o .

Introduction to Linux Device Drivers
Recreating Life One Driver At a Time

Muli Ben-Yehuda

mul i x@wul i x. org

IBM Haifa Research Labs, Haifa Linux Club

Linux Device Drivers, Technion, Jan 2004 — p.1/4:

why write Linux device drivers

o .

® For fun

For profit (Linux is hot right now, especially embedded
Linux)

® To scratch an itch
#® Because you can

OK, but why Linux drivers?

® Because the source Is available

Because of the community’s cooperation and
iInvolvement

Have | mentioned it's fun yet?

o -

Linux Device Drivers, Technion, Jan 2004 — p.2/4:

klife - Linux kernel game of life

o .

kKlife Is a Linux kernel Game of Life implementation. It is a
software device driver, developed specifically for this talk.

the game of life is played on a square grid, where some
of the cells are alive and the rest are dead

each generation, based on each cell’s neighbours, we
mark the cell as alive or dead

with time, amazing patterns develop

the only reason to implement the game of life inside the
kernel is for demonstration purposes

Software device drivers are very common on Unix systems
and provide many services to the user. Think about
L/dev/null, /dev/zero, /dev/random, /dev/ikmem... J

Linux Device Drivers, Technion, Jan 2004 — p.3/4:

anatomy of a device driver

-

a device driver has two sides. One side talks to the rest
of the kernel and to the hardware, and the other side
talks to the user

to talk to the kernel, the driver registers with
subsystems to respond to events. Such an event might
be the opening of a file, a page fault, the plugging in of
a new USB device, etc

since Linux is UNIX and in UNIX everything is a file,
users talk with device drivers through device files

klife Is a character device, and thus the user talks to it
through a character device file

the other common kind of device file i1s a block device
file. We will only discuss character device files today J

Linux Device Drivers, Technion, Jan 2004 — p.4/4:

°

°

e o o o

anatomy of a device driver - cont

=

the user talks with klife through the /dev/klife device file

when the user opens /dev/klife, the kernel calls klife’s
open routine

when the user closes /dev/klife, the kernel calls klife’s
release routine

when the user reads or writes from or to /dev/klife - you
get the idea. ..

klife talks to the kernel through its initialization function
...and through register_chardev

...and through hooking into the timer interrupt

we will elaborate on all of these later

-

Linux Device Drivers, Technion, Jan 2004 — p.5/4:

driver initialization code

static int __init klife_nodule_init(void)

{

int ret;

pr_debug("klife nodule init called\n");

ret = register _chrdev(KLIFE MAJOR NUM "klife", &klife fops);
if (ret < 0)

print k(KERN_ERR "register_chrdev: %l\n", ret);

return ret;

static void __exit klife_nodul e cl eanup(void)

{
}

.

unregi ster_chrdev(KLI FE_MAJOR_NUM "klife");

-

Linux Device Drivers, Technion, Jan 2004 — p.6/4:

°

driver initialization

=

one function (init) called on the driver’s initialization

one function (exit) called when the driver is removed
from the system

guestion: what happens if the driver is compiled into the
kernel, rather than as a module?

the init function will register hooks that will get the
driver’s code called when the appropriate event
happens

guestion: what if the init function doesn’t register any
hooks?

there are various hooks that can be registered: file
operations, pci operations, USB operations, network
operations - it all depends on what kind of device this isJ

Linux Device Drivers, Technion, Jan 2004 — p.7/4:

registering chardev hooks
r__struct file operations klife fops = { ___W

.owner = TH S _MODULE,
.open = klife_open,
.release = klife_rel ease,
.read = klife read,
.wite = klife wite,
.mmap = klife_mmap,
.ioctl = klife_ioctl

'

if ((ret = register _chrdev(KLIFE MAJOR NUM "klife", &life fops)) < 0)
pri nt K(KERN_ERR "regi ster_chrdev: %\ n", ret);

o -

Linux Device Drivers, Technion, Jan 2004 — p.8/4:

user space access to the driver

=

We saw that the driver registers a character device tied to a
given major number, but how does the user create such a
file?

nknod /dev/klife ¢ 250 O
And how does the user open it?

-

if ((kfd = open("/dev/klife", ORDW)) < 0) {
perror("open /dev/klife");
exit (EXI T_FAI LURE) ;

}

And then what?

o -

Linux Device Drivers, Technion, Jan 2004 — p.9/4:

-

...and then you start talking to the device. klife makes use

file operations

=

of the following device file operations:

9
9o
9

open for starting a game (allocating resources)
release for finishing a game (releasing resources)

write for initializing the game (setting the starting
positions on the grid)

read for generating and then reading the next state of
the game’s grid

loctl for querying the current generation number, and for
enabling or disabling hooking into the timer interrupt
(more on this later)

mmap for potentially faster but more complex direct
access to the game’s grid J

Linux Device Drivers, Technion, Jan 2004 — p.10/4.

klife_open -1

static int klife_open(struct inode *inode, struct file *filp)
{

struct klife* k;
k = alloc_klife();
1 f (k)
return - ENOVEM

filp->private data = k;

return O;

o -

Linux Device Drivers, Technion, Jan 2004 — p.11/4.

klife_open - 2
|7$tatic struct klife* alloc _klife(void) T

{
struct klife* k = kmalloc(sizeof (*k), G-P_KERNEL);
if (1K)
return NULL;
init _klife(k);
return Kk;
}

o -

Linux Device Drivers, Technion, Jan 2004 — p.12/4.

klife_open -3
- -

static void init_klife(struct klife* k)

{
menset (k, 0, sizeof(*k));
spi n_I ock_i nit(&k->l ock);
k->tinmer _hook.func = klife_ tinmer _irqg_handler;
k->ti mer _hook. data = k;
}

o -

Linux Device Drivers, Technion, Jan 2004 — p.13/4.

klife release

static int klife_release(struct inode *inode, struct file *filp)
{

struct klife* k = fil p->private_dat a;

klife timer_unregister(k);

free klife(k);

return O;
}
static void free klife(struct klife* k)
{
kfree(k);
}

o -

Linux Device Drivers, Technion, Jan 2004 — p.14/4.

commentary on open and release

o .

#® open and release are where you perform any setup not
done in initialization time and any cleanup not done in
module unload time

Kklife’s open routine allocates the klife structure which
nolds all of the state for this game (the grid, starting
Dositions, current generation, etc)

® Kklife’'s release routine frees the resource allocated
during open time

#® Dbeware of races If you have any global data ... many a
driver author stumble on this point

#® note also that release can fail, but almost no one
checks errors from close(), so it's better if it doesn’t . ..

L # question: what happens if the userspace program J
crashes while holding your device file open?

e Drivers, Technion, Jan 2004 — p.15/4:

klife write - 1

static ssize t klife wite(struct file* filp, const char _ user * ubuf,
size t count, loff t *f pos)

size t sz;

char* kbuf;

struct klife* k = fil p->private_dat a;
ssize t ret;

sz = count > PAGE _SIZE ? PAGE_SI ZE : count;
kbuf = kmall oc(sz, G-P_KERNEL);

i f (!kbuf)
return - ENOVEM

o -

Linux Device Drivers, Technion, Jan 2004 — p.16/4.

klife write - 2
ret = - EFAULT; ___1

i f (copy_fromuser(kbuf, ubuf, sz))
goto free_ buf;

ret = klife_add position(k, kbuf, sz);
If (ret == 0)
ret = sz;

free buf:

kfree(kbuf);
return ret;

o -

Linux Device Drivers, Technion, Jan 2004 — p.17/4.

°

commantary on write

for klife, |1 “hijacked” write to mean “please Initialize the T
grid to these starting positions. There are no hard and

fast rules to what write has to mean, but KISS is a good
principle to follow.

note that even for such a simple function, care must be
exercise when dealing with untrusted users (users are
always untrusted).

check the size of the user’s buffer

use copy_from_user in case the user Is passing a bad
pointer

always be prepared to handle errors!

-

Linux Device Drivers, Technion, Jan 2004 — p.18/4.

Klife read -1

static ssize t

klife read(struct file *filp,

{

struct klife* klife;
char* page;
ssize t |en;
ssize t ret;
unsi gned | ong fl ags;

klife = fil p->private_data;

/* special handling for mmp */
i f (klife->mapped)

char *ubuf,

=

size t count, loff t *f pos)

return klife read mapped(filp, ubuf, count, f_pos);

i f (!(page = kmal | oc(PAGE_SI ZE, GFP_KERNEL)))

return - ENOVEM

-

Linux Device Drivers, Technion, Jan 2004 — p.19/4.

klife read - 2

spin_lock irqsave(&klife->lock, flags);
klife_next _generation(klife);

len = klife_ draw(klife, page);

spin_unlock _irqrestore(&klife->lock, flags);

if (len < 0) {
ret = Ilen;
goto free_ page;

len = mn(count, (size t)len); /* len can't be negative */

-

Linux Device Drivers, Technion, Jan 2004 — p.20/4.

Klife_read - 3

i f (copy_to_user(ubuf, page, len)) {
ret = - EFAULT,
goto free_ page;

*f _pos += | en;
ret = len;
free_page:

kfree(page);
return ret;

o -

Linux Device Drivers, Technion, Jan 2004 — p.21/4.

klife_read - 4
|7$t atic ssize_t T

klife read mapped(struct file *filp, char *ubuf, size t count,
| of f _t *f_pos)

{
struct klife* klife;
unsi gned | ong fl ags;
klife = fil p->private_data;
spin_lock irgsave(&klife->lock, flags);
klife next generation(klife);
spi n_unl ock_irgrestore(&klife->lock, flags);
return O;
}

o -

Linux Device Drivers, Technion, Jan 2004 — p.22/4.

.

o o

commentary on read

=

for klife, read means “please calculate and give me the
next generation”

the bulk of the work is done In klife_next_generation
and klife_draw. klife_next_generation calculate the next
generation based on the current one according to the
rules of the game of life, and klife_draw takes a grid and
“draws” It as a single string in a page of memory

we will see later what the lock is protecting us against
note that the lock is held for the smallest possible time

again, copy _to_user in case the user is passing us a
bad page

there’s plenty of room for optimization in this code
...can you see where? .

Linux Device Drivers, Technion, Jan 2004 — p.23/4.

Klife_ioctl - 1
F__static | nt ___1

klife ioctl(struct inode* inode, struct file* file,
unsi gned int cnd, unsigned |ong data)

struct klife* klife = file->private_data;
unsi gned | ong gen;

i nt enabl e;

int ret;

unsi gned | ong fl ags;

ret = 0;
switch (cnmd) {
case KLI FE_GET_CGENERATI ON:
spin_lock _irqgsave(&klife->lock, flags);
gen = Kklife->gen;
spin_unlock irgrestore(&klife->lock, flags);
I f (copy_to user((void*)data, &gen, sizeof(gen))) {

ret = - EFAULT;
got o done;

Linux Device Drivers, Technion, Jan 2004 — p.24/4.

klife_ioctl - 2
- -

case KLI FE _SET_TI MER MCDE:
I f (copy_from user(&enabl e, (void*)data, sizeof(enable))’

ret = - EFAULT;
got o done;

}

pr _debug("user request to % tiner node\n",
enable ? "enable" : "disable");

I f (klife->tinmer && !enabl e)
klife timer _unregister(klife);
else if ('klife->tiner && enabl e)
klife timer register(klife);
br eak;

done:
return ret;

o -

Linux Device Drivers, Technion, Jan 2004 — p.25/4.

commentary on ioctl

=

loctl Is a “special access” mechanism, for operations
that do not cleanly map anywhere else

It Is considered exteremly bad taste to use ioctls in
Linux where not absolutely necessary

new drivers should use either sysfs (a /proc like virtual
file system) or a driver specific file system (you can
write a linux file system in less than a 100 lines of code)

In klife, we use Ioctl to get the current generation
number, for demonstration purposes only ...

-

Linux Device Drivers, Technion, Jan 2004 — p.26/4.

klife_ mmap

static int klife mmap(struct file* file, struct vmarea struct* vna)

{

Int ret;
struct klife* klife = file->private data;

pr_debug("inside klife nmmap, file %, klife %, vma %\n",
file, klife, vm);

i f (vma->vm flags & VM SHARED)
return -EINVAL; /* we don’t support MAP_SHARED */

pr_debug("vma %, vma->vmstart %d, vma->vmend %d
"gridsize %\n", vma, vhma->vmstart, vma->vm end,
sizeof (klife->grid));

-

Linux Device Drivers, Technion, Jan 2004 — p.27/4.

klife_ mmap

Set PageReserved(virt _to page(&klife->grid)); ___1
ret = remap_page_range(vma, vma->vmstart,

virt _to _phys(&klife->grid),

si zeof (klife->grid),

vima- >vm page_prot);

pr _debug("remap_page range returned %\ n", ret);

if (ret == 0)
klife->mapped = 1;

return ret;

-

Linux Device Drivers, Technion, Jan 2004 — p.28/4.

°

commentary on mmap

=

mmap Is used to map pages of a file into memory

programs can access the memory directly, instead of
having to use read and write (saves up the overhead of
a system call and related context switching, and
memory copying overhead)

... but fast synchronization between kernel space and
user space is a pain, and Linux read and write are really
quite fast

again, implemented in klife for demonstration purposes,
with read() calls used for synchronization and triggering
a generation update (why do we need synchronization
between kernel space and userspace?)

o

Linux Device Drivers, Technion, Jan 2004 — p.29/4.

klife interrupt handler
- -

What If we want a new generation on every raised
Interrupt? since we don’t have a hardware device to raise
Interrupts for us, let’s hook into the one hardware every pc
has - the clock - and steal its interrupt! Usually, interrupts
are requested using request_irg():

[* claimour irq */
rc = - ENCDEV,
I f (request irqg(card->irq, &rident _interrupt, SA SH RQ
card _nanes| pci _id->driver _data], card)) {
print K(KERN_ERR "trident: unable to allocate irgq %\ n", card->irq
goto out _proc fs;

}

It is not possible to request the timer interrupt. Instead, we

will directly modify the kernel code to call our interrupt

handler, If it’s it’s registered. We can do this, because the
Lcode IS open... J

Linux Device Drivers, Technion, Jan 2004 — p.30/4.

aren’t timers good enough for you?

=

“does every driver that wishes to get periodic
notifications need to hook the timer interrupt?”. Nope.

Linux provides an excellent timer mecahnism which can
be used for periodic notifications.

The reason for hooking into the timer interrupt in klife is
because we wish to be called from hard interrupt
context, also known as (top half context) ...

...where as timer functions are called in softirg (bottom
half context).

why insist on getting called from hard interrupt context?
SO0 we can demonstrate deferring work

-

Linux Device Drivers, Technion, Jan 2004 — p.31/4.

hook Into the timer Interrupt routine - 1
r__+struct timer _interrupt _hook* tiner_ hook; ___1

+
+static void call tinmer _hook(struct pt _regs *regs)
+

+ struct tinmer_interrupt_hook* hook = tinmer_hook;

+ i f (hook && hook->func)
+ hook- >f unc(hook- >dat a) ;

+}

+

@ -851,6 +862,8 @»void do tinmer(struct pt _regs *regs)
updat e _process_tines(user_node(regs));

#endi f
update_ tinmes();

+ call timer_hook(regs);

o -

Linux Device Drivers, Technion, Jan 2004 — p.32/4.

hook Into the timer Interrupt routine -

+int register tinmer _interrupt(struct tiner_interrupt_hook* hook)

+ print K(KERN I NFO "registering a tiner interrupt hook % "
+ "(func %, data %)\n", hook, hook->func,

+ hook- >dat a) ;

+

+ xchg(& i mer _hook, hook);

+ return O;

+}

+

+void unregister tinmer _interrupt(struct tinmer _interrupt _hook* hook)

+

+ pri nt K(KERN I NFO "unregistering a tinmer interrupt hook\n");
+

+ xchg(& i mer _hook, NULL);

+}

+

+EXPORT_SYMBOL(regi ster _tinmer_interrupt);
+EXPORT_SYMBOL(unregi ster_tinmer_interrupt);

2
-

-

Linux Device Drivers, Technion, Jan 2004 — p.33/4.

commentary on timer interrupt hook

o .

the patch adds a hook a driver can register for, to be
called directly from the timer interrupt handler. It also
creates two functions, register_timer_interrupt anc
unregister_timer_interrupt, which do the obvious thing.

note that the register and unregister calls use xchg(), to
ensure atomic replacement of the pointer to the
handler. Why use xchg() rather than a lock?

interesing questions: what context (hard interrupt,
bottom half, process context) will we be called in?
which CPU’s timer interrupts would we be called in?
what happens on an SMP system?

o -

Linux Device Drivers, Technion, Jan 2004 — p.34/4.

deferring work

=

you were supposed to learn in class about bottom
halves, softirgs, tasklets and other such curse words

the timer interrupt (and every other interrupt) has to
happen very quickly (why?)

the interrupt handler (top half, hard irq) usually just sets
a flag that says “there is work to be done”

the work iIs then deferred to a bottom half context, where
It Is done by an (old style) bottom half, softirqg, or tasklet

for klife, we defer the work we wish to do, updating the
grid, to a bottom half context by scheduling a tasklet

-

Linux Device Drivers, Technion, Jan 2004 — p.35/4.

preparing the tasklet

DECLARE _TASKLET DI SABLED(klife tasklet, klife tasklet func, 0);

static void klife_ timer_register(struct klife* klife)
{

unsi gned | ong fl ags;

int ret;

spin_l ock _irqsave(&klife->lock, flags);
/* prinme the tasklet with the correct data - ours */
tasklet init(&life tasklet, klife tasklet func,
(unsigned long)klife);
ret = register _timer_interrupt(&klife->timer _hook);
if (!ret)
klife->tiner = 1;
spin_unlock irgrestore(&klife->lock, flags);

pr_debug("register tinmer _interrupt returned %\ n", ret);
o o

Linux Device Drivers, Technion, Jan 2004 — p.36/4.

deferring work - the klife tasklet
r__static void klife timer _irg_handl er(voi d* data) ___1

{
struct klife* klife = data,;
/[* 2 tinmes a second */
I f (klife->tiner _invocation++ % (HZ / 2) == 0)
t askl et _schedul e(&kl ife tasklet);
}

static void klife_tasklet func(unsigned | ong data)
{
struct klife* klife = (void*)data;

spin_| ock(&klife->lock);

klife next generation(klife);

spi n_unl ock(&l i f e->| ock);
} -

Linux Device Drivers, Technion, Jan 2004 — p.37/4.

commentary on the klife tasklet

o .

first, it derives the klife structure from the parameter it is
passed

Here’s what our klife tasklet does:

and then locks it to prevent concurrent access on
another CPU (what are we protecting against?)

then, it generates the new generation (what must we
never do here? hint: can tasklets block?)

® and last, it releases the lock

o -

Linux Device Drivers, Technion, Jan 2004 — p.38/4.

adding klife to the build system

fBuilding the module in kernel 2.6 is a breeze. All that’s T
required to add klife to the kernel’s build system are these
tiny patches:

In drivers/char/Kconfig

+config GAME OF LI FE
+ tristate "kernel ganme of |ife"

+ help
+ Kernel inplenentation of the Gane of Life.

® In drivers/char/Makefile
+0bj - $(CONFI G GAME_OF LIFE) += klife.o

o -

Linux Device Drivers, Technion, Jan 2004 — p.39/4.

summary and questions

& writing drivers is easy
...and fun

most drivers do fairly simple things, which Linux
provides APIs for

(the real fun is when dealing with the hardware’s quirks)
It gets easier with practice
... butit never gets boring

Questions?

o -

Linux Device Drivers, Technion, Jan 2004 — p.40/4.

-

9

9
9
9
9

where to get help

google
community resources: web sites and mailing lists

-

distributed documentation (books, articles, magazines)

the source
your fellow kernel hackers

-

ice Drivers, Technion, Jan 2004 — p.41/4.

| J

e o o o

bibliography

kernelnewbies - http://www.kernelnewbies.org
linux-kernel mailing listarchives -

http:// marc.theai nsgroup. cont ?I =l i nux- ker nel &w=2
Understading the Linux Kernel, by Bovet and Cesati
Linux Device Drivers, 2nd edition, by Rubini et. al.
Linux Kernel Development, by Robert Love
fusr/src/linux-xxx/

-

Linux Device Drivers, Technion, Jan 2004 — p.42/4.

	why write Linux device drivers
	klife - Linux kernel game of life
	anatomy of a device driver
	anatomy of a device driver - cont
	driver initialization code
	driver initialization
	registering chardev hooks
	user space access to the driver
	file operations
	klife_open - 1
	klife_open - 2
	klife_open - 3
	klife_release
	commentary on open and release
	klife_write - 1
	klife_write - 2
	commantary on write
	klife_read - 1
	klife_read - 2
	klife_read - 3
	klife_read - 4
	commentary on read
	klife_ioctl - 1
	klife_ioctl - 2
	commentary on ioctl
	klife_mmap
	klife_mmap
	commentary on mmap
	klife interrupt handler
	aren't timers good enough for you?
	hook into the timer interrupt routine - 1
	hook into the timer interrupt routine - 2
	commentary on timer interrupt hook
	deferring work
	preparing the tasklet
	deferring work - the klife tasklet
	commentary on the klife tasklet
	adding klife to the build system
	summary and questions
	where to get help
	bibliography

