

Guide to Assembly Language
Programming in Linux

Sivarama P. Dandamudi

Guide to Assembly Language
Programming in Linux

^ Spri ringer

Sivarama P. Dandamudi
School of Computer Science
Carleton University
Ottawa, ON K1S5B6
Canada
sivarama@scs.carleton.ca

Library of Congress Cataloging-in-Publication Data

A CLP. Catalogue record for this book is available
from the Library of Congress.

ISBN-10: 0-387-25897-3 (SC) ISBN-10: 0-387-26171-0 (e-book)
ISBN-13: 978-0387-25897-3 (SC) ISBN-13: 978-0387-26171-3 (e-book)

Printed on acid-free paper.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part
without the written permission of the publisher (Springer Science+Business
Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with
any form of information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar
terms, even if they are not identified as such, is not to be taken as an expression of
opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11302087

springeronline.com

This eBook does not include ancillary media that was packaged with the
printed version of the book.

To
my parents, Subba Rao and Prameela Rani,

my wife, Sobha,
and

my daughter, Veda

Preface

The primary goal of this book is to teach the IA-32 assembly language programming under
the Linux operating system. A secondary objective is to provide a gende introduction to the
Fedora Linux operating system. Linux has evolved substantially since its first appearance in
1991. Over the years, its popularity has grown as well. According to an estimate posted on
h t t p : / / c o u n t e r . l i . o r g / , there are about 18 million Linux users worldwide. Hopefully,
this book encourages even more people to switch to Linux.

The book is self-contained and provides all the necessary background information. Since
assembly language is very closely linked to the underlying processor architecture, a part of the
book is dedicated to giving computer organization details. In addition, the basics of Linux are
introduced in a separate chapter. These details are sufficient to work with the Linux operation
system.

The reader is assumed to have had some experience in a structured, high-level language such
as C. However, the book does not assume extensive knowledge of any high-level language—only
the basics are needed.

Approach and Level of Presentation
The book is targeted for software professionals who would like to move to Linux and get a com
prehensive introduction to the IA-32 assembly language. It provides detailed, step-by-step instruc
tions to install Linux as the second operating system.

No previous knowledge of Linux is required. The reader is introduced to Linux and its com
mands. Four chapters are dedicated to Linux and NASM assembler (installation and usage). The
accompanying DVD-ROMs provide the necessary software to install the Linux operating system
and learn assembly language programming.

The assembly language is presented from the professional viewpoint. Since most professionals
are full-time employees, the book takes their time constraints into consideration in presenting the
material.

viii Preface

Summary of Special Features
Here is a summary of the special features that sets this book apart:

• The book includes the Red Hat Fedora Core 3 Linux distribution (a total of two DVD-ROMs
are included with the book). Detailed step-by-step instructions are given to install Linux on
a Windows machine. A complete chapter is used for this purpose, with several screenshots
to help the reader during the installation process.

• Free NASM assembler is provided so that the readers can get hands-on assembly language
programming experience.

• Special I/O software is provided to simplify assembly language programming. A set of input
and output routines is provided so that the reader can focus on writing assembly language
programs rather than spending time in understanding how the input and output are done
using the basic I/O functions provided by the operating system.

• Three chapters are included on computer organization. These chapters provide the necessary
background to program in the assembly language.

• Presentation of material is suitable for self-study. To facilitate this, extensive programming
examples and figures are used to help the reader grasp the concepts. Each chapter contains
a simple programming example in "Our First Program" section to gently introduce the con
cepts discussed in the chapter. This section is typically followed by "Illustrative Examples"
section, which gives more programming examples.

• This book does not use fragments of code in examples. All examples are complete in
the sense that they can be assembled and run, giving a better feeling as to how these pro
grams work. These programs are on the accompanying DVD-ROM (DVD 2). In addition,
you can also download these programs from the book's Web site at the following URL:
http://www.scs.carleton.ca/~sivarama/linux_book.

• Each chapter begins with an overview and ends with a summary.

Overview of the Book
The book is divided into seven parts. Part I provides introduction to the assembly language and
gives reasons for programming in the assembly language. Assembly language is a low-level lan
guage. To program in the assembly language, you should have some basic knowledge about the
underlying processor and system organization. Part II provides this background on computer orga
nization. Chapter 2 introduces the digital logic circuits. The next chapter gives details on memory
organization. Chapter 4 describes the Intel IA-32 architecture.

Part III covers the topics related to Linux installation and usage. Chapter 5 gives detailed
information on how you can install the Fedora Core Linux provided on the accompanying DVD-
ROMs. It also explains how you can make your system dual bootable so that you can select the
operating system (Windows or Linux) at boot time. Chapter 6 gives a brief introduction to the
Linux operating system. It gives enough details so that you feel comfortable using the Linux
operating system. If you are familiar with Linux, you can skip this chapter.

Part IV also consists of two chapters. It deals with assembling and debugging assembly lan
guage programs. Chapter 7 gives details on the NASM assembler. It also describes the I/O routines
developed by the author to facilitate assembly language programming. The next chapter looks at
the debugging aspect of program development. We describe the GNU debugger (gdb), which
is a command-line debugger. This chapter also gives details on Data Display Debugger (DDD),

Chapter 4 • The lA-32 Architecture 67

Logical
address

Segment
translation

32-bit

linear
address

Page
translation

32-bit
-^" physical

address

Figure 4.6 Logical to physical address translation process in the protected nnode.

Segment Registers

The six 16-bit segment registers are shown in Figure 4.5. These registers support the segmented
memory organization. In this organization, memory is partitioned into segments, where each seg
ment is a small part of the memory. The processor, at any point in time, can only access up to
six segments of the main memory. The six segment registers point to where these segments are
located in the memory.

A program is logically divided into two parts: a code part that contains only the instructions,
and a data part that keeps only the data. The code segment (CS) register points to where the
program's instructions are stored in the main memory, and the data segment (DS) register points
to the data part of the program. The stack segment (SS) register points to the program's stack
segment (further discussed in Chapter 11).

The last three segment registers—ES, FS, and GS—are additional segment registers that can
be used in a similar way as the other segment registers. For example, if a program's data could
not fit into a single data segment, we could use two segment registers to point to the two data
segments. We will say more about these registers later.

Protected Mode Memory Architecture

The IA-32 architecture supports a sophisticated memory architecture under real and protected
modes. The real mode, which uses 16-bit addresses, is provided to run programs written for the
8086 processor. In this mode, it supports the segmented memory architecture of the 8086 proces
sor. The protected mode uses 32-bit addresses and is the native mode of the IA-32 architecture. In
the protected mode, both segmentation and paging are supported. Paging is useful in implement
ing virtual memory; it is transparent to the application program, but segmentation is not. We do
not look at the paging features here. We discuss the real-mode memory architecture in the next
section, and devote the rest of this section to describing the protected-mode segmented memory
architecture.

In the protected mode, a sophisticated segmentation mechanism is supported. In this mode,
the segment unit translates a logical address into a 32-bit linear address. The paging unit translates
the linear address into a 32-bit physical address, as shown in Figure 4.6. If no paging mechanism
is used, the linear address is treated as the physical address. In the remainder of this section, we
focus on the segment translation process only.

Protected mode segment translation process is shown in Figure 4.7. In this mode, contents of
the segment register are taken as an index into a segment descriptor table to get a descriptor. Seg
ment descriptors provide the 32-bit segment base address, its size, and access rights. To translate
a logical address to the corresponding linear address, the offset is added to the 32-bit base address.
The offset value can be either a 16-bit or 32-bit number.

68 Assembly Language Programming in Linux

SEGMENT SELECTOR

15 3 2 1 0

INDEX

\

Segment
descriptor

TI

^

RPL

DESCRIPTOR TABLE

ACCESS RIGHTS

LIMIT

BASE ADDRESS

31

OFFSET

Iz
32-bit base address

ADDER

31

LINEAR ADDRESS

0

Figure 4.7 Protected mode address translation.

Visible part Invisible part

Segment selector

Segment selector

Segment selector

Segment selector

Segment selector

Segment selector

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

CS

SS

DS

ES

FS

GS

Figure 4.8 Visible and invisible parts of segment registers.

Segment Registers

Every segment register has a "visible" part and an "invisible" part, as shown in Figure 4.8. When
we talk about segment registers, we are referring to the 16-bit visible part. The visible part is
referred to as the segment selector. There are direct instructions to load the segment selector.
These instructions include mov, pop , I d s , l e s , I s s , I g s , and I f s. Some of these instructions

Chapter 4 • The [A-32 Architecture 69

2 2 2 2 2 1
4 3 2 1 0 9

1 1 1 1 1 1
6 5 4 3 2 1 87

BASE 31:24 G
D
/
B

1
S

A
V
L

LIMIT
19:16

BASE ADDRESS 15:00

P
D
P
L

S TYPE BASE 23:16

SEGMENT LIMIT 15:00

+4

+0

31 16 15

Figure 4.9 A segment descriptor.

are discussed in later chapters and in Appendix D. The invisible part of the segment registers is
automatically loaded by the processor from a descriptor table (described next).

As shown in Figure 4.7, the segment selector provides three pieces of information:

• Index: The index selects a segment descriptor from one of two descriptor tables: a local
descriptor table or a global descriptor table. Since the index is a 13-bit value, it can select
one of 2^^ = 8192 descriptors from the selected descriptor table. Since each descriptor,
shown in Figure 4.9, is 8 bytes long, the processor multiplies the index by 8 and adds the
result to the base address of the selected descriptor table.

• Table Indicator (TI): This bit indicates whether the local or global descriptor table should
be used.

0 = Global descriptor table,
1 = Local descriptor table.

• Requester Privilege Level (RPL): This field identifies the privilege level to provide protected
access to data: the smaller the RPL value, the higher the privilege level. Operating systems
don't have to use all four levels. For example, Linux uses level 0 for the kernel and level 3
for the user programs. It does not use levels 1 and 2.

Segment Descriptors

A segment descriptor provides the attributes of a segment. These attributes include its 32-bit base
address, 20-bit segment size, as well as control and status information, as shown in Figure 4.9.
Here we provide a brief description of some of the fields shown in this figure.

• Base Address: This 32-bit address specifies the starting address of a segment in the 4 GB
physical address space. This 32-bit value is added to the offset value to get the linear address
(see Figure 4.7).

• Granularity (G): This bit indicates whether the segment size value, described next, should be
interpreted in units of bytes or 4 KB. If the granularity bit is zero, segment size is interpreted
in bytes; otherwise, in units of 4 KB.

• Segment Limit: This is a 20-bit number that specifies the size of the segment. Depending on
the granularity bit, two interpretations are possible:

70 Assembly Language Programming in Linux

1. If the granularity bit is zero, segment size can range from 1 byte to 1 MB (i.e., 2^^
bytes), in increments of 1 byte.

2. If the granularity bit is 1, segment size can range from 4 KB to 4 GB, in increments of
4KB.

• D/B Bit: In a code segment, this bit is called the D bit and specifies the default size for
operands and offsets. If the D bit is 0, default operands and offsets are assumed to be 16
bits; for 32-bit operands and offsets, the D bit must be 1.
In a data segment, this bit is called the B bit and controls the size of the stack and stack
pointer. If the B bit is 0, stack operations use the SP register and the upper bound for the
stack is FFFFH. If the B bit is 1, the ESP register is used for the stack operations with
a stack upper bound of FFFFFFFFH. Recall that numbers expressed in the hexadecimal
number system are indicated by suffix H (see Appendix A).
Typically, this bit is cleared for the real-mode operation and set for the protected-mode
operation. Later we describe how 16- and 32-bit operands and addresses can be mixed in a
given mode of operation.

• S Bit: This bit identifies whether the segment is a system segment or an application segment.
If the bit is 0, the segment is identified as a system segment; otherwise, as an application
(code or data) segment.

• Descriptor Privilege Level (DPL): This field defines the privilege level of the segment. It is
useful in controlling access to the segment using the protection mechanisms of the processor.

• Type: This field identifies the type of segment. The actual interpretation of this field depends
on whether the segment is a system or application segment. For application segments, the
type depends on whether the segment is a code or data segment. For a data segment, type
can identify it as a read-only, read-write, and so on. For a code segment, type identifies it as
an execute-only, execute/read-only, and so on.

• P bit: This bit indicates whether the segment is present. If this bit is 0, the processor
generates a segment-not-present exception when a selector for the descriptor is loaded into
a segment register.

Segment Descriptor Tables
A segment descriptor table is an array of segment descriptors shown in Figure 4.9. There are three
types of descriptor tables:

• The global descriptor table (GDT);
• Local descriptor tables (LDT);
• The interrupt descriptor table (IDT).

All three descriptor tables are variable in size from 8 bytes to 64 KB. The interrupt descriptor table
is used in interrupt processing and is discussed in Chapter 20. Both LDT and GDT can contain up
to 2^^ = 8192 8-bit descriptors. As shown in Figure 4.7, the upper 13 bits of a segment selector
are used as an index into the selected descriptor table. Each table has an associated register that
holds the 32-bit linear base address and a 16-bit size of the table. The LDTR and GDTR registers
are used for this purpose. These registers can be loaded using the l l d t and I g d t instructions.
Similarly, the values of the LDTR and GDTR registers can be stored by the s l d t and sgd t
instructions. These instructions are typically used by the operating system.

Chapter 4 • The IA-32 Architecture 71

ACCESS LIMIT

BASE ADDRESS

CODE

STACK

DATA

DATA

DATA

DATA

Figure 4.10 Segments in a multisegment model.

The global descriptor table contains descriptors that are available to all tasks within the system.
There is only one GDT in the system. Typically, the GDT contains code and data used by the
operating system. The local descriptor table contains descriptors for a given program. There
can be several LDTs, each of which may contain descriptors for code, data, stack, and so on. A
program cannot access a segment unless there is a descriptor for the segment in either the current
LDT or GDT.

Segmentation Models

The segments can span the entire memory address space. As a result, we can effectively make the
segmentation invisible by mapping all segment base addresses to zero and setting the size to 4 GB.
Such a model is called Sijiat model and is used in programming environments such as UNIX and
Linux.

Another model that uses the capabilities of segmentation to the full extent is the multisegment
model. Figure 4.10 shows an example mapping of six segments. A program, in fact, can have
more than just six segments. In this case, the segment descriptor table associated with the program
will have the descriptors loaded for all the segments defined by the program. However, at any
time, only six of these segments can be active. Active segments are those that have their segment
selectors loaded into the six segment registers. A segment that is not active can be made active
by loading its selector into one of the segment registers, and the processor automatically loads the
associated descriptor (i.e., the "invisible part" shown in Figure 4.8). The processor generates a
general-protection exception if an attempt is made to access memory beyond the segment limit.

Appendix D • IA-32 Instruction Set 493

cmp — Compare two operands C
M

0
M

Z
M

S
M

P
M

A
M

Format: cmp d e s t , s r c

Description: Compares the two operands specified by performing d e s t - s r c . How
ever, the result of this subtraction is not stored (unlike the sub instruction)
but only the flags are updated to reflect the result of the subtract operation.
This instruction is typically used in conjunction with conditional jumps
If an operand greater than 1 byte is compared to an immediate byte, the
byte value is first sign-extended. Clock cycles: 1 if no memory operand is
involved; 2 if one of the operands is in memory.

C
M

0
M

Z
M

S
M

P
M

A
M

cmps — Compare string operands

Format: cmps d e s t , s r c
cmpsb
cmpsw
cmpsd

Description: Compares the byte, word, or doubleword pointed by the source index reg
ister (SI or ESI) with an operand of equal size pointed by the destination
index register (DI or EDI). If the address size is 16 bits, SI and DI registers
are used; ESI and EDI registers are used for 32-bit addresses. The com
parison is done by subtracting operand pointed by the DI or EDI register
from that by SI or ESI register. That is, the cmps instructions performs
either [SI]-[DI] or [ESI]-[EDI]. The result is not stored but used to up
date the flags, as in the cmp instruction. After the comparison, both source
and destination index registers are automatically updated. Whether these
two registers are incremented or decremented depends on the direction flag
(DF). The registers are incremented if DP is 0 (see the e l d instruction to
clear the direction flag); if the DF is 1, both index registers are decremented
(see the s t d instruction to set the direction flag). The two registers are
incremented or decremented by 1 for byte comparisons, 2 for word com
parisons, and 4 for doubleword comparisons.
Note that the specification of the operands in cmps is not really required
as the two operands are assumed to be pointed by the index registers. The
cmpsb, cmpsw, and cmpsd are synonyms for the byte, word, and dou
bleword cmps instructions, respectively.
The repeat prefix instructions (i.e., rep , r epe or repne) can precede the
cmps instructions for array or string comparisons. See r e p instruction for
details. Clock cycles: 5.

494 Assembly Language Programming Under Linux

cwd — Convert word to doubleword C 0 z s p A

Format: cwd

Description: Converts the signed word in AX to a signed doubleword in DX:AX by
copying the sign bit of AX (the most significant bit) to all bits of DX
In fact, cdq and this instruction use the same opcode (99H). Which one is
executed depends on the default operand size. If the operand size is 16 bits,
cwd is performed; cdq is performed for 32-bit operands. Clock cycles: 2.

cwde — Convert word to doubleword C 0 Z S P A

Format: cwde

Description: Converts the signed word in AX to a signed doubleword in EAX by copy
ing the sign bit of AX (the most significant bit) to all bits of the upper word
of EAX. In fact, cbw and cwde are the same instructions (i.e., share the
same opcode of 98H). The action performed depends on the operand size.
If the operand size is 16 bits, cbw is performed; cwde is performed for
32-bit operands. Clock cycles: 3.

C
M

0
*

z
M

S
M

P
M

A
M

daa — Decimal adjust after addition

Format: daa

Description: The daa instruction is useful in BCD arithmetic. It adjusts the AL register
to contain the correct two-digit packed decimal result. This instruction
should be used after an addition instruction, as described in Chapter 18.
Both AF and CF flags are set if there is a decimal carry; these two flags are
cleared otherwise. The ZF, SF, and PF flags are set according to the result.
Clock cycles: 3.

Appendix D • IA-32 Instruction Set 495

das — Decimal adjust after subtraction C
M

0
*

z
M

S
M

P
M

A
M

Format: das

Description: The das instruction is useful in BCD arithmetic. It adjusts the AL register
to contain the correct two-digit packed decimal result. This instruction
should be used after a subtract instruction, as described in Chapter 18.
Both AF and CF flags are set if there is a decimal borrow; these two flags
are cleared otherwise. The ZF, SF, and PF flags are set according to the
result. Clock cycles: 3.

dec — Decrement by 1 C
-

0
M

Z
M

S
M

P
M

A
M

Format: dec d e s t

Description: The dec instruction decrements the d e s t operand by 1. The carry flag is
not affected. Clock cycles: 1 if d e s t is a register; 3 if d e s t is in memory

div — Unsigned divide C
*

0
*

z
*

s
*

p
*

A
*

Format: d i v d i v i s o r

Description: The d i v instruction performs unsigned division. The divisor can be an
8-, 16-, or 32-bit operand, located either in a register or in memory. The
dividend is assumed to be in AX (for byte divisor), DX:AX (for word
divisor), or EDX:EAX (for doubleword divisor). The quotient is stored
in AL, AX, or EAX for 8-, 16-, and 32-bit divisors, respectively. The
remainder is stored in AH, DX, or EDX for 8-, 16-, and 32-bit divisors,
respectively. It generates interrupt 0 if the result cannot fit the quotient
register (AL, AX, or EAX), or if the divisor is zero. See Chapter 14 for
details. Clock cycles: 17 for an 8-bit divisor, 25 for a 16-bit divisor, and
41 for a 32-bit divisor.

496 Assembly Language Programming Under Linux

enter — Allocate stack frame

Format:

Description:

c 0 z s p A

e n t e r b y t e s , l e v e l

This instruction creates a stack frame at procedure entry. The first operand
b y t e s specifies the number of bytes for the local variable storage in the
stack frame. The second operand l e v e l gives the nesting level of the
procedure. If we specify a nonzero level, it copies l e v e l stack, frame
pointers into the new frame from the preceding stack frame. In all our
examples, we set the second operand to zero. Thus the

e n t e r XX, 0

statement is equivalent to

push
mov
sub

EBP
E B P , E S P
E S P , X X

See Chapter 11 for more details on its usage. Clock cycles: 11 if l e v e l
is zero.

hit —Halt C 0 Z S P A

Format: h i t

Description: This instruction halts instruction execution indefinitely. An interrupt or a
reset will enable instruction execution. Clock cycles: oo.

Appendix D • IA-32 Instruction Set 497

idiv — Signed divide

Format: i d i v

c
*

0
*

z
*

s
*

p
*

A
*

d i v i s o r

Description: Similar to d i v instruction except that i d i v performs signed division. The
divisor can be an 8-, 16-, or 32-bit operand, located either in a register or in
memory. The dividend is assumed to be in AX (for byte divisor), DX:AX
(for word divisor), or EDX:EAX (for doubleword divisor). The quotient
is stored in AL, AX, or EAX for 8-, 16-, and 32-bit divisors, respectively.
The remainder is stored in AH, DX, or EDX for 8-, 16-, and 32-bit divisors,
respectively. It generates interrupt 0 if the result cannot fit the quotient
register (AL, AX, or EAX), or if the divisor is zero. See Chapter 14 for
details. Clock cycles: 22 for an 8-bit divisor, 30 for a 16-bit divisor, and
46 for a 32-bit divisor.

c
M

0
M

Z
*

S
*

P
*

A
* imul — Signed multiplication

Format: imul src
imul dest,src
imul dest,src,constant

Description: This instruction performs signed multiplication. The number of operands
for imul can be between 1 and 3, depending on the format used. In the
one-operand format, the other operand is assumed to be in the AL, AX,
or EAX register depending on whether the s r c operand is 8, 16, or 32
bits long, respectively. The s r c operand can be either in a register or in
memory. The result, which is twice as long as the s r c operand, is placed
in AX, DX:AX, or EDX:EAX for 8-, 16-, or 32-bit s r c operands, respec
tively. In the other two forms, the result is of the same length as the input
operands.
The two-operand format specifies both operands required for multiplica
tion. In this case, s r c and d e s t must both be either 16-bit or 32-bit
operands. While s r c can be either in a register or in memory, d e s t must
be a register.
In the three-operand format, a constant can be specified as an immediate
operand. The result (s rc x c o n s t a n t) is stored in d e s t . As in the
two-operand format, the d e s t operand must be a register. The s r c can
be either in a register or in memory. The immediate constant can be an 8-,
16-, or 32-bit value. For additional restrictions, refer to the Pentium data
book. Clock cycles: 10(11 if the one-operand format is used with either
8- or 16-bit operands).

498 Assembly Language Programming Under Linux

in — Input from a port C 0 Z S P A

Format: i n d e s t , p o r t
i n dest ,DX

Description: This instruction has two formats. In both formats, d e s t must be the AL,
AX, or EAX register. In the first format, it reads a byte, word, or double-
word from p o r t into the AL, AX, or EAX register, respectively. Note that
p o r t is an 8-bit immediate value. This format is restrictive in the sense
that only the first 256 ports can be accessed. The other format is more
flexible and allows access to the complete I/O space (i.e., any port between
0 and 65,535). In this format, the port number is assumed to be in the DX
register. Clock cycles: varies—see Pentium data book.

inc — Increment by 1

Format:

Description:

c
-

0
M

z
M

S
M

P
M

A
M

i n c d e s t

The i n c instruction increments the d e s t operand by 1. The carry flag is
not affected. Clock cycles: 1 if d e s t is a register; 3 if d e s t is in memory.

c 0 z s p A ins — Input from a port to string

Format: i n s b
insw
i n s d

Description: This instruction transfers an 8-, 16-, or 32-bit data from the input port spec
ified in the DX register to a location in memory pointed by ES:(E)DI. The
DI index register is used if the address size is 16 bits and EDI index register
for 32-bit addresses. Unlike the i n instruction, the i n s instruction does
not allow the specification of the port number as an immediate value. Af
ter the data transfer, the index register is updated automatically. The index
register is incremented if DF is 0; it is decremented if DF is 1. The index
register is incremented or decremented by 1,2, or 4 for byte, word, double-
word operands, respectively. The repeat prefix can be used along with the
i n s instruction to transfer a block of data (the number of data transfers is
indicated by the CX register—see the r e p instruction for details). Clock
cycles: varies—see Pentium data book.

Appendix D • IA-32 Instruction Set 499

int — Interrupt

Format:

Description:

c 0 z s p A

int interrupt-type

The i n t instruction calls an interrupt service routine or handler associated
with i n t e r r u p t - type . The i n t e r r u p t - type is an immediate 8-bit
operand. This value is used as an index into the Interrupt Descriptor Table
(IDT). See Chapter 20 for details on the interrupt invocation mechanism.
Clock cycles: varies—see Pentium data book.

into — Interrupt on overflow C 0 Z S P A

Format: i n t o

Description: The i n t o instruction is a conditional software interrupt identical to i n t
4 except that the i n t is implicit and the interrupt handler is invoked con
ditionally only when the overflow flag is set. Clock cycles: varies—see
Pentium data book.

iret — Interrupt return C
M

0
M

Z
M

S
M

P
M

A
M

Format: i r e t
i r e t d

Description: The i r e t instruction returns control from an interrupt handler. In real
address mode, it loads the instruction pointer and the flags register with
values from the stack and resumes the interrupted routine. Both i r e t and
i r e t d are synonymous (and use the opcode CFH). The operand size in
effect determines whether the 16-bit or 32-bit instruction pointer (IP or
EIP) and flags (FLAGS or EFLAGS) are to be used. See Chapter 20 for
more details. This instruction affects all flags as the flags register is popped
from stack. Clock cycles: varies—see Pentium data book.

I

500 Assembly Language Programming Under Linux

jcc — Jump if condition cc is satisfied c 0 z s p A

Format: j c c t a r g e t
Description: The j c c instruction alters program execution by transferring control con

ditionally to the t a r g e t location in the same segment. The t a r g e t
operand is a relative offset (relative to the instruction following the con
ditional jump instruction). The relative offset can be a signed 8-, 16-, or
32-bit value. Most efficient instruction encoding results if 8-bit offsets are
used. With 8-bit offsets, the target should be within -128 to +127 of the
first byte of the next instruction. For 16- and 32-bit offsets, the correspond
ing values are 2^^ to 2^̂ - 1 and 2̂ ^ to 2̂ ^ - 1, respectively. When the
target is in another segment, test for the opposite condition and use the un
conditional jmp instruction, as explained in Chapter 15. See Chapter 15
for details on the various conditions tested like j a, j be , etc. The j cxz
instruction tests the contents of the CX or ECX register and jumps to the
target location only if (E)CX = 0. The default operand size determines
whether CX or ECX is used for comparison. Clock cycles: 1 for all condi
tional jumps (except j cxz, which takes 5 or 6 cycles).

jmp — Unconditional jump c 0 z s p A

Format: j mp t a r g e t
Description: The j mp instruction alters program execution by transferring control un

conditionally to the t a r g e t location. This instruction allows jumps to
another segment. In direct jumps, the t a r g e t operand is a relative offset
(relative to the instruction following the j mp instruction). The relative off
set can be an 8-, 16-, or 32-bit value as in the conditional jump instruction.
In addition, the relative offset can be specified indirectly via a register or
memory location. See Chapter 15 for an example. For other forms of the
j mp instruction, see the Pentium data book. Note: Flags are not affected
unless there is a task switch, in which case all flags are affected. Clock cy
cles: 1 for direct jumps, 2 for indirect jumps (more clock cycles for other
types of jumps).

Appendix D • iA-32 Instruction Set 501

lahf — Load flags into AH register C 0 z s p A

Format: l ah f

Description: The l ah f instruction loads the AH register with the low byte of the flags
register. AH := SF, ZF, *, AF, *, PF, *, CF where * represent indeterminate
value. Clock cycles: 2.

Ids/les/lfs/lgs/lss — Load full pointer C 0 z s p A

Format: I d s d e s t , s r c
l e s d e s t , s r c
I f s d e s t , s r c
I g s d e s t , s r c
I s s d e s t , s r c

Description: These instructions read a full pointer from memory (given by the s r c
operand) and load the corresponding segment register (e.g., DS register

1 for the Id s instruction, ES register for the l e s instruction, etc.) and the
de s t register. The de s t operand must be a 16- or 32-bit register. The first
2 or 4 bytes (depending on whether the d e s t is a 16- or 32-bit register) at
the effective address given by the s r c operand are loaded into the d e s t
register and the next 2 bytes into the corresponding segment register. Clock
cycles: 4 (except I s s) .

lea — Load effective address

Format:

Description:

c 0 z s p A

l e a d e s t , s r c

The l e a instruction computes the effective address of a memory operand
given by s r c and stores it in the d e s t register. The d e s t must be either
a 16- or 32-bit register. If the d e s t register is a 16-bit register and the
address size is 32, only the lower 16 bits are stored. On the other hand,
if a 32-bit register is specified when the address size 16 bits, the effective
address is zero-extended to 32 bits. Clock cycles: 1.

502 Assembly Language Programming Under Linux

leave — Procedure exit C 0 Z S P A

Format: l e a v e

Description: The l e a v e instruction takes no operands. Effectively, it reverses the ac
tions of the e n t e r instruction. It performs two actions:

• Releases the local variable stack space allocated by the e n t e r in
struction;

• Old frame pointer is popped into (E)BP register.

This instruction is typically used just before the r e t instruction. Clock
cycles: 3.

lods — Load string operand C 0 Z S P A

Format: l odsb
lodsw
lodsd

Description: The l ods instruction loads the AL, AX, or EAX register with the memory
byte, word, or doubleword at the location pointed by DS:SI or DS:ESI. The
address size attribute determines whether the SI or ESI register is used
The lodsw and l oadsd instructions share the same opcode (ADH). The
operand size is used to load either a word or a doubleword. After loading,
the source index register is updated automatically. The index register is
incremented if DF is 0; it is decremented if DF is 1. The index register
is incremented or decremented by 1, 2, or 4 for byte, word, doubleword
operands, respectively. The r e p prefix can be used with this instruction
but is not useful, as explained in Chapter 17. This instruction is typically
used in a loop (see the loop instruction). Clock cycles: 2.

Appendix D • IA-32 Instruction Set 503

c 0 z s p A loop/loope/loopne — Loop control

Format: loop target
loope/loopz target
loopne/loopnz target

Description: The loop instruction decrements the count register (CX if the address
size attribute is 16 and ECX if it is 32) and jumps to t a r g e t if the count
register is not zero. This instruction decrements the (E)CX register without
changing any flags. The operand t a r g e t is a relative 8-bit offset (i.e., the
target must be in the range —128 to +127 bytes).
The loope instruction is similar to loop except that it also checks the ZF
value to jump to the t a r g e t . That is, control is transferred to t a r g e t
if, after decrementing the (E)CX register, the count register is not zero and
ZF = 1. The loopz is a synonym for the loope instruction.
The loopne instruction is similar to loopne except that it transfers con
trol to t a r g e t if ZF is 0 (instead of 1 as in the loope instruction). See
Chapter 15 for more details on these instructions. Clock cycles: 5 or 6 for
loop and 7 or 8 for the other two.
Note that the unconditional loop instruction takes longer to execute than
a functionally equivalent two-instruction sequence that decrements the
(E)CX register and jumps conditionally.

mov — Copy data

Format: mov d e s t , s r c

Description: Copies data from s r c to d e s t . Clock
tions except when copying into a segment
cycles.

C 0 Z S P A

cycles: 1 for most mov instruc-
register, which takes more clock

504 Assembly Language Programming Under Linux

movs — Copy string data C 0 Z S P A

Format: movs d e s t , s r c
movsb
movsw
movsd

Description: Copies the byte, word, or doubleword pointed by the source index register
(SI or ESI) to the byte, word, or doubleword pointed by the destination
index register (DI or EDI). If the address size is 16 bits, SI and DI registers
are used; ESI and EDI registers are used for 32-bit addresses. The default
segment for the source is DS and ES for the destination. Segment override
prefix can be used only for the source operand. After the move, both source
and destination index registers are automatically updated as in the cmps

i instruction.
1 The r e p prefix instruction can precede the movs instruction for block

movement of data. See r ep instruction for details. Clock cycles: 4.

movsx — Copy with sign extension C 0 Z S P A

Format: movsx r e g l 6 , s r c 8
movsx r e g 3 2 , s r c 8
movsx r e g 3 2 , s r c l 6

Description: Copies the sign-extended source operand s r c 8 / s r c l 6 into the destina
tion r e g l 6 / r e g 3 2. The destination can be either a 16-bit or 32-bit reg
ister only. The source can be a register or memory byte or word operand.
Note that r e g l 6 and reg32 represent a 16- and 32-bit register, respec
tively. Similarly, s r c8 and s r c 16 represent a byte and word operand,
respectively. Clock cycles: 3.

movzx — Copy with zero extension

Format: movzx regl6,src£

c 0 z s p A

movzx reg32,src8
movzx reg32,srcl6

Description: Similar to movsx instruction except movzx copies the zero-extended
source operand into destination. Clock cycles: 3.

Appendix D • iA-32 Instruction Set 505

mul — Unsigned multiplication c
M

0
M

Z
*

S
*

p
*

A
*

Format:

Description:

mul
mul
mul

AL,src8
AX,srcl6
EAX,src32

Performs unsigned multiplication of two 8-, 16-, or 32-bit operands. Only
one of the operand needs to be specified; the other operand, matching in
size, is assumed to be in the AL, AX, or EAX register.

• For an 8-bit multiplication, the result is in the AX register. CF and
OF are cleared if AH is zero; otherwise, they are set.

• For a 16-bit multiplication, the result is in the DX:AX register pair.
The higher-order 16 bits are in DX. CF and OF are cleared if DX is
zero; otherwise, they are set.

• For a 32-bit multiplication, the result is in the EDX:EAX register
pair. The higher-order 32 bits are in EDX. CF and OF are cleared if
EDX is zero; otherwise, they are set.

Clock cycles: 11 for 8- or 16-bit operands and 10 for 32-bit operands.

neg — Negate sign (two's complement) C
M

0
M

Z
M

S
M

P
M

A
M

Format: neg operand

Description: Performs 2's complement negation (sign reversal) of the operand specified.
The operand specified can be 8, 16, or 32 bits in size and can be located in
a register or memory. The operand is subtracted from zero and the result is
stored back in the operand. The CF flag is set for nonzero result; cleared
otherwise. Other flags are set according to the result. Clock cycles: 1 for
register operands and 3 for memory operands.

nop — No operation

Format: nop

Description: Performs no operation. Interestingly, the r
xchg (E) AX, (E) AX instruction. Cloc

C 0 Z S P A

lop instruction is an alias for the
k cycles: 1.

506 Assembly Language Programming Under Linux

not — Logical bitwise not C 0 Z S P A

Format: no t operand

Description: Performs I's complement bitwise not operation (a 1 becomes 0 and vice
versa). Clock cycles: 1 for register operands and 3 for memory operands.

or — Logical bitwise or C
0

0
0

z
M

s
M

P
M

A
*

Format: o r d e s t , s r c

Description: Performs bitwise or operation. The result (des t or s rc) is stored in
d e s t . Clock cycles: 1 for register and immediate operands and 3 if a
memory operand is involved.

out — Output to a port C 0 Z S P A

Format: ou t p o r t , s r c
ou t DX,src

Description: Like the i n instruction, this instruction has two formats. In both formats,
s r c must be in the AL, AX, or EAX register. In the first format, it outputs
a byte, word, or doubleword from s r c to the I/O port specified by the first
operand p o r t . Note that p o r t is an 8-bit immediate value. This format
limits access to the first 256 I/O ports in the I/O space. The other format is
more general and allows access to the full I/O space (i.e., any port between
0 and 65,535). In this format, the port number is assumed to be in the DX
register. Clock cycles: varies—see Pentium data book.

Appendix D • IA-32 Instruction Set 507

outs — Output from a string to a port C 0 Z S P A

Format: o u t s b
outsw
o u t s d

Description: This instruction transfers an 8-, 16-, or 32-bit data from a string (pointed
by the source index register) to the output port specified in the DX register.
Similar to the i n s instruction, it uses the SI index register for 16-bit ad
dresses and the ESI register if the address size is 32. The (E)SI register is
automatically updated after the transfer of a data item. The index register
is incremented if DF is 0; it is decremented if DF is 1. The index register
is incremented or decremented by 1, 2, or 4 for byte, word, or doubleword
operands, respectively. The repeat prefix can be used with out s for block
transfer of data. Clock cycles: varies—see Pentium data book.

pop — Pop a word from the stack C O Z S P A

Format: pop d e s t

Description: Pops a word or doubleword from the top of the stack. If the address size
attribute is 16 bits, SS:SP is used as the top of the stack pointer; otherwise,
SS:ESP is used, d e s t can be a register or memory operand. In addition,
it can also be a segment register DS, ES, SS, FS, or GS (e.g., pop DS)
The stack pointer is incremented by 2 (if the operand size is 16 bits) or 4
(if the operand size is 32 bits). Note that pop CS is not allowed. This can
be done only indirectly by the r e t instruction. Clock cycles: 1 if d e s t is
a general register; 3 if d e s t is a segment register or memory operand.

popa — Pop all general registers

Format: popa
popad

Description: Pops all eight 16-bit (popa) or 32-bit (pc
top of the stack. The popa loads the n
discard next two bytes (to skip loading i
That is, DI is popped first and AX last. Tl
same order on the 32-bit registers. Clock

C 0 Z S P A

Dp ad) general registers from the
agisters in the order DI, SI, BP,
tito SP), BX, DX, CX, and AX
le popad instruction follows the
cycles: 5.

508 Assembly Language Programming Under Linux

c
M

0
M

Z
M

S
M

P
M

A
M

popf — Pop flags register

Format: popf
popf d

Description: Pops the 16-bit (popf) or 32-bit (popfd) flags register (FLAGS or
EFLAGS) from the top of the stack. Bits 16 (VM flag) and 17 (RF flag) of
the EFLAGS register are not affected by this instruction. Clock cycles: 6
in the real mode and 4 in the protected mode.

push — Push a word onto the stack C 0 Z S P A

Format: push s r c

Description: Pushes a word or doubleword onto the top of the stack. If the address size
attribute is 16 bits, SS:SP is used as the top of the stack pointer; otherwise
SS:ESP is used, s r c can be (i) a register, or (ii) a memory operand, or (iii)
a segment register (CS, SS, DS, ES, FS, or GS), or (iv) an immediate byte,
word, or doubleword operand. The stack pointer is decremented by 2 (if the
operand size is 16 bits) or 4 (if the operand size is 32 bits). The push ESP
instruction pushes the ESP register value before it was decremented by the
push instruction. On the other hand, push SP pushes the decrementec
SP value onto the stack. Clock cycles: 1 (except when the operand is in
memory, in which case it takes 2 clock cycles).

pusha — Push all general registers C 0 Z S P A

Format: pusha
pushad

Description: Pushes all eight 16-bit (pusha) or 32-bit (pushad) general registers onto
the stack. The pusha pushes the registers onto the stack in the order AX,
CX, DX, BX, SP, BP, SI, and DI. That is, AX is pushed first and DI last
The pushad instruction follows the same order on the 32-bit registers. It
decrements the stack pointer SP by 16 for word operands; decrements ESP
by 32 for doubleword operands. Clock cycles: 5.

Appendix D • IA-32 Instruction Set 509

pushf — Push flags register C 0 Z S P A

Format: pushf
pushfd

Description: Pushes the 16-bit (pushf) or 32-bit (pushfd) flags register (FLAGS oi
EFLAGS) onto the stack. Decrements SP by 2 (pushf) for word operands
and decrements ESP by 4 (pushfd) for doubleword operands. Clock cy
cles: 4 in the real mode and 3 in the protected mode.

rep/repe/repz/repne/repnz — Repeat instruction C
-

0
-

z
M

S
-

P
-

A
-

Format: r e p s t r i n g - i n s t
r e p e / r e p z s t r i n g - i n s t
r e p n e / r e p n z s t r i n g - i n s t

Description: These three prefixes repeat the specified string instruction until the condi
tions are met. The r e p instruction decrements the count register (CX or
ECX) each time the string instruction is executed. The string instruction
is repeatedly executed until the count register is zero. The r epe (repeat
while equal) has an additional termination condition: ZF = 0. The repz
is an alias for the repe instruction. The repne (repeat while not equal)
is similar to repe except that the additional termination condition is ZF
=1. The repnz is an alias for the repne instruction. The ZF flag is af
fected by the r e p cmps and r e p seas instructions. For more details,
see Chapter 17. Clock cycles: varies—see Pentium data book for details.

ret — Return form a procedure

Format: r e t
r e t v a l u e

Description: Transfers control to the instruction follow
struction. The optional immediate va lu
(for 16-bit operands) or number of words
be cleared from the stack after the return
to clear the stack of the input parameters.
Clock cycles: 2 for near return and 3 for i
is specified, add one more clock cycle.
more clocks—see Pentium data book.

C 0 z S P A

dng the corresponding c a l l in-
e specifies the number of bytes
(for 32-bit operands) that are to
. This parameter is usually used
See Chapter 11 for more details.
'ar return; if the optional v a l u e
Changing privilege levels takes

510 Assembly Language Programming Under Linux

rol/ror/rcl/rcr — Rotate instructions

Format:

Description:

c
M

0
M

Z
-

s
-

p
-

A
-

rol/ror/rcl/rcr
rol/ror/rcl/rcr
rol/ror/rcl/rcr

s r c , 1
s r c , c o u n t
s rc ,CL

This group of instructions supports rotation of 8-, 16-, or 32-bit data. The
r o l (rotate left) and r o r (rotate right) instructions rotate the s r c data as
explained in Chapter 16. The second operand gives the number of times
s r c is to be rotated. This operand can be given as an immediate value
(a constant 1 or a byte value count) or preloaded into the CL register.
The other two rotate instructions r c l (rotate left including CF) and r c r
(rotate right including CF) rotate the s r c data with the carry flag (CF)
included in the rotation process, as explained in Chapter 16. The OF flag
is affected only for single bit rotates; it is undefined for multibit rotates.
Clock cycles: r o l and r o r take 1 (if s r c is a register) or 3 (if s r c is
a memory operand) for the immediate mode (constant 1 or count) and 4
for the CL version; for the other two instructions, it can take as many as 27
clock cycles—see Pentium data book for details.

sahf — Store AH into flags register

Format: sahf

Description: The AH register bits 7, 6, 4, 2, and 0 are
and CF, respectively. Clock cycles: 2.

C
M

0
-

Z
M

S
M

P
M

A
M

loaded into flags SF, ZF, AF, PF,

Appendix D • [A-32 Instruction Set 511

sal/sar/shl/shr — Shift instructions

Format:

Description:

c
M

0
M

Z
M

S
M

P
M

A
-

sal/sar/shl/shr
sal/sar/shl/shr
sal/sar/shl/shr

s r c , 1
s r c , c o u n t
s rc ,CL

This group of instructions supports shifting of 8-, 16-, or 32-bit data. The
format is similar to the rotate instructions. The s a l (shift arithmetic left)
and its synonym s h l (shift left) instructions shift the s r c data left. The
shifted out bit goes into CF and the vacated bit is cleared, as explained
in Chapter 16. The second operand gives the number of times s r c is to
be shifted. This operand can be given as an immediate value (a constant
1 or a byte value count) or preloaded into the CL register. The sh r
(shift right) is similar to s h l except for the direction of the shift. The s a r
(shift arithmetic right) is similar to s a l except for two differences: the
shift direction is right and the sign bit is copied into the vacated bits. If
shift count is zero, no flags are affected. The CF flag contains the last bit
shifted out. The OF flag is defined only for single shifts; it is undefined
for multibit shifts. Clock cycles: 1 (if s r c is a register) or 3 (if s r c is
a memory operand) for the immediate mode (constant 1 or count) and 4
for the CL version.

sbb — Subtract with borrow

Format: sbb d e s t , s r c

Description: Performs integer subtraction with borrow.
of d e s t - (src+CF) .Clock cycles: 1-

C
M

0
M

Z
M

S
M

P
M

A
M

The d e s t is assigned the result
•3 .

512 Assembly Language Programming Under Linux

seas — Compare string operands c
M

0
M

Z
M

S
M

P
M

A
M

Format:

Description:

seas
scasb
scasw
scasd

operand

Subtracts the memory byte, word, or doubleword pointed by the destina
tion index register (DI or EDI) from the AL, AX, or EAX register, respec
tively. The result is not stored but used to update the flags. The memory
operand must be addressable from the ES register. Segment override is
not allowed in this instruction. If the address size is 16 bits, DI register
is used; EDI register is used for 32-bit addresses. After the subtraction,
the destination index register is updated automatically. Whether the regis
ter is incremented or decremented depends on the direction flag (DF). The
register is incremented if DF is 0 (see the e l d instruction to clear the di
rection flag); if the DF is 1, the index register is decremented (see the s t d
instruction to set the direction flag). The amount of increment or decre
ment is 1 (for byte operands), 2 (for word operands), or 4 (for doubleword
operands).
Note that the specification of the operand in s ea s is not really required as
the memory operand is assumed to be pointed by the index register. The
scasb , scasw, and scasd are synonyms for the byte, word, and dou
bleword s ea s instructions, respectively.
The repeat prefix instructions (i.e., r epe or repne) can precede the s e a s
instructions for array or string comparisons. See the r e p instruction for
details. Clock cycles: 4.

setCC — Byte set on condition operands C 0 Z S P A

Format: setCC d e s t

Description: Sets d e s t byte to 1 if the condition CC is met; otherwise, sets to zero
The operand d e s t must be either an 8-bit register or a memory operand.
The conditions tested are similar to the conditional jump instruction (see
j CC instruction). The conditions are A, AE, B, BE, E, NE, G, GE, L, LE,
NA, NAE, NB, NBE, NG, NGE, NL, NLE, C, NC, 0, NO, P, PE, PO
NP, 0, NO, S, NS, Z, NZ. The conditions can specify signed and unsigned
comparisons as well as flag values. Clock cycles: 1 for register operanc
and 2 for memory operand.

>

1

Appendix D • IA-32 instruction Set 513

c
M

0
M

Z
M

S
M

P
M

A
*

shld/shrd — Double precision shift

Format: s h l d / s h r d d e s t , s r c , count

Description: The s h l d instruction performs left shift of d e s t by count times. The
second operand s r c provides the bits to shift in from the right. In other
words, the s h l d instruction performs a left shift of d e s t concatenated
with s r c and the result in the upper half is copied into d e s t . d e s t and
s r c operands can both be either 16- or 32-bit operands. While d e s t can
be a register or memory operand, s r c must be a register of the same size
as d e s t . The third operand count can be an immediate byte value or
the CL register can be used as in the shift instructions. The contents of the
s r c register are not altered.
The sh rd instruction (double precision shift right) is similar to s h l d ex
cept for the direction of the shift.
If the shift count is zero, no flags are affected. The CF flag contains the last
bit shifted out. The OF flag is defined only for single shifts; it is undefined
for multibit shifts. The SF, ZF, and PF flags are set according to the result.
Clock cycles: 4 (5 if d e s t is a memory operand and the CL register is
used for count).

stc — Set carry flag

Format: s t c

Description: Sets the carry flag to 1. Clock cycles: 2.

C
1

0 Z s p A

std — Set direction flag

Format: s t d

Description: Sets the direction flag to 1. Clock cycles:

C 0 Z s p A

2.

sti — Set interrupt flag

Format: s t i

Description: Sets the interrupt flag to 1. Clock cycles:

C 0 Z s p A

7.

514 Assembly Language Programming Under Linux

c 0 z s p A stos — store string operand

Format: stosb
stosw
stosd

Description: Stores the contents of the AL, AX, or EAX register at the memory byte,
word, or doubleword pointed by the destination index register (DI or EDI),
respectively. If the address size is 16 bits, DI register is used; EDI register
is used for 32-bit addresses. After the load, the destination index register
is automatically updated. Whether this register is incremented or decre
mented depends on the direction flag (DF). The register is incremented
if DF is 0 (see the e l d instruction to clear the direction flag); if the DF
is 1, the index register is decremented (see the s t d instruction to set the
direction flag). The amount of increment or decrement depends on the
operand size (1 for byte operands, 2 for word operands, and 4 for double-
word operands).
The repeat prefix instruction r e p can precede the s t o s instruction to fill
a block of CX/ECX bytes, words, or doublewords. Clock cycles: 3.

sub — Subtract

Format:

Description:

c
M

0
M

Z
M

S
M

P
M

A
M

sub d e s t , s r c

Performs integer subtraction. The d e s t is assigned the result of d e s t
s r c . Clock cycles: 1-3.

test — Logical compare

Format:

Description:

c
0

0
0

z
M

s
M

P
M

A
*

t e s t d e s t , s r c

Performs logical and operation (des t and s rc) . However, the result
of the and operation is discarded. The d e s t operand can be either in a
register or in memory. The s r c operand can be either an immediate value
or a register. Both d e s t and s r c operands are not affected. Sets SF, ZF,
and PF flags according to the result. Clock cycles: 1 if d e s t is a register
operand and 2 if it is a memory operand.

Appendix D • IA-32 Instruction Set 515

xchg — Exchange data C 0 Z S P A

Format: xchg d e s t , s r c

Description: Exchanges the values of the two operands s r c and d e s t . Clock cycles:
2 if both operands are registers or 3 if one of them is a memory operand.

xlat — Translate byte C 0 Z S P A

Format: x l a t t a b l e - o f f s e t
x l a t b

Description: Translates the data in the AL register using a table lookup. It changes the
AL register from the table index to the corresponding table contents. The
contents of the BX (for 16-bit addresses) or EBX (for 32-bit addresses)
registers are used as the offset to the the translation table base. The con
tents of the AL register are treated as an index into this table. The byte
value at this index replaces the index value in AL. The default segment for
the translation table is DS. This is used in both formats. However, in the
operand version, a segment override is possible. Clock cycles: 4.

xor — Logical bitwise exclusive-or C
0

0
0

z
M

s
M

P
M

A
*

Format: xor d e s t , s r c

Description: Performs logical bitwise exclusive-or (xor) operation (des t xor s rc) and
the result is stored in d e s t . Sets the SF, ZF, and PF flags according to the
result. Clock cycles: 1-3.

E
Glossary

Aborts See Exceptions

Access permissions Unix and Linux systems provide a sophisticated security mechanism to
control access to individual files and directories. Each file and directory has certain access permis
sions that indicate who can access and in what mode (read-only, read/write, and so on). With these
permissions the system can protect, for example, users from accessing other user's files. Linux,
like the UNIX systems, associates three types of access permissions to files and directories: read
(r), write (w), and execute (x). As the names indicate, the read permission allows read access and
the write permission allows writing into the file or directory. The execute permission is required
to execute a file and, for obvious reasons, should be used with binary and script files that contain
executable code or commands. The Linux system uses nine bits to keep the access permissions as
there are three types of users, each of which can have three types of permissions.

Address bus A group of parallel wires that carry the address of a memory location or I/O port.
The width of the address bus determines the memory addressing capacity of a processor. Typically,
32-bit processors support 32-bit addresses. Thus, these processors can address up to 4 GB (2 ^̂
bytes) of main memory.

Addressing mode Most assembly language instructions require operands. There are several
ways to specify the location of the operands. These are called the addressing modes. A complete
discussion of the addressing modes is given in Chapter 13.

ALU see Arithmetic and logic unit

Arithmetic and logic unit This unit forms the computational core of a processor. It performs the
basic arithmetic and logical operations such as integer addition, subtraction, and logical AND and
OR functions.

Assembler Assembler is a program that translates an assembly language source program to its
machine language equivalent (usually into an object file format such as ELF).

Assembler directives These directives provide information to the assembler on various aspects
of the assembly process. These instructions are also called pseudo-ops. Assembler directives are
nonexecutable and do not generate any machine language instructions.

518 Assembly Language Programming Under Linux

Auxiliary flag The auxiliary flag indicates whether an operation has produced a result that has
generated a carry out of or a borrow into the low-order four bits of 8-, 16-, or 32-bit operands. The
auxiliary flag is set if there is such a carry or borrow; otherwise it is cleared.

Based addressing mode In this addressing mode, one of the registers acts as the base register
in computing the effective address of an operand. The effective address is computed by adding
the contents of the specified base register with a signed displacement value given as part of the
instruction. For 16-bit addresses, the signed displacement is either an 8- or a 16-bit number. For
32-bit addresses, it is either an 8- or a 32-bit number. Based addressing provides a convenient way
to access individual elements of a structure. Typically, a base register can be set up to point to the
base of the structure and the displacement can be used to access an element within the structure.

Based-indexed addressing mode In this addressing mode, the effective address is computed as

Base + Index + signed displacement.

The displacement can be a signed 8- or 16-bit number for 16-bit addresses; it can be a signed 8- or
32-bit number for 32-bit addresses. This addressing mode is useful in accessing two-dimensional
arrays with the displacement representing the offset to the beginning of the array. This mode can
also be used to access arrays of records where the displacement represents the offset to a field in a
record. In addition, this addressing mode is used to access arrays passed on to a procedure. In this
case, the base register could point to the beginning of the array, and an index register can hold the
offset to a specific element.

Based-indexed addressing mode with a scale factor In this addressing mode, the effective
address is computed as

Base + (Index * scale factor) + signed displacement.

This addressing mode provides an efficient indexing mechanism into a two-dimensional array
when the element size is 2, 4, or 8 bytes.

Big-endian byte order When storing multibyte data, the big-endian byte order stores the data
from the most-significant byte to the least-significant byte.

Breakpoint Breakpoint is a debugging technique. Often we know that some parts of the program
work correctly. In this case, it is a sheer waste of time to single step or trace the code. What we
would like is to execute this part of the program and then stop for more careful debugging (perhaps
by single stepping). Debuggers provide commands to set up breakpoints. The program execution
stops at breakpoints, giving us a chance to look at the state of the program.

Bus protocol When there is more than one master device, which is typically the case, the device
requesting the use of the bus sends a bus request signal to the bus arbiter using the bus request
control line. If the bus arbiter grants the request, it notifies the requesting device by sending a
signal on the bus grant control line. The granted device, which acts as the master, can then use the
bus for data transfer. The bus-request-grant procedure is called bus protocol. Different buses use
different bus protocols. In some protocols, permission to use the bus is granted for only one bus
cycle; in others, permission is granted until the bus master relinquishes the bus.

Bus transaction A bus transaction refers to the data transfers taking place on the system bus.
Some examples of bus transactions are memory read, memory write, I/O read, I/O write, and
interrupt. Depending on the processor and the type of bus used, there may be other types of
transactions. For example, the Pentium processor supports a burst mode of data transfer in which

Appendix E • Glossary 519

up to four 64 bits of data can be transferred in a burst cycle. Every bus transaction involves a
master and a slave. The master is the initiator of the transaction and the slave is the target of the
transaction. The processor usually acts as the master of the system bus, while components like
memory are usually slaves. Some components may act as slaves for some transactions and as
masters for other transactions.

Call-by-value parameter passing In the call-by-value mechanism, the called function is pro
vided only the current values of the arguments for its use. Thus, in this case, the values of these
arguments are not changed in the called function; these values can only be used as in a mathemat
ical function.

Call-by-reference parameter passing In the call-by-reference mechanism, the called function
actually receives the addresses (i.e., pointers) of the parameters from the calling function. The
function can change the contents of these parameters—and these changes will be seen by the
calling function—by direcdy manipulating the argument storage space.

Carry flag The carry flag records the fact that the result of an arithmetic operation on unsigned
numbers is out of range (too big or too small) to fit the destination register or memory location.

Clock A clock is a sequence of Is and Os. We refer to the period during which the clock is 1 as
the ON period and the period with 0 as the OFF period. Even though we normally use symmetric
clock signals with equal ON and OFF periods, clock signals can take asymmetric forms.

Clock cycle A clock cycle is defined as the time between two successive rising edges or between
successive falling edges.

Clock frequency Clock frequency is measured in number of cycles per second. This number is
referred to as Hertz (Hz). The abbreviation MHz refers to millions of cycles per second.

Clock period The clock period is defined as the time represented by one clock cycle.

Column-major order As the memory is a one-dimensional structure, we need to transform a
multidimensional array to a one-dimensional structure. In the column-major order, array elements
are stored column by column. This ordering is shown Figure 13.5b. Column-major ordering is
used in FORTRAN.

Combinational circuits The output of a combinational circuit depends only on the current inputs
applied to the circuit. The adder is an example of a combinational circuit.

Control bus The control bus consists of a set of control signals. Typical control signals include
memory read, memory write, I/O read, I/O write, interrupt, interrupt acknowledge, bus request,
and bus grant. These control signals indicate the type of action taking place on the system bus. For
example, when the processor is writing data into the memory, the memory write signal is asserted.
Similarly, when the processor is reading from an I/O device, the I/O read signal is asserted.

Data bus A group of parallel wires that carry the data between the processor and memory or I/O
device. The width of data bus indicates the size of the data transferred between the processor and
memory or I/O device.

DDD The Dynamic Data Display (DDD) provides a nice visual interface to command-line de
buggers like GDB. For more details on this debugger interface, see Chapter 8.

Decoder A decoder is useful in selecting one-out-of-A/̂ lines. The input to a decoder is an I-bit
binary (i.e., encoded) number and the output is 2 ^ bits of decoded data. Among the 2^ outputs of
a decoder, only one output line is 1 at any time.

520 Assembly Language Programming Under Linux

Define directive In the assembly language, allocation of storage space is done by the define
assembler directive. The define directive can be used to reserve and initialize one or more bytes.
However, no interpretation (as in a C variable declaration) is attached to the contents of these
bytes. It is entirely up to the program to interpret the bit pattern stored in the space reserved for
data.

Demultiplexer A demultiplexer has n selection inputs, 2^ data outputs, and one data input.
Depending on the value of the selection input, the data input is connected to the corresponding
data output.

Direct addressing mode This is a memory addressing mode. In this addressing mode, the offset
value is specified directly as part of the instruction. In an assembly language program, this value
is usually indicated by the variable name of the data item. The assembler translates this name into
its associated offset value during the assembly process. To facilitate this translation, assembler
maintains a symbol table. This addressing mode is the simplest of all the memory addressing
modes. A restriction associated with the memory addressing modes is that these can be used to
specify only one operand.

Direction flag The direction flag determines the direction of string processing done by the string
instructions. If the direction flag is clear, string operations proceed in the forward direction (from
head to tail of a string); otherwise, string processing is done in the opposite direction.

Effective address To locate a data item in the data segment, we need two components: the
segment start address and an offset value within the segment. The start address of the segment is
typically found in the DS register. The offset value is often called the effective address.

Executable instructions These instructions tell the processor what to do. Each executable
instruction consists of an operation code {opcode for short). Executable instructions cause the
assembler to generate machine language instructions. As stated in Chapter 1, each executable
statement typically generates one machine language instruction.

Exceptions An exception is a type of interrupt that is generated by the processor. The exceptions
are classified inio faults, traps, and aborts depending on the way they are reported and whether the
interrupted instruction is restarted. Faults and traps are reported at instruction boundaries. Faults
use the boundary before the instruction during which the exception was detected. When a fault
occurs, the system state is restored to the state before the current instruction so that the instruc
tion can be restarted. The divide error, for instance, is a fault detected during the d i v or i d i v
instruction. Traps are reported at the instruction boundary immediately following the instruction
during which the exception was detected. For instance, the overflow exception (interrupt 4) is
a trap. Aborts are exceptions that report severe errors. Examples include hardware errors and
inconsistent values in system tables.

EXTERN directive The e x t e r n directive is used to tell the assembler that certain labels are
not defined in the current source file (i.e., module), but can be found in other modules. Thus,
the assembler leaves ''holes" in the corresponding object file that the linker will fill in later. This
directive and the g l o b a l directive facilitate separate assembly of source modules.

Fanin Fanin specifies the maximum number of inputs a logic gate can have.

Fanout Fanout refers to the driving capacity of an output. Fanout specifies the maximum number
of gates that the output of a gate can drive.

Faults See Exceptions

Appendix E • Glossary 521

Fetch-decode-execute cycle See Processor execution cycle

Full mapping Full mapping is useful in mapping a memory module to the memory address
space. It refers to a one-to-one mapping function between the memory address and the address in
memory address space. Thus, for each address value in memory address space that has a memory
location mapped, there is one and only one memory location responding to the address. Full
mapping, however, requires a more complex circuit to generate the chip select signal that is often
not necessary.

GDB GDB is a GNU debugger. This is a command-line debugger. For more details on this
debugger, see Chapter 8.

GLOBAL directive NASM provides the g l o b a l directive to make the associated label(s) avail
able to other modules of the program. This directive is useful in writing multimodule programs.
Microsoft and Borland assemblers use p u b l i c directive for this purpose. This directive and the
e x t e r n directive facilitate separate assembly of source modules.

Hardware interrupts Hardware interrupts are of hardware origin and asynchronous in nature.
These interrupts are used by I/O devices such as the keyboard to get the processor's attention.
Hardware interrupts can be divided into either maskable or nonmaskable interrupts (see Fig
ure 20.1). A nonmaskable interrupt (NMI) can be triggered by applying an electrical signal on
the NMI pin of the processor. This interrupt is called nonmaskable because the processor always
responds to this signal. In other words, this interrupt cannot be disabled under program control.
Most hardware interrupts are of maskable type. To cause this type of interrupt, an electrical signal
should be applied to the INTR (INTerrupt Request) input of the processor. The processor recog
nizes the INTR interrupt only if the interrupt enable flag (IF) bit of the flags register is set to 1.
Thus, these interrupts can be masked or disabled by clearing the IF bit.

I/O port An I/O port can be thought of as the address of a register associated with an I/O
controller.

Immediate addressing mode In this addressing mode, data is specified as part of the instruction
itself. As a result, even though the data is in memory, it is located in the code segment, not in the
data segment. This addressing mode is typically used in instructions that require at least two data
items to manipulate. In this case, this mode can only specify the source operand and immediate
data is always a constant. Thus, instructions typically use another addressing mode to specify the
destination operand.

Indexed addressing mode In this addressing mode, the effective address is computed as

(Index * scale factor) + signed displacement.

For 16-bit addresses, no scaling factor is allowed (see Table 13.1 on page 275). For 32-bit ad
dresses, a scale factor of 2, 4, or 8 can be specified. Of course, we can use a scale factor in the
16-bit addressing mode by using an address size override prefix. The indexed addressing mode
is often used to access elements of an array. The beginning of the array is given by the displace
ment, and the value of the index register selects an element within the array. The scale factor is
particularly useful to access arrays whose element size is 2, 4, or 8 bytes.

Indirect addressing mode This is a memory addressing mode. In this addressing mode, the offset
or effective address of the data is in one of the general registers. For this reason, this addressing
mode is sometimes referred to as the register indirect addressing mode.

522 Assembly Language Programming Under Linux

Interrupt enable flag See Hardware interrupts

Interrupts Interrupt is a mechanism by which a program's flow control can be altered. Interrupts
provide a mechanism similar to that of a procedure call. Causing an interrupt transfers control to a
procedure, which is referred to as an interrupt service routine (ISR). An ISR is sometimes called
a handler. When the ISR is completed, the interrupted program resumes execution as if it were
not interrupted. This behavior is analogous to a procedure call. There are, however, some basic
differences between procedures and interrupts that make interrupts almost indispensable. One of
the main differences is that interrupts can be initiated by both software and hardware. In contrast,
procedures are purely software-initiated. The fact that interrupts can be initiated by hardware is
the principal factor behind much of the power of interrupts. This capability gives us an efficient
way by which external devices can get the processor's attention.

Isolated I/O In isolated I/O, I/O ports are mapped to an I/O address space that is separate from
the memory address space. In architectures such as the IA-32, which use the isolated I/O, special
I/O instructions are needed to access the I/O address space. The IA-32 instruction set provides two
instructions—in and out—to access I/O ports. The i n instruction can be used to read from an
I/O port and the out for writing to an I/O port.

Linker Linker is a program that takes one or more object programs as its input and produces
executable code.

Little-endian byte order When storing multibyte data, the little-endian byte order stores the data
from the least-significant byte to the most-significant byte. The Intel 32-bit processors such as the
Pentium use this byte order.

Machine language Machine language is a close relative of the assembly language. Typically,
there is a one-to-one correspondence between the assembly language and machine language in
structions. The processor understands only the machine language, whose instructions consist of
strings of Is andOs.

Macros Macros provide a sophisticated text substitution mechanism. Macros permit the assembly
language programmer to name a group of statements and refer to the group by the macro name.
During the assembly process, each macro is replaced by the group of statements that it represents
and assembled in place. This process is referred to as macro expansion. Macros are discussed in
detail in Chapter 10.

Maskable interrupts See Hardware interrupts

Memory address space This refers to the amount of memory that a processor can address.
Memory address space depends on the system address bus width. Typically, 32-bit processors
support 32-bit addresses. Thus, these processors can address up to 4 GB (2 ^̂ bytes) of main
memory. The actual memory in a system, however, is always less than or equal to the memory
address space. The amount of memory in a system is determined by how much of this memory
address space is populated with memory chips.

Memory-mapped I/O In memory-mapped I/O, I/O ports are mapped to memory addresses. In
systems that use memory mapped I/O, writing to an I/O port is similar to writing to a memory
location.

Multiplexer A multiplexer is characterized by 2" data inputs, n selection inputs, and a single
output. It connects one of 2^ inputs, selected by the selection inputs, to the output.

Nonmaskable interrupts See Hardware interrupts

Appendix E • Glossary 523

Offset See Effective address

Overflow flag The overflow flag is the carry flag counterpart for the signed number arithmetic.
The main purpose of the overflow flag is to indicate whether an operation on signed numbers has
produced a result that is out of range.

PALs see Programmable array logic device

Parameter passing Parameter passing in assembly language is different and more complicated
than that used in high-level languages. In the assembly language, the calling procedure first places
all the parameters needed by the called procedure in a mutually accessible storage area (usually
registers or memory). Only then can the procedure be invoked. There are two common methods
depending on the type of storage area used to pass parameters: register method or stack method.
As their names imply, the register method uses general-purpose registers to pass parameters, and
the stack is used in the other method.

Parity flag The parity flag indicates the parity of the 8-bit result produced by an operation; if this
result is 16 or 32 bits long, only the lower-order 8 bits are considered to set or clear the parity flag.
The parity flag is set if the byte contains an even number of 1 bits; if there are an odd number of 1
bits, it is cleared. In other words, the parity flag indicates an even parity condition of the byte.

Partial mapping Partial mapping is useful in mapping a memory module to the memory ad
dress space. This mapping reduces the complexity associated with full mapping by mapping each
memory location to more than one address in the memory address space. Typically, the number of
addresses a location is mapped to is a power of 2.

Path name A path name specifies the location of a file or directory in hierarchical file system.
A path can be specified as the absolute path or a relative path. In the former specification, you
give the location of a file/directory starting from the root directory. Absolute path always begins
with the root directory (/). In contrast, a relative path specifies the path relative to your current
directory.

Pipe Linux provides several commands, which can be treated as the basic building blocks. Often,
we may need several commands to accomplish a complicated task. We may have to feed the output
of one command as input to another to accomplish a task. The shell provides the pipe operator (|)
to achieve this. The syntax is

commandl | command2

The output of the first command (commandl) is fed as input to the second command (command2).
The output of command2 is the final output. Of course, we can generalize this to connect several
commands.

Processor execution cycle The processor execution cycle consists of the following: (i) Fetch
an instruction from the memory; (ii) Decode the instruction (i.e., identify the instruction); (iii)
Execute the instruction (i.e., perform the action specified by the instruction).

Programmable array logic device A programmable array logic device is very similar to the
FLA except that there is no programmable OR array. Instead, the OR connections are fixed.
This reduces the complexity by cutting down the set of fuses in the OR array. Due to their cost
advantage, most manufacturers produce only PALs.

Programmable logic array A programmable logic array is a field programmable device to
implement sum-of-product expressions. It consists of an AND array and an OR array. A FLA
takes Â inputs and produces M outputs. Each input is a logical variable. Each output of a FLA

524 Assembly Language Programming Under Linux

represents a logical function output. Internally, each input is complemented, and a total of 2N
inputs is connected to each AND gate in the AND array through a fuse. Each AND gate can be
used to implement a product term in the sum-of-products expression. The OR array is organized
similarly except that the inputs to the OR gates are the outputs of the AND array. Thus, the number
of inputs to each OR gate is equal to the number of AND gates in the AND array. The output of
each OR gate represents a function output.

PLA See Programmable logic array

Propagation delay Propagation delay represents the time required for the output of a circuit
to react to an input. The propagation delay depends on the complexity of the circuit and the
technology used.

Protected-mode memory architecture The IA-32 architecture supports a sophisticated memory
architecture under real and protected modes. The protected mode uses 32-bit addresses and is the
native mode of the IA-32 architecture. In the protected mode, both segmentation and paging are
supported. Paging is useful in implementing virtual memory; it is transparent to the application
program, but segmentation is not.

Queue A queue is a first-in-first-out (FIFO) data structure. A queue can be considered as a linear
array with insertions done at one end of the array and deletions at the other end.

Real-mode memory architecture The IA-32 architecture supports a sophisticated memory ar
chitecture under real and protected modes. The real mode, which uses 16-bit addresses, is provided
to run programs written for the 8086 processor. In this mode, it supports the segmented memory
architecture of the 8086 processor.

Register addressing mode In this addressing mode, processor's internal registers contain the
data to be manipulated by an instruction. Register addressing mode is the most efficient way of
specifying operands because they are within the processor and, therefore, no memory access is
required.

Row-major order As the memory is a one-dimensional structure, we need to transform a mul
tidimensional array to a one-dimensional structure. In the row-major order, array elements are
stored row by row. This ordering is shown Figure 13.5a. Row-major ordering is used in most
high-level languages including C.

Segment descriptors A segment descriptor provides the attributes of a segment. These attributes
include its 32-bit base address, 20-bit segment size, as well as control and status information.

Segment registers In the IA-32 architecture, these registers support the segmented memory
organization. In this organization, memory is partitioned into segments, where each segment is a
small part of the memory. The processor, at any point in time, can only access up to six segments
of the main memory. The six segment registers point to where these segments are located in the
memory.

Sequential circuits The output of a sequential circuit depends not only on the current inputs but
also on the past inputs. That is, output depends both on the current inputs as well as on how it got
to the current state. For example, in a binary counter, the output depends on the current value. The
next value is obtained by incrementing the current value (in a way, the current state represents a
snapshot of the past inputs). That is, we cannot say what the output of a counter will be unless we
know its current state. Thus, the counter is a sequential circuit.

Appendix E • Glossary 525

Shell The shell can be thought of as the user's interface to the operating system. It acts as the
command line interpreter. Several popular shells including the Bourne shell (sh), C-shell (csh),
Kom shell (ksh), and Bourne Again shell (bash) are available. However, bash is the default
shell in Fedora 3.

Sign flag The sign flag indicates the sign of the result of an operation. Therefore, it is useful only
when dealing with signed numbers. Note that the most significant bit is used to represent the sign
of a number: 0 for positive numbers and 1 for negative numbers. The sign flag gets a copy of the
sign bit of the result produced by arithmetic and related operations.

Single-stepping Single-stepping is a debugging technique. To isolate a bug, program execution
should be observed in slow motion. Most debuggers provide a command to execute the program
in single-step mode. In this mode, a program executes a single statement and pauses. Then we can
examine contents of registers, data in memory, stack contents, and so on.

Software interrupts Software interrupts are caused by executing the i n t instruction. Thus
these interrupts, like procedure calls, are anticipated or planned events. The main use of software
interrupts is in accessing I/O devices such as the keyboard, printer, display screen, disk drive, and
so on.

Stack A stack is a last-in-first-out (LIFO) data structure. The operation of a stack is analogous
to the stack of trays you find in cafeterias. The first tray removed from the stack of trays would be
the last tray that had been placed on the stack. There are two operations associated with a stack:
insertion and deletion. In stack terminology, insert and delete operations are referred to as push
and pop operations, respectively.

Status flags Status flags are used to monitor the outcome of the arithmetic, logical, and related
operations. There are six status flags. These are the zero flag (ZF), carry flag (CF), overflow flag
(OF), sign flag (SF), auxiliary flag (AF), and parity flag (PF). When an arithmetic operation is
performed, some of the flags are updated (set or cleared) to indicate certain properties of the result
of that operation. For example, if the result of an arithmetic operation is zero, the zero flag is set
(i.e., ZF = 1). Once the flags are updated, we can use conditional branch instructions to alter flow
control.

Symbolic debugging Symbolic debugging allows us to debug using the source-level statements.
However, to facilitate symbolic debugging, we need to pass the source code and symbol table
information to the debugger. The GNU debugger expects the symbolic information in the s t a b s
format. More details on this topic are given in Chapter 8.

System bus A system bus interconnects the three main components of a computer system: a
central processing unit (CPU) or processor, a memory unit, and input/output (I/O) devices. The
three major components of the system bus are the address bus, data bus, and control bus (see
Figure 2.1).

Top of stack If we view the stack as a linear array of elements, stack insertion and deletion
operations are restricted to one end of the array. The top-of-stack (TOS) identifies the only element
that is directly accessible from the stack.

TOS see Top of stack

Trace Tracing is a debugging technique similar to the single stepping. In the single-step mode, a
procedure call is treated as a single statement and the entire procedure is executed before pausing
the program. This is useful if you know that the called procedure works correctly. Trace, on the
other hand, can be used to single-step even the statements of a procedure call, which is useful to
test procedures.

526 Assembly Language Programming Under Linux

Traps See Exceptions

Tristate buffers Tristate buffers can be in three states: 0, 1, or Z state. A tristate buffer output
can be in state 0 or 1 just as with a normal logic gate. In addition, the output can also be in a
high impedance (Z) state, in which the output floats. Thus, even though the output is physically
connected to the bus, it behaves as though it is electrically and logically disconnected from the bus.
Tristate buffers use a separate control signal so that the output can be in a high impedance state,
independent of the data input. This particular feature makes them suitable for bus connections.

Web browser An Internet application that allows you to surf the web. Netscape Navigator,
Mozilla Fire Fox, and Microsoft Internet Explorer are some of the popular Web browsers.

Zero flag The purpose of the zero flag (ZF) is to indicate whether the execution of the last
instruction that affects the zero flag has produced a zero result. If the result was zero, ZF = 1;
otherwise, ZF = 0.

Index
Symbols
.CODE macro, 156
.DATA macro, 156
.EXIT macro, 156
.STARTUP macro, 156
.UDATA macro, 156
$, location counter, 282, 364
i n c l u d e directive, 156
1 's complement, 467
2's complement, 468
80286 processor, 61
80386 processor, 62
80486 processor, 62
8080 processor, 61
8086 family processors, 61-62

A
aborts, 408
absolute path, 139
access permissions, 141

octal mode, 143
setting, 143
symbolic mode, 144

Ackermann's function, 481
activation record, 256, 392
adders, 26

carry lookahead adders, 28
full-adder, 27
half-adder, 26
ripple-carry adders, 27

address bus, 11
address size override prefix, 275
address translation, 73

protected mode, 67, 68
real mode, 73

addressing modes, 193-196,273-278
16-bit, 274
32-bit, 274
based addressing mode, 276
based-indexed addressing mode, 278
direct addressing mode, 194
immediate addressing mode, 194
indexed addressing mode, 277
indirect addressing mode, 195
register addressing mode, 193

alignment check flag, 66
ALUs, see arithmetic logic units
AND gate, 13
arithmetic logic units, 32
arrays, 278-289

column-major order, 280
multidimensional, 279
one-dimensional, 278
row-major order, 280

ASCII addition, 381
multidigit, 384

ASCII division, 383
ASCII multiplication, 383
ASCII number representation, 380
ASCII subtraction, 382
ASCIIZ string, 364
assembler directives, 187
assembly language

advantages, 7-8
applications, 8
what is it, 5-6

assembly process, 160
AT&T syntax, 434

addressing, 435
operand size, 434
register naming, 434

auxiliary flag, 299

528 Index

B
based addressing mode, 276
based-indexed addressing mode, 278
b a s h , 135
BCD number representation, 380

packed, 381
unpacked, 380

binary numbers, 463
conversion, 464, 465

binary search, 285
bit, 45
bit manipulation, 348

clearing bits, 343
cutting and pasting, 344
isolating bits, 343
toggling, 345

Boolean algebra, 18-19
identities, 18

breakpoint interrupt, 410
bubble notation, 17
bubble sort, 262
building larger memories, 52
burst cycle, 12
bus cycle, 12
bus grant, 13
bus protocol, 13
bus request, 13
bus transactions, 12
byte, 45
byte addressable memory, 45
byte ordering, 58

big-endian, 58
litde-endian, 58

call-by-reference, 232
call-by-value, 232
calling assembly procedures from C, 424
calling C from assembly, 432
carry flag, 294
c a t command, 140
c d command, 140
changing password, 120
character representation, 473-474

extended ASCII, 474
chipselect, 51,54, 57, 58
chmod command, 143

clobber list, 438
clock cycle, 36
clock frequency, 36
clock period, 36
clock signal, 35-37

cycle, 36
falling edge, 36
frequency, 36
period, 36
rising edge, 36

column-major order, 280
command line completion, 136
commands

c a t , 140
cd, 140
chmod, 143
cp, 141
e c h o , 137
g r e p , 146
h e a d , 141
h i s t o r y , 136
l e s s , 141
I s , 140, 142, 143
man, 134
m k d i r , 140
more , 140
mv, 141
pas swd , 135, 137
p s , 138
pwd, 140
rm, 140, 141
r m d i r , 140
s e t , 146
s o r t , 146
su, 138
t a i l , 141
uname, 137
wc, 145
w h e r e i s , 137

comparators, 26
control bus, 12
counters, 41
cp command, 141
CPUID instruction, 66

D
data alignment, 59-60

Index 529

2-byte data, 60
4-byte data, 60
8-byte data, 60
hard alignment, 60
soft alignment, 60

data allocation, 188-192
define directives, 189-191
multiple definitions, 191-192
multiple initializations, 192

data bus, 11
Data display debugger (DDD), 179-183
DB directive, 189
DD directive, 189
decoders, 26
dedicated interrupts, 409
demultiplexers, 25
denormalized values, 470
direction flag, 366
DQ directive, 189
DT directive, 189
DW directive, 189

echo command, 137
effective address, 72, 194, 195
EQU directive, 217
even parity, 343, 344
exceptions, 404, 408

aborts, 408
faults, 408
segment-not-present, 70, 409
traps, 408,409

excess-M number representation, 466
exclusive-OR gate, 13
executable instructions, 187
execution cycle, 63
EXTERN directive, 260

factorial, 391-394
recursive procedure, 392

faults, 408
Fibonacci number, 401
file descriptor, 411
file pointer, 411
file system

browsing, 126
firewall setup, 100
flags register, 66, 292-302

auxiliary flag, 299
carry flag, 294
CF, 294
direction flag, 366,420
IF flag, 418
OF, 296
overflow flag, 296
parity flag, 300
PF, 300
SF, 298
sign flag, 298
status flags, 292-302
trap flag, 409
zero flag, 292
ZF, 292

flat segmentation model, 71
flip-flops, 39-40
floating-point, 469-471

denormals, 452,470
formats, 444
IEEE 754,470
representation, 469
special values, 470

00,470
NaN, 470
zero, 470

floating-point unit organization, 444
frame pointer, 245, 256
full-adder, 27

G
GDB, 170-178

commands, 171-173
g e d i t , 127
Getlnt8,313
getting help, 134
GLOBAL directive, 260
GNOME desktop, 126
g rep command, 146

H
half-adder, 26
hardware interrupts, 404, 418

530 Index

INTA signal, 419
INTR input, 418
maskable, 405,418
NMI,418
nonmaskable, 405,418

head command, 141
hexadecimal numbers, 463
high-level language interface, 423-441

assembling, 424
calling assembly procedures from C, 424
calling C from assembly, 432
externals, 427
globals, 427
inline assembly, 434-441
parameter passing, 425
preserving registers, 427
returning values, 427

high-level language structures
swi tch , 337

h i s t o r y command, 136
HOME, 139

I
I/O address space, 419
I/O controller, 76
I/O device, 76
I/O ports, 77,419

16-bit ports, 419
32-bit ports, 419
8-bit ports, 419
accessing, 419
in, 419
i n s , 420
out , 420
o u t s , 420

I/O routines, 157
GetCh, 156
Getint, 158
GetLInt, 158
GetStr, 157
PutCh, 156
Putint, 158
PutLInt, 158
PutStr, 157

IA-32 flags register, 66
IA-32 instructions

aaa, 380-382,488

aad, 380, 383,488
aam, 380, 383, 488
aas , 380, 382, 488
adc, 489
add, 198, 489
and, 203, 342, 489
arithmetic instructions, 302-309
bit instructions, 354-355
brf, 355
bsf,355,489
bs r , 490
bswap,212,490
b t , 355, 490
b t c , 355,490
b t r , 355,491
b t s , 355,491
c a l l , 239, 378, 491
cbw, 308,491
cdq, 308, 492
clc,492
e ld , 366,492
c l i , 407, 418, 492
cmc, 492
cmp, 199, 493
cmps, 370, 493
conditional jump, 500
cwd, 308,494
cwde, 308,494
daa, 381,385,494
das, 381,386,495
dec, 197,296,495
div , 306,409,495
division instructions, 306
doubleshift instructions, 352
e n t e r , 247, 259, 496
h i t , 496
i d i v , 306,409,497
imul,305,497
in, 419, 498
inc , 197, 296,498
i n s , 420, 498
insb , 498
insd , 498
insw, 498
int,410,499
i n t o , 499
i r e t , 499

M
M

M
I

-
'

M
M

M
I

-
'

M

M
H

-L
Q

IX
I

f-
hC

D

CD

(D

O
-

^
^

^
^

 ^
 ^

^^
^

<
^

^
 ^

^

O
S

-^

0\

O
S

(T
)

^^

0\

O

O

--
I

g
^

-J

^
^

LO
 i

^
O

O

J

J1
3 hh

^:

i
to

_
l.

t_

l-
 L

J
.

t_
l.

CQ

 ^
d

^d

^

o

O

^
LO

U

)
o

i
r^

0°

to

K

)

^
vo

 N
)

to

U
\

to

O
N

^

p

^
o

to

to

U
)

U
)

to

4^

U
)

to

O
N

«_
I.

J_
l.

C
J

.
U

J
.

C
J

.
1—

1.
 L

J
.

l_
l-

N

a
3

^
d

O

M

M
l

Q
t

Q

(D

"
-

-
-

Q

^
(D

 -
^

^
b

O
lO

L
O

N
)

-
U

)-

U
>

lO

O
^

O
V

O
L

O
t

O
U

)
t

O
O

^

O
O

O
j

-
J

t
O

O
N

t
o

O
N

^
^

-
to
 u
)
 u
)
 u
)

"̂

^

u
)

vo
 t
o
 t
o
 t
o

to

L
O

U
)

O
J

U
)

U
)

.

l
_
l
.

l
_
J
.
 «
_
l
.

C
J
.

l
_
l
.

to

to

O
N

to

to

O
N

p

p

p

p

;o
i^

 ^
^p

^

u
)

t
o

u
j

J
^

t
o

-t̂

 t
o

t
o

1=5
 3

?
 p

L
O

t
o

to

o
 l_

l.
 L
J
.

L
J
.

L
J
.
 L
J
.

M

M

IQ
 t
£|

O

CD
 t
oi
^
 t
o

-

t
o
 -

t
o
 K
g

to
 o

to
 o
 î

o

^

o
 ̂

u>
 L
J
.

L
J
.

CD
 C
D

"

O

2

N
 L

J
.

-r
 L
.
r-
 L
. ̂

 L
.
;>̂

 S
î

L
O
t
O
u
J
t
O
^
t
O
^
^
i
^

t
o

O
N

t
o

O
N

L
O

^

.
 ̂

O
N

O
N

N
j

^

io
 o
i

L
K
)

o

o

to

^

to

O
N

^
i

H
{

CD
 C

D

^
d̂

P

CD

CD

^
\

4
^

"
to

^

o

o

^

H
!

li

^1

CD

CD
 O

^

^
H

{

^
"̂

 ^
 t

 .
U

)
to

U

)
O

N

^—

O
N

^

^

i^
 "

4̂
 I

r,

.p
^

to

H
-

to

0
0

^
"^

0

h{

^d

n3

0
C

C

M

m

03

t.
 ^

^

^
H

i
pJ

y^
 t

o
 -̂

0

^ c CQ

^r

9i

fh

to

-J

d̂
 ^

'^

 ^

"d

^
c

c
3

0
0

0
m

03

0

^
d

^

^
ty

tr

^

i-h

h+
i

0
;

r
^

g

r"

to
 -

to

^
0

u
t

^
to

-1

^
K

 ^

^
0

:-
>

u
)

i^
 ^

§

^
ut

 --̂

0
0

^
&5

to

4
^

0
0

d̂

d̂

^
0

0
0

d̂
 ^

^

PJ

JU
 -

P̂
 t

.
Ŝ

^r

^
to

0

0

^
p

^ 0 -J

0
0

P

P

C

H{

0
0

rt

-
ft

^

d

to

-
-

4
^

p

to

u
i

to

o
j

0
0

0
"

U
)

L
^

-
^

U
)

-
U

l
-^

U

)
0

J
^

-1
^

^
, ^

 ^

L
n

-

0
L

n

O
N

0

O
N

P

CD

ip

^y
i

0 L
n

3 "H
-

»i
rt

0 p

 »Î
.

0 :3

:3

C/
5

3

3

C

O

M

<

"

tS
l

o
 r
!

o

4:̂

o

o

3 0 < 03 X̂

O
J 0 0
0 0 4^

3 0 < 03 5:

U
)

O
N

0 4^

3
3

3
0

0
0

<
<

<
03

03

03

a
d

'"

U
)

U
)

O
N

O

N

O
N

^

.^
 .

^
'u

,
U

\
U

\
<0

>
0

0
-f

^
4

^
4

^

3
M

0

03

<
03

s

* O
S

O

S

0
0

0
0

vo

0

0

M

0 0 ^ N L
O

to

M

M

M

M

0
0

0
0

0
0

0
0

^d

^
^

^
P

P

P

(D

N

CD

CD

'^

^

L
o

|_

.
U

)
n

0
^

^
d

N

î
'

^
^

0 U
)

1—
'

0 0 ^ Q

u
>

to

-0

532 Index

r e p n e / r e p n z , 509
repnz, 366
repz , 366
r e t , 241, 245, 509
rol,215,510
ror,215,510
rotate instructions, 353-354
sahf,510
s a l , 350, 511
sa r , 350,511
sbb,511
seas , 371, 512
scasb , 371,512
scasd, 371, 512
scasw, 371, 512
setCC, 512
sgdt , 70
shift instructions, 347-353
shl,213,511
shld , 352,513
shr,213,511
shrd,352,513
s id t ,405
s l d t , 7 0
s t c , 513
std,366,513
s t i , 407,418, 513
stos,368,514
s t o s b , 368,514
s tosd , 368,514
stosw, 368, 514
sub, 199,514
t e s t , 204, 347, 514
xchg,212,515
xlat,213,227,515
xor, 203, 345, 515

IA-32 processor
CPUID instruction, 66
EIP register, 66
flags register, 66

alignment check flag, 66
control flags, 66
EFLAGS, 66
FLAGS, 66
interrupt flag, 66
status flags, 66
system flags, 66

trap flag, 66
VM flag, 66
zero flag, 66

floating-point instructions, 447-453
addition, 449
comparison, 451
data movement, 448
division, 451
miscellaneous, 452
multiplication, 450
subtraction, 449

floating-point registers, 444-447
floating-point unit organization, 444
instruction fetch, 75
IP register, 66
memory architecture, see memory ar

chitecture
protected mode, 67
real mode, 72
stack implementation, 234
stack operations, 236

IA-32 registers, 63-67,444-447
control registers, 65
data registers, 64
floating-point registers, 444-447
index registers, 65
pointer registers, 65
segment registers, see segment registers

IA-32 trap flag, 66
ICs, see integrated circuits
IEEE 754 floating-point standard, 443,470
indexed addressing mode, 277
indirect procedure call, 378
inline assembly, 434^41,457

clobber list, 438
input/output

I/O address space, 77
isolated I/O, 77
memory-mapped I/O, 77

insertion sort, 282
installation, 92-107

getting help, 114
instruction decoding, 63
instruction execution, 63
instruction fetch, 63, 75
instruction pointer, 65
int21H, 156

Index 533

int21H DOS services
4CH return control, 156

int3,410
int4,410
integrated circuits, 14

LSI, 14
MSI, 14
propagation delay, 14
SSI, 14
SSI chips, 14
VLSI, 14

interrupt 1,409
interrupt 2, 418
interrupt 4, 409
interrupt descriptor table, 405
interruptflag, 66,418
interrupt handler, 403
interrupt processing

protected mode, 405
interrupt service routine, 403
interrupts

breakpoint, 410
dedicated, 409
descriptors, 406
divide error, 409
exceptions, 404, 408
handler, 403
hardware, 418
hardware interrupts, 404
IDT organization, 406
ISR, 403
maskable, 405
nonmaskable, 405
overflow, 410
single-step, 409
software interrupts, 404
taxonomy, 404,407

into, 410
isolated I/O, 77
Itanium processor, 62

jump instructions
backward jump, 318
conditional jump, 322-327
far jump, 319
forward jump, 318

indirect jump, 335-339
intersegment jump, 319
intrasegmentjump, 319
near jump, 319
SHORT directive, 319
short jump, 319
unconditional jump, 318

direct, 318

K
Karnaugh maps, 19-23
keyboard configuration, 117

latches, 37-39
clocked SR latch, 38
D latch, 39
SR latch, 37

Id, 166
left-pusher language, 425
l e s s command, 141
linear address, 67
linear search, 330
linking, 166
Linux, 154
Linux system calls, 411

file system calls, 411
file close, 414
file create, 412
file open, 413
file read, 413
file write, 414
Iseek, 414

local variables, 256
logic circuits

adders, 26
ALUs, 32
bubble notation, 17
comparators, 26
counters, 41
decoders, 26
demultiplexers, 25
flip-flops, 39
latches, 37
multiplexers, 24
PALs, 30

534 Index

PLAs, 29
shift registers, 40

logic gates
fanin, 14
fanout, 14
propagation delay, 14

logical address, 72
logical expressions, 15

derivation, 17
even parity, 16
majority, 16
product-of-sums, 18
simplification, 18-23

Boolean algebra method, 1 i
Karnaugh map method, 19

sum-of-products, 17
I s command, 140, 142, 143

M
machine language, 4
macro directive, 218
macro expansion, 212
macro instructions, 220
macro parameters, 219
macros, 212, 218

instructions, 220
macro directive, 218
parameters, 219

man command, 134
masking bit, 343
MASM, 5
memory

Bandwidth, 46
access time, 46
address, 45
address space, 45
address translation, 73
building a block, 50
building larger memories, 52
byte addressable, 45
chipselect, 51,54, 57, 58
cycle time, 46
design with D flip-flops, 51
DRAM, 49, 53
dynamic, 49
effective address, 72
EPROM, 48

larger memory design, 53
linear address, 67
logical address, 72, 73
memory address space, 53
memory chips, 53
memory mapping, 56

full mapping, 56
partial mapping, 57

nonvolatile, 48
offset, 72
physical address, 72, 73
PROM, 48
RAM, 49
read cycle, 47
read-only, 48
read/write, 48
ROM, 48
SDRAM, 53
segmentation models, 71
segmented organization, 72
SRAM, 49
static, 49
volatile, 48
wait cycles, 47
write cycle, 47

memory access time, 46
memory address space, 45, 53
memory architecture

IA-32, 72-75
protected mode, 67
real mode, 72-74

memory bandwidth, 46
memory cycle time, 46
memory mapping, 56

full mapping, 56
partial mapping, 57

memory read cycle, 47
memory write cycle, 47
memory-mapped I/O, 77
merge sort, 483
mixed mode operation, 74
mixed-mode programs, 423

calling assembly code, 424
calling C from assembly, 432
compiling, 425
externals, 427
globals, 427

Index 535

inline assembly, 434-441
parameter passing, 425
preserving registers, 427
returning values, 427

mkdir command, 140
more command, 140
mounting file system, 110-112
mouse configuration, 119
multibyte data, 58
multidimensional arrays, 279
multiplexers, 24
multisegment segmentation model, 71
mv command, 141

N
HAND gate, 13
NASM, 5, 154-156,160-166
NOR gate, 13
NOT gate, 13
number representation

floating-point, 469-471
signed integer, 466

I's complement, 467
2's complement, 468
excess-M, 466
signed magnitude, 466

unsigned integer, 466
number systems, 461

base, 461
binary, 461,463
conversion, 463-465
decimal, 461,462
floating-point, 469-471
hexadecimal, 461,463
notation, 462
octal, 461,463
radix, 461

O
octal numbers, 463
office applications, 129
one's complement, 467
one-dimensional arrays, 278
operand size override prefix, 275
OR gate, 13
overflow flag, 296

overflow interrupt, 410
override prefix, 74

address size, 275
operand size, 275
segment override, 269

package management, 107
packed BCD numbers

addition, 385
processing, 385
subtraction, 386

paging, 67
PALs, see programmable array logic devices
parameter passing, 232, 242-252,425

call-by-reference, 232
call-by-value, 232
register method, 242
stack method, 243
variable number of parameters, 268-272

parity conversion, 345
parity flag, 300
parted, 83-85

help, 84
print, 85
resize, 85

partitioning hard disk, 82-92
PartitionMagic, 88-92
pa sswd command, 135, 137
PATH, 136
pathnames, 139

absolute path, 139
relative path, 140

Pentium II processor, 62
Pentium Pro processor, 62
peripheral device, 76
physical address, 72
pipelining

superscalar, 62
pipes, 146
PLAs, see programmable logic arrays
p r e f e r e n c e s menu, 117
procedure template, 248
procedures

indirect call, 378
local variables, 256

product-of-sums, 18

536 Index

program counter, 66
programmable array logic devices, 30
programmable logic arrays, 29
programmer productivity, 7
protected mode architecture, 67
ps command, 138
Putlnt8,311
pwd command, 140

Q
QTparted, 85-86
quicksort, 396

algorithm, 397
Pentium procedure, 397

R
real mode architecture, 72-74
real-time applications, 8
recalling a command, 136
recursion, 391-392

activation record, 392
factorial, 391
Fibonacci number, 401
versus iteration, 400
in Pentium

factorial procedure, 392
quicksort procedure, 397

quicksort algorithm, 397
redirection, 145

input, 145
output, 145

relative path, 140
right-pusher language, 425
rm command, 140, 141
rmdi r command, 140
root password selection, 102
row-major order, 280

screen resolution configuration, 119
Screensaver configuration, 121
segment descriptor, 69-70
segment descriptor tables, 70-71

GDT, 70
IDT, 70

LDT, 70
segment override, 269
segment registers, 67-69

CS register, 67
DS register, 67
ES register, 67
FS register, 67
GS register, 67
SS register, 67

segmentation, 67
segmentation models, 71

flat, 71
multisegment, 71

segmented memory organization, 72
segment base, 72
segment offset, 72

selection sort, 332
s e t command, 146
setting access permissions, 143
setting date and time, 124
setting display, 125
shell, 135
shift operations, 348
shift registers, 40
SHORT directive, 319
sign bit, 466
sign extension, 305,469
sign flag, 298
signed integer, 466

1 's complement, 467
2's complement, 468
excess-M, 466
signed magnitude representation, 466

signed magnitude representation, 466
single-step interrupt, 409
software interrupts, 404, 410

exceptions, 404
system-defined, 404
user-defined, 404

s o r t command, 146
space-efficiency, 7
stack, 233-234

activation record, 256
frame pointer, 245, 256
IA-32 processor implementation, 234
operations, 236, 237
operations on flags, 237

Index 537

overflow, 235, 239
stack frame, 244, 256
top-of-stack, 233, 234
underflow, 235, 239
use, 238
what is it, 233

stack frame, 244, 256
stack operations, 236, 237
stack overflow, 235,239
stack underflow, 235, 239
status flags, 292-302
string processing

string compare, 375
string length, 374

string representation, 363
fixed-length, 363
variable-length, 363

su command, 138
sum-of-products, 17
superscalar, 62
symbol table, 192, 194
system bus, 11

truth table, 13
AND, 13
even parity, 15
majority, 15
HAND, 13
NOR, 13
NOT, 13
OR, 13
XOR, 13

two's complement, 468
type specifier, 197

BYTE, 197
DWORD, 197
QWORD, 197
TBYTE, 197
WORD, 197

types of memory, 48-50

U
uname command, 137
unsigned integer representation, 466

t a i l command, 141
TASM, 5
time zone selection, 102
time-critical applications, 8
time-efficiency, 7
TIMES directive, 192
top-of-stack, 233, 234
towers of Hanoi, 481
trap flag, 409
traps, 408,409
tristate buffers, 50

variable number of parameters, 268-272
vim editor, 147

W
wait cycles, 47
wc command, 145
where i s command, 137

XOR gate, 13

zero extension, 466
zero flag, 66, 292

The GNU General Public License

Version2, June 1991
Copyright © 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but
changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change it.
By contrast, the GNU General Public License is intended to guarantee your freedom to share and
change free software—to make sure the software is free for all its users. This General Public
License applies to most of the Free Software Foundation's software and to any other program
whose authors commit to using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public
Licenses are designed to make sure that you have the freedom to distribute copies of free software
(and charge for this service if you wish), that you receive source code or can get it if you want it,
that you can change the software or use pieces of it in new free programs; and that you know you
can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights
or to ask you to surrender the rights. These restrictions translate to certain responsibilities for you
if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must
give the recipients all the rights that you have. You must make sure that they, too, receive or can
get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license
which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands
that there is no warranty for this free software. If the software is modified by someone else and
passed on, we want its recipients to know that what they have is not the original, so that any
problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in effect
making the program proprietary. To prevent this, we have made it clear that any patent must be
licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

540 GNU General Public License

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND
MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the
copyright holder saying it may be distributed under the terms of this General Public License.
The "Program", below, refers to any such program or work, and a "work based on the Pro
gram" means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or
translated into another language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".
Activities other than copying, distribution and modification are not covered by this License;
they are outside its scope. The act of running the Program is not restricted, and the output
from the Program is covered only if its contents constitute a work based on the Program
(independent of having been made by running the Program). Whether that is true depends
on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive
it, in any medium, provided that you conspicuously and appropriately publish on each copy
an appropriate copyright notice and disclaimer of warranty; keep intact all the notices that
refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.
You may charge a fee for the physical act of transferring a copy, and you may at your option
offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under the
terms of Section 1 above, provided that you also meet all of these conditions:

(a) You must cause the modified files to carry prominent notices stating that you changed
the files and the date of any change.

(b) You must cause any work that you distribute or publish, that in whole or in part contains
or is derived from the Program or any part thereof, to be licensed as a whole at no
charge to all third parties under the terms of this License.

(c) If the modified program normally reads commands interactively when run, you must
cause it, when started running for such interactive use in the most ordinary way, to print
or display an announcement including an appropriate copyright notice and a notice that
there is no warranty (or else, saying that you provide a warranty) and that users may
redistribute the program under these conditions, and telling the user how to view a copy
of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print
an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that
work are not derived from the Program, and can be reasonably considered independent and
separate works in themselves, then this License, and its terms, do not apply to those sections
when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must
be on the terms of this License, whose permissions for other licensees extend to the entire
whole, and thus to each and every part regardless of who wrote it.

GNU General Public License 541

Thus, it is not the intent of this section to claim rights or contest your rights to work writ
ten entirely by you; rather, the intent is to exercise the right to control the distribution of
derivative or collective works based on the Program.
In addition, mere aggregation of another work not based on the Program with the Program
(or with a work based on the Program) on a volume of a storage or distribution medium does
not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object
code or executable form under the terms of Sections 1 and 2 above provided that you also
do one of the following:

(a) Accompany it with the complete corresponding machine-readable source code, which
must be distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

(b) Accompany it with a written offer, valid for at least three years, to give any third party,
for a charge no more than your cost of physically performing source distribution, a
complete machine-readable copy of the corresponding source code, to be distributed
under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

(c) Accompany it with the information you received as to the offer to distribute corre
sponding source code. (This alternative is allowed only for noncommercial distribu
tion and only if you received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifica
tions to it. For an executable work, complete source code means all the source code for
all modules it contains, plus any associated interface definition files, plus the scripts used
to control compilation and installation of the executable. However, as a special exception,
the source code distributed need not include anything that is normally distributed (in either
source or binary form) with the major components (compiler, kernel, and so on) of the op
erating system on which the executable runs, unless that component itself accompanies the
executable.
If distribution of executable or object code is made by offering access to copy from a des
ignated place, then offering equivalent access to copy the source code from the same place
counts as distribution of the source code, even though third parties are not compelled to copy
the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly pro
vided under this License. Any attempt otherwise to copy, modify, sublicense or distribute
the Program is void, and will automatically terminate your rights under this License. How
ever, parties who have received copies, or rights, from you under this License will not have
their licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, noth
ing else grants you permission to modify or distribute the Program or its derivative works.
These actions are prohibited by law if you do not accept this License. Therefore, by mod
ifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing
or modifying the Program or works based on it.

542 GNU General Public License

6. Each time you redistribute the Program (or any work based on the Program), the recipient
automatically receives a license from the original licensor to copy, distribute or modify the
Program subject to these terms and conditions. You may not impose any further restrictions
on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by court
order, agreement or otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then
as a consequence you may not distribute the Program at all. For example, if a patent license
would not permit royalty-free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.
If any portion of this section is held invalid or unenforceable under any particular circum
stance, the balance of the section is intended to apply and the section as a whole is intended
to apply in other circumstances.
It is not the purpose of this section to induce you to infringe any patents or other property
right claims or to contest validity of any such claims; this section has the sole purpose of
protecting the integrity of the free software distribution system, which is implemented by
public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system;
it is up to the author/donor to decide if he or she is willing to distribute software through any
other system and a licensee cannot impose that choice.
This section is intended to make thoroughly clear what is believed to be a consequence of
the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents
or by copyrighted interfaces, the original copyright holder who places the Program under
this License may add an explicit geographical distribution limitation excluding those coun
tries, so that distribution is permitted only in or among countries not thus excluded. In such
case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the present
version, but may differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the Program specifies a version
number of this License which applies to it and "any later version", you have the option of
following the terms and conditions either of that version or of any later version published
by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution
conditions are different, write to the author to ask for permission. For software which is
copyrighted by the Free Software Foundation, write to the Free Software Foundation; we
sometimes make exceptions for this. Our decision will be guided by the two goals of pre
serving the free status of all derivatives of our free software and of promoting the sharing
and reuse of software generally.

GNU General Public License 543

No WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE P R O G R A M , TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTH
ERWISE STATED IN WRITING THE COPYRIGHT HOLDERS A N D / O R OTHER PARTIES PRO
VIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER
CHANTABILITY AND HTNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PRO
GRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. I N N O E V E N T U N L E S S R E Q U I R E D B Y A P P L I C A B L E LAW OR AGREED TO IN WRITING

WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY A N D / O R
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAM
AGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAM
AGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT
NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

	Cover
	Contents
	Preface
	PART I Overview
	1 Assembly Language

	PART II Computer Organization
	2 Digital Logic Circuits
	3 Memory Organization
	4 The IA-32 Architecture

	PART III Linux
	5 Installing Linux
	6 Using Linux

	PART IV NASM
	7 Installing and Using NASM
	8 Debugging Assembly Language Programs

	PART V Assembly Language
	9 A First Look at Assembly Language
	10 More on Assembly Language
	11 Writing Procedures
	12 More on Procedures
	13 Addressing Modes
	14 Arithmetic lnstructions
	15 Conditional Execution
	16 Logical and Bit Operations

	PART VI Advanced Assembly Language
	17 String Processing
	18 ASCII and BCD Arithmetic
	19 Recursion
	20 Protected-Mode Interrupt Processing
	21 High-Level Language Interface
	22 Floating-Point Operations

	APPENDICES
	A Number Systems
	B Character Representation
	C Programming Exercises
	D IA-32 Instruction Set
	E Glossary

	Index

