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Introduction

1C H A P T E R

1

As a developer, I grew up on the PIC. Very seldom will you find an embedded
developer who has not used this workhorse at one point in their career. Like
others, I knew the parts, the tools, and the company. My university used the
8051 in the class on microcontrollers, but when I got out, I learned the PIC
from another developer who had been using it for years. When a new project
cropped up, I would dig out the same development tools and methods that I
had always relied on.

A few years back, I was forced out of my rut. The new project that I
was on had much tighter requirements than I had previously experienced.
Downloadable firmware, insanely low current budgets and the omnipresent
“Don’t spend too much” requirements added up to one inescapable fact:  my
old standby wasn’t going to cut it this time. I needed a better
microcontroller.

One of my fellow developers introduced me to the Texas Instruments
MSP430. If the marketing literature and datasheet were correct, it would
do everything I needed. However, as this book discusses later, I seldom trust
datasheets, let alone those brightly colored marketing brochures that I seem
to receive from every semiconductor manufacturer under the sun. So, I
ordered a development kit and played with it. It proved (and has continued
to prove) to be a very powerful and useful device.
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However, one thing the PIC (and the 8051, and the Motorola HC series,
and the Atmel AVR…) has over the MSP430 is available literature. The PIC
has at least a dozen books written about development. When I tried to find a
book for the ’430 family, I came up empty. This is intended to be the book I
couldn’t find. I hope you find it useful.

About this book

This book is intended for the embedded engineer who is new to the field,
and as an introduction and reference for those experienced with micro-
controller development, but are new to the MSP430 family of devices. I have
assumed that the reader has some experience with microcontroller-based
design, either professionally or academically. As an example, the book de-
scribes interrupt functionality in detail, but assumes that you, the reader,
already know what an interrupt is and how to use it. It is also important to
note that, while much of the information in this book is identical to that
which is available from the TI documentation, this book is intended to
supplement, not replace that valuable source of information. The Users
Guides and Application Notes together offer a depth and breadth of techni-
cal information that would be difficult to replicate in a single source. The
intent of this book is to highlight some of the most commonly used informa-
tion, along with some (hopefully) helpful suggestions and rules of thumb.

Examples provided in this book are of mixed type, in that some are
developed in assembly language, and some in C. The overwhelming majority
of small to medium sized embedded projects are developed in C, with good
reason. C offers the best balance between easy to develop, structured, por-
table, readable code and direct control of the hardware (see Development
Language Selection, pg. 154). I have assumed that the reader is experienced
with C language programming

The book is divided into three sections. The first section consists of
chapters 2 through 7, and describes the devices themselves. Much of this
material is also available from the TI user’s guides, which are available for
download. I have attempted to develop some objective suggestions and rules
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of thumb, based on my experiences and those of other developers. My intent
is to supplement the user’s guide and datasheet, not to replace them.

The second section, which consists of chapters 8 and 9, discusses
MSP430 instruction set and addressing. Although use of a higher level
language such as C will obscure this level of development, it is still important
material. In any project of significant size, the developer will, at some point,
need to optimize the code. That developer can either trust the compiler to
optimize everything, or become very comfortable with the material in this
section. I recommend the latter.

The last four chapters form the third section, which combines informa-
tion from the earlier chapters and outlines some system development
guidelines. Much of what is included in this section (particularly Chapter 11)
is not specific to the MSP430, but is useful nonetheless. The section con-
cludes with a simple application. Appendices to the book include a list of
some useful resources, a glossary of common acronyms, and a description of
the use of the flash emulation tool, a low-end prototyping board from TI.

The structure of this book is, to some degree, circular. Code examples in
the first section assume knowledge of the information in the second section,
and vice versa. However, the material is straightforward enough that, with
some basic knowledge of microcontrollers (along with some use of the in-
dex), the reader should not experience any major difficulties.

The MSP430 Family

The MSP430 family is a broad family of low power, feature rich 16-bit
microcontrollers from Texas Instruments. They share a common, RISC-type,
von Neumann CPU core (See Architecture Types, pg. 7). The ’430 is competi-
tive in price with the 8-bit controller market, and supports both 8 and 16-bit
instructions, allowing migration from most similarly sized platforms.

The family of devices ranges from the very small (1k ROM, 128 bytes for
RAM, sub-dollar) up to larger (60k ROM, 2k RAM, with prices in the $10
range) devices. Currently, there are at least 40 flavors available, with more
being added regularly. The devices are split into three families:  the
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MSP430x3xx, which is a basic unit, the MSP430x1xx, which is a more
feature-rich family, and the MSP430x4xx, which is similar to the ’1xx, with
a built in LCD driver. You will find these referred to as ’1xx, ’3xx, and ’4xx
devices throughout this book.

Part Numbering Convention

Part numbers for MSP430 devices are determined based on their capabilities.
All device part numbers follow the following template:

MSP430M
t
F

a
F

b
M

c

where:
Mt: Memory Type

C: ROM
F: Flash
P: OTP
E: EPROM (for developmental use. There are few of these.)

Fa, Fb:  Family and Features
    10, 11:  Basic
    12, 13:  Hardware UART
    14:        Hardware UART, Hardware Multiplier
    31, 32:  LCD Controller
    33:        LCD Controller, Hardware UART, Hardware Multiplier
    41:        LCD Controller
    43:        LCD Controller, Hardware UART
    44:        LCD Controller, Hardware UART, Hardware Multiplier

Mc:  Memory Capacity
    0:  1kb ROM, 128b RAM
    1:  2kb ROM, 128b RAM
    2:  4kb ROM, 256b RAM
    3:  8kb ROM, 256b RAM
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    4:  12kb ROM, 512b RAM
    5:  16kb ROM, 512b RAM
    6:  24kb ROM, 1kb RAM
    7:  32kb ROM, 1kb RAM
    8:  48kb ROM, 2kb RAM
    9:  60kb ROM, 2kb RAM

Example:  The MSP430F435 is a Flash memory device with an LCD
controller, a hardware UART, 16 kb of code memory, and 512 bytes of RAM.

The part numbering scheme described above is a bit fragmented. There
are common features not consistently represented (type of ADC, number of
timers, etc), and there are some other inconsistencies (for example, the 33
family has the multiplier, but the 13 and 43s do not). I would recommend
against selecting parts based on their numbering scheme. Rather, once you
have a vague idea of your requirements, go to the TI website (www.TI.com),
and use their parametric sort feature.

Writing Code

Now that you have selected a device, it is time to begin writing some soft-
ware for your application. I have several rules for developing code, which I
have listed here. These are undoubtedly things you already know, as they are
pretty basic and obvious, but it is surprising how often, in the middle of a
project, with deadlines bearing down, these are forgotten:

1) Be consistent. Develop a standard set of rules for naming constants,
variables, and function calls, and stick to it. Later on, when you are
reading or editing some remote piece of code, it is handy to immedi-
ately recognize that DataOffset is a variable, while DATAOFFSET is
a program constant.

2) Comment your code. If you can write code that will be completely
problem free, and are certain, without a doubt, that the code will
never need to be read, changed, or reused  for another application,
you can ignore this suggestion. However, for us mortal programmers
here in the real world, this rule is important. (This is the one that I
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tend to let slip. I expect several of my coworkers to mention this
hypocrisy to me when they read this.)

3) Develop on paper. The best code is scribbled out on paper first, and
typed in later. This gives you several opportunities to think about the
algorithms and implementation. It is also much easier to perform any
necessary analysis, like timing or memory use, on paper, than it is on
the fly while typing. I do all of my work in a lab notebook first,
allowing me to go back and refer to it later.

4) Use other eyes. Code reviews with other developers are the norm in
industry, but I believe that they are among the most misused of soft-
ware development processes. Often, we have a box to check off in our
formal processes, so we gather 3 or 4 fellow software guys, e-mail them
the 10,000 lines of code the night before the review, spend a couple of
hours talking about high-level concepts, and call it done. As com-
plete wastes of time go, this is impressive. If, however, you would like
the code review to be useful, the process should encourage the others
in the review to pick your code apart. Code reviews should always be
performed at the function level, and should include hardware and/or
system people, depending on what area the function being reviewed
affects. Make certain the reviewers have access to the code several
days prior to the review, so that they have plenty of opportunity to
look it over. The point of the review is to improve the code, not to
check off a box on some document.

Every project seems to begin with these rules being followed. How often,
though, do we find ourselves, as crunch time nears, hacking away at the PC,
just making the thing work? It has been my experience that most of my really
stupid coding mistakes have been made when getting away from these rules,
particularly the last two. Last-minute hacking and marathon coding and
debugging sessions will, in the long run, require more time and produce
inferior code compared to well planned and organized development. Main-
tain the self discipline to follow these guidelines (or your own), and your
code quality will improve.
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Architecture Types

Microprocessors and microcontrollers are often described in terms of
their architecture types. The MSP430 is described as being a RISC
processor. It is also described as utilizing a von Neumann architec-
ture. These two descriptions are bandied about often. (In fact, the
RISC category is used by so many semiconductor manufacturers in
the marketing of their respective microcontrollers that it is approach-
ing buzzword status.) However, many of us breeze over these bits of
information when selecting a micro for our application. It can often
be helpful to have some understanding of the implications that arise
from these definitions.

RISC vs. CISC Architectures

CISC is an acronym for Complex Instruction Set Computing. CISC
machines are characterized by variable length instructions, resulting
in complicated instruction decoding. Many CISC processors require
microcoding to perform the decode tasks. The range of clock cycles
required to execute tends to vary broadly from one instruction to the
next in CISC processors. In the 8086, for example, shift and rotate
instructions require 2 clock cycles, while an integer multiply requires
a minimum of 80.

RISC stands for Reduced Instruction Set Computing. As the
name suggests, the instruction set in RISC machines has been
stripped down to the basics, to facilitate easier instruction decoding,
and faster processing. RISC instructions for a given processor are
typically fixed in size, similar in format, and all execute in more or
less the same number of cycles. (An exception to this is jump and
branch instructions in pipelined processors, which typically require
an extra cycle or two.)  In short, CISC is designed to accomplish as
much as possible with each instruction, and RISC is designed to use
simple instructions, and jam them through as fast as possible.
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The MSP430 is advertised as a RISC processor. This has been the
subject of some friendly debate. A computer science purist of my
acquaintance has suggested that the ’430 is not a true RISC machine,
since the instruction length varies for different addressing modes.
This condition is a result of instruction set orthogonality (for a
discussion of orthogonality, see pg. 113). After discussions with The
Purist, I have come to two conclusions about this. First, he is probably
right. The MSP430 doesn’t meet the strict, narrow definition of RISC
processors. The MSP430 resides in the gray area between RISC and
CISC, and does a pretty good job of pulling the strengths out of both.
Second, it isn’t that important. As long as the developer is cognizant
of the variation in cycles per instruction (anywhere from 1 to 5 master
clock cycles, depending on addressing mode), this device can and
should be regarded as a RISC processor.

RISC and CISC are not the only processor architecture philosophies
out there. In recent years, approaches such as VLIW (Very Long
Instruction Word) and EPIC (Explicitly Parallel Instruction Computing)
have begun to take hold in the high-end processor market. However,
it will likely be a while before those of us living in the small micro-
controller market need to concern ourselves with these.

Harvard vs. von Neumann Architectures

The terms Harvard and von Neumann describe the memory structure
of the device. Harvard architectures have separate address spaces for
code memory (ROM, Flash, etc.) and for data memory (RAM). In
von Neumann devices, code and data are mapped to a single space.

Due to their ability to simultaneously pull instructions from ROM
and data from RAM, Harvard architectures are almost always faster
than von Neumann architectures. The tradeoff for this speed is
flexibility. Harvard architectures require special instructions in order
to write to flash blocks, while von Neumann machines are able to rely
on their base instruction set to perform these functions. Von Neumann
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devices are also able to run code out of RAM, which is necessary for
implementation of downloadable firmware. (Reprogramming of flash
memory is discussed in Chapter 10.)

Most microcontrollers available today are Harvard architectures,
as are the majority of small DSPs. The MSP430, which is a true von
Neumann device, is among the few exceptions. Code memory, RAM,
information memory, special function registers, and interrupt vectors
are all mapped into a contiguous 16-bit addressable memory space.
While not very fast, the extra flexibility created by the memory
addressing makes the MSP430 a powerful and unique device.





Architecture:
CPU and Memory

2C H A P T E R

11

As discussed in chapter 1, the MSP430 utilizes a 16-bit RISC architecture,
which is capable of processing instructions on either bytes or words. The
CPU is identical for all members of the ’430 family. It consists of a 3-stage
instruction pipeline, instruction decoding, a 16-bit ALU, four dedicated-use
registers, and twelve working (or scratchpad) registers. The CPU is con-
nected to its memory through two 16-bit busses, one for addressing, and the
other for data. All memory, including RAM, ROM, information memory,
special function registers, and peripheral registers are mapped into a single,
contiguous address space.

This architecture is unique for several reasons. First, the designers at
Texas Instruments have left an awful lot of space for future development.
Almost half the Status Register remains available for future growth, roughly
half of the peripheral register space is unused, and only six of the sixteen
available special function registers are implemented.

Second, there are plenty of working registers. After years of having one or
two working registers, I greatly enjoyed my first experience with the twelve
16-bit CPU scratchpads. The programming style is slightly different, and can
be much more efficient, especially in the hands of a programmer who knows
how to use this feature to its fullest.

Third, this architecture is deceptively straightforward. It is very flexible,
and the addressing modes are more complicated than most other small
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processors. But, beyond that, this architecture is simple, efficient and clean.
There are two busses, a single linear memory space, a rather vanilla processor
core, and all peripherals are memory-mapped.

CPU Features

The ALU

The ’430 processor includes a pretty typical ALU (arithmetic logic unit).
The ALU handles addition, subtraction, comparison and logical (AND, OR,
XOR) operations. ALU operations can affect the overflow, zero, negative,
and carry flags. The hardware multiplier, which is not available in all devices,
is implemented as a peripheral device, and is not part of the ALU (see
Chapter 6).

Working Registers

The ’430 gives the developer twelve 16-bit working registers, R4 through
R15. (R0 through R3 are used for other functions, as described later.)  They
are used for register mode operations (see Addressing Modes, Chapter 8),
which are much more efficient than operations which require memory access.
Some guidelines for their use:

■ Use these registers as much as possible. Any variable which is ac-
cessed often should reside in one of these locations, for the sake of
efficiency.

■ Generally speaking, you may select any of these registers for any
purpose, either data or address. However, some development tools
will reserve R4 and R5 for debug information. Different compilers will
use these registers in different fashions, as well. Understand your
tools.
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■ Be consistent about use of the working registers. Clearly document
their use. I have code, written about 8 months ago, that performs
extensive operations on R8, R9, and R15. Unfortunately, I don’t
know today what the values in R8, R9 and R15 represent. This was
code I wrote to quickly validate an algorithm, rather than production
code, so I didn’t document it sufficiently. Now, it is relative gibberish.
Don’t let this happen to you. No matter how obvious or trivial regis-
ter use seems, document it anyway.

Constant Generators

R2 and R3 function as constant generators, so that register mode may be
used instead of immediate mode for some common constants. (R2 is a dual-
use register. It serves as the Status Register, as well.)  Generated constants
include some common single-bit values (0001h, 0002h, 0004h, and 0008h),
zero (0000h), and an all 1s field (0FFFFh). Generation is based on the W(S)
value in the instruction word, and is described by the table below.

W(S) Value in R2 Value in R3

00 —— 0000h

01 (0) (absolute mode) 0001h

10 0004h 0002h

11 0008h 0FFFFh

Program Counter

The Program Counter is located in R0. Since individual memory location
addresses are 8-bit, but all instructions are 16 bit, the PC is constrained to
even numbers (i.e. the LSB of the PC is always zero). Generally speaking, it
is best to avoid direct manipulation of the PC. One exception to this rule of
thumb is the implementation of a switch, where the code jumps to a spot,
dependent on a given value. (I.e., if value=0, jump to location0, if value=1,
jump to location1, etc.) This process is shown in Example 3.1.
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Example 3.1 Switch Statement via Manual PC Control

mov value,R15 ; Put the Switch value into R15
cmp R15,#8 ; range checking
jge outofrange ; If R15>7, do not use PC Switch
cmp #0,R15 ; more range checking
jn outofrange
rla R15 ; Multiply R15 by two, since PC is always even
rla R15 ; Double R15 again, since symbolic jmp is 2

  words long
add R15,PC ; PC goes to proper jump
jmp value0
jmp value1
jmp value2
jmp value3
jmp value4
jmp value5
jmp value6
jmp value7

outofrange
jmp RangeError

This is a relatively common approach, and most C compilers will imple-
ment switch statements with something similar. When implementing this
manually (i.e., in assembly language), the programmer needs to keep several
things in mind:

■ Always do proper range checking. In the example, we checked for
conditions outside both ends of the valid range. If this is not per-
formed correctly, the code can jump to an unintended location.

■ Pay close attention to the addressing modes of the jump statements.
The second doubling of R15, prior to the add statement, is added
because the jump statement requires two words when symbolic mode
addressing is used.



15

Architecture: CPU and Memory

■ Be careful that none of your interrupt handlers have the potential to
affect your value register (R15 in the example). If the interrupt
handler needs to use one of these registers, the handler needs to store
the value to RAM first. The most common procedure is to push the
register to the stack at the beginning of the ISR, and to pop the
register at the end of the ISR. (See Example 3.2.)

Example 3.2 Push/Pop Combination in ISR

Timer_A_Hi_Interrupt
push R12 ; We will use R12
mov P1IN,R12 ; use R12 as we please
rla R12
rla R12
mov R12,&BAR ; Done with R12
pop R12 ; Restore previous value to R12
reti ; return from interrupt

:
:

ORG 0FFF0h
DW Timer_A_Hi_Interrupt

Status Register

The Status Register is implemented in R2, and is comprised of various system
flags. The flags are all directly accessible by code, and all but three of them
are changed automatically by the processor itself. The 7 most significant bits
are undefined. The bits of the SR are:
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• The Carry Flag (C)
Location: SR(0) (the LSB)
Function:  Identifies when an operation results in a carry. Can be set
or cleared by software, or automatically.
1=Carry occurred
0=No carry occurred

• The Zero Flag (Z)
Location: SR(1)
Function:  Identifies when an operation results in a zero. Can be set
or cleared by software, or automatically.
1=Zero result occurred
0=Nonzero result occurred

• The Negative Flag (N)
Location: SR(2)
Function:  Identifies when an operation results in a negative. Can be
set or cleared by software, or automatically. This flag reflects the value
of the MSB of the operation result (Bit 7 for byte operations, and bit
15 for word operations).
1=Negative result occurred
0=Positive result occurred

• The Global Interrupt Enable (GIE)
Location: SR(3)
Function:  Enables or disables all maskable interrupts. Can be set or
cleared by software, or automatically. Interrupts automatically reset
this bit, and the reti instruction automatically sets it.
1=Interrupts Enabled
0=Interrupts Disabled



17

Architecture: CPU and Memory

• The CPU off bit (CPUOff)
Location: SR(4)
Function:  Enables or disables the CPU core. Can be cleared by
software, and is reset by enabled interrupts. None of the memory,
peripherals, or clocks are affected by this bit. This bit is used as a
power saving feature.
1=CPU is on
0=CPU is off

• The Oscillator off bit (OSCOff)
Location: SR(5)
Function:  Enables or disables the crystal oscillator circuit (LFXT1).
Can be cleared by software, and is reset by enabled external interrupts.
OSCOff shuts down everything, including peripherals. RAM and
register contents are preserved. This bit is used as a power saving feature.
1=LFXT1 is on
0=LFXT1 is off

• The System Clock Generator (SCG1,SCG0)
Location: SR(7),SR(6)
Function:  These bits, along with OSCOff and CPUOff define the
power mode of the device. See chapter 13 for details.

• The Overflow Flag (V)
Location: SR(8)
Function:  Identifies when an operation results in an overflow. Can be
set or cleared by software, or automatically. Overflow occurs when
two positive numbers are added together, and the result is negative, or
when two negative numbers are added together, and the result is
positive. The subtraction definition of overflow can be derived from
the additive definition.
1=Overflow result occurred
0=No overflow result occurred
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Four of these flags (Overflow, Negative, Carry, and Zero) drive program
control, via instructions such as cmp (compare) and jz (jump if Zero flag is
set). You will see these flags referred to often in this book, as their function
represents a fundamental building block. The instruction set is detailed in
Chapter 9, and each base instruction description there details the interaction
between flags and instructions. As a programmer, you need to understand
this interaction.

Stack Pointer

The Stack Pointer is implemented in R1. Like the Program Counter, the LSB
is fixed as a zero value, so the value is always even. The stack is implemented
in RAM, and it is common practice to start the SP at the top (highest valid
value) of RAM. The push command moves the SP down one word in RAM
(SP=SP-2), and puts the value to be pushed at the new SP. Pop does the
reverse. Call statements and interrupts push the PC, and ret and reti state-
ments pop the value from the TOS (top of stack) back into the PC.

I have one simple rule of thumb for the SP: leave it alone. Set the stack
pointer as part of your initialization, and don’t fiddle with it manually after
that. As long as you are wary of two stack conditions, the stack pointer
manages itself. These two conditions are:

■ Asymmetric push/pop combinations. Every push should have a pop. If
you push a bunch of variables, and fail to pop them back out, it will
come back to haunt you. If you pop an empty stack, the SP moves out
of RAM, and the program will fail.

■ Stack encroachment. Remember, the stack is implemented in RAM.
If your program has multiple interrupts, subroutine calls, or manual
pushes, the stack will take up more RAM, potentially overwriting
values your code needs elsewhere.
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Memory Structure

Special Function Registers

Special function registers are, as you might have guessed, memory-mapped
registers with special dedicated functions. There are, nominally, sixteen of
these registers, at memory locations 0000h through 000Fh. However, only
the first six are used. Locations 0000h and 0001h contain interrupt enables,
and locations 0002h and 0003h contain interrupt flags. These are described
in Chapter 3.

Locations 0004h and 0005h contain module enable flags. Currently, only
two bits are implemented in each byte. These bits are used for the USARTs.

Peripheral Registers

All on-chip peripheral registers are mapped into memory, immediately after
the special function registers. There are two types of peripheral registers:
byte-addressable, which are mapped in the space from 010h to 0FFh, and
word-addressable, which are mapped from 0100h to 01FFh. These are de-
tailed in the memory map at the end of this chapter and further explained in
Chapter 6.

RAM

RAM always begins at location 0200h, and is contiguous up to its final
address. RAM is used for all scratchpad variables, global variables, and the
stack. Some rules of thumb for RAM usage:

■ The developer needs to be careful that scratchpad allocation and
stack usage do not encroach on each other, or on global variables.
Accidental sharing of RAM is a very common bug, and can be diffi-
cult to chase down. You need to clearly understand how large your
stack will become.
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■ Be consistent about use. Locate the stack at the very end of the RAM
space, and place your most commonly used globals at the beginning.

■ Never allocate more scratchpad than you need, and always deallocate
as quickly as is reasonable. You can never have too much free RAM.

Boot Memory (flash devices only)

Boot memory is implemented in flash devices only, located in memory
locations 0C00h through 0FFFh. It is the only hard-coded ROM space in the
flash devices. This memory contains the bootstrap loader, which is used for
programming of flash blocks, via a USART module. Use of the bootstrap
loader is described in Chapter 10, Flash Memory.

Information Memory (flash devices only)

Flash devices in the ’430 family have the added feature of information
memory. This information memory acts as onboard EEPROM, allowing
critical variables to be preserved through power down. It is divided into two
128-byte segments. The first of these segments is located at addresses 01000h
through 0107Fh, and the second is at 01080h through 010FFh. Use and
reprogramming of information memory is detailed in Chapter 10, Flash
Memory.

Code Memory

Code memory is always contiguous at the end of the address space (i.e.
always runs to location 0FFFFh). So, for 8k devices, code runs from 0E000h
to 0FFFFh, and for the 60k devices, the code runs from 01100h to 0FFFFh.
All code, tables, and hard-coded constants reside in this memory space.

Interrupt Vectors

Interrupt vectors are located at the very end of memory space, in locations
0FFE0h through 0FFFEh. Programming and use of these are described in
detail in Chapter 3.
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Memory Map

Memory Address Description
0FFE0h-0FFFFh Interrupt Vectors

0FFDFh End of code space-All devices

0F800h Start of code space-2K devices
0F000h Start of code space-4k devices
0E000h Start of code space-8k devices
0D000h Start of code space-12k devices
0C000h Start of code space-16k devices
0A000h Start of code space-24k devices
08000h Start of code space-32k devices
04000h Start of code space-48k devices
01100h Start of code space-60k devices

010FFh End of Information Memory: Flash devices except
’F110 and ’F1101

0107Fh End of Information Memory: ’F110 and ’F1101
01000h Start of Information Memory: Flash devices only

0FFFh End of Boot Memory: Flash devices only
0C00h Start of Boot Memory: Flash devices only

09FFh End of RAM-2k devices
05FFh End of RAM-1k devices
03FFh End of RAM-512 byte devices
02FFh End of RAM-256 byte devices
027Fh End of RAM-128 byte devices
0200h Start of RAM-All devices
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01B0h-01FFh Unused (All devices)

01A0h-01Afh ADC Control (’1xx and ’4xx devices) / Unused
(’3xx devices)

0180h-019Fh Timer B (’1xx devices) / Unused (’3xx and ’4xx
devices)

0160h-017Fh Timer A (All devices)
0140h-015Fh ADC Conversion (’1xx and ’4xx devices) / Unused

(’3xx devices)
0130h-013Fh Multiplier (All devices)
0120h-012Fh Watchdog timer, applicable flash control

(All devices)
0110h-011Fh ADC (’3xx devices) / Unused (’1xx and ’4xx devices)
0100h-010Fh Unused (All devices)
00B0h-00FFh Unused (All devices)
0090h-00Afh LCD (Byte addressed, ’4xx devices) / Unused

(’1xx and ’3xx devices)
0080h-008Fh ADC memory control (Byte addressed, ’1xx and

’4xx devices) / Unused (’3xx devices)
0070h-007Fh USART (Byte addressed, All devices)
0060h-006Fh Unused (All devices)
0050h-005Fh System Clock (Byte addressable, All devices) /

Comparator (’1xx and ’4xx devices) / Brownout
(’4xx devices) / EPROM and crystal buffer (’3xx
devices)

0040h-004Fh Basic Timer and 8-bit Counter (Byte addressable,
’3xx and ’4xx devices) / Unused (’1xx devices).

0030h-003Fh I/O ports 5 and 6 control (Byte addressable, ’1xx
and ’4xx devices) / LCD (Byte addressable, ’3xx
devices)

0020h-002Fh I/O ports 1 and 2 control (Byte addressable, All
devices)
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0010h-001Fh I/O ports 3 and 4 control (Byte addressable, All
devices), I/O port 0 (Byte addressable, ’3xx devices)

0006h-000Fh Unused (All devices)
0005h Module Enables 2 (Byte Addressable, all devices)
0004h Module Enables 1 (Byte Addressable, all devices)
0003h Interrupt Flags 2 (Byte Addressable, all devices)
0002h Interrupt Flags 1 (Byte Addressable, all devices)
0001h Interrupt Enables 2 (Byte Addressable, all devices)
0000h Interrupt Enables 1 (Byte Addressable, all devices)

Memory Types

The MSP430 is available with any one of several different memory
types. The memory type is identified by the letter immediately follow-
ing “MSP430” in the part numbers. (Example: All MSP430Fxxx parts
are flash decices).

ROM

ROM devices, also known as masked devices, are identified by the
letter “C” in the part numbers. They are strict ROM devices, shipped
pre-programmed. They have the advantage of being very inexpensive,
and may be the best solution for high-volume designs. However, due
to high NRE (non-recurring engineering) costs, masked ROM is only
cost-efficient when hundreds of thousands (or more) devices are
required. They should also only be used for stable designs. If bugs are
found too late in the process, the NRE costs have the potential to be
repeated.

OTP

OTP is an acronym for “one time programmable”, which pretty well
describes the functionality of these devices. Identified by the letter
“P” in the part number, OTP parts are a good compromise between
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ROM and flash parts. OTPs are shipped blank, and can be pro-
grammed at any time. They are typically more expensive than ROM.
They also require programming, which can be a hindrance in high-
volume manufacturing environments. However, OTPs are ideal for
low and medium volume applications, and can be a useful intermedi-
ate step when you are still uncertain about the stability of the design.

EPROM

TI offers windowed EPROM versions of several devices, intended for
use in development. They are identified by the letter “E” in the part
number. These devices are electrically programmable, and UV-eras-
able. EPROM devices are only available for a few devices, and
typically cost on the order of $50 each. They are not intended for
production use, but make ideal platforms for emulating ROM devices
in development.

Flash

Flash devices, identified by the letter “F” in the part number, have
become very popular in the past few years. They are more expensive,
but code space can be erased and reprogrammed, thousands of times if
necessary. This capability allows for features such as downloadable
firmware, and lets the developer substitute code space for an external
EEPROM. Chapter 10 is dedicated to flash memory reprogramming.
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The ’430 offers numerous interrupt sources, both external and internal.
Interrupts are prioritized, with the reset interrupt having the highest priority.
This chapter covers the reset sources and conditions in detail, and describes
the MSP430 interrupt functionality.

Reset Sources

The ’430 uses two separate reset signals, one for hardware and one for soft-
ware. The hardware reset, which is identified in the literature as POR (power
on reset), is generated on initial powerup and when the reset line (RST/NMI)
is pulled low. The software reset, identified as PUC (power up clear) is
generated by the following conditions:

■ Watchdog timer expiration (see Chapter 4).

■ Security Key violations, either in the Watchdog timer or Flash
memory.

■ POR (either powerup or low reset line).

PUC can be forced from software by purposely writing security violations
in either the Watchdog or Flash, or by neglecting to “pet the dog”, thereby
allowing Watchdog expiration.

The resets are seemingly harmless, but can be the source of unexpected
trouble. Some things to watch out for:
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■ POR always calls the reset interrupt vector at 0FFFEh. PUC, how-
ever, can call the reset interrupt, or the interrupt vector of the
subsystem that generated it (Flash, Watchdog, etc), which is typically
at 0FFFCh. Even worse, this behavior changes from one device to
another. Consult the data sheet of the specific device you are using,
and be prepared to code around some difficulties.

■ Make sure the power at the RST/NMI pin is well filtered. It has been
my experience that these devices have pretty poor noise susceptibility
characteristics. Transients on the RST/NMI pin can cause unwanted
resets.

■ Troubleshooting an unexpected reset can be tricky. If your system
begins skipping to the reset vector periodically (or, even worse,
aperiodically), try to eliminate the hardware first. Your best friend in
this situation is a good digital oscilloscope. If the RST/NMI pin is
clean, look at some of the other system signals before going into the
software. I once worked on a device which would regularly fail tran-
sient testing, regardless of buffering on the reset pin. It turned out
that the critical path for the transient was through the crystal oscilla-
tor inputs. In my experience, the vast majority of unexpected resets
are caused by hardware issues of one nature or another.

■ Once you have eliminated hardware, check your timing. Does the
software “pet the dog” often enough?  If the Watchdog is reset in a
main loop, and the system runs too many interrupts, it might or
might not make it back from all those ISRs in time to pet the dog
again.

■ Are you writing to Flash or the Watchdog in code?  Did you intend to?

Reset Condition

Upon a reset signal (POR), the Status Register is reset, and the address in
location 0FFFEh is loaded into the Status Register. Peripheral registers all
enter their powerup state, which are described later in this book, with the
peripheral register descriptions themselves.
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The PUC is not as simple. The Status Register is still reset, but the Pro-
gram Counter is loaded with either the reset vector (0FFFEh), or the PUC
source interrupt vector, depending on the source and the device. Dig into the
datasheet for specific details. Some peripheral registers are reset by PUC, and
some are not. These are also described with the peripheral register descriptions.

One of the common problems found in this level of development is that
of branched initialization. Put simply, some applications require different
setup to be performed the first time the design is powered up than on subse-
quent powerup cycles. With flash devices, the solution is simple: select a
predefined location (usually in information memory), and clear it to 0x00
after first initialization. On any reset, that location can be checked. If it is
zero, branch to the subsequent initialization routine, rather than the first
initialization routine. As long as you are careful not to overwrite this loca-
tion later, this works just fine.

In non-flash devices, some applications do the same thing (although not
very reliably) with a RAM location. This works as long as there is sufficient
capacitance on the supply pin, and outages are short enough. These devices
hold RAM with a trickle of current. There are two problems with this. First,
the “enough” described above can be remarkably difficult to predict. Second,
too much capacitance on the supply line increases the chances of brownout
(see Chapter 7). If your application requires reliable branched initialization,
it is probably worth using a flash device, even if just for that.

Interrupts

The ’430 offers quite a few interrupt sources. All maskable interrupts are
turned off by resetting of the GIE (Global Interrupt Enable) flag in the
Status Register. Each maskable interrupt also has an individual enable/disable
flag, located in peripheral registers or the individual module.

When an interrupt occurs, the program counter of the next instruction
and the status register are pushed to the stack. The SR is then cleared, along
with the appropriate interrupt flags if the interrupt is single source. One of
the important effects of the SR clearing is the disabling of interrupts, via the
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Interrupt Occurs

Current Instruction
Completed

push PC+2

push SR

GIE, CPUOff,
OSCOff, SCG1,
C,N,V and Z are

reset.

Interrupt vector of
the highest priority
activated interrupt

loaded to PC

User defined ISR pop SR

pop PC

Return to program
flow

These two steps are carried
out automatically as parts 
of the reti instruction, at
the end of the ISR

Appropriate
interrupt flag reset

(single source
flags only)

reset of the GIE flag. Commonly described as non-reentrant (or non-preemp-

tive) interrupts, the effect of this is that interrupts service routines will not

be called from other interrupt service routines unless the GIE bit has been

toggled manually. Multiple (peripheral) source flags must be reset manually

by the programmer. This functionality is charted in Figure 3.1.

Return to program flow is accomplished by the reti instruction. Reti
automatically pops the status register and program counter. If your code
jumps to a common point, rather than using the reti instruction, you need to
account for these extra items on the stack.

Figure 3.1:
Interrupt Processing
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Table 3.1:  Interrupt Vectors

Vector Priority ’11xx and ’13x and ’3xx ’4xx
Address  ’12xx ’14x

0xFFE0 Lowest Unused Unused Port 0 Basic Timer

0xFFE2 1 Unused Port 2 Basic Timer Port 2

0xFFE4 2 Port 1 USART1 Tx Port 1 USART1 Tx
(’44x only)

0xFFE6 3 Port 2 USART1 Rx Port 2 USART1 Rx
(’44x only)

0xFFE8 4 Unused Port 1 Timer/Port Port 1
(’32x and ’33x)

0xFFEA 5 ADC10 Timer_A ADC Timer_A
(’32x and ’33x)/

Timer/Port (’31x)
0xFFEC 6 USART0 Tx Timer_A USART Tx Timer_A

(’12xx only)
0xFFEE 7 USART0 Rx ADC USART Rx ADC  (’43x

(’12xx only) and ’44x only)
0xFFF0 8 Timer_A USART0 Tx Timer_A USART0 Tx

(’43x and ’44x
only)

0xFFF2 9 Timer_A USART Rx Timer_A USART0 Rx
(’43x and ’44x

only)
0xFFF4 10 Watchdog Timer Watchdog Timer Watchdog Timer Watchdog Timer
0xFFF6 11 Comparator Comparator Unused Comparator
0xFFF8 12 Unused Timer_B Dedicated I/O Timer_B

(’43x and ’44x
only)

0xFFFA 13 Unused Timer_B Dedicated I/O Timer_B
 (’43x and ’44x

only)
0xFFFC 14 Oscillator/Flash/ Oscillator/Flash/ Oscillator/Flash/ Oscillator/Flash/

NMI NMI NMI NMI
0xFFFE Highest Hard Hard Hard Hard

Reset/Watchdog Reset/Watchdog Reset/Watchdog Reset/Watchdog

Some notes on interrupt sources and vectors:

• The two hardware-dedicated interrupts (Oscillator/Flash and the
Hard Reset) vector locations 0xFFFC and 0xFFFE) are non-
maskable. All other interrupts are maskable.
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• Interrupt Flags may be located in peripheral modules. Consult
device data sheets for details.

Many interrupts have multiple flags. Consult device data sheets for
details.

Use of Interrupts

Interrupts are the best way to control program flow based on events. Unfor-
tunately, they are also the best way to lose program flow control, based on
events. Some guidelines and suggestions for most effective use of interrupts
are:

■ Always use the reti instruction. If the code manually re-enables
interrupts and performs a jump or branch to a common location, the
stack will eventually overfill RAM space.

■ Make sure all unused interrupts are disabled.

■ Generally speaking, your code should not need to manually tinker
with the GIE bit via the EINT and DINT instructions. However, do
not hesitate to turn interrupts on and off individually. Only keep the
locally necessary interrupts enabled at each state of the controller
code (e.g. only have the USART interrupts enabled while transmit-
ting or receiving data).

■ Plan for the unplanned. Send disabled, and even nonexistent, inter-
rupts to an “Invalid Interrupt” label, with some code to track the
interrupt, and a reti instruction. Theoretically, if you followed the
previous suggestion, this shouldn’t matter that much. Out here in the
real world, though, it quite often does. We are all human, and some-
times we humans program incorrect constants into peripheral control
registers or interrupt enable flags. If the code tracks and reports which
interrupt was triggered, finding the source of the bug can often be done in
minutes. If the code doesn’t take this into account, the program counter
will simply go wandering off the reservation, and your debugging time
could stretch into days. This step is almost free, in terms of time and
space to program, but it makes your code significantly more robust.
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■ Another way to handle the unexpected source interrupt is to put only
a reti instruction at the Invalid Interrupt label. I recommend against
this approach, as it masks the problem, rather than fixing it.

■ Be consistent. I begin every new project with the same interrupt
vector tables, and modify them as needed. Example 3.1 is my assem-
bly language interrupt vector table for the ’11xx family. You might
note that even interrupts which are completely undefined by the
architecture vector to the Invalid_Interrupt label. There is really no
good reason not to take this precautionary step.

■ Interrupt handling in C is a bit different. Simply write the ISR
(interrupt service routine), and any C compiler worth the CD it is
distributed on will handle the vectoring, pushing and popping of
CPU registers it uses, and the return instruction.  I still use a standard
template for interrupts (Example 3.2). A few interesting notes on this
example:

• There is no interrupt routine for the POR (0FFFEh). The com-
piler should handle this automatically, and vector to your main().

• All of the interrupt routines consist of an infinite, do-nothing
loop. Remember, this is simply a starting point. I will typically
write new routines for the interrupts I am using, and leave the
endless loop in the others. That way, when I am testing code with
an emulator or JTAG debugger, unexpected interrupts become
very easy to identify. After the code is performing as expected, I
change those eternal loops to something more structured and
sensible.

• The interrupt function structure in this example is for the IAR
tools that I use. It can vary from one compiler to the next.
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Example 3.1: Assembly Language Interrupt Vector Table (’11xx Family)

ORG 0FFE0h
DW Invalid_Interrupt

ORG 0FFE2h
DW Invalid_Interrupt

ORG 0FFE4h
DW Port1_Interrupt

ORG 0FFE6h
DW Port2_Interrupt

ORG 0FFE8h
DW Invalid_Interrupt

ORG 0FFEAh
DW ADC_Interrupt

ORG 0FFECh
DW Invalid_Interrupt

ORG 0FFEEh
DW Invalid_Interrupt

ORG 0FFF0h
DW Timer_A_Hi_Interrupt

ORG 0FFF2h
DW Timer_A_Lo_Interrupt

ORG 0FFF4h
DW Watchdog_Timer_Interrupt
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ORG 0FFF6h
DW Comparator_Interrupt

ORG 0FFF8h
DW Invalid_Interrupt

ORG 0FFFAh
DW Invalid_Interrupt

ORG 0FFFCh
DW Fault_Interrupt

ORG 0FFFEh
DW Power_Up_Reset

Example 3.2: C Language Interrupt Handler Function Template
(’14x Family)

interrupt [0x02] void dummy_Port2_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x04] void dummy_USART1tx_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x06] void dummy_USART1rx_Interrupt(void)
  {
  while (1)
    {}
  }
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interrupt [0x08] void dummy_Port1_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x0A] void dummy_TimerAH_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x0C] void dummy_TimerAL_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x0E] void dummy_ADC_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x10] void dummy_USART0tx_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x12] void dummy_USART0rx_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x14] void dummy_WDT_Interrupt(void)
  {
  while (1)
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    {}
  }
interrupt [0x16] void dummy_ComparatorA_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x18] void dummy_TimerBH_Interrupt(void)
  {
  while (1)
    {}
  }
interrupt [0x1A] void dummy_TimerBL_Interrupt (void)
 {
 while (1)
    {}
 }
interrupt [0x1C] void dummy_NMI_Oscillator_Interrupt(void)
  {
  while (1)
    {}
  }

Guidelines for Interrupt Service Routines

There is really one critical guideline for writing an ISR: KEEP IT SHORT!!!!
Overly lengthy ISRs can create a myriad of problems, especially if the routine
is intended to be reentrant. If the ISR requires 100 ms to process, and the
interrupts are coming every 90 ms, the stack will overflow, and your design
will crash, probably quite spectacularly.

My personal rule of thumb is that all ISRs are too long. I am constantly
trying to shorten them up. One common practice is to set software flags
within the ISR, then return. You can then perform processing in your main
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function based on those flags. Also remember that any CPU register used in
the ISR first needs to be pushed to the stack, which increases your likelihood
of overflow.

Common Sources of Error

Stack Overflow  You have probably noticed by now that this book keeps
issuing warnings about this. This is because this type of error once burned
me. The device in question had a particularly critical value stored near the
end of useable RAM, and interrupts that tended to come in groups. (Know-
ing these interrupts would be coming closely together, I set the GIE bit at the
beginning of each ISR, in a vain attempt to make my ISRs reentrant. That
was another mistake.)  There would be a string of interrupts which would
produce multiple push operations, which would fill the stack to the point
where my critical value had been overwritten, and then pop the stack pointer
back to its original location. Debugging required several days. The overflow
was a result of ISRs which were too long, a questionable decision about
interrupt re-enables, and poor RAM management.

Race Condition  Race conditions occur when two interrupts occur very
close to each other, and both access the same global variable. Observe Example
3.3, in which timer A is configured to periodically read and accumulate the
value from port 3 in the variable foo. An external interrupt on port 1 outputs
the value on port 2. This example may produce non-repeatable results when
these two interrupts occur very close to each other in time. The problem is
further compounded if foo is accessed elsewhere in the code.

Example 3.3: Race Condition Example

unsigned int foo=0;
:
:

interrupt [0x08] void Port1_Interrupt(void)
  {
  P2OUT=foo;
  }
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interrupt [0x0A] void TimerAH_Interrupt(void)
  {
  foo=foo + P3IN;
  }

Boundary Conditions. Boundary conditions are similar to race conditions,
and often occur as a result of a race. While not limited to interrupt process-
ing, they most often are a result of a poorly timed interrupt.

An example of this is found in a real time clock application. Time is very
often represented as the number of seconds since a predefined standard. Use
of a 32-bit value will allow for about 136 years before overflow. In the ’430,
that value is stored in two 16-bit locations (either in RAM or registers).
When a second expires, the low word is incremented. If the low word over-
flows, the high word is incremented. Between those two increment events,
an interrupt can occur. If that interrupt uses the time value, the value that it
uses will be off by an order of 216 .

Boundary conditions like this are very rare, but that works against the
developer. A bug like this will almost never manifest itself on the bench.
More often, it will occur after your design has been sold to the customer. A
simple approach can prevent this from occurring. If your ISRs only set flags,
and the main program loop then processes based on those flags, boundary
conditions are avoidable.

Interrupts vs. Polling

The most common alternative to interrupts for event-based control is poll-
ing, which is the process of manually checking values for changes on a
repetitive basis, as a part of the main program loop. In college, and early in
my career, I learned the two fundamental guidelines for deciding if a given
trigger should be polled, or wired as an interrupt. They are:

1. Polling is evil. It is inefficient, and very software intensive. Polling
will turn your otherwise short main loop into a lengthy, time consum-
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[This is a blank page.]

ing one, creating unacceptable system latencies. Interrupts are a
better approach.

2. Interrupts are evil. They cause conflicts, require careful stack manage-
ment, create a host of debugging problems, and always seem to false at
the worst possible time. Polling is a better approach.

Obviously, these rules leave a bit to be desired. However, I have heard
experienced firmware developers spout each of these opinions as gospel. Both
viewpoints make valid arguments.

In my experience the truth lies somewhere in between the two. As in
most everything in life, the key to success is balance. Some more useful rules
of thumb:

• Use some common sense about the source. Port interrupts lend
themselves to polling, while the timers should use interrupts.

• Maintain balance. Most applications I have written use interrupts
for the two or three events with the strictest latency require-
ments, and poll the remaining few event sources.

• Look for conflicts. Many of the error conditions described in this
chapter can be avoided with a smart mix of polling and interrupts.

• Understand the timing of the system. Perform worst-case analysis
on latency of polled events, and determine if the worst case is
adequate. Don’t forget to consider the time required for any
interrupts which may occur between polled events.
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System timing is among the most fundamentally critical areas of embedded
design. On most of the systems I have worked on or observed, a significant
portion of the debugging time has been dedicated to chasing problems result-
ing from incorrect or inaccurate clocking. Great care should be expended in
timing design, both in hardware and software.

The MSP430 offers multiple clock sources and uses. This chapter is
divided into three sections, which discuss clock sources, control, and use.
Clock implementations vary significantly among the three device families,
so the descriptions in this chapter are categorized with that in mind.

Clock Sources

The ’430 devices allow for several different, flexible sources of clock. This
area is another prime example of TI’s philosophy of giving the developer
enough rope to hang themselves. Larger devices offer two independent
crystal inputs, along with an internally generated, variable frequency oscilla-
tor, that can be divided (or not), and mapped to any of three different
internal clocks. The CPU and on-board peripherals can select any of the
clocks, and all of the clock signals can be brought out via function pins.

On system reset, the device comes up running off the DCO, at the nomi-
nal frequency defined in the device datasheet, with the DCOR bit cleared.
This condition also occurs if either the crystal oscillator or high-frequency
oscillator is selected as the master clock, or an oscillator fault occurs. This
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allows the oscillator fault ISR to be processed and, if the system is designed
properly, the condition to be diagnosed.

Crystal Oscillator

The crystal oscillator circuit is designed for use with standard 32.768 kHz
watch crystals. Depending on the crystal selected, external capacitors may be
required. The XIN and XOUT pins have some internal capacitance, which
varies by device. Consult the device and crystal datasheets to determine if
additional capacitance is required.

■ ’1xx Series Crystal Oscillator:

In the ’1xx series, the external crystal oscillator produces an internal
signal identified by LFXT1CLK. It can be configured in either low-speed
mode (32.768 kHz), or with a high-speed crystal, which can typically be up
to 8 MHz in frequency. Crystal frequency range is selected with the XTS bit.
The oscillator is enabled by a collection of processor bits. The logic for the
enable is shown in Figure 4.1.

Figure 4.1: MSP430x1xx Crystal Oscillator
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An oscillator fault occurs when no cycles occur for a nominal time period
(typically about 50 microseconds – as always, consult your datasheet). When
this occurs, the NMI/Oscillator Fault interrupt is called. The MCLK is
switched to the nominal DCO value, if it was running from LFXT1CLK. It is
important to remember that the fault detection circuitry only operates when
the crystal oscillator is in high-frequency mode (i.e. XTS=1). Faults occur-
ring when operating in the 32.768 kHz range will go undetected.

■ ’3xx Series Crystal Oscillator

The ’3xx series has a very simple crystal oscillator circuit (see Figure 4.2).
It produces a single internal signal, ACLK. There is no fault detection, and a
single enable bit in the status register, OscOff. The ’3xx series crystal oscilla-
tor has no high speed mode, only supports 32.768 kHz crystals.

Figure 4.2:
MSP430x3xx Crystal

Oscillator

■ ’4xx Series Crystal Oscillator

The ’4xx series crystal oscillator supports both high-speed (XTS_FLL=1)
and low-speed (XTS_FLL=0) crystals.

Figure 4.3:
MSP430x4xx Crystal

Oscillator
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Digitally Controlled Oscillator (DCO)

The DCO is a built-in RC-type oscillator, with a wide, software-controllable
frequency range.  Clock precision is achieved through use of the Frequency
Locked Loop, which is detailed in this section.

■ Frequency Locked Loop (FLL) Operation

’3xx and ’4xx devices offer Frequency Locked Loop, which modulates the
DCO frequency, allowing for greater precision and control. It operates by
mixing the programmed DCO frequency with the next highest DCO fre-
quency. Each 32 clock cycles are divided into (32-n) cycles at fDCO and n
cycles at fDCO+1, where n is a 5-bit value stored in control registers (we will
describe the control registers shortly, as they vary by family). There are 29
unique values for n, as the values 28, 29, 30, and 31 produce identical
modulation.

Figure 4.4: Frequency Locked Loop Block Diagram
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While this approach is accurate for longer time periods (>> 32 clock
cycles), it is inaccurate for shorter timing measurements. The fDCO and fDCO+1

frequencies are distributed roughly equally through the cycle of 32 clocks,
which helps this inaccuracy slightly, but this is something the developer
needs to be wary of. This inaccuracy is more pronounced when there is a
larger discrepancy between fDCO and fDCO+1 frequencies (e.g. when there are 31
steps at one frequency, and a single step at the other) than when they are
evenly balanced (e.g. 16 steps at each frequency).

The solution I have used to handle this inaccuracy is simple:  use a crystal
to meet short period precision timing requirements. Both the DCO and
crystals suffer from error due to aging and temperature. I have found that
crystal inaccuracies are usually more predictable than those introduced by
the DCO, since they do not add the unpredictability of guessing where in the
fDCO/fDCO+1 cycle the timing process began.

■ ’1xx Series DCO

The ’1xx series features a DCO which generates an internal signal identi-
fied as DCOCLK, that can be programmed either internally or externally.
External programming is selected by setting the DCOR bit, and controlled
via a resistor connected to the ROSC and VCC pins. When the DCOR bit is
cleared, the DCO frequency is controlled internally.

The ’1xx family does not have the full FLL functionality. It does, how-
ever, offer the frequency modulation method described above.

The DCO control bits are:

• RSEL2, RSEL1, and RSEL0. These bits select the frequency range
of the DCO.

• DCO2, DCO1, and DCO0. These bits set the fundamental fre-
quency of the DCO, within the range defined by the RSEL bits.

• MOD4 through MOD0. These are the modulation bits, whose
function is described above (FLL Operation).
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• Control Bits. See Figure 4.5 for the logical function of various
CPU flags in enabling and controlling the DCO.

Specific frequency ranges and values vary by device, and are described in
the datasheet for the part you are using.

Figure 4.5: ’1xx Series Digitally Controlled Oscillator
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accordingly. The developer simply needs to control the value N in order to
change clock frequency.

■ ’4xx Series DCO

The ’4xx series DCO is nearly identical in function and structure to the
DCO in the ’3xx series. The DCO generates a signal identified as fDCOCLK,
which is set equal to ACLK x D x (N+1). Unlike the ’3xx, there is a second
multiplier, D, which is located in the two MSBs of SCFI0. D is further
controlled by the DCO+ bit. Clearing the DCO+ bit removes D from the
calculation of fDCOCLK. On reset, D=2, but DCO+ is cleared, giving an effec-
tive multiplier of 32.

High-frequency Oscillator

Some of the ’1xx series devices allow for operation from two completely
independent crystals. The low-frequency crystal input, described above, is
designed around 32.768 kHz crystals. The second input, identified as XT2, is
designed for use with higher-frequency crystals. The XT2 oscillator behaves
identically to the LFXT oscillator in high-frequency mode. It is enabled and
disabled using the XT2Off bit, which is generated as shown in Figure 4.6.

Figure 4.6: High-frequency Oscillator
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Clock Controls

’1xx Series Clock Controls

’1xx series devices are controlled by the Basic Clock Module (BCM). The
DCO, low-frequency oscillator, and high-frequency oscillator (if available)
all act as inputs to the BCM. The BCM controls these sources, divides them
down to a lower frequency if desired, and routes them to three available
system clock sources:

■ MCLK, the Main System Clock. The MCLK can be sourced by any of
the three clock sources.

■ SMCLK, the Sub-System Clock, or Sub-Main Clock. SMCLK is
sourced by either the DCO or the XT2 inputs.

■ ACLK, the Auxiliary clock. ACLK is always sourced by the
LFXT1CLK source.

Figure 4.7: ’1xx Clock Control
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The BCM is configured using three byte-addressable registers, all of
which are fully software controllable. Their pertinent details are:

• DCOCTL, the DCO control register.
Address:  0x0056h
Structure:

Bit

Reset Value

DCO.2

0

DCO.1

1

DCO.0

1

MOD.4

0

MOD.3

0

MOD.2

0

MOD.1

0

MOD.0

0

DCO (3 MSBs) : Defines the base DCO frequency.
MOD (5 LSBs) : Defines the number of ticks in the N,N+1

  modulation.

• BCSCTL1, Oscillator control register #1.
Address:  0x0057h
Structure:

Bit

Reset Value

XT2Off

1

XTS

0

DIVA.1

0

DIVA.0

0

Res*

0

RSEL.2

1

RSEL.1

0

RSEL.0

0

*Reserved bit. Do not set this bit.

XT2Off (MSB) : Enables/disables the XT2 Oscillator
XT2Off=0: XT2 is on
XT2Off=1: XT2 is off

XTS : Selects the operating mode for LFXT1 oscillator
XTS=0: Low-Frequency Mode
XTS=1: High-Frequency Mode

DIVA : Selects the divider state for ACLK. ACLK is
  divided by:

DIVA=0: 1
DIVA=1: 2
DIVA=2: 4
DIVA=3: 8

RSEL(3 LSBs) : Selects one of the eight discrete steps for the
  DCO.
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• BCSCTL2, Oscillator control register #2.
Address:  0x0058h
Structure:

Bit

Reset Value

SELM.1

0

SELM.2

0

DIVM.1

0

DIVM.0

0

SELS

0

DIVS.1

0

DIVS.0

0

DCOR

0

SELM (3 MSBs) : Selects the source for MCLK
SELM=0 or 1: MCLK is sourced by the

DCOCLK
SELM=2: MCLK is sourced by XT2

(if available)
MCLK is sourced by
LFXT1CLK (if no XT2)

SELM=3: MCLK is sourced by
LFXT1CLK
DIVM : Selects the divider state for MCLK. MCLK is

  divided by:
DIVM=0: 1
DIVM=1: 2
DIVM=2: 4
DIVM=3: 8

SELS : Selects the source for SMCLK
SELS=0: SMCLK is sourced by the

DCOCLK
SELS=1: SMCLK is sourced by

XT2 (if available)
SMCLK is sourced by
LFXT1CLK (if no XT2)

DIVS : Selects the divider state for SMCLK. SMCLK
  is divided by:

DIVS=0: 1
DIVS=1: 2
DIVS=2: 4
DIVS=3: 8
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DCOR (LSB) :  Selects the source for the DCO
DCOR=0: Internal DCO resistor is

activated
DCOR=1: External Resistor Required

’3xx Series Clock Controls

The ’3xx series controls clock signals with two sets of registers. The first set
of registers, consisting of BTCTL, BTCNT1 and BTCNT2, control the Basic
Timer, which produces low-frequency signals for use by peripheral modules.
The second set, which includes SCFQCTL, SCFI0, SCFI1, and CBCTL, are
general-purpose controls, which configure system clocks. The details of these
registers:

• BTCTL, Basic Timer Control Register.
Address:  0x0040h
Structure:

Bit

Reset Value

SSEL

0

HOLD

0

DIV

0

FRFQ.1

0

FRFQ.0

0

IP.2

0

IP.1

0

IP.0

0

SSEL(MSB) and DIV : Selects the source for BTCNT2
SSEL,DIV=00: ACLK is selected
SSEL,DIV=01: ACLK/256 is

selected
SSEL,DIV=10: MCLK is selected
SSEL,DIV=11: ACLK/256 is

selected
HOLD : Stops the counter operation

BTCNT1 is held if HOLD and DIV are set.
BTCNT2 is held if HOLD is set

FRFQ : Selects the LCD frequency

The LCD frequency is ACLK divided by
32*(1+FRFQ)
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IP : Selects the divider value for the interrupt
  interval timer. This sets the frequency of
  periodically generated interrupts by the
  Basic Timer:

The pre-divided ACLK/MCLK (depending
on SSEL, DIV) are divided by
2^(IP+1). There is a single exception:
for the value IP=001, the clock is
divided by 2 (instead of 4, as the above
equation would indicate).

• BTCNT1, Basic Timer Counter 1.
Address:  0x0046h
Structure:

Bit

Reset Value

CNT1.7

0

CNT1.6

0

CNT1.5

0

CNT1.4

0

CNT1.3

0

CNT1.2

0

CNT1.1

0

CNT1.0

0

BTCNT1 divides ACLK by the value in CNT1, for use in peripheral
modules.

• BTCNT2, Basic Timer Counter 2.
Address:  0x0047h
Structure:

Bit

Reset Value

CNT2.7

0

CNT2.6

0

CNT2.5

0

CNT2.4

0

CNT2.3

0

CNT2.2

0

CNT2.1

0

CNT2.0

0

BTCNT2 divides the input clock, which is selected by SSEL and DIV
(in BTCTL), by the value in CNT2, for use in peripheral modules.
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• SCFQCTL, System Clock Control.
Address:  0x0052h
Structure:

Bit

Reset Value

M

0

SCF.6

0

SCF.5

0

SCF.4

1

SCF.3

1

SCF.2

1

SCF.1

1

SCF.0

1

M: The modulation bit. If set, adjacent DCO taps are not mixed
(i.e., the system frequency is set at a single DCO tap level).

SCF: System clock multiplier. The system clock is equal to the
crystal frequency multiplied by (SCF+1).

• SCFI0, System Clock Integrator Control.
Address:  0x0050h
Structure:

Bit

Reset Value

<res>

0

<res>

0

<res>

0

FN.4

0

FN.3

0

FN.2

0

INT.1

0

INT.0

0

<res>: Reserved (unused) bits. Read-only
FN.4-FN.2: DCO Frequency range select.

FN=000 MCLK=fnominal

FN=001 MCLK=2xfnominal

FN=01x MCLK=3xfnominal

FN=1xx MCLK=4xfnominal

INT.1-INT.0: This 10-bit value, representing the integrator value,
is contained in this register, and SCFI1. INT.1 and
INT.0 are the two LSBs.
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• SCFI1, System Clock Integrator Control.
Address:  0x0051h
Structure:

Bit

Reset Value

INT.9

0

INT.8

0

INT.7

0

INT.6

0

INT.5

0

INT.4

0

INT.3

0

INT.2

0

INT.9-INT.2: This 10-bit value, representing the integrator value,
is contained in this register and SCFI0. INT.9 through
INT.2 are the eight MSBs.

• CBCTL, Crystal Buffer Control.
Address:  0x0053h
Structure:

Bit

Reset Value

<res>

0

<res>

0

<res>

0

<res>

0

<res>

0

CBSEL.1

0

CBSEL.0

0

CBE

0

<res>: Reserved (unused) bits. Read-only.
CBSEL: Selects the XBUF frequency

CBSEL=00: ACLK
CBSEL=01: ACLK/2
CBSEL=10: ACLK/4
CBSEL=11: MCLK

CBE: Crystal Buffer Enable
CBE=0: Crystal Buffer Disabled
CBE=1: Crystal Buffer Enabled

’4xx Series Clock Controls

The ’4xx series clock controls are very similar to those of the ’3xx series. The
Basic Timer registers, BTCTL, BTCNT1 and BTCNT2, are identical to
those of the ’3xx, as are SCFQCTL, SCFI0, and SCFI1. CBCTL, however, is
not implemented in these devices. Rather, it is replaced by two FLL and
control registers, FLL+CTL0 and FLL+CTL1. Their details:
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• FLL+CTL0, FLL/Control 0.
Address:  0x0053h
Structure:

Bit

Reset Value

DCO+

0

XTS_FLL

0

OscCap.1

0

OscCap.2

0

XT2OF

0

XT1OF

0

LFOF

1

DCOF

1

DCO+: If set, the DCO output is divided, based on FLL_DIV,
before sourcing MCLK or SMCLK.

CBE: Set this bit when using a high-frequency crystal for
LFXT1.
Clear this bit when using a 32.768 kHz crystal.

OscCap: Internal load capacitance of crystal oscillator.
OscCap=00: Negligible Internal Load Capacitance
OscCap=01: 10 pF (on each crystal pin).
OscCap=10: 14 pF (on each crystal pin).
OscCap=11: 18 pF (on each crystal pin).

XT2OF, XT1OF, LFOF, DCOF:
These read-only flags are used in determination of
oscillator fault condition. Do NOT attempt to write
these pins.

• FLL+CTL1, FLL/Control 1.
Address:  0x0054h
Structure:

Bit

Reset Value

<res>

0

SMCLK 
Off

0

XT2Off

0

SELM

0

SELM

0

SELS

0

FLL_DIV 
.1

0

FLL_DIV 
.0

0

<res>: Reserved (unused) bits. Read-only.
SMCLK_Off: When set, the SMCLK is disabled.
XT2Off: When cleared, the XT2 is disabled.
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SELM: Selects the source for MCLK.
SELM=00: DCOCLK sources MCLK
SELM=01: DCOCLK sources MCLK
SELM=10: XT2CLK sources MCLK
SELM=11: LFXT1CLK/ACLK sources MCLK

SELS: Selects the source for SMCLK.
SELS=0: DCOCLK sources SMCLK
SELS=1: XT2CLK sources SMCLK

FLL_DIV: Select the divider value for ACLK.
FLL_DIV=00: ACLK is passed undivided
FLL_DIV=01: ACLK is divided by 2
FLL_DIV=10: ACLK is divided by 4
FLL_DIV=11: ACLK is divided by 8

Clock Uses

CPU Clock

The most basic use of clock is to drive the CPU. Configuration of the CPU
clock is described in the sections above, and is typically among the first of
the housekeeping items performed on reset. The MSP430 allows for
reconfiguration of CPU clock at any time, so the developer may accelerate
instruction speed for time-critical operations and slow it down to preserve
power. Additionally, the CPU clock can be completely disabled, with only
peripheral devices operating. This is detailed in Chapter 12, Low Power
Design Guidelines.

The relationship between clock speed and instruction speed is a tricky
one with this CPU. Instructions can require from one to six clock cycles to
process, depending on the instruction itself and the addressing mode. In time
critical situations, it is often necessary to manually count cycles. This prac-
tice is straightforward enough when the source code is developed in assembly.
When source is developed in a compiled language (such as C or FORTH),
you will need to generate and examine the disassembled code.
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For non-time-critical situations, it is still necessary to know your instruc-
tion speed, at least approximately. The general rule of thumb upon which I
rely is that for most code, the instruction speed is about one-third of the
CPU clock speed. I have found this generalization to be pretty good, typically
within about 20%. Smaller systems sometimes provide an exception to this
rule, however. When there are very few system variables, it is common to use
register mode instructions almost exclusively, and the instruction speed
becomes considerably faster than the 1/3rd approximation.

Watchdog Timer

The Watchdog Timer is designed primarily as an error recovery mechanism.
It is an independent counter, which, upon overflow, issues an interrupt
request. The idea is that, if the software has a problem which causes it to
hang, seize, or “wander off the reservation,” the watchdog timer will expire
and reset the controller. Normally operating code will include periodic reset
of the watchdog timer, to prevent this reset when no error condition occurs.
This reset is commonly referred to as “petting the dog,” or “kicking the dog,”
depending on the proclivities of the individual describing the process.

The ’430 watchdog timer counter is identified here and in the TI litera-
ture as WDTCNT. This counter is not accessible by the user. All control of
the WDT is performed through the Watchdog Timer Control Register,
WDTCTL. WDTCTL is a 16-bit register, functionally split in half. The eight
LSBs are described below. The eight MSBs perform a password function. When
read, these will always return a value of 0x69h. When writing to WDTCTL,
the software must place the value 0x5A into the top half of WDTCTL. Any
other value written to that sub-register will cause a system reset. This is actu-
ally a very useful feature, as it provides the developer a method to force a PUC
from software. I have used this feature in fault-recovery routines more than once.

The watchdog timer operates in one of two modes. The first, interval
timer mode, is selected when TMSEL=1. In this mode, the watchdog timer
generates a “standard” interrupt (i.e., no PUC) upon WDTCNT overflow.
The interrupt can be forced by writing a 1 to CNTCL in this mode. I tend to
use this mode in most designs, by writing the ISR so that some important
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values, such as the processor registers and the top 4 or 5 values in the stack,
are written to a pre-defined block in information memory, so they can be
retrieved later. I will then change the watchdog mode, and force the hard
reset. Doing this provides some extra insight into the state of the processor
when the timer expired, since the stack contains the value that was in the
PC when the ISR was called. (While the PUC itself does not erase all of
these useful values, your startup routine often will.)  This little bit of extra
code has paid huge dividends when debugging on more than one occasion.

The second mode (TMSEL=0) is the true watchdog timer mode. When
the WDTCNT overflows, a PUC is issued. In both modes, the code should
periodically pet the dog with the command MOV #05A0Ah,&WDTCTL (in
assembly language), or WDTCTL=0x05A5; (in C).

• WDTCTL, Watchdog Timer Control.
Address:  0x0120h
Bit 3 is write-only. All other bits are readable and writable.
Structure:

Bit

Reset Value

PWD.7

0

PWD.6

1

PWD.5

1

PWD.4

0

PWD.3

1

PWD.2

0

PWD.1

0

PWD.0

1

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

HOLD

0

NMIES

0

NMI

0

TMSEL

0

CNTCL

0

SSEL

0

IS.1

0

IS.0

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

PWD : Password Byte, as described above.

HOLD : When set, the WDT is halted

NMIES : Non-Maskable Interrupt Edge Select
  NMIES=0: If enabled, the NMI occurs on rising

clock edge
  NMIES=1: If enabled, the NMI occurs on falling

clock edge
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NMI : Function Select for the RST/NMI pin
  NMI=0:  RST/NMI performs reset functions
  NMI=1:  RST/NMI acts as a non-maskable interrupt

TMSEL : Watchdog Timer Mode Select
  TMSEL=0:  Watchdog mode is selected
  TMSEL=1:  Interval-timer mode is selected

CNTCL : Counter clear bit. Writing a 1 to this bit clears
  WDTCNT

SSEL : WDTCNT Source Select
  SSEL=0:  SMCLK sources WDTCNT
  SSEL=1:  ACLK sources WDTCNT

IS : Interval Select. This selects the value that the WDT
  count time is multiplied by.
  IS=00:  215

  IS=01:  213

  IS=10:  29

  IS=11:  26

Timer A

Timer A is a general purpose 16-bit counter and event timer, which is imple-
mented on all three families. It is a multi-mode timer with multiple independent
capture and compare registers. Timer A may be sourced by any internal
clock, and can generate interrupts.

Capture and Compare Units

The Timer A and Timer B units contain some number (typically three, five
or seven, depending on device) of independent capture and compare units.
They operate in one of two modes, as selected by the mode bit CAP in their
individual Cap/Com Control register, CCTLx.
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 In compare mode, the value to be compared to is loaded into the CCR
register. When the timer value is equal to the value in the CCR register, an
interrupt is generated. When using CCR0, the timer has a selectable mode in
which the timer register resets to zero after reaching the compare value.

One of the common applications of compare mode is the Pulse Width Modu-
lator (PWM). Description and implementation of the PWM is described in
Chapter 11. The important variable here is OMOD, which resides in the
Capture/Compare Control register (described below). This three-bit variable
controls the nature of the output pin signal for the Cap/Com unit. The
variable is described in the table below:

Table 4.1:
Compare Mode Output Signal Modes

OMOD Output Description

000 OUTx is defined by the OUTx bit in CCTLx

001 OUTx is set when Timer=CCRx, and remains set until timer is reset

010 OUTx is toggled when Timer=CCRx, and reset when Timer=CCR0

011 OUTx is set when Timer=CCRx, and reset when Timer=CCR0

100 OUTx is toggled when Timer=CCRx

101 OUTx is reset when Timer=CCRx

110 OUTx is toggled when Timer=CCRx, and set when Timer=CCR0

111 OUTx is reset when Timer=CCRx, and set when Timer=CCR0

Generally speaking, modes 2,3,6 and 7 are used for PWM implementa-
tion, modes 1 and 5 are used for single event generation, and mode 4 is used
to produce a signal that is ½ the frequency of the timer signal. I have never
found a nontrivial (i.e., reasonable) use for mode 0, and am interested to
hear from anyone who has.
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The capture mode is used to time events. The input signal is selected by
the CCIS variable in the CCTL register, with the capture edge selected by
the CAPM variable located in the same register. When the proper edge is
detected on the selected input line, the value in the Timer register is latched
into the CCR register, providing a time base for the event. The CCIS vari-
able can be set to supply or ground levels, so that software is able to generate
events as well. This is handy for measuring how long particular algorithms
require for processing.

The Capture/Compare registers are summarized later in this chapter.

Timer Operating Modes

■ Mode 0: (MC=00) Stop Mode.

The timer is stopped. The status of the timer, including the value in
TAR and all control registers and flags, remain preserved in this
mode.

■ Mode 1: (MC=01) Up Mode.

The timer counts up to the value in CCR0, and resets to zero.
TAIFG, the general Timer A interrupt flag, is set when TAR resets to
zero, if it has been enabled. CCIFG0, if enabled, is set one transition
earlier, when TAR reaches the value in CCR0.

■ Mode 2: (MC=10) Continuous Mode.

This mode is similar to mode 1, except the timer automatically runs
to 0xFFFF, or 65,535, and resets to zero.

■ Mode 3: (MC=011) Up-Down Mode.

The timer counts from 0 to 0xFFFF, and then counts back down to 0.
This is the only operating mode in which TAR decrements.
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Timer A Register Summaries
• TAR, Timer A Register

Address:  0x0170h
All bits are readable and writable. This register is the location of the
Timer A count.

• TACTL, Timer A Control Register.
Address:  0x0160h
All bits are readable and writable.
Structure:

Bit

Reset Value

Unused

0

Unused

0

Unused

0

Unused

0

Unused

0

Unused

0

SSEL1

0

SSEL0

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

ID1

0

ID0

0

MC1

0

MC0

0

Unused

0

CLR

0

TAIE

0

TAIFG

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

SSEL : Input Clock Select
  SSEL=00: Varies by device: See data sheet
  SSEL=01: ACLK
  SSEL=10: SMCLK
  SSEL=11: Varies by device: See data sheet

ID : Selects the value the input clock is divided by.
  ID=00: 1 (Input clock is passed directly to

timer)
  ID=01: 2
  ID=10: 4
  ID=11: 8

MC : Mode Control
  MC=00: Timer is stopped.
  MC=01: Timer counts up to CCR0 and restarts at 0.
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  MC=10: Timer counts up to 0xFFFFh and restarts
at 0.

   MC=11: Timer counts up to CCR0 and back
down to 0.

   CLR: Clear bit. Setting this bit clears the
timer and ID bits. The clear bit auto-
matically resets.

   TAIE: Timer A interrupt enable. If set, an
interrupt is generated on timer overflow.

   TAIFG: Timer A interrupt flag. This is set when
the timer resets to 0000h from any
other value.

• TACCTLx, Capture/Compare Control Registers.
Address:  Vary by Cap/Compare unit: See data sheet
Bits 9 and 3 are read-only. All other bits are readable and writable.
Structure:

Bit

Reset Value

CAPM.1

0

CAPM.0

0

CCIS.1

0

CCIS.0

0

SCS

0

SCCI

0

Unused

0

CAP

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

OMOD.2

0

OMOD.1

0

OMOD.0

0

CCIE

0

CCI

0

OUT

0

COV

0

CCIFG

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

CAPM : Capture Mode
  CAPM =00: Capture Mode Disabled
  CAPM =01: Capture on rising edge
  CAPM =10: Capture on falling edge
  CAPM =11: Capture on both edges
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CCIS : Input Select
   CCIS =00: CCIxA is selected
   CCIS =01: CCIxB is selected
   CCIS =10: GND is selected
   CCIS =11: Vcc is selected

SCS : Capture synchronization bit. If set, the capture is
  synchronized with the timer clock.

SCCI : This read-only bit reflects the latched input signal.
  This bit is not implemented on Timer B.

CAP : Mode select. When set, the module is in capture mode.
  When cleared, the module is in compare mode.

OMOD : Output Mode Select Bits (see previous descriptions)

CCIE : If set, capture/compare interrupt is enabled.

CCI : The selected input signal is readable by this bit.

OUT : This bit sets/clears the value of OUTx, when in
  output only mode.

COV : Capture Overflow Bit. This bit is set if a capture
  occurs when an unread capture value exists. This bit
  is unused in compare mode.

CCIFG : Capture/Compare interrupt flag. If CCIFG0, this flag
  is automatically reset. If any other CCIFG, this flag is
  reset when TAIV is read.
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• TAIV, Timer A Interrupt Vector Register.
Address:  0x012E
Structure:

Bit

Reset Value

Unused

0

Unused

0

Unused

0

Unused

0

Unused

0

Unused

0

Unused

0

Unused

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

Unused

0

Unused

0

Unused

0

Unused

0

IV.2

0

IV.1

0

IV.0

0

Unused

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

This read only register identifies which capture/compare module gener-
ated an interrupt. It is interesting to note that IV is defined as a three-bit
number, but only even values are valid, so IV.0 is always cleared. Consult the
TI documentation for interpretation of IV values.

Timer B

Timer B is a second independent timer circuit, nearly identical to Timer A.
The only difference is the SCCI bit in the capture/compare modules, which
is not implemented in these timers. Otherwise, the register descriptions for
Timer A are valid for Timer B. TBCTL is located at address 0x0180, TBR is
at 0x0190, and TBIV is at 0x011E.

Debugging Clock Difficulties

I have, over the course of time, developed a three-step process for debugging
clock problems. While it will not find all problems all the time, it has proved
useful in most situations. It has been my experience that the vast majority of
clock problems stem from one of three areas: hardware, unexpected interrupt
generation, or misconfiguration of internal clocks.
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Figure 4.8: Clock Debugging Flowchart
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■ Hardware. This is a particularly common area of difficulty. Hardware
debugging is discussed further in Chapter 7, but a few clock-specific
suggestions are offered here. As with any hardware debugging, your
best friend is a good digital oscilloscope. Use the scope to observe the
crystal outputs, at the high pin, throughout the operation. Look at
the frequency and level, and look for dropouts and glitches. (I will
sometimes use freeze spray while running this test, to observe crystal
accuracy over temperature.)  Look at the supply, ground, and signal
lines for electrical transients.

■ Unexpected Interrupt Generation. Although unexpected interrupts are
seldom the direct cause of this type of problem, they often alter the
timing of your design enough to appear as clock errors. They are
detectible with the use of while loops defined in Chapter 3, or with
judicious use of breakpoints.

■ Clock Configuration. Make certain your internal clocks are configured
properly. With the MSP430, this is very easy to identify. On most
devices, internal clocks such as MCLK, ACLK, and SMCLK can be
observed externally, by using the function select on the appropriate
port (see the device datasheet and Chapter 5 for proper pin selection
and configuration).

As mentioned above, this is by no means comprehensive. You
probably noticed that the flowchart in Figure 4.8 has no end state.
This is because you will not always have solved your problem by
following the steps it describes. However, these three checks have
almost always pointed me in the right direction.

Crystal Accuracy

Any timed event or process cannot be any more accurate than the
clock source from which it derives. Because of this, oscillator accuracy
is a common, fundamental source of difficulty when designing systems.
It is important to understand how accurate your oscillators will be.
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The first rule is, if your design needs any reasonable degree of
timing precision, use a crystal. The DCO is a simple RC-type oscilla-
tor, and the variation over temperature is far too great to perform
anything resembling reasonably accurate timing. A decent crystal will
be on the order of ten to 100 times more accurate over temperature
and voltage than the DCO.

Once you have settled on the use of a crystal, make certain that
you understand its specifications and limitations. The error values are
typically specified in parts per million (ppm), and there are three
different components to be aware of:

• Finishing Tolerance. This is the maximum inaccuracy that
results from inconsistencies in the manufacturing process. It is
the initial offset from the ideal frequency at the nominal
temperature. It is typically on the order of +/- 30 ppm, and is a
limitation over the entire temperature range and lifetime of
the crystal.

• Aging Tolerance. This is the change of accuracy over time. It is
typically just a few ppm/year, and is tends to be more pro-
nounced in the first few years (e.g. +/-3 ppm the first year and
+/- 1 ppm in succeeding years). The effect is additive over
time.

• Temperature Tolerance. This is usually the most significant
component of error, and varies widely from one crystal to
another. It is often specified in either ppm over a specified
temperature range, or in ppm/°C. Some manufacturers will
simply give a graph or equation. (An example graph is given
in Figure 4.9.)
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Often, crystals are selected based on temperature tolerance only.
Low-end 32 kHz crystals tend to run around 10 ppm/°C, so the aging
and finishing numbers are lost in the noise. Higher end, more expen-
sive crystals tend to also have tight aging and finishing tolerance, so
temperature has still the biggest impact.

Figure 4.9: Sample Crystal Error Curve
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Every system you will ever design has one thing in common:  use of input
and/or output. (Some fully deterministic designs will not require inputs, but I
cannot imagine any useful design that does not require output.)  All I/Os on
MSP430 devices are eight bits wide and controlled with memory-mapped
registers. These ports, which are fundamentally the same across all device
families, can be divided into two categories: interruptible (meaning that
interrupts can be generated via these ports) and non-interruptible. In all
devices, ports 1 and 2 are interruptible, and the higher numbered ports are
not. ’3xx devices have a port 0, which is also interruptible (there is no port
0 in ’1xx and ’4xx devices).

Along with basic I/O functions, the port pins can be individually config-
ured as special function I/Os, such as USARTs, Comparator signals, and
ADCs. The number of ports and available functions vary by part, so consult
your datasheet.

Non-Interruptible I/O

I/O ports 3,4,5 and 6 are non-interruptible data ports. These ports are not
implemented on all devices.

Use of non-interruptible I/O is simple and straightforward. Each bit is
individually controllable, so inputs, outputs, and dedicated function I/O can
be mixed in a single port. Port pins are controlled by four byte-addressable
registers:  direction, input, output, and function select.
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■ Direction Registers. These read/write registers control the signal direc-
tion for port pins. When a bit in the direction register is set, the
corresponding port pin is set as an output, and when the bit in the
direction register is cleared, the port pin is set as an input. The
direction registers need to be configured properly if the port pin is
selected as a general purpose I/O or as a special function I/O. Direc-
tion registers are cleared on reset.

■ Input Registers. These are read-only registers, which reflect the input
value on the port.

■ Output Registers. These registers are used to write to output ports, and
can be read as well. When reading these registers, they will reflect the
last value written to them. However, if the port is configured as an
input, the output register will be in an indeterminate state. It will not
necessarily reflect the input value on the associated pin.

Figure 5.1: Non-Interruptible I/O Pin Logic
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■ Function Select Registers. These read/write registers determine the use of
the individual pins on the I/O port. When the bit in the select regis-
ter is set, the port pin is set as a function I/O, and when the bit in the
direction register is cleared, the port pin is set as general purpose I/O.

Interruptible I/O

Ports 1 and 2 (and port 0 on ’3xx devices) are interruptible ports. They
contain all of the same control registers as non-interruptible ports (described
in the previous section), along with three other byte-addressable registers:
interrupt enable, interrupt edge select, and interrupt flags.

■ Interrupt Enable. This read-write register enables interrupts on
individual pins. Interrupts on the pins are enabled when their corre-
sponding bits in this register are set. This register is cleared on reset.

Figure 5-2: Interruptible I/O Pin Logic
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■ Interrupt Edge Select. This read-write register selects the transition on
which an interrupt occurs. If set, an interrupt occurs on a high-to-low
transition on the corresponding pin. If cleared, an interrupt occurs on
a low-to-high transition on the corresponding pin.

■ Interrupt Flags. The corresponding bit in this read-write register is set
automatically when an interrupt is generated. This register can be
written to, and will generate an interrupt when a high level is writ-
ten. When an interrupt occurs, this flag needs to be cleared before the
reti instruction, or the same interrupt will call the ISR a second time.

Table 5.1: Port Registers

Port 0 Port Port Port 3 Port 4 Port 5 Port 6
  (’3xx only) 1 2

Input P0IN P1IN P2IN P3IN P4IN P5IN P6IN
010h 020h 028h 018h  01Ch 030h 034h

Output P0OUT P1OUT P2OUT P3OUT P4OUT P5OUT P6OUT
011h 021h 029h 019h 01Dh 031h 035h

Direction P0DIR P1DIR P2DIR P3DIR P4DIR P5DIR P6DIR
012h 022h 02Ah 01Ah 01Eh 032h 036h

Interrupt P0IFG P1IFG P2IFG Not Not Not Not
Flags 013h 023h 02Bh Implemented Implemented Implemented Implemented

Interrupt P0IES P1IES P2IES Not Not Not Not
Edge Sel 014h 024h 02Ch Implemented Implemented Implemented Implemented
Interrupt P0IE P1IE P2IE Not Not Not Not
Enable 015h 025h 02Dh Implemented Implemented Implemented Implemented

Function Not P1SEL P2SEL P3SEL P4SEL P5SEL P6SEL
Select Implemented 026h 02Eh 01Bh 01Fh 033h 037h

Using I/O

■ All port registers can be changed in software. This allows software to
turn interrupts on and off, and to use a single pin for both input and
output.

■ When port pins are configured as inputs, they also function as high-
impedance inputs. When being used as a high-impedance input, no
pulling resistor is necessary, as long as any externally applied voltage
is at the ground or supply rail. When configured this way, the leakage
current is typically on the order of tens of nanoamperes.
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■ Interrupts on this device are edge triggered, and very susceptible to
noise. A bit of filtering on interrupt lines will go a long way in noisy
designs. (This is further described in Chapter 7, Hardware
Considerations.)

JTAG

Along with the banks of general-purpose I/O available on the
MSP430 devices, there is, on many of the devices (particularly Flash
parts) a JTAG interface port.  This interface implements IEEE
STD1149.1 compliant access to the CPU, peripherals, and internal
busses. It is the primary method for erasing, programming, and check-
ing flash memory devices, and is a very powerful tool for running test
routines.

Texas Instruments has available, at their website, an exceptional
application report on JTAG and its use in the MSP430 (App. Rept.
SLAA149), which I will not try to summarize here. Among the
handiest of features described in this paper is the command to set the
PC to an arbitrary value. This feature makes it possible to have test
code, built into the design, that is completely inaccessible from the
main code set. The PC is set to the starting address of that code, via
the JTAG, and the tests are performed. This is useful for things like
bench and production code, that never needs to see the light of day
once the product is sold, shipped, or deployed.

Another similar feature is the ability of the JTAG to write directly
to registers, completely bypassing the CPU. This allows specialized
tests which exercise the surrounding hardware, by reading and writing
the Port control pins, without running firmware. This can be useful if
your design lacks the code space necessary to write these one-time
tests.
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One of the strong features of the MSP430 is the choice of available peripher-
als. This chapter overviews use of several of the most common and frequently
used blocks. It has been my experience that use of these produces the bulk of
programming and configuration errors. Because of this, when relying on these
peripherals, it is important to review thoroughly the Users Guide and perti-
nent application notes, and even to introduce yourself to one of the TI
application engineers.

Hardware Multiplier

Some of the larger ’430 devices include a hardware multiplier. It is, however,
a bit different from the multipliers in many similar scale controllers. Rather
than being a fixed function of the ALU, which is common, the ’430 hard-
ware multiplier is implemented as a memory-mapped peripheral device. It is
pretty straightforward to use. Write operands to two registers, in order, wait a
few clock cycles, and the result is magically located in the result registers.

The module performs both multiply and multiply-and-accumulate func-
tions, and can perform either as signed or unsigned multiply. These options
are selected when loading the first operand. There are four different operand
1 registers, one for each multiplication type. The second operand register is
universal, and the multiplier activates when a value is loaded into this
register. The result is found in two registers, a Result LO register and a Result
HI register.
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There is also a Sum Extend register, which serves several purposes. In
unsigned multiply mode, it remains unused. In signed multiply mode, it
reflects the sign of the result (0x0000 for positive, 0xFFFF for negative). In
MAC mode, it is normally zero, but if the result exceeds 0xFFFF FFFF, the
multiplier writes a 0x0001 to the register. In signed MAC mode, the behav-
ior is similar to the signed multiply, except the register holds a value of
0x0000 if the result is 0x7FFF FFFF or less (positive), and 0xFFFF if the result
is 0x8000 0000 or greater (negative, 2’s complement).

Table 6.1: Hardware Multiplier Registers

Register Address Read/Write

Operand 1: Unsigned Multiply 0x0130 Read/Write

Operand 1: Signed Multiply 0x0132 Read/Write

Operand 1: Unsigned Multiply and
Accumulate 0x0134 Read/Write

Operand 1: Signed Multiply and Accumulate 0x0136 Read/Write

Operand 2 0x0138 Read/Write

Result LO 0x013A Read/Write

Result HI 0x013C Read/Write

Sum Extend 0x013E Read Only

Sources of Error with the Hardware Multiplier

There are several common areas of difficulty that the user needs to be aware
of when using the hardware multiplier.

■ Existence. Don’t laugh, this actually happens. Take the example of the
MSP430F149. This is a very common device to perform initial devel-
opment and proof-of-concept work on, because TI offers a low-cost
FET development tool based around the device, and it is pin-for-pin
compatible with ’13x devices. I have, in the past, done initial devel-
opment on the ’149, and then switched to the ’133 or ’135 for final
product. Well, the ’13x devices don’t have the multiplier, and my
code was reading and writing phantom registers. It only took a few
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minutes to troubleshoot, but was, needless to say, embarrassing. (It is
also embarrassing to write here, but we all make the occasional
bonehead mistake, right?)

■ Premature access to the result. The multiplication process is not imme-
diate, it takes a few clock cycles. The Users Guide says that the line is
between autoincrement and indexed modes (with autoincrement, you
need a statement between loading of operand and retrieval of result,
with indexed, you do not). I will take their word for it. I have always
thrown a NOP in there, just to be safe.

■ Overflow. The multiplier does not explicitly report overflow (via the
overflow flag) in Multiply and Accumulate mode. Rather, it changes
the Sum Extend register. The application needs to be prepared for this.

■ Interrupts. If your code uses the multiplier in the main loop and one of
the ISRs, there exists an error condition when the main loop loads
one or both operands, and the interrupt occurs before the main loop
retrieves the result. The ISR then uses the multiplier, and the main
loop retrieves an incorrect value after return form interrupt. There
are various ways to handle this, none of them being very good. If you
need to perform multiplication in ISRs and the main loop, the best
solution is to write a 16 × 16 multiply function, for use in the main
loop, and restrict hardware multiplier use to the ISRs (or vice versa).

Comparator

Some MSP430 devices offer an on-board analog comparator, which is very
basic and easy to use. These comparators are configurable such that either
input or output (or both) may be mapped to external pins. It has an internal
reference voltage generator, which can be turned off to conserve current, or
set to ¼ or ½ of Vcc, the device supply voltage. The comparator can generate
interrupts on either the rising or falling edge of the output.

The functionality is essentially described by the function registers. The
biggest source of potential error is that of output oscillation. When the levels
at the inputs are very close to each other, the output tends to oscillate. To



78

Embedded Systems Design using the TI MSP430 Series

address this problem, the device has an RC-type filter on the output, which
may be switched in or out. This filter does not completely solve the oscilla-
tion problem. If your application still oscillates after switching this filter in,
you will probably need to use an external precision comparator instead,
especially if the comparator is driving an interrupt.

Comparator Control Registers
• CACTL1, Comparator control register #1.

Address:  0x0059h
All bits are read/write.
Structure:

Bit

Reset Value

CAEX

0

RSEL

0

REF.1

0

REF.0

0

CAON

0

CAIES

0

CAIE

0

CAIFG

0

CAEX (MSB) : Comparator Exchange.
  When set, this bit swaps the inputs of the
  comparator.

RSEL : Reference Select.
  This bit selects where the internal reference
  is applied. (The CAEX bit swaps this)

   0=Reference is applied to the + terminal.
   1=Reference is applied to the - terminal

REF : Sets internal reference.
   REF=0: Off
   REF=1: Reference = Vcc/4
   REF=2: Reference = Vcc/2
   REF=3: Diode reference is selected. See

datasheet for details on this
option.

CAON : Comparator On.
  When set, the comparator is on. When cleared, it is off.
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CAIES : Comparator Interrupt Edge Select.
  0= Interrupt occurs on rising edge of
  Comparator output.
  1= Interrupt occurs on falling edge of
  Comparator output.

CAIE : Comparator Interrupt enable. Interrupt is
  enabled when bit is set.

CAIFG (LSB) : Comparator Interrupt Flag.

• CACTL2, Comparator control register #2.
Address:  0x005Ah
All bits except CAOUT are read/write. CAOUT is read only.
Structure:

Bit

Reset Value

CCTL2.7

0

CCTL2.6

0

CCTL2.5

0

CCTL2.4

0

P2CA1

0

P2CA0

0

CAF

0

CAOUT

0

CCTL2 (MSB) : These bits vary by device. See the datasheet
  for details.

P2CA1 : Pin to CA1. If set, the CA1 is mapped to the
  external pin.

P2CA0 : Pin to CA0. If set, the CA0 is mapped to the
  external pin.

CAF : Comparator Output Filter
  0= Comparator Output Filter is bypassed.
  1= Comparator Output Filter is used.

CAIE : Comparator Interrupt enable. Interrupt is
  enabled when bit is set.

CAOUT (LSB) : Comparator output.
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• CAPD, Comparator Port Disable.
Address:  0x005Ah
All bits are read/write.
Structure:

Bit

Reset Value

CAPD.7

0

CAPD.6

0

CAPD.5

0

CAPD.4

0

CAPD.3

0

CAPD.2

0

CAPD.1

0

CAPD.0

0

CAPD.x (All) : These pins enable (0) or disable (1) the input
buffer pins for up to eight I/O. Not all eight are
implemented on all devices.

Comparator Setup Examples

Code Example 6.1:  Various Comparator Setup Schemes

/* External inputs and output, no interrupt use, no output filter, ’F149
pin configuration   */

     {
      P2SEL |= 0x1C; //Set up I/O direction register
      CACTL1 = CAON; //Turn on Comparator, no

//internal reference use
      CACTL2 = P2CA0 + P2CA1; //Use external inputs
      CAPD = 0xFC; //Enable both CAPD input

//buffers
      }

/* One external input with internal reference, interrupt driven, output
filter, ’F149 pin configuration   */

     {
      P2SEL |= 0x10; //Set up I/O direction register
      CACTL1 = CAIE + CAREF_2 + CAON; //Turn on Comparator,

//internalVcc/2 reference
      CACTL2 = CAF + P2CA1; //Use external signal  for –

//comparator input



81

On-Chip Peripherals

      CAPD = 0xFD; //Enable CAPD1 input buffer
      }

      interrupt [0x16] void ComparatorA_Interrupt(void)
      {
      /*   Process interrupt here      */
      }

/* One external input with internal reference, no interrupt, single decision,
output filter, ’F149 pin configuration   */

     {
      P2SEL |= 0x10; //Set up I/O direction register
      CACTL1 = CAREF_1 + CAON; //Turn on Comparator, internal

//Vcc/4 reference
      CACTL2 = CAF + P2CA1; //Use external signal  for –

//comparator input
      CAPD = 0xFD; //Enable CAPD1 input buffer
      for (index=0;index<15;index++) {} //Loop delay allows filter output

//to stabilize
//the length will depend on
//clock speed

      if (CACTL2 & CAOUT)
          {
           /*  Process Positive Case  */
          }
      else
          {
           /*  Process Negative Case  */
          }
      }
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Analog-to-Digital Converters

Most MSP430 devices offer a precision analog-to-digital converter. There are
various flavors of converter available. We will describe the most common,
the ADC12. If your device offers a different unit, it is very similar to the 12-bit
version described here, and the relevant differences and detail are available
in the user’s guide.

It is important to note that the ADC is by far the most complex of the
peripherals available for the MSP430. My intent here is to cover the high
points of its use, but my description is by no means complete. If you intend
to use the ADC, first become intimate with the contents of the user’s guide.
I only hope to give the reader a feel for the capabilities and limitations of the
peripheral.

The ADC12 is a single 12-bit analog-to-digital converter, with a built-in
sample-and-hold circuit. The front end consists of a multiplexer circuit, allow-
ing the developer to select one of eight external pins, or one of four internal
sources, for the signal to convert. The most interesting of these is an internal
temperature diode, which allows the ADC to provide a rough idea of operat-
ing temperature. The temperature diode varies by device, and the details are
in the datasheet. It is considerably less accurate than a true external tempera-
ture sensor, but it can be a useful low-cost alternative in some applications.

There are four conversion modes, reflecting the permutations of single
and multiple conversions and one-time and repeated conversions. Specifi-
cally, they are:

■ Single channel one-shot. This is the true single conversion, with the
result being stored in one of the ADCMEM registers.

■ Single channel repeated. As the name would suggest, this mode
repetitively performs conversion until stopped, storing the result in
the same ADCMEM register. In this mode, the typical method is to
loop process when the BUSY flag clears.
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■ Multiple channels, single sequence. In this method, the ADC per-
forms multiple conversions, looping through a specified number of
ADCMEM registers one time.

■ Multiple channels repeated. This is identical to the previous case,
except the series of conversions is repeated until stopped.

One of the nice things about these modes is that they are all fire-and-
forget, meaning that you can write the code so that the process is initialized,
and the code can perform other processing while the conversion is underway.
The biggest limitation is that, in the repeated modes, the software needs to
be ready to read the ADCMEM registers before they are rewritten, or an
interrupt will be generated.

Timing for the ADC is performed by the conversion clock. The conver-
sion clock may be sourced by any of the clocks from the Basic Clock Module,
or by a fixed RC oscillator, which is a dedicated portion of the ADC. This
oscillator is very similar to the DCO, with the same limits of accuracy. It is
however, a fixed speed oscillator, running around the max DCO frequency,
which is just shy of 5 MHz (typical). This is nice to have, so that the ADC
can operate while the CPU is in sleep mode. The timer must be initialized in
the ADC12CTL1 register, and the DIV value and clock source must be
selected such that the conversion frequency meets the datasheet spec. The
conversion takes thirteen cycles of the conversion clock source.

ADC12 Control Registers
• ADC12CTL0, ADC control register #0.

Address:  0x01A0h
All bits are read/write. Bits 15 through 4 may only be edited when
ENC=0.
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Structure:

Bit

Reset Value

SHT1.3

0

SHT1.2

0

SHT1.1

0

SHT1.0

0

SHT0.3

0

SHT0.2

0

SHT0.1

0

SHT0.0

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

MSC

0

2_5V

0

REFON

0

ADCON

0

ADCOIE

0

ADCTIE

0

ENC

0

ADC_SC

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

SHT1/SHT0 : Sample and Hold Time
SHT1 determines the sample and hold time for
ADC0 through ADC7, and SHT1 determines
sample and hold time for ADC8 through ADC
15. The sample and hold time is
4x(ADC_Clock_Time)x(n). See table 6.2 for
mapping of SHT values to n values.

MSC : Multiple Sample and Convert:
0: The sampling timer requires a rising

edge on SHI.
1: SHI triggers the first sample, all

subsequent samples are automatic.
2_5V : Internal Reference Voltage level

0: 1.5 VDC
1: 2.5 VDC

REFON : Internal Reference Voltage enable
0: Internal Reference is off
1: Internal Reference is on

ADCON : Analog to Digital Converter ON
0: ADC is off
1: ADC is on
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ADCOIE : ADC Overflow Interrupt Enable
If set, an interrupt is generated on overflow.
ADC overflow is defined as the condition that
occurs when a result is written and the previous
result has not been read.

ADCTIE : ADC Timer Overflow Interrupt Enable
If set, an interrupt is generated on ADC timer
overflow. ADC timer overflow is defined as the
condition that occurs when a conversion is
attempted before the previous conversion is
attempted.

ENC : Enable Conversion
If cleared, no conversion is possible.
If set, a conversion is possible.
The ADCMCTL registers cannot be edited
unless this bit Is cleared. The typical process is
to set the ADC up, and then bring this bit high.

ADC_SC : ADC Sample and Convert
When set, the conversion process automatically
begins (if ENC=1). This bit is automatically
reset when the conversion is complete.

Table 6.2: n Values for SHT variable

SHT Value n Value

0 1

1 2

2 4

3 8

4 16

5 24

6 32
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7 48

8 64

9 96

10 128

11 192

12 256

13 256

14 256

15 256

• ADC12CTL1, ADC control register #1.
Address:  0x01A2h
All bits except 0 (BUSY) are read/write. Bits 15 through 3 may only
be edited when ENC=0.
Structure:

Bit

Reset Value

CSAdd.3

0

CSAdd.2

0

CSAdd.1

0

CSAdd.0

0

SHS.1

0

SHS.0

0

SHP

0

ISSH

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

DIV.2

0

DIV.1

0

DIV.0

0

SSEL.1

0

SSEL.0

0

CONS.1

0

CONS.0

0

BUSY

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

CSAdd : Conversion Start Address
Selects which ADC12MEM register is
used for the first conversion in a sequence.

SHS : Source Select for the Sample-Input Signal.
00: Control Bit ADC12SC
01: Timer_A.OUT.1
10: Timer_B.OUT.0
11: Timer_B.OUT.1
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SHP : Sampling Signal Select
0: SAMPCOM is sourced from the

sample-input signal.
1: SAMPCOM is sourced from the

rising edge of the sampling timer.
ISSH : Invert Sample-Input Signal

0: The Sample-Input Signal is
normally defined.

1: The Sample-Input Signal is
inverted.

DIV : Clock Division Rate
The clock selected by SSEL is divided
by DIV+1

SSEL : Clock Source Select
00: ADC Internal Oscillator
01: ACLK
10: MCLK
11: SMCLK

CONS : Conversion Mode Select
00: Single-Channel, Single

Conversion
01: Single Sequence of Channels
10: Repeat in a single channel until

CONS is changed
11: Repeat in a sequence of channels

until CONS is changed.
BUSY : Busy Flag (read-only)

This read-only flag is set while a
conversion is underway.
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• ADC12MCTLn, individual ADC control registers 0 through 15.
Addresses:  0x0080h through 0x008F
All bits are read/write. All bits may only be edited when ENC=0.
Structure:

Bit

Reset Value

EOS

0

SREF.2

0

SREF.1

0

SREF.0

0

INCH.3

0

INCH.2

0

INCH.1

0

INCH.0

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

EOS : End Of Sequence
This bit indicates when a sequence of
conversions is complete.

SREF : Reference Voltage Select
000: V+ is AVcc, V- is AVss
001: V+ is Vref+, V- is AVss
010: V+ is Veref+, V- is AVss
011: V+ is Veref+, V- is AVss
100: V+ is AVcc, V- is (Vref-)/(Veref-)
101: V+ is Vref+, V- is (Vref-)/(Veref-)
110: V+ is Veref+, V- is (Vref-)/(Veref-)
111: V+ is Veref+, V- is (Vref-)/(Veref-)

INCH : Input Channel Select
0-7: External a0 through a7
8: Veref+
9: (Vref-)/(Veref-)
10: Internal Temperature Diode
11-15: (Avcc-Avss)/2

• ADC12IFG, ADC Interrupt Flags
Address:  0x01A4h
All bits are read/write.

• ADC12IEN, ADC Interrupt Enables
Address:  0x01A6h
All bits are read/write.
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These are standard interrupt flags and enable bits, with bit 15 of each
field corresponding to ADC12MEM15, etc. If the ADCMEM registers are
accessed, their corresponding interrupt flags are automatically reset.

• ADC12MEM, Conversion Memory Registers 0-15
Addresses:  0x0140h-0x0156h
All significant bits (11-0) are read/write. Bits 15-12 read as 0.
These 16 registers hold the result of conversions in the bottom 12
bits.

An ADC Example

As described previously, the ADC units on many devices include a tempera-
ture sensor. This nice little add-on feature is easy to use and is pretty accurate
(typically within a degree or so). Code listing 6.1 provides a C-language
module for reading temperature. Several considerations are:

■ This code is written assuming 3.35 mV/°C, as is the case with the
’149 device. If you are using a different device, check your datasheet
for the correct value.

■ The conversions from ADC reading to °C and from there to °F are
designed to avoid use of floating-point mathematics. They will result
in some additional error. However, the total error from both conver-
sion and mathematics will still keep you within a degree or two. If
your application requires precise measurement of temperature, con-
sider an external sensor.

■ The variable sizing of this function is a bit on the inefficient side. It is
overkill to report a value between –50 and +200 using a signed long,
but the conversion to temperature requires more than 15 bits of
precision. In fact, if we turn the function into a signed int, it should
automatically return the bottom 16 bits of the Temperature variable,
which will still give us the correct value. However, various experi-
ences doing things like this have left me distrustful of microcontroller
compilers and their ability to always do what they I think they ought to.
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CodeListing 6.2: Temperature Determination using the ADC-12

signed long  Determine_Temp (unsigned char BooleanFlag)
// This function returns device temperature, based on an ADC

conversion
// The passed parameter acts as a flag. If it is zero, the temperature is
// returned in degrees Fahrenheit. If it is non-zero, it is returned in
// degrees Celsius.
{
signed long Temperature=25; Define and initialize working variable

ADC12CTL0 = SHT0_6 + SHT1_6 + REFON + ADC12ON;
// Initialize control register 0. Sets up conversion clock, internal reference
ADC12CTL1 = SHP; //Conversion sample timer signal is

//sourced from the sampling timer
ADC12MCTL0 = INCH_10 + SREF_1; //Use internal reference with

//respect to ground, Temp sensor
//is on input channel 10.

ADC12CTL0 |= ADC12SC + ENC; //Enable and start conversion
while (ADC12CTL1 & 0x01); //Hang in loop until conversion

//completes.
Temperature = ADC12MEM0 & 0x00000FFF;
Temperature  *= 845; //These steps convert the ADC reading

//to degrees Celsius
Temperature  >> = 13;
Temperature  -= 278;
if (BooleanFlag) return Temperature; //Return temperature in degrees

//Celsius, if required
Temperature *=461;
Temperature >.=8; //Otherwise, convert to Fahrenheit and

//return
Temperature +=32;
return Temperature;

}//End Determine Temperature Function
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LCD Driver

The ’3xx and ’4xx families include liquid crystal display (LCD) driver, ca-
pable of supporting multiplex rates up to 4. The differences between the ’3xx
and ’4xx drivers are relatively insignificant, consisting primarily of addresses
and number of segments supported. Specific information in this chapter is
given for the ’4xx series devices, but the concepts carry over to the ’3xx
devices, as well.

Throughout the following discussion, I have assumed that you, the
reader, have some working knowledge of the display that will be interfaced to
the ’430 device. If you are still a bit fuzzy on the concepts of multiplexing or
7 segment display layout, these topics are covered pretty well in the Users
Guides, and probably on the display datasheet as well.

There are two significant analog components that are central to the LCD
driver. The first is the timing generator. This is sourced from Basic Timer 1
(see Chapter 4), and needs to be configured according to the equation:

LCD Freq. = 2 × (Multiplex Rate) × (Framing Frequency),

where the framing frequency is typically a range given on the LCD datasheet.
This is the only configuration item required by the timing generator.

The second analog component is the voltage generator, which produces
appropriate internal drive voltages from (up to) 4 externally supplied voltage
levels. These external signals are identified on datasheets as R33, R23, R13,
and R03. Their intended use is reflected in the naming convention, as R33 is
to be connected to full-scale voltage, R23 is 2/3 of full scale, R13 is 1/3 of full
scale, and R03 is ground. There is a special case, in multiplexer mode 2,
where R23 is unused and R13 should be configured as R33/2. In some de-
vices, R33 and R03 are not implemented as separate pins. Rather, they are
internally tied to supply and ground. Often these voltages are established
with a resistor-divider network, to preserve these ratios. Use of these pins is
determined by the multiplexer mode, and is identified in the following table:
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Analog Inputs Used by Multiplexer Mode

Multiplexer Mode R33 R23 R13 R03

Single (Static) Mode X X

2 Mux X X X

3 Mux X X X X

4 Mux X X X X

There is a single control register for the LCD driver unit

• LCDCTL, LCD control register.
Address:  0x0030h (in ’4xx devices)
All bits are read/write.
Structure:

Bit

Reset Value

LCDM.7

0

LCDM.6

0

LCDM.5

0

LCDM.4

0

LCDM.3

0

LCDM.2

0

LCDM.1

0

LCDM.0

0

LCDM.7-LCDM.5 : Port Select. These signals determine
  how many I/O pins are selected for use
  by the LCD driver. See accompanying
  table.

LCDM.4-LCDM.3 : Multiplexer Mode
00 = Static mode
01 = 2 Multiplexer Mode
10 = 3 Multiplexer Mode
11 = 4 Multiplexer Mode

LCDM.2 : Segment Select. When LCDM=0, all
  segments are shut off. This is a handy
  feature for making the LCD blink.

LCDM.1 : Unused
LCDM.0 : LCD Driver enable. When this bit is

  cleared, the timing generator is off,
  and all lines are brought low.
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LCD Driver Port Select

LCDM.7 LCDM.6 LCDM.5 Segment Pins Used

0 0 0 No Segment Pins Selected

0 0 1 S0 – S15

0 1 0 S0 – S19

0 1 1 S0 – S23

1 0 0 S0 – S27

1 0 1 S0 – S31

1 1 0 S0 – S35

1 1 1 S0 – S39

Now that the hardware and control register are set up, we need to code
the thing. The firmware to the driver simply writes segment definitions to
predefined memory locations. In the ’4xx family, these locations begin at
0x0091 and run through 0x00A0 (inclusive). The values written to these
locations depend heavily on the multiplexing and external connections to
these locations. Some helpful (and not so helpful) hints:

■ Triple-check all connections. This is, generally speaking, a good idea.
However, if a GPIO is connected wrong, it is usually intuitively
obvious which one needs to be fixed. With the LCD, there are an
awful lot of connections that are more difficult to troubleshoot on the
fly, especially when multiplexing 3 or 4 signals.

■ Be prepared to take some time to muddle through it. This peripheral
is, at best, poorly documented by TI. (Admittedly, the documentation
here is not much better. None of the examples I had were any better
than the ones in the User’s Guide, so I will just refer you to those.)

■ Make certain that you completely understand the multiplexing
scheme used by the LCD. I once burned an awful lot of time because
I misunderstood the LCD itself, rather than the microcontroller
peripheral.
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Memory-Mapped Peripherals

You have probably noticed the term “memory-mapped” peripherals in
several places in the text. For those unfamiliar with the term, it
describes the method by which the CPU communicates with the on-
device peripheral modules. Memory-mapped peripherals have all
control, input, and output registers located in address space. The
advantage of this type of peripheral control is CPU simplicity. The
CPU doesn’t care a whit about the nature of the peripherals with
which it communicates. It merely reads and writes values to a specific
address. It also allows for functional scaling of devices without need-
ing to modify the CPU. Memory-mapped peripherals are prevalent in
von Neumann architectures.

The alternative to memory mapping is instruction mapping. In
this method, each peripheral device has specific instructions associ-
ated with it. For example, a timer unit would have “start timer” and
“clear timer” instructions as part of the device instruction set. This
method, which is more prevalent in Harvard architectures, seems to
be falling out of favor. There are still, however, some devices out
there that use this approach.

The MSP430, being a memory-mapped device, has a very simple
and straightforward architecture. Look through the disassembly of any
file you have developed in the past. You will notice that the vast
majority of instructions are reading or writing to the ALU, a CPU
register, or some location in the address space. That is pretty much all
the CPU does; move stuff around. The intelligence lies in the loca-
tions from and to which information is moved.
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Embedded systems design is widely regarded as being a software development
endeavor. Often, the hardware portion is overlooked. In my experience,
hardware problems tend to consume more time than software problems in
the debugging process. There are several reasons for this. First, most of our
development time is spent writing the software, and we develop a certain
level of comfort with it. This is especially true of designers coming from a
software engineering background. This better understanding of the software
tends to lead to more efficient debugging.

The second reason for the discrepancy in hardware/software debugging
effort is that of tools. ROM simulation, high-end emulators, and software
tools designed specifically for this purpose give the designer an awful lot of
weapons in the battle against bugs. We can speed up and slow down execu-
tion rates, set breakpoints, and manually step through the code in search of
any software misbehavior. In contrast, our hardware debugging tools usually
consist of a good oscilloscope, a digital meter, and our wits. Also, the process
of chasing down bugs is not usually as well-defined for hardware as it is for code.

Because of this, we need to be careful and thorough with the hardware
portion of our designs. This chapter attempts to describe some of the more
important issues and features related to hardware. It is by no means compre-
hensive, as I seem to discover new and unique hardware issues on every
project I work on. However, I have included the basics, along with some
’430-specific lessons I have learned.
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The Datasheet

Any discussion of hardware must begin with the datasheet. The datasheet
offers a good starting point for understanding the behavior of the device, and
defines some design parameters. Some of my datasheet practices:

■ Make sure you have the latest datasheet. The revision date is on the
top of the first page. Go to www.ti.com, and download the most
recent update.

■ Keep a “working copy.” Print out a copy of the device datasheet early
in development, and scribble down notes on any problems and dis-
coveries you make along the way. You will be surprised how many
times you revisit the same issues on different designs, and those old
notes will make short work of chasing down the new problems.

■ Ignore page 1. This advice is not specific to TI parts, or even to
microcontrollers in general. The first page of most datasheets is pure
marketing stuff. It will describe some of the salient features, and give
design parameters (current consumption, in the case of the ’430) for
specific, near-ideal conditions. Your design might or might not meet
those parameters. The useful information you need might be in the
datasheet, but it is not on the first page.

■ Confirm critical values. If power consumption is among your primary
concerns, build a prototype and measure the consumption. The
datasheet will give some idea, but will not cover all combinations of
peripherals, I/O, and supply voltages.

■ Don’t exceed datasheet limits. One of my favorite conversations to
have with reps is about flash reprogramming cycles. I have had this
same conversation with the application engineer or marketing repre-
sentative from at least four different companies, when they come in
to promote their micros:
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Rep:  “Our datasheet says 10,000 reprogramming cycles, but you can
plan on 100,000.”

Me:  “So, you are willing to guarantee 100,000 at 3 or 4 sigma?”

Rep:  “Uhhmm, no.”

The lesson here is that, although you will typically see better perfor-
mance than the min/max listed on the datasheet, don’t count on it all
the time. The manufacturer sets design limits where they are to account
for the variation among devices, applications, and environments. Exceed-
ing these limits in your design is asking for failures in the field.

Configuration

Power Supplies and Reset

Power supply design tends to be neglected by embedded developers. The
approach of “Vcc is at 3 volts, it must be fine” is the source of many a bug in
our field. Your biggest enemy here is noise. A noisy supply line can create
unexpected resets and interrupts, disrupt register values, and foul up your
crystal oscillators. Susceptibility to supply noise (and, in fact, noise to the
device in general) is a particular weakness of the MSP430 family.

Along with the subject of power, grounding needs to be discussed. Many
designs use a single, common ground for all signals, but this is not necessarily
true for all designs. The MSP430 devices offer separate digital and analog
grounds (labeled DVss and Avss on the datasheet). The analog supply and
ground are only used in the analog side of the A/D converter, so you will only
need to consider multiple grounds when measuring a floating analog signal. If
at all possible, you are better off designing with a single ground, and tying
DVss and AVss together externally. Unfortunately, this is not always possible.
When using the grounds independently, be careful to keep them separate
everywhere in the circuit, and be clear and careful about which ground each
individual signal is referenced to. On the ’430 devices, all of the signals except
the A/D inputs are referenced to DVss. Since these A/D inputs are on the
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same pins as general purpose digital I/O on devices, your designs are restricted
from externally multiplexing these signals, and using both functions for these
pins, unless a common-ground scheme is used.

Along with supply lines, the ’430 devices have a separate hardware reset
pin, identified as ~RST/NMI on the datasheet. The hardware reset interrupt
is described in chapter 3. This pin should be configured with an RC circuit or
dedicated reset control device, so that the pin voltage is held low while the
power supply stabilizes (see figure 7.x). The reset signal is digital, and should
be referenced to DVss.

Crystals and External DCO

The connection required for external crystals is simple and straightforward.
Use of loading capacitors varies by both device and crystal selection, so
check the datasheets. Generally, however, the low-frequency crystals can be
connected to most devices directly, without the need for decoupling capaci-
tors. High frequency crystals tend to need the capacitors. If you are fortunate
enough to have a true TTL or CMOS level oscillator, simply feed it to the
XIN (or XT2IN) pin, turn the oscillator off with the OSCOff (or XT2Off)
line, and float or ground XOUT (or XT2OUT).

The DCO can be run externally with the connection of a single resistor. I
am not certain, however, why you would. It is possible to perform oscillator
correction (for temperature and aging) with an external digital potentiom-
eter using this configuration, but it is probably cheaper, easier, and more
reliable to put an adequately accurate crystal on the device. I am certain that
there is an application that will require this, but I have yet to see it. Suffice it
to say that this is a single-element connection.

A/D Converters

A/D converter inputs need to be held relatively stable for brief periods of
time. The external connections required for an A/D input are minimal. The
converter has an internal sample and hold circuit, so you need not worry
about that. The only external connection that I typically use is a decoupling
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capacitor, to keep high-frequency noise off the line. I honestly do not know
how much performance gain it really buys, but it is another one of those
inexpensive design habits that I have developed over time.

Performance Issues

Description of the general hardware performance of these devices can be
summed up in a single word: sensitive. A trade-off for the very low power
consumption, the ’430 family of devices tend to react to any surge, noise,
transient, or light breeze applied to the circuit. It is difficult to quantify this
sensitivity, but I have experienced enough examples, both in my own designs
and others, that I am comfortable in stating that these devices are less robust
to errant signal conditions than most other controllers on the market.

I have a perfect example of this sensitivity at my bench as I write this. I
am using a MSP430F149 to control several communications devices. The
circuit is fed by a 3.3 VDC power supply, and an 8.000 MHz source. In order
to trigger the code, an external interrupt is generated on port 1. Connected
to the pin is about 16 inches of 22 gauge wire. My original intent was to
touch this to supply to generate the interrupt. I quickly discovered, however,
that the interrupt was being generated before I even touched the wire. I am
able to generate the interrupt, consistently and repeatably, by waving my
hand over the wire. The motion of my hand over the wire creates enough
change in the surrounding magnetic field (which is notable, with all of the
bench equipment running nearby) to create current in that wire, generating
the interrupt. Seeing this phenomenon once or twice is not uncommon, but
I find the rock-solid repeatability to be remarkable.

A second and particularly annoying offshoot of this sensitivity is that of
brownout. If supply dips, but does not drop to ground, the device seems to
enter a locked state. On a completed design, this should be well ironed out
prior to manufacture, and usually is. I have found it particularly irritating in
development, when my bench is covered in a nest of wires, cables, circuit
boards, and scope probes. Bump the supply cable, and the whole thing locks
up. The experienced engineer is now thinking “clean up your bench, and the
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problem will fix itself”. While they are not incorrect, this tends to happen in
pretty stable setups. The short version is, with this device, you will need to
overdesign supply and reset circuits.

This sensitivity is not a problem if the designer expects it. It is difficult to
completely design out these problems, but there are some pretty common
steps you can take to improve the situation:

■ Protect your power. If you are absolutely certain, beyond a shadow of
a doubt, that there will be no noise on your supply lines, use several
decoupling capacitors anyway. If you are unsure of your supply, design
in some real filtering.

■ Keep the reset line stable. Instability of the connection to the RST/
NMI pin has created blood-pressure problems for many an embedded
developer, the author included. There are some very good devices
available, specifically designed to maintain microcontroller reset
lines. Find one.

■ Tie up the unused I/O pins. Floating inputs make wonderful anten-
nae, allowing random signals onto the device. I prefer to tie these
pins straight to ground, but that is certainly not the only method.
There are various trade-offs between current consumption, power
supply and ground stability, and parts count to be made on any de-
sign.

■ Select your external interrupts carefully. The architecture allows the
code to select individual pins for interrupts, and to enable and disable
them on the fly. This can be a very useful feature for preventing
unwanted interrupts.

Debugging Tools

Bench Equipment

A digital multimeter and a good oscilloscope are the fundamental “must
haves” of hardware debugging. They are the tools that will give you the first
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glimpse into hardware behavior. My debugging setup actually has two meters.
The first one has the common lead fixed to the system ground, so that I can
check voltages with a single touch. The second meter is primarily used for
checking resistances and continuity. I also have a couple of o-scopes at my
bench, but the second one is something of a luxury. My primary scope is a
high-end, 4-channel, 1-GHz digital scope, with a floppy drive and several
different data I/O’s (GPIB, serial). I have found that, when debug time rolls
around, you can never have too powerful a scope.

Logic analyzers are tools that have really grown in functionality over the
years. Older analyzers will provide bit, byte, and data bus streams, providing
groups of 1’s and 0’s. In recent years, digital o-scope type functionalities, such
as glitch detection, signal analysis, and deep trace memory have made their
way into the logic analyzer market. Logic analyzers tend to be what I call “10
percent tools,” because they are useful, or even critical, for a small percentage
of the problems you are likely to encounter, such as race condition or bus
contention. There are some very powerful analyzers available today, along
with some low-cost, low-end PC-based tools. Because of the nature of the
problems you will be hunting with this tool, the high-end models are almost
always worth the extra cost.

There are a few other bits of equipment that are nice to have when
developing and debugging. An obvious need is a solid DC power supply.
Switching supplies are adequate for virtually any applications, as long as the
switching noise isn’t coming through the supply lines at any significant level.
This is easy enough to check with the scope. A function generator, to use as
a clock source, is another “nice to have,” Like working with crystals, accuracy
is among the most significant things to be aware of with the function generator.

Emulators

One of the best ways to view the internal interaction between device hard-
ware and your code is through use of an emulator. Capabilities of emulation
systems vary widely, depending on the manufacturer of the system and the
target device. The advent of flash memory devices and JTAG (and BDM-
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type) debuggers has had a detrimental effect on the emulator market in
recent years. TI offers a low-cost ($99, at time of printing) development tool,
which is described in Appendix B. I have several of these at my bench. I use
them for some formal development, but have found them especially useful for
proof of concept work.

Emulators for the MSP430 family are developed and sold by Hitex
(www.hitex.com). I have found it to be a reasonably good emulation system. It
is feature-rich, and the accompanying software is as intuitive and useable as
any other emulation software I have worked with. He biggest downside of the
Hitex system is the cost. They offer several levels of system performance,
typically ranging from $6,000 to $14,000. If you are shopping with your
employers’ checkbook (and have an understanding manager), this is not an
unreasonable expense. For operations that expect to ship thousands (or
millions) of whatever you are working on, the emulator will more than pay
for itself, if used effectively. If you are a hobbyist, the emulator system is
probably a bit too pricey.

The only real advice I have is to spend some time learning the features of
the emulation system. It is a complex and powerful tool, but will require
some time before you understand its features and functions well enough to
get the most from them. Do not expect to be performing complicated and
useful testing on the day you receive the emulation system.
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The MSP430 supports seven different addressing modes. For source operands,
all seven are fully supported. For destination operands, four of the modes are
directly supported, and two more can be emulated. The only “source only”
mode is immediate mode, in which the source operand is a constant. This
simply wouldn’t make any sense for a destination. (Think about it—does the
statement “7=9” make sense in any programming language?)

Some Notes on Instruction Notation:

Instructions in this chapter, and in Chapter 9, are described using the follow-
ing notation:

<instruction>      src,dest ;comments

where “src” is the source operand and “dest” is  the destination operand. In
single operand instructions, the source is omitted, and source and destination
operands are both omitted in the few no operand instructions. Addressing
modes are determined in the controller by the variables W(D) and W(S),
respectively. W(D) is a single bit, indicating the presence or absence of a
destination word, while W(S) is a bit pair, used to signify the source address-
ing mode. (The TI documentation indicates these variables by Ad and As,
instead of W(D) and W(S). I have adopted the W notation, because I find it
more descriptive.)



104

Embedded Systems Design using the TI MSP430 Series

As in the rest of the book, notation in this chapter assumes register labels
and constants defined in the file msp430x14x.h (or a similar file for other
sub-families). These files are available from TI, either off their website or
with development tools (including Kickstart). I strongly recommend inclu-
sion and use of these files in any project. The standard names they define for
registers and flags are used throughout the TI documentation, and this book.

Register Mode

Description: Register mode operations are the simplest and fastest operations
performed by the processor. They are operations directly on the processor
registers, R4 through R15, or on special function registers, such as the pro-
gram counter or status register. For register source operands, W(S) = 00 and
the source register is defined in the opcode. For register destination operands,
W(D)=0 and the destination register is also defined in the opcode.

Advantages: Register mode is very efficient in terms of both instruction
speed and code space. Register mode operations can be accomplished in a
single clock cycle. It is also very straightforward, and easy to program in this
mode.

Disadvantages: Register mode is limited to the twelve processor registers. If
your application requires more than twelve distinct values (or fewer, if you
need to use any 32-bit values), register mode alone will prove insufficient.
Also, accessing anything in memory space (including RAM, hard-coded look
up tables, or instruction memory) will require a different mode.

Uses: Register mode is a general-use tool. Any values which will be accessed
or changed more than four or five times should be copied into the processor
registers and accessed from there.
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Examples:
Register contents before operation:

R15=0FF0 R14=5A5A R13=1000
Operation:

mov R14,R15 ; Copies contents of R14 into R15
Register contents after operation:

R15=5A5A R14=5A5A R13=1000
______________________________________________________________

Register contents before operation:
R15=0FF0 R14=5A5A R13=1000

Operation:
bis R13,R15 ; Set bits in R15 based on R13

Register contents after operation:
R15=1FF0 R14=5A5A R13=1000

______________________________________________________________

Register contents before operation:
R15=0FF0 R14=5A5A R13=1000

Operation:
clr.b R14 ; Clear low byte of R14

Register contents after operation:
R15=5A5A R14=5A00 R13=1000

______________________________________________________________

Register contents before operation:
R15=0FF0 R14=5A5A R13=1000

Operation:
mov #0FFFFh,R15 ; Immediate/register mode combination

______________________________________________________________
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Register contents after operation:

R15=FFFF R14=5A5A R13=1000

______________________________________________________________

Cycles Required:

Operands 2nd Operand Operator Cycles Length
Mode (words)

2 Register Any 1* 1

2 Indexed, Symbolic Any 4 2
or Absolute

1 N/A RRA, RRC, 1 1
SWPB, or SXT

1 N/A CALL or PUSH 5 1

         *Register mode branch operations (mov Rn, PC) require 2 cycles.

Immediate Mode

Description: Immediate mode is used to assign constant values to registers or
memory locations. Some specific values (0000h,0001h,0002h,0004h,0008h,
and FFFFh) can be generated by the constant generators R2 and R3. In these
cases, immediate mode behaves like register mode, and no data word is
required. Otherwise, the constant is captured in a data word, which immedi-
ately follows the opcode.

Advantages and Disadvantages: Since immediate mode is primarily a utility
function,  it really doesn’t have advantages and disadvantages, per se. It is
more of a “use it when you need it” function.

Uses: Used to assign constant values in code. Most of the emulated instruc-
tions are immediate mode instructions.
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Examples:
Register contents before operation:

R15=0FF0 R14=5A5A
Operation:

mov #000F,R15 ; Move value into R15
Register contents after operation:

R15=000F R14=5A5A
______________________________________________________________

Register contents before operation:
R15=0FF0 R14=5A5A

Operation:
clr R15 ; Clear R14

Register contents after operation:
R15=000F R14=0000

______________________________________________________________

Operation:
bis MC_2,&TACTL ; Start timer A in continuous up mode

______________________________________________________________

Operation:
call FOO ; Call subroutine at label FOO

______________________________________________________________

Cycles Required:

Operands 2nd Operand Operator Cycles Length
Mode (words)

2 Register Any 2* 2

2 Indexed, Symbolic Any 5 3
or Absolute

1 N/A RRA, RRC, SWPB, N/A N/A
or SXT

1 N/A CALL or PUSH 5 2

     *If the destination is PC, this operation requires 3 cycles.
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Indexed Mode

Description: Indexed mode commands are formatted as n(Rx), where n is a
constant and Rx is one of the CPU registers. The absolute memory location
n+(contents of Rx) is addressed. For indexed source operands, W(S) = 01
and the memory location is defined by the word immediately following the
opcode. For indexed destination operands, W(D)=1 and the memory loca-
tion is also defined by the word immediately following the opcode. In the
case where both source and destination are indexed, the source word pre-
cedes the destination word.

Indexed mode creates opcodes identical to those created by symbolic and
absolute modes. Indexed mode also serves as the destination emulation for
indirect mode.

Advantages: Indexed mode is very useful for implementation of lookup
tables. Define a constant memory location (name it something like
Table_Start, for reference), and compute the table location that needs to be
returned into a CPU register. The table value can then be returned with
Table_Start(Rx).

Disadvantages: Indexed mode requires extra words in the instruction pipe-
line, in order to define the memory location to be addressed. It is also not the
best approach for addressing memory at a fixed, known location.

Uses: Indexed mode is useful for applications such as lookups, when the
location to be addressed is at a variable, computable distance form a known
location in memory.

Examples:
Register contents before operation:

R15=011F R14=FFFF Memory Location 0xF11F=5A5A
Operation:

mov 0F000h(R15),R14 ; Copies contents from memory to R14
Register contents after operation:

R15=5A5A R14=5A5A Memory Location 0xF11F=5A5A
______________________________________________________________
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Cycles Required:

Operands 2nd Operand Operator Cycles Length
Mode (words)

2 Register Any 3 2

2 Indexed, Symbolic Any 6 3
or Absolute

1 N/A RRA, RRC, 4 2
SWPB, or SXT

1 N/A CALL or PUSH 5 2

Symbolic Mode/Absolute Mode

Description: I have grouped symbolic and absolute modes together because
they are essentially the same. These modes allow for the addressing of fixed
memory locations, through assignment of labels to those locations.  The
difference between the two modes is in how the memory labels are used in
the code. In symbolic mode, the label itself is used; and in absolute mode, it
is preceded by a “&”. (I suspect that TI put in the “ampersand mode” to
appease C programmers, who use a similar structure for dereferencing of
pointers.)  Symbolic and absolute modes create opcodes identical to those
created by indexed mode. The address is computed slightly differently by the
assembler in each mode, but the end result is the same.

For symbolic and absolute source operands, W(S) = 01 and the memory
location is defined by the word immediately following the opcode. For sym-
bolic and absolute destination operands, W(D)=1 and the memory location
is also defined by the word immediately following the opcode. In the case
where both source and destination are indexed, the source word precedes the
destination word.

Advantages: The assignment of labels to fixed memory locations is a practice
that comes naturally to embedded programmers. The two modes allow for
addressing either with or without the ampersand, so the developer can select
the mode with which he or she is most comfortable.
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Disadvantages: Symbolic and absolute modes require extra words in the
instruction pipeline, in order to define the memory location to be addressed.

Uses: Any fixed location memory addressing, including use of RAM vari-
ables, should be performed with one of these modes.

Examples:
Memory contents before operation:

Location FOO=1000 Location BAR=A5A5
Operation:

mov FOO,BAR ; Copies contents of FOO into BAR
(Symbolic)

Memory contents before operation:
Location FOO=1000 Location BAR=1000

______________________________________________________________

Memory contents before operation:
Location FOO=1000 Location BAR=A5A5

Operation:
mov &FOO,&BAR ; Copies contents of FOO into BAR

(Absolute)
Memory contents before operation:

Location FOO=1000 Location BAR=1000
______________________________________________________________

Cycles Required:

Operands 2nd Operand Operator Cycles Length
Mode (words)

2 Register Any 3 2

2 Indexed, Symbolic Any 6 3
or Absolute

1 N/A RRA, RRC, 4 2
SWPB, or SXT

1 N/A CALL or PUSH 5 2
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Indirect Mode/Indirect Autoincrement Mode

Description: These two modes are identical, except, as one would expect, the
autoincrement  feature increments the operand as part of the instruction.
Incrementation is performed after memory access (i.e.postincrement). Indi-
rect mode is similar to C language pointers. The format for operands is @Rn
(Rn is a processor register), or @Rn+ for autoincrement mode. The data word
addressed is located in the memory location pointed to by Rn. (E.g. if the
word in R15 is 0xE5FF, the data addressed by @R15 is the data word in
memory location E5FF.)  For indirect source operands, W(S) = 10. For
indirect autoincrement mode, W(S) = 11. Indirect mode is not valid for
destination operands, but can be emulated with the indexed mode format
0(Rn). Indirect autoincrement mode is also emulated with indexed mode,
but requires an extra statement (inc Rn).

Advantages: The ability to point to a memory location and increment the
pointer in a single instruction is a very useful instruction, if used properly.

Disadvantages:  Like C pointers, indirect mode can be a source of confusion.
It is easy for the beginning developer to mentally mix up values and pointers
to values in their mind. Be wary. Also, the indirect modes require extra
words in the instruction pipeline, in order to define the memory location to
be addressed.

Uses: C compilers will use this mode extensively, especially when imple-
menting pointers. It is very handy for iterative memory access, such as array
operations.

Examples:
Register contents before operation:

R15=0FF0 R14=EA5A Memory location 0xEA5A = 1234
Operation:

mov @R14,R15 ; Move value into R15
Register contents after operation:

R15=1234 R14=EA5A Memory location 0xEA5A = 1234
______________________________________________________________
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Register contents before operation:
R15=0FF0 R14=EA5A Memory location 0xEA5A = 1234

Operation:
mov @R14+,R15 ; Move value into R15

Register contents after operation:
R15=1234 R14=EA5B Memory location 0xEA5A = 1234

______________________________________________________________

Register contents before operation:
R14=02FF Memory location 0x02FF = 1234

Operation:
clr @R14 ; Clear RAM location

Register contents after operation:
R14=02FF Memory location 0x02FF = 0000

______________________________________________________________

Register contents before operation:
R14=02FF Memory location 0x02FF = 1234

Operation:
clr @R14+ ; Clear RAM location

Register contents after operation:
R14=0300 Memory location 0x02FF = 0000

______________________________________________________________

Operation:
pop R12 ; pop is an emulated autoincrement instruction

______________________________________________________________
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Cycles Required:

Operands 2nd Operand Operator Cycles Length
Mode (words)

2 Register Any 2 1

2 Indexed, Symbolic Any 5 2
or Absolute

1 N/A RRA, RRC, 3 1
SWPB, or SXT

1 N/A CALL or PUSH 4 1

   *Indirect to register mode branch operations (mov @Rn, PC) require 3 cycles.

Instruction Set Orthogonality

The ability to use different addressing modes for both source and
destination is referred to as instruction orthogonality. The ’430 is
considered to be fully orthogonal, since any instruction can effec-
tively use any addressing mode for both source and destination
operands. This flexibility is something of a rarity in small
microcontrollers.

Full orthogonality has several advantages. It allows the program-
mer to write very compact code. Many operations which require
multiple statements in other controllers can be accomplished with
one properly addressed command in the ’430. Also, and perhaps most
importantly, this is a very compiler-friendly feature. C constructs,
such as pointers, implement much more readily in the ’430 than in
most other microcontrollers. The downside, however, is added com-
plexity. In order to implement a fully orthogonal set, linear
instruction timing is sacrificed (i.e., instructions can take anywhere
from 1 to 6 clock cycles, depending on addressing).
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The complexity can really be an advantage or a hindrance, de-
pending on the developer. The ’430 certainly requires the coder to
hold a deeper understanding of the device than most competing
platforms. The combination of orthogonality, code mapped in the
same space as RAM, and multiple on-chip peripherals requires greater
mental discipline than simply shuffling data between RAM and a
single working register. In short, this device gives the developer
plenty of rope.
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This chapter describes the MSP430 instruction set. Quick reference tables
categorize the instructions by operation type. The instructions are then
individually described, with their effect on flags, and some common examples.

The MSP430 instruction set consists of 27 base opcodes, some of which
can be called as either byte or word instructions. Additionally, TI has docu-
mented 24 emulated instructions, which are supported by assemblers and
compilers, but have no dedicated opcode associated with their mnemonic.
Byte and word instructions are called via a suffix of .B or .W to the mne-
monic. For example, MOV.B is a byte move, and MOV.W is a 16-bit word
move. If the suffix is omitted, the mnemonic is interpreted to be a word
instruction. Bit and flow control operations do not support a suffix.

The use of emulated instructions might be viewed as optional or extrane-
ous to the basic design and use of the device. They are, in fact, quite
necessary in many cases. There are several cases where base instructions have
complementary emulated instructions. The best example of this is PUSH
(base) and POP (emulated). The right handed roll operations are base, while
the left handed are emulated. C compilers (and most assembly programmers)
will rely heavily on these emulated instructions.
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Arithmetic Instructions
Mnemonic Description Emulation

ADC(.B or .W) dest Add carry to destination ADDC(.B or.W) #0,dest

ADD(.B or .W) src,dest Add source to destination Not an emulated instruction

ADDC(.B or .W) src,dest Add source and carry to Not an emulated instruction
destination

DADC (.B or .W) dest Decimal add carry to DADD(.B or .W), #0,dest
destination

DADD (.B or .W) src,dest Decimal add source and Not an emulated instruction
carry to destination

DEC (.B or .W) dest Decrement destination SUB(.B or .W) #1,dest

DECD (.B or .W) dest Decrement destination SUB(.B or .W) #2,dest
twice

INC(.B or .W) dest Increment destination ADD(.B or .W) #1,dest

INCD(.B or .W) dest Increment destination ADD(.B or .W) #2,dest
twice

SBC(.B or .W) dest Subtract carry from SUBC(.B or .W) #0,dest
destination

SUB(.B or .W) src,dest Subtract source from Not an emulated instruction
destination

SUBC(.B or .W) src,dest Subtract source and Not an emulated instruction
borrow* from destination

                                                    *borrow is defined as NOT carry



117

Instruction Set

Logical and Register Control Instructions
Mnemonic Description Emulation

AND(.B or .W) src,dest AND source with
destination Not an emulated instruction

BIC(.B or .W) src,dest Clear bits in destination Not an emulated instruction

BIS(.B or .W) src,dest Set bits in destination Not an emulated instruction

BIT(.B or .W) src,dest Test bits in destination Not an emulated instruction

INV(.B or .W) dest Invert bits in destination XOR(.B or .W) #0FFFFh,dest

RLA(.B or .W) dest Roll destination left ADD(.B or .W) dest,dest

RLC(.B or .W) dest Roll destination left ADDC(.B or .W) dest,dest
through carry

RRA(.B or .W) dest Roll destination right Not an emulated instruction

RRC(.B or .W) dest Roll destination right Not an emulated instruction
through (from) carry

SWPB dest (word only) Swap bytes in destination Not an emulated instruction

SXT dest (word only) Sign extend destination Not an emulated instruction

XOR(.B or .W) dest XOR source with Not an emulated instruction

destination



118

Embedded Systems Design using the TI MSP430 Series

Data Instructions
Mnemonic Description Emulation

CLR(.B or .W) dest Clear destination MOV(.B or .W) #0,dest

CLRC Clear carry flag BIC #1,SR

CLRN Clear negative flag BIC #4,SR

CLRZ Clear zero flag BIC #2,SR

CMP(.B or .W) src,dest Compare source to Not an emulated instruction
destination

MOV(.B or .W) src,dest Move source to destination Not an emulated instruction

POP(.B or .W) dest Pop item from stack to dest MOV(.B or .W) @SP+,dest

PUSH(.B or .W) dest Push dest to stack Not an emulated instruction

SETC Set carry flag BIS #1,SR

SETN Set negative flag BIS #4,SR

SETZ Set zero flag BIS #2,SR

TST(.B or .W) dest Test destination CMP(.B or .W) #0,dest
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Program Flow Control Instructions
Mnemonic Description Emulation

BR dest Branch to destination MOV dest,PC

CALL dest Subroutine call to Not an emulated instruction
destination

DINT Disable interrupts BIC #8,SR

EINT Enable interrupts BIS #8,SR

JC (or JHS) label Jump to label if carry Not an emulated instruction
flag is set

JGE label Jump to label if greater Not an emulated instruction
than or equal *

JL label Jump to label if less than * Not an emulated instruction

JMP label Jump to label Not an emulated instruction
unconditionally

JN label Jump to label if negative Not an emulated instruction
flag is set

JNC (or JLO) label Jump to label if carry flag Not an emulated instruction
is reset

JNZ (or JNE) label Jump to label if zero flag is Not an emulated instruction
reset

JZ (or JEQ) label Jump to label if zero flag Not an emulated instruction
is set

NOP No operation MOV #0,#0

RET Return from subroutine MOV @SP+,PC

RETI Return from interrupt Not an emulated instruction

              *jump is made based on flag values from a previous CMP statement
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Core Instructions
ADD (.B or .W)  src,dest Add source to destination
Description: The source operand is added to the destination oper

and, and the result is placed in the destination. The
value in source is preserved.

Operation: dest = dest + source

Opcode Structure:

0 1 0 1 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags:  All flags affected normally

Examples:
ADD #3Ah,R15 ; Add the value 3A to R15
ADD R15,&MAC ; Add the value in R15  to multiplier SFR
ADD @R4,R7 ; Add the contents of the location

  pointed to by R4 to R7
JC FOO ; If carry flag is set by operation, jump

  to FOO
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ADDC (.B or .W)  src,dest Add source and carry to destination
Description: The source operand and carry flag are added to the

destination operand, and the result is placed in the
destination. The value in source is preserved.

Operation:    dest = dest + source + C

Opcode Structure:

0 1 1 0 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: All flags affected normally

Examples:
ADDC #3Ah,R15 ; Add the value 3A to R15
ADDC R15,&MAC ; Add the value in R15  to multiplier SFR
ADDC @R4,R7 ; Add the contents of the location

  pointed to by R4 to R7
JC FOO ; If carry flag is set by operation, jump

  to FOO
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AND (.B or .W)  src,dest Logical AND bits in source and
destination

Description: The bits in the source operand are logically ANDed
with the bits in the destination operand, and the result
is placed in the destination. The value in source is
preserved.

Operation: dest = dest AND src

Opcode Structure:

1 1 1 1 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: NOT Z
N: Takes value of result MSB
V: Reset

Examples:
AND @R4,R7 ; AND the contents of the location

  pointed to by R4 to R7
AND #00FFh,R12 ; Mask off the top byte of R12
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BIC (.B or .W)  src,dest Clear selected bits in destination
Description: Specific bits in the destination, as determined by the

set bits in the source, are cleared. The value in source
is preserved.

Operation: dest = dest AND NOT(src)

Opcode Structure:

1 1 0 0 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Status flags are unaffected by this operation.

Examples:
BIC #0030h,&TACTL ; Stop timer A
BIC #00FFh,R12 ; Mask off the top byte of R12
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BIS (.B or .W)  src,dest Set selected bits in destination
Description: Specific bits in the destination, as determined by the

set bits in the source, are set. The value in source is
preserved.

Operation:    dest = dest OR src

Opcode Structure:

1 1 0 1 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags:  Status flags are unaffected by this operation.

Examples:
BIS #0030h,&TACTL ; Start timer A in up/down mode
BIS #00FFh,R7 ; Set the low byte of R7
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BIT (.B or .W)  src,dest Test selected bits in destination
Description: Specific bits in the destination, as determined by the

set bits in the source, are tested. The values in source
and destination are both preserved. This operation and
the AND operation affect flags identically.

Operation: dest AND src

Opcode Structure:

1 0 1 1 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: NOT Z
N: Takes value of result MSB
V: Reset

Example:
BIT #0040h,R12 ; is bit 6 of R12 set?
JZ FOO ; If yes, jump to label FOO
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CALL dest Subroutine call
Description: A subroutine call is made to destination, and the

current program counter is pushed to the stack.
Destination can be anywhere in the 64k memory
space.

Operation: PUSH PC
PC = dest

Opcode Structure:

0 0 0 1 0 0 1 0 1 B/W W(S) W(S) R(D) R(D) R(D) R(D)

B/W: 0=Word Instruction (no byte mode for this operation)
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags:  Status flags are unaffected by this operation.

Example:
CALL @R7 ; Call to address in word pointed to by R7
CALL #FOO ; Call to label FOO
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CMP (.B or .W)  src,dest Compare source to destination
Description: The source is subtracted from the destination. The

values in source and destination are both preserved.
This operation and the SUB operation affect flags
identically.

Operation: dest-src

Opcode Structure:

1 0 0 1 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: Set if dest+ NOT.src +1 produces a carry, reset
     otherwise
N: Set if src >= dest, reset otherwise
V: Set on arithmetic overflow

Example:
CMP FOO,R12 ; is R12=FOO?
JZ BAR ; If yes, jump to label BAR
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DADD (.B or .W)  src,dest Decimal (BCD) add source and carry to
destination

Description: The source and carry flag are added, in BCD format,
to the destination.

Operation: dest(BCD) = dest (BCD) + src (BCD) + C

Opcode Structure:

1 0 1 0 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or

absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: Set if result>9999 (word) or result>99 (byte)
N: Takes value of MSB after operation
V: Undefined

Example:
DADD.B R7,R8 ; add two decimals in R7 to R8
JC BAR ; If result >99, jump to BAR
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JC dest Jump if carry
Description: A jump to the destination is made if the carry flag is

set. The jump can be made up to 511 words backwards
or 512 words forwards in the code.

Operation: if C=1, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 0 1 1 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign = Sign bit for offset
Ofst = Address offset for jump

Status Flags:  Status flags are unaffected by this operation.

Example:
ADDC @R4,R7 ; Add the contents of the location

  pointed to by R4 to R7
JC FOO ; If carry flag is set by operation, jump

  to FOO

DADD.B R7,R8 ; add two decimals in R7 to R8
JC BAR ; If result >99, jump to BAR



130

Embedded Systems Design using the TI MSP430 Series

JGE dest Jump if greater than or equal to
Description: A jump to the destination is made if the overflow flag

and negative flag have the same value. The jump can
be made up to 511 words backwards or 512 words
forwards in the code.

Operation: if N.XOR.V=0, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 1 0 1 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign = Sign bit for offset
Ofst = Address offset for jump

Status Flags: Status flags are unaffected by this operation.

Examples:
CMP R4,R7 ; Compare R4 to R7
JGE FOO ; If R7>=R6,  jump to FOO

CMP R5,#0FF00h ; Compare R5 to constant
JGE BAR ; If R5<constant,  jump to BAR
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JL dest Jump if less than
Description: A jump to the destination is made if the overflow flag

and negative flag have complementary values. The
jump can be made up to 511 words backwards or 512
words forwards in the code.

Operation: if N.XOR.V=1, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 1 1 0 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign = Sign bit for offset
Ofst = Address offset for jump

Status Flags: Status flags are unaffected by this operation.

Examples:
CMP R4,R7 ; Compare R4 to R7
JL FOO ; If R7<R6,  jump to FOO

CMP R5,#0FF00h ; Compare R5 to constant
JL BAR ; If R5>=constant,  jump to BAR
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JMP dest Unconditional jump
Description: A jump to the destination is made. The jump can be

made up to 511 words backwards or 512 words forwards
in the code.

Operation: PC = PC+2*offset

Opcode Structure:

0 0 1 0 0 0 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign = Sign bit for offset
Ofst = Address offset for jump

Status Flags: Status flags are unaffected by this operation.

Examples:
JMP FOO ; Unconditional jump to FOO
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JN dest Jump if negative
Description: A jump to the destination is made if the negative flag

is set. The jump can be made up to 511 words back-
wards or 512 words forwards in the code.

Operation: if N=1, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 1 0 0 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign = Sign bit for offset
Ofst = Address offset for jump

Status Flags: Status flags are unaffected by this operation.

Examples:
SUB R4,R7 ; Subtract R7 from R4
JN FOO ; If result is negative,  jump to FOO
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JNC dest Jump if carry not set
Description: A jump to the destination is made if the carry flag is

reset. The jump can be made up to 511 words back-
wards or 512 words forwards in the code.

Operation: if C=0, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 0 1 0 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign=Sign bit for offset
Ofst = Address offset for jump

Status Flags:  Status flags are unaffected by this operation.

Example:
ADDC @R4,R7 ; Add the contents of the location

  pointed to by R4 to R7
JNC FOO ; If carry flag is not set by operation,

  jump to FOO

DADD.B R7,R8 ; add two decimals in R7 to R8
JNC BAR ; If result <99, jump to BAR
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JNE or JNZ dest Jump if not equal or jump if not zero
Description: A jump to the destination is made if the zero flag is

reset. The jump can be made up to 511 words back-
wards or 512 words forwards in the code.

Operation: if Z=0, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 0 0 0 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign = Sign bit for offset
Ofst = Address offset for jump

Status Flags: Status flags are unaffected by this operation.

Example:
CMP R10,R11 ; Compare R10 to R11
JNE BAR ; If R10<>R11,jump to BAR

CMP R8,#0FF00h ; Compare R8 to constant
JNE FOO ; If R5<>constant,  jump to FOO
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JZ or JEQ dest Jump if Zero or Jump if equal
Description: A jump to the destination is made if the zero flag is set.

The jump can be made up to 511 words backwards or
512 words forwards in the code.

Operation: if Z=1, PC = PC+2*offset
Else, perform a NOP

Opcode Structure:

0 0 1 0 0 1 Sign Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst Ofst

Sign= Sign bit for offset
Ofst = Address offset for jump

Status Flags: Status flags are unaffected by this operation.

Example:
MOV #5,R7 ; initialize counter

FOO ADD @R6+,R5 ; Accumulate next sample in R5
DEC R7 ; Check for last sample
JZ BAR ; If final sample, jump to label BAR
JMP FOO ; else, loop to FOO
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MOV (.B or .W)  src,dest Move source to destination
Description: The source is copied to the destination. The value in

source is preserved.

Operation: dest=src

Opcode Structure:

1 0 0 0 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Status flags are unaffected by this operation.

Example:
MOV #00FAh,R15 ; load constant into R15

MOV @R14+,R4 ; Move contents of address in R14 to
 R4, inc R14
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PUSH (.B or .W) src Push source to top of stack
Description: The stack pointer is decremented by two, and the

source word is copied to the new TOS (top of stack)
location.

Operation: SP=SP-2
@SP = src

Opcode Structure:

0 0 0 1 0 0 1 0 0 B/W W(S) W(S) R(D) R(D) R(D) R(D)

B/W: 1=Byte Instruction
0=Word Instruction

W(S): 00=No source word (register mode)
01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Status flags are unaffected by this operation.

Example:
PUSH SR ; Status register is pushed to stack
PUSH R12 ; Push R12 to stack
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RETI Return from interrupt
Description: Returns program flow from ISR to previous address.

See Chapter 3 for description.

Operation: POP SR
POP PC

Opcode Structure:

0 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0

Status Flags: Status flags are restored from stack

Example:
RETI ; return from interrupt
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RRA (.B or .W) dest Roll right arithmetically
Description: All bits in the destination are shifted right one bit

location. The MSB is preserved, and the LSB is shifted
into the carry flag.

Operation: dest (MSB) preserved
dest (MSB)=>dest(MSB-1)

:
:

dest (LSB+1)=>dest(LSB)
dest (LSB)=>C

Opcode Structure:

0 0 0 1 0 0 0 1 0 B/W W(S) W(S) R(D) R(D) R(D) R(D)

B/W: 1=Byte Instruction
0=Word Instruction

W(S): 00=No source word (register mode)
01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: Loaded from LSB
N: Set if result<0, reset otherwise
V: Reset

Example:
MOV #4,R7 ; initialize counter for divide by 32

FOO RRA R5 ; Divide R5 by 2
DEC R7 ; Check for last divide
JZ BAR ; If final sample, jump to label BAR
JMP FOO ; else, loop to FOO
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RRC (.B or .W) dest Roll right through carry
Description: All bits in the destination are shifted right one bit

location. The carry flag is shifted into the MSB, and
the LSB is shifted into the carry flag.

Operation: C=>dest (MSB)
dest (MSB)=>dest(MSB-1)

:
:

dest (LSB+1)=>dest(LSB)
dest (LSB)=>C

Opcode Structure:

0 0 0 1 0 0 0 0 0 B/W W(S) W(S) R(D) R(D) R(D) R(D)

B/W: 1=Byte Instruction
0=Word Instruction

W(S): 00=No source word (register mode)
01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: Loaded from LSB
N: Set if result<0, reset otherwise
V: Set if dest>0 and C=1, reset otherwise

Example:
FOO RRC R6 ; This set of commands shifts

RRC R5 ; 64 bits of data through the
RRC R4 ; processor registers and into the
RRC &P1OUT ; Port 1 output register
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SUB (.B or .W)  src,dest Subtract source from destination
Description: The source is subtracted from the destination. The

value in source is preserved. This operation and the
CMP operation affect flags identically.

Operation: dest = dest-src

Opcode Structure:

1 0 0 0 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: Set if dest+ NOT.src +1 produces a carry, reset
otherwise
N: Set if src >= dest, reset otherwise
V: Set on arithmetic overflow

Example:
SUB #4,R12 ; Subtract 4 from R12
JN BAR ; If R12 was <4 prior to op, jump to BAR
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SUBC (.B or .W)  src,dest Subtract source and borrow from
destination

Description: The source and borrow are subtracted from the
destination. The value in source is preserved. Borrow
is defined as the complement of the carry flag. This
operation and the CMP operation affect flags
identically.

Operation: dest = dest-src – 1 + C

Opcode Structure:

0 1 1 1 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: Set if dest+ NOT.src +1 produces a carry, reset
otherwise
N: Set if src >= dest, reset otherwise
V: Set on arithmetic overflow

Example:
SUBC #4,R12 ; Subtract 4 from R12
JN BAR ; If R12 was <4 prior to op, jump to BAR
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SWPB dest Swap Bytes
Description: The high byte and the low byte in the destination

word are swapped.

Operation: temp=dest(high byte)
dest(high byte) = dest(low byte)
dest(low byte) = temp

Opcode Structure:

0 0 0 1 0 0 0 0 1 B/W W(S) W(S) R(D) R(D) R(D) R(D)

B/W: 0=Word Instruction (no byte mode for this operation)
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Status flags are unaffected by this operation.

Example:
SWPB R12 ; Divide by 256 by swapping bytes
AND #00FFh,R12 ; and masking off top byte
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SXT dest Sign extend destination
Description: The sign of the low byte is copied into the high byte

Operation: dest(bits 8-15) = dest (bit 7)

Opcode Structure:

0 0 0 1 0 0 0 0 1 B/W W(S) W(S) R(D) R(D) R(D) R(D)

B/W: 0=Word Instruction (no byte mode for this operation)
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: NOT Z
N: Set if result<0, reset otherwise
V: Reset

Example:
MOV.B &P2IN,R10; ; Load R10 with 8-bit value from Port 2
SXT R10 ; Sign extend for processing
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XOR (.B or .W)  src,dest Logical XOR bits in source and
destination

Description: The bits in the source operand are logically XORed
with the bits in the destination operand, and the result
is placed in the destination. The value in source is
preserved.

Operation:  dest = dest XOR src

Opcode Structure:

1 1 1 0 R(S) R(S) R(S) R(S) W(D) B/W W(S) W(S) R(D) R(D) R(D) R(D)

R(S): Source Register (0 if not register operation)
W(D): 1=Destination word (index, symbolic, or absolute)
       : 0=No destination word (register mode)
B/W: 1=Byte Instruction

0=Word Instruction
W(S): 00=No source word (register mode)

01=Index, symbolic, or absolute mode for source
10=Indirect register mode
11=Indirect autoincrement or immediate mode

R(D): Destination Register (0 if not register operation)

Status Flags: Z: Set if result=0, reset otherwise
C: NOT Z
N: Takes value of result MSB
V: Set if both operands are negative

Examples:
XOR @R4,R7 ; XOR the contents of the location

  pointed to by R4 to R7
XOR #00FFh,R12 ;Toggle the bits in the low byte of R12



147

Instruction Set

Emulated Instructions
BR dest Branch to destination
Description: Unconditional branch operation to any location in memory.
Operation: PC = dest
Emulation MOV dest,PC
Examples:

BR #FOO ; Branch to label FOO
BR R12 ; Branch to address contained in R12
BR @R12 ; Branch to address contained in word pointed

  to by R12
______________________________________________________________

CLR (.B or .W) dest Clear destination
Description: Destination is set to zero.
Operation: dest = 0
Emulation: MOV(.B or .W) #0,dest
Example:

CLR R11 ; Clears R12
______________________________________________________________

CLRC Clear carry flag
Description: Carry flag is reset.
Operation: C = 0
Emulation BIC #1,SR
Example:

CLRC ; Clears carry flag
______________________________________________________________

CLRN Clear negative flag
Description: Negative flag is reset.
Operation: N = 0
Emulation BIC #4,SR
Example:

CLRN ; Clears negative flag



148

Embedded Systems Design using the TI MSP430 Series

CLRZ Clear zero flag
Description: Zero flag is reset.
Operation: Z = 0
Emulation BIC #2,SR
Example:

CLRZ ; Clears zero flag
______________________________________________________________

DADC (.B or .W) dest Add carry decimally to destination
Description: The carry flag is added to the destination in decimal (BCD)

format.
Operation: dest(BCD) = dest(BCD) + C
Emulation DADD(.B or .W) #0,dest
Example:

DADC.B R7,R8 ; add two decimals in R7 to R8
JC BAR ; If result >99, jump to BAR

______________________________________________________________

DEC (.B or .W) dest Decrement destination
Description: The destination is decremented by 1.
Operation: dest = dest-1
Emulation SUB(.B or .W) #1,dest
Example:

MOV #4,R7 ; initialize counter for divide by 32
FOO RRA R5 ; Divide R5 by 2

DEC R7 ; Check for last divide
JZ BAR ; If final sample, jump to label BAR
JMP FOO ; else, loop to FOO

______________________________________________________________
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DECD (.B or .W) dest Double decrement destination
Description: The destination is decremented by 2.
Operation: dest = dest-2
Emulation SUB(.B or .W) #2,dest
Example:

DECD BAR ; Decrement memory location BAR by 2
______________________________________________________________

DINT Disable interrupts
Description: All interrupts are disabled.
Operation: GIE = 0
Emulation BIC #8,SR
Example:

DINT ; disables interrupts
______________________________________________________________

EINT Enable interrupts
Description: All interrupts are enabled.
Operation: GIE = 1
Emulation BIS #8,SR
Example:

EINT ; enables interrupts
______________________________________________________________

INC (.B or .W) dest Increment destination
Description: The destination is incremented by 1.
Operation: dest = dest+1
Emulation ADD(.B or .W) #1,dest
Example:

MOV #0,R7 ; initialize counter fo
FOO ADD BASE(R7),R5 ; Add new value to R5

INC R7 ; increment counter
CMP #8,R7 ; Check for last sample
JZ BAR ; If final sample, jump to label BAR
JMP FOO ; else, loop to FOO



150

Embedded Systems Design using the TI MSP430 Series

INCD (.B or .W) dest Double increment destination

Description: The destination is incremented by 2.
Operation: dest = dest+2
Emulation Add(.B or .W) #2,dest
Example:

INCD BAR ; Decrement memory location BAR by 2
JC FOO ; Jump to FOO if carry

______________________________________________________________

INV (.B or .W) dest Invert destination
Description: The bits in destination are inverted.
Operation: dest = NOT.dest
Emulation XOR #0FFFFh,dest ; word operation

XOR #0FFh,dest ; byte operation
Example:

INV R6 ; inverts bits in R6
______________________________________________________________

NOP No operation
Description: No operation is performed. Typically, this instruction is used

to fill time for code synchronization purposes.
Operation: None
Emulation MOV #0,R3
______________________________________________________________

POP (.B or .W) dest Pop stack to destination
Description: The value at TOS is moved to destination, and the stack
pointer is incremented accordingly.
Operation: dest = @SP, SP=SP+2
Emulation MOV(.B or .W) @SP+,dest

Example:
POP R6 ; restores R6 from stack
POP SR ; restores status register from stack



151

Instruction Set

RET Return from subroutine
Description: The complement of the CALL mnemonic, RET pops the PC

address from the stack
Operation: PC = @SP, SP=SP+2
Emulation MOV @SP+,PC

Example:
RET ; returns from subroutine call
______________________________________________________________

RLA (.B or .W) dest Roll left arithmetically
Description: All bits in the destination are shifted left one bit location.

The LSB is reset, and the MSB is shifted into the carry flag.
Operation: dest (MSB)=>C

dest (MSB-1)=>dest(MSB)
:
:

dest (LSB)=>dest(LSB+1)
dest (LSB) = 0

Emulation ADD(.B or .W) dest,dest
Example:

MOV #4,R7 ; initialize counter for multiply by 32
FOO RLA R5 ; multiply R5 by 2

DEC R7 ; Check for last multiply
JZ BAR ; If final multiply,jump to BAR
JMP FOO

______________________________________________________________
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RLC (.B or .W) dest Roll left through carry
Description: All bits in the destination are shifted left one bit location.

The LSB is loaded with carry, and the MSB is shifted into the
carry flag.

Operation: dest (MSB)=>C
dest (MSB-1)=>dest(MSB)

:
:

dest (LSB)=>dest(LSB+1)
dest (LSB) = C

Emulation ADDC(.B or .W) dest,dest
Example:
BAR RLC R15 ; This set of commands shifts

RLC R14 ; 64 bits of data through the
RLC R13 ; processor registers and into the
RLC &P4OUT ; Port 4 output register

______________________________________________________________

SBC (.B or .W)  dest Subtract borrow from destination
Description: The borrow is subtracted from the destination. Borrow is

defined as the complement of the carry flag.
Operation: dest = dest– 1 + C

Emulation SUBC (.B or .W) #0,dest

Example:
SBC R12 ; Subtract C from R12
JN BAR ; If R12 = 0 and C = 1, jump to BAR

______________________________________________________________
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SETC Set carry flag
Description: Carry flag is set.
Operation: C = 1
Emulation BIS #1,SR
Example:

SETC ; sets carry flag
______________________________________________________________

SETN Set negative flag
Description: Negative flag is ret.
Operation: N = 1
Emulation BIS #4,SR
Example:

SETN ; sets negative flag
______________________________________________________________

SETZ Set zero flag
Description: Zero flag is set.
Operation: Z = 1
Emulation BIS #2,SR
Example:

SETZ ; sets zero flag
______________________________________________________________

TST (.B or .W) dest Test destination
Description: Destination is tested for a zero condition
Operation: dest-0
Emulation CMP (.B or .W)  #0,dest
Example:

TST R12 ; tests R12
JZ BAR ; if R12=0, jump to BAR

______________________________________________________________
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Language Selection

While it is helpful for understanding the functionality of the device,
it is not unlikely that you, the reader, might never actually use this
instruction set directly. Very few companies develop in assembly
language anymore. Because of the effects of Moore’s Law and increas-
ingly complex designs, development time has become the critical
resource. Generating 4k or more of tight, stable assembly code simply
takes too long. C language has become the tool of choice for many
designs, since it provides the best combination of direct access to
hardware and rapid, efficient development. Additionally, most of
today’s commercially available platform-dependent compilers will
develop code which is just as tight as an assembly programmer. (I
know that I have just raised the ire of hundreds of assembly program-
mers out there, but the days of C compilers that produce bloated, slow
code are nearing their end.)

When selecting a language for development, you should ask yourself
the following questions:

1. How large is the project? If your objective only requires 50 in-
structions, programming and debugging in assembly can be done
in an afternoon. If you are developing a 10,000 instruction con-
trol system, a structured language makes more sense.

2. Is portability an issue? If you plan on reusing code, in whole or
part, on other platforms, you should probably rule out assembly
immediately.

3. What resources do you have available? Most hobbyists aren’t
going to shell out the $2000 or so for a full-blown ANSI C com-
piler. There are various freeware compilers for the MSP430 out
there, of unknown quality and completeness. If you are interested,
post a question about these compilers on comp.arch.embedded.
There are usually a couple of finished compilers, and one or two
more “in progress.”
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4. Where is your comfort zone? You should be comfortable in the
language you select, and understand its features. For example, use
of Forth on microcontroller projects has been growing in popular-
ity in recent years. I have never used the language myself, but the
few Forth programmers I have spoken with are almost religious in
their loyalty. I would never suggest that these developers should
abandon their language in favor of C.
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C H A P T E R

Few improvements in the past decade have aided in the development of
embedded software as much as flash memory. Tasks that used to require
expensive emulation systems can now be performed on the components
themselves, for less than the cost of this book. External EEPROM is no
longer necessary in many cases, as critical values can be saved to on-board
flash memory. When bugs occur (and they will), we can simply reprogram,
rather than replace. I cannot remember how I survived before flash memory.

Ever responsive to the market, TI has produced flash versions of most
’430 devices. They are numbered as MSP430Fxxx, and are slightly more
expensive than the ROM or OTP parts. Additionally, there is a low-cost
flash emulation tool available from TI.

Flash Memory Structure

Flash memory is divided into segments in the ’430 devices. Flash memory
may be written one byte or word at a time, but must be erased in segments.
Erased flash locations hold the value 0xFF(FF). These devices have the
ability to “overprogram,” that is, to reprogram the same location multiple
times between erase cycles. You can always turn 1s into 0s, but you must
erase the segment to change 0s back to 1s.

There are two different type of flash memory segments. The first is infor-
mation memory, which is always two 128-byte segments, at locations
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0x10FF-0x1080 (Segment A) and 0x107F-0x1000 (Segment B). These
segments are intended for use as on-board EEPROM, although nothing
prohibits you from executing code from this space. The second type of
segment is more general. In ’Fxxx devices, all of the code space is divided
into 512-byte segments, beginning at the top of memory. Segment 0 is lo-
cated from 0xFFFF-0xFE00, Segment 1 is located from 0xFDFF-0xFC00, and
so on.

Flash Memory Control Registers
• FCTL1, Flash Memory Control 1.

Address:  0x0128h
All unreserved bits are readable and writable.
Structure:

Bit

Reset Value

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

SEGWRT

0

WRT

0

res

0

res

0

res

0

MEras

0

Erase

0

res

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

R/W :  Read/Write
This byte is used for write security for the register.
When the FCTL1 register is read, this byte will read
as 0x96. When writing to this register, the value
0xA5 must be written to this byte. Any attempt to
write to this register with a different high byte will
generate a flash access violation interrupt. (This is
one method by which your code can perform a soft
reset).
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SEGWRT :  Segment Write
This variable is also referenced as BLKWRT in some
TI literature. This bit is set high when writing an
entire block to flash memory. When writing multiple
flash blocks, this bit must be brought low, then high
again, between blocks.

WRT :  Write
This bit must be set high for a valid write operation.
If a write operation is attempted when this bit is
reset, an access violation interrupt is generated.

MEras :  Mass Erase
When this bit is set, a mass erase is executed, by
performing a dummy write operation into a segment.
With the mass erase operation, all segments, from
segment 0 to the targeted segment, inclusive, are
erased.

Erase :  Erase
When this bit is set, an erase is executed, by
performing a dummy write operation into a segment.
With the erase operation, only the targeted segment
is erased.
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• FCTL2, Flash Memory Control 2.
Address:  0x012Ah
All unreserved bits are readable and writable.
Structure:

Bit

Reset Value

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

SSEL1

0

SSEL0

0

FN5

0

FN4

0

FN3

0

FN2

0

FN1

0

FN0

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

R/W :  Read/Write
This byte is used for write security for the register.
When the FCTL2 register is read, this byte will read
as 0x96. When writing to this register, the value
0xA5 must be written to this byte. Any attempt to
write to this register with a different high byte will
generate a flash access violation interrupt. (This is
one method by which your code can perform a soft
reset).

SSEL :  Clock Source Select
This variable determines the clock source for the
flash timing generator.

SSEL=00 ACLK
SSEL=01 MCLK
SSEL=10 SMCLK
SSEL=11 SMCLK

FN :  Clock Division Rate
The flash timing generator rate is divided by the
value (FN+1)
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• FCTL3, Flash Memory Control 3.
Address:  0x012Ch
All unreserved bits except WAIT are readable and writable.
Structure:

Bit

Reset Value

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

R/W

0

Bit Position 15 (MSB) 14 13 12 11 10 9 8

Bit

Reset Value

res

0

res

0

EMEX

0

Lock

0

WAIT

0

ACIFG

0

KEYV

0

BUSY

0

Bit Position 7 6 5 4 3 2 1 0 (LSB)

R/W :  Read/Write
This byte is used for write security for the register.
When the FCTL3 register is read, this byte will read
as 0x96. When writing to this register, the value
0xA5 must be written to this byte. Any attempt to
write to this register with a different high byte will
generate a flash access violation interrupt. (This is
one method by which your code can perform a soft
reset).

EMEX :  Emergency Exit
This is your trapdoor, for when the flash write locks
itself in an eternal loop. A 1 written to this bit
completely shuts down the flash memory controller,
resets FCTL1, and resets itself.

Lock :  Lock Bit
Setting this bit prevents writing or erasing of flash
memory. This bit is fully software controllable.
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WAIT :  Wait bit
When in block write mode, this bit indicates when
the flash memory controller is ready for the next byte
or word. A 0 indicates that programming is under
way, and a 1 indicates that the memory is ready for
the next write.

ACIFG :  Access violation interrupt flag
This flag is set when flash is improperly accessed.
Along with this, an interrupt request is sent. In order
for the interrupt to activate, the ACCVIE bit in IE 1
must also be set.

KEYV :  Key Violated Bit

This bit is set high when a write to FCTL1, 2, or 3 is
attempted and the high byte was NOT set to 0xA5.
This bit is not reset automatically. Setting this bit
high will prompt a PUC.

BUSY :  Busy Bit
If this bit is 0, access to flash memory is possible. If
this bit is 1, attempted access to flash will cause an
access violation. This bit should be tested prior to
any write or erase attempt. This bit will remain high
if a block write function is underway.

Using Flash Memory

Erasure and writing of flash memory is a relatively straightforward process.
All flash activities are internally timed, based on the Flash Timing Genera-
tor. The timing generator is initialized in FCTL2, and the speed of the
generator is specified in the device datasheet. Once the timing generator is
set up, its functionality is transparent to the developer and the firmware. I
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typically set it up to be about 400 kHz, and then forget about the thing. The
erase and write processes described below assume that the timing generator is
properly configured.

Segment and mass erase processes each require about 5,000 cycles of the
Flash Timing Generator. The segment erase is a bit faster then the mass erase
(about 10%). Erasing flash memory requires several sequential steps. They are:

1) Check the BUSY bit, in FCTL3.

2) Clear the Lock bit, in FCTL3.

3) Set Erase, or MEras, in FCTL1, depending on whether you are per-
forming a segment erase or a mass erase.

4) Perform a dummy write to the segment to be erased. Any write, clear,
or logical operation performed on any address in the correct segment
will work.

5) Wait for the BUSY bit, in FCTL3, to go low.

6) Set the Lock bit, in FCTL3, to prevent accidental writes.

A single element (byte or word) write requires 33 cycles of the Flash
Timing Generator. Writing to flash memory is a similar process. A single
element is written using the following process:

1) Check the BUSY bit, in FCTL3.

2) Clear the Lock bit, in FCTL3.

3) Set the WRT bit, in FCTL1.

4) Write the element to the proper address, using a mov.b or mov.w
instruction. This starts the timing generator.

5) Wait for the BUSY bit, in FCTL3, to go low.

6) Set the Lock bit, in FCTL3, to prevent accidental writes.

A block write is similar to a repetitive element write, the main difference
being that the block write process requires about half as long as repeated
single element writes would. Blocks are predefined 64-byte structures in
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memory. Each block begins at addresses of the form xxxx xxxx xx00 0000
(e.g 0xFE80 or 0xFCC0), and ends 64 bytes later, at an address of the form
xxxx xxxx xx11 1111 (e.g. 0xFEBF or 0xFCFF). The block write process
requires about 20 cycles of the Timing Generator per element, plus overhead
of about 15 more cycles. The process is:

1) Check the BUSY bit, in FCTL3.

2) Clear the Lock bit, in FCTL3.

3) Set the WRT and BLKWRT bits in FCTL1.

4) Write element to proper address.

5) Loop until WAIT bit, in FCTL3, is set.

6) Repeat from step 4) until all elements have been written.

7) Clear the WRT and BLKWRT bits in FCTL1.

8) Wait for the BUSY bit, in FCTL3, to go low.

9) Set the Lock bit, in FCTL3, to prevent accidental writes.

Remember that there is a minimum time between sequential block
writes, specified in the datasheet, that must be respected. It is generally a few
milliseconds, and a block write typically requires about 25 milliseconds.

Security Fuse

The MSP430 flash devices contain a security fuse, which is settable through
the JTAG port. Setting of this fuse is described in the TI application note
“Programming a Flash-Based MSP430 Using the JTAG Interface,” number
SLAA149. The process is automated through most compiler/programmer
tools. The important thing to note is that the security fuse is a one-time only
burn. This means that, once the fuse has been set, further flash writes and
erasures are impossible. You have just turned the flash device into an OTP
device. Burning the fuse not only restricts flash programming, it prohibits
further JTAG access.
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Information Memory

Along with the regular flash memory blocks, there are two 128-byte seg-
ments, commonly referred to as information memory. Information memory is
intended to function as on-chip EEPROM, and is similar to regular flash.
The most notable differences are:

■ Information memory segments are only 128 bytes in size, rather than
the standard 512 bytes.

■ Information memory is located at lower memory addresses, immedi-
ately following RAM, in the address space.

■ A standard mass erase function will not erase the information
memory segments. To include the information memory segments in a
mass erase, set both the MEras and Erase bits in FCTL1.

I commonly use the information memory for storage of device perfor-
mance parameters. This allows for editing of the parameters when necessary,
but preserves the parameters through power loss. One consideration to keep
in mind is that of programming cycles. If your application erases and re-
writes information memory every few seconds, it will exceed the specified
number of write cycles in a relatively short amount of time. Information
memory, and flash in general, are intended for occasional or long-cycle time
storage.
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Flash Memory Code Examples

Code example 10.1 erases information memory segment A, located between
addresses 0x1080 and 0x10FF. It is assumed that MCLK is configured at the
maximum DCO rate. Information memory block A is selected by the address
defined in temp_local_pointer, and this value can be changed to erase any
valid flash block.

Code Example 10.1: Block Erase Function
void EraseInformationMemory_A(void)

{
char *temp_local_pointer = (char *) 0x10FF;

FCTL2 = FWKEY + FSSEL_1 + 12; //Set Up Timing Generator
//for MCLK and a clock
//divisor of 12

FCTL3 = FWKEY; //Make Certain that LOCK
//is cleared

FCTL1 = FWKEY + ERASE;
*temp_local_pointer = 0xFF;
while (FCTL3 & 0x0001); //Wait for BUSY flag to clear
return ;

 }//End EraseInformationMemory_A Function



167

Flash Memory

Code example 10.2 performs a looped element write to information
memory block A, which begins at address 0x1080. As in the previous ex-
ample, the timing generator parameters assume use of the DCO at maximum
rate for ACLK. It is important to note that this is not necessarily the most
efficient way to perform this function. The segment write function, as de-
scribed earlier in the chapter, requires far fewer clock cycles to complete. I
tend to prefer this method, however, as it is much more generalized. The
looped element method allows for writes over block boundaries.

Code Example 10.2: Looped Element Flash Write Example

void WriteInformationMemory_A(unsigned int length)
{
int *temp_local_pointer = (int*) 0x1080;
unsigned int LoopIndex=0;

FCTL2 = FWKEY + FSSEL_1 + 12; // Set Up Timing Generator
FCTL3 = FWKEY; // Make Certain that LOCK is

// cleared

for (LoopIndex=0;LoopIndex<length;LoopIndex++)
{
FCTL1 = FWKEY + WRT;
*parameter_pointer = Element_Array[LoopIndex];
while (FCTL3 & BUSY);
parameter_pointer+=2;
}//End For

return;
}//End WriteInformationMemory_A function
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Code example 10.3 is something of a corner case. It literally erases all of
flash memory (in the ’F149, which has address space down to 0x1100). There
are very few practical applications where this is useful, and would need to be
run from RAM space, but it is useful as an example for several reasons. It
serves to illustrate the mass erase function. It also illustrates a critical error
condition that your code should strive to avoid. Note that this is nearly
identical to example 10.1, which erases a single block only.

Code Example 10.3: Erase Everything
void EraseEverything(void)

{
char *temp_local_pointer = (char *) 0x110F;

FCTL2 = FWKEY + FSSEL_1 + 12; //Set Up Timing Generator for
//MCLK and a clock divisor of 12

FCTL3 = FWKEY; //Make Certain that LOCK is
//cleared

FCTL1 = FWKEY + MERAS;
*temp_local_pointer = 0xFF;
while (FCTL3 & 0x0001); //Wait for BUSY flag to clear
return ;

}//End EraseEverything Function
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Bootstrap Loader

The term “bootstrap loader” has historically meant a particular device or
piece of ROM code, which loads specific instructions to be executed into a
device on powerup, for initialization purposes. That is not the case with the
’430 flash devices. The bootstrap loader is an external interface, similar to
the JTAG, which may be used to program flash memory. Like the JTAG, TI
has gone to great lengths to document the implementation and use of the
bootstrap. If you intend to use the bootstrap, hit the TI website, and down-
load Application Report SLAA089A, “Features of the MSP430 Bootstrap
Loader”. Some of the high points are:

■ The bootstrap loader code is stored in a special section of ROM,
which is untouchable by other applications, so you need not worry
about accidentally overwriting it.

■ The loader is triggered by cycling the TCK pin on the JTAG port low,
then high, then low again, and bringing reset high. Shortly after the
reset, bring the TCK pin high again, and the bootstrap loader will
start.

■ The UART communication protocol is used by the bootstrap loader,
at a fixed data rate of 9600 baud. A proprietary TI data structure
protocol is used.

■ The bootstrap loader can perform essentially the same functions as
the JTAG interface, with the exception of the security fuse. The
bootstrap cannot program the security fuse, while the JTAG can.
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Downloadable Firmware

One increasingly common feature of embedded devices is that of
downloadable firmware. It is useful for both correction of bugs and
addition of design features after product deployment. If possible, the
easiest, fastest, and most reliable method for doing this is with a hard
connection, either JTAG or bootstrap loader. Often, however, par-
ticularly in wireless devices, the download process must be controlled
by software.

There are three common approaches to the downloadable firm-
ware problem. The first is the dual code partition solution. In this
approach, the device is selected to have more than twice as much
code space as is actually necessary. The initial code is run entirely in
the top half of the code space. When it becomes time to download a
new code set, it is read in, and written to the second half of the
device code space. The vector table is then re-written to match the
new code, and a soft reset is performed. This approach is straightfor-
ward, simple, and easy to implement. It also allows you to replace
everything. It is, however, expensive, because it requires a more
expensive device than you really need.

The second is the brute force approach. It is a piecewise imple-
mentation of the first approach. The code is downloaded, one block
at a time, and written directly to an available flash block, where it is
checked for error. If it passes the error check, it is then copied to its
final location. This process is performed sequentially until the load is
complete. It requires less memory than the first approach, but prohib-
its loading of certain functions, including the communications block.
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The third approach, downloadable programmer, is popular with
larger platforms. In this approach, a small program, which controls
the firmware download process, is loaded into RAM, and then ex-
ecuted from RAM. This is possible with von Neumann devices like
the ’430, and the larger devices have enough RAM space to make it
possible. The advantage of this approach is that it requires almost no
added code to be implemented in the device. The disadvantage is
reliability:  if there is a power loss or inadvertent reset (like a WDT
timeout), the device may become unrecoverable. However, if you can
find a suitable workaround, this approach really is clean.
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C H A P T E R

This chapter is intended to offer code modules for some common functions.
Examples in this chapter are offered in C, rather than assembly language, for
clarity and usability. The designs and code in this chapter were designed,
generally, for a ’1xx device. They will, however, operate properly on ’3xx and
’4xx devices with little or no modification.

Real-Time Clocks

Many different applications require tracking of real-world time, for monitor-
ing, triggering or marking of events. Typically, time is tracked by one of two
methods. The first is a simple count of seconds elapsed since some pre-
defined mark. The second method counts seconds, minutes, hours, and days.
Each method has its advantages, and both are described here.

Before delving into the code, configuration and setup conditions must be
discussed. The design assumes there is a 32.768 kHz crystal connected at
XIN/XOUT, and uses Timer A to count seconds based on that input signal.
There is nothing special about these selections, and you should be able to
modify this example to perform the clock function with Timer B, and/or
other clock sources and speeds.

Generally speaking, initialization needs to be performed on both the
Basic Clock Module and the Timer A controls. However, the BCM initializa-
tion is trivial. As long as DIVA is set to zero (i.e., ACLK is divided by 1) and



174

Embedded Systems Design using the TI MSP430 Series

the XTS bit is cleared, the clock controls are ready.  Timer A will require
several more steps, however. They include:

■ Select ACLK as the timer source.

■ Enable the proper interrupt.

■ Set up Capture/Compare unit 0 control, TACCTL0.

■ Initialize the Capture/Compare unit 0 register, TACCR0.

■ Put Timer A into Compare mode.

These basic initialization steps are implemented with the following
statements:

Code Listing 11.1: Timer A Initialization

TACTL = MC_0 + ID_0 + TASSEL_1 + TACLR + TAIE;
//Leave Timer in Stop Mode During
//Initialization
//Do Not Divide Input Timer
//Select ACLK as the Timer A Source.
//Begin with Timer A Cleared
//Enable Timer A Interrupt

TACCTL0 = CCIE; //Enable Capture/Compare Interrupt
TACCR0 = 32767; //Set TimerA Upper Count Limit.

//32768 states, including 0.
TACTL |=  MC_1; //Turn on Timer A Using Bitwise OR

Some notes and thoughts on Listing 11.1:

■ As with all code in this book, standard TI register names and bit
definitions are used. The include file which maps registers to these
names is available at the TI website, or on the development kit CD-ROM.

■ This code should be included as part of the initialization set. The last
line, which starts Timer A, should not necessarily be with the rest of
this code. Rather, this function should be performed when setup is
complete, and the code is ready to begin processing interrupts.
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■ Since we are using Capture/Compare 0, the processing will be per-
formed from the lower priority Timer A interrupt, at location
0xFFEC. If Capture/Compare 1 or 2 are used, the interrupt vectors
from location 0xFFEA.

■ The design here does not divide the input timer. However, if execu-
tion cycles or current consumption are tight, this can be divided, and
the code can count in 2, 4 or 8 second increments.

■ Along with proper Timer and Clock control, time variables need to
be defined. Since each of the two clock approaches keeps different
variables, they will be defined separately.

UTC Time

One very common approach to time tracking is to use UTC time, which is a
32- bit count, representing seconds since midnight, Greenwich Mean Time,
on January 1, 1970. There are also various derivatives of this, using different
time zero values. This approach is very simple, requiring only a single incre-
ment operation when the interrupt occurs. It is also a very handy method
when it is necessary to determine the elapsed time between two events,
requiring a single subtraction operation to find this difference. The third
advantage of this method is that it is completely indifferent to time zones,
leap years, and Daylight Savings Time.

Code Listing 11.2: UTC Real Time Clock

//Variable Declaration
unsigned long     UTC_Count=0; //This declaration belongs at the

//start of code.

//Timer A Interrupt Routine
{
UTC_Count++; //Increment Real Time Clock
return; //Return from interrupt.
}
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Some notes and thoughts on Listing 11.2:

■ This approach to the Real Time Clock really is as simple as it looks.
There is a single variable that is incremented every second, and that
variable is used to mark time.

■ As you probably noticed, the time variable, UTC_Count, is initial-
ized to zero. It is quite likely that you will need a communications
method and subroutine to set the time. If your application is con-
cerned with what time it is in the real world, it will need to be
initialized to a different value, and periodically corrected, to account
for oscillator errors.

■ I have written the body of the Interrupt Service Routine, but omitted
the function declaration. This is because there are different ways to
structure ISRs, depending on your compiler and style. Chapter 2,
Resets and Interrupts, offers one very common structure for these ISRs.

Calendar Time

Another common approach is to count seconds, minutes, hours, days, and so
on. The code more closely matches common time measurements, but is more
complicated to implement, and to correct.

Code Listing 11.3: Calendar Based Real-Time Clock

//Variable Declaration
unsigned char seconds=0; //These declarations belong at the

//start of code.
unsigned char minutes=0;
unsigned char hours=0;
unsigned char day_of_week=1; //Sun=1, Mon=2, Tue=3,

//Wed=4, Thur=5, Fri=6, Sat=7
unsigned char day_of_month=1;
unsigned char month=1; //Jan=1, Feb=2, etc.
unsigned int year=2000;
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//Timer A Interrupt Routine
{

seconds++; //Increment Real Time Clock
if (seconds >= 60)

{
seconds=0;
minutes++;
if (minutes >=60)

{
minutes=0;
hours++;
if (hours >= 24)

{
hours=0;
day_of_week++;
if (day_of_week >= 8) day_of_week = 1;
day_of_month++;
if ((month=1 && day_of_month >=32) ||

(month=2 && day_of_month>=30 && !(year%4)) ||
(month=2 && day_of_month>=29 && year%4) ||
(month=3 && day_of_month >=32) ||
(month=4 && day_of_month >=31) ||
(month=5 && day_of_month >=32) ||
(month=6 && day_of_month >=31) ||
(month=7 && day_of_month >=32) ||
(month=8 && day_of_month >=32) ||
(month=9 && day_of_month >=31) ||
(month=10 && day_of_month >=32) ||
(month=11 && day_of_month >=31) ||
(month=12 && day_of_month >=32))
{
day_of_month=1;
month++;
if (month >=13)
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{
month=1;
year++;
}//End month if statement

}//End day of month if statement
}//End hours if statement

}//End minutes if statement
}//End seconds if statement

return; //Return from interrupt.
}

Some notes and thoughts on Listing 11.3:

■ The difference in complexity between this method and the UTC
approach jumps off the page, doesn’t it?  Five levels of if statements,
and look at the decision tree required to decide if it is the end of the
month. This method is equally complex on which to perform periodic
corrections. Keep in mind, this method will need to correct for
Daylight Savings Time.

■ To avoid this complexity, it is a common approach to track the time
by counting seconds, as in the UTC approach, and perform a conver-
sion to hours, minutes, and seconds when required. This approach is
just as difficult to implement, but easier to update, and requires much
less processing in the ISR.

■ Many applications will require only a subset of this design. If your
code is only being designed to take hourly measurements, this can be
implemented without the day of week, day of month, month and year
fields, making the code considerably simpler.

Using Time

Now that we are measuring time in software, how to use it?  When
seconds (or minutes, or hours) tick off, it is common to check to see if it is
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time to perform a timed function. I prefer to keep as much functionality
outside of the ISR as possible, and the best way to do that is to set a flag in
the ISR, and come back and service it later. In code listing 11.4, the UTC
method is modified to do this.

Code Listing 11.4: UTC Real-Time Clock with Event Checking

//Variable Declaration
unsigned long UTC_Count=0; //This declaration belongs at the

//start of code.
unsigned int Flags=0x0000; //General bitflag field. The most

//significant bit is the timer
//increment flag

//Somewhere in the main loop……
if (Flags & 0x8000)

{
Flags -= 0x8000;
checkForTimedEvent(); //Generic call to subroutine.
}//End Time-Based event if

//Timer A Interrupt Routine
{
UTC_Count++; //Increment Real Time Clock
Flags |=0x8000; //Set Timer Increment Flag
return; //Return from interrupt.

}

Some notes and thoughts on Listing 11.4:

■ This example checks each second. If you only need to check every
minute, hour, or fortnight, you can use another counter to count,
incremented with UTC_Count and reset each 60 seconds (or any
other length) to trigger the flag.
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■ Make certain that the time required to reach the check of the flag in
the main loop PLUS the time required for any processing that is per-
formed within checkForTimedEvent() totals less than 1 second at your
selected processor speed, so the function is complete before it is called
again. Otherwise, the stack will fill up RAM, and your code will crash.

Error Detection

Any time your application is required to transfer more than a few bytes of
data to or from the outside world, it is a good idea to use some basic error
control. This control can be divided into two groups:  error detection and
error correction.

Error detection is simply meant to detect whether data is valid, with no
means of correcting invalid data. Most methods involve generating a checksum
from the data, and appending it to the data block. We will briefly examine the
most common of these methods, the Cyclic Redundancy Check, or CRC.

This method generates a CRC checksum. The checksum can theoreti-
cally be any power of 2 in length, but for practical purposes, is almost always
16 or 32 bits. We will use the 16-bit case (commonly referred to as CRC-16).
In order to generate the checksum, a CRC polynomial is required. The term
polynomial can be a bit confusing, because it is simply a bitmask in the
application. For the CRC-16, the polynomial is of degree 16, with the non-
zero terms of the polynomials corresponding to bits in the mask. For
example, the polynomial x16+x12+x5+1 equates to a bitmask of 0x1021. (In
CRC-16 polynomials, the x16, or 17th, term is always high, but it is not repre-
sented in the bitmask.)  There are different standardized polynomials, and we
will use the above example 0x1021, which is the CCITT standard.

CRC coding is based on modulo-2 division. The basic concept is that the
message block, modulo-2 divided by the polynomial, yields the CRC-
checksum. The same message, this time with the CRC checksum included at
the end, modulo-2 divided by the polynomial, will result in 0. This is advan-
tageous in that you can use the same code to generate and check CRC
correctness.
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There are two standard methods for CRC implementation. The common
table method is fast, but requires more code space. The loop algorithm
requires much less ROM, but is slower by an order of magnitude. There are
many sources for algorithms and code for both of these. We will look at the
looping algorithm.

The looping algorithm is based on hardware implementations, which
calculate the checksum using a Linear Feedback Shift Register (LFSR) (see
Figure 11.2). The register is pre-loaded with the first data word of the mes-
sage, and then the message is shifted into the register, with the XOR
function being performed (XOR is equivalent to modulo-2 division). The
flowchart for the algorithm is shown in Figure 11.3.

Figure 11.1: CRC Calculation Example
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Figure 11.2: CRC Loop Example

Figure 11.3: CRC Example Flowchart
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Code Listing 11.5: Loop Algorithm for CRC Computation

unsigned int  Compute_CRC(unsigned int Data [], unsigned int Length)
{
unsigned int CRC_Working=Data[0];
unsigned int Buffer=Data[1];
unsigned int Counter=1;
unsigned int LoopIndex=0;

while (Counter<Length)
{

for (LoopIndex=0;LoopIndex<16;LoopIndex++)
{
if (CRC_Working >=0x8000)

{
CRC_Working <<= 1;   //Shift CRC_working left
if (Buffer>0x8000) CRC_Working++;

//If MSB of buffer is high, it will
//shift to LSB of Working

CRC_Working = CRC_Working ^0x1021;
//Apply XOR Mask

}//End if
else
{
CRC_Working <<= 1; //Shift CRC_working left
if (Buffer>0x8000) CRC_Working++;

//If MSB of buffer is high, it will
//shift to LSB of Working

}//End Else
Buffer<<=1; //Shift Buffer left
}//End For

Counter++;
Buffer=Data[Counter];
}//End While

return CRC_Working;
}//End Function Compute_CRC
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Code listing 11.5 provides a function which, when called, will compute
the CRC-16 value for an array of 16 bit values. This is efficient for the
MSP430, as it uses only the device’s native data size for all values. It returns a
value, which represents the checksum when used for generation, and should
be zero for checking. If the checksum is non-zero when checking, you know
an error has occurred. The code assumes that the message has already been
properly appended.

The CRC is a very efficient way of detecting errors. If implemented
properly, it will positively detect all single bit errors, double bit errors, and
burst errors (where a sequential group of bits has been corrupted). The
computational overhead is limited, and it requires only 16 bits to be added to
the message. The downside is that it will only tell you whether or not an
error has occurred, but not how to fix the error. If your application receives a
corrupted message, according to the checksum, there is little that can be
done other than discard the message. To solve this problem, there are many
varying error correction schemes in wide publication. Unlike detection,
where the use of the CRC is the dominant method, there is no one common
correction scheme. There are entire texts written on the subject, describing
the tradeoffs in data overhead, computability, and correctibility. For this
reason, we will not attempt to tackle the subject here.

D/A Conversion: Pulse Width Modulation

As with many commercially available microcontrollers, the MSP430 has
available a series of analog-to-digital converters (which are described in
Chapter 6). The inverse operation of generating an analog level based on a
digital value is not directly supported by the ’430 hardware. It is, however,
supported in the Timer A (and Timer B, where available) structure, which
makes for easy implementation of a Pulse Width Modulator.

The PWM is not useful in all applications. If your design requires a very
precise and stable analog level, you should look into a separate D/A device.
However, for many applications, particularly control of power devices, this is
a very easy and reliable method. It should be noted that the use of a PWM is
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not, strictly speaking, analog level generation (although a level could be
generated with sufficient filtering). It is merely the rapid switching of a
digital signal, which is used to turn a load device on and off rapidly enough
that the effect is that of an analog control source. A perfect example is that
of motor control (which happens to be the most common use of the PWM).
If the controller is switching the motor on and off hundreds of times every
second, the motor will behave as if the power source is being controlled,
resulting in a motor speed which is proportional to the duty cycle of the
PWM signal (see Figure 11.4), with very little variation.

Figure 11.4: Pulse Width Modulation Sample Outputs

One very nice feature of the MSP430 family is that the PWM can be
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worse than the toggle implementation, it is merely the one with which I am
comfortable.)
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Code Listing 11.6: PWM setup for MSP430F149

P1SEL |= 0x04; //Output on p1.2
P1DIR |= 0x04;

TACTL |=  TASSEL0; //Use ACLK
CCR0 = 32767; //Max value
CCR1 = 8198; //75% duty cycle in this example (it would

//be 25% using OUTMOD_7)

CCTL1 = OUTMOD_3; //Output Mode 3 is Set on CCR1, clear
//on CCR0

TACTL |=  MC_1; //Turn On Timer

As the code suggests, this is almost trivially simple to implement in ’430
devices. It has been my experience that the hardware design has the poten-
tial to create more headaches than software on PWM implementations. In
some cases, the various frequency components of the PWM signal can wreak
havoc on other circuits. This, however, is a topic for another book.

Sliding Correlators

One common application performed in small embedded systems is recog-
nition of a specific pattern in a sequence of bits. This is most commonly used
in communications systems, when looking for identification tags. The sim-
plest of sliding correlators shifts bits into a register, comparing the expected
value to the shift register value with each bit shift. However, this is insuffi-
cient for many applications. Often, it is preferred to, on each new bit,
determine how much correlation exists between the register and the ex-
pected mask. This is accomplished by XORing the shift register and expected
mask together, and counting the number of bits that differ. A zero equates to
an exact match, while a 16 means all bits are different. Typically, a return
value of 0, 1, or 2 is necessary for any useful degree of correlation. Code
Listing 11.7 is a function which can be used to compute correlation.
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Code Listing 11.7: Sliding Correlator Comparison Function

unsigned int computeCorellationDistance(unsigned int Value)
{
unsigned int Mask=0x1F1F; //Mask is the value we are checking

//correlation to. This is an arbitrary
//assignment in this example.

unsigned int LocalBuffer=0; //Temporary Local Value
unsigned int LoopIndex=0;         //Loop Index
unsigned int Counter=0;

LocalBuffer=Value^Mask; //Set upDifference Register using
//XOR function

for (LoopIndex=0;LoopIndex<16;LoopIndex++)
//Count the bits that are different

{
if (LocalBuffer>=0x8000) Counter++;

//Check MSB of LocalBuffer. If 1,
//increment count

LocalBuffer<<=1;
}//End For

return Counter;
}//End function computeCorellationDistance



188

Embedded Systems Design using the TI MSP430 Series

Figure 11.5: Sliding Correlator Construction
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The rapid growth in the number of battery-operated devices has brought low-
power design to the forefront of embedded systems development. The
MSP430 is among the leading controllers in this regard, with typical room
temperature consumption in the neighborhood of 1 mW/MIPS or less.

MSP430 Power Consumption Characteristics

As mentioned above, among the most salient features of the MSP430 is its
very low power consumption. When you look at the first page of the
datasheet, the sub-milliamp consumption values jump off the page. Being on
the first page of the datasheet, these numbers tend to run on the optimistic
side. As they say, your mileage may vary. However, if you are smart in your
design, you could approach these values. Current consumption varies with
clock speed, temperature, supply voltage, peripheral selection, input/output
usage, memory type, wind speed, phase of the moon, and any other factor you
might possibly imagine. Some general rules of thumb for predicting current
consumption of your design:

■ The datasheet provides several equations for active mode power
consumption, that assume linearity over frequency and supply volt-
age. I have found these to be useful for a first-order approximation,
but not sufficient for detailed current profiling. If you need to know,
to a high order of accuracy, how much current your design is drawing,
build a prototype and measure the consumption.
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■ Current increases with clock frequency, roughly linearly.

■ Current increases with supply voltage. I have found this to be less
linear than the datasheet would suggest.

■ There is a relationship between supply voltage and maximum fre-
quency. There is a graph describing this in the datasheet. The short
version is that you can run at about 4 MHz at 2.2 VDC, but need to
be at 3.6 VDC to operate at 8MHz. (I regularly exceed these limits on
the bench, but wouldn’t recommend it in production devices.)

■ More active peripherals means more current consumption, but a
Timer unit running at 8 MHz draws considerably less current than the
CPU running at 8 MHz

MSP430 Low-power Modes

The ’430 series devices have the option of shutting off the processor portion
of the device, by using the CPUOff bit in the Status Register. The processor
is then awakened by an interrupt. Further functionality in the CPU portion
can be turned on and off via the SCG1, SCG0, and OscOff bits, which also
reside in the SR. TI has, in the literature, defined five low-power modes. The
bits and functionalities are shown in Table 12.1.

Table 12.1: Low-power Mode Summary

Mode OscOff SCG1 SCG0 SMCLK ACLK DCO DCO Generator

LPM0 0 0 0 On On On On

LPM1 0 0 1 On On On Enabled if
used by

peripherals

LPM2 0 1 0 Off On Off On

LPM3 0 1 1 Off On Off Off

LPM4 1 1 1 Off Off Off Off
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When considering use of one of the low-power modes, the developer
must remember several things:

■ The CPU and MCLK are off for all low-power modes.

■ The CPU is reactivated by an interrupt. Make certain that the GIE
bit is set, or the wake-up will never occur.

■ The interrupt can be either internal or external. If you are using one of the
peripherals to generate the interrupt, it has the potential to use several
orders of magnitude more current than the CPU in the low-power mode.

■ As you might have noticed, LPM modes 0 and 1 are almost identical.
If the DCO is being used, they will result in nearly identical current
consumption.

■ LPM modes 2 and 3 seem very similar, as well. This, however, is NOT
the case. LPM2 leaves the DCO generator on, although the DCO
oscillator is off. In these modes, ACLK is the only thing running in
the CPU, and it takes roughly one-tenth as much current as the DCO
generator. As a result, LPM2 uses about ten times as much current as
LPM3 in the CPU.

■ LPM4 turns everything off. It is common to see this listed as “RAM
Retention Mode” in some literature. When in this mode, the device
uses a mere trickle of current (around 100 pA typically). This mode is
used for externally generated interrupts only, as no clocks are active
and available for peripherals.

■ The Status Register is pushed to the stack on interrupt, and popped
back when the reti instruction is issued. Since the bits that determine
the low-power mode are all part of the SR, the device will automati-
cally reenter the mode upon completion of the ISR. This can be
avoided by manually manipulating the SR on the stack. This is easy
enough when developing in assembly language, but can be a bit
trickier in C. In instances when I have used these modes, the code
that I wrote performed all processing from within the ISR, rather
than from within main(). At first, it seems a bit dubious, but can
actually work out pretty well.



192

Embedded Systems Design using the TI MSP430 Series

Periodic Interrupts and Low-Power Design

Perhaps the most common use of the low-power modes is for periodic pro-
cessing based on a timer interrupt. The main loop is written so that startup
housekeeping is performed, then the selected LPM is entered. Processing is
then performed within the ISR. At the end of the ISR, the reti instruction
restores the processor to the LPM. This is a great way to save power con-
sumption when the application is required to make periodic decisions. Some
hints and considerations:

■ Select your power mode carefully. Obviously, LPM4 will not work for
this, as all clock sources are shut down. After that, you must select
the power mode based on your timer source. It is my personal prefer-
ence to run off of ACLK and use LPM3, but not all designs will allow
for that.

■ Timing analysis is much easier in this mode. It essentially boils down
to whether or not you can get through the ISR within your timer
period. However, from a practical standpoint, time spent in the ISR is
usually a very small fraction of the timer period. If your ISR time is
the bulk of the timer period, the savings from the use of the LPM is
minimal, and it probably makes more sense to use the ISR to set a flag
and perform processing within the main loop.

■ This method does not work well if your processing requires use of
other interrupts. Since the interrupts are non-reentrant (see Chapter
3), your processing will not be able to rely on other interrupts from
the timer ISR. There are two ways to work around this. The first is to
manually set the GIE bit at the beginning of the ISR. I strongly
recommend against this. It is an easy approach to implement, but
introduces multiple possible error and crash conditions (again, see
Chapter 3). The second approach is write the main loop so that,
within an eternal loop, the main processing occurs, followed by the
command to enter the LPM. The ISR then must manipulate the
Status Register, on the stack, so that upon the return from interrupt,
which vectors back to the next instruction, the processor is in active
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mode, and loops through the code before looping back to the com-
mand to enter the LPM. This approach is a bit more complicated to
implement, but is stable and predictable.

Figure 12.1: Periodic Interrupt Processing with Low-Power Mode

Figure 12.2: Periodic Main Loop Processing with Low-Power Mode
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Low-power Design

So, now you have a very low-power microcontroller, and some idea of how to
use it. So, what can you do if your circuit still uses too much power?  Here are
some rules for when you need to further reduce consumption:

1)  Clock cycles are your enemy.

In CMOS devices, the rate of power consumption is based on changes in
state on transistors, rather than the states themselves. The result of this is
that doubling clock speeds means doubling power consumption. Remember,
this doesn’t only apply to the CPU. Use of a high-speed clock in Timer A
will have the same effect.

The design approach to optimize this is obvious: Run your clocks as fast
as you need to, but no faster. This sounds easier than it really is. Slow the
clocks down just a little too much, and you could end up with a race condi-
tion on your hands. Even worse, the first race condition to show up as the
clocks are slowed tends to be the irregular one, making it difficult to discover
on the bench. As a result, this is an optimization which tends to create
problems, even after testing, verification, and even after you have deployed
thousands of units. Some rules of thumb for this optimization:

■ Do plenty of timing analysis. Get a pencil, paper, and a calculator,
and determine the absolute longest possible process loop, including
any possible combination of ISRs. This is not as straightforward with
the MSP430 as with other processors, since there is not a 1-to-1
relationship between instructions and clock cycles. However, you
should be able to determine that you need to execute so many in-
structions in so much time, and clock speed comes from that analysis.
Adding some buffer cycles by speeding the clock up by a few percent-
age points will hurt the power consumption a bit, but could protect
you from the race condition in the long run.
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■ Test, test, test. Run your design through every conceivable scenario,
trying to make it fail. This suggestion applies to everything you do in
development, but it is particularly important when riding the edge
with clocks. I have found some pretty obscure race conditions this
way.

■ Run as few clocks as possible. If you can perform all of your timings
off of a single clock, it will pay dividends in power consumption.

2)  Twist the Hardware.

Often, the microcontroller is among the smallest power consumer on the
board before any optimization is performed. If this is the case, saving those
precious microamperes is best accomplished in the hardware. This is one of
the reasons so many embedded systems developers come from an engineering
background, rather than computer science. Some suggestions:

■ Make hardware switchable, where possible. The best way to minimize
the power draw for a specific circuit is to turn it off when it is not in
use. This is not always possible, and requires extra hardware and I/O,
but is usually worth the trade-off. In most designs, it can be accom-
plished with a single transistor and I/O pin. If that gate and pin can
extend battery life of your product by 10%, it certainly bears consider-
ation.

■ Play with the voltages. The ’430 uses less current when run at 2.2
volts than at 3.6 volts. Along with device power, moving down to 2.2
VDC will also lower the output pin voltages, resulting in less current
on pull-ups and other circuit devices. Remember, though, that the
device won’t function properly at maximum frequency and minimum
supply voltage. Because of this, it sometimes makes sense to speed up
the clocks, for a shorter period of time, rather than run them as slow
as possible. It all boils down to understanding the circuit, including
the microcontroller, and where the interactions lie.
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3)  Become a Systems Engineer.

This rule is less well-defined than the others. Often, the processor and
hardware are both independently optimized for power, but there are trade-
offs that can be made between the two that make the system more efficient.
Changes that produce small increases in power consumption in the processor
and surrounding circuitry can have more significant savings in other parts of
the overall system. Simply knowing and meeting the firmware specs is not
enough. In order to really optimize power, the diligent firmware developer
understands the system as a whole, and how the processor fits. Ideally, opti-
mization at this level occurs before circuit and software level fixes, but I
never completely trust the systems engineers.

Batteries

If you are particularly interested in trying to squeeze out every
possible bit of power consumption, it is likely that your design is
operated off of a battery. Some helpful hints to remember about the
battery in your design:

• You probably do not need to understand the chemistry of the
battery, but you do should grasp its implications. Some battery
chemistries are characterized by a gradual rolloff of voltage level as
the battery power is consumed, while others remain rock solid at
nominal voltage until there are only a few milliamp-hours of
charge remaining, and then fall off the table. Maximum current,
internal resistance, and efficiency will all change with aging,
temperature, and temperature cycling.

• Battery lifetimes are usually specified in ampere-hours (i.e., how
many hours the battery will last at 1 ampere). Keep in mind that this
is not a fixed value for all batteries of this type. Rather, it is the mean
of an admittedly narrow distribution of expected battery lifetimes.

• Batteries are almost always very stable power supplies. However, if
your design is using replaceable or rechargeable batteries, your
design will probably need a reset chip, or something similar, rather
than an RC reset circuit. Remember, this device is highly sensi-
tive to brownout conditions.
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Now that the functions and features of the devices have been described, we
will examine the development of a sample application. We will develop an
8-channel digital household lighting controller, capable of independently
turning different lights and appliances in your home on and off indepen-
dently, at any interval. We will use the MSP430F149, as there is a low-cost
TI FET tool based on the device.

There are several initial design components we must consider. They are:

1) Event timing. The design will require a time counter, which incre-
ments each second. While this design could be performed with a full
RTC, that would be design overkill, which I prefer to avoid. We will
use a 32.768-kHz crystal oscillator to drive Timer A, which will be
operated in count up mode. On overflow, the timer will generate an
interrupt, at which point time-based event decisions will be made.
The CPU will be run off of the DCO clock.

2) Interfacing to lighting and appliances. We will be using Port 4 to
control devices, with each bit controlling an interface unit. An
obvious problem lies in that of current sourcing. The MSP430F149
I/O pins can only source several milliamps of current, which is not
enough for any switch or relay large enough to handle the power
requirements of household devices. To handle this, each output pin
will drive the base of a transistor, which will in turn drive an electro-
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mechanical relay. This circuit is far from optimal, but it will serve its
purpose for our design. Optimization of this type of circuit is a topic
for another book.

3) Programming the time intervals. There needs to be a simple scheme
to let the device know how long to leave devices on and off. The
design will be for an interrupt-driven process, using the Port 1 inter-
rupts to turn counters on and off. Port 2 will indicate when an
individual channel is being programmed, and Port 3 will indicate
whether it is timing an on-time interval, or an off-time interval.
These LED ports are configured as active low, with the diode lighting
up when a 0 is written to the pin.

Figure 13.1: Lighting and Appliance Controller Schematic
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Hardware consists of the microcontroller (along with the associated
crystal and reset circuit), eight interface units, eight pushbutton units, and
sixteen LED indicator units, to reflect programming mode.

The code will perform some basic setup operations, and then enter an
eternal main loop. All processing will be performed within the interrupt
service routines. Typically, this is not the best way to handle things. How-
ever, we can handle the Port 1 interrupt with a single C instruction, and we
will run the DCO at around 4 MHz, allowing for an awful lot of instruction
cycles between 1 second interrupts from Timer A. Aside from these, we do
not have other competing processes or interrupts to cause race conditions,
allowing for plenty of timing margin.

Figure 13.2: Lighting and Appliance Controller Interface Units
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Setup

Device initialization is performed by the function initializeDevice(). The
initialization steps, in order, are:

1) Configure the watchdog timer. Due to the relative simplicity of this
application, we will operate without a safety net, and turn the WDT
off here.

2) Configure the clocks. The design will set the DCO to its maximum
rate, from which the MCLK, and the CPU are operated. ACLK will
be generated by the 32.768 kHz crystal, and will be the source for
Timer A.

3) Configure the I/O ports. This includes interrupt enables for Ports 1
and 2,  direction registers, output registers, and function registers.
Since we are not using Port 5 for anything, we can set the function
register elements, and bring ACLK and MCLK out, as a troubleshoot-
ing tool.

4) Set Timer A up. The timer will be clocked by ACLK. We will set
Timer A into continuous up mode, and set the TAIE bit, so that the
interrupt is generated when the timer overflows from 0xFFFF to
0x0000. These interrupts should happen every second, plus or minus
any crystal oscillator error. In this configuration, we will not require
use of any of the Capture/Compare modules. I typically set the pe-
ripherals up last, so that they are less likely to generate interrupts
while still in the initialization routine. (An alternative is to set the
Timer A up earlier, in stop mode, and start it later with a TACTL |=
MC_2 command.) In this particular application, with the CPU clock
running several orders of magnitude faster than the Timer A clock, it
doesn’t really matter. However, like most developers, I am a creature
of habit, and respecting clocks and interrupts is a pretty good habit to
have.

5) You will probably notice from the code below that I have initialized
some registers to their default values (e.g., set P1DIR to 0x00 when it
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should, on device reset, already be at 0x00). Again, this is one of
those habits I have developed. As this is an instruction called at reset
only, and we are nowhere near being constrained in terms of clock
cycles or code space, this instruction is basically free. There is no
reason not to make absolutely certain that registers are initialized to
the correct values.

Code Listing 13.1 shows the function initializeDevice().

Listing 13.1: Device initialization function

void initializeDevice(void)
{
//Basic Clock Module Setup
WDTCTL = 0x5A00 + WDTHOLD; //sets WDT to hold
DCOCTL =  0xE0; //sets DCO to max frequency
BCSCTL1 = XT2OFF + RSEL2 + RSEL1 + RSEL0;

//no xt2 osc., max dco resistor
BCSCTL2 = SELM_1; //sets CPU to run off DCO

//Initialize Ports
P1DIR = 0x00; //Inputs on Port 1
P1IES = 0xFF; //Interrupt on high-to-low
P1IE = 0xFF; //Port 1 is interruptible
P1SEL = 0x00; //No functions

P2DIR = 0xFF; //Outputs on Port 2
P2OUT = 0xFF; //Initialize to all 1.Active low output
P2IE = 0x00; //Port 2 is not interruptible
P2SEL = 0x00; //No functions

P3DIR = 0xFF; //Outputs on Port 3
P3OUT = 0xFF; //Initialize to all 1.Active low output
P3SEL = 0x00; //No functions
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P4DIR = 0xFF; //Outputs on Port 4
P4OUT = 0x00; //Initialize to all 0.Active high output
P4SEL = 0x00; //No functions

P5DIR = 0xFF; //Outputs on Port 5
P5OUT = 0x00; //Initialize to all 0.
P5SEL = 0xFF; //Functions for troubleshooting

P6DIR = 0x00; //Inputs on Port 6
P6SEL = 0x00; //No functions

//Set Up Timer A
TACTL = TASSEL_1 + MC_2 + TAIE; //Sourced By ACLK, Up

//mode, Interrupt En.

return;
}//End initializeDevice Function

Main Loop

Since all processing after setup is performed within the ISRs, we will use the
proven and time-honored eternal loop operating system to run the device.
Personally, I prefer to use the statement “while(1);” for the loop until the end
of time function, but you have probably seen similar incarnations such as “for
(;;);”, or “jmp $” in assembly language. They are all good. Some applications
use a very popular derivative of this that set flags within ISRs, and then
repetitively perform checks of those flags with statements inside the eternal
loop.

The eternal loop is popular for several reasons. First, it is predictable.
Code seldom wanders off to an unplanned end of file with this type of struc-
ture. Second, and more importantly, this structure allows for the processor to
enter sleep mode when not processing the ISRs, thereby saving power.
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Interrupt Service Routines

There are two interrupt service routines to write. The first, which occurs
every second on Timer A overflow, implements the flowchart in Figure 13.4.
It automatically decrements each of eight individual seconds counters. If any
of these counters runs out, it toggles the appropriate pin, and determines the
new countdown value based on a bit flag, identified as a bit in the byte
variable On_Time_Flag (with channel 0 having its flag at bit 0, channel 1 at
bit 1, etc). The variables Timing_Underway_Flag and On_Time_Count_Flag
are implemented identically. Since these variables are used in ISRs, they are,
by necessity, global. (Software engineering types will rant about the use of
global variables being evil, but in interrupt-driven microcontrollers, they are
necessary and, in fact, proper.)

Figure 13.3: Main Program Loop

Start

Initialization

Eternal Loop
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Listing 13.2: Timer A Interrupt Service Routine

interrupt [0x0A] void TimerA_Interrupt (void)
{
unsigned char Bit_Mask = 0x01; //Used to identify current bit in

//flag fields
unsigned int Loop_Index=0; //Generic Loop Counter

for (Loop_Index=0;Loop_Index<8;LoopIndex++)
{
Seconds_To_Toggle[Loop_Index]—;
if (!(Seconds_To_Toggle[Loop_Index]) //Check for zero seconds

Figure 13.4. Timer A Interrupt Service Routine
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{
P4OUT ^= Bit_Mask; //Toggle Output Bit
if (On_Time_Flag & Bit_Mask) //On or Off??

Seconds_To_Toggle[Loop_Index]=On_Time[Loop_Index];
else

Seconds_To_Toggle[Loop_Index]=Off_Time[Loop_Index];
On_Time_Flag ^= Bit_Mask; //Toggle On Time Flag
}//End If

Bit_Mask <<=1;
if (Timing_Underway_Flag & Bit_Mask) //If setting up channel

Program_Channel[LoopIndex]++; //Increment counter
}//End For Loop

return;
}//End Timer A Interrupt Function

The second interrupt service routine is for programming the device, via
Port 1 and the pushbutton interfaces described in Figure 13.2. To program
the device, the user needs to define on and off times by pressing the specific
channel button at the boundary times. For example, let’s say the user wants
to turn on a coffeepot, controlled by channel 7, at 8:00 every morning, and
turn it off at 10:00 every morning. At 8:00 on the first day, the user pushes
and releases button #7. The Programming Underway LED (on Port 2.7) and
the On Time Programming LED (on Port 3.7) come on, and power is applied
to the coffee maker, via the transistor/relay circuit on Port 4.7. At 10:00 that
same day, the user pushes and releases button #7 again. The On Time Pro-
gramming LED and the coffee maker both switch off, but the Programming
Underway LED remains on. Finally, at 8:00 the following morning, the user
presses and releases button #7 one final time. At this point, the Programming
Underway LED switches off, the coffee maker switches on, and the channel
is programmed and should operate correctly.
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Listing 13.3: Port 1 Interrupt Service Routine

interrupt [0x08] void Port1_Interrupt (void)
{
unsigned char Bit_Mask = 0x00; //Used to identify current bit in

//flag fields
unsigned int Loop_Index=0; //Generic Loop Counter
unsigned char Bit_Number=0x00; //used as index into array for

//setting values

Bit_Mask=P1IFG; //Bit mask is identical to flag
//register

Figure 13.5: Port 1 Interrupt Service Routine
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//This for loop maps the bit number of the set bit in P1IFG to an
//integer value
for (Loop_Index=0;Loop_Index<8;Loop_Index++)

{
if ((P1IFG>>Loop_Index) & 0x01)  Bit_Number=Loop_Index;
}//End For

if (Timing_Underway_Flag & Bit_Mask)
{
if (On_Time_Count_Flag & Bit_Mask)

//Branch 2 on the accompanying
//flowchart

{
On_Time_Count_Flag &= ~Bit_Mask;

//Clear On Time Flag
On_Time[Bit_Number]=Program_Channel[Bit_Number];
Program_Channel[Bit_Number]=0;
P3OUT |= Bit_Mask;
P4OUT &= ~Bit_Mask;
}//End inner if

else //Branch 3 on the accompanying
//flowchart

{
Seconds_To_Toggle[Bit_Number] = On_Time[Bit_Number];
On_Time_Flag |= Bit_Mask;
On_Time[Bit_Number]=Program_Channel[Bit_Number];
Program_Channel[Bit_Number]=0;
Timing_Underway_Flag &= ~Bit_Mask;
P2OUT |= Bit_Mask;
P4OUT |= Bit_Mask;
}//End inner else

}//End Outer If
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else //Branch 1 on the accompanying flowchart
{
Timing_Underway_Flag |= Bit_Mask;

//Set timing underway bit flag
On_Time_Count_Flag |= Bit_Mask;

//Set On Time count bit flag
Program_Channel[Bit_Number]=0;

//Initialize Counter
P2OUT &= ~Bit_Mask; //Clear appropriate bits on
P3OUT &= ~Bit_Mask; //   P2OUT and P3OUT
P4OUT |= Bit_Mask; //Turn on appliance switch
}//End Else

return;
}//End Port 1  Interrupt Function

Putting It All Together

At this point, the bulk of the code is written. Once we make a couple of
decisions about variable sizes, we can put it all together into our code set. We
need to decide on the optimal length of variables, and declare them at the
beginning of the code:

■ Flags (Timing_Underway_Flag, On_Time_Count_Flag, and
On_Time_Flag). Since we are implementing eight channels, these
should obviously be byte elements. Since we are not performing
computations based on these values, we will identify them each as
type unsigned int.

■ Second Counts (Seconds_To_Toggle, On_Time, Off_Time, and
Program_Channel). This is not as straightforward. 16 bits is insuffi-
cient, as it only allows for counts up to about 18 hours. 32 bits is a bit of
overkill, as it allows for periods of 136 years. Anything in the middle,
however, would require us to define a special data type, which I typi-
cally prefer not to do, unless RAM is closely constrained. As this is not
the case, we will use 32-bit, or unsigned long values, for these variables.
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The final code set is in Listing 13.4.

Listing 13.4 Entire Code Set

/*********************************************************
File:CodeSet.c
Rev:1.0
Date:1-1-03
Author:CJN

*********************************************************/
  #include            “msp430x14x.h”
/*********************************************************

Function Prototypes
*********************************************************/

void initializeDevice(void);

/*********************************************************
Global Variables

*********************************************************/
unsigned char Timing_Underway_Flag=0;
unsigned char On_Time_Flag=0;
unsigned char On_Time_Count_Flag=0;
unsigned long Seconds_To_Count[7];
unsigned long On_Time[7];
unsigned long Off_Time[7];
unsigned long Program_Channel[7];
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/*********************************************************
Main Program

***********************************************************

void main(void)
{
initializeDevice();
while (1)

{}//End Eterna-While
}//End Main

/*********************************************************
ISRs

*********************************************************/
interrupt [0x0A] void TimerA_Interrupt (void)

{
unsigned char Bit_Mask = 0x01; //Used to identify current bit in

//flag fields
unsigned int Loop_Index=0; //Generic Loop Counter

for (Loop_Index=0;Loop_Index<8;LoopIndex++)
    {
    Seconds_To_Toggle[Loop_Index]—;
    if (!(Seconds_To_Toggle[Loop_Index]) //Check for zero seconds

{
P4OUT ^= Bit_Mask; //Toggle Output Bit
if (On_Time_Flag & Bit_Mask) //On or Off??

Seconds_To_Toggle[Loop_Index]=On_Time[Loop_Index];
else

Seconds_To_Toggle[Loop_Index]=Off_Time[Loop_Index];
On_Time_Flag ^= Bit_Mask; //Toggle On Time Flag
}//End If
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Bit_Mask <<=1;
if (Timing_Underway_Flag & Bit_Mask) //If setting up channel

Program_Channel[LoopIndex]++; //Increment counter
}//End For Loop

return;
}//End Timer A Interrupt Function

interrupt [0x08] void Port1_Interrupt (void)
{
unsigned char Bit_Mask = 0x00; //Used to identify current bit in

//flag fields
unsigned int Loop_Index=0; //Generic Loop Counter
unsigned char Bit_Number=0x00; //used as index into array for

//setting values

Bit_Mask=P1IFG; //Bit mask is identical to flag register

//This for loop maps the bit number of the set bit in P1IFG to an integer value
for (Loop_Index=0;Loop_Index<8;Loop_Index++)

{
if ((P1IFG>>Loop_Index) & 0x01)  Bit_Number=Loop_Index;
}//End For

if (Timing_Underway_Flag & Bit_Mask)
{
if (On_Time_Count_Flag & Bit_Mask) //Branch 2 on the

//accompanying flowchart
{
On_Time_Count_Flag &= ~Bit_Mask;  //Clear On Time Flag
On_Time[Bit_Number]=Program_Channel[Bit_Number];
Program_Channel[Bit_Number]=0;
P3OUT |= Bit_Mask;
P4OUT &= ~Bit_Mask;
}//End inner if
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    else //Branch 3 on the accompanying flowchart
{
Seconds_To_Toggle[Bit_Number] = On_Time[Bit_Number];
On_Time_Flag |= Bit_Mask;
On_Time[Bit_Number]=Program_Channel[Bit_Number];
Program_Channel[Bit_Number]=0;
Timing_Underway_Flag &= ~Bit_Mask;
P2OUT |= Bit_Mask;
P4OUT |= Bit_Mask;
}//End inner else

}//End Outer If
else //Branch 1 on the accompanying flowchart

{
Timing_Underway_Flag |= Bit_Mask; //Set timing underway bit

//flag
On_Time_Count_Flag |= Bit_Mask; //Set On Time count bit

//flag
Program_Channel[Bit_Number]=0; //Initialize Counter
P2OUT &= ~Bit_Mask; //Clear appropriate bits on
P3OUT &= ~Bit_Mask; //P2OUT and P3OUT
P4OUT |= Bit_Mask; //Turn on appliance switch
}//End Else

return;
}//End Port 1  Interrupt Function

/*********************************************************
Functions

*********************************************************/

void initializeDevice(void)
{
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//Basic Clock Module Setup
WDTCTL = 0x5A00 + WDTHOLD;//sets WDT to hold
DCOCTL =  0xE0; //sets DCO to max frequency
BCSCTL1 = XT2OFF + RSEL2 + RSEL1 + RSEL0;

//no xt2 osc., max dco resistor
BCSCTL2 = SELM_1; //sets CPU to run off DCO

//Initialize Ports
P1DIR = 0x00; //Inputs on Port 1
P1IES = 0xFF; //Interrupt on high-to-low
P1IE = 0xFF; //Port 1 is interruptible
P1SEL = 0x00; //No functions

P2DIR = 0xFF; //Outputs on Port 2
P2OUT = 0xFF; //Initialize to all 1. Active low output
P2IE = 0x00; //Port 2 is not interruptible
P2SEL = 0x00; //No functions

P3DIR = 0xFF; //Outputs on Port 3
P3OUT = 0xFF; //Initialize to all 1. Active low

//output
P3SEL = 0x00; //No functions

P4DIR = 0xFF; //Outputs on Port 4
P4OUT = 0x00; //Initialize to all 0. Active high

//output
P4SEL = 0x00; //No functions

P5DIR = 0xFF; //Outputs on Port 5
P5OUT = 0x00; //Initialize to all 0.
P5SEL = 0xFF; //Functions for troubleshooting
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P6DIR = 0x00; //Inputs on Port 6
P6SEL = 0x00; //No functions

//Set Up Timer A
TACTL = TASSEL_1 + MC_2 + TAIE;

//Sourced By ACLK, Up mode,
//Interrupt En.

return;
}//End initializeDevice Function

What is wrong with this design?

This is a useful question to ask about any design, after the first cut. There are
several sources of potential misbehavior on the part of this design:

■ Multiple Port 1 interrupts. If there is more than 1 bit set in P1IFG
when the ISR is kicked off, the Bit_Mask variable will have several
bits set, while the Bit_Number variable will only reflect the most
significant set bit. While this will cause some strange (and incorrect)
behavior, it should be uncommon enough that it is probably sufficient
that we are aware of it, but can live with it.

■ Supply and reset stability. For many power supplies, particularly a cheap
wall-transformer type DC supply, the RC circuit I have put in for the
reset circuit is horribly insufficient. Anytime there is a lengthy
enough power loss or glitch on the reset line, the device will need to
be reprogrammed from scratch. Make the power and reset signal as
stable as possible.

■ Crystal Error. Remember, timed events are never more accurate than
the crystal from which the time base is derived. If your crystal has an
error of 150 ppm (parts per million, a common unit of measure for
crystals), an event time will drift by about 90 minutes per year.
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Some Functional Additions

This design, along with the rich feature set of the ’430 devices, allows for
some obvious additions. Rather than switch outputs on and off based on
time, they can be switched based on temperature or external signal levels,
using the A/D convertor and the comparator circuits. There are some consid-
erations when implementing these:

■ Pin use. Currently, Port 2 is used for indicators. However, the com-
parator function pins are co-located on this port. If a comparator
input is used, this indicator will need to be eliminated or co-located.

■ Interrupt use. Since the functionality is already resident within an
ISR, using interrupt driven comparator or A/D conversion won’t
work without forcing re-entrant interrupt, a subject discussed in
Chapter 3. We will code to avoid this.

■ Debounce. If either condition is near the defined threshold, checking
every second could easily cause an oscillation. There are two easy
alternatives to this. The frequency of condition checking can be set
low enough (such as 30 minutes) that any oscillation is acceptable.
The second alternative is to implement hysteresis, by changing the
threshold after a state change. Neither choice is without significant
disadvantage (latency vs. shifting parameters). We will implement the
first choice.

There is a single variable added to the code,
Seconds_To_Condition_Check, which is implemented as an unsigned int,
and initialized to 1800 (which is equivalent to 30 minutes). The implemen-
tation uses the peripheral code developed in Chapter 6 for temperature
sensing and comparator decisions. The temperature threshold is hard-coded
in, but could be implemented as a dynamic variable. As the ISR is written to
use channels 7 and 8 for the temperature and comparator channels, the time
checking loop that follows has been limited to the first six channels.
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Listing 13.5: Timer Interrupt With Comparator and Temperature
Modifications

interrupt [0x0A] void TimerA_Interrupt (void)
{
unsigned char Bit_Mask = 0x01; //Used to identify current bit in

//flag fields
unsigned int Loop_Index=0; //Generic Loop Counter
signed long Temperature=25;

Seconds_To_Condition_Check—;
if (!(Seconds_To_Condition_Check))
     {
      Seconds_To_Condition_Check = 1800;

Figure 13.6: Additions to Timer Interrupt
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/*****************Comparator Decision**********************/
      P2SEL |= 0x10; //Set up I/O direction register
      CACTL1 = CAREF_21 + CAON;

//Turn on Comparator, internal
//Vcc/2 reference

      CACTL2 = CAF + P2CA1; //Use external signal  for –
//comparator input

      CAPD = 0xFD; //Enable CAPD1 input buffer
      for (Loop_Index =0; Loop_Index <15; Loop_Index ++) {}

//Loop delay allows filter output
//to stabilize
//the length will depend on clock
//speed

if (CACTL2 & CAOUT)
{

P4OUT |= 0x80; //Set Pin High
}

      else
{

P4OUT &= ~0x80; //Clear Pin
}

/*****************Temperature Decision*********************/

ADC12CTL0 = SHT0_6 + SHT1_6 + REFON + ADC12ON;
//Initialize control register 0. Sets up conversion clock,
//internal reference

ADC12CTL1 = SHP;
//Conversion sample timer signal is sourced from the
//sampling timer

ADC12MCTL0 = INCH_10 + SREF_1;
//Use internal reference with respect to ground, Temp on
//input channel 10.
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      ADC12CTL0 |= ADC12SC + ENC; //Enable and start
//conversion

      while (ADC12CTL1 & 0x01); // Hang in loop until
//conversion completes.

Temperature = ADC12MEM0 & 0x00000FFF;
Temperature  *= 845; //These steps convert the ADC

//reading to degrees Celsius
Temperature  >> = 13;
Temperature  -= 278;
if (Temperature>35)

{
P4OUT |= 0x40; //Set Pin High

}
else

{
          P4OUT &= ~0x40; //Clear Pin

}

}//End Condition Check  if

for (Loop_Index=0;Loop_Index<6;LoopIndex++)
{
Seconds_To_Toggle[Loop_Index]—;
if (!(Seconds_To_Toggle[Loop_Index]) //Check for zero

//seconds
{
P4OUT ^= Bit_Mask; //Toggle Output Bit
if (On_Time_Flag & Bit_Mask) //On or Off??
Seconds_To_Toggle[Loop_Index]=On_Time[Loop_Index];



219

A Sample Application

else
Seconds_To_Toggle[Loop_Index]=Off_Time[Loop_Index];

On_Time_Flag ^= Bit_Mask; //Toggle On Time Flag
}//End If

Bit_Mask <<=1;
if (Timing_Underway_Flag & Bit_Mask) //If setting up channel

Program_Channel[LoopIndex]++; //Increment counter
}//End For Loop

return;
}//End Timer A Interrupt Function
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Firmware Testing

Among the most misunderstood and misused steps in the product
development process is that of firmware testing. All too often, the
testing of the firmware is assumed to be adequately performed by the
unit testing process. A well-tested product checks the firmware itself,
along with the interaction between firmware and hardware. Some
specific examples:

• Code Coverage. This is the most important and often overlooked
firmware test concept. The testing process needs to exercise ALL
of the firmware, in various operational conditions. A surprising
number of products have reached the marketplace, only to be
found to have a firmware bug that presented itself in rare cases.
Face it, if the bug were obvious, it never would have made it off
the bench. Check all corners of your code, in every conceivable
combination. Use automated tools to make life easier, if necessary.

• Temperature testing. Traditionally, this is considered to be a
hardware test. Consider, however, the multiple clock sources that
the MSP430 offers. They all vary in accuracy over temperature.
However, the DCO varies by several orders of magnitude more
than most crystals over the allowable temperature range. This can
create cases where timings are solid at one temperature, but cause
code crash at other temperature ranges. Run it over the entire
specified range for your design.

• Reset/Supply/Brownout. Again, this is technically part of hard-
ware test, but be aware that the MSP430 is VERY sensitive to
brownouts, supply glitches, or any flakiness on the reset line.  Use
a decent surge tester to beat the crap out of your design, so that
you will understand the failure modes.
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There are many other good sources of information on these devices, and
embedded systems development in general. Some of the sources that I have
found to be most useful:

Texas Instruments

The website at www.TI.com is your most valuable source of information.
Some of the most useful documents there are:

■ SLAU049 MSP430x1xx Family Users Guide

■ SLAU012 MSP430x3xx Family Users Guide

■ SLAU056 MSP430x4xx Family Users Guide

■ SLAA140 Application Note “Mixing C and Assembler with the
MSP430”

■ SLAA149 Application Note “Programming a Flash-Based MSP430
Using the JTAG Interface’

■ SLAA089 Application Note “Features of the Bootstrap Loader”

This list is by no means inclusive; it merely represents the documentation
I have found to be most useful. Take the time to review the contents of the
website thoroughly.
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Other Embedded Resources

■ Embedded Systems Programming is a good magazine for picking
up tips and ideas. It is a free monthly magazine. Its website is
www.embedded.com.

■ The newsgroup comp.arch.embedded has proven useful for picking up
suggestions. The biggest advantage to newsgroups is that anyone can
post anything, and the biggest disadvantage is that anyone can post
anything. However, this group is one of the better ones that I read
regularly, with most (but not all) posters providing honest and useful
information.

■ If possible, I strongly recommend attending one of the annual
Embedded Systems Conferences. They are offered every spring in
San Francisco, every summer in Chicago, and every fall in Boston.
They are a good way to keep abreast of the recent changes in industry.



As discussed throughout the book, Texas Instruments offers a low-cost flash
emulation tool, for use in prototyping and development. The kit includes the
necessary hardware and software for developing and running code from a PC,
including the popular IAR assembler and compiler. It is designed so that you
can be developing within a few minutes of opening the box.

Kit Contents

The development kit contains:

■ Two MSP430 microcontrollers.

■ One printed-circuit board, with a clamshell type adapter socket for
the microcontroller,  external power and ground connections, a JTAG
connector, several jumper connectors, pads for component growth,
and an LED, for use in a demo program.

■ A JTAG interface unit, which interfaces the signals from the PC
serial port to the JTAG connection on the circuit board.

■ Sets of pins and sockets. You will need to decide which you prefer to
use for contacts, and solder them onto the circuit board, for external
connections to the device. I always use the sockets, because if I
change my mind later, the pin sets will sit in the sockets, giving
me pins to use.

■ The cables necessary to connect all this stuff together.

TI FET Tool
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■ A CD-ROM, which contains Kickstart, the development environment,
and all of the FET documentation. Kickstart is a slightly modified
version of IAR Systems’ Embedded Workbench, which contains an
assembler and compiler, along with C-SPY, which is a ROM monitor
tool, that performs many standard emulation functions via the JTAG port.

Setting Up

Setting up is simple and straightforward, and is adequately described in the
included documentation. I have, over several installations, discovered several
quirks in the installation process:

■ If you have had a previous installation of Kickstart or Embedded Work-
bench on the target PC, you need to eliminate all traces of it before the
new install, including manually deleting the old IAR Systems folders.
For some reason, a simple uninstall doesn’t erase those, and the new
installation doesn’t seem to like the fact that they exist.

■ The software does not always recognize the COM port the first time.
When installing the device on COM1, I sometimes have to switch
the software to COM2, and then back to COM1 before it finds the
hardware. I do not know if this is a limitation of the software or the
operating system, but it has always cleared up for me after one back-
and-forth switch.

■ Check the printed circuit configuration. It is initially set up for the
device to be powered from the JTAG interface, with no external
crystals, and a connection to the on-board LED. The LED is there for
a demonstration program (which makes the LED blink) and needs to
be disconnected before attempting anything useful with the device.
The LED is connected via a jumper, and you should remove that.

Using Kickstart and the FET

As with the setup, usage of these tools is pretty well described by the included
documentation. There are, however, a few tidbits that I have discovered, that
might prove useful.
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■ The hardware will sometimes, when attempting to download new code,
hang for no apparent reason. The software will report, via an error
message in C-SPY, that it cannot find or recognize the hardware. It
could be a brownout in the microcontroller (something that they are
very sensitive to), or a latching error in the interface. I have found,
however, that completely detaching the interface box, resetting the
controller, and attaching everything back together tends to fix the
problem.

■ Included in Kickstart is C-SPY, the ROM monitor tool. It allows
the FET tool to do some basic emulation functions. It is not terribly
powerful compared to a full emulator, but will allow you to step
through code and set a couple of simple breakpoints. (The full-cost
version of EW/C-SPY offers the same feature level.)

■ There is a setting that allows you to disconnect the JTAG while
running the software. It is important to remember that, if you are
performing any detailed timing, the JTAG can potentially screw that
up. Selecting the “disconnect JTAG on go” feature will alleviate this
problem, but you cannot step through the code with the JTAG
disconnected.

■ One function that is nice to have is the ability to print out the contents
of memory, for later analysis. C-SPY will let you examine memory and
CPU contents on the screen, but the copy and print functions are not
implemented. Personally, I prefer to have printouts of this sort of
thing, so that I can mark them up. The ability to review several
thousand bytes of hex code on the screen is a dubious feature, at best.
Fortunately, there is a way around this. In C-SPY, under the FET
Options menu tab, under Advanced, select “Memory Dump”. This
feature allows you to select any portion of the device memory, and
save it, with address information and the CPU registers, to a file. I
always change the file extension from .dmp to .txt, so that any text
editor can read (and print) the file.





As engineers, we love our acronyms. Here is a short list of common acronyms
from this book:

ADC Analog-to-Digital Conversion or Converter

ALU Arithmetic Logic Unit

BCD Binary Coded Decimal

CG1/CG2 Constant Generators 1 or 2 are CPU registers R2
and R3, respectively.

CISC Complex Instruction Set Computing

CMOS Complementary Metal Oxide Semiconductor

CPU Central Processing Unit

CRC Cyclic Redundancy Check

DCO Digitally Controlled Oscillator

EEPROM Electrically Erasable Programmable Read Only
Memory

FET Flash Emulation Tool

FLL Frequency Locked Loop

ISR Interrupt Service Routine

Useful Acronyms
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LCD Liquid Crystal Display

MAC Multiply-and-Accumulate

MIPS Million Instructions per Second

NMI Non-Maskable Interrupt

OTP One Time Programmable

PC Program Counter

POR Power On Reset

PUC Power Up Clear

PWM Pulse Width Modulator

RAM Random Access Memory

RISC Reduced Instruction Set Computing

ROM Read Only Memory

RST Reset

RTC Real Time Clock

SFR Special Function Registers. These include the PC
(Program Counter), SP (Stack Pointer), and the
SR (Status Register).

SP Stack Pointer

SR Status Register

TLA Three Letter Acronym

TTL Transistor-Transistor Logic

UART Universal Asynchronous Receive/Transmit

USART Universal Synchronous/Asynchronous
Receive/Transmit

WDT Watchdog Timer
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Numbers
8051, 1, 2
8086, 7

A
acronym glossary, 227
ADC, 82-90

code example for, 89-90
control registers, 83
conversion modes, 82-83

ADD, 120
ADDC, 121
addressing modes, 103-114
ALU, 11, 12, 94
analog-to-digital converters (see
ADC)
AND, 122
application, sample, 197-220
architecture types, 7
arithmetic instructions, 116
assembly language, 2

B
Basic Clock Module (BCM), 46
Basic Timer, 1, 91
batteries, 196
battery-operated devices, 189
BIC, 123
BIS, 124,
BIT, 125
boot memory, 20
bootstrap loader, 169
BR, 147
brownout, 220

C
C language, 2, 3

compilers, 115
CALL, 126
capture and compare units, 57
CISC architecture, 7
clock and timers, 39-68
clock controls, 46-54
clock problems, debugging, 63-67
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clock sources, 39
clock uses, 54-63
CLR, 147
CLRC, 147
CLRN, 147
CLRZ, 148
CMP, 127
code coverage, 220
code memory, 20
code reviews, 6
commenting code, 5
comparator, 77

analog, 77
control registers for, 78-80
set-up examples, 80-81

compare mode output signal modes, 58
compilers, 115

constant generators, 13
conversion clock, 83
core instructions, 120
CPU clock, 54-55
CPU, 1

connection to memory, 11
features, 12-13

crystal accuracy, 65-67
crystal oscillators, 40-42

D
DADC, 148
DADD, 128
datasheet, MSP430, sample, 229
DCO, 39, 43, 191, 220
debugging clock problems, 63-67

configuration, 65
crystal accuracy, 65-67
hardware, 65

DEC, 148
DECD, 149
design experience, 2
developer’s toolbox, 173-188
developing code, rules for, 5-6
development kit, 1
DINT, 149
downloadable firmware, 170

E
EEPROM, 157
EINT, 149
emulated instructions, 115, 148-150
EPIC (Explicitly Parallel Instruction
Computing), 8
EPROM, 24

F
flash emulation tool, 157, 223-225
flash memory, 20, 24, 157-172

code examples, 166-168
control registers, 158
security fuse for, 164
structure, 157
using, 162-164

Forth language, 155
framing frequency, 91
frequency locked loop (FLL)

operation, 42-43
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G
GIE bit, 30

H
hardware considerations, 95
hardware multiplier, 12, 75

registers, 76
sources of error, 76

Harvard architecture, 8, 94
high-frequency oscillator, 45

I
I/O (see input/output)
immediate mode, 106
INC, 149
INCD, 150
indexed mode, 108
indirect mode/indirect
autoincrement mode, 111
information memory, 11, 20, 165
information sources, other, 221-222
input/output, 69-74

using, 72-73
instruction mapped peripherals, 94
instruction notation, 103
instruction orthogonality, 113
instruction pipeline, 11
instruction set, 3, 115-156
instructions

arithmetic, 116
data, 118
logical and register control, 117
program flow control, 119

interrupt handlers, 15
in C, 31

interrupt service routines
interrupt vectors, 20

table of, 29, 32
interruptible I/O, 71
interrupts vs. polling, 37
interrupts, 27-28

use of, 30
INV, 150
Invalid Interrupt label, 30

J

JC, 129
JEQ, 136
JGE, 130
JL, 131
JMP, 132
JN, 133
JNC, 134
JNE, 135
JNZ, 135
JTAG interface port, 73, 169

application report on, 73
setting flash security fuse

through, 164
JZ, 136

L

language selection, 154
LCD driver, 91-93
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port select table, 93
guidelines for, 93

literature, microcontroller, 2
low-power design, 189, 194-196

guidelines, 191
modes, 190
periodic interrupts, 192-194

M
memory map, 21-23
memory structure, 19
memory types, 23
memory-mapped peripherals, 94
Motorola HC series

microcontrollers, 2
MOV, 137
MSP430 family description, 3-4
multiplexer mode, 92

N
non-interruptible I/O, 69-71
NOP, 150

O
on-chip peripherals, 75-94
one-time programmable (OTP)
devices, 23-24
opcodes, 115
orthogonality, 8, 113
OTP, 23, 164

P
part numbering convention, 4-5
peripheral registers, 19
peripherals

on-chip, 75-94
memory-mapped, 94
instruction-mapped, 94

PIC microcontroller, 1, 2
polling, vs. interrupts, 37
POP
POR, 25
port registers, table of, 72

changing in software, 72
power consumption, 189-190
program counter, 13
PUC (power up clear), 25, 26
PUSH, 115, 138, 150

R
RAM retention mode, 191
RAM, 11, 114

location and guidelines, 19-20
register mode operations, 104-106
registers, 11

guidelines for, 12-13
reset

condition, 26-27
hardware, 25
software, 25
sources, 25
testing, 220
things to watch for, 26
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RET, 151
RETI instruction, 30, 139, 191
RISC architecture, 7, 11
RLA, 151
RLC, 152
ROM, 11, 23
RRA, 140
RRC, 141
rules for developing code, 5-6

S
SBC, 152
scratchpads, 11
security key violations, 25
SETC, 153
SETN, 153
SETZ, 153
SHT variable, values for, 85
special function registers, 19
stack pointer, 18
status register, 11
status register, 15-17, 191

carry flag, 16
zero flag, 16
negative flag, 16
global interrupt enable (GIE), 16
CPU off bit, 17
oscillator off bit, 17
system clock generator, 17
overflow flag, 17

SUB, 142
SUBC, 143
switch implementation, 13-14
SWPB, 144
SXT, 145
system development guidelines, 3
system timing, criticality of, 39

T
testing

firmware, 220
temperature, 220

TI documentation, 2
Timer A, 57
Timer B, 63
timer operating modes, 59
timing generator, 91, 162-163
TST, 153

V
VLIW (Very Long Instruction
Word), 8
voltage generator, 91
von Neumann architecture, 8

W
watchdog timer expiration, 25, 55-57

X
XOR, 146



LIMITED WARRANTY AND DISCLAIMER OF LIABILITY

[[NEWNES.]] AND ANYONE ELSE WHO HAS BEEN INVOLVED IN THE CREATION OR
PRODUCTION OF THE ACCOMPANYING CODE (“THE PRODUCT”) CANNOT AND
DO NOT WARRANT THE PERFORMANCE OR RESULTS THAT MAY BE OBTAINED BY
USING THE PRODUCT. THE PRODUCT IS SOLD “AS IS” WITHOUT WARRANTY OF
ANY KIND (EXCEPT AS HEREAFTER DESCRIBED), EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, ANY WARRANTY OF PERFORMANCE OR ANY
IMPLIED WARRANTY OF MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE. [[NEWNES.]] WARRANTS ONLY THAT THE MAGNETIC CD-ROM(S) ON
WHICH THE CODE IS RECORDED IS FREE FROM DEFECTS IN MATERIAL AND FAULTY
WORKMANSHIP UNDER THE NORMAL USE AND SERVICE FOR A PERIOD OF NINETY
(90) DAYS FROM THE DATE THE PRODUCT IS DELIVERED. THE PURCHASER’S SOLE
AND EXCLUSIVE REMEDY IN THE EVENT OF A DEFECT IS EXPRESSLY LIMITED TO
EITHER REPLACEMENT OF THE CD-ROM(S) OR REFUND OF THE PURCHASE PRICE,
AT [[NEWNES.]]’S SOLE DISCRETION.

IN NO EVENT, WHETHER AS A RESULT OF BREACH OF CONTRACT, WARRANTY
OR TORT (INCLUDING NEGLIGENCE), WILL [[NEWNES.]] OR ANYONE WHO HAS
BEEN INVOLVED IN THE CREATION OR PRODUCTION OF THE PRODUCT BE LI-
ABLE TO PURCHASER FOR ANY DAMAGES, INCLUDING ANY LOST PROFITS, LOST
SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OR INABILITY TO USE THE PRODUCT OR ANY MODIFICATIONS
THEREOF, OR DUE TO THE CONTENTS OF THE CODE, EVEN IF [[NEWNES.]] HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY
ANY OTHER PARTY.

ANY REQUEST FOR REPLACEMENT OF A DEFECTIVE CD-ROM MUST BE POSTAGE
PREPAID AND MUST BE ACCOMPANIED BY THE ORIGINAL DEFECTIVE CD-ROM,
YOUR MAILING ADDRESS AND TELEPHONE NUMBER, AND PROOF OF DATE OF
PURCHASE AND PURCHASE PRICE. SEND SUCH REQUESTS, STATING THE NATURE
OF THE PROBLEM, TO ELSEVIER SCIENCE CUSTOMER SERVICE, 6277 SEA HARBOR
DRIVE, ORLANDO, FL 32887, 1-800-321-5068. [[NEWNES.]] SHALL HAVE NO OBLIGA-
TION TO REFUND THE PURCHASE PRICE OR TO REPLACE A CD-ROM BASED ON
CLAIMS OF DEFECTS IN THE NATURE OR OPERATION OF THE PRODUCT.

SOME STATES DO NOT ALLOW LIMITATION ON HOW LONG AN IMPLIED WARRANTY
LASTS, NOR EXCLUSIONS OR LIMITATIONS OF INCIDENTAL OR CONSEQUENTIAL
DAMAGE, SO THE ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT [[NEWNES.]]
APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY
ALSO HAVE OTHER RIGHTS THAT VARY FROM JURISDICTION TO JURISDICTION.

THE RE-EXPORT OF UNITED STATES ORIGIN SOFTWARE IS SUBJECT TO THE UNITED
STATES LAWS UNDER THE EXPORT ADMINISTRATION ACT OF 1969 AS AMENDED. ANY
FURTHER SALE OF THE PRODUCT SHALL BE IN COMPLIANCE WITH THE UNITED STATES
DEPARTMENT OF COMMERCE ADMINISTRATION REGULATIONS. COMPLIANCE WITH
SUCH REGULATIONS IS YOUR RESPONSIBILITY AND NOT THE RESPONSIBILITY OF
[[NEWNES.]].
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