Embedded Linux driver development

Embedded Linux kernel and driver development

Michael Opdenacker
Free Electrons
http://free-electrons.com/

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Thanks

> To Jonathan Corbet, for his very useful news and articles
on http://lwn.net/, in particular for porting drivers to 2.6.

> To the OpenOffice.org project, for their presentation and
word processor tools which satisfied all my needs.

> To the Handhelds.org community, for giving me so
much help and so many opportunities to help.

» To the members of the whole Free Software and Open
Source community, for sharing the best of themselves:
their work, their knowledge, their friendship.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Copying this document

© 2004, Michael Opdenacker
michael @free-electrons.com

This document 1s released under the GNU Free Documentation
License, with no invariant sections.

Permission 1s granted to copy and modify this document pro-
vided this license 1s kept.

See http://www.gnu.org/licenses/tfdl.html for details

Document updates available
on http://free-electrons.com/training/drivers
Corrections, suggestions and contributions are welcome!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Document history

Unless specified, contributions are from Michael Opdenacker

o Sep 28, 2004. First public release
> Sep 20-24, 2004. First session for Atmel, Rousset (France)

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

About this document

> This document 1s first of all meant to be used as visuals
aids by a speaker or a trainer. Hence, this 1s just a
summary or a complement to what is said. Hence, the
explanations are not supposed to be exhaustive.

> However, this document 1s also meant to become a
reference for the audience. It also targets readers
interested 1n self-training. So, a bit more details are
given, making the document a bit less visually attractive.

-

im==l 5

®
Embedded Linux kernel and driver development w

© Copyright 2004, Michael Opdenacker
(.\' Free Electrons GNU Free Documentation License .
¢ http://free-electrons.com '

Training contents (1)

Introduction

o System overview and role of the kernel

> History and versioning scheme

> Supported hardware architectures

> Legal 1ssues: licensing constraints, software patents

u Kernel user interface

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Training contents (2)

Compiling and booting

» Getting the sources > Cross-compiling

» Using the patch command @ The bootloader

o Structure of source files > Booting parameters

> Kernel modules > Debugging through the

» Kernel configuration serial port

> Creation of an 1nitrd

> Compiling ramdisk

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Training contents (3)

Driver development

> Linux device drivers > Module parameters
> A simple module > Module dependencies
> Programming constraints > Adding sources to the

> Loading, unloading Kernel tree

modules

=

Kernel debugging

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Contents (4)

Advice and resources
> Using Ethernet over USB
> Root filesystem on the host through NFS

» Review of the various filesystem types. The MTD subsystem.
Advice for making a choice

> Getting help and contributions
> Bug report and patch submission to Linux developers.

» References

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Studied kernel version: 2.6

> Linux 2.4

> Mature and quite exhaustive

» But developments stopped; fewer and fewer developers willing to
help.

» Will be definitely obsolete when your new product starts.

> Still fine 1f you get your sources, tools and support from
commercial Linux vendors

> Linux 2.6

> Support from Linux hackers and community
» Getting more and more mature and exhaustive

o Cutting edge features but some drivers not upgrade

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Introduction

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Role of the kernel

> Linux 1s the kernel.

It provides an interface to the hardware
~ User

programs

> GNU / Linux 1s the whole operating

system
> Hurd, Mach, BSD are other kernels . =
» GNU / Hurd, MacOS, FreeBSD are Kernclg

#
Lol

other operating systems

C library

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Linux history

__

1991: Linux kernel written from scratch in 6 months by Linus
Torvalds in his Helsinki University room, to overcome limitations of
his 80386 PC.

1991: Linus shares his kernel on the net. Programmers from
the whole world join in and contribute to coding and testing

1992: Linux released under the GNU General Public License
1994: Linux 1.0 released

1994: Red Hat founded by Bob Young and Marc Ewing, creating a
new business model.

1995-: GNU/Linux and free software developing in Internet servers.

2001: IBM invests $1 billion in Linux

2 2002-: GNU/Linux wide adoption starts in many industry sectors.
¢
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Linux versioning scheme

Releases are versioned as x.y.z

> Stable versions

» X.y: main release number
J y: even number

» z: 1dentifies the exact release version number (use

> Examples: 2.0.40, 2.2.26,2.4.27,2.6.7 ...
> Development versions

> y: odd number

> Examples: 2.3.42,2.5.774 ...

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Supported hardware architectures

> See the arch/ directory
> Minimum: 32 bit processors, with or without MMU

> 32 bit architectures:
alpha, arm, cris, h8300, 1386, m68k, m68knommu, mips,
parisc, ppc, s390, sh, sparc, um, v850

> 64 bit architectures:
1264, mips64, ppc64 sh64, sparc64, x86_64

> See arch/README or
Documentation/arch/README for details

® q
Embedded Linux kernel and driver development 4
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License . l' I ' 1 5
®) 1)

http://free-electrons.com

Linux key features

o Portability and hardware support

> Scalability
Can run on super computers as well as on tiny devices

> Compliance to standards and interoperability
> Networking

> Security

o Stability and reliability

> Modularity

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Introduction
Legal 1ssues

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Introduction

Legal 1ssues
Licensing details and constraints

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

About Free Software

> Linux 1s Free Software

v Free Software grants the below 4 freedoms to the user:

o The freedom to run the program, for any purpose

> The freedom to study how the program works, and adapt it to
one's needs

> The freedom to redistribute copies to help others

o The freedom to improve the program, and release one's
improvements to the public

> See http://www.gnu.org/philosophy/free-sw.html

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

The GNU General Public License (GPL)

> Copyleft licenses use copyright laws to make sure that
modified versions are free software too

> The GNU GPL requires that modifications and derived
works are GPL too:

> Only applies to released software

> Any program using GPLed code (either by static or even
dynamic linking) 1s considered as an extension of this code

> More details:

> Copyleft: http://www.gnu.org/copyleft/copyleft.html
» GPL FAQ: http://www.gnu.org/licenses/gpl-faq.html

0 =
Embedded Linux kernel and driver development 4 !
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License . ' ' 2 O
- | }) I

© http://free-electrons.com

Linux kernel licensing constraints

> No constraints before you release.
You should share your changes early for your own interest

> Constraints at release time:

> For any device embedding Linux and Free Software, you have to
release sources to the end user. You have no obligation to release
them to anybody else!

> Proprietary modules are tolerated (but not recommended) as long
as they cannot be considered as derived work of GPLed code.

> Proprietary drivers can't be statically compiled in the kernel.

> No 1ssue with drivers available under a GPL compatible license
(see include/linux/modules.h)

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Advantages of free software drivers

From the driver developer / decision maker point of view

__

You don't have to write your driver from scratch. You can reuse code from
similar free software drivers.

You get free community contributions, support, code review and testing.
Proprietary drivers (even with sources) don't get any.

Your drivers can be freely shipped by others (mainly by distributions)
Your drivers can be statically compiled in the kernel

Users and the community get a positive image of your company. Makes it
easier to hire talented developers.

You don't have to supply binary driver releases for each kernel version and
patch version (closed source drivers)

Modules have all privileges: some users need to review sources.

¢
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

22

Embedded Linux driver development

Introduction

Legal 1ssues
Software patents

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Software patents: the big legal threat

> Software implementations very well protected internationally
by Copyright Law. This 1s automatic, no paperwork.

> However, 1n countries like the USA or Japan, it 1s now legal to
patent what the software does, instead of protecting only the
implementation.

> Patents can be used to prevent anyone from re-using or even
improving an algorithm or an idea!

> Deadly for software competition and innovation: can't write any
program without reusing any technique or idea from anyone.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Software patents hall of shame

> The progression bar

> Amazon 1-click, Amazon gift ordering

> Electronic shopping cart

> Compressing and decompressing text files
> Compression in mobile communication

> Digital signature with extra info

> Hypermedia linking

See http://swpat.ffii.org/patents/samples/index.en.html
for more examples

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

How to avoid patent issues

> Applies too when you develop in software patent free
areas. You may not be able to export your products.

» Kernel drivers with patents: always check driver
description in kernel configuration. Known patent issues
are always documented.

> Always prefer patent free alternatives (PNG 1nstead of
JPEG, Linux RTAI instead of RTLinux, etc.)

> Don't file patents on your technologies at your turn. This
may expose you more to patent risk. You will loose
against software giants.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

How to deal with patent issues

When patent lawyers are after you, you may get help from:

> In the USA

o The Electronic Frontier Foundation
http://eff.org/

o In the European Union

o The Foundation for a Free Information Infrastructure
http://tfi1.org/index.en.html

> In other areas

o Note to readers: any references are welcome!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

L5

T==1 27

Embedded Linux driver development

Introduction
Kernel user interface

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Kernel userspace interface

A few examples:

v /proc/cpuinfo: processor information

» /proc/meminfo: memory status

v /proc/version: version and build information

» /proc/cmdline: kernel command line

v /proc/<pid>/environ: calling environment

v /proc/<pid>/cmdline: process command line

... and much more! See by yourself!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Getting the sources

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Access to kernel sources

> Download sources from http://kernel.org/:

wget http://kernel.org/pub/linux/kernel/v2.6/linux-2.6.7.tar.bz2

wget http://kernel.org/pub/linux/kernel/v2.6/1linux-2.6.7.tar.bz2.sign

> Or get a patch vs the x.y.<z-1> version:

wget ftp://ftp.kernel.org/pub/linux/kernel/v2.6/patch-2.6.7.bz2

wget ftp://ftp.kernel.org/pub/linux/kernel/v2.6/patch-2.6.7.bz2.sign
> Check the integrity of sources:
gpg —verify linux-2.6.7.tar.bz2.sign linux-2.6.7.tar.bz2

> GnuPG details: http://www.gnupg.org/gph/en/manual.html

> Kernel source signature details:
http://www.kernel.org/signature.html
¢

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Using the patch command

» patch command: uses the output of the diff command
to apply a set of changes to a source tree.

o patch basic usage:
patch -pn < diff file

> n: number of directory levels to skip (example next page)
> Linux patches:

> Always to apply to the x.y.<z-1> version

> Always produced for n=1
patch -pl < linux patch

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

patch usage example

o Patch file (hardware.diff)

——— linux-2.6.8.1/include/asm-arm/hardware.h 2004-08-14 12:54:48.000000000 +0200
+++ linux-2.6.8.1 modified/include/asm-arm/hardware.h 2004-08-17 12:42:06.119650556
+0200

@@ -15,13 +15,4 @a

#include <asm/arch/hardware.h>

-#ifndef ASSEMBLY

-struct platform device;

-extern int platform add devices(struct platform device **, int);
-extern int platform add device(struct platform device *);

-#endif

#endif

o Commands

cd linux-2.6.8.1
patch -pl < hardware.diff

> Applies changes to include/asm-arm/hardware.h

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Useful kernel source links

Difficult to find 1f you don't know them!

> Direct view access to the Linux source repository,
useful to create patches against the latest versions:

http://linux.bkbits.net:8080/linux-2.6/src

> Linux daily source snapshots:
http://www .kernel.org/pub/linux/kernel/v2.6/snapshots/old/
http://www .kernel.org/pub/linux/kernel/v2.6/snapshots/

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License
[4]

http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Structure of source files

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Linux source structure (1)

©
arch/ Architecture dependent code

COPYING Linux copying conditions (GNU GPL)
CREDITS Linux main contributors

crypto/ Cryptographic libraries
Documentation/ Kernel documentation. Don't miss it!
drivers/ All device drivers (drivers/usb/, etc.)
fs/ Filesystems (fs/ext3/, etc.)
include/ Kernel headers

include/asm-<arch> Architecture dependent headers
include/linux Linux kernel core headers

init/ Linux 1nitialization (including main.c)
ipc/ Code used for process communication

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Linux source structure (2)

©
kernel/ Linux kernel core (very small!)

lib/ Misc library routines (zlib, crc32...)
MAINTAINERS Maintainers of each kernel part. Very useful!
Makefile Top Linux makefile (sets arch and version)
mm / Memory management code (small too!)
net/ Network support code (not drivers)

README Overview and building instructions
REPORTING-BUGS Bug report instructions

scripts/ Scripts for internal or external use
security/ Security model implementations (selinux...)
sound/ Sound support code and drivers

usr/ Utilities: gen_init_cpio and initramfs_data.S

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Kernel modules

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Loadable kernel modules (1)

> Modules: add a given functionality to the kernel (drivers,
filesystem support, and many others)

> Can be loaded and unloaded at any time, only when their
functionality 1s need. Once loaded, have full access to
the whole kernel. No particular protection.

» Useftul to keep the kernel image size to the minimum
(essential in GNU/Linux distributions for PCs).

¢
Embedded Linux kernel and driver development

o
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License g I ' 4 O
. I||

© http://free-electrons.com

Loadable kernel modules (2)

» Useful to support incompatible drivers (either load one
or the other, but not both)

» Useful to deliver binary-only drivers (bad 1dea) without
having to rebuild the kernel.

> Modules make it easy to develop drivers without
rebooting: load, test, unload, rebuild, load...

> Modules can also be compiled statically into the kernel.

¢
Embedded Linux kernel and driver development

o
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License g I ' 4 1
. I||

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Kernel configuration

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Kernel configuration overview

> Makefile edition
Setting the version and target architecture if needed

> Kernel configuration: defining what features to include 1n the
kernel:
make xconfig

or make menuconfig
ormake oldconfig
or editing by hand

> Kernel configuration file (Makefile syntax) stored
in the .conf ig file at the root of the kernel sources

> Distribution kernel config files usually released in /boot/

%’F

¢
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons

GNU Free Documentation License g | - 4 3
¢ http://free-electrons.com ' | . I

Makefile changes

> To 1dentify your kernel image with others build from the
same sources, use the EXTRAVERSION variable:

2

VERSION
PATCHLEVEL =
SUBLEVEL = 7
EXTRAVERSION = -—-acmel

6

> uname -r will return: 2.6 .7-acmel

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

L5 0

T=2 44

make xconfig

make xconfig

» gconf: new qt configuration interface for Linux 2.6.
Much easier to use!

> Make sure you read help -> introduction: useful options!

> File browser: easier to load configuration files

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

qconf screenshot

@
b aconf EE x
File Option Help
ol | Il E
Option |Name | iad |Opticn |Name |
--Code maturity level options EL.
—-General setup EiPAQ H2200 PCMCIA H2200_PCMCIA
é----Ct}nﬁgl.ire standard kernel features (for small systems) EMBEEDDED FiPAQ H2200 MediaQ 1178 LCD H2200_LCD
| oadable module support ~iIPAQ H2200 battery interface H2200_BATTERY
--System Type é----EiPAQ H2200 touchscreen driver H2200_TS
--Intel PXA2xx Implementations ‘- [iPAQ H2200 hardware audio control H2200_AUDIO
[Toshiba e/xx [e8xx ARCH_ESERIES
- Asus 620/620BT MACH_AG20
- hp iPAQ h1910 ARCH_H1900
=mhp iPAQ h2200 ARCH_H2200 |
- Fhp iPAQ h3900 ARCH_H3900
-k hp iIPAQ h4000 MACH_H4000
- Ehp iPAQ h5400 ARCH_H5400
- O Dell Axim X5 ARCH_AXIMXS :
- O Dell Axim X3 (non-functional) ARCH_AXIMX3 :
- RoverPl (Mitac Mio 336) ARCH_ROVERP1 —
-] RaoverP5+ ARCH_ROVERPSP .
- Linux As Boatloader hp iPAQ h2200 (ARCH_H2200)

- Compaq/iPAQ Options
~~General setup
--PCMCIA/CardBus support

type: boolean
prompt: hp iPAQ h2200
dep: ARCH_PXA

“.-Generic Driver Options selact: PXA25x
--Parallel port support dep: ARCH_PXA
~-Memory Technology Devices (MTD)
i~RAM/ROM/Flash chip drivers defined at arch/arm/mach-pxa/h2200/K config: 1
g----Mapping drivers for chip access
g----SeIf—contained MTD device drivers This enables support for HP iPAQ H22xx series of handhelds.
“-NAND Flash Device Drivers There are a number of H22xx-specific drivers under this submenu:
-Plug and Play support [w]|| | pcmcia, lcd, battery, touchscreen
= il
Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

http://free-electrons.com

make menuconfig / oldconfig

make menuconfig

> Same old text interface. Rarely useful.
You can just simply edit the .config file by hand! Beware
of dependencies though.

make oldconfig

> Useful to upgrade a config file from an earlier kernel
release

» Issues warnings for obsolete symbols

> Asks for values for new symbols

¢
Embedded Linux kernel and driver development

o
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License g I ' 4 7
® X Iul

http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Compiling the kernel

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Compiling and installing the kernel

Compiling steps:
v make
Install steps (logged as root!)

» make install

> make modules install
The following commands are no longer needed:
> make depends

> make modules (done by make)

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

L5

T=2a 49

Compiling faster

> Spend a bit more time in kernel configuration and just compile the
modules needed on your hardware. This can divide compile time

by 30 and save hundreds of MB!

> Compile several files in parallel:
make -j <number>

make runs several targets in parallel, whenever possible

U make -7 4
Much faster even on uniprocessor workstations! Less time wasted in
reading or writing files (the other jobs keep the CPU busy)

2 Not really useful going further than 4. More context switching may even
slow down the jobs.

U make -j <4*number of processors>

On a multiprocessor machine. Beware of not disturbing other users, if apy!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Kernel compiling tips

> View the full (gcc, 1d) command line:

make V=1

> Remove all generated files (to create patches...):

make mrproper

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Generated files

v vmlinux
Raw Linux kernel image, non compressed

v arch/<arch>/boot/zImage
zlib compressed kernel image
Default image on arm

» arch/<arch>/boot/bzImage
bzip2 compressed kernel image. Usually small enough to
fit on a floppy disk!
Default image on 1386

¢
Embedded Linux kernel and driver development

o
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License g I ' 5 2
. I||

© http://free-electrons.com

Installed files (1)

5y /boot/vmlinuz-<version>
Kernel image

> /boot/System.map-<version>
Stores kernel symbol addresses

» /boot/initrd-<version>.img
Initial RAM disk, storing the modules you need to mount your root
filesystem. make install runs mkinitrd for you!

> /etc/grub.conf or /etc/lilo.conf
make 1nstall updates your bootloader configuration files to support
your new kernel! It reruns /sbin/1ilo if LILO is your bootloader.

Embedded Linux kernel and driver development

© Copyright 2004, Michael Opdenacker
. Fr ee E ' ectrons GNU Free Documentation License

¢ http://free-electrons.com

Installed files (2)

» /1lib/modules/<version>/
Kernel modules + extras

» build/
Everything needed to build more modules for this kernel: .
config file (build/.config), module symbol information

(build/module.symVers), kernel headers
(build/include/)

» kernel/

Module . ko (Kernel Object) files, in the same directory
structure as in the sources.

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Installed files (3)

» /1ib/modules/<version>/ (continued)

» modules.alias

Module aliases for insmod and modprobe. Example line:
alias sound-service-?-0 snd mixer oOss

o modules.dep
Module dependencies for insmod and modprobe. Also useful
to copy only the required modules to a minimum filesystem.

o modules.symbols
Tells which module a given symbol belongs to.

All the files 1n this directory are text files. Don't hesitate to have
a look by yourself!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Compiling the kernel in a nutshell

> Edit version information in the Makefile file

L

make xconfig
> make

» make install

=

make modules_install

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Cross-compiling the kernel

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Makefile changes

Makefile changes
> Update the version as usual

> You should change the default target platform, e.g.:

ARCH ?= arm
CROSS COMPILE ?= arm-linux-

> or run (ARM example):
make ARCH=arm CROSS COMPILE=arm-linux-
(Usetful when you compile for several platforms)

See comments in Makefile for details

® q
Embedded Linux kernel and driver development 4
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License o ' ' 5 8
- | }) I

http://free-electrons.com

Configuring the kernel

> Same as native compilation
> Don't forget to set the right architecture

> Useful way of sharing your configuration file:
cp .config arch/<arch>/config/acme defconfig

To get your standard configuration file, the other people working
on the ACME embedded system and using your kernel will just

have to run:
make acme defconfig

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Cross-compiling setup

Example

> You have an ARM cross-compiling toolchain
in/usr/local/arm/3.3.2/

> You just have to add it to your Unix PATH:
export PATH=/usr/local/arm/3.3.2/bin:S$SPATH

See the Documentation/Changes file in the sources for
details about minimum tool versions requirements .

¢
Embedded Linux kernel and driver development

o
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License g I ' 6 O
. I||

© http://free-electrons.com

Building the kernel

> Run
make (if you have modified your Makefile)

or otherwise (ARM example)
make ARCH=arm CROSS_COMPILE=arm—linux—

> Copy
arch/<platform>/boot/zImage
to the target storage

> make modules install
and copy /1lib/modules/<version> to the target storage

> You can customize arch/<arch>/boot/install.sh so
that make install does this automatically for you.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
The bootloader

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

The bootloader's job

One main mission: load the operating system(s)
Tasks

> Initialize the machine properly (the kernel can do part of this
later too).

> Access the kernel and 1nitrd files in their storage medium
(need to support the corresponding filesystem too)

> Because of the above 2 tasks, bootloaders are often platform
specific!

v Load the kernel and 1nitrd files

> Execute the kernel file with the right command line

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License . '
¢ http://free-electrons.com ' '

2-stage bootloaders

> At startup, the hardware automatically executes the
bootloader from a given location, usually with very little
space (such as the boot sector on a PC hard disk)

> Because of this lack of space, 2 stages are implemented:

> 1* stage: minimum functionality. Just accesses the second stage on
a bigger location and executes it.

» 2" stage: offers the full bootloader functionality. No limit in what
can be implemented. Can even be an operating system itself!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

A few bootloaders (1)

> LILO: LInux LOad. Original Linux bootloader. Still in use!
http://freshmeat.net/projects/lilo/
Supports: x86

> GRUB: GRand Unified Bootloader from GNU. More powerful.
http://www.gnu.org/software/grub/
Supports: x86

> LinuxBIOS: Linux based BIOS replacement
http://www .linuxbios.org/
Supports: x86

» sh-boot: LinuxSH project bootloader
http://cvs.sourceforge.net/viewcvs.py/linuxsh/sh-boot/
Supports: sh

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

A few bootloaders (2)

o bootldr: Handhelds.org's bootloader for iPAQs
ftp://ttp.handhelds.org/bootldr/
Supports: arm

o LAB: Linux As Bootloader, from Handhelds.org
Part of Handhelds.org's Linux kernel.
See http://handhelds.org/moin/moin.cgi/Linux26ToolsAndSources
Supports: arm (experimental)

o U-Boot: Universal Bootloader. The most used on arm.
http://u-boot.sourceforge.net/
Supports: arm, ppc, mips, x86

o RedBoot: eCos based bootloader from Red-Hat
http://sources.redhat.com/redboot/
Supports: x86, arm, ppc, mips, sh, m68Kk...

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Kernel command line parameters

As most C programs, the Linux kernel accepts command line
arguments

> Useful to configure the kernel at boot time, without having to
recompile it.

> Example (used for the HP iPAQ h2200 PDA)

root=/dev/ram0 rw init=/linuxrc \
console=ttyS0,115200n8 console=tty0 \
ramdisk size=8192 cachepolicy=writethrough \

¢
Embedded Linux kernel and driver development

o
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License g I ' 6 7
. I||

© http://free-electrons.com

Most common command line parameters

J root
Identifies the root filesystem

» 1nit
Script to run at the end of kernel initialization
Default: /sbin/init

» console
Console for booting messages

> ro/rw
Mount root device as read-only / read-write

Hundreds of command line parameters described on
Documentation/kernel-parameters.txt

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Debugging through the serial port

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License
[4]

http://free-electrons.com

Usefulness of a serial port

> Most processors feature a serial port interface (usually
very well supported by Linux). Just need this interface to
be connected to the outside.

> Easy way of getting the first messages of an early kernel
version, even before it boots. A minimum kernel with
only serial port support 1s enough.

> Once the kernel 1s fixed and has completed booting,
possible to access a serial console and 1ssue commands.

> The serial port can also be used to transfer files to the
target.

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

When you don't have a serial port

On the host

> Not an 1ssue. You can get a USB to serial converter. Usually
very well supported on Linux and roughly costs $20. The
device appears as /dev/ttyUSBO on the host.

On the target

> Check whether you have an IrDA port. It's usually a serial port
too.

> If you have an Ethernet adapter, try with it

> You may also try to manually hook-up the processor serial
interface (check the electrical specifications first!)

® q
Embedded Linux kernel and driver development 4
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License o ' ' 7 1
- | }) I

© http://free-electrons.com

Embedded Linux driver development

Compiling and booting Linux
Creation of an initrd ramdisk

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Initrd

Initrd = Initial RAM disk
> Very first, minimalistic root (/) filesystem in RAM

> Traditionally used to minimize the number of device
drivers built into the kernel.
Example: contains an ext3 module to mount the final ext3
root filesystem.

> Also useful to run complex initialization scripts

> Usetul to load proprietary modules (can't be statically
compiled into the kernel)

¢
Embedded Linux kernel and driver development

o
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License g I ' 7 3
. I||

© http://free-electrons.com

How to create an initrd

mkdir /mnt/initrd

dd if=/dev/zero of=initrd.img bs=1k count=2048
mkfs.ext2 -F initrd.img

mount -o loop initrd.img /mnt/initrd

<Populate: busybox, modules, linuxrc script
More details 1n the Tools for Embedded Linux Systems training!>

umount /mnt/initrd

gzip --best -c¢ 1initrd.img > initrd

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Driver development

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Driver development
Linux device drivers

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Character drivers

> Accessed through a sequential flow of individual characters

> Character devices can be 1dentified by their ¢ type (1s -1):

crw-rw---- 1 root uucp 4, 64 Feb 23 2004 /dev/ttySO
crw--w---- 1 jdoe tty 136, 1 Sep 13 06:51 /dev/pts/1
CrW——————— 1 root root 13, 32 Feb 23 2004 /dev/input/mouse0

crw-rw-rw- 1 root root 1, 3 Feb 23 2004 /dev/null

> Examples: keyboards, mice, parallel port, IrDA, Bluetooth port,
consoles, terminals...

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Block drivers

> Accessed through data blocks of a given size. Blocks can be
accessed 1n any order.

> Character devices can be 1dentified by their b type (1s -1):

brw-rw---- 1 root disk 3, 1 Feb 23 2004 /dev/hdal
brw-rw—--- 1 jdoe floppy 2, 0 Feb 23 2004 £dO
brw-rw---- 1 root disk 7, 0 Feb 23 2004 loopO
brw-rw—-—--- 1 root disk 1, 1 Feb 23 2004 raml
brw——————- 1l root root 8, 1l Feb 23 2004 sdal

> Examples: hard or floppy disks, ram disks, loop devices...

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Device major and minor numbers

As you could see in the previous examples, you could see
that devices have 2 numbers associated to them:

> First number: major number
Uniquely associated to each driver

> First number: minor number
Uniquely associated to each device

To find out which driver a device corresponds to, or when
the device name 1s too cryptic, see
Documentation/devices.txt

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Device file creation

> Device files are not created when a driver 1s loaded.

» They have to be created 1n advance:
mknod /dev/<device> [c|b] <major>
<minor>

» Examples:
mknod /dev/ttyS0 c 4 64
mknod /dev/hdal b 3 1

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Other driver types

They don't have any corresponding /dev entry you could
read or write through a regular Unix command.

> Network drivers
They are represented by a network device such as ppp0,
ethl, usbnet, irda0 (listed by 1fconfig -a)

> Other drivers
Often, intermediate drivers just interfacing with other ones.

¢
Embedded Linux kernel and driver development

o
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License g I ' 8 1
. I||

© http://free-electrons.com

Embedded Linux driver development

Driver development
A simple module

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

hello module

Thanks to Jonathan Corbet
/* hello.c */ for the example!
#include <linux/init.h>
#include <linux/module.h>
#include <linux/kernel.h>

static int hello init(void)

{
printk (KERN ALERT "Hello, world\n");
return 0;
}
static void hello exit(void)
{
printk (KERN ALERT "Goodbye, cruel world\n");
}

module init(hello init);
module exit(hello exit);
MODULE LICENSE ("GPL");

®

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

¢ http://free-electrons.com

Module coding guidelines (1)

> Cincludes: you can't use standard C library functions
(printf (), strcat(), etc.). The C library 1s
implemented on top of the kernel, not the opposite.

> Linux provides some C functions for your convenience,
like printk (), which interface is pretty similar to
printf ().

So, only kernel header includes are allowed.

®
Embedded Linux kernel and driver development 4
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License > -
- 1

==l 84

© http://free-electrons.com

Module coding guidelines (2)

> Never use floating point numbers 1n kernel code. Your
code may be run on a processor without a floating point
unit (like on ARM). Floating point can be emulated by
the kernel, but this 1s very slow.

> Define all symbols as static, except exported ones (avoid
namespace pollution)

» See Documentation/CodingStyle for more
guidelines

v It's also good to follow or at least read GNU coding
standards: http://www.gnu.org/prep/standards.html

® q
Embedded Linux kernel and driver development 4
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License o ' ' 8 5
- | }) I

© http://free-electrons.com

Compiling a module

> The below Maketfile should be reusable for any Linux
2.6 module.

> Just run make to build the hello.ko file

> Caution: make sure there 1s a [Tab] character at the
beginning of the $ (MAKE) line (make syntax)

Makefile for the hello module

obj-m := hello.o

KDIR := /lib/modules/$(shell uname -r)/build
PWD := S$(shell pwd)
default:

$(MAKE) -C $(KDIR) SUBDIRS=$(PWD) modules

®

Embedded Linux kernel and driver development

. © Copyright 2004, Michael Opdenacker
Fr ee E ' ectrons GNU Free Documentation License

¢ http://free-electrons.com

Using the module

> Logged as root, run
tail -f /var/log/messages

> Logged as root in another terminal, load the module:
insmod ./hello.ko

> You will see the following in /var/log/messages:
Sep 13 22:02:30 localhost kernel: Hello, world

> Now remove the module:
rmmod hello

> You will see:
Sep 13 22:02:37 localhost kernel: Goodbye, cruel world

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Module utilities

> insmod <module name>
insmod <module:path>.ko
Tries to load the given module, if needed by searching for
its . ko file throughout the default locations (can be
redefined by the MODPATH environment variable).

> modprobe <module name>
Most common usage of modprobe: tries to load all the
modules the given module depends on, and then this module.
Lots of other options are available.

> rmmod <module name>
Tries to remove the given module

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

¢ http://free-electrons.com

Embedded Linux driver development

Driver development
Defining and passing module parameters

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

hello module with parameters

/* hello_param.c */

#include <linux/init.h>
#include <linux/module.h>
#include <linux/moduleparam.h>

MODULE_LICENSE ("GPL");

/* A couple of parameters that can be passed in: how many times we say
hello, and to whom */

static char *whom = "world";
module param(whom, charp, 0);
static int howmany = 1;

module param(howmany, int, 0);

static int hello_init(void)

{
int i;
for (i = 0; i < howmany; i++)
printk (KERN_ALERT " (%d) Hello, %s\n", i, whom);
return 0;
}
static void hello_exit(void)
{
printk (KERN_ALERT "Goodbye, cruel %s\n", whom);
}

module init(hello_init);
module exit(hello exit);

®

Thanks to Jonathan Corbet
for the example!

Embedded Linux kernel and driver development

© Copyright 2004, Michael Opdenacker
Fr ee E ’ ectrons GNU Free Documentation License

¢ http://free-electrons.com

Using the hello_param module

> Load the module. For example:
insmod ./hello param.ko howmany=2 whom=universe

> You will see the following in /var/log/messages:
Sep 13 23:04:30 localhost kernel: (0) Hello, universe
Sep 13 23:04:30 localhost kernel: (1) Hello, universe

> Now remove the module:
rmmod hello param

> You will see:

Sep 13 23:04:38 localhost kernel: Goodbye, cruel
universe

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Declaring module parameters

U module param(name, type, perm);
name: regular name symbol
type: either byte, short, ushort, int, uint, long, ulong,
charp, bool or invbool (checked at compile time!)
perm: permissions for the corresponding entry in /
sys/module/<module name>/<param>. Safe to use 0.

U module param named(name, value, type, perm);
To make the name variable available outside the module and the value
variable inside.

U module param string(name, string, len, perm);
To defined name as charp, string prefilled with string of length 1en, usually
sizeof (string)

) module param array(name, type, num, perm);
To declare an array of parameters

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Passing module parameters

> Through insmod or modprobe:

insmod ./hello param.ko howmany=2 whom=universe

> Through modprobe
after changing the /etc/modprobe.conf file:

options hello param howmany=2 whom=universe

> Through the kernel command line, when the module 1s
built statically into the kernel:

options hello param.howmany=2 \
hello param.whom=universe

-

==l 93

GNU Free Documentation License
© http://free-electrons.com

®
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
@, Free Electrons o

Embedded Linux driver development

Driver development
Module dependencies

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Module dependencies

> Module dependencies don't have to be described by the
module writer.

» They are automatically computed during kernel building
from module exported symbols. module2 depends on
modulel if module?2 uses a symbol exported by
modulel.

> Module dependencies stored 1n
/lib/modules/<version>/modules.dep

> You can update this file by running (as root)
depmod -a [<version>]

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License
®

http://free-electrons.com

Embedded Linux driver development

Driver development
Adding sources to the kernel tree

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

New directory in kernel sources (1)

To add an acme_drivers/ directory to the kernel sources:

> Move the acme drivers/ directory to the appropriate
location in kernel sources

> Create an acme_driver/Kconfig directory

> Create an acme_driver/Makefile file based on the
Kconfig variables

> In the parent directory Kconfig file, add
source “acme driver/Kconfig”

> Run make xconfig and see your new options!

¢
Embedded Linux kernel and driver development

o
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License g I ' 9 7
. I||

© http://free-electrons.com

New directory in kernel sources (2)

> In the parent directory Makefile file, add
“obj-$(CONFIG ACME) += acme driver/” (just 1 condition)
or
“obj-y += acme driver/” (several conditions)

> Run make xconfig and see your new options!
> Run make and your new files are compiled!

» See Documentation/kbuild/*.txt for details

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Driver development
Kernel debugging

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Debugging with printk

> Universal debugging technique used since the beginning
of programming (first found in cavemen drawings)

> Printed or not in console or /var/log/messages
according to the priority (give details and kernel config
switches)

» Available priorities (include/linux/kernel.h):

#define KERN EMERG "<Oo>" /* system is unusable */

#define KERN ALERT "<l>n /* action must be taken immediately */
#define KERN CRIT "<2>" /* critical conditions */

#define KERN_ERR "<3>" /* error conditions */

#define KERN_ WARNING "<4>" /* warning conditions */

#define KERN NOTICE "<5>" /* normal but significant condition */
#define KERN_ INFO "<6>" /* informational */

#define KERN DEBUG n<7>" /* debug-level messages */

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

ksymoops

> Can help decrypting oops messages, by converting
addresses and code to useful text

> Easy to use: just copy/paste the oops text to a file

»> Command line example:

ksymoops --no-ksyms -m System.map -v vmlinux
oops.txt

> See Documentation/oops-tracing.txt and
then man ksymoops for details.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Debugging with Kprobes

http://www-124.1bm.com/developerworks/oss/linux/projects/kprobes/
> Fairly simple way of inserting breakpoints in kernel routines

> Unlike printk debugging, you neither have to recompile nor reboot
your kernel. You only need to compile and load a dedicated module to
declare the address of the routine you want to probe.

» Non disruptive, based on the kernel interrupt handler

» Kprobes can even let you modify register values and global data
structure values.

See http://www-106.1bm.com/developerworks/library/l-kprobes.html for
a nice overview

¢ ! 7—
Embedded Linux kernel and driver development w 4
© Copyright 2004, Michael Opdenacker
(.\' Free Electrons GNU Free Documentation License . '
¢ http://free-electrons.com '.I'__v—l 1 O 2

Kernel debugging tips

o If your kernel doesn't boot yet, useful to activate Low
Level debugging (Kernel Hacking section):

CONFIG DEBUG LL=y

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Advice and resources

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

System security

» In production: disable loadable kernel modules 1f you
can.

o Carefully check data from input devices (if interpreted
by the driver) and from user programs (buffer overflows)

> Check kernel sources signature
> Beware of uninitialized memory

> Compile modules by yourself (beware of binary

modules)
o W
Embedded Linux kernel and driver development :
© Copyright 2004, Michael Opdenacker
(.\' Free Electrons GNU Free Documentation License . '
¢ http://free-electrons.com '.I'__v—l 1 O 5

Embedded Linux driver development

Advice and resources
Using Ethernet over USB

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Ethernet over USB (1)

It your device doesn't have Ethernet connectivity, but has a
USB device controller

> You can use Ethernet over USB through the g ether

USB device (“gadget”) driver
(CONFIG USB GADGET)

> Of course, you need a working USB device driver.
Generally available as more and more embedded
processors (well supported by Linux) have a built-in

USB device controller

> Plug-1n both end of the USB cable
¢
Embedded Linux kernel and driver development
@ Free Electrons © Copyright 2004, Michael Opdenacker

GNU Free Documentation License . - 1 O 7
http://free-electrons.com ' | . I

Ethernet over USB (2)

> On the PC host, you need to have the usbnet module
(CONFIG USB_USBNET)

> Plug-in both ends of the USB cable. Configure both ends as
regular networking devices. Example:

U On the target device
modprobe g ether
ifconfig usb0 192.168.0.202
route add 192.168.0.200 dev usbO

2 On the PC
modprobe usbnet
ifconfig usb0 192.168.0.200
route add 192.168.0.202 dev usb0

> Works great on iIPAQ PDAs!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Advice and resources
Root filesystem on the host through NFS

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons
|

b

109

GNU Free Documentation License

© http://free-electrons.com

Usefulness of rootfs on NFS

Once you have setup networking (Ethernet or USB-Ethernet),
you can mount a filesystem on the PC through NFS and use it as
the new root filesystem. This 1s very convenient for system
development:

> Makes it very easy to update files (driver modules in particular) on
the root filesystem, without rebooting. Much faster than through
the serial port.

> Can have a big root filesystem even 1f you don't have support for
internal or external storage yet.

> The root filesystem can be huge. You can even build native
compiler tools and build all the tools you need on the target itself

(better to cross-compile though).
©

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Example NFS setup

On the PC

> Add the below line to your /etc/exports file:

/home/rootfs 192.168.0.202/32(rw,insecure,sync,no _wdelay,no_root squash)

> Start or restart your NFS server (Fedora Core 2 example)
/etc/init.d/nfs restart

On the target

o mkdir /mnt/rootfs; mkdir /mnt/initrd
modprobe nfs

mount -o nolock,hard,intr -t nfs 192.168.0.200:S$Srootfs \
/mnt/rootfs

¢
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

http://free-electrons.com

Using pivot_root

Once the NFS share 1s mounted, you can use it as the new
root filesystem:

> Example (continued)

umount /proc

cd /mnt/rootfs

pivot root . mnt/initrd

exec chroot . /linuxrc <dev/console >dev/console 2>&l

» Same pivot root usage for alocal storage. Used in
all GNU/Linux computers with an initrd.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons

b

GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Advice and resources
Choosing filesystem types

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Block device or MTD filesystems

> Block devices

> Floppy or hard disks (SCSI, IDE)
» Compact Flash (seen as a regular IDE drive)
> RAM disks

> Loopback devices
» Memory Technology Devices (MTD)
> Flash, ROM or RAM chips

> MTD emulation on block devices
» See Documentation/filesystems/ for details

¢
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons

GNU Free Documentation License : . '
¢ http://free-electrons.com ' '.I__v—l 1 1 4

Most popular block device filesystems

Traditional filesystems: hard to recover from crashes
v ext2: traditional Linux filesystem

o viat: traditional Windows filesystem (supporting long
file names since Windows 95)

Journaled filesystems:
v ext3: ext2 with journal extension

» reiserFS: most innovative

> Others: JES (IBM), xfs (SGI)

> NTFS: well supported by Linux in read-mode

®
Embedded Linux kernel and driver development 4
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License : '
®) 1

T=21 115

http://free-electrons.com

Read-only block filesystems

> ISO 9660: used for cdroms
> UDF: used 1in some cdroms and DVDs

> CramFS: simple, small, compressed filesystems designed
for ROM based embedded systems
(Size < 256 MB, files < 16 MB)

¢
Embedded Linux kernel and driver development :

>
© Copyright 2004, Michael Opdenacker w
. Fr ee E ’ ectrons GNU Free Documentation License - - I ' 1 1 6
[] . I.l

http://free-electrons.com

The MTD subsystem

¢
Linux filesystem interface
MTD “User” modules -
Flash Translation Layers
jff82 Char device Block device Caution: patented algorithms!
| FTL NFTL INFTL /
Read-only block device e
MTD Chip drivers
CFI flash RAM chips T
| Block device | |Virtual memory
NAND flash DlSkOnChlp flash ROM Chips Virtual devices appearing as
‘ MTD devices

Memory devices hardware

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

MTD filesystems

v jtfs2: Journaling Flash File System v2

> Designed to write flash sectors in an homogeneous way.
Flash bits can only be rewritten a relatively small number of

times (often < 100 000).

> Compressed to fit as many data as possible on flash chips.
Also compensates for slower access time to those chips.

> Power down reliable: can restart without any intervention
> Best choice for your internal flash chips

> Can of course be mounted as a read-only filesystem

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Using block filesystems over MTD

> Can use Flash Translation Layer modules implementing
a virtual block device on top of MTD. Can use a regular
block filesystem on top of this virtual device then.

> FTL: Flash Translation Layer for NOR flash chips
Caution: because of patents on algorithms, can only be
used on PCMCIA hardware in the US! Better use JFFS2.

> NTFL: NAND Flash Translation Layer.
Caution: because of M-Systems algorithm patents, can
only be implemented on licensed Disc On Chip devices.

-

T=a 119

GNU Free Documentation License
http://free-electrons.com

0 a
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons
®

Filesystem choices for your flash devices

> MTD devices: use JFFS2 (read-write or read-only)

> Compact Flash or other removable storage

» Can't use JFFS2 because CF storage 1s a block device.
MTD Block device emulation could be used though, but JFFS2 writing
scheme could interfered with on-chip flash management (manufacturer
independent).

> Never use block device journaled filesystems on flash chips! Keeping

the journal would write the same sectors over and over again and quickly
damage them.

» Can use ext2 or vfat (caution: patents), with mount options:

Jnoatime: doesn't write access time information in file inodes
U sync: to avoid perform writes immediately (avoid power down fs failure)

M-

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Embedded Linux driver development

Advice and resources
Getting help and contributions

Embedded Linux kernel and driver development
. © Copyright 2004, Michael Opdenacker
Free Electrons GNU Free Documentation License

© http://free-electrons.com

Solving issues

o If you face an 1ssue, and 1t doesn't look specific to your
work but rather to the tools you are using, it 1s very
likely that someone else already faced it.

> Search the Internet for similar error reports

> On web sites or mailing list archives
(using a good search engine)

> On newsgroups: http://groups.google.com/

> You have great chances of finding a solution or
workaround, or at least an explanations for your 1ssue.

> Otherwise, reporting the 1ssue 1s up to you!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Getting help

> If you have a support contract, ask your vendor
> Otherwise, don't hesitate to share your questions and 1ssues
on mailing lists

o Either contact the Linux mailing list for your architecture (like linux-
arm-kernel or linuxsh-dev...)

J Or contact the mailing list for the subsystem you're dealing with
(linux-usb-devel, linux-mtd...). Don't ask the maintainer directly!

o Most mailing lists come with a FAQ page. Make sure you read it
before contacting the mailing list

» Refrain from contacting the Linux Kernel mailing list, unless you're
an experienced developer and need advice

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Getting contributions

Applies if your project can interest other people:
developing a driver or filesystem, porting Linux on a
new device available on the market...

External contributors can help you a lot by
o Testing

> Writing documentation

» Making suggestions

> Even writing code

0 =
Embedded Linux kernel and driver development 4 !
© Copyright 2004, Michael Opdenacker
@® U Free Electrons |
i

GNU Free Documentation License ' j ' 1 2 4
¢ http://free-electrons.com ' I il |—I

Encouraging contributions

> Open your development process: mailing list, Wiki,
public CVS read access

» Let everyone contribute according to their skills and
interests.

> Release early, release often

» Take feedback and suggestions into account

» Recognize contributions

» Make sure status and documentation are up to date

> Publicize your work and progress to broader audiences

¢
Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons

GNU Free Documentation License . - 1 2 5
° http://free-electrons.com ' | . I

Embedded Linux driver development

Advice and resources
Bug report and patch submission to Linux developers

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Reporting Linux bugs

» First make sure you're using the latest version

» Make sure you investigate the 1ssue as much as you can: see
Documentation/BUG-HUNTING

» Make sure the bug has not been reported yet. Check the Official
Linux kernel bug database
(http://bugzilla.kernel.org/) in particular.

> If the subsystem you report a bug on has a mailing list, use it.
Otherwise, contact the official maintainer (see the MAINTAINERS
file). Always give as many useful details as possible.

» Or file a new bug in http://bugzilla.kernel.org/

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

How to create Linux patches

o> Download the latest kernel sources

> Make a copy of these sources:
rsync -a linux-2.6.9-rc2/ linux-2.6.9-rc2-patch/

> Apply your changes to the copied sources, and test them.

> Create a patch file:
diff -Nru linux-2.6.9-rc2/ \
linux-2.6.9-rc2-patch/ > patchfile

> Always compare the whole source structures
(suitable for patch -pl)

» Patch file name: should recall the addressed issue

Thanks to Nicolas Rougier (Copyright 2003, http://webloria.loria.fr/~rougier/) for the Tux image
®

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

How to submit patches or drivers

> Don't merge patches addressing different 1ssues

> You should i1dentify and contact the official maintainer
for the files to patch.

» See Documentation/SubmittingPatches for

details. For trivial patches, you can copy the Trivial
Patch Monkey.

> Special subsystems:

5> ARM platform: it's best to submit your ARM patches to Russel

http://www.arm.linux.org.uk/developer/patches/

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
O Free Electrons

King's patch system:

GNU Free Documentation License . - 1 2 9
° http://free-electrons.com ' | . I

Embedded Linux driver development

Advice and resources
References

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Information sites (1)

Linux Weekly News
http://lwn.net/

> The weekly digest off all Linux and free software
information sources

> In depth technical discussions about the kernel
» Subscribe to finance the editors ($5 / month)

> Articles available for non subscribers
after 1 week.

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Information sites (2)

Kernel Trap ?KernelTra P.org
http://kerneltrap.org/

» Forum website for kernel developers

> News, articles, whitepapers, discussions, polls,
Interviews

v Perfect if a digest 1s not enough!

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Useful reading

» Linux device drivers, 2™ edition, June 2001
Alessandro Rubini and Jonathan Corbet, O'Reilly
Available on-line on a free documentation license:
http://www.xml.com/ldd/chapter/book/index.html
Linux 2.6 updates: http://lwn.net/Articles/driver-porting/

> Understanding the Linux Kernel, 2nd Edition, Dec 2002
Daniel P. Bovet, Marco Cesati, O'Reilly
http://www.oreilly.com/catalog/linuxkernel2/

Not updated for Linux 2.6 yet!

> Building Embedded Linux Systems, April 2003
Karim Yaghmour, O'Reilly
http://www.oreilly.com/catalog/belinuxsys/

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

References

> Linux kernel mailing list FAQ
http://www.tux.org/lkml/
Complete Linux kernel FAQ
Read this before asking a question to the mailing list

> Kernel Newbies
http://kernelnewbies.org/

Glossaries, articles, presentations, HOWTOs, >
recommended reading, useful tools for people r

getting familiar with Linux kernel or driver

development.
@ Y ! L
Embedded Linux kernel and driver development :
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License . '
¢ http://free-electrons.com '.I'__v—l 1 3 4

ARM resources

Processor docs
> ARM manuals: http://www.arm.com/documentation/

> Full ARM technical publications cdrom
(free-as-free-beer order)
http://www.arm.com/documentation/cd_request.html

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

ARM Linux Project

> Home page:
http://www.arm.linux.org.uk/

> Developer documentation:
http://www.arm.linux.org.uk/developer/

> arm-linux-kernel mailing list:
http://lists.arm.linux.org.uk/mailman/listinfo/linux-arm-kernel

> FAQ:
http://www.arm.linux.org.uk/armlinux/mlfaq.php

> How to post kernel fixes:
http://www.arm.uk.linux.org/developer/patches/

¢ g
Embedded Linux kernel and driver development 5 ‘
© Copyright 2004, Michael Opdenacker '
O Free Electrons

GNU Free Documentation License h : | ' 1 3 6
¢ http://free-electrons.com ' | L |—I

Embedded Linux driver development

Advice and resources
[ast advice

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Use the Source, Luke!

Many resources and tricks on the Internet find you will, but
solutions to all technical 1ssues only 1n the Source lie.

Thanks to LucasArts

Wi
i

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Related documents

This document belongs to the 500 page materials of an embedded GNU / Linux
training from Free Electrons, available under the GNU Free Documentation License.

2 Introduction to Unix and GNU / Linux
http://free-electrons.com/training/intro_unix_linux

o Embedded Linux kernel and driver development
http://free-electrons.com/training/drivers

o Development tools for embedded Linux systems
http://free-electrons.com/training/devtools

2 Java in embedded Linux systems
http://free-electrons.com/articles/java

2 What's new in Linux 2.6?
http://free-electrons.com/articles/linux26

2 Introduction to uClinux
http://free-electrons.com/articles/uclinux

U Linux real-time extensions
http://free-electrons.com/articles/realtime

Embedded Linux kernel and driver development
© Copyright 2004, Michael Opdenacker
. Free Electrons GNU Free Documentation License

© http://free-electrons.com

Training labs

Training labs are also available from the same location:
http://free-electrons.com/training/drivers

They are a useful complement to consolidate what you
learnt from this training. They don't tell Aow to do the
exercices. However, they only rely on notions and tools
introduced by the lectures.

If you happen to be stuck with an exercice, this proves that
you missed something in the lectures and have to go

back to the slides to find what you're looking for.
Embedded Linux kernel and driver development w e A
@ Free Electrons © Copyright 2004, Michael Opdenacker

GNU Free Documentation License . - 1 4 O
° http://free-electrons.com ' | . I

Training and consulting services

This training or presentation 1s funded by Free Electrons
customers sending their people to our training or consulting
Sess10ns.

If you are interested 1n attending training sessions performed by
the author of these documents, you are invited to ask your
organization to order such sessions.

See http:/free-electrons/training for more details.

If you just support this work, do not hesitate to speak about it to
your friends, colleagues and local Free Software community.

® q
Embedded Linux kernel and driver development 4
© Copyright 2004, Michael Opdenacker
O Free Electrons
i

GNU Free Documentation License : . '
¢ http://free-electrons.com ' '.I__v—l 1 4 1

