Embedded Linux driver development

Embedded Linux kernel and driver development

Michael Opdenacker
Free Electrons
http://free-electrons.com/

Created with OpenOffice.org 2.0

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/
http://openoffice.org/

Rights to copy

®
@creat ve
commons
cCcC oM MONS DEED
Attribution — ShareAlike 2.0 © Copyright 2006-2004
You are free Michael Opdenacker
© to copy, distribute, display, and perform the work michael @free-electrons.com

© (0 make derivative works

© to make commercial use of the work Document sources, updates and translations:

Under the following conditions http://free-electrons.com/training/drivers
Attribution. You must give the original author credit.
, . , Corrections, suggestions, contributions and
Share Alike. If you alter, transform, or build upon this work, ; :
@ you may distribute the resulting work only under a license translations are welcome!

identical to this one.

© For any reuse or distribution, you must make clear to others the
license terms of this work.

© Any of these conditions can be waived if you get permission from
the copyright holder.

Your fair use and other rights are in no way affected by the above.

License text: http://creativecommons.org/licenses/by-sa/2.0/legalcode

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\ Free Electrons : o ; .

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://creativecommons.org/licenses/by-sa/2.0/legalcode
http://free-electrons.com/training/drivers

Best viewed with...

This document 1s best viewed with a recent PDF reader
or with OpenOffice.org itself!

» Take advantage of internal or external hyperlinks.
So, don’t hesitate to click on them!

» Find pages quickly thanks to automatic search
» Use thumbnails to navigate in the document in a quick way

If you’re reading a paper or HTML copy, you should get your

q—?,

copy 1n PDF or OpenOffice.org format on
http://free-electrons.com/training/drivers!

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/
http://openoffice.org/
http://openoffice.org/
http://free-electrons.com/training/drivers

Course prerequisites

Skills to make these lectures and labs profitable

Familiarity with Unix concepts and its command line interface

» Essential to manipulate sources and files
P Essential to understand and debug the system that you build

» You should read http://free-electrons.com/training/intro_unix_linux
This Unix command line interface training also explains Unix concepts
not repeated 1n this document.

Experience with C programming

» On-line C courses can be found on
http://dmoz.org/Computers/Programming/Languages/C/Tutorials/

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/training/intro_unix_linux
http://dmoz.org/Computers/Programming/Languages/C/Tutorials/

Contents (1)

Kernel overview

» Linux features

» Kernel code

» Kernel subsystems

» Linux versioning scheme and development process
» Legal issues: licensing constraints, software patents

» Kernel user interface

Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Contents (2)

¢
Compiling and booting » Bootloaders

» Getting the sources ® Linux device files

» Structure of source files » Cross-compiling the kernel

» Kernel source managers Basic driver development

» Kernel configuration »] oadable kernel modules

» Compiling the kernel » Module parameters

» Overall system startup » Adding sources to the tree

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Contents (3)

Driver development » Sleeping, Interrupt management

» Memory management » mmap, DMA
» 1/O memory and ports

» Character drivers

» Debugging

» Handling concurrency

» Processes and scheduling

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Contents (4)

o
Driver development Advice and resources

P New device model, sysfs P Choosing filesystems

» Hotplug » Getting help and contributions

» udev dynamic devices » Bug report and patch submission

» References

» [ast advice

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Contents (5)

Annexes
» Quiz answers
» Using Ethernet over USB

® Init runlevels

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Embedded Linux driver development

Kernel overview
Linux features

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Studied kernel version: 2.6

¢
Linux 2.4 Linux 2.6
2 Mature 2 2 years old stable Linux release!
® But developments stopped; very © Support from the Linux
few developers willing to help. development community and all
® Now obsolete and lacks recent commercial vendors.
features. ® Now mature and more exhaustive.

> Still fine if you get your Most drivers upgraded.

sources, tools and support from @ Cutting edge features and
commercial Linux vendors. increased performance.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux kernel key features

¢
» Portability and hardware support P Security
Runs on most architectures. It can't hide 1ts flaws. Its code 1s
P Scalability reviewed by many experts.
Can run on super computers as » Stability and reliability.
v:ell\l/ﬂags ofn tiny d.ewces) » Modularity
(0 1s enough). Can include only what a system
» Compliance to standards and needs even at run time.
interoperability. P Easy to program
» Exhaustive networking support. You can learn from existing code.

Many useful resources on the net.

48

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6

(]

http://free-electrons.com/

Supported hardware architectures

» See the arch/ directory in the kernel sources
» Minimum: 32 bit processors, with or without MMU

® 32 bit architectures (arch/ subdirectories)
alpha, arm, cris, frv, h8300, 1386, m32r, m68k, m6é 8knommu,
mips, parisc, ppc, s390, sh, sparc, um, v850, xtensa

» 64 bit architectures:
ia64,mips64, ppc64, sh64, sparc64, x86 64

P See arch/<arch>/Kconfig, arch/<arch>/README, or
Documentation/<arch>/ for details

Embedded Linux kernel and driver development e U I ;
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons | |

Creative Commons Attribution-ShareAlike 2.0 license : 1 3

© I11

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Kernel overview
Kernel code

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Implemented in C

» Implemented in C like all Unix systems.
(C was created to implement the first Unix systems)

P A little Assembly is used too:
CPU and machine initialization, critical library routines.

See http://www.tux.org/lkml/#s15-3
for reasons for not using C++
(main reason: the kernel requires efficient code).

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Compiled with GNU C

» Need GNU C extensions to compile the kernel.
So, you cannot use any ANSI C compiler!

» Some GNU C extensions used in the kernel:

» Inline C functions
» Inline assembly

» Structure member initialization
in any order (also in ANSI C99)

» Branch annotation (see next page)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Help gcc to optimize your code!

P Use the 1ikely and unlikely statements
(include/linux/compiler.h)

» Example:
1f (unlikely(err)) {

}

» The GNU C compiler will make your code faster
for the most likely case.

Used in many places in kernel code!
Don't forget to use these statements!

Embedded Linux kernel and driver development e U I ;
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons | |

Creative Commons Attribution-ShareAlike 2.0 license : 1 7

© lII

http://free-electrons.com May 14, 2006

http://free-electrons.com/

No C library

» The kernel has to be standalone and can't use user-space code.
Userspace 1s implemented on top of kernel services, not the opposite.
Kemel code has to supply its own library implementations
(string utilities, cryptography, uncompression ...)

» So, you can't use standard C library functions in kernel code.
(printf (), memset (), malloc()...).
You can also use kernel C headers.

» Fortunately, the kernel provides similar C functions for your
convenience, like printk (), memset (), kmalloc() ...

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Managing endianism

Linux supports both little and big endian architectures

» Each architecture defines BIG ENDIAN or
__LITTLE ENDIAN in<asm/byteorder.h>
Can be configured in some platforms supporting both.

» To make your code portable, the kernel offers conversion macros
(that do nothing when no conversion 1s needed). Most useful ones:
u32 cpu to be32(u32); //CPU byte order to big endian
u32 cpu to le32(u32); //CPU byte order to little endian
u32 be32 to cpu(u32); //Little endian to CPU byte order
u32 le32 to cpu(u32); //Bigendianto CPU byte order

@
Embedded Linux kernel and driver development e U
© Copyright 2006-2004, Michael Opdenacker

(.\' Free Electr ons Creative Commons Attribution-ShareAlike 2.0 license > - i | 19

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel coding guidelines

» Never use floating point numbers in kernel code. Your code
may be run on a processor without a floating point unit (like on
arm). Floating point can be emulated by the kernel, but this 1s
very slow.

» Define all symbols as static, except exported ones (avoid
namespace pollution)

» See Documentation/CodingStyle for more guidelines

» It's also good to follow or at least read GNU coding standards:
http://www.gnu.org/prep/standards.html

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/CodingStyle
http://www.gnu.org/prep/standards.html

Embedded Linux driver development

Kernel overview
Kernel subsystems

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel architecture

®
Appl App2
pp pp User
space
C library
System call interface
Process Memory Filesystem Device Networkin
management management support control & Kernel
space
Filesystem
types
CPU support CPU / MMU Storage Character Network
code support code drivers device drivers device drivers

CP m LU TIPS RAM Storage

o2 [=

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

22

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel memory constraints

Who can look after the kernel?

» No memory protection
Accessing illegal memory
locations result in (often fatal)
kernel oopses.

P Fixed size stack (8 or 4 KB)
Unlike in userspace,
no way to make it grow.

P Kernel memory can't be swapped
out (for the same reasons).

®
User
process %
Attempt l SIGSEGYV, kill
to access '

_ —» Kernel
Illegal.x“ Exception
memory (MMU)
location Userspace memory management

Used to implement:

- memory protection

- stack growth

- memory swapping to disk

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com May 14, 2006

http://free-electrons.com/

I/0 schedulers

» Mission of I/O schedulers: re-order reads and writes to disk to
minimize disk head moves (time consuming!)

Slower Faster

» Not needed in embedded systems with no hard disks
(data access time independent of location on flash storage)
Build your kernel with no-op 1/O scheduler then!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

24

http://free-electrons.com/

Embedded Linux driver development

Kernel overview
Linux versioning scheme and development process

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

o =
Embedded Linux kernel and driver development % I ;
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g | 25

(]

http://free-electrons.com/

Linux stable releases

Major versions

» 1 major version every 2 or 3 years

Examples: 1.0,2.0,2.4,2.6 Even number
A A A A |

Stable releases

» | stable release every 1 or 2 months
Examples: 2.0.40,2.2.26,2.4.27,2.6.7 ...

Stable release updates (since March 2005)

» Updates to stable releases up to several times a week
Address only critical 1ssues 1n the latest stable release

Examples: 2.6.11.1t02.6.11.7 I

26

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux development and testing releases

Testing releases

P Several testing releases per month, before the next stable one.
You can contribute to making kernel releases more stable by
testing them!

Example: 2.6.12-rcl

Development versions

» Unstable versions used by kernel developers
before making a new stable major release

Examples: 2.3.42, 2.5.74 Odd number
A A |
®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Continued development in Linux 2.6

» Since 2. 6.0, kernel developers have been able to introduce lots
of new features one by one on a steady pace, without having to
make major changes in existing subsystems.

» Opening a new Linux 2. 7 (or 2. 9) development branch will be
required only when Linux 2 . 6 1s no longer able to accommodate
key features without undergoing traumatic changes.

> Thanks to this, more features are released to users at a faster pace.

~ However, the internal kernel API can undergo changes between
two 2.6 .x releases. A module compiled for a given version may
no longer compile or work on a more recent one.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

What's new in each Linux release? (1)

Author: Andi Kleen <ak@suse.de>

commit 3¢92c2ba33cd7d666c5f83cc32aa590e794e91b0
Date: Tue Oct 11 01:28:33 2005 +0200 ; '? '
[) e ©

[PATCH] i386: Don't discard upper 32bits of HWCR on K8

Need to use long long, not long when RMWing a MSR. I think
it's harmless right now, but still should be better fixed
if AMD adds any bits in the upper 32bit of HWCR.

Bug was introduced with the TLB flush filter fix for i386

Signed-off-by: Andi Kleen <ak@suse.de>
Signed-off-by: Linus Torvalds <torvalds@osdl.org>

® The official list of changes for each Linux release is just a
huge list of individual patches!

» Very difficult to find out the key changes and to get the
global picture out of individual changes.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

What's new in each Linux release? (2)

» Fortunately, a summary of key changes
25!

y
P

with enough details 1s available on
http://wiki.kernelnewbies.org/LinuxChanges

» For each new kernel release, you can also get the :
changes in the kernel internal API:
http://lwn.net/Articles/2.6-kernel-api/

» What's next?
Documentation/feature-removal-schedule.txt
lists the features, subsystems and APIs that are
planned for removal (announced 1 year in advance).

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://wiki.kernelnewbies.org/LinuxChanges
http://lwn.net/Articles/2.6-kernel-api/
http://free-electrons.com/kerneldoc/latest/feature-removal-schedule.txt

Embedded Linux driver development

Kernel overview

Legal 1ssues
Licensing details and constraints

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux license

®» The whole Linux sources are Free Software released
under the GNU General Public License (GPL)

» See our http://free-electrons.com/training/intro_unix_linux
training for details about Free Software and its licenses.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/training/intro_unix_linux

Linux kernel licensing constraints

Constraints at release time (no constraint before!)

» For any device embedding Linux and Free Software, you have to
release sources to the end user. You have no obligation to release
them to anybody else!

» According to the GPL, only Linux drivers with a GPL compatible
license are allowed.

» Proprietary modules are tolerated (but not recommended) as long as
they cannot be considered as derived work of GPLed code.

» Proprietary drivers cannot be statically compiled in the kernel.

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

48

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

(]

http://free-electrons.com/

Advantages of free software drivers

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

From the driver developer / decision maker point of view

P You don't have to write your driver P Users and the community get a
from scratch. You can reuse code positive image of your company.
from similar free software drivers. Makes it easier to hire talented

P You get free community developers.
contributions, support, code review » You don't have to supply binary
and testing. Proprietary drivers driver releases for each kernel
(even with sources) don't get any. version and patch version (closed

dri
® Your drivers can be freely shipped source drivers)

by others (mainly by distributions) P Modules have all privileges. You

, , need the sources to make sure that
» Your drivers can be statically

, , a module is not a security risk.
compiled in the kernel

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Kernel overview

Legal 1ssues
Software patents

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Software patents: the big legal threat

» Software implementations very well protected internationally by
Copyright Law. This 1s automatic, no paperwork.

» However, in countries like the USA or Japan, it is now legal to patent
what the software does, instead of protecting only the implementation.

» Patents can be used to prevent anyone from re-using or even improving
an algorithm or an idea!

» Deadly for software competition and innovation: can't write any
program without reusing any technique or idea from anyone.

See http://wiki.ti.org/SwpatAnim0504 18En for an animated introduction

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://wiki.ffii.org/SwpatAnim050418En

Software patents hall of shame

» The progression bar » Compression in mobile

. communication
» Amazon 1-click, Amazon

gift ordering » Digital signature with extra

» Electronic shopping cart info

» Compressing and Hypermedia linking

decompressing text files

See http://swpat.ffi.org/patents/samples/index.en.html
for more examples

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O -
Embedded Linux kernel and driver development ' I !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g |
|
| 37

(]

http://free-electrons.com/
http://swpat.ffii.org/patents/samples/index.en.html

Software patent issues in the kernel

Linux Kernel driver 1ssues because of patented algorithms
Check for software patent warnings when you configure your kernel!

» Patent warnings issued in the > Networking compression
documentation of drivers, shown in the drivers/net/bsd_comp.c
kernel configuration interface. Can't send a CCP reset-request as a

result of an error detected after

» Flash Translation Layer decompression (Motorola patent)

drivers/mtd/ftl.c

In the USA, this driver can only be P Other drivers not accepted in Linux
used on PCMCIA hardware releases or algorithms not

(MSystems patent) implemented because of such patents!

, Otherwise, more examples would be
P Nand Flash Translation Layer

In the USA, can only be used on
DiskOnChip hardware

available in the source code.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

How to avoid software patent issues

» Applies too when you develop in software patent free areas. You may
not be able to export your products.

» Kemel drivers with patents: always check driver description in kernel
configuration. Known patent issues are always documented.

» Always prefer patent free alternatives (PNG instead of GIF, Linux
RTAI instead of RTLinux, etc.)

» Don't file patents on your software ideas at your turn. This may
expose you more to patent risk. You will lose against software giants.

48

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

(]

http://free-electrons.com/

Legal support

¢
When lawyers are after you, or to avoid legal trouble...
Free support Free Software and Open Source
USA legal consulting, support and insurance

P Software Freedom Law Cent
» The Electronic Frontier Foundation ottware freedom Law Lentet

http: .sof f :
http://eff.org/ ttp://www.softwarefreedom.org/

: » Open Source Risk Management
European Union ,
http://www.osriskmanagement.com/

®» The Foundation for a Free
Information Infrastructure
http://ffi1.org/index.en.html

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://eff.org/
http://ffii.org/index.en.html
http://www.softwarefreedom.org/
http://www.osriskmanagement.com/

Embedded Linux driver development

Kernel overview
Kernel user interface

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Mounting virtual filesystems

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

» Linux makes system and kernel information available in user-
space through virtual filesystems (virtual files not existing on any
real storage). No need to know kernel programming to access this!

» Mounting /proc:
mount -t proc none /proc

» Mounting /sys:
mount -t sysfs none /sys

/ booX

Filesystem type Raw device Mount point
or filesystem image
In the case of virtual
filesystems, any string is fine

Embedded Linux kernel and driver development

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel userspace interface

A few examples:

» /proc/cpuinfo: processor information

» /proc/meminfo: memory status

» /proc/version: version and build information
» /proc/cmdline: kernel command line

» /proc/<pid>/environ: calling environment

» /proc/<pid>/cmdline: process command line

... and many more! See by yourself!

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Userspace interface documentation

» Lots of details about the /proc interface are available in
Documentation/filesystems/proc.txt

(almost 2000 lines) in the kernel sources.

® You can also find other details in the proc manual page:
man proc

» See the New Device Model section for details about /sys

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/proc.txt

Userspace device drivers (1)

Possible to implement device drivers in user-space!

» Such drivers just need access to the devices through
minimum, generic kernel drivers.

» Examples:
Printer and scanner drivers
(on top of generic parallel port / USB drivers)
X drivers: low level kernel drivers + user space X drivers.

¥

¢ Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker _
Creative Commons Attribution-ShareAlike 2.0 license <
http://free-electrons.com May 14, 2006 -

(]

http://free-electrons.com/

Userspace device drivers (2)

» Advantages
No need for kernel coding skills. Easier to reuse code between devices.

Drivers can be kept proprietary

Driver code can be killed and debugged. Cannot crash the kernel.
Can be swapped out (kernel code cannot be).

Less in-kernel complexity.

» Drawbacks
Less straightforward to handle interrupts.

Increased latency vs. kernel code.

» See http://free-electrons.com/redirect/elc2006-uld.html
for practical details and techniques for overcoming the drawbacks.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/redirect/elc2006-uld.html

Embedded Linux driver development

Compiling and booting Linux
Getting the sources

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux kernel size

» Linux 2.6.16 sources:
Raw size: 260 MB (20400 files, approx 7 million lines of code)
bzip2 compressed tar archive: 39 MB (best choice)
gzip compressed tar archive: 49 MB

» Minimum compiled Linux kernel size (with Linux-Tiny patches)
approx 300 KB (compressed), 800 KB (raw)

» Why are these sources so big?
Because they include thousands of device drivers, many network
protocols, support many architectures and filesystems...

» The Linux core (scheduler, memory management...) is pretty small!

®
Embedded Linux kernel and driver development »
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons |
I.I

Creative Commons Attribution-ShareAlike 2.0 license _ 48
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

kernel.org

b4 The Linux Kernel Archives - Mozilla Firefox

File Edit Wiew Go Boockmarks Tools Help

o - - ?@ ﬁ [ﬂl http://kernel.org/

£8Go [E,

M Red Hat Network) Common UNIX Printin... @ OSK/uboot - CE Linux... api: Module text nst Mikehall's Embedded ...

[+]

The Linux Kernel Archives

Welcome to the Linux Kernel Archives. This is the primary site for the Linux kernel source, but it has much more

than just Linux kernels.

Protocol
HTTP

Location

http://iwww.kernel.org/pub/

ETP

fip:/ffip.kernel.org/pub

RSYNC rsyncffrsync.kernel.org/pub/

The latest stable version of the Linux kernel is:

The latest snapshot for the stable Linux kernel tree is: 2.6.14-git6

The latest 2.4 version of the Linux kernel is:
The latest prepatch for the 2.4 Linux kernel tree is:
The latest 2.2 version of the Linux kernel is:
The latest prepatch for the 2.2 Linux kernel tree is:
The latest 2.0 version of the Linux kernel is:

The latest -ac patch to the stable Linux kernels is:

The latest -mm patch to the stable Linux kernels is:

26.14 2005-10-28 00:27 UTC E V VI
2005-11-03 1749 UTC ¥
2.4.31 2005-06-01 0057 UTC EV VI
2.4.32-rc2 2005-10-31 21:16 UTC M MI
2.2.26 2004-02-25 00:2BUTC E W
2.2.27-rc2 2005-01-12 23:55 UTC V¥ VI
2.0.40 2004-02-08 07:13UTCEV VI
2.6.11-ac? 2005-04-11 1836 UTC ¥
2.6.14-rc5-mm1l 2005-10-24 08:10 UTC ¥

Changelog
Changelog
Changelog

Changelog

Free Electrons

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker

http://free-electrons.com

Creative Commons Attribution-ShareAlike 2.0 license

May 14, 2006

http://free-electrons.com/

Getting Linux sources: 2 possibilities

Full sources

P The easiest way, but longer to download.

» Example:
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.14.1.tar.bz2

Or patch against the previous version

P Assuming you already have the full sources of the previous version

> Example:

http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.bz2 (2.6.13 to 2.6.14)
http://kernel.org/pub/linux/kernel/v2.6/patch-2.6.14.7.bz2 (2.6.14 to 2.6.14.7)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Downloading full kernel sources

Downloading from the command line
» With a web browser, identify the version you need on http://kernel.org

» In the right directory, download the source archive and its signature
(copying the download address from the browser):

wget http://kernel.org/pub/linux/kernel/v2.6/1linux-2.6.11.12.tar.bz2
wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.11.12.tar.bz2.sign

» Check the electronic signature of the archive: - -
~/ .wgetrc config file for proxies:

gpg --verify linux-2.6.11.12.tar.bz2.sign http proxy = <proxy>:<port>
ftp proxy = <proxy>:<port>
proxy user = <user> (if any)

» Extract the contents of the source archive: proxy password = <passwd> (if any)

tar jxvf linux-2.6.11.12.tar.bz2

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://kernel.org/
http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.11.12.tar.bz2.sign

Downloading kernel source patches (1)

Assuming you already have the 1inux-x.y.<n-1> version
» Identify the patches you need on http://kernel.org with a web browser

» Download the patch files and their signature:

Patchfrom2.6.10t02.6.11
wget ftp://ftp.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.bz2
wget ftp://ftp.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.bz2.sign

Patchfrom2.6.11to2.6.11.12 (latest stable fixes)

wget http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.12.bz2
wget http://www.kernel.org/pub/linux/kernel/v2.6/patch-2.6.11.12.bz2.sign

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://kernel.org/

Downloading kernel source patches (2)

» Check the signature of patch files:

gpg --verify patch-2.6.11.bz2.sign
gpg --verify patch-2.6.11.12.bz2.sign

» Apply the patches in the right order:

cd linux-2.6.10/

bzcat ../patch-2.6.11.bz2 | patch -pl
bzcat ../patch-2.6.11.12.bz2 | patch -pl
cd ..

mv linux-2.6.10 linux-2.6.11.12

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Checking the integrity of sources

®
Embedded Linux kernel and driver development
. | © Copyright 2006-2004, Michael Opdenacker
Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

Kernel source integrity can be checked through OpenPGP digital signatures.
Full details on http://www kernel.org/signature.html

P If needed, read http://www.gnupg.org/gph/en/manual.html and create a new
private and public keypair for yourself.

P Import the public GnuPG key of kernel developers:
P gpg --keyserver pgp.mit.edu --recv-keys 0x517DOFOE

» If blocked by your firewall, look for 0x517DOFOE on
http://pgp.mit.edu/, copy and paste the key to a Linuxkey.txt file:
gpg --import linuxkey.txt

P Check the signature of files:
gpg --verify linux-2.6.11.12.tar.bz2.sign

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://www.kernel.org/signature.html
http://www.gnupg.org/gph/en/manual.html
http://pgp.mit.edu/

Anatomy of a patch file

A patch file 1s the output of the diff command

diff -Nru a/Makefile b/Makefile <¢— diff command line
——— a/Makefile 2005-03-04 09:27:15 —-08:00 | |
+++ b/Makefile 2005-03-04 09:27:15 -08:00 + Filedateinfo
@@ -1,7 +1,7 Qe
VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 11
-EXTRAVERSION =
+EXTRAVERSION = .1
NAME=Woozy Numbat

Line numbers in files

Context info: 3 lines before the change
Useful to apply a patch when line numbers changed

Removed line(s) if any
Added line(s) if any

I

Context info: 3 lines after the change
DOCUMENTATION

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Using the patch command

The patch command applies changes to files in the current directory:
» Making changes to existing files

» Creating or deleting files and directories

patch usage examples:

P patch -p<n> < diff file

P cat diff file | patch -p<n>

P bzcat diff file.bz2 | patch -p<n>

P zcat diff file.gz | patch -p<n>

n: number of directory levels to skip in the file paths

O -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g |
|

Creative Commons Attribution-ShareAlike 2.0 license _ 5 6
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Applying a Linux patch

Linux patches...
P Always to apply to the x.y.<z-1> version
P Always produced for n=1 (that's what everybody does... do it too!)

» Downloadable in gzip and bzip2 (much smaller) compressed files.

» Linux patch command line example:
cd linux-2.6.10

bzcat ../patch-2.6.11.bz2 | patch -pl
cd ..; mv linux-2.6.10 linux-2.6.11

» Keep patch files compressed: useful to check their signature later.
You can still view (or even edit) the uncompressed data with vi:
vi patch-2.6.11.bz2 (on the fly (un)compression)

Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Accessing development sources (1)

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

» Kernel development sources are now managed with git

®» You can browse Linus' git tree (if you just need to check a few files):
http://www .kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=tree

» Get and compile git from http://kernel.org/pub/software/scm/git/

» Get and compile the cogito front-end from
http://kernel.org/pub/software/scm/cogito/

® If you are behind a proxy, set Unix environment variables defining proxy

settings. Example:
export http proxy="proxy.server.com:8080"
export ftp proxy="proxy.server.com:8080"

http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://www.kernel.org/git/?p=linux/kernel/git/torvalds/linux-2.6.git;a=tree
http://kernel.org/pub/software/scm/git/
http://kernel.org/pub/software/scm/cogito/

Accessing development sources (2)

» Pick up a git development tree on http://kernel.org/git/

» Get a local copy (“clone™) of this tree.
Example (Linus tree, the one used for Linux stable releases):

cg-clone http://kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
or cg-clone rsync://rsync.kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git

» Update your copy whenever needed (Linus tree example):
cd linux-2.6
cg-update origin

More details available
on http://git.or.cz/ or http://linux.yyz.us/git-howto.html

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://kernel.org/git/
http://kernel.org/pub/scm/linux/kernel/git/torvalds/linux-2.6.git
http://git.or.cz/
http://linux.yyz.us/git-howto.html

Embedded Linux driver development

Compiling and booting Linux
Structure of source files

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux sources structure (1)

arch/<arch>
arch/<arch>/mach-<mach>
COPYING

CREDITS

crypto/

Documentation/

drivers/

fs/

include/
include/asm-<arch>

Architecture specific code

Machine / board specific code

Linux copying conditions (GNU GPL)
Linux main contributors

Cryptographic libraries

Kernel documentation. Don't miss it!

All device drivers (drivers/usb/, etc.)
Filesystems (fs/ext3/, etc.)

Kernel headers

Architecture and machine dependent headers

include/linux Linux kernel core headers
init/ Linux initialization (including main.c)
ipc/ Code used for process communication

©

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux sources structure (2)

kernel/ Linux kernel core (very small!)
lib/ Misc library routines (z1ib, crc32...)
MAINTAINERS Maintainers of each kernel part. Very useful!
Makefile Top Linux makefile (sets arch and version)
mm / Memory management code (small too!)
net/ Network support code (not drivers)
README Overview and building instructions
REPORTING-BUGS Bug report instructions
scripts/ Scripts for internal or external use
security/ Security model implementations (SELinux...)
sound/ Sound support code and drivers
usr/ Early user-space code (initramfs)

©

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license y

http://free-electrons.com May 14, 2006

62

http://free-electrons.com/

On-line kernel documentation

http://free-electrons.com/kerneldoc/
» Provided for all recent kernel releases
» Easier than downloading kernel sources to access documentation

» Indexed by Internet search engines
Makes kernel pieces of documentation easier to find!

» Unlike most other sites offering this service too, also includes an
HTML translation of kernel documents in the DocBook format.

-

Never forget documentation in the kernel sources! It's a very
valuable way of getting information about the kernel.

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6

(]

http://free-electrons.com/
http://free-electrons.com/kerneldoc/

Embedded Linux driver development

Compiling and booting Linux
Kernel source management tools

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

LXR: Linux Cross Reference

http://sourceforge.net/projects/Ixr 2 Takes a little bit of time and patience to setup
. . . configuration, indexing, server
Generic source indexing tool and code (s 5

configuration).
browser

2 Initial indexing quite slow:
Linux 2.6.11: 1h 40min on P4 M
1.6 GHz, 2 MB cache

P Web server based
Very easy and fast to use
P Identifier or text search availabl
R AvarabE 2 You don't need to set up LXR by yourself.
> Very easy to find the declaration, Use our http://Ixr.free-electrons.com server!

implementation or usages of symbols Other servers available on the Internet:
http://free-electrons.com/community/kernel/lIxr/

> Supports C and C++

> Supports huge code projects such as the
Linux kernel (260 M in Apr. 2006)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://sourceforge.net/projects/lxr
http://lxr.free-electrons.com/
http://free-electrons.com/community/kernel/lxr/

LLXR screenshot

b4 Linux/kemnelfuser.c - Mozilla Firefox
File Edit View Go Bookmarks Tools Help
I 4 "
<:Z| hd |_L - @ @ LI http:f/Ixr.linux.no/source/kemel/user.c IEI @ co @.
LI Red Hat, Inc. || Red Hat Network | 1Support | JShop | /Products | Training
[+]
C R f . L. | source navigation |
ross-Referencing Linux S
[identifier search |
. HEEN TSRS ANGIT
Linux/kernel/user.c [rectext search]
[file search]
Version: [1.09][12.153][2.040][2226][2418][2420][2428][2.6.10][2.6.11]
P [386][alpha][arm][ia64][m68k][mips][mips64][ppe][5390][sh][sparc][sparc64]
remtecture:
[x86_64]
1/m
2 * The "user cache"”.
3 =
4 # (C) Copyright 1991-2000 Linus Torvalds
5 =
6 * We have a per-user structure to keep track of how many
7 # processes, files etc the user has claimed, in order to be
8 # able to have per-user limits for system resources.
8
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/slab.h>
14 #include <linux/bitops.h>
15 #include <limui/kev.h>
16
1z s
18 * UID task count cache, to get fast user lookup in "alloc uid"
19 * when changing user ID's (ie setuid() and friends).
20 °/
21 #define UIDHASH _BITS B
22 #define UIDHASH_SZ (1 << UIDHASH_RBITS)
23 #define UIDHASH MASK (UIDHASH_SZ - 1)
24 #define __uidhashfn(uid) (({uid >> UIDHASH BITS) + uid) & UIDHASH_MASK)
25 #define uidhashentry(uid) (uidhash_table + __uidhashfn({uid)))
26
27 static kmem_cache_t *uid cachep;
28 static struct list_head uidhash table[UIDHASH SZ7;
29 static DEFINE SPINLOCK(uidhash_lock);
30
31 struct user struct root _user = {
32 .__count = ATOMIC_INIT(1),
33 .processes = ATOMIC_INIT(1),
Done

Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Ketchup - Easy access to kernel source trees

http://www.selenic.com/ketchup/wiki/

P Makes it easy to get the latest version of a given kernel source tree
(2.4,2.6,2.6-rc,2.6-git,2.6-mm, 2.6-rt...)

» Only downloads the needed patches.
Reverts patches when needed to apply a more recent patch.

» Also checks the signature of sources and patches.

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6 |
|

Creative Commons Attribution-ShareAlike 2.0 license _ 6 7
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://www.selenic.com/ketchup/wiki/

Ketchup examples

® Get the version in the current directory:
> ketchup -m
2.6.10

» Upgrade to the latest stable version:
> ketchup 2.6-tip
2.6.10 -=> 2.6.12.5
Applying patch-2.6.11.bz2
Applying patch-2.6.12.bz2
Applying patch-2.6.12.5.bz2

More on http://selenic.com/ketchup/wiki/index.cgi/ExampleUsage

0 —
Embedded Linux kernel and driver development R U _
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g |
Ly

Creative Commons Attribution-ShareAlike 2.0 license . 68
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://selenic.com/ketchup/wiki/index.cgi/ExampleUsage

Practical lab — Kernel sources

Time to start Lab 1!

» Get the sources

» Check the authenticity of sources
» Apply patches

» Get familiar with the sources

» Use a kernel source indexing tool

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license

|11
http://free-electrons.com May 14, 2006 ﬁl 69

(]

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Kernel configuration

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel configuration overview

P Makefile edition
Setting the version and target architecture if needed

» Kernel configuration: defining what features to include in the kernel:

make [config|xconfig|gconfig|menuconfig|oldconfig]

» Kemel configuration file (Makefile syntax) stored
in the .config file at the root of the kernel sources

» Distribution kernel config files usually released in /boot /

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Makefile changes

» To identify your kernel image with others build from the
same sources, use the EXTRAVERSION variable:

VERSION = 2
PATCHLEVEL = 6
SUBLEVEL = 15
EXTRAVERSION = -—-acmel

» uname -r will return:
2.6.15-acmel

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

make xconfig

make xconfig

» New Qt configuration interface for Linux 2.6.
Much easier to use than in Linux 2.4!

» Make sure you read
help -> introduction: useful options!

» File browser: easier to load configuration files

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

73

http://free-electrons.com/

make xconfig screenshot

File Option Help

oZHE |1l E|
Option |Name | ad |Opti0n Name
E----Code maturity level options [,
--General setup - [BiIPAQ H2200 PCMCIA H2200_PCMCIA
5----C0nfigure standard kernel features (for small systems) EMBEDDED - IPAQ H2200 MediaQ 1178 LCD H2200_LCD
--Loadable module support - iPAQ H2200 battery interface H2200_BATTERY
--System Type - [+iPAQ H2200 touchscreen driver H2200_TS
=-Intel PXA2xx Implementations - [iPAQ H2200 hardware audio control H2200_AUDIO
- [AToshiba e7xx [eBxx ARCH_ESERIES
- Asus 620/620BT MACH_AB20
- [Ahp iIPAQ h1910 ARCH_H1900
wi=hp iPAQ h2200 ARCH_H2200 |
—hp iIPAQ h3900 ARCH_H3900
- [Ahp iIPAQ h4000 MACH_H4000
-[hp iIPAQ h5400 ARCH_H5400
- C1Dell Axim X5 ARCH_AXIMX5 ‘
- O Dell Axim X3 (non-functional) ARCH_AXIMX3 -
- RoverPl (Mitac Mio 336) ARCH_ROVERP1 —
- [] RoverP5+ ARCH_ROVERPSP . [o]
 Linux As Bootloader hp iPAQ h2200 (ARCH_H2200) =

- Compag/iPAQ Options
-~ General setup
- PCMCIA/CardBus support

type: boolean
prompt: hp iPAQ h2200
dep: ARCH_PXA

“Generic Driver Options selact: PXAZ5x
--Parallel port support dep: ARCH_PXA
--Memory Technology Devices (MTD)
g----RAM.-’ROMfFIash chip drivers defined at arch/arm/mach-pxa/h2200/K config: 1
i~Mapping drivers for chip access
E----Self—conrained MTD device drivers This enables support for HP iPAQ H22xx series of handhelds.
“-NAND Flash Device Drivers There are a number of H22xx-specific drivers under this submenu:

-Plug and Play support pcmcia, lcd, battery, touchscreen

[4]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

Creative Commons Attribution-ShareAlike 2.0 license . 7 4
http://free-electrons.com May 14, 2006

@ U Free Electrons

http://free-electrons.com/

Compiling statically or as a module

Compiled as a module (separate file)
CONFIG IS09660 FS=m

Driver options EISG! 9660 CDRTOM file system support
CONFIG JOLIET=y —®2Microsoft Joliet CDROM extensions
CONFIG zISOFS=y —®@Transparent decompression extension
-aUDF file system support

/

Compiled statically in the kernel
CONFIG UDF FS=y

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

make config / menuconfig / gconfig

make config

» Asks you the questions 1 by 1. Extremely long!
make menuconfig
» Same old text interface as in Linux 2.4.

Useful when no graphics are available.
Pretty convenient too!

make gconfig

» New GTK based graphical configuration interface.
Functionality similar to that of make xconfig.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

make oldconfig

make oldconfig
» Needed very often!

» Useful to upgrade a .config file from an earlier kernel
release

» Issues warnings for obsolete symbols
» Asks for values for new symbols

If you edit a . config file by hand, it's strongly recommended

?]77

to run make oldconfig afterwards!

O —
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker \
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
http://free-electrons.com May 14, 2006 -

(]

http://free-electrons.com/

make allnoconfig

make allnoconfig

» Only sets strongly recommended settings to y.

» Sets all other settings to n.

» Very useful in embedded systems to select only the minimum
required set of features and drivers.

» Much more convenient than unselecting hundreds of features

one by one!
®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _ 7 8
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

make help

make help
» Lists all available make targets

» Useful to get a reminder, or to look for new or advanced
options!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Compiling the kernel

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Compiling and installing the kernel

Compiling step

» make

Install steps (logged as root!)

» make install

» make modules_install

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Dependency management

» When you modify a regular kernel source file, make only
rebuilds what needs recompiling. That's what it 1s used for.

» However, the Makefile is quite pessimistic about
dependencies. When you make significant changes to the
.config file, make often redoes much of the compile job!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Compiling faster on multiprocessor hosts

» If you are using a workstation with n processors, you may roughly
divide your compile time by n by compiling several files in parallel

» make -j <n>
Runs several targets in parallel, whenever possible

» Using make -j 2ormake -7 3 on single processor workstations.
This doesn't help much. In theory, several parallel compile jobs keep
the processor busy while other processes are waiting for files to be
read of written. In practice, you don't get any significant speedup (not
more than 10%), unless your I/Os are very slow.

®
Embedded Linux kernel and driver development »
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons |
I.I

Creative Commons Attribution-ShareAlike 2.0 license _ 8 3
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Compiling faster with ccache

http://ccache.samba.org/
Compiler cache for C and C++, already shipped by some distributions
Much faster when compiling the same file a second time!

» Very useful when .config file change are frequent.

» Use it by adding a ccache prefix

to the CC and HOSTCC definitions in Makefile:

CC = ccache §$(CROSS COMPILE)gcc
HOSTCC = ccache gcc

» Performance benchmarks:
-63%: with a Fedora Core 3 config file (many modules!)

w
. | © Copyright 2006-2004, Michael Opdenacker ! ' I |
Free Electrons Creative Commons Attribution-ShareAlike 2.0 license : i 8 4
@]

-82%: with an embedded Linux config file (much fewer module?' l |

Embedded Linux kernel and driver development

http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://ccache.samba.org/

Kernel compiling tips

» View the full (gcc, 1d...) command line:
make V=1

» Clean-up generated files

|

(to force re-compiling drivers):
make clean

' » Remove all generated files
(mainly to create patches)

=y

Caution: also removes your .config file!
make mrproper

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Generated files

Created when you run the make command

» vmlinux
Raw Linux kernel image, non compressed.

» arch/<arch>/boot/zImage (default image on arm)
z1ib compressed kernel image

» arch/<arch>/boot/bzImage (default image on 1386)
Also a z1ib compressed kernel image.
Caution: bz means “big zipped” but not “bzip2 compressed”!
(bzip2 compression support only available on 1386 as a tactical patch.
Not very attractive for small embedded systems though: consumes 1 MB

of RAM for decompression).
Embedded Linux kernel and driver development w .

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Files created by make install

» /boot/vmlinuz-<version>
Compressed kernel image. Same as the one in arch/<arch>/boot

P /boot/System.map-<version>
Stores kernel symbol addresses

» /boot/initrd-<version>.img (when used by your distribution)
Initial RAM disk, storing the modules you need to mount your root
filesystem. make install runs mkinitrd for you!

» /etc/grub.confor /etc/lilo.conf
make install updates your bootloader configuration files to support
your new kernel! It reruns /sbin/1ilo if LILO is your bootloader.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Files created by make modules_install (1)

/1lib/modules/<version>/: Kernel modules + extras

» build/
Everything needed to build more modules for this kernel: Makefile,
.config file, module symbol information (module.symVers),
kernel headers (include/ and include/asm/)

» kernel/
Module . ko (Kernel Object) files, in the same directory structure as in
the sources.

@
Embedded Linux kernel and driver development e U
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons | |

Creative Commons Attribution-ShareAlike 2.0 license : 88

© I11

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Files created by make modules_install (2)

/lib/modules/<version>/ (continued)

P modules.alias

Module aliases for module loading utilities. Example line:
alias sound-service-?-0 snd;mixer_pss

» modules.dep
Module dependencies (see the Loadable kernel modules section)

P modules.symbols
Tells which module a given symbol belongs to.

All the files 1n this directory are text files.
Don't hesitate to have a look by yourself!

Embedded Linux kernel and driver development w L ! ;

[
. | © Copyright 2006-2004, Michael Opdenacker
Free Electrons Creative Commons Attribution-ShareAlike 2.0 license £ 8 9
¢ http://free-electrons.com May 14, 2006 '

http://free-electrons.com/

Compiling the kernel in a nutshell

» Edit version information in the Makefile file

» make xconfig
make
make install
make modules install

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Overall system startup

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux 2.4 booting sequence

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the kernel image is found (local storage, network,
removable media)

- Loads the kernel image in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes the kernel core and statically compiled drivers (needed to access the root filesystem)
- Mounts the root filesystem (specified by the init kernel parameter)

- Executes the first userspace program

First userspace program
- Configures userspace and starts up system services

http://free-electrons.com May 14, 2006

92

http://free-electrons.com/

Linux 2.6 booting sequence

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the images are found (local storage, network, removable media)
- Loads the kernel image in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes the kernel core and statically compiled drivers

- Uncompresses the initramfs cpio archive included in the kernel file cache (no mounting, no filesystem).
- If found in the initramfs, executes the first userspace program: /init

Userspace: /init script (what follows is just a typical scenario)

- Runs userspace commands to configure the device (such as network setup, mounting /proc and /sys...)
- Mounts a new root filesystem. Switch to it (switch root)

- Runs /sbin/init (or sometimes a new /linuxrc script)

Userspace: /sbin/init
- Runs commands to configure the device (if not done yet in the initramfs)
- Starts up system services (daemons, servers) and user programs

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

93

http://free-electrons.com/

Linux 2.6 booting sequence with initrd

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
®

Bootloader

- Executed by the hardware at a fixed location in ROM / Flash

- Initializes support for the device where the images are found (local storage, network, removable media)
- Loads the kernel and init ramdisk (initrd) images in RAM

- Executes the kernel image (with a specified command line)

Kernel

- Uncompresses itself

- Initializes statically compiled drivers

- Uncompresses the initramfs cpio archive included in the kernel. Mounts it. No /init executable found.
- So falls back to the old way of trying to locate and mount a root filesystem.

- Mounts the root filesystem specified by the init kernel parameter (initrd in our case)

- Executes the first userspace program: usually /linuxrc

Userspace: /1linuxrc script in initrd (what follows is just a typical sequence)

- Runs userspace commands to configure the device (such as network setup, mounting /proc and /sys...)
- Loads kernel modules (drivers) stored in the initrd, needed to access the new root filesystem.

- Mounts the new root filesystem. Switch to it (pivot root)

- Runs /sbin/init (or sometimes a new /linuxrc script)

Userspace: /sbin/init
- Runs commands to configure the device (if not done yet in the initrd)
- Starts up system services (daemons, servers) and user programs

http://free-electrons.com May 14, 2006

94

http://free-electrons.com/

Linux 2.4 booting sequence drawbacks

Trying to mount the filesystem specified
by the init kernel parameter 1s complex:

» Need device and filesystem drivers to be loaded

» Specifying the root filesystem requires ugly black magic device
naming (such as /dev/ram0, /dev/hdal...), while / doesn't
exist yet!

» Can require a complex initialization to implement within the
kernel. Examples: NFS (set up an IP address, connect to the
server...), RAID (root filesystem on multiple physical drives)...

In a nutshell: too much complexity in kernel code!

Embedded Linux kernel and driver development » !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons |
I.I

Creative Commons Attribution-ShareAlike 2.0 license

(]

95

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Extra init ramdisk drawbacks

Init ramdisks are implemented as standard block devices
» Need a ramdisk and filesystem driver

» Fixed in size: cannot easily grow in size.
Any free space cannot be reused by anything else.

» Needs to be created and modified like any block device:
formatting, mounting, editing, unmounting.
Root permissions needed.

» Like in any block device, files are first read from the storage,
and then copied to the file cache.
Slow and duplication in RAM!!!

©

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Initramfs features and advantages (1)

» Root file system built in in the kernel image
(embedded as a compressed cpio archive)

» Very easy to create (at kernel build time).
No need for root permissions (for mount and mknod).

» Compared to init ramdisks, just 1 file to handle.
» Always present in the Linux 2.6 kernel (empty by default).

» Just a plain compressed cpio archive.
Neither needs a block nor a filesystem driver.

O =
Embedded Linux kernel and driver development >
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6 |
|

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006 97

(]

http://free-electrons.com/

Initramfs features and advantages (2)

» ramfs: implemented in the file cache.
No duplication in RAM, no filesystem layer to manage.
Just uses the size of its files. Can grow 1if needed.

» Loaded by the kernel earlier.
More 1nitialization code moved to user-space!

» Simpler to mount complex filesystems from flexible userspace
scripts rather than from rigid kernel code. More complexity
moved out to user-space!

» No more magic naming of the root device.
pivot root no longer needed.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Initramfs features and advantages (3)

P Possible to add non GPL files (firmware, proprietary drivers)
in the filesystem. This is not linking, just file aggregation
(not considered as a derived work by the GPL).

P Possibility to remove these files when no longer needed.
» Still possible to use ramdisks.

More technical details about initramfs:
see Documentation/filesystems/ramfs-rootfs-initramfs.txt
and Documentation/early-userspace/README in kernel sources.

See also http://www.linuxdevices.com/articles/AT4017834659.html for a nice

overview of initramfs (by Rob Landley, new Busybox maintainer).
99

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6

(]

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/ramfs-rootfs-initramfs.txt
http://free-electrons.com/kerneldoc/latest/early-userspace/README
http://www.linuxdevices.com/articles/AT4017834659.html

How to populate an initramfs

Using CONFIG INITRAMFS SOURCE
in kernel configuration (General Setup section)

» Either specify an existing cpio archive

» Or specify a list of files or directories
to be added to the archive.

» Or specify a text specification file (see next page)

» Can use a tiny C library: k1ibc
(ftp://ttp.kernel.org/pub/linux/libs/klibc/)

O -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 1 O O
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
ftp://anonymous@ftp.kernel.org/pub/linux/libs/klibc/

Initramfs specification file example

dir /dev 755 0 O

nod /dev/console 644 0 0 ¢ 5
nod /dev/loop0 644 0 0 b 7 0
dir /bin 755 1000 1000

slink /bin/sh busybox 777 0 0
file /bin/busybox initramfs/busybox 755 0 0
dir /proc 755 0 0

dir /sys 755 0 0

dir /mnt 755 0 O

file /init initramfs/init.sh 755 0 O

1

No need for root user access! , _
user 1d group 1d

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

(\" Free Electrons Creative Commons Attribution-ShareAlike 2.0 license 1
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

How to handle compressed cpio archives

Useful when you want to build the kernel with a ready-made cpio
archive. Better let the kernel do this for you!

» Extracting:
gzip -dc initramfs.img | cpio -id

» Creating:

find <dir> -print -depth | cpio -ov | gzip -c >
initramfs.img

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

How to create an initrd

In case you really need an initrd (why?).

mkdir /mnt/initrd

dd if=/dev/zero of=initrd.img bs=1k count=2048
mkfs.ext2 -F initrd.img

mount -o loop initrd.img /mnt/initrd

Fill the ramdisk contents: busybox, modules, /1inuxrc script
More details in the Free Software tools for embedded systems training!

umount /mnt/initrd
gzlip --best -c initrd.img > initrd

More details on Documentation/initrd.txt in the kernel
sources! Also explains pivot rooting.
©

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://free-electrons.com/training/devtools
http://free-electrons.com/kerneldoc/latest/initrd.txt

Embedded Linux driver development

Compiling and booting Linux
Bootloaders

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

2-stage bootloaders

» At startup, the hardware automatically executes the bootloader
from a given location, usually with very little space (such as the
boot sector on a PC hard disk)

» Because of this lack of space, 2 stages are implemented:

» 1* stage: minimum functionality. Just accesses the second stage on
a bigger location and executes 1it.

P 2" stage: offers the full bootloader functionality. No limit in what

105

can be implemented. Can even be an operating system itself!

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

(]

http://free-electrons.com/

x86 bootloaders

» LILO: LInux LOad. Original Linux bootloader. Still in use!
http://freshmeat.net/projects/lilo/
Supports: x86

» GRUB: GRand Unified Bootloader from GNU. More powerful.
http://www.gnu.org/software/grub/
Supports: x86

» SYSLINUX: Utilities for network and removable media booting
http://syslinux.zytor.com
Supports: x86

O -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
[] Ill

Creative Commons Attribution-ShareAlike 2.0 license _ | 1 O 6
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://freshmeat.net/projects/lilo/
http://www.gnu.org/software/grub/
http://syslinux.zytor.com/

Generic bootloaders

(.\' Free Electr ons Creative Commons Attribution-ShareAlike 2.0 license

» Das U-Boot: Universal Bootloader from Denk Software
The most used on arm.
http://u-boot.sourceforge.net/
Supports: arm, ppc, mips, x86

» RedBoot: eCos based bootloader from Red-Hat
http://sources.redhat.com/redboot/
Supports: x86, arm, ppc, mips, sh, mé68k...

€GOS

» uMon: MicroMonitor general purpose, multi-OS bootloader
http://microcross.com/html/micromonitor.html
Supports: ARM, ColdFire, SH2, 68K, MIPS, PowerPC, Xscale...

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://u-boot.sourceforge.net/
http://sources.redhat.com/redboot/
http://microcross.com/html/micromonitor.html

Other bootloaders

» LAB: Linux As Bootloader, from Handhelds.org
http://handhelds.org/cgi-bin/cvsweb.cgi/linux/kernel26/1ab/
Idea: use a trimmed Linux kernel with only features needed in a
bootloader (no scheduling, etc.). Reuses flash and filesystem access,
LCD interface, without having to implement bootloader specific drivers.
Supports: arm (still experimental)

» And many more: lots of platforms have their own!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://handhelds.org/cgi-bin/cvsweb.cgi/linux/kernel26/lab/

Postprocessing kernel image for U-boot

The U-boot bootloader needs extra information to be added to
the kernel and initrd 1image files.

» mkimage postprocessing utility provided in U-boot sources

» Kernel image postprocessing:
make ulmage

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Postprocessing initrd image for U-boot

¢
mkimage

-n initrd \ Name

-A arm \ Architecture

-0 linux \ Operating System

-T ramdisk \ Type

-C gzip \ Compression

-d rd-ext2.gz \ Input file

uInitrd Output file

O -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker \
_ .

(.\' Free Electr ons Creative Commons Attribution-ShareAlike 2.0 license | 1 1 O

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Compiling U-boot mkimage

If you don't have mkimage yet

» Get the U-boot sources from
http://u-boot.sourceforge.net/

» In the U-boot source directory:
Find the name of the config file for your board in
include/configs (for example: omapl710h3.h)
make omapl710h3 config (.hreplaced by config)

make (or make -k if you have minor failures)
cp tools/mkimage /usr/local/bin/

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://u-boot.sourceforge.net/

Configuring tftp (1)

Often 1n development: downloading a kernel image from the network.
Instructions for xinetd based systems (Fedora Core, Red Hat...)

» Install the t ftp-server package if needed
» Remove disable = yesin /etc/xinetd.d/tftp

» Copy your image files to the /tftpboot/ directory (or to the
location specified in /etc/xinetd.d/tftp)

» You may have to disable SELinux in /etc/selinux/config

112

P Restart xinetd:
/etc/init.d/xinetd restart

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

o =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g

(]

http://free-electrons.com/

Configuring tftp (2)

On systems like Debian (or Knoppix) GNU/Linux

P Set RUN_ DAEMON="yes"
in /etc/default/tftpd-hpa
» Copy your images to /var/lib/tftpboot

P /etc/hosts.allow:
Replace AL, : ALL@ALL : DENY by AL, : ALL@ALL : ALLOW

P /etc/hosts.deny:
Comment out ALL: PARANOID

P Restart the server:
/etc/init.d/tftpd-hpa restart

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Kernel booting

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel command line parameters

As most C programs, the Linux kernel accepts command line
arguments

» Kernel command line arguments are part of the bootloader
configuration settings.

» Useful to configure the kernel at boot time, without having to
recompile it.

» Useful to perform advanced kernel and driver initialization,
without having to use complex user-space scripts.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Kernel command line example

HP 1PAQ h2200 PDA booting example:

root=/dev/ram0 \ Root filesystem (first ramdisk)
rw \ Root filesystem mounting mode
init=/linuxrc \ First userspace program
console=ttyS0,115200n8 \ Console (serial)
console=tty0 \ Other console (framebuffer)
ramdisk size=8192 \ Misc parameters...

cachepolicy=writethrough

Hundreds of command line parameters described on
Documentation/kernel-parameters.txt

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kernel-parameters.txt

Booting variants

XIP (Execute In Place)

» The kernel image is directly executed from the storage

» Can be faster and save RAM
However, the kernel image can't be compressed

No 1nitramfs / initrd

» Directly mounting the final root filesystem
(root kernel command line option)

No new root filesystem

» Running the whole system from the initramfs

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Usefulness of rootfs on NFS

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons

Once networking works, your root filesystem could be a directory on
your GNU/Linux development host, exported by NFS (Network File
System). This 1s very convenient for system development:

» Makes it very easy to update files (driver modules in particular) on
the root filesystem, without rebooting. Much faster than through the
serial port.

» Can have a big root filesystem even if you don't have support for
internal or external storage yet.

» The root filesystem can be huge. You can even build native compiler
tools and build all the tools you need on the target itself (better to

cross-compile though). H_
118

Creative Commons Attribution-ShareAlike 2.0 license

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

NFS boot setup (1)

On the PC (NFES server)

» Add the below line to your /etc/exports file:

/home/rootfs 192.168.0.202(rw,insecure,sync,no_wdelay,no_root squash)
client address NES server options

» If not running yet, you may need to start portmap
/etc/init.d/portmap start

» Start or restart your NFS server:
Fedora Core: /etc/init.d/nfs restart
Debian (Knoppix, KemelKit): /etc/init.d/nfs-user-server restart

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

NFS boot setup (2)

On the target (NFS client)

» Compile your kernel with CONFIG NFS FS=y
and CONFIG ROOT NFS=y

» Boot the kernel with the below command line options:
root=/dev/nfs

virtual device
ip=192.168.1.111:192.168.1.110:192.168.1.100:255.255.255.0:at91:eth0

local IP address server IP address gateway netmask hostname device
nfsroot=192.168.1.110:/home/nfsroot

NFS server IP address Directory on the NFS server

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

First user-space program

» Specified by the init kernel command line parameter
» Executed at the end of booting by the kernel

» Takes care of starting all other user-space programs
(system services and user programs).

» Gets the 1 process number (pid)
Parent or ancestor of all user-space programs
The system won't let you kill it.

» Only other user-space program called by the kernel:
/sbin/hotplug

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

/linuxrc

» 1 of the 2 default init programs
(if no 1nit parameter is given to the kernel)

» Traditionally used in initrds or in simple systems not using
/sbin/init.

» Is most of the time a shell script, based on a very lightweight
shell: nash or busybox sh

® This script can implement complex tasks: detecting drivers to
load, setting up networking, mounting partitions, switching

122

to a new root filesystem...

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/

The init program

» /sbin/init is the second default init program

» Takes care of starting system services, and eventually the user
interfaces (sshd, X server...)

» Also takes care of stopping system services
P Lightweight, partial implementation available through busybox

See the Init runlevels annex section for more details about starting
and stopping system services with init.

However, simple startup scripts are often sufficient
in embedded systems.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Linux device files

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Character device files

» Accessed through a sequential flow of individual characters

» Character devices can be identified by their ¢ type (1s -1):

crw-rw---- 1 root uucp 4, 64 Feb 23 2004 /dev/ttySO
crw--w---- 1 jdoe tty 136, 1 Feb 23 2004 /dev/pts/1
CrW——————— 1 root root 13, 32 Feb 23 2004 /dev/input/mouse0

crw-rw-rw- 1 root root 1, 3 Feb 23 2004 /dev/null

» Example devices: keyboards, mice, parallel port, [rDA,
Bluetooth port, consoles, terminals, sound, video...

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

125

http://free-electrons.com/

Block device files

» Accessed through data blocks of a given size. Blocks can be

accessed 1n any order.

» Block devices can be identified by their b type (1s -1):

brw-rw——-- 1 root
brw-rw—--- 1 jdoe
brw-rw——-- 1 root
brw-rw——-—- 1 root
brw------—- 1 root

disk 3, 1 Feb
floppy 2, 0 Feb
disk 7, 0 Feb
disk 1, 1 Feb
root 8 1 Feb

]

23
23
23
23
23

2004
2004
2004
2004
2004

hdal
£dO
loop0
raml
sdal

» Example devices: hard or floppy disks, ram disks, loop devices...

Embedded Linux kernel and driver development

(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

© Copyright 2006-2004, Michael Opdenacker

http://free-electrons.com/

Device major and minor numbers

As you could see 1n the previous examples,
device files have 2 numbers associated to them:

» First number: major number
» Second number: minor number

» Major and minor numbers are used by the kernel to bind a driver
to the device file. Device file names don't matter to the kernel!

» To find out which driver a device file corresponds to,
or when the device name is too cryptic,
see Documentation/devices.txt.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

127

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/devices.txt

Device file creation

P Device files are not created when a driver is loaded.

® They have to be created in advance:
mknod /dev/<device> [c|b] <major> <minor>

» Examples:
mknod /dev/ttyS0 c 4 64
mknod /dev/hdal b 3 1

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Drivers without device files

They don't have any corresponding /dev entry you could read or
write through a regular Unix command.

» Network drivers

They are represented by a network device such as ppp0, ethl,
usbnet, irda0 (listed by ifconfig -a)

» Other drivers

Often intermediate or lowlevel drivers just interfacing with other
ones. Example: usbcore.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Practical lab — Configuring and compiling

Time to start Lab 2!

» Configure your kernel
» Compile it

» Boot it on a virtual PC

» Modify a root filesystem image by
adding entries to the /dev/ directory

130

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

@ -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g

http://free-electrons.com/

Embedded Linux driver development

Compiling and booting Linux
Cross-compiling the kernel

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Makefile changes

» Update the version as usual

» You should change the default target platform.
Example: ARM platform, cross-compiler command: arm-1inux-gcc

ARCH 2= arm
CROSS COMPILE ?= arm-linux-

(The Maketile defines later CC = $(CROSS COMPILE)gcc)

See comments in Makefile for details

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Configuring the kernel

make xconfig
» Same as in native compiling.

» Don't forget to set the right board / machine type!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Ready-made config files

¢
assabet defconfig integrator defconfig mainstone defconfig
badge4 defconfig 1931244 defconfig mxlads defconfig
bast defconfig 1980321 defconfig neponset defconfig
cerfcube defconfig 1g80331 defconfig netwinder defconfig
clps7500 defconfig 1980332 defconfig omap h2 1610 defconfig
ebsall0 defconfig ixdp2400 defconfig omnimeter defconfig
edb7211 defconfig ixdp2401 defconfig pleb defconfig
enp2611 defconfig ixdp2800 defconfig pxa255-idp defconfig
ep80219 defconfig ixdp2801 defconfig rpc_defconfig
epxalOdb defconfig ixpd4xx defconfig s3c2410 defconfig
footbridge defconfig jornada720 defconfig shannon defconfig
fortunet defconfig lart defconfig shark defconfig
h3600 defconfig 1pd7a400 defconfig simpad defconfig
h7201 defconfig lpd7a404 defconfig smdk2410 defconfig
h7202 defconfig lubbock defconfig versatile defconfig
hackkit defconfig lusl17200 defconfig

arch/arm/configs example

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Using ready-made config files

» Default configuration files available for many boards / machines!
Check if one exists in arch/<arch>/configs/ for your target.

» Example: if you found an acme defconfig file, you can run:
make acme defconfig

» Using arch/<arch>/configs/ is a very good good way of
releasing a default configuration file for a group of users or developers.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Cross-compiling setup

Example

» If you have an ARM cross-compiling toolchain
in/usr/local/arm/3.3.2/

® You just have to add it to your Unix search path:
export PATH=/usr/local/arm/3.3.2/bin:S$SPATH

Choosing a toolchain

» See the Documentation/Changes file in the sources for details
about minimum tool versions requirements.

» More about toolchains: Free Software tools for embedded systems
training: http://free-electrons.com/training/devtools/
©

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/Changes

Building the kernel

» Run
make

» Copy
arch/<platform>/boot/zImage

to the target storage

» You can customize arch/<arch>/boot/install.sh so that
make install does this automatically for you.

» make INSTALL MOD PATH=<dir>/ modules install
and copy <dir>/to /1lib/modules/ on the target storage

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Cross-compiling summary

P Edit Makefile: set ARCH, CROSS COMPILE and EXTRA VERSION

® Get the default configuration for your machine:
make <machine> defconfig (if existing in arch/<arch>/configs)

P Refine the configuration settings according to your requirements:
make xconfig

P Add the crosscompiler path to your PATH environment variable
» Compile the kernel: make
» Copy the kernel image from arch/<arch>/boot/ to the target

» Copy modules to a directory which you replicate on the target:
make INSTALL MOD PATH=<dir> modules install

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

138

http://free-electrons.com/

Practical lab — Cross-compiling

Time to start Lab 3!

» Set up a cross-compiling environment

» Configure the kernel Makefile
accordingly

» Cross-compile the kernel for an arm
target platform

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Embedded Linux driver development

Driver development
[Loadable kernel modules

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Loadable kernel modules (1)

» Modules: add a given functionality to the kernel (drivers,
filesystem support, and many others)

» Can be loaded and unloaded at any time, only when their
functionality 1s need. Once loaded, have full access to the
whole kernel. No particular protection.

» Useful to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O =
Embedded Linux kernel and driver development !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6 |
|
| 141

(]

http://free-electrons.com/

Loadable kernel modules (2)

» Useful to support incompatible drivers (either load one or the
other, but not both)

» Useful to deliver binary-only drivers (bad idea) without
having to rebuild the kernel.

» Modules make it easy to develop drivers without rebooting:
load, test, unload, rebuild, load...

» Modules can also be compiled statically into the kernel.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Module dependencies

» Module dependencies stored in
/lib/modules/<version>/modules.dep

» They don't have to be described by the module writer.

» They are automatically computed during kernel building from
module exported symbols. module?2 depends on modulel if
module?2 uses a symbol exported by modulel.

® You can update the modules .dep file by running (as root)
depmod -a [<version>]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

(\" Free Electrons Creative Commons Attribution-ShareAlike 2.0 license 1
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

hello module

®
/* hello.c */
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>
static int init hello init(void)
{ .
printk (KERN ALERT "Good morrow"); init:
printk (KERN ALERT "to this fair assembly.\n"); Lo)
return 0; removed after initialization
} .
(static kernel or module).
static void _ exit hello exit(void)
{ exit: discarded when
printk (KERN ALERT "Alas, poor world, what treasure"); _—)

o o into the kernel.
module init(hello init);
module exit(hello exit);
MODULE LICENSE("GPL");
MODULE_DESCRIPTION("Greeting module");
MODULE AUTHOR("William Shakespeare");

Example available on http://free-electrons.com/doc/c/hello.c

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/doc/c/hello.c

Module license usefulness

» Used by kernel developers to identify issues coming from
proprietary drivers, which they can't do anything about.

» Useful for users to check that their system is 100% free

» Useful for GNU/Linux distributors for their release policy
checks.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Possible module license strings

Available license strings explained in include/linux/module.h

» GPL » Dual BSD/GPL
GNU Public License v2 or later GNU Public License v2 or
» GPL v2 BSD license choice
GNU Public License v2 » Dual MPL/GPL
» GPL and additional GNU Public License v2 or
rights Mozilla license choice

» Proprietary
Non free products

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

(\" Free Electrons Creative Commons Attribution-ShareAlike 2.0 license 1
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Compiling a module

» The below Makefile should be reusable for any Linux 2.6 module.
» Just run make to build the hello.ko file

» Caution: make sure there is a [Tab] character at the beginning of
the $ (MAKE) line (make syntax) Bither

- full kernel source

Makefile for the hello module directory
(configured and
obj-m := hello.o compiled)
KDIR := /lib/modules/$(shell uname -r)/build - or just kernel
zzgagztf(Shell pwd) headers directory
[Tabl: $(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules (minimum needed)

(no spaces)

Example available on http://free-electrons.com/doc/c/Makefile

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/doc/c/Makefile

Kernel log

» Of course, the kernel doesn't store its log into a file!
Files belong to user space.

» The kernel keeps printk messages in a circular buffer
(so that doesn't consume more memory with many messages)

» Kemel log messages can be accessed from user space through system
calls, or through /proc/kmsg

» Kemel log messages are also displayed in the system console.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Accessing the kernel log

Many ways are available!

» Watch the system console » logread

» syslogd Same. Often found in small

Daemon gathering kernel messages embedded systems with no

in /var/log/messages /var/log/messages or no

Follow changes by running: dmesg. Implemented by Busybox.

tail -f /var/log/messages [P cat /proc/kmsg

Caution: this file grows! Waits for kernel messages and
Use logrotate to control this displays them.

» dmesg Useful when none of the above

Found in all systems user space programs are available

Displays the kernel log buffer (tiny system)

Embedded Linux kernel and driver development

. F El © Copyright 2006-2004, Michael Opdenacker
ree ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Using the module

Need to be logged as root

» [.oad the module:

insmod ./hello.ko

» You will see the following in the kernel log:

Good morrow

to this fair assembly

» Now remove the module:

rmmod hello

» You will see:

Alas, poor world, what treasure
hast thou lost!

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license y

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Module utilities (1)

P modinfo <module name>
modinfo <module path>.ko

Gets information about a module: parameters, license,
description. Very useful before deciding to load a module or not.

» insmod <module name>
insmod <module path>.ko

Tries to load the given module, if needed by searching for its

. ko file throughout the default locations (can be redefined by
the MODPATH environment variable).

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

151

o -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

http://free-electrons.com/

Module utilities (2)

» modprobe <module name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available.

» 1lsmod
Displays the list of loaded modules
Compare its output with the contents of /proc/modules!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Module utilities (3)

» rmmod <module name>
Tries to remove the given module

» modprobe -r <module name>
Tries to remove the given module and all dependent modules
(which are no longer needed after the module removal)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Create your modules with kdevelop

http://kdevelop.org - Available in most distros.

inrojecr Build Debug Scripts Bookmarks Window Tools 5Settings Help b :
4P BEPBIeHDALEEEG QLo Makes it easy to create
a module code skeleton

§ [omcon [+ IO O, BT D 6|F
from a ready-made

helloworld.c | | %

E

New File
| spddiug apo:@l uoIEIUALINIOCER |

#include <linux/kernel.h>
#include <linux/init.h>
#include <linux/module.h>

MODULE_DESCRIPTION("My kernel module");
MODULE_AUTHOR("Michael Opdenacker (michael@free-electrons.com)");

MODULE_LICENSE("$LICENSES");

template.
static int helloworld_init module(void)

{
. printk(KERN_DEBUGC "Module helloworld init'n" };
T retum 0 » Can also be used to

A

| [IFile Tree | BVariables | 2File Groups

printk(KERN_DEBUG "Module helloworld exit'n");

static void helloworld_exit_module(wvoid) .
{

[compile your module.
module_init(helloworld _init_module);
module_exit({helloworld exit_module);

[+

@ pplication | Epiff | Messages | #Find in Files | [EReplace | @K onsole | #Valgrind | ©Breakpoints |
5 Tags | &#Problems |

r

| Line: 14 Col: 2 INS NORM

| “[Classes | &PBookmarks | [JFile Selector | @File List |

@
Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://kdevelop.org/

Embedded Linux driver development

Driver development
Module parameters

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

hello module with parameters

®
/* hello param.c */
#include_<linux/init.h> Thanks to
#include <linux/module.h> Jonathan Corbet

#include <linux/moduleparam.h>

for the example!

MODULE LICENSE("GPL");

/* A couple of parameters that can be passed in: how many times we say
hello, and to whom */

static char *whom = "world";
module param(whom, charp, 0);

static int howmany = 1;
module param(howmany, int,

static int init hello init(void)

{
int i;
for (i = 0; i < howmany; i++)
printk (KERN ALERT "(%d) Hello, %s\n", i, whom);
return 0;
}

static void _ exit hello exit(void)

printk (KERN _ALERT "Goodbye, cruel %s\n", whom);

module init(hello init);
module exit(hello exit);

Example available on http://free-electrons.com/doc/c/hello_param.c

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/doc/c/hello_param.c

Passing module parameters

» Through insmod or modprobe:
insmod ./hello param.ko howmany=2 whom=universe
» Through modprobe
after changing the /etc/modprobe.conf file:
options hello param howmany=2 whom=universe

» Through the kernel command line, when the module is built statically
into the kernel:

options hello param.howmany=2 hello param.whom=universe

module name — ? T

module parameter name

module parameter value
(¥

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Declaring a module parameter

#include <linux/moduleparam.h>

module param(

name,
type,

perm

) ;

Example

/* name of an already defined variable */

/* either byte, short, ushort, int, uint, long,
ulong, charp, bool or invbool
(checked at compile time!) */

/[* for /sys/module/<module name>/<param>
0: no such module parameter value file */

int irqg=5;

module param(irqgq, int, S IRUGO);

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Declaring a module parameter array

#include <linux/moduleparam.h>

module param array (

name, /* name of an already defined array */
type, /[* same as iIn module param */
num, /* number of elements in the array, or NULL (no check?) */
perm /* same as in module_param */
) 7
Example

static int base[MAX DEVICES] = { 0x820, 0x840 };
module param array(base, int, NULL, 0);

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Driver development
Adding sources to the kernel tree

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

New directory in kernel sources (1)

To add an acme drivers/ directory to the kernel sources:

» Move the acme drivers/ directory to the appropriate location
in kernel sources

» Create an acme drivers/Kconfig file

» Create an acme drivers /Makefile file based on the
Kconfig variables

» In the parent directory Kconfig file, add
source “acme drivers/Kconfig”

Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

New directory in kernel sources (2)

» In the parent directory Makefile file, add

obj-$(CONFIG _ACME) += acme drivers/ (just 1 condition)
or
obj-y += acme drivers/ (several conditions)

» Run make xconfig and see your new options!

» Run make and your new files are compiled!

» See Documentation/kbuild/ for details

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kbuild/

How to create Linux patches

» Download the latest kernel sources

» Make a copy of these sources:
rsync -a linux-2.6.9-rc2/ linux-2.6.9-rc2-patch/

» Apply your changes to the copied sources, and test them.

» Create a patch file:
diff -Nurp linux-2.6.9-rc2/ \
linux-2.6.9-rc2-patch/ > patchfile

» Always compare the whole source structures
(suitable for patch -pl)

» Patch file name: should recall what the patch is about

Thanks to Nicolas Rougier (Copyright 2003, http://webloria.loria.fr/~rougier/) for the Tux image
®

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons >

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://webloria.loria.fr/~rougier/

Practical lab — Writing modules

Time to start Lab 4!

» Write a kernel module with parameters
» Setup the environment to compile it

» Access kernel internals

» Add a /proc interface

» Add the module sources to the kernel
source tree

» Create a kernel source patch

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Embedded Linux driver development

Driver development
Memory management

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Physical and virtual memory

®
Physical address space Virtual address spaces
OXFFFFFFFFF OXFFFFFFFFF OXFFFFFFFFF
I/O memory 3
Kernel Process1
I/O memory 2
0x00000000 0x00000000

I/O memory 1

Flash MMU CPU
OXFFFFFFFFF
Memory
RAM 1 Management All the processes have
RAM O Unit their own virtual address Process2

space, and run as if they

had access to the whole oxo0000000
0x00000000 address space.
®

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

166

http://free-electrons.com/

kmalloc and kfree

@
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

» Basic allocators, kernel equivalents of glibc's malloc and free.

P static inline void *kmalloc(size t size, int flags);
size: number of bytes to allocate
flags: priority (see next page)

P void kfree (const void *obijp);

» Example:
data = kmalloc(sizeof(*data), GFP_KERNEL);

kfree(data);

http://free-electrons.com May 14, 2006

http://free-electrons.com/

kmalloc features

® Quick (unless it's blocked waiting for memory to be freed).

» Doesn't initialize the allocated area.
You can use kcalloc or kzalloc to get zeroed memory.

» The allocated area is contiguous in physical RAM.

» Allocates by 2" sizes, and uses a few management bytes.
So, don't ask for 1024 when you need 1000! You'd get 2048!

» Caution: drivers shouldn't try to kmalloc
more than 128 KB (upper limit in some architectures). A

168

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/

Main kmalloc flags (1)

Defined in include/linux/gfp.h (GFP: get free pages)

> GFP KERNEL
Standard kernel memory allocation. May block. Fine for most needs.

» GFP_ATOMIC

Allocated RAM from interrupt handlers or code not triggered by user
processes. Never blocks.

» GFP_USER

Allocates memory for user processes. May block. Lowest priority.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Main kmalloc flags (2)

Extra flags (can be added with |)

» __GFP_DMA » GFP_NORETRY

Allocate in DMA zone If allocation fails, doesn't try to
» GFP REPEAT get free pages.

Ask to try harder. May still » Example:

block, but less likely. GFP KERNEL | GFP DMA

» GFP NOFAIL
Must not fail. Never gives up.
Caution: use only when
mandatory!

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O
Embedded Linux kernel and driver development ' I !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g | 170

(]

http://free-electrons.com/

Slab caches

Also called lookaside caches
» Slab: name of the standard Linux memory allocator

» Slab caches: Objects that can hold any number
of memory areas of the same size.

» Optimum use of available RAM and reduced fragmentation.

» Mainly used in Linux core subsystems: filesystems (open files, inode
and file caches...), networking... Live stats on /proc/slabinfo.

» May be useful in device drivers too, though not used so often.
Linux 2.6: used by USB and SCSI drivers.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Slab cache API (1)

» #include <linux/slab.h>

» Creating a cache:

cache = kmem cache create (
name, /* Name for /proc/slabinfo */
size, /* Cache object size */
flags, /* Options: alignment, DMA... */

constructor, /* Optional, called after each allocation */
destructor); /* Optional, called before each release */

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Slab cache API (2)

» Allocating from the cache:
object = kmem cache alloc (cache, flags);

» Freing an object:
kmem cache free (cache, object);

» Destroying the whole cache:
kmem cache destroy (cache);

More details and an example in the Linux Device Drivers book:
http://lwn.net/images/pdt/LDD3/ch08.pdf

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://lwn.net/images/pdf/LDD3/ch08.pdf

Memory pools

Useful for memory allocations that cannot fail

» Kind of lookaside cache trying to keep a minimum number
of pre-allocated objects ahead of time.

» Use with care: otherwise can result in a lot of unused
memory that cannot be reclaimed! Use other solutions
whenever possible.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

174

http://free-electrons.com/

Memory pool API (1)

» #include <linux/mempool.h>

» Mempool creation:

mempool =
min nr,

mempool create (

alloc_ function,
free function,
pool data);

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Memory pool API (2)

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

» Allocating objects:
object = mempool alloc (pool, flags);

» Freeing objects:
mempool free (object, pool);

» Resizing the pool:
status = mempool resize (
pool, new min nr, flags);

» Destroying the pool (caution: free all objects first!):
mempool destroy (pool);

Embedded Linux kernel and driver development

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Memory pool implementation

Call alloc

mempool_ create function min nr

times

No
Call alloc Take an

mempool alloc , Success? object from
function

the pool

Yes

Yes

pool count Add freed

mempool free New object

<min nr? object to pool
No

Call free
function
on object

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Memory pools using slab caches

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

» Idea: use slab cache functions to allocate and free objects.

» The mempool alloc slab and mempool free slab
functions supply a link with slab cache routines.

» So, you will find many code examples looking like:
cache = kmem cache create (...);
pool = mempool create (
min nr,
mempool alloc slab,
mempool free slab,
cache);

Embedded Linux kernel and driver development

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Allocating by pages

More appropriate when you need big slices of RAM:

P unsigned long get zeroed page(int flags);
Returns a pointer to a free page and fills it up with zeros

» unsigned long _ get free page(int flags);
Same, but doesn't initialize the contents
P unsigned long _ get free pages(int flags,
unsigned long order);
Returns a pointer on a memory zone of several contiguous pages in
physical RAM.
order: log (<number_ of pages>)

maximum: 8192 KB (MAX ORDER=11 in linux/mmzone.h)

-

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Freeing pages

» void free page(unsigned long addr);

» void free pages(unsigned long addr,
unsigned long order);

Need to use the same order as in allocation.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

vmalloc

vmalloc can be used to obtain contiguous memory zones in virtual

address space (even if pages may not be contiguous in physical
memory).

» void *vmalloc(unsigned long size);

» void vfree(void *addr);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Memory utilities

» void * memset(void * s, int c, size t count);
Fills a region of memory with the given value.

» void * memcpy(void * dest,
const void *src,
size t count);

Copies one area of memory to another.
Use memmove with overlapping areas.

» Lots of functions equivalent to standard C library ones defined in
include/linux/string.h

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Memory management - Summary

Small allocations Bigger allocations
» kmalloc, kzalloc » get free page[s],
(and kfree!) get zeroed page,

free pagel[s
» slab caches _pagels]

» vmalloc, viree
» memory pools

Libc like memory utilities

» memset, memcopy,
memmove...

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Embedded Linux driver development

Driver development
I/O memory and ports

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Requesting 1I/0 ports

/proc/ioports example

P struct resource *request region(
unsigned long start,

0000-001f : dmal

0020-0021 : picl .

0040-0043 : timeroO unSlgned long len’

0050-0053 : timerl char *name);

0060-006f : keyboard

0070-0077 : rtc

0080-008f : dma page reg
00a0-00al : pic2 Tries to reserve the given region and returns NULL if
00c0-00df : dmaZ2

00£0-00ff : fpu unsuccessful. Example:

0100-013f : pcmcia socket0

0170-0177 : idel

01£0-01£7 : idel request region(0x0170, 8, "idel");
0376-0376 : idel —_—

0378-037a : parport0 . .

03c0-03df : vga+ P void release region(

03f6-03f6 : ide0 . 5

03f8-03ff : serial unsigned long start,

0800-087f : 0000:00:1f.0 unsigned long len);

0800-0803 : PMla EVT BLK

0804-0805 : PMla CNT BLK

0808-080b : PM_TMR P See include/linux/ioport.h and

0820-0820 : PM2 CNT BLK

0828-082f : GPEO BLK kernel/resource.c

©

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

Creative Commons Attribution-ShareAlike 2.0 license .
May 14, 2006

(]

185

http://free-electrons.com

http://free-electrons.com/

Reading / writing on I/O ports

The implementation of the below functions and the exact unsigned
type can vary from platform to platform!

bytes
unsigned inb(unsigned port);

void outb(unsigned char byte, unsigned port);

words
unsigned i1nw(unsigned port);
void outw(unsigned char byte, unsigned port);

"long" integers
unsigned 1inl(unsigned port);
void outl(unsigned char byte, unsigned port);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Reading / writing strings on 1I/O ports

Often more efficient than the corresponding C loop, if the processor
supports such operations!

byte strings
void insb(unsigned port, void *addr, unsigned long count);
void outsb(unsigned port, void *addr, unsigned long count);

word strings
void insw(unsigned port, void *addr, unsigned long count);
void outsw(unsigned port, void *addr, unsigned long count);

long strings

void inbsl(unsigned port, void *addr, unsigned long count);
void outsl(unsigned port, void *addr, unsigned long count);

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Requesting I/0 memory

/proc/iomem example

» Equivalent functions with the same interface

00000000-0009efff
0009f000-0009f£fff

System RAM
reserved P struct resource * request mem region(

000a0000-000bffff : Vvideo RAM area .

unsigned long start
000c0000-000cffff : Video ROM .g gJ !
000£0000-000f££ff : System ROM unsigned long len,
00100000-3ffadfff : System RAM char *name);

00100000-0030afff : Kernel code

0030b000-003b4bff : Kernel data . void release mem region(

3ffae000-3fffffff : reserved]
40000000-400003€f : 0000:00:1f.1 unsigned long start,
40001000-40001fff : 0000:02:01.0 unsigned long len);

40001000-40001fff : yenta socket
40002000-40002fff : 0000:02:01.1

40002000-40002fff : yenta socket
40400000-407fffff : PCI CardBus #03
40800000-40bfffff : PCI CardBus #03
40c00000-40ffffff : PCI CardBus #07
41000000-413fffff : PCI CardBus #07
a0000000-a0000£fff : pcmcia socket0
a0001000-a0001fff : pcmcia socketl
e0000000-e7ffffff : 0000:00:00.0
e8000000-efffffff : PCI Bus #01

e8000000-efffffff : 0000:01:00.0

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Choosing 1/0 ranges

» 1/O port and memory ranges can be passed as module
parameters. An easy way to define those parameters 1s through
/etc/modprobe.conf.

» Modules can also try to find free ranges by themselves (making
multiple calls to request region or
request mem region.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Mapping 1/0 memory in virtual memory

» To access I/O memory, drivers need to have a virtual address
that the processor can handle.

» The ioremap functions satisfy this need:

#include <asm/io.h>

void *ioremap(unsigned long phys addr,
unsigned long size);
void iounmap(void *address);

» Caution: check that ioremap doesn't return a NULL address!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Differences with standard memory

» Reads and writes on memory can be cached

» The compiler may choose to write the value in a cpu register,

and may never write it in main memory.

» The compiler may decide to optimize or reorder read and
write 1nstructions.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Avoiding I/0 access issues

¢
® Caching on I/O ports or memory already disabled, either by
the hardware or by Linux 1nit code.

» Memory barriers are supplied to avoid reordering
Hardware independent Hardware dependent
#include <asm/kernel.h> #include <asm/system.h>
void barrier(void); void rmb(void);

. . void wmb(void);
Only impacts the behavior of the void mb(void);

compiler. Doesn't prevent reordering Safe on all architectures!
in the processor!

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

192

O =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/

Accessing I/0 memory

®
Embedded Linux kernel and driver development
. | © Copyright 2006-2004, Michael Opdenacker
Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

» Directly reading from or writing to addresses returned by ioremap
(“‘pointer dereferencing’) may not work on some architectures.

» Use the below functions instead. They are always portable and safe:

unsigned int ioread8(void *addr); (same for 16 and 32)
void iowrite8(u8 wvalue, void *addr); (same for 16 and 32)

» To read or write a series of values:

void ioread8 rep(void *addr, void *buf, unsigned long count);
void iowrite8 rep(void *addr, const void *buf, unsigned long count);

» Other useful functions:
void memset io(void *addr, u8 value, unsigned int count);
void memcpy fromio(void *dest, void *source, unsigned int count);
void memcpy toio(void *dest, void *source, unsigned int count);

http://free-electrons.com May 14, 2006

http://free-electrons.com/

/dev/mem

» Used to provide user-space applications with direct access to
physical addresses.

» Actually only works with addresses that are non-RAM (I/0
memory) or with addresses that have some special flag set in
the kernel's data structures. Fortunately, doesn't provide
access to any address in physical RAM!

» Used by applications such as the X server to write directly to

194

device memory.

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/

Embedded Linux driver development

Driver development
Character drivers

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Usefulness of character drivers

» Except for storage device drivers, most drivers for devices with
input and output flows are implemented as character drivers.

» So, most drivers you will face will be character drivers

O

You will regret if you sleep during this part!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Creating a character driver

¢
User-space needs
® The name of a device file in /dev to interact e MWASLES
buffer string
with the device driver through regular file
operations (open, read, write, close...)
The kernel needs /dev/ foo
® To know which driver is in charge of device . Y Y .
: : : : : : 4 major / mi 3
files with a given major / minor number pair 2 ! - =
2 =
® For a given driver, to have handlers (“file S 2
: ” Read Write O
operations”’) to execute when user-space opens, fondier handier
reads, writes or closes the device file. Dlevies diEvEs

Kernel space

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

197

http://free-electrons.com/

Declaring a character driver

Device number registration

» Need to register one or more device numbers (major / minor pairs),
depending on the number of devices managed by the driver.

P Need to find free ones!

File operations registration

» Need to register handler functions called when user space programs
access the device files: open, read, write, ioctl, close...

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Information on registered devices

Registered devices are visible in /proc/devices:

Character devices:

S U1 U1 O W & b

7

mem
/dev/vc/0
tty

ttyS
/dev/tty
/dev/console
/dev/ptmx

1lp

vCSs

10 misc
13 input
14 sound

Block devices:

1 ramdisk

3 ide0

8 sd

9 md Can be used to

22
65
66
67
68
69

Major
number

idel
sd

sd numbers
sd

sd

SQ;K\

Registered

find free major

name

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license y

http://free-electrons.com May 14, 2006

http://free-electrons.com/

dev t structure

Kernel data structure to represent a major / minor pair

» Defined in <linux/kdev t.h>
Linux 2.6: 32 bit size (major: 12 bits, minor: 20 bits)

» Macro to create the structure:
MKDEV(int major, int minor);

» Macro to extract the numbers:
MAJOR (dev_t dev);
MINOR(dev_t dev);

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Allocating fixed device numbers

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

#include <linux/fs.h>

int register chrdev region(
dev_t from, /* Starting device number */
unsigned count, /* Number of device numbers */

const char *name); /* Registered name */
Returns 0 if the allocation was successful.

Example

if (register chrdev region(MKDEV(202, 128),
acme count, "“acme”)) {
printk (KERN _ERR “Failed to allocate device number\n”);

Embedded Linux kernel and driver development

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Dynamic allocation of device numbers

Safer: have the kernel allocate free numbers for you!
#include <linux/fs.h>

int alloc chrdev region(
dev_t *dev, /* Output: starting device number */
unsigned baseminor, /* Starting minor number, usually 0 */
unsigned count, /* Number of device numbers */
const char *name); /* Registered name */

Returns 0 1if the allocation was successful.

Example

if (alloc_chrdev region(&acme dev, 0, acme count, “acme”)) {
printk (KERN _ERR “Failed to allocate device number\n”);

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Creating device files

» Issue: you can no longer create /dev entries in advance!
You have to create them on the fly after loading the driver according to
the allocated major number.

» Trick: the script loading the module can then use /proc/devices:

module=foo; name=foo; device=foo

rm -f /dev/$device Caution: back quotes!
insmod $module.ko -« N
major="awk "\\$2==\"Sname\" {print \\$1}" /proc/devices"
mknod /dev/S$device c¢ $major 0

¢ Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker \
Creative Commons Attribution-ShareAlike 2.0 license
http://free-electrons.com May 14, 2006 -

203

(]

http://free-electrons.com/

file operations (1)

Before registering character devices, you have to define

file operations (called fops) for the device files.
Here are the main ones:

» int (*open) (
struct inode *, /* Corresponds to the device file */
struct file *); /* Corresponds to the open file descriptor */
Called when user-space opens the device file.
» int (*release) (

struct inode *,
struct file *);

Called when user-space closes the file.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

The file structure

Is created by the kernel during the open call. Represents open files.
Pointers to this structure are usually called "fips".

» mode t f mode;

The file opening mode (FMODE READ and/or FMODE WRITE)
P loff t f pos;

Current offset 1n the file.

P struct file operations *f op;
Allows to change file operations for different open files!

P struct dentry *f dentry
Useful to get access to the inode: £ilp->f dentry->d inode.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

file operations (2)

P ssize t (*read) (
struct file *, /* Open file descriptor */
char *, /* User-space buffer to fill up */
size t, /* Size of the user-space buffer */
loff t *); /* Offset in the open file */

Called when user-space reads from the device file.
P ssize t (*write) (
struct file *, /* Open file descriptor */

const char *, /* User-space buffer to write to the device */
size t, /* Size of the user-space buffer */
loff t *); /* Offset in the open file */

Called when user-space writes to the device file.

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _ 2
¢ http://free-electrons.com May 14, 2006 06

http://free-electrons.com/

Exchanging data with user-space (1)

In driver code, you can't just memcpy between
an address supplied by user-space and
the address of a buffer in kernel-space!

» Correspond to completely different

address spaces (thanks to virtual memory)
» The user-space address may be swapped out to disk

» The user-space address may be invalid

(user space process trying to access unauthorized data)

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O
Embedded Linux kernel and driver development ' I !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g |
|
| 207

(]

http://free-electrons.com/

Exchanging data with user-space (2)

You must use dedicated functions such as the following ones in your
read and write file operations code:

include <asm/uaccess.h>

unsigned long copy to user (void _ user *to,
const void *from,
unsigned long n);

unsigned long copy from user (void *to,
const void _ user *from,
unsigned long n);

Make sure that these functions return 0!

Another return value would mean that they failed.
¢

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

file operations (3)

P int (*ioctl) (struct inode *, struct file ¥*,
unsigned int, unsigned long);

Can be used to send specific commands to the device, which are neither
reading nor writing (e.g. formatting a disk, configuration changes).

» int (*mmap) (struct file ¥*,
struct vm area struct);

Asking for device memory to be mapped into the address space of a user
Process

P struct module *owner;
Used by the kernel to keep track of who's using this structure and count

209

the number of users of the module.

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6

(]

http://free-electrons.com/

read operation example

static ssize t
acme read(struct file *file, char

{

__user *buf, size t count, loff t * ppos)
/* The hwdata address corresponds to a device I/0 memory area */

/* of size hwdata size, obtained with ioremap() */

int remaining bytes;

/* Number of bytes left to read in the open file */
remaining bytes = min(hwdata size - (*ppos), count);

if (remaining bytes == 0) {
/* All read, returning 0 (End Of File) */
return 0;

}

if (copy to user(buf /* to */, *ppos+thwdata /* from */, remaining bytes)) {
return -EFAULT; -
} else {
/* Increase the position in the open file */
*ppos += remaining bytes;
return remaining bytes;

Read method Piece of code available on
http://free-electrons.com/doc/c/acme_read.c

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/doc/c/acme_read.c

write operation example

static ssize t
acme write(struct file *file, const char _ user *buf, size t count, loff t * ppos)
{

/* Assuming that hwdata corresponds to a physical address range */

/* of size hwdata size, obtained with ioremap() */

/* Number of bytes not written yet in the device */
remaining bytes = hwdata size - (*ppos);

if (count > remaining bytes) ({
/* Can't write beyond the end of the device */
return -EIO;

}

if (copy from user(*pposthwdata /* to */, buf /* from */, count)) {
return -EFAULT;
} else {
/* Increase the position in the open file */
*ppos += count;
return count;

Wri‘[e method Piece of code available on
http://free-electrons.com/doc/c/acme_write.c

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://free-electrons.com/doc/c/acme_write.c

file operations definition example (3)

Defining a file operations structure

include <linux/fs.h>

static struct file operations acme fops =

{
.owner = THIS MODULE,
.read = acme read,
.write = acme write,

b7

You just need to supply the functions you implemented!
Defaults for other functions (such as open, release...)

are fine if you do not implement anything special.
O =
Embedded Linux kernel and driver development
(.\' Froe Electrons © Copyright 2006-2004, Michael Opdenacker _

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

212

http://free-electrons.com/

Character device registration (1)

» The kernel represents character drivers with a cdev structure

» Declare this structure globally (within your module):
#include <linux/cdev.h>
static struct cdev *acme cdev;

» In the init function, allocate the structure and set its file operations:
acme cdev = cdev_alloc();
acme cdev->ops = &acme_ fops;
acme cdev->owner = THIS MODULE;

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Character device registration (2)

¢
» Then, now that your structure is ready, add it to the system:
int cdev_add(

struct cdev *p, /* Character device structure */

dev_t dev, /* Starting device major / minor number */

unsigned count); /* Number of devices */

» Example (continued):
if (cdev_add(acme _cdev, acme dev, acme count)) {
printk (KERN _ERR “Char driver registration failed\n”);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Character device unregistration

» First delete your character device:
void cdev del(struct cdev *p);

» Then, and only then, free the device number:
void unregister chrdev region(dev_t from,
unsigned count);

» Example (continued):
cdev_del(acme cdev);
unregister chrdev region(acme dev, acme count);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Linux error codes

Try to report errors with error numbers as accurate as possible!
Fortunately, macro names are explicit and you can remember
them quickly.

®» Generic error codes:
include/asm-generic/errno-base.h

» Platform specific error codes:
include/asm/errno.h

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Char driver example summary (1)

static void *acme buf;
static acme bufsize=8192;

static int acme count=1;
static dev_t acme dev;

static struct cdev *acme cdev;
static ssize t acme write(...) {...}
static ssize t acme read(...) {...}

static struct file operations acme fops =

{
.owner = THIS MODULE,
.read = acme read,
.write = acme write,
}i
¢

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Char driver example summary (2)

static int _ init acme init(void)
{
acme buf = kmalloc(acme bufsize,
GFP_KERNEL) ;

if (lacme buf) ({
err = -ENOMEM;
goto err exit;

}

if (alloc_chrdev_region(&acme _dev, 0,
acme count, “acme”))
err=-ENODEV;
goto err free buf;

}

acme _cdev = cdev_alloc();

if (lacme cdev) {
err=-ENOMEM;
goto err dev unregister;

}

acme cdev->ops = &acme fops;
acme cdev->owner = THIS MODULE;

Show how to handle errors and deallocate resources in the right order!

if (cdev_add(acme cdev, acme dev,
acme dev count)) {
err=-ENODEV;
goto err free cdev;

}

return 0;

err free cdev:
kfree(acme cdev);
err dev_unregister:
unregister chrdev region(
acme dev, acme count);
err free buf:
kfree(acme buf);
err exit: -
return err;

}

static void _ exit acme exit(void)

{

cdev_del(acme cdev);

unregister chrdev region(acme dev,
acme_count);

kfree(acme buf);

}

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

(]

http://free-electrons.com

218

May 14, 2006

http://free-electrons.com/

Character driver summary

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

Character driver writer

- Define the file operations callbacks for the device file: read, write, ioctl...

- In the module init function, get major and minor numbers with alloc chrdev region(),
init a cdev structure with your file operations and add it to the system with cdev _add().

- In the module exit function, call cdev_del () and unregister chrdev region()

System administration

- Load the character driver module

-In /proc/devices, find the major number it uses.
- Create the device file with this major number

The device file is ready to use!

System user
- Open the device file, read, write, or send ioctl's to it.

Kernel
- Executes the corresponding file operations

http://free-electrons.com May 14, 2006

Kernel

User-space

Kernel

http://free-electrons.com/

Practical lab — Character drivers

Time to start Lab 5!

» Write simple file operations, fora
character device, including ioctl
controls

» Get a free device number
P Register the character device

» Use the kmalloc and kfree utilities

» Exchange data with userspace

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

?ﬁé Driver development
Debugging

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Usefulness of a serial port

» Most processors feature a serial port interface (usually very
well supported by Linux). Just need this interface to be
connected to the outside.

» Easy way of getting the first messages of an early kernel
version, even before it boots. A minimum kernel with only
serial port support 1s enough.

» Once the kernel is fixed and has completed booting, possible
to access a serial console and 1ssue commands.

» The serial port can also be used to transfer files to the target.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

When you don't have a serial port

On the host

» Not an issue. You can get a USB to serial converter. Usually very
well supported on Linux and roughly costs $20. The device appears
as /dev/ttyUSBO on the host.

On the target

» Check whether you have an IrDA port. It's usually a serial port too.
» If you have an Ethernet adapter, try with it

» You may also try to manually hook-up the processor serial interface
(check the electrical specifications first!)

Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Debugging with printk

» Universal debugging technique used since the beginning of

programming (first found in cavemen drawings)

® Printed or not in the console or /var/log/messages

according to the priority. This 1s controlled by the loglevel

kernel parameter, or through /proc/sys/kernel/printk

(see Documentation/sysctl/kernel.txt)

» Available priorities (include/linux/kernel.h):

#define
#define
#define
#define
#define
#define
#define
#define

KERN EMERG
KERN ALERT
KERN CRIT
KERN ERR
KERN WARNING
KERN NOTICE
KERN INFO
KERN DEBUG

II<O>II
n<1>n
">
ll<3>ll
">
"
II<6>II
II<7>II

/*
/*
/*
/*
/*
/*
/*
/*

system is unusable */
action must be taken immediately */
critical conditions */

error conditions */

warning conditions */

normal but significant condition */
informational */
debug-level messages */

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/sysctl/kernel.txt

Debugging with /proc or /sys (1)

Instead of dumping messages in the kernel log, you can have your
drivers make information available to user space

» Through a file in /proc or /sys, which contents are handled
by callbacks defined and registered by your driver.

» Can be used to show any piece of information
about your device or driver.

» Can also be used to send data to the driver or to control it.

® Caution: anybody can use these files.
You should remove your debugging interface in production!

225

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons
I.I

(]

http://free-electrons.com/

Debugging with /proc or /sys (2)

Examples

» cat /proc/acme/stats (dummy example)
Displays statistics about your acme driver.

» cat /proc/acme/globals (dummy example)
Displays values of global variables used by your driver.

P echo 600000 > /sys/devices/system/cpu/cpul/cpufreq/scaling setspeed

Adjusts the speed of the CPU (controlled by the cpufreq driver).

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Debugging with ioctl

» Can use the ioctl () system call to query information
about your driver (or device) or send commands to it.

» This calls the ioct1 file operation that you can register in
your driver.

» Advantage: your debugging interface is not public.
You could even leave it when your system (or its driver) 1s in
the hands of its users.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Debugging with gdb

» Schrodinger penguin principle.
If you execute the kernel from a debugger on the same machine,
this will interfere with the kernel behavior.

» However, you can access the current kernel state with gdb:
gdb /usr/src/linux/vmlinux /proc/kcore

uncompressed kernel kernel address space
» You can access kernel structures, follow pointers... (read only!)

» Requires the kernel to be compiled with CONFIG DEBUG_INFO
(Kernel hacking section)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

kgdb kernel patch

http://kgdb.linsyssoft.com/

» The execution of the patched kernel is fully controlled by
gdb from another machine, connected through a serial line.

» Can do almost everything, including inserting breakpoints in
interrupt handlers.

» Supported architectures: 1386, x86 64, ppc and s390.

v k [~}

— t ‘i'

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://kgdb.linsyssoft.com/

Kernel crash analysis with kexec

P kexec system call: makes it possible to

call a new kernel, without rebooting and

going through the BIOS / firmware.

» Idea: after a kernel panic, make the

kernel automatically execute a new,

clean kernel from a reserved location in

RAM, to perform post-mortem analysis

of the memory of the crashed kernel.

» See Documentation/kdump/kdump.txt

in the kernel sources for details.

I Copy debug Standard kernel
kernel to

2. kernel
reserved
RAM panic, kexec

debug kernel
3. Analyze
crashed Debug kernel
kernel RAM

Regular RAM

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com

May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/kdump/kdump.txt

Decrypting oops messages

P You often get kernel oops messages when

>

you develop drivers (dereferencing null
pointers, illegal accesses to memory...).
They give raw information about the
function call stack and CPU registers.

You can make these messages more
explicit in your development kernel, for
example by replacing raw addresses by
symbol names, by setting:

General Setup
CONFIG KALLSYMS=y

Replaces the ksymoops tool which

shouldn't be used any more with Linux 2.6

<1>Unable to handle kernel paging request at virtual address 4d
1b65e8

Unable to handle kemel paging request at virtual address 4d1b6
5e8

<1>pgd = c0280000

pgd = c0280000

<1>[4d1b65e8] *pgd=00000000[4d1b65e8] *pgd=00000000

Internal error: Oops: 5 [#1]
Internal error: Oops: 5 [#1]
Modules linked in:Modules linked in: hx4700 udc hx4700 udc

asic3 base asic3 base

CPU: 0

CPU: 0

PC is at set pxa fb_info+0x2c/0x44

PC is at set pxa fb_info+0x2c/0x44

LR is at hx4700 udc init+0x1c/0x38 [hx4700 udc]

LR is at hx4700 udc init+0x1c/0x38 [hx4700 udc]

pc: [<c00116c8>] Ir:[<bf00901c>] Not tainted

sp : c076df78 ip : 60000093 fp : c076df84

pc : [<c00116c8>] Ir:[<bf00901c>] Not tainted

sp : c076df78 ip : 60000093 fp : c076df84

r10: 00000002 19 : c076c000 r8 : c001c7e4

r10: 00000002 19 : c076c000 18 : c001c7e4

r7 : 00000000 16 : c0176d40 15 : bf007500 r4 : c0176d58
r7 : 00000000 16 : c0176d40 15 : bf007500 r4 : c0176d58
r3 : c0176828 r2 : 00000000 rl : 00000f76 r0 : 80004440
r3 : c0176828 r2 : 00000000 rl : 00000f76 r0 : 80004440
Flags: nZCvFlags: nZCv IRQs on FIQs on Mode SVC 32 Segme
nt user

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com

May 14, 2006

http://free-electrons.com/

Debugging with Kprobes

http://sourceware.org/systemtap/kprobes/
® Fairly simple way of inserting breakpoints in kernel routines

» Unlike printk debugging, you neither have to recompile nor reboot your

kernel. You only need to compile and load a dedicated module to declare the
address of the routine you want to probe.

» Non disruptive, based on the kernel interrupt handler
P Kprobes even lets you modify registers and global kernel internals.
® Supported architectures: 1386, x86 64, ppc64 and sparc64

Nice overviews: http://lwn.net/Articles/132196/
and http://www-106.1bm.com/developerworks/library/l-kprobes.html

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://sourceware.org/systemtap/kprobes/
http://lwn.net/Articles/132196/
http://www-106.ibm.com/developerworks/library/l-kprobes.html

Kernel debugging tips

» If your kernel doesn't boot yet or hangs without any message, it
can help to activate Low Level debugging

(Kernel Hacking section, only available on arm):
CONFIG DEBUG LL=y

» More about kernel debugging in the free
Linux Device Drivers book (References section)!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Driver development
Concurrent access to resources

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Sources of concurrency issues

The same resources can be accessed by several kernel processes in
parallel, causing potential concurrency issues

» Several user-space programs accessing the same device data or
hardware. Several kernel processes could execute the same code on
behalf of user processes running in parallel.

» Multiprocessing: the same driver code can be running on another
processor. This can also happen with single CPUs with hyperthreading.

» Kermel preemption, interrupts: kernel code can be interrupted at any
time (Just a few exceptions), and the same data may be access by another

235

process before the execution continues.

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006 '

(]

http://free-electrons.com/

Avoiding concurrency issues

» Avoid using global variables and shared data whenever possible
(cannot be done with hardware resources)

» Don't make resources available to other kernel processes until
they are ready to be used.

» Use techniques to manage concurrent access to resources.

See Rusty Russell's Unreliable Guide To Locking
Documentation/DocBook/kernel-locking/

1n the kernel sources.

O —
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker _
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license <
http://free-electrons.com May 14, 2006 -

236

(]

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/DocBook/kernel-locking/

Concurrency protection with semaphores

Process 1 Process 2

v Failed g

% Acquire lock — Wait lock release
Try again

Critical code section

Success Success

Shared resource

k% Release lock

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel semaphores

Also called “mutexes” (Mutual Exclusion)

V: “Verhoog”
“Increment’ in Dutch

P \Y
(down) (up)

0

P: “Probeer” (locked)
“Try” (to decrement) in Dutch

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Initializing a semaphore

» Statically
DECLARE MUTEX (name);
DECLARE MUTEX LOCKED (name);

» Dynamically
void init MUTEX(struct semaphore *sem);
void init MUTEX LOCKED(struct semaphore *sem);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

locking and unlocking semaphores

» void down (struct semaphore *sem);
Decrements the semaphore if set to 1, waits otherwise.
Caution: can't be interrupted, causing processes you cannot kill!

P int down interruptible (struct semaphore *sem);
Same, but can be interrupted. If interrupted, returns a non zero value
and doesn't hold the semaphore. Test the return value!!!

» int down trylock (struct semaphore *sem);
Never waits. Returns a non zero value if the semaphore is not
available.

» void up (struct semaphore *sem);
Releases the semaphore. Make sure you do it as soon as possible!

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

240

(]

http://free-electrons.com/

Reader / writer semaphores

Allow shared access by unlimited readers, or by only 1 writer. Writers get priority.
void init rwsem (struct rw_semaphore *sem);

void down read (struct rw _semaphore *sem);
int down read trylock (struct rw semaphore *sem);
int up read (struct rw_semaphore *sem);

void down write (struct rw semaphore *sem);
int down write trylock (struct rw semaphore *sem);
int up write (struct rw_semaphore *sem);

Well suited for rare writes, holding the semaphore briefly. Otherwise, readers get
starved, waiting too long for the semaphore to be released.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

When to use semaphores

» Before and after accessing shared resources

» Before and after making other resources available to other
parts of the kernel or to user-space (typically and module
initialization).

» In situations when sleeping is allowed.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Spinlocks

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

©
» Locks to be used for code that can't sleep (critical sections,
interrupt handlers... Be very careful not to call functions which
can sleep!
Still locked?

» Intended for multiprocessor systems

» Spinlocks are not interruptible,
don't sleep and keep spinning in a loop
until the lock is available.

» Spinlocks cause kernel preemption to be disabled on the CPU
executing them.

» May require interrupts to be disabled too.

Embedded Linux kernel and driver development

Creative Commons Attribution-ShareAlike 2.0 license
©

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Initializing spinlocks

» Static
spinlock t my lock = SPIN LOCK UNLOCKED;

» Dynamic
void spin lock init (spinlock t *lock);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Using spinlocks

void spin [un]lock (spin lock t *lock);

void spin [un]lock irgsave (spin lock t *lock,
unsigned long flags);
Disables IRQs on the local CPU

void spin [un]lock irg (spin lock t *lock);
Disables IRQs without saving flags. When you're sure that nobody
already disabled interrupts.

void spin [un]lock bh (spin lock t *lock);
Disables software interrupts, but not hardware ones

Note that reader / writer spinlocks also exist.

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 2 4
http://free-electrons.com May 14, 2006 5

(]

http://free-electrons.com/

Deadlock situations

They can lock up your system. Make sure they never happen!

Don't call a function that can try ~ Holding multiple locks 1s risky!
to get access to the same lock

l l
| (o) [omntz)

1
[Get lock1 J —n >l

[Get lock2 J [Get lock1 J
[Wait for locklj
Dead
¢ ' q_
Embedded Linux kernel and driver development e,

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Alternatives to locking

As we have just seen, locking can have a strong negative impact on
system performance. In some situations, you could do without it.

» By using lock-free algorithms like Read Copy Update (RCU).
RCU API available in the kernel
(See http://en.wikipedia.org/wiki/RCU).

» When available, use atomic operations.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://en.wikipedia.org/wiki/RCU

Atomic variables

®
P Useful when the shared resource is an : :
. > Operations without return value:
integer value void atomic_inc (atomic t *v);
void atomic_dec (atomic_ *v);
P Even an instruction like n++ is not void atomic_add (int i, atomic_t *v);
(

void atomic_sub (int i, atomic_t *v);

guaranteed to be atomic on all processors!

Header » Simular functions testing the result:

- int atomic_inc_and test (...);

b #include <asm/atomic.h> int atomic dec and test (...);
int atomlc_sub_and_test (eee)s

Type
» Functions returning the new value:

b atomic t int atomic inc_and return (
N int atomlc_dec_and_return (
int atomic_add and return (..
int atomic_sub_and return (

contains a signed integer (at least 24 bits)

N N e
e we weo o

Atomic operations (main ones)

P Set or read the counter:
atomic_set (atomic_t *v, int 1i);
int atomic read (atomic t *v);

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Atomic bit operations

» Supply very fast, atomic operations

» On most platforms, apply to an unsigned long type.
Apply to a void type on a few others.

P Set, clear, toggle a given bit:
void set bit(int nr, unsigned long * addr);
void clear bit(int nr, unsigned long * addr);
void change bit(int nr, unsigned long * addr);

P Test bit value:
int test bit(int nr, unsigned long *addr);

P Test and modify (return the previous value):
int test and set bit (...);
int test and clear bit (...);
int test and change bit (...);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux Driver Development

Driver development
Processes and scheduling

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Processes

A process 1s an 1nstance of a running program

» Multiple instances of the same program can be running.
Program code (“text section”) memory 1s shared.

» Each process has its own data section, address space,
processor state, open files and pending signals.

» The kernel has a separate data structure for each process.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Threads

In Linux, threads are just implemented as processes!

» New threads are implemented as regular processes,
with the particularity that they are created with the same
address space, filesystem resources, file descriptors and
signal handlers as their parent process.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

A process life

®
Parent process R
Calls fgrk() Task terminated but its
S —— The process is elected res{))\lll;icg;;ffz;l?tts f;zsgni]et'
a NeW process by the scheduler to acknowledge its death.
2 R
TASK_RUNNING TASK RUNNING
Ready but Actually running
not running Th . ted
€ process 1s preempte S y

The event occurs

or the process receives

a signal. Process becomes
runnable again

by to scheduler to run
a higher priority task

TASK INTERRUPTIBLE

or TAS K:UN INTERRUPTIBLE
Waiting

Decides to sleep
on a wait queue
for a specific event

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com

May 14, 2006

http://free-electrons.com/

Process context

User space programs and system calls are scheduled together

o Process continuing in user space...
Process executing in user space... (laced by a hieh it)
or replace a higher priority process
(can be preempted) . e i
(can be preempted)

System call
or exception

Kernel code executed

on behalf of user space Still has access to process

(can be preempted too!) data (open files...)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Kernel threads

P The kernel does not only react from user-space (system calls, exceptions)
or hardware events (interrupts). It also runs its own processes.

P Kernel space are standard processes scheduled and preempted in the same
way (you can view them with top or ps!) They just have no special
address space and usually run forever.

» Kernel thread examples:

P pdflush: regularly flushes “dirty” memory pages to disk (file
changes not committed to disk yet).

P ksoftirgd: manages soft irgs.

O -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker \
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license <
http://free-electrons.com May 14, 2006 -

255

(]

http://free-electrons.com/

Process priorities

Regular processes
» Priorities from -2 0 (maximum) to 19 (minimum)

» Only root can set negative priorities

(root can give a negative priority to a regular user process)

» Use the nice command to run a job with a given priority:
nice -n <priority> <command>

» Use the renice command to change a process priority:
renice <priority> -p <pid>

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

256

http://free-electrons.com/

Real-time processes

Real-time processes can be started by root using the POSIX API
P Available through <sched.h> (see man sched.h for details)
» 100 real-time priorities available

> SCHED FIFO scheduling class:

The process runs until completion unless it is blocked by an I/O, voluntarily
relinquishes the CPU, or is preempted by a higher priority process.

> SCHED_ RR scheduling class:

Difference: the processes are scheduled in a Round Robin way.
Each process is run until it exhausts a max time quantum. Then other
processes with the same priority are run, and so and so...

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Timer frequency

Timer interrupts are raised every HZ th of second (= 1 jiffy)

» HZ is now configurable (in Processor type and features):
100, 250 (1386 default) or 1000.
Supported on 1386, 1a64, ppc, ppc64, sparc64, x86 64
See kernel/Kconfig.hz.

» Compromise between system responsiveness and global throughput.
» Caution: not any value can be used. Constraints apply!

Another 1dea 1s to completely turn off CPU timer interrupts when the
system 1s 1dle (“dynamic tick™): see http://muru.com/linux/dyntick.

This saves power. Supports arm and 1386 so far.

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 2 58
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://muru.com/linux/dyntick

O(1) scheduler

» The kernel maintains 2 priority arrays:
the active and the expired array.

» Each array contains 140 entries (100 real-time priorities + 40
regular ones), 1 for each priority, each containing a list of
processes with the same priority.

» The arrays are implemented in a way that makes it possible
to pick a process with the highest priority in constant time
(whatever the number of running processes).

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Choosing and expiring processes

» The scheduler finds the highest process priority

» It executes the first process in the priority queue for this
priority.

» Once the process has exhausted its timeslice, it is moved to
the expired array.

» The scheduler gets back to selecting another process with the
highest priority available, and so on...

® Once the active array is empty, the 2 arrays are swapped!
Again, everything 1s done 1n constant time!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

When is scheduling run?

Each process has a need resched flag which 1s set:

» After a process exhausted its timeslice.

» After a process with a higher priority is awakened.

This flag 1s checked (possibly causing the execution of the scheduler)
» When returning to user-space from a system call

» When returning from an interrupt handler (including the cpu timer)

Scheduling also happens when kernel code explicitely runs
schedule () or executes an action that sleeps.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Timeslices

The scheduler also prioritizes high priority processes by giving
them a bigger timeslice.

» Initial process timeslice: parent's timeslice split in 2
(otherwise process would cheat by forking).

» Minimum priority: 5 ms or 1 jiffie (whichever is larger)
» Default priority in jiffies: 100 ms
» Maximum priority: 800 ms

Note: actually depends on HZ.
See kernel/sched. c for details.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Dynamic priorities

Only applies to regular processes

» For a better user experience, the Linux scheduler boots the priority
of interactive processes (processes which spend most of their time
sleeping, and take time to exhaust their timeslices). Such
processes often sleep but need to respond quickly after waking up
(example: word processor waiting for key presses).

Priority bonus: up to 5 points.

» Conversely, the Linux scheduler reduces the priority of compute

intensive tasks (which quickly exhaust their timeslices).
263

Priority penalty: up to 5 points.

O —
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker _
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license <
© \
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Driver development
Sleeping

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

How to sleep (1)

Sleeping 1s needed when a user process 1s waiting for data which
are not ready yet. The process then puts itself in a waiting queue.

» Static queue declaration

DECLARE WAIT QUEUE HEAD (module queue);

» Dynamic queue declaration

wait que head t queue;
init waitqueue head(&queue);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

How to sleep (2)

Several ways to make a kernel process sleep

P wait event(queue, condition);
Sleeps until the given boolean expression is true.
Caution: can't be interrupted (i.e. by killing the client process in user-space)

[wait event interruptible(queue, condition);
Can be interrupted

P wait event timeout(queue, condition, timeout);
Sleeps and automatically wakes up after the given timeout.

[wait event interruptible timeout(queue, condition, timeout);

Same as above, interruptible.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Waking up!

Typically done by interrupt handlers when data sleeping
processes are waiting for are available.

» wake up(&queue);
Wakes up all the waiting processes on the given queue

» wake up interruptible(&queue);

Does the same job. Usually called when processes waited
using wait event interruptible.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Embedded Linux driver development

Driver development
Interrupt management

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Need for interrupts

® Internal processor interrupts used by the processor, for
example for multi-task scheduling.

» External interrupts needed because most internal and external
devices are slower than the processor. Better not keep the
processor waiting for input data to be ready or data to be
output. When the device 1s ready again, it sends an interrupt
to get the processor attention again.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Interrupt handler constraints

» Not run from a user context:
Can't transfer data to and from user space
(need to be done by system call handlers)

» Interrupt handler execution is managed by the CPU, not by
the scheduler. Handlers can't run actions that may sleep,
because there 1s nothing to resume their execution.

In particular, need to allocate memory with GFP_ ATOMIC

» Have to complete their job quickly enough:
they shouldn't block their interrupt line for too long.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Registering an interrupt handler (1)

Defined in include/linux/interrupt.h

P int request irgq(

unsigned int irq, Requested irq channel
irgreturn_ t (*handler) (...), Interrupt handler
unsigned long irq flags, Option mask (see next page)
const char * devname, Registered name

void *dev_id); Pointer to some handler data

Cannot be NULL and must be unique for shared irgs!

P void free irg(unsigned int irqg, void *dev_id);

Q » Why does dev id have to be unique?
! _
. Answer...

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Registering an interrupt handler (2)

irqg flags bit values (can be combined, none is fine too)

» SA INTERRUPT
"Quick" interrupt handler. Run with all interrupts disabled on the current cpu.
Shouldn't need to be used except in specific cases (such as timer interrupts)

» SA SHIRQ
Run with interrupts disabled only on the current irq line and on the local cpu.
The interrupt channel can be shared by several devices.
Requires a hardware status register telling whether an IRQ was raised or not.

» SA SAMPLE RANDOM
Interrupts can be used to contribute to the system entropy pool used by
/dev/random and /dev/urandom. Useful to generate good random
numbers. Don't use this if the interrupt behavior of your device is predic

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

When to register the handler

» Either at driver initialization time:
consumes lots of IRQ channels!

» Or at device open time (first call to the open file operation):
better for saving free IRQ channels.
Need to count the number of times the device is opened, to
be able to free the IRQ channel when the device 1s no longer
in use.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Information on installed handlers

timer # Registered name

18042
cascade
orinoco_cs

Intel 82801DB-ICH4

rtc
acpi

ehci hcd, uhci hcd,
uhci hed, uhci hed, yenta, yenta, radeon@PCI:1:0:0

18042
ide0
idel

Non Maskable Interrupts

/proc/interrupts

CPUO
0: 5616905 XT-PIC
1: 9828 XT-PIC
2 0 XT-PIC
3: 1014243 XT-PIC
7: 184 XT-PIC
8 1 XT-PIC
9: 2 XT-PIC
11: 566583 XT-PIC
12 5466 XT-PIC
14: 121043 XT-PIC
15: 200888 XT-PIC
NMI : 0
ERR: 0

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com

May 14, 2006

274

http://free-electrons.com/

Total number of interrupts

cat /proc/stat | grep intr

intr 8190767 6092967 10377 0 1102775 5 2 0 196 ...

Total number IRQI IRQ2 IRQ3
of interrupts total total

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Interrupt channel detection (1)

Useful when a driver can be used in different machines / architectures
» Some devices announce their IRQ channel in a register

» Manual detection

P Register your interrupt handler for all possible channels
» Ask for an interrupt

P Let the called interrupt handler store the IRQ number in a global
variable.

P Try again if no interrupt was received

® Unregister unused interrupt handlers.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Interrupt channel detection (2)

Kernel detection utilities

» mask = probe irqg on();
» Activate interrupts on the device

» Deactivate interrupts on the device

P irqg = probe irq off(mask);
» > 0: unique IRQ number found
» = 0: no interrupt. Try again!

P < 0: several interrupts happened. Try again!

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

The interrupt handler's job

» Acknowledge the interrupt to the device
(otherwise no more interrupts will be generated)

» Read/write data from/to the device

» Wake up any waiting process waiting for the completion of

this read/write operation:
wake up interruptible(&module queue);

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o
Embedded Linux kernel and driver development ' !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6 |
|
| 278

(]

http://free-electrons.com/

Interrupt handler prototype

®
irgreturn_t (*handler) (
int, /* irq number */
void *dev_id, /* Pointer used to keep track of the

corresponding device. Useful
when several devices are
managed by the same module */

struct pt regs *regs /* cpu register snapshot, rarely
needed*/

) ;
Return value:

> IRQ HANDLED: recognized and handled interrupt

P> IRQ NONE: not on a device managed by the module. Useful to share interrupt
channels and/or report spurious interrupts to the kernel.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Top half and bottom half processing (1)

» Top half: the interrupt handler must complete as quickly as
possible. Once 1t acknowledged the interrupt, it just
schedules the lengthy rest of the job taking care of the data,
for a later execution.

» Bottom half: completing the rest of the interrupt handler job.
Handles data, and then wakes up any waiting user process.
Best implemented by tasklets.

®
Embedded Linux kernel and driver development »
© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons
I.I

Creative Commons Attribution-ShareAlike 2.0 license _ | 2 8 O
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

top half and bottom half processing (2)

P Declare the tasklet in the module source file:

DECLARE TASKLET (module tasklet, /* name */
module do tasklet, /* function */
0 /* data */

) 7

» Schedule the tasklet in the top half part (interrupt handler):
tasklet schedule(&module do tasklet);

O -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 2 8 1
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Disabling interrupts

May be useful in regular driver code...

» Can be useful to ensure that an interrupt handler will not preempt your
code (including kernel preemption)

» Disabling interrupts on the local CPU:

unsigned long flags;
local irqg save(flags); // Interrupts disabled

local irqg restore(flags); //Interrupts restored to their previous state.
Note: must be run from within the same function!

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y 2 8 2
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Masking out an interrupt line

Usetul to disable interrupts on a particular device

» void disable irqg (unsigned int irq);
Disables the irqg line for all processors in the system.
Waits for all currently executing handlers to complete.

» void disable irg nosync (unsigned int irq);
Same, except 1t doesn't wait for handlers to complete.

» void enable irg (unsigned int irq);
Restores interrupts on the 1rq line.

» void synchronize irqg (unsigned int irq);
Waits for 1rq handlers to complete (if any).

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Checking interrupt status

Can be useful for code which can be run from both process or
interrupt context, to know whether it 1s allowed or not to call
code that may sleep.

» irgs disabled()
Tests whether local interrupt delivery 1s disabled.
P in interrupt()
Tests whether code 1s running 1n interrupt context
P in irqg()
Tests whether code 1s running 1n an interrupt handler.

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

o
Embedded Linux kernel and driver development ' !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6 |
|
| 284

(]

http://free-electrons.com/

Interrupt management fun

® In a training lab, somebody forgot to unregister a handler on
a shared interrupt line in the module exit function.

Why did his kernel crash with a segmentation fault
‘) y g
at module unload?

Answer...

® In a training lab, somebody freed the timer interrupt handler
by mistake (using the wrong irq number). The system froze.
Remember the kernel is not protected against itself!

-

Creative Commons Attribution-ShareAlike 2.0 license
http://free-electrons.com May 14, 2006

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

(]

http://free-electrons.com/

Interrupt management summary

Device driver Tasklet

P When the device file is first open, P Process the data

register an interrupt handler for the P Wake up processes waiting for

device's interrupt channel.
P the data

Interrupt handler

Device driver

» Called when an interrupt is raised. » When the device is no longer

P Acknowledge the interrupt opened by any process,

1 he 1 handler.
P If needed, schedule a tasklet taking unregister the interrupt handler

care of handling data. Otherwise,
wake up processes waiting for the

data.
©

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Practical lab — Interrupts

Time to start Lab 6!
» Implement a simple interrupt handler

» Register this handler on a shared interrupt
line on your GNU/Linux PC.

» See how Linux handles
shared interrupt lines.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Driver development
mmap

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

mmap (1)

Possibility to have parts of the virtual address space of a program
mapped to the contents of a file!

> cat /proc/1/maps (init process)

start end perm offset major:minor inode mapped file name
00771000-0077£000 r-xp 00000000 03:05 1165839 /1lib/libselinux.so.1l
0077£000-00781000 rw-p 00004000 03:05 1165839 /1lib/libselinux.so.1l
0097d000-00992000 r-xp 00000000 03:05 1158767 /1ib/1d-2.3.3.s0
00992000-00993000 r--p 00014000 03:05 1158767 /1ib/1d-2.3.3.s0
00993000-00994000 rw-p 00015000 03:05 1158767 /1ib/1d-2.3.3.s0
00996000-00aac000 r-xp 00000000 03:05 1158770 /1lib/tls/1libc-2.3.3.s0
00aac000-00aad000 r--p 00116000 03:05 1158770 /lib/tls/1libc-2.3.3.s0
00aad000-00ab0000 rw-p 00117000 03:05 1158770 /1lib/tls/1libc-2.3.3.s0
00ab0000-00ab2000 rw-p 00ab0000 00:00 O

08048000-08050000 r-xp 00000000 03:05 571452 /sbin/init (text)
08050000-08051000 rw-p 00008000 03:05 571452 /sbin/init (data, stack)

08b43000-08b64000 rw-p 08b43000 00:00 O
f6£fdf000-£f6fe0000 rw-p £6£d4d£f000 00:00 O
fefd4000-££000000 rw-p fefd4000 00:00 O
ffffe000-£f££f£f£f000 ---p 00000000 00:00 O

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

mmap (2)

Particularly useful when the file 1s a device file!
Allows to access device I/O memory and ports without having to go
through (expensive) read, write or ioctl calls!

X server example (maps excerpt)

start end perm offset major:minor inode mapped file name
08047000-081be000 r-xp 00000000 03:05 310295 /usr/X11R6/bin/Xorg
081be000-081£f0000 rw-p 00176000 03:05 310295 /usr/X11R6/bin/Xorg
£f4e08000-£4£f09000 rw-s 0000000 03:05 655295 /dev/dri/card0
£f4£09000-£f4£f0b000 rw-s 4281a000 03:05 655295 /dev/dri/card0
f4£f0b000-£6£f0b000 rw-s 8000000 03:05 652822 /dev/mem
f6£0b000-£6£8b000 rw-s fcff0000 03:05 652822 /dev/mem

A more user friendly way to get such information: pmap <pid>

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

How to implement mmap - User space

¢

» Open the device file

» Call the mmap system call (see man mmap for details):

volid * mmap (

void *start, /* Often 0, preferred starting address */
size t length, /* Length of the mapped area */
int prot , /* Permissions: read, write, execute */
int flags, /* Options: shared mapping, private copy... */
int £fd, /* Open file descriptor */

off t offset /* Offset in the file */
)

P Read from the return virtual address or write to it.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

How to implement mmap - Kernel space

» Character driver: implement a mmap file operation

and add it to the driver file operations:

int (*mmap) (
struct file *, /* Open file structure */
struct vm area struct /* Kernel VMA structure */

) 7

» Initialize the mapping.
Can be done in most cases with the remap pfn range()
function, which takes care of most of the job.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

remap_pin_range()

» pfn: page frame number
The most significant bits of the page address
(without the bits corresponding to the page size).

P #include <linux/mm.h>

int remap pfn range(
struct vm area struct *, /* VMA struct */
unsigned long virt addr, /* Starting user virtual address */
unsigned long pfn, /* ptn of the starting physical address */
unsigned long size, /* Mapping size */
pgprot t /* Page permissions */

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Simple mmap implementation

static int acme mmap (
struct file * file, struct vm area struct * vma)

{
size = vma->vm start - vma->vm end;
if (size > ACME SIZE)
return -EINVAL;
if (remap pfn range(vma,
vma->vm start,
ACME PHYS >> PAGE SHIFT,
size,
vma->vim page prot))
return -EAGAIN;
return O0;
}

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

devmem?2

http://free-electrons.com/pub/mirror/devmem?.c, by Jan-Derk Bakker

Very useful tool to directly peek (read) or poke (write) I/O addresses
mapped 1n physical address space from a shell command line!

» Very useful for early interaction experiments with a device, without
having to code and compile a driver.

» Uses mmap to /dev/mem.
Need to run request mem region and setup /dev/mem first.

» Examples (b: byte, h: half, w: word)
devmem2 0x000c0004 h (reading)
devmem2 0x000c0008 w Oxffffffff (writing)

O -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 2 9 5
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://free-electrons.com/pub/mirror/devmem2.c

Embedded Linux driver development

Driver development
DMA

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

DMA situations

Synchronous

P A user process calls the read
method of a driver. The driver

allocates a DMA buffer and asks
the hardware to copy its data.

The process 1s put in sleep mode.

» The hardware copies its data and
raises an interrupt at the end.

» The interrupt handler gets the
data from the buffer and wakes
up the waiting process.

Asynchronous

P The hardware sends an interrupt to
announce new data.

P The interrupt handler allocates a
DMA buffer and tells the hardware
where to transfer data.

P The hardware writes the data and
raises a new interrupt.

P The handler releases the new data,
and wakes up the needed
processes.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Memory constraints

» Need to use contiguous memory in physical space

» Can use any memory allocated by kmalloc (up to 128 KB)
or get free pages (up to SMB)

» Can use block I/0 and networking buffers,
designed to support DMA.

» Can not use vmalloc memory
(would have to setup DMA on each individual page)

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 2 98
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Reserving memory for DMA

To make sure you've got enough RAM for big DMA transfers...
Example assuming you have 32 MB of RAM, and need 2 MB for DMA:

» Boot your kernel with mem=30
The kernel will just use the first 30 MB of RAM.

» Driver code can now reclaim the 2 MB left:
dmabuf = ioremap (

0x1e00000, /* Start: 30 MB */

0x200000 /* Si1ze: 2 MB */
)

Embedded Linux kernel and driver development | I !
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

Creative Commons Attribution-ShareAlike 2.0 license

299

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Memory synchronization issues

Memory caching could interfere with DMA

P Before DMA to device:

Need to make sure that all writes to DMA buffer are committed.

P After DMA from device:

Before drivers read from DMA buffer, need to make sure that memory
caches are flushed.

» Bidirectional DMA
Need to flush caches before and after the DMA transfer.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Linux DMA API

The kernel DMA utilities can take care of:

» Either allocating a buffer in a cache coherent area,
» Or make sure caches are flushed when required,

» Managing the DMA mappings and IOMMU (if any)

®» See Documentation/DMA-API.txt
for details about the Linux DMA generic APIL.

» Most subsystems (such as PCI or USB) supply their own DMA API,
derived from the generic one. May be sufficient for most needs.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/DMA-API.txt

Limited DMA address range?

» By default, the kernel assumes that your device can DMA to any
32 bit address. Not true for all devices!

» To tell the kernel that it can only handle 24 bit addresses:

if (dma set mask (dev, [* device structure */
Oxffffff /* 24 bits */
))
use dma = 1; /* Able to use DMA */
else
use dma = 0; /* Will have to do without DMA */

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license 1
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Coherent or streaming DMA mappings

» Coherent mappings
Can simultaneously be accessed by the CPU and device.
So, have to be in a cache coherent memory area.
Usually allocated for the whole time the module 1s loaded.
Can be expensive to setup and use.

» Streaming mappings (recommended)
Set up for each transfer.
Keep DMA registers free on the physical hardware registers.
Some optimizations also available.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Allocating coherent mappings

The kernel takes care of both the buffer allocation and mapping:

include <asm/dma-mapping.h>

void * /* Output: buffer address */
dma alloc coherent(

struct device *dev, /* device structure */

size t size, /* Needed buffer size in bytes */
dma addr t *handle, /* Output: DMA bus address */
gfp t gfp /* Standard GFP flags */

)

void dma free coherent(struct device *dev,
size t size, void *cpu addr, dma addr t handle);

Embedded Linux kernel and driver development e U I ;
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons |

Creative Commons Attribution-ShareAlike 2.0 license : | 3 0 4

© I11

http://free-electrons.com May 14, 2006

http://free-electrons.com/

DMA pools (1)

> dma alloc_ coherent usually allocates buffers with
__get free pages (minimum: I page).
® You can use DMA pools to allocate smaller coherent mappings:

<include linux/dmapool.h>

» Create a dma pool:
struct dma pool *
dma pool create (

const char *name, /* Name string */

struct device *dev, /* device structure */

size t size, /* Size of pool buffers */

size t align, /* Hardware alignment (bytes) */
size t allocation /* Address boundaries not to be crossed */

)

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

DMA pools (2)

» Allocate from pool
void * dma pool alloc (
struct dma pool *pool,
gfp t mem flags,
dma addr t *handle
)i

® Free buffer from pool
void dma pool free (
struct dma pool *pool,
void *vaddr,
dma addr t dma);

> Destroy the pool (free all buffers first!)
void dma pool destroy (struct dma pool *pool);

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Setting up streaming mappings

Works on buffers already allocated by the driver
<include linux/dmapool.h>

dma addr t dma map single(

struct device *, /* device structure */
void *, /* input: buffer to use */
size t, /* buffer size */

enum dma data direction /* Either DMA BIDIRECTIONAL,
DMA TO DEVICE or DMA FROM DEVICE */
) i

void dma unmap single(struct device *dev, dma addr t
handle, size t size, enum dma data direction dir);

Embedded Linux kernel and driver development

. | © Copyright 2006-2004, Michael Opdenacker
Fr ee E ectrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

DMA streaming mapping notes

P When the mapping is active: only the device should access the buffer
(potential cache issues otherwise).

» The CPU can access the buffer only after unmapping!

® Another reason: if required, this API can create an intermediate bounce
buffer (used if the given buffer 1s not usable for DMA).

P Possible for the CPU to access the buffer without unmapping it, using
the dma sync single for cpu() (ownership to cpu) and
dma sync single for device() functions (ownership back to
device).

® The Linux API also support scatter / gather DMA streaming mappings.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6

Creative Commons Attribution-ShareAlike 2.0 license

308

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Driver development
New Device Model

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Device Model features (1)

» Originally created to make power management simpler
Now goes much beyond.

» Used to represent the architecture and state of the system

» Has a representation in userspace: sysfs
Now the preferred interface with userspace (instead of /proc)

» Easy to implement thanks to the device interface:
include/linux/device.h

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Device model features (2)

Allows to view the system for several points of view:

P From devices existing in the system: their power state, the bus they are
attached to, and the driver responsible for them.

P From the system bus structure: which bus is connected to which bus (e.g.
USB bus controller on the PCI bus), existing devices and devices potentially
accepted (with their drivers)

P From available device drivers: which devices they can support, and which
bus type they know about.

» From the various kinds ("classes") of devices: input, net, sound...
Existing devices for each class. Convenient to find all the input devices
without actually knowing how they are physically connected.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

sysis

» Userspace representation of the Device Model.

» Configure it with
CONFIG SYSFS=y (Filesystems -> Pseudo filesystems)

» Mount it with
mount -t sysfs none /sys

» Spend time exploring /sys on your workstation!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

312

http://free-electrons.com/

sysis tools

http://linux-diag.sourceforge.net/Sysfsutils.html

» 1ibsysfs - The library's purpose is to provide a consistent and
stable interface for querying system device information exposed
through systs. Used by udev (see later)

P systool - A utility built upon 1ibsys£s that lists devices by
bus, class, and topology.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://linux-diag.sourceforge.net/Sysfsutils.html

The device structure

Declaration

» The base data structure is struct device, defined in
include/linux/device.h

» In real life, you will rather use a structure corresponding to
the bus your device 1s attached to: struct pci dev,
struct usb device..

Registration

» Still depending on the device type, specific register and
unregister functions are provided

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Device attributes

Defining device attributes to be read/written from/by userspace

struct device attribute ({
struct attribute attr;
ssize t (*show) (struct device * dev, char * buf, size t count, loff t off);
ssize t (*store)(struct device * dev, const char * buf, size t count, loff t off);

}i

#define DEVICE ATTR(name,mode,show,store)

Adding / removing from the device directory

int device create file(struct device *device, struct device attribute * entry);
void device remove file(struct device * dev, struct device attribute * attr);

Example

/* Creates a file named "power" with a 0644 (-rw-r--r--) mode */

DEVICE ATTR(power,0644,show power,store power);
device create file(dev,&dev_attr power);
device remove file(dev,&dev_attr power);

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

The device driver structure

Declaration

struct device driver {
/* Omitted a few internals */

char *name;
struct bus type *bus;
int (*probe) (struct device * dev);
int (*remove) (struct device * dev);
void (*shutdown) (struct device * dev);
int (*suspend) (struct device * dev, u32 state, u32 level);
int (*resume) (struct device * dev, u32 level);
}i
Registration

extern int driver register(struct device driver * drv);
extern void driver unregister(struct device driver * drv);

Attributes

Available in a similar way
[~

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Device Model references

» Very useful and clear documentation in the kernel sources!
» Documentation/driver-model/

» Documentation/filesystems/sysfs.txt

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

317

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/driver-model/
http://free-electrons.com/kerneldoc/latest/filesystems/sysfs.txt

Embedded Linux driver development

Driver development
hotplug

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

hotplug overview

» Introduced in Linux 2.4. Pioneered by USB.

» Kernel mechanism to notify user space programs that a device has been
inserted or removed.

P User space scripts then take care of identifying the hardware and
inserting/removing the right driver modules.

P Linux 2.6: much easier device identification thanks to sysfs
P Makes it possible to load external firmware
P Makes it possible to have user-mode only driver (e.g. 1ibsane)

» Kernel configuration:
CONFIG HOTPLUG=y (General setup section)

O -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker \
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license <
http://free-electrons.com May 14, 2006 -

319

(]

http://free-electrons.com/

hotplug flow example

Kernel

hotplug support | acrron=add|remove
DEVPATH=<sysfs path>

updated SEONUM=<num> ACTION=add |[remove

/sys

® environment
variables

DEVPATH=<sylsfs path>

usb.agent

Identifies the device

\

Loads/removes the
right driver modules
or user msde driver
Can call / notify
other programs

» /sbin/hotplug usb

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com May 14, 2006

http://free-electrons.com/

hotplug files

@

/lib/modules/*/modules.*map /etc/hotplug/NAME*

depmod output subsystem-specific files, for agents
/proc/sys/kernel/hotplug /etc/hotplug/NAME/DRIVER

specifies hotplug program path driver setup scripts, invoked by agents
/sbin/hotplug /etc/hotplug/usb/DRIVER.usermap

hotplug program (default path name) depmod data for user-mode drivers
/etc/hotplug/* /etc/hotplug/NAME. agent

hotplug files hotplug subsystem-specific agents

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Firmware hotplugging

Reasons for keeping firmware data outside their device drivers

Legal issues

» Some firmware is not legal to distribute and can't be shipped
in a Free Software driver

» Some firmware may not be considered as free enough to
distribute (Debian example)

Technical 1ssues

» Firmware in kernel code would occupy memory

permanently, even if just used once.
¢

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Firmware hotplugging setup

» Kemel configuration: needs to be setin CONFIG FW LOADER
(Device Drivers -> Generic Driver Options -> hotplug firmware
loading support)

» Need /sys to be mounted

» [ocation of firmware files: check
/etc/hotplug/firmware.agent

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Firmware hotplugging implementation

@
Kernel space Userspace
Driver /sys/class/firmware/xxx/{loading,data}
calls request firmware() appear
Sleeps

/sbin/hotplug firmware called

Kernel
Discards any partial load /etc/hotplug/firmware.agent
Grows a buffer to accommodate incoming data echo 1 > /sys/class/firmware/xxx/loading
cat fw _image > /sys/class/firmware/xxx/data
echo 0 > /sys/class/firmware/xxx/loading
Driver

wakes up after request firmware()
Copies the buffer to the hardware
Calls release firmware()

See Documentation/firmware class/ for a nice overview

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/firmware_class/

hotplug references

» Project page and documentation
http://linux-hotplug.sourceforge.net/

» Mailing list:
http://lists.sourceforge.net/lists/listinfo/linux-hotplug-devel

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://linux-hotplug.sourceforge.net/
http://lists.sourceforge.net/lists/listinfo/linux-hotplug-devel

Embedded Linux driver development

udev

Driver development
udev: user-space device file management

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

/dev issues and limitations

» On Red Hat 9, 18000 entries in /dev!
All entries for all possible devices need to be created at system
installation.

» Need for an authority to assign major numbers
http://lanana.org/: Linux Assigned Names and Numbers Authority

» Not enough numbers in 2.4, limits extended in 2.6
» Userspace doesn't know what devices are present in the system.

» Userspace can't tell which /dev entry is which device

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://lanana.org/

devfs solutions and limitations

» Only shows present devices
» But uses different names as in /dev, causing issues in scripts.

» But no flexibility in device names, unlike with /dev/, e.g. the 1st
IDE disk device has to be called either /dev/hda or
/dev/ide/hd/c0b0t0u0.

» But doesn't allow dynamic major and minor number allocation.

» But requires to store the device naming policy in kernel memory.

328

Can't be swapped out!

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g

(]

http://free-electrons.com/

The udev solution

Takes advantage of both hotplug and sysfs

» Entirely in user space

» Automatically creates device entries (by default in /udev)
» Called by/sbin/hotplug, uses information from sysfs.
» Major and minor device numbers found in sysfs

» Requires no change to the driver code

» Small size

Embedded Linux kernel and driver development
(.\' Free Electrons © Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

How udev works

Kernel
hotplug support

- *¥p /sbin/hotplug

updated
/sys

y

udevsend i»

User programs

T

*

sending parameters through

environment variables

udevd

y i

udev

Reads config files

v

Matches devices to rules

/etc/dev.d/
programs

+

\

Creates / removes devices

*

(.\, Free Electrons

(]

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

http://free-electrons.com

May 14, 2006

330

http://free-electrons.com/

udev toolset (1)

Major components

» udevsend (8KB in Fedora Core 3)
Takes care of handling the /sbin/hotplug events, and sending
them to udevd

» udevd (12KB)

Takes care of reordering hotplug events, before calling udev
instances for each of them.

» udev (68KB)

Takes care of creating or removing device entries, entry naming,
and then executing programs in /etc/dev.d/

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

udev toolset (2)

Other utilities

» udevinfo (48KB)
Lets users query the udev database

P udevstart (functionality brought by udev)
Populates the initial device directory from valid devices found 1n
the sysfs device tree.

P udevtest <sysfs device path> (64KB)
Simulates a udev run to test the configured rules

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

332

O -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

(]

http://free-electrons.com/

udev configuration file

/etc/udev/udev.conf
Easy to edit and configure. Sets the below parameters:

» Device directory (/udev)
» udev database file (/dev/ .udev.tdb)

» udev rules (/etc/udev/rules.d/)
udev permissions (/etc/udev/permissions.d/)

» default mode (0600), default owner (root) and group (root),
when not found 1n udev's permissions.

» Enable logging (yes)
Debug messages available in /var/log/messages

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

udev naming capabilities

Device names can be defined

» from a label or serial number

» from a bus device number

» from a location on the bus topology
» from a kernel name

udev can also create device links

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

http://free-electrons.com

May 14, 2006

http://free-electrons.com/

udev rules file example

@
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

if /sbin/scsi id returns "OEM 0815" device will be called diskl
BUS="scsi", PROGRAM=" /sbin/scsi_id" , RESULT="OEM 0815", NAME="diskl"

USB printer to be called 1lp color
BUS="usb", SYSFS{serial}="wW09090207101241330", NAME="1lp color"

SCSI disk with a specific vendor and model number will be called boot
BUS="scsi", SYSFS{vendor}="IBM", SYSFS{model}="ST336", NAME="boot%n"

sound card with PCI bus id 00:0b.0 to be called dsp
BUS="pci", ID="00:0b.0", NAME="dsp"

USB mouse at third port of the second hub to be called mousel
BUS="usb", PLACE="2.3", NAME="mousel"

ttyUSB1l should always be called pda with two additional symlinks
KERNEL="ttyUSB1", NAME="pda", SYMLINK="palmtop handheld"

multiple USB webcams with symlinks to be called webcam0, webcaml,
BUS="usb", SYSFS{model}="XV3", NAME="video%n", SYMLINK="webcam%n"

http://free-electrons.com May 14, 2006

http://free-electrons.com/

udev sample permissions

Sample udev permission file (in /etc/udev/permissions.d/):

#name:user:group:mode
input/*:root:root:644
ttyUSB1:0:8:0660
video*:root:video:0660
dspl:::0666

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

/etc/dev.d/

After device nodes are created, removed or renamed, udev can
call programs found 1in the below search order:

» /etc/dev.d/$(DEVNAME) /*.dev
» /etc/dev.d/S$(SUBSYSTEM)/*.dev
» /etc/dev.d/default/*.dev

The programs in each directory are sorted in lexical order.

This 1s useful to notify user applications of device changes.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

udev links

» Home page
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html

» Sources
http://kernel.org/pub/linux/utils/kernel/hotplug/

» Mailing list:
linux-hotplug-devel @lists.sourceforge.net

» Greg Kroah-Hartman, udev presentation
http://www .kroah.com/linux/talks/oscon_2004_udev/

» Greg Kroah-Hartman, udev whitepaper
http://www kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://kernel.org/pub/linux/utils/kernel/hotplug/udev.html
http://kernel.org/pub/linux/utils/kernel/hotplug/
http://www.kroah.com/linux/talks/oscon_2004_udev/
http://www.kroah.com/linux/talks/ols_2003_udev_paper/Reprint-Kroah-Hartman-OLS2003.pdf

Embedded Linux driver development

Advice and resources

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

System security

» In production: disable loadable kernel modules if you can.

» Carefully check data from input devices (if interpreted by the
driver) and from user programs (buffer overflows)

» Check kernel sources signature.

» Beware of uninitialized memory.
Sensitive memory: clear i1t before freeing it.
The same page could later be allocated to a user process.

» Compile modules by yourself (beware of binary modules)

340

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

O =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/

Embedded Linux driver development

Advice and resources
Choosing filesystems

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Block device or MTD filesystems

¢
Block devices Memory Technology Devices (MTD)
» Floppy or hard disks » Flash, ROM or RAM chips
(SCSI, IDE)

» MTD emulation on block devices
» Compact Flash (seen as a
regular IDE drive)

» RAM disks

» Loopback devices

Filesystems are either made for block or MTD storage devices.
See Documentation/filesystems/ for details.

O —
Embedded Linux kernel and driver development >
© Copyright 2006-2004, Michael Opdenacker _
_ .

(.\' Free Electr ons Creative Commons Attribution-ShareAlike 2.0 license | 3 42

(]

http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/

Traditional block filesystems

Traditional filesystems

» Hard to recover from crashes. Can be left in a corrupted (“half
finished”) state after a system crash or sudden power-off.

P ext2: traditional Linux filesystem
(repair it with £sck.ext?2)

P vfat: traditional Windows filesystem

(repair it with £sck.vfat on GNU/Linux or Scandisk on
Windows)

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Journaled filesystems

» Designed to stay in a
correct state even after
system crashes or a
sudden power-oft

» All writes are first
described 1n the journal
before being committed
to files

Application

User-space Write to file

Kernel space

(filesystem) Write an entry

in the journal

Clear
journal entry

(.\, Free Electrons

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

(]

http://free-electrons.com

May 14, 2006

http://free-electrons.com/

Filesystem recovery after crashes

¢
[Reboot J » Thanks to the journal,
the filesystem 1s never
Journal left in a corrupted state
N empty?
o ’ » Recently saved data
iscard
incomplete could still be lost

journal entries

Yes

Execute

journal

Y

{ Filesystem OK J

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Journaled block filesystems

Journaled filesystems
» ext3: ext2 with journal extension

P reiserFS: most innovative (fast and extensible)

» Others: JFS (IBM), XF'S (SGI)

» NTFS: well supported by Linux in read-mode

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Compressed block filesystems (1)

Cramfs

» Simple, small, read-only compressed filesystem
designed for embedded systems .

» Maximum filesystem size: 256 MB
» Maximum file size: 16 MB

See Documentation/filesystems/cramfs.txt
in kernel sources.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/cramfs.txt

Compressed block filesystems (2)

Squashfs: http://squashfs.sourceforge.net

» A must-use replacement for Cramfs! Also read-only.

» Maximum filesystem and file size: 2°* bytes (4 GB)

» Achieves better compression and much better performance.

» Fully stable but released as a separate patch so far (waiting for
Linux 2.7 to start).

» Successfully tested on 1386, ppc, arm and sparc.

See benchmarks on
http://tree.celinuxforum.org/CelfPubWiki/SquashFsComparisons

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 3 4 8
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://squashfs.sourceforge.net/
http://tree.celinuxforum.org/CelfPubWiki/SquashFsComparisons

ramdisk filesystems

Useful to store temporary data not kept after power off or reboot: system
log files, connection data, temporary files...

» Traditional block filesystems: journaling not needed.

Many drawbacks: fixed in size. Remaining space not usable as RAM.
Files duplicated in RAM (in the block device and file cache)!

» tmpfs (Config: File systems ->Pseudo filesystems)
Doesn't waste RAM: grows and shrinks to accommodate stored files
Saves RAM: no duplication; can swap out pages to disk when needed.

See Documentation/filesystems/tmpfs.txt inkernel sources.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/filesystems/tmpfs.txt

Mixing read-only and read-write filesystems

Good 1dea to split your block storage into Squashfs
B i .. read-only
A C(.)mpressed read-only pal'jtlthIl (Squaéhfs? compressed
Typically used for the root filesystem (binaries, kernel...). o root
. 1lesystem
Compression saves space. Read-only access protects your
system from mistakes and data corruption. ext3
read-write
» A read-write partition with a journaled filesystem (like ext3) user and
. . configuration
Used to store user or configuration data. data
Guarantees filesystem integrity after power off or crashes.]
tmpfs
» A ramdisk for temporary files (tmpfs) read-write

volatile data

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

Block Storage

ramdisk

http://free-electrons.com/

The MTD subsystem

Linux filesystem interface

MTD “User” modules e —

Flash Translation Layers

jff32 Char device Block device for block device emulation |
- Caution: patented algorithms!

FTL NFTL | |INFTL

yaffs2 Read-only block device
MTD Chip drivers
CFI flash RAM chips
Block device Virtual memory
NAND flash ~ DiskOnChip flash ROM chips Virtual devices appearing as

MTD devices

Memory devices hardware m m m

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

MTD filesystems - jifs2

jf££s2: Journaling Flash File System v2

» Designed to write flash sectors in an homogeneous way.
Flash bits can only be rewritten a relatively small number of times

(often < 100 000).

» Compressed to fit as many data as possible on flash chips. Also
compensates for slower access time to those chips.

» Power down reliable: can restart without any intervention

» Shortcomings: low speed, big RAM consumption (4 MB for 128

MB of storage).
352

O —
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker _
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license <
© \
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Mounting a jifs2 image

®
Useful to create or edit j££s2 images on your GNU / Linux PC!
» Mounting an MTD device as a loop device is a bit complex task. Here's an
example for jff£s2:
modprobe loop
modprobe mtdblock
losetup /dev/loop0 <file>.jffs2
modprobe blkmtd erasesz=256 device=/dev/loop0
mknod /dev/mtdblock0 b 31 0 (if not done yet)
mkdir /mnt/jffs2 (example mount point, if not done yet)

mount -t jffs2 /dev/mtdblock0 /mnt/jffs2/

P It's very likely that your standard kernel misses one of these modules. Check
the corresponding . c file in the kernel sources and look 1n the corresponding
Makefile which option you need to recompile your kernel with.

®
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license
@

http://free-electrons.com May 14, 2006

http://free-electrons.com/

MTD filesystems - yaffs2

yaffs2: Yet Another Flash Filing System, version 2

» yaffs2 home: http://aleph]l.co.uk/drupal/?q=node/35
Caution: site under reconstruction. Lots of broken links!

» Features: NAND flash only. No compression. Several times
faster than jf££fs2 (mainly significant in boot time) Consumes
much less RAM. Also includes ECC and is power down reliable.

» License: GPL or proprietary

» Ships outside the Linux kernel. Get it from CVS:
http://alephl.co.uk/cgi-bin/viewcvs.cgi/yaffs/

O =
Embedded Linux kernel and driver development >
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 3 5 4
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://aleph1.co.uk/cgi-bin/viewcvs.cgi/yaffs/

Filesystem choices for block flash devices

Typically for Compact Flash storage

» Can't use jffs2 or yaffs2 on CF storage (block device). MTD Block
device emulation could be used, but j££s2 / yaff£s2 writing schemes
could interfere with on-chip flash management (manufacturer dependent).

P Never use block device journaled filesystems on unprotected flash chips!
Keeping the journal would write the same sectors ‘g
over and over again and quickly damage them.

» Can use ext?2 or vfat, with the below mount options:

noatime: doesn't write access time information in file inodes
sync: to perform writes immediately (reduce power down failure risks)

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 3
http://free-electrons.com May 14, 2006 5 5

(]

http://free-electrons.com/

Filesystem choice summary

Yes Yes y
choose jffs2 or yaffs2 choose ext2 ;
J Y))) Choose ext3 or reiserfs
read-only or read-write noatime + sync mount options
\J \J
choose Squashfs
9 Choose tmpfs
read-only
[¥)

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license e
® .
http://free-electrons.com May 14, 2006 3 56

http://free-electrons.com/

Embedded Linux driver development

Advice and resources
Getting help and contributions

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Solving issues

» If you face an issue, and it doesn't look specific to your work but
rather to the tools you are using, it is very likely that someone else
already faced it.

» Search the Internet for similar error reports

» On web sites or mailing list archives
(using a good search engine)

» On newsgroups: http://groups.google.com/

» You have great chances of finding a solution or workaround, or at
least an explanation for your issue.

» Otherwise, reporting the issue is up to you!
©

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://groups.google.com/

Getting help

» If you have a support contract, ask your vendor

» Otherwise, don't hesitate to share your questions and issues
on mailing lists

® Either contact the Linux mailing list for your architecture (like
linux-arm-kernel or linuxsh-dev...)

® Or contact the mailing list for the subsystem you're dealing with
(linux-usb-devel, linux-mtd...). Don't ask the maintainer directly!

» Most mailing lists come with a FAQ page. Make sure you read it
before contacting the mailing list

P Refrain from contacting the Linux Kernel mailing list, unless you're

an experienced developer and need advice
©

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Getting contributions

Applies 1f your project can interest other people:
developing a driver or filesystem, porting Linux on a new
processor, board or device available on the market...

External contributors can help you a lot by
» Testing

» Writing documentation

» Making suggestions

» Even writing code

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

360

http://free-electrons.com/

Encouraging contributions

» Open your development process: mailing list, Wiki, public CVS
read access

» Let everyone contribute according to their skills and interests.
P Release early, release often

» Take feedback and suggestions into account

» Recognize contributions

» Make sure status and documentation are up to date

» Publicize your work and progress to broader audiences

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Advice and resources
Bug report and patch submission

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Reporting Linux bugs

» First make sure you're using the latest version

» Make sure you investigate the issue as much as you can:
see Documentation/BUG-HUNTING

» Make sure the bug has not been reported yet. A bug tracking system
(http://bugzilla.kernel.org/) exists but very few kernel developers use it.
Best to use web search engines (accessing public mailing list archives)

» If the subsystem you report a bug on has a mailing list, use it.
Otherwise, contact the official maintainer (see the MAINTAINERS file).
Always give as many useful details as possible.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/BUG-HUNTING
http://bugzilla.kernel.org/

How to submit patches or drivers

» Don't merge patches addressing different issues

® You should identify and contact the official maintainer for the
files to patch.

» See Documentation/SubmittingPatches for details.
For trivial patches, you can copy the Trivial Patch Monkey.

» Special subsystems:

» ARM platform: it's best to submit your ARM patches to Russell
King's patch system:
http://www.arm.linux.org.uk/developer/patches/

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/SubmittingPatches
http://www.arm.linux.org.uk/developer/patches/

How to become a kernel developer?

Greg Kroah-Hartman gathered useful references and advice for
people interested in contributing to kernel development:

Documentation/HOWTO (in kernel sources since 2.6 .15-rc2)

Do not miss this very useful document!

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/kerneldoc/latest/HOWTO

Embedded Linux driver development

Advice and resources
References

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Information sites (1)

Linux Weekly News
http://lwn.net/

» The weekly digest off all Linux and free software
information sources

» In depth technical discussions about the kernel
» Subscribe to finance the editors ($5 / month)

P Articles available for non subscribers
after 1 week.

Your Linuws info source

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

367

@ -
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g

(]

http://free-electrons.com/
http://lwn.net/

Information sites (2)

KernelTrap ?Kernelﬁa D.org
http://kerneltrap.org/

» Forum website for kernel developers

» News, articles, whitepapers, discussions, polls, interviews

» Perfect if a digest is not enough!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://kerneltrap.org/

Useful reading (1)

Linux Device Drivers, 3* edition, Feb 2005 Y Y Y

» By Jonathan Corbet, Alessandro Rubini, Greg Kroah-Hartman, O'Reilly
http://www.oreilly.com/catalog/linuxdrive3/

P Freely available on-line!

Great companion to the printed book for easy electronic searches!
http://lwn.net/Kernel/LDD3/ (1 PDF file per chapter)
http://free-electrons.com/community/kernel/ldd3/ (single PDF file)

A must-have book for LLinux device driver writers!

o =
Embedded Linux kernel and driver development e U
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

Creative Commons Attribution-ShareAlike 2.0 license 1 | 3 6 9
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://www.oreilly.com/catalog/linuxdrive3/
http://lwn.net/Kernel/LDD3/
http://free-electrons.com/community/kernel/ldd3/

Useful reading (2)

» Linux Kernel Development, 2™ Edition, Jan 2005 &5 1Y ¥y
Robert Love, Novell Press
http://rlove.org/kernel_book/
A very synthetic and pleasant way to learn about kernel
subsystems (beyond the needs of device driver writers)

> Understanding the Linux Kernel, 3“ edition, Nov 2005 ﬁ ﬁ
Daniel P. Bovet, Marco Cesati, O'Reilly
http://oreilly.com/catalog/understandlk/

An extensive review of Linux kernel internals, covering Linux 2.6 at last.
Unfortunately, only covers the PC architecture.

o -
Embedded Linux kernel and driver development |
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 3 7 O
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://rlove.org/kernel_book/
http://oreilly.com/catalog/understandlk/

Useful reading (3)

¢
» Building Embedded Linux Systems, April 2003 97 T
Karim Yaghmour, O'Reilly
http://www.oreilly.com/catalog/belinuxsys/
Not very fresh, but doesn't depend too much on kernel versions

See http://www.linuxdevices.com/articles/AT2969812114.html
for more embedded Linux books.

o =
Embedded Linux kernel and driver development e U
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g
|

Creative Commons Attribution-ShareAlike 2.0 license 1 | 3 7 1
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://www.oreilly.com/catalog/belinuxsys/
http://www.linuxdevices.com/articles/AT2969812114.html

Useful on-line resources

» Linux kernel mailing list FAQ
http://www.tux.org/lkml/

Complete Linux kernel FAQ
Read this before asking a question to the mailing list

» Kernel Newbies

http://kernelnewbies.org/
Glossaries, articles, presentations, HOWTOs, S
recommended reading, useful tools for people r

getting familiar with Linux kernel or driver
development.

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

372

O =
Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

(]

http://free-electrons.com/
http://www.tux.org/lkml/
http://kernelnewbies.org/

CE Linux Forum resources

CE Linux Forum's Wiki d?mzzzzm-

.
1s full of useful resources for embedded systems developers:

» Kernel patches not available in mainstream yet
» Many howto documents of all kinds

» Details about ongoing projects, such as reducing kernel size,
boot time, or power consumption.

» Contributions are welcome!

http://tree.celinuxforum.org/CelfPubWiki

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license y
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/
http://tree.celinuxforum.org/CelfPubWiki

ARM resources

ARM Linux project: http://www.arm.linux.org.uk/

» Developer documentation:
http://www.arm.linux.org.uk/developer/

» arm-linux-kernel mailing list:
http://lists.arm.linux.org.uk/mailman/listinfo/linux-arm-kernel

» FAQ: http://www.arm.linux.org.uk/armlinux/mlfaq.php

» How to post kernel fixes:
http://www.arm.uk.linux.org/developer/patches/

ARMLInux @ Simtec: http://armlinux.simtec.co.uk/
A few useful resources: FAQ, documentation and Who's who!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://www.arm.linux.org.uk/
http://www.arm.linux.org.uk/developer/
http://lists.arm.linux.org.uk/mailman/listinfo/linux-arm-kernel
http://www.arm.linux.org.uk/armlinux/mlfaq.php
http://www.arm.uk.linux.org/developer/patches/
http://armlinux.simtec.co.uk/

International conferences (1)

Useful conferences featuring Linux kernel presentations

» Ottawa Linux Symposium (July): http://linuxsymposium.org/

Right after the (private) kernel summit.
Lots of kernel topics. Many core kernel hackers still present.

» Fosdem: http://fosdem.org (Brussels, February) & +OsS0Em
For developers. Kernel presentations from well-known kernel hackers.

» CE Linux Forum: http://celinuxforum.org/ b, CEL Foram

I

Organizes several international technical conferences, in particular in
California (San Jose) and 1n Japan. Now open to non CELF members!
Very interesting kernel topics for embedded systems developers.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker

(\" Free Electrons Creative Commons Attribution-ShareAlike 2.0 license 1
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://linuxsymposium.org/
http://fosdem.org/
http://celinuxforum.org/

International conferences (2)

» linux.conf.au: http://conf.linux.org.au/ (Australia / New Zealand)
Features a few presentations by key kernel hackers.

» Linux Kongress (Germany, September / October) .-
http://www.linux-kongress.org/ Linux-Kongress
Lots of presentations on the kernel but very expensive registration fees.

Don't miss our free conference videos on
http://free-electrons.com/community/videos/conferences/!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://conf.linux.org.au/
http://www.linux-kongress.org/
http://free-electrons.com/community/videos/conferences/

Embedded Linux driver development

Advice and resources
[ast advice

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Use the Source, Luke!

Many resources and tricks on the Internet find you will, but
solutions to all technical 1ssues only in the Source lie.

Thanks to LucasArts

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license ,
[*]
http://free-electrons.com May 14, 2006 3 78

http://free-electrons.com/

Embedded Linux driver development

Annexes
Quiz answers

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Quiz answers

> request irq, free irqg
Q: Why does dev__id have to be unique for shared IRQs?
A: Otherwise, the kernel would have no way of knowing which handler to

release. Also needed for multiple devices (disks, serial ports...) managed
by the same driver, which rely on the same interrupt handler code.

» Interrupt handling
Q: Why did the kernel segfault at module unload (forgetting to unregister
a handler in a shared interrupt line)?
A: Kernel memory is allocated at module load time, to host module code.
This memory is freed at module unload time. If you forget to unregister a
handler and an interrupt comes, the cpu will try to jump to the address of
the handler, which is 1n a freed memory area. Crash!

Embedded Linux kernel and driver development

. © Copyright 2006-2004, Michael Opdenacker
Fr ee Electr ons Creative Commons Attribution-ShareAlike 2.0 license

¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Embedded Linux driver development

Annexes
Using Ethernet over USB

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

Ethernet over USB (1)

If your device doesn't have Ethernet connectivity, but has a
USB device controller

» You can use Ethernet over USB through the g _ether USB
device (“gadget”) driver (CONFIG USB_ GADGET)

» Of course, you need a working USB device driver. Generally
available as more and more embedded processors (well
supported by Linux) have a built-in USB device controller

» Plug-in both ends of the USB cable

O =
Embedded Linux kernel and driver development >
© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons g6
|

Creative Commons Attribution-ShareAlike 2.0 license _ | 38 2
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Ethernet over USB (2)

» On the PC host, you need to have the usbnet module
(CONFIG USB_USBNET)

» Plug-in both ends of the USB cable. Configure both ends as
regular networking devices. Example:

» On the target device
modprobe g ether
ifconfig usb0 192.168.0.202
route add 192.168.0.200 dev usb0

» On the PC
modprobe usbnet
ifconfig usb0 192.168.0.200
route add 192.168.0.202 dev usb0

» Works great on iPAQ PDAs!
o

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

Embedded Linux driver development

Annexes
Init runlevels

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
@
http://free-electrons.com May 14, 2006

http://free-electrons.com/

System V init runlevels (1)

» Introduced by System V Unix

Much more flexible than in BSD s rTr e Rys—

» Make it possible to start or stop id:5:initdefault:
different services for each # System initialization.
si::sysinit:/etc/rc.d/rc.sysinit
runlevel
10:0:wait:/etc/rc.d/rc 0
. ll:1:wait:/etc/rc.d/rc 1
4 Correspond to the argument given 12:2:wait:/etc/rc.d/rc 2
) o 13:3:wait:/etc/rc.d/rc 3
to /Sbln/lnlt. l4:4:wait:/etc/rc.d/rc 4
15:5:wait:/etc/rc.d/rc 5
l6:6:wait:/etc/rc.d/rc 6

» Runlevels defined in
/etc/inittab.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

System V init runlevels (2)

¢

Standard levels Customizable levels: 2, 3,4, 5
P init O » init 3

Halt the system Often multi-user mode, with only
b init 1 command-line login

Single user mode for maintenance P init 5
P init 6 Often multi-user mode, with

Reboot the system graphical login

P init S
Single user mode for maintenance.
Mounting only /. Often identical to 1

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

init scripts

According to /etc/inittab settings, init <n> runs:
» First /etc/rc.d/rc.sysinit for all runlevels
» Then scripts in /etc/rc<n>.d/

» Starting services (1, 3, 5, S):
runs S* scripts with the start option

» Killing services (0, 6):
runs K* scripts with the stop option

» Scripts are run in file name lexical order
Justuse 1s -1 to find out the order!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
http://free-electrons.com May 14, 2006

(]

http://free-electrons.com/

/etc/init.d

» Repository for all available init scripts

» /etc/rc<n>.d/ only contains links to the /etc/init.d/
scripts needed for runlevel n

» /etc/rcl.d/ example (from Fedora Core 3)

KOlyum -> ../init.d/yum S00single -> ../init.d/single
KO2cups-config-daemon -> ../init.d/cups- SOlsysstat -> ../init.d/sysstat
config-daemon S06cpuspeed -> ../init.d/cpuspeed

KO02haldaemon -> ../init.d/haldaemon
K02NetworkManager ->
../init.d/NetworkManager
KO3messagebus -> ../init.d/messagebus
K03rhnsd -> ../init.d/rhnsd
KO05anacron -> ../init.d/anacron
KO05atd -> ../init.d/atd

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/

Handling init scripts by hand

(.\, Free Electrons

Simply call the /etc/init.d scripts!

P /etc/init.d/sshd start
Starting sshd:

P /etc/init.d/nfs stop
Shutting down NFS mountd:
Shutting down NFS daemon:
[FAILED]Shutting down NFS quotas:
[FAILED]
Shutting down NFS services:

P /etc/init.d/pcmcia status
cardmgr (pid 3721) is running...

P /etc/init.d/httpd restart
Stopping httpd:
Starting httpd:

[OK]

[FAILED]

[OK]
OK
OK

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
Creative Commons Attribution-ShareAlike 2.0 license

@
http://free-electrons.com

May 14, 2006

http://free-electrons.com/

Training labs

Training labs are also available from the same location:
http://tree-electrons.com/training/drivers

They are a useful complement to consolidate what you learned
from this training. They don't tell how to do the exercises.
However, they only rely on notions and tools introduced by the
lectures.

If you happen to be stuck with an exercise, this proves that you
missed something in the lectures and have to go back to the
slides to find what you're looking for.

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
@ U Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/training/drivers

Related documents

This document belongs to the more than 1000 page materials of an embedded GNU /
Linux training from Free Electrons, available under a free documentation license.

http://free-electrons.com/training P Linux on TI OMAP processors

P Introduction to Unix and GNU/Linux P Free Software development tools

P Embedded Linux kernel and driver development P Introduction to uClinux

P Real-time in embedded Linux systems
P What's new in Linux 2.6?

P Free Software tools for embedded Linux systems

P Audio in embedded Linux systems

P Multimedia in embedded Linux systems P Java in embedded Linux systems

P How to port Linux on a new PDA
http://free-electrons.com/articles

P Embedded Linux optimizations
[Embedded Linux from Scratch... in 40 min!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license .
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://free-electrons.com/training
http://free-electrons.com/training/intro_unix_linux
http://free-electrons.com/training/drivers
http://free-electrons.com/training/devtools
http://free-electrons.com/training/audio
http://free-electrons.com/training/multimedia
http://free-electrons.com/articles
http://free-electrons.com/articles/optimizations
http://free-electrons.com/articles/elfs
http://free-electrons.com/articles/omap
http://free-electrons.com/articles/swdev
http://free-electrons.com/articles/uclinux
http://free-electrons.com/articles/realtime
http://free-electrons.com/articles/java
http://free-electrons.com/articles/porting

How to help

If you support this work, you can help ...
» By sending corrections, suggestions, contributions and translations

» By asking your organization to order training sessions performed by
the author of these documents (see http://free-electrons.com/training)

» By speaking about it to your friends, colleagues
and local Free Software community.

» By adding links to our on-line materials on your website,
to increase their visibility in search engine results.

Embedded Linux kernel and driver development
© Copyright 2006-2004, Michael Opdenacker
(.\' Free Electrons Creative Commons Attribution-ShareAlike 2.0 license _
http://free-electrons.com May 14, 2006

(]

392

http://free-electrons.com/
http://free-electrons.com/training

Thanks

P To the OpenOffice.org project, for their presentation and

word processor tools which satisfied all my needs To people who helped,

sent corrections or

» To http://openclipart.org project contributors for their nice s

public domain clipart

P To the Handhelds.org community, for giving me so much Vanessa Conchodon,

Stéphane Rubino, Samuli
Jarvinen, Phil Blundell,

P To the members of the whole Free Software and Open Jetfery Huang, Mohit
Source community, for sharing the best of themselves: their | Mehta, Matti Aaltonen.

help and so many opportunities to help.

work, their knowledge, their friendship.

P To Bill Gates, for leaving us with so much room for
innovation!

Embedded Linux kernel and driver development

© Copyright 2006-2004, Michael Opdenacker
(.\, Free Electrons

Creative Commons Attribution-ShareAlike 2.0 license _
¢ http://free-electrons.com May 14, 2006

http://free-electrons.com/
http://openoffice.org/
http://openclipart.org/
http://handhelds.org/

