
Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

1 di 16 11/08/05 9.24

Conceptual Architecture of the Linux Kernel

Ivan Bowman

January 1998

For Ric Holt
CS746G Assignment One

Available at: http://www.grad.math.uwaterloo.ca/~itbowman/CS746G/a1/

Keywords: Software architecture, conceptual architecture, Linux

Abstract

 

This paper describes the abstract or conceptual software architecture of the
Linux kernel. This level of architecture is concerned with the large-scale
subsystems within the kernel, but not with particular procedures or variables.
One of the purposes of such an abstract architecture is to form a mental model
for Linux developers and architects. The model may not reflect the as-built
architecture perfectly, but it provides a useful way to think about the overall
structure. This model is most useful for entry-level developers, but is also a good
way for experienced developers to maintain a consistent and accurate system
vocabulary.

The architecture presented here is the result of reverse engineering an existing



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

2 di 16 11/08/05 9.24

Linux implementation; the primary sources of information used were the
documentation and source code. Unfortunately, no developer interviews were
used to extract the live architecture of the system.

The Linux kernel is composed of five main subsystems that communicate using
procedure calls. Four of these five subsystems are discussed at the module
interconnection level, and we discuss the architectural style in the sense used by
Garlan and Shaw. At all times the relation of particular subsystems to the overall
Linux system is considered.

The architecture of the kernel is one of the reasons that Linux has been
successfully adopted by many users. In particular, the Linux kernel architecture
was designed to support a large number of volunteer developers. Further, the
subsystems that are most likely to need enhancements were architected to easily
support extensibility. These two qualities are factors in the success of the overall
system.

Contents
1. Introduction
 1.1 Purpose
 1.2 Challenges of this Paper
 1.3 Organization
2. System Architecture
 2.1 System Overview
 2.2 Purpose of the Kernel
 2.3 Overview of the Kernel Structure
 2.4 Supporting Multiple Developers
 2.5 System Data Structures
3. Subsystem Architectures
 3.1 Process Scheduler Architecture
 3.2 Memory Manager Architecture
 3.3 Virtual File System Architecture
 3.4 Network Interface Architecture
 3.5 Inter-Process Communication Architecture
4. Conclusions
Definition of Terms
References

List of Figures
Figure 2.1: Decomposition of Linux System into Major Subsystems

Figure 2.2: Kernel Subsystem Overview 

Figure 2.3: Division of Developer Responsibilities

Figure 3.1: Process Scheduler Subsystem in Context



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

3 di 16 11/08/05 9.24

Figure 3.2: Memory Manager subsystem in context

Figure 3.3: Virtual File System in Context

Figure 3.4: Network Interface Subsystem in Context

1. Introduction
1.1 Purpose

The goal of this paper is to present the abstract architecture of the Linux kernel. This is described by Soni
([Soni 1995]) as being the conceptual architecture. By concentrating on high-level design, this
architecture is useful to entry-level developers that need to see the high level architecture before
understanding where their changes fit in. In addition, the conceptual architecture is a good way to create a
formal system vocabulary that is shared by experienced developers and system designers. This
architectural description may not perfectly reflect the actual implementation architecture, but can provide
a useful mental model for all developers to share. Ideally, the conceptual architecture should be created
before the system is implemented, and should be updated to be an ongoing system conscience in the sense
of [Monroe 1997], showing clearly the load-bearing walls as described in [Perry 1992].

1.2 Challenges of this Paper

This presentation is somewhat unusual, in that the conceptual architecture is usually formed before the
as-built architecture is complete. Since the author of this paper was not involved in either the design or
implementation of the Linux system, this paper is the result of reverse engineering the Slackware 2.0.27
kernel source and documentation. A few architectural descriptions were used (in particular, [Rusling
1997] and [Wirzenius 1997] were quite helpful), but these descriptions were also based on the existing
system implementation. By deriving the conceptual architecture from an existing implementation, this
paper probably presents some implementation details as conceptual architecture.

In addition, the mechanisms used to derive the information in this paper omitted the best source of
information -- the live knowledge of the system architects and developers. For a proper abstraction of the
system architecture, interviews with these individuals would be required. Only in this way can an accurate
mental model of the system architecture be described.

Despite these problems, this paper offers a useful conceptualization of the Linux kernel software,
although it cannot be taken as an accurate depiction of the system as implemented.

1.3 Organization

The next section describes the overall objective and architecture of the Linux kernel as a whole. Next,
each individual subsystem is elaborated to the module level, with a discussion of the relations between
modules in a subsystem and to other subsystems. Finally, we discuss how the architecture of the Linux
kernel was useful in the implementation of the system and contributed to the overall success of the
system.

 

2. System Architecture



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

4 di 16 11/08/05 9.24

2.1 System Overview

The Linux kernel is useless in isolation; it participates as one part in a larger system that, as a whole, is
useful. As such, it makes sense to discuss the kernel in the context of the entire system. Figure 2.1 shows
a decomposition of the entire Linux operating system:

Figure 2.1: Decomposition of Linux System into Major Subsystems

The Linux operating system is composed of four major subsystems:

User Applications -- the set of applications in use on a particular Linux system will be different
depending on what the computer system is used for, but typical examples include a
word-processing application and a web-browser.

1.

O/S Services -- these are services that are typically considered part of the operating system (a
windowing system, command shell, etc.); also, the programming interface to the kernel (compiler
tool and library) is included in this subsystem.

2.

Linux Kernel -- this is the main area of interest in this paper; the kernel abstracts and mediates
access to the hardware resources, including the CPU.

3.

Hardware Controllers -- this subsystem is comprised of all the possible physical devices in a
Linux installation; for example, the CPU, memory hardware, hard disks, and network hardware are
all members of this subsystem

4.

This decomposition follows Garlan and Shaw's Layered style discussed in [Garlan 1994]; each subsystem
layer can only communicate with the subsystem layers that are immediately adjacent to it. In addition, the
dependencies between subsystems are from the top down: layers pictured near the top depend on lower
layers, but subsystems nearer the bottom do not depend on higher layers.

Since the primary interest of this paper is the Linux kernel, we will completely ignore the User
Applications subsystem, and only consider the Hardware and O/S Services subsystems to the extent that
they interface with the Linux kernel subsystem.

 

2.2 Purpose of the Kernel

The Linux kernel presents a virtual machine interface to user processes. Processes are written without
needing any knowledge of what physical hardware is installed on a computer -- the Linux kernel abstracts
all hardware into a consistent virtual interface. In addition, Linux supports multi-tasking in a manner that
is transparent to user processes: each process can act as though it is the only process on the computer,
with exclusive use of main memory and other hardware resources. The kernel actually runs several
processes concurrently, and is responsible for mediating access to hardware resources so that each process
has fair access while inter-process security is maintained.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

5 di 16 11/08/05 9.24

2.3 Overview of the Kernel Structure

The Linux kernel is composed of five main subsystems: 

The Process Scheduler (SCHED) is responsible for controlling process access to the CPU. The
scheduler enforces a policy that ensures that processes will have fair access to the CPU, while
ensuring that necessary hardware actions are performed by the kernel on time.

1.

The Memory Manager (MM) permits multiple process to securely share the machine's main
memory system. In addition, the memory manager supports virtual memory that allows Linux to
support processes that use more memory than is available in the system. Unused memory is
swapped out to persistent storage using the file system then swapped back in when it is needed.

2.

The Virtual File System (VFS) abstracts the details of the variety of hardware devices by
presenting a common file interface to all devices. In addition, the VFS supports several file system
formats that are compatible with other operating systems.

3.

The Network Interface (NET) provides access to several networking standards and a variety of
network hardware.

4.

The Inter-Process Communication (IPC) subsystem supports several mechanisms for
process-to-process communication on a single Linux system.

5.

Figure 2.2 shows a high-level decomposition of the Linux kernel, where lines are drawn from dependent
subsystems to the subsystems they depend on:

Figure 2.2: Kernel Subsystem Overview

 

This diagram emphasizes that the most central subsystem is the process scheduler: all other subsystems
depend on the process scheduler since all subsystems need to suspend and resume processes. Usually a
subsystem will suspend a process that is waiting for a hardware operation to complete, and resume the



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

6 di 16 11/08/05 9.24

process when the operation is finished. For example, when a process attempts to send a message across
the network, the network interface may need to suspend the process until the hardware has completed
sending the message successfully. After the message has been sent (or the hardware returns a failure), the
network interface then resumes the process with a return code indicating the success or failure of the
operation. The other subsystems (memory manager, virtual file system, and inter-process communication)
all depend on the process scheduler for similar reasons.

The other dependencies are somewhat less obvious, but equally important:

The process-scheduler subsystem uses the memory manager to adjust the hardware memory map
for a specific process when that process is resumed.
The inter-process communication subsystem depends on the memory manager to support a
shared-memory communication mechanism. This mechanism allows two processes to access an
area of common memory in addition to their usual private memory.
The virtual file system uses the network interface to support a network file system (NFS), and also
uses the memory manager to provide a ramdisk device. 
The memory manager uses the virtual file system to support swapping; this is the only reason that
the memory manager depends on the process scheduler. When a process accesses memory that is
currently swapped out, the memory manager makes a request to the file system to fetch the memory
from persistent storage, and suspends the process.

In addition to the dependencies that are shown explicitly, all subsystems in the kernel rely on some
common resources that are not shown in any subsystem. These include procedures that all kernel
subsystems use to allocate and free memory for the kernel's use, procedures to print warning or error
messages, and system debugging routines. These resources will not be referred to explicitly since they are
assumed ubiquitously available and used within the kernel layer of Figure 2.1.

The architectural style at this level resembles the Data Abstraction style discussed by Garlan and Shaw in
[Garlan 1994]. Each of the depicted subsystems contains state information that is accessed using a
procedural interface, and the subsystems are each responsible for maintaining the integrity of their
managed resources.

2.4 Supporting Multiple Developers

The Linux system was developed by a large number of volunteers (the current CREDITS file lists 196
developers that have worked on the Linux system). The large number of developers and the fact that they
are volunteers has an impact on how the system should be architected. With such a large number of
geographically dispersed developers, a tightly coupled system would be quite difficult to develop --
developers would be constantly treading on each others code. For this reason, the Linux system was
architected to have the subsystems that were anticipated to need the most modification -- the file systems,
hardware interfaces, and network system -- designed to be highly modular. For example, an
implementation of Linux can be expected to support many hardware devices which each have distinct
interfaces; a naive architecture would put the implementation of all hardware devices into one subsystem.
An approach that better supports multiple developers is to separate the code for each hardware device into
a device driver that is a distinct module in the file system. Analyzing the credits file gives Figure 2.3:

 



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

7 di 16 11/08/05 9.24

Figure 2.3: Division of Developer Responsibilities

 

Figure 2.3 shows most of the developers who have worked on the Linux kernel, and the areas that they
appeared to have implemented. A few developers modified many parts of the kernel; for clarity, these
developers were not included. For example, Linus Torvalds was the original implementor of most of the
kernel subsystems, although subsequent development was done by others. This diagram can't be
considered accurate because developer signatures were not maintained consistently during the
development of the kernel, but it gives a general idea of what systems developers spent most of their
effort implementing.

This diagram confirms the large-scale structure of the kernel as outlined earlier. It is interesting to note
that very few developers worked on more than one system; where this did occur, it occurred mainly where
there is a subsystem dependency. The organization supports the well-known rule of thumb stated by
Melvin Conway (see [Raymond 1993]) that system organization often reflects developer organization.
Most of the developers worked on hardware device drivers, logical file system modules, network device
drivers, and network protocol modules. It's not surprising that these four areas of the kernel have been
architected to support extensibility the most. 

2.5 System Data Structures



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

8 di 16 11/08/05 9.24

2.5.1 Task List

The process scheduler maintains a block of data for each process that is active. These blocks of data are
stored in a linked list called the task list; the process scheduler always maintains a current pointer that
indicates the current process that is active.

2.5.2 Memory Map

The memory manager stores a mapping of virtual to physical addresses on a per-process basis, and also
stores additional information on how to fetch and replace particular pages. This information is stored in a
memory-map data structure that is stored in the process scheduler's task list.

2.5.3 I-nodes

The Virtual File System uses index-nodes (i-nodes) to represent files on a logical file system. The i-node
data structure stores the mapping of file block numbers to physical device addresses. I-node data
structures can be shared across processes if two processes have the same file open. This sharing is
accomplished by both task data blocks pointing to the same i-node.

2.5.4 Data Connection

All of the data structures are rooted at the task list of the process scheduler. Each process on the system
has a data structure containing a pointer to its memory mapping information, and also pointers to the
i-nodes representing all of the opened files. Finally, the task data structure also contains pointers to data
structures representing all of the opened network connections associated with each task.

 

3. Subsystem Architectures
3.1 Process Scheduler Architecture

3.1.1 Goals

The process scheduler is the most important subsystem in the Linux kernel. Its purpose is to control
access to the computer's CPU(s). This includes not only access by user processes, but also access for other
kernel subsystems. 

3.1.2 Modules

The scheduler is divided into four main modules:

The scheduling policy module is responsible for judging which process will have access to the
CPU; the policy is designed so that processes will have fair access to the CPU.

1.

Architecture-specific modules are designed with a common interface to abstract the details of any
particular computer architecture. These modules are responsible for communicating with a CPU to
suspend and resume a process. These operations involve knowing what registers and state
information need to be preserved for each process and executing the assembly code to effect a
suspend or resume operation.

2.

The architecture-independent module communicates with the policy module to determine which
process will execute next, then calls the architecture-specific module to resume the appropriate

3.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

9 di 16 11/08/05 9.24

process. In addition, this module calls the memory manager to ensure that the memory hardware is
restored properly for the resumed process.

The system call interface module permits user processes access to only those resources that are explicitly
exported by the kernel. This limits the dependency of user processes on the kernel to a well-defined
interface that rarely changes, despite changes in the implementation of other kernel modules.

Figure 3.1: Process Scheduler Subsystem in Context

 

3.1.3 Data Representation

The scheduler maintains a data structure, the task list, with one entry for each active process. This data
structure contains enough information to suspend and resume the processes, but also contains additional
accounting and state information. This data structure is publicly available throughout the kernel layer

3.1.4 Dependencies, Data Flow, and Control Flow

The process scheduler calls the memory manager subsystem as mentioned earlier; because of this, the
process scheduler subsystem depends on the memory manager subsystem. In addition, all of the other
kernel subsystems depend on the process scheduler to suspend and resume processes while waiting for
hardware requests to complete. These dependencies are expressed through function calls and access to the
shared task list data structure. All kernel subsystems read and write the data structure representing the
current task, leading to bi-directional data flow throughout the system.

In addition to the data and control flow within the kernel layer, the O/S services layer provides an
interface for user processes to register for timer notification. This corresponds to the implicit execution
architectural style described in [Garlan 1994]. This leads to a flow of control from the scheduler to the
user processes. The usual case of resuming a dormant process is not considered a flow of control in the
normal sense because the user process cannot detect this operation. Finally, the scheduler communicates
with the CPU to suspend and resume processes; this leads to a data flow, and a flow of control. The CPU
is responsible for interrupting the currently executing process and allowing the kernel to schedule another
process.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

10 di 16 11/08/05 9.24

3.2 Memory Manager Architecture

3.2.1 Goals

The memory manager subsystem is responsible for controlling process access to the hardware memory
resources. This is accomplished through a hardware memory-management system that provides a
mapping between process memory references and the machine's physical memory. The memory manager
subsystem maintains this mapping on a per process basis, so that two processes can access the same
virtual memory address and actually use different physical memory locations. In addition, the memory
manager subsystem supports swapping; it moves unused memory pages to persistent storage to allow the
computer to support more virtual memory than there is physical memory.

3.2.2 Modules

The memory manager subsystem is composed of three modules:

The architecture specific module presents a virtual interface to the memory management hardware1.
The architecture independent manager performs all of the per-process mapping and virtual memory
swapping. This module is responsible for determining which memory pages will be evicted when
there is a page fault -- there is no separate policy module since it is not expected that this policy
will need to change.

2.

A system call interface is provided to provide restricted access to user processes. This interface
allows user processes to allocate and free storage, and also to perform memory mapped file I/O.

3.

3.2.3 Data Representation

The memory manager stores a per-process mapping of physical addresses to virtual addresses. This
mapping is stored as a reference in the process scheduler's task list data structure. In addition to this
mapping, additional details in the data block tell the memory manager how to fetch and store pages. For
example, executable code can use the executable image as a backing store, but dynamically allocated data
must be backed to the system paging file. Finally, the memory manager stores permissions and
accounting information in this data structure to ensure system security.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

11 di 16 11/08/05 9.24

Figure 3.2: Memory Manager subsystem in context

 

3.2.4 Data Flow, Control Flow, and Dependencies

The memory manager controls the memory hardware, and receives a notification from the hardware when
a page fault occurs -- this means that there is bi-directional data and control flow between the memory
manager modules and the memory manager hardware. Also, the memory manager uses the file system to
support swapping and memory mapped I/O. This requirement means that the memory manager needs to
make procedure calls to the file system to store and fetch memory pages from persistent storage. Because
the file system requests cannot be completed immediately, the memory manager needs to suspend a
process until the memory is swapped back in; this requirement causes the memory manager to make
procedure calls into the process scheduler. Also, since the memory mapping for each process is stored in
the process scheduler's data structures, there is a bi-directional data flow between the memory manager
and the process scheduler. User processes can set up new memory mappings within the process address
space, and can register themselves for notification of page faults within the newly mapped areas. This
introduces a control flow from the memory manager, through the system call interface module, to the user
processes. There is no data flow from user processes in the traditional sense, but user processes can
retrieve some information from the memory manager using select system calls in the system call interface
module.

3.3 Virtual File System Architecture

Figure 3.3: Virtual File System in Context



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

12 di 16 11/08/05 9.24

 

3.3.1 Goals

The virtual file system is designed to present a consistent view of data as stored on hardware devices.
Almost all hardware devices in a computer are represented using a generic device driver interface. The
virtual file system goes further, and allows the system administrator to mount any of a set of logical file
systems on any physical device. Logical file systems promote compatibility with other operating system
standards, and permit developers to implement file systems with different policies. The virtual file system
abstracts the details of both physical device and logical file system, and allows user processes to access
files using a common interface, without necessarily knowing what physical or logical system the file
resides on.

In addition to traditional file-system goals, the virtual file system is also responsible for loading new
executable programs. This responsibility is accomplished by the logical file system module, and this
allows Linux to support several executable formats.

3.3.2 Modules

There is one device driver module for each supported hardware controller. Since there are a large
number of incompatible hardware devices, there are a large number of device drivers. The most
common extension of a Linux system is the addition of a new device driver.

1.

The Device Independent Interface module provides a consistent view of all devices.2.
There is one logical file system module for each supported file system.3.
The system independent interface presents a hardware and logical-file-system independent view of
the hardware resources. This module presents all resources using either a block-oriented or
character-oriented file interface.

4.

Finally, the system call interface provides controlled access to the file system for user processes.
The virtual file system exports only specific functionality to user processes.

5.

3.3.3 Data Representation

All files are represented using i-nodes. Each i-node structure contains location information for specifying
where on the physical device the file blocks are. In addition, the i-node stores pointers to routines in the
logical file system module and device driver that will perform required read and write operations. By
storing function pointers in this fashion, logical file systems and device drivers can register themselves
with the kernel without having the kernel depend on any specific module.

3.3.4 Data Flow, Control Flow, and Dependencies

One specific device driver is a ramdisk; this device allocates an area of main memory and treats it as a
persistent-storage device. This device driver uses the memory manager to accomplish its tasks, and thus
there is a dependency, control flow, and data flow between the file system device drivers and the memory
manager.

One of the specific logical file systems that is supported is the network file system (as a client only). This
file system accesses files on another machine as if they were part of the local machine. To accomplish
this, one of the logical file system modules uses the network subsystem to complete its tasks. This
introduces a dependency, control flow, and data flow between the two subsystems.

As mentioned in section 3.2, the memory manager uses the virtual file system to accomplish memory
swapping and memory-mapped I/O. Also, the virtual file system uses the process scheduler to disable
processes while waiting for hardware requests to complete, and resume them once the request has been
completed. Finally, the system call interface allows user processes to call in to the virtual file system to



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

13 di 16 11/08/05 9.24

store or retrieve data. Unlike the previous subsystems, there is no mechanism for users to register for
implicit invocation, so there is no control flow from the virtual file system towards user processes
(resuming processes is not considered control flow).

3.4 Network Interface Architecture

3.4.1 Goals

The network subsystem allows Linux systems to connect to other systems over a network. There are a
number of possible hardware devices that are supported, and a number of network protocols that can be
used. The network subsystem abstracts both of these implementation details so that user processes and
other kernel subsystems can access the network without necessarily knowing what physical devices or
protocol is being used.

3.4.2 Modules

Network device drivers communicate with the hardware devices. There is one device driver module
for each possible hardware device.

1.

The device independent interface module provides a consistent view of all of the hardware devices
so that higher levels in the subsystem don't need specific knowledge of the hardware in use.

2.

The network protocol modules are responsible for implementing each of the possible network
transport protocols.

3.

The protocol independent interface module provides an interface that is independent of hardware
devices and network protocol. This is the interface module that is used by other kernel subsystems
to access the network without having a dependency on particular protocols or hardware.

4.

Finally, the system calls interface module restricts the exported routines that user processes can access.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

14 di 16 11/08/05 9.24

Figure 3.4: Network Interface Subsystem in Context

 

3.4.3 Data Representation

Each network object is represented as a socket. Sockets are associated with processes in the same way
that i-nodes are associated; sockets can be share amongst processes by having both of the task data
structures pointing to the same socket data structure.

3.4.4 Data Flow, Control Flow, and Dependencies

The network subsystem uses the process scheduler to suspend and resume processes while waiting for
hardware requests to complete (leading to a subsystem dependency and control and data flow). In
addition, the network subsystem supplies the virtual file system with the implementation of a logical file
system (NFS) leading to the virtual file system depending on the network interface and having data and
control flow with it. 

3.5 Inter-Process Communication Architecture

The architecture of the inter-process communication subsystem is omitted for brevity since it is not as
interesting as the other subsystems.

 

4. Conclusions
The Linux kernel is one layer in the architecture of the entire Linux system. The kernel is conceptually
composed of five major subsystems: the process scheduler, the memory manager, the virtual file system,
the network interface, and the inter-process communication interface. These subsystems interact with
each other using function calls and shared data structures.

At the highest level, the architectural style of the Linux kernel is closes to Garlan and Shaw's Data 
Abstraction style ([Garlan1994]); the kernel is composed of subsystems that maintain internal
representation consistency by using a specific procedural interface. As each of the subsystems is
elaborated, we see an architectural style that is similar to the layered style presented by Garlan and Shaw.
Each of the subsystems is composed of modules that communicate only with adjacent layers.

The conceptual architecture of the Linux kernel has proved its success; essential factors for this success
were the provision for the organization of developers, and the provision for system extensibility. The
Linux kernel architecture was required to support a large number of independent volunteer developers.
This requirement suggested that the system portions that require the most development -- the hardware
device drivers and the file and network protocols -- be implemented in an extensible fashion. The Linux
architect chose to make these systems be extensible using a data abstraction technique: each hardware
device driver is implemented as a separate module that supports a common interface. In this way, a single
developer can add a new device driver, with minimal interaction required with other developers of the
Linux kernel. The success of the kernel implementation by a large number of volunteer developers proves
the correctness of this strategy.

Another important extension to the Linux kernel is the addition of more supported hardware platforms.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

15 di 16 11/08/05 9.24

The architecture of the system supports this extensibility by separating all hardware-specific code into
distinct modules within each subsystem. In this way, a small group of developers can effect a port of the
Linux kernel to a new hardware architecture by re-implementing only the machine-specific portions of
the kernel.

 

Definition of Terms
Device Driver

A device driver is all of the code that is required to interface with a particular hardware device.
Device drivers are properly part of the kernel, but the Linux kernel has a mechanism that permits
dynamic loading of device drivers.

 
I-Node

I-nodes, or index nodes, are used by the file system to keep track of which hardware addresses
correspond to which file system data blocks. Each i-node stores a mapping of file block to physical
block, plus additional information for security and accounting purposes.

 
Network File System (NFS)

The Network File System is a file system interface that presents files that are stored on a remote
computer as a file system on the local machine.

 
Process

A process (also called a task) is a program in execution; it consists of executable code and dynamic
data. The kernel associates enough information with each process to stop and resume it.

 
Ramdisk

A ramdisk is a device drive that uses an area of main memory as a file system device. This allows
frequently accessed files to be placed in an area that provides reliably efficient access at all times;
this can be especially useful when using Linux to support hard real-time requirements. For usual
cases, the normal file system caching will make the most efficient use of memory to provide
reasonably efficient access to files.

 
Swapping

Linux supports processes that use memory that exceeds the amount of physical memory on the
computer. This is accomplished by the memory manager swapping unused pages of memory to a
persistent store; when the memory is later accessed, it is swapped back into the main memory
(possibly causing other pages to be swapped out).

 
Task

See Process

 

References
[Garlan 1994]

David Garlan and Mary Shaw, An Introduction to Software Architecture, Advances in Software
Engineering and Knowledge Engineering, Volume I, World Scientific Publishing Company, 1993.



Conceptual Architecture of the Linux Kernel http://plg.uwaterloo.ca/~itbowman/CS746G/a1/

16 di 16 11/08/05 9.24

 
[Monroe 1997]

Robert T. Monroe, Andrew Kompanek, Ralph Melton, and David Garlan, Architectural Styles,
Design Patterns, and Objects, IEEE Software, January 1997, pp 43-52.

 
[Parker 1997]

Slackware Linux Unleashed, by Timothy Parker, et al, Sams Publishing, 201 West 103rd Street,
Indianapolis.

 
[Perry 1992]

Dewayne E. Perry and Alexander L. Wolf, Foundations for the Study of Software Architecture, 
ACM SIGSOFT Software Engineering Notes, 17:4, October 1992 pp 40-52.

 
[Raymond 1993]

The New Hackers Dictionary, Second Edition, compiled by Eric S. Raymond. The MIT Press,
Cambridge Massachusetts, 1993.

 
[Rusling 1997]

The Linux Kernel, by David A. Rusling, draft, version 0.1-13(19), 
ftp://sunsite.unc.edu/pub/Linux/docs/linux-doc-project/linux-kernel/ or
http://www.linuxhq.com/guides/TLK/index.html.

 
[Soni 1995]

Soni, D.; Nord, R. L.; Hofmeister, C., Software Architecture in Industrial Applications, IEEE ICSE
1995, pp. 196-210.
 

[Tanenbaum 1992]
Modern Operating Systems, by Andrew S. Tanenbaum, Prentice Hall, 1992.

 
[Wirzenius 1997]

Linux System Administrators' Guide 0.6, by Lars Wirzenius, http://www.iki.fi/liw/linux/sag/ or
http://www.linuxhq.com/LDP/LDP/sag/index.html.


