Design of a USB Device Driver

Joe Flynn

Questra Corporation
jflynn@questra.com
(716)381-0260

QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

USB Overview

Hardware Overview
—Topology

Protocol Characteristics

—Packet Types
—USB Transactions

Enumeration
—Enumeration States

Examples of USB devices

QUESTRA

Hardware Overview

F v v

Monitor [PC

Kbd
L L1 I
Pen Mouse Speaker Mic ph‘one

Physical Hardware View

PC
/ .
Kbd / RMomtor
Pen

Phone
Mouse Speaker Mic

Logical Hardware View

QUESTRA

Topology
—Tiered Star

(Distributes Connectivity Points)
— 127 logical connections

(up to 5 meters per segment)
—Up to 6 tiers

Bus transactions

— Speed: 12Mbps aggregate
1.5Mbps sub-channel

— Isochronous and Asynchronous

— Media access controlled by host

Configuration
— Dynamic insertion-removal
— Autoconfiguration on change

Physical Layer

— 2-wire differential signaling, NRZI
coded with bit stuffing

—4 pin connector, 4 wire cable

— Supply Sourcing +5V

The Transaction Protocol is Host Based ‘e
o ‘.

Host based token polling

—Data from host-to-function and function-to-host
—Host handles most of the protocol complexity
—Peripheral design is simple and low-cost

Robustness

—Handshake to acknowledge data transfer and flow control
—Very low raw physical bit error rate (<10 °)

—CRC protection plus hardware retry option

—Data Toggle Sequence bits

Bounded transfer characteristics
—Data transfer bandwidth and latency prenegotiated
—Flow control for peripheral buffer management

@ Data Transfer Handshake

QUESTRA

Packet Types

Token - OUT, IN, SOF, SETUP
—First packet in any transaction
—Specifies function address, endpoint
—Specifies data direction

Data - DATAO, DATAL
—0 - 1023 bytes

Handshake - ACK, NAK, STALL
—Report status of data transaction
—Flow control

—Stall conditions

Special - PRE
—Enables Hub for low speed communications

QUESTRA

A Typical USB Transaction Consists
of Three Packets

Idle

DATAO/ | T/O NAK STALL DATAO/

Datd DATA 1 DATA1
Idle

Handshake| ACK NAK STALL | T/0

Function

QUESTRA

There are Four Types of USB
Transactions

Isochronous (Audio, telephony ...)
—Periodic, Bounded latencies, guaranteed bandwidth

Interrupt (Mouse, joystick ...)
—Asynchronous, bursty, non-periodic, low bandwidth

Bulk (Printer, scanner, digital camera ...)
—Non-periodic, bursty, high bandwidth utilization

Control (Configuration messages ...)

—Bursty, host-initiated (bus management,
configuration)

QUESTRA

The Basic USB Model has Several

Layers of Abstraction

Client SW
manages an
interface

Endpoint 0

- Required, shared

- Configuration access
- Capability control

Buffers

USB System
manages devices

USB Bus Interface

USB Framed
Dat:

Tr#nsactions

QUESTRA

Function
a collection
of
Interfaces

Interface | /
Specific

USB Device

Endpoint a collection
Zero of

endpoints

uUsB
Framed
Data

Pipe Bundle
to an
interface

Format

Default
Pipe to

Endpoint Zero Data Per

Endpoint

Interface

USB Wire

-3 Pipe, connection abstraction

between two horizontal layers
Data transport mechanism
«———» USB-relevant format of transported data

Enumeration: Device perspective

Attached State

—Entered by attaching USB Cable

Powered State

—USB Host Applies power

Default state
—USB Host resets bus

Addressed State

—USB Host sends Set Address with non-zero address

Configured state

—USB Host sends Set Configuration with non-zero

value
Suspended state

—USB Host stops sending SOF for 3 msec

QUESTRA

The Device State Machine

Bus Activity

Attached Powered Suspended

Hub Reset

Idle Bus Bus Activity
or Deconfigured

& Default (Suspended

Address Idle Bus

Interruption Assignel

Bus Activity

Address dle (Suspended

_/ Bus
Device Device
Con%gured Deconfigured

Bus
Configured | Activity| syspended

Idle Bus
QUESTRA

Enumeration is the Process of Assigning
Addresses and Setting Configurations

Host Hub

Connect Cable
Status Change

=
#

Query Change
—)

Port Enable

Device

Powered
Reset Device

’ ’) . Default
Get Device Descriptor via Default Pipe and Address
_—m —m— >

Assign a Unique Address

Read All Configuration Information

Configure and Assign Configuration Value

Configured
QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

Types of USB Controllers

Discrete Components
—NetChip, Intel, National Semiconductor, Phillips

USB IP Cores as part of an ASIC
—Sand, Motorola, Texas Instruments, .etc

Combination USB Host and USB Peripheral chip
—ScanLogic

Combination micro-processor and USB Core
—8/16 bit processor Mitsubishi, .etc

Single Chip Solutions
—Netchip NET1031 Single chip scanner controller.

QUESTRA

. e ®
USB Controller Hardware Architecture @

USB Core

Registers for Control and Endpoint Data
Transfer

FIFO Controller
—Input and Output FIFOs for Control Endpoint
—Input or Output FIFO for other Endpoints

DMA Controller
Internal Bus

Serial Interface Engine
Output Pads

QUESTRA

Processor Bus

DMA and
FIFO Control EPO FIFO epLFo | ep2rro | epaFro |
| | | Register

Bank
EPx Status

USB Internal Bus Reg
EPx Ctl Reg
EPO EP1 EP2 EP3 USBRce:;nuo\

Control Bulk/ISO Bulk/lso Interrupt
IN out IN

Serial Interface Engine

USB Core Logic

Output Pad Enable

USB Pads

Key Features of a USB Controller

Implements most USB Requests in hardware

—Standard Requests

GET_DESCRIPTOR and SET_DESCRIPTOR may be
implemented in software for versatility

—Class/Vendor Requests as appropriate

USB Event Interrupts and status

—Setup, Suspend, Resume, SOF, Reset, Zero Byte
Packet

—DMA Complete

—Transmit/Receive Ack/Nack/Error status

—FIFO empty/full or at high/low threshold level

FIFOs supporting
—multiple packet depth
—Hardware Retry of Packet Transfers on error

QUESTRA

Key Features of a USB Controller 11

Hardware should provide ability to
—initiate a Remote Wakeup

—detect a USB Reset

—reset USB Controller

—Select endpoint as DMA destination
—Detect enumeration

—Read Current Configuration and Interface
—Stall endpoints

QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

Architecture of an Embedded USB
Device

USB Protocol Application
\ \ API

Logical pipe) ‘ ‘ Logical pipe

Hardware Data packets from host

QUESTRA

i

System Architecture

®
@
USB Protocol
Thread
Main Thread
USB Controller
Hardware
File System
Thread

QUESTRA

USB Peripheral Threads

ISR Thread

—Low Level Interrupt Service routine(s)
USB Controller Interrupt
DMA Controller Interrupt

USB Protocol Thread

—Task which implements USB Protocol
Control, Bulk, Isochrnous, Interrupt Endpoints
Attach/Dettach, SOF, Suspend/Resume

Main Thread

—Thread which executes the product application
—Calls and is triggered by Callback from USB Driver
layer

File System Thread
—Lower Priority File System Thread
QUESTRA

Interrupt Sources

SOF

Attach/Dettach

Suspend/Resume

Setup Packet

Data IN Ack

Data OUT Ack

FIFO Empty or Low level threshold met
FIFO Full or High level threshold met
DMA Complete

QUESTRA

Driver/Hardware Enumeration
Architecture

Embedded Application

\ ‘ IN Logical pipes

Enumeration Routines
ISR, Descriptor structures

QUESTRA

Single Thread Architecture

Embedded Application
Main Thread, Class/Vendor Requests

‘ ‘ Control ‘messages Logical pipes

Enumeration USB Dr|Ver

Hardware

QUESTRA

Multiple Thread Architecture

USB Protocol Application
Thread (Main Thread)

‘ Control ‘messages ‘ Control 0

uT
USB Driver

IN Logical pipes

Hardware

QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

L
, , e o
USB Device Driver Components °e®

USB Device Driver API

Control Protocol Endpoint Data
Attach/ Status Transfer Protocols
- Standard Requests
- Bulk In/Out

- Class Requests

- Isochronous In/Out
- Vendor Requests

- Interrupt In/Out

Clock Pull-Up USB Controller Endpoint FIFO DMA
Registers @ Resistor Registers Registers Controller

QUESTRA

1.

USB Device Driver Architecture

. Callback
Driver Interface Function

[UshDrv][UmeCreale] [USB_open] ’USB_cIose] [usa_raad " USB_wrile” usa_iocnl

COMMOM
usB

Functions

UsbWrite Usbloct!

Framer Layer Hardware Specific Functions

USB Controller Hardware

QUESTRA

USB Device Driver API

USBInit()
USBDelete()
USBOpen()
USBClose()
USBRead()
USBWrite()
USBIoctl()

Callback Message Queue

QUESTRA

1!

USBInit() and USBDelete()

USBInit() - Initialize USB Driver
—Installs driver in 10 system
—Creates or acquires OS resources
Semaphores, queues, ISR vector, task, memory, etc.
—Initializes USB Controller hardware
—Enable USB Controller to allow enumeration

USBDelete() - Delete USB Driver

—Disable USB Controller Hardware
—Return OS resources

Semaphores, queues, ISR vector, task, memory, etc.
—Remove driver from 10 system

QUESTRA

USBOpen() and USBClose()

USBOpen() - Opens an endpoint
—If not the Control endpoint
Verifies device is enumerated
Verifies endpoint is part of current configuration/interface
—Selects CPU or DMA transfer mode
If DMA selects endpoint3 FIFO for use with DMA
—Set Endpoint states to OPENED

USBClose() - Closes an endpoint
—Disables DMA controller 3 use of endpoint3 FIFO
—Set endpoint state to CLOSED

QUESTRA

1

USBRead()

Read from Bulk, Isochronous or Interrupt

endpoint

—Verify endpoint is open

—If transfer mode is DMA
Setup and start DMA read of fixed size from Endpoint FIFO
Block until DMA is complete or a timeout occurs

—else
ISR Called

Loop until all data is read, a timeout occurs or a short packet
is received

Exit ISR

QUESTRA

USB Read Process

USB Driver Endpoint FIFO USB Host

Out Token
%

Data Packet

ACK
—_—
Data Data Packet

%
Buffer Out Token

Data Packet

Data Packet L)
%

QUESTRA

USBWrite()

Write to Bulk, Isochronous or Interrupt
endpoint

—Verify endpoint is open
—If transfer mode is DMA
Setup and start DMA write of fixed size to Endpoint FIFO
Block until DMA is complete or a timeout occurs
—else
ISR Called
Loop until all data is written, or a timeout occurs
Exit ISR

QUESTRA

USB Write Process

USB Driver Endpoint FIFO USB Host

Data Packet

IN Token
%

Data Packet

Data «—ACK
Buffer Data Packet IE—

Data Packet

ACK
—

QUESTRA

Control Read

Call USBRead(EPO) to read a Setup Packet
—Read from EPO OUT FIFO

Identify Setup Packet
—Standard, Class or Vendor

Create response to Setup Packet
—For example prepare to return a Descriptor

Call USBWrite(EPO) to write the response

—Perform normal USBWrite() function to EPO IN FIFO

—Wait for Host to return a Zero Byte packet
terminating Control transfer

Repeat

QUESTRA

Control Write

Call USBRead(EPO) to read a Setup Packet
—Read from EPO OUT FIFO

Identify Setup Packet
—Standard, Class or Vendor

Prepare to receive data from Host

Call USBRead(EPO) to read data from the Host

—Perform normal USBRead() function from EPO OUT
FIFO

—Send a Zero Byte packet to the Host terminating the
Control transfer

Repeat

QUESTRA

Callback Message Queue

Message Interface used to send notification to
application of asynchronous events

—USB Reset

—Enumeration

—Configuration Change

—Interface Change

—Suspend/Resume

—Attach/Dettach

—SOF

—Report Setup Packet received by Control Endpoint O

QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

2

Windows 98 OS

Still
image
control
center

Image Color
Management
(ICM 2.0)

Still Image DDI

User Mode Driver Interface

WDM still Kernel Mode
image

driver for

. Microsoft USB

IHV

Provided by:

ISV

USB Cable

QUESTRA

WDM Still Image Architecture Attempts toe® '.
Keep All Custom Software in User Mode ¢ @

Application

Stilllimage: Stilllimage: Stilllimage: AN Color
Control Event: Control /,\;JJ‘ Vanager
A
Panel Vieniter: Center (@ 210)

Still Image Device Driver Interface (DDI)

Usigr Maode MiniDriver Usigr Mode MiniDriver Usigr Mode MiniDriver

User Mode

WDM Still Image WDM Still Image Kernel Mode

MiniDriver for USB MiniDriver for SCSI

US Scsl

QUESTRA

Design Constraints

Hardware Selection

—Still image architecture requires Control, Bulk In,
Bulk Out and Interrupt endpoints.

Host application controls camera via control or

bulk endpoints.

—Design of the communications protocol is contingent
on the Twain data source and any classes supported.

Host Application defines
—Features supported by camera application
—Power Management requirements

QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

Effective Testing Strategies

Develop Written Test Plans

— Define Unit Tests
— Define System Tests

Define minimum USB Host Driver Test
— Capabilities
—Enumeration, Data Transfer, Loopback, etc.

Acquire an USB Analyzer

—Use analyzer for documenting test results

— Debug Driver enumeration and Data Transfer
—Verify System level behavior with analyzer

— Execute Compliance Test in loop mode (>1000x)

Purchase a USB Evaluation Board & source
code

Utilize USB Organizations Test Resources

QUESTRA

Analyzer View

ENCE | R "'.l

|
il
z | [Ol E

—
Woeanltipner, LS, ipidle Do pech eweed fomniop al somen

QUESTRA

L
i : c o
Host Software Testing Strategies °e®

Schedule availability of Host software
—USB mini-driver
—Host Test Application

Request Host Test Application support
—Enumeration

—Data Transfer

—Data Transfer Loopback Testing
—Vendor/Class Request Support

Leverage USB Evaluation sample source
—Stimulate USB peripheral using sample code

System Tests
—Perform typical use cases with Product software

QUESTRA

Embedded Software Testing Strategiés,:

Unit Tests
—Driver Install and Uninstall
—Enumeration Test
—Device Driver API
Open/Close endpoints
Data Transfer (read and write)

Select Endpoint using DMA
10 Control Test

—Loopback Testing (>1000x, vary transfer sizes)
—Vendor/Class Request Support

System Tests
—Perform typical use cases with Product software
—System Level Power Management

QUESTRA

USB Organization s Testing Resource$

USB-IF Compliance Program

—Worksheets
Device Framework
Signal Quality
Power Distribution and Consumption

—Interoperability Guidelines

—Test Tools
USBCheck, HIDView

—Compliance Workshops
Verifies USB Compliance and Interoperability
in-house USB Compliance and Interoperability
—Verify throughout product development

QUESTRA

USB Analyzers

Benefits of an USB Analyzer Tool

—Passively monitors USB Bus

—Allows debug of Enumeration, Vendor/Class Requests

—Reveals system level behavior

—Some tools allow for active introduction of faults,
standard Requests or Vendor/Class Requests

Drawbacks

—Purchase Price

—Selecting which one you want

—Some PC 3 have demonstrated signal/noise errors
with USB analyzer 3 attached

QUESTRA

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

Issues to consider

More Class Support
—HID, Common, Mass Storage, Firmware Upgrade,

USB 2.0
—Do you need it?
—NOT supported in Windows XP

Protocol Stacks
—PIMA/1SO-15740

—USB Mass Storage Devices
—WDM Still Image Architecture

QUESTRA

2l

Outline

USB Overview

USB Hardware Controllers

Architecture of an Embedded USB Device
USB Device Driver Architecture

Case Study of a USB Device Driver
Testing Strategies

Issues to consider

Conclusions

QUESTRA

Conclusion

Selecting a more capable USB controller simplifies the
design USB Device Drivers

Support both CPU and DMA transfers

Data Transfer Speed is a priority

— Transfer Data inside ISR

— Optimize code execution of critical routines

— Design a solution with parallelism of processing and data
transfer

— Dedicate the DMA to the highest bus bandwidth scenarios

USB Compliance testing occurs throughout

development
Take advantage of
—USB Test tools

—USB Analyzers
— Compliance Worksheets

QUESTRA

For More Information

USB Specification Rev 1.1, 1.0
http://www.usb.org - the root node
http://www.intel.com

www.microsoft.com
— Search for WDM, WIinHEC, ActiveMovie, Still Image, etc.

USB System Architecture, Don Anderson -
Mindshare Inc.

www. linux.org

www.catc.com

Questra Corporation (716) 381-0260
www.questra.com

QUESTRA

Design of a USB Device Driver

Joe Flynn

Questra Corporation
jflynn@questra.com
(716)381-0260

QUESTRA

