfor returns true,
the costatement continues with the next statement in the list. If waitfor
returns false, the costatement jumps to its closing brace. The next time the
costatement executes, the costatement begins at the waitfor that previously
returned false. In this way, the code can make its way through a series of
statements without being blocked by a statement that takes a long time to
execute. A waitfor statement can call any function that returns a value.

In the example below, an endless for loop alternates between calling the
tcp_tick() function, which performs background processing for TCP and
UDP communications, and a costatement whose function is to send a data-
gram once per second.

 for(;;) {
 tcp_tick(NULL);
 costate {
 //wait DelaySec seconds between sends.
 waitfor(DelaySec(1));
 //send a datagram to the remote host.
 send_datagram();
 }
}

The first time the costatement executes, the waitfor(DelaySec(1)) state-
ment executes and saves a value that indicates the current time. The state-
ment returns false and execution jumps to the costatement’s closing brace,
then to the top of the for loop. Each time through the loop,
waitfor(DelaySec(1)) executes, returning False until one second has
elapsed. On returning true, execution continues with the
send_datagram() statement. This statement calls the application’s
send_datagram() function, which sends a datagram to a remote host. Pro-
gram execution then loops back to the waitfor() statement, which restarts
the delay timing.

Design Choices

 99

Dynamic C’s cofunctions are similar to costatements, but can accept and
return arguments.

Costatements and cofunctions are convenient for many applications, but it’s
also possible to achieve cooperative multitasking with state-machine based
programming. State machines can be useful when the program code repeat-
edly performs a series of tasks, but not always in the same order.

A C switch statement can implement a state machine. For example, a TCP
server can use a switch statement to decide what code to execute depending
on the current state of a connection. Possible states might be initializing a
socket, waiting for a connection, receiving a request, receiving headers,
sending a response, and waiting to close a connection. Rabbit Semiconduc-
tor’s state.c example illustrates this approach.

In preemptive multitasking, each task is guaranteed processor time. There’s
no need to depend on the other tasks to yield. Dynamic C’s slice state-
ment enables preemptive multitasking by running a task for a time slice, or
period, measured in units of 1/1024 second. At the end of the slice, the task
suspends. If all of the tasks in a program’s main loop use slice statements,
you can determine how often each task receives its slice from the total num-
ber of slices.

A limitation to using slices with TCP/IP communications in Dynamic C is
that all TCP/IP functionality must take place in a single slice. The
MicroC/OS-II library module provides another way to achieve preemptive
multitasking.

The documentation for Dynamic C and the hardware modules includes an
extensive series of detailed manuals. Rabbit Semiconductor’s Web site hosts
a tech-support Bulletin Board. In addition, a rabbit-semi e-mail discussion
list for developers is available at www.groups.yahoo.com.

Another programming option for Rabbit modules is the WinIDE Integrated
Development Environment from Softools, Inc. (www.softools.com). Like
Dynamic C, WinIDE includes an editor, a compiler and linker, the ability
to load compiled code into RAM or Flash memory, and a debugger. The
Control Cross C compiler is a full Standard C compiler. Compiled code is
smaller and faster than code compiled with Dynamic C.

Chapter 3

100

Dallas Semiconductor DSTINIm400 (TINI)

At a Glance: A fast microcontroller with an enhanced 8051 architecture,
plenty of I/O, an operating system, and a Java virtual machine (JVM).

Ethernet support: 10BASE-T, 100BASE-TX

Typical Uses: applications that need speed, lots of I/O, or a CAN interface.

Source: Dallas Semiconductor (www.dalsemi.com). Dallas Semiconductor is
a wholly owned subsidiary of Maxim Integrated Products.

Hardware. TINI stands for Tiny InterNet Interface. Technically, the TINI
isn’t a CPU or a circuit board, but a platform that consists of a CPU and
related components, support for networking, and a Java runtime environ-
ment.

The DSTINIm400 Networked Microcontroller Evaluation Kit (Figure 3-4)
is a module that implements the TINI platform. The module’s circuit board
contains a Dallas Semiconductor DS80C400 Network Microcontroller,

Figure 3-4: Using the DSTINIm400, you can create a networked device
programmed in Java.

Design Choices

 101

which is a much enhanced, high-speed derivative of Intel Corporation’s
long-popular 8051 microcontroller.

The high speed comes from a fast clock and the ability to execute instruc-
tions in fewer clock cycles than an 8051. The maximum clock speed is 75
Mhz. To decrease EMI, the chip can use a slower clock with an on-chip
clock multiplier.

The ’80C400 contains over 9 kilobytes of RAM and can address 16 Mega-
bytes of external memory.

The chip has eight 8-bit I/O ports. Many of the port bits can function as
data and address lines for an external memory bus with 8 data bits and 22
address bits. Most of the other port bits have alternate functions as well.
There are three asynchronous serial ports and a programmable output clock
for an Infrared Data Association (IrDA) interface. A 1-Wire-net Master can
control communications on a 1-Wire net, or MicroLAN, which connects
components using a single data line plus a ground line. A Controller Area
Network (CAN) 2.0B controller enables communicating over a CAN net-
work, which is a serial interface and protocol that’s popular in automotive,
industrial, and medical applications. If you don’t need a port bit’s alternate
function, you can use the bit as a generic I/O bit.

The ’80C400 chip includes a programmed 64-kilobyte ROM that contains
three firmware components. A networking stack supports TCP/IP and
related protocols, including IP version 6 (described in Chapter 4). A pre-
emptive task scheduler enables sharing CPU time among multiple tasks. For
remote storage of firmware and easy firmware upgrades, the NetBoot com-
ponent enables the TINI to automatically locate, load, and run program
code from the local network or the Internet.

The chip also contains hardware support for Ethernet, including an Ether-
net controller for 10-Mb/s and 100-Mb/s networks. An on-chip MII must
connect to an external PHY that provides the physical interface to a 10- or
100-Mb/s network.

The DS80C400 chip requires a +1.8V Core Supply Voltage and a +3.3V
I/O Supply Voltage. The DSTINIm400 module requires a +3.3V source
and contains a regulator to provide +1.8V to the ’80C400. For connecting

Chapter 3

102

to external circuits, the module has a 144-contact SODIMM (Small Out-
line Dual In-line Memory Module) connector with connections to the
address and data lines, other signals, and power pins.

On the DSTINIm400 module, additional memory includes two Megabytes
of Flash memory for program code and one Megabyte of battery-backed
RAM.

Not surprisingly, all of the other integrated circuits on the module are from
Maxim or Dallas Semiconductor. A DS1672 Low-Voltage Serial Timekeep-
ing Chip contains a 32-bit counter that counts seconds for use as a base for a
real-time clock. The DS2502-E48 is a 1-Wire Add-Only Memory chip that
contains a factory-programmed, write-protected Ethernet hardware address.
The remaining bytes in the 1-kilobyte chip are available for storing informa-
tion that will never or seldom change. (The contents of the Add-Only
Memory’s PROM can be added to or patched, but not erased.) A MAX1792
low-dropout linear regulator provides 1.8V for the ’80C400’s Core Supply
Voltage input. Two MAX6365 Supervisory Circuits and a 3V lithium bat-
tery provide battery backup for the RAM chips.

For project development, the DSTINIs400 Sockets Board Evaluation Kit
(Figure 3-5) is a circuit board with components and connectors that make it
easy to communicate with the DSTINIm400 module. The module plugs
into a SODIMM socket on the board.

On the DSTINIs400, an Intel LXT972A Fast Ethernet Transceiver and fil-
tering circuits provide an interface between the DS80C400’s MII and an
RJ-45 jack that can connect to a 10BASE-T or 100BASE-TX network.

A MAX560 +3.3V Transceiver provides a TIA/EIA-562-compatible inter-
face for two of the ’80C400’s serial ports. TIA/EIA-562 is similar to
TIA/EIA-232 (also known as RS-232), but with smaller minimum voltage
swings. The minimum outputs for a TIA/EIA-232 interface are ±5V, while
TIA/EIA-562 requires just ±3.7V. Over short distances, TIA/EIA-562 inter-
faces can connect directly to TIA/EIA-232 interfaces with no problems. The
DSTINIs400 board includes DB-9 connectors for these ports.

Design Choices

 103

For interfacing to the ’80C400’s CAN controller, the DSTINIs400 has a
CAN transceiver with connections to a header. Another header connects to
two ’80C400 port bits that can function as an I2C interface for synchronous
serial communications.

Solder pads for an iButton clip connect to the ’80C400’s 1-Wire Master
interface. An iButton is a computer chip inside a round, coin-style, stain-
less-steel battery case. The base, which consists of the sides and bottom of
the case, are ground, and the lid is the data connection. Communications
with an iButton use the 1-Wire interface. Uses for iButtons include provid-
ing identification, generic data storage, temperature data, and
real-time-clock information.

Figure 3-5: The DSTINIs400 Sockets Board Evaluation Kit contains a socket
for the DSTINIm400 module and an Ethernet transceiver for communicating
with a 10BASE-T or 100BASE-TX network

Chapter 3

104

A DS2480B Serial Port to 1-Wire Interface Bridge enables using serial port
1 on the ’80C400 to communicate with 1-Wire devices.

The board includes solder pads for a Xilinx XC2C64 CoolRunner II com-
plex programmable logic device (CPLD). The CPLD interfaces to the
’80C400’s data and address buses and adds 48 I/O bits that are brought out
to headers on the board.

The board requires a regulated +5V supply. A MAX1692 Step-down Regu-
lator on the board provides a +3.3V supply for the DSTINIm400 and other
components.

The ’80C400’s predecessor is the ’80C390, a slower and less-full-featured
but still very powerful chip. The DS-TINI-1 module contains an ’80C390,
Flash memory, and battery-backed RAM. A 72-contact Single In-line Mem-
ory Module (SIMM) connector provides access to the address and data
buses, Ethernet signals, port bits, and other signals. For Ethernet communi-
cations, the module has Standard Microsystems Corporation (SMSC)’s
LAN91C96 Ethernet controller. A Maxim DS2433 EEPROM with a
1-Wire interface stores the Ethernet hardware address. An advantage of the
DS-TINI-1 is that the complete Ethernet interface, except for the RJ-45
connector, is on the module, while the DSTINIm400 module requires an
external Ethernet transceiver. The ’80C390 doesn’t contain a programmed
ROM, but uses external Flash memory to store a bootstrap loader and runt-
ime environment as well as application programs.

Dallas Semiconductor isn’t the only source for TINI hardware. Systronix
(www.systronix.com) has a variety of offerings. The TStik (Figure 3-6) is a
DS80C400 module that uses the same SIMM connector as the DS-TINI-1.
Unlike the DSTINIm400, the TStik includes an Ethernet transceiver and
filtering circuits, so there’s no need to provide these on a separate board.
Two editions of the TStik are available, with and without an external mem-
ory bus. Systronix also offers a variety of development boards for use with
the DS-TINI-1 and TStik.

The Software. The TINI Software Developers Kit (SDK), available for free
downloading from Dallas Semiconductor’s Web site, includes the TINIOS

Design Choices

 105

operating system and a Java Virtual Machine (JVM). The operating system
enables running multiple tasks by scheduling the tasks in time slices. The
operating system supports a file system and includes memory and I/O man-
agers. The JVM contains an interpreter that executes Java programs and
communicates with the operating system. Every Java-capable computer
must have a JVM. The DSTINIm400’s JVM uses about 40 kilobytes of
memory.

Two useful programs for use in developing TINI applications are the JavaKit
utility available from Dallas Semiconductor and a Telnet application.

The JavaKit utility runs on a PC and communicates over a serial-port link
with a TINI (Figure 3-7). Typing e at the JavaKit prompt causes the TINI
to start its JVM and run the slush command shell. After logging on with a
user name and password, you can use slush commands to run programs,
view directories, and execute commands such as ipconfig, which can set a
static IP address or specify that the TINI should use DHCP to receive its IP
address.

When the TINI has been configured for network communications, you can
log onto slush over the network using a Telnet application such as Windows’
HyperTerminal. To use Hyperterminal for a Telnet session, set up the con-
nection to connect to the TINI using TCP/IP.

A .startup file in the TINI’s /etc directory can name applications to run when
slush starts.

Figure 3-6: The TStik from Systronix is a TINI that contains a DS80C400 on a
circuit board with a 72-pin SIMM connector. (Photo courtesy of Systronix.)

Chapter 3

106

Java programs for TINI can access the standard core Java packages java.lang,
java.io, java.net, and java.util. The TINI implements most of the JDK ver-
sion 1.1.8 distribution. This isn’t the latest distribution, but is still plenty
capable for use in embedded-systems applications.

The TINI also supports a series of TINI-specific classes. Several of the
classes relate to networking. The TININet class sets and gets network
parameters such as the Ethernet address, IP address, and subnet address.
The HTTPServer class implements a basic Web server. The DHCPClient
and DNSClient classes enables the TINI to use DHCP and the DNS proto-
col.

The HTTPServer class only supports Web pages with static content. To
function as a Web server that serves dynamic content, the TINI can use

Figure 3-7: The JavaKit utility enables you to start the TINI’s JVM and run the
slush command shell.

Design Choices

 107

additional software such as the Tynamo Web server from Shawn Silverman
or Smart Software Consulting’s TiniHttpServer. Both of these include sup-
port for Java servlets.

To compile Java programs, you can use just about any Java compiler and
Java development system, including the compiler in the free Java Develop-
ment Kit (JDK) from Sun Microsystems (java.sun.com). Borland’s JBuilder
environment (www.borland.com) includes a compiler and graphical interface
for developing. JBuilder comes in several editions, including a free Personal
Edition.

After compiling a .java file to a .class file, an additional step creates the
binary file required by the TINI. The TINIConvertor utility converts .class
files to .tini files, which contain the byte codes, or machine instructions,
that the TINI’s JVM interprets. A .tini file is essentially the same as a .class
files, but with redundant information removed for a smaller file size.

To copy .tini files from a PC to a TINI, you can use any generic FTP client
program configured to access the TINI’s IP address.

The source code for the operating system and Java API aren’t available. Dal-
las Semiconductor and Maxim Integrated Products grant users a no-charge
license to load the binary file containing the code into a TINI system.

Dallas Semiconductor provides application notes and many short examples
that you can use in writing custom applications. The book The TINI Speci-
fication and Developer’s Guide by Don Loomis, the lead architect and devel-
oper of TINI, has additional TINI information and examples. The book is
available in printed form from Addison Wesley or as a free download from
Dallas Semiconductor. Another book that focuses on the DSTINI-1 is
Designing Embedded Internet Devices by Dan Eisenreich and Brian DeMuth
(Newnes). Other support includes an e-mail discussion list sponsored by
Dallas Semiconductor and a variety of Web pages maintained by TINI
users.

Although the TINI was created as a Java computer, it’s possible to program
the DSTINIm400 in C or assembly code using Keil Software’s uVision2 C
compiler.

Chapter 3

108

Systronix JStik

At a glance: direct execution of Java bytecodes eliminates the need for an
interpreter.

Ethernet support: 10BASE-T

Typical use: Applications that use Java and require speed.

Source: Systronix (www.systronix.com).

Hardware. The TINI isn’t the only option for Java programmers. Systronix’s
JStik board (Figure 3-8) contains aJ-100 microcontroller from aJile Systems
Inc. The aJ-100’s native execution of Java bytecodes results in very fast per-

Figure 3-8: Systronix’s JStik board contains an aJ-100 microcontroller with
native execution of Java bytecodes. (Photo courtesy of Systronix.)

Design Choices

 109

formance. The chip is based on the JEM processor developed at Rockwell
Collins.

The JStik adds a high-speed I/O bus that can operate at bursts of 50 Mega-
bytes per second, two RS-232 ports, and SPI and I2C interfaces. The board
fits into a 60-contact SIMM socket and has an RJ-45 plug and additional
I/O connectors.

Software. Systronix provides aJile’s Jem Builder tool and Charade debugger
for building, loading, and testing applications. You can use other Java envi-
ronments and tools with the JStik as well.

Netburner MOD5282 Processor Module

At a glance: Fast Ethernet and a fast 32-bit CPU with lots of memory and
I/O.

Ethernet support: 10BASE-T and 100BASE-TX

Typical use: Applications that need speed and abundant resources

Source: Netburner, Inc. (www.netburner.com)

Hardware. Netburner’s MOD5282 Processor Module contains Motorola’s
32-bit ColdFire MCF5282 processor. The MCF5282 supports a subset of
the Motorola 68000 CPU’s instruction set. The chip has 512 kilobytes of
Flash memory and 64 kilobytes of RAM.

For I/O interfacing, the MCF5282 has three UARTS, a CAN interface, an
I2C controller, a queued serial peripheral interface (QSPI) for synchronous
serial communications, and an 8-channel, 10-bit analog-to-digital converter.

The chip is in a 256-pin mold array process ball-grid array (MAPBGA)
package that contains the media-access control circuits for 10BASE-T and
100BASE-TX Ethernet in addition to the CPU.

The MOD5282 includes 8 Megabytes of SRAM and connections for a
16-bit data bus and 16-bit address bus. For networking, the board includes a
PHY for 10-Mb/s and 100-Mb/s Ethernet and an RJ-45 connector.

Applications are compressed and stored in Flash memory. At startup, the
application loads into and runs from RAM.

Chapter 3

110

The Module 5282 Development Kit contains a MOD5282 board, a power
supply, connectors, and other components for prototyping and testing.

Software. Also included in the Module 5282 Development Kit are software
support for Ethernet and Internet protocols, an operating system based on
the freeware µC/OS, the freeware GNU C/C++ compiler, a debugger, and
configuration utilities.

All of the software included with the development kit includes complete
source code. The software supports TCP/IP, and related protocols, including
code that enables NetBurner modules to function as Web servers and to
send and receive e-mail.

Microchip Technology PICDEM.net Demonstration Board

At a glance: An aid to developing networking applications for Microchip
Technology’s PICMicro microcontrollers.

Ethernet support: 10BASE-T

Typical use: Projects that require minimal resources or any PICMicro-based
project with an Ethernet interface or support for Internet protocols.

Source: Microchip Technology (www.microchip.com).

Hardware. The PICDEM.net Demonstration Board contains a microcon-
troller, Ethernet controller, related components, and a breadboarding area.
The board is intended mainly for developing and testing, rather than as a
plug-in module for use in a product.

The microcontroller is a PIC16F877, a member of Microchip Technology’s
popular PICMicro family The PIC16F877 has Flash memory that can store
8192 14-bit words, 368 bytes of RAM, and 192 bytes of EEPROM. There
are 33 I/O bits. Many of the bits have alternate functions, including an
eight-channel, 10-bit analog-to-digital converter, an asynchronous serial
port, a synchronous serial port, and a parallel interface. The clock speed is
19.6608 Megahertz.

The microcontroller is in a 40-pin DIP socket, and can be replaced by other
members of the PIC family, including the PIC18C452 and PIC18F452.
The board also contains a 32-kilobyte serial EEPROM for storing Web

Design Choices

 111

pages the microcontroller will serve. For experimenting, the board provides
LEDs, a pushbutton, potentiometers, and an LCD module. The Ethernet
controller is a Realtek RTL8019AS. The interface to the controller uses the
CPU’s parallel port and five additional I/O bits.

For loading programs, there is a connector for use with Microchip’s MPLAB
In-Circuit Debugger, which can program the microcontroller’s Flash mem-
ory. You can use the serial port and a terminal emulator such as Windows’
Hyperterminal to load network configuration information into the
EEPROM.

Software. The microcontroller comes programmed with firmware to sup-
port networking and serve a sample Web page. The source code is on the
accompanying CD. The networking code is from Iosoft, and is described in
detail in the book TCP/IP Lean: Web Servers for Embedded Systems by Jeremy
Bentham (CMP Books). The source code is available to anyone who buys
the book. Commercial use of the code requires paying a licensing fee to
Iosoft.

Special-Purpose Modules
In addition to products that provide a complete generic system for network-
ing, a variety of modules and chips are available to handle specific tasks.
Some products can interface to just about any CPU. If you have an existing
product or a CPU that you want to use, one of these modules may provide a
way to add networking capability. This section describes a selection of prod-
ucts.

Lantronix Device Server

At a glance: enables any device with an asynchronous serial port to commu-
nicate over a network.

Typical use: any device or system that communicates over a serial port and
requires network access.

Ethernet support: 10BASE-T, 100BASE-TX

Source: Lantronix, Inc. (www.lantronix.com)

Chapter 3

112

Hardware: Lantronix offers its Device Servers in a variety of packages,
including devices in enclosures, circuit boards and chips for incorporating
into other devices, and a server squeezed into a slightly extended RJ-45 con-
nector. Each server has a TTL-compatible asynchronous serial port for com-
municating with an external device or system and an RJ-45 connector for
connecting to an Ethernet network. Firmware is stored in Flash ROM. The
CPU varies depending on the product. Two of the options are AMD’s
AMD186ES and Lantronix’s DSTni-LX, which contains a CPU, serial
ports, Ethernet controller, and RAM.

Software: The Device Servers contain firmware to support Ethernet and
Internet protocols, including UDP, TCP, IP, and HTTP. User firmware
manages communications between the serial port and the server. For pro-
gramming, the DSTni-LX Development kit includes a development board
and the Paradigm C++ Professional development toolkit. The USNET
TCP/IP software suite and a real-time operating system are also available
separately for use in your own hardware. USNET is compatible with Intel
80x86, Motorola 68K, and other microprocessors. Source code is included.

Ubicom IP2022 Wireless Network Processor

At a glance: A CPU optimized for networking with software-configurable
peripherals and wireless support.

Typical use: Web servers and wireless networking

Ethernet support: 10BASE--T

Source: Ubicom, Inc. (www.ubicom.com)

Hardware. Ubicom’s IP2022 Wireless Network Processor is a CPU opti-
mized for networking functions. The chip contains two configurable Serial-
izer/Deserializer blocks. Using software modules provided by Ubicom, each
block can support Ethernet, USB, a General Purpose Serial Interface
(GPSI), a Serial Peripheral Interface (SPI), or a UART. The CPU uses a
120-Megahertz clock obtained from a 4.8-Megahertz crystal.

The Universal Device Networking Kit contains a development board, an
adapter for in-circuit programming, and software. The Advanced Wireless

Design Choices

 113

Kit adds support for IEEE 802.11b wireless networking on a PC Card with
supporting firmware. The Phantom Server is a Web server module with an
IP2022 CPU, 512 kilobytes of Flash memory for storing Web pages, and
support for CGI and SSI.

Software. Project development uses Ubicom’s integrated development envi-
ronment and GNUPro, a software development suite that includes a C
compiler. The suite is built around the open-source GNU standard and is
available from Red Hat (www.redhat.com). The IP2022’s Core Software
Development Kit includes support for Ethernet and Internet protocols.

Netmedia SitePlayer Ethernet Web Server

At a glance: a very inexpensive module that can serve Web pages and per-
form UDP communications with a minimum of user programming.
Requires a serial link to a CPU to update Web page data and receive data
from clients.

Ethernet support: 10BASE-T

Figure 3-9: Ubicom’s Universal Device Networking Kit contains the IP2022
Wireless Network Processor. (Photo courtesy of Ubicom, Inc.)

Chapter 3

114

Typical use: Basic monitoring and control tasks.

Source: Netmedia (www.netmedia.com)

Hardware. The main purpose of Netmedia’s SitePlayer(Figure 3-10) is to
provide a very low-cost platform for serving Web pages, including pages
with dynamic content. For most projects, the SitePlayer communicates with
an external CPU over a serial link. The SitePlayer can place data received
from the CPU in its Web pages and can send data from a form or a hyper-
link on a Web page to the CPU. The CPU can also use the SitePlayer to
send and receive UDP datagrams over a network. In some very basic appli-
cations, you can use the SitePlayer without a connection to a CPU, such as
applications where users click buttons on a Web page to toggle pins on the
SitePlayer’s board.

The SitePlayer contains just two chips: a Philips 8051-compatible P89C51
microcontroller and a Realtek RTL8019AS Ethernet controller. Two 10-pin
headers provide access to the Ethernet interface, an asynchronous serial

Figure 3-10: Netmedia’s SitePlayer and development board provide a Web
server with Ethernet and RS-232 interfaces.

Design Choices

 115

interface, an output for indicating status of the Ethernet interface, a reset
input, and eight I/O pins.

The microcontroller’s Flash memory stores the program code that runs the
SitePlayer and the Web pages the SitePlayer serves. The SitePlayer can store
up to 48 kilobytes of Web pages.

The SitePlayer’s development board contains a SitePlayer module and head-
ers for monitoring or connecting to the SitePlayer’s pins. Also included are
an RJ-45 connector for the Ethernet interface, an RS-232 interface and con-
nector for the asynchronous serial interface, a voltage regulator and
power-supply connector, an LED controlled by the LINK output, a Reset
button, and two additional LEDs and pushbuttons.

Software. A SitePlayer project requires a SitePlayer Definition file, which is
a text file that contains setup parameters and variable definitions in a
Siteplayer-specific format. The setup parameters include information such
as whether the SitePlayer should receive its IP address from a DHCP server
and if not, what IP address to assign to the SitePlayer. The definitions are for
variables that will contain dynamic content in the Web pages. The
SitePlayer’s software manual explains the syntax to use in the Definition file.

The Web pages served by the SitePlayer are like any Web pages except that
they may contain pointers to objects that correspond to variables in the Def-
inition file. A “^” before a name indicates a pointer. For example, ^flow is a
pointer to the variable flow. When the SitePlayer serves the Web page, it
substitutes the current value of the named variable for the pointer.

Netmedia’s SiteLinker utility assembles a Definition file into a SitePlayer
Binary image and enables you to load the image and your Web pages into
the SitePlayer. A SitePlayer Interface File enables receiving information pro-
vided by a user viewing a SitePlayer Web page.

The firmware inside the SitePlayer manages communications over the
Ethernet and serial ports. The source code isn’t available.

Chapter 3

116

EDTP Electronics Packet Whacker

At a glance: An Ethernet interface on a circuit board with headers for con-
necting to a CPU.

Typical use: adding Ethernet to any microcontroller circuit.

Ethernet support: 10BASE-T

Source: EDTP Electronics (www.edtp.com)

Hardware. The Packet Whacker (Figure 3-11) from EDTP Electronics is an
Ethernet interface only. The circuit board contains a Realtek RTL8019AS
Ethernet controller, an RJ-45 connector, two headers that bring out the sig-
nals required to communicate with the Ethernet controller, and related
components. You can use the Packet Whacker to add Ethernet to just about
any microcontroller. EDTP Electronics has similar boards with other Ether-
net controllers: the NICki has a Cirrus 8900A and the NICkita has an ASIX
88796L. The Whacked 8051 Development Board includes Packet Whacker
circuits and adds a Philips P89C668 8051-compatible microcontroller and
64 kilobytes of Flash memory.

Software. EDTP provides example Packet Whacker firmware for UDP and
TCP communications using a Microchip PIC16F877. The Whacked 8051

Figure 3-11: EDTP’s PacketWhacker makes it easy to add an Ethernet interface
to an external CPU. (Photo courtesy of EDTP Electronics.)

Design Choices

 117

Development Board includes C and Basic (BASCOM-51) code for UDP,
TCP, and other Internet protocols. The NICkita includes an e-book with
information about using the ASIX 88796L controller.

Serial-to-Ethernet Bridge

At a glance: enables RS-232 and RS-485 devices to communicate over net-
works

Ethernet support: 10BASE-T

Typical use: remote communications with devices with serial interfaces.

Sources: Z-World (www.zworld.com), Netburner (www.netburner.com), R.E.
Smith (www.rs485.com).

Hardware. Thousands of existing devices that don’t support Ethernet have
an RS-232 or RS-485 serial interface. With a serial-to-Ethernet bridge, you
can communicate with these devices in an Ethernet network.

The bridge connects to the device’s serial interface and to an Ethernet net-
work. Computers anywhere in the network can then exchange data with the
device. After being configured, the bridge transparently sends received serial
data on the network in TCP segments and sends data received in TCP seg-
ments to the device’s serial interface.

Two devices that connect to a network via bridges can communicate the
same as if they were connected directly by a serial interface. The bridge con-
verts between interfaces as needed.

Serial-to-Ethernet bridges are available from a variety of sources. Z-World’s
EM1500 Multipoint Serial-to-Ethernet Bridge supports four RS-232 ports
and one RS-485 port. The board’s CPU is a Rabbit 3000. R.E. Smith’s
ESPSX3 Serial Port Server has two RS-232 ports and one port that is config-
urable as an RS-232 port or an isolated RS-485 port. The board contains a
Rabbit Semiconductor RCM2200 module. Netburner’s SB72
Serial-to-Ethernet Device and Processor Board supports one RS-232 or
RS-485 interface. The board’s CPU is a Motorola ColdFire 5272.

Software. A Serial-to-Ethernet Server typically comes with an application
that enables you to enter settings for your network and devices. Most also

Chapter 3

118

include a Web page that you can use for configuring when the device is on
the network.

After configuring, computers on the network can use TCP/IP applications
to communicate with the device.

In Depth:
Ethernet Controllers

An embedded system that supports Ethernet requires Ethernet controller
hardware to provide the Ethernet interface. Many Ethernet controller chips
are designed for use in desktop computers and include support for standard
PC buses and Plug-and-Play functions. Small embedded systems typically
don’t need all of the capabilities of a PC’s Ethernet controller. But because
they’re available and familiar, a few of the older, simpler PC controllers have
found new life in embedded systems. More recently, controllers designed
specifically for use in embedded systems have become available.

This section introduces some of the more popular controllers for embedded
systems. If you buy a module with a controller on it, it’s likely that it will use
one of the chips described below. A module containing an Ethernet control-
ler will probably include firmware support for communicating with the con-
troller. In many cases you can use the firmware without having to know
much about the controller’s inner workings. Some vendors provide source
code so you can customize if needed, while others release only the executable
code.

Even if you don’t need to program a controller directly, a basic understand-
ing of how the controller works is helpful in selecting hardware and trouble-
shooting.

What the Hardware Does
Ethernet communications are typically handled by a combination of an
Ethernet controller chip and device-driver code that communicates with the
controller. Figure 3-12 shows the location of the Ethernet hardware and

Design Choices

 119

driver in a network stack. Many embedded systems use IP with TCP or
UDP, but for some applications, the Ethernet driver can communicate
directly with the application layer.

The controller chip handles many of the details of sending and receiving
Ethernet frames. In sending a frame, a controller typically does all of the fol-
lowing:

• Receives the message to send and the destination address from
higher-level software.

• Calculates the Ethernet frame check sequence.

• Places data, addresses, and other information in the frame’s fields.

Figure 3-12: In the network protocol stack, the Ethernet driver communicates
with the Ethernet controller hardware and either the IP layer or the application

Chapter 3

120

• Attempts to transmit the frame when the network is idle.

• Detects collisions, cancels any transmitted frame with a collision, and
retries according to the protocol specified in the IEEE 802.3 standard
(half-duplex interfaces only).

• Provides an indication of success or failure of a transmission.

In receiving a frame, a controller typically does all of the following:

• Detects and synchronizes to new received frames.

• Ignores any frames that are less than the minimum size.

• Ignores any frames that don’t contain the interface’s address or a valid
multicast or broadcast address in the Destination Address field.

• Calculates the frame-check-sequence value, compares the result with the
received value, and indicates an error if they don’t match.

• Makes the received frame’s data and other information available to the
receiving computer. Higher-level software reads the message and does
whatever needs to be done with it.

Ethernet Controller Basics
In an Ethernet-capable embedded system, a CPU manages communications
with the Ethernet controller. The minimum requirement for the CPU is a
microcontroller with an external 8-bit data bus.

Some of the controllers that have been popular in embedded systems were
designed for use on expansion cards for the ISA bus of early PCs. An embed-
ded system that uses an ISA-compatible controller can ignore any unneeded
interrupt, address, and status and control pins.

A shorthand term for a network interface controller is NIC. The same term
can also refer to an expansion card that contains a network interface control-
ler.

Related Components

A typical controller requires few additional components. For 10BASE-T
and 100BASE-TX systems, the IEEE 802.3 standard requires an isolation
transformer that also functions as a low-pass filter between the controller

Design Choices

 121

and the network’s RJ-45 connector. Filters that comply with the standard are
readily available. Examples include the FA163079 from YCL Electronics
and the PM-1006 from Premier Magnetics. The appropriate filters vary
with the controller chip or the MAU or PHY that connects to the filter. The
vendors of these components typically provide recommendations and advice
in selecting filters.

As explained in Chapter 2, many controller chips require few additional
components to interface to twisted-pair cable, but fiber-optic or coaxial
cable is likely to require additional MAU or PHY circuits.

Other typical required components include a timing crystal to clock the
controller chip and decoupling capacitors for the power pins. Some control-
lers also support an interface to a serial EEPROM, which can provide non-
volatile, read/write storage of configuration data such as the Ethernet
hardware address. Most controllers also have status outputs for interfacing
to LEDs.

NE2000 Compatibility

A term you’re likely to hear in reference to program code for network con-
trollers is NE2000-compatible. The NE2000 was an early and popular PC
network interface card from Novell. The card contained National Semicon-
ductor’s DP8390 controller. Software for systems that use the ’8390 or a
compatible chip has come to be known as NE2000-compatible code.

A major feature of the ’8390 is its set of internal registers. By reading and
writing to the registers, a CPU can configure the controller, initiate trans-
mitting of data on the network, and read received network data. The regis-
ters in the ’8390 are arranged in two 16-byte pages. The CR register is at
offset 00h on both pages. Writing to bits 6 and 7 in the CR register selects
the current page. Offsets 01h through 0Fh on each page store additional
register values. On power-up or reset, program code typically initializes the
registers to desired values before Ethernet data transfers begin.

An NE2000-compatible chip should support all of the ’8390’s registers.
Newer chips generally have additional register pages to support new fea-
tures.

Chapter 3

122

NE2000-compatible chips are also likely to support accessing buffer mem-
ory at addresses 4000h through 7FFFh. A portion of the memory forms a
ring buffer for storing data received from the network, and the remainder of
the memory stores data to be transmitted on the network.

Documentation

Many providers of controller chips have example code for setting up the reg-
isters and transferring frames. You may need to translate the code for use
with a specific CPU. Source and executable code is also available from many
vendors of modules that use the chips.

The documentation for the original DP8390 can be a useful supplement to
the sometimes thin documentation provided for newer NE2000-compatible
chips. National Semiconductor also has a couple of application notes. Note
AN-475: DP8390 Network Interface Controller: An Introductory Guide,
describes the processes of sending and receiving data. Note AN-874: Writing
Drivers for the DP8390 NIC Family of Ethernet Controllers, focuses on pro-
gramming, with example assembly code for a PC.

I won’t attempt to duplicate the controllers’ data sheets here. Instead, I’ll
concentrate on the features and capabilities that you’ll want to know about
in selecting a chip for a project. You can then go to the data sheet for the
details.

The ASIX AX88796
An Ethernet controller designed for use in embedded systems is the
AX88796 3-in-1 Local Bus Fast Ethernet Controller from ASIX Electonics
Corporation. Rabbit Semiconductor uses this controller in its RCM3200
module. The controller supports Ethernet communications at 10 and 100
Mb/s.

The ’88796 is NE2000-compatible. A major difference between the ’88796
and the DP8390 is that the ’88796 has an on-chip 16-kilobyte static RAM
(SRAM) buffer for network data. The ’88796 also has separate (not multi-
plexed) data and address buses and an interface to serial EEPROM.

Design Choices

 123

Connections

Figure 3-14 shows the basic connections the RCM3200 module uses for the
’88796. The chip is a 128-pin plastic light quad flat pack (PLQFP). The
clock is a 25-Mhz crystal or oscillator. The power supply is +3.3V. Three
outputs drive status LEDs.

Ethernet. For twisted-pair networks, the chip can connect through a filter
to an RJ-45 jack. The RCM3200 uses a PulseJack module from Pulse Engi-
neering, Inc. The module integrates the RJ-45 connector and filtering cir-
cuits in a single package. An on-chip MII enables using an external PHY to
connect to other cable types at 10 or 100 Mb/s.

Bus Compatibility. The CPU0 and CPU1 pins configure the chip for use
with one of four bus types that are popular in embedded systems: ISA, Intel
80186, Intel MCS-51 (8051), and Motorola 68000. The selected bus deter-
mines the functions of the pins that control reading and writing to the exter-
nal data bus and the polarity of the interrupt output. For example, on a
68000 bus, pin 18 is a R/W input that controls bus reads and writes and pin
19 has no connection, while the ISA interface has separate read and write
signals: pin 18 is IOWR and pin 19 is IORD.

SRAM. The controller’s 16-kilobyte SRAM buffer holds packets waiting to
transmit on the network and packets received from the network. With an
8-bit data bus, only 8 kilobytes of the SRAM are available.

Addressing. The chip has 10 address inputs, but not all systems need them
all. The first five bits (SA0 through SA4) address the controller’s internal
registers. Every controller must have these lines connected to the CPU’s
address bus. Two of the registers (10h, 11h) are the Data Port, which enables
the CPU to access the controller’s 16 kilobytes of SRAM without using
additional address lines.

In most systems, the Ethernet controller shares the data bus with other com-
ponents, so the CPU needs a way to select the controller on the bus. Two
ways to accomplish this are by using additional address lines to select a base
address or by using the controller’s Chip Select (/CS) input.

Chapter 3

124

∝

F
ig

ur
e

3-
13

: T
he

 A
S

IX
 A

X
88

79
6

E
th

er
ne

t c
on

tr
ol

le
r

su
pp

or
ts

 c
om

m
un

ic
at

io
ns

 a
t 1

0
an

d
10

0M
b/

s.
 T

hi
s

sc
he

m
at

ic
 s

ho
w

s
a

po
rt

io
n

of
 th

e
ci

rc
ui

ts
 in

 R
ab

bi
t S

em
ic

on
du

ct
or

’s
 R

C
M

32
00

 m
od

ul
e.

Design Choices

 125

The 10-BASE0, 10-BASE1, and 10-BASE2 pins on the ’88796 can select
one of eight base addresses. Jumpers or CPU outputs can control the pins,
or they can be hard-wired. The address values are compatible with PC hard-
ware, but there’s no reason you can’t use them in other systems. For example,
if the controller has a base address of 200h, the CPU accesses the chip’s reg-
isters by reading and writing to the addresses 200h through 21Fh. To enable
selecting the chip by address, the controller’s address pins SA5 through SA9
must connect to the CPU’s address bus.

If you instead use the Chip Select input to select the chip, you don’t need to
connect the controller’s upper address lines to the bus, and you can select a
base address in a higher address range than the options programmed into
the chip. Rabbit Semiconductor’s RCM3200 module uses the Chip Select
along with firmware that configures the Rabbit 3000 CPU to strobe a port
bit on I/O accesses to a specific address range.

When using Chip Select, SA5 through SA9 must match the selected base
address in the controller. The RCM3200 module permanently enables base
address 200h by tying SA9 high and tying SA5 through SA8 low at the con-
troller.

Data. A register bit in the ’88796 selects whether the controller uses 8 or 16
data lines. The data bus for the 68000 mode must be 16 bits, but the other
buses can use 8 or 16 bits.

Interrupts. The IRQ interrupt output can request service from the CPU.
The polarity of the signal depends on the selected bus type. A CPU that
doesn’t support or doesn’t want to use interrupts can poll the interrupt line.

Serial EEPROM Interface. The ’88796 has four pins that can interface to a
serial EEPROM with a Microwire interface. The EEPROM can provide
non-volatile storage for an Ethernet hardware address and other informa-
tion. Unlike some other controllers, the ’88796 doesn’t automatically load
information from the serial EEPROM into the controller’s registers. Instead,
the CPU must access the EEPROM’s contents by reading and writing to the
MII/EEPROM Management Register. The CPU can then copy the infor-
mation it reads from the EEPROM to other registers.

Chapter 3

126

If your system already has Flash memory or other non-volatile, read/write
memory, you can save on component cost by using existing memory to store
the configuration data instead of a serial EEPROM. This is the approach
Rabbit Semiconductor uses in its RCM3200 module.

Transferring Data

Like the DP8390, the ’88796 uses direct memory access (DMA) to auto-
mate transfers of network data into and out of the SRAM. The CPU reads
and writes to the Data Port register, and the controller stores or retrieves the
data at sequential addresses in the SRAM.

Receiving data. The ’88796 stores data received from the network in a por-
tion of the chip’s SRAM reserved as a ring buffer. In a ring buffer, two point-
ers determine where to read and write next. The write pointer increments
after each write to the buffer. After writing to the highest address, the
pointer wraps back to the lowest address, forming a ring. Meanwhile, as the
CPU reads the data from the buffer, the read pointer steps through the
buffer in a similar way. To prevent lost data, the CPU must retrieve the data
fast enough to keep the buffer from overflowing.

In the ’88796, the Page Start Address Register (PSTART) and Page Stop
Address Register (PSTOP) determine the buffer’s size. Typically, half or
more of the SRAM is reserved for the ring buffer, with the remainder left for
the transmit buffer.

The ring buffer is structured as a series of 256-byte buffers, or pages. The
Boundary Pointer register (BNRY) is the read pointer, which holds the page
address of the next data packet for the CPU to read. The Current Page Reg-
ister (CPR) is the write pointer, which holds the page address for storing the
next data packet received from the network.

In storing a frame in the ring buffer, the controller reserves the first four
bytes for storing the contents of the Receive Status Register (RSR), the
address of the next packet to be stored in the buffer, and the number of
bytes received.

The SRAM stores a received frame only if the destination address matches
the controller’s hardware address or another address the controller is config-

Design Choices

 127

ured to accept. The Physical Address Registers (PAR0–PAR5) contain the
interface’s Ethernet hardware address. In addition, the controller accepts
frames sent to a multicast address specified in the controller’s Multicast
Address Registers (MAR0–MAR7), and the controller accepts broadcast
transmissions if the Accept Broadcast (AS) bit is set in the Receive Configu-
ration Register (RCR). The Receive Configuration Register also permits
configuring the chip in promiscuous mode, which causes the controller to
accept frames with any destination address.

On receiving a frame, the controller checks for CRC and frame-alignment
errors and checks to be sure the frame is at least the minimum allowed frame
size. The controller drops any frame that shows an error or isn’t the mini-
mum size.

When the contents of a frame are available in the ring buffer, the controller
asserts an interrupt. The CPU can then use the controller’s Remote Read
command to retrieve the data from the ring buffer. The CPU reads all of the
data from a single DMA-port address (10h) and the controller provides the
bytes in sequence.

Sending data. Sending data on the network requires two steps: the CPU
first copies the data to send to the SRAM and then instructs the controller
to send the frame on the network. The CPU uses the controller’s Remote
Write command to write the data to transmit to the controller’s SRAM. The
CPU writes all of the data to the DMA-port address (10h), and the control-
ler stores the bytes in sequence. Transmitting doesn’t use a ring buffer
because the CPU can control the transfer of data into the buffer.

After copying data to send to the SRAM, the CPU writes the starting page
address of the data to the Transmit Page Start Register (TPSR) and writes
the number of bytes to transmit to the Transmit Byte Count Registers
(TBCR0, TCBCR1). When the CPU sets the TXP bit in the Command
Register, the controller sends the specified bytes in a frame on the network.

The controller adds the preamble, start-of-frame delimiter, and CRC values
in the appropriate locations in the Ethernet frame to be transmitted. The
controller also decides when to attempt to send the frame on the network,

Chapter 3

128

sends the bits to the network interface in sequence, and handles collisions
and retries.

When a transmission is complete, an interrupt informs the CPU so it can
prepare another frame to send or take other action.

Realtek RTL8019AS
For embedded systems with 10BASE-T support, one of the most popular
controllers has been the RTL8019AS Full Duplex Ethernet Controller with
Plug and Play Function from Realtek Semiconductor Corp. The ’8019AS is
another NE2000-compatible derivative of the DP8390. Like the ASIX
’88796, the ’8019AS has an on-chip 16-kilobyte SRAM and an interface to
serial EEPROM.

The ’8019AS is designed for use with the ISA bus, but the chip can also
interface to other 8- and 16-bit buses. If you don’t need support for Plug
and Play, you can configure the chip to ignore it.

Connections

Figure 3-14 shows a portion of the schematic for Rabbit Semiconductor’s
RCM2100 module. The chip is a 100-pin quad flat pack (QFP). The clock
is a 20-Mhz crystal or oscillator. Four outputs can drive status LEDs. The
power supply is +5V.

Ethernet. For 10BASE-T networks, the chip can connect through a filter to
an RJ-45 jack. The chip also contains an AUI to enable using other 10-Mb/s
media systems.

SRAM. The controller’s 16-kilobyte SRAM buffer holds packets waiting to
transmit on the network and packets received from the network. When
using 8-bit data, only eight kilobytes of the buffer are available.

Addressing. The address bus is 18 bits. The first five bits address the con-
troller’s internal registers. If the controller shares the bus with other chips, it
can use additional address lines to select the chip on the bus. The chip
allows a choice of 16 PC-compatible base addresses. The IORB and IOWB
inputs control the read and write operations.

Design Choices

 129

F
ig

ur
e

3-
14

: R
ea

lte
k’

s
R

T
L8

01
9A

S
 E

th
er

ne
t c

on
tr

ol
le

r
pr

ov
id

es
 a

n
in

te
rf

ac
e

be
tw

ee
n

a
10

-M
bp

s
E

th
er

ne
t

ne
tw

or
k

an
d

a
C

P
U

. (
C

ou
rt

es
y

of
 R

ab
bi

t S
em

ic
on

du
ct

or
 In

c.
)

Chapter 3

130

Data. A register bit selects whether the controller uses 8 or 16 data lines.

Interrupts. An interrupt output can request service from the CPU. Three
bits in the controller’s CONFIG1 register select one of eight interrupt out-
puts on the controller. On an ISA card, seven of these outputs each connect
to one of the IRQ lines on the ISA bus. This enables a PC to configure the
card to use an available IRQ line by writing the appropriate value to the reg-
ister.

The eighth output, INT0, has no assigned ISA-bus IRQ line. A small
embedded system may wire IRQ0 directly to an interrupt on the CPU. A
CPU can also poll IRQ0 to find out when an interrupt has occurred.

Serial EEPROM Interface. On power-up, the ’8019AS can be configured
to retrieve information from a serial EEPROM or another component with
a compatible interface. Pins BD5, BD6, and BD7 can function as the clock,
data input, and data output for a Microwire synchronous serial interface.
These lines can connect to a 9346 serial EEPROM, which can store 1024
bits organized as 64 words of 16 bits each. The ’8019AS has assigned
EEPROM locations for initial values of configuration registers, an Ethernet
address, and Plug and Play information.

If your system already has Flash memory or other non-volatile, read/write
memory, you can save on component cost by using the existing memory to
hold the configuration data instead of a serial EEPROM.

Transferring Data

The ’8019AS manages network data much like the ’88796, using DMA to
transfer data into and out of the SRAM and storing received data in a ring
buffer.

Realtek also offers controllers that support Fast Ethernet and Gigabit Ether-
net.

SMSC LAN91C96
Another Ethernet controller designed specifically for embedded systems is
Standard Microsystems Corporation (SMSC)’s LAN91C96 Non-PCI Full

Design Choices

 131

Duplex Ethernet Controller with Magic Packet. Dallas Semiconductor’s
DS-TINI-1 module uses this controller. The ’91C96 supports 10BASE-T
Ethernet and has an AUI to support other 10-Mb/s media systems.

The chip is a 100-pin QFP or thin quad flat pack (TQFP). The power sup-
ply can be +5V or +3.3V.

Because it’s not intended for use in PCs, the ’91C96 doesn’t have an ISA or
PCI interface or support for Plug and Play. Instead it has a generic local-bus
interface and also supports PC Card (PCMCIA) and Motorola 68000 buses.
The configuration registers are not NE2000-compatible.

The chip can use 8 or 16 data lines and up to 20 address lines. An external
serial EEPROM can store configuration information. A 6-kilobyte SRAM
stores received network data and data waiting to transmit. The controller
dynamically allocates the amount of memory used for transmitting and
receiving according to the traffic. To ensure that some transmit memory is
available, the chip can be configured to reserve a portion of memory for
transmitting.

The chip supports Magic Packet, which is a power-conserving technology
that enables the controller to wake from a sleep mode on receiving a special
Magic Packet from the network. The Magic Packet contains a synchroniza-
tion stream consisting of six bytes of FFh, followed by 16 repetitions of the
controller’s hardware address. AMD licenses the Magic Packet technology to
chip manufacturers such as SMSC.

Cirrus Logic CS8900A
An older ISA-based controller that’s suitable for some embedded systems is
Cirrus Logic’s CS8900A Crystal LAN ISA Ethernet controller. The ’8900A
is not NE2000-compatible. Instead it defines its own set of registers in
on-chip SRAM that it calls PacketPage memory.

For 10-BASE-T networks, the chip can connect through a filter to an RJ-45
jack. An AUI port enables connecting to other 10-Mb/s media systems.
There are versions for +5V and +3.3V power supplies. The package is a

Chapter 3

132

100-pin TQFP. A serial-EEPROM interface enables the storing of address-
ing and other configuration data.

The PacketPage memory is 4 kilobytes. The first 350 bytes hold the con-
tents of registers for configuring the bus interface, providing status and con-
trol information, initiating transmits, and address filtering. The rest of the
memory holds received Ethernet frames and frames waiting to transmit. The
amount of memory allocated for each direction can vary depending on the
traffic.

The chip has 20 address lines. Although the controller supports both 8- and
16-bit data, there are several limitations with 8-bit data. When configured
for 8-bit data, the controller doesn’t support interrupts. The CPU must poll
the chip to find out when a received frame is available, when a frame has fin-
ished transmitting, or when an error has occurred. With 8-bit data, there is
no EEPROM interface, no support for DMA, and no auto-incrementing of
the PacketPage pointer.

Using the Internet Protocol in Local and Internet Communications

 133

The protocols in the IEEE 802.3 Ethernet standard enable the computers in
a local network to exchange messages with each other. In practice, most
Ethernet networks also use Internet protocols such as TCP or UDP and IP.
These provide defined and well-supported methods for accomplishing com-
mon tasks such as flow control and flexible addressing and routing of mes-
sages.

Messages that travel on the Internet must use IP. And because TCP and
UDP are designed to work along with IP, local communications that use
TCP or UDP also use IP, even if they wouldn’t otherwise require it.

Chapter 4

134

This chapter begins with a guide to connecting embedded systems to the
Internet. Following this is an introduction to the Internet Protocol, includ-
ing when and how embedded systems can use it in local and Internet com-
munications.

Quick Start:
Connecting to the Internet

To communicate over the Internet, a computer must have three things: an
IP address that identifies the computer on the Internet, the ability to send
and receive IP datagrams, and a connection to a router that can access the
Internet.

An Internet Service Provider (ISP) can provide one or more IP addresses and
a connection to a router that can communicate over the Internet. Customers
use a variety of ways to connect to ISPs. A high-volume user, including the
networks at some large businesses, government offices, and schools, may
have a dedicated, high-speed connection to an ISP. If your network is
located at a facility that has this type of access, your network administrator
can tell you if your system can use the connection. Connections that sup-
port low to moderate traffic typically connect to the ISP via a modem or
other device that interfaces to a phone line or a cable from a cable-TV pro-
vider.

Considerations in Obtaining Internet Service
The type of Internet connection to use depends in part on its intended use.
A computer that hosts a Web page that other computers can request has dif-
ferent requirements than a computer used only to request Web pages but
not serve them.

In many Internet communications, one computer functions as a client, and
the other as a server. A client requests resources from a server. A resource
may be a Web page, file, or other data. In response to a request, a server
sends the client the requested resource or a response such as an error mes-
sage.

Using the Internet Protocol in Local and Internet Communications

 135

Microsoft’s Internet Explorer and other Web browsers are clients. The text
that you type or copy into the browser’s Address text box (such as
http://www.Lvr.com or http://192.168.111.1) identifies the resource
you’re requesting and the server you’re requesting it from. The computers
that host the resources are functioning as servers, which detect, interpret,
and respond to requests from computers on the Internet or in a local net-
work.

Many servers are huge systems that store thousands of files, but a server can
also be a small embedded system that serves a few basic Web pages or other
information on request. As Chapter 3 showed, many Ethernet-capable mod-
ules for embedded systems include software that enables the modules to
function as Web servers.

If you want users on the Internet to be able to request Web pages, download
or upload information, or access other resources on your system, you’ll need
three things: a computer that functions as a server, an Internet account that
permits hosting a server, and network-security settings that enable the server
to receive and respond to requests from other computers in the network
without putting other local resources at risk.

When selecting a method of connecting, you need to consider the speed in
both the upstream (towards the Internet) and downstream (from the Inter-
net) directions. For many inexpensive accounts, the upstream speed is slower
than the downstream speed. This arrangement is generally fine for home
users, who tend to use Internet connections for activities such as Web surf-
ing, where most of the traffic is downloads. Typical uploading activities for
home users, such as sending moderate amounts of e-mail, aren’t time-criti-
cal, so a slower upload speed is fine.

In contrast, a server sends most of its data upstream. Still, an embedded sys-
tem that serves very basic Web pages or transfers moderate amounts of data
may function fine with a slower connection.

To host a server, it’s likely that you’ll need a business, or commercial,
account with your ISP. In addition to limited speed for upstream communi-
cations, accounts offered to home users typically forbid hosting servers
because a server is likely to draw more traffic than the ISP can support at

Chapter 4

136

home-user prices. For home accounts, some ISPs block unsolicited requests
to port 80, which is the default port where Web servers receive requests.

One option that uses a different approach is worth a mention for applica-
tions where an embedded system only needs to provide information period-
ically to a server on the Internet. Many ISPs and other companies offer Web
hosting services that enable you to host Web pages on one of the company’s
servers. You upload the files, typically via FTP, to the server, and the server
responds to requests to view the pages. For some applications, you can pro-
gram a device to send files to the server as needed and let the server handle
the work of serving requests on the Internet. With this arrangement, the
device doesn’t have to function as a server; it just needs to be able to transfer
files as needed to a remote server.

Technologies for Connecting
There are several options for obtaining an Internet connection. A long-pop-
ular way for home users to connect to the Internet is via dial-up connections
on phone lines. For higher speeds, alternatives are a Digital Subscriber Line
(DSL), an Integrated Services Digital Network (ISDN) line, or a cable
modem. Satellite connections are also possible. Table 4-1 compares the
capabilities of the different methods. Not every connection type is available
in all locations.

Depending on the type of access and the equipment that connects to the
provider, Internet communications may use Ethernet, serial port (RS-232),
or USB. Ethernet is fast and flexible, and an Ethernet network enables mul-
tiple computers to share a connection. Hardware support for RS-232 is very
inexpensive. Most microcontrollers have an on-chip UART and require only
a TTL-to-RS-232 converter. A computer that connects to the Internet via
an RS-232 connection to a modem doesn’t have to support Ethernet at all.
Instead, the computer can use the Point-to-Point Protocol (PPP) to send
and receive IP datagrams over the RS-232 connection.

Generally, a USB connection isn’t practical for small embedded systems.
USB modems must connect to a PC or other USB host, while most

Using the Internet Protocol in Local and Internet Communications

 137

USB-capable embedded systems are USB devices. Also, USB modems typi-
cally come with driver software for Windows only.

Dial Up

A dial-up connection is available anywhere there is phone service. A modem
provides an interface between a computer that wants to access the Internet
and an ordinary phone line (Figure 4-1). To make a connection, the com-
puter instructs the modem to dial a number that connects to a modem at
the ISP. The ISP’s modem in turn connects to a router with an Internet con-
nection. A PC’s modem may be on the motherboard or an expansion card,
or the modem may connect to the PC via an RS-232 or USB port. An

Table 4-1: The speed of an Internet connection depends in part on the method
of connecting. Downstream speeds are often faster than upstream.
Access Type Downstream Speed

(kb/s,
typical maximum)

Upstream Speed
(kb/s,
typical maximum)

Transmission
Medium

Dial up 56 56 phone line

ADSL 1500 384 phone line

SDSL 2000 2000 phone line

BRI ISDN 128 128 phone line

PRI ISDN 1500 (23 channels) 1500 (23 channels) phone lines

Cable modem 1500, shared 384, shared TV cable

Satellite 500 50 wireless

Phone Company
Switching NetworkComputer Modem

Customer Site

Internet Service
Provider Internet

Ordinary
Phone Line

Figure 4-1: In a dial-up connection, the computer uses a modem to connect to
an ISP over an ordinary phone line.

Chapter 4

138

embedded system may also contain a modem or connect to an external
modem, usually via RS-232.

The computer uses the Point-to-Point Protocol (PPP) to manage the
modem connection and to send and receive IP datagrams over the serial
link. Rabbit Semiconductor’s Dynamic C has an optional module with
libraries and example code for PPP communications. For TINI users, the
com.dalsemi.tininet.ppp package supports PPP. RFC 1661: The
Point-to-Point Protocol (PPP) defines the protocol.

Limitations of dial-up connections are a maximum speed of 56 kilobits per
second and the need to provide a phone line for the connection. Advantages
are low cost and availability anywhere there is phone service.

In general, a dial-up connection isn’t the best option for a server because of
limited speed. But dial up can be useful for some computers that occasion-
ally communicate on the Internet. For example, a series of data loggers
might periodically dial in to send readings to a central computer that is on
the Internet and programmed to accept the communications from the data
loggers. A system with a dial-up connection may also communicate by send-
ing and receiving e-mail. Multiple systems can share a dial-up account if
each calls in turn.

A computer that connects to an ISP via dial-up may also use Ethernet to
connect to a local network.

DSL

DSL uses a conventional phone line with equipment at each end to enable
the line to carry voice and Internet communications at the same time.
Although the exact setup can vary with the provider, Figure 4-2 shows a typ-
ical configuration, where the customer’s site has a DSL modem and a split-
ter. In the upstream direction, a splitter combines phone and Internet traffic
on a single pair of wires. In the downstream direction, the splitter routes the
phone and Internet traffic onto the appropriate wires inside the customer’s
premises. Another name for the splitter is network interface device (NID).

The line carrying Internet traffic in the customer’s premises connects to a
DSL modem, which has a USB or Ethernet connection to the customer’s

Using the Internet Protocol in Local and Internet Communications

 139

computer. At the phone company’s central office, phone traffic is routed to
and from the company’s switching equipment, and Internet traffic is routed
to and from a DSL Access Module (DSLAM). The DSLAM interfaces to
the company’s DSL equipment, which connects to the Internet.

DSL connections often use Point-to-Point Protocol over Ethernet (PPPoE).
PPPoE requires logging on with a user name and password but doesn’t
require dialing a phone number to connect to the ISP. Dynamic C’s PPP
module supports PPPoE and includes an example application.

DSL has several variants with differing speed and distance limits. Not all
providers offer all variants. Two popular options are asymmetric DSL
(ADSL) and single-line, or symmetric DSL (SDSL). With ADSL, traffic in
each direction has a different speed, with the downstream speed typically
much faster than the upstream speed. Embedded systems that host busy
Web or FTP servers will probably find SDSL, with equal speeds in both
directions, more suitable.

The speed of a connection varies with the DSL variant, the distance from
the phone company’s central office, and the quality of the phone line. Theo-
retically, ADSL can support speeds as high as 6.1 Mb/s downstream and 1.5
Mb/s upstream. In practice, speeds are likely to be equal to or less than 1.5
Mb/s downstream and 384 kb/s upstream. The theoretical maximum for
SDSL is 2 Mb/s in each direction. The maximum distance between the cus-

Computer

Modem

Customer Site

Splitter

Voice/Fax
Equipment

Phone Company
Central Office Internet

Internet Service
Provider

Ordinary
Phone Line

Figure 4-2: In a DSL connection, voice and fax lines can share the same phone
line as data.

Chapter 4

140

tomer and the central office is around 18,000 feet for ADSL and 18,000 to
22,000 feet for SDSL.

ISDN

Like DSL, ISDN connections can use conventional phone lines. ISDN has
two main variants. With Basic Rate Interface (BRI) ISDN, the phone line
carries two 64-kb/s “B” channels that can be combined for a single 128-kb/s
connection. A separate lower-speed “D” channel carries signaling informa-
tion. As Figure 4-3 shows, the computer that wants to communicate over
the Internet connects via Ethernet, RS-232, or USB to an ISDN terminal
adapter, which in turn connects to a network termination. The customer’s
phone line connects the network termination to a switch at the phone com-
pany’s central office, which routes the traffic to and from the ISP. It’s also
possible to use one ISDN channel for voice traffic and the other for a
64-kilobit Internet connection.

If BRI ISDN isn’t enough, Primary Rate Interface (PRI) ISDN has 23 chan-
nels and speeds of up to 1.544 Mb/s. A BRI connection requires a T1 line,
which is a special 4-wire phone line that carries digital data from the central
office to the customer.

Computer

Customer Site

InternetTerminal
Adapter

Voice/Fax
Equipment

Network
Termination

Phone Company
Central Office

Internet Service
Provider

Ordinary
Phone Line

Figure 4-3: With BRI ISDN, one channel can carry voice or fax signals while the
other carries data, or for a higher-speed connection, both channels can carry
data.

Using the Internet Protocol in Local and Internet Communications

 141

Cable Modem

A cable modem doesn’t use phone lines, but instead uses a connection to a
cable-TV provider that offers Internet access. The same cable can carry TV
broadcasts and Internet traffic. As Figure 4-4 shows, the computer that
wants to communicate over the Internet connects via Ethernet or USB to a
cable modem. The cable modem in turn connects to a filter and splitter,
then connects via coaxial cable to a neighborhood concentrator, which has a
high-speed connection to the cable company’s facility.

The cable’s bandwidth is divided into channels. Each TV channel uses a
6-Mhz portion of the bandwidth. Internet traffic typically uses bandwidth
above the TV channels for downstream traffic and bandwidth below the TV
channels for upstream traffic.

With a cable modem, you share bandwidth with other customers in the
neighborhood. So the performance of a cable-modem connection depends
in part on the network speed provided by the account and in part on how
much other traffic there is at the same time. Most cable-modem connections
are asymmetrical, with higher downstream speeds. Typical network speeds
for cable modems are from 256 kb/s to 1.5 Mb/s downstream and up to 384
kb/s upstream. Most providers encrypt the Internet traffic so customers who
share a connection can’t view each others’ data.

Internet

Coaxial
Cable

Cable
Company
Facility

Neighborhood
Concentrator

Embedded
System

Modem

Customer Site

Splitter

TV

Filter

Internet
Service
Provider

Figure 4-4: A cable-modem connection uses the same cable that carries TV
programming.

Chapter 4

142

Because cable-TV providers market to residential customers, cable Internet
may be unavailable at a business location. Because of the expense of running
cable, cable Internet may be unavailable in remote locations.

Satellite

Another option for obtaining Internet access, especially for remote areas, is a
satellite link (Figure 4-5). Early offerings of Internet access via satellite were
downstream only, requiring a phone-line connection for upstream data.
Newer systems offer 2-way communications via satellite. Download speeds
range between 150 to 500 kb/s, with upstream speeds of around 50 kb/s.
The low-speed upstream communications make satellite links less than ideal
for hosting a server. The satellite dish requires a view of the southern sky.
The satellite modem may connect via Ethernet or USB to a customer’s com-
puter.

Static and Dynamic IP Addresses
Every computer that communicates over the Internet must have an IP
address, which the computer typically receives from its ISP. The IP address
may be static or dynamic. A static IP address stays the same until someone
explicitly changes it, while a dynamic IP address can change on every boot
up or network connect (though the address typically changes only occasion-
ally).

Satellite dish Satellite dish

Satellite

Figure 4-5: A satellite connection makes it possible to communicate from
remote locations.

Using the Internet Protocol in Local and Internet Communications

 143

An embedded system may store a static IP address in non-volatile memory,
either within an application or in memory where program code can retrieve
the address when needed. Or the system may receive a static or dynamic IP
address from a DHCP server on boot-up or network connect.

For hosting a domain, a static IP address is preferable because the name serv-
ers don’t have to be updated unless the domain changes ISPs. If the com-
puter hosting the domain has a dynamic IP address, the local name servers
must be updated when the address changes, as described later in this chap-
ter.

Connecting Multiple Computers to the Internet
A computer that connects to the Internet must have an IP address that is
different from the addresses of all of the other computers on the Internet.
When you contract with an ISP, you obtain the right for your computer to
use one or more of the ISP’s assigned IP addresses.

If you have a local network with multiple computers that need Internet
access, it’s often easier, more secure, and less expensive to have all of the
computers share a single public IP address for Internet communications.
Some ISPs charge for each connected computer whether or not they share
an IP address, however.

Two ways to enable multiple computers to share a public IP address are with
a router that supports the Network Address Translation (NAT) protocol and
with a Windows PC configured as an Internet Connection Sharing host.

A router that supports the NAT protocol enables multiple computers to
share a public IP address. The router connects to the ISP and to the com-
puters in the local network. The router has two IP addresses: a public
address for Internet communications and a local address for communicating
with the local network. The router uses the NAT protocol to translate
between the public and local addresses as needed.

To send a message on the Internet using a router with NAT support, a com-
puter in the local network sends the message to the router’s local address.
The router creates a new IP datagram, placing the message in the datagram’s

Chapter 4

144

data area and the router’s public IP address in the datagram’s Source Address
field. The router than forwards the datagram to a router at the ISP, which
sends the datagram onto the Internet. On receiving a datagram from the
ISP’s router, the local router uses information in the IP header to determine
where to forward the message. The router then creates a new datagram with
the appropriate local IP address in the datagram’s Destination Address field
and forwards the datagram to its destination.

A router with NAT support also helps to keep a local network secure, as
described in Chapter 10.

If your local network includes a PC running Windows XP, there is another
option. You can enable multiple computers to share a public IP address by
configuring the PC as an Internet Connection Sharing host. The PC
requires two network interfaces, one to the local network and one to the
modem or other connection to the ISP. In Windows XP’s Network Setup
Wizard, select This computer connects directly to the Internet. The other com-
puters on my network connect to the Internet through this computer. All Internet
communications for the local network then go through the interfaces on
this computer. Windows Help has more information on using Internet
Connection Sharing.

Communicating through a Firewall
Any PC or other large computer with Internet access should have a firewall.
All communications from outside the local network should pass through the
firewall to reach a computer in the local network. The firewall protects the
local network by controlling what local resources external computers can
access. A firewall may be software only or a combination of hardware and
software.

Without a firewall, a computer from outside the network might be able to
retrieve private files, install a program that deletes files, or use another com-
puter to launch attacks on other computers. A firewall can also defend
against denial-of-service attacks, where a computer attempts to overwhelm a
server by bombarding it with requests using forged, invalid source addresses.

Using the Internet Protocol in Local and Internet Communications

 145

In a local network, each computer may have its own firewall, or a single fire-
wall may protect all of the computers in the network. The firewall may be
software running on a PC or another general-purpose computer, or it may
be a device designed specifically to function as a firewall. For networks that
use a single firewall, the firewall is the only computer in the local network
with a direct Internet connection. As Figure 4-6 shows, all of the other com-
puters send and receive Internet communications by communicating with
the computer that contains the firewall.

Some operating systems have firewall software built in. For example, Win-
dows XP has an Internet Connection Firewall that you can configure for
specific needs.

Computer

Computer

Computer

Computer

Computer

Computer

Computer

Internet

Hub

Router/
Network Address

Translation
Firewall

Figure 4-6: A firewall that supports the network address translation (NAT)
protocol enables all of the computers in a local network to share a single public
IP address.

Chapter 4

146

A hardware firewall for a small local network may provide additional capa-
bilities, including functioning as a router with address translation and func-
tioning as a DHCP server.

Even when an embedded system doesn’t need a firewall to protect itself,
many embedded systems are behind a firewall because they’re in local net-
works that have firewall protection.

If your embedded system is behind a firewall, you may need to configure the
firewall to enable your system to communicate. In a common setup, a fire-
wall allows the local computers to request resources from computers on the
Internet, but blocks all unsolicited incoming requests from the Internet. For
example, the firewall typically enables local computers to request Web pages
from computers on the Internet. The firewall stores information about each
request, and when the computer returns an IP datagram containing the
requested page, the firewall examines the header, determines that the data-
gram is in response to a previous request, and passes the datagram to the
requesting computer. If the firewall doesn’t recognize a datagram as a
response to a previous request, the datagram doesn’t pass through the fire-
wall.

A computer that functions as a server available to all computers on the Inter-
net must be able to receive unsolicited requests because the computer has no
way of knowing where requests will come from. So you’ll need to configure
the firewall to allow the server to receive unsolicited communications on at
least one port.

The details of how to configure a firewall vary with the product. Many
stand-alone firewalls have a password-protected Web interface. Figure 4-7
shows an example configuration setup. Typically, to enable a specific com-
puter to serve Web pages, you can configure the firewall to forward all open,
or unsolicited, communications for port 80, which is the port used for
HTTP requests, to the computer that serves the pages.

Chapter 10 has more about firewalls and security for networked embedded
systems.

Using the Internet Protocol in Local and Internet Communications

 147

Obtaining and Using a Domain Name
After you obtain Internet access, connect your embedded system to the
Internet, and configure your firewall to enable the embedded system to
communicate, the system is ready to send and receive messages on the Inter-
net.

Applications running on other computers on the Internet can access the
embedded system by specifying its public IP address. For example, to view a
server’s home page, in the Address text box of a Web browser, you enter
http:// followed by the server’s IP address.

Each IP address is 32 bits, typically expressed as four bytes in a format
known as dotted quad, or dotted decimal, consisting of four decimal num-
bers separated by periods, or dots, as in 216.92.61.61.

An alternate, more human-friendly way to identify a computer on the Inter-
net is with a domain name. Instead of remembering four numbers, users can
provide a name such as rabbitsemiconductor.com or dalsemi.com. Another
advantage of a domain name is that it can remain constant. The IP address
of a particular Web page or other resource may change, either because the

Figure 4-7: A firewall typically provides the option to forward unsolicited
requests to a specific host or port on the host. In this example, all requests to
port 80 are forwarded to host 9 in the subnet.

Chapter 4

148

owner of the domain has changed ISPs or because the ISP uses dynamic IP
addresses that change from time to time.

Just about every major Web site available to the general public on the Inter-
net has a domain name. The tiniest embedded system can also have a
domain name, though not every system needs one. A system that functions
as a client has no need for an easily remembered name because the client ini-
tiates all communications, and each request received from a client includes
the IP address to respond to. A computer that only responds to communica-
tions from selected computers that know the computer’s IP address doesn’t
need a domain name either. But a domain name can be useful and conve-
nient for an embedded system that functions as a server that’s available to
any computer on the Internet.

To obtain the right to use a domain name, you need to register the name
and provide two name servers that will respond to requests for the domain’s
IP address, as described later in this chapter.

Understanding Domain Names

A domain name consists of a name that is unique within its root domain,
followed by a dot and the name of the root domain. Some examples are:

rabbitsemiconductor.com
dalsemi.com
rfc-editor.org

The original defined root domains were .com, .edu, .gov, .mil, .net, and .org.
In recent years, more have been added.

A domain name may also contain a country-code top-level domain after the
root:

number-10.gov.uk

And one or more names to the left of the main domain may identify sub-
set(s) of a domain:

minordivision.majordivision.example.com

Using the Internet Protocol in Local and Internet Communications

 149

The order of the names of the subsets indicates their hierarchy. In the exam-
ple above, majordivision is a subset of example.com, and minordivision is a
subset of majordivision.

The letters www preceding a domain name specify that the request should
be routed to the domain’s Web server:

www.Lvr.com

Many domains are configured so that including www is optional. On receiv-
ing an HTTP request that doesn’t include the www, the domain’s software
passes the request to the Web server by default.

The major documents describing the Internet’s Domain Name System
(DNS) are RFC1034: Domain names - concepts and facilities and RFC1035:
Domain names - implementation and specification. Both are incorporated in
standard document STD0013. All are available from www.rfc-editor.org.

How a URL Specifies a Resource

When requesting a file or other resource from a computer on the Internet, a
computer provides a uniform resource locator (URL) that helps in identify-
ing the location of the resource and tells the server how to respond to the
request. A URL specifies the protocol to use in reading the request, the
name or IP address of the server that hosts the requested resource, the path
to the file on the server, and the name of the requested resource (or no name
to request a default file).

The document that defines URLs is RFC 1738: Uniform Resource Locators
(URL). At minimum, a URL specifies a scheme that identifies a protocol
such as HTTP, followed by scheme-specific information such as a host name
that identifies the location of a requested file. A host name is either an IP
address in dotted-quad format or a domain name. Here is an example of a
URL that requests a page from a Web server:

http://www.example.com:80/data/testdata.htm

http:// contains the scheme that tells the server to use the hypertext transfer
protocol (HTTP) in responding to the request. Other schemes include ftp
for FTP transfers and mailto for links to e-mail messages. Many browsers

Chapter 4

150

add http:// if you omit the scheme when specifying a URL in the browser’s
Address text box.

example.com specifies the domain, and www specifies the Web server at the
domain.

:80 specifies the port the client sends the request to. If the URL doesn’t
include a port number, the client uses the protocol’s default port. RFC 1738
specifies default port numbers for standard protocols. The default for
HTTP is port 80.

/data/ names a folder within the server’s root folder. A small embedded sys-
tem may store all of its files in the server’s root folder. Forward slashes sepa-
rate folder and file names even if the server’s file system uses different
separators.

The name of the requested file is testdata.htm. When a URL doesn’t specify a
filename, most Web servers are configured to serve a default home page,
often titled index.html.

In many cases, you don’t need to type the full URL in the browser’s window.
If you leave off the http://, most browsers insert it for you. Every domain
should have a default page to serve if no page is specified. And many servers
are configured to serve a Web page even if the URL doesn’t contain www. So
typing just the domain name, such as example.com, often causes the Web
server at the specified domain to return the same default home page that
would be returned by requesting http://www.example.com:80/index.html.

Registering a Domain Name

If you want to be able to access your embedded system by specifying a
domain name, you must register the name with an appropriate authority.
Registering in turn requires providing two name servers that respond to
requests for the domain’s IP address.

For all domains except those with country-code top-level domains, you can
register the name with any of a number of domain name registrars accred-
ited by the Internet Corporation for Assigned Names and Numbers
(ICANN) at www.icann.org. The registrar pays a yearly fee to ICANN for

Using the Internet Protocol in Local and Internet Communications

 151

each registered domain. The registrar in turn typically charges a yearly fee to
the person or entity registering the domain. The domains managed by
ICANN are available to registrants in any country.

In addition, each country-code top-level domain has a sponsoring organiza-
tion for registering domains. The Internet Assigned Numbers Authority
(IANA) at ww.iana.org has information about registering these domains.

Matching a Domain Name to Its IP Address

Name servers enable computers to match a domain name with the IP
address required to access the domain’s resources. Domain names are conve-
nient for humans who are requesting resources, but each request ultimately
must translate into one or more IP datagrams that contain the IP address of
the datagram’s destination. So a computer requesting a resource by domain
name needs a way to learn the IP address that corresponds to the domain.

A system that communicates only with a defined set of hosts could store a
lookup table that matches each host name with its IP address. If a host
changes its IP address, the lookup table will need updating, however.

More commonly, matching a domain name to its IP address involves com-
munications between one or more domain-name servers and a resolver. A
domain-name server is a computer that stores records that match domain
names with their IP addresses. The resolver is a program or process that uses
the domain-name-system (DNS) protocol to communicate with name serv-
ers to find a match between a domain name and its IP address.

Each registered domain name must have two name servers that respond to
queries for the domain’s IP address. The ISP that provides the domain’s IP
address typically provides the name servers. Some registrars will provide
name servers if you aren’t ready to host the domain right away.

Once the name servers are set up and operating, the computers on the Inter-
net need to learn about their existence. The Internet has a series of root
name servers that store root zone files containing the IP addresses of the
name servers for all registered domains. Each server stores records for one of
the root domains such as .com, .edu, or .mil. To ensure that the information
is always available even if a server fails, each root domain has multiple serv-

Chapter 4

152

ers. The root name servers operate under the direction of IANA and are
updated regularly. The servers are in varied locations and are owned by dif-
ferent entities.

To learn a domain’s IP address, a computer uses the DNS protocol to send a
query to a resolver, which may reside in the same computer that originated
the query or elsewhere. The resolver first searches its own cache and returns
the answer if found. If not, the resolver attempts to find the answer by que-
rying a name server.

A local network may have an assigned local name server that functions as the
resolver for queries from the local network. The local name server knows the
addresses of the root name servers and maintains a database of information
obtained from previous queries. If the local name server doesn’t have the
answer in its database, it queries a root name server or another server that it
thinks may have the information.

On receiving a query, a name server may return the requested IP address or
the IP address of another server that is likely to have the information. For
example, to learn the IP address for www.example.com, a resolver may send a
query to a .com root domain server that returns the address of the name
server for example.com. The resolver can then query this name server for the
address of www.example.com.

To learn the IP addresses of a local network’s name servers, in Windows XP,
click Start > Run, type cmd, and click OK. In the window that appears,
type ipconfig /all. In the information displayed are the IP addresses of two
DNS servers.

Although an embedded system with a domain name must have name servers
that other computers can access to learn the domain’s IP address, many
embedded systems don’t need to communicate with name servers them-
selves. An embedded system functioning as a server just needs to respond to
requests that contain a source IP address to respond to. Other systems may
communicate only with computers with known IP addresses. Systems that
communicate only in a local network don’t need to support domain names
at all, though local computers may have locally assigned host names that
correspond to local IP addresses.

Using the Internet Protocol in Local and Internet Communications

 153

In Depth:
Inside the Internet Protocol

The Internet Protocol (IP) helps data find its way to its destination even if
the data must travel through other networks, including the many and varied
networks that make up the Internet. Although it’s called the Internet Proto-
col, local networks can use IP as well. Many communications in local net-
works use IP because they use its companion protocols, TCP and UDP.

This section introduces IP, including how computers obtain IP addresses,
the format of IP datagrams, how IP and the domain name system help in
getting messages to their destinations, and how embedded systems can use
IP in communicating in local networks and on the Internet.

What IP Does
Figure 4-8 shows the place of the IP layer in network communications in the
networking stack introduced in Chapter 1. In transmitting, the IP layer
receives a message to send from a higher-level protocol layer such as TCP or
UDP. The IP layer places the message in an IP datagram that consists of an
IP header, followed by the message to send. The IP layer then passes the dat-
agram to a lower layer such as an Ethernet driver, which sends the datagram
on the network.

On the way to its destination, a datagram may pass through one or more
routers. The router examines the destination’s IP address and uses the
address in deciding where to forward the datagram.

At the destination computer, the Ethernet layer or another network interface
passes the IP datagram to the IP layer, which removes the IP header. Infor-
mation in the header tells the computer what protocol layer, such as TCP or
UDP, should receive the datagram’s message.

Chapter 4

154

The Internet Protocol performs two major functions.

• It defines a way to specify source and destination addresses for use with
any network interface and across networks that use different interfaces.

• It enables a datagram to pass through networks of varying capabilities by
defining a protocol that allows a router to fragment, or divide, a data-
gram into multiple, smaller datagrams and enables the destination to
reassemble the original message from the fragments.

Two things IP doesn’t provide are flow control and error checking of the
data payload. When needed, a higher-level protocol such as TCP can pro-

Figure 4-8: In an Ethernet network, the Internet Protocol layer communicates
with the Ethernet driver and either a UDP or TCP layer or the application layer.

Using the Internet Protocol in Local and Internet Communications

 155

vide these. For local communications, Ethernet frames also provide error
checking.

Two protocols can help in matching an IP address to a computer, or to be
more precise, to a network interface (because a single computer can have
multiple network interfaces). The Domain Name System (DNS) protocol
described earlier in this chapter enables a computer to learn the IP address
that corresponds to a domain name. And in Ethernet networks, the Address
Resolution Protocol (ARP) described later in this chapter enables the sender
of an IP datagram to match an Ethernet hardware address with an IP address
in the local network.

The examples in this book use version 4 of IP (IPv4), which most networks
are using at this writing. The expected replacement for IPv4 is IP version 6
(IPv6), which greatly increases the number of available IP addresses and
adds other improvements for more efficient and secure transfers. It’s likely
that IPv6 routers will continue to support IPv4 for some time, so computers
that support only IPv4 should have no trouble communicating with any
destination.

The standards for IP and related protocols are the responsibility of the Inter-
net Engineering Task Force (IETF) and its working groups (www.ietf.org).
The IETF is open to anyone who has the necessary skills and abilities and
wants to contribute.

The documents that define IP and many other networking protocols are
available from the Request for Comments (RFC) Web site (www.rfc-edi-
tor.org). This book contains a number of references to RFC documents, so
perhaps it’s appropriate to say a few words about the documents and where
they come from. The RFC Editor is a group funded by the Internet Society
(ISOC). ISOC in turn is an organizational home for groups who are respon-
sible for various standards relating the Internet’s infrastructure.

The RFC Web site is a repository for RFC documents, which include stan-
dards-track documents as well as technical and organizational notes relating
to networking and the Internet. The standards-track documents contain
specifications that have undergone a review process to become approved
standards.

Chapter 4

156

Request for Comments may sound like an odd designation for an approved
standard, and in fact, approved standards have alternate designations that
use the STD prefix. For example, the document that defines IP is RFC0791:
Internet Protocol. The standards-track document that includes RFC0791
and related documents is STD0005. The IETF’s Internet Engineering Steer-
ing Group (IESG) is responsible for approving specifications as standards. A
protocol doesn’t have to be an approved standard before becoming widely
implemented, however.

IP Addresses
A computer that uses the Internet Protocol must have an IP address. A net-
work administrator may manually assign an IP address to each computer or
the network may have a way of assigning addresses automatically to comput-
ers that connect to the network.

An IPv4 address is 32 bits. As explained earlier in this chapter, the conven-
tional way to express an IP address is in dotted-quad format, such as
192.168.111.1.

Assigning Addresses

Each IP datagram includes the IP addresses of the datagram’s source and
destination. A computer’s IP address must be unique within the network or
networks that the computer can communicate with. In a local network with
no direct connection to other networks, the address only needs to be differ-
ent from the other addresses in the local network. In theory an isolated local
network could use any IP addresses, but the IP standard reserves three
blocks of addresses for local use.

For communicating over the Internet, the address must be different from
the address of every other computer on the Internet. As described earlier in
this chapter, the network administrator typically obtains the right to use one
or more IP addresses from the ISP that supplies the network’s Internet con-
nection.

An ISP in turn obtains the right to use addresses via a system that involves a
variety of organizations that manage the allocating and assigning of

Using the Internet Protocol in Local and Internet Communications

 157

addresses. At the top is the Internet Corporation for Assigned Names and
Numbers (ICANN), at www.icann.org. ICANN is a non-profit corporation
that manages the top-level assigning and allocating of IP addresses. ICANN
also manages the Internet’s domain name system, the root server system that
supports the domain name system, and the assigning of numbers to Internet
protocols.

Under ICANN are several regional registries that manage the assigning and
allocating of IP addresses in specific geographic areas. For example, the
American Registry for Internet Numbers (ARIN) at www.arin.net allocates
and assigns Internet addresses in North and South America and a few other
areas. The regional registries assign and allocate addresses to some large end
users and Internet Service Providers (ISPs). The ISPs may in turn assign
some of their allocated addresses to end users and may allocate blocks of
addresses to other ISPs, who may assign and allocate their addresses, and so
on down the line.

The Network Address and Host Address

Each IP address has two parts: a network address, which is the same for all of
the interfaces in the network, and a host address, which is unique to the
interface within the network. The leftmost bits of the IP address are the net-
work address and the rightmost bits are the host address.

Routers use network addresses to help in determining where to forward
received datagrams. The hosts in a local network are generally located near
each other physically. So a router can have a table entry that tells the router
to forward all datagrams directed to a specific network address to a router
that is physically closer to the network. Without network addresses, routers
would have to have a separate entry for each IP address, which would
quickly become unmanageable.

The number of bits allocated to the network address and host address
depends on the network’s size. A network with a 24-bit network address and
8-bit host addresses can have up to 254 hosts. (Host and network addresses
of all zeros or all 1s have special meanings and can’t be assigned to individual

Chapter 4

158

hosts or networks.) A network with an 8-bit network address and 24-bits
host addresses can have over 2 million hosts.

To keep from running out of available IP addresses, network addresses
should be as long as possible while still enabling every host on the Internet
to have a unique host address. If every network had an 8-bit network
address, there could be no more than 254 networks on the Internet. But if
every network had a 24-bit network address, each network could have no
more than 254 hosts.

There are two protocols for assigning network addresses on the Internet.
The original protocol, called classful addressing, defines three network
classes with network addresses of 8, 16, and 24 bits. By examining the first
three bits of the IP address, a router can determine what class of network the
host belongs to, and thus how many bits make up the network address.

Many networks with classful addressing are also divided into subnetworks,
or subnets. For each subnet, the routers in the local network store an addi-
tional 32-bit value called the subnet mask, which enables routers to deter-
mine which subnet a datagram is directed to.

A newer, more flexible and efficient alternative to classful addressing is class-
less addressing, where a network address can be any number of bits. A value
called the IP prefix, or network prefix, specifies the number of bits in the
network address. Routers that support classless addressing use the IP prefixes
in determining where to forward datagrams.

Classful Addressing

Table 4-2 shows the five network classes defined by RFC0791 for classful
addressing. The most significant bits of an IP address indicates the class of
the network the host belongs to and how many bytes make up the network
address. You can identify the class from the decimal value of the first byte or
from the binary value of the few most significant bits.

In a Class A network, the first byte is between 1 and 126, and the most sig-
nificant bit is 0. The network address is 1 byte, leaving three bytes for the
host address. There can be up to 126 Class A networks.

Using the Internet Protocol in Local and Internet Communications

 159

In a Class B network, the first byte is between 128 and 191, and the two
most significant bits are 10. The network address is 2 bytes, leaving two
bytes for the host address. There can be up to 65,534 Class B networks.

In a Class C network, the first byte is between 192 and 223, and the three
most significant bits are 110. The network address is 3 bytes, leaving 1 byte
for the host address. There can be up to 16,777,214 Class C networks.

In a Class D network, the first byte is between 224 and 239, and the four
most significant bits are 1110. Class D networks are reserved for multicast-
ing, described later in this chapter.

In a Class E network, the first byte is between 240 and 255, and the four
most significant bits are 1111. Class E is reserved for future use.

Using Subnets

Subnetting is the process of dividing a network into groups called subnet-
works, or subnets. The hosts within a subnet are typically physically near
each other and may belong to the same department or facility within an
organization.

In the same way that routers use network addresses to decide where to route
traffic on the Internet, routers can use subnet IDs to decide where to route
traffic within a network.

Table 4-2: A network’s class determines how many hosts the network can
contain.
Network
Class

Most
Significant
Bit(s) in
Network
Address

Range of
Most
Significant
Byte in
Network
Address

Number of
Bytes in
Network
Address

Maximum
Number of
Networks

Number of
Bytes in
Host
Address

Maximum
Number of
Hosts

A 0 1-126 1 126 3 16 million+

B 10 128-191 2 16,384 2 65,534

C 110 192-223 3 2 million+ 1 254

D 1110 224-239 reserved for multicasting

E 1111 240-255 reserved for future use

Chapter 4

160

A small, isolated local network doesn’t have to concern itself with subnets. A
large local network might use subnets for easier routing of messages. A pub-
lic IP address obtained from an ISP is likely to be in a subnet, so even if your
embedded system is in a small network, if the system connects to the Inter-
net, the public IP address is likely to be in a subnet.

Besides helping in routing, subnetting helps to solve the shortage of avail-
able network addresses. With only three general-purpose network classes,
many organizations requesting network addresses would have to request
much larger blocks of addresses than needed. For example, a network of 300
hosts is too large for Class C, but with a Class B address, tens of thousands
of addresses would be unused. With subnets, a 300-host network can reserve
a portion of a Class B network, leaving the remaining addresses for other
subnets.

In a subnet, the host-address portion of an IP address has two parts: a subnet
ID and a host ID. The subnet ID is the same for all hosts in the subnet,
while each host ID is unique in the subnet. The network-address portion of
the IP address is the same for all of the hosts in all of the subnets in the net-
work. A subnet ID can be any combination of bits in the host-address por-
tion of the IP address, but in practice it’s almost always the most significant
bits.

Figure 4-9 shows an example. Three Ethernet networks are subnets in a
Class B network. A hub in each subnet connects to a router that enables the
computers in the subnets to communicate with computers in other subnets
and on the Internet. In each of the IP addresses, the first two bytes (172.16)
are the network address, the third byte is the subnet ID (1, 2, or 3), and the
fourth byte is the host ID.

A subnet ID may use any number of the bits in the host address. For exam-
ple, a Class C network that uses four bits for the subnet mask can have up to
14 subnets (24-2) and each subnet can have up to 14 hosts.

As explained earlier, you can determine how many bits of an IP address are
the network address by examining the most significant bits in the address.

Using the Internet Protocol in Local and Internet Communications

 161

The Subnet Mask

Determining which bits in the host address are the subnet ID requires using
a 32-bit value called the subnet mask.

Figure 4-9: A router can enable multiple networks or subnets to communicate
with each other and the Internet.

Chapter 4

162

In the subnet mask, the bits that correspond to the bits in the network
address and the subnet ID are ones, and the bits that correspond to the bits
in the host ID are zeros.

For example, in a Class B network, two bytes are the network address and
two bytes are the host address. The subnet mask for a Class B network with
eight bits of subnet ID is:

255.255.255.0

With eight bits of subnet ID, the network can have up to 254 subnets, and
each subnet can have up to 254 hosts.

In a similar way, the subnet mask for a Class C network with four bits of
subnet ID is:

255.255.255.240

(Decimal 240 equals binary 11110000.)

Program code can use the subnet mask to determine if a destination address
is in the same subnet. To do so, perform a logical AND of the destination
address and the subnet mask and compare the result to a logical AND of the
host address and the subnet mask. If the values match, the destination is in
the same subnet. Figure 4-10 illustrates.

Classless Addressing

With classless addressing, the network address and IP prefix are often
expressed in the form:

xxx.xxx.xxx.xxx/n

where xxx.xxx.xxx.xxx is the lowest IP address in the network and n is
the number of bits in the network-address portion of the IP address. For
example, with a network address and IP prefix of 192.0.2.0/24, the network
address is 192.0.2 (three bytes, or 24 bits), and the final eight bits in the IP
address are the host address.

In routing datagrams for addresses that use classless addressing, routers use
Classless Inter-domain Routing (CIDR) protocols defined in RFC 1519.

Using the Internet Protocol in Local and Internet Communications

 163

IP Addresses Reserved for Special Uses

Some IP addresses are reserved for special uses. A network address or host
address can never be all zeros or all ones. So, for example, in a network with
an IP address and IP prefix of 192.0.2.0/24, the hosts can have a host
address of any value from 1 to 254, but not 0 or 255. There is no network at
255.255.255 or 0.0.0.0

Figure 4-10: To determine whether a destination IP address is in the same
subnet as the source IP address, perform a logical AND of each IP address
with the source’s subnet mask. If the two values are the same, the destination is
in the same subnet and the source can use direct routing.

Example 1

Source address = 192.168.0.229
Source subnet mask = 255.255.255.224
Destination address = 192.168.0.253
Subnet mask AND Destination address = 192.168.0.224
Subnet mask AND Source address = 192.168.0.224
192.68.0.224 XOR 192.68.0.224 = 0.0.0.0

The values match, so the destination address and the host are in the same
subnet.

Example 2

Source address = 10.2.1.3
Source subnet mask = 255.255.0.0
Destination address = 10.1.2.1
Subnet mask AND Destination address = 10.1.0.0
Subnet mask AND Source address = 10.2.0.0
10.1.0.0 XOR 10.2.0.0 = 0.3.0.0

The values don’t match, so the source and destination are not in the same
subnet.

Chapter 4

164

The Local Host

The address 0.0.0.0 refers to the local host or network, also called “this” host
or network. In a network with a DHCP server, a host sends a datagram with
a source address of 0.0.0.0 to request the server to assign an IP address.

Broadcast Addresses

A destination address of all ones is a broadcast to all hosts in a network or
subnet. A destination of 255.255.255.255 would appear to be a broadcast to
the entire Internet, but in fact, Internet routers and most other routers
ignore broadcasts, so the datagram only goes to the hosts in the local net-
work or subnet. Individual hosts may also be configured to accept or ignore
broadcasts.

A broadcast can also specify a network or subnet, with the host address and
subnet ID, if any, set to all ones. For example, a network with this network
address and IP prefix:

192.168.100.0/28

can have up to 14 hosts (192.168.100.241 through 192.168.100.254)

And a broadcast to:

192.168.100.255

is directed to all hosts in the network.

As Chapter 1 explained, an Ethernet frame with a destination address of all
ones is another way to do a broadcast.

Loopback Addresses

Addresses with the most significant byte equal to 127 are loopback addresses
reserved for loopback tests. On receiving data to transmit to a loopback
address, the IP layer passes the data back up to the source instead of passing
the datagram down for transmitting on the network. Transmitting to the
loopback address can be a useful test of the local networking software.

Using the Internet Protocol in Local and Internet Communications

 165

Multicasting

Another option for sending datagrams to multiple hosts is multicasting,
where a source addresses a datagram to a specific group of hosts that may
reside in different networks and subnets. Uses for multicasting include send-
ing audio and video to subscribers.

Classful addressing reserves the Class D addresses for multicasting. In prac-
tice, multicasting on the Internet has been uncommon because all routers
between the source and destination must support multicasting, and many
routers don’t. Multicasting is feasible within local networks, however.

As explained in Chapter 1, in Ethernet networks, destination addresses can
also identify multicast groups.

Local Addresses

In a local network that doesn’t connect to the Internet, the IP addresses only
have to be unique within the local network. An address range in each class is
reserved for local networks that don’t communicate with outside networks:

Class A: 10.0.0.0 to 10.255.255.255
Class B: 172.16.0.0 to 172.31.255.255
Class C: 192.168.0.0 to 192.168.255.255

These ranges are preserved with classless addressing as well.

The addresses are for use within networks where the network administrator
can ensure that no two hosts have the same address. A network that uses
addresses in these ranges should not connect directly to the Internet or to
another local network that might use the same addresses. However, as
explained earlier in this chapter, it’s possible to connect computers with local
addresses to the Internet by using a router that performs Network Address
Translation (NAT).

Other Reserved Addresses

RFC 3330: Special-Use IPv4 Addresses lists other reserved ranges of IP
addresses.

Chapter 4

166

The IP Header
An IPv4 header has twelve required fields and optional IP Options fields
that precede the data, or message, being sent. Table 4-3 shows the fields in
an IP header, and Figure 4-11 shows the contents of an example IP data-
gram. If you’re using a provided library or other component for the IP layer,
you normally won’t have to concern yourself with the contents of most of
the fields in the header, though the program code will need to provide

Figure 4-11: This capture from Ethereal shows an Ethernet frame whose data
field contains an IP datagram. The data area of the IP datagram contains a
UDP datagram.

Using the Internet Protocol in Local and Internet Communications

 167

source and destination IP addresses. Understanding the IP header can help
in troubleshooting and in understanding IP’s capabilities and limits, how-
ever. These are the functions of the fields in an IP header:

Version

The Internet Protocol has been through various revisions over the years.
RFC0791, dated 1981, describes IP version 4, which is the version in popu-
lar use at this writing. Replacing IPv4 is IPv6, described in RFC2460. The
field is 4 bits.

Header Length

The Header Length is the length of the datagram’s header in 4-byte words.
The length of the header can vary because of the optional IP Options field.
The required fields use 20 bytes (for a Header Length of 5), and IP Options

Table 4-3: Preceding the data portion of an IP datagram is a header with 12 or
13 fields.
Field Number of Bits Description

Version 4 IP version being used

Internet Header Length 4 Total length of the header in 32-bit words

Type of Service 8 Suggestions as to the importance of minimizing
delay, maximizing throughput, and maximizing
reliability in routing

Total Length 16 Total length of the datagram in bytes

Identification 16 Identifier for use in reassembling fragments

Flags 3 Information used in fragmenting

Fragment Offset 13 Position of a fragment in units of 64 bits

Time to Live 8 Maximum time or number of router hops a
datagram may live

Protocol 8 Protocol identifier for the data portion of the
datagram

Header Checksum 16 Error-checking value for the header

Source Address 32 IP address of source

Destination Address 32 IP address of destination

Options (optional) varies Additional information for security, routing, iden-
tification, and/or time stamping

Chapter 4

168

can use up to 40 additional bytes (for a Header Length of 15). The field is 4
bits.

Type of Service

The Type of Service bits offer a way for the sending process to advise routers
how to handle the segment. The options are to maximize reliability, mini-
mize delay, maximize throughput, or minimize cost. Routers may ignore
these bits. The field is 8 bits.

Total Length of Datagram

The Total Length of Datagram field is the length of the header plus the data
payload in bytes. The maximum is 65,535 bytes. The field is 16 bits.

Datagram Identification

The host that originates the datagram assigns a unique Datagram Identifica-
tion value to the datagram. If a router fragments the datagram as it travels to
its destination, each fragment will have the same Datagram Identification
value. This field is 16 bits.

Flags

Two bits in the Flags field relate to fragmenting.

Bit 0 is unused.

Bit 1: Don’t Fragment. If this bit is 1, routers should not fragment the data-
gram. If possible, a router should route the datagram to a network that can
accept the datagram in one piece. Otherwise, the router discards the data-
gram and may return an error message indicating that the destination is
unreachable. The IP standard requires hosts to accept datagrams of up to
576 bytes, so if the datagram may pass through unknown hosts and you
want to be sure it won’t be discarded due to size, use datagrams of 576 bytes
or less.

Bit 2: More Fragments. When this bit is 1, the datagram is a fragment, but
not the last fragment of the fragmented datagram. When the bit is 0, the
datagram isn’t fragmented or it’s the final fragment.

Using the Internet Protocol in Local and Internet Communications

 169

The field is 3 bits.

Fragment Offset

The Fragment Offset field identifies the location of a fragment in a frag-
mented datagram. The value is in units of eight bytes, with a maximum of
8191, which corresponds to a 65,528-byte offset.

For example, to send 1024 bytes in two fragments of 576 and 424 bytes, the
first fragment has a Fragment Offset of 0 and the second fragment has a
Fragment Offset of 72 (because 72*8 = 576). The field is 13 bits.

Time to Live

If a datagram doesn’t reach its destination in a reasonable time, the network
discards it. The Time to Live field determines when it’s time to discard a
datagram.

Time to Live expresses the time remaining for the datagram, with each
router decrementing the value by 1 or the number of seconds needed to pro-
cess and forward the datagram, whichever is greater. In practice, routers typ-
ically take less than one second to process and forward a datagram, so
instead of measuring time, the value measures the number of hops, or net-
work segments between routers. The computer sending the datagram sets
the initial value. The field is 8 bits.

Protocol

The Protocol field specifies the protocol used by the datagram’s data payload
so the IP layer will know where to pass received data. The document
RFC0790: Assigned Numbers specifies the values for different protocols. TCP
is 6. UDP is decimal 17. The field is 8 bits.

Header Checksum

The Header Checksum enables the receiver of a datagram to check for errors
in the IP header only, not including the contents of the data area, or mes-
sage. The checksum is calculated on the values in the header, with the
Header Checksum bits assumed to be zero. Error checking of the message is

Chapter 4

170

required in Ethernet frames and TCP segments and optional in UDP data-
grams. Figure 4-12 illustrates a checksum calculation.

To calculate a checksum on an IP header, do the following

1. Divide the header into a series of 16-bit words.

2. Add the first two words. If the result has a carry bit (if the result is greater
than FFFFh), drop the carry bit and add 1 to the sum.

3. Add the next 16-bit word to the sum. Again, if the value has a carry bit,
drop the carry bit and add 1 to the sum.

4. Repeat step 3 until all of the 16-bit words have been added in.

5. Find the one’s complement of the result. To obtain the one’s complement,
in the binary value, change each 0 to 1 and change each 1 to 0. The result is
the checksum.

RFC 791 says that the checksum appears to provide adequate protection,
but may be replaced by a CRC calculation.

If you use software with built-in support for IP, you don’t have to worry
about providing code to calculate the checksum.

The field is 16 bits.

Source IP Address

The Source IP Address identifies the sender of the datagram. The receiver of
a datagram can use this field to find out where to send a reply. The field is
32 bits.

Destination IP Address

The Destination IP Address identifies the destination of the datagram. The
field is 32 bits.

Assigning an IP Address to a Host
A network may use any of a variety of ways of assigning IP addresses to its
hosts. One approach is to have a network administrator configure the
address at each host. This can work fine for small networks, especially if the

Using the Internet Protocol in Local and Internet Communications

 171

hosts seldom change. But often, it makes more sense to have a single loca-
tion in charge of assigning IP addresses. The Dynamic Host Configuration
Protocol (DHCP) defines three ways of doing this.

DCHP: Three Options

The alternatives described in RFC2131: Dynamic Host Configuration Proto-
col are manual, automatic, and dynamic allocation. Table 4-4 compares the

Contents of the IP header in Figure 4-11 expressed as 16-bit hexadecimal
words:

4500
002E
0715
0000
4011
13F0 (checksum)
C0A8
6F64
C0A8
6F0F

Calculations to obtain the checksum:
4500 + 002E = 452E
452E + 0715 = 4C43
4C43 + 0000 = 4C43
4C43 + 4011 = 8C54

(Skip the checksum value.)
8C54 + C0A8 = 14CFC
14CFC - 10000 + 1 = 4CFD (Drop the carry bit and add 1.)
4CFD + 6F64 = 6C61
6C61 + C0A8 = 17D09
17D09 -10000 + 1 = 7D0A (Drop the carry bit and add 1.)
7D0A + 6F0F = EC0F
One’s complement of EC0F = 13F0
The checksum is 13F0.

Figure 4-12: Calculating the checksum for this IP header verifies that the value
is 13F0h.

Chapter 4

172

capabilities of the Dynamic Host Configuration Protocol (DHCP)’s meth-
ods and manual assignment at the individual hosts.

All three DHCP methods require a computer that functions as a DHCP
server. The other computers in the network are DHCP clients, which
request IP addresses from the server. The server uses one of the three meth-
ods in responding to the requests.

On connecting to the network, a DHCP client uses UDP to broadcast a
DHCPDISCOVER message to request an assigned IP address. Because the
host doesn’t have an IP address yet, it uses a source IP address of 0.0.0.0 in
the request. The server must have another way of identifying the sender of
the message. In an Ethernet network, the server can use the hardware
address in the Source Address field of the Ethernet frame. The DHCP server
responds to the DHCPDISCOVER message by returning an IP address to
the requesting host, which uses the new address in future communications.
RFC2131 and RFC1533: DHCP Options and BOOTP Vendor Extensions
specify the format of DHCP requests and replies.

Manual Allocation

In manual allocation, the network administrator specifies an address for
each host, but instead of configuring the addresses at each host, the adminis-
trator configures all of the addresses at the DHCP server. On receiving a
DHCPDISCOVER message, the DHCP server returns the address assigned
to the requesting host. For example, in an Ethernet network, the network

Table 4-4: A network may use any of a number of methods to assign IP
addresses to its computers.
Method of
Assigning IP
Addresses

Stores
Addresses in a
Single Server?

Method of Add-
ing a Host

Method of
Removing a Host

Requires the
Host to Renew
Its Lease Period-
ically?

Per Host Manual no manual manual no

DHCP Manual yes manual manual no

DHCP Automatic yes automatic manual no

DHCP Dynamic yes automatic automatic yes

Using the Internet Protocol in Local and Internet Communications

 173

administrator can provide the server with a table that matches an IP address
to the Ethernet hardware address of each Ethernet controller in the network.
The DHCP server reads the source’s Ethernet address from the Ethernet
frame, finds the corresponding IP address in the table, and returns the
address to the requesting host’s Ethernet address.

Manual allocation is more convenient than configuring an address at each
host, but the allocation still requires the administrator to know each host’s
hardware address and to assign an address every time the network gains a
new host.

Automatic Allocation

In automatic allocation, instead of maintaining a table of values matched to
hardware addresses, the DHCP server begins with a list of available IP
addresses. On receiving a DHCPDISCOVER message, the server selects any
unassigned address to return to the requesting host and marks the address in
the table as assigned to that host.

Dynamic Allocation

One thing that automatic allocation doesn’t define is a way to reclaim
addresses that are no longer in use. Reclaiming addresses is essential in net-
works that have more potential hosts than available IP addresses. For exam-
ple, the hosts connected to an ISP at any one time will vary as different
customers go on and off line. If the ISP assigns a permanent, or static,
address to every computer that connects, it will eventually run out of
addresses, even if only a few customers connect at once. A solution is to use
dynamic allocation, which reclaims IP addresses that are no longer in use.

As with automatic allocation, in dynamic allocation, the DHCP server
begins with a list of available IP addresses and returns addresses in response
to DHCPDISCOVER messages. But instead of assigning a permanent
address, the server leases the address to the client for a specified time. To
keep an address, the client must periodically send a request to renew the
lease. If the client disconnects from the network or for any other reason fails
to renew its lease, the server is free to assign the address to another com-
puter.

Chapter 4

174

A client may request an infinite lease or suggest a lease time, but servers
aren’t required to comply with these requests. The lease time is a 32-bit
value in seconds, with FFFFFFFFh indicating an infinite lease.

On receiving a request for an IP address, a DHCP server uses the previously
assigned address for that host if available. A computer can also request a spe-
cific IP address. But with dynamic allocation, there is no guarantee that a
request for an IP address will return a specific value. For some small embed-
ded systems, it may be easier to store a static IP address in firmware. The
DHCP server must then be configured to reserve this address.

Each network may have its own DHCP server, or multiple networks may
use relay agents to share a DHCP server. A relay agent accepts DHCPDIS-
COVER messages from hosts in a network and sends the messages to a
DHCP server. The server replies to the relay agent, which then sends the
message to the host that requested it.

In a network that has a NAT router that connects to a cable modem or DSL
modem, the router typically can function as a DHCP server for the local
network and as a DHCP client for the public network. The server can assign
addresses to the hosts in the local network. The client enables the router to
request an IP address from a DHCP server at the ISP.

Windows XP can function as a DHCP client for a server at an ISP or other
location. Using Internet Connection Sharing, Windows XP can function as
a DHCP server that assigns IP addresses to computers in a local network.

Considerations when Using Dynamic IP Addresses

When a domain’s IP address changes, the DHCP server or other entity that
changed the address must send an updated resource record to the domain’s
name servers.

If your ISP uses DHCP in assigning your network’s public IP address and
your embedded system has a domain name, you’ll need to update the
domain’s name servers when the system’s IP address changes. A way to
achieve this is by using a service that handles the updates automatically. One
provider of this service is Tzolkin Corporation (www.tzo.com).

Using the Internet Protocol in Local and Internet Communications

 175

To use Tzolkin’s service with an embedded system, you’ll need a PC in the
same local network as the embedded system, and both computers must
share a public IP address (using a NAT router as described earlier).

At the registrar where you registered the domain, you must change the regis-
tration to indicate that Tzolkin’s name servers are the name servers for your
domain.

On a PC that shares the embedded system’s public IP address, run Tzolkin’s
application, which monitors the PC’s current public IP address. When the
address changes, the application automatically informs the name servers of
the change. For best results, the PC running the Tzolkin application should
be on line all of the time.

Matching an IP Address to an Ethernet Interface
Every IP datagram must include the IP address of its destination. A host can
use a variety of ways to learn the IP address of a destination the host wants
to communicate with.

A network administrator can provide each host with the IP addresses the
host will communicate with. The hosts will need a way to update their lists
when a host is added, removed, or changes its address, but if changes are
rare, the updates can be done manually.

Some computers only need to reply to received communications using the
source address in received datagrams. For example, a host that functions as a
Web server that sends Web pages on request only needs to respond to
received requests that include the IP address to reply to.

A host that wants to request a Web page or other resource or send other
communications over the Internet must know the destination’s IP address.
As described earlier in this chapter, if a host knows only the domain name, a
name resolver can query name servers to learn the IP address that corre-
sponds to the domain name.

Chapter 4

176

Using ARP

In a local network, the Address Resolution Protocol (ARP) can match an IP
address with the Ethernet hardware address of the computer with that IP
address. The document that defines ARP is RFC 0826: An Ethernet Address
Resolution Protocol: Or converting network protocol addresses to 48.bit Ethernet
address for transmission on Ethernet hardware, also available as standards-track
document STD0037.

To learn the Ethernet hardware address that corresponds to an IP address, a
host broadcasts an Ethernet frame containing an ARP packet. In the Ether-
net header, the Type field contains 0806h, which indicates that the frame is
carrying an ARP message. The destination address is all ones or a broadcast
address for a specific network or subnet.

In a similar way, a computer can broadcast a RARP (reverse ARP) request to
learn the IP address that corresponds to a hardware address, including the
computer’s own IP address. RARP is defined in RFC0903: A Reverse Address
Resolution Protocol, also available as standards-track document STD0038.

In Chapter 1, Figure 1-5 showed an example ARP request captured with the
Ethereal Ethernet analyzer. Figure 4-13 shows the request’s reply.

ARP and RARP Format

ARP and RARP requests and replies transmit in the data fields of Ethernet
frames. Each request or reply has nine fields. The purpose of each field is as
follows:

Hardware address space. Indicates the hardware interface being matched to
a protocol address. Ethernet=0001h. 2 bytes.

Protocol address space. Indicates the protocol being matched to a hard-
ware address. IP=0800h (specified in RFC1010). 2 bytes.

Length in bytes of a hardware address. Ethernet hardware addresses are 6
bytes. 1 byte.

Length in bytes of a protocol address. IPv4 addresses are 4 bytes. 1 byte.

Using the Internet Protocol in Local and Internet Communications

 177

Opcode. Indicates the operation to perform:

1=ARP request
2=ARP reply
3=RARP request
4=RARP reply

2 bytes.

Source Ethernet hardware address. 6 bytes.

Source IP address. 4 bytes.

Destination Ethernet hardware address. For ARP requests, this value is
undefined because it’s the value being requested. For ARP replies, this value
contains the hardware address for the request’s IP address. For RARP
requests and replies, this value is the hardware address whose IP address is
being requested. 6 bytes.

Figure 4-13: In this ARP response, the host with the specified target IP address
responds with its Ethernet hardware address (00:06:5b:78:36:f2).

Chapter 4

178

Destination IP address. For RARP requests, this value is undefined
because it’s the value being requested. For RARP replies, this value contains
the IP address that corresponds to the request’s hardware address. For ARP
requests and replies, this value is the IP address whose hardware address is
being requested. 4 bytes.

To prevent having to send an ARP request before every communication to a
host in the local network, a host can maintain a cache of ARP entries. To
eliminate entries that are no longer valid, the cache must use timeouts or
other methods.

How a Datagram Finds Its Way to Its Destination
When a host wants to send a message and knows the IP address of its desti-
nation, it’s ready to send the IP datagram on the network. But how does the
datagram find its way to its destination? The IP address contains no infor-
mation about the physical location of the destination.

Direct Routing

Messages whose destination is within the local subnet, or within the local
network when there is no subnet, use direct routing. In direct routing in an
Ethernet network, the originating host sends an IP datagram in an Ethernet
frame that contains the destination’s Ethernet hardware address, as described
in Chapter 1. The originating host uses ARP if needed to learn the destina-
tion’s hardware address.

Within an Ethernet network, hosts connected by repeater hubs receive all
valid frames sent by any of the hosts. An Ethernet switch forwards frames to
a specific port if possible, and otherwise forwards the frame to all of the
switch’s ports.

Indirect Routing

Messages whose destination is outside the local subnet or network use indi-
rect routing. With indirect routing, a designated default router accepts mes-
sages destined for outside the local subnet or network. An Ethernet network

Using the Internet Protocol in Local and Internet Communications

 179

that connects to the Internet should have a default router for messages
whose destination is outside the local network.

For example, if a computer in an Ethernet network wants to send a message
on the Internet, the computer places the message in an IP datagram in an
Ethernet frame. The destination address in the Ethernet frame is the default
router’s hardware address. The default router uses the destination address in
the IP datagram to decide where to forward the datagram.

To decide where to forward the datagram, the router first checks its internal
forwarding table for a matching IP address. Each entry in the table has the
IP address of the router that is the next hop, or the next router on the way,
for datagrams going to a specific address, network, or subnet.

A router builds its forwarding table by saving entries containing the source
address of received datagrams and the router port that the datagram arrived
on. To ensure that there’s room for new entries, each entry has a timeout and
is removed on timing out.

Of course, no forwarding table will contain an entry that matches every
received destination address, if only because a router may begin with no
entries other than a default router. On receiving a datagram with a destina-
tion address that isn’t in the forwarding table, the router sends the datagram
to another router designated as the first router’s default router. In a similar
way, the router that receives the datagram looks for a match in its forward-
ing table and sends the segment on either to a destination found in its for-
warding table or to another default router.

An IP datagram may travel through a number of routers on the way to its
destination. The source may have no way of knowing the maximum size of
datagrams the routers or the destination can accept. If a datagram is too
large for its destination, a router may send the data payload in multiple,
smaller datagrams, with a portion, or fragment, of the data in each. On
receiving the datagrams, the destination uses information in the IP header to
put the fragments back together.

Chapter 4

180

The Internet Control Message Protocol (ICMP)
Hosts that support IP must also support the Internet Control Message Pro-
tocol (ICMP) defined by RFC 792: Internet Control Message Protocol. ICMP
is a basic protocol for sending messages. Some common uses for ICMP are
to send a PING message to learn if a host is available on the network and to
obtain the IP addresses of local routers.

ICMP messages travel in IP datagrams. The Protocol field in the IP header
is 1 to indicate ICMP. The first byte in the data portion of the datagram is
an ICMP Type code that determines the format of the data that follows.
RFC 792, RFC 950, and RFC 1256 define the type codes listed in Table
4-5 and have further details about the message formats.

Using the Internet Protocol in Local and Internet Communications

 181

Table 4-5: ICMP is used for a variety of message types. Unless specified
otherwise, all of the message types are defined in RFC 792.
Type
Code

Message Type Description

0 Echo Reply Responds to an Echo message (Ping). Not all hosts
respond to Echo requests.

3 Destination Unreachable Indicates that a datagram won’t be delivered because the
destination IP address is unreachable or unavailable or
because the datagram doesn’t allow fragmenting and
must be fragmented to reach its destination.

4 Source Quench Requests a destination to reduce the traffic it is sending to
a source.

5 Redirect On receiving a datagram to forward, advises the source of
a better router to use for that destination network in the
future.

8 Echo Requests a reply from the destination (PING).

9 Router Advertisement Announces the availability of one or more routers
(RFC1256).

10 Router Solicitation Requests Router Advertisements (RFC1256).

11 Time Exceeded Notifies that a datagram was discarded because the
time-to-live field was zero or a fragmented datagram
timed out before it could be reassembled.

12 Parameter Problem Returns information about a datagram that was discarded
due to a problem in the information in the header.

13 Timestamp Provides a timestamp value containing the number of
milliseconds since midnight in Universal Time or
another, non-standard value.

14 Timestamp Reply Returns the received timestamp value and a timestamp
value containing the number of milliseconds since mid-
night in Universal Time or another, non-standard value.
The value indicates the amount of time the original
Timestamp message required to reach the destination.

15 Information Request Enables a host to discover its network address. Obsoleted
by RARP.

16 Information Reply Enables a host to discover its network address. Obsoleted
by RARP.

17 Address Mask Request Requests the local subnet mask (RFC 950).

18 Address Mask Reply Returns the local subnet mask (RFC 950).

Chapter 4

182

Exchanging Messages Using UDP and TCP

 183

This chapter shows how embedded systems can use the User Datagram Pro-
tocol (UDP) and the Transmission Control Protocol (TCP) to send mes-
sages over a network. The messages can contain any type of data. The
systems must support IP, because TCP and UDP use IP addresses to identify
a message’s source and destination. The In Depth section of the chapter dis-
cusses UDP and TCP in detail, including when to use each and what’s
involved in supporting the protocols in an embedded system.

Quick Start:
Basic Communications

UDP and TCP are standard, well-supported protocols for computers that
need to send and receive messages within local networks or on the Internet.
Many application protocols transfer information using UDP or TCP. For

Chapter 5

184

example, a computer that sends a request for an IP address to a DNS server
places the request in a UDP datagram. A request to a server for a Web page
and the page sent in response both travel in TCP segments. But you can also
use UDP and TCP to transfer messages of any type, including information
in application-specific formats.

In general, UDP is a simpler protocol to implement but has no built-in sup-
port for acknowledging receipt of messages, determining the intended order
of messages, or flow control. If you use a module with support for both
UDP and TCP, the programming effort to use the protocols is likely to be
about the same for each. In some cases, TCP programming may be easier.

This section presents examples of UDP and TCP communications. The
embedded systems in the examples are the Rabbit and TINI modules intro-
duced in Chapter 3. For both modules, the amount of programming
required to exchange messages is greatly simplified because of the supporting
code provided with the modules.

Before using a Rabbit or TINI module in networking applications, you need
to configure the module with the networking parameters appropriate for
your module and network. This chapter has information about how to con-
figure Rabbit and TINI modules to enable communicating on a network
and the Internet.

And because many embedded systems communicate with PCs, I’ve included
some tips for VB.NET programming on a PC that communicates with
embedded systems. Even if there will be no PCs in your final network
design, the display, keyboard, and programming resources of a PC can make
it a useful tool in the initial stages of a project.

Configuring a Device for Network Communications
As Chapter 4 explained, communications that use UDP, TCP, or other
Internet protocols must use IP addresses to identify the sender and receiver
of the communications (with the exception that a UDP datagram doesn’t
have to specify a source address). In addition, sending a message using IP
may require any or all of the following: a netmask value, the IP address of a
gateway, or router, and the IP address of a domain-name server. The device

Exchanging Messages Using UDP and TCP

 185

firmware may specify these values, or the device may request the values from
a DHCP server.

Rabbit Configuration

For Rabbit modules, Dynamic C supports several ways for a network inter-
face to obtain an IP address and related values. An application can provide
the values or obtain values from a DHCP server. The program code that
specifies the values or how to obtain them can be in the main application or
in a macro that the main program calls. Using a macro keeps the main pro-
gram free of system-specific values, makes it easy to use the same configura-
tion in multiple programs, and enables changing a configuration by just
specifying a different macro.

Dynamic C’s tcp_config.lib file defines constants for use in static configura-
tions and macros for implementing a variety of common configurations.
You can edit the file as needed for your devices and network, or you can pro-
vide your own configuration macros in a file you create called
custom_config.lib.

To specify a configuration macro, the program code must include the fol-
lowing statement:

TCPCONFIG macro_number

where macro_number names the configuration in a configuration file. The
statement must occur before the statement #use "dcrtcp.lib".

Configuring in the Application

The default macro, TCPCONFIG 0, does no configuring, so with this option,
the main program has to provide the configuration information. TCPCON-
FIG 0 is the default, so a program that uses TCPCONFIG 0 doesn’t require a
TCPCONFIG statement at all. To use TCPCONFIG 0 with a static IP address, a
program should define values for the constants below, as needed:

#define _PRIMARY_STATIC_IP "192.168.111.7"
#define _PRIMARY_NETMASK "255.255.255.0"
#define MY_NAMESERVER "192.168.111.2"
#define MY_GATEWAY "192.168.111.1"

Chapter 5

186

The _PRIMARY_STATIC_IP and _PRIMARY_NETMASK strings should

match the Rabbit module’s IP address and the netmask of the subnet the
Rabbit module resides in. If the module will access a domain name server,
set MY_NAMESERVER to the IP address of the network’s name server. If the
module will communicate outside the local network, set MY_GATEWAY to the
IP address of the subnet’s gateway, or router, that connects to the outside
world.

Using a Configuration File

To use static values defined in tcp_config.lib, use TCPCONFIG 1 in the appli-
cation. The tcp_config.lib file defines the four constants above. Edit the
statements with the values your system requires.

The following code in tcp_config.lib configures the interface using the values
stored in _PRIMARY_STATIC_IP and _PRIMARY_NETMASK:

#if TCPCONFIG == 1
 #define USE_ETHERNET 1
 #define IFCONFIG_ETH0 \
 IFS_IPADDR,aton(_PRIMARY_STATIC_IP), \
 IFS_NETMASK,aton(_PRIMARY_NETMASK), \
 IFS_UP
#endif

The USE_ETHERNET macro is set to 1 to specify that the interface uses the
system’s first Ethernet port.

The IFCONFIG_ETH0 macro configures the first Ethernet port. The value of
the macro is a parameter list, whose items are also macros. The IFS_IPADDR
and IFS_NETMASK macros set the interface’s IP address and netmask using
the values defined earlier. The aton function converts strings in dot-
ted-quad format to the binary values required by the macros. The IFS_UP
macro brings up, or enables, the interface.

In a similar way, tcp_config.lib contains additional macros for other common
configurations. For example, TCPCONFIG 3 specifies that the first Ethernet
interface will obtain its IP address and other configuration values from a
DHCP server. You can add your own custom configuration macros to the
file as well.

Exchanging Messages Using UDP and TCP

 187

TCPCONFIG values greater than 99 must be in a file called custom_config.lib.
Create this file if you want to store custom configurations in your own file,
rather than using tcp_config.lib.

Using ifconfig() to Set and Retrieve Network Settings

Dynamic C’s ifconfig() function enables firmware to set and retrieve var-
ious network values at runtime. For example, on receiving a request to run a
CGI program, a Web server might want to return a response containing a
code that requests the browser to refresh the page. The response must
include the URL of the page the browser should request. If the Rabbit’s
interface obtained its address from a DHCP server, a program can use
ifconfig() to obtain the IP address to use in the URL.

Calls to ifconfig() can contain varying numbers of parameters. In the
example below, the IFG_IPADDR macro returns the IP address for the
default interface (IF_DEFAULT) in the variable my_ip_address. A
sprintf() statement stores a URL containing the retrieved IP address in
the character array redirect_to. The inet_ntoa() function converts the
binary IP address returned by IFG_IPADDR to dotted-quad format.

longword my_ip_address;
char redirect_to[127];
char ip_dotted_quad[16];

ifconfig(IF_DEFAULT,
 IFG_IPADDR, &my_ip_address,
 IFS_END);

sprintf(redirect_to, "http://%s/index.shtml",
 inet_ntoa(ip_dotted_quad, my_ip_address));

Dynamic C’s documentation has more details and examples for ifcon-
fig().

Viewing Debugging Information

For debugging applications that use networking functions, the following
directives are useful:

#define DCRTCP_DEBUG
#define DCRTCP_VERBOSE

Chapter 5

188

DCRTCP_DEBUG enables debugging within the TCP/IP libraries.
DCRTCP_VERBOSE prints debugging messages to Dynamic C’s STDIO win-
dow. The global variable debug_on controls the number of messages, and
thus the amount of detail revealed. To set debug_on from 0 (few messages)
to 5 (maximum messages), set the third parameter in this ifconfig()
statement:

ifconfig(IF_ANY, IFS_DEBUG, 5, IFS_END);

Use a lower value to decrease the number of messages and thus the amount
of root memory required to display the messages. Another way to decrease
the number of messages is to use directives that apply only to a specific
library, such as FTP_DEBUG and FTP_VERBOSE.

When debugging is complete, remove the debugging directives and any
related ifconfig() statements.

TINI Configuration

TINI modules can also configure their network interfaces using static values
or values obtained from a DHCP server.

Using ipconfig

During project development, you can view and set the network configura-
tion from within the JavaKit utility, using the command ipconfig. This
ipconfig command is similar to the ipconfig utility that you can run
from a command prompt under Windows.

Typing ipconfig from a command prompt in JavaKit displays information
about the TINI’s current network configuration:

TINI /> ipconfig

Hostname : tini00e254
Current IPv4 addr.: 192.168.111.3/24 (255.255.255.0)
(active)
Current IPv6 addr.: fe80:0:0:0:260:35ff:fe00:e254/64
(active)
Default IPv4 GW : 192.168.111.1
Ethernet Address : 00:60:35:00:e2:54
Primary DNS :
Secondary DNS :

Exchanging Messages Using UDP and TCP

 189

DNS Timeout : 0 (ms)
DHCP Server : 192.168.111.1
DHCP Enabled : true
DHCP Lease Ends : Tue Apr 23 08:21:48 GMT 2002
 (23 hr, 58 min, 33 seconds left)
Mailhost : 0.0.0.0
Restore From Flash: Not Committed

Typing help ipconfig displays the command-line options supported for
performing other functions related to the network configuration:

TINI /> help ipconfig
ipconfig [options]

Configure or display the network settings.
 [-a IP -m mask] Set IPv4 address and subnet mask.
 [-n domainname] Set domain name
 [-g IP] Set gateway address
 [-p IP] Set primary DNS address
 [-s IP] Set secondary DNS address
 [-t dnstimeout] Set DNS timeout (set to 0 for
 backoff/retry)
 [-d] Use DHCP to lease an IP address
 [-r] Release currently held DHCP IP address
 [-x] Show all Interface data
 [-h mailhost] Set mailhost
 [-C] Commit current network configuration
 to flash
 [-D] Disable restoration of configuration
 from flash
 [-f] Don't prompt for confirmation

For example, to set the static IP address 192.168.111.3 and a netmask of
255.255.255.0, type:

ipconfig -a 192.168.111.3 -m 255.255.255.0

To specify that the TINI should obtain its settings from a DHCP server,
type:

ipconfig -d

Saving a Network Configuration

By default, the TINI stores its network configuration values in a special area
of RAM whose contents are preserved on rebooting. In the DSTINIm400
module, the RAM has battery backup, so the contents also persist after pow-

Chapter 5

190

ering down. There is still a chance that the configuration data will be lost,
however, either due to battery failure, or if an application calls the
blastHeapOnReboot method, which causes the RAM’s contents to be
erased on the next reboot, or if a user types reboot -a in JavaKit, which
clears the heap and system memory before rebooting.

A solution is to store the network configuration in the DSTINIm400’s Flash
memory, in the area reserved for this information. This area is a portion of
bank 47, which is a 64-kilobyte sector that stores both network configura-
tion data and slush.tbin or another application loaded into Flash memory for
running on startup. To store the network configuration data in Flash mem-
ory, execute the ipconfig -C command in JavaKit or call the TINI’s com-
mitNetworkState() method. A configuration committed to Flash
memory persists after boot-up, powering down, and erasing of the RAM’s
contents.

It’s possible for the TINI to override, or ignore, a committed configuration.
To do so, execute the ipconfig -D command in JavaKit or call the TINI’s
disableNetworkRestore() method. The TINI will then behave as if the
Flash memory had no stored parameters.

To change a configuration in Flash memory, you first need to erase bank 47
in the Flash memory. The easiest way to do this is to use JavaKit to reload
slush or another .tbin application. To load slush, open a JavaKit session with
the TINI. At the JavaKit prompt, type B0, press Enter, then type F0 and
press Enter. This clears the TINI’s RAM. From the File menu, select Load
File. Browse to the location of slush_400.tbin and click Open. When the
JavaKit window displays Load complete, the file has been loaded into the
Flash memory. You now should be able to execute ipconfig -C again to
commit new network configuration parameters to Flash memory.

Banks 40–46 in the Flash memory store critical files such as the boot loader
and files that implement the runtime environment. You don’t want to cor-
rupt these files, so use caution when executing commands that write to the
Flash memory.

Exchanging Messages Using UDP and TCP

 191

Sending UDP Datagrams
Now that you know something about how to configure the Rabbit and
TINI modules for network communications, it’s time to try an application.
The first example is an embedded system that periodically sends datagrams
to a remote host. To make it easy to detect missing or out-of-order data-
grams in this example application, each datagram contains a byte with a
sequence number. The sequence number increments on each send, resetting
to zero after sending 255. A second byte in the datagram is the value of a
port bit on the module. A timer determines how often to send the data-
grams. The first example uses a Rabbit module and the second example uses
a TINI.

A UDP communication takes place between two sockets. A socket is one
end of a communication path on a network. Each socket has an IP address
and a port number. In a typical application, the destination is programmed
to receive UDP datagrams on a specific port. As explained later in this chap-
ter, many standard application protocols have an assigned well-known port.
Other applications are generally free to use any port number greater than
1023.

A destination may accept datagrams from any host or only from a specific
host or hosts. The destination usually doesn’t care what port the source
sends from.

For a Windows application that receives the datagrams sent by the Rabbit
and TINI modules, see Lakeview Research’s Embedded Ethernet page at
www.Lvr.com.

Rabbit Code

The Rabbit module’s Dynamic C libraries include functions and constants
for use in UDP communications. Rabbit Semiconductor also provides a
variety of basic example programs that show how to do common tasks such
and sending and receiving data using UDP and TCP. The Rabbit example
code in this chapter is adapted from Rabbit Semiconductor’s examples.

In the application, the firmware specifies the IP addresses and port numbers
to use and sends a datagram periodically. A real-world application could per-

Chapter 5

192

form additional tasks when not transmitting. As a debugging aid, in various
locations in the code, a printf statement displays status messages in the
STDIO window of Dynamic C’s programming environment.

Initial Defines and Declarations

The firmware uses the TCPCONFIG 1 macro to configure the network inter-
face to use the static IP address and netmask specified in the tcp_config.lib
file, as described above. LOCAL_PORT is the port the Rabbit will use to send
the datagrams. REMOTE_IP is the IP address of the computer the Rabbit will
send datagrams to. REMOTE_PORT is the port on the remote computer that
will receive the datagrams. In your application, you must set REMOTE_IP
and REMOTE_PORT to appropriate values for your remote computer.

#define TCPCONFIG 1

#define LOCAL_PORT 5551
#define REMOTE_IP "192.168.111.5"
#define REMOTE_PORT 5550

The MAX_UDP_SOCKET_BUFFERS constant sets the maximum number of
socket buffers for the application. This application, which communicates
with a single host, requires just one buffer:

#define MAX_UDP_SOCKET_BUFFERS 1

The #memmap xmem directive stores all C functions not declared as root in
the extended memory area, rather than limiting storage to the 64 kilobytes
of root memory.

#memmap xmem

The dcrtcp.lib file is the Dynamic C library that supports TCP/IP commu-
nications. Unlike other C compilers, the Dynamic C compiler doesn’t use
#include directives because its library system automatically provides the
needed function prototypes and header information normally contained in
included files. In place of #include, to enable using a library, Dynamic C
requires a #use directive that names the file:

#use "dcrtcp.lib"

The mysocket variable is a Dynamic C udp_Socket structure that contains
information about the UDP socket that will communicate with the remote

Exchanging Messages Using UDP and TCP

 193

host. The sequence variable contains the number the Rabbit will send to
the remote host.

udp_Socket mysocket;
int sequence;

The main() Function

The application’s main() function begins by calling sock_init() to ini-
tialize the TCP/IP stack. This call is required before calling any functions in
dcrtcp.lib, ncluding any functions that use UDP or IP. If successful, the
function returns zero. If the function doesn’t return zero, the network isn’t
available and the program ends.

main()
{
 int return_value;
 sequence = 255;
 return_value = sock_init();
 if (return_value == 0) {
 printf("Network support is initialized.\n");
 }
 else {
 printf("The network is not available.\n");
 exit(0);
 }

A call to udp_open() opens the specified UDP socket, enabling communi-
cations. The call requires a pointer to the local socket (&my_socket), a local
port number (LOCAL_PORT), a remote IP address (resolve(REMOTE_IP))
and port number (REMOTE_PORT) to communicate with, and either a func-
tion to call on receiving data or NULL to place received data in the socket’s
receive buffer. This application doesn’t receive datagrams, so the parameter
is null. The resolve() function converts an IP address string in dot-
ted-quad format to the longword required by udp_open().

If the remote IP address is zero, the socket connects to the IP address and
port of the first received datagram on the socket. If the remote IP address is
-1, the socket accepts datagrams from any remote host and port and sends
all datagrams as broadcasts.

 if(!udp_open(&my_socket, LOCAL_PORT,
 resolve(REMOTE_IP), REMOTE_PORT, NULL)) {

Chapter 5

194

 printf("udp_open failed.\n");
 exit(0);
 }
 else {
 printf("udp_open succeeded.\n");
 }

The WrPortI() function configures Port G, bit 6 as an output. This bit
controls LED DS1 on the RCM3200 module’s prototyping board. This
application sends the state of bit 6 in the datagram.

 WrPortI(PGDDR, NULL, 0x40);

An endless while loop calls the tcp_tick() function and a costatement.
The application must call tcp_tick() periodically to process network
packets. Chapter 3 introduced Dynamic C’s costatements. In this applica-
tion, the costatement calls a routine that sends a datagram with a delay
between each send. Dynamic C’s DelaySec() function specifies the num-
ber of seconds to wait between datagrams. The application’s
send_packet() function sends the datagram.

 while(1) {
 tcp_tick(NULL);
 costate {
 waitfor(DelaySec(1));
 send_packet();
 }
 } // end while(1)
} // end main()

Sending a Datagram

The send_packet() function creates and sends a datagram. The
send_buffer array holds the data to send. For each send, the application
increments the sequence number and places the number in the first byte of
the send_buffer array. The sequence number resets to zero after sending
255.

int send_packet(void)
{
 char send_buffer[2];
 int buffer_length;
 int return_value;
 int test_bit;

Exchanging Messages Using UDP and TCP

 195

 sequence++;
 if (sequence > 255) {
 sequence = 0;
 }
 send_buffer[0] = (char)sequence;

The application then places the current value of Port G, bit 6 in
send_buffer’s second byte and toggles the port bit. (The application tog-
gles the bit only so that the value changes with each send for this example
application.)

The BitRdPortI() function reads the bit, and BitWrPortI() writes to
the bit. Chapter 7 has more about these functions.

 test_bit = (BitRdPortI(PGDR, 6));
 send_buffer[1] = (char)test_bit;

 if (test_bit == 0) {
 BitWrPortI(PGDR, &PGDRShadow, 1, 6);
 } else {
 BitWrPortI(PGDR, &PGDRShadow, 0, 6);
 }

Dynamic C’s udp_send() function sends the datagram. The function call
requires a pointer to the local socket (&my_socket), a buffer with data to
send (send_buffer), and the number of bytes in the buffer to send
(sizeof(send_buffer). On success, udp_send() returns the number of
bytes sent. On failure, the program closes and attempts to reopen the socket.
If the call to udp_open() fails, the application ends.

 return_value = udp_send(&my_socket, send_buffer,
 sizeof(send_buffer);

 if (return_value < 0) {
 printf("Error sending datagram. Closing and reopening
 socket.\n");
 sock_close(&my_socket);

 if(!udp_open(&my_socket, LOCAL_PORT,
 resolve(REMOTE_IP), REMOTE_PORT, NULL)) {
 printf("udp_open failed.\n");
 exit(0);
 }
 }
 else {

Chapter 5

196

 printf("Sent: Message number %d \n", sequence);
 }
 return 1;
} // end send_packet()

TINI Code

TINI users can also use UDP to communicate with remote hosts. Java’s
java.net.DatagramSocket class includes methods for sending and
receiving UDP datagrams.

As a debugging aid, in various locations in the code below and the other
TINI applications in this book, System.out.println statements write
status messages to the standard output stream. If you run the TINI applica-
tion from a Telnet session, the status messages display in the Telnet window.

This and some of the other example applications in this book start an end-
less loop that runs the application until its process is killed or a reboot. To
kill a process, type ps at the command prompt to obtain a list of the pro-
cesses currently running and the number assigned to each:

ps
3 processes
1: Java GC (Owner root)
2: init (Owner root)
4: UdpSend.tini (Owner root)

To kill a specific process, type kill followed by the number of the process.

kill 4

The specified process then ends.

Imports and Initial Declares

The application imports java.io classes to support input and output oper-
ations, java.net classes to support networking functions, and the
TINI-specific BitPort class to enable reading and writing to port bits.

import java.io.*;
import java.net.*;
import com.dalsemi.system.BitPort;

For this example, the UdpSend class implements the Runnable interface to
enable the code that sends the datagrams to run in its own thread. Using a

Exchanging Messages Using UDP and TCP

 197

separate thread makes the code a little more complicated but also more use-
ful because the program’s main thread can perform other tasks at the same
time.

The testBit variable is Port 5, bit 2 on the DSTINIm400’s CPU. This bit
controls LED1 on the module.

public class UdpSend implements Runnable {

 private BitPort testBit =
 new BitPort(BitPort.Port5Bit2);
 private byte[] dataToSend;
 private DatagramPacket udpPacket;
 private DatagramSocket udpSocket;
 private int delayTime;
 private int messageCount;
 private Thread datagramSender;
 private volatile boolean sendDatagrams;

Starting the Thread to Send Datagrams

The class’s constructor has three parameters: the IP address and port of the
computer to send datagrams to (destinationInetAddress and desti-
nationPort) and the amount of time to delay between sending datagrams
(delayTime). A SocketException is thrown if the socket can’t be created.

 public UdpSend(InetAddress destinationInetAddress,
 int destinationPort, int delayTime)
 throws SocketException {

The byte array dataToSend holds the data to send to the remote host. For
this application, the datagrams are just two bytes.

 byte[] dataToSend = new byte[2];

The delayTime variable that the datagramSender thread will use is set to
the value of the delayTime parameter.

 this.delayTime = delayTime;

Communications with the remote host use the DatagramSocket object
udpSocket. The socket uses an available local port; the program code
doesn’t have to specify a port.

 udpSocket = new DatagramSocket();

Chapter 5

198

The datagrams sent to the remote host are stored in the DatagramPacket
object udpPacket. The object specifies a byte array that contains the data to
send (dataToSend), the length of the byte array (dataToSend.length),
and the IP address and port number to send the datagrams to (destina-
tionInetAddress, destinationPort).

 udpPacket = new DatagramPacket(dataToSend,
 dataToSend.length, destinationInetAddress,
 destinationPort);

The datagramSender thread manages the sending of the datagrams. Using
a separate thread enables the application to perform other tasks without hav-
ing to wait for the thread’s timer to time out. Setting the thread’s setDae-
mon() property true creates the thread as a Daemon thread. The JVM exits
when there are no user (non-Daemon) threads running. Calling the thread’s
start() method calls UdpSend’s run() method (below).

 datagramSender = new Thread(this);
 datagramSender.setDaemon(true);
 datagramSender.start();
 } // end UdpSend constructor

The main() Method

The main() method sets the values of three variables that may change
depending on the application: the delayTime value in milliseconds and the
values of destinationIPAddress and destinationPort. The get-
ByName method of InetAddress converts the IP address in dotted-quad
format to the InetAddress object required by the DatagramPacket
object.

 public static void main(String[] args)
 throws IOException {

 int delayTime = 1000;

 int destinationPort = 5550;
 String destinationIPAddress = "192.168.111.5";

 InetAddress destinationInetAddress =
 InetAddress.getByName(destinationIPAddress);

Exchanging Messages Using UDP and TCP

 199

A call to the UdpSend constructor creates the myUdpSend object with the
specified destination address, destination port, and delay time.

 UdpSend myUdpSend =
 new UdpSend(destinationInetAddress,
 destinationPort, delayTime);

A while loop keeps the main thread alive. In this example application, the
thread spends most of its time sleeping.

 while(true) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e);
 }
 } // end while(true)
 } // end main

Stopping the Sending of Datagrams

A stop() method enables program code to end the datagramSender
thread and close the socket. Otherwise, the thread ends when no user
threads are running.

 public void stop() {
 sendDatagrams = false;
 datagramSender.interrupt();
 udpSocket.close();
 } // end stop()

Sending Datagrams

The run() method executes when the main() method calls the datagram-
Sender thread’s start() method.

 public void run() {

The sendDatagrams variable is initialized to true and messageCount is
initialized to 255 so it wraps back to zero on the first message sent.

 sendDatagrams = true;
 int messageCount = 255;

Chapter 5

200

A while loop repeatedly creates and sends a datagram, then waits delay-
Time. The loop ends when an exception or the stop() method sets send-
Datagrams false.

 while (sendDatagrams) {
 try {
 createDatagrams();

DatagramSocket’s send() method sends the datagram to the IP address
and port specified in udpSocket.

 udpSocket.send(udpPacket);

After sending a datagram, the program toggles the port bit whose value was
sent in the datagram. BitPort’s readLatch() method returns the last
value written to the specified bit. (The application toggles the bit only so the
value changes with each send for this example application.)

 if (testBit.readLatch() == 0) {
 testBit.set();
 } else {
 testBit.clear();
 }

The thread then sleeps for the specified delay time. Calling the thread’s
interrupt() method causes an InterruptedException, whose catch
block sets sendDatagrams false, ending the thread. An error when attempt-
ing to send a packet causes an IOException, whose catch block also sets
sendDatagrams false, ending the thread.

 Thread.sleep(delayTime);

 } catch (InterruptedException e) {
 System.out.println("InterruptedException: ");
 System.out.println(e);
 sendDatagrams = false;

 } catch (IOException e) {
 System.out.print("IOException: ");
 System.out.println(e);
 sendDatagrams = false;
 }
 } // end while(sendDatagrams)
 } // end run()

Exchanging Messages Using UDP and TCP

 201

Creating the Datagram

The createDatagram() method stores the datagram’s two bytes in the
dataToSend byte array. The first byte is the messageCount variable, which
increments on each send, resetting to zero after sending 255. The second
byte is the value of Port 5, bit 2. The message is stored in the byte array
dataToSend.

 private void createDatagram() {

The message count in the datagram’s first byte increments with each data-
gram, resetting to zero on 255.

 if (messageCount == 255) {
 messageCount = 0;
 } else {
 messageCount = ++messageCount;
 }

 dataToSend[0] = (byte)messageCount;

The datagram’s second byte is the last value written to the testBit port bit.

 dataToSend[1] = (byte)testBit.readLatch();

The setData() method of DatagramPacket stores the byte array in the
DatagramPacket object. The setLength() method trims the datagram to
match the length of the data. The size of dataToSend sets the datagram’s
maximum length.

 udpPacket.setData(dataToSend);
 udpPacket.setLength(dataToSend.length);
 System.out.print("Message number: ");
 System.out.println(messageCount);
 } // end CreateDatagram()

} // end UdpSend

Receiving UDP Datagrams
The other side of UDP communications is receiving datagrams. The follow-
ing applications are complements to the previous examples. A Rabbit and
TINI program each wait to receive a datagram from a remote host, then dis-
play the contents of the datagram.

Chapter 5

202

Rabbit Code

Much of the Rabbit code for receiving datagrams is similar to the code in
the previous Rabbit example.

Initial Defines and Declarations

A TCPCONFIG 1 macro selects a network configuration from the
tcp_config.lib file.

The MAX_UDP_SOCKET_BUFFERS macro specifies the number of socket
buffers to allocate for UDP sockets. This application requires one socket
buffer.

LOCAL_PORT specifies the port that the Rabbit will receive datagrams on.
Generally, any port over 1023 is acceptable. The remote host will need to
know this value when sending datagrams.

REMOTE_IP is the IP address of the host to receive datagrams from. Set this
value to the IP address of the sending host. To accept datagrams from any
host, set REMOTE_IP to zero. To accept only broadcast packets, set
REMOTE_IP to 255.255.255.255.

#define TCPCONFIG 1
#define MAX_UDP_SOCKET_BUFFERS 1
#define LOCAL_PORT 5550
#define REMOTE_IP "192.168.111.5"

The #memmap directive stores all C functions not declared as root in the
extended memory area, rather than limiting storage to the 64 kilobytes of
root memory.

The dcrtcp.lib file is the Dynamic C library that supports TCP/IP commu-
nications.

#memmap xmem
#use "dcrtcp.lib"

The datagram_socket variable is a Dynamic C udpSocket structure.

udp_Socket datagram_socket;

Exchanging Messages Using UDP and TCP

 203

Receiving a Datagram

The receive_packet() function checks for a received datagram and if
there is one, writes its contents to Dynamic C’s STDIO window. The
received_data array holds the contents of the received datagram.

int receive_packet()
{
 static char received_data[128];

The GLOBAL_INIT section executes only once. The memset() function ini-
tializes the block of memory that will hold a received datagram.

 #GLOBAL_INIT
 {
 memset(received_data, 0, sizeof(received_data));
 }

The udp_recv() function receives a datagram from the host specified in
datagram_socket. The datagram is stored in received_data. If the
return value is -1, there is no datagram and the function returns.

 if (-1 == udp_recv(&datagram_socket, received_data,
 sizeof(received_data))) {
 return 0;
 }

If there is a datagram, a printf() statement writes its contents to the
STDIO window.

printf("Received bytes: %d, %d\n",received_data[0],
 received_data[1]);
return 1;
}

The main() Function

As in the previous Rabbit example, the main() function calls sock_init()
to initialize the TCP/IP stack. If the return value isn’t zero, the network isn’t
available.

main()
{
 int return_value;
 return_value = sock_init();
 if (return_value == 0) {
 printf("Nework support is initialized.\n");

Chapter 5

204

 }
 else {
 printf("The network is not available.\n");
 exit(0);
 }

 printf("Opening UDP socket\n");

A call to udp_open() opens the specified UDP socket, enabling communi-
cations. The call requires a pointer to the local socket (&datagram_socket)
and a local port number (LOCAL_PORT). The socket connects to the remote
IP address in resolve(REMOTE_IP). The fourth parameter is zero to indi-
cate that the socket will accept datagrams from any port on the remote host.
To limit the datagrams to a specific source port at the remote host, this value
can instead specify a port number. The final parameter is either a function
to call on receiving data or NULL to place received data in the socket’s receive
buffer. The resolve function converts an IP address string in dotted-quad
format to the longword required by udp_open.

 if(!udp_open(&datagram_socket, LOCAL_PORT,
 resolve(REMOTE_IP), 0, NULL)) {
 printf("udp_open failed!\n");
 exit(0);
 }

An endless while loop calls the tcp_tick() function to process network
packets and the receive_packet() function to check for received data-
grams.

 while(1) {
 tcp_tick(NULL);
 receive_packet();
 }

} // end main()

TINI Code

The java.net.DatagramSocket class includes methods for receiving
UDP datagrams as well as sending them. The TINI’s TINIDatagram-
Socket class is a faster, memory-conserving replacement for Datagram-
Socket. In the DatagramSocket class in Sun’s JDK, the receive()
method allocates a new InetAddress object on every receive, while TINI-

Exchanging Messages Using UDP and TCP

 205

DatagramSocket overwrites the address instead of creating a new object.
This example uses TINIDatagramSocket.

Initial Imports and Declarations

In addition to the TINIDatagramSocket class, the application imports
java.io classes to support input and output operations, and java.net
classes to support networking functions.

import java.io.*;
import java.net.*;
import com.dalsemi.tininet.TINIDatagramSocket

The UdpReceive class implements the Runnable interface so the code that
waits for and receives datagrams can run in its own thread. The program’s
main thread can then perform other tasks at the same time.

public class UdpReceive implements Runnable {

 private TINIDatagramSocket udpSocket;
 private DatagramPacket udpPacket;
 private byte[] dataReceived;
 private Thread datagramReceiver;
 private volatile boolean receiveDatagrams;

Starting a Thread to Receive Datagrams

In the class’s constructor, the localPort parameter specifies the local port
to receive datagrams on. A SocketException is thrown if the socket can’t
be created.

The byte array dataReceived holds the data received from a remote host.
Communications with the remote host use the TINIDatagramSocket
object udpSocket. The socket uses a specific local port. The sending host
must send the datagrams to this port.

The datagrams received from the remote host are stored in the Datagram-
Packet object udpPacket. The object specifies a byte array to contain the
received data (dataReceived) and the length of the byte array (dataRe-
ceived.length). For this example, the received datagrams contain just two
bytes.

 public UdpReceive(int localPort) throws SocketException

Chapter 5

206

 {
 byte[] dataReceived = new byte[2];
 udpSocket = new TINIDatagramSocket(localPort);

 udpPacket = new DatagramPacket(dataReceived,
 dataReceived.length);

The datagramReceiver thread manages the receiving of the datagrams.
Using a separate thread enables the application to perform other tasks with-
out having to wait for a datagram to arrive. Setting the thread’s setDae-
mon() property true creates the thread as a Daemon thread, which ends
when no user threads are running. Calling the thread’s start() method
calls UdpReceive’s run() method (below).

 datagramReceiver = new Thread(this);
 datagramReceiver.setDaemon(true);
 datagramReceiver.start();
 } // end UdpReceive constructor

The main() Method

The main() method sets the value of localPort, and a call to the UdpRe-
ceive constructor creates the myUdpReceive object with the specified port.

 public static void main(String[] args)
 throws IOException {

 int localPort = 5550;
 UdpReceive myUdpReceive = new
 UdpReceive(localPort);

A while loop keeps the DatagramReceiver thread alive. The loop spends
its time sleeping. A real-world application could perform other functions
here.

 while(true) {
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e.getMessage());
 }
 } // end while(true)
 } // end main

Exchanging Messages Using UDP and TCP

 207

Stopping the Receiving of Datagrams

A stop() method enables program code to end the datagramReceiver
thread and close the socket. Otherwise, the thread ends when no user
threads are running.

 public void stop() {
 receiveDatagrams = false;
 datagramReceiver.interrupt();
 udpSocket.close();
 } // end stop

Receiving Datagrams

The run() method executes when the main() method calls the datagram-
Receiver thread’s start() method.

 public void run() {

 InetAddress senderAddress;
 receiveDatagrams = true;

A while() loop waits for datagrams until the stop() method sets
receiveDatagrams false or an error occurs while receiving a datagram.
The receive() method of TINIDatagramSocket returns on receiving a
datagram. The getAddress() method returns the IP address of the sender.
The getData() method returns a byte array with the datagram’s contents.

A series of System.out.println statements writes the message and the
sender’s IP address to the console.

 while (receiveDatagrams) {
 try {

 System.out.println("Waiting for datagram ...");
 udpSocket.receive(udpPacket);

 senderAddress = udpPacket.getAddress();
 dataReceived= udpPacket.getData();

 System.out.println("Received message: ");
 System.out.println(dataReceived[0]);
 System.out.println(dataReceived[1]);
 System.out.println();
 System.out.print("from: ");
 System.out.println

Chapter 5

208

 (senderAddress.getHostAddress());
 } catch (IOException e) {

If an error occurs while trying to receive a packet, receiveDatagrams is set
to false, which ends the while(receiveDatagrams) loop and stops the
thread.

 System.out.print("IOException: ");
 System.out.println(e.getMessage());
 receiveDatagrams = false;
 }
 } // end while(receiveDatagrams)
 } // end run()

} // end UdpReceive

Exchanging Messages using TCP
With UDP, you can send a message at any time, to any computer, without
first finding out if the remote computer is available to receive the message.
With TCP, before exchanging data, one computer must request a connec-
tion to the other computer. The connection is between two sockets, with
each socket defined by an IP address and port number.

The remote computer must respond to the request and the requesting com-
puter must acknowledge receiving the response. When these events have
occurred, a connection has been established and the computers can
exchange other data. In a similar way, to close a connection, each computer
sends a request to close and acknowledges the request to close received from
the remote computer.

In the examples below, the embedded system’s program waits for and
responds to a request for a connection. When the connection has been
established, the embedded system waits to receive data, reads a byte, incre-
ments it, sends it back to the remote host, and closes the connection. This
code can server as a model for applications where a computer sends a request
or command to an embedded system, which then returns a reply.

Exchanging Messages Using UDP and TCP

 209

Rabbit Code

A Dynamic C application performs the TCP communications in the Rabbit
module.

Initial Defines and Declarations

As in the Rabbit UDP example, the code begins by specifying a network
configuration macro with TCPCONFIG and a local port for network commu-
nications. In this application, the Rabbit module accepts connection
requests from any host and port, so there is no need to specify a remote IP
address or port. The dcrtcp.lib file is the Dynamic C library that supports
TCP/IP communications.

#define TCPCONFIG 1
#define LOCAL_PORT 5551
#memmap xmem
#use "dcrtcp.lib"

char server_buffer[255];
int bytes_read;
int return_value;

The server_socket variable is a Dynamic C tcp_Socket structure that
specifies the socket to use for TCP communications.

tcp_Socket server_socket;

The function prototype for service_request() enables the main() func-
tion to call service_request() before it has been compiled.

void service_request();

The main() Function

The main() function begins by calling sock_init() to enable using
TCP/IP functions. An endless while loop then alternates between execut-
ing the statements in a costatement that handles TCP communications and
performing whatever other tasks the device is responsible for. Using a cos-
tatement for the TCP communications enables the device to do other things
while waiting for a connection request or data from a remote host.

main() {
 int data_available;

Chapter 5

210

 return_value = sock_init();
 if (return_value == 0) {
 while(1) {

In the costatement, Dynamic C’s tcp_listen() function begins waiting
for a connection request from a remote host to the specified local port. The
call to tcp_listen() requires several parameters:

A pointer to a TCP socket (&server-socket).

The port number to listen on (LOCAL_PORT).

The remote computer’s IP address (0 to accept requests from any IP
address).

The port on the remote computer to communicate with (0 to communi-
cate with any port).

Either a function to call when data is received or NULL to place received
data in the socket’s receive buffer (NULL).

Reserved parameter (0).

A waitfor() statement calls the application’s
connection_established() function. If a connection has been estab-
lished with a remote host, the function returns 1 and program execution
continues with the statements that follow. If there is no connection, the
function returns 0 and program execution jumps to the costatement’s clos-
ing brace. This gives other code in the while loop a chance to execute.
When the code eventually loops back to the costatement, execution resumes
at the waitfor() statement, which again calls the
connection_established() function and continues in or exits the cos-
tatement as appropriate.

After a connection is established, a second waitfor() statement calls the
application’s check_for_received_data() function. The function
returns 1 if there is a byte waiting to be read from the remote computer. If a
byte is available or if the statement has been waiting for the number of sec-
onds in DelaySec(), program execution continues with the statements that
follow. Otherwise, program execution jumps to the costatement’s closing
brace and resumes at the waitfor() statement the next time through. The

Exchanging Messages Using UDP and TCP

 211

DelaySec() function ensures that the waitfor statement eventually times
out in case a remote host fails to send a data byte.

If a byte is available, a call to the application’s service_request() func-
tion reads the byte and returns a response. This completes the communica-
tion, so the sock_close() function closes the connection and the
costatement ends.

 costate {
 tcp_listen(&server_socket,LOCAL_PORT,0,0,NULL,0);
 printf("Waiting for connection...\n");

 waitfor (connection_established());
 printf("Connection established. \n");

 waitfor (check_for_received_data() ||
 DelaySec(20));

 data_available = check_for_received_data();
 if (data_available > 0) {
 service_request();
 }
 else {
 printf("Timeout: the remote host provided no
 data. \n");
 }
 sock_close(&server_socket);
 printf("The connection is closed. \n");
 } // end costate

If the call to sock_init() fails, the application ends without entering the
while(1) loop.

 // Place code to accomplish additional tasks here.
 } // end while(1)
 } // if (return_value == 0)

 else {
 printf("The network is not available" \n”);
 exit(0);
 }
} // end main()

Chapter 5

212

Establishing a Connection

The connection_established function called in the costatement checks
for a connection to a remote host. Dynamic C’s sock_established()
function returns 1 if a connection has been established to the specified
socket and 0 if there is no connection. This code is in a separate function to
enable calling it in a waitfor() statement.

It’s possible that a connection may be established, data received, and the
connection closed before the code has a chance to call
sock_established(). To enable reading any data received if this occurs,
the function also calls Dynamic C’s sock_bytesready() function, which
returns the number of bytes read or -1 if there are no bytes.

If sock_established returns 1 or if sock_bytesready() returns a value
other than -1, connection_established() returns 0, indicating that
either the connection is established or that the connection is now closed but
there is at least one byte ready to be read. Otherwise the function returns 1.

Dynamic C’s tcp_tick() function processes network packets and must be
called periodically.

int connection_established() {
 tcp_tick(NULL);
 if (!sock_established(&server_socket) &&
 sock_bytesready(&server_socket) == -1) {
 return 0;
 }
 else {
 return 1;
 }
} // end connection_established()

Checking for Received Data

The check_for_received_data() function called in the main() func-
tion’s costatement finds out if there is data available to be read from an exist-
ing connection. The sock_bytesready() function returns the number of
bytes waiting to be read or -1 if no bytes are available. The
check_for_received_data() function returns 1 if a byte is available and
0 if there are no bytes. A call to tcp_tick() processes network packets.

Exchanging Messages Using UDP and TCP

 213

int check_for_received_data() {
 tcp_tick(&server_socket);
 if (sock_bytesready(&server_socket) == -1) {
 return 0;
 }
 else {
 return 1;
 }
} // end check_for_received_data

Reading and Responding to Received Data

The service_request() function reads a received byte and returns a
response to the remote host. Dynamic C’s sock_fastread() function
reads bytes from a socket into a buffer and returns the number of bytes read
or -1 on error. The function requires a pointer to a socket to read from
(&server_socket), the byte array to place the data in (server_buffer),
and the maximum number of bytes to read (sizeof(server_buffer)).

void service_request() {
 bytes_read = sock_fastread(&server_socket,
 server_buffer, sizeof(server_buffer));

If a byte was received, the code increments it, resetting to 0 on receiving a
byte of 255.

 if (bytes_read > 0) {
 printf("Byte received = %d \n", server_buffer[0]);
 if (server_buffer[0] == 255) {
 server_buffer[0] = 0;
 }
 else {
 server_buffer[0]=server_buffer[0] + 1;
 }

Dynamic C’s sock_write() function writes the incremented byte to the
socket, which causes the byte to be sent on the network to the remote host.

 return_value = sock_write(&server_socket,
 server_buffer, 1);
 if (return_value != -1) {
 printf("Byte sent = %d \n", server_buffer[0]);
 }
 else {
 printf("Error writing to socket. \n");
 }

Chapter 5

214

 } // end if (bytes_read > 0)
 else {
 printf("Error reading from socket. \n");
 }
} // end service_request()

TINI Code

The TINI can also function as a TCP server that receives and responds to
requests to connect and exchange data. As in the UdpSend application in
this chapter, the application runs in an endless loop. A kill command in a
Telnet session ends the application.

Imports and Initial Declares

The application imports java.io classes to support input and output oper-
ations, and java.net classes to support networking functions.

import java.io.*;
import java.net.*;

The TcpServer class implements the Runnable interface so the code that
does the network communications can execute in its own thread. This leaves
the main thread free to do other things.

public class TcpServer implements Runnable {

 private ServerSocket server;
 private int readTimeout;
 private Thread serverThread;
 private volatile boolean runServer;

The main() Method

The class’s main() method sets localPort to the port number clients will
connect to and sets readTimeout to the number of milliseconds the server
will wait to receive data after a remote host connects. The timeout is
expressed in milliseconds. The TcpServer object myTcpServer uses the
localPort and readTimeout values.

 public static void main(String[] args)
 throws IOException {

 int localPort = 5551;
 int readTimeout = 5000;

Exchanging Messages Using UDP and TCP

 215

 TcpServer myTcpServer = new TcpServer
 (localPort, readTimeout);

A while loop executes while waiting for connection requests. In this exam-
ple, the thread spends its time sleeping.

 while (true){
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e.getMessage());
 }
 } // end while(true)
 } // end main()

Initializing the Server

The constructor for the TcpServer class creates a thread to handle connec-
tion requests. The constructor’s two parameters are the localPort and
readTimeout values set in main().

 public TcpServer(int localPort, int readTimeout)
 throws IOException {

A ServerSocket object (server) listens for connection requests on
localPort, and on receiving a request, creates a socket object.

 server = new ServerSocket(localPort);

 System.out.print("The server is listening on port ");
 System.out.println(localPort);

The readTimeout variable used in the run() method is assigned the value
of the readTimeout parameter passed to the constructor.

 this.readTimeout = readTimeout;

A separate thread (serverThread) handles connection requests. The
thread’s setDaemon() method is set to true so the server thread ends when
no user threads are running. Calling the start() method calls the thread’s
run() routine.

 serverThread = new Thread(this);
 serverThread.setDaemon(true);
 serverThread.start();

Chapter 5

216

 } // end TcpServer constructor

Waiting for Connection Requests

Calling serverThread’s start() method causes the thread’s run()
method to execute. The run() method accepts connections and calls a
method to handle each connection.

A while loop executes until the runServer variable is false, which occurs
on an exception or if the class’s stop() method sets runServer false.

 public void run() {
 runServer = true;

 while (runServer) {
 try {

On accepting a connection request, the server’s accept() method creates a
socket for exchanging data with the connected host. The class’s handleCon-
nection() method manages communications with the socket.

 Socket socket = server.accept();

 try {
 handleConnection(socket);
 } catch (IOException e) {
 System.out.print("An error occurred while
 working with a socket: ");
 System.out.println(e.getMessage());
 } finally {
 try {

When handleConnection() returns or if there is an exception, the routine
closes the socket to release any resources used by it. If there is an exception
when attempting to close the socket, no action needs to be taken. If an
exception occurs while attempting to accept a connection, runServer is set
to false to stop the thread.

 socket.close();
 } catch (IOException e) {
 }
 }
 } catch (IOException e) {

Exchanging Messages Using UDP and TCP

 217

 runServer = false;
 }
 }
 } // end run()

Stopping the Server

The stop() method provides a way to stop the server under program con-
trol by setting runServer false and closing the socket.

 public void stop() {
 runServer = false;

 try {
 server.close();
 } catch (IOException e) {
 }
 } // end stop()

Handling a Connection

The handleConnection() method handles a single connection with a
remote host.

 private void handleConnection(Socket socket)
 throws IOException {
 System.out.print("Connected to ");
 System.out.println(socket);

The socket timeout is set to the readTimeout value set in the main()
method.

 socket.setSoTimeout(readTimeout);

An InputStream object reads data from the remote host, and an Output-
Stream object writes to the remote host.

 InputStream in = socket.getInputStream();
 OutputStream out = socket.getOutputStream();

The InputStream object’s read() method attempts to read a byte from the
remote host.

If the byte is -1, the input stream is closed and no more communications
can take place. Otherwise, the code increments the byte and writes the
incremented value to the OutputStream object. To complete the commu-

Chapter 5

218

nication, a call to the OutputStream object’s flush() method causes the
data to transmit immediately, and the output stream is closed.

 try {
 int b = in.read();
 if (b != -1) {
 out.write(b + 1);
 System.out.print("Writing ");
 System.out.print(b + 1);
 System.out.print(" to remote host.");
 out.flush();
 out.close();
 }
 } catch (InterruptedIOException ex) {

An InterruptedIOException indicates that the read attempt has timed
out.

 System.out.print("The remote host sent no data
 within ");
 System.out.print(readTimeout / 1000);
 System.out.println(" seconds.");
 }
 } // end handleConnection()
} // end TcpServer

UDP and TCP from PC Applications
A PC application can communicate with any embedded system that uses
UDP or TCP, including the programs above. You can write the application
using any of a number of programming languages, including Visual Basic
.NET and Visual C#.

About Network Programming on a PC

Windows includes plenty of support that greatly simplifies network pro-
gramming and troubleshooting. Windows includes drivers that support
Ethernet communications and application programming interface (API)
functions that enable applications to send and receive information over a
network using TCP/IP and related protocols.

For example Visual Basic .NET applications that communicate with the
Rabbit and TINI programs in this chapter, see my Embedded Ethernet page
at www.Lvr.com.

Exchanging Messages Using UDP and TCP

 219

A custom application isn’t the only way for a PC application to communi-
cate over a network. Another option is to use a browser like Microsoft’s
Internet Explorer to request Web pages from computers in the network.
Chapter 6 and Chapter 7 have more about how to serve Web pages from an
embedded system.

To communicate over a network, a PC must have an Ethernet interface and
a network connection to the embedded system the PC wants to communi-
cate with, as described in Chapter 2.

If you access the Internet from your computer, you already have TCP/IP
support installed. If you need to install TCP/IP, in Windows’ Control Panel,
click Network and Connections and right-click a connection (Figure 5-1).

Figure 5-1: In Windows’ Control Panel, Network and Connections enables
installing TCP/IP support for a connection.

Chapter 5

220

If the General tab doesn’t show Internet Protocol (TCP/IP), click the
Install button to install it.

Using Visual Basic .NET

Network programming in Visual Basic .NET uses the System.Net.Sock-
ets namespace, which includes several classes for use in network communi-
cations.

For UDP communications, at first glance, the UdpClient class appears to
provide a convenient interface. UdpClient contains selected members of
the Socket class and adds support for multicasting.

But UdpClient is limited in a way that makes it impractical for much
beyond basic testing. UdpClient’s Receive method is synchronous, which
means it blocks the program thread that calls Receive until a datagram
arrives. If an application calls the Receive method and no datagram arrives,
the thread that called Receive can do nothing but wait. You can place the
Receive call in its own thread, leaving the main program thread free to per-
form other tasks while waiting, but there is no way to gracefully close a
blocked thread if the data never arrives.

An alternative to UdpClient is the Socket class. By declaring a socket with
ProtocolType set to Udp, you have access to all of the members of the
Socket class, including the ability to use the BeginReceive and EndRe-
ceive methods in asynchronous data transfers. This means that the applica-
tion doesn’t have to wait for data to arrive. Instead, the program can call
BeginReceive and continue to perform other operations. When data
arrives, a callback routine runs and calls EndReceive to retrieve the data.
And the program can close at any time.

For TCP communications, the TcpClient class is a little more flexible than
UdpClient. The SendTimeout and ReceiveTimeout properties enable
you to specify how long to wait for a response from a remote host before giv-
ing up. If you expect the remote host to be able to respond quickly most of
the time, TcpClient may be suitable. Or as with UDP, you can use the
Socket class for TCP communications.

Exchanging Messages Using UDP and TCP

 221

In Depth:
Inside UDP and TCP

This section explains how UDP and TCP help get data to its destination.
Knowing more about how the protocols work can help in selecting which
protocol to use and in using the protocol effectively. Also included is a
review of options for obtaining code to support UDP, TCP, and IP in
embedded systems.

The Ethernet standard specifies a way to transfer information between com-
puters in a local network. But Ethernet alone doesn’t provide some things
that many data transfers require. These include naming the port, or process,
that is sending the data, naming the port that will use the data at the desti-
nation, handshaking to inform the source whether the destination received
the data, flow control to help data get to its destination quickly and reliably,
and sequence numbering to ensure that the destination knows the correct
order for messages that arrive in multiple segments. The transmission con-
trol protocol (TCP) can provide all of these. The user datagram protocol
(UDP) is a simpler alternative for data transfers that only require specifying
of ports or error checking. Table 5-1 compares UDP and TCP.

Figure 5-2 shows the location of UDP and TCP in a network protocol stack.
UDP and TCP communicate with the IP layer and the application layer.
Some applications don’t require UDP or TCP, and may communicate
directly with the IP layer or the Ethernet driver.

About Sockets and Ports
Every UDP and TCP communication is between two endpoints, or sockets.
Each socket has a port number and an IP address.

In an Ethernet frame, the Source Address and Destination Address fields
identify the sending and receiving Ethernet interfaces. A UDP or TCP com-
munication specifies the destination more precisely by naming a port at the
destination. Each TCP communication also names a source port that identi-

Chapter 5

222

fies the provider of the data being sent. Each UDP communication has a
source port, but UDP datagrams aren’t required to include the source-port
number in the header.

A socket’s port isn’t a hardware port like the ports that a CPU accesses using
inp and out instructions. Instead, the port number identifies the process, or
task, that is providing the data being sent or using the data being received.

You can think of a socket as one end of a logical connection between com-
puters. Unlike a physical connection, where dedicated wires and electronic
components form a link, a logical connection exists only in software. Data

Figure 5-2: In the network protocol stack, the TCP and UDP layers
communicate with the IP layer and the application layer. Not all communications
require TCP or UDP.

Exchanging Messages Using UDP and TCP

 223

that travels between sockets that have a logical connection doesn’t have to
take the same physical path every time.

The Internet Assigned Numbers Authority (IANA) (www.iana.org) main-
tains a Port Numbers list that assigns port numbers to standard processes.

There are three groups of port numbers. Values from 1 to 1023 are called
well-known ports, or contact ports, and are for use by system processes or
programs executed by privileged users. Table 5-2 shows examples of a few
common processes and their well-known ports.

Assigning a well-known port to a process makes it easy for a computer to
know what port to use when it wants to communicate with a remote com-
puter. For example, a computer requesting a Web page normally sends the
request to port 80. The receiving computer assumes that messages arriving
at port 80 will use the hypertext transfer protocol (HTTP) for requesting
Web pages.

Ports from 1024 to 49151 are Registered ports. An entity can request a port
number from the IANA for a particular use, and the IANA maintains a list
of ports it has registered. Some of the Registered ports are assigned to com-
panies. For example, ports 5190 through 5193 are assigned to America
Online. Other assignments are to processes, such as Building Automation
and Control Networks (bacnet) on port 47808. Networks that don’t use the

Table 5-1: UDP and TCP are two popular protocols for exchanging data over
local networks and the Internet.
Protocol UDP TCP

Name of unit transmitted datagram segment

Source port specified to remote host? optional required

Must establish a connection before transferring data? no yes

Supports error checking? optional required

Supports flow control? no yes

Supports handshaking? no yes

Supports sequence numbering? no yes

Supports broadcasting and multicasting? yes no

Chapter 5

224

ports in this group for their registered purposes are free to use these ports for
any purpose.

Ports from 49152 through 65535 are dynamic and/or private ports. The
IANA doesn’t assign processes to these. A network may use these ports for
any purpose.

In a communication between two hosts, the values of the source and desti-
nation ports don’t have to be the same and usually aren’t. The source typi-
cally selects any available local port and requests to communicate with a
well-known port on the destination computer. On receiving the request, the
destination computer may send a reply that suggests switching the commu-
nication from the well-known port to a private port at the destination. This
keeps the well-known port available to receive other new communication
requests.

For communications that don’t use a well-known port, such as the examples
in this chapter, the computers must agree ahead of time on what ports to
transmit and receive on.

Table 5-2: Examples of standard protocols and their assigned port numbers.
Protocol Port Number

Domain Name Service 17

FTP data 20

FTP control 21

Telnet 23

SMTP 25

Network Time Protocol 53

Gopher 70

Finger 79

HTTP 80

POP2 109

POP3 110

Quote of the Day 123

Exchanging Messages Using UDP and TCP

 225

UDP: Just the Basics
UDP is a basic protocol that adds only port addressing and optional error
detecting to the message being sent. There is no protocol for handshaking to
acknowledge received data or exchange other flow-control information.
UDP is a connectionless protocol, which means that a computer can send a
message using UDP without first establishing that the remote computer is
on the network or that the specified destination port is available to commu-
nicate. For these reasons, UDP is also called an unreliable protocol, meaning
that using UDP alone, the sender doesn’t know when or if the destination
received a message.

The document that defines UDP is RFC0768: User Datagram Protocol. It’s
also approved standard STD0006.

A computer that wants to send a message using UDP places the message in a
UDP datagram, which consists of a UDP header followed by the data pay-
load containing the message. As Chapter 1 explained, the sending computer
places the UDP datagram in the data area of an IP datagram. In an Ethernet
network, the IP datagram travels in the data field of an Ethernet frame. On
receiving the Ethernet frame, the destination computer’s network stack
passes the data portion of the UDP datagram to the port, or process, speci-
fied in the datagram’s header.

In most respects, UDP is less capable than TCP, so UDP is simpler to imple-
ment and thus more suitable for certain applications. If needed, a communi-
cation can define its own handshaking protocol for use with UDP. For
example, after receiving a message, a receiving interface can send a reply
containing an acknowledge code or other requested information. If the
sender receives no reply in a reasonable amount of time, it can try again. But
if an application needs anything more than the most basic handshaking or
flow control, you should consider using TCP rather than re-inventing it for
use with UDP.

UDP has one capability not available to TCP, and that is the ability to send
a message to multiple destinations at once, including broadcasting to all IP
addresses in a local network and multicasting to a defined group of IP

Chapter 5

226

addresses. Broadcasting and multicasting aren’t practical with TCP because
the source would need to handshake with all of the destinations.

The UDP Header and Data

The UDP header contains four fields, followed by the data being transmit-
ted. Table 5-3 shows the fields.

Source Port Number. The source port number identifies the port, or pro-
cess, on the computer that is sending the message. The source port number
is optional. If the receiving process doesn’t need to know what process sent
the datagram, this field can be zero. The field is two bytes

Destination Port Number. The destination port number identifies the
port, or process, that should receive the message at the destination. The field
is two bytes.

UDP Datagram Length. The UDP datagram length is the length of the
entire datagram in bytes, including the header, with a maximum of 65535
bytes. The field is two bytes.

UDP Checksum. The UDP checksum is an optional error-checking value
calculated on the contents of UDP datagram and a pseudo header. The
pseudo header contains the source and destination IP addresses and the pro-
tocol value from the header of the IP datagram that will contain the UDP
datagram when it transmits on the network (Table 5-4). The pseudo header
doesn’t transmit on the network. Including the information in the pseudo
header in the checksum protects the destination from mistakenly accepting
datagrams that have been misrouted. The checksum value is calculated in
the same way as the IP header’s checksum, described in Chapter 4. The field
is two bytes.

A message that travels only within a local Ethernet network doesn’t need the
UDP checksum because the Ethernet frame’s checksum provides error
checking. For a message that travels through different, possibly unknown,
networks, the checksum enables the destination to detect corrupted data.

Data. A UDP datagram can be up to 65,535 bytes, and the header is eight
bytes, so a datagram can carry up to 65,527 bytes of data. In practice, the

Exchanging Messages Using UDP and TCP

 227

source computer usually limits datagrams to a shorter length. One reason to
use shorter datagrams is that a very large datagram might not fit in the desti-
nation’s receive buffer. Or the application receiving the data may expect a
message of a specific size.

Shorter datagrams may also be more efficient. When a large datagram travels
through networks with different capabilities, the Internet Protocol may frag-
ment the datagram, requiring the destination to reassemble the fragments.
All of the data will still probably get to its destination, but generally it’s more
efficient to divide the data at the source and reassemble it at the destination,
rather than relying on IP to do the work en route.

The IP standard requires hosts to accept datagrams of up to 576 bytes. An
IP header with no options is 20 bytes, and the UDP header is 8 bytes. So a
UDP datagram with up to 548 data bytes and no IP options should be able
to reach its destination without fragmenting.

Supporting UDP in Embedded Systems

Supporting UDP in an embedded system requires the ability to add a header
to data to transmit and remove the header from received data, plus support
for IP.

To send a datagram using UDP, a computer in an Ethernet network must do
the following:

• Place the destination port number and datagram length in the appropri-
ate locations in the UDP header. The source port number and checksum
in the header are optional. Computing the checksum requires knowing
the IP addresses of the source and destination.

Table 5-3: A UDP header has four fields.
Field Number of Bits Description

Source Port Number 16 The port, or process, that is sending the datagram.

Destination Port Number 16 The port, or process, the datagram is directed to.

UDP Datagram Length 16 The datagram length in bytes.

UDP Checksum 16 Checksum value or zero.

Chapter 5

228

• Append the data to send to the header.

• Place the UDP datagram in the data portion of an IP datagram. The IP
datagram requires source and destination IP addresses and a checksum
computed on the header.

• Pass the IP datagram to the Ethernet controller’s driver for sending on
the network.

To receive a datagram using UDP, a computer in an Ethernet network must
do the following:

• Receive an IP datagram from the Ethernet controller’s driver.

• Strip the IP header from the datagram. Calculate the IP checksum and
compare the result with the received value.

• If the checksums match, strip the header from the UDP datagram. If
using the UDP checksum, calculate its value and compare it to the
received checksum.

• Use the destination port number to decide where to pass the received
data.

As the examples at the beginning of the chapter showed, if you’re using a
module with UDP support, the details of creating the datagrams, extracting
data from a received datagram, and dealing with the checksums are handled
for you. The application code just needs to provide the IP addresses, port
numbers, and data to send and call a function to send the datagram, or wait
to receive data in a datagram addressed to a specific port.

Table 5-4: The checksum of a UDP datagram includes the values in a pseudo
header containing these five values.
Field Size (bytes) Source

Source Address 4 IP header

Destination Address 4 IP header

Zero 1 (none)

Protocol 1 IP header

UDP Length 2 Length in bytes of the UDP datagram including the
UDP header but excluding the pseudo header

Exchanging Messages Using UDP and TCP

 229

TCP: Adding Handshaking and Flow Control
UDP provides the basics for transferring data between processes on different
computers. But using UDP alone, the source doesn’t know whether or not a
destination received the data sent. TCP uses a system of sequence and
acknowledgment numbers that enable the destination to acknowledge
receiving specific data bytes. Using sequence numbers, a destination can
place received messages in the order they were sent, even if they were
received out of order. Sequence numbers also enable a destination to detect
duplicate received data. For more efficient transfers of large amounts of data,
TCP specifies a way for the source to match the amount of data sent with
the ability of the destination to accept new data.

The document that defines TCP is RFC0793: Transmission Control Protocol.
It’s also an approved standard with the designation STD0007. Several addi-
tional RFCs contain proposed standards that enhance and improve the orig-
inal standard.

TCP is a called a connection-oriented protocol because processes can’t
exchange data until they have exchanged communications to establish a
connection with each other. TCP is called a reliable protocol because the
handshaking, checksum, and sequence and acknowledge numbers enable
the source to verify that data has arrived at its destination without error.

A TCP segment consists of a header optionally followed by a data payload.
(A header might transmit without a data payload to send status or control
information.) The term segment suggests that a single TCP segment is only a
portion of a complete TCP data transfer, and in fact, every successful data
transfer uses at least two segments. The source sends one or more segments
containing data, and the destination sends one or more segments to
acknowledge receiving the data. A single acknowledgment can acknowledge
multiple segments. In contrast, each UDP datagram is an independent unit
that requires no additional communication.

Like UDP, TCP uses port numbers to identify processes at the source and
destination.

Chapter 5

230

Before two processes can send and receive data using TCP, their computers
must establish a connection by performing a 3-way handshake. On com-
pleting the handshake, each computer has acknowledged that the port spec-
ified in the handshake is available to receive communications from the
specified port on the other computer. Either computer may then use the
connection to send TCP segments to the other computer.

On receiving a data over an established connection, the destination responds
by returning information about whether the data arrived without error,
whether it’s OK to send more data, and if so, the quantity of new data the
destination is able to receive.

To close a connection, each computer sends a request to close the connec-
tion and waits for an acknowledgment of the request.

The TCP Header

The header of a TCP segment has ten required fields and one optional field.
The header is at least 20 bytes. Data following the header is optional. Table
5-5 shows the fields.

Source Port Number. The source port number identifies the port, or pro-
cess, on the computer that is sending the message. A TCP segment must
include a source port number so the destination knows where to send the
acknowledgment. This field is two bytes.

Destination Port Number. The destination port number identifies the
port, or process, that should receive the message at the destination. This
field is two bytes.

Sequence Number. The sequence number, also called the segment sequence
number, identifies the segment. The sequence number enables the destina-
tion to acknowledge receiving the data in a specific segment. When a source
sends a message that requires multiple segments, the sequence numbers
enable the destination to place the segments in order even if they arrive out
of order.

In the first segments sent when establishing a connection, each computer
provides an initial sequence number. The TCP standard recommends select-

Exchanging Messages Using UDP and TCP

 231

ing this number by using the value of a counter that increments every four
microseconds. Using a counter helps to prevent duplicate numbers if a con-
nection closes, then reopens.

For segments that include data, the sequence number is also the number of
the first data byte in the segment, with the following data bytes numbered in
sequence. If the source sends another segment using the same connection,
that segment’s sequence number equals the previous segment’s sequence
number plus the number of data bytes in the previous segment. For exam-
ple, assume that a source sends three segments, each with 100 data bytes,
and the first segment’s sequence number is 1000. The second segment’s
sequence number is 1100 (1000 + 100) and the third segment’s sequence
number is 1200 (1100 + 100).

If a sequence number reaches the maximum value of 232-1, it wraps back to
zero. This field is four bytes.

Table 5-5: A TCP header has 10 required fields and one optional field.
Field Number of Bits Description

Source Port Number 16 The port, or process, that is sending the datagram.

Destination Port Number 16 The port, or process, the datagram is directed to.

Sequence Number 32 Segment identifier.

Acknowledgment Num-
ber

32 Identifier of the last received byte.

Header Length 4 Length of TCP header in units of 32 bits.

Reserved 6 Zero.

Control Bits 6 URG: the segment is urgent
ACK: the acknowledgment number is valid
PSH: push the data to application right away
RST: reset the connection
SYN: synchronization is in progress
FIN: the source has no more data to send

Window 16 The number of new bytes the source can accept.

Checksum 16 Checksum value.

Urgent Pointer 16 Sequence number of the last byte of urgent data

Options 0 or more (optional) Can indicate the maximum segment size
the source can handle.

Chapter 5

232

Acknowledgment Number. The destination computer returns an acknowl-
edgment number to let the source know that a specific segment or segments
were received. The field is valid when the ACK control bit described below
is set to 1. The acknowledgment number equals the sequence number of the
last received byte in sequence plus 1. This value is also the sequence number
the destination expects in the next received segment. In returning an
acknowledgment number, the computer is saying that it has received all of
the data up to one less than the acknowledgment number.

For example, if we again assume that a source sends three segments, each
with 100 data bytes, and the first segment’s sequence number is 1000, on
receiving the first segment, the destination could return a header with an
acknowledgment number of 1100. On receiving the second segment (with a
sequence number of 1100), the destination could return an acknowledg-
ment number of 1200. On receiving the third segment, the returned
acknowledgment number would be 1300.

The destination doesn’t have to return a acknowledgment for every received
segment. In the above example, the destination could wait until it received
all three segments. It would then return a single segment with an acknowl-
edgment number of 1300, indicating that all of the data bytes through 1299
have been received. But if the destination waits too long before acknowledg-
ing, the source will think the data didn’t reach its destination and will
resend.

In the above example, if the destination receives only the first and last seg-
ments, with segment numbers 1000 and 1200, it can return an acknowledg-
ment number of 1100, but should wait to receive the middle segment, with
the segment number 1100, before returning an acknowledgment number of
1300.

This field is four bytes.

Header Length. Because a TCP header’s length can vary depending on the
contents of the TCP Options field, the header includes a field that specifies
the header’s length. The value is in units of 32 bits, so all headers must be
multiples of 32 bits, padded with zeros at the end if necessary. A header with

Exchanging Messages Using UDP and TCP

 233

no TCP Options field has a Header Length of 5, to indicate a header size of
160 bits, or 20 bytes. This field is four bits.

Reserved Field. This field is six bits, all zeroes.

Control Bits. The control-bits field is six bits. The bits provide information
about the status of the connection, tell the destination something about
when to process the data, and enable the source to inform the destination of
a change in status of the connection. The following sections describe the
meaning of each bit, in order as they appear in the header, when the bit is
equal to 1.

URG. The segment is urgent. Urgent segments use the Urgent Pointer field
described below.

ACK. The header contains a valid acknowledgment number. When estab-
lishing a TCP connection, each computer sets this bit in the first segment
that acknowledges receiving a header containing a sequence number, and in
all segments that follow in the connection.

PSH. The receiver should push, or send, the segment’s data to the receiving
application as soon as possible. If a computer normally waits for a buffer to
fill before passing received data to an application, the PSH bit can advise the
computer to pass data to the application right away, even if the buffer isn’t
full.

RST. Reset the connection. RST provides a way to recover if a connection
becomes unsynchronized or invalid. A computer sends a segment with the
RST bit set after receiving a segment that doesn’t appear to be intended for
the current connection, or if the connection has been closed. Receiving a
segment with the RST bit set informs a computer that it should end the cur-
rent connection and start over in establishing a connection. For example, if
one computer in a connection crashes and restarts, the previous connection
is no longer valid, but the other computer may not know this and may con-
tinue sending data. On receiving a segment for a closed connection, the des-
tination returns a segment with RST set to let the source know that the
computers need to re-establish the connection.

Chapter 5

234

SYN. Synchronization is in progress. Synchronization is the process of per-
forming the 3-way handshake to establish a TCP connection. The SYN bit
is set to 1 until the handshake is complete, indicating the connection is
established. In all of the segments that follow, the SYN bit is zero.

FIN. The source has no more data to send. The source may set this bit in
the header of the segment containing the final data sent in a connection, or
in a header that follows this segment.

Window. Window is the number of new bytes the receiving computer can
accept. The value may change with each segment a computer sends, depend-
ing on how much buffer space is available. A source may use the received
value in determining how much data to send in the next segment. The max-
imum window size is 65535 bytes. If a destination’s window is zero, a source
that wants to send data may send a single byte periodically to cause the des-
tination to return an updated window value. This field is two bytes.

Checksum. TCP requires a checksum. The source and destination calculate
the checksum on the contents of the TCP segment plus a pseudo header
containing information from the IP header and the TCP segment length.
Table 5-6 shows the values in the pseudo header. As with UDP, the pseudo
header doesn’t transmit on the network and including the pseudo header in
the checksum protects the destination from mistakenly accepting datagrams
that have been misrouted. The checksum value is calculated in the same way
as the IP header’s checksum, as described in Chapter 4. The field is two
bytes.

Urgent Pointer. When the URG bit is set, the urgent pointer marks the end
of the urgent data. The value is the sequence number of the last byte of
urgent data, expressed as an offset from the segment’s sequence number. For
example, if the segment’s sequence number is 1000 and the first 8 bytes are
urgent data, the urgent pointer would be 8. A typical use for the urgent
pointer is to enable a user to interrupt a process.

The wording of the original TCP standard left some confusion about
whether the URG pointer points to the last byte of urgent data or the first
byte following the urgent data. RFC 1122 clarifies by saying that URG
should point to the last byte of urgent data. This field is two bytes.

Exchanging Messages Using UDP and TCP

 235

TCP Options. The items in the TCP options field are optional, so this field
is zero or more bytes.

The Maximum Segment Size option enables the receiving process to specify
the maximum segment size the process can handle. A process uses this
option only when establishing a connection, in a segment where the SYN
bit is set. The option is four bytes, consisting of the byte 02h, followed by
04h, followed by two bytes that specify the maximum segment size.

The No Operation option provides a way to align options on a word bound-
ary. The option is the single byte 01h.

The End of Option List option indicates that there are no more options in
the field. This option is the byte 00h.

The complete TCP header must be a multiple of 32 bits. To achieve this,
the end of the TCP Options field may be padded with zeros.

The Data Portion. Following the header is the optional data portion of the
segment. The IP standard requires hosts to accept datagrams of up to 576
bytes. An IP header with no options is 20 bytes, and a TCP header with no
options is also 20 bytes. So a TCP segment with up to 536 data bytes and no
IP options or TCP options should be able to reach its destination without
fragmenting.

Table 5-6: The checksum of a TCP segment includes the values in a pseudo
header containing these five values.
Field Size (bytes) Source

Source Address 4 IP header

Destination Address 4 IP header

Zero 1 (none)

Protocol 1 IP header

TCP Length 2 Length in bytes of the TCP segment including the
TCP header but excluding the pseudo header

Chapter 5

236

Establishing a Connection

A TCP connection has two endpoints, one at the source and one at the des-
tination. Each endpoint is a socket, with a port number and IP address.

Each TCP connection has a unique pair of sockets, but a single socket on a
computer can have multiple connections, each to a different socket. For
example, a computer’s port 80 can have connections to a number of remote
computers at the same time. A pair of computers can have multiple connec-
tions to each other at the same time, as long as no two pairs of sockets are
identical.

To establish a connection, two computers must complete a 3-way hand-
shake. Each communication in the handshake contains a TCP header. The
computer that requests the connection is sometimes referred to as the TCP
client, while the computer that receives the connection request is the TCP
server. Once the connection has been established, either computer can trans-
mit to the other at any time, although an application protocol may limit
when the computers may transmit.

Figure 5-3 shows typical communications in a handshake between two pro-
cesses, the client and server, using the following communications:

1. The client initiates the handshake by sending a segment containing an
initial sequence number. In the example, the sequence number is 100. The
acknowledgment number is zero, the SYN bit is 1, and the ACK and FIN
bits are zero.

2. The server waits to receive a connection request. On receiving the seg-
ment from the client, the server responds by sending a segment containing
its own initial sequence number and an acknowledgment number equal to
the received sequence number + 1. In the example, the segment’s sequence
number is 500. The acknowledgment number is 101 (the received sequence
number + 1). The SYN and ACK bits are 1, and the FIN bit is zero.

3. The client responds by sending a segment whose sequence number is 101,
the received acknowledgment number. The acknowledgment number is

Exchanging Messages Using UDP and TCP

 237

501, which is the received sequence number + 1. The SYN and ACK bits are
1, and the FIN bit is zero.

The connection is now established.

Sending and Receiving Data

Figure 5-4 shows an example of an exchange of data. The client sends a seg-
ment with a sequence number of 101, an acknowledgment number of 501,
an ACK bit of 1, a SYN bit of zero, and eight bytes of data in the data por-
tion of the segment. The ACK and SYN bits don’t change for the remainder
of the connection.

The server acknowledges receiving the 8 bytes of data by sending a segment
with a sequence number of 501 and an acknowledgment number of 109.
The data portion of this segment may also contain new data to be sent to
the client, which the client acknowledges in another segment.

The segments sent when establishing a connection can include data as well.
When this occurs, the destination must hold the received data until the con-
nection is established.

Sequence Number 100
Acknowledgment Number 0

SYN Bit 1
ACK Bit 0
FIN Bit 0

Request a Connection

Sequence Number 500
Acknowledgment Number 101

SYN Bit 1
ACK Bit 1
FIN Bit 0

Acknowledge the Request

Sequence Number 101
Acknowledgment Number 501

SYN Bit 1
ACK Bit 1
FIN Bit 0

Acknowledge the Response

Figure 5-3: Establishing a TCP connection requires a 3-way handshake.

Chapter 5

238

A successful handshake tells the source computer that the data arrived at the
destination computer’s TCP layer. There is still room for error, however,
because the handshake can’t guarantee that the designated process at the des-
tination computer received the data from the TCP layer. So to be absolutely
sure that the destination’s application received the data, you need a protocol
at the application layer to provide the acknowledgment.

Closing a Connection

Closing a connection also requires handshaking. To close a connection com-
pletely, each computer sends a segment with the FIN control bit set to 1 to
indicate that the computer has no more data to send. Each destination must
acknowledge receiving the FIN. Figure 5-5 shows an example:

1. The client sends a segment with the FIN control bit set to 1. This indi-
cates that the client will send no more data over this connection. The client
may continue to receive from the server.

Figure 5-4: On receiving data, the receiver returns an acknowledgment number
equal to the sequence number expected in the next segment.

Exchanging Messages Using UDP and TCP

 239

2. The server sends a segment acknowledging the received FIN. If the server
has no more data to send, it sets its FIN bit to 1. Otherwise, the server con-
tinues to send data and sets the FIN bit to 1 when all of the data has been
sent.

3. The client sends a segment acknowledging the received FIN. The connec-
tion is now closed.

Of course, it’s possible that one of the computers will crash or be removed
from the network before the closing handshake completes. In this case, the
other computer may decide after a time to consider the connection closed
and free the resources allocated to the connection.

Flow Control

A sending process may have multiple segments ready to send to a destina-
tion. Before sending each segment, the sending process could wait for an
acknowledgment for the previous segment. But this isn’t the most efficient
way to transfer data if the destination has room to store the data in more
than one segment.

Figure 5-5: Closing a TCP connection also requires a 3-way handshake.

Chapter 5

240

For more efficient transfers, the sending process can use a received header’s
Window field to help determine how much data to send without waiting for
an acknowledgment. The destination can adjust the size according to its
current state by changing the contents of the Window field as needed in the
headers it sends.

A received acknowledgment number tells the sender that the destination
received all of the data with segment numbers up to one less than the
acknowledgment number. If the sender receives no acknowledgment, it can
resend the data. Typically, on sending a segment, the source temporarily
stores the segment’s data in a retransmission queue and starts a timer. On
receiving an acknowledgment, the source deletes the data from the retrans-
mission queue. If the source doesn’t receive an acknowledgment by the time
the timer times out, the source assumes that the destination didn’t receive
the segment and resends it, using the data in the retransmission queue.

The amount of time to wait before resending can vary with the network.
Hosts often use the average round-trip time for a transmission in determin-
ing a timeout value.

Enhancing Performance

Over time, several methods have come into popular use to help make TCP
data transfers more efficient. The methods limit how much data a sender
can send in some situations, and may also eliminate the need to wait for a
timeout before retransmitting. The methods are Slow Start, Congestion
Avoidance, Fast Retransmit, and Fast Recovery. RFC2581: TCP Congestion
Control documents the methods.

The methods all have to do with specifying the number of segments a source
can transmit before receiving an acknowledgment. If a source waits for
acknowledgment of the previous segment before sending the next segment,
the source complies with the requirements of the approved and proposed
standards. An embedded system that transfers data infrequently can use this
simpler, if less efficient, approach.

Exchanging Messages Using UDP and TCP

 241

Supporting TCP in Embedded Systems

Supporting TCP in an embedded system is more complicated than support-
ing UDP. In addition to adding and removing headers and supporting IP,
the computer must perform the 3-way handshake to connect to a remote
host, maintain sequence and acknowledgment numbers when exchanging
data, handshake when closing a connection, and respond to detected errors.

To send a message using TCP, a computer in an Ethernet network must do
the following:

• Establish a connection using the 3-way handshake.

• Use the received Window size to determine how much data the remote
computer can accept.

• Place the source and destination port numbers, sequence number,
acknowledgment number, header length, source window size, and check-
sum in the appropriate locations in the TCP header. Computing the
checksum requires knowing the source and destination IP addresses.

• Place the data to send in the data portion of the segment.

• Place the TCP segment in the data portion of an IP datagram. The IP
datagram requires source and destination IP addresses and computing a
checksum on the header.

• Pass the IP datagram to the Ethernet controller’s driver for sending on
the network and start a timeout timer.

• Wait to receive an acknowledgment number that indicates that the
remote computer received the data. If the acknowledgment doesn’t arrive
before a timeout, resend the segment.

To receive a datagram using TCP, a computer in an Ethernet network must
do the following:

• Establish a connection using the 3-way handshake.

• Receive an IP datagram from the Ethernet controller’s driver.

• Strip the IP header from the datagram. Calculate the checksum and com-
pare with the received value.

Chapter 5

242

• If the checksums match, strip the header from the TCP segment. Calcu-
late the checksum and compare it to the received value.

• Examine the received acknowledgment number to find out if the seg-
ment is acknowledging receipt of previously sent data and if so, delete the
acknowledged data from the retransmission queue.

• Compare the received sequence number to the expected value. If the
numbers match, set the acknowledgment number to return to the sender
in a TCP segment.

• Use the destination port number to decide where to pass the data.

In addition, at any time, either computer may request to close or reset the
connection and the other computer should acknowledge the request and
may request to close or reset the connection from the other end if appropri-
ate.

As the examples at the beginning of the chapter showed, if you’re using a
module with TCP support, the details of creating the segments and dealing
with the checksums and sequence and acknowledgment numbers are han-
dled for you.

If you want to write your own code to support TCP, the book TCP/IP Lean:
Web Servers for Embedded Systems by Jeremy Bentham (CMP Books) offers
guidance on how to do it efficiently and effectively. The TCP standard is the
ultimate reference on how the protocol works. For a very detailed, yet read-
able explanation of UDP, TCP, IP, and related protocols, see TCP/IP Clearly
Explained by Pete Loshin (Morgan Kaufman).

Serving Web Pages with Dynamic Data

 243

Chapter 5 showed how to use TCP and UDP to exchange messages contain-
ing application-specific data. Many standard application-level protocols also
use TCP or UDP when exchanging information. One of the most popular
of these is the hypertext transfer protocol (HTTP), which enables a com-
puter to serve Web pages on request.

Because embedded systems almost always serve Web pages that contain
dynamic, or real-time, information, this chapter begins with Rabbit and
TINI examples that serve Web pages with dynamic content. Following the
examples is an introduction to using HTTP and other protocols in serving
Web pages.

Chapter 6

244

Quick Start:
Two Approaches

A Web browser such as Microsoft’s Internet Explorer is a client application
that uses HTTP to request Web pages from servers on the Internet or in a
local network. The servers don’t have to be PCs or other large computers.
Even a small embedded system with limited memory can serve a page con-
taining text and simple images, including pages that display real-time data
and accept and act on user input.

A browser provides a user interface for requesting and displaying pages. The
computers that request Web pages typically have full-screen displays, but for
some applications, an embedded system with limited display capabilities can
function as an HTTP client. If the requested pages are very simple, even a
text-only display of a few lines might suffice. Or an embedded system might
receive and process the contents of a Web page without displaying the page
in a browser at all.

This chapter focuses on Web servers. With an Internet connection, a Web
server can serve pages to any browser on the Internet. Or a server may be
programmed to respond to requests only from specific IP addresses. A Web
server in a local network may serve pages to selected computers or to any
computer in the local network.

An embedded system that functions as a Web server generally has all of the
following:

• Non-volatile memory to hold pages to be served.

• Support for TCP and IP. Requests for Web pages and the pages sent in
response travel in the data portion of TCP segments.

• Support for HTTP. The server must be able to understand and respond
to received requests for Web pages. The HTTP standard specifies the for-
mat for the requests and replies.

• A local-network or Internet connection. To serve pages on the Internet,
the Web server must have an Internet connection. Any firewalls must be

Serving Web Pages with Dynamic Data

 245

configured so the system can receive HTTP requests, as described in
Chapter 10.

• One or more pages to serve. The Web pages are files or blocks of text that
use a form of encoding called hypertext markup language (HTML). The
HTML encoding specifies the formatting of text and images on the page,
including text size and fonts and the positioning of text and other ele-
ments on the page. The HTML code may include links to images that
appear on the page, as well as links to other pages or resources. In serving
a Web page with dynamic content, the software must have a way of
inserting the dynamic content as the page is being served.

A variety of protocols and technologies can work along with HTTP and
HTML to enable a server to provide Web pages that contain real-time data
and respond to user input. This chapter includes two approaches to serving
real-time data, and Chapter 7 covers ways that Web servers can respond to
user input.

Serving a Page with Dynamic Data
Many Web pages are static, where the information on the page doesn’t
change unless someone edits the page’s HTML file and uploads the new file
to the server. Static Web pages are useful for presenting product informa-
tion, articles, or other information that remains constant. But most embed-
ded systems have little use for static pages, other than possibly presenting a
home page with links to other pages. An embedded system that functions as
a Web server will almost certainly want to display real-time information
such as sensor readings or other up-to-the-minute information about the
processes or environments the system is controlling or monitoring.

This section shows how the Rabbit and TINI modules introduced in Chap-
ter 3 can serve Web pages that display dynamic data. Dynamic, or real-time,
data includes any data that can change over time and can be different each
time the page is served. An obvious example is a counter that displays the
number of times the page has been accessed. Dynamic data may also include
sensor or switch readings and time and date information. The supporting
code included with the Rabbit and TINI (and additional sources in the case

Chapter 6

246

of Java servlets on the TINI) greatly reduces the amount of the program-
ming required to serve Web pages with dynamic content.

The dynamic data served by the example applications in this chapter con-
sists of a message that displays the amount of time the system or application
has been up and running. Figure 6-1 shows an example page. The embed-
ded system stores the number of days, hours, minutes, and seconds in vari-
ables. When serving the page, the server application inserts the current
values of the variables in the appropriate places in the page. You can use the
same techniques to create Web pages that display the current values of any
variables in a system.

Although the result is the same, the Rabbit and TINI examples use different
approaches to achieve the result. The Rabbit uses Server Side Include direc-
tives that instruct the server to insert the values of variables in the appropri-
ate locations in the file being served. For the TINI, instead of storing the
Web page in a separate file, the application creates the Web page as it’s being

Figure 6-1: Both the Rabbit and TINI can serve pages that include dynamic, or
real-time, data, such as the days, hours, minutes, and seconds displayed in
these pages.

Serving Web Pages with Dynamic Data

 247

sent, using a series of writes to send the page’s contents to a TCP socket and
inserting the values of variables in the designated locations in the page.

Rabbit Real-time Web Page
To serve its Web page, the Rabbit module uses HTTP functions and struc-
tures provided in Dynamic C to serve the Web page’s file on request. The
main program loop updates the time variables once per second.

Page Design

Listing 6-2 is the HTML code for Figure 6-1’s Web page. The page uses
HTML tags to advise the browser how to display the page’s contents. Each
tag consists of text enclosed by angle brackets (). The In Depth section of
this chapter has more details about HTML tags and how to use them. For
now, the relevant section of the code is the five lines that each begin with a
paragraph tag (<p>).

A paragraph tag tells the browser to display the information that follows in a
new paragraph. The first paragraph tag causes the browser to display the
text, “This Rabbit program has been running for:”.

Each of the four lines that follow contains a Server Side Include #echo
directive that inserts the value of a variable on the page. A Server Side
Include directive uses the same delimiters as an HTML comment. A com-
ment, which is text that the browser ignores and doesn’t display, is enclosed
by <!-- and -->. On receiving a page that contains an HTML comment,
the browser displays the page the same as if the comment and its delimiters
weren’t present.

Another use for comment delimiters is to enable a page to specify Server
Side Include (SSI) directives that the server executes before serving the page
to the browser. Before serving a page containing an SSI directive, the server
executes the directive and replaces the delimiters and the text between them
with the result of executing the directive. If for some reason the server
doesn’t support the directive, the server ignores the directive and the browser
treats the directive as a comment, which isn’t displayed.

Chapter 6

248

The #echo directive tells the server to replace the comment tag and its con-
tents with the value of the named variable. For example, in the first direc-
tive, the server replaces <!--#echo var="days"--> with the value of the
variable days on the server. If days equals 5, the browser receives and dis-
plays Days: 5.

The In Depth section of this chapter has more details about #echo and
other Server Side Includes.

Serving the Page

The following is the complete application code the Rabbit requires to serve
Figure 6-1’s Web page.

<html>

<head>
<title>Rabbit Real-time Data Demo</title>
</head>

<body>

<h1>Rabbit Real-time Data Demo</h1>

<p>This Rabbit program has been running for:</p>
<p>Days: <!--#echo var="days"--></p>
<p>Hours: <!--#echo var="hours"--></p>
<p>Minutes: <!--#echo var="minutes"--></p>
<p>Seconds: <!--#echo var="seconds"--></p>

</body>

</html>

Listing 6-2: On serving this Web page, the server retrieves the current values of
“days”, “hours”, “minutes”, and “seconds” and inserts them in the page.

Serving Web Pages with Dynamic Data

 249

Initial Defines and Declarations

As in Chapter 5’s examples, TCPCONFIG specifies a macro that sets a network
configuration stored in the file tcp_config.lib. Your program must specify an
appropriate macro for your system and network configuration.

The #memmap directive stores all C functions not declared as root in the
extended memory area.

#define TCPCONFIG 1
#memmap xmem

The application requires the dcrtcp.lib library, which supports TCP/IP and
related protocols, and the http.lib library, which supports HTTP.

The #ximport directive retrieves a file from the PC being used for project
development, stores the file’s length and contents in the Rabbit’s extended
memory, and associates a symbol (index_html in the example below) with
the file’s address in memory. Application code uses the symbol to locate the
file and determine its length. The path in the #ximport statement must
match the location of the file in your development PC. The file index.shtml
contains the text in Listing 6-2.

#use "dcrtcp.lib"
#use "http.lib"
#ximport "c:/rabbitserver/index.shtml" index_html

Four variables store the values for the units of time the Web page will dis-
play.

unsigned long days;
unsigned long hours;
unsigned long minutes;
unsigned long seconds;

Dynamic C’s HTTP server uses two structures, HttpType and HttpSpec,
which contain information relating to the files the Web server serves.

The HttpType structure matches file extensions with file types and specifies
a handler to use with files with the named extensions. When sending a file
in response to an HTTP request, the server must identify the file type in the
Content-Type field of the HTTP header in the response. The file types are
Multipurpose Internet Mail Extension (MIME) types defined in RFC 2045
through RFC 2049.

Chapter 6

250

The server in this application supports a single Web page with the extension
.shtml, which is the conventional extension for files that use SSI directives.
Dynamic C’s handler for pages with SSI directives is shtml_handler.

The HttpType structure below associates .shtml with the MIME type
text/html, which is a text file that uses HTML encoding. Other MIME types
include text/plain, image/jpeg, and audio/mpeg. The server’s default file ("/")
is associated with the first entry in the Http_types structure.

const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler}
};

The HttpSpec structure contains information about the files, variables, and
structures that the Web server can access. Each entry in the structure has
seven parameters, though not all entry types use all of the parameters. The
structure in this example has entries for two files and four variables:

const HttpSpec http_flashspec[] =
{
 { HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
 { HTTPSPEC_FILE, "/index.shtml", index_html, NULL, 0,
 NULL, NULL},

 { HTTPSPEC_VARIABLE, "days", 0, &days, INT32, "%d",
 NULL},
 { HTTPSPEC_VARIABLE, "hours", 0, &hours, INT32, "%d",
 NULL},
 { HTTPSPEC_VARIABLE, "minutes", 0, &minutes, INT32, "%d",
 NULL},
 { HTTPSPEC_VARIABLE, "seconds", 0, &seconds, INT32, "%d",
 NULL},
};

The HTTPSPEC_FILE entries associate the symbols defined in #ximport
statements with the names of files that browsers may request from the server.
These are the parameters for an HTTPSPEC_FILE entry:

Type. Indicates whether the entry is for a file, variable, or function.
HTTPSPEC_FILE specifies that the entry is for a file.

Name. Names a file the Web server can access. This example has one file,
index.shtml, with two entries to enable browsers to request the file by

Serving Web Pages with Dynamic Data

 251

name ("index.shtml") or as the default file to serve when no name is
specified ("/").

Data. Specifies the file’s physical address. Both HTTPSPEC_FILE entries
point to index_html, where the file index.shtml is stored.

Addr. Unused (NULL) for files.

Vartype. Unused (zero) for files.

Format. Unused (NULL) for files.

Realm. Names an HttpRealm structure that identifies a name and pass-
word required to access the file. NULL if unused.

The four HTTP_VARIABLE entries specify variables for the different units of
time. These are the parameters for an HTTP_VARIABLE entry:

Type. Indicates whether the entry is for a file, variable, or function.
HTTPSPEC_VARIABLE specifies that the entry is for a variable.

Name. Provides the name of a variable the Web server can access. The
server’s Web page displays the values of four variables: "days",
"hours", "minutes", and "seconds".

Data. Unused (zero) for variables.

Addr. A short pointer to the variable.

Vartype. The type of variable. The options are 8-bit integer (INT8),
16-bit integer (INT16), 32-bit integer (INT32), 16-bit pointer (PTR16),
and 32-bit floating-point value (FLOAT32). The PTR16 type is useful for
displaying strings.

Format. The printf specifier to use when displaying the variable. The
specifier %d causes the variable to display as a decimal value.

Realm. Identifies a name and password to access the variable. NULL if
unused.

The main() Function

The application’s main() function begins by declaring variables related to
time, calling sock_init() to initialize the TCP/IP stack, and calling
http_init() to initialize the Web server. Calling tcp_reserveport() to
reserve port 80 for the Web server is optional but can improve performance

Chapter 6

252

in two ways: by allowing a socket to be established even if the server can’t
exchange data yet and by shortening the waiting period for closing a socket.

main()
{
 unsigned long start_time;
 unsigned long total_seconds;

 sock_init();
 http_init();
 tcp_reserveport(80);

Dynamic C’s SEC_TIMER variable contains the number of seconds since
midnight on the morning of January 1, 1980. The program uses this value
to measure how long the program has been running, beginning with an ini-
tial count stored in start_time when the program begins running:

 start_time = SEC_TIMER;

The program’s endless while loop has two responsibilities. It calls
http_handler(), which is required periodically to parse received requests
and pass control to shtml_handler() or another handler specified in the
HttpType structure. And a costatement updates the time variables once per
second. (Chapter 3 introduced Dynamic C’s costatements.)

When one second has elapsed, as specified in the waitfor(DelaySec(1))
statement, the program calculates the number of seconds it has been run-
ning by subtracting the start_time value from the current value of
SEC_TIMER.

The program then divides the number of seconds into days, hours, minutes,
and seconds:

To find the number of days, take the integer result of total_seconds
divided by the number of seconds per day (86,400).

To find the number of hours, divide total_seconds by the number of sec-
onds per hour (3600) to get the total number of elapsed hours. Eliminate
any full days with modulus division by the number of hours per day (24).

To find the number of minutes, divide total_seconds by the number of
seconds per minute (60) to get the total number of elapsed minutes. Elimi-

Serving Web Pages with Dynamic Data

 253

nate any full hours with modulus division by the number of minutes per
hour (60).

To find the number of seconds excluding full minutes, use the result of
modulus division of total_seconds by the number of seconds per minute
(60).

 while (1) {
 http_handler();
 costate {
 waitfor(DelaySec(1));
 total_seconds = SEC_TIMER - start_time;
 days = total_seconds /86400;
 hours = (total_seconds /3600) % 24;
 minutes = (total_seconds /60) % 60;
 seconds = total_seconds % 60;
 }

 //Code to perform other tasks can be placed here.

 } // end while(1)

} // end main()

Dynamic C’s HTTP server and SHTML handler code manage the serving
of the Web page, including accepting requests to connect, returning the
requested pages or other HTTP responses as appropriate, and closing con-
nections.

In a real-world application, the main loop would probably perform other
tasks as well. The costatement ensures that other tasks will get their turn
even while waiting for the costatement’s delay timer to time out.

Accessing the Web Server

When the Rabbit is running this code, you can request its Web page by
entering the module’s IP address in a browser’s Address text box:

http://192.168.111.7

or by specifying the IP address and Web page:

http://192.168.111.7/index.shtml

If a domain name is assigned to the IP address, you can use that as well to
request the page. On receiving a request for a page, the Rabbit’s HTTP

Chapter 6

254

server appends an appropriate HTTP header to the top of the requested file
and writes the header and file to the socket that requested it. The SHTML
handler replaces the #echo directives on the page with the current values of
days, hours, minutes and seconds. And the browser that requested the
file displays Figure 6-1’s Web page, which contains the time values.

Refreshing the page in the browser updates the displayed time. To update
the display automatically at intervals, see Refreshing Pages Automatically
later in this chapter.

TINI Real-time Web Page
To use a TINI to serve Web pages with dynamic content, you have a few
choices. Your first thought might be to use the HttpServer class provided
with the TINI’s operating system. However, this built-in Web server can
only serve static pages. Serving dynamic data would require changing the
data in the stored pages whenever the content changes. It’s more efficient to
retrieve the dynamic data on request and insert it in the page as it’s being
served.

Another option is to install and run a server program that supports Java
servlets. A servlet is a software component that can respond to user input
and generate dynamic content for Web pages. In most cases, servlets are the
most effective and time-saving way to enable a Web server to serve dynamic
content. Chapter 7 has more about servlets and how to use them.

A third option is to write a basic Web server that uses the ServerSocket
class and adds dynamic content as it serves its pages. For some low-volume
applications that serve one or a few pages, this kind of home-brewed server
can do the job without adding too much complexity. The example in this
chapter uses the ServerSocket class to create a basic server that serves a
page that displays the amount of time the TINI has been up and running.
Whether or not you decide to use this approach, the code in this application
is interesting as a demonstration of the responsibilities of a Web server.

The Web server responds to requests to connect to a specific port. When a
connected host sends an HTTP request for a supported page, the server cal-

Serving Web Pages with Dynamic Data

 255

culates the values of variables the page contains, writes the contents of the
page to the socket, and closes the socket.

Serving the Page

Figure 6-3 shows the Web page, and Listing 6-4 is the source code for the
page as received by a browser. The program code below is an application
that serves Figure 6-1’s Web page. The code is very similar to the TcpServer
example in Chapter 5, with the addition of code that parses requests and
returns the Web page or error code.

Figure 6-3: This Web page served by a TINI shows how long the TINI has been
running since it booted up.

Chapter 6

256

Imports and Initial Declarations

The code imports java.net classes for networking functions and java.io
classes to support input and output functions. The TINI-specific TINIOS
class includes an uptimeMillis() method the application uses to retrieve
the number of milliseconds the TINI has been up and running.

import java.net.*;
import java.io.*;
import com.dalsemi.system.TINIOS;

The RealTimeWebPage class implements the Runnable interface so that
the code that does the network communications can execute in its own
thread. This leaves the main thread free to do other things.

public class RealTimeWebPage implements Runnable {

 private ServerSocket server;
 private int readTimeout;
 private Thread serverThread;
 private volatile boolean runServer;

<html>

<head>
 <title>Real-time Data Demo </title>
</head>

<body>
 <h1>Real-time Data Demo</h1>

 <p> This TINI has been running for:</p>
 <p>days: 14 </p>
 <p>hours: 8 </p>
 <p>minutes: 59 </p>
 <p>seconds: 3 </p>

</body>

</html>

Listing 6-4: The HTML code for Figure 6-3‘s Web page.

Serving Web Pages with Dynamic Data

 257

The main() Method

The class’s main() method sets localPort to the port number clients will
connect on and sets readTimeout to the number of milliseconds the server
will wait to receive data after a remote host connects. Port 80 is the default
port for HTTP requests. The timeout is expressed in milliseconds. The
RealTimeWebPage object server uses the localPort and readTimeout
values.

 public static void main(String[] args) throws
 IOException {
 int localPort = 80;
 int readTimeout = 5000;

 RealTimeWebPage server =
 new RealTimeWebPage(localPort, readTimeout);

An endless loop executes while waiting for connections. The thread spends
its time sleeping, but could perform other tasks.

 while (true){
 try {
 Thread.sleep(1000);
 } catch (InterruptedException e) {
 System.out.print("InterruptedException: ");
 System.out.println(e.getMessage());
 }
 } // end while(true)
 } // end main

Initializing the Server

The constructor for the RealTimeWebPage class creates a thread to handle
connection requests. The constructor’s two parameters are the localPort
and readTimeout values set in main().

 public RealTimeWebPage(int localPort, int readTimeout)
 throws IOException {

A ServerSocket object (server) listens for connection requests at
localPort, and on receiving a request, creates a socket object.

 server = new ServerSocket(localPort);
 System.out.println("The server is listening on port "
 + localPort + ".");

Chapter 6

258

The readTimeout variable used by the run() method below is assigned the
value of the readTimeout parameter.

 this.readTimeout = readTimeout;

A separate thread (serverThread) handles connection requests. Setting the
thread’s setDaemon method true creates the thread as a Daemon thread.
The JVM exits when there are no user (non-Daemon) threads running.
Calling the start() method calls the thread’s run() routine.

 serverThread = new Thread(this);
 serverThread.setDaemon(true);
 serverThread.start();
 } // end RealTimeWebPage constructor

Waiting for Connection Requests

Calling serverThread’s start() method causes the thread’s run()
method to execute. The run() method accepts connections and calls a
method to handle each connection.

 public void run() {

An endless loop runs until the runServer variable is false, which occurs on
an exception or if the class’s stop() method sets runServer false.

 runServer = true;
 while (runServer) {
 try {

On accepting a connection request, the server’s accept() method creates a
socket for exchanging data with the connected host. The class’s handleCon-
nection() method manages communications with the socket.

When handleConnection() returns or if there is an exception, the
method closes the socket to release any resources used by it. If there is an
exception when attempting to close the socket, no action needs to be taken.

If an exception occurs while attempting to accept a connection, runServer
is set to false to stop the thread.

 Socket socket = server.accept();

 try {
 handleConnection(socket);
 } catch (IOException e) {

Serving Web Pages with Dynamic Data

 259

 System.out.print("IOException: ");
 System.out.println(e.getMessage());
 } finally {
 try {
 socket.close();
 } catch (IOException e) {
 }
 }
 } catch (IOException e) {
 runServer = false;
 System.out.print("IOException: ");
 System.out.println(e.getMessage());
 }
 } // end while(runServer);
 } // end run

Stopping the Server

The stopServer() method provides a way to stop the server under pro-
gram control by setting runServer false and closing the socket.

 public void stopServer() {
 runServer = false;
 try {
 server.close();
 } catch (IOException e) {
 }
 } // end stopServer

Handling a Connection

The handleConnection() method handles a single connection with a
remote host. The socket timeout is set to the readTimeout value set in the
main() routine.

 private void handleConnection(Socket socket)
 throws IOException {

 System.out.println("Connected to " + socket);
 socket.setSoTimeout(readTimeout);

An InputStream object reads data from the remote host, and a Print-
Stream object writes to the remote host.

 InputStream in = socket.getInputStream();
 PrintStream out =
 new PrintStream(socket.getOutputStream());

Chapter 6

260

The class’s processRequest() method reads the received data and returns
the requested web page or an error page.

When processRequest returns, the Printstream object’s checkError()
method flushes the output stream and returns true if an IOException other
than InterruptedIOException has occurred or if the Printstream object’s
setError() method has been invoked.

 try {
 processRequest(in, out);
 if (out.checkError()) {
 System.out.println("An error occurred while
 sending a web page.");
 } else {
 System.out.println("A response was sent.");
 }
 } catch (InterruptedIOException e) {
 System.out.print("InterruptedIOException: ");
 System.out.println(e.getMessage());
 System.out.print("The connection timed out after
 receiving no data for : ");
 System.out.print(readTimeout / 1000);
 System.out.println(" seconds.");
 }
 } // end handleConnection

Processing a Request

The processRequest() method reads an incoming request and takes
appropriate action.

 private void processRequest(InputStream in,
 PrintStream out) throws IOException
 {

The first step is to read the first four bytes from the PrintStream object.

 int b1 = in.read();
 int b2 = in.read();
 int b3 = in.read();
 int b4 = in.read();

This server supports GET requests only. The HTTP standard requires GET
to be upper case, followed by a space. If the received bytes equal GET, fol-
lowed by a space, the code reads any bytes that follow and stores them in the
StringBuffer object requestBuffer. Reading the input stops on detect-

Serving Web Pages with Dynamic Data

 261

ing a space character, a carriage return (\r), line feed (\n), or an end of file
marker (-1).

 if (('G' == b1) && ('E' == b2) && ('T' == b3) &&
 (' ' == b4)) {
 StringBuffer requestBuffer = new StringBuffer();
 int b = in.read();
 while ((b != -1) && (b != ' ') && (b != '\r') &&
 (b != '\n')) {
 requestBuffer.append((char)b);
 b = in.read();
 }

The StringBuffer object is converted to a String to enable examining its
contents. The server accepts requests for the default page (indicated by “/”)
or for the file /index.html. If there is a match with either of these, the class’s
sendWebPage routine returns the real-time Web page to the requesting
host. If there isn’t a match, a call to the sendErrorPage() method returns
error code 404 and an error message to the requesting host.

 String requestedPage = requestBuffer.toString();
 String defaultPage = "/";
 String indexPage = "/index.html";

 if ((requestedPage.equals(defaultPage)) ||
 (requestedPage.indexOf(indexPage) != -1)) {

 sendWebPage(out);

 } else {
 sendErrorPage(out, "404 Not Found");
 }
If “GET ” wasn’t received, the program checks to see if -1 was returned. If
so, the input stream is closed, so there is nothing to return to the remote
host. For any received data besides “GET ” or -1, a call to the sendEr-
rorPage() method returns error code 501 and the error message “Not
Implemented” to the requesting host.
 } else {
 if ((b1 | b2 | b3 | b4) != -1) {
 sendErrorPage(out, "501 Not Implemented");
 }
 } // end if ('G'==b1||'E'==b2||'T'==b3||' '==b4)
 } // end processRequest

Chapter 6

262

Sending the Web Page

The sendWebPage() method uses the PrintStream object to send the
page containing real-time data.

 private void sendWebPage(PrintStream out)
 throws IOException {

The page begins with the response’s start line and HTML headers. A blank
line (\r\n) after the HTTP header indicates the end of the header. The In
Depth section of this chapter has more about these elements of a response.

 out.print("HTTP/1.0 200 OK\r\n"
 + "Content-Type: text/html\r\n"
 + "\r\n");

A call to the TINIOS class’s uptimeMillis() method returns the number
of milliseconds that have elapsed since the TINI booted up. The page dis-
plays the time in days, hours, minutes, and seconds. To obtain the total
number of seconds, divide uptimeMillis() by 1000.

 long totalSeconds = TINIOS.uptimeMillis()/1000;

 For the number of days, divide by the number of seconds per day:

 long days = totalSeconds / 86400;

For the number of hours, divide by the number of hours per day and use
modulus division to subtract any full days:

 long hours = (totalSeconds /3600) % 24;

For the number of minutes, divide by the number of minutes per day and
use modulus division to subtract any full hours:

 long minutes = (totalSeconds / 60) % 60;

For the number of seconds, use modulus division to subtract any full min-
utes:

 long seconds = totalSeconds % 60;

A series of out.print statements sends the page’s contents to the requesting
host. The page consists of blocks of static text, plus the values of the four
variables inserted at the appropriate locations in the page. The out.print
statements use the + operator to concatenate multiple String constants. This
method keeps the code readable while limiting the number of writes to the

Serving Web Pages with Dynamic Data

 263

PrintStream object. The four variables each have their own out.print
statements, however. This is because concatenating String variables uses
large amounts of memory and processing power in the TINI. String con-
stants don’t have this effect, so concatenating these has no ill effects.

 out.print("<html>"
 + "<head> <title> "
 + "Real-time Data Demo "
 + "</title> </head>"
 + "<body>"
 + "<h1> Real-time Data Demo</h1>"
 + "<p> This TINI has been running for:</p>"
 + "<p> days: ");
 out.print(days);
 out.print(" </p>"
 +"<p>"
 + "hours: ");
 out.print(hours);
 out.print(" </p>"
 + "<p>"
 + "minutes: ");
 out.print(minutes);
 out.print(" </p>"
 + "<p>"
 + "seconds: ");
 out.print(seconds);
 out.print (" </p>"
 + "</body>"
 + "</html>");
 } // end sendWebPage()

Sending an Error Page

If the connected host sends a request for a non-existent page or a request
other than GET, the sendErrorPage method uses a series of out.print
statements to return an error code and a page that displays an error message.
The errorMessage parameter contains the message.

 private void sendErrorPage(PrintStream out,
 String errorMessage) throws IOException
 {

The first text sent is the response’s start line containing the error message
and Content-Type header, followed by the required blank line.

 out.print("HTTP/1.0 ");

Chapter 6

264

 out.print(errorMessage);
 out.print("\r\n"
 + "Content-Type: text/html\r\n"
 + "\r\n");

Another series of out.print statements then sends a Web page that dis-
plays the error message.

 out.print("<html>"
 + "<head><title>");
 out.print(errorMessage);
 out.print("</title></head>"
 + "<body>"
 + "<h1>");
 out.print(errorMessage);
 out.print("</h1>"
 + "</body>"
 + "</html>");
 } // end sendErrorPage
} // end RealTimeWebPage

Running the Server

As in the Rabbit example, you can request the TINI’s Web page by entering
its IP address, IP address and file name, or domain name (if available) in a
browser’s Address text box.

These examples show two different but equally useful ways to serve Web
pages with dynamic data. Chapter 7 expands on this topic by showing two
ways to create Web pages that can respond to user input in addition to dis-
playing dynamic content.

In Depth:
Protocols for Serving Web Pages

The examples in this chapter showed how Web browsers use the hypertext
transfer protocol (HTTP) to request Web pages, and the Web pages them-
selves are encoded using the hypertext markup language (HTML). In addi-
tion, some pages use server-side include (SSI) directives to enable a Web
page to display dynamic data or to add other capabilities not available with
HTML alone.

Serving Web Pages with Dynamic Data

 265

This section has more details about HTTP, HTML, and SSI, with the focus
on how embedded systems can use each in serving pages with dynamic con-
tent.

Using the Hypertext Transfer Protocol
HTTP is one of many standard application-level protocols used in network
communications. Figure 6-5 shows the location of HTTP in a network pro-
tocol stack. Although in theory an HTTP communication can use any reli-
able protocol to reach its destinations on a network, in practice just about all
network stacks pass HTTP communications through TCP and IP layers. An

Figure 6-5: HTTP is an application-level protocol layer communicates with the
Ethernet driver and either a UDP or TCP layer or the application layer.

Chapter 6

266

application that uses HTTP may be a Web browser, which requests Web
pages, or a Web server, which returns Web pages on request.

Anyone who has browsed the Internet has used HTTP. When a browser
sends a request for a Web page onto the network, the request contains a
URL that identifies the location and file name of the page. Chapter 4
described how a network uses the information in the URL to determine
where to route a communication.

On learning the IP address that is hosting the desired Web page, the client
requests to open a TCP connection with the computer at that address. By
default, Web servers serve pages on port 80. If a server is using a different
port number, the URL specifies the number, as explained in Chapter 4.
When the connection has been established, the browser sends a message
containing an HTTP request for a page, and the receiving computer
responds by serving, or sending, the Web page to the requesting computer
over the TCP connection.

A benefit of using Web pages to provide information is that the browser
interface is universal. If you place a Web server on the Internet, anyone with
a browser and an Internet connection can view the server’s pages. Search
engines make it possible for users to find your page even if they don’t know
the IP address or domain name. Web pages don’t have to be on the Internet,
however. You can make a page available only within a local network. If
desired, you can also restrict access by specifying what IP addresses can
access a page or by requiring a password to access the page. In any case, you
don’t have to limit communications to users who are using specific hardware
or software.

As the examples in Chapter 7 show, a server can also receive information
from a browser. A Web page can enable users to send information to the
computer that is serving a page, and the computer can use this information
for any purpose.

HTTP Versions
HTTP version 1.1 is specified in RFC 2616: Hypertext Transfer Protocol --
HTTP/1.1. RFC1945 contains the previous versions, HTTP 1.0 and 0.9.

Serving Web Pages with Dynamic Data

 267

Version 1.1 adds capabilities for conserving network bandwidth, improving
security and error notification, enabling clients to specify preferred lan-
guages or character sets, and allowing more flexible buffering by dividing
data into chunks.

Many embedded systems serve small and simple Web pages. These systems
may gain little benefit in supporting HTTP 1.1 and thus may use 1.0 for
simplicity. HTTP 1.0 servers must also respond appropriately to requests
from 0.9 clients. A browser that supports HTTP 1.1 should have no trouble
communicating with a 1.0 server. Dynamic C’s HTTP server complies with
HTTP 1.0. The Tynamo Web server used in Chapter 7’s TINI examples
implements the required elements in HTTP 1.1.

Probably the main reason an embedded system might use HTTP 1.1 is its
support for persistent connections, which can reduce the number of connec-
tions the server must open and close. With HTTP 1.0, each request requires
a new connection. If a client requests a Web page that contains several links
to images, the request for the page as well as each request for an image
requires its own connection, which in turn requires the server and client to
do the handshaking to open and close each connection. Requesting multiple
pages within a short time also requires a new connection for each page. In
contrast, with HTTP 1.1, the default behavior is persistent connections,
where a connection is left open until either the client or server determines
that the communication is complete or the server closes the connection after
a period of no activity.

The RFC documents spell out the minimum capabilities that an HTTP
server must have. The requirements vary with the HTTP version.

Elements of an HTTP Message
An HTTP message consists of an initial request or status line, optional mes-
sage headers, a blank line, and an optional entity body. (HTTP 0.9 doesn’t
support status lines or headers.)

HTTP supports two types of messages, requests and responses. A client
sends a request to ask a server for a resource, and the server returns a
response containing the resource or status information.

Chapter 6

268

Requests

An HTTP 1.0 request must contain at least two lines: the request line and a
blank line. Some requests also have one or more message headers between
the request line and the blank line, and some requests have an entity body
following the blank line. Here is an example request for the file /index.html
from the host at www.example.com:

GET /index.html HTTP/1.0\r\n
Host: www.example.com\r\n
Accept: */*\r\n
Connection: close\r\n
\r\n

Each line in the request terminates in \r\n, which is a pair of escape
sequences equivalent to a carriage return, or return to the beginning of the
line (\r), followed by a line feed, or drop to a new line immediately below
the current line (\n). Escape sequences provide a way of expressing text for-
matting commands such as these using plain text.

The Request Line

In the following request line:

GET /index.html HTTP/1.0

GET is a method that tells the server that the client is requesting a resource
from the server. The HTTP/1.0 in the request line tells the server that the
highest version of HTTP the client supports is 1.0.

/index.html is the name and path of the resource the client is requesting
from the server. The “/” indicates that the file is in the server’s root direc-
tory. The server’s root directory may be, but doesn’t have to be, the same as
the root directory in the system’s file system. For example, a server may
define its root directory as /http-root. Clients can then access files in
/http-root and its subdirectories (such as /http-root/images), but not files in
other directories under the system’s root directory (such as /private).

A GET request often contains only the file name and path, but an HTTP
1.1 server must also accept a request that contains a full URL such as this:

GET http://www.Lvr.com/index.html HTTP/1.1

Serving Web Pages with Dynamic Data

 269

On receiving a page that includes images, the client typically sends a GET
request for each image.

In addition to the GET method, HTTP 1.0 and later define the HEAD and
POST methods (Table 6-1). HEAD is similar to GET except that the server
returns only the headers it would send in responding to a GET request for
the resource, but not the resource itself. The POST method enables a client
to send data to a resource on the server. The server passes the data received
in the message body to the program, process, or other resource specified in
the request line. The named resource uses the data. A common use for
POST is to enable users to send data entered on a form to a CGI program,
which processes the data and sends a response to the client. (Chapter 7 has
more about CGI.) But a POST request can specify any resource, and the
resource can use the data in any way.

The HTTP 1.1 standard says that all general-purpose servers must at mini-
mum support the GET and HEAD methods.

HTTP 1.1 defines additional methods. One that embedded systems might
use is PUT, which like POST, enables the client to send data to the server.
But instead of naming a resource to receive the message body’s data, a PUT
request names a file or other entity where the server should store the message
body’s data. PUT can be useful for file transfers, where the request line
names the file on the server where the server should store the received data.

HTTP 0.9 supports only the GET method, and the request line includes
only the request and the URL, not the HTTP version. If no HTTP version
is specified, the server should assume it’s version 0.9.

Methods specified in requests must be upper case and followed by a space.

Headers

A message may contain headers between the request line and the blank line.
A header can contain additional information about the request, such as the
number of data bytes in the message body, or more general information,
such as a date. Headers generally have the following format:

header_name: data

Chapter 6

270

The HTTP standard specifies valid header names and what data each header
provides. For example, a client might include an Accept header in a request
for a Web page to inform the server of what types of content the client can
accept. In this example, the client accepts images in .gif and .jpeg formats:

Accept: image/gif, image/jpeg

This means that the client accepts all media types:

Accept: */*

If an HTTP 1.0 request includes data in the message body, the standard
requires a Content-Length header that specifies the number of bytes in the
message body:

Content-Length: 256

HTTP 1.1 also requires requests that include data in the message body to
transmit the content length, but supports additional ways of doing so.

This HTTP 1.1 header:

Connection: close

indicates that the current connection is not persistent and should be closed
after the response is sent. An HTTP 1.1 host that doesn’t support persistent
connections must send this header with every connection. HTTP 1.0 hosts
don’t support persistent connections or this header, which they can ignore if
received.

Table 6-1: Selected HTTP Methods Used in Requests
Method HTTP Version

Introduced In
Description

GET 0.9 Retrieve the specified Web page or other information

HEAD 1.0 Retrieve only the HTTP headers for the specified informa-
tion (not the message body)

POST 1.0 Pass the information in the message body to the resource
identified in the request line

PUT 1.1 Store the information in the message body in the file or
other entity identified in the request line

Serving Web Pages with Dynamic Data

 271

An Authorization header enables a client to send authentication information
such as a user name and password, usually after receiving a response with a
WWW-Authenticate header, as described in Chapter 10.

An HTTP 1.1 request must include a Host header in each request. The
Host header specifies the Internet host name (such as www.Lvr.com) of the
resource being requested. The requirement for a Host header was added in
the hope of conserving IP addresses by making it easier for a single IP
address to support multiple host names. For example, a server might host
both www.example.com and www.Lvr.com at the same IP address. On receiv-
ing a GET request for a default page, the server’s HTTP software can exam-
ine the Host header to find out which host’s page the client is requesting.
Without the Host header, each host name needs its own IP address.

When a request is directed to a port other than the protocol’s default port,
the Host header includes this information as well:

Host: www.Lvr.com:5501

If a server doesn’t have an Internet host name, the request must include a
Host header with an empty value. The HTTP 1.1 standard says that when
an HTTP 1.1 server receives an HTTP 1.1 request that doesn’t include a
Host header, the server must return a status code of 400 (Bad Request).
HTTP 1.0 doesn’t support the Host header, so HTTP 1.0 requests don’t
include it and 1.0 servers can ignore it if received.

The Message Body

The message body contains data the client is providing to the server, such as
the data in a POST or PUT request.

Responses

On receiving an HTTP request, the server returns a response. An HTTP 1.0
response must contain at least two lines: a status line and a blank line to
indicate the end of the headers. Some responses also have one or more mes-
sage headers between the status line and the blank line, and some responses
have a message body following the blank line. HTTP 0.9 servers return the

Chapter 6

272

message body only. Here are the status line and headers sent in reply to a
request for a Web page:

HTTP/1.0 200 OK\r\n
Date: Wed, 09 Jul 2003 12:02:51 GMT\r\n
Content-Type: text/html\r\n
Content-Length: 432\r\n
\r\n

As with requests, each line in the response terminates with a carriage return
and line feed (\r\n).

The Status Line

The status line contains the version of HTTP supported by the server and a
status code and text phrase that give the result of the request. On success,
this is the status line from an HTTP 1.0 server:

HTTP/1.0 200 OK

If the client requests a non-existent file, the response is this:

HTTP/1.0 404 Not Found

The HTTP standard includes a series of status codes and suggested text
phrases to use with them.

Response Headers

A response can use headers to send additional information about a response
or to return general information about the message or connection.

The HTTP 1.0 standard says that the header for a response that contains a
message body should include a Content-Length field that gives the length of
the message body in bytes:

Content-Length: 14092

If the Content-Length field isn’t included, the closing of the connection
determines the length of the message body.

A Date field indicates when the response message was generated (not when
the Web page or other resource was created):

Date: Thu, 08 May 2003 02:45:58 GMT

Serving Web Pages with Dynamic Data

 273

If possible, servers should include a Date field in responses. However, a
server that doesn’t have a reasonably accurate clock must not include a Date
field. The preferred format for the contents of the Date field is the
rfc1123-date format specified in the HTTP 1.1 standard and RFC 1123.
This format uses a fixed-length field for each element in the date. The exam-
ple above uses this format. A computer that receives a response without a
date can add a date to a received response if needed.

When a client requests a password-protected resource, the server can return
a WWW-Authenticate header to request the client to provide a user name,
password, or other authentication information before gaining access to the
resource. Chapter 10 has more about using this header.

The HTTP standards specify the headers supported by each HTTP version.

Message Body

The message body contains any data the response wants to return to the cli-
ent. In a response to a GET request, the message body contains the
requested Web page or other resource.

Using HTTP with Other Client Applications

The main use for HTTP is for communicating with Web browsers, but
other applications can send HTTP requests as well. For example, to retrieve
and store information from a Web page, you could write an application that
requests a page and then searches the response for desired information. A
timer routine can trigger a page retrieval periodically.

Inside the Hypertext Markup Language
Related to HTTP is the Hypertext Markup Language (HTML) used in Web
pages. HTML defines codes that specify how text and images appear on a
Web page.

The HTML specification is available from the World Wide Web Consor-
tium (W3C), at www.w3.org. The members of W3C are organizations inter-
ested in developing common protocols for the World Wide Web. HTML
version 4.01 was released in 1999. Rather than continuing to update the

Chapter 6

274

HTML specification, W3C has switched development to Extensible HTML
(XHTML), a more flexible and powerful language whose roots are in
HTML. For basic Web pages, you don’t need anything beyond what’s avail-
able in HTML. It’s possible to create HTML Web pages that also comply
with the XHTML specification.

Creating HTML Pages

You can create HTML pages using any text editor, including Windows
Notepad. Or you can use a Web-design application such as Macromedia
Inc.’s Dreamweaver, which enables you to create pages visually using tool-
bars and menus to add page elements and formatting. The application
inserts the appropriate HTML code as needed. Some embedded systems
serve very basic pages that require little in the way of fancy formatting or
other features. When this is the case, using a text editor to create the pages is
a reasonable choice. But even if you use a specialized application to create
your pages, a little knowledge of HTML can be useful in ferreting out the
inevitable problems that crop up.

The conventional extension for HTML-encoded files is .html or .htm.

This book provides only the most basic introduction to HTML. For more
detail, refer to the specification or a book such as HTML 4 for the World
Wide Web by Elizabeth Castro (Peachpit Press).

Using Tags

Figure 6-6 shows a basic Web page that displays text and an image. Listing
6-7 is the file that contains the HTML code for the page. HTML tags spec-
ify the text formatting and placement of the image. Each tag contains an
HTML element enclosed in angle brackets (<>). Some elements have one or
more required or optional attributes, which provide additional information
about the element. For example, in this tag:

<input type="submit" value="Submit">

the element is input, and type and value are attributes that name the
input type and the text the input button displays.

Serving Web Pages with Dynamic Data

 275

HTML elements and attributes are case-insensitive. However, elements and
attributes in XHTML files must use lower case, so for XHTML compliance,
use lower case for elements and attributes.

An HTML file can contain blank lines, indenting, and spaces between ele-
ments as needed for readability.

Everything between the HTML start (<html>) and end (</html>) tags is
HTML-encoded text. The HTML start and end tags are optional.

The HTML-encoded text has two sections, the head and body.

The HEAD Section

The HEAD section contains information that doesn’t display on the page.
Everything between the <head> and </head> tags is in the HEAD section.

In the HEAD section, the <title> and </title> tags surround a title that
displays in the browser window’s title bar. The title also appears in the
browser’s Bookmarks or Favorites list if you add the page to the list.

Figure 6-6: This basic Web page displays text and an image.

Chapter 6

276

The BODY Section

Everything between the <body> and </body> tags is in the BODY section,
which contains the material that appears in the browser’s main window.

Ordinary paragraph text on a Web page begins with the paragraph start tag
(<p>). Each paragraph requires a start tag. HTML doesn’t require closing
paragraph tags (</p>), but XHTML does, so include closing tags for
XHTML compliance.

Header tags provide a way to specify that paragraph text should display
more prominently than ordinary text. In Figure 6-6, the word Hello is dis-
played as a level-1 header, enclosed by the tags <h1> and </h1>. A page can
have up to six levels of headers (<h1> through <h6>). The font and size of
the header text vary with the browser and how the user has configured it.

Many tags have required or optional attributes, which provide additional
information to the command. The following tag tells the browser to request
and display the image contained in the file earth.gif:

The img tag includes two attributes. A src attribute specifies the file name
and the path to the file, relative to the Web site’s root directory. For browsers
that don’t display images, the alt attribute specifies the text to display in
place of the image.

<html>

<head>
 <title>Hello World</title>
</head>

<body>
 <h1> Hello </h1>
</body>

</html>

Listing 6-7: The HTML code for Figure 6-6’s Web page.

Serving Web Pages with Dynamic Data

 277

The text that follows an attribute’s equals sign is the attribute’s value. In
HTML, not all values need to be enclosed in quotation marks. XHTML
requires quotation marks for all attribute values, so include the quotation
marks for XHTML compliance.

Hyperlinks

The formatting of text and placement of images are useful in designing
pages, but ultimately what made HTML and the Web popular was clickable
hyperlinks to other pages. Here is an example:

World Wide Web Consortium

The tag specifies that what follows is a link to another page. The text in
quotes that follows the HREF attribute in the tag (http://www.w3.org in
the example) names the URL to link to. The label that follows the <a> tag
(World Wide Web Consortium in the example) is the text users will see on
the Web page. The tag ends the hyperlink.

The formatting that indicates a clickable link varies with the browser and
how it’s configured, but typically, links are underlined. With underlined
links, for the above example, the browser would display only this label:

World Wide Web Consortium

Clicking the label causes the browser to send a request for the default Web
page (since no file name is specified) at the host www.w3.org.

Using Tables to Format Text and Images

A popular way of formatting information on Web pages is with the use of
tables. An HTML table specifies the placement of cells in rows and col-
umns. Each cell can contain page elements such as text, an image, a hyper-
link, or a combination. A table makes it easy to ensure that the page
elements line up as intended on the page.

Figure 6-8 shows a Web page containing basic HTML table, and Listing 6-9
is the page’s HTML code. Everything between these tags:

<table frame="border" border="2" rules="all">
</table>

Chapter 6

278

is part of the table. In the table tag, the frame="border" attribute speci-
fies that the table will display a border around its perimeter. The bor-
der="2" attribute specifies a border width of 2 pixels. The rules="all"
attribute specifies that the rows and columns will display rules, or lines that
delineate the rows and columns in the table.

Everything between <tr> and </tr> is in a table row. Everything between
<td> and </td> is data that appears in a table cell in a row. Figure 6-8’s
table has three rows, with two cells in each row.

The HTML specification has more about tables and the options for format-
ting them.

Refreshing a Page Automatically

One limitation of Web servers is that the server won’t send a page unless a
client requests it. For example, a server may provide a Web page with cur-
rent weather information. After a client has requested the page, the page dis-

Figure 6-8: HTML tables provide a way of formatting information on a Web
page.

Serving Web Pages with Dynamic Data

 279

played in the browser doesn’t update automatically if the conditions change.
If a browser wants to continuously display the current conditions, it must
periodically request a new, refreshed page.

You can request the latest version of a page by clicking the Refresh icon
available on most browsers. It’s also possible to add code that will cause a
browser to refresh the page periodically without user intervention. Placing
the following line of HTML code in a Web page’s HEAD section will cause
the browser to send a request for the page every 300 seconds:

<HTML>

<head> <title> Basic HTML Table </title> </head>

<body>

<h1> Basic HTML Table </h1>

<table frame="border" border="2" rules="all">

<tr>
<td> Parameter </td>
<td> Value </td>
</tr>

<tr>
<td> Minimum Temperature </td>
<td> 0 </td>
</tr>

<tr>
<td> Maximum Temperature </td>
<td> 212 </td>
</tr>

</table>

</body>

</html>

Listing 6-9: HTML code for ‘s Web page, which displays a table.

Chapter 6

280

<meta http-equiv="Refresh" Content="300">

The Content attribute specifies the number of seconds to wait before
refreshing. Most browsers support this method of automatic refresh, though
they may include an option to disable it.

Server Side Include Directives
A Server Side Include (SSI) directive requests a server to perform an action
before serving a Web page that contains the directive. The capabilities of
SSIs are limited but convenient for some applications. The Rabbit example
earlier in this chapter used SSI directives to retrieve the values of variables to
display on a Web page.

Server Side Includes were introduced by the Apache Group, which was
formed to develop Apache HTTP Server, a popular open-source application
used by many Web servers that run under UNIX, Windows, and other oper-
ating systems. Server Side Includes are now supported by many Web servers,
including some embedded systems that function as Web servers. A server
that supports Common Gateway Interface (CGI) programs is likely to sup-
port SSI as well. The documentation for the Apache HTTP Server includes
documentation for SSI and is available from the Apache Software Founda-
tion at www.apache.org.

Basics

As explained earlier in this chapter, in Web pages, SSI directives use the
same delimiters as HTML comments (<!-- and -->). Before serving a page
that contains a directive supported by the server, the server executes the
directive and replaces the delimiters and everything between them with the
result of the directive. (Some directives, such as a #config directive that
specifies formatting for other directives, have no result to display.)

Spacing is critical in SSI directives. There must be no space between the
opening delimiter (<!--) and the directive’s number sign (#), and there
should be a space immediately preceding the closing delimiter (-->).

Because the server does all of the work of implementing the SSI directives,
the requesting computer and its browser don’t need to know anything about

Serving Web Pages with Dynamic Data

 281

SSI. The browser never sees the directives, just the results placed in the
received Web pages.

Using Directives

Rabbit Semiconductor’s Dynamic C supports three SSI directives: #echo,
#include, and #exec.

#echo

The #echo directive inserts the current value of a variable in a requested
Web page. If your server supports this directive, it’s an obvious choice for
displaying real-time information. To insert the value of the variable tempera-
ture, a Web page might contain this code:

<p>The temperature is <!--#echo var="temperature" --></p>

When the server serves the page, it retrieves the value of the temperature
variable and replaces the <!-- and --> delimiters and everything between
them with this value. If the temperature variable equals 72, the paragraph
appears on the page as:

The temperature is 72

The variable specified in the directive must be defined as an environment
variable on the server. In Dynamic C, you define environment variables by
adding an HTTP_VARIABLE entry for the variable in an HttpSpec structure,
as shown in the Rabbit example earlier in this chapter. Other servers use dif-
ferent methods for defining environment variables.

In addition to displaying text, you can use #echo to display an image that
reflects real-time status or conditions. In the example below, an HTML img
tag causes the Web page to display the image contained in the file whose
name is stored in the string variable led1_image:

<img src="<!--#echo var="led1_image" -->">

The server can set led1_image to different file names, such as led_on.gif
and led_off.gif, depending on the current state of an LED at the server.
On receiving a request for the Web page, the server inserts the current value
of led1_image, and the Web page displays an image that matches the
LED’s current state.

Chapter 6

282

The complement to #echo is #set, which sets the value of a variable.
Dynamic C doesn’t support #set, however.

#include

The #include directive causes the server to place the contents of the specified
file in the Web page. The following #include directive:

<pre>
<!--#include file="myfile.txt" -->
</pre>

places the contents of myfile.txt in a Web page, at the location of the direc-
tive in the page. If the included file isn’t HTML-encoded, precede the direc-
tive with an HTML <pre> tag, which tells the browser to maintain the line
breaks and spacing in the file’s contents. The </pre> tag ends the prefor-
matted content.

#exec

The #exec directive can execute a command or CGI program and place the
result in the Web page being served. In Dynamic C’s implementation of
#exec, the functions that the directive can execute must be specified in an
HTTPSPEC_FUNCTION item in an HttpSpec structure.

The #exec directive can be a security risk if the system software doesn’t
have appropriate restrictions on what the directive can execute. For example,
a Web site might display a guest book of comments from Web-site visitors.
If a malicious visitor enters an #exec directive in the guest book, when a cli-
ent requests the Web page containing the guest book, the server will parse
the page for SSI directives and will attempt to execute the #exec directive,
with possibly disastrous results.

Identifying Files that use Server Side Includes

The security issues with #exec directives suggest that there is good reason to
limit which files a server parses for SSI directives. If the server doesn’t look
for directives, any directives that happen to be present won’t execute and the
browser will ignore them as HTML comments. Another reason to limit the

Serving Web Pages with Dynamic Data

 283

files a server parses for SSI directives is to save the server from wasting time
needlessly looking for directives on pages that don’t have any.

The usual way to identify pages that use SSI is to give the filenames the
extension .shtml, while plain HTML files use .htm or .html.

In Dynamic C, the HttpType structure specifies a handler to use with each
supported file extension. In the Dynamic C example below, files with the
extensions .shtml and .html each use a different handler. The .shtml handler
parses the files for SSI directives, while the .html handler doesn’t.

const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler},
 { ".html", "text/html", html_handler}
};

Other Web servers use other methods for specifying the handlers to use with
different file types, but the concept is the same.

Chapter 6

284

Serving Web Pages that Respond to User Input

 285

Chapter 6 showed how a Web page can use HTML to display text and
images, including real-time data. Many embedded Web servers also need to
display pages that can respond to user input. For example, a Web page
might display a virtual control panel that enables users to start, stop, or
modify processes controlled by an embedded system. Or a page might dis-
play a form that enables users to enter or select values for use in configuring
or controlling a device.

‘Two technologies for enabling Web pages to respond to user input are com-
mon gateway interface (CGI) programming and Java servlets. CGI pro-
grams and Java servlets can do the following:

• Retrieve the current values of variables and place them on a Web page to
return to a client.

• Receive and act on data provided by a client who clicks a hyperlink or
submits an HTML form.

Chapter 7

286

• Do just about anything that an ordinary program is capable of, including
making calculations, performing logical operations, and accessing I/O
ports.

This chapter presents examples of devices that use CGI programming and
Java servlets to enable Web pages to respond to user input. A Rabbit module
uses CGI programming and a TINI uses Java servlets. The In Depth section
of the chapter has more detail about what’s involved in using these technolo-
gies, plus examples of how a server can serve forms and respond to form data
submitted by users.

Quick Start:
Device Controller

What method to use to enable a Web page to accept user input depends in
part on the programming language and the system’s capabilities. For the
Rabbit, the HTTP server in Dynamic C’s http.lib library supports Common
Gateway Interface (CGI) programming. For the TINI, the addition of a
servlet engine enables running servlets written in Java.

The browsers that display pages that request user input don’t require any
special capabilities. At the browser, a link or button that requests a server to
take an action is just like any other hyperlink. A Web page that accepts user
input on a form must support forms, but it’s rare to find a browser these
days without support for forms. On receiving the user’s input, the server
performs the processing and returns a Web page that may incorporate out-
put from the program code the server has just executed.

The Device Controller’s Web Page
The device-controller examples in this section use LEDs to represent pro-
cesses the system is controlling. The examples can serve as prototypes for
embedded systems that accept user input from Web pages for any purpose.

In the examples, the servers host a Web page that displays a virtual control
panel (Figure 7-1). The Web page displays two LEDs and two buttons that

Serving Web Pages that Respond to User Input

 287

users can click to turn the LEDs on and off. Both the Rabbit and TINI can
host this Web page, though they use different technologies to respond to the
button clicks.

The images of LEDs on the Web page match the states of the LEDs in the
embedded system at the time the browser requested the Web page. When a
user viewing the page clicks a button, the Web server receives a message con-
taining the name of a CGI function or servlet to execute. The server toggles
the state of the selected LED and then either returns a Web page containing
updated images and text or returns a code that advises the client to request
an updated page.

Figure 7-1: This Web page is a virtual control panel that enables users to turn
LEDs on or off by clicking a button.

Chapter 7

288

Rabbit Device Controller
The first example uses the same RabbitCore RCM3200 module as the previ-
ous Rabbit examples. Listing 7-1 shows the HTML code for Figure 7-1’s
Web page.

On the page, the images of the two LEDs and their buttons are in table cells
so that each button lines up below the LED it controls. Each button is a
hyperlink. When a user viewing the page clicks a button, the server receives
a message containing the text /led1toggle.cgi or /led2toggle.cgi. On the server,
these file names are associated with CGI functions.

The page also uses SSI #echo directives, as described in Chapter 6, to dis-
play images of lit or unlit LEDs and text descriptions of the LEDs’ states
(“on” or “off ”).

The LEDs are controlled by bits 6 and 7 of Port G on the Rabbit 3000
CPU. The LEDS are included on Rabbit Semiconductor’s prototyping
board for the RCM3200.

Program Code

In the RCM3200, a Dynamic C program serves Figure 7-1’s Web page and
responds to button clicks that send HTTP requests to execute CGI func-
tions. Much of the code is similar to the code in Chapter 6’s Rabbit exam-
ple.

Initial Defines and Declarations

As explained in Chapter 5, TCPCONFIG specifies a configuration that sets the
IP address, netmask, and gateway IP address values:

#define TCPCONFIG 1

The CGI functions use the values in the REDIRECTHOST and REDIRECTTO
constants to tell the client’s browser what Web page to request to display the
result of a button click. If the Rabbit is behind a router that uses NAT and if
you want the Web page to be accessible beyond the local network, REDI-
RECTHOST must be the router’s public IP address or domain name.

#define REDIRECTHOST _PRIMARY_STATIC_IP
#define REDIRECTTO "http://" REDIRECTHOST "/index.shtml"

Serving Web Pages that Respond to User Input

 289

The #memmap xmem directive causes all C functions not declared as root to
be stored in extended memory. The dcrtcp.lib library supports TCP/IP.
The http.lib library supports HTTP functions.

#memmap xmem
#use "dcrtcp.lib"

<html>
<head>
 <title>Device Controller Demo</title>
</head>

<body>

<h1>Device Controller Demo</h1>

<table>
 <tr>
 <td> <img SRC="<!--#echo var="led1_image" -->"> </td>
 <td> <img SRC="<!--#echo var="led2_image" -->"> </td>
 </tr>
 <tr>
 <td>
</td>

 <td>
</td>

 </tr>
</table>

<p>LED 1 is <!--#echo var="led1_state" --> .</p>
<p>LED 2 is <!--#echo var="led2_state" --> .</p>

<p>Click a button to turn an LED on or off.</p>
<p>The Web page will update to show the current states of the
LEDs.</p>

</body>
</html>

Listing 7-1: This Web page contains links to CGI programs that the Rabbit
executes before serving Figure 7-1’s page.

Chapter 7

290

#use "http.lib"

The #ximport directive retrieves a file from the PC being used for project
development, stores the file’s length and contents in the Rabbit’s extended
memory, and associates a symbol with the file’s address in memory. This
application uses one Web page and three image files. You must replace the
file paths with paths that are valid for the files in your development PC.

#ximport "c:/rabbitserver/index.shtml" index_html
#ximport "c:/rabbitserver/ledon.gif" ledon_gif
#ximport "c:/rabbitserver/ledoff.gif" ledoff_gif
#ximport "c:/rabbitserver/button.gif" button_gif

An HttpType structure specifies the handler to use with different file exten-
sions. If the handler is NULL, the server uses the default handler, which sends
the file’s contents unaltered. For the Device Controller application, the Web
page uses the .shtml handler because the page contains SSI directives.
Requests for files with .cgi and .gif extensions use the default handler. The
structure below also specifies the default handler for HTML files.

const HttpType http_types[] =
{
 { ".shtml", "text/html", shtml_handler},
 { ".html", "text/html", NULL},
 { ".cgi", "", NULL},
 { ".gif", "image/gif", NULL}
};

The strings ledon_image and ledoff_image store the names of files that
contain images of lit and unlit LEDs ("ledon.gif" and "ledoff.gif").
The string variables led1_image and led2_image each contain a file name
for the image that matches the corresponding LED’s state. The string vari-
ables led1_state and led2_state hold the text "on" or "off" as appro-
priate, to match the state of an LED.

const char ledon_image[] = "ledon.gif";
const char ledoff_image[] = "ledoff.gif";

char led1_image[15];
char led2_image[15];

char led1_state[4];
char led2_state[4];

Serving Web Pages that Respond to User Input

 291

Controlling the LEDs

Each LED has a function (led1toggle() and led2toggle()) that exe-
cutes when the server receives a message indicating that a user has clicked
that LED’s button on the Web page. When called, the function receives a
pointer to an HttpState structure that contains information about the cur-
rent connection and request.

This is the code for LED1:

int led1toggle(HttpState* state)
{
 if (BitRdPortI(PGDR, 6) == 0) {
 // When the bit is 0, the LED is on, so turn it off.
 BitWrPortI(PGDR, &PGDRShadow, 1, 6);
 strcpy(led1_image,ledoff_image);
 strcpy(led1_state, "off");
 }
 else {
 // When the bit is 1, the LED is off, so turn it on.
 BitWrPortI(PGDR, &PGDRShadow, 0, 6);
 strcpy(led1_image,ledon_image);
 strcpy(led1_state, "on");
 }

 cgi_redirectto(state,REDIRECTTO);
 return 0;
}

Writing zero to a port bit that controls an LED turns the LED on, and writ-
ing 1 to the port bit turns the LED off. The routine for LED1 reads the
state of Port G, bit 6 and toggles the bit to the opposite state.

The BitRdPortI() function returns the value of a bit on one of the Rab-
bit’s internal ports. PGDR is Port G’s data register, and 6 is the number of
the bit to read.

The BitWrPortI() function writes a value to a bit in one of the Rabbit’s
internal ports. Again, PGDR is Port G’s data register. The second parameter,
PGDRShadow, is a variable that functions as a shadow register that contains
the last value written to the register. Shadow registers are useful for storing
the most recently written values to write-only registers. Program code can
then learn a bit’s value by reading the bit in the corresponding Shadow regis-

Chapter 7

292

ter. Port G has read/write access, but the BitWrPortI() function requires a
shadow register. The function’s third and fourth parameters are the value to
write (1) and the bit number to write to (6).

After writing to the port bit, the routine stores a file name ("ledon.gif" or
"ledoff.gif", as appropriate) in led1_image, and stores "on" or "off"
as appropriate in led1_state.

The call to the cgi_redirectto() function tells the server to return an
HTTP response containing a response code that advises the client to request
the URL stored in REDIRECTTO. In this application, the REDIRECTTO URL
is the same index.shtml page the browser displayed when the user clicked a
button. The newly retrieved page will contain updated images and text that
reflect the current values of the LEDs. The statement return 0 must follow
the call to cgi_redirectto().

The routine for LED2 is the same as the routine for LED1, except that it
references LED2’s port bit and variables:

int led2toggle(HttpState* state)
{
 if (BitRdPortI(PGDR, 7) == 0) {
 // When the bit is 0, the LED is on, so turn it off.
 BitWrPortI(PGDR, &PGDRShadow, 1, 7);
 strcpy(led2_image,ledoff_image);
 strcpy(led2_state, "off");
 }
 else {
 // When the bit is 1, the LED is off, so turn it on.
 BitWrPortI(PGDR, &PGDRShadow, 0, 7);
 strcpy(led2_image,ledon_image);
 strcpy(led2_state, "on");
 }

 cgi_redirectto(state,REDIRECTTO);
 return 0;
}

Specifying What the Web Server Can Access

As in Chapter 6’s example, an HttpSpec structure contains information
about the files, variables, and functions the Web server can access. The Web
page and three image files each have an HTTPSPEC_FILE entry in the struc-

Serving Web Pages that Respond to User Input

 293

ture. When a browser requests the file index.shtml or the server’s default file
("/"), the server serves the Web page stored at index_html. The four string
variables that hold file names and LED state information each have an
HTTPSPEC_VARIABLE entry. Two HTTPSPEC_FUNCTION entries associate the
names of the CGI programs (/led1toggle.cgi and /led2toggle.cgi)
with pointers to the functions led1toggle and led2toggle.

const HttpSpec http_flashspec[] =
{
 { HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL, NULL},
 { HTTPSPEC_FILE, "/index.shtml", index_html, NULL, 0,
 NULL, NULL},
 { HTTPSPEC_FILE, "/ledon.gif", ledon_gif, NULL, 0,
 NULL, NULL},
 { HTTPSPEC_FILE, "/ledoff.gif", ledoff_gif, NULL, 0,
 NULL, NULL},
 { HTTPSPEC_FILE, "/button.gif", button_gif, NULL, 0,
 NULL, NULL},

 { HTTPSPEC_VARIABLE, "led1_image", 0, led1_image,
 PTR16, "%s", NULL},
 { HTTPSPEC_VARIABLE, "led2_image", 0, led2_image,
 PTR16, "%s", NULL},
 { HTTPSPEC_VARIABLE, "led1_state", 0, led1_state,
 PTR16, "%s", NULL},
 { HTTPSPEC_VARIABLE, "led2_state", 0, led2_state,
 PTR16, "%s", NULL},

 { HTTPSPEC_FUNCTION, "/led1toggle.cgi", 0, led1toggle,
 0, NULL, NULL},
 { HTTPSPEC_FUNCTION, "/led2toggle.cgi", 0, led2toggle,
 0, NULL, NULL},
};

The main() Function

The program’s main() function begins by writing to Port G’s Data Direc-
tion Register (PGDDR) to configure bits 6 and 7 as outputs. Writing 1 to a
bit in the register configures the corresponding port bit as an output. The
program then reads the bits and stores the appropriate file names and text to
use on the Web page to reflect the LEDs’ states.

main()
{

Chapter 7

294

 WrPortI(PGDDR, NULL, 0xC0);

 if (BitRdPortI(PGDR, 6) == 0) {
 strcpy(led1_image,ledon_image);
 strcpy(led1_state, "on");
 } else {
 strcpy(led1_image,ledoff_image);
 strcpy(led1_state, "off");
 }

 if (BitRdPortI(PGDR, 7) == 0) {
 strcpy(led2_image,ledon_image);
 strcpy(led2_state, "on");
 } else {
 strcpy(led2_image,ledoff_image);
 strcpy(led2_state, "off");
 }

Before performing any network communications, the program must initial-
ize the TCP/IP stack and Web server. As in Chapter 6’s Rabbit example,
calling tcp_reserveport() can improve the Web server’s performance.

 sock_init();
 http_init();
 tcp_reserveport(80);

The main program loop has just one task, calling http_handler(). In a
real-world application, the main program loop would perform other tasks as
well.

 while (1) {
 http_handler();
 // Code to perform other tasks can be placed here.
 }
} // end main

Using the Device Controller

When the RCM3200 module runs this program, any computer that can
access the module over the network can request the Web page and view and
control the LEDs. Clicking a button on the Web page causes the browser to
send an HTTP request containing the name of a CGI function. The Rabbit
executes the named function and returns a response code that advises the

Serving Web Pages that Respond to User Input

 295

browser to refresh the page. In a similar way, you can enable users to control
other processes on an RCM3200 or similar module via a Web page.

TINI Device Controller
To serve Figure 7-1’s Device Controller Web page, a TINI can use Java serv-
lets. Servlets are components that can place real-time data on a Web page
and can receive and respond to user input, as well as performing just about
any task that an ordinary program might do. A Web server that runs servlet
code must have a servlet container, also called a servlet engine, which adds
support for servlets to the Web server.

The servlet examples in this book are written for use with the Tynamo Web
server, an HTTP server and servlet container from Shawn Silverman
(tynamo.qindesign.com). Tynamo is free for development and educational
use. Use in commercial products requires a license.

Another option for servlets on a TINI is Smart Software Consulting’s
TiniHttpServer (www.smartsc.com). TiniHttpServer is offered at no cost
under the GNU General Public License. The source code is available.

For the latest information on licensing terms for both products, see their
Web sites. The Web sites also have complete documentation, including links
to the necessary files to download and instructions for building the servers
and deploying them on a TINI module and other Java platforms.

The capabilities of any servlet engine will comply with the Java Servlet Spec-
ification, but the implementation details can vary with different products.

The Web Page

Listing 7-2 is the HTML source code for Figure 7-1’s Web page when it has
been served by a TINI using servlets. The Web page’s HTML code isn’t
stored in a separate file. Instead, the servlet generates the page on request.

The HTML code is much the same as in Listing 7-1’s code for the Rabbit,
with differences only in how the dynamic data is handled.

Chapter 7

296

<html>
<head>
 <title>Device Controller </title>
</head>

<body>
<h1> Device Controller Demo</h1>

<table>
<tr>
 <td></td>
 <td></td>
</tr>

<tr>
 <td>

 </td>
 <td>

 </td>
</tr>

</table>

<p>LED 1 is on.</p>
<p>LED 2 is off.</p>
<p>Click a button to turn an LED on or off.</p>
<p>The Web page will update to show the current states of the
LEDs.</p>

</body>

</html>

Listing 7-2: When a browser requests Figure 7-1’s Web page from a TINI
module running the Tynamo Web server and the DeviceController servlet code
in this chapter, the server inserts the file names and text descriptions to match
the LEDs’ states

Serving Web Pages that Respond to User Input

 297

The hyperlinks for the buttons each contain a string that names the servlet
being requested. This Java statement sends the text required to place the
image button.gif on a page and make it a hyperlink:

out.print("<p>

 "</p>);

In the hyperlink, /servlet/DeviceController matches a mapping in a
configuration file for the Web server. The mapping tells the server to run the
DeviceController servlet. Following the servlet mapping is a question
mark and a query string (button1) that identifies the button that was
clicked.

The server inserts the img tags ("ledon.gif", "ledoff.gif") and the text
descriptions of the LEDs (LED 1 is on., LED 2 is off.) in the page
each time the page is served. The images and text match the current states of
the LEDs.

LED1 is D1 on the DSTINIm400 module and is controlled by Port 5, bit 2
on the DS80C400 microcontroller. Figure 7-2 shows the interface. A logic
low on the port bit sinks current to turn the LED on, and a logic high cuts
off the current and turns the LED off. The 1-kilohm pull-up resistor limits

Figure 7-2: A port bit on the DSTINIm400 module controls an LED. A logic low
turns the LED on.

Chapter 7

298

current through the LED. LED2 is an optional LED that can interface in
the same way to Port 5, bit 3 on the ’80C400.

(The DS-TINI-1 module includes an LED controlled by Port 3, bit 5 on
the DS80C390 microcontroller. This interface is the reverse of the
’80C400’s circuit: a logic high turns the LED on, and a logic low turns it
off.)

The Servlet

The Device Controller servlet is a Java class with methods that serve Figure
7-1’s page and respond when users click the buttons on the page.

The class imports java.io classes to enable reading inputs and writing to
outputs. Two additional packages support servlets. The javax.servlet
package includes the Servlet interface and the abstract class Generic-
Servlet, which implements the Servlet interface. The javax.serv-
let.http package contains the abstract class HttpServlet, which adds
support for HTTP and Web applications. The TINI-specific class
com.dalsemi.system.BitPort enables accessing the port bits that con-
trol the TINI’s LEDs.

The DeviceController class extends the HttpServlet class of the
javax.servlet.http package.

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;
import com.dalsemi.system.BitPort;

public class DeviceController
 extends HttpServlet
{

Two BitPort objects, led1 and led2, correspond to port bits on the
’80C400 microcontroller The BitPort class’s readLatch method returns
the last value written to a port bit, which in turn indicates the state of the
LED controlled by the bit. (To read a port bit configured as an input, use
the read() method.)

 BitPort led1 = new BitPort(BitPort.Port5Bit2);
 BitPort led2 = new BitPort(BitPort.Port5Bit3);

Serving Web Pages that Respond to User Input

 299

Performing Tasks on Startup

The GenericServlet class includes an init() method that enables a serv-
let to perform tasks on startup. The init() method is called once, when
the servlet starts, and is optional. In this example, init() sets the LEDs’
port bits to turn the LEDs off.

 public void init() throws ServletException {
 led1.set();
 led2.set();
 } // end init()

Serving GET Requests

A received HTTP GET request causes the DeviceController class’s
doGet() method to be called. The DeviceController class overrides
HttpServlet’s doGet() method with a method that serves the Device
Controller Web page to the client. The doGet() method has two parame-
ters: request is an HttpServletRequest object that contains the client’s
request, and response is an HttpServletResponse object that contains
response information for the client.

A ServletException occurs if the server can’t handle the GET request for
some reason. An IOException occurs if there is an input or output error
when the servlet is handling the GET request. The doGet() method throws
ServletExceptions and IOExceptions.

 public void doGet
 (HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {

The getQueryString() method of the HttpServletRequest object
returns a string received from the client in the GET request. In this applica-
tion, the query string is the text button1 or button2 that appears after the
question mark in a button’s hyperlink.

 String query = request.getQueryString();

If the query string equals "button1", indicating that Button 1 was clicked,
the program calls the toggle() method to change the state of led1. The
method returns true if the toggled LED is on and false if the LED is off.

Chapter 7

300

If the query string doesn’t contain "button1", the program uses the Bit-
Port class’s readLatch() method to find out the last value written to
led1’s port bit. If the last value written was zero, the LED is on and ledOn
is set to true. If the last value written was 1, the LED is off and ledOn is set
to false.

In the same way, depending on the contents of the query string, the pro-
gram toggles or just reads the state of led2.

 boolean led1On;
 if ("button1".equals(query)) {
 System.out.println("Button 1 was clicked");
 led1On = toggle(led1);
 } else {
 led1On = (led1.readLatch() == 0);
 }

 boolean led2On;
 if ("button2".equals(query)) {
 System.out.println("Button 2 was clicked");
 led2On = toggle(led2);
 } else {
 led2On = (led2.readLatch() == 0);
 }

If there is no query string, such as when a user requests the page for the first
time, the code reads the states of both LEDs and toggles neither.

Two String variables (led1Image, led2Image) hold the names of image
files that correspond to the LEDs’ states. Two additional String variables
(led1State, led2State) hold the text "on" or "off" as appropriate for
the LEDs. After reading the LEDs’ states, the program sets the image and
text strings to match the LEDs.

 String led1Image;
 String led1State;
 if (led1On) {
 led1Image= "/ledon.gif";
 led1State = "on";
 }
 else {
 led1Image = "/ledoff.gif";
 led1State = "off";
 }

Serving Web Pages that Respond to User Input

 301

 String led2Image;
 String led2State;
 if (led2On) {
 led2Image= "/ledon.gif";
 led2State = "on";
 }
 else {
 led2Image = "/ledoff.gif";
 led2State = "off";
 }

A call to the class’s sendWebPage() method sends an updated Web page to
the client. The method uses the HttpServlet response object and the four
variables that indicate the LEDs’ states and image files.

 sendWebPage (response, led1Image, led2Image,
 led1State, led2State);
 } // end doGet()

Toggling an LED

The toggle() method toggles the state of a BitPort object. The method
returns a boolean value that indicates if the corresponding LED is on. The
value is false if the last value written to the LED was 1 and the LED is off,
and true if the last value written was zero and the LED is on.

 private static boolean toggle(BitPort bitPort) {
 if (bitPort.readLatch() == 0) {
 bitPort.set();
 return false;
 } else {
 bitPort.clear();
 return true;
 }
 } // end toggle()

Sending the Web Page

The sendWebPage() method writes a Web page to an output stream. The
method uses the HttpServlet response object and four variables that the
method inserts in the Web page. The method throws IOExceptions.

 private void sendWebPage (HttpServletResponse response,
 String led1Image,
 String led2Image,
 String led1State,

Chapter 7

302

 String led2State)
 throws IOException {

The setContentType() method of the HttpServletResponse object
sets the Content-Type field in the response’s HTML header:

 response.setContentType("text/html");

The getOutputStream() method of the HttpServletResponse object
returns an instance of a ServletOutputStream object. The ServletOut-
putStream class extends the java.io.OutputStream class and provides
an output stream for sending data to a client. You could use a PrintWriter
object instead, but a ServletOutputStream object requires less processing,
and thus is quicker. A series of out.print statements write the Web page’s
contents to the output stream. The servlet container automatically creates
and writes an HTTP header that precedes the page’s contents.

 ServletOutputStream out = response.getOutputStream();
 out.print("<html>"
 + "<head>"
 + "<title>Device Controller</title>"
 + "</head>"
 + "<body>"
 + "<h1>Device Controller</h1>");

Much of the HTML code is similar to the source code for the Web page in
the Rabbit Device Controller example. The differences are in how the server
gets the values of real-time variables and in how the server responds to but-
ton clicks.

The LED and button images are in a table to ensure they line up on the
page. The variables led1Image and led2Image each contain a filename,
"ledon.gif" or "ledoff.gif", as appropriate, to indicate the images the
browser should display for the LEDs.

Some of the text in the HTML code includes quotation marks. Because
quotation marks are also the delimiters for a string, any quotation mark
within a string must be preceded by a back slash (\). For example, many
HTML tags include attributes enclosed by quotation marks, such as

Serving Web Pages that Respond to User Input

 303

To write this line to the output stream, each quotation mark in the string
must be preceded by a back slash: out.print("<img

src=\"ledon.gif\">");

The back slash indicates that the quotation mark is part of the string and
not the string’s delimiter.

 out.print("<table>"
 + "<tr>"
 + "<td>"
 + "<img src=\"");
 out.print(led1Image);
 out.print("\">"
 + "</td>"
 + "<td>"
 + "<img src=\"");
 out.print(led2Image);
 out.print("\">"
 + "</td>"
 + "</tr>");

In the hyperlinks for the button images, /servlet/DeviceController is
a mapping that tells the server, via a configuration file, that DeviceCon-
troller is a servlet. When a user clicks a button on the Web page, the
browser returns either button1 or button2 to the TINI in the request’s
query string.

 out.print("<tr><td>");
 out.print("<a href=
 \"/servlet/DeviceController?button1\">
 ");
 out.print("</td><td>");
 out.print("<a href=
 \"/servlet/DeviceController?button2\">
 ");
 out.print("</td></tr></table>");

In addition to the LEDs’ images, two lines of text indicate the states of the
LEDs. The variables led1State and led2State each hold the text "on" or
"off" as appropriate, and out.print statements write the text to the out-
put stream.

 out.print("<p>LED 1 is ");
 out.print (led1State);
 out.print(".</p>"

Chapter 7

304

 + "<p>"
 + "LED 2 is ");
 out.print (led2State);
 out.print(".</p>"
 + "<p>"
 + "Click a button to turn an LED on or off."
 + "<p>"
 + "The Web page will update to show the
 current states of the LEDs."
 + "</p>"
 + "</body>"
 + "</html>");

The servlet container flushes and closes the output stream when the request
has been serviced, so there’s no need to do so in the servlet.

Loading and Running Servlets

In writing an ordinary Java program for use on a TINI, you compile the
program to one or more .class files and use the TINIConvertor utility to
convert the file(s) to a .tini file. You can then use an FTP program to copy
the file to the TINI. Or you can use the build utility Ant to automate the
process of creating and copying the files. When the file or files have been
transferred to the TINI, you can run the program from a Telnet session by
typing java, followed by the name of the .tini file.

With servlets, things are more complicated. The Tynamo Web server func-
tions both as a Web server, which responds to HTTP requests, and as a serv-
let container, which contains and manages the servlets. A variety of
configuration files contain information about the servlets and Web server.
The Ant utility is the recommended way to compile, convert, and deploy
the Web server and servlets on the TINI.

With Ant, you can compile your .java files and create the file webserver.tini,
which contains both the object code required to respond to HTTP requests
and the code for your servlets.

If you use another servlet container, such as TiniHttpServer, the details will
vary, but the information about how to use Ant, TiniAnt, and the configura-
tion files are likely to be similar.

Serving Web Pages that Respond to User Input

 305

Required Components

These are the required components for creating and running servlets on a
TINI with the Tynamo Web server:

• A TINI module, to run the Tynamo Web server.

• The Java SDK, for program development, from java.sun.com.

• The Tynamo Web server, to support servlets, from tynamo.qindesign.com.

• Ant, a Java-based build tool, from jakarta.apache.org.

• TiniAnt, a plug-in that integrates TINI’s build process into Ant, from
tiniant.sourceforge.net.

• The NetComponents.jar library, with FTP and Telnet support for deploy-
ing the Web server on the TINI. The NetComponents distribution is
available from www.savarese.org.

The Tynamo Web server uses four configuration files. You must edit at least
three of these to provide information that is specific to your development
PC and your servlets. The build.properties file contains the locations and
names of various files and directories on the development computer. The
servlets.props file contains information about the servlets. The deploy.proper-
ties file contains your TINI’s IP address and other information that the Ant
utility uses in copying the Web server’s files to the TINI. The webserver.props
file enables you to specify a default directory, home page, and other proper-
ties of your server. (Many servers can use the default webserver.props file,
with no editing.) You can edit these files in any text editor.

Below is more information about each of these files, followed by instruc-
tions for how to use the files in compiling, converting, and deploying files to
the Web server.

Creating a build.properties File

The build.properties file is in the home directory of the Tynamo distribution.
The file contains the locations and names of the TINI’s home directory and
the servlets on the development computer. The Ant utility uses the informa-
tion in the file in building the TINI’s executable file. Listing 7-3 is an exam-
ple build.properties file.

Chapter 7

306

For each of the following items, edit the existing text by inserting the infor-
mation that applies to your system and servlets. Use forward slashes as sepa-
rators even if the operating system of your developement computer (such as
Windows) uses back slashes. Ant converts to back slashes as needed.

Set tini.path equal to the location of the TINI SDK on the development
computer:

tini.path=/tini1.11

Set src.paths equal to the location of the source code for your servlets on
the development computer:

src.paths=/myservlets

If there are multiple locations, separate the paths with colons or semicolons:

src.paths=/myservlets;/test

Set src.files equal to the names of your servlets, separating multiple
names with commas or spaces:

src.files=DeviceController.java, FormResponse.java

Set reflect.classes equal to the full class name of each servlet, separat-
ing multiple names with commas or spaces:

reflect.classes=DeviceController, FormResponse

Three dependency entries can contain information about the classes that a
servlet uses, or depends on. Not every servlet requires dependency informa-
tion.

#example build.properties file
tini.path=C:/tini1.11
src.paths=/myservlets
src.files=DeviceController.java, FormResponse.java
include.servletReloading=false
dependency.files=
dependency.groups=
dependency.classpath=
reflect.classes=DeviceController, FormResponse

Listing 7-3: The build.properties file contains information that Ant uses in
compiling the servlets.

Serving Web Pages that Respond to User Input

 307

A dependency.files entry specifies the name and location of a file that
contains dependency information for one or more servlets. An example
entry is:

dependency.files=examples/servlet_examples_dep.txt

Below is the information provided in the dependency file for Tynamo’s
example servlet RequestInfoServlet:

RequestInfoServlet=
com.qindesign.servlet.example.RequestInfoServlet;
com.qindesign.servlet.example.Common

The RequestInfoServlet entry has two values separated by a semicolon.
The first value is the full name of the servlet’s class. The second value
informs the build process that the servlet depends on the com.qinde-
sign.servlet.example.Common class.

Creating a servlets.props File

The servlets.props file is in the \bin directory of the Tynamo installation and
must contain information required by the servlet container to run your serv-
lets. The file provides information about each servlet supported by the
server. Listing 7-4 is an example servlets.props file for the servlets Device-
Controller and FormResponse.

A servlet name identifies the servlet in the file. The servlet names in the
example are DeviceController and FormResponse. A mapping specifies
how clients can request to run the servlet and has the following format:

servlet_name.mapping=mapping

where servlet_name is a servlet name and mapping is the text that clients can
use to request the servlet from the server.

The following mapping enables clients to request to run the servlet Device-
Controller by typing the TINI’s IP address or domain name followed by
/servlet/DeviceController in a browser’s Address text box:

DeviceController.mapping=/servlet/DeviceController

For example, if the IP address is 192.168.111.9, the user would enter the
following:

Chapter 7

308

http://192.168.111.9/servlet/DeviceController

The servlets.props file must also specify the full class name of the class
that implements the javax.servlet.Servlet interface for each servlet.
The class name is the name of the servlet’s class in the source code, preceded
by its package name, if any. This information uses the following format:

servlet_name.class=class

where servlet_name is the servlet name and class is the class name. In the
example, the class name for the servlet DeviceController is also Device-
Controller. In this case it seems redundant, but other classes might use a
different name for the class name and servlet name.

If the servlet is in a package, the class name must specify the package name
as well, as in this example:

Shutdown.class=com.qindesign.servlet.ShutdownServlet

The optional initParams entry can specify one or more initialization
parameters to use when the servlet starts:

Shutdown.initParams=passwd=shut:down

The optional loadOnStartup entry can specify that the servlet should load
when the server starts, rather than on first use:

Shutdown.loadOnStartup=true

The number sign (#) indicates a comment, which the server ignores:

Shutdown servlet

The example servlets.props file included with the Tynamo Web server has
additional examples.

DeviceController.mapping=/servlet/DeviceController
DeviceController.class=DeviceController

FormResponse.mapping=/servlet/FormResponse
FormResponse.class=FormResponse

Listing 7-4: The servlets.props file contains configuration information for your
servlets.

Serving Web Pages that Respond to User Input

 309

Creating a deploy.properties File

The deploy.properties file simplifies the process of transferring files to a TINI.
Listing 7-5 shows an example.

Four deploy properties contain information about the TINI. The server
property is the TINI’s IP address. The userid and password properties are
the user ID and password required to log onto the TINI’s FTP server. The
rootdir property is the directory the deploy process should use as the root
directory on the TINI when transferring files. The deploy process creates
the directory if it doesn’t exist.

Setting Web Server Properties

The webserver.props file enables you to specify properties of the server. The
default file will work with no changes, but you can edit the entries if you
wish. To use a default directory other than /web/http-root for files on the
server, edit this entry with the desired directory path.

server.rootDir=/web/http-root

To use a default home page other than index.html, edit this entry with the
desired default file’s name:

server.welcomeFile=index.html

The entries in the provided file show additional options you can change.

Running the Web server

When you’ve obtained the necessary components and have written a servlet
such as the DeviceController servlet above, these are the steps required to
use Tynamo to run the servlet on a TINI:

1. Install Ant and TiniAnt on your development PC, following the instruc-
tions provided with each, including setting the recommended environment
variables to identify file locations.

2. As described above, edit build.properties, servlets.props, deploy.properties,
and webserver.props with the appropriate information for your TINI and
servlets.

Chapter 7

310

3. Build webserver.tini with Ant. Open a window with a command prompt.
Under Windows XP, click Start, then Run, and enter cmd in the Open: text
box that appears. Change to Tynamo’s home directory and enter ant. This
runs the file ant.bat included with the Ant distribution. Ant uses the infor-
mation in build.properties and Tynamo’s build.xml file to locate the needed
files, compile, and convert the result to the file webserver.tini. The file con-
tains the executable code for the servlet container and the servlets the Web
server can run.

4. Copy any static HTML files, images, or other files the Web server will
need to access to the appropriate directories under the Tynamo’s home
directory on the development computer. The webserver.props file specifies
the root directory for these files. The default is http-root.

5. From a command prompt in Tynamo’s home directory, enter ant

deploy. This runs ant.bat again, but this time runs the deploy task instead
of the default build task. (Tynamo’s build.xml file specifies the default task.)

The deploy task copies the Web server’s files to the TINI. Using the default
settings, the files copied are the following files under Tynamo’s home direc-
tory:

\bin\webserver.tini (the Web server application)
\bin\WebServer (a script to run the Web server)
\bin\webserver.props (configuration information about the Web server)
\bin\servlets.props (information about the servlets)
\bin\mimeTypes.props (MIME definitions for file types)
\http-root* (all files in this directory)

deploy.server=192.168.111.2
deploy.userid=root
deploy.password=tini
deploy.rootdir=/web

Listing 7-5: The deploy.properties file contains information specific to the TINI
that will run the Web server.

Serving Web Pages that Respond to User Input

 311

6. To run the Web server, in a Telnet session, at a command prompt in the
root directory, enter the following command:

source web/bin/WebServer

This executes the WebServer script, which contains the following text:

java /web/bin/webserver.tini /web/bin/webserver.props &

On running the Web server, the Telnet window displays something like the
text in Figure 7-3. And the TINI is ready to run the servlets named in
servlets.props.

Serving Other Files

The default configuration of the Tynamo Web server treats any request not
handled by a servlet as a request for a file under the /web/http-root directory.
Examples of such requests include requests for image files or static HTML
files. If the request doesn’t specify a valid servlet or file name, the default
configuration serves the page index.html if available in the specified direc-
tory.

The default home page can contain a hyperlink to the Device Controller
servlet:

Device Controller

Figure 7-3: You can run the Tynamo server from a Telnet session with the TINI.

Chapter 7

312

Save the Web page as index.html and copy the file to the TINI’s
/web/http-root directory. Then users who enter the TINI’s IP address alone
or the IP address followed by /index.html will see the Web page with the link
to the servlet.

To redirect the user’s browser to request the servlet automatically from the
home page, include this META tag in the Web page’s HEAD section:

<meta http-equiv="Refresh" content="0;
 url=/servlet/DeviceController">

In Depth:
Using CGI and Servlets

The examples above showed how Web pages can use CGI functions and
servlets to enable users to click hyperlinks to run program code on the server
and view the result in a Web page. This section has more detail about CGI
and servlets, including additional examples that show how embedded sys-
tems can use forms to accept text input from users.

CGI for Embedded Systems
The common gateway interface (CGI) defines a protocol that enables users
to click a link or button on a Web page to request a server to execute pro-
gram code. A CGI program can perform just about any function on the
server. After running the requested program, the server returns a result in an
HTTP response.

Support for CGI programming has been around since the earliest days of
the Web. The first Web server to implement CGI was the NCSA HTTPD
server from the National Center for Supercomputing Applications. NCSA
publishes a CGI Specification at http://hoohoo.ncsa.uiuc.edu/cgi/. Many
embedded systems that support networking also include support for CGI.
The Dynamic C library http.lib is an example.

CGI programming doesn’t require a particular programming language. On
large servers, the Perl language has long been popular. Perl programs are typ-
ically scripts that require an interpreter to execute, and large servers gener-

Serving Web Pages that Respond to User Input

 313

ally have a Perl interpreter. A small embedded system isn’t likely to have a
Perl interpreter, so CGI programs for embedded systems are often written in
C.

A Web server that runs CGI programs must be able to do the following:

• Identify a received HTTP request that references a CGI program to exe-
cute.

• Locate and run the requested CGI program.

• Return an HTTP response.

The response the server returns after running a CGI program often includes
an HTTP redirection code that advises the browser to request a page con-
taining an acknowledgment or a refreshed page with updated data.

Some CGI programs process data submitted by a client on a form. When a
client submits a request that contains form data, the server must be able to
pass the data to the CGI program that will use the data.

For security reasons, a server may provide a way to enable, disable, or limit
support for CGI.

CGI Requests

A client can request a server to run a CGI program by sending an HTTP
request containing the name of a CGI program on the server. In the Device
Controller example in this chapter, the buttons on the Web page are hyper-
links that each contain a program name:

Clicking the image of the button causes the browser to request the server to
run the program (or function) led1toggle.cgi.

Text hyperlinks are another way to request a server to run CGI programs.
The following HTML code causes the text “Turn off LED1” to appear on a
Web page as a hyperlink:

 Turn off LED1>

Clicking the hyperlink causes the browser to request the server to run the
program led1off.cgi.

Chapter 7

314

Servers also use CGI programming in accepting input from a Web page con-
taining a form. Clicking a form’s Submit button causes the form’s data to be
sent to the server in an HTTP GET or POST request. The server can be
configured to respond to the request by running CGI code that processes
the form data and returns a response.

Identifying and Running CGI Programs

CGI code may be an interpreted script, a compiled program, or a function
within a program.

Large servers often store all CGI programs in a directory such as cgi-bin. Or
a server may identify CGI programs by a .cgi extension in the program
name. In Dynamic C, CGI programs can be functions declared as
HTTPSPEC_FUNCTION items in an HttpSpec structure. Or an application
can use the form-handling capabilities in Dynamic C’s server utility library
(zserver.lib) to process form data.

Returning a Response

A CGI program must return an HTTP response to the request that caused
the server to run the program. Like other HTTP responses, the response
includes a status line, response headers, and if appropriate, a message body.
The response can provide requested information or acknowledge that sub-
mitted data was received. To enable a user to view the result of executing a
CGI program, a response may contain a redirection code that advises the
user’s browser to refresh the current Web page.

In this chapter’s Device Controller application for the Rabbit module, after
a user clicks a button on the Web page, the browser requests a refreshed
copy of the page so the user can see the LEDs’ current states. To cause the
browser to request to refresh the page, the server returns a response contain-
ing the following code in the response line, with the desired file name and
path in a Location header:

Http 1.0 302 Found
Location: http://192.168.111.7/index.shtml

On receiving this response code in reply to a GET request, the browser sends
a new GET request for the specified file. In case a browser doesn’t support

Serving Web Pages that Respond to User Input

 315

automatic redirection, many responses include a message body that displays
a hyperlink to the file in the Location field and text that advises the user to
click the link to view the file.

Servlets for Embedded Systems
For displaying real-time data and responding to user input, Java program-
mers can use servlets, as introduced in the TINI example in this chapter. A
servlet is a Java class that adds capabilities to a server.

A Web server that runs servlet code must have a container, or servlet engine,
to manage the servlets. The container provides network services for sending
and receiving requests, decodes requests, and formats responses. For security,
a container can also place restrictions on the execution of servlets.

A browser that requests a Web page served by a servlet doesn’t require sup-
port for Java or servlets. When a browser sends a URL to a server, the
browser doesn’t have to know or care whether the URL identifies a static
Web page or a servlet. The text that the browser sends to the server identifies
the servlet. In the DeviceController example, the images of buttons are
hyperlinks that users can click to request the server to run the servlet
DeviceController:

A mapping in the server’s configuration file identifies /servlet/Device-
Controller as a servlet, and button1 following the question mark is the
query string that the browser returns to the server along with the requested
URL.

On receiving a request for a servlet, the server runs the servlet code. The
servlet can generate dynamic data, insert the data into a Web page, and write
the Web page’s contents to an output stream for sending to the client. A
servlet can also do just about anything an ordinary Java program can do,
such as making calculations, performing logical operations, and reading and
writing to files or ports.

The document that defines servlets and their behavior is the Java Servlet
Specification, available from java.sun.com.

Chapter 7

316

On receiving an HTTP request containing the name of a servlet to run, the
server passes the request to the servlet container. The container examines the
request to determine which servlet to call. The container then calls the serv-
let, passing two objects: a request object with information about the request
and a response object that will contain information about the response. A
response object may supply an OutputStream or PrintWriter object that
the servlet uses to respond to the request. The servlet runs, performing its
programmed function and returning a response to the request.

The HTTPServer class in the TINI’s com.dalsemi.tininet.http pack-
age supports static Web pages only. The Tynamo Web server and TiniHt-
tpServer are more powerful alternatives that add support for servlets.

Receiving Form Data
In addition to providing information on Web pages, servers can receive
information from users by hosting Web pages that contain forms. A form
can contain text boxes or other elements where users can enter data or make
selections. When the user clicks a form’s Submit button, the browser sends
the form data to the server in an HTTP GET or POST request. The server
can use the data in any way. An embedded system might use a form to
request configuration data, collect information about users, or request pass-
words. The server may return a page that acknowledges receiving the data or
a response that redirects the user’s browser to another page.

As Chapter 6 showed, the HTML standard includes tags and attributes for
creating forms on a Web page. The examples below show how to host forms
on Rabbit and TINI modules.

Figure 7-4 shows a form that enables the user to enter maximum and mini-
mum temperatures for use in an alarm system. When a user clicks Submit,
the browser sends the temperature values to the server in an HTTP request.
On receiving the values, the server either returns the Web page in Figure 7-5
or a response that instructs the user’s browser to request the page.

Serving Web Pages that Respond to User Input

 317

A server could use the temperature values to configure a temperature alarm
system. In a similar way, you can use forms in just about any application
where the server wants to collect information via a Web page.

Listing 7-6 is the HTML code for the form. Every form has three elements:
form tags that define the start and end of the form, one or more controls
that enable users to provide data to the server, and a Submit button that
enables users to send the data to the server. In addition, most forms include
descriptive text and a Reset button that returns the inputs to the values they
contained when the page was served (before the user made any changes).

In Listing 7-6, the opening tag of the form is:

<form action="/" method="post">

The FORM tag’s action attribute names the URL where the browser will
submit the form data when a user clicks the Submit button. In this exam-
ple, the URL is "/", which refers to the server’s default file. The method
attribute’s "post" value may be lower case in the HTML file. When the

Figure 7-4: This Web page contains a form that enables users to enter values
for use by the server.

Chapter 7

318

browser sends a request, POST is upper case as required by the HTTP stan-
dard.

The method attribute specifies whether the browser will use an HTML
GET or POST request to send form data to the server. In a GET request,
the browser appends the data to the URL being requested. In a POST
request, the browser places the data in the body of the request.

The form’s closing tag is </form>. Everything between the form’s opening
and closing tags is part of the form.

Listing 7-6’s form uses an HTML table to format the information in the
form. Each variable has a name, value, and description in the table. The
names and descriptions are plain text, except for the degree symbol. The
HTML code ° causes the browser to display a degree symbol.

The input tags determine the contents of the cells in the Value column.
This example input tag has four attributes:

<input type="text" name="maximum_temperature"

Figure 7-5: A server might return a page like this to acknowledge receiving form
data from a user.

Serving Web Pages that Respond to User Input

 319

<html>
<head><title>Temperature Alarm Setup</title></head>

<body>
<h1>Temperature Alarm Setup</h1>

<form action="/" method="POST">

<table border>

<tr>
<td>Name</td>
<td>Value</td>
<td>Description</td>
</tr>

<tr>
<td>Minimum Temperature</td>
<td><input type="text" name="minimum_temperature"
 value="72" maxlength="3"></td>
<td>Range 0 - 212 °F</td>
</tr>

<tr>
<td>Maximum Temperature</td>
<td><input type="text" name="maximum_temperature"
 value="78" maxlength="3"></td>
<td>Range 0 - 212 °F</td>
</tr>

</table>

<p>
<input type="submit" value="Submit">
<input type="reset" value="Reset">
</p>

</form>
</body>
</html>

Listing 7-6: HTML source code for Figure 7-4‘s form.

Chapter 7

320

 maxlength="3" value="80">

The value of the type attribute is set to "text" to specify that the input is a
single-line text box or other input control for entering text. The name
attribute identifies the control on the form. The maxlength attribute is the
maximum number of characters a user may enter in the text box. The value
attribute is the default data the text box displays.

In addition to text, a variety of other controls use input tags, including
check boxes, radio buttons, passwords, Submit buttons, and Reset buttons.
Every input tag must have a value attribute. All types except text (the
default) must have a type attribute, and most tags require a name attribute.
The other attributes needed vary with the input type and the application’s
requirements.

Two additional input tags in Listing 7-6 add Submit and Reset buttons to
the form. For each, the type attribute specifies the button type and a value
attribute specifies the text to display on the button. When a form has just
one Submit button and one Reset button, the type attribute identifies the
buttons and there’s no need for name attributes to further identify the but-
tons.

Forms on a Rabbit

The RCM3200 RabbitCore module can host Figure 7-4’s form. In the
Device Controller example earlier in this chapter, an #ximport directive
loads a file containing the Web page’s HTML source code into the Rabbit-
Core’s memory. For forms, instead of providing an HTML file containing
the form to serve, you can use functions in Dynamic C’s server utility
library, zserver.lib, to create a form from information provided in the appli-
cation.

An advantage of using zserver.lib to create forms is its automatic handling of
errors in user input according to limits you specify. A limitation of using
zserver.lib is the need to use its 3-column table format, unless you modify
the library’s display handler.

The following code shows how an RCM3200 module can serve the Temper-
ature Alarm form and response.

Serving Web Pages that Respond to User Input

 321

Initial Defines and Declarations

Again, much of the configuration code is similar to the code in previous
examples. TCPCONFIG specifies a macro that sets a network configuration
stored in the file tcp_config.lib. Your program must specify an appropriate
macro for your system and network configuration, as described in Chapter
5.

#define TCPCONFIG 1

Because of the need for forms support, this program uses the ServerSpec
structure defined in zserver.lib, which includes support for basic forms,
instead of the HttpSpec structure in http.lib. When HttpSpec is unneeded,
the HTTP_NO_FLASHSPEC directive saves code space.

#define HTTP_NO_FLASHSPEC

The FORM_ERROR_BUF directive is required for forms. The directive reserves
memory for a buffer used in form processing and must be large enough to
hold the name, value, and four additional bytes for each form variable.

#define FORM_ERROR_BUF 256

On receiving form data, the server redirects the client’s browser to the URL
specified in FORM_RESPONSE_REDIRECTTO. In this application, the URL
points to a file that acknowledges receiving the form data. REDIRECTHOST is
the _PRIMARY_STATIC_IP address defined in tcp_config.lib.

#define REDIRECTHOST _PRIMARY_STATIC_IP
#define FORM_RESPONSE_REDIRECTTO
 "http://" REDIRECTHOST "/formresponse.shtml"

All C functions not declared as root go to extended memory. The dcrtcp.lib
library supports IP and TCP. The http.lib library supports HTTP functions.

#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

The #ximport directive loads a file from the development PC into the Rab-
bit’s Flash memory. The directive associates the symbol
form_response_shtml with the file’s address in memory.

#ximport "c:/rabbitserver/formresponse.shtml"
 form_response_shtml

Chapter 7

322

The HttpType structure specifies the handler to use with different file
extensions. Web pages that contain SSI directives have the extension .shtml
and use Dynamic C’s SHTML handler. Plain HTML pages use the default
HTML handler.

const HttpType http_types[] =
{
 { ".html", "text/html", NULL},
 { ".shtml", "text/html", shtml_handler}
};

Responding to Submitted Data

On receiving form data, the form_response() function executes and calls
the cgi_redirectto() function. This function causes the server to return
an HTTP response that redirects the client’s browser to the Web page
named in FORM_RESPONSE_REDIRECTTO.

int form_response(HttpState* state)
{
 cgi_redirectto(state, FORM_RESPONSE_REDIRECTTO);
 return 0;
} // end form_response()

The main() Function

The program’s main() function creates the form, initializes the TCP/IP
stack and Web server, and enters an endless loop that processes received
HTTP requests and can perform any other tasks the system is responsible
for.

The zserver.lib library includes a ServerSpec structure that has information
about the files, functions, and variables that the server can access. The
library contains functions that access elements in the structure. One of the
items in the ServerSpec structure is an array of FormVar structures that
hold information about a form’s variables. This application has two form
variables, so it defines an array (setup) that contains two FormVar struc-
tures. The form, function, and var variables are values returned by
ServerSpec functions.

void main(void) {
 FormVar setup[2];

Serving Web Pages that Respond to User Input

 323

 int form;
 int function;
 int var;

The maximum_temperature and minimum_temperature variables are the
form variables that users can change.

 int maximum_temperature;
 int minimum_temperature;
 maximum_temperature = 212;
 minimum_temperature = 0;

Creating the Form

A series of ServerSpec functions sets up the form and configures the server
to serve the form and the page sent in response to receiving form data.

Adding a Web page. The sspec_addxmemfile() function names the
Web page that users will see after submitting form data:

sspec_addxmemfile ("formresponse.shtml",
 form_response_shtml, SERVER_HTTP);

The function has three parameters:

"formresponse.shtml" is the name of the file containing the Web
page on the server.

form_response_shtml is the location where the #ximport directive
stored the file.

SERVER_HTTP indicates that the file is valid for Dynamic C’s HTTP
server. (Dynamic C also supports SERVER_FTP).

The function returns the location of the file in the ServerSpec structure or
-1 on failure.

Adding a Form. The sspec_addform() function adds a form to the
ServerSpec structure:

 form =
 sspec_addform ("setup.html", setup, 2, SERVER_HTTP);

The function has four parameters:

"setup.html" is the name of the form’s Web page on the server.

setup is the FormVar array defined earlier.

Chapter 7

324

2 is the number of entries in the setup array.

SERVER_HTTP indicates that the form is valid for Dynamic C’s HTTP
server.

The value returned, form, is the form’s location in the ServerSpec array.

The sspec_setformtitle() function sets the title the form will display:

 sspec_setformtitle(form, "Temperature Alarm Setup");

The function has two parameters:

form is the value returned by sspec_addform().

"Temperature Alarm Setup" is the title.

The function returns zero on success or -1 on failure.

Adding a Function. The sspec_addfunction() function adds a function
to the list of objects the Web server recognizes.

 function = sspec_addfunction("form_response",
 form_response, SERVER_HTTP);

The function has three parameters:

"form_response" is the function’s name.

form_response is a pointer to the function.

SERVER_HTTP indicates that the function is valid for Dynamic C’s
HTTP server.

The function value returned is the function’s location in the ServerSpec
structure or -1 on failure.

Adding a Function to Call on Receiving Form Data. The
sspec_setformepilog() function names the function that the server will
call after receiving form data from a client:

 sspec_setformepilog(form, function);

The function has two parameters:

form is the value returned by sspec_addform().

function is the value returned by sspec_addfunction().

The function returns zero on success or -1 on failure.

Serving Web Pages that Respond to User Input

 325

Specifying Form Variables

Another series of ServerSpec functions adds variables to the form and sets a
name, description, number of characters, and range for each.

Adding a Variable. The sspec_addvariable() function adds a variable
to the FormVar array in the ServerSpec structure. This is the function call
for the first variable:

 var = sspec_addvariable("maximum_temperature",
 &maximum_temperature, INT16, "%d", SERVER_HTTP);

The function has five parameters:

"maximum_temperature" is the variable’s name on the form.

&maximum_temperature is a pointer to the variable.

INT16 is the variable type.

"%d" specifies the output format on the form as a decimal number.

SERVER_HTTP indicates that the variable is valid for Dynamic C’s HTTP
server.

The value returned, val, is the function’s location in the ServerSpec struc-
ture or -1 on failure.

The sspec_addfv() function adds a variable in a FormVar array to the
form.

 var = sspec_addfv(form, var);

The function has two parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addvariable().

The value returned, var, is the index of the added form variable or -1 on
failure.

Associating a Name with a Variable. The sspec_setfvname() function
sets the name the form will display for the variable.

 sspec_setfvname(form, var, "Maximum Temperature");

The function has three parameters:

form is the value returned by sspec_addform().

Chapter 7

326

var is the value returned by sspec_addfv().

"Maximum Temperature" is the name to display on the form.

The function returns zero on success or -1 on failure.

Adding a Variable Description. The sspec_setfvdesc() function sets a
variable description that the form will display:

 sspec_setfvdesc(form, var, "Range 0 - 212 °F");

The function has three parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addfv().

"Range 0 - 212 °F" is the text the form will display in the
Description column for the "Maximum Temperature" variable.

The function returns zero on success or -1 on failure.

Setting a Variable’s Maximum Length. The sspec_setfvlen() function
sets the maximum number of characters the form will accept and display for
a variable’s value:

 sspec_setfvlen(form, var, 3);

The function has three parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addfv().

3 is the maximum number of characters.

The function returns zero on success or -1 on failure.

Setting a Variable’s Range. The sspec_setfvrange() function sets a
variable’s minimum and maximum allowed values.

 sspec_setfvrange(form, var, 0, 212);

The function has four parameters:

form is the value returned by sspec_addform().

var is the value returned by sspec_addfv().

0 is the minimum value the server will accept for the variable.

212 is the maximum value the server will accept for the variable.

Serving Web Pages that Respond to User Input

 327

If a user enters a value outside the specified range, the server adds an error
message to the form and redirects the user’s browser to the form so the user
can change the value. The function returns zero on success or -1 on failure.

Adding More Variables. In the same way, calls to these functions add the
minimum_temperature value to the form:

 var = sspec_addvariable("minimum_temperature",
 &minimum_temperature, INT16, "%d", SERVER_HTTP);
 var = sspec_addfv(form, var);
 sspec_setfvname(form, var, "Minimum Temperature");
 sspec_setfvdesc(form, var, "Range 0 - 212 °F");
 sspec_setfvlen(form, var, 3);
 sspec_setfvrange(form, var, 0, 212);

Accessing the Form

The sspec_aliasspec() function enables requesting the form in alternate
ways. In this example, in addition to requesting the file setup.html by its file
name, users can request the file "index.html" or the default Web page at
the IP address ("/").

 sspec_aliasspec(form, "index.html");
 sspec_aliasspec(form, "/");

Starting the Server

When the form has been created, the program is ready to initialize the
TCP/IP stack and the Web server. As in the previous Rabbit HTTP exam-
ple, calling tcp_reserveport() gives improved performance.

 sock_init();
 http_init();
 tcp_reserveport(80);

The program’s main loop calls http_handler() and can perform any other
tasks the RCM3200 is responsible for. For example, for this application, the
main loop might monitor temperatures and generate an alarm when a tem-
perature is outside the minimum and maximum range specified on the
form.

 while (1) {
 http_handler();
 }

Chapter 7

328

} // end main()

Listing 7-7 is the HTML source code for the formresponse.shtml file in Fig-
ure 7-5. The page acknowledges receiving the form data and uses SSI #echo
directives to display the temperature values received from the client.

When the RCM3200 module is running this program, users can access the
form by entering the module’s IP address or domain name in a browser’s
Address text box. Clicking the form’s Submit button sends the temperature
values to the RSM3200, which reads the values and either stores the values
and returns an acknowledgment or returns an error message if either of the
values is outside the accepted range.

Forms on a TINI

A TINI can serve Figure 7-4’s form using the Tynamo Web server or
another Web server with support for servlets. Listing 7-8 is the source code
for the form when served by a TINI running a servlet. The only difference
between the HTML code in Listing 7-6 and the form served by the TINI is
the form tag’s action attribute. For the TINI, form tag is:

<form method=POST action="/servlet/FormResponse">

When a user clicks the Submit button, the browser submits the form data to
the servlet FormResponse on the server. The server’s configuration file iden-
tifies /servlet/FormResponse as a servlet.

Requesting the Servlet

When the Tynamo Web server and FormResponse servlet are loaded into a
TINI, users can request the TINI to run the servlet by entering the TINI’s
IP address or domain name followed by /servlet/ and the servlet’s name:

http://192.168.111.9/servlet/FormResponse

Or the TINI can contain a static Web page with a link to the servlet:

View the Form

The FormResponse servlet serves the form with the current values of
minimum_temperature and maximum_temperature inserted. On receiv-

Serving Web Pages that Respond to User Input

 329

ing new values from a client, the servlet returns a Web page that acknowl-
edges receiving the values.

On receiving an HTTP GET request for the FormResponse servlet, the
servlet returns a Web page that displays the current minimum and maxi-
mum temperature settings and enables users to change the values by typing
new ones and clicking Submit. On receiving form data in a POST request,
the servlet checks for valid data. If the submitted data is valid, the servlet
returns a page that acknowledges receiving the data. If the data isn’t valid,
the servlet returns the form with an error message and a request to retry.

The Servlet

As in the previous TINI example, to support servlets and HTTP, the pro-
gram imports javax.servlet and javax.servlet.http classes for serv-

<html>
<head>
 <title>Form Data Received</title>
</head>

<body>
 <h1>Form Data Received</h1>

 <p> The server has received the following settings: </p>
 <p> Maximum temperature: <!--#echo
 var="maximum_temperature"--></p>
 <p> Minimum temperature: <!--#echo
 var="minimum_temperature"--></p>
 <P>Return to the temperature alarm setup
 page</p>
</body>

</html>

Listing 7-7: HTML code for Figure 7-5‘s Web page when served by a Rabbit
module. SSI directives retrieve the temperature values received when the client
submitted the form.

Chapter 7

330

let support and java.io classes to support input and output functions. The
FormResponse servlet extends the HttpServlet class.

<html>
<head>
 <title>Temperature Alarm Setup</title>
</head>

<body>
 <h1>Temperature Alarm Setup</h1>

 <form method=POST action="/servlet/FormResponse">

 <table border>

 <tr>
 <td>Name</td>
 <td>Value</td>
 <td>Description</td>
 </tr>

 <tr>
 <td> Maximum Temperature </td>
 <td><input type="text" name="maximum_temperature"
 value=80></td>
 <td>Range 0 - 212 °F</td>
 </tr>

 <tr>
 <td> Minimum Temperature </td>
 <td><input type="text" name="minimum_temperature"
 value=60></td>
 <td>Range 0 - 212 °F</td>
 </tr>

 </table>

 <p></p>
 <p><input type="submit" value="Submit">
 <input type="reset" Value="Reset"></p>

 </form>
 </body>
 </html>

Listing 7-8: HTML source code for Figure 7-4’s Web page using a servlet.

Serving Web Pages that Respond to User Input

 331

import java.io.*;
import javax.servlet.*;
import javax.servlet.http.*;

public class FormResponse extends HttpServlet {

A DELAY_TIME constant determines how often the servlet executes a peri-
odic task. The servlet uses the default values DEFAULT_MIN_TEMPERATURE
and DEFAULT_MAX_TEMPERATURE if values previously set by the user aren’t
available. The setup.bin file stores the setup parameters from the setupPa-
rameters array. The timer thread enables the TINI to perform a task at
timed intervals.

 private static final int DELAY_TIME = 6000;
 private static final int DEFAULT_MIN_TEMPERATURE = 0;
 private static final int DEFAULT_MAX_TEMPERATURE = 212;
 private static final String SETUP_FILE = "setup.bin";
 private int[] setupParameters;
 private volatile Thread timer;

The PeriodicTask class implements the Runnable interface so that the
code that performs the periodic task can execute in its own thread. The
class’s run() method executes when FormResponse’s init() method calls
the start() method of the timer thread.

In this example, the run() method contains an endless loop that waits for
the number of milliseconds in DELAY_TIME to elapse, then writes the mini-
mum and maximum settings to the console. In a real-world application, the
run() method might perform tasks such as communicating with a tempera-
ture controller or monitor that uses the minimum and maximum values.

 private class PeriodicTask implements Runnable {

 public void run() {
 while (timer != null) {
 try {
 Thread.sleep(DELAY_TIME);
 System.out.print ("Minimum temperature = ");
 System.out.println (setupParameters[0]);

 System.out.print("Maximum temperature = ";
 System.out.println(setupParameters[1]);

 } catch (InterruptedException ex) {

Chapter 7

332

 }
 }// end while (timer != null)
 } // end run()
 } // end PeriodicTask

The server calls destroy() after it takes a servlet out of service and all
pending requests have either completed or timed out. A servlet should pro-
vide a destroy() method if it has acquired resources that won’t otherwise
be destroyed. In this example, the destroy() method stops the timer
thread started by PeriodicTask’s run() method. Another reason to use a
destroy() method is to save any data that the init() method might need
next time and will otherwise be destroyed.

A call to super.destroy() calls the destroy() method of Generic-
Servlet and writes a message to the log. The destroy() method then sets
the timer thread to null and calls the thread’s interrupt method. This
generates an InterruptedException in PeriodicTask’s run method and
terminates the thread.

 public void destroy() {
 super.destroy();
 timer = null;
 timer.interrupt();
 } // end destroy()

Servicing GET and POST Requests

The doGet() method calls the sendSetupPage() method, which returns a
Web page with a form that enables users to view the current minimum and
maximum temperature values and submit new ones. The parameters
required for sendSetupPage are an HttpServletResponse object and
either an error message to display on the page or null if there is no error
message.

 public void doGet(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 sendSetupPage (response, null);
 } // end doGet()

The doPost() method receives and responds to data submitted on the
form. On receiving values, the method checks to see if the values are within

Serving Web Pages that Respond to User Input

 333

the specified ranges. If they are, the servlet returns a page that acknowledges
receiving the data and stores the values in a file. If the values aren’t accept-
able, the servlet returns the form with an error message.

String variables hold the temperature values submitted on the form.
Accepted values are stored as integers in the setupParameters array.

 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 String minimumTemperature = null;
 String maximumTemperature= null;
 String errorMessage = null;
 int intMinimumTemperature = setupParameters[0];
 int intMaximumTemperature = setupParameters[1];

Calls to the getParameter() method of the HttpServletRequest object
return the temperature values the client submitted on the form. The Inte-
ger.parseInt method converts the strings to integers. The server uses the
integer values in determining whether the values are in the allowed ranges.
An application that uses the values is also likely to want them in numeric
form, rather than as strings.

For each value, the code tests to find out if the value is within the specified
range. If not, an errorMessage string describes the problem.

 minimumTemperature =
 request.getParameter("minimum_temperature");
 if (minimumTemperature != null) {
 try {
 intMinimumTemperature =
 Integer.parseInt(minimumTemperature);
 if (intMinimumTemperature > 212 ||
 intMinimumTemperature < 0) {
 errorMessage = "Please try again: minimum
 temperature must be between 0 and 212.";
 }
 } catch (NumberFormatException e) {
 log("Invalid minimum temperature: ");
 log("minimumTemperature);

 }
 } // end if (minimumTemperature != null)

Chapter 7

334

 maximumTemperature=
 request.getParameter("maximum_temperature");
 if (maximumTemperature!= null) {
 try {
 intMaximumTemperature =
 Integer.parseInt(maximumTemperature);
 if (intMaximumTemperature > 212 ||
 intMaximumTemperature < 0) {
 errorMessage = "Please try again: maximum
 temperature must be between 0 and 212.";
 }
 } catch (NumberFormatException e) {
 log("Invalid max. temperature: ";
 log(maximumTemperature);

 }
 } // end if (maximumTemperature!= null)

The code also checks to be sure that the minimum value submitted is less
than the maximum. If not, an errorMessage string describes the problem.

 if (intMinimumTemperature >= intMaximumTemperature) {
 errorMessage = "Please try again: the minimum
 temperature must be less than the maximum
 temperature.";
 } // end if

The method then writes a Web page to the client. If the submitted values are
acceptable, they’re stored in the setupParameters array and a call to the
sendAcknowledgementPage() method returns a Web page that acknowl-
edges receiving the values. If the submitted values aren’t acceptable, they
aren’t saved and a call to sendSetupPage() returns the form with the error
message to advise the client to retry.

 if (errorMessage == null) {
 setupParameters[0] = intMinimumTemperature;
 setupParameters[1] = intMaximumTemperature;
 log("New minimum temperature: " +
 minimumTemperature);
 log("New maximum temperature: " +
 maximumTemperature);
 sendAcknowledgementPage(response);
 } else {
 sendSetupPage(response, errorMessage);
 }
 } // end if (errorMessage == null)

Serving Web Pages that Respond to User Input

 335

Performing Tasks on Startup

The GenericServlet class includes an init() method that enables a serv-
let to perform tasks on startup. The init() method is called once, when
the servlet starts, and is optional. In this example, init() calls the get-
SetupParameters() method to initialize the setup parameters and creates
a thread that performs a periodic task.

 public void init() throws ServletException {
 setupParameters = new int[2];
 getSetupParameters();
 timer = new Thread(new PeriodicTask());
 timer.start();
 System.out.println("The timer has started.");
 log("Timer started");
 } // end init()

Saving and Retrieving Data in a File

The getSetupParameters() method retrieves the setup parameters from
a file, if the file is available. Otherwise, the method uses the default values. A
FileInputStream object attempts to read the parameters from the file
whose name is stored in SETUP_FILE. The parameters are the first two val-
ues in the file.

 private void getSetupParameters() {
 try {
 DataInputStream in = new DataInputStream
 (new FileInputStream(SETUP_FILE));
 int intMinimumTemperature = in.readInt();
 int intMaximumTemperature = in.readInt();
 setupParameters[0] = intMinimumTemperature;
 setupParameters[1] = intMaximumTemperature;
 try {
 in.close();
 } catch (IOException ex) {
 }
 } catch (FileNotFoundException ex) {
 log("Setup file not found");
 setupParameters[0] = DEFAULT_MIN_TEMPERATURE;
 setupParameters[1] = DEFAULT_MAX_TEMPERATURE;
 } catch (IOException ex) {
 log("Error reading from setup file", ex);
 setupParameters[0] = DEFAULT_MIN_TEMPERATURE;
 setupParameters[1] = DEFAULT_MAX_TEMPERATURE;

Chapter 7

336

 }
 } // end getSetupParameters

The saveSetupParameters() method saves new setup parameters in the
file whose name is stored in SETUP_FILE. A FileOutputStream object
writes the values to the file. The parameters are the first two bytes in the file.

 private void saveSetupParameters() {
 try {
 DataOutputStream out = new DataOutputStream
 (new FileOutputStream(SETUP_FILE));
 out.writeInt(setupParameters[0]);
 out.writeInt(setupParameters[1]);
 out.flush();
 out.close();
 } catch (IOException ex) {
 log("Error writing to setup file", ex);
 }
 } // end saveSetupParameters

Acknowledging Received Form Data

The sendAcknowledgementPage() method sends a Web page to the client
to acknowledge receiving submitted form data. The doPost method calls
sendAcknowledgementPage() if the submitted data was accepted. A call
to saveSetupParameters() stores the new data in a file. The setCon-
tentType() method of the HttpServletResponse object sets the Con-
tent-Type field of the HTML header in the returned. page. A
ServletOutputStream object writes the Web page to the client.

The Web page displays the received values and also includes a hyperlink that
enables the user to return to the setup page.

As in the previous TINI example, all quotation marks (") in the HTML
code of the page being sent must be preceded by a back slash (\).

 private void sendAcknowledgementPage
 (HttpServletResponse response)
 throws IOException
 {
 saveSetupParameters();
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 out.print ("<html>"
 + "<head>"

Serving Web Pages that Respond to User Input

 337

 + "<title> Form Data Received </title>"
 + "</head>"
 + "<body>"
 + "<h1> Form Data Received </h1>"
 + "<p>"
 + "The server has received the following
 settings:"
 + "</p>"
 + "<p>"
 + "Minimum temperature: ");
 out.print (setupParameters[0]);
 out.print ("</p>"
 + "<p> Maximum temperature: ");
 out.print (setupParameters[1]);
 out.print ("</p>"
 + "<p>"
 + ""
 + "Return to the temperature alarm setup page"
 + "</p>"
 + "</body>"
 + "</html>");
 } // end sendAcknowledgementPage

Sending the Form

The sendSetupPage() method sends a Web page containing a form where
the client can enter minimum and maximum temperature settings. The
method uses the HttpServeletResponse object and the error message, if
any, generated on examining previously submitted values.

The method calls getSetupParameters() to retrieve the values to display
on the form. The setContentType() method of the HttpServletRe-
sponse object sets the Content-Type field of the HTML header in the
returned page. A ServletOutputStream object writes the Web page to the
client.

 private void sendSetupPage(HttpServletResponse
 response, String errorMessage)
 throws IOException
 {
 getSetupParameters();
 response.setContentType("text/html");
 ServletOutputStream out = response.getOutputStream();
 out.print ("<html>"
 + "<head>"

Chapter 7

338

 + "<title>Temperature Alarm Setup</title>"
 + "</head>"
 + "<body>"
 + "<h1>Temperature Alarm Setup</h1>"
 + "<form method=POST action=
 \"/servlet/FormResponse\">"
 + "<table border>"
 + "<tr>"
 + "<td>Name</td>"
 + "<td>Value</td>"
 + "<td>Description</td>"
 + "</tr>"
 + "<tr>"
 + "<td> Minimum Temperature </td>"
 + "<td><input type=\"text\" name=
 \"minimum_temperature\" maxlength=3 value=");
 out.print (setupParameters[0]);
 out.print ("></td>"
 + "<td>Range 0 - 212 °F</td>"
 + "</tr>"
 + "<tr>"
 + "<td> Maximum Temperature </td>"
 + "<td><input type=\"text\" name=
 \"maximum_temperature\" maxlength=3 value=");
 out.print (setupParameters[1]);
 out.print ("></td>"
 + "<td>Range 0 - 212 °F</td>"
 + "</tr>"
 + "</table>");
 if (errorMessage != null)
 {
 out.print ("<p>" + errorMessage + "</p><p>");
 }
 out.print ("<input type=\"submit\"
 value=\"Submit\">"
 + "<input type=\"reset\" Value=\"Reset\">"
 + "</form></body>"
 + "</html>");
 } // end sendSetupPage()

} // end FormResponse

E-mail for Embedded Systems

 339

E-mail’s primary use, of course, is to enable humans to send and receive
messages over a network. But many embedded systems can make good use
of e-mail as well. E-mail can be a convenient way for an embedded system to
exchange information with humans or even communicate with other
embedded systems with no human intervention at all.

For example, a security system can be programmed to send a message when
an alarm condition occurs. Or a data logger might send a message once a
day with the logger’s readings for the previous 24 hours. In the other direc-
tion, an embedded system might receive e-mail containing new configura-
tion settings or other commands, requests, or data.

E-mail has a couple of advantages over other methods of communication.
Recipients can retrieve and read their messages whenever they want. And if
the information isn’t time-critical, the sender might find it easier or more
efficient to place the information in an e-mail and send it off when conve-

Chapter 8

340

nient, rather than having to respond in real time to requests for the informa-
tion. Another advantage is that an account with e-mail access alone can be
less expensive than an account that supports hosting a Web server or per-
forming other TCP/IP communications.

A down side to e-mail is that recipients might not receive information as
quickly as needed if they don’t check their e-mail regularly or if an e-mail
server at either end gets backed up and delays delivery.

This chapter begins with examples that show how a Rabbit and TINI can
send and receive e-mail messages. The In Depth section has more about
obtaining and using e-mail accounts for embedded systems and the proto-
cols used to exchange e-mail on the Internet.

Quick Start:
Sending and Receiving Messages

The examples that follow demonstrate how a Rabbit and TINI can send
e-mail using the Simple Mail Transfer Protocol (SMTP) and receive e-mail
using the Post Office Protocol 3 (POP3).

Dynamic C includes support for e-mail protocols in Rabbit modules. A
TINI can send e-mail using Java’s URL class and a protocol handler that takes
care of many of the details involved in communicating with an SMTP
server. For receiving e-mail, a TINI can use TCP/IP to establish a connec-
tion with a mail server’s socket and exchange e-mail using the protocols sup-
ported by the server.

Sending e-mail requires the name of an SMTP server that will accept the
e-mail and deliver or forward it toward its recipient. As discussed later in
this chapter, the SMTP server may be at the ISP that provides the embedded
system’s Internet connection or at the host for the embedded system’s
domain name.

In a similar way, receiving e-mail requires the name of the POP3 server at
the ISP or domain host that stores e-mails sent to the embedded system’s

E-mail for Embedded Systems

 341

mailbox. To access the mailbox, the embedded system generally must pro-
vide the account’s user name and password.

The hosts of the SMTP and POP3 servers can provide the server names to
use in communicating with the servers.

If the program code contains a domain name rather than an IP address for
an SMTP or POP3 server, the embedded system must have a specified DNS
server to request the corresponding IP address from. See Chapter 5 for more
about using DNS servers with a Rabbit or TINI.

The example applications send e-mails that contain unchanging text mes-
sages and write the contents of received e-mails to the console (the STDIO
window in Dynamic C or a Telnet session for the TINI). In real-world
applications, the embedded system can place any kind of information in the
e-mails to send and can use the information in received e-mails in any way.

Sending an E-mail from a Rabbit
Dynamic C’s smtp.lib library contains functions that greatly simplify the
code required to program a Rabbit module to send e-mail. The firmware
defines strings for the sender’s e-mail address, the recipient’s e-mail address,
the Subject line, and the message body. The smtp_sendmail() function
then uses these values in initializing the data structures used in sending the
e-mail in the format expected by the SMTP server. The smtp_mailtick()
function handles communications with the mail server, and
smtp_status() returns a status code when the e-mail has been sent or an
error occurs.

The code that follows is an application that sends an e-mail.

Initial Defines and Declares

As explained in Chapter 5, the firmware selects a network configuration
from tcp_config.lib.

#define TCPCONFIG 1

SENDER is the rabbit’s e-mail address and SMTP_SERVER is the name of the
SMTP server that will accept the e-mail and forward it toward its recipient.

Chapter 8

342

You must change these values to values appropriate for your device’s e-mail
account and SMTP server.

#define SENDER "rabbit1@Lvr.com"
#define SMTP_SERVER "mail.example.com"

In initiating communications with an SMTP server, the client sends a
HELO command that identifies the client. By default, the Rabbit firmware
sends the Rabbit’s IP address as an identifier. Some mail servers require a
domain name rather than an IP address. For communicating with these
servers, SMTP_DOMAIN can set a domain name to send.

#define SMTP_DOMAIN "Lvr.com"

The SMTP_DEBUG macro causes all communications with the server to be
displayed in the Dynamic C’s STDIO window. This feature can be very
helpful in debugging.

#define SMTP_DEBUG

As in the previous examples, the #memmap directive causes all C functions
not declared as root to be stored in extended memory. The code requires the
dcrtcp.lib library to support TCP/IP and the smtp.lib library for SMTP com-
munications.

#memmap xmem
#use dcrtcp.lib
#use smtp.lib

Creating the Message

Variables hold the recipient’s e-mail address, the e-mail’s subject line, and
the message body. The create_message() function sets the contents of
these elements for the e-mail to be sent.

char recipient[64];
char subject[64];
char body[256];

void create_message() {
 strcpy(recipient, "jan@lvr.com");
 strcpy(subject, "Hello from Rabbit");
 strcpy(body, "Rabbit test message.");
}

E-mail for Embedded Systems

 343

Sending the Message

The main() routine calls the create_message function to compose the
message then calls sock_init() to initialize the TCP/IP stack. The
smtp_sendmail() function initializes internal data structures with the
strings in create_message(). A while loop calls smtp_mailtick()
repeatedly to perform communications with the SMTP server. When the
server returns a value other than SMTP_PENDING, the while loop ends and
the STDIO window displays the status message returned by
smtp_status().

void main()
{
 create_message();
 sock_init();

 smtp_sendmail(recipient, SENDER, subject, body);

 while(smtp_mailtick()==SMTP_PENDING)
 continue;

 switch (smtp_status())
 {
 case SMTP_SUCCESS:
 printf("The message has been sent.\n");
 break;
 case SMTP_TIME:
 printf("Timeout error. Message not sent.\n");
 break;
 case SMTP_UNEXPECTED:
 printf("Invalid response from mail server.
 Message not sent.\n");
 break;
 default:
 printf("Error. Message not sent.\n");
 }
} // end main()

Additional Options

The default timeout value for communications with the SMTP server is 20
seconds. The SMTP_TIMEOUT macro can specify a different number of sec-
onds:

#define SMTP_TIMEOUT 30

Chapter 8

344

To send a message body from a memory location instead of a string, use
Dynamic C’s smtp_sendmailxmem() function in place of
smtp_sendmail(). Instead of a string containing the message body, the
function requires the message body’s starting location in memory and the
message length.

Sending an E-mail from a TINI
One way to send an e-mail from a TINI is to write or obtain an SMTP cli-
ent program that establishes a connection with an SMTP host and sends
commands and data as needed to communicate with the host. Another
option is to use the java.net.URL class with a protocol implementer for
the URL mailto scheme. (See Chapter 4 for more about URL schemes.) The
protocol implementer automatically handles many of the details of SMTP
communications.

The TINI software supports mailto via com.dalsemi.protocol.* and
com.dalsemi.protocol.mailto.* classes. The source code that sup-
ports mailto is in the file ModulesSrc.jar, in the \src directory of the TINI dis-
tribution. The following SendEmail program uses mailto to send an e-mail.

Imports and Initial Declares

The class imports java.io classes for input and output functions and
java.net classes for networking functions. The com.dalsemi.proto-
col.mailto.* classes are required to support the URL class’s mailto proto-
col.

The TINI’s From address shouldn’t change, so it’s stored in the static string
MAILFROMADDRESS. You’ll need to change this value to match the address of
your TINI’s mailbox.

import java.io.*;
import java.net.*;
import com.dalsemi.protocol.mailto.*;

public class SendEmail {

 final String MAILFROMADDRESS = "tini1@Lvr.com";

E-mail for Embedded Systems

 345

Creating the Message

The main() method sets the values of three strings used in an e-mail: the
recipient’s e-mail address (mailToAddress), the Subject line (message-
Subject), and the message body (messageBody). These values are passed
to the SendEmail object mySendEmail.

 public static void main(String args[])
 {
 String mailToAddress = "jan@Lvr.com";
 String messageSubject = "Hello from TINI";
 String messageBody = "Test message.";

 SendEmail mySendEmail = new SendEmail(mailTo,
 subject, message);

 } // end main()

The constructor for SendEmail calls the class’s send() method to send an
e-mail using the three values specified in main().

 SendEmail(String mailToAddress, String messageSubject,
 String messageBody) {
 send(mailToAddress, messageSubject, messageBody);
 } // end SendEmail constructor

Sending the E-mail

The send() method does the work of sending the e-mail. The mailURL
object is a URL object that contains the sender’s and recipient’s e-mail
addresses in this format:

mailto:mailToAddress?from=mailFromAddress

where mailToAddress is the receiver’s e-mail address and mailFromAddress is
the TINI’s e-mail address.

 private void send(String mailToAddress,
 String messageSubject, String messageBody) {

 try {

 URL mailURL = new URL("mailto:" + mailToAddress +
 "?from=" + MAILFROMADDRESS);

Chapter 8

346

The mailConnection object represents a connection to the SMTP server
that will receive the e-mail being sent to the address in mailTo. The open-
Connection() method prepares to communicate with the SMTP server.

 Connection mailConnection =
 (Connection)mailURL.openConnection();
 mailURL.openConnection();

A Printstream object writes to the connection.

 PrintStream output = new
 PrintStream(mailConnection.getOutputStream());

 System.out.println("Sending the email...");

In sending an e-mail, the From and To headers are added automatically
using the strings in MAILFROMADDRESS and mailToAddress. The applica-
tion provides the Subject line, the required blank line (\r\n) between the
end of the headers and the beginning of the message body, and the message
body. The required period on a line by itself, which indicates the end of the
message, is added automatically on calling the Printstream object’s
close() method.

 output.print("Subject: ");
 output.print(messageSubject);
 output.print("\r\n\r\n");
 output.print(messageBody);
 output.print("\r\n");

 output.close();
 System.out.println("The message has been sent.");

A MalformedURLException error occurs on attempting to create a URL
object with incorrect URL syntax or an unsupported scheme. An IOExcep-
tion occurs on an error writing to the PrintStream object.

 } catch (MalformedURLException e) {
 System.err.print("MalformedURLException: ");
 System.err.println(e.getMessage());
 } catch (IOException e) {
 System.err.print("IOException: ");
 System.err.println(e.getMessage());
 }
 } // end send()

} // end SendEmail

E-mail for Embedded Systems

 347

Adding the MAILTO Dependency to the Build

Building the SendEmail application requires a few additional considerations
to enable using the mailto protocol handler. The build process requires
com.dalsemi.protocol and com.dalsemi.protocol.mailto

classes in modules.jar.

When compiling SendEmail.java to SendEmail.class, you must include the
location of modules.jar in the bootclasspath. Here is an example command
line (which you can place in a batch file) for compiling SendEmail.java to
Send.Email.class:

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar SendEmail.java

When converting SendEmail.class to SendEmail.tini, use the BuildDepen-
dency utility instead of TiniConvertor. Like TiniConverter, BuildDepen-
dency converts .class files to .tini files, but BuildDependency can also specify
dependencies. Here is an example command line for converting SendE-
mail.class to Send.Email.tini:

java -classpath ..\..\bin\tini.jar;%classpath%
BuildDependency -f SendEmail.class -o SendEmail.tini
-d ..\..\bin\tini.db -add MAILTO -p ..\..\bin\modules.jar

The -add option adds the MAILTO dependency to the project, and the -p
option names the location of modules.jar.

BuildDependency is in the file tini.jar. To view the available options, run
BuildDependency with no parameters.

Specifying the SMTP Host

To send an e-mail, you need to name an SMTP host that will receive and
deliver or forward the e-mail being sent. The SendEmail application above
doesn’t contain this information. There are two ways to provide it. You can
set the mail host in the ipconfig utility, using the -h option. For example:

ipconfig -h mail.example.com

Or you can provide the name in the command line that runs the program.
For example:

java -Dmail.host=mail.example.com SendEmail.tini &

Chapter 8

348

where mail.example.com is the name of the SMTP server.

A mail host specified in the command line overrides a mail host set in ipcon-
fig.

To prevent having to type a long command line each time you run the pro-
gram, create a text file that contains the command-line text, copy the file to
the TINI, and run the command line by typing:

source filename

where filename is the name of the text file.

Receiving E-mail on a Rabbit
For retrieving e-mail from a server, Dynamic C includes the pop3.lib library.
As with sending e-mail, the support library greatly simplifies the application
code required to receive an e-mail. The following program demonstrates
how a Rabbit can retrieve an e-mail. The program displays the messages in
the STDIO window.

Initial Defines and Declares

As explained in Chapter 5, a TCPCONFIG macro selects a network configura-
tion from tcp_config.lib. POP_HOST is the URL or IP address in dotted-quad
format of the POP3 mail host for the rabbit’s mailbox. POP_USER and
POP_PASS are the user name and password for the rabbit’s e-mail account.
You must change these values to values appropriate for your system’s e-mail
account.

#define TCPCONFIG 1

#define POP_HOST "mail.example.com"
#define POP_USER "rabbit1"
#define POP_PASS "embedded"

The POP_PARSE_EXTRA macro is optional, but convenient. It performs
additional processing of received messages, storing the contents of the To,
From, and Subject fields and the message body in separate strings.

#define POP_PARSE_EXTRA

E-mail for Embedded Systems

 349

As in the other Rabbit applications, the #memmap directive causes all C
functions not declared as root to be stored in extended memory. The
dcrtcp.lib library supports TCP/IP and the pop3.lib library supports POP3
communications.

#memmap xmem
#use "dcrtcp.lib"
#use "pop3.lib"

int current_message;

Processing and Displaying Messages

The store_message() function is a callback function that receives and
processes downloaded messages. The function has several parameters with
information about a received message. The message_number value is the
number of the message in the series of messages being retrieved. The to,
from, and subject strings contain the contents of the corresponding fields
in an e-mail’s header. The body_line string contains a line of text in the
message body, and body_length is the length of body_line.

The function is called when headers or a line of text in a message body have
been received.

int store_message(int message_number, char *to,
 char *from, char *subject, char *body_line,
 int body_length)
{

Statements in a program’s #GLOBAL_INIT section are called only once, on
program startup. In this example, the #GLOBAL_INIT section initializes the
current_message variable.

#GLOBAL_INIT
 {
 current_message = -1;
 }

If the message number of a retrieved message (message_number) is differ-
ent than the stored value in current_message, the function sets
current_message equal to message_number and displays the message’s
headers in the STDIO window.

Chapter 8

350

If message_number is the same as current_message, the headers have
already been displayed, so there’s no need to repeat them.

 if(current_message != message_number) {
 current_message = message_number;
 printf("MESSAGE <%d>\n", current_message);
 printf("FROM: %s\n", from);
 printf("TO: %s\n", to);
 printf("SUBJECT: %s\n", subject);
 }

The function writes a line of the message body to the STDIO window and
returns.

 printf("%s\n", body_line);
 return 0;
}

Retrieving Messages

The program’s main() function calls sock_init() to initialize the TCP/IP
stack and then calls pop3_init() to specify the callback function that will
process the contents of received e-mails.

void main()
{
 static long mail_host_ip;
 static int response;

 sock_init();
 pop3_init(store_message);

A call to resolve(POP_HOST) returns a long value containing the IP address
of the specified mail host.

 printf("Resolving the mail host's name...\n");
 mail_host_ip = resolve(POP_HOST);

The pop3_getmail() function initiates retrieving e-mail for the account
specified by POP_USER and POP_PASS from the server specified in
mail_host_ip. The function calls pop3_tick() repeatedly until it returns
a response other than POP_PENDING to indicate that the mail retrieval is
complete or has returned an error code.

 pop3_getmail(POP_USER, POP_PASS, mail_host_ip);
 printf("Receiving e-mail...\n\n");

E-mail for Embedded Systems

 351

 while((response = pop3_tick()) == POP_PENDING)
 continue;

A switch block displays a message that describes the result returned by
pop3_tick(), and the program ends.

 switch(response)
 {
 case POP_SUCCESS:
 printf("\nThe messages have been retrieved.\n");
 break;
 case POP_TIME:
 printf("Timout error.\n");
 break;
 case POP_ERROR:
 printf("General error.\n");
 break;
 default:
 printf("Undefined error.\n");
 }
} // end send_email

Additional Options

Two additional macros, POP_DEBUG and POP_NODELETE, can be useful in
some situations.

For debugging, calling POP_DEBUG causes all communications with the
POP3 server to display in Dynamic C’s STDIO window.

#define POP_DEBUG

After downloading an e-mail message, the Rabbit normally sends a POP3
DELE command to request the server to delete the message on the server.
After calling POP_NODELETE, the Rabbit no longer sends the DELE com-
mand, and most servers will retain the messages after the Rabbit has down-
loaded them.

#define POP_NODELETE

If the application doesn’t require the contents of the From, To, and Subject
in separate strings, don’t define POP_PARSE_EXTRA and provide only these
three parameters to the callback function: the message number, a pointer to
a line of text, and the length of the text.

Chapter 8

352

Receiving E-mail on a TINI
A TINI can also retrieve e-mail from a POP3 server. However, the TINI has
no built-in support for POP3 communications. One option is to obtain a
module with POP3 support. Or you can provide the support by writing an
application that sends and responds to POP3 commands. The following
application connects to a mail server, downloads any messages in the mail-
box, and writes the status information and the messages to System.out for
viewing in a Telnet session. The In Depth section of this chapter has more
details about the POP3 commands the application sends.

Imports and Initial Declares

The program imports java.net classes for networking functions and
java.io classes to support the input and output functions. The
java.util package contains the StringTokenizer class used in reading
received responses from the mail server.

The default port for POP3 servers is 110.

You must change the USERNAME, PASSWORD, and MAILHOST strings to match
the user name, password, and the POP3 mail host for the TINI’s mailbox.
The mail host can be a domain name such as mail.example.com or an IP
address in dotted-quad format.

import java.io.*;
import java.net.*;
import java.util.*;

public class ReceiveEmail {

 public static final int POP3PORT = 110;

 private final String USERNAME = "tini1";
 private final String PASSWORD = "ethernet";
 private final String MAILHOST = "mail.example.com";

 private BufferedReader input;
 private PrintWriter output;
 private Socket pop3Socket;

 private String mailHost;
 private String userName;

E-mail for Embedded Systems

 353

 private String password;

The Constructor

The class’s constructor uses the values passed to it to set corresponding vari-
ables.

 public ReceiveEmail(String mailHost, String userName,
 String password) {
 this.mailHost = mailHost;
 this.userName = userName;
 this.password = password;
 } // end ReceiveEmail constructor

Requesting Messages

The main() method sets the deleteOnServer variable and calls the
retrieveEmails() method, which carries out the class’s purpose. Set
deleteOnServer true to request the mail server to delete messages after
downloading, or false to request the server to retain the messages.

 public static void main(String[] args) {

 boolean deleteOnServer = false;
 ReceiveEmail myReceiveEmail = new ReceiveEmail
 (MAILHOST, USERNAME, PASSWORD);
 myReceiveEmail.retrieveEmails(deleteOnServer);

 } // end main()

The retrieveEmails() method calls routines to log on to the mail host,
get the number of messages waiting, and read and display the messages.

The Socket object pop3Socket connects to the specified mail server’s
POP3 port. The Socket class’s setSoTimeout() method enables setting a
timeout in milliseconds for waiting for data from the POP3 host. A timeout
causes a java.io.InterruptedIOException.

 private void retrieveEmails(boolean deleteOnServer) {

 int socketTimeout = 10000;
 String response;
 try {
 System.out.print("Connecting to ");
 System.out.println(MAILHOST);
 pop3Socket = new Socket(MAILHOST, POP3PORT);

Chapter 8

354

 pop3Socket.setSoTimeout(socketTimeout);

Reading Messages

A BufferedReader object reads input from the mail host, and a Print-
Writer object writes to the mail host. PrintWriter’s autoFlush property
is set to true to cause each println to automatically flush the output
buffer, sending the text to the server.

On establishing a connection, the mail server returns +OK.

 input = new BufferedReader(new InputStreamReader
 (pop3Socket.getInputStream()));
 output = new PrintWriter
 (pop3Socket.getOutputStream(), true);

 response = input.readLine();
 if (response.startsWith("+OK")) {
 System.out.println("Connected to the mail host.");

If the connection was established, the logOntoMailHost() method
attempts to log on. On success, the getNumberOfMessages() method
returns the number of messages in the mailbox. If one or more messages are
available, the getMessages() method retrieves them. The closeConnec-
tionWithServer() method closes the connection with the mail host and is
in a finally block to ensure that it executes before the method ends.

 if (logOntoMailHost()) {

 int numberOfMessages = getNumberOfMessages();
 if (numberOfMessages > 0) {
 getMessages(numberOfMessages, deleteOnServer);
 } else {
 System.out.println("No messages in mailbox.");
 }

 } else {
 System.out.print("Error in connecting to the
 mail host: ");
 System.out.println(response);
 }

 } // end if (response.startsWith("+OK"))

E-mail for Embedded Systems

 355

 } catch(IOException e) {
 System.err.print("IO exception: ");
 System.err.println(e.getMessage());
 } finally {
 closeConnectionWithServer();
 }
 } // end retrieveEmails

Logging onto the Mail Host

The logOntoMailHost() method uses the provided user name and pass-
word to attempt to log on to the mail host and gain access to the user’s mail-
box. The POP3 protocol defines USER and PASS commands for providing
these values. When a command succeeds, the mail host returns +OK. The
method returns true if the logon was successful and false if it failed.

 private boolean logOntoMailHost() throws IOException {

 String response;

 output.println("USER " + USERNAME);
 response = input.readLine();

 if (!(response.startsWith("+OK"))) {
 System.out.print("Password error: ");
 System.out.println(response);
 return false;
 }

 output.println("PASS " + PASSWORD);
 response = input.readLine();

 if (!(response.startsWith("+OK"))) {
 System.out.print("User name error: ");
 System.out.println(response);
 return false;
 }

 System.out.println("Logged on to the mail
 server.");
 return true;
 } // end logOntoMailHost

Chapter 8

356

Getting the Number of Messages

The getNumberOfMessages() method sends a POP3 STAT command to
retrieve the number of messages in the mailbox and the number of bytes in
the messages.

The response to the STAT command begins with +OK, followed by the num-
ber of messages and the total number of bytes in the messages. The String-
Tokenizer object st extracts tokens, consisting of the text up to a delimiter
such as a space or new-line character. The hasMoreTokens() method indi-
cates whether a token is available for reading. If the first token equals +OK,
the tokenizer extracts the tokens that follow. The method returns the num-
ber of messages or -1 on an error.

 private int getNumberOfMessages() throws IOException {
 int numberOfMessages = 0;
 int numberOfBytes = 0;

 String response;
 output.println("STAT");
 response = input.readLine();
 System.out.println("STAT response = " + response);

 StringTokenizer st = new StringTokenizer(response);
 if (st.hasMoreTokens()) {
 if (!(st.nextToken().equals("+OK"))) {
 return -1;
 }
 }

 if (st.hasMoreTokens()) {
 numberOfMessages =
 Integer.parseInt(st.nextToken());

 if (st.hasMoreTokens()) {
 numberOfBytes =
 Integer.parseInt(st.nextToken());
 }
 }

 System.out.print("The mailbox has ");
 System.out.print(numberOfMessages);
 System.out.print(" messages in ");
 System.out.print(numberOfBytes);
 System.out.println(" bytes.");

E-mail for Embedded Systems

 357

 return numberOfMessages;
 } // end getNumberOfMessages

Retrieving and Displaying Messages

The getMessages() method retrieves the messages, displays them, and if
deleteOnServer is true, requests the mail host to delete the retrieved
messages when the connection closes.

 private void getMessages(int numberOfMessages,
 boolean deleteOnServer) throws IOException {
 String response;

 System.out.println ("Retrieving e-mail...");

A for loop steps through each message up to numberOfMessages, retriev-
ing each in turn.

 for(int messageNumber = 1; messageNumber <=
 numberOfMessages; messageNumber++) {

 System.out.print("Retrieving message ");
 System.out.print(messageNumber);
 System.out.print(" of ");
 System.out.print(numberOfMessages);

The POP3 RETR command requests a specific message from the mail host. If
the mail host’s response begins with +OK, the BufferedInput object reads
lines from the mail host until detecting a period on a line by itself, which
indicates the end of the message.

A message body that contains a line with only a period will have an addi-
tional period added to the beginning of the line. The startsWith()
method checks to see if the response string begins with a period. If it does,
the substring() method removes the first period.

 The received lines are written to the standard output stream and display in
the window of a Telnet session.

 output.print("RETR ");
 output.println(messageNumber);

 response = input.readLine();

Chapter 8

358

 if (!(response.startsWith("+OK"))) {
 System.out.print("Error reading response: ");
 System.out.println(response);
 return;
 }

 response = input.readLine();
 while(!response.equals(".")) {
 if (response.startsWith(".")) {
 response = response.substring(1);
 }
 System.out.println(response);
 response = input.readLine();
 }

If deleteOnServer is true, a POP3 DELE command followed by the mes-
sage number requests the mail host to delete the just-retrieved message on
the server.

 if(deleteOnServer) {
 output.print("DELE ");
 output.println(messageNumber);

 response = input.readLine();
 if (!(response.startsWith("+OK"))) {
 System.out.print("Error deleting messages: ");
 System.out.println(response);
 return;
 }
 }
 } // end for loop

 return;
 } // end getMessages()

Closing the Connection

The closeConnectionWithServer() method closes the connection with
the mail server. A POP3 QUIT command informs that server that communi-
cations are complete, and the socket’s close() method closes the connec-
tion.

 private void closeConnectionWithServer() {
 if(pop3Socket != null) {
 try {
 output.println("QUIT");

E-mail for Embedded Systems

 359

 pop3Socket.close();
 System.out.println("The connection with the mail
 server is closed.");

 } catch(IOException e) {
 System.err.print("IO exception: ");
 System.err.println(e.getMessage());
 }
 }
 } // end closeConnectionWithServer()

} // end ReceiveEmail

In Depth:
E-mail Protocols

The examples above showed how embedded systems can use SMTP and
POP3 to send and receive e-mail. This section has more about the protocols
and how to use them in embedded systems.

How E-mail Works
To send and receive e-mails on the Internet, an embedded system (or any
computer) must have the following:

• A connection to the Internet.

• An e-mail account with an address in the form user_name@domain. In
the e-mail address rabbit1@Lvr.com, Lvr.com is the domain that hosts the
e-mail account and rabbit1 is the user name that identifies the owner of
the account in the domain. The user also selects a password required to
gain access to the account’s mailbox.

• Access to incoming and outgoing mail servers. The incoming mail server
accepts and stores e-mail addressed to the account and enables the user to
retrieve received messages. The outgoing mail server accepts and delivers
or forwards any mail the user sends.

• Support for TCP/IP and the protocols used by the mail servers in send-
ing and retrieving e-mail. Two widely supported protocols are the Simple
Mail Transfer Protocol (SMTP) for sending e-mail to a server that will

Chapter 8

360

forward the e-mail toward its recipient and the Post Office Protocol Ver-
sion 3 (POP3) for retrieving received e-mail from a mailbox on a server.

E-mail Accounts for Embedded Systems

An e-mail account used by an embedded system is no different from an
e-mail account that anyone might use. However, in obtaining e-mail
accounts, there are considerations that are specific to embedded systems.

Embedded systems tend to have limited processing power and fewer
resources compared to larger computers. This means that e-mail communi-
cations should use protocols that aren’t overly complex, to avoid overwhelm-
ing system resources. And second, embedded systems are likely to use their
e-mail without human intervention, so they need to use protocols that
enable composing, sending, retrieving, and reading messages entirely under
firmware control. In other words, a Web-based e-mail account designed for
users who will log onto a Web page and click through various screens to
view and send messages isn’t the best choice for an embedded system. An
account that enables the embedded system to communicate using POP3
and SMTP commands alone is a better choice for most embedded applica-
tions.

If your embedded system will receive e-mails, you want to take special care
to ensure that the e-mail address remains private. Don’t give the account an
easily guessed user name such as info or webmaster. And don’t post the
address on a Web page, because spammers will harvest the address and inun-
date the account with e-mails that the embedded system will have to plow
through to find any valid correspondence.

Domain Hosts and ISPs

In many cases, the user or manager responsible for an account contracts
with an ISP to provide everything required for Internet access, including an
Internet connection, the option to set up one or more e-mail addresses, and
the ability to send and receive e-mail using the ISP’s mail servers. With this
type of account, the ISP provides the domain name in the e-mail address
and the user selects a user name that is unique to the domain.

E-mail for Embedded Systems

 361

But a user (which can be an embedded system) can also have different
sources for Internet access and an e-mail account. Businesses and other enti-
ties that own a domain name often contract with a domain-hosting com-
pany for e-mail services, including the ability to create multiple e-mail
addresses for the domain. Embedded systems in the domain Lvr.com might
have the e-mail addresses rabbit1@Lvr.com, rabbit2@Lvr.com, and so on.
The domain host provides a mail server that accepts and stores e-mail sent to
the domain’s e-mail addresses and enables the owners of the e-mail addresses
to retrieve the messages on request.

ISPs generally have local connections for their customers, but a domain host
doesn’t have to be located physically near the computers that use the
domain’s e-mail accounts. To retrieve a domain’s e-mail, a user may use a
local ISP to gain access to the Internet and then communicate over the
Internet with the domain host’s mail server.

If your domain host and ISP are different entities, you need to decide which
provider’s mail host to use for sending e-mail. Sometimes you have a choice.
In other cases, only one mail server, either at the ISP or at the domain host,
will work.

The first issue in deciding what mail host to use is that the computer send-
ing the e-mail and the mail host receiving it must support the same proto-
col. Embedded systems are likely to use SMTP, while some ISPs support
only Web-based e-mail or other proprietary protocols.

If the sending computer’s ISP doesn’t have an available SMTP server to
communicate with, the embedded system might be able to use a mail server
at the domain host instead.

However, some domain hosts have implemented security measures that
senders of e-mail need to be aware of. The security is needed because SMTP
doesn’t support authentication of users using passwords. A local ISP can
require computers to identify themselves on connecting by providing a user
name and password or a hardware identifier such as the Ethernet address of
a network card or modem. The ISP can use this information to determine
whether a connected computer is authorized to use the ISP’s mail server.

Chapter 8

362

An SMTP mail server at a domain host accessed via the Internet doesn’t have
information about the users who are accessing the server. Allowing anyone
to use an SMTP server leaves the server open to abuse. So some hosts have
implemented a type of authorization called POP-before-SMTP. This
method requires a user to obtain temporary authorization to send e-mail by
first checking the account for incoming e-mail. After checking for e-mail,
the user is authorized to use the provider’s server to send e-mail for a limited
time, such as 15 minutes. After the authorization expires, the user needs to
check for incoming e-mail again to regain authorization to send e-mail. If
your domain host uses POP-before-SMTP authorization, your embedded
system will need to comply with this protocol in order to send e-mail.

Another problem with accessing external mail servers is that some ISPs
block all traffic to port 25, which is SMTP’s default port, to prevent users
from sending e-mail via external SMTP servers. If your ISP follows this
practice and you want to use your domain host’s SMTP server, check with
the domain host to see if you can access their server on another port.

When you sign up for an e-mail account that uses POP3 and SMTP, the
host provides the names of its incoming and outgoing mail servers. For
example, the POP3 server for incoming mail might be mail.example.com
and the SMTP server might be smtp.example.com. You select a user name
and password, and you or the provider specifies the domain name in the
e-mail address. On a PC, you can typically view the server names in your
e-mail program, under Accounts, Options, or a similar menu item.

In the same way, an embedded system uses an account’s user name, domain
name, password, and servers in sending and receiving e-mail. The system’s
firmware can compose messages to send and parse received messages to
extract the desired information.

Using the Simple Mail Transfer Protocol
The Simple Mail Transfer Protocol (SMTP) defines a reliable and efficient
way of transferring e-mail to a server. Its command-and-reply protocol is
basic enough to be feasible for small systems to support.

E-mail for Embedded Systems

 363

To send an e-mail, an SMTP client sends a series of commands to establish
communications with an SMTP server and then sends the e-mail message
for the server to deliver to its recipient or forward to another server for deliv-
ery. On receiving a command from a client, the server returns a reply code
and may return a reply message or additional requested information. SMTP
communications typically use TCP, but TCP isn’t required.

The document that defines SMTP is RFC 2821: Simple Mail Transfer Proto-
col.

A Typical Transaction

Below is a typical session where a client establishes a connection, sends an
e-mail, and closes the connection.

1. The client and server establish a TCP connection with the server’s SMTP
port.

Server: 220

2. The client identifies itself to the server.

Client: HELO Lvr.com
Server: 250

3. The client provides the e-mail address of the sender.

Client: MAIL FROM <rabbit1@Lvr.com>
Server: 250

4. The client provides the e-mail address of the recipient.

Client: RCPT TO: <jan@example.com>
Server: 250

5. The client sends the e-mail’s contents, including headers and ending with
a period on a line by itself.

Client: DATA
Server: 354
Client: From: rabbit1@Lvr.com
Client: To: jan@example.com
Client: Subject: Hello from Rabbit
Client: (blank line between e-mail header and message body)

Chapter 8

364

Client: Rabbit test message.
Client: .
Server: 250

6. The client notifies the server that it’s ready to close the session.

Client: QUIT
Server: 221

7. The client and server close the TCP connection.

SMTP Commands and Reply Codes

SMTP supports eleven commands for establishing communications, send-
ing e-mail, requesting information about the server, and closing communi-
cations. Some commands have required or optional parameters. For
example, with a HELO command, the client provides its domain name or
IP address. After receiving a command, the server returns a 3-digit reply
code. Many servers also include a text message after the reply code. For
example, on receiving a QUIT command, a server at example.com might
reply with the following reply code and text message:

221 example.com closing transmission channel

Some commands, such as HELP, request information, which the server pro-
vides following the reply code.

The SMTP standard says that the commands aren’t case sensitive, but in vio-
lation of the standard, some mail servers require commands to be upper
case, so using upper case is safest.

Each command and reply ends in the pair of ANSI characters 0Dh 0Ah,
which is a carriage return/line feed pair, often abbreviated as CRLF. In
print functions in program code, this pair is often expressed as \r\n.

The Commands

The following are the eleven SMTP commands, with an explanation and
example for each:

DATA

E-mail for Embedded Systems

 365

Purpose: Announces that all of the data that follows, up to the end-of-mail
indicator, is the e-mail message.
Parameters: none
Reply code on success: 354, then 250 after receiving the end-of-message
indicator (a period on a line by itself).
Example:
 Client: DATA
 Server: 354
 Client: Hello,
 Client: This is a test message.
 Client: .
 Server: 250 OK

EHLO

Purpose: Opens communications, identifies the client, and requests infor-
mation about the server. In a multi-line reply, all but the last line have a
hyphen after the reply code. Some older servers support only HELO, not
EHLO. Clients may use HELO, though EHLO is recommended.
Parameters: the client’s domain name or IP address in dotted-quad format
Reply code on success: 250
Example:
 Client: EHLO Lvr.com
 Server: 250-example.com greets Lvr.com
 Server: 250-8BITMIME
 Server: 250-SIZE
 Server: 250-DSN
 Server: 250 HELP

EXPN

Purpose: requests the server to verify that the parameter identifies a mail-
ing list and returns the e-mail addresses of the list’s members. In a
multi-line reply, all but the last line have a hyphen after the reply code.
Servers aren’t required to support this command.
Parameter: <the mailing list to expand>
Reply code on success: 250 or 252
Example:
 Client: EXPN example-list

Chapter 8

366

 Server: 250-<jsmith@example1.com>
 Server: 250 <rjones@example2.com>

HELO

Purpose: Opens communications and identifies the client.
Parameter: the client’s domain name or IP address in dotted-quad format
Reply code on success: 250
Example:
 Client: HELO 192.0.2.1
 Server: 250 OK

HELP

Purpose: Requests additional information. Servers aren’t required to sup-
port this command.
Parameter: [string that names a HELP topic]
Reply code on success: 211 or 214
Example:
 Client: HELP
 Server: 211 help information

MAIL

Purpose: Initiates a transaction that sends e-mail to the server.
Parameter: FROM: <sender’s e-mail address>
Reply code on success: 250
Example:
 Client: MAIL FROM: <tini1@Lvr.com>
 Server: 250 OK

NOOP

Purpose: No operation. Verifies that the server is receiving commands.
Parameter: none
Reply code on success: 250
Example:
 Client: NOOP
 Server: 250 OK

QUIT

Purpose: Requests the server to close the connection.

E-mail for Embedded Systems

 367

Parameter: none
Reply code on success: 221
Example:
 Client: QUIT
 Server: 221 example.com closing transmission channel
 Client and Server then close the connection.

RST

Purpose: Requests the server to cancel the current transaction and reset all
buffers and state tables relating to the transaction. If the server hasn’t yet
acknowledged the end-of-data indicator for a message, the server discards
all information relating to the message.
Parameter: none
Reply: 250
Example:
 Client: RST
 Server: 250 OK

RCPT

Purpose: Identifies the e-mail’s recipient.
Parameters: TO: <sender’s e-mail address>
Reply code on success: 250 or 251
Example:
 Client: RCPT TO: <rabbit1@Lvr.com>
 Server: 250 OK

VRFY

Purpose: Requests the server to verify that the parameter identifies the user
or mailbox.
Parameter: the user’s e-mail address
Reply: 250 <user’s e-mail address>
Example:
 Client: VRFY tini1
 Server: 250 <tini1@Lvr.com>

Chapter 8

368

The Reply Codes

Table 8-1 lists the reply codes an SMTP server can return. If the reply code
begins with 2, the command was successful. If the reply code begins with 3,
the command was successful and the server is waiting for additional data. If
the reply code begins with 5, the server didn’t accept the command or carry
out the requested action and the client needs to take action to correct the
command before retrying.

Requirements for an SMTP Client

If your embedded system uses SMTP client code such as Dynamic C’s
smtp.lib or a mailto protocol handler in Java, you generally don’t have to
worry about the details of programming the SMTP transactions. If you’re
programming at a lower level, the client’s program code must meet the
requirements of the SMTP standard. In addition, every e-mail message must
meet certain requirements.

The Client

Every SMTP client must be capable of the following:

1. The client must send the appropriate commands for establishing commu-
nications, sending e-mail, and closing communications. The minimum
commands to send a message are HELO or EHLO, followed by MAIL,
RCPT, DATA, and QUIT. The commands must be sent in this order.

2. The client must read received reply codes and take appropriate action,
which may include retrying the command or closing the session.

3. The client must implement a timeout for receiving a reply from a com-
mand. The SMTP standard recommends timeout values ranging from 2 to
10 minutes for different operations. For example, the minimum recom-
mended timeout for receiving a reply after sending an end-of-message indi-
cator is 10 minutes, to allow the server time to process the message. Clients
can specify other reasonable timeout values, however. If a server fails to
respond and a timeout occurs, about all the client can do is close the con-
nection and retry.

E-mail for Embedded Systems

 369

4. The client must be sure that the message doesn’t include a line with a
period on a line by itself, which is the end-of-message indicator. If the mes-
sage contains a line that begins with a period, the sender must add another
period to the beginning of the line. On receiving a line of message text, an
e-mail client checks to see if the line begins with a period. If it does, and if
the line contains one or more additional characters, the receiver strips the
period at the beginning of the line, returning the message line to its original
contents.

Table 8-1: An SMTP server returns one of these reply codes after receiving a
command.
Reply Code Description

211 System status or reply to HELP command.

214 Help message.

220 domain Service ready.

221 domain Service closing transmission channel. (Reply to QUIT command.)

250 Requested mail action okay and completed.

251 User is not local. Will forward to forward path.

252 Cannot verify user, but will accept message and attempt delivery.

354 Start the mail input.

421 domain Service not available, closing transmission channel.

450 Requested mail action not taken: mailbox not available (busy).

451 Requested action aborted: local error in processing.

452 Requested action not taken: insufficient system storage.

500 Syntax error, command not recognized.

501 Syntax error in parameters or arguments.

502 Command not implemented.

503 Bad sequence of commands.

504 Command parameter not implemented.

550 Requested action not taken: mailbox not available.

551 User not local; please try forward path.

552 Requested mail action aborted: exceeded storage allocation.

553 Requested action not taken: mailbox name not allowed (incorrect syntax).

554 Transaction failed.

Chapter 8

370

For many embedded systems, received messages have a standard, applica-
tion-specific format, and the format can be defined so that a message body
never contains a period on a line by itself. In this case, the client doesn’t have
to worry about checking for message lines that begin with periods.

Messages

In addition to the requirements for the server, RFC standards specify
requirements for e-mail messages.

The SMTP standard specifies maximum lengths that all SMTP servers must
support. A user name may be up to 64 characters. A domain name may be
up to 255 characters. A line in a message may be up to 1000 characters,
including the two end-of-line characters. And a message may be up to 64
kilobytes. Servers must support at least these “minimum maximums,” and
can support larger maximums.

The document RFC 2822: Internet Message Format specifies the format for
text messages sent as e-mail. A message consists of the following elements in
order:

headers
blank line
message body

Each header field has the following format:

field_name:field_body\r\n

where field_name is the field’s name (such as From), field_body is the field’s
contents (such as rabbit1@Lvr.com), and \r\n signifies a CRLF sequence.

The two header fields required by the specification are From and Date.
From identifies the sender. Date is the date that the sender put the message
into its final form. Other headers such as To and Subject are optional.
Dynamic C’s SMTP client automatically inserts From, To, and Subject
headers using the parameters provided to the smtp_sendmail() and
smtp_sendmailxmem() functions.

Not every embedded system that wants to send e-mail includes a real-time
clock for obtaining Date information. A message without a Date field will

E-mail for Embedded Systems

 371

reach its recipient as long as the recipient’s software doesn’t care that the field
is missing.

The recommended format for the Date field is:

Date: <day> <month> <year> <time of day> <time zone>

or

Date: <day of week>, <day> <month> <year> <time of day> <time zone>

The month and optional day of the week are given as 3-letter abbreviations.
The time is in hours and minutes since midnight. The year must use four
digits. The time zone should be local.

For example,

Date: 11 Oct 2003 14:52 CST

or

Date: Mon, 5 Jun 2003 12:01 EST

For information on standard ways to send non-text information such as
images or audio, see the MIME specifications in RFC 2045, 2046, and
2049.

Performance Issues

If your device has time-critical tasks to perform at the same time as it’s send-
ing e-mail, it’s best to place the code that communicates with the SMTP
server in its own thread or task, so the CPU can do other things while wait-
ing for the server to respond.

Sending E-mail with a URL
Another option for sending e-mail is to use a URL with the mailto scheme.
Chapter 4 introduced URLs and schemes such as http, ftp, and mailto. The
scheme identifies the protocol that a browser or other software will use in
sending the request specified in the URL.

When you click a typical mailto link on a Web page, the browser creates a
new e-mail message in the PC’s default e-mail program and fills in the To:

Chapter 8

372

header with the mailto address. A user can then compose and send a mes-
sage to that address.

As the TINI example in this chapter showed, embedded systems can use the
mailto protocol to send e-mail messages created in firmware. In Java, the
URL class represents a URL, and a protocol implementer for the mailto
scheme handles the details of communicating with an SMTP server. A basic
URL that uses the mailto scheme has the following form:

mailto:tini1@Lvr.com

RFC 2368: The mailto URL scheme extends the mailto URL scheme defined
in RFC1738. Under RFC2368, a mailto URL can also contain one or more
headers and even the message body. For example, to include a From:
address, use this format:

mailto:jan@Lvr.com?from=tini1@example.com

A question mark separates the recipient’s e-mail address and the From
header.

Use & to concatenate additional headers and the message body. For example:

mailto:jan@Lvr.com?from=tini1@example.com&
 subject=greeting&body=hello%20from%20TINI!

Characters that are reserved in HTML and in this URL scheme must be
encoded. Encode a space (as in the message body above) as %20. Encode a
question mark (?) as %3, an ampersand (&) as &, a percent sign (%) as
%25, and a line break in the message body as %0D%0A.

Using the Post Office Protocol
SMTP enables a computer to send e-mail. A complementary protocol is the
Post Office Protocol Version 3 (POP3), which enables a computer to down-
load e-mail from a server.

The standard that defines POP3 is RFC 1939: Post Office Protocol - Version
3, the third edition of the protocol first described in RFC 918.

As with SMTP, in a POP3 communication, a client sends a series of com-
mands to a server and the server returns a response to each command. POP3

E-mail for Embedded Systems

 373

communications travel in TCP segments. The default port for POP3 com-
munications is 110.

The POP3 standard defines twelve commands. Some commands have
required or optional parameters that follow the command.

Every POP3 response begins with a status indicator: +OK on success and
-ERR to respond to a command that is not recognized, not implemented, or
has incorrect syntax. For some commands, requested information may fol-
low the status indicator, and a server may provide additional text to explain
the status. The status indicators are always upper case.

The POP3 standard defines three states in a session. After a TCP connection
has been established and the server has sent a greeting, the session is in the
Authorization state. After the client identifies itself and the server has
acquired resources associated with the client’s mailbox, the session is in the
Transaction state. In this state, the client has exclusive access to the mailbox
and the client can request services from the server. After the client has sent a
QUIT command, the session is in the Update state. The server releases
resources associated with the client, deletes messages marked for deleting,
and returns a response. The client and server then close the TCP connec-
tion.

A newer and more flexible alternative to POP3 is the Interactive Mail Access
Protocol (IMAP) defined in RFC 1730. IMAP enables a user to select mes-
sages to download, move files among multiple mailboxes on the server, and
share a mailbox with other clients. IMAP also has more efficient handling of
MIME attachments. For the needs of a typical embedded system, however,
POP3’s capabilities are sufficient and easier to implement.

A Typical POP3 Transaction

Below is a typical session where a client establishes a connection, retrieves an
e-mail, and closes the connection.

1. The client and server establish a TCP connection with the server’s SMTP
port.

Server: +OK

Chapter 8

374

2. The client sends a user name.

Client: USER tini1
Server: +OK

3. The client sends a password.

Client: PASS ethernet
Server: +OK

4. The client requests a listing of the number of messages in the mailbox and
the total number of bytes in the messages.

Client: STAT
Server: +OK 1 856

5. The client requests to retrieve message 1.

Client: RETR 1
Server: +OK
Server: the message contents
Server: .

6. The client notifies the server that it’s ready to close the session.

Client: QUIT
Server: +OK

7. The client and server close the TCP connection.

POP3 Commands

The following are POP3’s twelve commands. The commands are case-insen-
sitive. All servers must support seven of the commands and the rest are
optional, as noted.

APOP

Purpose: requests user authentication using a method that doesn’t require
transmitting an unencrypted password. To obtain the required
MD5-digest-string parameter, the client applies the MD5 algorithm
described in RFC 1321 to the timestamp in the server’s greeting and a
secret string shared by the client and server. For a specific mailbox, a server
generally supports either PASS or APOP.
Servers required to support: no

E-mail for Embedded Systems

 375

Parameters: user_name <MD5_digest_string>
Reply on success: +OK
Example:
 Client: APOP jan <16-byte string in hexadecimal format>
 Server: +OK

DELE

Purpose: requests to mark a message for deleting. Normally, users will want
to delete retrieved messages to prevent filling the mailbox and retrieving
the same messages over and over. A server may also delete retrieved mes-
sages automatically, even if the client doesn’t send a DELE command, or a
server may delete messages that have been retrieved but not deleted after a
specified time limit.
Servers required to support: yes
Parameters: message_number
Reply on success: +OK
Example:
 Client: DELE 4
 Server: +OK message 4 deleted

LIST

Purpose: requests a scan listing containing the number of bytes in the
requested message or all messages if no message number is specified.
Servers required to support: yes
Parameters: [message_number]
Reply on success: +OK number_of_message number_of_bytes
If there are multiple messages, the server returns a multi-line reply.
Example:
 Client: LIST 2
 Server: +OK 2 130

NOOP

Purpose: no operation. Indicates that the connection to the server is valid.
Servers required to support: yes
Parameters: none
Reply on success: +OK
Example:
 Client: NOOP

Chapter 8

376

 Server: +OK

PASS

Purpose: Provides a password for authentication. For a specific mailbox, a
server generally supports either PASS or APOP.
Servers required to support: yes
Parameters: password
Reply on success: +OK
Example:
 Client: PASS embedded
 Server: +OK

QUIT

Purpose: requests the server to delete all messages marked for deleting and
close the connection.
Servers required to support: yes
Parameters: none
Reply on success: +OK
Example:
 Client: QUIT
 Server: +OK

RSET

Purpose: unmark any messages marked for deleting
Servers required to support: yes
Parameters: none
Reply on success: +OK
Example:
 Client: RESET
 Server: +OK

RETR

Purpose: requests a message.
Servers required to support: yes
Parameters: message_number
Reply on success: +OK number_of_bytes followed by the message and end-
ing in a period on a line by itself
Example:

E-mail for Embedded Systems

 377

 Client: RETR 5
 Server: +OK 212 octets
 message contents
 .

STAT

Purpose: requests a drop listing containing the number of messages in the
mailbox and the total number of bytes in the messages.
Servers required to support: yes
Parameters: none
Reply on success: +OK number_of_messages number_of_bytes
Example:
 Client: STAT
 Server: +OK 2 508

TOP

Purpose: requests a message’s headers plus the specified number of the
message’s top lines.
Servers required to support: no
Parameters: message_number number_of_lines_to_receive
Reply on success: +OK
Example:
 Client: TOP 2 3
 Server: +OK
 Server: From: tini2@Lvr.com
 Server: To: controlcenter@Lvr.com
 Server: Subject: Status Report
 Server: Date: 28 Jul 2003 10:21 CST
 Server: Subject: HighTemp=101
 Server: Subject: LowTemp=13
 Server: Subject: MedianTemp=56
 Server: .

UIDL

Purpose: requests a unique-id listing for one or all messages. The unique id
is a string specified by the server and consisting of one to 70 characters in
the range 21h to 7Eh. The value identifies a message in the user’s mailbox
and persists across sessions.

Chapter 8

378

Servers required to support: no
Parameters: [message_number]
Reply on success: +OK message_number unique_id
If there is no message number, the server returns a multi-line reply with
information about each message in turn.
Example:
 Client: UIDL 3
 Server: +OK 3 unique-id for message 3

USER

Purpose: provides a user name for authentication.
Servers required to support: no
Parameters: user_name
Reply on success: +OK
Example:
 Client: USER tini1
 Server: +OK

Requirements for a Client

Every POP3 client must be capable of the following:

1. The client must send the appropriate commands for establishing commu-
nications, retrieving e-mail, and closing communications. The minimum
commands to check for mail and retrieve messages from a mailbox protected
with a user name and password are USER, PASS, STAT, RETR, and QUIT.
The commands must be sent in this order.

2. The client must read received replies and take appropriate action on
receiving an -ERR reply.

3. The POP3 standard doesn’t talk about timeouts, but a client application
will probably want to time out and close the connection if the server fails to
respond to a command within a reasonable time.

4. A line of message text that begins with a period transmits with an extra
period at the beginning to prevent the line from appearing as an
end-of-message indicator. In receiving a line that begins with a period, the
client should check to see if the line contains one or more additional charac-

E-mail for Embedded Systems

 379

ters. If it does, the client should strip the first period from the line and con-
sider the line part of the message, not the end-of-message indicator.

Some embedded application can define a standard, application-specific for-
mat that doesn’t allow a period on a line by itself in received messages. In
this case, the client doesn’t have to worry about checking for message lines
that begin with periods.

Messages

As explained earlier in this chapter, RFC standards specify requirements for
e-mail messages. The receiver of an e-mail can use the standard header fields
to filter messages by sender or subject.

Performance Issues

If your device has time-critical tasks to perform at the same time it’s receiv-
ing e-mail, it’s best to place the code that communicates with the POP3
server in its own thread or task so the CPU can do other things while wait-
ing for the server to respond.

Chapter 8

380

Using the File Transfer Protocol

 381

The previous chapters have shown several ways that an embedded system
can send and receive information on networks. The options have included
applications that send messages using UDP and TCP, Web pages with
dynamic content, and e-mail. Another possibility that some systems can
find useful is the File Transfer Protocol (FTP), which defines a way for com-
puters to send and receive information stored in files.

This chapter includes examples that show how the Rabbit and TINI can
function as FTP servers and FTP clients, followed by details about FTP and
its capabilities.

Chapter 9

382

Quick Start:
FTP Clients and Servers

The Rabbit and TINI modules each include FTP support that helps in
using a module as an FTP client or server. For the Rabbit, Dynamic C’s
ftp.lib and ftp_server.lib libraries provide functions for transferring informa-
tion in files. For the TINI, support is available in the URL and URLConnec-
tion classes and in the TINI’s FTPClient and FTPserver classes.

A Rabbit or TINI client application can communicate with just about any
FTP server, in a local network or on the Internet. And you can use just
about any standard FTP client application or a command-line interface to
access files hosted by a Rabbit or TINI FTP server.

The example applications send text files and write the contents of received
files to the console (the STDIO window in Dynamic C or a Telnet session
for the TINI). In real-world applications, the embedded system can place
any kind of information in the files to send and can use the information in
received files in any way.

Rabbit FTP Client
The following examples show how a Rabbit can exchange files with an FTP
server. A Dynamic C application can use one of two sources for files to send
and receive. Many basic applications can store the files in buffers in root
memory. For transferring large amounts of data, for generating a file’s con-
tents on request, or for processing received data on receipt, a data-handler
callback function can receive requested files or generate files to send.

Retrieving a File

This example shows how a Rabbit module can retrieve a file, store its con-
tents in a buffer, and write the contents of the file to Dynamic C’s STDIO
window.

Using the File Transfer Protocol

 383

Initial Defines and Declares

As explained in Chapter 5, a TCPCONFIG macro selects a network configura-
tion.

#define TCPCONFIG 1

Various parameters enable communicating with a specific FTP server. You
must change REMOTE_HOST, REMOTE_USERNAME, REMOTE_PASSWORD,
REMOTE_FILE, and REMOTE_DIR to values appropriate for the FTP server
your Rabbit will communicate with.

REMOTE_HOST is the domain name or IP address of the remote FTP server.
REMOTE_PORT is the port on the FTP server to connect to. Set this value to
zero to connect to the default port for the FTP control connection (21).
REMOTE_USERNAME and REMOTE_PASSWORD are the user name and password
that enable access to a user area on the FTP server.

#define REMOTE_HOST "ftp.example.com"
#define REMOTE_PORT 0
#define REMOTE_USERNAME "embedded"
#define REMOTE_PASSWORD "ethernet"

Additional values specify the directory to change to on connecting to the
FTP server (REMOTE_DIR) and the name of the file the Rabbit will retrieve
(REMOTE_FILE). Set REMOTE_DIR to "/" to specify the server’s root direc-
tory.

#define REMOTE_DIR "/usr/embedded/"
#define REMOTE_FILE "testfile.txt

If USE_PASSIVE is defined, PASSIVE_FLAG is set to FTP_MODE_PASSIVE,
which causes the Rabbit to request to use FTP’s passive mode in opening the
data channel for file transfers. Passive mode can be useful when communi-
cating through a firewall. The In Depth section of this chapter has more on
passive mode.

#define USE_PASSIVE

#ifdef USE_PASSIVE
 #define PASSIVE_FLAG FTP_MODE_PASSIVE
#else
 #define PASSIVE_FLAG 0
#endif

Chapter 9

384

The #memmap xmem directive causes all C functions not declared as root to
be stored in extended memory. The dcrtcp.lib library supports TCP/IP, and
ftp_client.lib supports FTP client communications.

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

The file_buffer array holds the retrieved file and should be large enough
to hold any file being requested.

char file_buffer[2048];

The main() Routine

The main() routine begins by calling sock_init() to initialize the
TCP/IP stack. The retrieve_file() function then requests a file from
the remote FTP server. If retrieve_file() fails, it returns 1 and the pro-
gram ends with an error code of 1. On success, the main() routine returns
zero.

int main()
{
 int return_value;
 return_value = sock_init();
 if (return_value == 0) {
 printf("Network support is initialized.\n");
 }
 else {
 printf("The network is not available.\n");
 exit(2);
 }

 if (retrieve_file()) {
 exit(1);
 }
 return 0;
} // end main()

Requesting a File

The retrieve_file() function requests the file and returns zero on suc-
cess.

int retrieve_file()
{

Using the File Transfer Protocol

 385

 longword file_size;
 int byte_in_file;
 int return_value;

 printf("Preparing to download %s...\n", REMOTE_FILE);

The ftp_client_setup() function initiates the request for the file. Nine
parameters provide the information required to request the transfer. The
REMOTE_HOST, REMOTE_USERNAME, REMOTE_PASSWORD, REMOTE_FILE,
REMOTE_DIR, and file_buffer parameters are defined above.

The FTP_MODE_DOWNLOAD constant specifies that the Rabbit wants to
retrieve (rather than send) a file. A logical OR of this value with
PASSIVE_FLAG causes the Rabbit to request to use passive mode if
USE_PASSIVE was defined earlier. The sizeof(file_buffer) parameter
is the length of the buffer that will contain the retrieved file.

 return_value = ftp_client_setup(
 resolve(REMOTE_HOST),
 REMOTE_PORT,
 REMOTE_USERNAME,
 REMOTE_PASSWORD,
 FTP_MODE_DOWNLOAD|PASSIVE_FLAG,
 REMOTE_FILE,
 REMOTE_DIR,
 file_buffer,
 sizeof(file_buffer));

The function returns zero on success. The function fails if the host address is
zero, if sizeof(file_buffer) is negative, or if there are no available
socket buffers to open an internal control socket to the FTP server. If the
function fails, the program ends with an exit code of 1.

 if (return_value != 0) {
 printf("FTP setup failed.\n");
 exit(1);
 }

The ftp_client_tick() function manages communications with the
FTP server. The function returns zero while pending, 1 on success, and a
value from 2 to 6 to indicate an error. The program loops until the function
returns a non-zero value.

 printf("Looping on ftp_client_tick()...\n");
 while(0 == (return_value = ftp_client_tick()));

Chapter 9

386

On success, a call to the ftp_client_xfer() function returns the size of
the file retrieved. Dynamic C’s STDIO window displays the file size and the
contents of the file.

On failure, a printf() statement displays an error message. A call to
ftp_last_code() returns the most recent message code returned by the
FTP server.

 if(1 == return_value) {
 file_size = ftp_client_xfer();
 printf("The file has been received.
 File size: %d bytes.\n", file_size);

 printf("Contents of file:\n");
 for (byte_in_file = 0; byte_in_file <=
 (file_size - 1); byte_in_file++)
 printf("%c",file_buffer[byte_in_file]);
 printf("\n");
 return 0;
 } else {
 printf("FTP download failed: status = %d, last code =
 %d\n", return_value, ftp_last_code());
 return 1;
 }
} // end retrieve_file

Sending a File

In a similar way, a Rabbit can use the ftp.lib library to send a file to an FTP
server.

Initial Defines and Declares

Much of the program code is similar to the previous example, including
these initial statements that provide system-specific and application-specific
information for the transfer and name the libraries the program uses. You
must change REMOTE_HOST, REMOTE_USERNAME, REMOTE_PASSWORD and
REMOTE_DIR to values appropriate for the FTP server your Rabbit will com-
municate with.

#define TCPCONFIG 1
#define REMOTE_HOST "ftp.example.com"
#define REMOTE_PORT 0
#define REMOTE_USERNAME "embedded"

Using the File Transfer Protocol

 387

#define REMOTE_PASSWORD "ethernet"
#define REMOTE_DIR "/usr/embedded/"
#define REMOTE_FILE "testfile.txt"
#define USE_PASSIVE

#ifdef USE_PASSIVE
 #define PASSIVE_FLAG FTP_MODE_PASSIVE
#else
 #define PASSIVE_FLAG 0
#endif

#memmap xmem
#use "dcrtcp.lib"
#use "ftp_client.lib"

The file_buffer array holds the data that the Rabbit will transfer in a file.
This example uses a small 10-byte buffer.

char file_buffer[10];

The main() Function

The main() function calls create_file() to place data in the array that
will be sent as a file to the FTP server. A call to sock_init() initializes the
TCP/IP stack. If the initialization fails, the program ends with an error code
of 2. The send_file() function sends the file. If the attempt to send the
file fails, the program ends with an error code of 1. On success, the program
returns zero.

int main()
{
 int return_value;
 create_file();

 return_value = sock_init();
 if (return_value == 0) {
 printf("Network support is initialized.\n");
 }
 else {
 printf("The network is not available.\n");
 exit(2);
 }
 if (send_file())
 exit(1);
 return 0;
} // end main()

Chapter 9

388

Creating the File

For this example, the data in the file is the string "test data", terminat-
ing in a null character (\0). Of course, a file can contain any text or binary
data.

create_file(void) {
 file_buffer[0]='t';
 file_buffer[1]='e';
 file_buffer[2]='s';
 file_buffer[3]='t';
 file_buffer[4]=' ';
 file_buffer[5]='d';
 file_buffer[6]='a';
 file_buffer[7]='t';
 file_buffer[8]='a';
 file_buffer[9]='\0';
} // end create_file

Sending the File

As in the retrieve_file() function in the previous example, the
send_file() function calls ftp_client_setup(), followed by
ftp_client_tick().

int send_file(void)
{
 int return_value;
 printf("Calling ftp_client_setup() to upload %s...\n",
 REMOTE_FILE);

The parameters for ftp_client_setup() are the same as in the previous
example except for the last value, which contains the size of the file being
transmitted rather than the size of the buffer for a received file.

 return_value = ftp_client_setup(resolve(
 REMOTE_HOST),
 REMOTE_PORT,
 REMOTE_USERNAME,
 REMOTE_PASSWORD,
 FTP_MODE_UPLOAD|PASSIVE_FLAG,
 REMOTE_FILE,
 REMOTE_DIR,
 file_buffer,
 sizeof(file_buffer));

Using the File Transfer Protocol

 389

 if (return_value != 0) {
 printf("FTP setup failed.\n");
 exit(2);
 }

The ftp_client_tick() function returns 0 while the transfer is in
progress. When the function returns 1, the transfer has completed success-
fully. If the function returns a value greater than 1, the transfer has failed. A
message in Dynamic C’s STDIO windows displays the result.

 printf("Looping on ftp_client_tick()...\n");
 while(0 == (return_value = ftp_client_tick()));

 if(1 == return_value) {
 printf("FTP upload completed successfully. %d
 bytes.\n", ftp_client_filesize());
 return 0;
 } else {
 printf("FTP upload failed: status = %d, last code =
 %d\n", return_value, ftp_last_code());
 return 1;
 }
} // end send_file()

TINI FTP Client
To request files from an FTP server, a TINI can use Java’s URL and URLCon-
nection classes with the ftp URL scheme. Applications that need to transfer
files in both directions can use the TINI’s FTPClient class.

Requesting a File in a URL

Java’s URL and URLConnection classes provide support for requesting
resources from remote hosts in URLs. Chapter 8 showed how a Java pro-
gram can use a URL with a mailto protocol handler to send an e-mail. In a
similar way, you can use a URL with an ftp protocol handler to request a file
from an FTP server. The FTP capabilities are one-way only. A client can
request files but can’t send them.

The FtpUrlReceiver class below shows how a TINI can use the URL and
URLConnection classes to request a file. The source code to support
requesting files in URLs is in com.dalsemi.protocol.ftp.Connec-

Chapter 9

390

tion.java in the file ModulesSrc.jar in the \src directory of the TINI distri-
bution.

Imports and Initial Declares

The FtpUrlReceiver class imports java.io classes to support input and
output functions and java.net classes to support networking functions.

import java.io.*;
import java.net.*;

A series of constant strings provide default values to use in connecting to the
remote host and requesting a file. USERNAME and PASSWORD are the user
name and password required to log onto the server. REMOTEHOST is the IP
address or domain name of the FTP server. FILENAME is the requested file.
You must change these values to match the parameters appropriate for your
FTP server and requested file.

public class FtpUrlReceiver {

 public static final String USERNAME = "embedded";
 public static final String PASSWORD = "ethernet";
 public static final String REMOTEHOST = "192.168.111.5";
 public static final String FILENAME = "testfile.txt";

The FtpUrlReceiver class’s constructor requires values for a remote host,
user name, and password. The port variable can specify a port to use for the
FTP control connection. If this value is -1, the connection uses the default
port of 21. The type variable can specify a transfer type of ASCII (a) or
binary (i).

 private String remoteHost;
 private String userName;
 private String password;
 private int port = -1;
 private String type = "a";

The Constructor

The class’s constructor uses the passed values to set the corresponding vari-
ables.

 public FtpUrlReceiver(String remoteHost,
 String userName, String password) {
 this.remoteHost = remoteHost;

Using the File Transfer Protocol

 391

 this.userName = userName;
 this.password = password;
 } // end FtpUrlReceiver constructor

Reading a File

The class’s main() method creates the FtpUrlReceiver object ftp. A call
to the class’s getFile() method returns the InputStream object
inStream, which contains the received file. A BufferedReader object,
in, reads the file from the InputStream object. On reading a received line
of text, a System.out.println() statement writes the line to the default
output stream. A received null indicates the end of the input stream. The
close() method closes the BufferedReader object when the file has
been read.

 public static void main(String[] args) {
 try {
 FtpUrlReceiver ftp = new
 FtpUrlReceiver(REMOTEHOST, USERNAME,
 PASSWORD);

 InputStream inStream = ftp.getFile(FILENAME);

 BufferedReader in = new BufferedReader(new
 InputStreamReader(inStream));
 String line;
 System.out.println("Reading " + FILENAME + ":");
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }
 System.out.println();

 in.close();

 } catch (IOException e){
 System.err.print("IO exception: ");
 System.err.println(e.getMessage());
 }
 } // end main()

Setting the Port and Transfer Type

The setPort() method can set the port to a value other than the default
FTP control port of 21. Zero indicates the default port.

Chapter 9

392

 public void setPort(int port) {
 this.port = port;
 } // send setPort()

The setType() method can set the transfer type. Use "a" to indicate
ASCII and "i" to indicate binary.

 public void setType(String type) {
 this.type = type;
 } // end setType()

Requesting a File

The getFile() method creates and sends a URL to request a file from the
FTP server. The URL object url contains the request for the file and uses the
values defined earlier. If the port variable is greater than zero, the URL spec-
ifies a port. If using the default port, the URL doesn’t need to specify a port
value. The In Depth section of this chapter has more about the syntax of the
URL.

 public InputStream getFile(String fileName)
 throws IOException {
 URL url = new URL("ftp://"
 + userName
 + ":" + password
 + "@" + remoteHost
 + ((port >= 0) ? (":" + port) : "")
 + "/" + fileName
 + ";type=" + type);

The URLConnection object conn reads from the FTP server referenced in
the URL object. The URL object’s openConnection() method creates the
URLConnection object, which represents a connection to the named FTP
server.

The getInputStream() method returns an input stream that reads from
the connection to the server.

 URLConnection conn = url.openConnection();
 return conn.getInputStream();

 } // end getFile()
} // end FtpUrlReceiver

Using the File Transfer Protocol

 393

Building the Application

As with the TINI e-mail applications in Chapter 8, building the FtpUrlRe-
ceiver application requires a few additional considerations to enable using
the ftp protocol handler. The build process uses the com.dalsemi.proto-
col.* and com.dalsemi.protocol.ftp.* classes in modules.jar.

When compiling FtpUrlReceiver.java to FtpUrlReceiver.class, you must
include the location of modules.jar in the bootclasspath. Here is an example
command line (which you can place in a batch file):

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar FtpUrlReceiver.java

When converting FtpUrlReceiver.class to FtpUrlReceiver.tini, use the Build-
Dependency utility in place of TiniConvertor. Here is an example com-
mand line:

java -classpath ..\..\bin\tini.jar;%classpath%
 BuildDependency -f FtpUrlReceiver.class
 -o FtpUrlReceiver.tini -d ..\..\bin\tini.db
 -add FTP -p ..\..\bin\modules.jar

The -add option adds the FTP dependency to the project, and the -p
option names the location of modules.jar.

Requesting a File with FTPClient

If you need more abilities than the URL and URLConnection classes provide,
the TINI’s FTPClient class is an option. The source code for FTPClient is
in com.dalsemi.protocol.ftp.FTPClient.java in the file Modu-
lesSrc.jar in the \src directory of the TINI distribution. The class supports
file transfers in both directions. The TINI’s slush shell uses this class to
implement an FTP client controlled via the command line.

The following example uses the FTPClient class to request a file from an
FTP server.

Imports and Initial Declares

The FTPClientReceiver class imports java.io classes to support input
and output functions. The com.dalsemi.protocol.ftp.FTPClient
class supports communications with FTP servers.

Chapter 9

394

A series of constant strings provide default values to use in connecting to the
remote host and requesting a file. USERNAME and PASSWORD are the user
name and password required to log on to the server. REMOTEHOST is the IP
address or domain name of the FTP server. FILENAME is the requested file.
You must change these values to match the parameters appropriate for your
FTP server and requested file.

import com.dalsemi.protocol.ftp.FTPClient;
import java.io.*

public class FtpClientReceiver {
 public static final String USERNAME = "embedded";
 public static final String PASSWORD = "ethernet";
 public static final String REMOTEHOST =
 "192.168.111.5";
 public static final String FILENAME = "testfile.txt";

The FtpClientReceiver class’s constructor requires values for a remote
host, user name, and password. The port variable can specify a port to use
for the FTP control connection. If this value is zero, the connection uses the
default port of 21. The type variable can specify a transfer type of ASCII
(a) or binary (i).

 private String remoteHost;
 private String userName;
 private String password;
 private int port = 0;
 private String type = "a";

The main() Method

The main() method creates the FtpClientReceiver object ftp using the
parameters provided and calls the doGetFile() method to retrieve the file.

 public static void main(String[] args)
 throws IOException {

 FtpClientReceiver ftp = new
 FtpClientReceiver(REMOTEHOST, USERNAME,
 PASSWORD);
 ftp.doGetFile(FILENAME);
 } // end main()

Using the File Transfer Protocol

 395

The Constructor

The constructor uses the passed values to set the corresponding variables.

 public FtpClientReceiver(String remoteHost,
 String userName, String password) {
 this.remoteHost = remoteHost;
 this.userName = userName;
 this.password = password;
 } // end FtpClientReceiver constructor

Setting the Port and Transfer Type

The setPort() method can set the port to a value other than the default
FTP control port of 21. A negative value indicates the default port.

 public void setPort(int port) {
 this.port = port;
 } // end setPort()

The setType() method can set the transfer type. Use "a" to indicate
ASCII and "i" to indicate binary.

 public void setType(String type) {
 this.type = type;
 } // end setType()

Requesting a File

The doGetFile() method uses FTPClient’s methods to log onto the
server, read responses, and request a file. For each command sent, a Sys-
tem.out.println() statement writes the returned response to the stan-
dard output stream.

The FTPClient object client specifies a non-default port if needed.

 public void doGetFile(String filename)
 throws IOException {

 FTPClient client;
 if (port >= 0) {
 client = new FTPClient(remoteHost);
 } else {
 client = new FTPClient(remoteHost, port);
 }

Chapter 9

396

The userName() and password() methods send the user name and pass-
word to log onto the server.

 try {
 client.userName(userName);
 System.out.println
 (client.getResponseString());

 client.password(password);
 System.out.println
 (client.getResponseString());

The ascii() and binary() methods can specify whether to use ASCII or
binary mode for the transfer. FTPClient also supports the methods dir()
and list(). Both of these request a directory listing from the server.

 if ("a".equalsIgnoreCase(type)) {
 client.ascii();
 } else if ("i".equalsIgnoreCase(type)) {
 client.binary();
 }
 System.out.println
 (client.getResponseString())

An FTP file transfer uses two TCP connections, or channels: a control chan-
nel for commands and a data channel for the file being transferred. FTPCli-
ent’s passiveConnection() method sends a PASV command to request
to use FTP’s passive mode. In passive mode, the client, rather than the
server, opens the data channel. FTPClient also supports the dataConnec-
tion() method, which uses the EPSV command to request to use extended
passive mode. If the server responds that it doesn’t support extended passive
mode, the dataconnection() method sends a PORT command that spec-
ifies a port number the server should use for the data channel. The In Depth
section of this chapter has more on the passive modes and PORT command.

 client.passiveConnection();
 System.out.println
 (client.getResponseString());

The retr() method sends an FTP RETR command that requests the spec-
ified file. A BufferedReader object reads the file, and Sys-

tem.out.println() statements write the file’s contents to the standard
output stream. A received null indicates the end of the input stream. The

Using the File Transfer Protocol

 397

close() method closes the BufferedReader object when the file has
been read.

After sending the file, the server closes the data channel. A call to FTPCli-
ent’s close() method sends an FTP QUIT command to request the server
to close the control channel, which ends the session. The call to close() is
in a finally block to ensure that the method is called before the doGet-
File() method ends.

 client.retr(filename);
 System.out.println
 (client.getResponseString());

 BufferedReader in = new BufferedReader(
 new InputStreamReader
 (client.getDataStream()));

 String line;
 System.out.println("File contents:");
 while ((line = in.readLine()) != null) {
 System.out.println(line);
 }
 System.out.println();

 in.close();
 } finally {
 client.close();
 }
 } // end doGetFile()
} // end FtpClientReceiver

Building the Application

The FTPClientReceiver application uses the com.dalsemi.proto-

col.ftp.FTPClient class in modules.jar. So as in the previous example,
when compiling FtpClientReceiver.java to FtpClientReceiver.class, you must
include the location of modules.jar in the bootclasspath. Here is an example
command line:

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar FtpClientReceiver.java

Use the BuildDependency utility to convert FtpClientReceiver.class to Ftp-
ClientReceiver.tini. Here is an example command line:

Chapter 9

398

java -classpath ..\..\bin\tini.jar;%classpath%
 BuildDependency -f FtpClientReceiver.class
 -o FtpClientReceiver.tini -d ..\..\bin\tini.db
 -add FTP -p ..\..\bin\modules.jar

The -add option adds the FTP dependency to the project, and the -p
option names the location of modules.jar.

Sending a File with FTPClient

In a similar way, a TINI can also use the FTPClient class to send a file to an
FTP server. The FTPClientSender class imports java.io.* classes to sup-
port input and output functions. The com.dalsemi.protocol.ftp.FTP-
Client class supports communications with FTP servers.

Constant strings provide default values for the user name, password, and
server’s IP address. The FILENAME constant is the file to request from the
server. You must change these values to match the parameters appropriate
for your FTP server and requested file.

import com.dalsemi.protocol.ftp.FTPClient;
import java.io.*;

public class FtpClientSender {
 public static final String USERNAME = "embedded";
 public static final String PASSWORD = "ethernet";
 public static final String REMOTEHOST =
 "192.168.111.5";
 public static final String FILENAME = "testfile2.txt";

The FtpSender class’s constructor requires values for a remote host, user
name, password, and port, which is zero to specify the default port of 21.
The type variable can specify a transfer type of ASCII (a) or binary (i).

 private String remoteHost;
 private String userName;
 private String password;
 private int port = 0;
 private String type = "a";

The main() Method

The main() method creates the FtpClientSender object ftp using the
parameters provided and calls the doSendFile() method to send the file.

Using the File Transfer Protocol

 399

 public static void main(String[] args)
 throws IOException {

 FtpClientSender ftp = new FtpClientSender
 (REMOTEHOST, USERNAME, PASSWORD);
 ftp.doSendFile(FILENAME);
 } // end main()

The Constructor

The constructor for FtpClientSender uses the passed values to set the cor-
responding variables.

 public FtpClientSender(String remoteHost,
 String userName, String password) {
 this.remoteHost = remoteHost;
 this.userName = userName;
 this.password = password;
 } // end FtpClientSender constructor

Setting the Port and Transfer Type

The setPort() method can set the port to a value other than the default
FTP control port of 21. Zero indicates the default port.

 public void setPort(int port) {
 this.port = port;
 } // end setPort()

The setType() method can set the transfer type. Use a to indicate ASCII
and i to indicate binary.

 public void setType(String type) {
 this.type = type;
 } // end setType()

Sending a File

The doSendFile() method uses FTPClient’s methods to log onto the
server, read responses, and send a file. For each command sent, the console
displays the returned response.

The method creates the FTPClient object client, specifying a non-default
port if needed.

Chapter 9

400

 public void doSendFile(String filename)
 throws IOException {

 FTPClient client;
 if (port >= 0) {
 client = new FTPClient(remoteHost);
 } else {
 client = new FTPClient(remoteHost, port);
 }

 try {

The userName() and password() methods send the user name and pass-
word to log onto the server.

 client.userName(userName);
 System.out.println
 (client.getResponseString());

 client.password(password);
 System.out.println
 (client.getResponseString());

The ascii() and binary() methods can specify whether to use ASCII or
binary mode for the transfer. The passiveConnection() method requests
to use passive mode for the transfer.

 if ("a".equalsIgnoreCase(type)) {
 client.ascii();
 } else if ("i".equalsIgnoreCase(type)) {
 client.binary();
 }
 System.out.println
 (client.getResponseString())

 client.passiveConnection();
 System.out.println
 (client.getResponseString());

For sending the file, the client can choose between two FTP commands.
APPE requests the server to append the data being transferred to an existing
file of the same name. STOR requests the server to replace any data in an
existing file of the same name with the new data. With both commands, if
the file doesn’t exist, the server creates the file. The issuecommand()
method can send either of these commands (or other FTP commands).

Using the File Transfer Protocol

 401

 client.issueCommand
 ("APPE " + FILENAME + "\r\n");
 //client.issueCommand
 ("STOR " + FILENAME + "\r\n");
 System.out.println
 (client.getResponseString());

An Outputstream object writes data to the file. A call to the class’s write-
File() method writes the data to the OutputStream object. After writing
the file, the output stream is flushed to send the data immediately, then
closed.

After sending the file, FTPClient closes the data channel. A call to FTPCli-
ent’s close() method sends an FTP QUIT command to request the server
to close the control channel, which ends the session. The call to close() is
in a finally block to ensure that the method is called before the doSend-
File() method ends.

 OutputStream output =
 client.getOutputStream();
 writeString(output, "test data\r\n");
 output.flush();
 output.close();
 System.out.println
 ("The file has been transferred.");

 } finally {

 client.close();

 }
 } // end doSendFile()

Writing a String to the Output Stream

The writeFile() method writes the contents of a string to an Output-
Stream object. The stringToWrite variable is the contents of the file to
write to the server. The String class’s getBytes() method converts the
string to a byte array for passing to the OutputStream object.

 private void writeString(OutputStream output, String
stringToWrite) {
 try {
 output.write(stringToWrite.getBytes());
 } catch (IOException e){

Chapter 9

402

 System.err.println("IO exception: " +
e.getMessage());
 }
 } // end writeString()
} // end FtpClientSender

Building the Application

The FTPClientSender application uses the com.dalsemi.proto-

col.ftp.FTPClient class in modules.jar. So as in the previous example,
when compiling FtpClientSender.java to FtpClientSender.class, include the
location of modules.jar in the bootclasspath. Here is an example command
line:

javac -bootclasspath ..\..\bin\tiniclasses.jar;
 ..\..\bin\modules.jar FtpClientSender.java

Use the BuildDependency utility to convert FtpClientSender.class to FtpCli-
entSender.tini. Here is an example command line:

java -classpath ..\..\bin\tini.jar;%classpath%
 BuildDependency -f FtpClientSender.class
 -o FtpClientSender.tini -d ..\..\bin\tini.db
 -add FTP -p ..\..\bin\modules.jar

The -add option adds the FTP dependency to the project, and the -p
option names the location of modules.jar.

Rabbit FTP Server
Dynamic C’s ftp_server.lib library provides support for an FTP server that
can enable clients to request to exchange files with a Rabbit module. The
files can be stored in root memory, in the extended memory area, or in Flash
memory or battery-backed RAM.

The example below shows how the Rabbit can create and serve files and
enable clients to send files to the server. You can communicate with the
server using any standard FTP client application or a command-line inter-
face.

Using the File Transfer Protocol

 403

Initial Defines and Declares

As explained in Chapter 5, the firmware selects a network configuration
from tcp_config.lib.

#define TCPCONFIG 1

A series of define statements configures the file system and FTP server.

The FTP server uses Dynamic C’s filesystem mk II, also called FS2, for stor-
ing information in named files in Flash memory or battery-backed RAM.
Defining FORMAT resets the list of files in the user block area of Flash or bat-
tery-backed memory. This statement needs to execute only the first time the
program runs, to put the file system in a known state.

#define FORMAT

The FTP_USE_FS2_HANDLERS macro enables FS2 support in the default
functions for the file handler and enables clients to write files to the file sys-
tem.

#define FTP_USE_FS2_HANDLERS

The FS_MAX_FILES macro specifies the maximum number of files sup-
ported by the file system.

#define FS_MAX_FILES 50

The FS2_USE_PROGRAM_FLASH macro specifies how many kilobytes of pro-
gram Flash memory the file system can use.

 #define FS2_USE_PROGRAM_FLASH 32

The FTP_CREATE_MASK macro provides the servermask parameter for the
sspec_addfsfile() function, which makes files available to the FTP
server. The default is SERVER_FTP | SERVER_WRITABLE, which specifies
the FTP server and enables authorized users to delete and overwrite files on
the server.

#define FTP_CREATE_MASK SERVER_FTP | SERVER_WRITABLE

A portion of the user block in memory holds a structure that associates the
names of files with the files’ locations. The FTP_USERBLOCK_OFFSET macro
specifies the offset in the user block where the structure will be stored. The
default is zero. Change this value if your application uses the default portion

Chapter 9

404

of the user block for another purpose. The sizeof(server_spec) func-
tion returns the structure’s size.

#define FTP_USERBLOCK_OFFSET 0

The SSPEC_MAXSPEC macro specifies the maximum number of files sup-
ported by the FTP server. The default is 10.

#define SSPEC_MAXSPEC 10

The FTP_EXTENSIONS macro enables support for the FTP DELE (delete)
command.

#define FTP_EXTENSIONS

As in the previous examples, the #memmap xmem directive causes all C func-
tions not declared as root to be stored in extended memory, and the code
requires the dcrtcp.lib library to support TCP/IP. This example also requires
the fs2.lib library to support the FS2 file system and ftp_server.lib to support
the FTP server’s functions.

#memmap xmem
#use "fs2.lib"
#use "dcrtcp.lib"
#use "ftp_server.lib"

Starting the FTP Server

The main() routine performs initialization functions and starts the FTP
server.

void main()
{
 File private_file;
 File public_file;
 FSLXnum ext;
 int file;
 int user;
 long len;
 static char create_file1_buffer[127];
 static char create_file2_buffer[127];

The fs_get_flash_lx() function returns a logical extent number that
indicates the preferred Flash-memory device for FS2 files. The preferred
device is the second Flash memory if one is available, and otherwise is the
reserved area in the program Flash memory.

Using the File Transfer Protocol

 405

To use a portion of the program Flash memory for the file system, you must
define two constants. In rabbitbios.c (in the \bios directory of the Dynamic
C distribution), set XMEM_RESERVE_SIZE to the number of bytes to reserve
for the file system in the program Flash. And in your application, before the
statement #use "fs2.lib", define FS2_USE_PROGRAM_FLASH to equal the
number of kilobytes the file system will use. The application uses the smaller
of the two values. (This application sets FS2_USE_PROGRAM_FLASH to 32
kilobytes above.)

To use battery-backed RAM for the file system, use the fs_get_ram_lx()
function in place of fs_get_flash_lx(). To use the non-preferred Flash
memory for the file system, use the fs_get_other_lx() function.

 ext = fs_get_flash_lx();

The fs_init() function initializes the file system.

 fs_init(0, 0);

If the FORMAT macro is defined in the application, the file system and user
block are initialized to known states. The lx_format() function formats
the file system extent, deleting any files that were present. The writeUser-
Block() function initializes the user block in memory to zeros. Don’t exe-
cute this block of code if you want to preserve files already in memory.

#ifdef FORMAT
 lx_format(ext, 0);
 len = 0;
 writeUserBlock(FTP_USERBLOCK_OFFSET, &len,
 sizeof(long));
#endif

The application creates two FS2 files and stores text in each. File 1 is
public_file and contains the text “public file”. File 2 is private_file
and contains the text “private file”.

 sprintf(create_file1_buffer, "public file");
 fcreate(&public_file, 1);
 fwrite(&public_file, create_file1_buffer,
 strlen(create_file1_buffer));
 fclose(&public_file);

 sprintf(create_file2_buffer, "private file");
 fcreate(&private_file, 2);

Chapter 9

406

 fwrite(&private_file, create_file2_buffer,
 strlen(create_file2_buffer));
 fclose(&private_file);

The ftp_load_filenames() function loads the data structure that keeps
track of the locations of the files. On success, ftp_load_filenames()
returns zero and a call to ftp_save_filenames() saves the data structure
to the user block. Even if there are no file names defined yet, saving the data
structure puts it in a known state.

 if (ftp_load_filenames() < 0) {
 ftp_save_filenames();
 }

The application uses Dynamic C’s ServerSpec structure defined in
zserver.lib and introduced in Chapter 7. The sauth_adduser() function
defines a user who can access files on the server. A file can be accessible to a
specific user or users, or to any user.

To make a file accessible to all users, define a user with the user name of
anonymous and an empty string ("") for a password. The SERVER_FTP
parameter names the server that the user can access. The
ftp_set_anonymous() function specifies the user name for files that any-
one can access.

The sspec_addfsfile() function enables the FTP server to access the
FS2 files created earlier. The function associates the file name public.txt with
file 1 on the FTP server. The sspec_setuser() function enables the
anonymous user defined above to access the file.

 user = sauth_adduser("anonymous", "", SERVER_FTP);
 ftp_set_anonymous(user);

 file = sspec_addfsfile("public.txt", 1, SERVER_FTP) ;
 sspec_setuser(file, user);

In a similar way, the following statements define a user with the user name
rabbit1 and password embedded. The sauth_setwriteaccess() func-
tion enables rabbit1 to send files to the server in addition to requesting files.
Rabbit1 can access file 2 on the server as the file private.txt. This file isn’t
available to anonymous users.

 user = sauth_adduser("rabbit1", "embedded",

Using the File Transfer Protocol

 407

 SERVER_FTP);
 sauth_setwriteaccess(user, 1);

 file = sspec_addfsfile("private.txt", 2, SERVER_FTP);
 sspec_setuser(file, user);

A call to sock_init() initializes the TCP/IP stack. A call to
ftp_init(NULL) initializes the FTP server using the default handlers. As
explained in Chapter 6, calling tcp_reserveport() can improve the
server’s performance. The FTP_CMDPORT constant is 21, the default FTP
command port.

An endless loop calls ftp_tick() to process FTP requests as needed.

 sock_init();
 ftp_init(NULL);

 tcp_reserveport(FTP_CMDPORT);

 while(1) {
 ftp_tick();
 }
} // end main()

TINI FTP Server
The TINI software includes an FTP server. When the .startup file in the
TINI’s /etc/ directory contains this line:

setenv FTPServer enable

the slush shell runs the FTP server on start up. This is the server you use to
transfer .tini programs to the TINI. You can use the same server to transfer
files in both directions for any purpose using a standard FTP client applica-
tion.

The TINI’s FTPServer class assumes that slush is present and uses some of
its commands. For example, on receiving an FTP LIST command from a
client, the server tries to invoke slush’s ls command. Other slush commands
that the FTP server might call include cd, cd .., del, ls, ls -l, md, move,
and rd. If you want to use the TINI’s FTP server in your application, the
TINI will need to also be running slush or another shell that implements
the above commands.

Chapter 9

408

The source code for the FTP server is in the
com.dalsemi.shell.server.ftp classes FTPServer.java, FTPSes-

sion.java, and FTPInputStream.java. These are in the file APIsrc.jar in
the \src directory of the TINI distribution.

In Depth:
Inside the File Transfer Protocol

The File Transfer Protocol defines a standard protocol for transferring files
between computers. The main documents that define FTP are RFC 959:
File Transfer Protocol (FTP) and RFC 1123: Requirements for Internet Hosts --
Application and Support.

Requirements
An embedded system can function as an FTP client or server. A client ini-
tiates communications with a server and sends requests to transmit or
receive files. In most cases, an embedded system that needs to exchange files
with a single PC should function as a client. Many embedded systems don’t
have a lot of resources to spare, and running an FTP server that is always
available requires processing time and memory. Running a server also puts
the system at a greater security risk because any computer in the network
might be able to gain access to the system’s files. But if the embedded system
needs to make its files available to anyone on the network, or if the files need
to be available to other computers at all times, the system will need to func-
tion as a server.

A computer that uses FTP must have a file system, which enables the system
to store information in named entities called files. Files are of course useful
in desktop computers, where you select files to run programs, view docu-
ments and images, and perform other tasks.

Embedded systems can support file systems as well. A small embedded sys-
tem may just store data in specified locations in memory, with no need to
place the data in named files. But for many embedded systems, a file system

Using the File Transfer Protocol

 409

provides a useful structure for accessing information, both locally and over a
network.

For example, a system can store collected data or configuration settings in
files. A system functioning as an FTP client can initiate communications
periodically with a remote computer to request to send or receive files. A sys-
tem functioning as an FTP server can make its files available on request and
can allow remote computers to send files that the system will use. The user
that communicates with the embedded system can be a human using an
FTP program or a process that functions without human intervention. For
example, a PC can be programmed to retrieve a file once a day from an
embedded system.

In PCs, the file system includes the ability to store files in a directory struc-
ture and to specify attributes such as whether a file is write-protected or
accessible to certain users. Under Windows XP, from the My Computer
folder, you can browse the directories and view file names and attributes. (In
the View menu, click Choose Details to specify what information to dis-
play and click Details to view the information.) The TINI supports a simi-
lar file system, which you can browse from the slush shell using commands
such as ls -l and cd.

A very basic file system might just consist of a structure with a series of
entries that each store the name, starting address in memory, and length of a
file. In Dynamic C, entries in an HttpSpec or ServerSpec structure can
specify files that are accessible to a Web or FTP server. Each entry includes a
file name, the address in memory where the file’s length and contents are
stored, and optional security information.

On a PC, you can perform FTP transfers using an FTP client application
such as WS_FTP from Ipswitch, Inc. Two other ways to perform FTP trans-
fers are from a command prompt and from a browser. To use the com-
mand-line interface, enter ftp at a command prompt and enter ? for a list
of commands. The browser interface is explained later in this chapter.
Ipswitch and others also offer applications that enable a PC to function as
an FTP server.

Chapter 9

410

Transferring a File
To transfer a file, an FTP session uses two channels, or communications
paths, one for control information and one for the file being transferred.
Each channel has a separate TCP connection.

On the server, the default port for the control channel is 21 and the default
port for the data channel is 20. The client can use any available port or
ports. The default for the client is to use the same port for both the control
and data channels. However, transfers that use FTP’s stream mode, which
requires a new data connection for each file, should send a PORT command
to specify a new, non-default port for each file transfer.

Requesting a new port for each transfer prevents problems due to TCP’s
timeout requirements. When a connection closes, TCP requires a timeout
before the same connection can be reused. The timeout prevents a new con-
nection that is identical to a recently closed connection from receiving data
intended for the previous connection. When transferring multiple files in a
single session, if a transfer tries to use the same port as the previous connec-
tion, the port may be unavailable because thes timeout for the previous con-
nection hasn’t expired. Specifying a different port for each data connection
eliminates the problem. Other alternatives are to use the block or com-
pressed transfer modes, which don’t require a new data connection for each
file.

These are typical steps in sending a file to a server in stream mode, where the
file’s contents are sent without a header or any assumed structure for the
file’s data:

1. The client opens a control channel between any available local port and
port 21 on the server. The client sends commands to establish communica-
tions and request to send a file.

2. The server opens a data channel between the server’s port 20 and the port
the client is using for the control channel.

3. The client sends the file’s contents, closes the data channel, and requests
the server to close the control channel.

4. The server closes the control channel.

Using the File Transfer Protocol

 411

In a similar way, these are the steps in receiving a file from a server in stream
mode:

1. The client opens a control channel between any available local port and
port 21 on the server. The client sends commands to establish communica-
tions and request a file.

2. The server opens a data channel between the server’s port 20 and the port
the client is using for the control channel. The server sends the file and
closes the data channel.

3. The client requests the server to close the control channel.

4. The server closes the control channel.

A client that is communicating from behind a firewall may find that the fire-
wall blocks the server’s request to open the data connection. To get around
this limitation without having to reconfigure the firewall, the client can send
a command that requests a passive transfer process (PASV or EPSV), where
the client, rather than the server, opens the data connection. The client must
send the command to request a passive transfer preceding each transfer.

When a client specifies the location of a file on a server, the location is rela-
tive to the directories that the server makes available to the client. This loca-
tion can differ from the file’s absolute location in the computer. For
example, a computer functioning as a server may allow the user to access the
directory /ftp/user1 and its subdirectories. The server’s root directory for that
user is then /user1. To access a file at /ftp/user1/data/test.txt, the client would
specify the location on the server as /data/test.txt, which is the file’s location
relative to the user’s root directory.

Commands
The FTP standard defines required and optional commands for FTP servers
to support.

All of the commands and symbols that represent parameter values are
case-insensitive. A command ends with CRLF.

Chapter 9

412

Minimum Implementation

RFC 959 specifies the commands that a minimum implementation of FTP
must support, and RFC 1123 updates this list with additional commands.
The implementation specified by RFC 1123 is more capable in handling
communications between computers that may use different operating sys-
tems, file systems, and firewall protection.

However, RFC 1123 says that computers whose operating system or file sys-
tem doesn’t allow or support a command aren’t obligated to add support for
it. So for example, an embedded system whose file system doesn’t support
subdirectories can run an FTP server that doesn’t support MKD, CWD, or
other commands that manipulate directories.

In reality, which commands a system’s software needs to support depends in
part on how the system will use FTP. On a PC, a user that needs to exchange
files with varied FTP servers will want an FTP client application that is as
capable and flexible as possible. And an FTP server that is available to varied
clients will want to support a large command set. But an embedded system
that exchanges files only with known FTP clients or servers can have a more
minimal implementation. If the transfers are only with known servers or cli-
ents and are controlled entirely by software at both ends, the commands can
be known, predictable, and thus limited.

The following commands are the minimum implementation required by
RFC 1123, plus EPSV and EPRT, which have additional support for IP v6
addresses. The commands included in RFC 959’s smaller subset are noted as
well.

ACCT account

The ACCT command identifies a user account. A server may require an
ACCT value to log on, or a system may use accounts to grant specific privi-
leges (to store files, for example) at any time after logging on.

APPE pathname

With the APPE command, the client requests the server to append the
received data to the named file if it exists, and otherwise to create the file
and store the received data in it.

Using the File Transfer Protocol

 413

CDUP

The CDUP command requests to change to the current directory’s parent
directory.

CWD pathname

The CWD command requests to change the working directory to the direc-
tory specified in pathname.

DELE pathname

The DELE command requests to delete the file specified in pathname on the
server.

EPSV

The EPSV command requests the server to wait for the client to open the
data connection instead of having the server open the connection. The
server responds to this request with code 227 entering extended pas-
sive mode, followed by the port number where the server will listen for the
client. The format of the response is:

Entering Extended Passive Mode (|||port_number|)

where port_number is the number of the port the server will be listening on.
The recommended delimiter character is ASCII 124 (|). The first two fields
are place holders for future use and must be empty. The format is similar to
the format of the argument passed with EPRT, described below.

This command is defined in RFC 2428: FTP Extensions for IPv6 and NATs.
Also see the PASV command. Many servers support PASV, but not EPSV.

EPRT

The EPRT command enables the client to provide an extended address for
the data connection.

The format of EPRT is:

EPRT |net-prt|net-addr|tcp-port|

where:

Chapter 9

414

net-prt is an Address Family Number from the list maintained by IANA. IP
Version 4 is 1; IP Version 6 is 2.

net-addr is the IP address. IP Version 4 addresses use dotted quad notation.
IP Version 6 addresses use the representation described in RFC 2373: IP Ver-
sion 6 Addressing Architecture.

tcp-port is the number of the TCP port where the host is listening for a con-
nection.

This command is defined in RFC 2428: FTP Extensions for IPv6 and NATs.
Also see the PORT command. Many servers support PORT, but not EPRT.

HELP [command name]

The HELP command requests text that explains how to use the server or
how to use an optional command provided as a parameter with the com-
mand.

LIST [pathname]

The LIST command requests the server to send a list of files in the directory
specified in pathname or information about the file specified in pathname. If
there is no parameter sent with the command, the server returns informa-
tion about the current directory.

MKD pathname

The MKD command requests to create a directory specified in pathname on
the server.

MODE mode

The MODE command specifies a transfer mode: stream (s), block (b), or
compressed (c). In stream mode, the default, the data has no assumed for-
mat. In the optional block and compressed modes, the data begins with a
header that enables the receiver to determine when a transfer is complete, so
there’s no need to close the data connection after each transfer to indicate
end of file. Compressed mode also enables sending compressed data for
faster transfers.

RFC 959’s minimum implementation requires support for stream mode.

Using the File Transfer Protocol

 415

NLST [pathname]

The NLST command requests the server to send a list of file names in the
directory specified in pathname.

NOOP

The NOOP command performs no function except to elicit a response that
confirms that the server is responding to commands.

RFC 959’s minimum implementation includes support for NOOP.

PASS password

With the PASS command, the client specifies the password for the user
name. If the user name is anonymous, the password conventionally is the
user’s e-mail address.

PASV

The PASV command requests the server to wait for the client to open the
data connection instead of having the server open the connection. The
server responds to this request with the code 227 entering passive

mode, followed by the IP address and port number where the server will lis-
ten for the client. This information uses the same format as the PORT com-
mand. Passive mode can be useful when communicating through firewalls.
Also see EPSV.

PORT host-port

The PORT command enables the client to specify an IP address and port
number the client will use for the data connection. The host-port parameter
consists of four decimal numbers that represent the four bytes that make up
a 32-bit IP address, followed by the two bytes of the port address. The
parameter uses the format h1,h2,h3,h4,p1,p2, where h1 is the high byte in
the IP address followed by the next three bytes in order and p1 is the high
byte in the port number, followed by the low byte.

For example, to request to use port 53249 (D001h) at IP address
192.168.111.100, the command would be PORT

192,168,111,100,208,1. (The decimal value 53249 equals D001h. D0h
is 208 in decimal, so the decimal values of the two bytes are 208 and 1.)

Chapter 9

416

As explained above, issuing a PORT command before establishing a data
connection can prevent problems due to TCP’s timeout requirements.
Transfers that use passive or extended-passive mode don’t require a PORT
command because the server waits for the client to connect on the port the
server has specified.

RFC 959’s minimum implementation includes support for PASV.

PWD

The PWD command prints the name of the current working directory.

QUIT

With the QUIT command, the client requests the server to close the control
connection. If the data connection is open, the server will wait for it to close
before closing the control connection.

RFC 959’s minimum implementation includes support for QUIT.

RETR pathname

A client uses the RETR command to request a file from the server. The
pathname parameter specifies the file’s path, if needed, and name.

RFC 959’s minimum implementation includes support for RETR.

RMD pathname

The RMD command requests to remove a directory specified in pathname
on the server.

STAT [path]

The STAT command requests status information. If the command has no
parameter, the server returns the current values of all transfer parameters and
the status of connections. If the command includes a path, the command
returns a directory listing for the path, as in a LIST command, but using the
control connection.

STOR pathname

A client uses the STOR command to request to send a file to the server. The
pathname parameter specifies the file’s path, if needed, and name. If the file

Using the File Transfer Protocol

 417

doesn’t already exist on the server, the server creates the file. If the file does
exist on the server, the server overwrites the file.

RFC 959’s minimum implementation includes support for STOR.

STRU

The STRU command specifies the structure of the data’s contents. The file
structure (f), which is the default, makes no assumptions about the structure
of the data. With the record structure (r), the data is assumed to consist of
sequential records in a prescribed format.

RFC 959’s minimum implementation includes support for the file structure
and support for the record structure if the file system supports records.

SYST

The SYST command returns text that indicates what operating system the
server is running. Standard text to use for popular operating systems is avail-
able at www.iana.org/assignments/operating-system-names. The options
include WIN32 and more specific designations such as WINDOWS-98 and
WINDOWS-CE.

TYPE

The TYPE command can specify how text characters are encoded in the files
being transferred. In ASCII Non-print (AN), which is the default, a charac-
ter is represented by a byte containing a 7-bit NVT-ASCII code, with the
most significant bit set to zero. The Telnet standard (RFC 854: Telnet Proto-
col Specification) defines the NVT-ASCII character set, which includes codes
for carriage return (CR) and line feed (LF). Non-print means that the data
isn’t required to include vertical-format information such as CRLF or page
breaks. Other FTP types are EBCDIC and Image.

RFC 959’s minimum implementation includes support for ASCII
Non-print type.

USER username

In the USER command, username identifies the client requesting access to
the server’s resources. When a server is available to any client, username is
anonymous.

Chapter 9

418

RFC 959’s minimum implementation includes support for USER.

Additional Commands

RFC 959 defines additional commands and valid reply codes, and RFC
2228: FTP Security Extensions adds more. On receiving an unrecognized
command, a server returns reply code 502 (Command not implemented).

Requesting a File with a URL
A computer that only needs to receive files, but not send them, can use a
URL to communicate with an FTP server. The URL standard (RFC 1738)
defines an ftp scheme for URLs. The scheme is:

ftp://user:password@host[:port]/url-path

where

user is the user name to gain access to the FTP server.

password is the user’s password. If the URL doesn’t supply a password, a
browser may prompt for it.

host is the host’s IP address in dotted-quad format or a domain name.

port is the port to connect to on the server. The port is 21 if not specified.

url-path is the location and name of the file being requested.

The url-path is in the form:

[cwd1/cwd2/...cwdn]/filename[;type=typecode]

where cwd1, cwd2, and so on are any directories required to specify the
location of the file on the server, filename is the name of the file being
requested, and an optional typecode specifies the type of resource being
requested. A typecode of a means ASCII Non-print, which is the default
if not specified. A typecode of i is Image (binary), and d means directory.
Requesting a URL for an ASCII or image file causes the client to send a
RETR command for the named file. Requesting a URL that names a direc-
tory causes the client to send an NLST command to request a list of files in
the specified directory.

Using the File Transfer Protocol

 419

The browser or other software that supports the FTP scheme opens a con-
nection with the specified host, and sends the appropriate FTP commands
to retrieve the file or list of file names.

In Java, an instance of the URL class represents a URL. As the TINI example
in this chapter showed, an instance of the URLConnection class can com-
municate with a resource that a URL references, such as an FTP server.

Chapter 9

420

Keeping Your Devices and Network Secure

 421

If your device connects to the Internet, you need to pay attention to net-
work security. Many devices that connect only to local networks can benefit
from security measures as well.

Without effective security, an unauthorized user may do any of the follow-
ing:

• View your data, device firmware, or the contents of any files.

• Alter or erase files.

• Install and run program code on your device.

• Submit Web-page form data that causes the device to malfunction or has
other unintended consequences.

• Spy on transmissions to and from your device.

• Gain access to other computers in the local network.

Chapter 10

422

• Clog your network with repeated attempts to communicate, preventing
authorized users from accessing the device and other computers in the
local network and possibly preventing the device from performing the
tasks it’s responsible for.

Fortunately, there are steps you can take to prevent these activities. Not
every device needs to implement every security measure. What steps to take
depend on the device, its capabilities and responsibilities, the local network
the device resides in, and any connections the device has to networks outside
the local network.

In some ways, embedded systems are often inherently more secure than a
PC with a familiar operating system and plenty of resources to exploit. If
your device’s firmware is in a one-time-programmable (OTP) ROM, you
don’t have to worry about preventing malicious users from overwriting the
firmware. If your device serves Web pages that contain no private informa-
tion, there’s no need to encrypt the data being sent. But in most cases, there
are risks you need to protect against, to ensure that your device continues to
operate as it should and to ensure that the security of other computers in the
local network aren’t compromised.

One way to limit who has access to a resource is to require a user name and
password before serving the resource. This chapter shows how you can use
HTTP’s Basic Authentication to protect resources with user names and pass-
words. The In Depth section details four steps that will go a long way to
ensuring the security of your devices and the local networks they reside in.

Quick Start:
Limiting Access with Passwords

For many applications, it’s desirable to limit access to certain Web pages by
requiring users to enter a valid user name and password. HTTP 1.0 supports
Basic Authentication, which enables a server to require a valid user name
and password before returning a Web page.

Basic Authentication is sufficient protection for some applications, and
many networking libraries and packages for embedded systems support it.

Keeping Your Devices and Network Secure

 423

Using Basic Authentication
When a client requests a Web page protected with Basic Authentication, the
server requests the client to authenticate, or prove that the client is autho-
rized to receive the resource. The server does this by returning an HTTP
header with the error code 401 (Unauthorized) and a WWW-Authenticate
field that names the type of authentication required. Here is an example:

HTTP/1.0 401 Unauthorized\r\n
Date: Mon, 14 Apr 2003 12:05:15 GMT\r\n
WWW-Authenticate: Basic realm="Embedded Ethernet" \r\n
\r\n

The WWW-Authenticate field names two values: the authentication
scheme, or method, to use (Basic in the example) and the realm the scheme
applies to ("Embedded Ethernet"). On returning a valid user name and
password in the format required by the named authentication scheme, a cli-
ent can access resources within the named realm. A server can support mul-
tiple realms, with each allowing access to a different set of users.

On receiving a header requesting Basic Authentication, the client’s browser
typically displays a window that requests the user to enter a user name and
password. Figure 10-1 shows an example. The window displays the name of

Figure 10-1: On receiving a request for Basic Authentication, browsers display a
window like this to enable users to enter a user name and password.

Chapter 10

424

the page’s realm, so when naming a realm, use something meaningful to end
users. For added security, most browsers display dots in place of the pass-
word’s characters when they’re entered. When the user has entered the
requested information and clicks OK, the browser sends an authorization
request containing the password and user name. The request travels in an
HTTP GET request that includes an Authorization request with the
encrypted user name and password:

GET / HTTP/1.0\r\n
Authorization Basic ZW1liZWRkZWQ6ZXRoZXJuZXQ/r/n
/r/n

On receiving the GET request, the server decrypts the user name and pass-
word. If both are valid for the specified realm, the server returns the Web
page originally requested. If not, the server typically returns another
response with error 401 and a request to authenticate. Most browsers display
the authentication window again, but after receiving a third request to
authenticate, some browsers give up and don’t re-display the window. Open-
ing a new browser window typically allows the user to try again, however.

The encryption used in Basic Authentication is the Base64 Content-Trans-
fer-Encoding method described in RFC 1521: MIME (Multipurpose Internet
Mail Extensions) Part One: Mechanisms for Specifying and Describing the For-
mat of Internet Message Bodies, minus the specified limit of 72 characters per
line.

In the encoding, the data to transmit is first divided into 24-bit chunks.
Each chunk is then divided into four 6-bit numbers. A table provided in the
standard assigns a character in the BASE64 alphabet to each 6-bit value (0
to 63). The BASE64 alphabet includes upper- and lower-case letters,
numerals, and a few additional characters. For example, binary 000000 in
BASE64 is the character A, and binary 011010 (26 decimal) is the character
a.

In a request for Basic Authorization, the client converts a string in this for-
mat:

user_name:password

Keeping Your Devices and Network Secure

 425

to BASE64. The resulting characters transmit in the Authorization field of
the HTTP header.

For example, if the user name is embedded and the password is ethernet,
the string to encrypt is:

embedded:ethernet

Each character is a byte, so there are 17 bytes, which equal 22 6-bit values
with four bits left over. To obtain an integral number of 6-bit values, pad the
end with two zeroes. Encrypting the user name and password gives this
23-character string:

ZWliZWRkZWQ6ZXRoZXJuZXQ

The result must be an integral multiple of 24 bits. When needed, add one or
two equal signs (=) to the end of the string to lengthen it. The example
above requires one equal sign.

The BASE64 encryption can be easily decrypted by anyone spying on a
transmission. It’s also possible for a determined hacker to keep trying differ-
ent user names and passwords until something works. The In Depth section
of this chapter describes Digest Authentication, which is more complex but
more secure and thus more suitable for some applications.

Basic Authentication on the Rabbit
Rabbit Semiconductor’s http.lib library includes support for Basic Authenti-
cation. Chapter 6’s example introduced the HttpSpec structure, which con-
tains an HTTP_FILE entry for each file a Rabbit’s Web server can access.
Each entry can also specify a realm for password-protecting the file.

To protect a file, the application must include an HttpRealm structure with
one or more user names and passwords, and the file’s HTTP_FILE entry must
specify the realm, as in the following example application.

Initial Defines and Declares

Much of the code that configures and initializes the Rabbit is the same as in
previous examples in Chapter 6 and Chapter 7, so I’ll skip extended expla-
nations of these statements.

Chapter 10

426

#define TCPCONFIG 1
#memmap xmem
#use "dcrtcp.lib"
#use "http.lib"

An #ximport directive imports a Web page (index.html) that displays a mes-
sage on successful authentication.

#ximport "c:/rabbit/passworddemo/index.html"
 index_html

Figure 10-2 shows an example Web page. In a real-world application, this
page would display the protected contents.

The HttpRealm structure myrealm contains a single entry that defines an
authorized user with a user name ("embedded"), password ("ethernet"),
and realm name ("Lakeview Research"):

const HttpRealm myrealm[] =
{
 {"embedded", "ethernet", "Lakeview Research"}
};

The single entry in the HttpType structure associates the file extension
.html with the handler for files of type text/html.

const HttpType http_types[] =
{
 { ".html", "text/html", NULL}
};

Figure 10-2: On receiving a valid user name and password, the application
returns the requested Web page.

Keeping Your Devices and Network Secure

 427

The HttpSpec structure contains information about the file the server
serves. The two entries enable clients to request the file by name
("/index.html") or as the default file served on entering the server’s IP
address alone ("/") in a browser’s Address text box.

const HttpSpec http_flashspec[] =
{
 { HTTPSPEC_FILE, "/", index_html, NULL, 0, NULL,
 myrealm},
 { HTTPSPEC_FILE, "/index.html", index_html, NULL,
 0, NULL, myrealm}
};

The main() Function

The main() function initializes the TCP/IP stack and the HTTP handler
and calls tcp_reserveport() to enable establishing a connection even if
no sockets are available. An endless while loop then calls http_handler()
repeatedly to handle any incoming requests.

main()
{

 sock_init();
 http_init();
 tcp_reserveport(80);

 while (1) {
 http_handler();
 }
} // end main()

When the program is running and a client requests index.html or the server’s
default file, the server returns an authentication request. On receiving an
authentication request from the client with the required encrypted user
name, password, and realm, the server returns the Web page index.html.

In a similar way, you can use Basic Authentication in Rabbit applications
that use forms and the zserver.lib library, as described in Chapter 7. Rabbit
Semiconductor has an example application that illustrates Basic Authentica-
tion with forms.

Chapter 10

428

Basic Authentication on the TINI
For the TINI, Web servers that support Java servlets, such as the Tynamo
Web server and TiniHttpServer, typically support Basic Authentication as
well. The following BasicAuthentication servlet for the Tynamo Web
server requires clients to provide a valid user name and password before the
servlet will serve its Web page to the client.

Initial Imports

As in the previous example, the name of the realm is “Lakeview Research,”
the user name is “embedded,” and the password is “ethernet.”

In addition to the java.io.IOException, javax.servlet, and
javax.servlet.http classes, the servlet imports the AuthenticatedHt-
tpServlet class from Tynamo’s com.qindesign.servlet package.

import java.io.IOException;
import javax.servlet.ServletOutputStream;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.qindesign.servlet.AuthenticatedHttpServlet;

public class BasicAuthentication extends
 AuthenticatedHttpServlet {

Methods

The getRealm() method returns the name of the realm. The class must
support this method.

 public String getRealm(HttpServletRequest req) {
 return "Lakeview Research";
 }

The isAuthorized() method is passed a realm, user name, and password
and checks to see if these match the values supported by the servlet. The
class must support this method.

 public boolean isAuthorized(String realm,
 String username, String password) {
 return "Lakeview Research".equals(realm) &&
 "embedded".equals(username) &&

Keeping Your Devices and Network Secure

 429

 "ethernet".equals(password);
 } // end getRealm()

The doGet() method functions like the doGet methods in previous exam-
ples, except that it is called only after a GET request has been authorized. In
this example, the method returns a Web page containing a single line of text
informing the client that the user name and password are valid. In a
real-world application, this page would display the protected information.

 protected void doGet(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");
 ServletOutputStream out = resp.getOutputStream();
 out.println("<P>Valid username and password
 detected.");
 } // end doGet()

In a similar way, the servlet can respond to authorized POST requests. This
example just calls the doGet() method.

 protected void doPost(HttpServletRequest req,
 HttpServletResponse resp)
 throws ServletException, IOException {
 doGet(req, resp);
 } // end doPost()

The doUnauthorizedGet() method is like doGet(), except that it’s called
when an authorization attempt fails. The method writes the contents of a
Web page to a ServletOutputStream object. The Web page contains an
error message and a link that requests the servlet again to give the user
another chance.

Users may not see this Web page every time they send a request that fails
authentication. On receiving an HTTP response with error code 401
(Unauthorized), many browsers display the authentication window again
and ignore the Web page returned in the response. But if the browser gives
up after three tries, or if the user closes the authentication window without
clicking OK, the browser may display the Web page.

 protected void doUnauthorizedGet(HttpServletRequest
 req, HttpServletResponse resp)
 throws ServletException, IOException {
 resp.setContentType("text/html");

Chapter 10

430

 ServletOutputStream out = resp.getOutputStream();
 out.print("<P>Invalid username or password.");
 out.print("<P><A HREF=
 \"/servlet/BasicAuthentication\">Try
 again");
 } // end doUnauthorizedGet()

In a similar way, the servlet can respond to unauthorized POST requests.
This example just calls the doUnauthorizedPost() method.

 protected void doUnauthorizedPost (HttpServletRequest
 req, HttpServletResponse resp)
 throws ServletException, IOException {
 doUnauthorizedGet(req, resp);
 } // end doUnauthorizedPost

} end BasicAuthentication

When this servlet has been compiled and the Tynamo Web server is run-
ning, requesting the servlet /servlet/BasicAuthentication at the TINI’s IP
address will cause Figure 10-1’s window to display. On receiving a GET
request with the user name “embedded” and password “ethernet” using
Basic Authentication, the doGet() method returns the Web page with pro-
tected content to the client.

In Depth:
Four Rules for Securing Your Devices
and Local Network

Paying attention to the following four rules will go a long way in ensuring
that your device, data, and local network are as secure as possible from secu-
rity risks:

1. Use a firewall and configure it with the most restrictive settings that allow
your device to perform the communications it requires.

2. Restrict access to individual protected resources with user names and
passwords.

3. Validate data provided by users to ensure the contents won’t cause harm.

Keeping Your Devices and Network Secure

 431

4. Encrypt data that must remain private.

For each of these, you need to review the risks as they apply to your device,
then take actions as needed to reduce or eliminate the risks. The actions will
vary with the device, the firmware, and the security needs of the computers
in any local network the device attaches to.

Use a Firewall
A firewall is the first line of defense against unauthorized access to the
resources of your device and local network. Chapter 4 introduced firewalls
and explained the need to configure them to allow a device to function as a
server on the Internet. This chapter has more about firewalls, including how
to select and use a firewall to provide the maximum protection for your
device and local network while still allowing necessary communications to
pass through the firewall.

Three ways for an embedded system to obtain firewall protection are a dedi-
cated firewall device, firewall software running on a PC in the same local
network as the embedded system, and firewall firmware in the device itself.
A dedicated device is the easiest to use. Firewall software in a PC has the
advantage of costing nothing if you have a PC available and running that
can function as a firewall for a local network. Firmware that performs the
function of a firewall in the device can be an option in some cases where you
need to protect a single device.

Firewall Basics

A firewall device is an embedded system that connects between a local
device or network and the Internet or other networks the local computer(s)
communicate with. The firewall typically has multiple LAN ports for con-
necting local computers and hubs and a single WAN port that connects to
the outside world. The local computers are said to be behind the firewall.
Everything the WAN port can communicate with is outside the firewall. In
smaller networks, the WAN port often connects to a cable or DSL modem
that connects to an ISP. Every communication to or from a computer out-
side the firewall must go through the firewall to reach a computer in the

Chapter 10

432

local network. The firewall’s configuration determines which communica-
tions can pass through the firewall.

Firewalls are mainly concerned with restricting incoming communications,
though in some cases, a firewall may also block outgoing communications
that appear to be fraudulent, such as an outgoing datagram with a non-local
Source Address.

Many firewall devices are multi-function devices that also perform the func-
tions of a hub and a router with network address translation (NAT). (See
Chapter 4 for more about NAT.) The hub enables multiple computers to
connect to the firewall. To add more computers, you can connect another
hub to one of the local ports as described in Chapter 2.

In a similar way, a Windows XP PC configured to use Internet Connection
Sharing (ICS) can protect a local network, including embedded systems, by
enabling Windows XP’s Internet Connection Firewall. The PC must have
two network interfaces. An Ethernet interface connects the PC to the local
computers protected by the firewall. A second Ethernet interface or an inter-
face to a modem connects the PC to the world outside the firewall. The
Internet Connection Firewall has configuration options similar to those for
a dedicated firewall device.

A firewall’s configuration determines which IP datagrams the firewall will
allow to pass through to the local network. Most firewall devices support a
password-protected Web interface for setting the configuration. To config-
ure the firewall device, you need a network-connected PC or other com-
puter that enables you to view and enter information on the Web pages, but
once the firewall is configured, the device protects the network without
requiring a connected PC. For added security, many firewalls enable you to
restrict access to the configuration pages to computers in the local network
only.

The specifics of how to configure a firewall vary with the manufacturer and
model, but the general concepts are the same for all firewalls. The basic rule
for configuring a firewall is to block all communications through the fire-
wall except those that you explicitly want to allow.

Keeping Your Devices and Network Secure

 433

Functioning as a Client

Some embedded systems can function strictly as clients that request
resources from or send data to other computers but don’t have to accept
communications from hosts the client hasn’t initiated communications
with. For example, a system that uses the Internet only to send periodic sen-
sor readings to remote computers doesn’t need to accept communications
from computers other than the ones the system sends the reading to. The
firewall can examine each datagram received from outside the firewall. If the
information in the headers shows that the datagram’s source and destination
match those of a valid, currently active connection, the datagram can pass
through to the local network. If not, the firewall drops the datagram and
may return a response indicating that the data was refused.

To help in deciding whether to allow a received datagram to pass to the local
network, the firewall may maintain and consult a table that contains an
entry for each connection. When a local computer sends a TCP segment or
UDP datagram to a remote host and port, a firewall can create a table entry
that allows incoming traffic from that remote host and port to pass to the
specified local host and port. For TCP connections, the firewall deletes the
entry when the TCP connection is closed as indicated by the FIN or RST
flag. For UDP, which doesn’t use formal connections, the firewall can use a
timeout to decide when to delete the entry. TCP connections can also use a
timeout as a backup for cases where the connection doesn’t close properly.

As Chapter 9 explained, in FTP transfers, by default the server requests to
open a TCP connection for a transfer’s data channel. If the client’s firewall
blocks requests to open a connection, the client can request to use passive or
extended passive mode, where the client computer opens the connection
using a port number provided by the server.

Hosting a Server

If a local computer needs to be able to serve resources to requesting comput-
ers outside the firewall, you need to configure the firewall to allow the
requests to pass through the firewall while preventing other, unwanted traf-
fic from entering the local network.

Chapter 10

434

A firewall may allow several options for restricting incoming traffic. For
example, a local network might include an embedded system that hosts a
Web server on port 80, the default port for HTTP communications. Con-
figuration options for allowing incoming HTTP requests include the fol-
lowing, from most restrictive to least restrictive:

• Allow incoming IP datagrams that don’t belong to an established connec-
tion only if they contain TCP segments that contain HTTP requests that
are directed to port 80, and forward the TCP segments to a specified
host. This is the most secure option. A datagram passes through the fire-
wall only if the datagram contains a TCP segment, the contents of the
segment’s Destination Port Number field is 80, and the contents of the
segment’s data area indicate that the message is an HTTP request. Not all
firewall devices are capable of filtering in this much detail. Also, addi-
tional fragments in a fragmented datagram won’t have a TCP or HTTP
header to examine, so the firewall needs to have a mechanism that allows
additional fragments to pass through the firewall.

• Allow incoming IP datagrams that don’t belong to an established connec-
tion only if they contain TCP segments directed to port 80. Forward the
TCP segments to a specified host and port. This option is like the previ-
ous one except that it doesn’t examine the contents of the TCP segment’s
data area to verify that it contains an HTTP request.

• Allow all incoming IP datagrams that don’t belong to an established con-
nection and forward their contents to a specified host. This is the least
secure option, but it can be sufficient for some applications. For example,
the specified host may be an embedded system that accepts only HTTP
requests from specific IP addresses, ignoring all other communications.

Other configuration options a firewall might have include these:

• Specify remote IP addresses that a local host can receive traffic from. This
option is useful if your embedded system communicates only with a spe-
cific IP address or series of IP addresses.

• Allow only specified computers to communicate with computers outside
the firewall. Or block specified computers from communicating with
computers outside the firewall. These options enable you to allow an

Keeping Your Devices and Network Secure

 435

embedded system to communicate on the Internet while protecting
other computers in the local network that don’t need Internet access. The
firewall may enable you to identify the computers by IP address or by
Ethernet hardware address. Using hardware addresses can be useful if the
IP addresses are assigned dynamically and are subject to change.

• Block any outgoing communication where the Source Address of the dat-
agram isn’t a local address. (A firewall with NAT support will translate
the local address to the firewall’s public IP address when sending the dat-
agram on the Internet.) This option can prevent some malicious software
from using your local computers to access the Internet.

• Allow a host behind the firewall to communicate without firewall protec-
tion. The host is said to reside in a “demilitarized zone” (DMZ) and
must have its own public IP address.

Embedded Firewalls

If you have a device that connects to the Internet by itself, without connect-
ing to a local network, you may be able to provide adequate protection in
the device firmware, without requiring a separate firewall device. This is
especially true if the device requires only specific and limited Internet access.
For example, if the device communicates with a single IP address over a spe-
cific user port, the firmware can ignore all other network communications.
For other applications, requiring all users to enter a user name and password
before accessing the device’s resources (as in the Basic Authentication exam-
ples earlier in this chapter) may provide adequate protection.

Restrict Access with User Names and Passwords
A firewall enables you to control which local resources are available on the
Internet and which IP addresses can access those resources. But firewalls fil-
ter only on the information in IP and other headers. They can’t identify spe-
cific, authorized users who may be using IP addresses that the firewall
doesn’t know about ahead of time.

A solution is to provide authorized users with a password and to require
users to enter the password before accessing a resource. For additional secu-

Chapter 10

436

rity and to identify who is accessing the resources, you can require a user
name in addition to a password. Each user name and password combination
can be unique to a user, so different users can have different access. The
accepted passwords and user names may be hard-coded into the firmware,
with authorized users informed of the values to use. Or you may want to
allow users to obtain access to a resource by filling out a form that requires
selecting a user name and password. The form can request additional infor-
mation as well.

Two words you’ll encounter relating to password protection are authentica-
tion and authorization. A user who wants to access a protected resource must
provide authentication, or proof that the user has permission to access the
resource. On receiving a valid user name and password, the server grants
authorization, or permission, to access the resource.

Basic Authentication and Digest Authentication

The examples at the beginning of this chapter showed how to use Basic
Authentication to require a user name and password before accessing a
resource.

A more secure option than Basic Authentication is Digest Authentication.
To access a resource protected with Digest Authentication, the user must
provide a message digest, which is a 32-character ASCII hex string created
from information provided by both the client requesting the resource and
the server that is hosting the resource. The information that goes into creat-
ing the message digest includes a nonce value that the server returns in
response to a request for a protected resource, a user name, a password, a
realm, and the request. The default method for obtaining the message-digest
string is the MD5 algorithm described in RFC 1321: The MD5 Mes-
sage-Digest Algorithm.

The nonce value provided by the server typically incorporates a time stamp
and an Etag value that identifies the resource being requested. The time
stamp enables the server to allow access for a specified time before requiring
re-authentication. A server can use the Etag value to prevent replay attacks,

Keeping Your Devices and Network Secure

 437

where an unauthorized user requests an updated version of a resource previ-
ously returned to an authorized user.

Rabbit Semiconductor’s Dynamic C includes functions that support Digest
Authentication on Web servers hosted by Rabbit modules. Some older Web
browsers don’t support Digest Authentication.

HTML Passwords

For very basic password protection, HTML’s password box can do the job. A
password box on a Web page is just like a text box except that the TYPE
attribute of HTML’s input tag is "password":

<input type = "password" name=mypassword maxlength=20>

When a user types a password in the box, the browser displays a dot for each
character typed. When the user clicks the form’s Submit button, the
browser sends the password to the server without encrypting it. Unlike Basic
Authentication, which many servers support automatically, the use of this
type of password box is application-specific. The server must provide pro-
gram code to check the password and take appropriate action.

Additional Password Considerations

Be sure to limit access to any files that store user names and passwords so
they aren’t easily viewable by unauthorized users. And be aware that pass-
word protection only limits who can request a resource. The resource itself
isn’t encrypted when traveling on the network.

As previous chapters have shown, user names and passwords can also control
access to e-mail mailboxes and files on an FTP server.

Validate User Data
Another way a device’s resources can be at risk is via data received from a cli-
ent, such as data submitted on a form. Users can cause harm due to mali-
cious behavior or carelessness.

Chapter 10

438

Limiting Input Range

When enabling users to enter data to be used in configuring or controlling a
device, it’s always a good idea to limit valid inputs to a reasonable range. For
example, in a system that controls heating and cooling for a house, you may
want to allow inputs only between, say, 50 and 80 degrees Fahrenheit. That
way, if someone mistakenly types a thermostat setting of 0 instead of 60, the
system can display an error message instead of attempting to implement the
setting.

Limiting Input Length

On a form, input tags that enable users to enter text should always have a
maxlength attribute that limits the number of characters a user can send.
This line of HTML code creates an input box called temperature and allows
the user to enter up to three characters:

<input type= "text" name="temperature" maxlength=3>

Limiting the length helps to ensure that the received value doesn’t extend
beyond the amount of memory reserved for the value on the server.

SSI Vulnerabilities

Chapter 6 introduced SSI directives. A couple of directives can have unin-
tended consequences. The #exec directive can request the server to execute
program code, and the #include directive can request the contents of a file
to be included in a requested resource. If your server supports these direc-
tives but they’re unneeded by applications, it’s best to disable them if possi-
ble. In any case, to guard against unauthorized release of data or execution of
program code, anything stored in the device that should remain private
should be in an area unavailable to unauthorized users.

The Rabbit’s http.lib library supports #include and an #exec cmd direc-
tive, which can execute a function named in an HTTPSPEC_FUNCTION entry
in the application’s HttpSpec structure.

Keeping Your Devices and Network Secure

 439

Encrypt Private Data
The fourth rule for securing network resources is to encrypt data that must
remain private. Basic and Digest Authentication encrypt passwords. It’s also
possible to encrypt any data exchanged between two computers.

Encrypting and decrypting large amounts of data can take up a lot of CPU
cycles and time. On small embedded systems, the challenge is to obtain the
needed security without overwhelming the system’s resources. Options such
as AES encryption and stand-alone firewalls that support Virtual Private
Network protocols are two possible solutions for embedded systems.

AES (Rijndael) Encryption

In 1997, the U.S. National Institute of Standards and Technology (NIST)
began a search for a new encryption standard that was royalty-free, easy to
implement even on small embedded systems, and able to withstand attack.
In 2001, Federal Information Processing Standard (FIPS) 197 designated
the Rijndael algorithm the winner of the search. The algorithm was named
the government’s Advanced Encryption Standard (AES) to use for sensitive
but unclassified information. Entities other than the U.S. Government are
welcome to use the algorithm as well, of course.

Rabbit Semiconductor’s Dynamic C offers a library module with support
for the Rijndael Advanced Encryption Standard (AES) cipher.

Virtual Private Networks

Another option for securing network data is a virtual private network
(VPN). The computers at each end of the VPN can use authentication and
encryption to ensure that the data is secure from spying and to block all
other traffic from entering the VPN.

The program code required to implement a VPN can be too complex and
time-consuming to develop for a small embedded system. However, just
about any system can communicate over a VPN by connecting to a rela-
tively inexpensive firewall device with VPN support.

Chapter 10

440

VPNs use IP Security (IPsec) protocols for encryption and authentication. A
variety of RFC documents cover the protocols. A good place to start is with
RFC 2411: IP Security Document Roadmap.

To establish a VPN, a computer at each end of the network must have soft-
ware that knows how to use the required protocols to establish a connection
to the other end. Windows XP includes an IPSec Security Manager that
enables PCs to communicate over a VPN. For embedded systems, the easi-
est way to support VPN is to connect the system to a firewall device that
supports VPNs.

Firewalls that support VPNs typically include a variety of configuration
options. At the local network, you can enable a single IP address, an entire
subnet, or a user-specified range of addresses within a subnet to access the
VPN. You can specify that the local network will accept VPN communica-
tions from a specified IP address or domain name, or from any requesting
host.

To use encryption, both ends of the VPN must agree on the type of encryp-
tion to use and they must share a key that enables each end to encrypt and
decrypt network traffic. Encryption options include AES and the older
methods 3DES and DES. Authentication options include MD5 and the
more secure 160-bit Secure Hash Algorithm (SHA).

When both ends have been configured, the devices can communicate and
attempt to establish the VPN. When the VPN has been established, the two
devices can use encryption to transfer data securely.

Secure Sockets Layer Encryption

Many Web browsers support the Secure Sockets Layer (SSL) protocol for
encrypting data such as the credit-card numbers customers send to on-line
retailers. SSL uses public-key cryptography, which uses separate keys for
encrypting and decrypting. The computer requesting the encrypted data
generates a public key for encrypting and a private key for decrypting. The
sender of the data uses the public key in encrypting the data. Decrypting
requires the private key, which only the receiving computer has access to.

Keeping Your Devices and Network Secure

 441

SSL encryption is very secure but requires more resources than many small
embedded systems can provide. Netburner is one company that offers SSL
support for its products, which use Motorola’s 32-bit ColdFire processors.

Chapter 10

442

Index

 443

Symbols
- (hyphen) 365
" (quotation marks) 277, 302, 336
(number sign) 308
+ operator 262
. (period). See period
/ (forward slash) 150, 268, 292, 306, 317
; (semicolon) 307
<!-- and --> delimiters 280, 281
<> (angle brackets) 274
= (equal sign) 425
? (question mark) 297

Index

444

401 (Unauthorized) error code 423, 424, 429
404 (Not Found) error code 272
1000BASE-T 71, 73
1000BASE-FX 83
1000BASE-LX 75
1000BASE-SX 75
1000BASE-TX 83

A
<a> tag 277
absolute location 411
absorption 59
AC (alternating current) 65
Accept Broadcast (AS) bit 126
Accept header (HTTP) 270
ACCT command (FTP) 412
ACK bit (TCP header) 233, 237
acknowledgement

application layer 238
flow control and 240
TCP and 89, 229, 230, 232, 240, 241
UDP and 184, 225

Acknowledgement Number field (TCP header)
232, 233

ACTION attribute (FORM tag) 317, 328
Address Resolution Protocol. See ARP
addresses. See IP addresses
addressing

AX88796 123
frames and 22
IP and 9–11
modules and 5
RS-485 limitations 18
RTL8019AS 128

ADSL (asymmetric DSL) 139
AES (Advanced Encryption Standard) 96,

439, 440
Agilent Technologies 34, 59
air quality (harsh environments) 63
aj-100 microprocessor 108
aJile Systems 108
alarm notification 11
allocation, DHCP options 171–174

ALT attribute (IMG) 274, 276
alternating current (AC) 65
AMD 112, 131
America Online 223
American National Standards Institute (ANSI)

43
American Registry for Internet Numbers

(ARIN) 157
AND operator 162
angle brackets <> 274
ANSI (American National Standards Institute)

43
ANSI characters 364, 425
Ant build utility 304, 305, 309
Apache Group 280
Apache HTTP Server 13, 280
Apache Software Foundation 13, 280
API (application programming interface) 218
APOP command (POP3) 374, 376
APPE command (FTP) 400, 412
application layer 6, 7, 238
application programming interface (API) 218
applications

configuring 185, 186
dynamic content support 14
network communications 19
network protocol stack and 6, 7
UDP/TCP communication 218–220

ARIN (American Registry for Internet Num-
bers) 157

ARP (Address Resolution Protocol)
broadcast messages 32
frame format 176–178
functionality 155
IP addresses 10, 176

AS (Accept Broadcast) bit 126
ASCII Non-print (TYPE) 390, 417, 418
ASIX 88796L (NICkita) 116
ASIX AX88796 95, 122–128
asymmetric DSL (ADSL) 139
asymmetrical connections 141
asynchronous communication 17, 23, 111,

220
aton function (Dynamic C) 186

Index

 445

attachment unit interface (AUI) 77, 128, 130
attenuation (signal) 59
audio transmission 165
AUI (attachment unit interface) 77, 128, 130
AuthenticatedHttpServlet class 428
authentication

HTTP Authorization header 271
IPsec and 440
passwords and 376, 435
process 423, 424, 425–427
SMTP 361
TINI process 428–430
user names 378
VPN options 440
(See also Basic Authentication)

authorization 362, 435
Authorization field (HTTP) 271, 425
Authorization state (POP3) 373
auto-crossover capability (switches) 49
autoFlush property (PrintWriter) 354
automatic allocation (DHCP) 173
auto-negotiation 31, 83, 84

B
back slash (\) 302, 306, 336
backoff process (retransmission) 28
balanced lines 46
bandwidth 141, 266
Base64 Content-Transfer-Encoding method

424
baseband signaling 68
Basic Authentication (HTTP)

comparison 436, 437
features 422–425
password encryption 439
Rabbit example 425–427
security 422
TINI example 428–430

Basic Rate Interface (BRI) ISDN 140
BasicAuthentication servlet (Tynamo) 428
battery power 65, 405
BeginReceive method (Socket) 220
bit patterns 22, 23

bit rates 72–76
bit transmission 70–72
BitPort class 298
BitRdPortI() function (Rabbit) 291
BitWrPortI() function (Rabbit) 291
blastHeapOnReboot method (TINI) 190
block encoding 69, 70
block transfer mode 410, 414
BNC connectors 41, 62
BNRY (Boundary Pointer register) 126
<body></body> tags 276
BODY section (HTML) 276
Boggs, David R. 20
bookmarks 275
boot loaders 190
bootclasspath 347, 393, 397
Borland 107
Boundary Pointer register (BNRY) 126
BRI (Base Rate Interface) ISDN 140
bridge, serial to Ethernet 117
broadband signaling 68
broadcast addresses

1.1.1.1 164
controller chips and 120
interfaces and 11, 24
routers and 164

broadcasting 32, 90, 225
browsers

authentication process 424
automatic redirection and 314
as clients 13, 135
Digest Authentication and 437
form support 286
FTP transfers 409
HTTP and 264, 265
ignoring SSI directives 282
inserting http:// 150
mailto scheme 371
network communications 219
purpose 244
redirecting 312, 313
Refresh icon 279
refreshing pages 314

Index

446

request process 266
schemes and 371
servlets and 315
SSI directives and 280
SSL and 440
user input and 286

BufferedInput object 357
BufferedReader object 354
buffers

file storage in 382
memory and 122, 321
overflowing 126
sizeof() parameter 385

build.properties file (Tynamo) 305, 305–307,
309

build.xml file 310
BuildDependency utility 347, 393, 397, 402
bus analyzers 16
bytes 32

C
C language 14, 92, 312

Rabbit and 96–99
TINI and 107

cable modem 136, 141, 142
cables

categories 42–43
connecting PC/embedded systems 38
Ethernet and 15, 17, 21, 22, 41
harsh environments and 64
identifiers for 68
IEEE 802.3 standard 29, 43
interface isolation and 17
lengths 49, 72–76, 80
making 49, 51
as network component 3
rated performance and 46
WAN connections 432
wireless access points and 67
(See also fiber-optic cable)

caching ARP entries 178
callback functions 349, 350, 351, 382
CAN (Controller Area Network) 103, 109

caret (^) 115
carriage return/line feed. See CRLF
carrier 27
carrier extension bits 29
carrier sense multiple access with collision de-

tection (CSMA/CD) 21, 27
case sensitivity

FTP and 411
HTML elements/attributes 275
HTTP methods 269
POP3 commands 374
SMTP 364

Category 3 cable 39, 45, 46
Category 5 cable 40, 46
Category 5e cable 39, 44, 46
Category 5i cable 64
Category 6 cable 39, 44, 46
cd command (slush) 407
CDUP command (FTP) 413
central office (phone company) 139, 140
CGI (common gateway interface)

Dynamic C 286
dynamic content support 14
embedded systems and 312–315
Phantom Server 112
responding to user input 287

.cgi extension 290, 314
CGI programs

device controller 292
#exec directive 282
identifying/running 314
POST method and 269
responding to user input with 285
SSIs and 280

cgi_redirectto() function (Rabbit) 292, 322
cgi-bin directory 314
characteristic impedance 46, 63
characters, reserved (mailto) 372
check boxes 320
check_for_received_data() function (Rabbit)

210, 212
checkError() method (Printstream) 260
checksum 169, 226, 229, 234
Checksum field (TCP header) 234

Index

 447

Chip Select (/CS) input 123
chips

Dallas Semiconductor 102
Maxim 102

CIDR (Classless Inter-domain Routing) proto-
cols 162

circuit boards, Packet Whacker 116
Cirrus CS8900A (NICki) 116, 131
cladding, fiber optic 59
Class A networks 158, 160, 165
Class B networks 159, 160, 162, 165
Class C networks 159, 160, 162, 165
Class D networks 159
Class E networks 159
.class files 107, 304, 347
Class I repeaters 82
Class II repeaters 82
classful addressing 158–162, 165
classless addressing 158, 162, 165
Classless Inter-domain Routing (CIDR) proto-

cols 162
client/server model

browsers 13
communications 12, 134
domain names 148
embedded systems 408
firewalls 146
TCP and 13

clients
communications and 12
firewalls and 433
HTTP requests 267
Internet Explorer as 244
redirecting pages for 328
servlets and 307
SSI directives and 280
(See also FTP clients)

close() method
FTPClient 397, 401
Printstream 346
Socket 358

closeConnectionWithServer() method 354,
358

coaxial cable
AUI and 77

collision domains 28
considerations 41, 42
controller chips 121
Ethernet support 22, 43
media systems 76
specifics 61–63
TIA/EIA-568-A standard 43

code symbols 69, 71, 72
cofunctions 97, 99
ColdFire processors 109, 441
collision detection 16, 80
collision domains

defined 28
Ethernet switches 87
protocol analyzers 33
switches and 89

collisions
controller chips and 120
full duplex and 30
media access control 27, 28
minimum slot times 29–30
repeater hubs and 80

com.dalsemi. packages 106
com.dalsemi.protocol.* 344, 347, 393
com.dalsemi.protocol.* class 393
com.dalsemi.protocol.ftp.FTPClient class 393,

397, 402
com.dalsemi.protocol.mailto.* 344, 347
com.dalsemi.protocol.mailto.* class 344
com.dalsemi.system.BitPort class 298
com.qindesign.servlet package (Tynamo) 428
Combs, Gerald 33
Command Register 127
command-line interface 382, 402, 409
commitNetworkState() method (TINI) 190
common gateway interface. See CGI
communication

application layer and 6
blocking 435
CPU functions 120
e-mail and 339
Ethernet and 15
firewalls and 13, 144–146, 432
firmware and 118

Index

448

FTP and 381, 409
Internet and 13, 14
IP and 9
modules and 4
network connections 1
protocols and 11
RS-485 distance support 17
VPNs 440

compiling
FtpClientReceive.java 397
FtpClientSend.java 402
FtpUrlReceive.java 393
Java programs 107
SendEmail.java 347

complex programmable logic device (CPLD)
104

compressed transfer mode 410, 414
computers. See PCs
conductors 44, 61
#config directive 280
CONFIG1 register 130
configuration file 186, 297, 303
configuring

devices for network communications 184–
190

firewall devices 432
wireless access points 67

Congestion Avoidance method 240
connection_established() function (Rabbit)

210, 212
connections

alternatives 14
ASIX AX88796 123–126
cable modem 141, 142
communication 1
DSL 138, 139
establishing with Rabbit 212
firewalls and file transfers 411
harsh environments and 63–65
interfaces 80, 81
Internet and 134–136
ISDN 140
LANs 2
PCs and 36–41, 219

Realtek RTL8019AS 128–130
resetting 233
satellite 142
serving Web pages and 244
sockets and 427
status information 416
stream mode and 410
TCP and 208, 230, 236, 237, 238
technologies for Internet 136–142
TINI and 217, 259, 260, 354, 358
waiting for requests 216

connectors
attaching 44
crossover cable 39
Ethernet standard 21
fiber-optic cable 56, 60, 61
harsh environments and 64, 65
media systems and 72–76
shielded cable and 47
straight-through cable 39
twisted pair cable 48, 49, 52
twisted-pair Ethernet 46

contact ports. See well-known ports
Content attribute (meta) 280
Content-Length field (HTTP) 270, 272
Content-Type field (HTML header) 263,

302, 336, 337
Content-Type field (HTTP header) 249, 250
Control Bits field (TCP header) 233
control channel 397, 401, 410
Controller Area Network (CAN) 101, 103,

109
controller chips

cable and 121
encoding/decoding 69
frame responsibilities 119
Gigabit Ethernet limitations 40
PHY and 77
Plug-and-Play functions 118
power consumption 19
Realtek RTL8019AS 38
(See also microcontrollers)

controls, forms and 317, 320
converter modules 41

Index

 449

converting
rectifiers 65
SendEmail.class 347
strings to integers 333

cooperative multitasking 97
corrosion 63
cost considerations

dial-up communication 138
e-mail 340
Ethernet 17
fiber optics 56
interfaces 17, 18
shielded cable 47
TCP/IP 17

costatements 98, 252, 253
country-code top-level domain 148, 150, 151
CPLD (complex programmable logic device)

104
CPR (Current Page Register) 126
CPUs (central processing units) 5, 120, 439
CRC (cyclic redundancy check)

checksum versus 170
controller 127
corrupted data 26
frames 127
jam signal 28

create_file() function 387
create_message() function 342, 343
CRLF (carriage return/line feed)

\n 268, 364, 370
0Dh 0Ah 364
FTP commands and 411
NVT-ASCII 417

crossover cables 39, 40, 48, 49, 84, 85
CSMA/CD (carrier sense multiple access with

collision detection) 21, 27
current directory 413
Current Page Register (CPR) 126
CWD command (FTP) 412, 413
cyclic redundancy check. See CRC

D
D channel 140
Dallas Semiconductor

1-Wire network 18
chips 102
DS2433 EEPROM 104
DS80C400 Network Microcontroller 100
JavaKit utility 105
Web site 100

data channels
closing 397, 401
default ports 410
file transfers 383, 396
firewalls and 433
stream mode 410

DATA command (SMTP) 364, 368
data encryption. See encryption
Data field (frames) 3, 22, 25, 26
Data field (UDP header) 226
Data Port register 126
data transmission

applications and 6, 7
ASIX AX88796 126–128
collision detection 28
CRC and 26
CS8900A 132
Data field and 25
direct memory access 126
Dynamic C 382
encoding 69–72
encryption and 440
Ethernet and 15, 16, 18, 221
frames and 19
full-duplex and 30
IP datagrams 11
IP layer 8
media access control and 21, 26, 27
network stack and 6
networks and 3
physical address and 32
Realtek RTL8019AS 130
responding to 213
synchronization 22
TCP and 7, 221, 230, 237, 240
UDP datagrams 191–208
(See also retransmission)

data validation 430, 437–438

Index

450

dataConnection() method (FTPClient) 396
Datagram Identification field (IP header) 168
DatagramPacket class 198, 205
datagrams

broadcasts and 164
checksums and 169
firewalls and 432, 433
fragmenting 154, 168, 179, 227, 434
multicasting 165
Rabbit 194, 195
routing 178–179
TCP 241, 242
TINI 199, 207
UDP 228
(See also IP datagrams; UDP datagrams)

DatagramSocket class 196, 197, 204
Date field (HTTP) 272
Date header (SMTP) 370
DC (direct current) 65, 70
dcrtcp.lib library (Dynamic C)

device controllers 289
Rabbit and e-mail 342, 349
Rabbit and forms 321
Rabbit FTP server 384, 404
serving pages 249
UDP datagrams 192, 202

DCRTCP_DEBUG constant (Rabbit) 188
DCRTCP_VERBOSE constant (Rabbit) 188
debug_on global variable (Rabbit) 188
debugging

Ethernet support 16
POP_DEBUG macro 351
printf statement 192
Rabbit 187, 188
System.out.println statement 196
(See also troubleshooting)

decoding 69
decoupling capacitors 121
decryption 424, 425, 439, 440
Definition file (SitePlayer) 115
° HTML code 318
del command (slush) 407
DELAY_TIME constant 331
DelaySec() function (Dynamic C) 194, 210

DELE command (FTP) 404, 413
DELE command (POP3) 351, 358, 375
deleteOnServer variable 353
delimiters

ASCII 124 (pipe) 413
HTML comments 280, 281
periods 147
quotation marks as 302
SSI directives 280
start-of-frame 127
TINI messages 356

demilitarized zone (DMZ) 435
denial-of-service attacks 144
dependency.files entry 307
deploy task, Ant 310
deploy.properties file (Tynamo) 309
deply.properties file (Tynamo) 305
DES encryption 440
Destination Address field (frames)

controller chips and 120
Ethernet frames 221
message routing process 143
specifics 24

destination addresses
1.1.1.1 164
filtering traffic by 88
forwarding tables and 179
frames and 24
identifying 3
indirect routing 179
IP and 154
IP datagram 156
multicasting groups 165
sending messages and 9
subnet mask and 162
switches and 87

Destination field (IP header) 168
destination IP address

Ethernet frames 178
IP datagrams and 90, 175
message process 153
purpose 9

Destination IP Address field (IP header) 170
Destination Port Number field (TCP header)

Index

 451

230, 434
Destination Port Number field (UDP header)

226
destroy() method (Genericservlet) 332
development kits

Advanced Wireless Kit 112
Core Software Development Kit 113
DSTINIs400 Sockets Board Evaluation Kit

102
DSTni-LX Development kit 112
Module 5282 Development Kit 110
Paradigm C++ Professional 112
RCM3000 95
SitePlayer’s Development Board 115
TINI Software Developers Kit 104
UDP support 8
Universal Device Networking Kit 112
Whacked 8051 Development Board 116

Device Controller application 286–312
Device Manager (Windows) 36
devices. See hardware
DHCP (dynamic host configuration protocol)

address 0.0.0.0 164
allocation options 171–174
firewalls and 146
IP addresses 10
network communications 184
Rabbit module and 185
SitePlayer and 115
static/dynamic IP addresses 143
TINI and 105, 188

DHCPClient class 106
DHCPDISCOVER message 172, 173
dial-up connection 14, 34, 136, 137, 138
differential signaling 46
Digest Authentication 436, 437, 439
Digital Equipment Corporation (DEC) 20
digital signal processing 72
Digital Subscriber Line. See DSL
direct current (DC) 65, 70
direct memory access (DMA) 126, 130
direct routing 178
directories 409, 411, 413, 414
dirt (harsh environments) 63

disableNetworkRestore() method (TINI) 190
dispersion (signal) 59
distance support. See signal distance
DIX Ethernet 20, 25
DMA (direct memory access) 126, 130
DNS (domain name system) protocol

DNSClient class 106
documents 149
domain names 151
e-mail and 341
functionality 155
IP addresses 10, 32, 152, 184
port numbers 223

DNSClient class 106
documentation

DNS 149
Dynamic C 96, 99
Ethernet controllers 122
Java Servlet Specification 315
Maxim 107
RFC Web site 155
servlets 295
TiniHttpServer 295
URLs 149
(See also entries under RFC)

doGet() method (HttpServlet) 299, 332,
429, 430

domain hosts 143, 360–362
domain name system protocol. See DNS proto-

col
domain names

characteristics 148, 149
e-mail and 341
ICANN and 156
Internet and 13
IP addresses 151–152, 175
mail hosts and 352
purpose 147
registering 148, 150
REMOTE_HOST 383, 390
REMOTEHOST 394
SMTP supported lengths 370
URLs and 149, 150
VPNs and 440

Index

452

Web sites and 148
domain-name server 151
doPost() method 332, 336
dot. See period
dotted-quad format 147, 149, 156, 186,

352
doUnauthorizedGet() method 429
doUnauthorizedPost() method 430
DP8390 controller 121, 122
Dreamweaver (Macromedia) 274
DS1672 Low-Voltage Serial Timekeeping Chip

102
DS2480B Serial Port 104
DS2502 1-Wire Add-Only Memory chip 102
DS80C400 chip 100, 101
DSL (Digital Subscriber Line) 136, 138, 139
DSL Access Module (DSLAM) 139
DSL modems 138, 432
DS-TINI-1 module 104, 107, 130
DSTINIm400 module (TINI) 100–107, 189
DSTni-LX (Lantronix) 112
dust (harsh environment) 63, 65
dynamic allocation (DHCP) 173, 174
Dynamic C

AES support 439
CGI support 286, 314
data transfer 382
Digest Authentication 437
environment variables 281
exchanging messages/TCP 209–213
features 96
file structures 409
ftp_server.lib library 402
HTTP server 247
libraries 192
network communications 185–188
serving Web pages 253
SHTML handler 322
SSI directives supported 281–282

dynamic content
defined 245
examples 14
Rabbit module and 247–254, 295
serving 245–247

servlets and 254, 315
TINI module and 254–264
Web page requirements 245
Web servers 106

dynamic host configuration protocol. See
DHCP

dynamic IP addresses 142, 147, 173, 174

E
EBCDIC (FTP type) 417
#echo directive 253, 281, 288, 328
EDTP Electronics 116
EEPROM 104, 110
EHLO command (SMTP) 365, 368
EIA (Electronic Industries Association) 43
EIA/TIA-568-B standard 44
EIA-485 interface 17, 18, 19
electrical interference 41, 55, 65
electrical specifications (Ethernet standard) 21
electromagnetic interference. See EMI
electromagnetic radiation 53
Electronic Industries Association (EIA) 43
e-mail

advantages 339
dial-up and 138
functionality 359–362
limitations 340
mailto scheme and 149
performance issues 371
private addresses 360
protocols for 6
purpose 339
Rabbit 341–344, 348–351
security 437
TINI 344–348, 352–358
URL 371
Web servers and 7
(See also POP3; SMTP)

e-mail discussion lists 99, 107
embedded systems

10BASE-T and 38
CGI and 312–315
as clients 433

Index

 453

communications 1, 118
compatibility considerations 35
complete solutions 92–111
connecting to PCs 36–41
converter modules 41
defined 2
device controller examples 286
domain names 148
DSTINIm400 TINI module 100–107
e-mail and 339, 341, 359, 360
encryption and performance 439
firewalls and 146, 431
firmware 4
form data and 316
FTP and 408, 412
harsh environments and 63
interpreters and 312
IP addresses 147, 175, 434
IP support and 183
Java servlets and 315, 316
LVR page 92
mailto protocol and 372
media system considerations 42
name servers and 152
Netburner MOD5282 processor module

109–110
PCs and network communications 19
PICDEM.net demonstration board 110,

111
popular languages 92
processing speeds 16
PUT method 269
RabbitCore RCM3200 93–99
RFC 1123 412
SDSL 139
security and 422
SMTP 361
spam and 360
SSIs and 280
SSL and 441
static IP addresses 143
TCP support 241–242
text editor considerations 274

UDP support 8, 227–228
USB connections and 136
VPNs and 439
Web page sizes 267
Web servers and 7, 13, 14, 135, 244,

245
wireless access points and 3
(See also Ethernet controllers)

EMI (electromagnetic interference) 42, 54,
63, 94

empty strings ("") 406
encapsulation 7, 9
enclosures, harsh environments and 65
encoding media systems 69–76
encryption

AES cipher 96
BASE64 424, 425
cable modems and 141
password boxes and 437
private data 431, 439–441
user name/password 423

End of Option List option (TCP header) 235
end() method (DatagramSocket) 200
end-of-message indicator 346, 357, 365,

369, 378
EndReceive method (Socket) 220
environment variables 281
environmental hazards 65
epoxy 56
EPRT command (FTP) 412, 413
EPSV command (FTP) 396, 411, 412, 413,

415
equal sign (=) 425
-ERR status indicator 373, 378
error checking

controller chip 11
Ethernet frames 169
FCS field and 26
frames and 22
IP and 9, 154
modules and 5
protocols and 6, 7
UDP and 8

error codes

Index

454

400 (Bad Request) 271
401 (Unauthorized) 423, 424, 429
404 (Not Found) 272

error handling
forms 337
HTTP 1.1 266
media systems and 72
out-of-range values 327
printf() statement 386
sending pages 263, 264
Web page displays 332
zserver.llib 320

errorMessage string 333, 334
Etag value 436
Ethereal Network Protocol Analyzer 33
Ethernet

advantages 14–17
ARP and 155
asynchronous communications 23
blocking specific PCs 434
cable and 22, 41, 141
data transfer limitations 221
DSL modems 138
frame components 22–26
hardware addresses 3
IEEE 802.3 standard 20–22
Internet connection 136
IP and 9
ISDN and 140
limitations 17–19
media access control 26
networks and 1
physical addresses 31, 32
satellite and 142
synchronous communications 24
transmission rules 3

Ethernet controllers
ASIX AX88796 95, 122–128
CirrusLogic CS8900A 131
embedded systems and 118
full-duplex 31
functionality 120–122
hardware 118, 120
interfaces 11, 76–79

Realtek RTL8019AS 96, 110, 114, 116,
128–130

SMSC LAN91C96 104, 130
Ethernet drivers 6, 11, 153
Ethernet frames

address fields 221
ARP and 176
broadcast 164
error checking 169
indirect routing 179
IP datagrams and 90

Ethernet interfaces 175–178, 219, 432
Ethernet switches 86–89
Ethernet/PC Card adapter 37
#exec directive 282, 438
EXPN command (SMTP) 365
extended memory

file storage 290, 402
function storage 289, 342, 349, 384,

404
extended passive mode

EPSV command 396, 413
firewalls and 433
PORT command 416

Extensible HTML. See XHTML

F
FA163079 filter 120
Fast Ethernet

block encoding 69
connecting PC/embedded systems 40
connector types 60
crossover cables and 48
fiber-optic code symbol 72
multimode fiber 59
Realtek controllers 130
shielded cable and 47
slot times 29
speed supported 22
transmission 71
twisted pair and 45
(See also 100BASE-TX)

Fast Recovery method 240
Fast Retransmit method 240

Index

 455

favorites list 275
FCC (Federal Communications Commission)

94
Federal Information Processing Standard

(FIPS) 197 439
fiber pigtail 57, 59
fiber-optic cable

AUI and 77
code symbols and 72
connectors 44, 60, 61
construction 57–59
controller chips 121
Ethernet 22, 43
features 41, 42, 53, 54, 56
full-duplex 30
isolation and 17
media systems 74, 75
reducing EMI 64
specifications 59, 60
TIA/EIA-568-B standard 43

file handlers 403, 426
file systems

Flash memory and 405
FRC 1123 412
FTP and 408
initializing 405
PCs and 409

File Transfer Protocol. See FTP
file_buffer array 384, 385, 387
FileInputStream object 335
FILENAME constant 390
FileOutputStream object 336
files

accessing 382, 437
attributes of 409
data and 335, 412
defined 408
deleting 413
FTP and 382–386, 386–389, 410–411
FTP servers and 409
FTPClient class 393–398, 398–402
saving 335
security 437
servlets and 315

SSIs 282, 283
STOR command 416
TYPE command 417
URLs and 150, 389, 418

filesystem mk II (FS2) 403
FIN bit (TCP header) 234, 238, 433
Finger protocol 223
FIPS (Federal Information Processing Stan-

dard) 197 439
firewalls

communicating through 144–146
file transfers and 411
HTTP requests and 244
network security and 430, 431–435
passive mode and 383
purpose 13
RFC 1123 412
VPNs and 440

Firewire (IEEE-1394) interface 18
firmware

controller communication and 118
defined 4
DS80C400 chip 101
e-mail and 360, 362
firewalls 431, 435
hardcoded user name/password 435
ifconfig() function 187
Lantronix Device Server 112
network communications and 184
Packet Whacker 116
PIC16F877 111
Rabbit 192, 403
RCM3200 module 95
security and 422, 431
SitePlayer 115
testing 35

5-level pulse-amplitude modulation 71
Flags field (IP header) 168
flammability 43
Flash memory

boot loader in 190
DS-TINI-1 module 104
DSTINIm400 module 102, 190
Dynamic C support 96

Index

456

file storage 402
firmware and 4
FS2 403
FS2_USE_PROGRAM_FLASH macro

403
Lantronix Device Server 112
logical extent number 404
MOD5282 109
P89C51 microcontroller 115
Packet Whacker 116
Phantom Server 112
PIC16F877 110
Rabbit 3000 95
RTL8019AS 130
serial EEPROM and 126

flexible addressing 133
flooding 88
flow control

IP limitation 154
protocols and 6, 7, 133
TCP and 229, 230, 239, 240, 241
UDP and 184, 225

flush() method (OutputStream) 218
FORM tags 317, 318
form variable 322
FORM_ERROR_BUF directive 321
form_response() function 322
FORM_RESPONSE_REDIRECTTO 321,

322
FORMAT macro 403, 405
formatting 268, 277, 278, 282
FormResponse servlet 328
formresponse.shtml file 328
forms

accessing 327
adding variables 325–327
authentication and 427
CGI programs and 313
components of 317
creating with Rabbit 323–324
data validation 437
responding to 322
Web page support 286

FormVar array 322, 325

forward slash (/) 150, 268, 292, 306, 317
forwarding table 179
Fragment Offset field (IP header) 168, 169
fragmenting datagrams 154, 168, 179, 227,

434
Frame Check Sequence (FCS) field (frames)

22, 26
frames

collision detection and 29
communication process 11
components 22–26
controller chip responsibilities 119
defined 3
dropping 89
efficiency 19, 26
error checking 127
overhead in 19
PacketPage memory 132
protocol analyzer 33
repeater hubs and 81
ring buffers and 126
switches and 86, 88

freeware µC/OS 110
From header (e-mail) 346, 351, 370
fs_get_flash_lx() function 404, 405
fs_get_other_lx() function 405
fs_get_ram_lx() function 405
fs_init() function 405
FS_MAX_FILES macro 403
FS2 (filesystem mk II) 403, 404, 406
fs2.lib library 404
FS2_USE_PROGRAM_FLASH macro 403,

405
FTP (File Transfer Protocol)

case sensitivity 411
commands 411–418
communications 12, 381
data transmission 6
default command port 407
Dynamic C support 96
file systems and 408
files and 136, 410–411, 418
ftp scheme and 149
passive mode 383

Index

 457

port numbers 223
requirements 408–409
RFC 2228 418
TINI and 304
Web servers and 7

FTP clients
channel ports 410
file access 382
FTP transfers and 409
initiating communications 409
opening connections 411, 413, 415
Rabbit module 382–389
TINI module 389–402

ftp protocol handler 393
ftp scheme

browsers 371
FTP transfers 149
URLs 392, 418, 419

FTP servers
Dynamic C file structures 409
file exchange 409
file security 437
FTPClient class and 398
mailto handlers and 389
PORT constant 390
Rabbit module 382, 402–407
REMOTE_HOST 383
SDSL and 139
slush shell commands 407
support considerations 412
URLConnection class 392

ftp.lib library 382, 386
ftp_client.lib library 384
ftp_client_setup() function 385, 388
ftp_client_tick() function 385, 388, 389
ftp_client_xfer() function 386
FTP_CMDPORT constant 407
FTP_CREATE_MASK macro 403
FTP_EXTENSIONS macro 404
ftp_init() function 407
ftp_last_code() function 386
ftp_load_filenames() function 406
FTP_MODE_DOWNLOAD constant 385
ftp_save_filenames() function 406

ftp_server.lib library 382, 402, 404
ftp_set_anonymous() function 406
ftp_tick() function 407
FTP_USE_FS2_HANDLERS macro 403
FTP_USERBLOCK_OFFSET macro 403
FTPClient class (TINI)

file transfers 382, 389, 393
requesting files 393–398
sending files 398–402

FTPClientReceive application 397
FTPClientSend application 402
FTPServer class (TINI) 382, 407
FtpUrlReceive application 393
FtpUrlReceive class 389
FtpUrlReceiver class 391
full-duplex 16, 30
function variable 322
functions, adding 324

G
gateways 1, 184, 288
general purpose cable 43
General Purpose Serial Interface (GPSI) 112
GenericServlet class 298, 332, 335
GET request (HTTP)

authentication process 424
authorization request 423
browsers and 314
doGet() method 429
example 268
form data and 316
Host header 271
message body and 273
method attribute (FORM) 318
servers accepting input 314
servicing 332–334
serving 299–301
servlet and 329
TINI 260, 430
URLs and 268
Web pages 269

getAddress() method (DatagramPacket) 207
getBytes() method (String) 401

Index

458

getData() method (DatagramPacket) 207
getMessages() method 354, 357
getNumberOfMessages() method 354, 356
getOutputStream() method (HttpServletRe-

sponse) 302
getParameter() method (HttpServletRequest)

333
getQueryString() method (HttpServletRequest)

299
getRealm() method 428
getSetupParameters() method 335, 337
.gif extension 290
Gigabit Ethernet

block encoding 69
cabling for 31
connecting PC/embedded systems 40
connector types 61
fiber mode 59
fiber-optic code symbols 72
IEEE and 21
Realtek controllers 130
shielded cable and 47
slot times 29
speed supported 22
twisted pair 45

Gigabit Ethernet. See 1000BASE-T
Gigabit medium-independent interface (GMII)

77
Global Engineering Documents 43
GMII (Gigabit medium-independent interface)

77
GNU C/C++ compiler 110
GNU General Public License 295
GNUPro 113
Gopher protocol 223
GPSI (General Purpose Serial Interface) 112

H
<h></h> header tags 276
half-duplex 16, 17, 26, 28, 59
handleConnection() method (TINI) 216,

217, 258, 259
handlers

Dynamic C 253, 283

file extensions and 290
file handler 403
HttpType structure 322
SHTML 253
specifying 249, 252
SSI directives and 250

handshaking
closing connections 238
TCP and 221, 229, 230, 236, 238, 241
UDP and 225

hardware
complete solutions 92–111
Ethernet controllers 118, 120
firewall security 431–435
handling traffic 89
harsh environments 63–65
interconnecting computers 79, 80
IP2022 Wireless Network Processor 112
Lantronix Device Server 112
media systems and 68
MOD5282 Processor Module 109
network communication 184–190
network security 431
Packet Whacker 116
PICDEM.net Demonstration Board 110
power supply 65
processing speeds 16
RabbitCore RCM3200 93
security 422, 430–441
SitePlayer Ethernet Web Server 114
TINI 100

hardware interface 5, 11, 16, 62
harsh environments 63–65
hasMoreTokens() method 356
<head></head> tags 275
HEAD method (HTTP) 269
HEAD section (HTML) 275, 279, 280, 312
Header Checksum field (IP header) 168, 169
Header Length field (IP header) 167, 168
Header Length field (TCP header) 232
header tags <h></h> 276
headers

defined 7
frames and 25

Index

 459

HTTP requests 269–271
HTTP responses 272
IP datagrams 9
RFC 2822 370
TCP format 229, 230–235
UDP format 226, 227
UDP layer 8
(See also IP header)

heat resistance 43
HELO command (SMTP) 342, 364, 365,

366, 368
HELP command (FTP) 414
HELP command (SMTP) 364, 366
hexadecimal representation 32
home page 150, 309, 311
host address

network classes 158
number of bits 157
reserved 163
subnet mask 162

Host header (HTTP) 271
host ID 160, 162
hosting

firewalls and 433, 435
IP addresses 143
requirements 135, 136
satellite and 142
SDSL and 139

hosts
DHCP allocation 173
host names 149
IP addresses 170–174, 175
local addresses and 165
subnets and 159
VPN firewall support 440

HREF attribute (A tag) 277
.htm extension 274
.html extension 274
</html> tag 275
HTML (Hypertext Markup Language)

BODY section 276
case sensitivity 275
code ° 318
comments 280

forms 285, 316
handlers 290
HEAD section 275
hyperlinks 277
overview 273–280
password boxes 437
Rabbit example 247–248
tags 274–275
Web pages and 245, 264

.html extension 426

.html handler 283, 322
HTML header 263, 302, 336, 337
HTML pages 274
HTML tables 277, 278, 318
HTML tags 274, 275, 316
HTTP (hypertext transfer protocol)

browsers and 264
client/server communications 12
data transmission 6
default port 150, 434
Dynamic C support 96
firewalls and 244
http.lib library 289, 321
http:// 149, 150
Lantronix Device Server 112
MOD5282 110
other client applications 273
redirection code 313, 314
serving pages 243, 265–266
versions of 266, 267
well-known ports and 223
(See also Basic Authentication)

HTTP 1.0 standard 270, 272
HTTP 1.1 standard 269, 271
HTTP handler 427
HTTP header 250, 423, 425
HTTP messages 267–273
HTTP requests

CGI and 313, 314
firewalls and 434
overview 268–271
response to user input 288
servlet processing 316

HTTP responses

Index

460

CGI and 312, 313, 314
overview 271–273
Rabbit example 322

http scheme 371
HTTP server

CGI functions 286
compliance 267
Dynamic C 247, 253
example 295
Tynamo 267

HTTP version 1.1 266
http.lib library 249, 289, 312, 321, 438
http:// scheme 149
HTTP_FILE entry 425
http_handler() function (Rabbit) 252, 294,

327, 427
http_init() function (Rabbit) 251
HTTP_NO_FLASHSPEC directive 321
HTTP_VARIABLE entry 251, 281
HttpRealm structure 425
HttpServeletResponse object 337
HTTPServer class 106, 254, 316
HttpServlet class 298, 301, 329
HttpServletRequest class 299, 333
HttpServletResponse class 299, 302, 332,

336, 337
HttpSpec structure (Dynamic C)

contents 250, 292
file information 409, 427
HTTP_FILE entry 425
HTTP_VARIABLE entry 281
HTTPSPEC_FUNCTION entry 282,

314, 438
HTTPSPEC_FILE entry 250, 251, 292
HTTPSPEC_FUNCTION entry 282, 292,

314, 438
HTTPSPEC_VARIABLE entry 292
HttpType structure (Dynamic C) 249, 250,

283, 290, 322, 426
HVAC systems 43
hyperlinks

automatic redirection and 314
buttons as 288
configuration file 303

DeviceController servlet 311
formatting 277
processing 285
program names in 313
Rabbit example 297
specifics 277
as table elements 277
TINI example 336

HyperTerminal (Windows) 105, 111
hypertext transfer protocol. See HTTP
hyphen (-) 365

I
I2C interface 18, 19, 22, 109
IANA (Internet Assigned Numbers Authority)

25, 152, 223
iButton 103
ICANN (Internet Corporation for Assigned

Names and Numbers) 10
ICMP (Internet Control Message Protocol)

180
ICS (Internet Connection Sharing) 143, 144,

174, 432
IEC (International Electrotechnical Commis-

sion) 43, 60
IEEE (Institute of Electrical and Electronics

Engineers) 20, 31
IEEE 802.1D standard 87, 89
IEEE 802.3 standard

auto-negotiating 83
cables 42, 43
Category 5e cable 39
coaxial cable 62, 63
connector types 60
controller chips 120
exchanging messages 133
isolation transformer 120
Length/Type field 25
multimode fiber 59
overview 20–22
slot times 29
transmission-system models 82

IEEE 802.3af standard amendment 65

Index

 461

IEEE 802.11 standard 22, 67
IEEE 802.11a standard supplement 67
IEEE 802.11b standard 67, 112
IEEE 1394 standard (Firewire) 18
IESG (Internet Engineering Steering Group)

156
IETF (Internet Engineering Task Force) 155,

156
ifconfig() function (Dynamic C) 187, 188
IFCONFIG_ETH0 macro (Rabbit) 186
IFG (interframe gap) 27, 81
IFG_IPADDR macro (Rabbit) 187
IFS_IPADDR macro (Rabbit) 186
IFS_NETMASK macro (Rabbit) 186
IFS_UP macro (Rabbit) 186
Image (type) 417, 418
images

formatting with tables 277, 278
GET requests and 269
lit/unlit LEDs 290
real-time status 281

IMAP (Interactive Mail Access Protocol) 373
IMG tag 274, 276, 281, 297
#include directive 192, 282, 438
index.html 311, 427
indirect routing 178, 179
Industrial MAX plug (Siemon) 65
inet_ntoa() function (Dynamic C) 187
Infrared Data Association (IrDA) protocol 93,

101
infrared energy 53
init() method (FormResponse) 331
init() method (GenericServlet) 335
initParams entry 308
inp instruction 222
INPUT tag 318
input tag 438
InputStream object (TINI) 259
Institute of Electrical and Electronics Engineers

(IEEE) 20, 31
Integer.parseInt method 333
integers, converting from strings 333
Integrated Services Digital Network (ISDN)

136, 140

Intel Corporation
80186 bus 123
8051 microcontroller 100
80x86 microprocessor 112
DIX Ethernet 20
LXT972A Fast Ethernet Transceiver 102
MCS-51 (8051) bus 123

Interactive Mail Access Protocol (IMAP) 373
interconnection

cable categories and 42–43
hardware considerations 79, 80

interfaces
adding/removing 79
auto-negotiation and 31, 83, 84
collision domains and 28
connecting 80, 81
controller chips and drivers 11
controlling data transmission 18
cost considerations 17, 18
identifying destination addresses 3
IEEE 802.3 standard 20–22
IP and 154
purpose 3
unique identification 9
wireless networks 67
(See also Ethernet interfaces; user interfaces)

interframe gap (IFG) 27, 81
internal registers 121
International Electrotechnical Commission

(IEC) 43, 60
International Organization for Standardization

(ISO) 43
Internet

access considerations 360–362
blocking specific PCs 434
broadcasting support 164
communications on 13, 14, 90, 382
connection technologies 136–142
considerations for service 134–136
controlling resources 435
dial-up connection 137
domain names and 13
e-mail and 359
embedded systems as clients 433

Index

462

HTTP and 266
LAN access 13
multicasting support 165
multiple computers 143, 144
speed considerations 135
as network 2

Internet Assigned Numbers Authority (IANA)
151, 223

Internet Connection Firewall (Windows XP)
145, 432

Internet Connection Sharing (ICS) 143, 144,
174, 432

Internet Control Message Protocol (ICMP)
180

Internet Corporation for Assigned Names and
Numbers (ICANN) 10, 150, 156

Internet Engineering Steering Group (IESG)
156

Internet Engineering Task Force (IETF) 155,
156

Internet Explorer (Microsoft) 135, 219, 244
Internet Protocol. See IP
Internet Service Providers. See ISPs
Internet Society (ISOC) 155
interpreters 312
interrupt() method (TINI) 200
InterruptedException 332
interrupts

AX88796 125
controllers and 128
media access control and 27
reporting failures 29
ring buffers and 127
RTL8019AS 130

IOException 299, 301, 346
IP (Internet Protocol)

dcrtcp.lib library 289, 321
embedded systems and 118, 183
frame overhead 19
functionality 153–156
Internet communications and 13
Lantronix Device Server 112
Length/Type field value 25
limitations 154

messages and 6, 90
MOD5282 110
switch maximum and 89

IP address
assigning 156–157, 170–174
changing nature of 147
classful addressing 158–162
classless addressing 162
components 157, 158
controlling resources 435
device controller example 288
DHCP and 172
DNS and 32
domain names 151–152
dotted-quad format 149
dynamic 142, 147
e-mail servers and 341
Ethernet interfaces 175–178
firewalls and 146, 434
hardware address and 176
HTTP Host header 271
ICANN 10
ICMP 180
Internet requirements 134
IP header 166–170
ISPs and 13
leasing 174
local networks 165
mail host and 352
physical address and 32
PORT command and 415
protocols used 10
protocols using 184
reclaiming 173
REMOTE_HOST 383, 390
REMOTEHOST 394
request process 266
reserved for special uses 163–165
SitePlayer and 115
sockets and 191, 221, 236
static/dynamic 142
TINI and 105
TININet class 106

Index

 463

uniqueness 10, 143
VPN support 440
Web servers and specific 244
(See also dynamic IP addresses)

IP datagrams
address information 156
communication process 11
destination IP addresses and 175
direct routing 178
encapsulation 9
Ethernet frames and 90
example 166
firewalls and 146, 432, 434
indirect routing 179
Internet requirements 134
message process 143, 153

IP header 143, 153, 166–170
IP layer

data transmission and 8, 9–11
HTTP communications 265
loopback addresses and 164
network communications 153
UDP/TCP communications with 221

IP Options fields (IP header) 166, 168
IP prefix 158, 162
IP Security (IPsec) protocols 440
IP2022 Wireless Network Processor 112–113
ipconfig command 105, 152, 188, 189, 190
IPSec Security Manager (Windows XP) 440
Ipswitch, Inc. 409
IPv4 155, 156, 166
IPv6 155, 167, 413
ISA bus 120, 123, 128, 131
isAuthorized() method 428
ISDN Integrated Services Digital Network)

136, 140
ISO (International Organization for Standard-

ization) 43
ISOC (Internet Society) 155
isolation transformers 17, 120
ISPs (Internet Service Providers)

ARIN and 157
blocking ports 362
dial-up process 137

domain hosts and 360–362
dynamic IP addresses 147
ICANN and 10
Internet communications 13
IP addresses 134, 143, 156
WAN connections to 432
Web hosting services 136

J
J6800A Network Analyzer (Agilent) 34
jam signal 28, 81
Java classes 315
Java Development Kit (JDK) 107
.java files 107, 304
Java language 14, 92, 344

JStik and 109
TINI and 104–107

Java Servlet Specification 315
Java servlets

authentication and 428
browser requirements 315
defined 254
dynamic content 14
embedded systems and 315, 316
GET requests and 329
loading/running 304–312
POST requests 430
requesting 328–329
responding to user input with 285
TINI and 286, 295, 298–299, 329–332
TiniHttpServer 106
Tynamo 305, 309–311

Java Software Development Kit (SDK) 305
Java Virtual Machine JVM) 100–107
java.io package 196, 214, 256, 298, 329,

344, 352, 390, 393
java.io.InterruptedIOException 353
java.io.IOException class 428
java.net package 214, 256, 344, 352, 390,

393
java.net.DatagramSocket class 196
java.net.URL class 344
java.util package 352

Index

464

JavaKit utility 105, 188, 190
javax.servlet class 428
javax.servlet package 298, 329
javax.servlet.http class 428
javax.servlet.http package 298, 329
javax.servlet.Servlet interface 308
JBuilder environment (Borland) 107
JDK (Java Development Kit) 106
JStik 108–109
JVM (Java Virtual Machine) 100–107

K
Keil Software 107
keys 440
kill command (Telnet) 214

L
Lakeview Research 92
LAN (local area network)

address 164
ARP and 176
broadcasts and 164
defined 2
direct routing and 178
Ethernet and 21
firewalls and 13, 144, 431, 433, 435
Internet 143, 144
IP addresses 152, 156
local addresses 165
multicasting support 165
network addresses and 157
Rabbit communicating with 382
security and 421, 422, 431, 433
subnets and 158, 160
VPN support 440
Web pages and 266
Web servers and 244

LAN91C96 Ethernet controller (SMSC) 104
Lantronix DSTni-LX 112
LC connector 61
LEDs (light-emitting diodes)

controllers and 121, 286, 287

controlling 291, 292
lit/unlit images 290
RTL8019AS 128
SitePlayer’s Development Board 115
table cell display 288
Web pages and 281
as light source 58

Length/Type field (frames) 22, 25
light 53
light-emitting diodes. See LEDs
line feed (LF) 417
liquids (harsh environment) 63
LIST command (FTP) 407, 414, 416
LIST command (POP3) 375
loadOnStartup entry 308
local addresses 143, 165
local area networks. See LAN
LOCAL_PORT constant (Rabbit) 192, 193,

202
localPort variable (TINI) 257
logging on 355
logical extent number 404
logical operation 162, 315, 385
logOntoMailHost() method 354, 355
lookup tables 151
loopback addresses 164
Low Cost Fibre Optical Interface 60
low-pass filters 120
LQFP (low profile quad flat pack) 93
ls command (slush) 407, 409
Lumberg Inc. 65
lx_format() function 405

M
M12 connector 64, 65
MAC (media access control) 21, 26, 27, 29–

30, 67, 76, 87
Macromedia (Dreamweaver) 274
macros 185
Magic Packet 131
magnetic coupling 44
MAIL command (SMTP) 366, 368
mail servers 359, 361, 362

Index

 465

mailbox security 341, 437
mailConnection object 346
MAILFROM static string 344
MAILHOST string 352
mailto protocol handler 344, 347, 368, 389
mailto scheme 149, 371
mailURL object 345
MalformedURLException error 346
MAN (metropolitan area network) 21
Manchester encoding 70
manual allocation (DHCP) 172
MAPBGA (mold array process ball-grid array)

109
master/slave relationship 27
MAU (media attachment unit) 56, 77, 120
MAX_UDP_SOCKET_BUFFERS constant

(Rabbit) 192, 202
MAX1692 Step-down Regulator 104
MAX560 +3.3V Transceiver 102
MAX6365 Supervisory Circuits 102
Maxim

chips 102
(See also Dallas Semiconductor)

Maximum Segment Size option (TCP header)
235

MAXLENGTH attribute (INPUT tag) 320
maxlength attribute (input tag) 438
md command (slush) 407
MD5 algorithm 374, 436, 440
media access control. See MAC
media attachment unit (MAU) 56, 77
media systems

adding ports 79
cable types 42, 69
coaxial cable 76
encoding 69–72
fiber-optic 74, 75
hardware options 68
number of repeater hubs 82
twisted-pair 72, 73

medium-independent interface. See MII
MEM_RESERVE_SIZE constant 405
#memmap directive 192, 202, 249, 289,

342, 349, 384, 404

memory 4, 408, 438
message body

data payload 26
e-mail 346
HTTP response 314
RFC 2822 370

message digest 436
message headers (HTTP) 268, 271
messages

controller chips and 119
DHCP processing 172
direct routing 178
exchanging 133, 208–218
getting number of 356
HTTP headers 269–271
indirect routing 178
IP and 9, 90
network stack and 6
protocols 6
RFC standards and 379
routing 133, 143
sending using TCP 241
servlet container 315
SMTP clients 370
(See also e-mail; requests)

META tag (HTML) 312
Metcalfe, Robert M. 20
method attribute (FORM tag) 318
metropolitan area network (MAN) 21
Micro Linear Corporation 59
MicroC/OS-II operating system 96, 99
Microchip Technology 110, 111, 116
microcontrollers

CPU minimum 120
P89C51 114
Packet Whacker 116
Philips P89C668 116
PIC16F877 110
RS-485 interface and 17
UARTs and 136

MicroLAN 101
Microsoft

Internet Explorer 135, 219, 244
Personal Web Server 13

Index

466

Microwire interface 18, 125
MII (medium-independent interface) 77,

101, 102, 123
MII/EEPROM Management Register 125
MIME (Multipurpose Internet Mail Extension)

249, 250, 371, 373, 424
MKD command (FTP) 412, 414
MLT-3 (multi-level transition 3) encoding 71
MOD5282 Processor Module (Netburner)

109
MODE command (FTP) 414
modems 14, 137, 138, 432
modes 59
modules

Ethernet support 16
IP2022 Wireless Network Processor 112–

113
Lantronix device server 111
network design 4
SitePlayer Ethernet Web Server 113–115
(See also network protocol stack)

modules.jar 347, 393, 397, 402
mold array process ball-grid array (MAPBGA)

109
Motorola

68K microprocessor 109, 112
AX88796 123
ColdFire processors 441
SMSC LAN91C96 131

move command (slush) 407
MPLAB In-Circuit Debugger (Microchip) 111
MT-RJ connector 61
Multicast Address Registers (MAR0-MAR7)

126
multicasting

Class D networks 159
controller chips and 120
datagrams 11, 165
destination address 24
UDP and 225

multi-level transition 3 (MLT-3) encoding 71
multimode fiber 59
multiple access 27
Multipurpose Internet Mail Extension. See

MIME

multi-speed repeater hubs 85, 86
multitasking 97, 99

N
name attribute (INPUT) 320
name servers 152, 174
NAT (Network Address Translation)

firewalls and 432, 435
local addresses and 165
RFC 2428 413
routers and 143, 288

National Center for Supercomputing Applica-
tions (NCSA) 312

National Electric Code (NEC) 43
National Institute of Standards and Technology

(NIST) 439
National Semiconductor 121, 122
NCSA (National Center for Supercomputing

Applications) 312
NE2000 compatibility 121, 122, 128
NEC (National Electric Code) 43
NetBoot (TINI) 101
Netburner 109–110, 117, 441
netmask 184, 186, 288
Netmedia 14, 114, 115
network address

bytes in 158
classless addressing and 162
IP addresses and 157
reserved 163
size recommendations 158
subnet masks and 162
subnets and 160

Network Address Translation. See NAT
network communication

browsers and 219
client/server 12
configuring devices 184–190
HTTP and 265
IP layer 153
PCs and 19
routers and 80
TCP and UDP 7–9, 218–220

network connections. See connections

Index

 467

network interface cards 31, 37
network interface controller (NIC) 120
network interface device (NID) 138
network prefix. See IP prefix
network programming 218–220
network protocol stack 4–11, 265, 266
network security

limiting access 422–430
recommendations 430–441
unauthorized users and 421, 422
(See also Basic Authentication)

network traffic
blocking port 25 362
cable modem and 141
Ethernet and 16
firewalls and 434, 435
forwarding 89
frame overhead and 19
full duplex and 30
handling 89
multiple access and 27
protocol analyzer and 32, 34
repeater hubs and 79, 80, 81
routers and 89

networks
802.3 support 22
building considerations 35
Category 5 cable 44
classes 158
communications 11, 13, 14
data transmission 3
embedded Java 100–109
embedded systems 16
Ethernet and 1, 21, 22
file security 408
hardware and 16, 40
modular design 4
multi-speed repeater hubs 85, 86
physical components 2, 3
retrieving settings 187
routers as links 89
servers and 11–13
(See also network protocol stack; wireless

networks)

NIC (network interface controller) 120
NICki (Cirrus 8900A) 116
NICkita (ASIX 88796L) 116
NIST (National Institute of Standards and

Technology) 439
NLST command (FTP) 415, 418
No Operation option (TCP header) 235
nonce values 436
non-plenum cable 43
non-return-to-zero (NRZ) encoding 72
NOOP command (FTP) 415
NOOP command (POP3) 375
NOOP command (SMTP) 366
Notepad (Windows) 274
Novell 121
NRZ (non-return-to-zero) encoding 72
null character (0) 388
number sign (#) 308
NVT-ASCII character set 417

O
octet 32
+OK status indicator 354, 355, 356, 357,

373
one-time-programmable (OTP) ROM 422
1-Wire network (Maxim Semiconductor) 18
openConnection() method 346, 392
open-source 113
operating systems 16, 412, 417
OR operation 385
OUI (Organizationally Unique Identifier) 31
out instruction 222
out.print statement 262, 263, 302, 303
OutputStream object 316, 401

P
<p></p> tags 276
P82B715 I2C bus extender chip 18
P89C51 microcontroller 114
Packet Whacker 116
PacketPage memory 131
padding, frames and 26

Index

468

Page Start Address Register (PSTART) 126
Page Stop Address Register (PSTOP) 126
Paradigm C++ Professional development tool-

kit 112
paragraph tags <p></p> 276
parallel ports 19
partitioned interface 81
PASS command (FTP) 415
PASS command (POP3) 355, 374, 376, 378
passive mode

file transfers and 383
firewalls and 411, 433
PASV command 400, 415
PORT command 416

PASSIVE_FLAG 383, 385
passiveConnection() method (FTPClient) 400
PASSWORD constant 352, 390, 394, 398
password method (FTPClient) 396, 398
passwords

authentication 361, 376
e-mail and 341, 348, 359
encryption 439
forms 316, 320
HTTP Authorization header 271
identification via 361
network security 422–430, 435–437
nonce values and 436
PASS command and 415
PASSWORD constant 390, 394
REMOTE_PASSWORDS 383
restricting Web page access 266
sending to servers 398
TINI example 352

PASV command (FTP) 396, 400, 411, 413,
415

PCMCIA slot 37, 131
PCs (personal computers)

file retrieval 409
file systems in 409
firewall security 431, 432
FTP and 409, 412
as FTP servers 409
Internet Connection Firewall 432
Internet Connection Sharing host 143,

144
network communications and 19
network connection 19, 36–41
network programming 218–220
security and 422, 434
testing firmware 35
UDP/TCP communications 218–220
VPNs and 440
wireless access points 67

performance
cable and 42–43, 44
e-mail 371, 379
embedded systems and 408
encryption and 439
TCP and 240

period (.)
domain name and 148
dotted-quad format 147, 149, 156, 186,

352
end-of-message indicator 346, 357, 365,

369, 378
PeriodicTask class 331, 332
Perl language 312
persistence 267, 270, 377
Personal Web Server (Microsoft) 13
PGDDR register 293
PGDR register 291
Philips P82B715 chip 18
Philips P89C668 microcontroller 116
phone lines 45, 137, 138, 140, 142
photodetectors 59
photodiodes 59
phototransistors 59
PHY (physical layer device) 56, 77, 120
physical address 24, 31, 32
Physical Address Registers (PAR0-PAR5) 126
physical layer 21, 67
PIC16F877 microcontroller 110
PIC18C452 110
PIC18F452 110
PICDEM.net demonstration board 110, 111
PICMicro family 110
PING message (ICMP) 180
pipe (|) 413

Index

 469

Plug-and-Play Function 118, 128
plus (+) operator 262
PM-1006 filter 120
pointers 115, 126
Point-to-Point Protocol (PPP) 96, 136, 138
Point-to-Point Protocol over Ethernet 139
polling 27
POP (Post Office Protocol) 6
POP_DEBUG macro 351
POP_HOST variable 348, 350
POP_NODELETE macro 351
POP_PARSE_EXTRA macro 348, 351
POP_PASS variable 348, 350
POP_USER variable 348, 350
POP2 (Post Office Protocol Version 2) 223
POP3 (Post Office Protocol Version 3)

case sensitivity 374
client requirements 378
client/server communications 12
commands 374–378
default port 372
Dynamic C support 96
e-mail and 340, 359
functionality 372–379
performance issues 379
port number 223
timeouts 353, 378, 379
TINI and 352

pop3.lib library (Dynamic C) 348, 349
pop3_getmail() function 350
pop3_init() function 350
pop3_tick() function 350
pop3Socket object 353
POP-before-SMTP authorization 362
PORT command (FTP)

data channels 396
EPRT command 414
IP address 415
stream mode 410

PORT constant 390, 394
port numbers

dynamic/private ports 224
FTP 407
HTTP 434

list 223
POP3 372
PORT command 394, 396, 415
protocols and 223
purpose 7
registered ports 223
SMTP 362
sockets and 191, 221, 222, 236
TCP and 229
URLs and 150, 266
well-known ports 223

ports
adding to media systems 79
addressing 225
collision domains and 87
control channels 410
data channel 410
data transfer and 221
flooding 88
flow control 8
hardware analyzers 34
PORT constant 390
servlets and 315
timeouts and 410
transfers and sessions 410
typical stream mode step 410
UDP and TCP 221–224

Post Office Protocol. See POP
POST request

form data and 269, 316
functionality 269
message body and 271
method attribute (FORM) 318
servers accepting input 314
servicing 332–334
servlets and 329, 429, 430

potentiometers 110
power consumption 19, 94
power supply 65, 121, 131
PPP (Point-to-Point Protocol) 14, 96, 136,

138
PPPoE (Point-to-Point Protocol over Ethernet)

139
<pre></pre> tag 282

Index

470

Preamble field (frames)
collision detection and 28
repeater hubs and 82
slot times and 29
specifics 22–24

preemptive multitasking 99, 101
preformatted content 282
Premier Magnetics 120
_PRIMARY_NETMASK constant (Rabbit)

186
_PRIMARY_STATIC_IP constant (Rabbit)

186
Primary Rate Interface (PRI) ISDN 140
printf() statement 192, 386
println statement 354
PrintStream object 259, 260, 262, 346
PrintWriter object 302, 316, 354
private keys 440
private ports 224
processRequest() method (TINI) 260
promiscuous mode 126
protocol address space (Ethernet frame) 176
protocol analyzers 32, 34
Protocol field (IP header) 168, 169, 180
protocol implementers 344, 372
protocols

client/server model 12
code symbols and 69
communication and 11
data transmission and 6
dynamic content and 245
error checking 7
Ethernet standard and 15
flow control 7
IP addresses and 10, 184
LANs and 133
messages and 6
port numbers and 223
protocol analyzers 33
schemes and 371
serving Web pages 264
support for e-mail 340
URLs specifying 149
(See also specific protocols)

PSH bit (TCP header) 233
public IP address

accessing embedded systems via 147
firewalls and 435
Internet access and 143
subnets and 160
updating dynamic 174

public-key cryptography 440
pulse amplitude modulation 70, 71, 73
PulseJack 123
pulse-width-modulation (PWM) 93
PUT request 269, 271
PWD command (FTP) 416

Q
quad flat pack (QFP) 128
queries 152, 175
question mark (?) 297
queued serial peripheral interface (QSPI) 109
QUIT command (FTP) 397, 401, 416
QUIT command (POP3) 358, 373, 376,

378
QUIT command (SMTP) 364, 366, 368
quotation marks (") 277, 302, 336

R
R.E. Smith 117
Rabbit BIOS (Dynamic C) 96
Rabbit modules

accessing Web server 253, 254
Basic Authentication 425–427
configuring 185–188
device controller example 288–295
Digest Authentication and 437
e-mail protocols and 340
exchanging messages 209–213
forms on 320–328
FTP clients 382–389
FTP server 402–407
Rabbit Web Server 247–254
RCM3200 specifics 93–99, 288
receiving e-mail 348–351

Index

 471

request process 253
sending e-mail 341–344
sending file main() function 387
SSI directives 246
UDP datagrams 191–196, 202–204

Rabbit Semiconductor
AX88796 122
Dynamic C 96
RCM3200 module 93, 125
Web site 99

rabbitbios.c 405
rabbit-semi e-mail discussion list 99
radio buttons 320
radio-frequency (RF) transmissions 67
RARP (reverse ARP) 176, 176–178
RCM2100 module (RabbitCore) 96
RCM3200 module (RabbitCore) 122, 125,

288
RCPT command (SMTP) 367, 368
rd command (slush) 407
read() method (BitPort) 298
read() method (InputStream) 217
readLatch method, BitPort class 300
readTimeout variable (TINI) 257, 258, 259
realms 423, 424, 425, 436
Realtek RTL8019AS

Ethernet controller 38, 110, 114, 116
RCM2100 module 96
specifics 128–130

RealTimeWebPage class (TINI) 256, 257
Receive Configuration Register (RCR) 126
Receive method (UdpClient) 220
Receive Status Register (RSR) 126
receive() method (TINIDatagramSocket) 207
receivers, fiber-optic 57, 59
rectifiers 65
Red Hat 113
REDIRECTHOST variable 288
REDIRECTTO variable 288, 292
reflect.classes 306
Refresh icon (browsers) 279
relative location 411
Remote Read command 127
Remote Write command 127

REMOTE_DIR parameter 383, 385, 386
REMOTE_FILE parameter 383, 385
REMOTE_HOST parameter 383, 385, 386
REMOTE_IP constant 192, 202
REMOTE_PASSWORD parameter 383,

385, 386
REMOTE_PORT constant (Rabbit) 192,

193, 383
REMOTE_USERNAME parameter 383,

385, 386
REMOTEHOST constant 390, 394, 398
repeater hubs

attachment points 79
collision domains and 28
connecting 38, 40, 42, 84
crossover and 48, 84
determining quantity 81–83
distances supported 17
Ethernet frames 178
fiber-optic networks and 53
interfaces 80, 81
multi-speed 85, 86
speed considerations 40
switches and 87

Request for Comments (RFC) 155, 156, 379
RequestInfoServlet servlet 307
requests

CGI 313, 314
client/server communications 12
HTTP process 268–271
nonce values and 436
persistent connections and 267
Rabbit process 253
servlet containers 315
TINI process 254–264

reserved characters, mailto 372
Reserved Field (TCP header) 233
reserved IP addresses 163–165
Reset button 317, 320
resolvers 152, 175
resources

domain names and 151
firewalls and 435
identifying 135

Index

472

nonce values and 436
URLs specifying 149, 150

responses (HTTP) 12, 271–273, 314
RETR command (FTP) 396, 416, 418
RETR command (POP3) 357, 376, 378
retransmission 28, 120, 240
retrieve_file() function 384, 388
retrieveEmails() method 353
reverse ARP (RARP) 176, 176–178
RF (radio-frequency) transmissions 67
RFC (Request for Comments) 155, 156, 379
RFC 0768 (UDP) 225
RFC 0790 (Assigned Numbers) 169
RFC 0791 (Internet Protocol) 156
RFC 0791 (IPv4) 158, 167, 170
RFC 0792 (ICMP) 180
RFC 0793 (TCP) 229
RFC 0826 (Ethernet Address Resolution Proto-

col) 176
RFC 0854 (Telnet Protocol Specification) 417
RFC 0903 (RARP) 176
RFC 0918 (POP3) 372
RFC 0950 (ICMP) 180
RFC 0959 (FTP) 408, 412, 414, 416, 417,

418
RFC 1010 (protocol address space) 176
RFC 1034 (domain names) 149
RFC 1035 (domain names) 149
RFC 1123 (Internet hosts) 273, 408, 412
RFC 1256 (ICMP) 180
RFC 1321 (MD5 algorithm) 374, 436
RFC 1519 (CIDR) 162
RFC 1521 (MIME) 424
RFC 1533 (DHCP Options and BOOTP Ven-

dor Extensions) 172
RFC 1661 (PPP) 138
RFC 1730 (IMAP) 373
RFC 1738 (URL) 149, 150, 418
RFC 1939 (POP) 372
RFC 1945 (HTTP 1.0/0.9) 266
RFC 2045 (MIME) 249, 371
RFC 2046 (MIME) 249, 371
RFC 2047 (MIME) 249
RFC 2048 (MIME) 249

RFC 2049 (MIME) 249, 371
RFC 2131 (Dynamic Host Configuration Pro-

tocol) 171
RFC 2228 (FTP Security Extensions) 418
RFC 2368 (mailto) 372
RFC 2411 (IP Security Document Roadmap)

440
RFC 2428 (FTP Extensions for IPv6 and

NATs) 413, 414
RFC 2460 (IPv6) 167
RFC 2581 (TCP Congestion Control) 240
RFC 2616 (HTTP 1.1) 266
RFC 2821 (SMTP) 363
RFC 2822 (Internet Message Format) 370
RFC 3330 (IPv4 special use addresses) 165
RFC Editor 155
Rijndael algorithm. See AES
ring buffers 122, 126
riser cable 43
RJ-45 connectors

adapter for M12 connection 65
coaxial cable and 41
common pinouts 48
crossover cables and 40
specifics 38
twisted-pair Ethernet 46

RMD command (FTP) 416
root directory 383, 411
root domain 148, 151
root memory 382, 402
root name servers 151, 152, 156
round-trip propagation delay 81
routers

broadcasts and 164
capabilities 89
CIDR and 162
DHCP servers 174
dial-up process 137
distances supported 17
firewalls and 146, 432
forwarding tables 179
fragmenting datagrams 154
indirect routing 178, 179
Internet requirements 134

Index

 473

IP address 180, 184
local address 143, 165
message process 153
multicasting support 165
NAT protocol and 143
network addresses and 157
network communications and 80
purpose 1
subnet IDs 159
subnet masks 158
Type of Service field 168

routing
datagrams 178–179
IP and 9–11
protocols and 7

RS-232 (serial port)
asynchronous 23
embedded systems and 19
Internet connection 136
ISDN and 140
TIA/EIA-232 102

RS-485 interface 17
RSET command (POP3) 376
RST bit (TCP header) 233, 433
RST command (SMTP) 367
run() method (PeriodicTask) 331, 332
run() method (UdpReceive) 207
run() method (UdpSend) 198
Runnable interface 196, 205, 331
runServer variable (TINI) 258

S
satellite connection 136, 142
sauth_adduser() function 406
saveSetupParameters() method 336
SC connector 60
schematic diagrams 92
schemes 149, 371
ScTP (screened twisted-pair) cable 47
SDRAM 128, 131
search engines 266
SEC_TIMER variable (Dynamic C) 252
Secure Hash Algorithm (SHA) 440

Secure Sockets Layer (SSL) protocol 440
security

CGI and 313
devices and 422
displaying password 423
domain hosts and 361
Dynamic C file structure and 409
#exec directive and 282
fiber optics and 41, 55
firewalls and 146
HTTP 1.1 266
local networks 421, 422, 431
mailbox and 341
requirements 135
RFC 2228 418
router with NAT support 144
servlet containers and 315
system files and 408
(See also firewalls; network security)

semicolon (;) 307
semiconductor laser 58
Send() method (SendEmail) 345
send_datagram() statement (Dynamic C) 98
send_file() function 387, 388
send_packet() function (Rabbit) 194
sendAcknowledgementPage() method 334,

336
SendEmail application 347
SendEmail class 345, 347
sendErrorPage() method (TINI) 261, 263
sendSetupPage() method 332, 334, 337
sendWebPage() method 262, 301
Sequence Number field (TCP header) 230,

231
serial EEPROM

AX88796 122, 125
controllers and 121
CS8900A 131
Flash memory and 126
RTL8019AS 128, 130
SMSC LAN91C96 131

Serial Peripheral Interface (SPI) 18, 112
serial port. See RS-232
serial-to-Ethernet bridge 117

Index

474

Server Side Include directives. See SSI directives
SERVER_FTP parameter 323, 406
SERVER_HTTP 323
servermask parameter 403
servers

browsers as 13
communications 12
dynamic content 243
HTTP responses 267
initializing with TINI 215
networks and 11–13
(See also client/server model; FTP servers;

Web servers)
ServerSocket class 254, 257
ServerSpec structure 321, 322, 323, 325,

406, 409
service_request() function (Rabbit) 211, 213
servlet container 304, 307, 316
servlet engine 295, 315
Servlet interface 298
ServletException 299
ServletOutputStream class 302, 336, 337
servlets. See Java servlets
servlets.props file (Tynamo) 304, 305, 307–

308, 309
sessions. See Telnet
#set directive 282
setContentType() method (HttpServletRe-

sponse) 302, 336, 337
setDaemon() method (TINI) 198, 206, 215,

258
setData() method (DatagramPacket) 201
setData() method (TINI) 201
setError method (TINI) 260
setFromAddr() method (TINI) 344
setSoTimeout method (Socket) 353
setup.bin file 331
SETUP_FILE 335
setupParameters array 331, 333, 334, 336
SFF (small-form-factor) connectors 61
shadow registers 291
shielded twisted pair (STP) cable 47, 64
.shtml extension 250, 283, 322
SHTML handler 253, 283, 290, 322

shtml_handler() function (Rabbit) 252
Siemon Company 65
signal distance

cables and 17
fiber optics and 42, 54
half-duplex 17
repeater hubs 17
routers 17
RS-485 and 17
switches and 17
twisted pair 44, 46

Silverman, Shawn 106, 295
Simple Mail Transfer Protocol. See SMTP
Simple Network Management Protocol (SN-

MP) 96
single mode fiber 59
SiteLinker utility 115
SitePlayer (Netmedia) 14
SitePlayer Ethernet Web Server 113–115
slice statement (Dynamic C) 99
slices 99, 104
slot times 29–30
Slow Start method 240
slush shell

FTPClient class 393
reloading 190
TINI 105
TINI FTP server 407
viewing files 409

small-form-factor (SFF) connectors 61
Smart Software Consulting 106, 295
SMSC (Standard Microsystems Corporation)

104, 130
SMTP (Simple Mail Transfer Protocol)

authentication and 361
blocking ports 362
case sensitivity 364
data transmission 6
default port 362
Dynamic C support 96
e-mail and 340, 359
embedded systems and 361
functionality 362–371
mailConnection object 346

Index

 475

POP-before-SMTP 362
port number 223
specifying host 347
timeouts 343, 368

smtp.lib library 341, 368
SMTP_DEBUG macro 342
smtp_mailtick() function 341, 343
smtp_sendmail() function 341, 343, 344,

370
smtp_sendmailxmem() function 344, 370
smtp_status() function 341, 343
SMTP_TIMEOUT macro 343
SNMP(Simple Network Management Proto-

col) 96
sock_bytesready() function (Dynamic C) 212
sock_close() function (Rabbit) 211
sock_established() function (Dynamic C) 212
sock_fastread() function (Dynamic C) 213
sock_init() function (Dynamic C) 193, 203,

209, 251, 343, 350, 384, 387,
407

sock_write() function (Dynamic C) 213
Socket class 220, 353, 358
sockets 191, 221–224, 236, 427
SODIMM socket 102
Softools 99
software

Dynamic C 96
examples of modules 4
firmware 4
GNUPro 113
Lantronix Device Server 112
MOD5282 110
Packet Whacker 116
PICDEM.net Demonstration Board 111
SitePlayer’s Development Board 115

solid conductors 44, 48
source address

0.0.0.0 164
IP and 154
IP datagrams 156
sending messages and 9
switches and 87
UDP datagrams 184

Source Address field (frames)
blocking communications 435
DHCP message processing 172
Ethernet frames 221
message routing process 143
specifics 22, 25
table 168

source IP address 9, 152, 177
Source IP Address field (IP header) 170
Source Port Number field (TCP header) 230
Source Port Number field (UDP header) 226
SPI (Serial Peripheral Interface) 18
splicing kits 61
splitters, DSL and 138
sprintf() statement (Dynamic C) 187
SRAM (static RAM) 123, 126, 128, 131
SRC attribute (IMG) 274, 276
SSI (Server Side Include) directives

dynamic content support 14
overview 280–283
Phantom Server 112
Rabbit module 246
.shtml extension 250
vulnerabilities 438
Web pages 264

SSL (Secure Sockets Layer) protocol 440
sspec_addform() function 323
sspec_addfsfile() function 403, 406
sspec_addfunction() function 324
sspec_addvariable() function 325
sspec_addxmemfile() function 323
sspec_aliasspec() function 327
SSPEC_MAXSPEC macro 404
sspec_setformepilog() function 324
sspec_setformtitle() function 324
sspec_setfvdesc() function 326
sspec_setfvname() function 325
sspec_setfvrange() function 326
sspec_setuser() function 406
ST connector 60
st object (StringTokenizer) 356
stack 5
Standard Microsystems Corporation (SMSC)

Index

476

104, 130
Start Frame Delimiter field (frames) 22–24,

28, 29
start tag <html> 275
start() method (datagramReceiver) 206
start() method (datagramSender) 199
start() method (ServerThread) 216, 258
Startup, performing tasks on 335
STAT command (FTP) 416
STAT command (POP3) 356, 377, 378
state-machine based programming 99
static content 106, 254, 316, 328
static IP address 142
static RAM. See SRAM
status lines 267, 271, 272, 314
STD prefix 156
STD0005 (IP) 156
STD0006 (UDP) 225
STD0007 (TCP) 229
STD0013 (DNS) 149
STD0037 (ARP) 176
STD0038 (RARP) 176
STDIO window (Dynamic C)

debugging and 351
displaying messages 348, 349
e-mail and 341
Rabbit console 382
SMTP_DEBUG macro 342

stopServer() method (TINI) 259
STOR command (FTP) 400, 416
store_message() function 349
STP (shielded twisted pair) cable 47, 64
straight-through cable 39, 84, 85
stranded conductors 44, 48
stream mode 410, 414
String class 401
String variables 300, 333, 401
StringBuffer object (TINI) 260
strings

converting to integers 333
empty 406
writing 401

StringTokenizer class 352, 356
STRU command (FTP) 417

Subject header 346, 351, 370
Submit button 317, 320
subnet ID

1.1.1.1 164
bits used 160
routers and 159
subnet mask and 162

subnet masks 158, 161
subnets

broadcasts and 164
classful addressing and 158
direct routing 178
specifics 159–160
TINI parameters 106
VPN firewall support 440

Sun Microsystems 107
switches

attachment points 79
auto-crossover capability 49
collision domains 87, 89
connecting 38, 40, 42, 84
crossover cables and 48
determining quantity 89
distances supported 17
Ethernet frames 178
fiber-optic networks 53
flooding 88
full duplex and 31
media access control and 28
speed considerations 40
switching hub 79

symmetric DSL (SDSL) 139
SYN bit (TCP header) 234, 237
synchronization 22, 234
synchronous communication 22, 24, 220
SYST command (FTP) 417
System.Net.Sockets namespace 220
Systronix 104, 108

T
T1 lines 140
T568A (RJ-45) 48
T568B (RJ-45) 48

Index

 477

T connectors 62, 80
table cells <td></td> 277, 278, 288
table rows <tr></tr> 278
<table> tag 278
tables 277, 278
tags 274–275, 316
tasks 4, 7, 335
TCP (Transmission Control Protocol)

acknowledgements and 89
channels and 410
client/server model and 13
connection process 266
connections 230, 236, 237, 238
data transmission 221, 237
dcrtcp.lib library 289, 321
embedded systems and 118, 241–242
error checking 169
exchanging messages 208–218
firewalls and 433
flow control 239, 240
frame overhead 19
FTP file transfers and 396
functionality 7, 229, 230
handshake and 236
header format 230–235
IP support 133, 153
java.io package 329
Lantronix Device Server 112
messages and 6
MOD5282 110
network communication 7–9
overview 184
Packet Whacker 116
PC applications and 218–220
Protocol field 169
SMTP and 363
sockets and ports 221–224
support for 183
tcp_tick function 98
timeouts 410, 416

TCP layer 7, 9, 265
TCP Options field (TCP header) 232, 235
TCP segments

client/server communications 12
contents 229
depicted 7
firewalls and 433, 434
IP layer and 9

TCP/IP
cost considerations 17
dcrtcp.lib library 342, 349, 384, 404
defined 9
Dynamic C support 96
e-mail and 359
embedded systems and 118
Ethernet support 16
installing 219
slices and 99
TINI and 105
USNET software suite 112

TCP/IP stack
initializing 294, 327, 343, 350, 427
sock_init() function 384, 387, 407

tcp_config.lib file 185, 249, 321
tcp_config.lib library 186, 341, 348, 403
tcp_listen() function (Dynamic C) 210
tcp_reserveport() function 251, 294, 407,

427
tcp_tick() function (Dynamic C) 98, 194,

204, 212
TcpClient class 220
TCPCONFIG macro (Rabbit) 185, 192,

202, 249, 321, 348, 383
tcpconfig.lib file (Rabbit) 192
TcpServer class 214
<td></td> tags 278
technologies, connecting to Internet 136–142
Telecommunications Industry Association. See

TIA
Telnet

e-mail and 341
HyperTerminal 105
kill command 214
port number 223
standard 417
TINI and 196, 304, 311, 352, 357,

382

Index

478

temperatures (harsh environment) 63
Ten-Bit Interface (TBI) 79
terminal emulators 111
testing

firmware and PCs 35
Rabbit device controller 294
Rabbit Web server 253, 254
TINI Web server 264

text boxes 316, 320
text editors 274
text, formatting with tables 277, 278
thick coax 63
thin coax 62
thin quad flat pack (TQFP) 131
threads, e-mail and 371
3DES encryption 440
TIA (Telecommunications Industry Associa-

tion) 43, 64
TIA/EIA-232 standard 102
TIA/EIA-562 standard 102
TIA/EIA-568 standard 43, 47
TIA/EIA-568-A standard 43
TIA/EIA-568-B standard 43
TIA/EIA-604-3 standard 60
Time to Live field (IP header) 168, 169
time variables

Rabbit module 247, 249, 252
TINI module 262

timeouts
POP3 and 353, 378
ports and 410
removal based on 179
SMTP and 343, 368
sockets 217
TCP and 410, 416

TINI (Tiny InterNet Interface) module
Basic Authentication 428–430
configuring 188–190
device controller example 295–312
e-mail protocols 340
exchanging messages 214–218
FTP clients 389–402
FTP server 407
GET/POST requests 332–334

hardware 100
JavaKit utility 105
JDK and 106
NetBoot and 101
receiving e-mail 352–358
request process 254–264
sending e-mail 344–348
servlets 286, 295–312
servlets and 329–332
Telnet session 341
TINI Server 254–264
UDP datagrams 196–201, 204–208
Web page creation 246

.tini files 107, 304, 347

.tini programs 407
TINI Software Developers Kit (SDK) 104
tini.jar 347
tini.path 306
TiniAnt plug-in 304, 305, 309
TINIConverter utility 107, 304, 347
TINIDatagramSocket class 204, 205
TiniHttpServer 106, 295, 304, 316, 428
TININet class 106
TINIOS package 104, 256, 262
<title></title> tags 275
To header 346, 351, 370, 371
toggle() method 299, 301
token-ring networks 9, 27
tokens 27, 356
TOP command (POP3) 377
Total Length field (IP header) 168
TQFP (thin quad flat pack) 131
<tr></tr> tag 278
Transaction state (POP3) 373
transceivers

cable impedance 46
coaxial cable and 42
Ethernet standard 21
fiber-optic cable 57, 59
media systems 73–76
vampire tap 63

Transmission Control Protocol. See TCP
transmission, data. See data transmission
Transmit Byte Count Registers (TBCR0,

Index

 479

TCBCR1) 127
Transmit Page Start Register (TPSR) 127
transmitters 57, 59, 70
troubleshooting

analyzers and 32, 34
IP header and 166
schematic diagrams 92
Windows support 218
(See also debugging)

TStik (Systronix) 104
TTL-to-RS-232 converter 136
TV broadcasts 141
twisted-pair cable

advantages 42
AUI and 77
cable categories 44–46
configurations available 39
connectors 48, 49, 52
controller chips 121
crossover cables 48, 49
Ethernet support 22, 43
full duplex and 31
IEEE 802.3af standard amendment 65
RJ-45 connectors and 38
shielded twisted pair 47
TIA/EIA-568-B standard 43
wire colors 46

twisted-pair Fast Ethernet (100BASE-TX)
specifics 73

twisted-pair Gigabit Ethernet (1000BASE-T)
73

twisted-pair media systems 54, 70, 72, 73,
84

TXP bit 127
Tynamo Web server

application server 106
authentication 428
build.properties file 305–307
examples 295
files used 305
forms and TINI 328
functionality 304
HTTP server 267
servlets 305, 309–311, 316, 328–329

servlets.props file 307–308
webserver.props file 309

type attribute (INPUT) 320
TYPE command (FTP) 390, 417
Type field (Ethernet header) 176
Type of Service field (IP header) 168
Tzolkin Corporation 174

U
UART (universal asynchronous receiver trans-

mitter) 23, 109, 112, 136
Ubicom 112
UDP (User Datagram Protocol)

data transmission and 221
embedded systems and 118, 227–228
error checking 169
firewalls and 433
functionality 225
header/data format 226, 227
IP support 133, 153
Lantronix Device Server 112
messages and 6
network communication 7–9
overview 184
Packet Whacker 116
PC applications and 218–220
Protocol field 169
SitePlayer Ethernet Web Server 113
sockets and ports 221–224
support for 183
tcp_tick function 98

UDP Checksum field (UDP header) 226
UDP Datagram Length field (UDP header)

226
UDP datagrams

components 8
firewalls and 433
IP layer and 9
processing 225
Rabbit code 191–196, 202–204
source address and 184
TINI code 196–201, 204–208

udp_open() function (Dynamic C) 204

Index

480

udp_open() function (Rabbit) 193
udp_receive function (Dynamic C) 203
udp_send function (Dynamic C) 195
UdpClient class 220
UdpReceive class 205
UdpSend class 196
UIDL command (POP3) 377
underlining, hyperlinks and 277
uniform resource locators. See URLs
universal asynchronous receiver transmitter. See

UART
Universal Serial Bus. See USB
unshielded twisted pair (UTP) 42, 44
Update state (POP3) 373
uplink ports 48, 84
uptimeMillis() method (TINIOS) 256, 262
URG bit (TCP header) 233, 234
Urgent Pointer field (TCP header) 233, 234
URL class (Java) 346, 382, 389, 392, 419
URL mailto scheme 344, 371, 389
URLConnection class (Java) 382, 389, 392,

419
URLs (uniform resource locators)

action attribute (FORM tag) 317
functionality 266
HREF attribute and 277
ifconfig() function 187
port numbers and 266
REDIRECTTO variable 292
requesting files 389, 418
sending e-mail from 371
servlets and 315
specifying resources 149, 150
sprintf() statement 187
URLConnection class and 392

USB (Universal Serial Bus) interface
adding Ethernet adapter 37
cable modem and 141
DSL modems and 138
embedded systems and 19, 136
Internet connection 136
IP2022 Wireless Network Processor 112
ISDN and 140
media access control 27

peripherals and 18
satellite and 142

USE_ETHERNET macro (Rabbit) 186
USE_PASSIVE 383, 385
user blocks 403, 405, 406
USER command (FTP) 417
USER command (POP3) 355, 378
User Datagram Protocol. See UDP
user names

anonymous 415, 417
authentication 378
e-mail 341, 348
identification via 361
network security 422–430, 435–437
nonce values and 436
REMOTE_USERNAME 383
security 422
sending to servers 398
SMTP lengths supported 370
TINI example 352
USER constant 390
USERNAME constant 394

USERNAME constant 390, 394
userName method (FTPClient) 396, 398
USERNAME parameter 398
USERNAME string 352
USNET 112
UTP (unshielded twisted pair) 42, 44

V
validating data 430, 437–438
value attribute (INPUT) 320
"vampire" tap 63
var variable 322
variables

adding to forms 325–327
current values of 281
displaying current values 246
FormVar structure 322
Netmedia support 14
pointers to objects 115
retrieving current values 285
setting maximum length 326

Index

 481

setting range 326
Version field (IP header) 167, 168
vibration (harsh environment) 63
video transmission 165
Virtual Driver module (Dynamic C) 96
virtual private network (VPN) 439, 440
Visual Basic .NET 218, 220
voltage 46, 65, 71
VPN (virtual private network) 439, 440
VRFY command (SMTP) 367

W
waitfor control statement (Dynamic C) 98
waitfor() statement (Rabbit) 210, 252
WAN (Wide Area Network) 21
Web browsers. See browsers
Web hosting services 136
Web pages

adding 323
browsers requesting 219
default home page 150, 311
device controller examples 286–312
Dynamic C code 253
dynamic content 14, 245–247
forms and 286, 316–337
HTML and 264, 274
HTTP 243, 265–266
hyperlinks 277
#include directive 282
Netmedia support 14
password boxes 437
persistent connections 267
Rabbit module and 247–254
redirecting 328
refreshing 254, 278, 280, 314
request process 266
responding to user input 285
restricting access 266
search engines 266
sending 175, 336
servlets and 254, 315
SitePlayer and 115
SSI directives 264

static content 106
TINI module 246, 254–264, 295, 301–

304
Web servers 7, 314
wireless access points 67
XHTML and 273
#ximport directive 426

Web servers
CGI requirements 313
Dynamic C file structures 409
dynamic content and 245–247
embedded systems and 7, 14, 244, 245
firewalls and 433, 435
form data and 316–337
GET requests 299–301
HTTP and 265–266
HTTPServer class 106
initializing 294, 327
limitations 278
Phantom Server 112
Rabbit module and 247–254
receiving browser information 266
request process 266
SDSL and 139
servlet containers and 315
servlet processing 316
SitePlayer Ethernet Web Server 114
specifying access 292
SSIs and 280
starting 327, 328
TINI module and 254–264
Web pages on request 175
www and 149

Web sites, domain names and 148
webserver.props file (Tynamo) 305, 309
webserver.tini program 310
well-known ports 191, 223, 224
Wide Area Network (WAN) 21
Wi-Fi (wireless fidelity) standard 67
Window field (TCP header) 234
Windows environment

Ethernet support 16
HyperTerminal 105, 111
Internet Connection Sharing host 143,

Index

482

144
programming/troubleshooting support 218
SYST command 417
UDP support 8
USB modems 137
(See also Windows XP)

Windows Notepad 274
Windows XP

ICS and 432
Internet Connection Firewall 145
Internet Connection Sharing 174
IPSec Security Manager 440
name server IP addresses 152
viewing Device Manager 36
viewing file attributes 409

WinIDE development environment 99
wireless access point 3
wireless networks

Ethernet and 3, 22, 67
IP and 9
IP2022 Wireless Network Processor 112–

113
working directory 413, 416
World Wide Web Consortium (W3C) 273
writeUserBlock() function 405

WS_FTP 409
www (domain names) 149, 150
WWW-Authenticate header (HTTP) 271,

273, 423

X
Xerox Corporation 20
XHTML (Extensible HTML) 273, 275, 276,

277
Xilinx XC2C64 CoolRunner II CPLD 104
#ximport directive 249, 250, 290, 320,

321, 323, 426
xmem option (#memmap directive) 384

Y
YCL Electronics 120

Z
ZiLOG, Inc. 93
zserver.lib library 314, 320, 322, 427
Z-World 117

	Embedded Ethernet and Internet Complete: Designing and Programming Small Devices for Networking
	Cover

	Contents
	Introduction
	1. Networking Basics
	Quick Start: The Elements of a Network
	Components
	Modular Design
	The Network Protocol Stack
	Clients and Servers
	Requirements for Internet Communications
	A Word about Web Servers

	In Depth: Inside Ethernet
	Advantages
	Limits
	Using a PC for Network Communications
	The IEEE 802.3 Standard
	Frames
	Media Access Control: Deciding When to Transmit
	Physical Addresses
	Using a Protocol Analyzer to View Ethernet Traffic

	2. Building a Network: Hardware Options
	Quick Start: Connecting to a PC
	Components and Configurations
	Other Options

	In Depth: Cables, Connections and Network Speed
	Cable Types for Different Uses
	Twisted Pair Cable
	Fiber Optic Cable
	Coaxial Cable
	Connections for Harsh Environments
	Supplying Power
	Going Wireless
	Media Systems
	Interfacing to Ethernet Controllers
	Using Repeater Hubs, Ethernet Switches, and Routers

	3. Design Choices
	Quick Start: Selecting Components
	Complete Solutions
	Special-Purpose Modules

	In Depth: Ethernet Controllers
	What the Hardware Does
	Ethernet Controller Basics
	The ASIX AX88796
	Realtek RTL8019AS
	SMSC LAN91C96
	Cirrus Logic CS8900A

	4. Using the Internet Protocol in Local and Internet Communications
	Quick Start: Connecting to the Internet
	Considerations in Obtaining Internet Service
	Technologies for Connecting
	Static and Dynamic IP Addresses
	Connecting Multiple Computers to the Internet
	Communicating through a Firewall
	Obtaining and Using a Domain Name

	In Depth: Inside the Internet Protocol
	What IP Does
	IP Addresses
	The IP Header
	Assigning an IP Address to a Host
	Matching an IP Address to an Ethernet Interface
	How a Datagram Finds Its Way to Its Destination
	The Internet Control Message Protocol (ICMP)

	5. Exchanging Messages Using UDP and TCP
	Quick Start: Basic Communications
	Configuring a Device for Network Communications
	Sending UDP Datagrams
	Receiving UDP Datagrams
	Exchanging Messages using TCP
	UDP and TCP from PC Applications

	In Depth: Inside UDP and TCP
	About Sockets and Ports
	UDP: Just the Basics
	TCP: Adding Handshaking and Flow Control

	6. Serving Web Pages with Dynamic Data
	Quick Start: Two Approaches
	Serving a Page with Dynamic Data
	Rabbit Real-time Web Page
	TINI Real-time Web Page

	In Depth: Protocols for Serving Web Pages
	Using the Hypertext Transfer Protocol
	HTTP Versions
	Elements of an HTTP Message
	Inside the Hypertext Markup Language
	Server Side Include Directives

	7. Serving Web Pages that Respond to User Input
	Quick Start: Device Controller
	The Device Controller's Web Page
	Rabbit Device Controller
	TINI Device Controller

	In Depth: Using CGI and Servlets
	CGI for Embedded Systems
	Servlets for Embedded Systems
	Receiving Form Data

	8. E-mail for Embedded Systems
	Quick Start: Sending and Receiving Messages
	Sending an E-mail from a Rabbit
	Sending an E-mail from a TINI
	Receiving E-mail on a Rabbit
	Receiving E-mail on a TINI

	In Depth: E-mail Protocols
	How E-mail Works
	Using the Simple Mail Transfer Protocol
	Sending E-mail with a URL
	Using the Post Office Protocol

	9. Using the File Transfer Protocol
	Quick Start: FTP Clients and Servers
	Rabbit FTP Client
	TINI FTP Client
	Rabbit FTP Server
	TINI FTP Server

	In Depth: Inside the File Transfer Protocol
	Requirements
	Transferring a File
	Commands
	Requesting a File with a URL

	10. Keeping Your Devices and Network Secure
	Quick Start: Limiting Access with Passwords
	Using Basic Authentication
	Basic Authentication on the Rabbit
	Basic Authentication on the TINI

	In Depth: Four Rules for Securing Your Devices and Local Network
	Use a Firewall
	Restrict Access with User Names and Passwords
	Validate User Data
	Encrypt Private Data

	Index

